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Abstract

Todays cellular communication networks have come a long way from voice only capabilities to

wireless networks that serve millions of users and machine type devices with high data rates

and low latencies. Typically, network designers overprovision the capacity of those networks

in order to allow for some increase in demand over the years. This approach together with

a largely static network operation leads to the consumption of a huge amount of energy

which contributes to the constantly increasing CO2 footprint of the ICT-sector. Against

this background, this thesis addresses the energy consumption of cellular communication

networks with a timely varying traffic load as it is observable in todays networks. We focus

on the problem of implementing an optimal network topology control that is concerned

with the energy consumption of all active network elements.

We start by giving an insight in the growth behavior of wireless communication systems

when the number of users tends to infinity. A scaling law analysis of throughput as a

function of the number of users having some QoS requirement is provided and we extend

the results into the direction of embodied network energy consumption. In our analysis

we specifically include the energy consumed by hardware for, e.g., cooling or processing,

which is typically neglected in theoretical studies from information theory. The identified

scaling behavior is further investigated by simulations that allow to verify the scaling

results predicted by theory and to assess the speed of convergence of the asymptotic results.

The main conclusions of this scaling analysis highlight the tradeoff between throughput

and energy efficiency scaling, and provide valuable insights into the question how the

number of infrastructure nodes, such as base stations, needs to scale with the number

of wireless devices so as to achieve high energy efficiency with practical communication

schemes.

Motivated by these results we develop an optimization framework targeting the minimization

of the overall energy consumption in the downlink channel of mobile cellular networks

including the energy consumed by hardware and auxiliary equipment. We follow an approach

that aims to selecting the set of network elements consuming the least amount of energy

while satisfying the QoS requirements of all users in the system. The underlying problem is

of combinatorial nature and thus it is in general hard to solve. In order to obtain solutions

in a computationally efficient manner we apply relaxation techniques to approximate the

objective function by a concave function and relax all non-convex constraints which leads

to a problem that is amenable to majorization-minimization techniques. With these steps

we are able to propose an optimization framework that can find good solutions to the

combinatorial problem in relatively short time. A major advantage of the framework is
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its ability to cope with a variety of different network elements and energy consumption

models. We provide extensive simulation results to show the framework’s performance.

With the core optimization framework at hand we include several extensions to account

for novel aspects of networks such as CoMP transmission, the desire for a distributed

implementation or to account for buffering capabilities at users’ devices. The latter is used

for an extension towards anticipatory scheduling, where the decisions on resource allocation

and user-cell assignments are based not only on present channel state information but also

on information about future propagation conditions. Thereby, we are able to exploit the

knowledge about users’ mobility and path loss to proactively build user-cell assignment and

resource allocation schedules that greatly support energy savings in cellular communication

systems.

Finally, we turn our attention towards the general framework of interference calculus to

obtain computationally efficient algorithms for a more accurate estimation of the load

at network elements. The knowledge about cell load is highly beneficial to develop tools

that allow us to identify feasible network settings for given user-cell assignments. These

tools are then used to facilitate the network topology control optimization framework for

increased energy savings. We conclude the thesis with the presentation of a framework

which allows us to identify feasible cell configurations (e.g., antenna tilts) supporting the

energy savings algorithm that deactivate redundant network elements. In other words, with

the help of heuristic arguments we combine the improved algorithm for topology control

with the optimization of cell configurations to show how the optimization of down tilts can

help to save energy.
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Zusammenfassung

Die Entwicklung im Mobilfunk hat in den letzten Jahrzehnten die Leistungsfähigkeit

zellularer Kommunikationsnetze beachtlich gesteigert. Netze, die ursprünglich der reinen

Sprachübertragung dienten, sind zu drahtlosen Kommunikationsnetzen geworden, die

Millionen von Nutzer und Geräte mit hohen Datenraten bei niedrigen Latenzen versorgen.

Üblicherweise planen Netzdesigner die Kapazität dieser Netze großzügig, um einen gewissen

Anstieg der Nachfrage über die Jahre hinweg abfedern zu können. In Verbindung mit einem

weitgehend statischen Netzbetrieb führt dieser Ansatz zu einem immensen Energieverbrauch,

der einen steigenden Anteil der IKT am CO2-Ausstoß fördert. Vor diesem Hintergrund liegt

der Fokus dieser Arbeit auf dem Energieverbrauch von zellularen Kommunikationsnetzen

bei einer zeitlich schwankenden Verkehrslast, wie sie in heutigen Netzen zu beobachten

ist.

