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Abstract

The amount of available spoken information is growing very fast. Consequently, there

is an increasing need for effective and efficient approaches for the indexing and retrieval

of spoken information.

Classical spoken document retrieval systems are often based on the word transcrip-

tion provided by an automatic speech recognition system. A large vocabulary word

recognizer will be used to transcribe spoken documents. If there are only few errors

contained in the recognition transcription of spoken documents, this kind of spoken

document retrieval approaches could achieve comparable performance to text-based

information retrieval. However, the mismatch between training and application condi-

tions will lead to a high rate of recognition errors. At the same time, the size of the

vocabulary will grow with the size of data collection. The growing number of unforesee-

able words that are not appearing in the recognizable vocabulary (out-of-vocabulary

words) have become the main problem that word-based spoken document retrieval

system has to deal with. This thesis focuses on the exploration of spoken document

retrieval approaches dealing with misrecognition and the problems caused by out-of-

vocabulary words.

We have collected our test data from the Wall Street Journal Corpus. It includes

records made under variation in acoustic environment (background music or talking

radio), records made from different channels, and records from different speakers. A

20k word recognizer has been built for transcribing speech into representations. This

recognizer can achieve a word-error rate of 25% on our text collection. In this work,

we will only consider the case of single-word queries. About 13% of queries are out-of-

vocabulary words. Traditional word-based spoken document retrieval system is built

as baseline system. It reaches a mean average value of 61% and a maximal recall rate

of 78% on our test collection.

We first explore different word-based spoken document retrieval approaches dealing

with misrecognition errors. Experiments with in-vocabulary queries show that enriching
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recognition transcription with multiple hypotheses is an effective way to compensate

misrecognition errors. The maximal recall rate of 95% is yielded by a spoken docu-

ment retrieval approach based on the word confusion network. The best mean average

precision value of 86% is achieved when performing spoken document retrieval on the

recognition transcription, including nine best hypotheses.

The experimental results also show that replacing an out-of-vocabulary word with

an acoustically similar entry in the recognition vocabulary enables word-based spoken

document retrieval systems to deal with out-of-vocabulary words, but with restricted

performance. We then study another way to solve the out-of-vocabulary problem using

subwords as indexing units. We investigate different indexing units and their ability

to index and retrieve text information. The experimental results confirm that indexing

spoken document with subword units could achieve acceptable retrieval performance.

Nevertheless, we have to make a choice between information coverage and precision.

Maximal information coverage could be achieved using phones as indexing units. Diffe-

rent spoken-document retrieval approaches based on phonetic recognition transcripti-

ons are empirically explored in this work. We successfully integrate position information

into term weight for phone 3-gram based spoken-document retrieval approaches. This

weighting method shows its advantages in dealing with both in-vocabulary and out-

of-vocabulary queries. The best performance for out-of-vocabulary queries retrieval is

yielded by doing probabilistic string matching on mono-phonetic recognition transcrip-

tion of spoken documents in the collection.

We propose a new hybrid approach to spoken document retrieval. This method

achieves more robust retrieval by combining spoken document retrieval approaches

based on the word confusion network and the monophone recognition transcription.

The experimental results show that a mean average precision of 56.47% is reached. In

comparison with the word confusion network, the mean average precision is improved

by about 8.27%. The maximal retrieval recall with the novel hybrid SDR system reaches

91.08%. We also present a prototype with user interface for video retrieval by speech

analysis. This prototype deals with queries in normal text form.
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Zusammenfassung

Immer mehr Multimediadaten werden der Öffentlichkeit zugängig gemacht und die

Menge der Daten nimmt dabei rasant zu. Der Großteil dieser multimedialen Dokumen-

ten besteht zudem aus gesprochenen Informationen. Daher stehen die Anwendungen

im Vordergrund, die ermöglichen, die gesprochenen Informationen in großen audiovi-

suellen Datenbeständen wiederzufinden. Der Retrieval-Ansatz von den gesprochenen

Informationen (SDR) verläuft folgendermaßen. Die automatische Sprachererkennung

(ASR) und Text Information Retrieval werden hintereinandergeschaltet. Das ASR-

System transkribierte die gesprochenen Informationen im Text. Das Text Informati-

on Retrieval System dient dazu, die gewünschte Information in der ASR-Ausgabe zu

finden. Die ASR-Ausgabe enthält Fehler, die häufig durch die Erkennung der out-of-

vocabulary (OOV) Wörter, insbesondere bei Nebengeräuschen auf der Audioaufnahme,

entstehen. Die Fehler in der ASR-Ausgabe führen zu einem Informationsverlust. Die

robuste Informationswiedergewinnung in den fehlerhaften ASR-Ausgaben stellt eine

große Herausforderung dar. Diese Dissertation konzentriert sich auf die Untersuchung

von robusten SDR-Ansätzen, die mit den Erkennungsfehlern in der ASR-Ausgabe um-

gehen und die Probleme, die von OOV-Wrtern ausgelosten werden, vermindern können.

Die in Literatur beschriebenen SDR-Systeme werden nicht mit einheitlichen Da-

tenbeständen evaluiert. Es fehlt ein gemeinsames Datenbestand, der den Leistungsver-

gleich zwischen verschiedenen SDR-Systemen ermöglicht. Aus diesem Grund, wird ein

Testdatenbestand zusammengestellt. Die in dieser Arbeit verwendeten Testdaten stam-

men aus dem Wall Street Journal Corpus. Sie beinhalten gesprochene Informationen

von unterschiedlichen Rednern, die unter verschiedenen akustischen Umgebungen mit

abweichenden Aufzeichnungskanälen aufgenommen wurden. Zu den akustischen Umge-

bungen gehören z.B. Hintergrundmusik, Gespräche oder nebenläufige Sprachsendungen

des Radios.

Ein automatisches Spracherkennungssystem (ASR) wurde aufgebaut, um eine Text-
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Transkription der gesprochenen Informationen zu erstellen. Der Wortschatz des Spra-

cheerkennungssystems umfasst dabei 20000 erkennbare Wörter. Auf unseren Testdaten

erreicht dieses Spracherkennungssystem eine Erkennungsfehlerrate (WER) von bis zu

25%.

In dieser Arbeit, wird nur der Fall von Ein-Wort Anfragen betrachtet. 13% von den

ausgewählten Anfragen sind OOV-Wörter. Der klassische SDR-Ansatz, der auf einer

Wort-Transkription der gesprochenen Informationen basiert, wird als Vergleichsbasis

(Baselinesystem) aufgebaut. Auf unseren Testdaten erhalt das Baselinesystem ein Mean

Average Value (mAP) von 61% und eine maximal Recall Rate (max.RE) von 78%.

Zuerst untersuchen wir verschiedene Wort-basierte SDR-Ansätze, die mit Fehlern

in der Text-Transkription gesprochener Informationen umgehen können. Die Erken-

nungsfehler in der ASR-Ausgabe können, durch Einbeziehung von mehreren ASR-

Hypothesen, reduziert werden. Mehrere ASR-Hypothesen könnten als N-beste Wort-

liste, Wortgitter oder Word Confusion Networks (WCN) in der ASR-Ausgabe abge-

speichert werden. Verschiedene SDR-Ansätze, die in einer ASR-Ausgabe, die mehrere

ASR-Hypothesen beinhaltet, werden untersucht.

Die SDR-Ansätze, die auf der ASR-Ausgabe einschließlich der N-beste ASR-Hypothesen

(N-best) basieren, wurden zuerst untersucht. Die Ergebnisse dieser Studie zeigen, dass

die Anzahl der eingeschlossenen ASR-Hypothesen in der ASR-Ausgabe einen signifi-

kanten Einfluss auf die Informationswiedergewinnungsleistung hat. Der max.RE steigt

mit der zunehmenden ASR-Hypothesen (N). Die beste mAP (ca. 85, 4%) beobach-

tet man bei N = 9. Wir vergleichen verschiedene Gewichtungsschemen wie z.B. tfidf-

Gewichtung- undWahrscheinlichkeit-Gewichtungsmethode. Die Ergebnisse zeigen, dass

die Wahrscheinlichkeit-Gewichtungsmethode die mAP sich um weitere 0, 7% verbessern

kann.

Die Untersuchung der auf Wortgitter basierenden SDR-Ansätze geht der Frage nach,

wie man den Suchraum vernünftig reduzieren kann, sodass die Retrieval-Leistung ge-

halten wird. Der DNLLR-Wert wird für jede Verbindung in dem Wortgitter berechnet.

Die Verbindung in dem Wortgitter, deren DNLLR-Wert unter eine Schwelle liegt, wird

als ungültig erkannt und gelöscht. Die DNLLR-Schwelle ([−118,−90]) wird durch meh-

rere Versuche eingestellt. Die beste max.RE ist 94, 5% mit einer mAP von 76, 2%.

WCN gilt als die kompakteste Form eines Wortgitters. Die Gesamtanzahl der Ver-

bindungen in WCN hat sich im Vergleich zu einem normalen Wortgitter um 76, 5%
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reduziert. Eine max.RE von 95, 2% wird erzielt. Eine Vergleichsuntersuchung wird ge-

macht, um die Leistung verschiedener Gewichtschemen zu erkunden. Unsere Versu-

chen haben gezeigt, dass wenn die A-posteriori-Wahrscheinlichkeit der Verbindungen

in dem WCN direkt als Term-Gewicht eingesetzt wird, dass dann die Genauigkeit

niedriger Recall-Stufe verbessert werden kann. Aber das tfidf-Gewichtschema kann

bessere mAP und max.RE erzielen. Ein neues Gewichtschema, das die A-posteriori-

Wahrscheinlichkeit und tfidf-Gewicht fr Term-Gewicht miteinander kombiniert, wird

vorgestellt. Mit dem neuem Gewichtschema, wird die Anzahl der Suchanfragen, die die

richtige Antwort in ersten Rang in der Ergebnisliste stehen (E1), deutlich erhöht. Das

neue Gewichtschema hat eine max.RE von 95, 23% und eine mAP von 63, 71% erzielt.

Die WCN-basierten SDR-Ansätze erreichen die höchsten max.RE.

Die Bedienung der OOV-Suchanfrage vonWort-basierten SDR-Ansätze ist nur dann

möglich, wenn mindestens eine von den Methoden (z.B. Suchanfrage-Erweiterung und

Dokumente-Erweiterung), im Einsatz ist. Die von Moreau vorgestellte Suchanfrage-

Erweiterungsmethode, die die originale Suchanfrage durch seine akustische ähnliche In-

Vokabular Wort ersetzt, wird genau untersucht. Die experimentellen Ergebnisse zeigen

auch: der Ersatz der OOV-Wörter mit ihrem akustisch ähnlich Eintrag in das Erken-

nungsvokabular ermöglicht, dass die Wort-basierten SDR-Ansätze die OOV-Anfrage

behandeln können. Leider kann diese Lösung nur beschränkte Leistungen erbringen.

Daher werden weitere Möglichkeiten untersucht, um die OOV-Probleme zu bekämpfen,

wie zum Beispiel die auf Teilwort-Transkription (gesprochener Informationen) basie-

renden SDR-Ansätze. Das Verfahren der Umwandlung der gesprochenen Informatio-

nen in der Text-Transkription entspricht der Indizierungsphase eines Textinformation-

Retrieval-Systems. Wir bezeichnen daher die Erkennungseinheit des Spracheerken-

nungssystems auch als Indizierungseinheit. In dieser Arbeit haben wir die Fähigkeiten

verschiedener Teilwort-Indizierungseinheiten in Indizierung und Retrieval auf der Refe-

renztext Transkription der gesprochenen Informationen untersucht. Die experimentel-

len Ergebnisse bestätigen, dass Teilwort-basierende gesprochene Dokumentabrufsyste-

me akzeptable Leistung erzielen können. Wir müssen dennoch die Auswahl zwischen

Informationenerfassung und -genauigkeit treffen. Die maximale Informationsabdeckung

wird mit dem Phon als Indizierungseinheit erreicht.

Die Phon-Transkription der gesprochenen Informationen kann man durch die An-

wendung eines Phon-Erkennungssystem gewinnen. Mit Hilfe von einem Aussprache-

Wörterbuch kann die Phon-Transkription der gesprochenen Informationen auch di-

rekt von der ASR-Wortausgabe bereitgestellt werden. Experimentelle Ergebnisse wei-
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sen darauf hin, dass die Phon-Transkription, die durch Nachbearbeitung der ASR-

Wortausgabe entstehen wird, weniger Fehler beinhaltet. Daher wird in weiteren Ver-

suchen der monophon-basierten SDR-Ansätze eingesetzt. Phon-Transkription gewinnt

mit zweiter Methode werden in folgenden Untersuchung eingesetzt.

Die SDR-Ansätze, die auf der Phon-3gram-Transkription der gesprochenen Infor-

mationen basiert ist, wurden genau untersucht. Die experimentellen Ergebnisse zei-

gen, dass die von Phon-3gram-basierte SDR-Ansätze erreichte max.RE generell höher

als die von den Wort-basierte SDR-Ansätzen sind. Der SDR-Ansatz mit dem tfidf-

Gewichtschema hat eine max.RE von 99, 5% und eine mAP von 65, 2% erreicht. Der

SDR-Ansatz, der die Phon-Abwechslungswahrscheinlichkeit in Term-Gewicht integriert,

hat keinen Gewinn in der Retrieval-Genauigkeit gebracht. Ein drastischer Verlust in

mAP (ca. 25, 3%) ist nicht zu vermeiden. Mit dem SDR-Ansatz, der die Positionsin-

formationen in Term-Gewicht integriert (Proximity), kann man eine mAP von 69, 94%

erreichen. Leider kann der Ansatz, der die PSPL auf Phon-3gram erweitert, keinen

Gewinn auf der Retrieval-Leistung bringen. Die auf Phon-3gram basierenden SDR-

Ansätze können nicht wirklich mit der OOV-Suchanfrage umgehen. Dies wird auch

durch Experimenten nachbewiesen. Es wird untersucht, ob die Abfragelänge eine Wir-

kung auf die Retrieval-Leistung hat. Bei einer langen Suchanfrage, übertrifft der Proximity-

Ansatz alle anderen Phon-3gram basierenden SDR-Ansätze. Der Proximity-Ansatz bie-

tet auch bessere max.RE bei kürzeren Suchanfrage an. Diese Aussagen werden mit

zusätzlichen statistischen Signifikanz Tests verifiziert.

Eins von den Schwerpunkten der Untersuchungen von der Monophon-basierte SDR-

Ansätze ist, die Ähnlichkeitsschätzungsmethode, die die Ähnlichkeit zwischen entdeck-

tes Segment und der Suchanfrage bewertet, genau zu erforschen. Die INED-Methode

nimmt die normalisierte Edit-Distanz als Ähnlichkeit-Score. Die SSPE-Methode inte-

griert die Phon-Verwechslungswahrscheinlichkeit in die Bewertung der Ähnlichkeiten

zwischen dem entdeckten Segment und der Suchanfrage. Die experimentellen Ergebnis-

se haben gezeigt, dass die INED-Methode bessere Retrieval-Leistung anbietet. Die be-

ste max.RE wird von der INED-Methode erreicht. Die INED-Methode erzielt ähnliche

mAP wie Phon-3gram basierter Proximity-Ansatz.

Vorherige Forschungsergebnisse haben gezeigt, dass die Wort-basierte SDR-Ansätze

hohe mAP bei den in-Vokabular Suchanfragen erzielen können und Phon-basierte SDR-

Ansätze ihre Vorteile im Umgang mit OOV-Suchanfragen haben. Basiert auf diese For-

schungsergebnisse und die von Lee vorgestellte Information-Fusion Strategie, wird ein

neuer Hybrid-Ansatz für den gesprochenen Dokumentenabruf entwickelt. Dieser An-
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satz wirkt deutlich robuster im Fall von Erkennungsfehlern und vorkommenden OOV-

Suchanfragen. Der neue gesprochene Dokumentabruf-Ansatz basiert auf einer mehr-

stufigen Transkription der gesprochenen Dokumente. Die mehrstufige Transkription

beinhaltet Word-Confusion-Network und die Monophon-Darstellung eines gesproche-

nen Dokuments. Die experimentellen Ergebnisse zeigen, dass dieser Ansatz eine Mean-

Average-Precision von 56, 74% erreicht. Im Vergleich zu den SDR-Ansätzen, die nur

auf Word-Confusion-Network basieren, erhöht sich die Mean-Average-Precision-Rate

um 8, 27%. Die maximale Retrieval-Rate dieses Ansatzes erreicht bis zu 91, 08%.

Als Letztes stellen wir ein Prototyp für das Video-Retrieval-System vor. Wir be-

schreiben die Hauptelemente von geeigneten Benutzerschnittstellen. Die Funktions-

blöcke für die Auswahl von den verschiedenen Retrieval- und Fusionmodulen ermöglicht

Benutzer den Systemkern zu konfigurieren. Jetzt befasst dieser Prototyp sich nur mit

normalen Abfragen in Textform.
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Chapter 1

Introduction

With increasingly powerful computers, data storage capacity and growing international

information infrastructure, the amount of accessible data in different digital forms

(text, image, audio, video etc.) is rising very fast. Consequently, the development of

more effective, efficient methods to process, organize, analyze and use this data is of

particular interest and has become a key issue.

We focus on the information retrieval (IR) domain, which is concerned with the

representation, storage, organization and access of information items [98], and espe-

cially with the problem of selecting relevant items from a large collection of data, given

a user’s request. In recent years, a lot of research has been carried out in the field

of text retrieval [43], and the retrieval of relevant information from other media, such

as audio [89], video [65] and speech [26] [44]. Significant progress has been made in

text information retrieval. However, the research on effective and efficient methods for

information retrieval in other forms, especially in speech, is relatively new.

Speech, as one of the primary means of human communication, is contained in data

like broadcasting news, speech recordings, interviews, conference talks, lectures given

in universities, etc. A lot of usable semantic information, the so-called spoken content,

which consists of the actual spoken words, is enclosed in the speech segments. The

retrieval of information in speech is clearly becoming ever more significant.

The following sections provide an introduction to information retrieval, describe in-

formation retrieval in spoken documents, define objectives and summarize the scientific

contributions. The overall structure of this thesis will be described in the final section

of this chapter.
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1.1. Information Retrieval

1.1 Information Retrieval

The task of information retrieval is to identify information items within a large col-

lection, that are relevant to a request formed by the user. Generally, a information

retrieval system consists of three basic components: indexing, query formation and

retrieval. Indexing is a process used to prepare the document representation for use

by the information retrieval system. Some factors that need to be considered at this

stage: accurate representation of meanings (semantics), exhaustiveness whether all

content has been covered, and the facility for a computer to manipulate. Query for-

mation generates the representation for the request of a user, the so-called query. The

query must be in the same form as the representation of a spoken document to be

retrieved, to enable the comparison between them. The comparison between the query

and document representation is realized by the retrieval system. A matching function

returns a score representing the similarity between the query and a document. This

score indicates how relevant the document is, according to the given query. Accord-

ing to this score, a ranked list of relevant documents will be returned by the retrieval

system.

The history of information retrieval systems is presented in Figure 1.1. It can be

seen from the Figure 1.1 that the first information retrieval system was proposed by

Luhn in 1957 [68]. This system used words as indexing units. Luhn measured the

word overlap between query and document and used this information as a criterion

for retrieval. He evaluated his system on a small-scale document collection, including

1200 technical reports. The first large-scale information retrieval systems were devel-

oped in the 1970’s. The most famous one is MEDLINE (Medical Literature Analysis

and Retrieval System online) [113]. MEDLINE is an online computerized biomedical

bibliographic retrieval system that was launched by the National Library of Medicine

in 1971. Since the 1990’s, information retrieval techniques have been widely used for

searching all documents on the Internet provided by the FTP server, searching the

World Wide Web (WWW), building recommender systems and automated text cate-

gorization/clustering. In the 21st century, the research on information retrieval systems

focused on the development of multimedia information retrieval systems and techniques

for cross-language information retrieval and document summarization.

The development of information retrieval systems, especially text information re-

trieval systems has been conducted over five decades. Significant progress has been

made in this area. These automatic methods, however, are still far from perfect. The

2



1.2. Information Retrieval in Spoken Documents

Figure 1.1: History of information retrieval.

task of automatically indexing, organizing and retrieving collections of information,

especially information contained in multimedia data, are still open research problems.

This thesis will focus on the issue of automatic methods for information retrieval in

spoken document collections.

1.2 Information Retrieval in Spoken Documents

Spoken document retrieval (SDR) is a subdomain of Information Retrieval (IR). It is

concerned with retrieving spoken documents in response to a written or spoken query

[20]. Speech and text, however, are quite different media. Two main issues need to be

addressed for the development of an effective and efficient spoken information retrieval

system. The first is how to extract and represent the spoken content accurately in a

form that can be efficiently stored and searched. The second one is the issue of how to

deal with noise or errors in the transcription.

A text-query-driven spoken document retrieval system is shown in Figure 1.2. Cur-

rent spoken document retrieval systems can work with written or spoken queries and
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Figure 1.2: Schematic view of a spoken document retrieval system.

will return a ranked list of spoken documents. Generally, a spoken document re-

trieval system consists of four main components: automatic speech recognition (ASR),

indexing, query formation, and retrieval. The automatic speech recognition system

transcribes speech into a sequence of predefined units which could be words, syllables

or phonemes. The transcription of the spoken documents will then be prepared for

the information retrieval system during the indexing stage. After the indexing pro-

cess, only important information will be kept in the document representation. This

process enables the information retrieval system to handle large document collections

efficiently. The representation of a query is generated by query formation. In the

retrieval stage the representation of the query is compared with the representation of

each document in the collection and a similarity score, which will be used to construct

a ranked list of documents, is estimated.

In accordance with the type of speech recognizer applied, current spoken docu-

ment retrieval systems can be classified in four categories: word-based, subword-based,

phone-based and combined approaches. Word-based spoken document retrieval

systems transcribe spoken content in a sequence of words. Text information retrieval

methods can then be directly used to find the relevant information for the given queries.

The British and North American broadcast news retrieval system presented by Renals

[95], and the on-line spoken document retrieval system SpeechFind presented by Zhou

[123], are both word-based spoken document retrieval approaches. In the speech track
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of the TREC [43] conference, Harman has reported that a large vocabulary word recog-

nition system (LVCSR)-based spoken document retrieval system may achieve remark-

able results in terms of the retrieval effectiveness.

Subword-based spoken document retrieval systems will transcribe the spo-

ken content into a sequence of predefined subword units, such as vowel-consonant-vowel

(VCV) features, presented by Luhn [68]. Glavitsch [38] selected about 1000 VCV units

directly from the English text and built a vowel-consonant-vowel feature recognizer

for transcribing the spoken content into a sequence of VCVs for information retrieval.

Phone-based approaches perform information retrieval on the phone transcription

of the spoken documents provided by an automatic phone recognizer [31], [82]. Com-

bined systems use more than one automatic speech recognizer for transcribing the

spoken content into multi-sequences of different units. One representative example is

an application of the traditional information retrieval techniques to spoken documents

presented by James [51].

1.3 Motivation

As mentioned before, a spoken document retrieval system uses an automatic speech

recognizer to transcribe the digital spoken signal into a sequence of predefined terms,

which could be further processed by the retrieval procedure. Hence the quality of the

ASR system has a significant influence on the effectiveness of the SDR. The quality of an

ASR system is evaluated by counting misrecognized terms in the output transcription,

the so-called term error rate. The misrecognized terms will cause confusion during the

retrieval process. The quality of an ASR system is usually affected by the following

factors:

• Recording environment : background noise, microphone directions;

• Speech variability : the temporal and acoustic properties of the same spoken text

vary from one recording to another;

• Speech type : continuous speech or isolated spoken word;

• Number of distinct units to be recognized : a large set of recognizable units

increases the computation complexity;
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• Amount and quality of training data needed to train both acoustic models and

language models.

• Number and gender of different speakers. Every speaker has individual speaking

speed and pronunciation. Speaker-independent recognition is more difficult than

the speaker-dependent recognition.

In order to reduce errors in the transcription, a huge set of training data is re-

quired for building reliable acoustic models of the recognizer. However, the size of the

recognizer vocabulary is limited and fixed, which leads to a restriction of the query

vocabulary. Hence the classical word-based spoken document retrieval system has to

deal with the so-called out-of-vocabulary (OOV) problem. In order to make the

retrieval system operate efficiently and accurately in a large domain, new words have to

be integrated into the recognizer vocabulary. Thus the recognition vocabulary increases

in size. The entire spoken information collection will have to be re-indexed when the

recognizer vocabulary changes. Computationally, this is a very intensive process.

A way to deal with the problem of growing vocabulary without updating the auto-

matic speech recognition system is to use subwords instead of complete words as the

recognition units. The use of subword units can also reduce the number of recognition

units without losing their descriptive power. However, the recognition performance

degrades for shorter units. More misrecognized terms will appear in document repre-

sentations. If the subword units are directly extracted from the text without consider-

ing their acoustic properties, then the retrieval system may not detect a discriminated

unit exactly, when there are other units with similar acoustic properties. The phone, as

basic sound unit, could also be used to analyze spoken information. The phone-based

spoken document retrieval approaches are dependent only on a number of phones which

remains fixed with growing vocabulary. The number of unique phones in one language

is less than 100. Therefore the construction of a phone recognizer requires less training

data than the word-based approaches. At the same time, the phone recognition can be

processed considerably faster this way than using a large vocabulary continuous word

recognizer. The key problem of phone-based spoken document retrieval systems is the

high error rate (phone-error-rate = 50%) in the output transcription. This is due to

the fact that a phone recognizer is very sensitive to the mismatch between training and

test data. The change of the environment, speech style, etc. could cause a lot of errors

in the output transcription.
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Using different recognition systems to generate multi-scale representations for the

spoken information retrieval task could improve the retrieval effectiveness of a spoken

document retrieval system. However, more training data is needed to build reliable

recognizers and the indexing will become a very time-consuming task.

1.4 Purpose and Contributions

The main goal of this thesis is to develop effective open-vocabulary spoken document

retrieval techniques for information retrieval in spoken document collections containing

multiple speakers, different recording environments (with music and talking radio in

the background), varying channels (with varying distance between microphone and

speaker) and varying speaking styles (clean and spontaneous speech). We are going

to tackle two main problems of a spoken document retrieval system: the out-of-

vocabulary and the mis-recognition problem. The following issues are addressed

in this work:

• How much improvement can we achieve by using word transcription with multiple

hypotheses for information retrieval?

• How many kinds of index units can be used for the spoken document retrieval

task and how well will they perform?

• Exploration of the behaviour of the subword units dealing with recognition errors

contained in spoken information transcription.

• How can we achieve higher retrieval performance via modifying indexing and

retrieval components?

A 20k word recognizer has been built for transcribing spoken documents into word

representations. It is evaluated with records made under different acoustic situations,

including variable speaking style, different kinds of environment noise and variation

in channels. Errors in the transcription and their potential effect on retrieval perfor-

mance are researched in the next stage. In order to reduce information loss due to the

misrecognition problem, a transcription including multiple recognition hypotheses is

prepared. A number of word-based retrieval methods that work with multiple recogni-

tion hypotheses are investigated. Some of the errors in ASR transcription are caused by
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the out-of-vocabulary words. These kind of errors could be solved by using subwords

as indexing units. A number of subword units have been used for the spoken document

retrieval task. We thoroughly investigate a set of indexing units and their ability to

effectively index and retrieve information. Using phones as indexing units yields the

highest information coverage. Therefore, an exploration of the phone-based spoken

document retrieval is the other main focus of this work. A new spoken document

retrieval method is presented. This method works on the multi-level representation

of a spoken document, consisting of the word confusion network and the monophone

sequence. The experimental results have verified the improvement achieved with this

method and its power of dealing with recognition errors and out-of-vocabulary queries.

The following scientific contributions are made:

• The impact of mismatching between training and application scenario and the

out-of-vocabulary words on the recognition quality are researched.

• Word-based SDR methods apply text information retrieval methods on the rec-

ognized representation of the spoken documents. The retrieval performance de-

pends on the quality of the recognition output. As a result of the recognition

errors in the document representation, some relevant information may be missing

during the recognition process. If the recognition errors are caused by the mis-

matching between the training and application scenario, the enrichment of the

document representation with multiple recognition hypotheses can reduce the

impact of these kind of recognition errors on the retrieval performance. Multiple

recognition hypotheses in the spoken document representation can be presented

in the form of the Nbest list, lattice and word confusion networks. The spoken

document retrieval methods that work on the Nbest, lattice and word confusion

networks are thoroughly investigated.

– Different document term weighting methods are evaluated for the N -best

list-based spoken document retrieval.

– We research the lattice rescoring method which is based on the durationally-

normalized log likelihood ratio (DNLLR) and its impact on retrieval per-

formance. We also evaluate the retrieval performance achieved by using the

DNLLR-value for document term weighting.

– Word confusion network as more compact lattice is constructed based on the

posterior probability of each link in ASR output lattice. We present a novel
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document term weighting method that integrates the posterior probabil-

ity into the classic term-frequency weighting scheme. This novel weighting

method yields the highest retrieval performance.

– Out-of-vocabulary words are common nouns and names that bear important

information. Updating a word recognizer with new words is a method to

deal with the out-of-vocabulary words. However, it is a very time-consuming

task. Another way to solve the out-of-vocabulary words problem is to ex-

pand the queries or document representations. The experimental results

have verified that the query and document representation expansion method

enables the word-based spoken document retrieval approaches to deal with

out-of-vocabulary words, however with poor performance.

• Different subword units are presented in the current literatures. We perform

an empirical study on different index units and their behaviour in information

retrieval. The highest information coverage is yielded by using phones as indexing

units. Therefore we have thoroughly investigated phone-based spoken document

retrieval methods.

– Different weighting schemes for phone-3gram based spoken document re-

trieval are evaluated. We present a new weighting method which integrates

the position information of the phone-3grams into document term weight-

ing and relevance scoring. The experimental results have verified that this

novel weighting method could benefit the spoken document retrieval system.

An improvement in the mean average precision and the recall rate can be

observed.

– Context independent monophone-based approaches with different scoring

methods are also empirically explored.

– We also investigate the impact of the query-length on the performance of the

phone-based spoken document retrieval approaches. Additional statistical

significance tests have been made here to confirm the conclusions made

about the effect of the query-length on the retrieval performance.

• We present a new spoken document retrieval approach based on multi-level tran-

scription. In our experiment, this new spoken document retrieval method has

shown its advantages in handling recognition errors and the out-of-vocabulary

words. Based on the exploration results, potential fusion is indicated. Different

fusion strategies are also evaluated.
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• Based on the findings of those studies, we built a demo for video indexing and

retrieving via spoken content analysis. This demo enables the user to configure

the spoken document retrieval system by himself via the user interface.

1.5 Thesis Structure

This thesis is structured as follows:

• Chapter 2 provides an introduction into the classical spoken document retrieval

system.

• Background information on experiments presented in this thesis is introduced in

Chapter 3.

• Chapter 4 investigates several variants of robust word-based retrieval methods

working with the transcription containing multiple hypotheses, provided by a

automatic speech recognizer.

• Different indexing units are presented and discussed in Chapter 5. In this chap-

ter, several subword-based spoken document retrieval methods are explored and

discussed.

• We describe the development of a new hybrid spoken document retrieval method

in Chapter 6 and evaluate its performance using spoken document collection with

variable acoustic conditions and out-of-vocabulary words.

• We present our demo for speech driven video indexing and retrieving in Chapter

7.

• The findings of this thesis and possible future directions are presented in Chapter

8.
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Chapter 2

Fundamentals of Spoken Document

Indexing and Retrieval

As a special domain of modern information retrieval, spoken document retrieval con-

sists of spoken document processing, indexing, query formation and retrieval. This

chapter describes those three main components in detail: spoken document processing,

indexing and retrieving. In the spoken document processing and indexing stage, the

digital spoken document will be transcribed in a representation. It contains a sequence

of pre-defined index units. This representation can be generated manually or automat-

ically. Nowadays, with growing amount of accessible spoken documents, we prefer the

automatic transcribing tools, namely the automatic speech recognition (ASR) . The

retrieval element will guide the user to the relevant information corresponding to a

given query. This chapter starts with a short introduction to automatic speech recog-

nition systems in the Section 2.1. Detailed descriptions of spoken content indexing and

retrieval are provided in Sections 2.2 and 2.3.

2.1 Spoken Document Processing - ASR

The task of the automatic speech recognition system is to transcribe an acoustic sig-

nal into a string of predefined units. The predefined units could be phones, sylla-

bles, morphs or complete words. The speech recognition task could be formalized

as finding the most likely unit string W with argmaxWP (W |O) for feature vectors
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O = o1, o2, .....oT . This probability is computed according to Bayes’ rule:

P (W |O) =
P (O|W )P (W )

P (O)
(2.1)

where P (W ) is the probability of W ; P (O|W ) is the acoustic evidence that W is

spoken; P(O) is the average probability that feature vector O will be observed. The

most probable unit string W could be identified as the one with maximal product

P (O|W )P (W ).

W = argmaxWP (O|W )P (W ) (2.2)

From the isolated word recognizer reported by Davis et al. [27] to a current speaker-

independent large vocabulary continuous speech recognizer, the research in automatic

speech recognition by machine has been performed for more than five decades. The

existing ASR systems could be classified into four categories: isolated word recognizer,

connected word recognizer, keyword spotting system and large vocabulary continuous

speech recognizer (LVCSR). Keyword spotting and LVCSR approaches are usually

applied in a spoken document retrieval approach for transcribing digital speech record

into text representations. The progress made in recognition performance of automatic

speech recognition systems can be viewed in Figure 2.1. In Figure 2.1 the recognition

Figure 2.1: Darpa Speech Recognition Benchmark Test [57]

performance of an automatic speech recognition system is denoted with the word error
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rate defined in Equation 2.3,

WER =
S+D+I

N
· 100% (2.3)

where S represents the number of substitution errors (spoken word w1 recognized as

w2); D indicates the number of deletion errors (spoken word w1 missing) and I repre-

sents the number of insertion errors (word w1 is added to the transcription). N denotes

the total number of words in the reference transcription.

Two other measures are also very popular in denoting the performance of an au-

tomatic speech recognition system. They are the percentage of correctly recognized

labels defined in Equation 2.4 and Accuracy defined in Equation 2.5,

Correct =
C

N
· 100% (2.4)

Accuracy =
C − I

N
· 100% (2.5)

where C represents the number of correct labels; I denotes the number of insertion

errors and N is the total number of words in the reference transcription.

The basic structure of an automatic speech recognition system is shown in Figure

2.2.

Figure 2.2: ASR basic structure
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Generally, an automatic speech recognition system consists of two main compo-

nents: feature analysis and decoding [50]. The input speech signal is first converted

into a sequence of acoustic feature vectors via front-end feature analysis. As core com-

ponent, the decoder then plays the role of mapping, matching and decision-making for a

speech signal input, given the acoustic and language model. The acoustic model is the

representation of knowledge about acoustics, phonetics, environment variability and

gender. The language model represents the knowledge of what constitutes a possible

word, what words could co-occur, and in what sequence. A more detailed description

of each component mentioned before can be found in the following sections.

2.1.1 Feature Analysis

The task of feature analysis is to convert the input speech signal into acoustic feature

vectors. The performance of an automatic speech recognition system relies heavily on

this issue. Perfect features should capture the salient aspects of the speech signal while

not be affected by the distortions caused by environmental aspects etc. Significant

efforts have been devoted to this issue. Many appropriate acoustic features have been

presented in the current literature, such as linear prediction coefficients (LPC), lin-

ear predictive cepstral coefficients (LPCC) [72] [93], mel-frequency cepstral coefficients

(MFCC) [91] and perceptual linear predictive (PLP) coefficients [46]. Among them

LPCC, MFCC and PLP features are widely used for the automatic speech recogni-

tion task. It can be seen in the Figure 2.3 that all LPCC, MFCC and PLP analysis

algorithms start with a frame blocking to split the digitized speech signal into small

intervals in which the speech signal may be treated as stationary. Then Hamming

windowing is performed on each frame to minimize the signal discontinuities at the

beginning and the end of each frame. Following this step, LPCC, MFCC and PLP will

diverge from each other.

LPCC

Linear predictive cepstral coefficients are computed from LPC parameters which are

obtained with autocorrelation analysis and subsegment calculation of the prediction

coefficients. The m-th cepstral coefficient c(m) is recursively derived from the LPC
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Figure 2.3: Extraction of audio features

parameters as defined in the following equations:

c0 = ln σ2 (2.6)

cm = am +
m−1∑
k=1

(
k

m
)ckam−k, 1 ≤ m ≤ p (2.7)

cm =
m−1∑
k=1

(
k

m
)ckam−k, m > p (2.8)

where σ2 is the gain term in the LPC model; p is the order of the predictor and am are

the LPC coefficients.

