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Abstract –Partial synchronization patterns play an important role in the functioning of neuronal
networks, both in pathological and in healthy states. They include chimera states, which consist of
spatially coexisting domains of coherent (synchronized) and incoherent (desynchronized) dynam-
ics, and other complex patterns. In this perspective article we show that partial synchronization
scenarios are governed by a delicate interplay of local dynamics and network topology. Our focus
is in particular on applications of brain dynamics like unihemispheric sleep and epileptic seizure.

Introduction. – Synchronization is a widespread
natural phenomenon occurring in dynamical networks of
nonlinear oscillators [1, 2]. Probably the first example
was given by Christiaan Huygens (1629 - 1695), who ob-
served that while two individual pendulum clocks show
slightly deviating times, they spontaneously synchronize
at exactly the same frequency if they are weakly cou-
pled via a wooden beam. In the human brain, synchro-
nization of neurons is essential for normal physiological
functioning [3], for instance in the context of cognition
and learning, but it is also strongly related to patholog-
ical conditions such as Parkinson’s disease [4], or epilep-
tic seizures, which are the cardinal symptom of epilepsy
[5–7]. This neurological disease is currently understood
as a network disease [8], and a better understanding of
the role of the epileptic network’s topology in seizure gen-
eration and termination is highly desirable. Sleep is as-
sociated with specific synchronized oscillations, i.e., sleep
spindles and slow oscillations in the thalamocortical sys-
tem [9]. While the synchronization processes can differ
between adults and children [10], transitions from wakeful-
ness to sleep are widely accompanied by synchronization
phenomena [11]. A particularly intriguing phenomenon
in nature is unihemispheric slow-wave sleep, exhibited by
aquatic mammals including whales, dolphins and seals,
and multiple bird species. Unihemispheric sleep, as the
name suggests, is the remarkable ability to engage in deep
(slow-wave) sleep with a single hemisphere of the brain
while the other hemisphere remains awake [12–14]. In-
terestingly, sleep and wakefulness are characterized by a

high and low degree of synchronization, respectively [12].
In the human brain the first-night effect, which describes
troubled sleep in a novel environment, has been related
to asymmetric dynamics recently, i.e., a manifestation of
one hemisphere of the brain being more vigilant than the
other [15].

Using complex networks of coupled oscillators, one can
simulate synchronization phenomena observed in the hu-
man brain. Often coupled oscillators of FitzHugh-Nagumo
type are employed since these are a paradigmatic model
for neural dynamics [16]. The model describes the non-
linear dynamics of individual neurons or whole brain ar-
eas by a fast excitatory and a slow inhibitory variable.
The coupling between different neurons or different ar-
eas of the brain is mediated by a coupling matrix, which
may be mathematically constructed using standard pro-
cedures from network science, or taken from empirical
structural brain connectivities of human subjects mea-
sured, e.g, by diffusion-weighted magnetic resonance imag-
ing (MRI) [17]. The role of distant-dependent transmis-
sion time delays in large-scale brain synchronization has
been stressed in [18].

In this perspective article we focus on partial syn-
chronization patterns related to unihemispheric sleep and
epileptic seizures. We review computer simulations of net-
works based upon empirical connectivities and FitzHugh-
Nagumo dynamics on the nodes of the network, which
sheds light on dynamical phenomena in the brain. In our
first application, we find dynamical symmetry-breaking
between the two hemispheres, and in a minimum model
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discuss the modalities of unihemispheric sleep in human
brain, where one hemisphere sleeps while the other re-
mains awake [19]. In the second application, we observe
spontaneously occurring episodes of strong synchroniza-
tion, which resemble the ones seen during epileptic seizures
recorded by electroencephalography (EEG) [20, 21]. For
a better insight into the network properties giving rise
to such pathological events, we simulate the dynamics
on various artificial network topologies: we randomly
rewire links in a small-world fashion, consider fractal con-
nectivities, and exchange equal weights with empirical
weights from diffusion-weighted magnetic resonance imag-
ing. Moreover, we explore how global aspects of the net-
works – as assessed with the average clustering coeffi-
cient and the mean shortest path length – impact on the
dynamics of the epileptic-seizure-related synchronization
phenomena.