Im ersten Schritt wird ein Überblick über das Skalierungsverhalten von drahtlosen Kom-

munikationssystemen gegeben, in denen die Anzahl der Nutzer gegen unendlich strebt.

Dabei wird die Skalierung von Durchsatz als Funktion der Anzahl von Nutzern, die eine

bestimmte QoS-Anforderung haben analysiert und in Richtung ganzheitlichem Netzwerken-

ergieverbrauch erweitert. Unsere Analyse berücksichtigt explizit den Energieverbrauch

von Hardware, wie z.B. Kühlung und Datenverarbeitungseinheit, die typischerweise in

theoretischen Studien der Informationstheorie vernachlässigt wird. Mithilfe von Simula-

tionen, die es ermöglichen, die aus der Theorie bekannten Skalierungsergebnisse und die

Konvergenzgeschwindigkeit der asymptotischen Ergebnisse zu bestimmen, wird weiter-

hin das identifizierte Skalierungsverhalten untersucht. Die wichtigsten Ergebnisse dieser

Skalierungsanalyse unterstreichen den Abtausch der Skalierung von Datendurchsatz und

Energieeffizienz. Daraus ergeben sich geeignete Designrichtlinien für die Skalierung von

Infrastrukturknoten, z. B. Basisstationen, die zur Einsparung von Energie in praktischen

Kommunikationssystemen beitragen.

In Anbetracht dieser Ergebnisse wird ein Optimierungs-Framework entwickelt, das auf

die Minimierung des gesamten Energieverbrauchs im Downlink-Kanal drahtloser zellu-

larer Netze abzielt und dabei den Energieverbrauch der Hardware berücksichtigt. Der

Ansatz dieser Arbeit fokussiert die Menge der Netzelemente, die die geringste Energie

verbrauchen, während sie die QoS-Anforderungen aller Nutzer im System erfüllen. Das

zugrunde liegende Problem ist kombinatorischer Natur und daher im Grundsatz schwer

zu lösen. Um rechnerisch effiziente Lösungen zu erhalten, werden Relaxationstechniken

angewandt, die die Zielfunktion durch eine konkave Funktion annähern und alle nicht-

konvexen Randbedingungen relaxieren. Dadurch wird ein verwandtes Problem konstruiert,
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das durch Majorisierungs-Minimierungstechnik gelöst werden kann. Schritt für Schritt

wird so ein Optimierungs-Framework vorgeschlagen, das in relativ kurzer Zeit geeignete

Lösungen für das kombinatorische Problem findet. Ein großer Vorteil des hier beschriebenen

Lösungsansatzes gegenüber bestehender Ansätze aus der Literatur ist die Fähigkeit, mit

einer Vielzahl von verschiedenen Netzwerk-Elementen und Energieverbrauch-Modellen

umzugehen. Mittels umfangreicher Simulationen wird die Leistungsfähigkeit des Frameworks

dargelegt. Auf Basis des entwickelten Optimierungs-Frameworks werden Erweiterungen

abgeleitet, um neue Aspekte wie die CoMP-Übertragung, eine verteilte Implementierung

oder die Zwischenspeicherung von Daten bei Nutzern zu berücksichtigen. Letzteres zeigt

die Erweiterung in Richtung der antizipatorischen Ressourcenplannung. Die Entscheidun-

gen über die Ressourcenzuteilung und die Nutzer-zellen-zuweisungen basieren allerdings

nicht nur auf gegenwärtigen Kanalzustandsinformationen, sondern auch auf Informationen

über zukünftige Ausbreitungsbedingungen. Auf diese Weise wird das Wissen über die Mo-

bilität von Nutzern und dem Pfadverlust verwenden, um proaktiv Nutzer und Ressourcen

zuzuweisen. Ziel ist es, die Energieeinsparung in zellularen Kommunikationssystemen

sukzessive zu maximieren.