MFCC

Short-term spectral-based MFCCs represent the speech amplitude spectrum in a com-

pact form [66]. The method was proposed in the early 80’s. The creation of MFCCs
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is motivated by perceptual consideration. The nonlinear relation between perceived

frequency and actual frequency was discovered in perception experiments. A couple of

perception based frequency scales like the Bark [126] and Mel scale [86] were proposed

to describe this nonlinear relation. The Mel scale, as defined in Equation 2.9, is based

on the subjective perception of pitch. The signal frequency will be transformed cor-

responding to this nonlinear human perception of frequency as shown in Figure 2.4.

mel = 2595 log10(
f

700
+ 1) (2.9)

where mel means Mel frequency and f is frequency in Hz.

Figure 2.4: Mel Scale

In the MFCC method, the input signal is converted to its auditory representation

via Mel-scale frequency warping. As shown in the Figure 2.3, MFCCs are extracted

from input speech signal in the following steps:

• Preemphasis filtering. A preemphasis filter amplifies the spectrum above

1kHz, because human hearing is more sensitive in this frequency range. Ap-

plying preemphasis filtering assists the spectral analysis algorithm in modelling

the perceptually most important aspects of the speech spectrum.

• Spectral analysis. The short-term power spectrum is obtained by applying a

Fourier transformation to a frame of Hamming windowed speech. The duration

of a window is typically 20 to 30ms.

• Mel-scaled filterbank groups neighbouring frequency bins into overlapping tri-

angular banks with equal bandwidth according to the Mel scale, and the contents

of each band will be summed.
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• Log. Calculation of the logarithm for each sum.

• DCT. Discrete cosine transformation is used to compute cepstral coefficients

from the log mel-filterbank.

PLP

The perceptual linear prediction (PLP) speech analysis technique was proposed by

Hermansky [46]. This technique is also based on short term spectra. PLP features

are extracted as shown in the middle of the Figure 2.3. Broken arrows link the similar

processing stages of PLP and MFCC analysis. Diverging from MFCC analysis, a bark-

scaled filterbank is applied after spectral analyses. The Bark scale is defined as:

bark = 13 arctan(0.00076f) + 3.5 arctan((f/7599)2) (2.10)

where f represent the actual frequency in Hz. Then an equal-loudness preemphasis is

performed to compensate for the unequal sensitivity of human hearing across frequency.

Figure 2.5: Critical band analysis vs mel-filterbank analysis [75]

The similarity of the critical-band (Bark filterbank) analysis and the mel-filterbank

analysis can be seen in the Figure 2.5. More filters are allocated to the lower fre-

quencies where hearing is more sensitive to differences in frequency. In contrast to the

MFCC analysis, the amplitude responses of the critical-band filters are flat-topped and

non-symmetric. The intensity-loudness power law models the non-linear relation

between the intensity of sound and its perceived loudness (by taking the cubic root

of the intensity). In the AR modelling and Cepstral Analysis stage, the auto-

correlation coefficients are estimated by applying inverse DFT after the application
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of intensity-loudness law. These autocorrelation coefficients will be transformed into

autoregressive coefficients. Cepstral coefficients can then be recursively computed from

the autoregressive coefficients.

Acoustic Feature Selection in this Work

The Figure 2.6 provides an overview of announced acoustic features extracted from

the file 4p0a0101 in the WSJ corpus [90]. The performance of an automatic speech

recognition system relies heavily on the speech parametrization. Davis [28] compared

the MFCCs with LP techniques on a syllable-oriented speaker dependent clean speech

recognition task. He verified that the MFCC outperforms the LP methods and achieves

the best performance. With its robust and cost-effective computation, MFCC has

become a standard choice in the automatic speech recognition applications. Hermansky

and Mporas et al. have experimentally verified that only under specific conditions can

PLP features outperform MFCC [46] [78]. MFCCs have been selected in this work for

the speech parametrization task based on these previous studies.

2.1.2 Decoding

The Equation 2.2 is the mathematic description of a speech recognition task. Given

acoustic models P (O|W ) and language models P (W ), the task of speech recognition

is to find a unit string with the maximum P (W |O). The key challenge has become

building accurate acoustic models and language models to meet the needs of real ap-

plications.

Acoustic Modelling with Hidden Markov Models (HMMs)

After feature extraction, we have a sequence of acoustic feature vectors. The prob-

ability of these acoustic feature vectors has to be estimated given acoustic models

P (O|W ). Acoustic modelling converts acoustic features into probabilities of particular

labels. Since the 1980’s, HMM has become the most preferred method for ASR acous-

tic modelling. The intrinsic variability of the speech signal and the structure of spoken

language can be modelled with stochastic processes in an integrated and consistent

statistical modelling framework [94]. HMM is specified with an output alphabet, a

set of states, initial state probability distribution, transition probability matrix and
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(a) waveform

(b) Spectrum

(c) LPCC features

(d) MFCC features

(e) PLP features

Figure 2.6: Overview of audio features extracted from WSJ file 4p0a0101

19



2.1. Spoken Document Processing - ASR

emission probability distribution. Figure 2.7 shows an HMM-based phone model with

transition probability parameters {aij} and emission probabilities {bj}.

Figure 2.7: HMM with 3 emitting states

In the speech recognition task the linguistic structure is represented by a Markov

chain. The variability in the acoustic realization of the sounds in speech is represented

by a set of probability distributions. Figure 2.7 shows an example of a typical 5 states

left-to-right HMM for a speech recognition task. Observations o1 to o6 can be generated

by a HMM M by moving through the state sequence X = 1; 2; 2; 3; 4; 4; 5. The joint

probability P (O,X|M) can then be expressed as:

P (O,X|M) = a12b2(o1)a22b2(o2)a23b3(o3)a34b4(o4)a44b4(o5) (2.11)

The HMM parameters can be estimated via training with the Baum-Welch algo-

rithm [8]. Gaussian mixture densities are often used to represent the output distri-

bution bi(oj). By speech recognition task, only the observation sequence O is known

and the underlying state sequence X is hidden. Therefore the required likelihood rep-

resenting that the observation sequence O is generated by HMM M is estimated by

summing up the probability of all possible state sequences X = x(1), ....x(T ), which is
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computed as follows:

P (O|M) =
∑
X

ax(0),x(1)

T∏
t=1

bx(t)(ot)ax(t)x(t+1) (2.12)

where x(0) is the model entry state and x(T + 1) represents the model exit state.

Language Modelling

The language model (LM) represents the knowledge of what constitutes a possible

word, what words could co-occur, and in what sequence. The language model is a

probability distribution capturing the statistics of natural language. N-gram language

models that represent the probability of a sequence with N words are generally used

in ASR task [53]. Given the word string W = w1, w2, ...wn, the probability P (W ) is

computed as follows:

P (W ) =
n∏

i=1

P (wi|wi−N+1, ..., wi−1) (2.13)

Pronunciation Dictionary

A pronunciation dictionary maps recognizable units like words, syllables, etc. into a

sequence of phones (or names representing basic acoustic models). The international

phonetic alphabet (IPA) is the most common phone code. However, IPA contains some

special letters that are not available on computers. Some other computer friendly phone

codes have been proposed, such as ARPABET [104], TIMIT Alpahbet [125], etc.

Viterbi Decoding

Viterbi decoding [33] is performed on the recognition network constructed from a lan-

guage model, a pronunciation dictionary and a set of HMMs. The recognition network

consists of nodes (HMM model instance or word end) and arcs. As shown in the Figure

2.8, the word network is first transformed into a phone-level recognition network with

the help of a pronunciation dictionary, and then extended to HMM state level. The

nodes of the final recognition network are the HMM states connected by transitions.
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Figure 2.8: Recognition Network and HMM trellis for continuous speech recognition example.

The Viterbi algorithm produces a match between the acoustic observation and a path

in the recognition network to find the optimal word sequence, which corresponds to

the most suitable state sequence.

As mentioned before, the performance of a spoken document retrieval system de-

pends heavily on the quality of the applied ASR-systems. Many research groups have

already made technological improvements in all areas of ASR-system, for example, dis-

criminative acoustic model training techniques for ASR [45]. Discriminative training

takes the competing classes into account to optimize the parameters to be estimated.

In contrast to discriminative training, the classic maximal likelihood (ML) criterion is

optimized with the iterative expectation-maximization (EM) algorithm [30]. Heigold

[45] provided a review about discriminative training techniques and presented the re-

sult of his experimental research about different discriminative training criteria, such

as the maximum mutual information (MMI) [118], the minimum classification error

(MCE) [69] and so on. Discriminative training is expected to outperform ML in case

of imperfect model assumptions based on limited data [80]. Hinton [47] et al. confirmed

with their experimental results that further improvement in ASR could be achieved by

using the deep neural networks (DNNs) [122] instead of the Gaussian mixture models

(GMMs) for acoustic modelling. More advanced and focused techniques in different ar-
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eas of ASR, especially LVCSR, were summarized in [100]. The improvement on spoken

information retrieval performance based on the technological improvements in ASR-

system were reported in [25], [49] and [58]. How to improve the ASR-performance is a

widely studied topics. However, it is out of the scope of this thesis.

2.2 Spoken Document Indexing

The aim of the spoken document indexing is to find important meanings and create an

internal representation. The selection of accurate index units or terms plays an impor-

tant role in information retrieval. The indexing term should be useful in distinguishing

documents from one another. The following criteria need to be considered:

• The number of different indexing features must be small

• The collection frequency of the indexing term must be high enough

By the end of the indexing stage, every document will be represented by a set of

weighted keywords or terms in the form D1 → {(t1, w1), (t2, w2), ...}. An inverted file

composed of a vocabulary of terms and a list of occurrences will be simultaneously

constructed.

Performing document indexing in advance can avoid linearly scanning documents

in large collections for finding each query-word. One of the main issues in informa-

tion retrieval is how to find the best index unit to precisely and exhaustively represent

the content in the document. In current spoken document retrieval systems, auto-

matic speech recognizers are usually used to transcribe the digital speech signal into a

sequence of selected index units like phone, syllable, morphs and word.

Phoneme, Phone, Allphone and Phone N-Sequence

Phoneme denotes any of the minimal units of speech sound in a language that can

serve to distinguish one word from another. The International Phonetic Alphabet

(IPA) is normally used to represent phonemes consistently. A phone is the acoustic

realization of a phoneme. For example the pronunciation of letter d in the English words

dog and drive are different, as the position of the tongue is slightly different. Therefore
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the phoneme /d/ corresponds to at least two phones. The set of phones corresponding

to the same phoneme is called allphone. Ng [81] verified that overlapping, fixed-length

phonetic sequence (Phone N-sequences) could also be applied as an indexing unit. In

Ng’s work, phone N-sequences are extracted from the phonetic transcription provided

by a phone recognizer.

Broad Phonetic Class Sequence

The idea of broad phonetic classes is to use more general phonetic classes for the spoken

document indexing task [84]. Broad phonetic classes capture a lot of phonological

constraints. Halberstadt [42] has verified that recognition errors often occur among

phones within a same broad phonetic class. As shown in the Figure 2.9, the 41 phones

in the TIMIT corpus [36] are hierarchically clustered. The clustering is based on

acoustic measurements of the phones. This measuring of phone acoustics is based on

Figure 2.9: The hierarchical clustering tree (dendrogram) used to generate phonetic broad
classes was presented in Ng’s work [84].

61-dimensional feature vectors. A phone can be acoustically split into three phases.

The 61 dimensional feature vector of a phone consists of:

• 12 MFCCs and their derivations for the beginning and end phase

• 12 MFCCs for the middle phase
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• The Log duration

The final feature vector used for the phone clustering task is estimated by averaging the

feature vectors derived from all occurrences of a phone in the TIMIT training set. The

Euclidean distance between acoustic feature vectors is used to measure the similarity

between corresponding phone classes. In each clustering step, two phone classes with

minimal Euclidean distance will be merged. This process will continue to aggregate

groups together until there is just one big group. As shown in the dendrogram (Figure

2.9, with the cuts in the dendrogram, three sets which include a different number of

broad phone classes can be derived.

Syllable

Syllables that center around vowels in English are intermediate units between the

phone and words level. The internal structure of a syllable is shown in the Figure 2.10.

Generally, a syllable consists of an onset (initial consonants if any) and rime. The

rime consists of the nucleus (a vowel peak) and the coda (consonants following the

nucleus). Alternatively, the syllable could be abstracted as the vowel − consonant −
vowel (VCV) feature. Most languages allow ’open’ syllables like coda-less syllables

with the structure V, CV, CCV. As proposed by Glavitsch and Schauble, syllable-like

;

Figure 2.10: General internal structure of a syllable

units (VCV-features) are derived from analyzing text documents for spoken document

retrieval [39] [102]. The letters A, E, I, O, U and Y are counted as vowels. By building

a syllable recognizer, words in the recognition vocabulary are split into a sequence of

syllables (vowel-consonant-vowel features). When a vowel is placed in the middle of

a word, a cut will be made in the middle of this vowel. Each half will be assigned
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to a feature. As an example, the word President can be split into a sequence of

syllables: pre, esi, ide and ent. Because that the vowel-consonant-vowel features are

extracted from the text, not all vowel-consonant-vowel features are suitable for building

speech recognition. Two factors must be considered whenchoosing vowel-consonant-

vowel indexing features:

• It should occur enough times to build a robust acoustic model (collection fre-

quency)

• It should allow for discriminationbetween different messages

A threshold will be assigned to the collection frequency of the vowel-consonant-vowel

features. However, a syllable-based spoken document retrieval approach may not be

very effective, as the vowel-consonant-vowel features are directly extracted from text

regardless of their acoustic characteristics. The syllable representation of a spoken

document to be retrieved may include a lot of recognition errors, which would lead to

a drop in retrieval performance.

Morpheme, Morph and Allomorphs

Another important kind of indexing unit is the morpheme. A morpheme is defined as

the smallest linguistic unit that has semantic meaning. Some morphemes can stand

alone as a word but many cannot. A morph is the phonetic representation of a mor-

pheme. Allomorphs are a set of morphs corresponding to the same morpheme. For

example, the English word ’unbelievable’ consists of three morphemes ’un-’, ’believ’

and ’-able’.

Morphemes could be directly extracted from a text collection. Under the assump-

tion that words are formed by a concatenation of morphemes, a number of unsupervised

methods have been developed for automatic morpheme analysis ([11], [21]). Automatic

morpheme analysis can be achieved by word decomposition using generative models

or by applying minimum description length (MDL) for the optimal text segmentation

([22], [29] and[40]).

The sequential segmentation method based on the MDL cost was proposed by

Creutz [22]. This method could be considered as constructing a model of the data

(text sequence). This model consists of a vocabulary of morphs (codebook). A concise
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set of morphs which gives a concise representation of a text is detected based on the

MDL-cost C defined in Equation 2.15. Given a source text D that consists of n morph-

tokens and a codebook that includes Ncodebook morphs, the MDL-cost C consists of the

cost of the source text in this model and the cost of the codebook,

C = Cost(source text) + Cost(Codebook) (2.14)

=
n∑

i=1

− log pD(mi) +

Ncodebook∑
j=1

k ∗ l(mj) (2.15)

where the cost of the source text is the negative log-likelihood of the morph token

pD(mi), summed over all the morph tokens that comprise the source text. pD(mi) is

estimated as:

pD(mi) =
Nmi

Nsource text

(2.16)

where Nmi
denotes the number of morph tokens mi in the source text and the total

number of morph tokens in the source text is represented by Nsource text.

The cost of the codebook Cost(Codebook) is defined as the length in bits needed

to represent each morph separately as a string of characters, summed over the morphs

in the codebook. k indicates the number of bits needed to code a character. l(mj) is

the length of the morpheme mj in number of characters.

With this method, a word will be recursively decomposed. When a new word is

read from the text, it will be considered as a morph and added to the codebook. Then

every ”cut” that segments the word into two parts is evaluated and the split with

minimum cost is selected. The processing of the word finish once there are no possible

splits left. Then, a new word will be read from the input text.

Morphs have been confirmed to be very useful in retrieving a highly inflectional lan-

guage like Finnish [112]. Because the words of a highly inflectional language commonly

consist of many inflections and compounds, lexical and language modelling becomes to

be the main difficulty in using the standard large vocabulary word recognition tech-

nology. Huge corpora is required for training the models of sufficient coverage of the

language. Even though, those models are infeasible to process in speech recognition.

There are many errors hiding in the speech transcripts, so the performance of spoken

document retrieval drops as well. In this case, the application of morph recognizer

reduce the errors in speech transcripts and consequently benefits the performance of

retrieving spoken documents. The work presented by Kurimo [59] pointed out that
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average morph-based document retrieval could achieve a precision comparable to the

one obtained from human reference transcripts.

The performance of this kind of retrieving spoken documents depends heavily on

the quality of morph-based speech transcripts that is in practice often filled with errors

caused by non-ideal segmentation of inflected word forms. This problem is very similar

to understemming and overstemming problems and may alleviated by the use of

additional query expansion [60] or latent semantic indexing [111].

Word

A word is the single unit in the language. It could also be defined as a lexical item

with an agreed-upon meaning in a given speech community. Words have been widely

used for spoken document indexing tasks. However, we need to solve the problem of

detection of word-boundaries and out-of-vocabulary words in spoken language.

2.3 Spoken Information Retrieval

Spoken content retrieval deals mainly with search, scoring and ranking of documents in

a collection, with respect to the given queries. The general retrieval model consists of

representations of documents D; a representation of a query Q; a modelling framework

for D,Q and their relationships; and a ranking or similarity function Sim(q, di), based

on which retrieved documents will be ranked. In recent studies, classic text retrieval

models like the boolean model, the vector space model, etc. are applied for information

retrieval in spoken document word representation provided by an automatic speech

recognition system.

2.3.1 Boolean Model

The boolean retrieval model looks for exact matches of query terms in documents. In

order to avoid linearly scanning the texts for each query, the documents in the archive

are indexed in advance. A binary term-document incidence matrix is then constructed.

If there are four documents D in the archive as shown in Table 2.1, the corresponding

binary term-document incidence matrix is shown in Table 2.2. The answer to a query
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Doc id Terms in Doc

D1 t1 t2 t3 t4

D2 t2 t4 t5 t6

D3 t1 t3 t5 t7

D4 t2 t3 t4 t7

Table 2.1: Documents in the archive

D1 D2 D3 D4

t1 1 0 1 0

t2 1 1 0 1

t3 1 0 1 1

t4 1 1 0 1

t5 0 1 1 0

t6 0 1 0 0

t7 0 0 1 1

Table 2.2: Example of binary term-document incidence matrices.

consisting of terms t1, t3 and t7 is formed as bitwise AND among document vectors for

t1, t3 and t7:

1010 ∧ 1011 ∧ 0011 = 0010 (2.17)

The result indicates that document D3 is most relevant to the given query. Two other

operators OR and NOT could also be used to form queries. The main drawback is

that this retrieval model is based on a binary decision criterion without any notion of

grading. All terms are assumed to be equally important. This kind of exact match may

lead to either too little or too many documents being retrieved. However, the boolean

retrieval model with its clean formalism and simplicity is still one of the dominant

retrieval models.

2.3.2 Vector Space Model

Vector space models [92] were developed to attack the problems of the boolean model,

caused by binary decision and equal term weights. Non-binary weights will be assigned
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to index terms in the documents (
−→
di = (wi,1, wi,2, ..., wi,t)) and in the query (−→q =

(wq,1, wq,2, ..., wq,t)), which enables partial matching between documents and query.

Similarity between document and query will then be estimated based on term weights.

Two main issues need to be discussed more in detail: term weighting [35] and scoring

schemes (how to estimate the similarity score).

Term Weighting

Weight will be assigned to each term in the documents and the query. This weight

indicates how important a term is with respect to a query or document. In order

to enhance the retrieval effectiveness, higher weights should be given to important

terms. We can imagine that if a query term t (nonstop words like: a, and, any, etc.)

occurs many times in document d, then document d should be relevant to the given

query. The recall rate described in the Section 3.4 of an information retrieval system

relies on terms with high occurrence frequencies. In this work, tf denotes the term

frequency. It is one of term frequency factor in SMART notation and is labelled with

n as showed in Table 2.3. Assigning a term weight directly to its term frequency

is the most straightforward way to integrate the number of term occurrences into the

ranking score. This weighting method has been integrated in the vector space model

since the 1960s.

However, a weight based on the term frequency alone cannot ensure acceptable

retrieval performance. High frequency terms may be prevalent in the whole archive.

High value should be given to terms concentrated in a few documents of a collection.

A collection-dependent factor must also be considered. One of the most famous

collection-dependent factors is the inverse document frequency (idf). It is one of

document frequency factor in SMART notation and is labelled with t in Table 2.3. As

defined in Equation 2.18, high frequency terms will get low idf value while the idf of

a rare term is high,

idft = log
N

dft
(2.18)

where N indicates the number of documents in the collection and dft is the number

of the documents in collection that contain term t (document frequency). The

idf factor is used to scale down the weight of the terms that occur too often in the

collection. The useful terms should be those which occur frequently and which are

prevalent in a restricted number of documents as well. They should be able to be used

to distinguish certain documents from the rest of the archive. The Tf − idf term
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weighting scheme defined in Equation (2.19) combines term frequency and idf into

one composite weight which will be assigned to terms in the documents.

Wtfidft,d = tft,d · idft. (2.19)

Documents in a collection have different lengths. Longer documents tend to be repre-

sented by large term vectors. Hence, longer documents have a better chance of being

retrieved than short ones. Therefore, in case of retrieval from a collection consisting

of documents with widely varying length, a normalization factor should be incor-

porated into the term weight to equalize the influence caused by varying document

lengths. Table 2.3 [103] presents the important factors used to form the term weight

in the SMART notation.

The combination of term weighting is denoted within SMART-Notation qqq.ddd.

The first triple represents the term-weight combination of the query terms and second

triple represents the term-weight combination of the document terms. For example,

ntc.atn means that the query term will be weighted as:

tfq,t.log
N
dft√∑

i∈q(tfq,i · log N
dfi
)2

(2.20)

and the weight of the terms in document will be formed as:

(0.5 +
0.5tfd,t

maxj∈d(tfd,j)
) · log N

dft
(2.21)

Scoring Scheme

The similarity between document and query vectors can be estimated as the normalized

inner dot product between document and query vectors (cosine similarity function) [99].

If �d represents the document vector and �q denotes the query vector, the similarity of

document d to query q can be expressed as:

Sim(�d, �q) =
�q · �d
|�q||�d| =

∑
t∈q

q[t]

|�q|
d[t]

|�d| (2.22)
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Term Frequency Factor

Symbol Value Description

b (0, 1) binary weight factor [35]. It equals to 1 when the term is
included in a vector. Otherwise the value will be 0

n tft,d natural term frequency (tf) factor indicates how many times
a term occurs in a document or query text

a 0.5 +
0.5×tft,d

maxt(tft,d)
natural term frequency factor normalized by maximum tf in
the vector (augmented normalized term frequency)

l 1 + log(tft,d) log-weighted term frequency

L
1+log(tft,d)

1+log(avet∈d(tft,d)
)

average log-weighted term frequency

Document Frequency Factor

Symbol Value Description

n 1 it means there is no change in weight

t log N
dft

inverse document frequency (idf)

p max{0, logN−dft
dft

} probabilistic idf

Normalization Factor

Symbol Value Description

n 1 without any normalization

c 1√
w2

1+w2
2+...+w2

m

cosine normalization, wm indicates the term weight estimated
using term frequency and/or document frequency factor

u 1
u

pivoted normalized document length, which is used to com-
pensate the impact of widely varying document length [106]

b 1
CharLengthα , α < 1 normalized by document length in bytes

Table 2.3: SMART notation for the term-weighting scheme [103]
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where the denominator is the product of the Euclidean lengths of document and query

vector.

The vector space model (VSM) method enables the terms to be weighted with

their importance. Finally, the documents are ranked according to their similarity to

the given query.
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Chapter 3

Experimental Setup

This chapter introduces our experimental setup. Section 3.1 describes the databases

selected for the evaluation task. Section 3.2 introduces our 20k word recognizer and

its recognition performance on different data sets. The description of our retrieval

task can be found in the Section 3.3. Section 3.4 introduces the different evaluation

measures applied in this thesis. Our baseline SDR system is described in section 3.5.

3.1 Databases

Reuters Corpus is a large English text Corpus. It consists of 806791 English broad-

casts (the annual output of Reuters) covering the period from 1996 − 08 − 20 to

1997 − 08 − 19. The news stories are saved as xml files in the newsML format. This

corpus was originally designed to develop topic identification systems. It is now mainly

used in the development of automatic text mining technologies (clustering, categoriz-

ing, topic detection, etc.). In this thesis, word statistics are gathered from the first half

of the Reuters Corpus (CD1). This part consists of 473876 documents and a total of

97 million words, with an average of 205 words per document. The vocabulary consists

of 311706 different words.

TIMIT acoustic-phonetic Continuous Speech Corpus [36] is a corpus of read speech.

It is designed for acoustic-phonetic studies and for the development and evaluation of

automatic speech recognition systems. The TIMIT corpus includes broadband record-

ings of 630 speakers of 8 major dialects (New England, Northern, North Midland,
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South Midland, Southern, New York City, Western and so-called Army Brat) of Amer-

ican English. Each speaker reads 10 phonetically rich sentences. The speech is saved

in mono 16 bit, 16kHz waveform. The time-aligned orthographic, phonetic and word

transcriptions are also available. This Corpus is used to initialize the parameters of

the acoustic model.

WSJ [90], the Wall street Journal (WSJ) CSR Corpus, is a general-purpose English

corpus with large vocabulary, natural language, and a high complexity. It contains

a significant quantity of speech data (more than 400 hours) and text data (ca. 47

million words) and is widely used in speech processing technology. The WSJ Corpus

consists of three main parts: the training part for the estimation of the acoustic models’

parameters a development set for optimizing the recognition decision criterion and

speech data for performance evaluation. The 20k word recognizer built for this thesis

is trained on WSJ data.

The spoken document test collection consists of data sets selected from WSJ-

Corpus (si dt s2, si dt s5, si dt s8 and si dt jd). It contains 8158 spoken sentences.

The information about every selected WSJ data set is listed in the Table 3.1: The

Set Data Evaluation task

si-dt-s2 10 speaker * 20 Utts from ATIS domain;
10 speakers * 0utts. from Mercury

domain-independence

si-dt-s5 200 utts spoken by 10 speaker Microphone-Independence

si-dt-s8 10 speakers * 10 utts * 2 soures * 3 levels noisy environment

si-dt-jd 10 speakers * 20 utts = 200utts spontaneous dictation

total 8158 files 10901 different words with OOV rate
about 3.9%

Table 3.1: Test data information

vocabulary of our test collection contains 17.52% OOV words. The occurrence of OOV

words corresponds to 3.9% of the total. The shortest document consists of 4 words.

The maximum length of a document is 59 words. There are on average 18 words per

document.

3.2 20k Word Recognizer

This section introduces the 20k word recognizer applied in this thesis. This word

recognizer is trained on 16kHz mono audio speech, the training part from the WSJ
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corpus. Acoustic models were initialized with the TIMIT corpus [32] and trained on

entire WSJ training sets. The bigram language model was trained on the NoV-92 LM

training data (20k vocabulary). This recognizer achieves an accuracy of 95.21% on clean

read speech; the Nov92 test-set (5k closed-set test data) in the WSJ corpus. Further

evaluations have been made on test datasets selected for our SDR task. The experiment

results are presented in Table 3.2. The performance of our 20k word recognizer on

different data sets is shown in Figure 3.1. In this figure, mu 0,mu 10 and mu 20 denote

Figure 3.1: Evaluation 20k word recognizer on different datasets.

speech with music in the background with SNR values of 0, 10, and 20dB, respectively

tr 0, tr 10 and tr 20 are speech data with a talking radio in the background with

SNR values of 0, 10 and 20dB; si dt s2 is clean read speech with 7 % OOV words;

si dt s5 wv2 consists of records with the microphone away from the mouth of the

speakers, and si dt jd is spontaneous dictation. The following observations can be

made:

• With a talking radio in the background, more errors occur (WER = 29.44 % at

an SNR-level of 0 dB) than musical background noise (WER = 25.42 % at an

SNR-level of 0 dB);

• In comparison with an SNR-level of 0 dB, a clear improvement could be viewed

at an SNR-level of 10dB;
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Data #wrds OOV #corrs #Del #Subs #Ins WER CORR Acc

mu 20 3466 0.17% 2886 246 334 12 17.08% 83.30% 82.90%

mu 10 3002 0.27% 2512 182 308 6 16.52% 83.70% 83.50%

mu 0 3352 0.66% 2544 262 546 44 25.42% 75.90% 74.60%

tr 20 3442 0.29% 2840 268 334 16 17.95% 82.50% 82.10%

tr 10 3614 0.17% 2996 230 388 24 17.76% 82.90% 82.20%

tr 0 2982 0.25% 2222 236 524 118 29.44% 74.50% 70.60%

si dt s5 3345 0.33% 2283 362 700 40 32.90% 68.30% 67.10%

si dt s2 3454 7.06% 2149 381 924 79 40.07% 62.22% 59.93%

si dt jd 113451 2.04% 88056 7124 18271 3033 25.10% 77.60% 74.90%

Table 3.2: Performance on different data sets.

Figure 3.2: Effect of different environmental factors on the distribution of errors in the
transcription.

• The worst performance (WER = 40.07 %) can be observed by clean read speech

with 7 % OOV-words (si dt s2);

• The impact of varying speech style (WER = 25.1 %, si dt jd) and channels

(WER = 32.9 %, si dt s5 wv2) should also be observed.

Three kinds of errors can be observed in the transcription: deletion, insertion and

substitution errors. The influence of different environment factors on the error distri-

bution in the transcription is shown in Figure 3.2. It is clear that strong background

noise (music or talking radio) may bring more substitution and insertion errors. Most

deletion errors are caused by the out-of-vocabulary words (si dt s2, with 11.03 %) and
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channel variation (si dt s5 wv2, with 10.82 %). The out-of-vocabulary words will be

replaced with acoustically similar words from the vocabulary. In this case, the percent-

age of the substitution errors is high (26.75 %). A loud talking radio in the background

(at an SNR-level of 0 dB) will cause more insertion errors, because spoken words from

the background radio are added to the transcription. An average word error rate of 25

% can be achieved on the test collection.

3.3 Single-word Query Retrieval Tasks

A set of textual single-word queries was selected for the evaluation task. The system

aims at returning a list of spoken documents, that contain the query formed by a user.

This retrieval task is different from conventionally keyword-spotting referring to a pre-

defined keyword set. The keyword-spotting is a widely studied topic and has achieved

currently significant advances by hierarchical keyword modelling approach [17], by

using a long short-term memory recurrent neural network-based feature extractor [16]

and many other technologies ([5], [121], etc.). However, keyword spotting is out of the

scope of this thesis.

Our query set consists of 200 in-vocabulary words, as shown in appendix A and the

30 out-of-vocabulary words (Table3.3) with the highest occurrence in the test collection.

The distribution of in-vocabulary query length over the number of phones is shown in

Figure 3.3. The average query length is 6 phones.

Word Occ Word Occ Word Occ Word Occ Word Occ

CLINTON’S 35 ARTIFACTS 21 MUTATION 21 PHILOSOPHERS 21 BISMARCK 20

CONTINENTS 20 ECLIPSES 20 EXPECTANCY 20 GOATS 20 HERDING 20

HUMANKIND 20 INORGANIC 20 INTERVALS 20 MECHANIZED 20 MICROBIOLOGY 20

OCEANS 20 RADIATOR 20 SHAFT 20 CORP. 12 KORESH 11

RODHAM 11 WORKFORCE 11 HILLARY 9 SPOKESPERSON 9 SPILLER 8

POLYSTYRENE 7 BIKING 6 CANINE 6 CHAVIS 6 IMPLANTS 6

Table 3.3: 30 OOV queries with occurrences.

Logan has reported that in real applications, about 13 % of the query words are

out-of-vocabulary words [67]. We simulate the real application case and keep an out-

of-vocabulary word rate of 12.7 % in the query set.
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Figure 3.3: Length distribution of 200 in-vocabulary queries.

3.4 Evaluation Strategies

The performance of an automatic speech recognition system can be judged objectively.

The recognizer accuracy is obtained by comparing the string of words output by the

recognizer and the reference string of words. The performance evaluation of an in-

formation retrieval system depends on some human factors. The user who forms the

query will assess the relevance of documents retrieved. Four evaluation measures are

applied in this thesis: E1-E5 evaluation, precision/recall lot, mean average precision

value (mAP) and accuracy.

E1-E5 Evaluation

The E1-E5 metric was proposed by Choi [18]. It has been widely used in retrieval

performance evaluation on restricted test data.

• E1 denotes the number of queries for which the relevant document is at first

place

• E2 represent the number of queries for which relevant documents are within the

top 10 documents

• E3 indicates the mean answer rank
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• E4 denotes the mean answer rank after removing the outliers. The mean answer

rank measure drops noticeably when one of the queries with their first answer at

a poor rank. Therefore, it is allowed to ignore one or two of worst queries for

which the first answer is retrieved at a very poor rank when computing the mean

answer rank.

• E5 represents the mean reciprocal rank

A document is relevant to a given query means this document is exact the one that

the user is looking for. For one query there could be more than one relevant document

in a Corpus to be retrieved.

Precision/Recall

Precision and recall are the most popular measures for the evaluation of information

retrieval effectiveness. Precision represents the number of relevant documents retrieved

over the total number of documents retrieved. It is defined as:

precision =
Rretrieved

Nretrieved

(3.1)

Recall is the number of relevant documents retrieved over the total number of

relevant documents in the collection. It is defined as:

recall =
Rretrieved

Rcollection

; (3.2)

The precision/recall curve is gathered by plotting precision against recall after each

new document is added to the list of retrieved documents. Precision values at 11 stan-

dard recall levels (0.0, 0.1, ....1.0) are interpolated using the modified plot normalization

method in TREC evaluation [110]. The interpolated precision at standard recall level

i is the maximum precision obtained for the given query for any actual recall level

greater than or equal to i but less than i + 1. In this thesis, the precision at a recall

of 0.0 is set to the precision value achieved at the nearest recall level. The Figure 3.4

presents an example for the precision/recall calculation.

This measure depends on the number of documents. Table 3.4 gives the definitions

of quantities for the calculation of precision and recall.
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Figure 3.4: Example of precision/recall value selection.

relevant doc. non-relevant doc.

retrieved doc. true positives (tp) false positives (fp)

not retrieved doc. false negatives (fn) true negatives (tn)

Table 3.4: Definition of tp,fp,fn,tn

The definition of precision and recall can be expressed as:

precision =
tp

tp+ fp
(3.3)

recall =
tp

tp+ fn
(3.4)

Mean Average Precision (mAP)

Sometimes it is very hard to make a decision between different retrieval systems just

using precision-recall curves. In this case, a single value called mean average precision
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(mAP) can be used to compare the performance of different retrieval systems [43]. The

mAP is computed by averaging the precision values at recall points for each query and

then averaging them over all queries.

Accuracy

The accuracy of an information retrieval system is defined as:

Accuracy =
tp+ tn

tp+ fp+ fn+ tn
(3.5)

The definition of tp, tn, fp and fn is as given in Table 3.4. This measure indicates

the fraction of true classifications. This measure is not fit for the evaluation of a large

collection information retrieval task, as 99% of documents in collection are usually in

the non-relevant category.

3.5 Baseline SDR System

Our baseline SDR system is shown in Figure 3.5. It consists of three main components:

word recognizer, indexing and vector space model based retrieving.

First, the word recognizer transforms digital spoken information into a sequence

of words. The indexing module removes all stop words from the spoken document

transcription provided by a word recognizer. The word recognition and indexing will

be performed in advance. An index database is generated parallel to the test speech

collection. When a query is formed by a user, the vector space model based method

will search the index database for all splits that are relevant to the given query word.

A ranked list of relevant documents will be returned to the user.

recall 0 10 20 30 40 50 60 70 80 90 mAP max. RE

BL-INV 86.00 89.12 89.93 90.12 89.59 89.05 88.48 88.10 87.30 86.98 84.17 89.77

BL-Total 74.78 77.90 78.08 78.18 77.70 77.08 76.66 75.89 - - 61.67 78.06

Table 3.5: Precision/recall of the baseline SDR system (in %).

This baseline system (BL) is evaluated on our test collection, including 8158 files.

The experimental results are shown in Figure 3.6 and in Table 3.5. The retrieval

performance for in-vocabulary queries BL − INV yields a mean average precision of
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Figure 3.5: Structure of the baseline SDR system

84.17 % as shown in Table3.5. One can observe that the mean average precision drops

(mAP = 61.67 %) when retrieving both in-vocabulary and OOV queries (BL−Total).