A better knowledge of the interplay between dynamics
and network properties leading to complex synchroniza-
tion phenomena is essential for understanding unihemi-
spheric sleep and epileptic seizures, as well as other syn-
chronization phenomena in the brain like full or partial
relay synchronization between distant areas of the brain.
The paradigm is to use simple nonlinear oscillator mod-
els like single-variable phase oscillators or two-variable
activator-inhibitor models in combination with complex
network structures obtained empirically or from artificially
constructed topologies. This opens up promising perspec-
tives for future research on partial synchronization pat-
terns in the brain.

Partial synchronization patterns. – There ex-
ist different forms of synchronization, i.e., complete or
isochronous (zero-lag) synchronization, generalized syn-
chronization (where the oscillations of the individual el-
ements of the network are not identical, but functionally
related), phase synchronization (where only the phases but
not the amplitudes of the oscillations are synchronized),
frequency synchronization (where only the frequencies but
not the phases are the same), cluster or group synchro-
nization (where within each cluster all elements are com-
pletely synchronized, but between the clusters there is a
phase lag), and many other forms. Some progress has
been made in generalizing synchronization, for instance,
towards adaptive networks [22, 23] (where the strength
of the links is adapted dynamically), inhomogeneous lo-
cal dynamics [24] and heterogeneous delay times [18], dis-
tributed, state-dependent, or time-varying delays.

Recent research interest has focussed on more com-
plex partial synchronization patterns, where the whole
system is not completely in synchrony, but only parts
of it have the same phase and frequency. An intriguing
example of partial synchronization patterns, which has
recently gained much attention, are chimera states, i.e.,
symmetry-breaking states of partially coherent and par-
tially incoherent behavior, for recent reviews see [25–27].
Chimera states in dynamical networks consist of spa-

tially separated, coexisting domains of synchronized (spa-
tially coherent) and desynchronized (spatially incoher-
ent) dynamics. They are a manifestation of spontaneous
symmetry-breaking in systems of identical oscillators, and
occur in a variety of physical, chemical, biological, neu-
ronal, ecological, technological, or socio-economic systems.
Other examples of partial synchronization include solitary
states [28], or hierarchical multifrequency clusters [23].

In the following we model each node of the network,
corresponding to a brain region, by the FitzHugh-Nagumo
(FHN) model, a paradigmatic model for neuronal spiking
[29, 30]. Note that while the FHN model is a simplified
model of a single neuron, it is also often used as a generic
model for excitable media on a coarse-grained level [31,32].
Thus the dynamics of the network reads:

εu̇k =uk −
u3k
3
− vk

+ σ
∑
j∈NH

Akj [Buu(uj − uk) +Buv(vj − vk)] (1a)

+ ς
∑
j /∈NH

Akj [Buu(uj − uk) +Buv(vj − vk)] ,

v̇k =vk + a

+ σ
∑
j∈NH

Akj [Bvu(uj − uk) +Bvv(vj − vk)] (1b)

+ ς
∑
j /∈NH

Akj [Bvu(uj − uk) +Bvv(vj − vk)] ,

with k ∈ NH where NH denotes either the set of nodes k
belonging to the left (NL) or the right (NR) hemisphere,
and ε = 0.05 describes the timescale separation between
fast activator variable or neuron membrane potential u
and the slow inhibitor or recovery variable v [29]. Depend-
ing on the threshold parameter a, the FHN model may ex-
hibit excitable behavior (|a| > 1) or self-sustained oscilla-
tions (|a| < 1). Here we use the FHN model in the oscilla-
tory regime and fix the threshold parameter at a = 0.5 suf-
ficiently far from the Hopf bifurcation point. The coupling
within the hemispheres is given by the intra-hemispheric
coupling strength σ while the coupling between the hemi-
spheres is given by the inter-hemispheric coupling strength
ς. The interaction scheme between nodes is characterized
by a rotational coupling matrix B. Employing a rotational
matrix B is a simple way to parameterize the possibility of
either diagonal coupling (Buu, Bvv) or activator-inhibitor
cross-coupling (Buv, Bvu) by a single parameter ϕ:

B =

(
Buu Buv
Bvu Bvv

)
=

(
cosϕ sinϕ
−sinϕ cosϕ

)
. (2)

In the following we choose ϕ = π
2 − 0.1, causing dom-

inant activator-inhibitor cross-coupling [33], which is a
commonly employed mechanism in biology. In the neuro-
sciences, the microscopic coupling schemes are very com-
plex [34], but in our coarse-grained macroscopic descrip-
tion of a whole brain area by a pair of activator and in-
hibitor variables, activator-inhibitor coupling is a natural
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(a) (b)

Fig. 1: Model for the hemispheric brain structure: (a)
Weighted coupling matrix Akj of the averaged empirical
structural brain network derived from twenty healthy hu-
man subjects. The 90 brain regions k, j are taken from
the Automated Anatomic Labeling atlas [39], labeled such
that k = 1, ..., 45 and k = 46, ..., 90 correspond to the
left and right hemisphere, respectively. (b) Schematic
representation of the graph of the brain structure with
highlighted left (dark blue) and right (light orange) hemi-
sphere. After [19].

extension of pure activator-activator coupling. Mathemat-
ically, this means that signals of other neuronal areas are
coupled via a coupling phase, which introduces a phase lag
or time delay. The subtle interplay of excitatory and in-
hibitory interaction enables intermittent periods of either
high or low synchronization. This is typical of the critical
state at the edge of different dynamical regimes in which
the brain operates [35, 36]. The coupling phase ϕ is sim-
ilar to the phase-lag parameter of the paradigmatic Ku-
ramoto phase oscillator model [37], which is widely used to
describe synchronization phenomena in coupled oscillator
networks. The coupling phase has been shown to be cru-
cial for the modeling of chimera patterns in the Kuramoto
model [38] and in the FHN model [33].

First, we consider an empirical structural brain network,
obtained from diffusion-weighted MRI data measured in
healthy human subjects. For details regarding the exper-
imental setup, data acquisition and processing, see [40].
Obtaining such connectivity information using diffusion
tractography is known to face a range of challenges [41].
The 90 brain areas of the Automated Anatomical Label-
ing (AAL) atlas [39] correspond to the 90 nodes of our
network, and the connecting white-matter fibers between
the areas correspond to the links. To eliminate individ-
ual variation, the matrices of 20 subjects were averaged
over the coupling between two brain regions k and j, giv-
ing rise to the topology of Fig. 1(a), (b). Brain areas
k ∈ NL = {1, 2, . . . , 45} and k ∈ NR = {46, . . . , 90} corre-
spond to the left and right hemisphere, respectively, as in
[19,21]. The structure of the brain hemispheres can be eas-
ily distinguished: In the adjacency matrix in Fig. 1(a), the
connections within one hemisphere are much stronger than
the connections between both hemispheres. In Fig. 1(b)
the hemispheric brain structure is schematically shown.
Note that there is a very slight structural asymmetry of

the two brain hemispheres, related to the known asymme-
tries in localization of psychological functions, such as the
prevalence of language functions in the left brain hemi-
sphere in humans.

These empirical structural connectivities have been used
in computer simulations of unihemispheric sleep [19], of
epileptic seizure [20, 21], and of the influence of sound on
brain networks, i.e., synchronization patterns induced by
the frequency of an external sound source [42].