Schließlich bedienen wir uns der allgemeinen Theorie des Interferenz Calculus, um rechner-

isch effiziente Algorithmen zu entwickeln, mit deren Hilfe die Last an Netzwerkelementen

genauer abzuschätzen ist. Bei der Entwicklung von Optimierungsmethoden ist die Kenntnis

über die exakte Zellauslastung gewinnbringend, da gültige Netwerkkonfigurationen für

gegebene Nutzer-zellen-zuweisungen identifiziert werden können. Diese Ergebnisse werden

wiederum verwendet, um das entwickelte Framework zur Netzwerktopologie-Optimierung

weiterzuentwickeln. Dadurch soll die Energieeinsparung weiter erhöht werden. Abschließend

zeigen wir auf, wie das Optimierungsframework zu erweitern ist, um Konfigurationen der

Netzelemente (z.B. Antennenabstrahlwinkel) zu ermitteln, die den Algorithmus zur opti-

mierten Netztopologie in seiner Arbeit unterstützen. Genau gesagt wird der optimierte Algo-

rithmus zur Netzwerk-Topologiekonfiguration mittels heuristischer Argumente mit der Opti-

mierung von Zellkonfigurationen kombiniert. Hierdurch wird aufgezeigt, wie die Optimierung

von Antennenabstrahlwinkeln zur Energieeinsparung beitragen kann.
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Notation

In this work, sets are presented by calligraphic capital letters (such as X ) and the cardinality

of a set is denoted by the same letter of the set in italic writing X := |X |. The set R+

denotes the set of non-negative real numbers, while R++ := R+\{0} is the set of positive

real numbers. We further define 0/0 := 0 and c/0 :=∞ for c > 0.

Vectors are presented by bold lower case letters (such as x), whereas matrices are writ-

ten in bold upper case letters (such as X). For a vector x ∈ RN , its ith component is

xi ∈ R. Similarly, the (i, j)-th component of matrix X ∈ RM×N is xi,j ∈ R. Inequalities

involving vectors, such as x1 ≥ x2, are to be understood as component-wise inequali-

ties.

Given a matrix X ∈ RM×N , we use x̃ := vec(X) ∈ RMN to denote the vector obtained by

stacking the columns of X.

Definition 1 (lp-norm). For p ≥ 1 the lp-norm of a vector x ∈ RN is defined by

||x||p :=

(
N∑
i=1

|xi|p
)1/p

.

In Chapter 3 we make use of the the cardinality function obtained from the lp-norm

definition (Definition 1) with p = 0. Although this l0-norm is not a norm, since it does not

satisfy all properties of a norm (it is not homogenous), we use the term “norm” as it is

common practice in literature.

Definition 2 (l0-norm). For any vector x ∈ RN and matrix X ∈ RM×N , their l0-norms

|x|0 and |X|0 are equal to the number of nonzero elements of x and X, respectively. For a

scalar x ∈ R, |x|0 := 1 if x ̸= 0 and |x|0 := 0 otherwise.

Further notation

In addition the following notation is used:

| · | Absolute value of a scalar or cardinality of a set

argmin Argument of the minima

∃ At least one exists

:= Equal by definition
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1 Introduction

1.1 Motivation and background

Since the introduction of the first cellular communication system, the wireless communica-

tion landscape has experienced numerous evolutions of technology. Especially during the last

decade, novel techniques have revolutionized the way we communicate. The early systems

allowed for voice services in only a few isolated regions. Over the last decades, coverage has

been improved to make mobile communication services available for the general public. Data

communication services were added and network capabilities were gradually improved with

every new generation of mobile networks. From the early stages of GSM (Global System

for Mobile Communications) to communication systems of the third (3G), fourth (4G)

and the upcoming fifth (5G) generation, we have seen researchers and network designers

putting large efforts into pushing the limits of wireless communication network. Thereby,

the constantly increasing popularity of mobile communications lead to interesting dynamics

in the counter-play of service demand and network performance. The system throughput,

end-to-end latency and the supported number of users were greatly improved and novel

techniques such as Orthogonal Frequency-Division Multiplexing (OFDM), multiple-input

and multiple-output (MIMO) systems or beamforming helped to make a more efficient

use of the wireless spectrum. The improved network performance is welcomed with open

arms by the users and new services are implemented that exploit the improved Quality

of Service (QoS). This effect results in the situation that the capabilities of the network

are used almost to its full extend quickly. The chase for higher network performance and

the demand for better QoS became somewhat like a self-fulfilling prophecy. The moment

the network provides a better QoS, the demand for better QoS almost instantly rises. A

popular example is video streaming over wireless networks. In the late 1990s, when it was

a novelty to have internet access on the go, the network was able to provide only small