The maximal recall rate is also degraded by about 11.7 %. The reason is that the out-

of-vocabulary word will be recognized as the most acoustically similar in-vocabulary

word. In speech transcript provided by a word recognizer, all out-of-vocabulary words

are missing. The information bearing in the out-of-vocabulary words is lost.
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Figure 3.6: Precision/recall Plot of baseline SDR system.
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Chapter 4

Enrichment of a Spoken Document

Representation with Multiple

Recognition Hypotheses

As mentioned before, the task of a spoken document retrieval system is to find all splits

relevant to the given queries. A traditional spoken document retrieval system uses a

word recognizer for automatic transformation of speech into text. Then the classic

information retrieval methods can be applied for spoken information retrieval. There

are some particular issues in the field of spoken information retrieval that need to be

addressed:

• How to extract and represent the spoken content accurately in a form that can

be stored and searched efficiently

• How to deal with the uncertainty in the transcription, or more precisely the

recognition errors

This chapter focuses on the second main issue of spoken document retrieval. Recogni-

tion errors in the transcription are mainly caused by:

• Mismatch between training and real application scenario, such as varying back-

ground noise, speech variability, speech type, speaker change, application domain

and more.
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4.1. N-best Recognition Hypotheses based Spoken Document Retrieval

• The out-of-vocabulary words which do not appear in the vocabulary of the speech

recognizer.

The misrecognition problem leads directly to the term mismatch problem. Different

terms could be recognized for the same spoken content. Adding multiple ASR hypothe-

ses to the transcription can effectively reduce the impact caused by misrecognition.

This chapter will focus on the exploration of the spoken document retrieval approaches

based on the transcription including multiple recognition hypotheses. N -best list and

word lattice are two common representations of multiple recognition hypotheses. We

are going to describe N -best transcription based SDR methods in Section 4.1. Section

4.2 discusses the word lattice based spoken document retrieval issue. The word con-

fusion network as the most compact form of the lattice will be investigated in Section

4.3. In Section 4.4 we mainly focus on the exploration of SDR approaches that deal

with the out-of-vocabulary problem by the way of representation expansion.

4.1 N-best Recognition Hypotheses based Spoken

Document Retrieval

In this case, the representation of a spoken document prepared for the information

retrieval includes N -best recognition hypotheses. The Table 4.1 shows the representa-

tion of a spoken document (4p0a0101) from the WSJ Corpus which includes 10 best

recognition hypotheses. It can be seen that words ’The’, ’young’, ’in’, ’November’ and

’December’ appear in every recognition hypothesis listed in the document representa-

tion. Therefore, the term frequency of those terms in the word-10best representation is

10. Those words are dominant terms in retrieval because of their high term frequency

in the document representation. In addition to the term frequency, there are some

other factors which are very useful for retrieving information from the document word-

N -best representation, e.g. the rank of the hypothesis containing the given query term

and the occurrence of the query term (content words) in the entire language. This

extra information should be considered by forming document term weights. We are

going to discuss two word-N -best representation specified document term weighting

methods in the following sections.

Siegler [105] researched a set of techniques for the estimation of term presence and

counts from the hypotheses contained in N -Best lists. The term presence was a Boolean
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Rank Hypothesis

1 The female produces only to two for a young in November and December

2 The female produces only to pay for a young in November and December

3 The female produces relative to four young in November and December

4 The female produces only to two for young in November and December

5 The female produces only to pay for young in November and December

6 The female produces the food for a young in November and December

7 The female produces only to two four young in November and December

8 The femail produces only to two four young in November and December

9 The female produces only to food for a young in November and December

10 The female reduces the food for a young in November and December

Ref The female produces a litter of two or four in November and December

Table 4.1: N-best Lists of WSJ sentence 4p0a0101

value, that indicated the occurrence of a term in a document. The term counts were

the number of occurrences of query terms in a document which are used to estimate

the relevance/similarity score of a document given query. His experiments showed the

improvements in retrieval precision and recall using the n-Best document source as

opposed to the 1-best source.

4.1.1 Integrating the Rank of a Hypothesis into Document

Term Weighting Scheme

The classical term-frequency tfidf weighting scheme (introduced in Section 2.3.2) will

be modified so that it can deal with the word-N -best representation of a spoken doc-

ument. Information on the rank of the hypothesis in the word-N -best representation

that contains the query term is integrated into the term weight. The query term is

weighted as follows:

wtfidf (t, q) = tf · idft,q = tfquery
|q|︸ ︷︷ ︸
tf

· log |D|
|{d : t ∈ d(H)}|︸ ︷︷ ︸

idf

(4.1)
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where tfquery denotes the occurrences of term tq in query; |q| indicates the size of query
in account of terms; |{d : t ∈ d(H)}| are the number of documents in the collection

including term tq; |D| indicates the number of documents in collection D. According

to the SMART notation listed in Table 2.3, the weighing scheme of the query term is

labeled as nt.

As reported by Siegler [105], the terms appearing in a hypothesis which is in the

front rank of N -best hypotheses should be assigned with higher weight. We use n
(H)
t,d

to represent the average occurrence of the considered term t in the document d and it

is computed as follows:

n
(H)
t,d =

1

H

H∑
h=1

(n
(h)
t,d ) (4.2)

where n
(h)
t,d represents the number of occurrences of the considered term t in the hth

hypothesis of the document d.

The modified (tf − idf)(H) weight is correspondingly re-estimated as:

W (t, d) = (tf · idf)(H)
t,d =

n
(H)
t,d∑
i n

(H)
i,d

· log |D|
|{d : t ∈ d(H)}| (4.3)

where
∑

i n
(H)
i,d denotes the total average number of occurrences of all terms in document

d; |D| is the number of documents in the collection and |d : t ∈ d(H)| denotes the number

of documents including the considered term t in one of the N -best hypotheses. We

define a new symbol h in addition to the SMART notation, to label the document

weighting scheme as h.

4.1.2 Document Term Weighting with General Probability

In recent studies, the hidden Markov Model is applied for the information retrieval

task ([74], [73], [9] [107]). Given queries q, finding relevant documents in the collection

will be achieved in a probabilistic manner.

The main issue of probabilistic information retrieval is how to estimate the prob-

ability that indicates a document is relevant to the given query. Different strategies

are suggested for this issue. The most popular variation is proposed by Song ( [107]).
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This method combines the probability of the query term occurring in the document

and its general probability for the document probability estimation. Here, the general

probability of a term/word means the occurrence of a term in the natural language. In

this work, we weight the query terms with binary information.

w(t, q) =

⎧⎨
⎩
1, if t ∈ q

0, otherwise.
(4.4)

Let P (t|d) be the probability that query term t is in document d and P (t|G) be the

general probability that term t appears in the natural language queries. Stop-words

are not considered here. The terms in the document will be weighted as:

W (t, d) = αP (t|d) + βP (t|G) (4.5)

where the probability P (t|d) is estimated as:

P (t|d) = n
(H)
t,d

|d|(H)
; where |d|(H) =

1

|H|
∑
h∈H

|h|. (4.6)

As defined in the Equation 4.2, n
(H)
t,d is the average number of occurrences of consid-

ered term t in the word-N -best representation of a spoken document d; |d|(H) indicates

the average length of the document d in number of terms. The general language model

term P (t|G) is defined as:

P (t|G) =

∑
i number of times t appears in di∑

i length of di
(4.7)

In this work, P (t|G) is estimated using the Reuters Text Corpus introduced in 3.1.

We use symbol p to represent this weighting scheme.

4.1.3 Experiment and Discussion

This section summarizes the experimental results of word-N -best based spoken doc-

ument retrieval approaches. 200 in-vocabulary queries are selected for the evaluation

task. We first explore the impact of the number of considered hypotheses on the re-
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trieval performance. Then we compare word-N -best based spoken document retrieval

methods with the different weighting schemes introduced in Section 4.1.1 and 4.1.2,

with the baseline system which is based on the word-1best representation of a spoken

document.

The Impact of the Number of Considered Hypotheses on the Retrieval

Performance

This section focuses on the experimental exploration of the effect of the number of

considered hypotheses on the retrieval performance. In order to increase the chance

of capturing the correct hypothesis, the word-N -best represent of a spoken document

should contain all reliable recognition hypotheses. However, there is a potential danger

of using too many recognition hypotheses. Erroneous terms from low scoring hypothe-

ses could be included in the document representation, which will result in the decrease

of retrieval precision.

Document terms are weighted with modified term-frequency defined by the Equa-

tion 4.2 and 4.3. The results of the in-vocabulary queries retrieving experiments are

presented in Figure 4.1 and Table 4.2.

Figure 4.1: Retrieval performance in mAP and max. recall value for different N values.

Figure 4.1 shows the variation of mean average precision and recall of a spoken

document retrieval system as the number of considered hypotheses is increased. It
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can be seen that the recall improves with growing number of considered recognition

hypotheses. Compared with the word-1best based baseline system, word-20best spoken

document retrieval approach yields better recall (5.05 %). The mean average precision

(mAP) rises with a growing number of considered recognition hypotheses and reaches

the maximum value (85.41 %) at N = 9. The mean average precision drops after

N = 9. This result indicates that adding more than 9best recognition hypotheses to

the document representation will not improve the retrieval performance.

recall baseline 2best 3best 4best 5best 6best 7best 8best 9best 10best 15best 20best

0 86.00 89.70 89.70 89.70 88.50 90.40 91.09 91.09 91.70 92.40 91.70 91.70

10 89.12 90.70 91.60 91.60 91.80 91.90 92.10 92.30 92.40 92.40 92.70 93.00

20 89.93 90.90 91.80 91.80 91.70 92.00 92.30 92.10 92.20 92.30 92.40 92.60

30 90.12 91.10 91.60 91.60 92.20 92.20 92.27 92.30 92.40 92.50 92.40 92.60

40 89.59 90.10 90.90 90.90 91.40 91.50 91.60 91.80 91.97 92.00 91.90 92.10

50 89.05 89.70 90.30 90.30 90.70 90.70 90.90 91.10 91.10 91.00 91.30 91.40

60 88.48 89.10 89.40 89.50 90.00 89.80 90.00 90.00 90.00 90.00 90.10 90.20

70 88.10 88.20 87.70 87.70 88.00 87.60 87.50 87.40 89.00 87.30 87.20 87.10

80 87.30 86.70 85.40 85.40 84.90 84.80 84.50 84.20 84.00 83.80 80.00 82.70

90 86.98 85.90 84.20 84.20 83.20 83.30 82.70 82.30 81.90 81.57 80.40 79.60

mAP 84.17 84.87 85.03 85.04 84.99 85.14 85.27 85.22 85.41 85.27 84.92 85.07

max.RE 89.77 92.30 92.98 92.98 91.60 93.58 93.79 93.93 94.00 94.08 94.57 94.82

Table 4.2: Retrieval Performance (precision, recall, maximal recall and mAP value in % for
200 in-vocabulary queries for different numbers of considered recognition hypotheses.

Together with recall and mean average precision, the precision/recall values are

listed in Table 4.2. There is a general trend of improved precision at recall levels

from 1 to 60 %, with an increasing number of considered recognition hypotheses. The

precision drops at higher recall levels (recall > 60 %) when the number of considered

recognition hypotheses increases.

The experimental results show that adding N -best recognition hypotheses to the

spoken document representation benefits the retrieval performance. However, at the

same time more recognition errors are added to the spoken document representation,

causing more confusion in the retrieval task. The number of recognition errors increases

with a growing number of considered recognition hypotheses. This is the reason why the

precision decreases at high recall levels with a growing number of considered recognition

hypotheses. These experimental results serve to verify that the most important or

useful terms are often contained in the hypothesis in the front rank of the N -best

hypotheses. In our case, adding more than 9 recognition hypotheses to the spoken
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document representation does not help.

Comparison of Different Weighting Schemes

This section focuses on the performance comparison between twoN -best specified docu-

ment term weighting schemes described in Section sec:nbestrank and 4.1.2. We evaluate

the retrieval performance of different document weighting schemes on the word-9best

representation of a spoken document. The experimental results are summarized in

Figure 4.2 and Table 4.3. In our experiment, we set both α and β in Equation 4.5 to

1.

Figure 4.2: Comparison of 9-best specified document term weighting scheme.

In Figure 4.2, the green line labeled GP 9best indicates the weighting scheme that

integrates the general term appearance probability into the document term weight (de-

scribed in Section 4.1.2). The red lines labeled with tfidf 9best indicates the modified

term-frequency weighting method, which takes the rank of the recognition hypothe-

ses containing the query term into account introduced in Section 4.1.1. Improvement

in retrieval performance can be achieved with any of the two N -best document term

weighting schemes. In comparison with the tfidf 9best method, the GP 9best weight-

ing method achieves better retrieval precision. Even though there are some fluctuations,

a general trend of improved retrieval precision can be observed when we weight the

document term with probability. An improvement in precision of about 1.4 % com-
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pared to the tfidf 9best method can be observed at a recall level of 20 %. However

the tfidf 9best weighting scheme achieves the highest recall (94%).

recall 0 10 20 30 40 50 60 70 80 90 max.RE mAP

baseline 86.00 89.12 89.93 90.12 89.59 89.05 88.48 88.10 87.30 86.98 89.77 84.17

tfidf 9best 91.70 92.40 92.20 92.40 91.97 91.10 90.00 89.00 84.00 81.90 94.00 85.40

GP 9best 92.50 93.80 93.60 93.40 92.90 92.20 91.00 88.60 84.80 81.40 92.30 86.10

Table 4.3: Comparison of different N-best specified weighting scheme.

If we look at the results listed in Table 4.3, we find out that the probabilistic

weighting scheme GP 9best benefits the precision value for recall level from 0 to 70

%. An improvement in mean average precision of about 1.2 % is achieved using the

tfidf 9best method. Integrating general term appearance probability into the docu-

ment term weight (the GP 9best method) improves the mean average precision by a

further 0.7 %. However, in comparison with the tfidf 9best method, a slight drop of

about 1.7 % in recall can also be observed by the GP 9best method.

Conclusions

Experimental results have verified that the N -best transcription can keep more useful

information than the baseline word-1best approach. More useful or important terms are

included in lower ranked hypotheses. Adding more than 9 best recognition hypotheses

into the spoken document representation does not help to improve the retrieval per-

formance, because the number of incorrectly recognized terms will increase with the

growing number of recognition alternatives. Integrating general term appearance prob-

ability into the document term weight increases the retrieval precision further. The

tfidf 9best method yields the highest recall.

4.2 Lattice

A lattice [85] is an acyclic graph (as shown in Figure the 4.3). A lattice consists of

nodes and edges. A node represents a word that is spoken in a particular period of

time. An edge corresponds to the transition between words. The transition is weighted

by acoustic and language model probabilities.

A lattice provides word alternatives in different time intervals of the speech signal.
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The word error rate of a lattice is defined as the word error rate of the best path in

the lattice closest to the reference transcription. It has been verified that the word

error rate of a lattice is much lower than that of the 1-best hypotheses. Chelba [15]

has reported when the word error rate of a 1-best transcription of a spoken document

is 50 %, the word error rate of the lattice representation of this spoken document

is only 30%. However, the incorporation of word lattices dramatically increases the

Figure 4.3: A lattice example

size of the representation collection. The size of a lattice could become ten times or

even larger than that of the 1-best representation. Information retrieving in the lattice

representation of a spoken document is a time-consuming task. In addition, the lattice

representation contains only paths allowed by the recognition grammar, which is less

flexible for robust domain independent keyword matching.

A lattice was first applied for a spoken document retrieval task in 1994 by James

and Young [26]. They estimated phone level lattice for the spoken documents. The

retrieval of spoken content was achieved via fuzzy matching between the query phone

representation and phone labels in the lattice. At first, potential start positions of a

query, that are lattice nodes labeled with the first phone of the query representation,

are identified. Then fuzzy matching is performed for the detection of query word. The

main drawback of this approach is that if the first phone label is incorrectly recognized,

the query word will not be detected and information will be lost. In James’ later work

([51], [52]), vector space retrieval model was modified for the lattice-based spoken

document retrieval. A duration-normalized log likelihood ratio (DNLLR) [96] defined
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in the Equation 4.8 is estimated for each match,

SDNLLR,W =
logP (W |O)

Tend − Tstart

(4.8)

where P (W |O) is the word likelihood provided by the automatic speech recognition

system; Tend and Tstart is the time in number of frames;

The term frequency in the term weighting scheme of the vector space retrieval

model is defined as the number of lattice nodes labeled with the given term and with

a DNLLR value exceeding a predefined threshold. In this section, we will focus on

following issues:

• How to estimate DNLLR threshold correctly (discussed in Section 4.2.1)

• Investigation of different document term weighting schemes (described in Section

4.2.2)

The experimental results and conclusions will be summarized in Section 4.2.3.

4.2.1 DNLLR-Threshold Estimation

The definition of the DNLLR threshold plays a very important role in lattice retrieval.

The retrieval performance relies heavily on the DNLLR threshold. The DNLLR value

distribution in word-1best document representation and word lattice representation is

presented in Figure 4.4. The red line indicates the lattice DNLLR value distribution

and the blue line represents the DNLLR distribution of ASR 1-best output.

In Figure 4.4, the reasonable region of the threshold should not be far from the

range of the DNLLR value of the ASR 1-best output. We then select the first dip

(ca. − 160.0) on the left of one-best range as the minimal threshold for the DNLLR

value. Using the same strategy, the maximum DNLLR value is set to −70.0. Ca. 99%

of the lattice DNLLR-values fall in this range. To achieve better retrieval performance,

fine tuning of the DNLLR threshold is required. The final DNLLR threshold will be

determined experimentally, which we will discuss in more detail in Section 4.2.3.
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Figure 4.4: DNLLR Thresholding.
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4.2.2 Document Term Weighting

We weight query terms with binary values and research the impact of different docu-

ment term weighting methods on the retrieval performance. Classical Term-frequency

weighting method can also be applied to the word lattice-based spoken document re-

trieval. In this case, the term-frequency is assigned to the number of matches, of which

DNLLR values exceed the given threshold. In order to compensate the effect of wide

variant document length, the term frequency in the weighting scheme will be normal-

ized with the document length. We call this method normalized term-frequency

weighting. Document length is defined as the number of words. Normalized document

term weight w(t, d) is defined as,

w(t, d) =
tft,d∑
j∈d tfj,d

log
N

dft
(4.9)

where tft,d indicates the number of matches to the given term t in the lattice representa-

tion, of which DNLLR value lies in pre-defined range;
∑

j∈d tfj,d denotes the document

length; log N
dft

is the normal inverse document frequency defined in the Equation 2.18.

As written in the following equation, another possibility is to use DNLLR value

(defined in equation 4.8) directly as the weight for the terms in the document.

w(t, d) = max
t=td,td∈d

SDNLLR,td (4.10)

td is a document term that is same to query term t. The effect of different docu-

ment term weighting on retrieval performance will be experimentally researched in the

following Section 4.2.3.

4.2.3 Experiment and Discussion

This section summarizes the experimental results of lattice-based spoken document

retrieval methods. Like in the evaluation of the word-N -best based spoken document

retrieval methods, 200 in-vocabulary queries are selected for the evaluation task. We

first work on fine tuning the DNLLR threshold and its impact on the retrieval perfor-

mance. The appropriate range of the DNLLR value is then experimentally established.

We will ignore all lattice links with the DNLLR values out of range. The effects of

different document term weighting schemes on the retrieval effectiveness will be com-
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pared.

Fine Tuning of the DNLLR Threshold

Figure 4.5: Number of valid links in the ASR lattice transcription.

Tuning of the DNLLR threshold is realized by varying the threshold for the prob-

ability distribution of the DNLLR value. As shown in Figure 4.5, the number of the

valid links decreases with increased probability threshold. The corresponding DNLLR-

thresholds are listed in Table 4.4.

Probability (1E-03) min. DNLLR max. DNLLR Nr. of links label in fig.

2 -137 -75 2124132 tfidf pr0002

4 -132 -77 2086107 tfidf pr0004

6 -129 -80 2029050 tfidf pr0006

8 -125 -87 1879456 tfidf pr0008

10 -118 -90 1694347 tfidf pr0010

20 -111 -96 1245673 tfidf pr0020

30 -108 -96 1071801 tfidf pr0030

40 -105 -99 598514 tfidf pr0040

Table 4.4: Selected DNLLR thresholds.

We have selected 200 in-vocabulary queries to evaluate the retrieval performance.

The classic tfidf weighting scheme is applied for document term weighting. Figure
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4.6 shows the impact of DNLLR threshold on system retrieval performance. The

precision/recall values are presented in Table B.1. The mean average precision values

(a) precision recall plot

(b) Achieved improvement on recall compared with baseline
SDR

Figure 4.6: Effect of DNLLR threshold on system retrieval performance.

are listed in Table 4.5.

tfidf tfidf tfidf tfidf tfidf tfidf tfidf tfidf

recall baseline noth pr0004 pr0006 pr0008 pr0010 pr0020 pr0030 pr0040

mAP (%) 84.17 79.60 79.60 79.60 79.50 76.20 66.20 63.20 42.40

Table 4.5: mAP values for different DNLLR-thresholds

It can be observed that the word-lattice based spoken document retrieval methods
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provide better retrieval precision at a lower recall level. Compared with the baseline

system, an improvement in precision at the forefront of result-list (lower recall-level) can

be viewed. An improvement of about 6 % in recall was found at thresholds tfidf noth,

tfidf pr0004, tfidf pr0006, tfidf pr0008 and tfidf pr0010. However, the retrieval

recall drops beyond threshold tfidf pr0010. Compared with the baseline system, the

recall decreases for about 42% at threshold tfidf pr0040. Links bearing important

information are ignored. Therefore, the threshold tfidf pr0010 (DNLLR value range

[−118,−90]) is selected for further evaluation of different document weighting schemes.

With this threshold, we can achieve an improvement in both recall and precision at

lower recall levels. The decrease in mean average precision is kept in an acceptable

range (below 3.3 %). From the results of this study, we can conclude that all links in

the lattice representation with the DNLLR out of range [−118,−90] can be ignored in

the retrieval process.

Comparison of Different Weighting Schemes

In this section, we are going to evaluate the impact of different weighting methods

on retrieval performance. The following weighting methods will be evaluated: the

classic tfidf method labeled as tfidf pr 0010, the normalized tfidf method labeled as

ntfidf pr 0010 and the document term weighting with DNLLR values (dnllr pr 0010).

pr 0010 indicates the DNLLR range [−118,−90] established in the last section. ntfidf

indicates the weighting schema defined in Equation 4.9. dnllr represents the weighting

schema defined in Equation 4.10. All lattice links with the DNLLR value out of range

[−118,−90] will be ignored during the retrieval. The experiment results are presented

in Figure 4.7 and Table 4.6.

The classic term-frequency weighting method tfidf pr 0010 and the normalized

term-frequency weighting method ntfidf pr 0010 yield similar retrieval performance.

This result indicates that the documents in the collection have almost the same length.

Compared with the baseline system, the ntfidf pr 0010 and tfidf pr 0010 methods

improve the retrieval precision at lower recall levels. The retrieval precision drops

at lower recall levels, when the DNLLR values are used directly as document term

weight. A degradation of the retrieval precision of about 13% is observed at a recall

level of 25%. The precision at higher recall levels yielded by the dnllr pr 0010 weighting

method-based spoken document retrieval system is comparable to the baseline system.

The results listed in Table 4.6 indicate that any of the three weighting scheme will
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Figure 4.7: Precision/recall curves comparing the performance of different weighting schemes.

baseline tf.idf ntf.idf dnllr

max. recall (%) 89.77 94.50 94.50 94.50

mAP (%) 84.17 76.20 76.10 66.90

Table 4.6: Result of different weighting scheme for lattice-based SDR.

reach a retrieval recall of 94.5%. Weighting the document term with tfidf pr 0010 and

ntfidf pr 0010 achieves a mean average precision of about 76%.

Conclusion

A word-lattice spoken document representation may contain far more hypotheses than

a word N -best representation. DNLLR score was proposed by James [52] for the

lattice-based word-spotting task. Term correctness/false alarm trade-off can be varied

by setting a threshold on DNLLR score. His experiments showed that term detection

were more certain with a higher values of this threshold. Therefore, in this work,

the lattice representation of a spoken document was pruned by setting threshold on

DNLLR score with aim to keep more correct links. Hypotheses contain correctly and

incorrectly recognized terms with similar DNLLR values. A threshold is assigned to

the DNLLR value to limit the indexing space, ignoring all links outside of a predefined

DNLLR range. In our experiments, the best range of DNLLR is experimentally fixed

at [−118,−90].
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Different document term weighting schemes are also explored. The dnllr weighting

scheme treats correct and incorrect terms in the same way. Therefore, more false alarms

are added to the final retrieval list. The tfidf pr 0010 and ntfidf pr 0010 weighting

schemes take the number of valid links into account. Here, valid means the link with

DNLLR value in the pre-defined range. The experiments show that terms which really

appear in the speech signal will occur in more hypotheses. High retrieval precision is

achieved with the tfidf pr 0010 and ntfidf pr 0010 weighting methods.

Chelba and Acero [14] proposed another lattice-based information retrieval method,

a position-specific posterior lattice method, that took into account the position of query

words within given lattice. The distance of a word from the start node of the lattice

was used to form the forward probability. The posterior probability of a word occurring

at a given position was computed using this modified forward probability and given

standard backwards probability. The relevance score of a document was estimated by

aggregating the expected count of each subsequence of query terms in the document

according to position. Kazemian [97] reported that PSPL and confusion networks

reached a comparable recall. As the confusion networks is known as the most compact

representation of multiple hypotheses, it will be discussed more in detail in following

sections.

4.3 Confusion Networks

A word confusion network (WCN) is a kind of normalized lattice. It is the most compact

representation of multiple hypotheses. The word confusion network was proposed by

Mangu [71]. It was originally designed to minimize word errors in recognition output.

Based on the assumption that word error and sentence error are highly correlated, the

sentence errors will also be minimized when word errors are minimized. A confusion

network enforces the alignment of the words that occur at the same approximate time

in the lattice. Based on their time span, links in the lattice are clustered. The general

structure of a word confusion network is shown in Figure 4.8. Each edge of the confusion

network is labeled with word hypotheses and their posterior probabilities. Mangu has

verified that the word error rate of the 1-best path in the word confusion network is

lower than that of 1-best path in the normal lattice output of ASR.

A confusion network is built of four main steps: an estimation of the posterior prob-

abilities for each link in the lattice, lattice pruning, intra-word clustering and inter-word
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Figure 4.8: General structure of a word confusion network.

clustering. Section 4.3.1 describes how we construct a word confusion network from

the recognition lattice. We investigate different methods for word confusion network

specified term weighting in Section 4.3.2. The experiment results and discussions are

presented in Section 4.3.3.

4.3.1 Construction of a Word Confusion Network

Each link in a lattice can be represented with: starting node Inode(l), ending node

Fnode(l), starting time Itime(l), ending time Ftime(l) and word label Word(l). The

link posterior probability represents the reliability of Word(l) recognized. After the

link posterior probability is estimated, an ordered link equivalence is established. This

link equivalence is consistent with the lattice order. The link equivalence is initialized

with a class consisting of all links with the same label and within the same period

of time. After that, clustering algorithm merges equivalence classes until a totally

ordered equivalence is obtained. This is realized in two stages: intra-word clustering

and inter-word clustering. In the intra-word clustering stage, clusters with the same

word instance are merged. Based on the phonetic similarity between word components,

heterogeneous clusters are grouped in the inter-word clustering step.

Section 4.3.1 introduces how we estimate the posterior probability for each arc in

the lattice. The links with very low posterior probabilities will then be ignored for

further steps. Intra-word clustering is described in Section 4.3.1, which also discusses

the inter-word clustering stage.
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Posterior Estimation and Lattice Pruning

We use L to represent the set of links in a word lattice. Each link l contains information

about the starting node Inode(l), ending node Fnode(l), starting time Itime(l), ending

time Ftime(l) and word label Word(l). The posterior probability p(l) of each link is

computed from the acoustic and language model scores in the lattice, as the sum of the

posterior probabilities of all paths passing through link l. Given a sequence of acoustic

observation oT1 = o1, ..., oT , the posterior probability of path q with word sequence

wM
1 = w1, ..., wM is expressed as:

p(q|oT1 ) = p(wM
1 |oT1 ) =

p(oT1 |wM
1 ) · p(wM

1 )

p(oT1 )
∝ p(oT1 |wM

1 ) · p(wM
1 ) (4.11)

where p(wM
1 ) denotes the language model probability; p(oT1 |wM

1 ) is the acoustic model

probability; p(oT1 ) represents the probability of the acoustic observations. As written

in the Equation 4.12, the posterior probability of a link p(l) is the sum of posterior

probabilities of all paths that pass through link l.

p(l) =
∑
q∈Ql

p(q|oT1 ) (4.12)

where Ql represents all paths that pass through link l; For a large scale lattice, the

link posterior probability is estimated using the forward-backward algorithm shown in

Figure 4.9.

We are going to estimate the posterior probability of link l(ni, nf , t, t − 1, wl).

Forward-backward probabilities are estimated inductively. In this thesis, the forward

probability αt(i) is defined by the Equation 4.13 as the probability of observing the

t feature vectors and being in node ni at time t. It can be deduced by summing the

forward probabilities for all possible predecessor nodes j weighted by the acoustic and

language model probability. The forward probability of start node ni is then computed

as follows:

αt(i) =
∑
j

αt−1(j) · P (ot|wj) · P (wj|wj−1
j−m) (4.13)

where j indicates all possible predecessor nodes of ni P (ot|wj) represents the acoustic

model probability, and P (wj|wj−1
j−m) represents the m-gram language model probability.

The backward probability βt+1(f) of end node nf of link l is estimated as in the
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Figure 4.9: Link posterior estimation using the forward-backward algorithm

forward case,

βt+1(f) =
∑
k

βt+2(k) · P (ot+2|wk) · P (wk|wk−1
k−m) (4.14)

where βt+2(k) denotes the backward probabilities of all possible successor nodes k

weighted by the acoustic model probability P (ot+2|wk) and them-gram language model

probability P (wj|wj−1
j−m). Both forward and backward probabilities are initialized with

value 1. The posterior probability of link l is then estimated as:

p(l) = αt(i) · βt+1(f) · P (ot+1|wl) · P (wl|wl−1
l−m) (4.15)

Links with very low posterior probabilities will be removed from the lattice.

Intra-word Clustering

The arcs with the same word label starting times and ending times are merged in intra-

word clustering stage. The following metric is used as similarity measure between two

sets of links:

SIM(E1, E2) = MAXe1≤E1,e2≤E2Overlap(e1, e2) · p(e1) · p(e2) (4.16)
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where Overlap(e1, e2) indicates the temporal overlap between two link equivalences (e1

and e2) normalized by their maximum lengths. p(e1) and p(e2) are posterior probabil-

ities of the link equivalence.

The links are clustered iteratively. At each step similarities between all possible

pairs of cluster candidates are computed. The most similar clusters will be grouped

together. This process will terminate when there is no potential pair of link equivalences

left to be merged.

Inter-word Clustering

The goal of inter-word clustering is to merge phonetically similar word-labeled link

equivalences that are competing for the same position in the reference transcription.

Inter-word clustering is based on the similarity SIM(E1, E2) between two links equiv-

alences (E1 and E2), and computed as follows

SIM(E1, E2) = AV Gw1∈Words(E1),w2∈Words(E2)sim(w1, w2) · pE1(w1) · pE2(w2) (4.17)

where

pE1(w1) = p{e ∈ E1 : Word(e) = w1} (4.18)

pE2(w2) = p{e ∈ E2 : Word(e) = w2} (4.19)

sim(w1, w2) is the phonetic similarity of two words (w1 and w2) and is estimated as:

sim(w1, w2) = 1− Edit Distance(PS1, PS2)

max(len(PS1), len(PS2))
(4.20)

where Words(E1) represents the words clustered in Equivalence class E1. PS1 is the

phone sequence of word w1; The phone sequence of word w2 is represented with PS2.

Edit Distance(PS1, PS2) is the number of operations required to transform PS1 into

PS2. The Levenshtein distance is normally used to compute this metric. The edit

distance between two phone sequences will be normalized with the length of the longer

sequence. The length of a phone sequence is defined as the number of phones in

a sequence. The inter-word clustering will be continued until total order has been

achieved. Here, total order means that there are no potential link equivalences left to
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be merged.

4.3.2 Word Confusion Network Specified Term Weighting Meth-

ods

We weight the query term with binary information and explore different possibilities

for document term weighting. The classical tfidf weighting scheme introduced in

Section 2.3.2 is used directly for document term weighting. Here, the term frequency

means the number of occurrence of the terms in the word confusion network represen-

tation. This method does not take the uncertainty of the speech recognition system

into account, because it was originally developed for use on text document collections,

where the words are assumed to be known with certainty. The posterior probabil-

ity of a word represents the reliability that a word w is correctly recognized. This

information should be useful for spoken document retrieval. The posterior probability

of a term is directly used as document term weight. The document term weight is

estimated as:

wt,d =
∑
w(l)=t

p(l) (4.21)

where w(l) means the word of link l; p(l) means the posterior probability of link l. The

document relevance score is estimated as defined in equation 2.22. The limitation of

this weighting scheme is that content words and function words are treated equally.

In other words, the function/stop words are as important as content words, as the

posterior probability of a word can only provide information about the reliability of

the recognized word. However, it has been verified that removing the function words

from the document representation improves the retrieval performance [98].

Combining tfidf and Posterior Probability for Document Term Weighting

We propose a new method to document term weighting, where the uncertainty of the

speech transcription and term frequency are integrated. As defined in the following

equation, the new document weight is the linear combination of word posterior prob-
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ability and term-frequency weight.

w(t, d) = α · tft,d
lend︸︷︷︸
tf

· log N

dft︸ ︷︷ ︸
idf

+(1− α)
∑
l(w)=t

p(l) (4.22)

where tft,d is the frequency of term t in document d; lend indicates the total number

of terms in document d; the total number of documents in the entire spoken document

collection is denoted by N ; the number of documents including term t is denoted by

dft.

4.3.3 Experiment and Discussion

In this section, we evaluate the retrieval performance with 200 in-vocabulary queries.

First, we perform retrieval based on the word confusion network representation of the

spoken documents. We make a comparison between the word confusion network-based

and the lattice-based spoken document retrieval system. Then we evaluated the impact

of term-weighting methods on the retrieval performance.

Word Confusion Network vs. Lattice

Compare the word confusion network representation of a spoken document with its

lattice representation, we find out that the total number of links in the document

representation is significantly reduced. This result can be seen in Figure 4.10. In this

Figure, the label lattice noth denotes the original lattice provided by an automatic

speech recognizer. The labels tfidf pr0004 to tfidf pr0040 represent the lattice after

DNLLR-value based pruning, according to different DNLLR thresholds. The label

WCN denotes the word confusion networks. The label baseline is the number of links

in the word-1best representation.

In comparison with the original lattice, it can be seen in Figure 4.10 that the number

of links contained by the work confusion network has been reduced by about 76.5 %.

Figure 4.11 and Table 4.7 present the results of the performance evaluation exper-

iments. We make a comparison of different spoken document retrieval systems that

are based on word-1best, lattice and word confusion network representation. It can

be observed that the highest recall 95.2 % is reached using the lattice-based spoken
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Figure 4.10: Number of links included in lattice, WCN and baseline word-1best representa-
tion.

document retrieval method. In comparison with the word-1best based methods, an

improvement of about 5.5 % in recall has been achieved. Pruning the lattice represen-

tation according to the DNLLR value leads to a drop in recall and precision.

The recall is kept (95.2 %) when using word confusion network as the representa-

tion of a spoken document. The word confusion network representation of a spoken

document contains the same number of links as in the pruned lattice representation

(DNLLR range lies in [−105,−99]). An improvement of about 22.1 % in mean average

precision can be achieved when using a word confusion network instead of a pruned lat-

tice as the representation of a spoken document. The results of this study indicate that

even though a number of links have been ignored or merged during the build-up of a

word confusion network representation, relevant information is kept. Similar behavior

lattice

noth pr0004 pr0006 pr0008 pr0010 pr0020 pr0030 pr0040 WCN baseline

Nr. links(E+05) 21.70 20.90 20.30 18.80 16.90 12.40 10.70 5.99 5.06 1.59

mAP (%) 79.60 79.59 79.57 79.46 76.21 66.16 63.23 42.43 64.52 84.17

max.RE (%) 95.23 95.23 95.23 95.10 94.50 81.40 77.10 51.34 95.23 89.77

Table 4.7: Performance (mAP and max. RE) comparison between baseline, lattice and WCN.

of the retrieval performance is observed in results listed in Table 4.7. The word confu-

sion network based spoken document retrieval method yields a mean average precision
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Figure 4.11: The plot of mAP and recall for spoken document retrieval on lattice, confusion
network and 1-best transcription.

of about 64.5 %.