Methods. – The dynamical behavior can be char-
acterized by the mean phase velocity ωk = 2πMk/∆T for
each node k, where M complete rotations are realized dur-
ing ∆T . Further, we use the global Kuramoto order pa-
rameter r to measure the degree of synchronization of a
network:

r(t) =
1

N

∣∣∣∣∣
N∑
k=1

exp[iφk(t)]

∣∣∣∣∣, (3)

utilizing an abstract dynamical phase φk obtained from
the standard geometric phase φ̃k(t) = arctan(vk/uk) by
a transformation which yields constant phase velocity φ̇k.
For an uncoupled FHN oscillator, the function t(φ̃k) is cal-
culated numerically, assigning a value of time 0 < t(φ̃k) <
T for every value of the geometric phase, where T is the
oscillation period. The dynamical phase is then defined
as φk = 2πt(φ̃k)/T , which yields φ̇k = const. Only by
using the dynamical phase φk, rather than the geometri-
cal phase φ̃k(t), strong temporal fluctuations of r(t) due to
the slow-fast time scales of inhibitor and activator are sup-
pressed, and a change in r indeed reflects a change in the
degree of synchronization. The Kuramoto order parame-
ter may vary between 0 and 1, where r = 1 corresponds to
complete phase synchronization, small values characterize
desynchronized states, and intermediate values correspond
to partial synchronization.

One may introduce the hemispheric Kuramoto order pa-
rameters RL(t) and RR(t) characterizing the left and the
right hemisphere, respectively, by restricting the summa-
tion in Eq. (3) to the respective hemisphere.

Unihemispheric sleep. – In this section we apply
the FitzHugh-Nagumo model with the empirical structural
connectivity introduced in the previous section to study
the phenomenon of unihemispheric sleep [19]. We show
that the dynamical asymmetry of the two brain hemi-
spheres, induced by the slight natural structural asymme-
try, can be enhanced by introducing the inter-hemispheric
coupling strength as a control parameter for partial syn-
chronization patterns. It has been speculated that uni-
hemispheric sleep is related to the spontaneous symmetry-
breaking phenomenon of chimera states in oscillator net-
works [43,44].

It is presumed that a certain degree of structural in-
terhemispheric separation is a necessary condition for
this pattern to persist [12]. Therefore we propose to
model unihemispheric sleep by a two-community network
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(a) (b)

(d)(c)

Fig. 2: (color online) Partial synchronization pattern for
σ = 0.70, ς = 0.15 with low and high degree of synchro-
nization in the left (a, c) and right (b, d) hemisphere,
respectively. (a),(b) Mean phase velocity profiles ωk, av-
eraged over ∆T = 5 000. (c),(d) inner panels: space-time
plots of node-wise phase velocity ω1

k averaged over a sin-
gle oscillation, outer panels: hemispheric Kuramoto or-
der parameter RL,R as a function of time t. Parameters:
ε = 0.05, a = 0.5, ϕ = π

2 − 0.1. After [19].

of the two hemispheres where the inter-hemispheric cou-
pling strength is smaller than the intra-hemispheric cou-
pling. Similar results are expected if the longer propaga-
tion time delays between the two hemispheres are taken
into account [18]. We consider the empirical structural
brain network shown in Fig. 1, where each region of in-
terest is modeled by a single FitzHugh-Nagumo oscillator
Eq. (1). To achieve partial synchronization patterns we
consider the inter-hemispheric coupling strength ς as an
independent parameter that allows us to reduce the cou-
pling between the hemispheres. In a certain intermediate
interval of inter-hemispheric coupling strength ς < σ we
find the partial synchronization pattern shown in Fig. 2
where the left hemisphere is incoherent while the right
is frequency-synchronized, except for three small brain re-
gions (hippocampus, gyrus parahippocampalis, and amyg-
dala). Interestingly, these three special regions occasion-
ally perform an extra oscillation thus leading occasionally
to a higher instantaneous frequency, and within the net-
work they have a pacemaker role. The partial synchroniza-
tion shows up in the space-time plot, in the mean phase
velocity profile, and in the hemispheric Kuramoto order
parameter (although there is no perfect phase synchro-
nization, and hence RR < 1). Note that the incoherent,
left hemisphere occasionally exhibits a high degree of syn-
chronization that, in contrast to the right hemisphere, is
unstable and vanishes after a short while.