downlink throughputs and video streaming was hardly possible. Later, with the improved

downlink data rates of 3G, videos could be streamed over the network but the supported

video resolution was low. Today, with long term evolution (LTE) deployed, we have a

wireless network that supports downlink peak data rates of up to 300 Mbits-per-second

enabling video streaming in high definition. This continuous increase is still ongoing with

mobile network connection speeds growing 20% in 2014 [Cis15]. At the same time the

growth in consumption of data over wireless networks is even more pronounced. According

to [Cis15], the global mobile data traffic in 2014 was nearly 30 times the size of the entire

global (wired) Internet in the year 2000 and this trend is predicted to continue over the
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next years. Mobile communication has become part of many areas in our daily lives. The

possibility to communicate with each other without being tied to a fixed place (by a wire)

made us more mobile than ever and our society adopted the new way to communicate

quickly. The study in [Qur15] highlights the continuation of this trend and predicts that

the number of mobile subscribers will increase from 7.1 billion in 2014 to 9.2 billion in

2020 consuming over 30.000 PetaByte of data per month, whereby the lion’s share is video

data. These numbers are supported by [Cis15] predicting the key driver of mobile data

growth to be video streaming (or on-demand video) with a 66% annual increase through

2019.

Besides these benefits for people connecting to wireless networks, mobile communications

technology pushes open doors to a new horizon fuelling progress in every sector of our

economy (industry and private life). Wireless communications is increasingly linking the

digital and the physical world forming a cornerstone of the global economy. The huge

potential of mobile communications has been started to be exploited by new sectors

foreseeing huge changes in the years to come. Under the umbrella of the Internet of

Things (IoT) it is envisioned that all devices and things are connected, thereby integrating

billions of sensors and actuators into devices and communicating with them wirelessly.

Such devices are found in a broad spectrum of application areas including wearable health

and fitness devices, smart power readers, smart lamp poles on the street and many other

sensors from manufacturing and maintenance processes. Device connection density will

hit 200, 000 connections per km2 according to [AL15] introducing never seen requirements

to the communication network. Especially requirements for reduced latency, improved

reliability, long battery life for devices and more consistent user bit rates become more and

more important. Even in the more conservative industry sectors like production, wireless

communications is emerging as a hot topic, which is usually referred to as the fourth

industrial revolution (industry 4.0). Smart cities will help us in every thinkable way in our

daily lives through improved self-awareness and novel services made possible by ubiquitous

connectivity. In these settings high importance will be given to Machine-to-Machine (M2M)

and Device-to-Device (D2D) connections whose growth will come from a range of significant

verticals (smart cities, eHealth, industry 4.0 and automotive). The net result of this trend

towards more devices with a huge variety of service applications is an even more drastic

increase in the mobile data traffic which needs to be accounted for.

A straightforward and easy to implement method to provide better QoS to the increasing

number of mobile-connected devices typically involves to deploy more cells in the service

areas [Int15]. However, these ultra dense network deployments result in a massive increase

in the cost for installed hardware and network operation which in turn has a negative effect

on the mobile network operator’s revenue. In fact, contrary to the increasing demand, the

study in [Int15] has identified a slowdown in industry revenue growth with a compound

annual growth rate (CAGR) of 4% in the period 2008-2014. And it is expected to decrease

even further to 3.1% per annum through to 2020. It has been mentioned before, that the

major drivers for this effect are the large costs involved in deploying and powering wireless
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communications networks. Thus, the densification of cellular communication networks

challenges the energy efficiency in such networks in a way that the drastic increase of

infrastructure used to match the increasing demand is accompanied with a potentially

unacceptable level of total energy consumption.

Therefore, in this thesis, we give some answers and guidelines for how to operate todays

and future mobile communications networks in a more energy efficient manner. We address

questions from network planning about the optimal number of cells in the network and

provide insight in how to operate such networks to save energy. Thereby, we go beyond most

works in literature, which usually accounts only for the energy radiated by the antennas,

and we explicitly include energy consumed by hardware (e.g., coolers and circuit energy

consumption). The later source of energy consumption usually accounts for a much bigger

part of the total energy budget [CYZ+11].