Term Weighting with Posteriors

We evaluate the performance of the word confusion network-based spoken document

retrieval that directly uses term posterior probabilities as document term weights. The

vector space model is applied for the retrieval task. The experimental results are pre-

sented in Table 4.8. The query terms are weighted with a binary value. WCN tfidf

recall 0 10 20 30 40 50 60 70 80 90 max. RE mAP

baseline 86.00 89.12 89.93 90.12 89.59 89.05 88.48 88.10 87.30 86.98 89.77 84.17

WCN tfidf 66.00 70.30 68.12 67.58 66.78 65.35 64.18 62.54 60.78 58.77 95.23 64.92

WCN posterior 74.50 68.90 67.20 66.20 65.40 64.50 62.80 61.40 60.20 - 87.19 58.70

Table 4.8: Performance (recall, precision, mAP and max.RE) comparison of baseline and
WCN based SDR.

represents the WCN-based method using tfidf weighting. WCN posterior denotes the

WCN-based method using posterior weighting schema. In comparison withWCN tfidf

method, it can be observed that the WCN posterior method improves the retrieval

precision at lower retrieval recall levels. The retrieval precision drops with increasing

recall rate. The improvement in E1 identifies that compared with the WCN tfidf
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(E1 = 66 %), more queries (E1 = 74.5 %) had their right answer in the front of the

retrieved result list when the posterior probabilities are directly used as document term

weights (WCN posterior method). However, the recall drops with posterior proba-

bility weighting represented by WCN posterior, and only 87.19% is achieved. Some

words bearing important information are ignored during the retrieval process, because

of their low posterior probabilities. The decrease in mean average precision (about

6.22%) is caused by misrecognized words with high posterior probabilities.If there are

no alternative word hypotheses in the same segment of time, the word posterior is set

to 1.

Combining tfidf and posterior Probabilities for Term Weighting

This study evaluates the new term weighting method proposed in Section 4.3.2. We

first examine the impact of the α selection on retrieval performance. The experimental

results are presented in Figure 4.12 and Table 4.9.

Figure 4.12: Comparison of different weighting schemes for word confusion network based
spoken document retrieval approaches.

It can be observed that the number of queries with correct answers in the front

rank of the retrieved result list has increased. When using the combined weighting

scheme (α = 0.5 and α = 0.6 (E1)) about 75.5 % of the queries have their correct
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answer at rank 1. There are more than one correct answer for each query. The E1

value indicates whether one of the correct answers of a query listed at first rank. The

recall reaches 95.23 %. A slight decrease in mean average precision value is observed

(1.2 % compared to the tfidf weighting).

Combined weighting (tfidf-post)

WCN-tfidf WCN-posterior α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

mAP (%) 64.92 58.70 63.71 63.58 63.41 63.30 63.73

max. RE (%) 95.23 87.19 95.23 95.23 95.23 95.23 95.23

E1(%) 66.00 74.50 75.50 75.50 74.50 72.50 73.00

Table 4.9: Performance of WCN-based SDR when using different weighting schemes.

Comparison of different robust word-based spoken document retrieval meth-

ods

Figure 4.13: Performance comparison of robust SDR approaches using different ASR-
representation containing multiple hypotheses.

It has been confirmed by experiment in Section 4.1.3 that 9best GP is the best per-

formed SDRmethod based onN -best spoken document transcription. The experiments

in Section 4.2.3 verified that the lat pr0010 method (The range of the DNLLR value of

links in the lattice is set to [−118,−90]) outperforms other pruned lattice based SDR
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approach. We compare those robust word-based spoken document retrieval systems

with WCN-based method in this study.

The experimental results are presented in Figure 4.13 and Table 4.10. The label

GP 9best indicates the spoken document retrieval approach based on the representa-

tion of a spoken document that contains 9-best recognition hypotheses, and at the

same time the word general probability is integrated in the document term weights.

The lat pr0010 method represents the pruned lattice-based spoken document retrieval

approach. The label WCN(α = 0.5) represents the word confusion network based spo-

ken document retrieval method with a novel weighting scheme that linearly combines

the term frequency and posterior probabilities as document term weights with α = 0.5.

recall (%) 0 10 20 30 40 50 60 70 80 90 max. RE mAP

baseline 86.00 89.12 89.93 90.12 89.59 89.05 88.48 88.10 87.30 86.98 89.77 84.17

GP 9best 92.50 93.80 93.60 93.40 92.90 92.20 91.00 88.60 84.80 81.40 92.30 86.10

lat pr001 93.00 90.70 88.50 86.70 84.50 81.50 77.20 72.00 66.30 60.30 94.50 76.20

WCN(α=0.5) 75.50 69.60 67.10 65.20 63.80 62.50 61.40 60.30 59.20 58.20 95.23 63.71

Table 4.10: Precision/Recall, mAP and max. Recall (in %) value of SDR approaches using
different ASR transcription containing multiple hypotheses.

From the data in Figure 4.13 and Table 4.10 that compared the baseline spoken

document retrieval system that is based on the 1-best recognition result, we can see that

the retrieval performance is improved when using document representation containing

multiple ASR hypotheses. The best mean average precision (86.1%) is observed at 9-

best transcription based spoken document retrieval methods. A relative improvement

in mean average precision of 2.3% is reached, compared with the baseline system. A

maximal retrieval recall of 95.2% is achieved using the word confusion network based

spoken document retrieval approach, which is corresponding to a relative improvement

of about 6%, compared with the baseline system. A drop in mean average precision

can be observed.

Conclusions

The results of these studies verify that the word confusion network is a very good alter-

native to lattice transcription for spoken information retrieval. Compared with normal

lattice-representation, the number of links in the word confusion network is reduced by

76.5 %. The word confusion network based spoken document retrieval achieves a recall

of about 95.23 %. However, compared with the lattice-based spoken document re-
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trieval methods, a drop in mean average retrieval precision (about 15.1 %) is observed

using the word confusion network as the document representation. Using posterior

probabilities directly as the document term weights improves the retrieval precision

at low recall levels. However misrecognized terms with high posterior probability in

the document representation result in the drop of the mean average precision (6.22 %

compared with tfidf weighting). The number of queries that have their right answer

at rank 1 in the result list increases when we use the new weighting method, which

combines term frequency and posterior probability for the document term weighting.

The maximal retrieval recall is achieved with the word confusion network based

spoken document retrieval approach (95.2%), which is corresponding to a relative im-

provement of about 6 % compared to the baseline system.

4.4 Dealing with OOV Words via Representation

Expansion

Mismatch between the terms in the query and the terms that compose relevant doc-

uments is one fundamental problem in information retrieval. Term mismatch is often

caused by recognition errors in the spoken document representation. We have said be-

fore that the recognition errors in document representation are caused by two factors:

mismatch between training and application environment and out-of-vocabulary words

in the query and the speech segment.

In this section, we are going to investigate a robust spoken document retrieval

method dealing with the out-of-vocabulary words. In speech transcription, out-of-

vocabulary words spoken will be replaced with the most acoustically similar terms

in the recognition vocabulary. Consequently, relevant documents composed of out of

vocabulary words cannot be detected. The recognition vocabulary also limits the query

vocabulary. The problem caused by the out-of-vocabulary words could be handled with

subword-based spoken document retrieval methods, which will be discussed later in

Chapter 5. An alternative solution to the out-of-vocabulary word problem is to find a

way to better represent need for information, namely the expansion of the query and/or

the document representation. Representation expansion, as the term suggests, means

that the query or document representation will be modified with additional terms.

For each out-of-vocabulary word, a set of similar words in the recognition vocabulary
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will be added into the representation. In this thesis, we ignore the context similarity

between terms and focus only on their acoustic similarity.

The acoustic similarity between two words is often set to the edit distance between

their phonetic sequences. The edit distance between two phone sequence is computed

with the Levenshtein algorithm. The alternative in-vocabulary term with minimal edit

distance to the out-of-vocabulary words will be added into the query representation or

even replace the original one.

Query Expansion Model

Crestani proposed to expand the query representation with more approximate terms

[19]. In his work, phonetic confusion information is integrated into the similarity

measure between two words. The phonetic confusion information is often saved as a

matrix and includes statistics on the substitution, insertion and detection errors of a

phone recognizer. Section 5.3.1 will describe phonetic confusion information in more

detail. Approximate alternatives are selected in the following steps:

• Assign a threshold to the confusion value;

• All phone pairs in the confusion matrix whose confusion value is below the thresh-

old will be selected

• The approximate terms are built via replacing the original phone in each query

term with the hypothesis phone in selected phone pairs.

This representation expansion runs independently from the document collection.

A fixed number of new similar terms will be added to the query representation. The

query contains more terms. If a new term l is selected to approximate an original term

t, it will be weighted by:

w(l, q) = sim(t, l) · w(t, q) =

N∑
m=1

C(t[m], l[m])

N∑
m=1

C(t[m], t[m])

· w(t, q) (4.23)

where sim(t, l) represents the similarity between phone sequences of the new alterna-

tive term l and the original term t; w(t,q) is the weight of original query term t; and
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phonetic confusion information is used to compute the sim(t, l). The phone sequences

of the original term t and the phone sequence of alternative term l include N phones.

C(t[m], t[m]) comes from the phone confusion information matrix and indicates the

probability that phone t[m] is correctly recognized. C(t[m], l[m]) denotes the substi-

tution probabilities in the confusion matrix. It represents the probability that phone

t[m] is recognized as phone l[m].

However, it is very hard to find a suitable threshold value. An incorrectly defined

confusion threshold results in too many similar terms being inserted; thus, the retrieval

precision drops. In addition, this method only takes substitution errors into account.

The effect of insertion and deletion error on the retrieval performance is ignored. Simi-

lar approach was also proposed by Saraclar et. al. [101]. In their proposal, the word or

subword sequence of each query will be transformed into the sequences that the query

tends to be mi-recognized to.

Moreau proposed an alternative query expansion method that takes all insertion,

deletion and substitution errors into account [77]. The terms t in the query representa-

tion (t ∈ (Q∩D)) will be replaced with the most similar terms l in the document repre-

sentations. Queries contain a same number of terms. The relevance score SimExp(q, d)

of the document d is then computed as:

SimExp(q, d) =
∑
t∈Q

P (ut|t) · w(t, q) · w(ut, d) (4.24)

ut =

⎧⎪⎨
⎪⎩

t if t ∈ (Q ∩D)

arg[maxt′∈DP (t′|t)] if t ∈ (Q ∩D)

(4.25)

where P (ut|t) denotes the confusion probability between term ut and t. w(t, q) is the

query term weight; w(ut, d) is the weight for term ut in the document. The out-of-

vocabulary-term t (t ∈ (Q ∩D) will be replaced in the document by the most similar

term t′. This query-expansion methods proposed by Moreau will be experimentally

researched in the following section.

Lee ([61]) discussed about expanding the representation of a query with a set of

acoustic patterns automatically learned from the target spoken archive in an unsu-

pervised way. Two levels of acoustic patterns are in use, the word-like patterns and

subword-like patterns. The experimental results of the Mandarin news retrieval-task

verified the usefulness of this computationally intensive method.
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4.4. Dealing with OOV Words via Representation Expansion

Yi and Allan ([120]) proposed expanding the query with the words in documents,

that are semantic similar to the given query word. They discussed several ways of

calculating a query-specific topic either from feedback documents or from the whole

corpus. Their experiments showed that topics discovered in the whole corpus are too

coarse-grained to be useful for query expansion. Topics detected in the query related

relevant documents can benefits the retrieving performance. However, the methods

supporting this kind of topics are very sensitive to the parameters. Incorrectly tuned

method-parameters may lead to the drops of retrieving performance.

Document Expansion Model

The document expansion method replaces the term that appeared only in the doc-

ument with the most similar term in the query or extend the document with similar

terms in the equivalence list of a given query term. The term similarity here means the

acoustic similarity or/and contextual/semantic similarity Jourlin et. al. [87] proposed

to extend a document representation with synonyms of query words. An equivalence

list was built for each query term. In addition, other specific entities that belong to

the same general semantic entity of a query term were also added into the equivalence

list, the so-called semantic poset. For example, the equivalence list of the query word

Europe may contain the names of all European countries, regions and cities. The

Information Retrieval techniques were implemented within the Probabilistic Retrieval

Model. Documents are ranked in order of decreasing estimated probability of relevance.

However, very little improvement in Information Retrieval performance has been veri-

fied with their experiments. In their experiments, a gain of 17% in average precision on

speech transcripts provided by a word recognizer can only be achieved by combining

semantic poset with blind relevance feedback.

But from the document point of view, however, it is a computationally intensive

task to add similar terms to each document in a huge collection. For this reason, we

only focus on query expansion model in this thesis.

Experiment and Discussion

We are going to evaluate the query expansion model proposed by Moreau [77] and

its ability to deal with recognition errors, more specifically its ability to deal with

recognition errors caused by out-of-vocabulary words. 200 in-vocabulary queries and
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4.4. Dealing with OOV Words via Representation Expansion

30 out-of-vocabulary queries are selected for the retrieval performance evaluation task.

The 30 out-of-vocabulary queries are replaced with their acoustically most similar terms

in recognizer vocabulary. Table 4.11 shows some examples.

words sim. terms words sim. terms

BISMARCK EARMARKED CONTINENTS CONTINENT

HERDING ADDING INORGANIC BARGAINING

RADIATOR CREATOR RODHAM ADAM

WORKFORCE ENFORCE HILLARY ARTILLERY

SPOKESPERSON SPOKESWOMAN SPILLER DISTILLER

POLYSTYRENE ASPIRANTS BIKING BITING

CANINE NINTH IMPLANTS COMPLAINTS

Table 4.11: OOV words and similar terms.

The experimental results are presented in Figure 4.14 and Table 4.12. The re-

trieval performance of our baseline system based on 1-best ASR output before and

after query expansion is shown in Figure 4.14(a). It can be observed that the mean

average precision is improved by the query expansion model, while the recall remains

the same.

recall onebest onebest+QE 5-best 5-best+QE WCN WCN+QE

0 74.78 74.78 77.80 79.56 57.39 59.13

10 77.60 77.63 79.40 81.19 61.05 63.21

20 78.08 78.00 79.90 81.80 59.37 61.43

30 78.18 78.20 79.70 81.81 58.26 60.34

40 77.70 77.70 79.10 81.15 57.27 59.51

50 77.08 77.08 78.30 80.46 56.11 58.04

60 76.66 76.60 76.63 78.86 54.54 56.77

70 75.89 75.89 73.69 75.90 52.74 55.00

80 - 75.65 74.16 50.79 52.96

mAP 61.67 65.45 62.41 67.77 48.19 52.59

max.recall 78.06 78.06 79.76 80.67 82.80 84.26

Table 4.12: The effect of query expansion on the performance of a word-based SDR.

A clear improvement in both mean average retrieval precision and recall can be

observed with the N -best and word confusion network based spoken document retrieval

with query expansion (see figures 4.14(b) and 4.14(c)). Integrating query expansion

into theN -best based SDR approach achieves the highest improvement in mean average

precision (5.35 %), while the highest improvement in maximal achievable retrieval recall

is observed with the word confusion network based spoken document retrieval approach

(1.46 %):
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4.4. Dealing with OOV Words via Representation Expansion

(a) Baseline SDR with query expansion.

(b) N-best based SDR with query expansion

(c) WCN based SDR with query exansion.

Figure 4.14: Performance evaluation of word-based SDR with query expansion.
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4.5. Summary

The expansion of the query representation with their acoustic similar candidates

in the documents enables the word-based spoken document retrieval system to deal

better with OOV queries. The results for retrieving OOV queries are shown in Figure

4.15.

Figure 4.15: Performance of retrieving OOV queries with query expansion

4.5 Summary

In this chapter, we have explored a number of robust word-based spoken document

retrieval methods in an effort to improve the retrieval performance when there are

recognition errors in the word transcription of a spoken document. Recognition errors

in the spoken document transcription are often caused by two factors: mismatch be-

tween training and application environments; and words that are not included in the

recognizer vocabulary. Recognition errors caused by mismatch between training and

application environments can be handled by adding multiple ASR hypotheses into the

spoken document transcription. Representation expansion enables the word-based spo-

ken document retrieval methods to deal with out-of-vocabulary words. Various robust

spoken document retrieval methods based on the document representations containing

multiple recognition hypotheses were investigated. These were spoken document re-

trieval methods based on theN -best, lattice and word confusion network representation

of a spoken document.

82



4.5. Summary

In Section 4.1, the spoken document retrieval methods based on the document rep-

resentation including N -best recognition hypotheses were investigated. The results of

this study indicate that the number of considered recognition hypotheses has a signifi-

cant impact on the retrieval performance. It was verified that the recall rate increased

with the growing number of recognition hypotheses considered. In our experiments, an

improvement of about 5.05 % in recall was achieved, if we took N = 20 best hypotheses

into account during the retrieval process. However, the best mean average precision

(85.41) % was observed by N = 9, and dropped when N > 9. A comparison of different

weighting scheme was made. The experimental results show that in comparison to the

term-frequency weighting method, an improvement of 0.7 % in mean average precision

was reached by the probability weighting method. This study verified that with the

growing number of recognition hypotheses considered, more misrecognized terms are

added to the spoken document representation. Consequently, the precision at a higher

recall levels drops. Integrating the general probability of word appearance into the

term weights improves the precision further.

The lattice transcription of a spoken document contains much more hypotheses

than the N -best transcription. However, more misrecognized terms will remain in the

document representation. In order to limit the search space, the lattice representation

of a spoken document is pruned based on the duration-normalized log likelihood ratio

DNLLR values of the links. Invalid links with a DNLLR value below the threshold will

be ignored in the retrieval process. The results of this study verified the improvement

in precision and recall achieved by the DNLLR-based lattice pruning, when the valid

range of the DNLLR values are set to [−118,−90]. A valid link in the lattice can

represent a misrecognized word. Using DNLLR-value directly as the term weighting

may cause more confusion during the retrieval. The experimental results showed that

many false alarms appear in the retrieved list when using DNLLR-value directly as the

document term weights. In this case, weight document term with term frequency tfidf

performed better.

A word confusion network is the most compact representation of a lattice. The

results of this study indicate that the total number of links in the document represen-

tation is reduced by about 76.5%. The maximum retrieval recall reaches 95.23%, which

is comparable to the lattice-based methods. Retrieval precision reaches 64.5%. Using

the word posterior probability directly as the weight of a document term improves the

precision rate at lower recall levels. However, the mean average precision achieved with

this weighting method drops for about 6.22% in comparison with the term-frequency
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tfidf weighting method. The experimental results verified that the precision at lower

recall levels is improved with this new weighting method. The number of queries for

which the relevant document is in the front rank of the retrieved list also increases.

With this new weighting method we achieve a 63.71% mean average precision.

We made a comparison of the different robust word-based spoken document re-

trieval methods listed above. The experimental results indicate that the best retrieval

precision is achieved by the 9-best based spoken document retrieval method. The max-

imal recall is yielded by the word confusion network based spoken document retrieval

methods.

We carried out some additional research into representation expansion, which might

enable the word-based spoken document retrieval methods to deal with out-of-vocabulary

words. However, the experimental results showed that only slight improvement in

retrieval performance can be achieved by the query expansion method proposed by

Moreau [77]. As we stated before, the out-of-vocabulary words are a major problem

that word-based spoken document retrieval systems have to deal with. The limited

recognizer vocabulary restricts the range of the query. Replacing the original out-

of-vocabulary query with the acoustically most similar one in a recognizer vocabulary

(query expansion) diminishes this problem and enables word-based SDR doing retrieval

of out-of-vocabulary query words. The experimental results verified that integrating

the query expansion into the word-based spoken document retrieval methods can fur-

ther improve the retrieval performance.
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Chapter 5

Subword-based SDR Approaches

The performance of a spoken document retrieval system relies heavily on the quality

of the spoken document transcription generated by an automatic speech recognizer.

Errors in a spoken document transcription are often caused by the misrecognition

problem and the out-of-recognition-vocabulary words in spoken information. In the

last chapter, we thoroughly discussed how we deal with the recognition-errors in the

spoken document transcription. In this chapter, we will explore the methods dealing

with the recognition-errors caused by the out-of-recognition-vocabulary (OOV) words,

the so-called OOV problem.

As we discussed before, the word-based spoken document retrieval method can

work with the collection covering a large vocabulary. The word recognizer with very

large vocabulary is required to index the diverse spoken information. There are two

main drawbacks of this kind of spoken document retrieval methods. A huge amount of

training data are needed to build a reliable large vocabulary continuous speech recog-

nition system (LVCSR) for the indexing task. In addition, the size of the recognizable

vocabulary is limited and fixed, which restricts the vocabulary of queries.

The size of vocabulary grows with the increasing number of available speech data.

Even when we use very large vocabulary speech recognizer for the indexing task, there

are still some new out-of-vocabulary words in the spoken document collection. This

statement has been verified by Ng’s experiments [84]. Most of the out-of-vocabulary

words are proper names bearing important information.

We can solve the OOV problem by regularly updating the recognizer-vocabulary

with new words. Every time we change the recognizer-vocabulary, the entire spoken
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5.1. Subword as Indexing Units

information collection must be re-indexed again, which is a very computationally inten-

sive task. Another way to handle the OOV-problem is the use of subword index-terms.

These two advantages have convinced me to investigate the subword-based issues in

the following sections:

• The number of indexing terms required to cover the language is dramatically

reduced.

• It makes the indexing and retrieval processing independent from any word vo-

cabulary. Virtually, open-vocabulary query retrieval is allowed.

This chapter is organized into five sections. First, Section 5.1 gives an overview

of different subword units and evaluates their feasibility in spoken document retrieval.

Then we focus on the shortest unit, the phones, and research different phone-based

spoken document retrieval methods. The phone-transcription of a spoken document

is generated using the methods introduced in section 5.2. Methods for retrieving in-

formation in phone-transcription are discussed in sections 5.3 and 5.4. Our research

findings are summarized in Section 5.5.

5.1 Subword as Indexing Units

As mentioned in Section 2.2, different kinds of subword-units, such as morphemes, sylla-

bles or even phones, are used for speech-indexing task. Different subword-representation

of the word ’performed’ is shown in table 5.1.

Units Indexing Terms

word performed

phone p er f ao r m d

phone sequence (n=3) p er p er f er f ao f ao r ao r m r m d m d

broad phone class sequence (c=8,n=3) c8 c3 c7 c3 c7 c2 c7 c2 c3 ..

syllable (VCV) pe erfo orme ed

morpheme perform ed

Table 5.1: Examples of indexing terms for different units

Indexing a spoken document collection with subword units reduces the size of vo-

cabulary. Consequently, the efficiency of spoken document retrieval is improved. From

the data in Figure 5.1, we can visualize the reduction in vocabulary when we use a
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5.1. Subword as Indexing Units

subword instead of a word as the index-unit. Figure 5.1 indicates how many unique

subwords are required to represent a vocabulary of words. We have built word vo-

cabularies with size from 1k to 10k on the Wikipedia word frequency list [3]. The

Wikipedia word frequency list has been estimated from a collection of TV and movie

scripts/transcripts downloaded from the Internet which includes 30M words. Vocab-

ularies including 20k and 64k words have been estimated using the LDC’s Gigaword

text corpus [41].

Figure 5.1: Number of unique terms for each type of index unit.

It can be observed that the number of unique phones or broad phone-classes required

is small and fixed. When we use the subword-like syllable (vowel-consonant-vowel,

VCV-features), phone-3gram or morpheme to represent the words in the vocabulary,

the number of unique units required increases slightly with the growing number of words

in the vocabulary. However, a clear reduction in vocabulary-size can be achieved by

large-vocabulary indexing task (64k-vocabulary).

We gathered different subwords via word-segmentation. In order to avoid a short

word to be split into too small segments, a minimal word-length is defined. In our case,

the word-length is defined as the number of characters. The most frequent word-length

will be selected as minimal word-length. We research the distribution of word-length

on different collections with a varying number of words and summarize the experiment

results in Figure 5.2. It can be viewed that the most frequent word-length varies from

four to seven characters. In this work, the minimal word-length is set to four, which
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means that only words with more than four characters will be split into small fragments

like vowel-consonant-vowel features, or morphemes.

Figure 5.2: Word length distribution.

Extraction of Syllable Similar Index-units

Teufel [109] has proposed an automatic method for the extraction of vowel-consonant-

vowel index-units. We have applied his method to our 64k vocabulary for syllable ana-

lyzing. Three special kinds of syllable-unit are selected: vowel-consonant-vowel(V CV ),

consonant-vowel (CV ) and vowel-consonant (V C) unit. Generally, V C and CV units

occur on the boundaries of a word. A CV feature can only appear at the beginning of a

word, while V C features are always located at the end of a word. A cut is made at the

position of a vowel in the middle of the word. For example, the word communication

can be segmented into co, ommu, uni, ica, atio, ion.

Extraction of Morphemes

Morphemes are extracted using open-source software called Morfessor 1.0 [23]. Mor-

fessor 1.0 is based on the algorithm proposed by Creutz and Lagus [22] [21] and has

been developed for automatic morphological analysis. Based on a segmentation model

88



5.1. Subword as Indexing Units

learned previously, Morfessor can produce morpheme-like units (morphs) for each in-

put word. A segmentation model consists of a morph lexicon and morph probabilities,

and can be learned in an unsupervised manner from text. The Morfessor Toolkit can

be used for learning a segmentation model and segmenting a word into morphemes. In

our work, the segmentation model is learned from a vocabulary including 64k words.

The extraction of phone and phone N-grams will be discussed in more detail in

section 5.2.

Experiment and Discussion

We have introduced a number of different subwords which can be applied for spoken

information indexing and have described how to extract them from text. In this section,

we carry out a feasibility study into using subword for the information retrieval task.

We run retrieval experiments on a collection of error-free text transcriptions of

spoken documents (WSJ, si− dt− s2). Subword units are directly extracted from the

ground-truth word annotation. We can imagine that the error-free text transcription

has been produced by a perfect speech recognition system. The vector-space based

retrieval model introduced in Section 2.3.2 is applied. Document terms are weighted

by the method described in the following equation:

w(tj, d) =
ntj ,d∑
i nti,d

· log |D|
|{d : tj ∈ d}| (5.1)

where w(tj, d) represents the weight which will be assigned to the term t in document

d; and ntj ,d is the occurrences of term tj in document d, which is called term frequency.∑
i nti,d is the total occurrences of all terms in the document d; |D| indicates the

number of documents in the collection and document frequency (|{d : tj ∈ d}|) denotes
the number of documents including the term tj. This weighting method is called

tf − idf , with SMART-Notation ntu.ntu. Query terms are simply weighted with ’1’.

This weighting method assigns more weight to the terms with high term frequency and

low document frequency.

After eliminating common terms, there are still 1214 different content words left in

the test collection (WSJ, si − dt − s2). These content words are selected as queries.

The mean average precision (mAP), E1 (percent of queries with hit at first place

in the ranked list) and E5 (mean reciprocal rank) are used to evaluate the retrieval
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performance of applying different kinds of subwords as index-units. Experimental

results are shown in Figure 5.3 and Table 5.2.

Figure 5.3: Retrieval performance of different index units derived from text reference tran-
scription.

word morphem syllable phone-3gram mono-phone

mAP 96.27 86.43 88.76 89.14 3.12

E1 100.00 81.77 87.39 89.78 4.95

E5 100.00 89.34 92.63 93.91 13.93

Table 5.2: Retrieval performance (mAP, E1 and E5 in %) of different index units (subword)
on IR task.

The syllables used in our experiment are vowel-consonant-vowel features. The

phone− 3gram indicates that the index-unit is a sequence of three phones. It can be

viewed that the word-based IR reaches the most mean average retrieval precision of

96%. The applied retrieval model is not based on the exact matching between query

and document term, but on the vector-space based retrieval model that integrates

inverse document frequency into the weighting scheme. Therefore the mean average

precision of the word-based retrieval system cannot reach 100%.

We find out that longer subword units perform better than shorter ones. The

syllable-based retrieval approach could reach a mean average retrieval precision of
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about 88.76%. Indexing spoken documents with syllable-like units could achieve bet-

ter retrieval performance than that with the morpheme (mAP = 86.43%). As shown

in Figure 5.1, the number of unique syllables is more than that of morphemes, which

means syllable-like units have better discriminative power than morpheme-like units.

In addition, the syllable-like vowel-consonant-vowel terms are overlapped. The over-

lap between index-units enables more precise partial matching between the query and

document. With the traditional vector-space retrieval model and tfidf weighting, the

mono-phone based SDR system can only achieve a mean average retrieval precision

of about 3%. Only 4, 9% of total queries have their answer at the first rank in the

retrieved list. A significant improvement in retrieval performance was observed when

using an overlapped phone-3gram instead of mono-phone for document indexing. Ap-

proximately 89% queries will have their answer at first rank in the retrieved list. This

result reflects that longer units are useful for discriminating documents in the collec-

tion. Our experiment results have verified that indexing documents with subword units

could achieve reliable retrieval performance.

In selection of an index-unit, we have to consider the information coverage achieved

with the index-unit. However, the ability of an index-unit in precisely describing infor-

mation is also a very important factor. A small index-unit like phones could provide

very good information coverage but with poor precision. In this thesis, we are more

concerned about the ability of an index-unit in information coverage. Therefore we

will focus on the investigation of phone-based SDR approaches in this section.

Phone-based spoken document retrieval approaches must overcome the problem

caused by the misrecognized terms in the transcription of a spoken document. After

discussing how to estimate reasonable phone transcription of the speech segmentation,

we explore some robust phone-based methods that attempt to compensate the errors

in transcription by integrating ASR uncertainty into the scoring scheme. According to

the applied retrieval model, the phone-based approaches can be roughly classified in

two categories. These are:

• Phone 3-Gram based application using modified vector-space retrieval model.

• Probabilistic phone string matching-based spoken document retrieval.
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5.2 Construction of Phone Transcription

The mono-phone transcription of a speech segment can be estimated in two ways: using

a phone recognizer or post-processing of the word one-best transcription.

Applying Phone Recognizer

We built a phone recognizer on 16kHz mono audio speech data. 64 phones of TIMIT-

alphabet are grouped into 39 phone-cluster to make the phone recognizer less sensi-

tive to background noise. A context independent Left-to-right hidden Markov model

(HMMs) with 128 Gaussians per state is used to model the acoustic features of a

phone-cluster. The HTK toolkit [119] is used to train the set of phone models. The

initial value of an acoustic model-parameter is estimated on the training set of the

TIMIT corpus. The acoustic model is trained on the WSJ corpus. A phone-loop lan-

guage model is estimated for the phone recognizer. The TIMIT and WSJ corpus were

introduced in section 3.1.

Post-processing of Word One-best Transcription

How to produce the monophone transcription of a spoken document directly from its

word one-best recognition output can be viewed in Figure 5.4.

A Term in the word one-best transcription of a spoken document is first replaced

with a sequence of phones according to a pronunciation dictionary. It is assumed that

every phone has the same duration. Based on this assumption, the time marker of each

phone can be computed as follows:

timestart,ph = timestart,word + (pos− 1) ∗ Avg Durationph (5.2)

timeend,ph = timestart,ph + Avg Durationph (5.3)

where timestart,ph and timeend,ph indicate the start and end time mark of a phone;

timestart,word and timeend,word are time marks of a word; and pos is the position of the

considered phone in the phonetic representation of a word provided by a pronunciation
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Figure 5.4: Construction mono-phone transcription from word one-best output of the ASR.

dictionary; The average phone duration (Avg Durationph) is estimated as:

Avg Durationph =
(timeend,word − timestart,word)

Nr of Phs
(5.4)

where Nr of Phs is the number of phones in the phonetic representation of a word

provided by a pronunciation dictionary.

Experiment and Discussion

As mentioned before, the performance of spoken document retrieval relies heavily on the

quality of the transcription. In this section, we study the quality of the monophone

transcriptions produced in two different ways. The test-set of the TIMIT corpus is

selected for the evaluation task. The word one-best transcription of the document

is produced by the word recognizer, introduced in section 3.2. The quality of the

monophone transcription is judged by the rate of correctly recognized phones (Correct)

and the accuracy (Accuracy). The experimental results are summarized in Table 5.3.

In Table 5.3, CORR is the number of phones recognized correctly, DEL indicates
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CORR DEL SUB INS %Correct %Accuracy

Phone recognizer 32915 11703 19652 3673 51.21 45.50

Estimation from Word one-best 36804 13255 14211 3624 57.26 51.63

Table 5.3: Quality of mono-phone transcription.

the number of phones spoken but not recognized, SUB represents the number of phones

that are substituted in the transcription, and INS is the number of phones that appear

in the transcription that are not spoken.

The experiment results confirm that the monophone transcription estimated from

the word one-best transcription is of better quality. In comparison with the monon-

phone transcriptions produced by the phone recognizer, a rise in the rate of correctly

recognized phones (ca. 6%) in the estimated monophone transcription can be viewed.

The number of substitution and insertion errors are also reduced. The only advan-

tage of applying the phone recognizer is that less spoken phones are missing in the

transcription. Given these facts, we do further research on the estimated monophone

transcriptions of a spoken document archive.

5.3 Robust SDR Approach based on Phone N-gram

This section focusses on the exploration of robust spoken document retrieval methods,

which are based on transcription consisting of the overlapping phone N -grams. The

vector space model introduced in Section 2.3.2 is modified for retrieving information

in the phone N -gram transcription of a spoken document. The vector space model is

originally applied for the retrieval of information in the error free documents. As the

approximately matching between query terms and document terms can not be realized

using the vector space model, misrecognized terms in the phone N-gram transcription

of a spoken document will not be detected using the vector space model. Consequently,

how to modify the vector space model for approximately phone N-gram matching has

become the main focus of this section. Ng [84] has proposed some phone N -gram based

spoken document retrieval methods. With the retrieval experiments on a collection of

broadcasting news, he confirmed that:

• The retrieval performance is improved with an increasing length of phone-Ngram

units. However, when the length of Ngram units is greater than 3, the terms
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become too specific and the retrieval performance drops. Phone-3gram performs

best.

• Better performance is achieved when doing information retrieval in the transcrip-

tion consisting of overlapped phone-Ngram. The reason is that the overlapped

indexing terms provide more chances for partially matching between query and

document terms.

• Indexing spoken document with broad phone classes could also provide enough

information for effective retrieval.

Therefore, the following research in this section is based on the transcription of a

spoken document that consists of overlapping phone-3grams that is produced by post-

processing the estimated monophone transcriptions of spoken documents(as shown in

Figure 5.5).

Figure 5.5: WSJ 4o0c0e0a word 1-best in phone-3gram.

5.3.1 Weighting with Confusion Information for Approximate

Matching

The approximate term-matching method proposed by Ng [83] considers all possible

matches between the query and document terms. The phone confusion information
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provided by a phone recognizer is integrated into the document term weight. Chaudhari

[13] expanded the method proposed by Ng with a kind of high order confusions that

updated the phone confusion matrix with additional phone bi-gram, tri-gram and in

general N -gram confusions. Only slightly improvement in precision and recall could

be confirmed with Chaudhari’s experiments. However, this kind of phone confusion

matrix that includes high order confusions has very high dimensionality even only

none zero components are stored in this matrix. This method is computationally very

expensive. Srinivasan [108] proposed to formulate a probabilistic term weighting in a

Bayesian framework. The Bayesian probabilistic model estimates a term weight based

on phonetic confusions. In this work Ng’s proposal will be further researched.

The phone confusion information of 39 English phone classes, including the silence

provided by a phone recognizer, is summarized in Figure 5.6. Phone confusion in-

formation is the rate of substitution, insertion and deletion errors in the transcription

of a spoken document produced by a phone recognizer. It is saved in a matrix; the

so-called phone confusion matrix. The English phone confusion information is gathered

from the TIMIT corpus. The dimension of our confusion matrix is 40× 40. The upper

left sub-matrix with dimension 39×39 includes all the statistics on substitution errors.

In substitution sub-matrix, component C(r, l) represents how many times a phone r

is recognized as another phone l. The last column contains the number of deletion

errors. The deletion error means that a phone is spoken but not recognized. The last

row contains the number of insertion errors. The insertion error indicates how many

times a phone is not spoken but recognized.

The similarity sim(t′, t) between query phone-3gram term t and document phone-

3gram term t′ is then expressed as:

sim(t′, t) = DP (lt′ , lt) (5.5)

where lt′ and lt represent the length of the query term t and the document term t′. lt′

and lt are equal to 3 in case of phone-3gram. The similarity between two phone-3grams
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Figure 5.6: 39 English phone confusion matrix.
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DP (m,n) is computed recursively as:

DP (m,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, m = 0;n = 0

DP (0, n− 1) · Ins(t[n− 1]), m = 0, n > 0

DP (m− 1, 0) ·Del(t′[m− 1]), m > 0, n = 0

max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
DP (m− 1, n) ·Del(t′[m− 1])

DP (m− 1, n− 1) · Sub(t′[m− 1], t[n− 1])

DP (m,n− 1) · Ins(t[n− 1])

m > 0, n > 0

(5.6)

where Ins(t[n−1]) indicates the insertion error rate of phone t[n−1]; Del(t′[m−1]) is

the deletion error rate of phone t′[m−1]; Sub(t′[m−1], t[n−1]) indicates the rate that

phone t′[m − 1] is substituted by the phone t[n − 1]; The computation of DP (m,n)

is terminated when m reaches lt′ and n reaches lt. As we announced before, the rate

of substitution, insertion and deletion errors is summarized in the phone confusion

information matrix (5.6, [56]).