In conclusion, we have obtained a symmetry-broken
state, where the (right) frequency-synchronized hemi-

Fig. 3: Epileptic-seizure-like synchronization phenomena
in a FitzHugh-Nagumo network with empirical connec-
tivity. (a) Weighted adjacency matrix. (b) Schematic
network structure, where the left (right) semicircle corre-
sponds to the left (right) hemisphere (nodes are numbered
clockwise sequentially 1, . . . , 90 starting from the bottom
of the circle). (c) Global Kuramoto order parameter r vs
time for a time interval of 1 hour. (d) r vs time for a time
interval of 30 seconds. The horizontal dashed grey line de-
notes the time average 〈r〉 over 3 hours. The horizontal full
red line marks the threshold of r = 0.8. If r > 0.8 for more
than 8 seconds, we define this as a seizure (pink shaded
region). (e) Space-time plot of the dynamical phases cor-
responding to panel (d). The left (right) hemisphere is
shown in the lower (upper) half. Simulation parameters:
ε = 0.05, a = 0.5, ϕ = π

2 − 0.1, N = 90, σ = ς = 0.6.
After [21].

sphere is reminiscent of the sleep state, and the (left)
desynchronized hemisphere ressembles an awake state.

Epileptic-seizure-related synchronization phe-
nomena. – Epilepsy is a neurological disorder that af-
fects almost 70 million people worldwide. In epileptol-
ogy, the development of the concept of an epileptic net-
work [45, 46] received a strong impetus from network-
theoretical concepts. An epileptic network comprises
anatomically, and more importantly, functionally con-
nected cortical and subcortical brain structures and re-
gions. Seizures may emerge from network constituents
that generate and sustain normal, physiological brain dy-
namics during the seizure-free interval [45].

For networks of neurons, modeled with the FitzHugh-
Nagumo neuronal dynamics, epileptic-seizure-like dynam-
ics has previously been investigated in an empirical struc-
tural brain connectivity and a mathematically constructed
network with modular fractal connectivity [20]. Further,
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the role of partial synchronization phenomena for mech-
anisms of seizure initiation [47] and termination [48] has
been explored. Here we present the results of simulations
for different network topologies that shed light on the role
of the coupling structure for spontaneous synchronization
[21].

First we use the FHN model Eq.(1) with the empirical
structural brain network of Fig. 1. The coupling strength
σ = ς is chosen such that it is as high as possible while
still avoiding full synchronization for long simulations (≈
10000 time units), i.e., σ = 0.6. In order to compare
our simulations with real data (EEG recordings of absence
seizures), we transform the dimensionless time units of the
FHN oscillator model to real time units by comparing the
oscillation period of a single FHN oscillator T = 2.56 to
the dominant frequency of an absence seizure at about
f = 3Hz [49]. Therefore, the simulation time is converted
to real time by 1s = 2.56 · 3 = 7.68 simulation time units.

The results of the simulation are shown in Fig. 3. In
panels (c) and (d), we show the global Kuramoto order
parameter r(t), which measures the degree of synchroniza-
tion. Panels (c) and (d) also reveal periods of very high
and of very low synchronization of the system as a function
of time, varying in a range from 0 to almost 1 (panel (c)).
The temporal average of the order parameter 〈r〉 (hori-
zontal dashed grey line in (d)) and its standard deviation
δ are given by 〈r〉 ± δ = 0.59± 0.21 for the full simulation
of 164 minutes. We define a threshold of high synchrony
as rth = 〈r〉 + δ = 0.8 (horizontal red line in (d)). In
the simulation presented in Fig. 3, the order parameter is
found to be in high synchrony with r > 0.8 during 17% of
the simulation time. Only if the synchronization remains
above the threshold for at least 8 seconds, we define this
time interval as a seizure.