1.2 Outline and main contributions

In Chapter 2 we present fundamental results related to the growth behavior of wireless

communication systems when the number of users grows without bounds. We start from

three main characteristics of today’s networks: nodes/users are assumed to be stationary,

interference is treated as noise and non-dense infrastructure. The first assumption does not

mean that users are not moving but rather it is meant that mobility of users is not (yet)

exploited to improve the network performance. The second assumption, that interference

is treated as noise in the system, relates to the fact that in current system deployments

the exploitation of the interference by advanced techniques such as successive interference

cancelation (SIC) or network coding is not standard. The last characteristic highlighted is

that the network infrastructure is not dense but rather sparse compared to the number of

users served by one infrastructure node. For networks of such kind, we provide a scaling law

analysis for throughput and energy consumption of typical communication networks as a

function of the number of users. Such a scaling analysis gives valuable guidelines for network

designers to choose the order of the number of infrastructure nodes needed to satisfy the

service demand without wasting energy. Our analysis is done for a hybrid communication

network, where nodes can communicate in an ad-hoc manner as well as classical cellular

communication via infrastructure nodes (base stations or cells). Using two different

communication models (physical and protocol model) to capture interference between

transmissions, we summarize the throughput scaling in such networks. We show that the

throughput per user in classical ad hoc networks is inevitably vanishing with increasing

number of users in the system and that even advanced techniques such as MIMO etc. can

not change this effect in the asymptotic regime. Note, that one should not be inclined to

think that those techniques are not beneficial in practice. They are able to improve the

situation in the non-asymptotic regime where constants matter. One key finding is that

when dropping one of the three assumptions it is possible to achieve stable throughput when

accepting some trade-off. These scaling laws are evaluated by simulations and compared
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to the theoretical results. Building upon the throughput scaling results, we establish a

connection to the scaling of the energy required to transmit one bit of information in such

a network. The novelty of our approach is to incorporate the static energy consumption

that is consumed by hardware in addition to the transmit energy consumption. This energy

consumption is typically neglected in information theory but has significant impact in

practice. The chapter is concluded by showing that the energy spent to communicate one bit

of information grows without bounds in networks where the number of users tends to infinity.

The results presented in Chapter 2 are partially published in [BPS13, CSS+14].

Motivated by the results on the scaling of energy in wireless communication networks, we

focus in Chapter 3 on dense infrastructure deployments where the number of infrastructure

nodes such as base stations and cells is large and present results for load-aware topology

control. In contrast to energy efficiency studies, where one seeks to maximize the ratio

of throughput and energy consumed, the goal in our study is to minimize the energy

consumption for a fixed throughput. The starting point for our analysis is the observation

that the peak demand is always increasing and new services and more powerful user devices

with larger screens introduce higher requirements for mobile communication systems.

Additionally, new types of users such as from the IoT and Machine Type Communications

(MTC) have a largely varying user pattern which typically results in a mismatch of

requirements and provided service for certain time frames (over-provisioning). This highly

fluctuating traffic pattern of network subscribers can be exploited in order to save energy.

Therefore, we turn to the question of how to better match the actual traffic demand with an

already deployed cellular network. We present methods how to select network components

and deactivate parts of the network that are redundant and not needed to provide the

required QoS. Thus, we save energy by deactivating parts of the network. The identification

of the set of network components consuming the least amount of energy while providing

exactly the needed QoS to the users in the network turns out to be a nontrivial problem.

We develop efficient algorithms that are able to find good solutions in reasonable time

making them amenable to near-realtime implementation. In this chapter we further provide

variants of our algorithm that can be applied to different types of networks. Starting with

single radio access technology (single-RAT LTE) networks we also show the application

to a multi radio access technology (multi-RAT) network consisting of UMTS and LTE

cells of different size with overlapping coverage. Whereas these algorithms are optimizing

snapshots of a network and their results are valid for a certain time period after which the

algorithm will have to produce a new valid solution, we also take into account the capability

of user devices to buffer data for applications like video streaming. This work stream uses

ideas from anticipatory scheduling to find a suitable resource allocation schedule over

time that allows for the use of a set of network elements consuming the least amount of

energy over time. The proposed algorithms have a theoretical justification for their good

performance which is outlined and empirically shown by simulations. Thereby, we provide

insight to the performance of our algorithms in several scenarios and network deployments.

It is shown that a significant amount of energy can be saved, when our algorithms are
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applied in cases where there is a significant mismatch of provided and required QoS.

The results presented in Chapter 3 are partially published in [PCS12, PCS13, CPS+13b,

PCS16, PS16].