The similarity defined by Equation 5.5 is estimated for each term t′ in a document,

given query term t. The relevance score of the spoken document d to the given query

q is then simply expressed by the following equation:

Sim(d, q) =
∑
t∈q

∑
t′∈d

sim(t′, t). (5.7)

We can imagine that the spoken content retrieval task is very computationally

intensive in this approach, as it handles all potential matches between document phone-

3gram terms and phone-3gram terms in the query.

5.3.2 Integrating Position Information into Indexing and Rel-

evance Ranking

The spoken document retrieval methods that we have discussed so far are based on the

assumption that the query terms are independent from one another. The proximity

information of a term is ignored. Two documents, including the same query terms, are

scored equally. However, in this case, the document in which query terms are close to

each other should be assigned with a higher relevance-score, which can be achieved by
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incorporating the term proximity information into the relevance score. The position

information of a term in a document is crucial to the evaluation of the proximity

information. This section focusses on the investigation of how to incorporate the term

position information into the phone-3gram based spoken document scoring method.

Chelba has successfully incorporated the position information into his spoken doc-

ument retrieval approach. He proposed to retrieve information on the word-level

position-specific posterior lattice (PSPL) [14] of a spoken document. The position-

specific posterior lattice is a compact representation of a speech recognition lattice,

which contains the position as well as other contextual information for each link.

Chelba made some retrieval experiments on a collection of lecture records (iCampus

[37]), and verified the advantages of incorporating the position information into rele-

vance score. His idea about the position specific posterior lattice was extended by Pan

and applied to the Chinese retrieval task [88]. A Chinese word often consists of one or

two characters. In Pan’s application, a position specific posterior lattice was built for a

spoken document at the character-level. Pan’s experiments confirmed an improvement

in the retrieval precision (mean average precision) of about 55%.

Position Information in Phone-3gram One-best Transcription

In our work, we extend the position specified posterior lattice to the phone-3gram

level. In order to incorporate the proximity information of each triphone term into

the ranking-score of a spoken document, we attempt to match a subsequence of N

phone-3grams in the document transcription.

After the indexing process, each phone-3gram is represented as (t, pos, posterior).

Posterior is the probability of the query phone-3gram term t appearing at position

pos. Given query Q = t1, t2, .....tq, the probability P (ti,Q, D) of a given query term ti,Q

in the document D is computed as follows:

P (ti,Q, D) = log(1 +
d∑

k=1

Probk,D(tk,D = ti,Q)) (5.8)

where k denotes the position in document D. There are in total d phone-3grams in this

document; Probk,D(tk,D = ti,Q) denotes the probability of the query phone-3gram ti,Q

appearing at position k in document D. In our case, Probk,D(tk,D = ti,Q) is estimated
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as:

Probk,D(tk,D = ti,Q) =
d

OCC(ti,Q, D)
(5.9)

where OCC(ti,Q, D) denotes the frequency of term ti,Q, in document D containing d

phone-3grams.

In order to discount the effect of large occurrences of some of the phone-3grams

in a given document, logarithmic tapering off of the expected occurrences is applied.

Single phone-3gram matching score is expressed by:

Score1(D,Q) =

Q∑
i=1

P (ti,Q, D) (5.10)

The matching score of a subsequence of N phone-3grams is estimated as:

ScoreN(D,Q) =

q−N+1∑
i=1

log[1 +
d∑

k=1

N−1∏
n=1

Probk+n,D(tk+n = ti+n,Q)] (5.11)

The relevance or similarity between a documentD and a given queryQ = t1, t2, .....tq

is estimated as:

Sim(D,Q) =

q∑
n=1

ωn · Scoren(D,Q) (5.12)

where the weight ωn should increase with the growing n and can be assigned in two

different ways:

ωn = α · n; or ωn = en (5.13)

Second exponential weight is applied in the following experiments.

The Phone-3gram Position Specific Posterior Lattice (PSPL)

In the last section, we adapted PSPL ranking scheme to a document representation

consisting of phone-3grams that is derived from the word one-best transcription. In

this section, we focus on the estimation of the position-specific posterior lattice (PSPL)

at the phone-3gram level and the corresponding scoring method incorporating the

proximity information. Table 5.4 shows a part of phone-3gram PLPS estimated for the
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file 410a0101 in the WSJ-Corpus. A Table entry consists of a phone-3gram with its

posteriors in parenthesis. The estimation of posteriors of a phone-3gram is showed in

Equation 5.14.

... n +1 +2 +3 +4 +5 +6 ...

... ah-z (1.0) ah (0.7) sp(0.7) ey (0.7) sp(0.7) l+eh(0.7) l-eh+t(0.7) ...

... l+ae(0.1) l-ae+t(0.1) ae-t+ah(0.1) t-ah+t (0.1) ah-t+uw(0.1) t-uw+d (0.1) ...

... l+eh(0.2) l-eh+t(0.2) eh-t+er (0.2) t-er (0.2) sp(0.2) ah+v(0.2) ...

Table 5.4: Part of phone-3gram-PSPL for file 4l0a0101.

The position-specific posterior lattice at the phone-3gram level is derived from the

word N -best transcription of a spoken document in two steps. First, the word N -

best transcription is transcribed into phone-3gram ’N ’-best representation. Then the

phone-3grams in ’N ’-best transcription are ordered according to their position in the

transcription and are represented as (t, pos, posterior). The posterior of a phone-3gram

term ti,Q at position k in document D is computed as follows:

PosteriorD(ti,Q, k) =
OCCD(ti,Q, k)

N
(5.14)

where OCCD(ti,Q, k) indicates how many times the term ti,Q occurs at position k in

a phone-3gram position-specific posterior lattice. N is the number of considered word

hypotheses. This posteriors is used for estimating the probability P (ti,Q, D) of a given

query term ti,Q in the document D and is computed as:

P (ti,Q, D) = log(1 +
d∑

k=1

PosteriorD(ti,Q, k)) (5.15)

where k denotes the position in document D. There are in total d phone-3grams in

this document; PosteriorD(ti,Q, k), as denotes the posteriors of the query phone-3gram

ti,Q appearing at position k in document D.

Single phone-3gram matching score is expressed by:

Score1(D,Q) =

Q∑
i=1

P (ti,Q, D) (5.16)
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The matching score of a subsequence of N phone-3grams is then estimated as:

ScoreN(D,Q) =

q−N+1∑
i=1

log[1 +
d∑

k=1

N−1∏
n=1

PosteriorD(ti,Q, k)] (5.17)

The relevance or similarity between a documentD and a given queryQ = t1, t2, .....tq

is estimated as:

Sim(D,Q) =

q∑
n=1

ωn · Scoren(D,Q) (5.18)

where the exponential weight ωn should increase with the growing n.

5.3.3 Experiment and Discussion

In this section, we are going to evaluate the performance of different phone-3gram based

spoken document retrieval methods that we have discussed before. We first compare

their performance by the in-vocabulary query retrieval task and then we test their

ability to deal with out-of-vocabulary words. Their performance on the total query set

will also be evaluated. We study the advantages that are achieved by incorporating the

position information into the scoring-scheme. In addition, we will do some experiments

to research the effect of query-length on retrieval performance.

Retrieving In-vocabulary Query-words

There are 200 in-vocabulary queries that are selected for the evaluation task. The

experimental results are summarized in Figure 5.7 and Table 5.5.

In Figure 5.7 and Table 5.5, the symbol baseline represents the performance of our

baseline spoken document retrieval system, based on the word one-best transcription.

This baseline system was described in section 3.5. tfidf represents the phone-3gram

based spoken document retrieval approach used to estimate the ranking-score based

on the classical term-frequency (tfidf). The approach used to integrate the phone

confusion information into the scoring scheme is noted as confusion info sum (see

the discussion in Section 5.3.1). proximity weighting denotes the approach discussed

in section 5.3.2. These symbols can also be found in the following figures and tables.

In comparison with word one-best transcription based spoken document retrieval
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Figure 5.7: Retrieval performance of different phone-3gram based methods (in-vocabulary
query words).

approaches, the phone-3gram based approaches show their superiority over maximum

achievable recall rate. The phone-3gram application with classical term-frequency (tf−
idf) based scoring scheme can reach a maximum recall of about 99.5%. However,

decrease in the mean average precision value can also be observed. Incorporating the

proximity information into the document relevance score improves the mean average

precision rate of a phone-3gram based spoken document retrieval system. In Figure

5.7, we can see that the proximity weighting-method achieves a 69.94% mean average

precision rate while keeping a 95.99% maximum recall rate. We discover that weighting

a document term directly with the phone confusion information cannot improve the

retrieval performance; on the contrary, a clear drop in mean average precision rate can

be observed.

Our experiments verified that very good information coverage can be achieved by

using the phone-3gram as the index unit. In comparison with the word-based spo-

ken document retrieval application, the phone-3gram based spoken document retrieval

approach achieves a better recall rate. The maximum achievable retrieval recall rate

reaches 99.54%.
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phone-3gram

recall baseline tfidf confusion info sum proximity weighting

0 86.00 79.00 58.50 84.50

10 89.12 77.80 53.15 81.30

20 89.93 77.90 51.78 82.22

30 90.12 77.07 50.14 81.75

40 89.59 75.47 49.09 81.05

50 89.05 73.30 45.35 80.40

60 88.48 70.29 39.51 78.09

70 88.10 63.96 32.10 71.49

80 87.30 51.73 23.79 56.98

90 86.98 31.22 13.35 27.91

mAP 84.17 65.21 39.95 69.94

max.RE 89.77 99.54 99.54 95.99

Table 5.5: Retrieval performance in precision/Recall, mAP, max. Recall value (%) of in-
vocabulary query evaluation.

The Ability to Deal with OOV Queries

In the last section, we confirm the improvement in the recall rate achieved by using

the phone-3gram as the index unit for the spoken document retrieval task. We are

now going to research the ability of the phone-3gram index unit to deal with out-of-

vocabulary words.

We chose 30 out-of-vocabulary words as the queries. Different spoken document

retrieval approaches, based on the phone-3gram index unit, are evaluated. The exper-

imental results are gathered in Figure 5.8 and Table 5.6.

In Figure 5.8, it can be viewed that the phone-3gram based spoken document

retrieval methods may deal with out-of-vocabulary query words with poor retrieval

performance. A high maximum recall rate is reached (92.83%). However, this means

a significant loss in mean average retrieval precision value. The highest precision (ca.

16%) is reached by proximity-weighting at recall level of 10%. A poor mean aver-

age retrieval precision (0.7%) is observed by the classical tfidf scoring method. The

phone-3gram based spoken document retrieval method that integrates the confusion

information into the relevance score (the red line in Figure 5.8) performs slightly bet-

ter than the method which forms the relevance score with the classical term-frequency

weight. The phone-3gram based spoken document retrieval method that incorporates

the proximity information into the relevance score achieves the best performance for
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Figure 5.8: Performance of out-of-vocabulary query retrieval with different phone-3gram
based spoken document retrieval methods.

the out-of-vocabulary query retrieval task. Even with a decreased maximal recall rate

of 68.85%, the mean average precision rate reaches 4.54%. The results of this exper-

iment indicate that the phone-3gram based spoken document retrieval method can

hardly work with the out-of-vocabulary words. This is not a good choice for the out-

of-vocabulary words retrieval task because of its low retrieval precision rate.

recall 0 10 20 30 40 50 60 70 80 90 mAP max. RE

tfidf 0 2.55 1.94 0.80 0.48 0.32 0.29 0.28 0.24 0.20 0.73 92.83

conf info sum 0.83 4.94 3.20 1.58 1.23 0.98 0.89 0.63 0.38 0.21 1.53 92.74

proximity weighting 9.50 15.30 13.00 8.40 2.40 1.60 1.00 4.54 68.85

Table 5.6: Performance of Phone-3-gram based SDR approaches for OOV queries retrieval
task.

Performance Evaluation in Real Application

As we stated before (Section 3.3), a query set containing 200 in-vocabulary words and

30 out-of-vocabulary words is used to simulate the real application case. We compare

the retrieval performance of different phone-Ngram based methods on this query set.

The results obtained are shown in Table 5.7 and Figure 5.9(a).
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Phone 3-gram

recall baseline tfidf confusion info sum proximity weight

0 74.78 68.99 50.86 77.38

10 77.60 67.99 46.31 75.06

20 78.08 68.05 45.55 75.70

30 78.18 66.91 44.03 75.04

40 77.70 65.20 42.57 74.17

50 77.08 62.98 37.52 73.02

60 76.66 57.98 31.31 69.60

70 75.89 47.89 23.68 60.16

80 - 31.09 15.37 42.21

90 - - 2.20 9.74

mAP 61.67 52.18 32.60 61.08

max. RE 78.06 89.04 98.65 93.40

Table 5.7: Precision/Recall, mAP, max. Recall value (%) of evaluation with total query set.

In comparison with the word-based baseline system, a clear improvement in recall

rate is achieved using the phone-3gram based spoken document retrieval methods. The

maximum retrieval recall (max.RE = 98.65%) is yielded when the phone confusion

information is integrated into the document ranking score. If we compare the results, it

can be seen that integrating the proximity information into the document ranking-score

improves the precision rate at low recall levels. This method improves the maximal

recall rate by about 15.34, in comparison with the baseline system, while keeping a

61.08% mean average retrieval precision.

Performance of the Phone-3gram PSPL based Method

In Section 5.3.2, in the part (The Phone 3-gram position specific posterior lattice PSPL)

we successfully extend the position specific posterior lattice to the phone-3gram level.

The performance of a spoken document retrieval system based on the phone-3gram

PSPL is evaluated in this section. Figure 5.9(a), 5.9(b) and Table 5.8 presents the

experimental results.

A clear benefit of applying the phone-3gram PSPL could not be identified in this

analysis. The phone-3gram PSPL based spoken document retrieval method performs

slightly better than the confusion info sum method listed in Table 5.7 at a lower

retrieval recall level. However, the mean average retrieval precision decreases by a

further 4.46%.
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(a) Precision/recall plot

(b) mAP & max. RE value

Figure 5.9: Evaluation of different phone-3gram based methods with total query set.
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recall INV OOV total

0 59.50 10.00 53.04

10 62.55 4.00 54.78

20 56.58 2.82 48.87

30 48.84 1.60 41.07

40 40.01 1.18 32.21

50 30.21 0.89 22.90

60 21.78 0.78 16.45

70 14.70 0.56 11.11

80 10.15 - 7.27

90 6.89 - 4.97

mAP 33.63 1.83 28.14

max. RE 97.56 79.18 95.17

Table 5.8: Performance of phone-3gram PSPL based SDR method.

The Effect of Query-length on Retrieval Performance

This set of analyses examines the impact of query-length on the retrieval performance

of phone-3gram based methods. Here, the query-length indicates the number of the

phones. The experimental results in section 5.3.3 show that applying the phone-3gram

PSPL method can not benefit the retrieval performance. Therefore the research on

the impact of query-length on this method is not conducted in this section. As shown

in Table 5.9, the query set in this evaluation task consists of 40 in-vocabulary (INV)

words and 40 out-of-vocabulary (OOV) words, with different length (len). Figure 5.10

and Table 5.17 present the obtained results.

INV OOV

len < 5 len = 7 len = 8 len >= 10 len < 5 len = 7 len = 8 len ≥ 10

Certain Capital Agreement Administration Goats Radiator Clinton’s Continents

Costs Congress American Environmental Shaft Workforce Mutation Humankind

Foreign December Companies Executives Herding Teenagers Bismarck Spokesperson

Funds Economy Exchange Development Oceans Appetizers Eclipses Polystyrene

Meeting Increased Government Investment Koresh Automakers Intervals Expectancy

Stocks Markets Military Incorporated Rodham Firearms Mechanized Microbiology

Total Program Proposal International Hiliary Infinite Implants Spokespeople

Value Position Spokesman California Spiller Letterman Hoffenberg Cardiologists

Women United Students Department Biking Malaria Killington Immunizations

Better Yesterday Recently Securities Canine Somalia Cheerleading Macdonals

Table 5.9: Selected INV and OOV words with different length in number of phones.

The label baseline is used to represent our baseline word-based spoken document
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(a) Query-length < 5 (b) Query-length = 7

(c) Query-length = 8 (d) Query-length ≥ 10

(e) mAP

(f) maximal recall

Figure 5.10: Performance (precision/recall plot) of in-vocabulary queries with different
lengths.
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retrieval system. tfidf represents the phone-3gram based spoken document retrieval

systems that use term frequency to form the document ranking-score. conf indicates

the phone-3gram based retrieval method that integrates the phone confusion informa-

tion into the document ranking-score. The phone-3gram based retrieval method, which

takes the proximity information into account while computing the document ranking

score, is represented by the label proximity.

In comparison with the baseline system, the proximity method significantly im-

proves the maximum recall rate. It can be viewed in Table 5.12, retrieving selected

long queries with the proximity method reaches a recall rate of 100% also in case of

retrieving queries Environmental, Incorporated, California and Department. Re-

trieving those four queries with the baseline method yields a worse recall rate less than

100%. The conf and tfidf methods achieve also a recall rate of 100% in retrieving

all selected long queries. Average retrieval performance summarized in Table 5.17 has

showed that the proximity method yields better mAP value in comparison with the

conf and tfidf methods. It can be observed that the proximity method outperforms

its rivals in the long queries retrieval task (as showed in Figure5.17(f)). We assume

that the recall and mAP achieved in retrieving queries with the same length are nor-

mally distributed. Therefore, the normally distributed t-test statistic is applied to

check whether this statement is statistically significant. We break our statement into

3 sub-statements.

• The proximity method reaches better recall than the baseline method

• The proximity method yields better mAP than the conf method

• The proximity method achieves better mAP than the tfidf method

Those 3 sub-statements and their t-test statistics are listed in Table 5.10. We choose

a significance level of 0.05 (α = 0.05). The label RE denotes the recall value. H1

represents our statement/conclusion. H0 is the null hypotheses of our statement. The

t-test statistic is computed as,

t =
M1 −M2√(

(N1−1)S2
1+(N2−1)S2

2

N1+N2−2

)(
1
N1

+ 1
N2

) (5.19)

The dimension df of t-test is computed as:

df = N1 +N2− 2; (5.20)
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H1 H0
N Mean Std. Deviation

t p-value
N1 N2 M1 M2 S1 S2

REproximity > REbaseline REproximity ≤ REbaseline 10 10 100.00 98.70 0 1.79 2.29 < p0.025

mAPproximity > mAPtfidf mAPproximity ≤ mAPtfidf 10 10 91.60 82.60 5.45 7.84 2.98 < p0.005

mAPproximity > mAPconf mAPproximity ≤ mAPconf 10 10 91.60 51 5.45 23.12 5.40 < p0.0005

Table 5.10: t-test statistics of long queries (length > 10) related statements.

N denotes the dimension of given sample vector. In our case, the df has a value of

18. According to the one-tailed t-table ([1]), the p-value of the first statement in Table

5.10 lies in range p0.025 and p0.01. The p-value of the first statement is less than 0.05

(our significant level). Therefore, the H0 of the first statement can be rejected. Our

first statement is acceptable. The p-value of the second statement in Table 5.10 lies in

range p0.005 and p0.001. Thereby our second statement is also acceptable. The p-value

of the third statement in Table 5.10 is far below p0.0005. Therefore the third statement

is acceptable.

Compared to the baseline system a clear improvement in the retrieval recall with

proximity method can also be observed for the short queries (+6.8%) and for queries

including 7 or 8 phones (+2.5%). The performance of retrieving very short queries

with (length < 5) is summarized in Table 5.15. Table 5.14 and Table 5.13 show the

performance of retrieving queries (length = 7 and length = 8). Statistic significance

research is also made to confirm this conclusion. We break this conclusion into two

statements. The statements and their t-test statistics are listed in Table 5.11. The

H1 H0
N Mean Std. Deviation

t p-value
N1 N2 M1 M2 S1 S2

REshort proximity > REshort baseline REshort proximity ≤ REshort baseline 10 10 98.00 91.20 2.59 6.56 3.04 < p0.005

RE7 proximity > RE7 baseline RE7 proximity ≤ RE7 baseline 10 10 99.40 96.90 0.83 3.33 2.30 < p0.025

RE8 proximity > RE8 baseline RE8 proximity ≤ RE8 baseline 10 10 99.60 96.40 1.25 2.94 3.17 < p0.005

Table 5.11: t-test statistics of statements about improved recall with proximity method when
retrieving not very long queries (length < 8).

degree of freedom df is 18. According to the one-tailed t-table ([1]), we find out that

the p-value of the first statement in Table 5.11 lies between p0.001 and p0.005, the p-value

of the second statement is less than p0.025 and the p-value of the third statement is less

than p0.005. All of them are less than our pre-defined significance-level (α = 0.05).

Therefore, our conclusions listed in Table 5.11 are statistically significant.

It can also be observed in Table 5.17, that the tfidf method shows its benefits in

retrieving short queries. In comparison with the baseline system, the maximal recall

rate increases by about 7.8%. Retrieving short queries with the proximity method
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0 10 20 30 40 50 60 70 80 90 100 mAP max. RE

Administration

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.43 99.84 100.00

tfidf 100.00 85.71 92.85 95.00 80.64 84.21 79.17 80.00 78.13 79.17 76.82 83.17 100.00

conf 25.00 50.00 54.17 54.29 51.02 44.92 42.53 40.00 39.68 34.54 20.86 43.20 100.00

proximity 50.00 75.00 86.67 90.47 92.59 94.12 92.50 93.62 94.34 95.00 95.45 90.98 100.00

Environmental

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.56 97.82 - 89.54 98.00

tfidf 100.00 100.00 100.00 100.00 100.00 96.15 88.23 85.37 81.63 78.95 58.14 88.85 100.00

conf 100.00 55.56 50.00 44.12 50.00 50.00 37.97 41.67 43.96 44.12 32.47 44.99 100.00

proximity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.90 90.19 100.00

Executives

baseline 100.00 71.43 83.33 87.50 90.48 92.31 93.33 94.29 95.00 95.45 95.92 89.90 100.00

tfidf 50.00 71.43 75.00 82.35 86.36 85.71 84.85 84.62 74.51 70.00 52.22 76.71 100.00

conf 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.92 99.79 100.00

proximity 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 95.92 99.59 100.00

Development

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

tfidf 100.00 100.00 100.00 100.00 100.00 100.00 87.88 85.00 84.78 83.02 77.78 91.85 100.00

conf 100.00 50.00 50.00 57.69 60.61 62.50 56.86 55.74 58.21 60.27 58.33 57.02 100.00

proximity 100.00 83.33 90.91 93.75 95.24 96.15 96.67 97.14 97.50 97.78 98.00 94.65 100.00

Investment

baseline 100.00 100.00 100.00 100.00 100.00 92.00 90.32 91.43 92.50 91.11 88.46 94.58 100.00

tfidf 100.00 100.00 100.00 87.50 78.26 79.31 75.67 76.15 72.55 66.13 46.94 78.25 100.00

conf 100.00 41.67 42.86 38.89 33.33 29.11 23.93 21.48 22.70 22.16 14.07 29.02 100.00

proximity 100.00 100.00 81.82 82.35 78.26 82.14 82.35 83.78 84.09 85.41 85.19 84.54 100.00

Incorporated

baseline 100.00 100.00 100.00 100.00 100.00 100.00 96.29 96.67 97.14 97.50 - 88.76 95.35

tfidf 100.00 100.00 100.00 100.00 85.00 88.00 86.67 85.71 80.95 73.58 10.64 81.06 100.00

conf 16.67 35.71 42.86 36.11 32.69 34.37 31.71 25.64 23.61 18.84 10.31 29.19 100.00

proximity 100.00 100.00 100.00 100.00 94.44 95.65 96.29 96.77 97.14 95.12 2.00 87.74 100.00

International

baseline 100.00 85.71 92.31 86.36 89.29 91.18 90.24 91.49 90.91 91.80 92.54 90.18 100.00

tfidf 100.00 85.71 86.67 90.00 78.13 81.58 82.22 84.31 86.21 84.85 60.19 81.99 100.00

conf 100.00 75.00 57.14 43.18 43.10 37.80 33.64 33.86 30.30 27.72 22.22 40.40 100.00

proximity 100.00 100.00 100.00 90.47 92.59 93.94 92.50 93.48 90.91 91.80 92.54 93.82 100.00

California

baseline 100.00 90.00 90.00 93.10 94.74 95.83 96.49 95.52 94.81 95.35 - 84.58 97.80

tfidf 100.00 90.00 90.00 90.00 92.31 91.84 93.22 88.89 82.95 83.67 81.25 88.41 100.00

conf 100.00 90.00 90.00 90.00 92.31 91.84 88.71 90.14 91.25 89.13 85.85 89.92 100.00

prox 100.00 100.00 94.74 96.43 97.30 95.74 96.49 96.97 97.33 97.62 79.47 95.21 100.00

Department

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 - 90.00 95.65

tfidf 50.00 83.33 81.82 87.50 85.71 82.14 84.85 84.21 84.09 80.39 9.00 76.30 100.00

conf 50.00 50.00 52.94 50.00 40.00 45.10 40.58 34.04 20.33 17.37 3.00 35.34 100.00

proximity 50.00 83.33 90.00 93.33 94.73 92.00 93.33 91.42 90.24 91.11 1.52 82.10 100.00

Securities

baseline 100.00 80.00 80.00 80.00 84.21 80.77 83.33 82.86 84.62 82.22 82.00 82.00 100.00

tfidf 100.00 80.00 72.73 66.67 66.67 60.00 60.98 64.44 62.26 58.73 43.62 63.61 100.00

conf 100.00 80.00 66.67 60.00 43.24 40.38 41.67 43.28 41.77 41.11 40.20 49.83 100.00

proximity 100.00 100.00 100.00 92.31 72.73 77.78 78.13 80.56 80.48 82.22 82.00 84.62 100.00

Table 5.12: Performance evaluation of in-vocabulary queries with length > 10.

achieves a recall that is comparable to the tfidf method. The tfidf method yields

a better mAP value (about + 7.6%) compared to the proximity method. However,

the mAP-value drops for about 17.1% compared to the baseline method. The results

of research about the statistic significance related this conclusion are summarized in

Table 5.16. The results in Table 5.16 confirm that retrieving short queries with the tfidf

method achieves better recall than that with the baseline method. But retrieving short

queries with the baseline method yields better mAP-value. The p-value of the second

statement in Table 5.16 is greater than our pre-defined significance-level (α = 0.05).

Consequently, we can not mention that retrieving short queries with the tfidf method
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5.3. Robust SDR Approach based on Phone N-gram

0 10 20 30 40 50 60 70 80 90 100 mAP max. RE

Agreement

baseline 100.00 100.00 90.91 83.33 83.33 86.20 88.57 90.00 89.13 90.12 - 80.16 98.03

tfidf 100.00 71.43 83.33 83.33 76.92 80.64 79.49 73.47 67.21 69.71 62.20 74.77 100.00

conf 100.00 60.00 66.67 71.43 64.52 55.56 56.36 58.06 56.16 44.23 38.35 57.13 100.00

prox 100.00 71.43 83.33 88.24 80.00 65.79 67.39 70.59 70.69 71.88 1.73 67.11 100.00

American

baseline 100.00 100.00 100.00 97.56 96.36 95.65 95.18 95.83 95.50 95.97 - 87.21 98.48

tfidf 50.00 63.64 75.00 72.73 61.63 62.26 62.70 62.59 61.99 62.63 59.73 64.49 100.00

conf 50.00 24.07 27.34 36.36 28.80 27.62 23.51 19.05 17.73 12.65 9.08 22.62 100.00

prox 100.00 100.00 100.00 100.00 94.64 94.29 95.18 95.83 92.17 90.84 2.56 86.55 100.00

Companies

baseline 100.00 68.00 66.00 67.57 62.62 60.14 61.35 63.58 64.73 64.94 - 57.89 92.22

tfidf 100.00 45.95 45.21 39.37 39.88 38.78 38.61 34.21 32.45 31.78 7.57 35.38 100.00

conf 100.00 48.57 49.25 49.02 50.38 44.86 40.65 36.00 34.73 35.80 9.94 39.92 100.00

prox 100.00 65.38 58.93 60.24 61.47 54.97 55.25 55.98 57.02 59.29 10.57 53.91 100.00

Exchange

baseline 100.00 100.00 90.00 93.33 94.74 92.00 93.33 94.12 94.87 95.35 93.88 94.16 100.00

tfidf 100.00 83.33 90.00 93.33 78.26 82.14 80.00 78.05 75.51 73.21 71.87 80.57 100.00

conf 100.00 100.00 100.00 100.00 85.71 88.46 90.32 91.42 90.24 89.13 88.46 92.37 100.00

prox 100.00 100.00 100.00 100.00 94.74 92.00 93.33 94.12 92.50 93.18 93.88 95.38 100.00

Government

baseline 100.00 100.00 100.00 100.00 96.97 96.39 96.97 96.55 96.24 96.64 - 87.98 96.87

tfidf 100.00 100.00 94.12 94.12 92.75 87.91 88.07 89.60 89.51 88.89 10.67 83.56 100.00

conf 100.00 100.00 88.89 88.89 83.12 80.81 80.00 80.00 79.01 79.56 22.32 78.26 100.00

prox 100.00 94.12 94.12 90.57 90.14 86.96 88.07 89.60 89.51 90.00 5.43 81.85 100.00

military

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 - 90.00 90.48

tfidf 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 87.50 98.75 100.00

conf 100.00 40.00 27.59 28.26 34.00 37.50 41.67 44.62 30.63 24.84 15.91 32.50 100.00

prox 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 84.00 98.40 100.00

proposal

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.06 97.44 97.67 - 89.22 97.87

tfidf 100.00 100.00 100.00 100.00 95.00 96.00 96.55 86.84 86.36 79.25 41.96 88.20 100.00

conf 33.33 62.50 52.94 58.33 50.00 48.98 42.42 35.48 33.93 32.56 24.23 44.14 100.00

prox 100.00 100.00 100.00 100.00 100.00 100.00 100.00 97.06 97.44 97.67 37.30 92.95 100.00

spokesman

baseline 50.00 80.00 90.00 86.67 90.00 66.67 53.06 48.44 43.75 45.98 - 60.46 97.72

tfidf 50.00 80.00 90.00 76.47 75.00 70.97 70.27 54.39 47.30 42.55 41.51 64.85 100.00

conf 25.00 7.69 9.89 12.50 13.43 12.79 12.38 11.31 10.77 11.27 9.63 11.17 100.00

prox 50.00 30.77 23.68 25.49 33.51 31.88 33.77 37.35 37.77 43.01 4.03 30.13 100.00

students

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.89 90.48 89.58 - 87.20 93.75

tfidf 100.00 100.00 83.33 87.50 90.48 92.31 90.63 85.00 77.55 76.79 - 78.36 95.83

conf 100.00 38.46 14.08 12.73 10.92 13.41 15.76 17.44 14.18 9.09 0.84 14.69 100.00

prox 100.00 83.33 66.67 70.00 70.37 72.73 74.36 77.27 79.17 79.63 - 67.35 95.83

recently

baseline 100.00 100.00 76.92 76.19 72.41 76.47 73.81 73.47 76.36 74.60 - 70.02 98.07

tfidf 100.00 100.00 71.43 69.57 65.63 70.27 73.81 73.47 68.85 63.51 2.95 65.95 100.00

conf 100.00 33.33 27.03 29.63 35.00 28.26 28.44 23.68 24.71 25.41 2.09 25.76 100.00

prox 100.00 55.56 62.50 66.67 63.64 68.42 70.45 73.47 76.36 75.81 1.15 61.40 100.00

Table 5.13: Performance evaluation of in-vocabulary queries with length = 8.

yields a better mAP-value than that with the proximity method. In this case, the

null-hypotheses can not be rejected. Therefore, this conclusion can not be accepted.

The ability of phone-3gram based spoken document method to deal with out-of-

vocabulary words was analysed in the previous experiments (Figure 5.8). In this sec-

tion, we are going to research whether the query-length has an impact on the out-of-

vocabulary query retrieval performance. The obtained results are compared in Figure

5.11 and Table 5.18.