In Fig. 3(d), the order parameter is shown versus time
for one exemplary seizure. Approximately 6 seconds prior
to the start of the seizure, the order parameter drops to a
low value of r ≈ 0.2. Such an apparent desynchronization
can often be observed prior to the onset of focal epileptic
seizures [47, 50–52]. The order parameter then increases
above r > 0.8 (onset of seizure) and remains in high syn-
chrony for almost 10 seconds. The seizure interval is shown
as a pink shaded region. In the full simulation of 164
minutes, 11 seizures were detected, giving an average of
4 seizures per hour and an average duration of 11 sec-
onds. In Fig. 3(e), the dynamic phases of the oscillators
are shown as space-time plot for the same time interval as
in (d) exhibiting strong synchronization during seizure.

We have compared the simulations with EEG recordings
from a 12 years old subject who suffered from seizures, and
found good agreement of the simulated and the recorded
seizures (see Supplemental Material).

Empirical vs artificially constructed networks. –
In order to gain deeper insight into the interplay of dynam-
ics and network topology, especially regarding the occur-
rence of seizures, different artificially constructed networks

have been considered [21]. For details see the Supplemen-
tal Material.

First, by randomly rewiring its links, the highly orga-
nized structure of the empirical connectivity matrix can
be artificially destroyed, while keeping the weight distri-
bution and average node strength. On average the system
is less synchronized, and no seizure is found in the simula-
tion. Next, a quasi-fractal connectivity on a ring network
is considered. It synchronizes completely at a relatively
small coupling strength σ, and no clearly defined seizures
are found. To achieve a more realistic weight distribution,
all non-zero links of the fractal ring can be replaced by ran-
domly chosen weights of the empirical connectivity matrix
in Fig. 1(a). However, despite rich, brain-like modulated
synchronization behavior with a few very short events of
high synchrony r > 0.8, not a single well-defined seizure
is detected.

Finally, we consider small-world-like networks, which
can be constructed according to the Watts-Strogatz al-
gorithm [53] by starting from a nonlocally coupled ring
and randomly rewiring links with a probability p. The
impact of the average clustering coefficient and the av-
erage shortest path length on the number of observed
epileptic-seizure-related synchronization episodes is eval-
uated. Intuitively, the clustering coefficient of the net-
work measures the probability of “cliques” in the net-
work: using the language of social networks, a “clique”
is a group of people who are all connected with each other
within this clique, i.e., if A has two friends, then these
two are also friends with each other. Analogously, a net-
work has a large clustering coefficient if whenever an el-
ement is connected to two other elements (open triplet),
then these two are also likely to be connected directly
(closed triplet). We have examined both network mea-
sures, clustering coefficient and shortest path length, by
employing the Watts-Strogatz small-world algorithm with
various rewiring probabilities p. Among the artificial net-
works, a small-world network with intermediate rewiring
probability p ≈ 0.232 results in the best agreement with
the simulations for empirical structural connectivity. For
the other network topologies, either no spontaneously oc-
curring epileptic-seizure-related synchronization phenom-
ena are found in the simulated dynamics, or the overall de-
gree of synchronization remains high throughout the sim-
ulation. This indicates that a topology with some balance
of regularity and randomness favors the self-initiation and
self-termination of episodes of high, seizure-like synchro-
nization. In particular, the value of the clustering coeffi-
cient should not be too high (as for regular ring networks,
p = 0) and not too low (as for pure random networks,
p = 1), and thus the rewiring probability should assume
intermediate values between 0 and 1. Random network
structures increase brain synchronization compared to re-
alistic brain networks. There is a subtle interplay of reg-
ularity and randomness.