In Chapter 4 the framework of standard interference functions is introduced to compute

more accurately the cell loads in wireless communication systems. We start by showing how

the framework of standard interference functions can be used to answer questions of network

feasibility. When reducing the active set of network components in an uncoordinated

way a network can become infeasible in the sense that some network element does not

have enough resources to serve all users associated with it. The framework of standard

interference functions provides a set of tools that serve as the basis for our algorithms to

identify such situations in a computationally efficient manner. In addition, the developed

algorithms provide indications for network planners which network elements are overloaded

in a given infeasible network setting. Thus, these network elements need to be equipped

with more resources in order to arrive at a stable and feasible network state. Results from

literature have shown that it is optimal with respect to the transmit power consumption if

a network is operated at a point where all network elements are fully loaded. Motivated by

these results, we develop an algorithm for transmit power planning targeting a feasible

network state with maximum load at network elements. Being based on the framework

of standard interference functions, our developed algorithm is of low computational

complexity and shows good performance in a realistic simulation scenarios. With the tools

for accurate cell load calculation at hand, we enhance our topology control algorithms

for energy savings from Chapter 3. This combination resolves some shortcomings of our

topology control framework leading to conservative results that did not exploit the full

energy savings potential. The combination of interference calculus with the topology

control optimization leads to efficient heuristics that enable feasible network topologies

saving even more energy. This chapter is concluded with an extension of the studied

approach towards the identification of beneficial network element configurations. Based on

intuitive observations we derive an alternating algorithm that selects a configuration for

all network elements in the network which support the developed energy saving algorithms.

The discussed results of this chapter were in part published in [CPS13a,

CPS14].

We summarize the main findings and conclusions in Chapter 5.

Further results that are not included in this thesis

During the course of my research I came across a variety of different fields. For the

reason of consistency of this thesis some material has not been included. Nevertheless for

completeness following is a brief description of the publications that are not included in

this thesis.

• Our publication [KPS11] addresses the problem of multicast transmit beamforming
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for the multiple antenna multicast fading channel. We propose to use coded trans-

mission at the application layer over a number of channel realizations and design

a communication scheme that achieves good scaling of the achievable rate for the

increasing number of users. Whereas to other multicast schemes without coding do

have an achievable rate that does decrease to zero, the proposed scheme has a non-

vanishing achievable rate. Therefore, we can improve the rate compared to so-called

max-min transmit beamforming schemes. The publication presents algorithms to

solve the involved beamforming problem and shows its performance by means of

empirical evaluation.

• In [KPS12] we address beamforming problems for multi-group multicast communi-

cation. In such communication scenarios the performance is usually limited by the

weakest link within a multicast group and by the interference from other transmissions.

Therefore, we propose a communication scheme, in which application layer coding

over a number of channel realizations is used. We formalize a transmit beamforming

problem with the goal of maximizing the weighted sum of rates achieved in each group.

It is shown that the optimal transmit strategy depends only on the current channel

realization. Furthermore, we show that the utility-based power control framework can

be generalized to the case of multi-group multicast, which allows for the application

of iterative beamforming algorithms. Building upon this framework, we propose

iterative beamforming algorithms which can be applied in scenarios both with and

without additional coding at the application layer.

• In [PCSP12] we address the problem of reconstructing interference patterns in UMTS

and LTE networks. A novel cognitive interference identification technique is presented

which uses a priori system knowledge, limited user information and sparse pathloss and

interference measurements for kernel-based machine learning techniques. It is shown

that the obtained information can be used as an input to multi-RAT optimization

procedures aiming at energy efficient network configurations.
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2 Scaling of Infrastructure for Large

Wireless Networks

In this chapter, we give an insight in the growth behavior of wireless communication

systems when the number of users tends to infinity. For this purpose we make a scaling

law analysis of various performance metrics (such as throughput and energy consumption)

as a function of the number of users having some QoS requirements. Our analysis concerns

hybrid wireless networks where ad hoc communication is supported by infrastructure nodes1.

Such hybrid networks include communication protocols in the sense of classical cellular

communication, i.e., when the used communication protocol restricts to cellular only, as

well as future communication protocols of 5G where cellular communication is for example

combined with direct D2D communication in a multi-hop fashion.

In the context of network planning, such a scaling analysis provides valuable guidelines for,

among others, the following questions:

• How fast should the number of infrastructure nodes grow with the number of users

so that the provision of the desired performance to every user is feasible?