The result of this study shows that the mean average precision of the phone-3gram
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5.3. Robust SDR Approach based on Phone N-gram

(a) Query-length < 5 (b) Query-length = 7

(c) Query-length = 8 (d) Query-length ≥ 10

(e) mAP

(f) max. recall

Figure 5.11: Performance (precision/recall plot) of OOV queries with different lengths.
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0 10 20 30 40 50 60 70 80 90 100 mAP max. RE

Capital

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 - 90.00 95.91

tfidf 100.00 100.00 100.00 100.00 95.24 96.00 90.63 85.00 78.00 78.57 - 82.34 97.95

conf 33.33 35.71 25.00 28.30 26.67 15.38 13.81 14.66 14.55 14.62 0.85 18.96 100.00

prox 100.00 100.00 83.33 83.33 83.33 82.76 85.29 87.18 88.63 86.27 - 78.01 97.96

Congress

baseline 100.00 100.00 100.00 94.44 92.00 90.63 92.11 93.18 93.88 94.55 - 85.08 98.28

tfidf 50.00 85.71 85.71 89.47 88.46 90.63 89.74 91.11 92.00 92.86 93.55 89.92 100.00

conf 100.00 66.67 63.16 70.83 74.19 69.05 68.63 69.50 71.88 73.24 54.72 68.19 100.00

prox 100.00 85.71 92.31 94.44 92.00 93.55 94.60 95.35 95.83 96.29 5.09 84.52 100.00

December

baseline 100.00 100.00 100.00 100.00 94.12 95.24 96.15 96.67 97.06 97.37 95.35 97.20 100.00

tfidf 100.00 100.00 100.00 100.00 100.00 100.00 89.29 90.63 91.67 92.50 87.23 95.13 100.00

conf 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.32 89.19 86.04 82.00 94.76 100.00

prox 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.67 97.06 94.87 95.35 98.40 100.00

Economy

baseline 100.00 100.00 94.12 95.83 96.88 97.50 97.92 98.21 98.41 98.59 96.29 97.38 100.00

tfidf 100.00 100.00 94.12 85.19 83.78 82.98 85.45 85.94 81.58 82.35 78.79 86.02 100.00

conf 100.00 100.00 100.00 92.00 88.57 88.63 87.04 87.30 86.30 85.37 82.98 89.82 100.00

prox 100.00 100.00 100.00 95.83 96.88 97.50 97.92 98.21 98.44 98.59 97.50 98.09 100.00

Increased

baseline 100.00 83.33 91.67 94.12 87.50 81.25 80.00 80.43 82.35 - - 68.07 88.68

tfidf 100.00 50.00 55.00 55.17 60.00 50.98 42.67 37.76 33.60 28.57 - 41.38 98.11

conf 100.00 20.00 22.92 20.25 18.58 18.57 16.50 14.80 12.00 7.99 1.00 15.26 100.00

prox 100.00 83.33 78.57 84.21 87.50 81.25 84.21 84.09 85.71 1.97 - 67.08 98.11

Markets

baseline 100.00 75.00 63.64 71.43 77.78 73.91 77.78 80.00 80.00 81.58 68.11 97.14

tfidf 50.00 50.00 50.00 55.56 29.17 25.37 19.27 18.18 18.54 16.94 13.57 29.66 100.00

conf 100.00 15.79 15.21 18.18 17.50 12.98 13.13 13.79 14.51 14.35 13.73 14.92 100.00

prox 100.00 100.00 53.85 55.56 56.00 60.71 63.64 64.86 66.67 65.96 67.31 65.46 100.00

Program

baseline 100.00 85.71 92.86 95.24 93.10 94.29 95.24 95.83 96.43 96.77 97.10 94.26 100.00

tfidf 100.00 100.00 76.47 80.00 84.38 84.62 86.96 88.68 85.71 83.33 67.00 83.72 100.00

conf 100.00 100.00 72.22 76.92 79.41 78.57 76.92 75.41 77.14 78.95 76.13 79.17 100.00

prox 100.00 100.00 100.00 100.00 100.00 97.06 97.56 97.92 98.18 98.36 98.53 98.76 100.00

Position

baseline 100.00 100.00 100.00 100.00 100.00 100.00 90.32 89.19 88.37 87.50 - 85.54 93.61

tfidf 100.00 50.00 64.29 73.68 79.17 82.14 80.00 63.46 50.00 48.84 48.45 64.00 100.00

conf 4.55 4.90 3.86 3.30 2.48 2.05 1.33 1.50 1.72 1.89 1.35 2.44 100.00

prox 100.00 50.00 56.25 53.85 43.18 31.94 32.94 34.74 34.23 35.00 0.90 37.30 100.00

United

baseline 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 - 90.00 97.69

tfidf 100.00 100.00 100.00 97.50 98.11 97.01 97.50 97.85 98.10 98.32 - 88.44 99.23

conf 100.00 54.17 40.63 41.05 48.15 50.78 51.32 53.53 55.62 57.35 2.44 45.50 100.00

prox 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 - 90.00 99.23

Yesterday

baseline 33.33 84.62 88.46 91.89 93.75 94.92 95.77 95.18 95.74 96.23 - 83.66 97.35

tfidf 33.33 78.57 88.46 87.18 90.00 90.32 90.67 89.77 87.38 88.70 - 79.11 99.12

conf 100.00 84.62 88.46 91.89 93.75 94.92 94.44 95.18 95.74 94.44 2.40 83.58 100.00

prox 100.00 100.00 100.00 100.00 95.74 96.55 97.14 97.53 96.77 97.14 - 88.09 99.12

Table 5.14: Performance evaluation of in-vocabulary queries with length = 7.

based spoken document retrieval system increases with growing query-length (Figure

5.11(e) and (f)). The proximity method outperforms the others. It can be observed,

that even with a high maximal recall rate (100% by queries including 5 and 7 phones

with the conf -method), the phone-3gram based SDR approaches cannot provide re-

liable retrieval results for out-of-vocabulary queries due to the poor mean average

precision.
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0 10 20 30 40 50 60 70 80 90 100 mAP max. RE

Certain

baseline 25.00 57.14 63.64 68.75 75.00 69.23 68.75 72.22 73.17 - - 54.79 83.78

tfidf 16.67 30.77 42.11 47.83 46.88 42.86 41.51 45.61 46.88 41.77 1.20 38.74 100.00

conf 33.33 14.29 7.00 6.92 6.05 5.77 6.71 5.14 4.19 1.80 1.13 5.90 100.00

prox 16.67 16.67 16.28 19.64 23.08 23.68 21.57 18.98 16.30 16.90 1.40 17.45 100.00

Costs

baseline 100.00 83.33 78.57 80.00 78.57 79.41 72.73 74.51 71.67 74.24 - 69.30 94.44

tfidf 100.00 71.43 68.75 66.67 66.67 64.29 62.75 48.72 48.31 46.23 - 54.38 98.15

conf 100.00 83.33 47.83 51.61 36.67 33.75 32.32 29.69 28.10 25.13 1.48 36.99 100.00

prox 100.00 100.00 91.67 80.00 75.86 67.50 69.57 73.08 72.88 72.06 - 70.26 98.15

Foreign

baseline 100.00 100.00 75.00 72.22 78.26 78.57 74.29 73.81 - 71.43 72.73 69.63 95.45

tfidf 100.00 80.00 64.29 56.52 56.25 53.66 57.78 56.36 58.33 37.38 - 52.06 97.72

conf 10.00 6.15 5.63 3.82 3.15 3.17 2.85 2.90 2.69 2.80 0.93 3.41 100.00

prox 100.00 66.67 29.03 22.41 23.08 25.58 18.84 19.38 19.89 21.05 - 24.59 97.73

Funds

baseline 100.00 100.00 100.00 92.86 89.47 84.00 80.65 80.56 82.93 79.17 79.25 86.89 100.00

tfidf 100.00 100.00 50.00 59.09 65.38 53.85 51.02 46.03 43.59 41.30 35.59 54.59 100.00

conf 100.00 80.00 61.54 44.83 42.50 46.67 49.02 44.62 43.04 42.70 42.42 49.73 100.00

prox 100.00 57.14 72.73 61.90 65.38 67.74 67.57 70.73 73.91 76.00 77.78 69.09 100.00

Meeting

baseline 100.00 66.67 80.00 85.71 88.89 90.48 92.00 93.10 91.18 - - 68.80 79.49

tfidf 33.33 50.00 66.67 66.67 66.67 67.86 65.71 64.29 65.96 3.56 - 51.74 94.87

conf 33.33 21.05 26.67 30.00 24.59 10.73 10.60 9.25 9.78 3.08 0.50 14.63 100.00

prox 100.00 50.00 66.67 70.59 64.00 52.78 51.11 52.94 54.38 1.73 - 46.42 94.87

Stocks

baseline 50.00 50.00 66.67 76.92 81.25 80.00 83.33 79.31 78.79 78.95 - 67.52 90.91

tfidf 100.00 50.00 70.00 55.56 46.43 51.61 51.28 50.00 45.61 40.54 - 46.10 96.97

conf 20.00 18.75 7.78 8.33 6.84 7.51 8.44 9.13 9.56 10.31 0.55 8.72 100.00

prox 50.00 60.00 75.00 76.92 65.00 69.57 71.43 74.19 74.29 75.00 - 64.14 96.97

Total

baseline 100.00 100.00 100.00 92.86 94.44 87.50 89.66 88.24 87.18 86.67 - 82.66 90.70

tfidf 100.00 80.00 81.82 68.42 65.38 65.63 65.00 61.22 64.15 60.00 1.87 61.35 100.00

conf 14.28 12.50 12.68 10.24 8.81 8.43 7.00 7.06 6.91 7.16 2.20 8.30 100.00

prox 33.33 66.67 81.82 65.00 68.00 70.00 74.29 75.00 75.56 75.00 1.65 65.30 100.00

Value

baseline 14.29 45.45 62.50 70.00 70.37 75.00 76.32 79.07 76.00 68.25 65.75 68.87 100.00

tfidf 12.50 41.67 55.56 63.64 67.86 68.57 70.73 65.38 62.30 62.32 54.55 61.26 100.00

conf 100.00 38.46 31.25 30.43 33.33 36.36 40.28 44.16 45.78 45.26 45.28 39.06 100.00

prox 100.00 62.50 76.92 82.35 79.17 82.76 80.56 82.93 74.51 76.79 69.57 76.81 100.00

Woman

baseline 100.00 100.00 100.00 100.00 100.00 100.00 96.29 93.75 94.44 92.86 - 87.73 93.02

tfidf 100.00 100.00 100.00 100.00 100.00 95.45 92.86 93.75 91.89 90.70 0.87 86.55 100.00

conf 50.00 5.06 6.16 5.73 4.72 4.34 4.30 3.95 3.70 2.28 0.68 4.09 100.00

prox 100.00 30.77 27.27 28.89 28.33 28.77 32.91 30.61 24.11 20.21 1.17 25.30 100.00

Better

baseline 50.00 83.33 83.33 88.24 86.96 89.29 81.08 83.33 81.63 - - 67.72 84.00

tfidf 50.00 71.43 83.33 83.33 86.96 86.21 83.33 83.33 76.92 39.13 - 69.40 92.00

conf 50.00 71.43 55.56 65.22 58.82 55.56 56.60 54.69 51.28 3.46 0.62 47.32 100.00

prox 100.00 100.00 71.43 71.43 71.43 75.76 78.95 77.78 76.92 3.91 - 62.76 92.00

Table 5.15: Performance evaluation of in-vocabulary short queries with length < 5.

H1 H0
N Mean Std. Deviation

t p-value
N1 N2 M1 M2 S1 S2

REshort tfidf > REshort baseline REshort tfidf ≤ REshort baseline 10 10 98.00 91.20 2.58 6.56 3.04 < p0.005

mAPshort tfidf > mAPshort proximity mAPshort tfidf ≤ mAPshort proximity 10 10 57.7 50.1 12.56 21.01 0.98 > p0.25

mAPshort baseline > mAPshort tfidf mAPshort baseline ≤ mAPshort tfidf 10 10 74.8 57.7 10.03 12.56 3.36 < p0.005

Table 5.16: t-test statistics of statements about tfidf benefits short query (length < 5)
retrieval task.

Conclusion

The results of the in-vocabulary query retrieval task, as shown in Table 5.5 and in

Figure 5.7, confirm that the phone-3gram based spoken document retrieval system
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len < 5 len = 7 len = 8 len ≥ 10

mAP maxRE mAP maxRE mAP maxRE mAP maxRE

baseline 74.80 91.20 91.70 96.90 88.30 96.40 94.60 98.70

tfidf 57.70 98.00 72.90 99.40 70.70 99.60 82.60 100.00

conf 17.70 100.00 45.10 100.00 39.20 100.00 51.00 100.00

proximity 50.10 98.00 83.90 99.40 73.80 99.60 91.60 100.00

Table 5.17: Performance evaluation of in-vocabulary queries with different lengths.

len < 5 len = 7 len = 8 len ≥ 10

mAP maxRE mAP maxRE mAP maxRE mAP maxRE

tfidf 0.40 44.00 1.40 78.60 2.30 58.20 1.20 58.20

conf 0.80 100.00 1.20 100.00 0.70 80.00 3.80 90.00

proximity 1.00 57.20 3.50 90.40 4.00 82.80 3.20 87.50

Table 5.18: Performance evaluation of out-of-vocabulary queries with different lengths.

achieves a reliable retrieval performance. The maximum retrieval recall is significantly

improved. However, the mean average precision drops. In this work the new phone-

3gram based proximity method labelled as proximity weighting yields the best perfor-

mance. The proximity method reaches a 69.94% mean average precision while keeping

a 95.99% maximal recall. The best retrieval recall is achieved with the conf method.

The conf method enables approximate matching between a query and the document

terms, which results in too many false alarms being added into the retrieved result list.

Consequently, the conf method can only achieve 39.93% mean average precision.

As can be seen in Figure 5.8 and in Table 5.6, the phone-3gram based methods

are not suitable for out-of-vocabulary query tasks. Even with the tfidf method, a

92.83% maximal recall can be reached, but the mean average precision is very poor.

The proximity labelled as proximity weighting method yields the best mean average

precision.

The real application experiments, as shown in Figure 5.9(b) and in Table 5.7, reflect

that the proposed proximity method labelled as poximity weighting) outperforms the

baseline system. In comparison with the baseline system, this new method improves

the maximal recall rate by about 15.34% and reaches a 61.08% mean average precision

that is comparable to the baseline system. Adding multiple recognition hypothesis to

the document representation in the form of the phone-3gram PSPL does not benefit

the retrieval performance of a spoken document retrieval system.

Another major finding, as shown in Figure 5.10, is that the query-length has an
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impact on retrieval performance of a phone-3gram based spoken document retrieval

system. Generally, the mean average precision increases with a growing query-length.

The proximity method yields the best mean average precision for long query words.

The best retrieval recall is achieved with the conf approach, which is independent to

the query-length. The mean average precision of the conf system drops with decreasing

query-length. These conclusions have been verified with additional statistical signifi-

cance tests. Experiment results in previous experiments confirmed that phone-3gram

base spoken document retrieval systems are generally not for the out-of-vocabulary

query retrieval task.

5.4 Probabilistic Phone String Matching

In the last section, we explored the phone-3gram based spoken document retrieval

approaches. The experimental results indicate that this kind of spoken document re-

trieval methods can detect some of the out-of-vocabulary words. However, the retrieval

precision is low. The reasons for this are:

• The phone-3gram is still a kind of context-dependent index.

• The phone-3gram representation of a spoken document is directly extracted from

its word-1best representation, provided by a speech recognizer.

The context-free index unit (very short index unit, e.g. phone) should provide more

flexibility in the retrieval process. Therefore, in this section we focus on the investi-

gation of context-free index unit-based spoken document retrieval methods. There are

two context-independent index units that have been applied to the information retrieval

application: grapheme and phone. In comparison with grapheme the phone index unit

bears extra useful acoustic information. For this reason, we are going to investigate

phone-based (monophone) spoken document retrieval methods in this section. Based

on the previous experiments in Section 5.2, the monophone representation of a spoken

document is constructed from its word-1best transcription. The main obstacle that the

monophone-based spoken document retrieval methods have to deal with is the large

number of transcription errors.

Wechsler et. al. ([115], [117]) tried to compensate for the transcription errors

by means of exploiting the probabilities of the phone recognition errors. The notion
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‘probabilistic string matching’ was defined by Wechsler as the retrieval methods, which

are based on the spotting query (phone) sequences in a continuous and corrupted

document (phone) sequences [115]. The string matching method can be used for both

spoken document retrieval and text retrieval in a scanned document generated by an

Optical Character Recognizer (OCR).

This method were evaluated using German information retrieval task with short

queries [79]. 10 German city names were selected as queries. Three distinct sets

of queries were built, queries in the text-form, clean spoken queries and noisy spoken

queries that was recorded once in adverse conditions (low quality microphone, presence

of background noise). Moreau and Jin reported that the clean spoken queries do not

perform as well as text queries. The experiments also showed that the string matching

SDR act more effectively in compare with phone-Ngrams based SDR methods. Further

experiments on German retrieval tasks were conducted and summarized in Jin’s Master

thesis [56]. Also short 10 German city names were used as queries to evaluate different

phone-based SDR methods in Jin’s Master thesis. ([56]).

The string matching method applied for spoken document retrieval usually consists

of three main components: slot detection, slot-probability estimation and retrieval

status value (RSV) estimation (as shown in Figure 5.12).

Figure 5.12: Structure of an SM-based SDR system.
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Similar approaches were proposed by Amir et. al. [4] using metaphone (broad phone

class) instead of monophones. In his paper, phones are grouped into 7 metaphones

based on their confusion information. The monophone representation of a spoken

document was updated into metaphone representation. Slight improvement in precision

could only be confirmed in combining with word-based SDR methods. Therefore, we

are going to focus on the information retrieval in monophone representation of spoken

documents.

In this work, probabilistic string matching methods will further evaluated on En-

glish single-word query retrieval tasks. The query-set contains 200 in-vocabulary words

and 30 out-of-vocabulary words with different length. The effect of query-length on

retrieval performance will also be researched 5.4.4. The query phone sequence in this

work is obtained via the text-to-phone tools (phone dictionary) or via a phone recog-

nizer. In the slot detection phase, all possible slots that may contain the query phone

sequence will be detected. Then a probability will be estimated for each detected slot.

This slot probability describes the similarity between a detected document slot and

the given query phone sequence. Finally, the retrieval status value (RSV) is estimated

based on the slot probability. This retrieval status value is used to rank the documents

in the retrieved list.

5.4.1 Slot Detection

The slot detection problem can be defined as the search of a set of slots S(q, d) in the

document mono-phone transcription d, according to a given query sequence q, so that

each slot S(q, d) is a possible occurrence of sequence q in d. The following terms are

defined for expressing the quality of a slot detection method.

• Hit slot : a detected slot containing the query sequence.

• Miss slot : a slot in which a query feature is spoken but not detected.

• False alarm slot : a detected slot that does not contain the query sequence.

Because the phone sequences in a spoken document representation are often corrupted,

the slot detection component can return false alarm slots or miss some slots containing

the query phone sequences. In order to improve the slot detection performance, we

must reduce the number of miss slots and false alarms. However, the miss and false
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alarm errors are correlated. Decreasing the number of miss slots usually increases the

number of false alarms. Conversely, decreasing the number of false alarms always leads

to an increase in the number of miss slots. As stated before, the errors in the spoken

document representation can be classified by three errors: substitution, insertion and

deletion. Wechsler has proposed three different slot detection methods to deal with

this problem: slot detection via exact matching, substitution-tolerant slot detection

and error-tolerant slot detection.

The Exact matching method detects the slots in a spoken document represen-

tation that are exact copies of the given query phone sequence. This method is very

restrictive and does not suit the spoken document retrieval application very well, as

the phone sequences in a spoken document representation are often corrupted.

The Substitution-tolerant method counts the number of common phones that

occur at the same position within the query sequence and a document slot. Only slots

whose number of matching phones is greater than a pre-defined threshold value are

returned as detected slots in a document. This method only takes the substitution

errors into account. All detected slots have a fixed length.

The insertion or deletion errors in a spoken document representation introduce

a shift in the relative position of a phone. The substitution tolerant slot detection

method is a fixed-length approach and is unable to handle these kind of errors. The

Error-tolerant method is designed to cope with these errors. This method is robust

against all types of recognition errors. Firstly, a final beginning score is derived for

each document position k. This score reflects the probability of a candidate slot at

the position k. Then the slots are ranked in decreasing order according to their final

beginning scores. No overlapping is allowed between the detected document slots. The

method consists of three steps: preparation, final beginning score calculation and the

selection of slots.

Figure 5.13 presents the output of three different slot-detection methods with a

simple example.

The task of this example is very simple: finding possible slots in a document

4o8c0e06 given a query word ’BUT’ with phone sequence ’B AH T’. As we can see

in Figure 5.13, the exact method can only detect slots that are exactly the same as

the given query phone sequence. In this example, this method is perfect; a ’hit’ is

found. However, as we mentioned before, the reference phone transcription of a spoken
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Figure 5.13: Example of slot-detection: looking for BUT (B AH T) in 4o8c0e06.

document is often corrupt and contains a lot of errors. It will be very hard to find a slot

that is a perfect match for the given query phone sequence. More slots that are simi-

lar to the query phone sequence are detected using the substitution tolerant method.

The overlapped slots are ignored. In order to reduce the number of false alarms, a

threshold is fixed so that some un-important slots are eliminated. Let l be the length

of the given query phone sequence. The threshold is set to 0.5 · l, which means at

least half of the common phones in a document slot are placed in the same position in

the given query phone sequence. As showed in Figure 5.13, the slot marked with red

colour will be ignored. The advantages of using the error − tolerant method is that

it can deal with all kinds of errors in the phone representation of a spoken document.

The slots shown in this example are detected using the error − tolerant method at

threshold = 0.43. A document slot with an insertion error at position 3 ( phone ’N’ is

inserted into representation), can also be detected and prepared for further processing.

5.4.2 Slot-probability Estimation

In order to assess the relevance of a detected slot regarding the given query, a proba-

bility is assigned for each document slot. This slot-probability indicates that the query

phone sequence is uttered in slot s. This probability reflects the slot relevance to the
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given query phone sequence and will be used in the next stage to form the retrieval

status value. The symbol q is used to represent the query phone sequence. The symbol

s indicates a slot detected in document d. The task of the slot-probability estimation

stage is to estimate P (q ∈ s). We are going to discuss two of the slot-probability

estimation methods in this section.

Edit Distance based Probability Estimation

This section presents an approximate pattern matching method presented by [6] (pp.105−
110). This method is based on the edit distance between a document slot and the given

query phone sequence. The edit distance is defined as the minimum number of local

edit operations required to transform one object into another [24]. For example, the

distance between /aU k s b o k/ and /aU k s o t k/ is 2, which means two steps

are needed to transform the first phone sequence into the second one. These are the

deletion of ’b’ and the insertion of ’t’. The similarity measurement between two phone

sequences is recursively obtained using similarity measurements between shorter sub-

strings. The edit distance between two phone sequences is defined as the minimal

number of transformations that are required to transform one phone sequence into

another. With respect to the document, three types of transformations can be made:

substitution, insertion and deletion.

• substitution : a phone in q is substituted by another phone in s;

• insertion : a phone not present in q is inserted in s;

• deletion : a phone in q is deleted in s;

This algorithm is based on the dynamic programming principle. The edit distance

between query phone sequence q and document slot s is obtained recursively as:

δ(su, qv) = ∞ when u < 0 and v < 0 (5.21)

δ(s0, q0) = 0 (5.22)

δ(su, qv) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t1

t2

t3

(5.23)
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where t1, t2 and t3 are estimated as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t1 = δ(su−1, qv−1); when s[u− 1] == q[v − 1]⎧⎪⎪⎪⎨
⎪⎪⎪⎩
t1 = δ(su−1, qv−1) + 1;

t2 = δ(su−1, qv) + 1;

t3 = δ(su, qv−1) + 1;

else
(5.24)

su is the sequence of the first u phones in slot s; qv is the sequence of the first v phones

in query q. We assume that all phones have an equal acoustic distance of 1 between

each other. This edit distance is used to estimate the probability P (q ∈ s) of query

sequence q occurs in document slot s, by taking the simple inverse normalized edit

distance (INED):

P (q ∈ s) = 1− δ(sls , qlq)

max{ls, lq} (5.25)

However, this assumption poorly reflects the real acoustic distance between the slot

and the query. The slot-probability would be more accurate if we take into account

the error characteristics and substitution probabilities of a phone recognizer.

Integrating Confusion Information into Probability Estimation

An alternative method for slot-probability estimation was developed byWechsler ([115])

using confusion information that statistically expresses the error-production character-

istics of a phone recognizer. The slot-probability is then estimated as follows:

sim(s0, qv) := Psub(q[v], s[0]); (5.26)

sim(su, q0) := Psub(q[0], s[u]); (5.27)

sim(su, qv) = max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sim(su−1, qv−1) + Psub(q[v], s[u]);

sim(su, qv−1) + Pdel(q[v]);

sim(su−1, qv) + Pins(s[u]);

(5.28)
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where Su is the sub-string of the u + 1 first phones of s (slot detected); qv is the sub-

string of the v + 1 first phones of q (keyword phone sequence); q[v] is the v + 1 phone

in q; s[u] indicates the (u+ 1) phone in detected slot; Psub(q[v], s[u]) is the probability

that phone q[v] is substituted with phone s[u]; Pdel(q[v]) indicates the probability that

phone q[v] is deleted; and Pins(s[u]) is the probability that phone s[u] is inserted.

The slot-probability estimation is implemented using dynamic programming (DP),

as shown in Figure 5.14. The term sim(su, qv) denotes the string similarity between a

document slot sub-string {s[0], ...s[u]} and a sub-string {q[0], ...q[v]} of query sequence.

Three alternatives defined by the Equation 5.28 correspond respectively to the substi-

tution, insertion and deletion. These three alternatives are illustrated as arrows in a

two-dimensional grid defined by the document slot phone sequence (x-axis) and the

query phone sequence (y-axis). Figure 5.14(b) shows a simpler and more straightfor-

ward recursive scheme used in the work described here.

(a) DP transitions used in Wechsler’s work (b) DP transitions used in this work

Figure 5.14: DP transitions

This method derives the slot-probability more accurately, as it takes into account

the probabilities of all error types. But it requires more computation effort than the

approach based on the edit distance.

5.4.3 Weighting and Scoring

Let dj be jth documents in a collection and qi ∈ q be ith indexing feature of a query

q. The similarity between document dj and query q is obtained as the inner product
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between corresponding weighted term vectors. It was proposed by Wechsler ([116]):

Sim(q, dj) =
∑
qi∈q

DWi,jQWi. (5.29)

where DWi,j denotes the document weight of qi in dj and is defined by equation 5.30;

QWi denotes the query weight of qi in q and is computed as follows:

DWi,j =
1

(1− α)l + αldj
log(1 + eff(qi, dj)) (5.30)

eff(qi, dj) =
∑
su∈dj

sim(qi, su) (5.31)

where the length of dj is denoted as ldj and l denotes the average document length

in the collection. su represents detected slots in document dj. α [106] is the slope, set

to 0.25.

QWi = (1 + log(ff(qi, q)))iecf(qi) (5.32)

iecf(qi) = 1 + log(
Cq + 1

ecf(qi) + 1
) (5.33)

ecf(qi) =
∑
dj∈D

eff(qi, dj) (5.34)

Cq = maxqi∈q(ecf(qi)) (5.35)

Where the number of expected occurrences of qi in a document dj (denoted as eff(qi, dj))

is written as the sum of slot-probabilities [76]. iecf represents inverse expected col-

lection frequency, which is very similar to inverse document frequency. ecf represents

the expected number of occurrences of a feature (term qi). Cq is a query-specific con-

stant. The slot-probabilities are estimated using the method introduced in the previous

sections. ff(qi, q) denotes the number of the occurrences of qi in q.

5.4.4 Experiment and Discussion

In this section, we are going to evaluate the monophone-based spoken document re-

trieval approaches using different slot-probability estimation methods and explore the

impact of query-length on the monophone-based spoken document retrieval methods.
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Comparison of Different Slot Probability Estimation Methods

In this study, we first evaluate the retrieval performance of the monophone-based spo-

ken document retrieval approaches with the in-vocabulary query retrieval task. Figure

5.15 presents the experimental results. The label baseline represents our word-based

baseline spoken document retrieval system in this work. The label INED denotes the

monophone-based spoken document retrieval system that assigns the inverse normal-

ized edit distance between a document slot and the given query phone sequence to the

slot probability. The label SSPE (string similarity based probability estimation) in-

dicates the monophone-based spoken document retrieval system, which integrates the

confusion information into the slot probability (described in Section 5.4.2).

Figure 5.15: Performance (mAP) evaluation of different mono-phone based SDR systems
with in-vocabulary query.

A high retrieval recall rate can be observed by the monophone-based spoken doc-

ument retrieval system. In comparison with the baseline system, the INED method

improves the maximal recall by about 9.58%. The mean average precision yielded by

the INED method decreases by about 20.89%. The SSPE method improves the max-

imal recall rate of SDR system (9.25%) compared with the baseline system. Because

the SSPE method performs approximate matching between the query phone sequence

and a document slot, it introduces a number of false alarms into the retrieved result.

Similar behavior can also be viewed in Table 5.19.
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baseline INED SSPE

recall INV TOTAL INV OOV TOTAL INV OOV TOTAL

0 86.00 74.78 79.00 53.33 75.65 16.50 23.33 17.30

10 89.12 77.60 73.83 52.22 70.43 35.25 21.25 31.90

20 89.93 78.08 73.42 47.62 68.94 41.60 21.87 37.50

30 90.12 78.18 73.85 40.77 68.09 44.60 15.14 40.60

40 89.59 77.70 73.51 30.87 66.87 45.80 3.40 41.06

50 89.05 77.08 72.76 12.50 65.44 44.90 1.90 39.10

60 88.48 76.66 69.58 5.17 61.79 40.60 1.00 33.80

70 88.10 75.89 63.16 1.59 53.71 33.68 0.93 26.78

80 87.30 - 49.21 0.63 38.99 24.73 0.53 18.05

90 86.98 - 25.99 0.24 9.48 14.12 0.23 6.19

mAP 84.17 61.67 63.20 22.92 56.20 33.67 8.53 29.07

max.RE 89.77 78.06 99.35 91.72 98.35 99.14 91.05 97.90

Table 5.19: Performance of different monophone-based SDR systems in precision, recall, mAP
and max. recall.

Next, we evaluate different monophone spoken document retrieval methods with the

complete query set (200 in-vocabulary and 30 out-of-vocabulary queries). Figure 5.16

presents the experimental results. From the data in Figure 5.16, it is apparent that

monophone-based spoken document retrieval method has significantly improved the

maximal recall rate. Compared with the baseline system, a slightly improved retrieval

precision (+0.87%) at lower recall level can be observed by the INED method.

The Effect of Query-length

In this study, we are going to research the impact of query-length on the retrieval

performance of a monophone-based spoken document system. Table 5.9 presents the

words selected for this selection task. Again, separate experiments are made to evalu-

ate the impact of the query-length on the in-vocabulary and out-of-vocabulary query

retrieval performance.

The results of the in-vocabulary query retrieval task are presented in Figure 5.17

and Table 5.20. We can see that the monophone-based INED and SSPE methods

outperform the baseline system when long queries are retrieved. For queries with

a length of ≥ 10, a maximal recall of 100% is yielded by phone-based INED or

SSPE. The mean average precision achieved by phone-based INED drops slightly

in comparison with the baseline system. However, the mean average precison value
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Figure 5.16: Precision/recall plot of different mono-phone based SDR systems with total
query set.

of phone-based methods drops dramatically with decreasing query-length. It can be

observed that the SSPE method is extremely sensitive to the query-length. For very

short queries with a length of < 5, the SSPE method yields only a mean average

precision of 12.8%. The INED method acts better in retrieving the short queries.

For queries with a length of < 5, the INED method reaches a mean average precision

value of 58%. The SSPE achieves comparable retrieval performance to the INED

method in retrieving long queries (length ≥ 10).

len < 5 len = 7 len = 8 len ≥ 10

mAP maxRE mAP maxRE mAP maxRE mAP maxRE

baseline 74.80 91.20 91.70 96.90 88.30 96.40 94.60 98.70

SSPE 12.80 99.40 58.30 99.90 39.30 100.00 84.70 100.00

INED 58.00 99.20 76.70 99.90 74.90 100.00 87.60 100.00

Table 5.20: Performance of retrieving in-vocabulary queries of different lengths using phone-
based SDR.

In the case of out-of-vocabulary query retrieval, the experimental results are pre-

sented in Figure 5.18 and Table 5.21. As we can see, the mean average retrieval

precision of both monophone-based approaches increases with growing query length.

The SSPE method yields poor precision when retrieving short queries.

We compare the monophone-based spoken document retrieval methods and the
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(a) len < 5 (b) len = 7

(c) len = 8 (d) len ≥ 10

(e) mAP

(f) max. recall

Figure 5.17: Performance (precision/recall plot) of retrieving in-vocabulary queries of differ-
ent lengths using mono-phone based SDR method.
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(a) len < 5 (b) len = 7

(c) len = 8 (d) len ≥ 10

(e) mAP

(f) max. recall

Figure 5.18: Performance (precision/recall plot) of retrieving OOV queries with different
length using mono-phone based method.
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len < 5 len = 7 len = 8 len ≥ 10

mAP maxRE mAP maxRE mAP maxRE mAP maxRE

SSPE 3.90 97.40 3.40 99.40 7.20 88.90 11.60 90.00

INED 11.70 97.40 12.20 99.40 32.30 88.90 28.90 90.00

Table 5.21: Performance of retrieving OOV queries of different lengths using monophone-
based SDR.

(a) In-vocabulary query retrieval task (b) OOV query retrieval task

(c) INV query set

Figure 5.19: Comparison of different subword-based SDR approaches.

phone-3gram based proximity method (called ph3gram prox in the following part of

this section). The complete query set is selected. This set of queries includes 13% out-

of-vocabulary words (similar to the real application scenario). Comparing the results

shown in Figure 5.19 and Table 5.22, we can see that:
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• The INED and the SSPE methods further improve the maximal recall rate.

Compared with the ph3gram prox method, the INED method improves the

maximal recall by about 3.36%.

• The INED method yields a mean average precision slightly worse than the

ph3gram prox method, while the mean average precision of the SSPE approach

drops dramatically.

• The INED methods show their advantage in dealing with out-of-vocabulary

queries.

• From the data in Figure 5.20, it is apparent that subword-based spoken docu-

ment retrieval methods can deal with out-of-vocabulary queries. The INED and

SSPE methods outperform the ph3gram prox method. The best performance

of retrieving very short query (length < 5) is achieved using the INED method.

baseline ph3gram prox INED SSPE

recall INV TOTAL INV OOV TOTAL INV OOV TOTAL INV OOV TOTAL

0 86.00 74.78 84.50 9.50 77.38 79.00 53.33 75.65 16.50 23.33 17.30

10 89.12 77.60 81.30 15.30 75.06 73.83 52.22 70.43 35.25 21.25 31.90

20 89.93 78.08 82.22 13.00 75.70 73.42 47.62 68.94 41.60 21.87 37.50

30 90.12 78.18 81.75 8.40 75.04 73.85 40.77 68.09 44.60 15.14 40.60

40 89.59 77.70 81.05 2.40 74.17 73.51 30.87 66.87 45.80 3.40 41.06

50 89.05 77.08 80.40 1.60 73.02 72.76 12.50 65.44 44.90 1.90 39.10

60 88.48 76.66 78.09 1.00 69.60 69.58 5.17 61.79 40.60 1.00 33.80

70 88.10 75.89 71.49 60.16 63.16 1.59 53.71 33.68 0.93 26.78

80 87.30 56.98 42.21 49.21 0.63 38.99 24.73 0.53 18.05

90 86.98 27.91 9.74 25.99 0.24 9.48 14.12 0.23 6.19

mAP 84.17 61.67 69.94 4.54 61.08 63.20 22.92 56.20 33.67 8.53 29.01

max.RE 89.77 78.06 95.99 68.85 93.40 99.35 91.72 98.35 99.14 91.05 94.80

Table 5.22: Comparison of the phone-based spoken document retrieval methods and the
word-based baseline system

Conclusions

The experimental results in this study confirm that the monophone-based SSPE and

INED methods improve the retrieval recall significantly, compared with the baseline

system. The INED method achieves a better mean average precision for the short

(with 4 phones) and long query (with ≥ 10 phones) retrieval tasks. The SSPE method
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(a) len < 5 (b) len = 7

(c) len = 8 (d) len ≥ 10

Figure 5.20: Comparison of ability of phone-based SDR methods to deal with OOV-queries.

is very sensitive to query length. The INED approach provides more reliable perfor-

mance for the in-vocabulary queries.In comparison with the ph3gram prox method,

the retrieval recall rate is further improved using the monophone-based methods. The

monophone-based INED method can yield a mean average precision that is compa-

rable to the ph3gram prox method.

5.5 Summary

This chapter focuses on an exploration of the subword-based spoken document re-

trieval methods. First, we provide an overview about different sub-word units such

as morphemes, syllables (VCV feature), phone sequences and monophones. Then we

carry out a feasibility study into applying different sub-word units for classical text

information retrieval task. This study has shown that smaller index units like mono-

phone provides better information coverage. After this study, the phone-based spoken

document retrieval methods will be thoroughly investigated.
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The study of the phone-Ngram based SDR method has shown that the phone-

3gram based spoken document retrieval provides reliable retrieval performance. The

recall has been significantly improved. A clear benefit of integrating phone confusion

information into term weighting (the confusion method) cannot be identified in this

analysis. The best mean average precision is yielded by the proximity method. The

experimental results show that phone-3gram based spoken document retrieval meth-

ods are not suitable for the out-of-vocabulary query-tasks. Adding multiple recognition

hypotheses into the phone-3gram representation of a spoken document in the form of

a position specific posterior lattice (PSPL) does not benefit the retrieval performance.

The query-length makes an large impact on the retrieval performance. The mean aver-

age precision increases with a growing query-length. The best recall is provided by the

confusion method, which integrates phone confusion information into term-weighting.

Additional statistical significance tests are conducted to ensure the reliability of the

conclusions made about the effect of query-length. In this work, normally distributed

t-test statistic is applied to check the statistical significance of the statements. Some

other significance tests can also be applied to ensure the reliability of a statement, for

example, the NIST significance tests, that are not based on the normally distributed

data. The NIST significance tests [2] take the value range and the way of the origin of

the results into account. However, it is out of the scope of this dissertation.

The investigation of the monophone-based spoken document retrieval methods has

identified that compared with the baseline system, the retrieval recall rate is improved

significantly with monophone-based methods. The INED method achieves a better

mean average precision than the SSPE method. The SSPE method is sensitive to

query-length.

In comparison with the phone-3gram based spoken document retrieval method, the

retrieval recall rate can be further improved using the monophone-based methods. The

monophone-based INED method can yield a mean average precision comparable to

those achieved by the ph3gram prox method.
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Chapter 6

A new Robust Open-Vocabulary

Hybrid Spoken Document Retrieval

Method

According to the type of recognizer used to transcribe the spoken document, the current

spoken document retrieval methods can be grouped into four main categories: word-

based approaches, subword-based approaches, phone-based approaches and combined

approaches. Word-based approaches [123] rely on a large vocabulary automatic speech

recognition (ASR) system that transcribes speech into a word sequence. The text

string matching algorithms can then be directly used to find the required information.

It has been verified that the word-based spoken document retrieval system can achieve

comparable performance to the text information retrieval, if the word error rate of

the applied recognizer is not too high. However, the queries are restricted by the size

of the recognizable vocabulary. Logan [67] reported that about 13% of user queries

contain out-of-vocabulary (OOV) words. Moreover, out-of-vocabulary words pose a

serious problem in a word-based spoken document retrieval system, particularly to the

domains where new words appear frequently over a short period of time.

As we mentioned before, most of the current spoken document retrieval approaches

are based on the word-1best representation of a spoken document. This word-1best rep-

resentation is provided by an automatic word recognizer. The mis-recognition problem

may lead to the loss of important information. In order to keep more useful informa-

tion contained by a spoken document, multiple recognition-hypotheses are added to

the transcription of a spoken document. We have thoroughly investigated this kind of
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word-based spoken document retrieval methods in the Chapter 4. The result of this

study indicates that performing retrieval on the word confusion network transcription

of a spoken document achieves maximum information coverage. Generally, the word-

based spoken document retrieval methods cannot deal with out-of-vocabulary words.

The representation expansion method enables the word-based spoken document re-

trieval methods to work with out-of-vocabulary words. However, there is no obvious

improvement in retrieval performance (4% in precision and 1.4% in recall).

Chapter 5 focused on the investigation of another solution on how to deal with out-

of-vocabulary words; namely, retrieving spoken document based on its subword repre-

sentation. In this study, various subword-based spoken document retrieval methods are

researched. The results of this study show that indexing spoken documents with the

phones (monophone or phone-3gram) can achieve the maximum information coverage.