In conclusion, our simulations indicate that the human
brain seems to effectively function in a specific window
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b

Fig. 4: Comparison of (a) empirical brain network, (b)
artificial brain network (small world with rewiring prob-
ability p = 0.232, clustering coefficient C=0.25). Each
black dot represents one of 90 brain areas; the left (right)
semicircle corresponds to the left (right) hemisphere.

of medium clustering. If the clustering is too large, the
neural synchronization is approximately constant in time.
The brain, however, shows both low and high synchroniza-
tion values on the EEG during different tasks and mental
states such as sleep. Moreover, epileptic brains, which
function normally most of the time, appear to synchro-
nize during seizures fully. This shows that the brain is
capable of sustaining both very coherent and very incoher-
ent oscillatory states, which is not possible for too large
clustering coefficients. On the other hand, if the cluster-
ing coefficient is too small, the synchronization fluctuates
rapidly in time and does not resemble the dynamics of
simulations with an empirical brain network. One might
speculate, based on these simulations, that the difference
between healthy and epileptic brains might show up in the
network’s slightly altered clustering coefficient [54,55].

Conclusions and future challenges. – Partial syn-
chronization patterns play an essential role in collective
brain dynamics. Computer simulations of dynamical net-
works of nonlinear oscillators can help to understand the
functioning of the brain, both in pathological and in
healthy states. It is known that the brain is operat-
ing in a critical state at the edge of different dynamical
regimes [35, 36]. We have shown that simple oscillator
models in combination with complex network structures
can explain and elucidate a plethora of observed partial
synchronization scenarios, which are governed by a del-
icate interplay of local dynamics and network topology.
Using empirical structural network connectivities obtained
from diffusion-weighted magnetic resonance imaging of
humans together with paradigmatic dynamics, e.g. the
FitzHugh-Nagumo model, on the nodes of the network,
yields realistic scenarios of partial synchronization. They
include chimera states, which consist of spatially coex-
isting domains of coherent (synchronized) and incoherent
(desynchronized) dynamics, and other complex patterns.

First, we have focussed on unihemispheric sleep, where
one hemisphere of the brain sleeps while the other remains
awake. By tuning the coupling between the hemispheres
we have shown that at intermediate inter-hemispheric cou-
pling one hemisphere becomes incoherent, giving rise to a

chimera-like partial synchronization pattern.

Second, we have shown that FitzHugh-Nagumo oscilla-
tors, coupled via empirical structural connectivities mea-
sured in human subjects, exhibit episodes of high syn-
chronization that resemble the ones seen during epileptic
seizures. Comparing our long-term simulations to EEG-
recorded epileptic seizures, the simulations show striking
similarities to the real data.

In order to gain more insight into the nature of the
empirical structural connectivities of the brain, and into
the interplay of dynamics and network topology, we have
also studied different artificially constructed complex net-
work structures, ranging from random networks, regular
nonlocally coupled ring networks, ring networks with frac-
tal connectivities, and small-world networks with various
rewiring probabilities. Although at first glance the net-
work structure of the empirical connectivities (Fig. 4a)
and the small world network with rewiring probability
p = 0.232 (Fig. 4b) do not at all look similar, the partial
synchronization scenarios are found to be very similar, giv-
ing the best match among all artificial structures studied.
This has been attributed to the intermediate value of the
average clustering coefficient, which results in a sophis-
ticated balance of synchrony and asynchrony with wide
temporal variability.

We have discussed in detail unihemispheric sleep and
epileptic seizures as examples of brain dynamics, but a
great wealth of other collective dynamical behavior in the
brain is amenable to this approach. For instance, in neuro-
science various scenarios have been uncovered where spe-
cific brain areas, e.g., thalamus or hippocampus, act as
a functional relay between other brain regions, having a
strong influence on signal propagation, brain functionality,
and dysfunctions [56–58]. Relay synchronization scenar-
ios between remote layers of a network have been studied
for three-layer networks with regular nonlocally coupled
ring topology [26], randomly diluted small-world topolo-
gies, and configurations where the relay is a single node,
i.e., a hub. Future promising perspectives of the research
on relay functions in the brain should also use empirical
connectivities.
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