The phone-based methods have significantly improved the retrieval recall. However,

the mean average precision will drop. Integrating the proximity information into the

document ranking score improves the mean average precision. The query length has a

great impact on the retrieval performance of the phone-based spoken document retrieval

methods. The experimental results indicate that monophone-based spoken document

retrieval methods achieve a better performance on the out-of-vocabulary query retrieval

task. The monophone-based SSPE method, which weights the document slots with

the phone confusion information, can deal with out-of-vocabulary queries but with re-

strictive performance. The monophone-based INED method, which weights document

slots with edit distance, provides better performance when a short query (< 5 phones)

or a very long query (> 11 phones) is retrieved.

The results of the previous investigation show that the word-based spoken document

retrieval methods provides the best performance for the in-vocabulary query retrieval

task, while phone-based spoken document retrieval methods show their advantages

in the out-of-vocabulary query retrieval task. These findings suggest that the fusion

of different indexing units can take advantage of both phone-based and word-based

spoken document retrieval methods. Several attempts have been made to combine

different indexing sources for robust spoken document retrieval ([51], [83]). James [51]

combined word and phone recognition in a complete recognition system, in which the

phone recognizer is only used to spot out-of-vocabulary words. This combination im-

proves the retrieval effectiveness of a spoken document retrieval system. However, a

large amount of annotated training data and more effort is required to build two recog-

nizers. Similar approaches proposed by Amir et. al. [4] using metaphone (broad phone
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class) instead monophone to improve the monophone-based retrieval performance. In

his paper, phones are grouped into 7 broad metaphones based on their confusion in-

formation. The monophone representation of a spoken document was updated into

metaphone representation. Amir et. al. reported slight improvement in precision com-

pared to word-based approaches was achieved by the method combining word-based

and metaphone-based SDR methods. Ng’s investigation verified that different subword

unit representations can capture different types of information, and combining different

types of subword units indexing terms results in better performance.

In this chapter, we are going to introduce a novel efficient hybrid spoken document

retrieval method, which has been developed based on our research results in the pre-

vious chapters. This novel spoken document retrieval system enables open-vocabulary

query retrieval and is robust against the recognition errors in the transcription of a

spoken document. Section 6.1 focuses on the selection of the potential fusion- candi-

dates. We describe the novel spoken document retrieval method in Section 6.2. Finally,

we evaluate the performance of this novel spoken document retrieval method on our

spoken document test collection.

6.1 Information Fusion

6.1.1 Background

The concept of information fusion in the field of spoken document retrieval means

combining different information resources. The fusion of indexing units like phone and

word enables the spoken document retrieval system to take advantage of both phone-

and word-based spoken document retrieval methods. In Chapter 4 and Chapter 5, we

explored a number of word-based and phone-based spoken document retrieval systems.

In order to achieve an efficient fusion, it is essential first to find the potential candidates

for fusion. The potential candidates for fusion are selected by analyzing the retrieved

lists. Lee’s idea [64] is applied. Lee indicated that the overlaps between different result

sets provided by different retrieval methods are an important factor. He defined the
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overlap ratio of relevant (R)/non-relevant(N) document in the result sets A and B as:

R =
Rcommon × 2

RA +RB

(6.1)

N =
Ncommon × 2

NA +NB

(6.2)

Where Rcommon indicates the number of relevant documents that occur in both result

sets. Ncommon means the number of non-relevant documents that occur in both result

sets. The results of Lee’s study has confirmed that a well joined result set must have

a high R and a low N . Vogtś experiments [114] on the TREC-5 data verified that an

effective fusion can only be reached when:

• At least one result has high precision/recall.

• High overlap of relevant documents and low overlap of non-relevant documents.

• Relevance score is similarly distributed.

• Each system ranks the documents relevant to the given query, differently.

A number of methods have been published for the information fusion. Thompson

believes that a retrieval system should be considered more preferably than others, when

its prior performance is better than the others. He assigned each ranked list a variable

weight based on the prior performance of the system. A similar idea was presented

in Bartell’s paper [7]. He determined the optimal scalars for a linear combination of

results from the training data using numerical optimization techniques.

Fox [34] fused result sets by combining the evidence from the multiple retrieval runs.

Document-query similarities in different sets are treated as the evidence from different

retrieval runs. Five combining strategies were investigated in his work, CombMAX,

CombMin, CombSUM , CombANZ and CombMNZ. CombMAX sets the com-

bined similarity to the maximum of the individual similarities. On the other hand,

the combined similarity of CombMin is the minimum of individual similarities. The

CombSUM method sums up individual similarities to form a new score. CombANZ

normalizes combined similarity provided by CombSUM to the number of non-zero

similarities, while CombMNZ multiplies the CombSUM score with the number of

non-zero similarities.
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6.1.2 Selection of Potential Candidates for Fusion

The results from our previous experiments in Chapter 4 have showed that indexing

spoken document with a word confusion network and weighting document term with

term-frequency (tfidf) is the best word-based spoken document retrieval method. This

method achieves a 95.23% recall, while maintaining a reliable mean average precision

(64.92%). This word-based spoken document retrieval method is denoted as WCN in

the following sections.

The studies in Chapter 5 have demonstrated the ability of phone-based spoken

document retrieval methods to deal with out-of-vocabulary words. The results of these

studies have also verified their ability to compensate the recognition errors in the phone

transcription of a spoken document. We compare the phone-based spoken document

methods using an in-vocabulary and out-of-vocabulary query set. Figure 6.1 presents

the results of this study. The results of the in-vocabulary evaluation task are presented

in Figure 6.1(a). We can see that theWCN method achieves a higher retrieval precision

at a high recall level. The ph3gram prox and ph INED methods improve the retrieval

precision at a lower recall level. The ph INED and ph SSPE methods show their

advantages in dealing with out-of-vocabulary query words.

The phone-based and word-based spoken document retrieval methods estimate the

document ranking score in different way. Therefore, according to Vogt’s 4th condition

for a perfect fusion, by an effective fusion of the phone-based and word-based methods,

the performance of a spoken document retrieval should be improved. We measure the

overlap ratio of the non-relevant documents in the result sets provided using different

phone-based and word-based spoken document retrieval methods, and look for the best

fusion candidates. The results of this study are presented in Table 6.1.

wcn+tfidf ph3gram prox ph INED ph SSPE

wcn+tfidf 1.0000 0.8040 0.0818 0.0577

ph3gram prox 0.8040 1.0000 0.1043 0.0760

ph INED 0.0818 0.1043 1.0000 0.6940

ph SSPE 0.0577 0.0760 0.6940 1.0000

Table 6.1: Overlap ratio of non-relevant documents retrieved by different spoken document
retrieval system (in-vocabulary query set).

From the data in Table 6.1, supported by the Vogt’s 2nd condition for an effective

fusion, the word-based WCN method and the phone-based ph SSPE (denoted as

SSPE in the following part of this section) method are identified as the best potential
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(a) Performance with in-vocabulary queries

(b) Performance with OOV queries

Figure 6.1: Precision/recall plot of potential candidates for fusion.

fusion pair, as the overlap ratio of non-relevant documents in the result sets has the

minimal value. A similar overlap ratio of non-relevant documents in the result sets

can also be observed by the fusion of WCN and ph INED (denoted as INED in the

following part of this section) method.

In addition, the word-based WCN method achieves a high performance in preci-

sion/recall by the in-vocabulary query retrieval task, which satisfies the first require-

ment of the Vogt’s theory for a potential ’effective’ fusion.
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6.2 A Hybrid Keyword Spotting Method for Spo-

ken Document Retrieval

In the last section, we identified two effective fusion pairs. Base on this issue, we propose

a novel hybrid spoken document retrieval methods that combines the word-basedWCN

method and the monophone-based methods (INED, SSPE) in a sufficient way for

more robust spoken document retrieval. The fusion of word-based WCN and phone-

based SSPE method is referred to asWCN+SSPE in the following sections. WCN+

INED indicates the fusion of word-basedWCN and phone-based INED method. The

novel hybrid spoken document retrieval is presented in Figure 6.2.

Figure 6.2: Structure of Hybrid SDR system

Figure 6.2 displays this novel hybrid spoken document retrieval system, which

consists of three main components: multi-level indexing, query extension and hybrid

matching. In the multi-level indexing stage, a multi-level representation is automati-

cally produced for every spoken document in a collection. In the query extension stage,

a monophone sequence for queries is prepared. The hybrid matching module performs

query-detection in the multi-level representation of a spoken document. We describe

this new hybrid spoken document retrieval method in more detail in the following
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sections.

6.2.1 Multi-level Indexing of a Spoken Document

Combining multi-level information (phone one-best, and WCN) should improve the

performance of retrieving both in-vocabulary and out-of-vocabulary queries. The ad-

vantages of multi-level indexing of a spoken document have been verified in the recent

works [48]. This paper reported that the combination of word and phone confusion

networks is effective and yields high retrieval performance for both in-vocabulary and

out-of-vocabulary queries. However, a large amount of annotated training data is

required for building a reliable word and phone recognizer. In the last section, we

discussed that a more robust spoken document retrieval can be achieved through the

fusion of word-based WCN method and phone-based SDR methods(INED,SSPE).

Therefore, in the multi-level indexing stage, we will prepare two representations for a

spoken document in a collection; one in form of a word confusion network and another

one consisting of a monophone sequence.

Figure 6.3: Hybrid system - Multi-level indexing stage

In order to build an efficient open-vocabulary spoken document retrieval system, a

20k word recognizer was built to transcribe the spoken information. As shown in Figure
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6.3, with help of a pronunciation dictionary, the monophone representation of a spoken

document is directly extracted from the 1best output of the word recognizer. The

word confusion network representation of a spoken document is constructed by post-

processing the lattice output of the word recognizer [71]. The word confusion network

representation of a spoken document is constructed step by step. First, the posterior

probability is computed for all links in the word lattice; Then the edges with posterior

probability far below 1.0 are eliminated; The edges with the same word instance with

time-overlap are grouped into one cluster. The cluster posterior probability is assigned

to the sum of all clustered edges’ posteriors. Finally, the edges with similar phonetic

properties and different word instances, which compete around the same time interval

with similar phonetic properties will be grouped together.

6.2.2 Hybrid Matching

Different matching strategies are used for the detection of queries in the multi-level

transcription of a spoken document. As we discussed before, the monophone-based

methods (INED, SSPE) are applied for the term matching at the phone level. The

word-based WCN is applied for information retrieval at word level.

Modified Vector Space Model based Term Matching in a Word Confusion

Network

We modify the term-frequency based weighting scheme (tfidf). In the work of Mamou

([70]), the term frequency tf(t, d) is computed as follows:

tf(t, d) =

|occs(t,d)|∑
i=1

Brank(t|oi,d) × P (t|oi, d) (6.3)

where occs(t, d) = o1, o2, ....on denotes the sequence of all occurrences of t in d; rank(t|o,D)

denotes the rank of term t at offset o where all hypotheses at offset o are sorted in de-

creasing order according to their posterior probabilities; Brank(t|oi,d) associates weight

factor to each rank of the different hypotheses; Mamou ([70]) introduced tree config-

urations for the boosting vector B. The second configuration of the boosting vector

proposed by Mamou is applied in this work, namely that the rank of a term is ignored

by setting every element in B to 1. P (t|oi, d) is the posterior probability of a term t
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at offset o in the word confusion network of document D. idf is re-estimated as:

idf = log
O

Ot

(6.4)

where the number of occurrences of term t is represented by Ot:

Ot =
∑
d∈D

|occs(t,d)|∑
i=1

P (t|oi, d); (6.5)

O reflects the total number of occurrence in the corpus:

O =
∑
t∈D

Ot (6.6)

And the relevance score is computed with Equation 2.22.

Probabilistic Phone Matching

The probabilistic phone matching algorithm SSPE is applied for query detection at

the phone level. This matching method consists of slot detection and slot weighting. It

is assumed that the most errors in the monophone transcription of a spoken document

are substitution errors. Slots that have a sufficient conformity with the query phone

sequence are selected. The conformity is measured as the number of common phones

that is defined as the same phone occurring at the same position in the query phone

sequence and the document slots. A slot is verified when its number of common phones

is greater than the pre-defined threshold value. The slot probability is estimated using

the method introduced in section 5.4.

Finally, the results provided by the phone-based SDR methods (INED, SSPE)

and the WCN method are fused at the score level. The combined score will be used

to rank documents in the retrieved result. Three combination strategies are applied

for the estimation of the combined ranking of a retrieved spoken document. These are

the CombMax, CombSum and CombANZ method, described in Section 6.1.1.
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6.3 Experiments and Discussion

In this section, we evaluate the new hybrid spoken document retrieval method on our

spoken document test collection. The objectives of these experiments are to investigate:

• whether performance can be improved by combining the word confusion net-

work matching method and the monophone sequence based probabilistic string

matching techniques;

• which combining strategy from CombMax, CombSum and CombANZ performs

better.

We will compare the performance of our new hybrid spoken document retrieval

methods (WCN + INED and WCN + SSPE) to the performance of the WCN

and the phone-based spoken document retrieval methods (INED, SSPE). Three

combining strategies are also evaluated. We use the suffixes CombSum, CombMax

and CombANZ to represent the combining strategy used by the hybrid system. As the

relevance score of documents returned by the WCN and phone-based SDR methods

lies in different range, the relevance scores are normalized to their maximum value

before they are fused together. The experimental results are displayed in Figure 6.4,

Table 6.2 and Table 6.3.

In comparison with the WCN method in Figure 6.4(b) in the in-vocabulary query

retrieval evaluation task, the mean average retrieval precision is improved by combining

the retrieval score provided by the WCN method and by the SSPE and CombMax

methods. The recall rate is kept at the same level. Combining the WCN and SSPE

methods with CombANZ improves the retrieval recall rate. However, the mean average

retrieval precision drops.

The results of the in-vocabulary query retrieval task are presented in Table 6.2 and

Figure 6.4(b). We can see that phone-based methods (SSPE, INED) reach a higher

recall rate. The word-based WCN method achieves better precision at higher recall

levels. This result can be observed in the recall = 90% level in Table 6.2. The benefits

of the fusion of phone-based methods and word-basedWCN method are identified. The

best mean average precision value (65.01%) is reached by WCN + SSPE CombMax.

The WCN + INED CombANZ method reaches the highest recall rate (99.98%).
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WCN+SSPE WCN+INED

recall SSPE INED WCN CombMax CombSum CombANZ CombMax CombSum CombANZ

0 16.50 79.00 66.00 66.00 66.00 66.00 66.00 66.00 66.00

10 35.25 73.83 70.30 70.30 68.65 70.51 69.75 68.54 69.75

20 41.60 73.42 68.12 68.93 67.28 69.10 67.76 66.32 67.76

30 44.60 73.85 67.58 67.58 66.00 67.71 66.71 64.82 66.71

40 45.80 73.51 66.78 66.78 65.30 66.87 65.58 64.05 65.58

50 44.90 72.76 65.35 65.52 63.87 65.24 64.30 62.89 64.17

60 40.60 69.58 64.18 64.31 62.67 63.03 62.97 61.52 62.03

70 33.68 63.16 62.54 62.54 60.79 58.18 61.45 59.81 58.49

80 24.73 49.21 60.78 60.79 59.13 49.67 59.79 58.16 51.35

90 14.12 25.99 58.77 58.78 57.15 33.17 57.71 56.15 38.29

mAP 33.67 63.20 64.92 65.01 60.70 58.89 63.95 62.53 59.77

max. RE 99.14 99.35 95.23 95.23 92.31 98.47 97.55 95.68 99.98

Table 6.2: Performance evaluation (in-vocabulary query-task) of hybrid system with different
combination strategies.

WCN+SSPE WCN+INED

recall SSPE INED WCN CombMax CombSum CombANZ CombMax CombSum CombANZ

0 17.30 75.65 57.39 60.43 60.43 60.43 64.38 64.38 64.34

10 31.90 70.43 61.05 64.44 62.48 64.59 66.36 65.22 66.35

20 37.50 68.94 59.37 62.91 61.22 63.07 64.26 63.00 64.26

30 40.60 68.09 58.26 60.88 59.48 60.89 61.86 60.30 61.85

40 41.06 66.87 57.27 60.03 58.64 59.93 59.73 58.48 59.65

50 39.10 65.44 56.11 58.64 57.05 57.69 58.64 57.25 57.94

60 33.80 61.79 54.54 57.31 55.70 54.55 57.33 56.04 55.49

70 26.78 53.71 52.74 55.40 54.17 47.82 55.50 54.19 51.06

80 18.05 38.99 50.79 53.53 52.07 35.38 53.79 52.42 43.17

90 6.19 9.48 7.63 51.84 28.42

mAP 29.01 56.20 48.19 53.19 49.37 49.95 56.47 52.76 53.36

max. RE 94.80 98.35 82.80 86.85 84.32 97.34 91.08 89.37 98.97

Table 6.3: Performance evaluation (complete query set with 13% OOV words) of hybrid
system with different combination strategies.

From Table 6.3, we can see that the results gathered by the complete application

evaluation experiments show that the new hybrid spoken document retrieval method

improves the retrieval precision at higher recall levels. Particularly at 80% recall, the

WCN + INED CombMax method reaches a precision value of 53.79%, which corre-

sponds to an improvement in retrieval precision value of about 14.8%, compared with

the phone-based INED method. In comparison with the word-based WCN method,

the retrieval precision at a recall level of 80% is improved by about 3%. The best
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mean average precision (56.47%) is yielded by the WCN+INED CombMax method,

whereas the highest retrieval recall 98.97% is achieved by theWCN+INEDCombANZ

method.

The following additional observations can be made from the experimental results

summarized in Table 6.2 and 6.3 that include evaluation result with 200 in-vocabulary

and total 230 queries:

• Even with a number of recognition errors in word transcription (WER = 25%),

the word confusion network based spoken document retrieval method achieves a

mean average retrieval precision of about 64.92%.

• None of the out-of-vocabulary queries could be detected with the word confusion

network based method. Consequently, in the evaluation experiments with a total

query set (including 13% OOV queries), the word confusion network based spoken

document retrieval system yields only a mean average precision of about 48.2%.

• The monophone sequence transcription includes a large amount of recognition

errors. Therefore, the monophone sequence based algorithm yield degrading

effectiveness compared to the word-based WCN method (in-vocabulary query

task).

• In comparison with the word-based WCN method, the phone-based method

INED yields a better retrieval precision of 56.2% for the complete query set,

including 13% OOV.

• The phone-based SSPE yields only a 33.67% mean average retrieval precision

for the in-vocabulary queries.

• The phone-based approaches could yield a better performance for in-vocabulary

queries than the out-of-vocabulary queries. It is caused by the fact that the mono-

phone transcription was directly extracted from word-1best recognition output.

The chance of an exact match between a document slot and an in-vocabulary

query phone sequence is much higher than for an out-of-vocabulary query.

• Combining the word-based WCN method and phone-based INED with the

CombMax strategy (indicated by the symbol WCN+INED CombMax) yields

the best mean average precision (56.47%) for the complete query set. The mean

average precision is improved by about 8.27%, compared with the word-based

WCN method. A recall rate of about 91.08% is reached.

149



6.4. Summary

6.4 Summary

In this chapter, we present a novel hybrid spoken document retrieval system. This

hybrid spoken document retrieval system worked for the multi-level representation of

a spoken document. The results of the investigation of the current information fusion

techniques used in the text retrieval domain suggest that the multi-level representation

of a spoken document consists of word confusion networks and monophone sequences,

and is produced in a very efficient way. A 20k word recognizer is built for transcribing

the spoken document. This system takes advantage of the word-based and phone-

based spoken document retrieval methods and can perform an open-vocabulary query

retrieval task.

We then investigated different combination strategies for the effective fusion of

result sets. The fusion of result sets provided by the word confusion network based

matching method and the phone-based INED method with CombMax method yields

the best mean average precision (56.47%) for ‘real application’ (total query set). The

mean average retrieval precision is improved by about 8.27%, compared with the result

achieved by word confusion network based spoken document retrieval method. In

comparison with the monophone sequence based probabilistic phone string matching

INED spoken document retrieval method, the mean average precision value is also

slightly improved. Using the novel hybrid SDR system, the maximum retrieval recall

reaches 91.08%.
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(a) Total query set

(b) Performance (PR-plot) of INED, WCN and
WCN+INED method on INV query task.

(c) Performance (PR-Plot) of INED, WCN and
WCN+INED method on complete query set.

Figure 6.4: Performance of different combination algorithms
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Chapter 7

A Video Indexing and Retrieving

System

In this chapter, we propose a system for video indexing and retrieval. The spoken

document retrieval methods investigated in the previous chapters are applied to retrieve

the spoken content included in the audio stream of a video record. This system is

developed in C++ and QT. The system structure is presented in Figure 7.1. We can

seen in this diagram that this video retrieval prototype consists of two independent

components: the video indexing section and the video retrieval section.

Figure 7.1: Video retrieving based on speech processing.

The video indexing and archiving part analyses new-coming videos and prepares
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them for information retrieval. This part of the system consists of both a splitter and

the spoken content indexing tools. The audio stream is first separated from the video

via the splitter and is then saved in waveform (mono, 16kHz). The spoken document

indexing methods is applied in the Indexing stage, to produce the transcription of

spoken information included in the audio stream and to prepare it for further retrieval.

The video retrieving part consists of the query formulation and the spoken content

retrieval part. In our prototype, the query formulation element accepts natural

language queries in text form. The given text query will be transcribed into a sequence

of selected indexing units (phone, phone-3gram, word etc). The retrieval element

will then guide the user to the important information required. The prototype user

interface for our video indexing and retrieving system is shown in Figure 7.2.

Figure 7.2: A prototype user interfaces for spoken content indexing and retrieving.

There are two sections in this chapter. In Section 7.1, we present the video indexing

interface. The user interface or video retrieval is presented in Section 7.2.
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7.1 Spoken Content Indexing Interface

The aim of the video archiving part is to process the spoken content of a video and

prepare it for retrieval. Functions provided by the interface shown in Figure 7.3 include:

preparing the multi-level representation for the spoken content of a video, displaying

the result of indexing, and the playback function.

Figure 7.3: The user interface for spoken content indexing.

Sphinx open source speech software [63], developed by the Carnegie Mellong Uni-

versity, is used to build the 20k word recognizer for the indexing task. Once a video

is selected, the audio stream of this video will be separated from this video and trans-

formed into a mono 16kHz WAV file. Figure 7.4(a) shows that there are three types

of index units available to date. The default option is set to preparing the word-1best

representation for the spoken content of a selected video.

After clicking the indexing button, the spoken content of a video will then be

transcribed into a text representation; a sequence of selected index units. As the

indexing result, the representation will be presented in spoken indexing interface. We

can see in the Figure 7.4(b) that there are three display functions in the show options

block. For example, when the option show word onebest is selected, the word-1best

representation will be displayed in the spoken indexing interface.

The spoken indexing interface will then present the selected representation to users.
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7.2. Spoken Content Retrieving Interface

(a) Selection of indexing units (b) Viewing transcription in dif-
ferent levels.

Figure 7.4: SCI interface option block.

As shown in Figure 7.5, a list of entries including attributes such as the start, and end

time marks and label are displayed in the Output Window.

Figure 7.5: View spoken document transcription.

As shown in Figure 7.6, the temporal waveform views of audio stream will also be

displayed in the interface. The axis denotes the time within a record. The entire record

is presented in the waveform, labeled with the selected index units, in this interface.

7.2 Spoken Content Retrieving Interface

In this section, we describe the spoken content retrieval part of our video index and

retrieval system. The task of the spoken content retrieval element is to guide the user
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7.2. Spoken Content Retrieving Interface

Figure 7.6: View of the labeled temporal audio stream.

to the information relevant to his specified request, as quickly as possible. In order to

attain this goal, we need the efficiently implemented retrieval methods and an appro-

priate user interface. The user interface for the retrieval process should provide the

following three main functions: query formulation; display of a ranked list of docu-

ments; document selection, display and playback functions. The Interface for Spoken

content retrieval is shown in Figure 7.7. It consists of a block of query formulation, a

retrieval Module block, a fusion strategy block, a video&audio viewing and a ranked

document list view.

Figure 7.7: The user Interface for Spoken Content Retrieving.

The user forms his information request in the query formulation block. By clicking

the ’Return’ button, the query entry will be updated. At the same time, the user’s

text query will be translated into a sequence of selected retrieval basis (indexing units),

with the help of a pronunciation dictionary. Query words that are not included in the

pronunciation dictionary are not supported here.

The user can configure the retrieval system in the block by themselves by selecting
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7.2. Spoken Content Retrieving Interface

the option in the block for the retrieval module selection and the block for the selection

of different fusion strategies, which are shown in Figure 7.8.

Figure 7.8: Basic Architecture of our Spoken document retrieval part.

(a) Retrieval Modules selection block (b) Combination strategies selection block

Figure 7.9: Function block for system core configuration.

In the retrieval model selection block in Figure 7.9(a), there are four different spoken

document retrieval methods to be selected for the video spoken content retrieval task.

These are the word-1best based method, which was introduced in Section 3.5, the

word confusion network based method described in Section 4.3, the phone-3gram based

method presented in Section 5.3.2 and the monophone-based probabilistic phone string

matching discussed in Section 5.4.2. When more than one retrieval method is selected,

the fusion strategy block is enabled. The user can then select one of the combination

methods (CombMax, CombSum, CombANZ and CombRank) for the fusion of the

result sets returned by different retrieval models.

The user starts the retrieval process by clicking the ’go’ button. A ranked list
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7.2. Spoken Content Retrieving Interface

Figure 7.10: Results output window.

of documents is then returned. This retrieved list will be presented in the output

Window, as shown in Figure 7.10. Each list entry consists of the document title and

the document relevance score, corresponding to the given query.

Figure 7.11: Audio view

To display the document selected from the results list the user will click the ’Load’

button. We can see in Figure 7.11 that the video stream for the selected document will

then load in the video display window, while the temporal view of the audio stream

will be shown in the audio display window. The document slot that is the best match

for the given query is highlighted. The user presses the ’play’ Button to play the slot.
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Chapter 8

Summary and Outlook

8.1 Summary

The performance of the current spoken document retrieval methods relies heavily on

the quality of the transcription of a spoken document that is provided by an automatic

speech recognition system. The performance of a spoken document retrieval system will

drop with an increasing number of recognition errors in the transcription of a spoken

document. Generally, the recognition errors in a spoken document transcription are

often caused by mismatching between the training and test environment, different

speakers, the occurrences of out-of-vocabulary words and so on. The main objective of

this work is to explore effective and efficient spoken document retrieval methods that

are robust against recognition errors caused by the out-of-vocabulary words and the

misrecognition.

A 20k word recognizer has been built to transcribe a spoken document into the

word sequence. The acoustic model of this recognizer was trained with the clean-speech

part of the WSJ corpus, which is not used for the evaluation task. Our experiments

have shown that most deletion and substitution errors are caused by out-of-vocabulary

words. A lot of insertion errors occur in the spoken document transcription when there

is a talking radio in the background.

In our work, different spoken document retrieval methods are explored. We have

built a large test spoken document collection for the evaluation of these robust spo-

ken document retrieval methods. This test spoken document collection includes 8158
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8.1. Summary

spoken documents. A single-word query set is selected to simulate the real spoken doc-

ument retrieval application scenario. This query set includes 200 in-vocabulary queries

and 30 out-of-vocabulary queries. The portion of out-of-vocabulary queries is about

13%. We compare performance of the robust spoken document information methods

with a baseline system. This baseline system work on the word-1best transcription of

a spoken document and classical vector space retrieval model is applied to the retrieval

of information contained in the spoken document.

We first investigated the word-based spoken document retrieval methods that im-

prove performance by adding multiple recognition hypotheses to the word represen-

tation of a spoken document. Different spoken document retrieval methods based on

N -best, the word confusion network or the lattice representation of a spoken document

were then also evaluated. The results of this study verified that:

• In terms of the N -best representation based spoken document retrieval methods,

we found out that the maximum recall rate increased with the growing amount

of considered recognition hypothesis. The mean average precision (mAP) value

reached the best 85.41% when 9-best recognition hypotheses are added into the

spoken document representation. The document relevance score is estimated

based on the document term weight. Weighting document term with probabil-

ities could slightly improve the mean average precision, but the maximal recall

drops by about 1.7%. In comparison with the baseline system, a better retrieval

precision at the lower recall level has been achieved. With a growing number of

considered recognition hypotheses, a lot of misrecognized words are also added

into the document representation. This will lead to a drop in retrieval precision

at a higher recall level.

• The word lattice representation of a spoken document includes far more recogni-

tion hypotheses than the N -best representation. It contains the most probable

paths through the search space given models. A DNLLR value was estimated

for each link in the lattice. This value can be used to reduce the lattice search

space. The DNLLR threshold is fixed. The lattice links with a DNLLR that is

out of predefined value range will be eliminated. In our case, the best threshold

for the DNLLR value is [−118,−90].

• The word confusion network is the most compact lattice. In comparison with the

lattice, the search space is reduced by about 76.5%. The maximum achievable

retrieval recall remains 95.23%. The retrieval precision at lower recall level is
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improved when using the word posterior directly as the weight of a document

term. The number of queries with its relevant document at first rank of the

retrieved results list increase when we combine the term frequency (tfidf) and

the posterior for document term weighting.

• Compared with the baseline system, the maximal improvement in the mean aver-

age retrieval precision is achieved by the 9-best based SDR (2.3%), and the most

improvement in maximal retrieval recall rate is yielded by the word confusion

network based approaches (6%).

• The query or document representation expansion enables the word-based spo-

ken document retrieval methods to deal with out-of-vocabulary words. Our ex-

periment results verified the improvement in yield when we replace the out-of-

vocabulary queries with the acoustically similar words included in the recognizer

vocabulary.

We also explored the robust spoken document retrieval methods that deal with out-

of-vocabulary words by indexing the spoken document with subword units. We first

researched at some of the sub word units (word, vowel-consonant-vowel features, phone-

3gram and monophone). We then explored the feasibility of using subword units for

the information retrieval task. The results of a text information retrieval experiments

confirmed the feasibility of using subword units for the information retrieval task.

This study identified that smaller subword units provide better information coverage.

Therefore, the following studies in this chapter were focused on exploring phone-based

spoken document retrieval methods. Our major findings are listed below:

• The phone-Ngram based spoken document retrieval method that uses term-

frequency weighting has significantly improved the maximum retrieval recall

compared with the baseline system. Weighting the document terms with the

confusion information has enabled an approximate matching between the query

representation and the document slots. The experimental result has verified that

this confusion method improves the retrieval recall. We proposed a new weight-

ing method (proximity method) that integrated the position information into

the document relevance score. This method showed its advantages in both mean

average retrieval precision (69.94%) and retrieval recall (95.99%). Our exper-

imental results have verified that the proximity method achieves a very good

performance for the long out-of-vocabulary query retrieval task.
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• The monophone sequence based probabilistic phone string matching (SSPE)

method show their advantages in dealing with out-of-vocabulary queries. The

monophone-based INED method uses the edit distance between the query phone

sequence and a document slot to form the document relevance score. The monophone-

based SSPE method integrates the confusion information into the document

relevance score. In comparison with the phone-3gram based proximity method,

the INED and SSPE methods improve the maximum retrieval recall by about

3.36%. The INED method has achieved a retrieval average precision that is com-

parable to that of the phone-3gram based proximity method. The mean average

retrieval precision of the SSPE method drops dramatically with a decreasing

query length.

• The results of these studies verify that the phone-3gram based proximity method

and monophone-based methods (INED method) provided reliable mean average

retrieval precision for the long out-of-vocabulary query retrieval task.

The word-based spoken document retrieval methods provide a high retrieval preci-

sion for in-vocabulary queries. The phone-based spoken document retrieval methods

show their advantages in dealing with out-of-vocabulary queries. We proposed a novel

hybrid spoken document retrieval system [55]. This novel hybrid spoken document

retrieval system is robust against recognition errors in the representation of a spoken

document and can provide a reliable performance for the out-of-vocabulary retrieval

task. In this hybrid spoken document retrieval system, the word confusion network

based approach and monophone sequence based method are combined in a sufficient

way. Only one 20k word recognizer is built for the production of the multi-level rep-

resentation of a spoken document. The word confusion network representation of a

spoken document is constructed by post-processing the recognition lattice output. The

monophone representation of a spoken document is extracted from the word-1best out-

put. A pronunciation dictionary is required. The experimental results have verified

that this novel hybrid method (WCN+INED CombMax) provides the best precision

(mAP = 56.47%) for the total query retrieval set. In comparison with the word confu-

sion network based approach, the mean average precision is improved by about 8.27%.

The maximum achievable retrieval recall that can be reached for this system is 91.08%.

The results of these studies confirm that the hybrid matching system developed in this

thesis provides a reliable retrieval precision rate while maintaining a high recall rate.
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8.2 Outlook

There are a number of possible future studies in the field of spoken document retrieval.

If the spoken document to be retrieved includes the video stream, then the precision

and recall rate of the spoken information retrieval could be further improved if we

take into account the video information. Figure 8.1 presents a potential application

scenario. The useful video information includes the text shown in the video which could

be collected using video OCR tools. We can integrate the output sequence of video

OCR tools into the representation of a spoken document and prepare it for further

information retrieval. In this case, the image information provided by video OCR can

(a) (b) (c)

Figure 8.1: Potential multi-modal IR scenario.

be combined with the Spoken information for a more accurate retrieval.

Another extension area could be to integrate semantic information into the retrieval

process when we work with natural language queries that may contain more than 5

words. A latent Dirichlet allocation (LDA) model [10] could be built to capture the

semantic information of the word transcription. Initial research has been conducted in

this field. The LDA model is employed to estimate the topic distribution in queries and

in word transcription of spoken documents. The matching is performed at topic level.

The acoustic matching between the query phone sequence and the spoken document

slots is realized using the phone-based matching algorithm. The experimental results

presented in this paper [54] have verified that the results of the acoustic and topic level

matching methods are complementary to one another.

In addition, research about extending applications of spoken content retrieval tech-

nologies may also be very interesting, such as the PRO-LIFE-LOG system proposed by

Ziaei et. al. [124] which was designed for activities classification in daily audio streams,

the lecture retrieval system introduced by Lee [62] and the news summarization system

presented by Cai [12].
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Appendix A

200 INV Query Set

Word Occ Word Occ Word Occ Word Occ Word Occ

SAID 849 POINT 477 PERCENT 455 DOLLARS 396 COMPANY 383

NINETEEN 329 MILLION 312 YEARS 312 SEVEN 267 EIGHTY 227

MARKET 227 PRESIDENT 219 STOCK 201 THOUSAND 198 PEOPLE 196

COMPANIES 190 GOVERNMENT 183 FIFTY 176 OFFICIALS 163 THIRTY 162

BILLION 158 SALES 155 NINETY 152 AMERICAN 149 DOLLAR 149

UNITED 143 INDUSTRY 141 CLINTON 139 PRICES 139 STATES 136

BASED 132 BUSINESS 132 SHARE 126 STATE 122 MAJOR 121

SEVENTY 121 YESTERDAY 119 INCREASE 115 MONEY 115 ANNOUNCED 111

SHARES 111 CALIFORNIA 107 EXPECTED 105 PRICE 103 QUARTER 102

ACCORDING 100 GENERAL 99 HEALTH 99 FEDERAL 97 TODAY 97

TRADING 97 LARGE 96 NUMBER 96 CORPORATION 95 MONTH 94

NATIONAL 89 WORKERS 89 ECONOMY 88 RECENT 84 CALLED 82

CENTS 82 DON’T 81 FINANCIAL 80 SERVICE 79 ANALYSTS 78

GROUP 78 RATES 78 ECONOMIC 77 PLANS 77 COUNTRY 76

MONTHS 75 PROGRAM 75 TRADE 75 JAPANESE 74 PUBLIC 74

COMPANY’S 71 INCOME 71 PRODUCTION 71 HIGHER 70 ADMINISTRATION 69

ISN’T 67 POLICY 67 INTERNATIONAL 66 REPORTED 65 AVERAGE 64

CHANGE 64 EMPLOYEES 64 HOUSE 64 LITTLE 64 CONGRESS 63

STUDY 63 CHAIRMAN 62 LOWER 62 PRODUCTS 62 SCHOOLS 62

SOUTH 62 GOING 61 MEDICAL 61 REPORT 61 THINK 61

WHITE 61 AIRLINES 60 COSTS 60 BEGAN 59 ENVIRONMENTAL 59

INDEX 59 INVESTORS 59 SMALL 59 CHIEF 58 DIDN’T 58

INCREASED 58 BANKS 57 DEVELOPMENT 56 EXECUTIVE 56 YOUNG 56

AGREEMENT 55 AMERICANS 55 AREAS 55 CHANGES 55 DIFFERENT 55

RECORD 55 BOARD 54 EXCHANGE 54 INVESTMENT 54 NATION’S 54

BETTER 53 CASES 53 FORCE 53 RECENTLY 53 STUDENTS 53

VALUE 53 CAPITAL 52 MILITARY 52 POSITION 52 WORLD 52

EXECUTIVES 51 FOREIGN 51 CHILDREN 50 INCORPORATED 50 WOMEN 50

COUNTRIES 49 FIRMS 49 FUNDS 49 GROWTH 49 ISSUES 49

OFFICIAL 49 PROBLEMS 49 TIMES 49 EARLIER 48 SCHOOL 48
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200 INV Query Set

THEY’RE 48 ADDED 47 CLEAR 47 LARGEST 47 LOOKING 47

RESSURE 47 PROFIT 47 PROPOSAL 47 SECOND 47 SPOKESMAN 47

TRAVEL 47 UNION 47 ACTUALLY 46 BONDS 46 CHINA 46

COMES 46 COURT 46 DEPARTMENT 46 EARLY 46 NETWORK 46

RIGHT 46 SECURITIES 46 FOURTEEN 45 MEETING 45 POINTS 45

STORES 45 TELEVISION 45 CAUSE 44 CERTAIN 44 CORPORATE 44

COURSE 44 GROUPS 44 PRIVATE 44 SHORT 44 ADVERTISING 43

ANGELES 43 CLASS 43 CONSUMER 43 DECEMBER 43 DEFENSE 43

EFFORT 43 FUTURE 43 MARKETS 43 POSSIBLE 43 SOCIAL 43

STOCKS 43 TOTAL 43 CURRENTLY 42 EMPLOYMENT 42 INCLUDING 42
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Appendix B

Evaluation Single-queries Retrieval

on Lattice Transcription

recall baseline no th pr0004 pr0006 pr0008 pr0010 pr0020 pr0030 pr0040

0 86.00 93.00 93.00 93.00 92.50 93.00 92.50 92.50 89.50

10 89.12 90.70 90.70 90.70 90.70 90.70 88.50 89.00 86.10

20 89.93 89.00 89.00 89.00 88.90 88.50 86.70 87.40 81.00

30 90.12 87.00 87.00 87.00 86.90 86.70 83.70 83.70 75.70

40 89.59 84.90 84.90 84.90 84.90 84.50 80.20 80.40 68.00

50 89.05 82.10 82.10 82.10 81.90 81.50 75.40 75.30 61.30

60 88.48 77.90 77.90 77.90 77.90 77.20 70.20 69.80 -

70 88.10 72.70 72.70 72.70 72.50 72.00 63.90 63.20 -

80 87.30 67.10 67.10 67.10 67.00 66.30 58.50 - -

90 86.98 60.80 60.80 60.80 60.80 60.30 - - -

mAP 84.17 79.60 79.60 79.60 79.50 76.20 66.20 63.20 42.40

Table B.1: Precision/recall and mAP value (in %) with different DNLLR-thresholdings
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Appendix C

Abbreviations

ASR Automatic Speech Recognition

DNLLR Durationally-normalized Log Likelihood Ratio

DP Dynamic Programming

HMM Hidden Markov Model

idf inverse document frequency

INED Edit Distance based phone string matching

IPA International Phonetic Alphabet

IR Information Retrieval

LPCC Linear Predictie Cepstral Coefficients

LVCSR Large Vocabulary Continuous Speech Recognition System

MDL Minimum Description Length

MFCC mel-Frequency Cepstral Coefficients

mAP Mean Average Precision Value

OOV Out-Of-Vocabulary

PLP Perceptual Linear Predictive

PSPL Position Secific Posterior Lattices

SCI Spoken Content Indexing
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SDR Spoken document retrieval

SSPE Confusion information based probabilistic phone string

matching

tf Term Frequency

TREC Text REtrieval Conference

VCV Vowel-Consonant-Vowel feature

VSM Vector Space Model

WCN Word Confusion Network

WER Word Error Rate



Bibliography

[1] Enginnering tables/student’s t-distribution.

[2] The nist scoring toolkit sctk.

[3] Wiktionary:frequency list/tv/2006/explanation.

[4] A. Efrat A. Amir and S. Srinivasan. Advances in phonetic word spotting. In tenth

international conference on Infromation and knowledge management, CIKM, 2001.

[5] A.Gandhe, F. Metze, A. Waibel, and I. Lane. Optimization of neural network language

models for keyword search. In ICASSP, 2014.

[6] J. Aoe. Computer algorithms - string pattern matching strategies. IEEE Computer

Society press, 1994.

[7] B.T. Bartell, G.W. Cottrell, and R.K Belew. Automatic combination of multiple ranked

retrieval systems. In Proceedings of the 17th Annual International ACM-SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 173–181 173–181,

1994.

[8] L.E. Baum. An inequality and associated maximization technique in statistical estima-

tion for probabilistic functions of markov processes. Inequalities, 3:1–8, 1972.

[9] A. Berger and J. Lafferty. Information retrieval as staistical translation. In Proceedings

of the 22nd ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 222–229, 1999.

[10] D.M. Blei and A. Y. Ng an dM. I. Jordan. Latent dirichlet allocation. Advances in

Neural Information Processing Systems (NIPS), 14:601–608, 2002.

[11] M. Brent. An efiicient, probabilistically sound algorithm for segmentation and word

discovery. Machine Learning, 34:71–105, 1999.

[12] X. Cai and W. Li. Ranking through clustering: An integrated approach to multi-

document summarization. IEEE Trans. Audio, Speech , Lang. Process., 21(7):1424–

1433, July 2013.

171



[13] U.V. Chaudhari and M. Picheny. Improvements in phone based audio search via con-

strained match with high order confusion estimates. In IEEE automatic speech recog-

nition and Understanding workshop, 2007.

[14] C. Chelba and A. Acero. Position specific posterior lattices for indexing speech. In

Proceedings of the 43rd Annual meeting of the ACL, pages 443–450, 2005.

[15] C. Chelba, J. Silva, and A. Acero. Soft indexing of speech content for search in spoken

documents. Computer Speech and Language, 21:458–478, 2007.

[16] G. Chen, C. Parada, and T.N. Sanath. Query-by-example keyword spotting using long

short-term memory networks. In ICASSP, 2015.

[17] I-F. Chen and C.H. Lee. A resource-dependent approach to word modeling for keyword

spotting. In INTERSPEECH, 2013.

[18] J. Choi, D. Hindle, J. Hirschberg, I. Magrinchagnolleau, C. Nakatani, O Pereira,

A. Singhal, and S. Whittaker. An overview of the at&t spoken document retrieval.

In DARPA Broadcast News Transcription and Understanding Workshop, 1998.

[19] F. Crestani. Comination of semantic and phonetic term similarity for spoke document

retreival and spoken query processing. In Proceeding of the 8th Conference on Informa-

tion Processing and Management of Uncertanty in knowledge-based Systems (IPMU),

pages 960–967, 2000.

[20] F. Crestani. Combination of similarity measures for effective spoken document retrieval.

Journal of Information Science, 29(2):87–96, 2003.

[21] M. Creutz. Unsupervised segmentation of words using prior distributions of morph

length and frequency. In In Proc. ACL03, pages 280–287, 2003.

[22] M. Creutz and K. Lagus. Unsupervised discovery of morphemes. In In Proc. Workshop

on Morphological and Phonological Learning of ACL02, pages 21–30, 2002.

[23] M. Creutz and K. Lagus. Unsupervised morpheme segmentation and morphology in-

duction from text corpora using morfessor 1.0. Technical Report Report A81, Helsinki

University of technology, 2005. Publications in Computer and Infomation Science.

[24] M. Crochemore and W. Rytter. Jewels of Stringology. ISBN 981-02-4782-6. World

Scientific Publishing Co. Pte. Ldt,, 2002.

[25] J. Cui, X. Cui, B. Ramabhadran, J. Kim, B. Kingsbury, J. Mamou, L. Mang,

M. Picheny, T. Sainath, and A. Sethy. Developing speech recognition systems for

corpus indexing under the iarpa babel program. In ICASSP, pages 6753–6757, 2013.



[26] S.J. Young D.A. James. A fast lattice-based approach to vocabulary independent

wordspotting. In Proceedings of IEEE ICASSP, Adelaide, Australia, pages 377–380,

1994.

[27] K.H. Davis, R.Biddulph, and S.Balashek. Automatic recognition of spoken digit. Jour-

nalof Acoustic. Soc. Am., 24:637–642, 1952.

[28] S.B. Davis and P. Mermelstein. Comparison of parametric representations for mono-

syllabic word recognition in continuously spoken sentences. In Readings in Speech

Recognition, pages 65–74. USA. Morgan Kaufmann Publishers, 1990.

[29] C.G. de Marcken. Unsupervised language acquisition. PhD thesis, MIT, 1996.

[30] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the em algorithm. Journal of the Royal Statistical Society, 39(B):1–38, 1977.

[31] A. Ferrieux and S. Peillon. Phoneme-level indexing for fast and vocabulary-independent

voice/voice retrieval. In ESCA Tutorial and Research Workshop (ETRW), ”Accessing

Information in Spoken Audio”, Cambridge, UK, 1999.

[32] W. M. Fisher, G. R. Doddington, and K.M. Gaudi-Marshall. The darpa speech recogni-

tion research database: Specifications and status. In Proceedings of DARPA Workshop

on Speech Recognition, pages 93–99, 1986.

[33] G. D. Forney. The viterbi algorithm. In Proc. of the IEEE, volume 61, pages 268–278,

1973.

[34] E. Fox and J. Shaw. Combination of multiple searches. In Proceedings of the 2nd Text

Retrieval Conferene ( TREC2), NIST Special Publication 500-215, 1994.

[35] C. Buckley G. Salton. Term-weighting approaches in automatic text retrieval. Infor-

mation Processing & Management, 24(5):513–523, 1988.

[36] J.S. Garofolo, L.F. Lamel, W.M. fisher, J.G. Fiscus, D.S. Pallett, and N.L. Dahlgren.

Darpa timit acoustic-phonetic continuous speech corpus cd-rom. Technical report, Na-

tional Institute of Standards and Technology, NISTIR 4930, 1993.

[37] J. Glass, T.J. Hazen, L. Hetherington, and C. Wang. Analysis and processing of lecture

audio data: Preliminary investigations. In HLT-NAACL 2004 Workshop: Interdisci-

plinary Approaches to Speech Indexing and Retrieval, pages 9–12, 2004.

[38] U. Glavitsch. A first approach to speech retrieval. Technical Report TR 238, Swiss

Federal Institute of Technology (ETH) Zurich, 1995.



[39] U. Glavitsch and P. Schauble. A system for retrieving speech documents. In In Proceed-

ings of the Fifteenth Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, Language Processing,, pages 168–176, 1992.

[40] J. Goldsmith. Unsupervised learning of the morphology of a natural language. Com-

putational Linguistics, 27(2):153–198, 2001.

[41] David Graff. English gigaword. Linguistic Data Consortium, Philadelphia, 2003. ISBN:

1-58563-260-0.

[42] A.K. Halberstadt. Heterogeneous acoustic measurements and multiple classifiers for

speech recognition. PhD thesis, Massachusetts Institute of Technology, 1998.

[43] D.K. Harman. Sixth text retrieval conference (trec-6). Technical report, Gaithersburg,

MD, USA. National Institute for Standards and Technology. NIST-SP 500-240, 1997.

[44] A. Hauptmann and H. Wactlar. Indexing and searcgh of multimodal information. In

Proc. ICASSP ’97, pages 195–198, 1997.

[45] G. Heigold, H. Ney, R. Schlter, and S. Wiesler. Discriminative training for automatic

speech recognition: Modeling, criteria, optimization, implementation, and performance.

IEEE Signal Processing Magazine, 29(6):58–69, November 2012.

[46] H. Hermansky. Perceptual linear predictive (plp) analysis of speech. J. Acoust. Soc.

Amer., 1:1738–1752, 1990.

[47] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhaucke,

P. Nguyen, T. N. Sainath, and Brian Kingsbury. Deep neural networks for acoustic

modeling in speech recognition. IEEE Signal Processing Magazine, 2012.

[48] T. Hori, I.L. Hetherington, T.J. Hazen, and J.R. Glass. Open-vocabulary spoken ut-

terance retrieval using confusion networks. In Proc. ICASSP, volume 4, pages 73–76,

2007.

[49] R. Hsiao, T. Ng, F. Grezl, D. Karakos, S. Tsakalidis, I. Nguyen, and R. Schwartz.

Discriminative semi-supervised training for keyword search in low resource languages.

In ASRU, 2013.

[50] X.D. Huang, A. Acero, and H.W. Hon. Spoken language processing - a guide to theory,

algorithm, and system development, chapter 1, pages 1–15. Prentice Hall PTR, 2001.

[51] D. James. The application of classical information retrieval techniques to spoken doc-

uments. PhD thesis, University of Cambridge UK, 1995.

[52] D.A. James. A system for unrestricted topic retrieval from radio news broadcasts. In

ICASSP, pages 279–282, 1996.



[53] F. Jelinek, editor. Statistical methods for speech recognition. MIT Press, 1998.

[54] S. Jin, H. Misra, T. Sikora, and J. Jose. Automatic topic detection strategy for infor-

mation retrieval in spoken document. In WIAMIS, 2009.

[55] S. Jin and T. Sikora. Combining confusion networks with probabilistic phone matching

for open-vocabulary keyword spotting in spontaneous speech signal. In EUSIPCO,

2009.

[56] Shan Jin. Methods for phone-based spoken document retrieval. Master’s thesis, TU

Berlin, 2005.

[57] B.H. Juang and L.R. Rabiner. Automatic speech recognition–a brief history of the

technology development. In Elsevier Encyclopedia of Language and Linguistics, Second

Edition, volume second edition. Elsevier, 2005.

[58] B. Kinsbury, J. Cui, X. Cui, M. Gales, K. Knill, J. Mamou, L. Mangu, D. Nolden,

M. Picheny, B. Ramabhadran, R. Schluter, A. Sethy, and P. Woodland. A high-

performance cantonese keyword search system. In ICASSP, 2013.

[59] M. Kurimo and V. Turunen. An evaluation of a spoken document retrieval baseline

system in finnish. In International conference on spoken Language Processing ICSLP,

2004.

[60] M. Kurimo and V. Turunen. To recover from speech recognition errors in spoken docu-

ment retrieval. In 9th European Conference on Speech Communication and Technology

(Eurospeech), 2005.

[61] H.-Y. Lee, Y.-C. Li, C. T. Chung, and L. S. Lee. Enhancing query expansion for

semantic retrieval of spoken content with automatically discovered acoustic patterns.

In ICASSP, 2013.

[62] H.Y. Lee, S.R. Shiang, C. F. Yeh, Y.N. Chen, Y. Huang, S.Y. Kong, and L.S. Lee.

Spoken knowledge organization by semantic structuring and a prototype course lec-

ture system for personalized learning. IEEE Trans. Audio, Speech , Lang. Process.,

22(5):883–898, March 2014.

[63] K.F. Lee, H.W. Hon, and R. Reddy. An overview of the sphinx speech recognition

system. IEEE Transactions on Acoustics Speech, and Signal processing, 38 No1:35–45,

1990.

[64] J.H. Leek. Analyses of multiple eidence combination. In Proceedings of the 20th Annual

International ACM-SIGIR conference, pages 267–276, 1997.



[65] M.S. Lew, N. Sebe, and J.P. Eakins. Challenges of image and video retrieval. In

M.S. Lew, N. Sebe, and J.P. Eakins, editors, Lecture notes in coputer science, volume

2383/2002, pages 1–6. Es. Heidelberg: Springer-verlag, 2002.

[66] B. Logan. Mel frequency cepstral coefficients for music modeling. In In International

Symposium on Music Information Retrieval, 2000.

[67] B. M. Logan, T. Pedro, and J.-M. V. Whittaker. An exaperimental study of an audio

indexing system for the web. In ICSLP2000, volume 2, pages 676–679, 2000.

[68] H. P. Luhn. A statistical approach to mechanized encoding and searching of literary

information. IBM Journal of Research and Development, 1957.

[69] W. Macherey. Discriminative training and acoustic modeling for automatic speech recog-

nition. PhD thesis, RWTH Aachen University, 2010.

[70] J. Mamou, D. Carmel, and R. Hoory. Spoken document retrieval from call-center

conversations. In Proceedings of the 29th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval, 2006.

[71] L. Mangu, E. Brilll, and A. Stolcke. Finding consensus in speech recognition: word

error minimization and other aplications of confusion networks. Computer Speech and

Language, 14:373–400, 2000.

[72] J.E. Markel and A.H. Gray. Linear Prediction of speech. Springer-Verlag, New York,

1976.

[73] David R.H. Miller, T. Leek, and R. M. Schwartz. A hidden markov model information

retrieval system. In SIGIR, 1999.

[74] D.R.H. Miller, T. Leek, and R.M Schwartz. Bnn at trec7: using hidden markov models

for information retrieval. In Proceeding of the 7th Text REtriegval Conference, pages

133–142, 1998.

[75] B. Milner. A comparison of front-end configurations for robust speech recognition. In

ICASSP, volume 1, pages 797–800, 2002.

[76] E. Mittendorf, P. Schuble, and P. Sheridan. Applying probabilistic term weighting to

ocr text in the case of a large alphabetic laibrary catalogue. In ACM SIGIR conference

on R&D in Information Retrieval, pages 328–335, 1995.

[77] N. Moreau, H.G. Kim, and T. Sikora. Phone-based spoken document retrieval in

conformance with the mpeg-7 standard. In AES 25th Internationa Conference, London,

2004.



[78] I. Mporas, T. Ganchev, M. Siafarikas, and N. Fakotakis. Comparison of speech reatures

on the speech recognition task. Journal of Computer Science, 3(8):608–616, 2007.

[79] S. Jin N. Moreau and T. Si. Comparison of different phone-based spoken document

retrieval methods with text and spoken queries. In INTERSPEECH, 2005.

[80] A. Nadas. A decision theoretic formulation of a training problem in speech recognition

and a comparison of training by unconditional versus conditional maximum likelihood.

IEEE Trans. on Acoustics, Speech and Signal Processing, ASSAP-31:814–817, August

1983.

[81] C. Ng and J. Zobel. Speech retrieval using phonemes with error correction. In Pro-

ceedings of the 21st Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 365–366, 1998.

[82] K. Ng. Towards robust methods for spoken document retrieval. In Proceedings of the

ICSLP, 1998.

[83] K. Ng. Information fusion for spoken document retrieval. In ICASSP 2000, volume 4,

pages 2405–2408, 2000.

[84] K. Ng. Subword-based approaches for spoken document retrieval. PhD thesis, Mas-

sachusetts Institute of Technology, 2000.

[85] J.J. Odell. The use of context in Large Vocabulary Speech Recognition. PhD thesis,

Cambridge University Engineering Department, 1995.

[86] D. O’Shaughnessy. Speech communication human and machine. Addison-Wesley, 1987.

mel scale form stamm von dises book page 5.

[87] S.E. Johnson; K. S. Jones P. Jourlin and P.C. Woodland. General query expansion

techniques for spoken document retrieval. In Workshop on Extracting Information

from Spoken Audio ESCA, 1999.

[88] Y.C. Pan, H.L. Chang, and L.S. Lee. Analytical comparison betwen position specific

posterior lattices and confusion networks based on words and subword units for spoken

document indexing. In ASRU, pages 677–682, 2007.

[89] A. Park, T. J. Hazen, and J. Glass. Automatic processing of audio lectures for in-

formation retrieval: vocabulary selection and language modeling. In ICASSP, pages

447–490, 2005.

[90] D. B. Paul and J. M. Baker. The design for the wall street journal-based csr corpus.

In Proceedings of the Workshop on Speech and Natural Language, 1992.



[91] J.W. Picone. Signal modeling techniques in speech recognition. In Proceedings of the

IEEE, volume 81, pages 1215–1247, 1993.

[92] B. Ribeiro-Neto R. Baeza-Yates. Modern Information Retrieval. ACM press New York

and Addison Wesley Longman Limited, 1999.

[93] L.R. Rabiner and B.H. Juang. Fundamentals of speech recognition. Prentice Hall,

englewood clitffs, NJ, 1993.

[94] L.R. Rabiner and B.H. Juang. Statistical Methods for the Recognition and Understand-

ing of speech. Encyclopedia of Language and Linguistics, 2004.

[95] S. Renals, D. Abberley, D. Kirby, and T. Robinson. Indexing and retrieval of broadcast

news. Speech Communication, 32:5–20, 2000.

[96] R.C. Rose and D.B. Paul. A hidden markov model based keyword recognition system.

In ICASSP, number 129-132, 1990.

[97] F. Rudzicz S. Kazemian and G. Penn. A critical assessment of spoken utterance re-

trieval through approximate lattice representations. In The 10th ACM International

Conference on Multimedia Information Retrieval, 2008.

[98] G. Salton and M. McGill. Introduction to modern information retrival. McGraw-Hill,

New York, 1983.

[99] G. Salton, A. Wong, and C.S. Yang. A vector space model for information retrieval.

Communications of the ACM, 18(11):613–620, 1975.

[100] G. Saon and J.T. Chien. Large-vocabulary continuous speech recognition systems: a

look at some recent advances. IEEE Signal Processing Magazine, 29(6):82–97, Novem-

ber 2012.

[101] M. Saraclar, A. Sethy, B. RamB. Ramabhadran. Mangu, J. CuiJ. Cui. Cui, and B. KB.

Kingsbury . Mamou. An empirical study of confusion modelling in keyword search for

low resource languages. In IEEE workshop Auto. Speech Recogn. Understand, (ASRU),

2013.

[102] P. Schaeuble and U. Glavitsch. Assessing the retrieval effectiveness of a speech re-

trieval system by simulating recognition errors. In In Proc. ARPA Human Language

Technology Workshop, pages 370–372, 1994.

[103] C.D. Manning; P. Raghavan; H. Schtze. An introduction to information retreival. Cam-

bridge University Press, 2009.

[104] J.E. Shoup. Phonological aspects of speech recognition. In Trends in Speech recognition.

W.A. LEA, Ed. Englewood Cliffs: Prentice Hall, 1980.



[105] M.A. Siegler. Integration of continuous speech recognition and information retrieval for

mutually optimal performance. PhD thesis, Carnegie Mellon University, 1999.

[106] A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. In

ACM SIGIR conference on R&D in Information Retrieval, pages 21–29, 1996.

[107] F. Song andW.B. Croft. A general language model for information retrieval. In Proceed-

ing of the 22th ACM SIGIR Conference on Research and Development in Infomation

Retrieval, pages 216–221, 1999.

[108] S. Srinivasan and D. Petkovic. Phonetic confusion matrix based spoken document

retrieval. In 23rd annual international ACM SIGIR conference on Research and devel-

opment in information retrieval, 2000.

[109] B. Teufel. Informationsspuren zum numerischen und graphischen Vergleich von re-

duzierten natuerlichsprachlichen Texten. PhD thesis, Swiss Federal Institute of Tech-

nology, 1989.

[110] TREC. Common evaluation measures. In NIST, 10th Text REtrieval Conference, pages

A–14, 2001.

[111] V. Turunen and M. Kurimo. Using latent semantic indexing for morph-based spoken

document retrieval. In 9th International Conference on Spoken Language Processing

(ICSLP), 2006.

[112] V. T. Turunen and M. Kurimo. Indexing confusion networks for morph-based spoken

document retrieval. In ACM SIGIR, 2007.

[113] Office of Technology Assessment (1982) US Congress. MEDLARS and Health infor-

mation policy. ISBN 1428924248. U.S. Government Printing Office, Washington, D.C.

20402, 1982.

[114] C.C. Vogt. How much more is better? characterizing the effects of adding more ir

systems to a combination. Content-based Multimedia Information Access (RIAO), pages

457–475, 2000.

[115] M. Wechsler. Spoken document retrieval based on phoneme recognition. PhD thesis,

Swiss Federal institute of Technology (ETH), 1998.

[116] M. Wechsler. New approaches to spoken document retrieval. Information Retrieval,

3:173–188, 2000.

[117] M. Wechsler, E. Munteanu, and P. Schuble. New techniques for open-vocabulary spoken

document retrieval. In SIGIR’98, pages 20–27, 1998.



[118] P.C. Woodland and D. Povey. Large scale discriminative training of hidden markov

models for speech recognition. Computer Spee, 16(1):25–48, 2002.

[119] P.C. Woodland and S.J. Young. The htk tied-state continuous speech recognizer. In

EUROSPEECH, http://www.htk.eng.cam.ac.uk, 1993.

[120] X. Yi and J. Allan. A comparative study of utilizing topic models for information

retrieval. In 31th European Conference on Information Retrieval Research, 2009.

[121] Y.Zhang, E. Chuangsuwanich, and J. Glass. Extracting deep neral network bottleneck

features using low-rank matrix factorization. In ICASSP, 2014.

[122] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur. Improving deep neural network

acoustic models using genegeneral maxout networks. In ICASSP, pages 215–219, 2014.

[123] B. Zhou and J.H.L. Hansen. Speechfind: an experimental on-line spoken document

retrieval system for historical audio. In Proc. ICSLP-2002, pages 1969–1972, 2002.

[124] A Ziaei, A. Sangwan, L. Kaushik, and J. H. L. Hansen. Prof-life-log: analysis and

classification of activities in daily audio streams. In ICASSP, 2015.

[125] V.W. Zue and S. Seneff. Transcription and alignment of the timit database. In Pro-

ceedings of the second Meeting on Advanced Man-Machine Interface through Spoken

Language, 1988.

[126] E. Zwicker. Subdivision of the audible frequency range into critical bands. Journal.

Acoust. Soc., 33(2):248–248, 1961. Bark scale.



List of Figures

1.1 History of information retrieval. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Schematic view of a spoken document retrieval system. . . . . . . . . . . . . . 4

2.1 Darpa Speech Recognition Benchmark Test [57] . . . . . . . . . . . . . . . . . 12

2.2 ASR basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Extraction of audio features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Mel Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Critical band analysis vs mel-filterbank analysis [75] . . . . . . . . . . . . . . 17

2.6 Overview of audio features extracted from WSJ file 4p0a0101 . . . . . . . . . 19

2.7 HMM with 3 emitting states . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Recognition Network and HMM trellis for continuous speech recognition example. 22

2.9 The hierarchical clustering tree (dendrogram) used to generate phonetic broad

classes was presented in Ng’s work [84]. . . . . . . . . . . . . . . . . . . . . . 24

2.10 General internal structure of a syllable . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Evaluation 20k word recognizer on different datasets. . . . . . . . . . . . . . . 37

3.2 Effect of different environmental factors on the distribution of errors in the

transcription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Length distribution of 200 in-vocabulary queries. . . . . . . . . . . . . . . . . 40

3.4 Example of precision/recall value selection. . . . . . . . . . . . . . . . . . . . 42

181



3.5 Structure of the baseline SDR system . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Precision/recall Plot of baseline SDR system. . . . . . . . . . . . . . . . . . . 45

4.1 Retrieval performance in mAP and max. recall value for different N values. . 52

4.2 Comparison of 9-best specified document term weighting scheme. . . . . . . . 54

4.3 A lattice example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 DNLLR Thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Number of valid links in the ASR lattice transcription. . . . . . . . . . . . . . 60

4.6 Effect of DNLLR threshold on system retrieval performance. . . . . . . . . . 61

4.7 Precision/recall curves comparing the performance of different weighting schemes. 63

4.8 General structure of a word confusion network. . . . . . . . . . . . . . . . . . 65

4.9 Link posterior estimation using the forward-backward algorithm . . . . . . . 67

4.10 Number of links included in lattice, WCN and baseline word-1best representation. 71

4.11 The plot of mAP and recall for spoken document retrieval on lattice, confusion

network and 1-best transcription. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Comparison of different weighting schemes for word confusion network based

spoken document retrieval approaches. . . . . . . . . . . . . . . . . . . . . . . 73

4.13 Performance comparison of robust SDR approaches using different ASR-representation

containing multiple hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14 Performance evaluation of word-based SDR with query expansion. . . . . . . 81

4.15 Performance of retrieving OOV queries with query expansion . . . . . . . . . 82

5.1 Number of unique terms for each type of index unit. . . . . . . . . . . . . . . 87

5.2 Word length distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Retrieval performance of different index units derived from text reference tran-

scription. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Construction mono-phone transcription from word one-best output of the ASR. 93



5.5 WSJ 4o0c0e0a word 1-best in phone-3gram. . . . . . . . . . . . . . . . . . . . 95

5.6 39 English phone confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.7 Retrieval performance of different phone-3gram based methods (in-vocabulary

query words). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Performance of out-of-vocabulary query retrieval with different phone-3gram

based spoken document retrieval methods. . . . . . . . . . . . . . . . . . . . 105

5.9 Evaluation of different phone-3gram based methods with total query set. . . . 107

5.10 Performance (precision/recall plot) of in-vocabulary queries with different lengths.109

5.11 Performance (precision/recall plot) of OOV queries with different lengths. . . 114

5.12 Structure of an SM-based SDR system. . . . . . . . . . . . . . . . . . . . . . 119

5.13 Example of slot-detection: looking for BUT (B AH T) in 4o8c0e06. . . . . . . 122

5.14 DP transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.15 Performance (mAP) evaluation of different mono-phone based SDR systems

with in-vocabulary query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.16 Precision/recall plot of different mono-phone based SDR systems with total

query set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.17 Performance (precision/recall plot) of retrieving in-vocabulary queries of dif-

ferent lengths using mono-phone based SDR method. . . . . . . . . . . . . . . 130

5.18 Performance (precision/recall plot) of retrieving OOV queries with different

length using mono-phone based method. . . . . . . . . . . . . . . . . . . . . . 131

5.19 Comparison of different subword-based SDR approaches. . . . . . . . . . . . . 132

5.20 Comparison of ability of phone-based SDR methods to deal with OOV-queries. 134

6.1 Precision/recall plot of potential candidates for fusion. . . . . . . . . . . . . . 142

6.2 Structure of Hybrid SDR system . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Hybrid system - Multi-level indexing stage . . . . . . . . . . . . . . . . . . . . 144

6.4 Performance of different combination algorithms . . . . . . . . . . . . . . . . 151



7.1 Video retrieving based on speech processing. . . . . . . . . . . . . . . . . . . . 153

7.2 A prototype user interfaces for spoken content indexing and retrieving. . . . . 154

7.3 The user interface for spoken content indexing. . . . . . . . . . . . . . . . . . 155

7.4 SCI interface option block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5 View spoken document transcription. . . . . . . . . . . . . . . . . . . . . . . . 156

7.6 View of the labeled temporal audio stream. . . . . . . . . . . . . . . . . . . . 157

7.7 The user Interface for Spoken Content Retrieving. . . . . . . . . . . . . . . . 157

7.8 Basic Architecture of our Spoken document retrieval part. . . . . . . . . . . . 158

7.9 Function block for system core configuration. . . . . . . . . . . . . . . . . . . 158

7.10 Results output window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.11 Audio view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1 Potential multi-modal IR scenario. . . . . . . . . . . . . . . . . . . . . . . . . 165



List of Tables

2.1 Documents in the archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Example of binary term-document incidence matrices. . . . . . . . . . . . . . 29

2.3 SMART notation for the term-weighting scheme [103] . . . . . . . . . . . . . 32

3.1 Test data information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Performance on different data sets. . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 30 OOV queries with occurrences. . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Definition of tp,fp,fn,tn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Precision/recall of the baseline SDR system (in %). . . . . . . . . . . . . . . . 43

4.1 N-best Lists of WSJ sentence 4p0a0101 . . . . . . . . . . . . . . . . . . . . . 49

4.2 Retrieval Performance (precision, recall, maximal recall and mAP value in %

for 200 in-vocabulary queries for different numbers of considered recognition

hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Comparison of different N-best specified weighting scheme. . . . . . . . . . . 55

4.4 Selected DNLLR thresholds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 mAP values for different DNLLR-thresholds . . . . . . . . . . . . . . . . . . . 61

4.6 Result of different weighting scheme for lattice-based SDR. . . . . . . . . . . 63

4.7 Performance (mAP and max. RE) comparison between baseline, lattice and

WCN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

185



4.8 Performance (recall, precision, mAP and max.RE) comparison of baseline and

WCN based SDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Performance of WCN-based SDR when using different weighting schemes. . . 74

4.10 Precision/Recall, mAP and max. Recall (in %) value of SDR approaches using

different ASR transcription containing multiple hypotheses. . . . . . . . . . . 75

4.11 OOV words and similar terms. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 The effect of query expansion on the performance of a word-based SDR. . . . 80

5.1 Examples of indexing terms for different units . . . . . . . . . . . . . . . . . . 86

5.2 Retrieval performance (mAP, E1 and E5 in %) of different index units (sub-

word) on IR task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Quality of mono-phone transcription. . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Part of phone-3gram-PSPL for file 4l0a0101. . . . . . . . . . . . . . . . . . . 101

5.5 Retrieval performance in precision/Recall, mAP, max. Recall value (%) of

in-vocabulary query evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Performance of Phone-3-gram based SDR approaches for OOV queries retrieval

task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Precision/Recall, mAP, max. Recall value (%) of evaluation with total query

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.8 Performance of phone-3gram PSPL based SDR method. . . . . . . . . . . . . 108

5.9 Selected INV and OOV words with different length in number of phones. . . 108

5.10 t-test statistics of long queries (length > 10) related statements. . . . . . . . . 111

5.11 t-test statistics of statements about improved recall with proximity method

when retrieving not very long queries (length < 8). . . . . . . . . . . . . . . . 111

5.12 Performance evaluation of in-vocabulary queries with length > 10. . . . . . . 112

5.13 Performance evaluation of in-vocabulary queries with length = 8. . . . . . . . 113

5.14 Performance evaluation of in-vocabulary queries with length = 7. . . . . . . . 115

5.15 Performance evaluation of in-vocabulary short queries with length < 5. . . . . 116



5.16 t-test statistics of statements about tfidf benefits short query (length < 5)

retrieval task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.17 Performance evaluation of in-vocabulary queries with different lengths. . . . . 117

5.18 Performance evaluation of out-of-vocabulary queries with different lengths. . 117

5.19 Performance of different monophone-based SDR systems in precision, recall,

mAP and max. recall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.20 Performance of retrieving in-vocabulary queries of different lengths using phone-

based SDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.21 Performance of retrieving OOV queries of different lengths using monophone-

based SDR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.22 Comparison of the phone-based spoken document retrieval methods and the

word-based baseline system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 Overlap ratio of non-relevant documents retrieved by different spoken docu-

ment retrieval system (in-vocabulary query set). . . . . . . . . . . . . . . . . 141

6.2 Performance evaluation (in-vocabulary query-task) of hybrid system with dif-

ferent combination strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Performance evaluation (complete query set with 13% OOV words) of hybrid

system with different combination strategies. . . . . . . . . . . . . . . . . . . 148

B.1 Precision/recall and mAP value (in %) with different DNLLR-thresholdings . 168


	Abstract
	Introduction
	Information Retrieval
	Information Retrieval in Spoken Documents
	Motivation
	Purpose and Contributions
	Thesis Structure

	Fundamentals of Spoken DocumentIndexing and Retrieval
	Spoken Document Processing - ASR
	Feature Analysis
	Decoding

	Spoken Document Indexing
	Spoken Information Retrieval
	Boolean Model
	Vector Space Model


	Experimental Setup
	Databases
	20k Word Recognizer
	Single-word Query Retrieval Tasks
	Evaluation Strategies
	Baseline SDR System

	Enrichment of a Spoken DocumentRepresentation with MultipleRecognition Hypotheses
	N-best Recognition Hypotheses based SpokenDocument Retrieval
	Integrating the Rank of a Hypothesis into DocumentTerm Weighting Scheme
	Document Term Weighting with General Probability
	Experiment and Discussion

	Lattice
	DNLLR-Threshold Estimation
	Document Term Weighting
	Experiment and Discussion

	Confusion Networks
	Construction of a Word Confusion Network
	Word Confusion Network Specified Term Weighting Methods
	Experiment and Discussion

	Dealing with OOV Words via RepresentationExpansion
	Summary

	Subword-based SDR Approaches
	Subword as Indexing Units
	Construction of Phone Transcription
	Robust SDR Approach based on Phone N-gram
	Weighting with Confusion Information for ApproximateMatching
	Integrating Position Information into Indexing and RelevanceRanking
	Experiment and Discussion

	Probabilistic Phone String Matching
	Slot Detection
	Slot-probability Estimation
	Weighting and Scoring
	Experiment and Discussion

	Summary

	A new Robust Open-Vocabulary Hybrid Spoken Document Retrieval Method
	Information Fusion
	Background
	Selection of Potential Candidates for Fusion

	A Hybrid Keyword Spotting Method for SpokenDocument Retrieval
	Multi-level Indexing of a Spoken Document
	Hybrid Matching

	Experiments and Discussion
	Summary

	A Video Indexing and RetrievingSystem
	Spoken Content Indexing Interface
	Spoken Content Retrieving Interface

	Summary and Outlook
	Summary
	Outlook

	200 INV Query Set
	Evaluation Single-queries Retrievalon Lattice Transcription
	Abbreviations