• How will the network energy consumption scale for a certain growth in the number

of infrastructure nodes?

To address these questions, we present an information-theoretic framework that assesses

the relationship between network growth and energy consumption in infrastructure-based

wireless communication networks. This framework will help to shed light on the question of

how the energy that is needed to operate an infrastructure-based wireless communication

system given a certain traffic demand is scaling when scaling up the network. The scaling

law analysis addresses the problem of the wireless infrastructure growth rate: As the

number of users and traffic demand increase, the question is how fast the number of

infrastructure nodes needs to grow (with the number of users) so that the provision of the

desired performance to every user is feasible.

The scaling law analysis does not address the question of how many infrastructure nodes are

necessary (and sufficient) for achieving an optimal tradeoff between throughput and energy

consumed per transmitted information bit. This is a longstanding and fundamental problem

in information theory that is far from being solved. In fact, even the information-theoretic

1In this chapter we refer to infrastructure nodes as nodes that are interconnected via a high capacity
(wired) backbone network and are no source of data; thus they only act as relays. In classical cellular
networks such infrastructure nodes are called base stations.
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capacity of infrastructure-based wireless communication networks, such as cellular wireless

networks, has been an open problem for more than fifty years. This is despite the fact

that information theory makes a lot of assumptions such as neglecting dynamicity, energy

consumption of hardware, bursty traffic and signaling overhead. It is currently not possible

to exactly estimate the minimum average energy that is required for reliable wireless

communication. More precisely, for an established network topology with a fixed number

of infrastructure nodes (e.g. base stations) and wireless users attempting to transmit

their data to the infrastructure nodes at some given rates over a common bandwidth, the

minimum average energy for transmission of one information bit at some given probability

of error is not known.

Scaling law analysis is usually carried out in random wireless networks to arrive at

generally valid statements that are not limited to a particular network deployment. In

such networks, each node has a randomly chosen destination. Moreover, positions of the

users over some area in the plane are random variables drawn from a predefined (two-

dimensional) stochastic process. The performance measure of interest is therefore a random

variable whose probability distribution depends on this stochastic process. An immediate

consequence of this is that the scaling laws of random wireless networks must be analyzed

using tools from probability theory. The scaling law becomes increasingly accurate when

the number of users grows and is asymptotically exact; therefore the results presented in

this chapter are of asymptotic nature.

We proceed with a summary of existing results in the area of scaling laws for throughput

capacity in wireless networks. After reviewing fundamental results about the throughput

capacity of random networks and the tradeoffs between throughput capacity, mobility,

and delay, we continue presenting our main contribution to the topic of hybrid wireless

networks.

2.1 Background and contribution

2.1.1 Notation

We use the Big-O notation to classify the behavior of functions in the asymptotic

regime.

Given two functions f, g : N→ R we say that

• f is asymptotically upper bounded by g for

f ∈ O(g)⇔ lim
n→∞

f(n)

g(n)
<∞.

• f is asymptotically lower bounded by g for

f ∈ Ω(g)⇔ 0 < lim inf
n→∞

f(n)

g(n)
≤ ∞.
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• g is a strict asymptotic upper bounded for f for

f ∈ o(g)⇔ 0 < lim sup
n→∞

f(n)

g(n)
= 0.

• g is a strict asymptotic lower bound for f for

f ∈ ω(g)⇔ lim
n→∞

f(n)

g(n)
=∞.

• g is an asymptotically tight bound for f for

f ∈ Θ(g)⇔ f ∈ O(g) and g ∈ O(f).

2.1.2 Related work

The landmark paper [GK00] analyzes the information-theoretic capacity in wireless ad hoc

networks (infrastructure-less networks) in the asymptotic regime (i.e. large-scale wireless

networks). The main result of the study is that the throughput capacity of an arbitrary

network with n wireless nodes2 communicating in an ad-hoc fashion is at most Θ
(

c√
n

)
,

where c > 0 is a constant that depends on system parameters like area, bandwidth, power

constraints and the number of antenna elements. In arbitrary networks nodes are optimally

placed and the communication has optimal characteristics (traffic pattern and transmission

range). For random networks the order of the throughput capacity provided to each node

is only Θ
(

c√
n logn

)
. These results give rise to the following fact

Fact 1 (Vanishing Throughput). The throughput per node in a wireless ad-hoc network

scales at most as Θ
(

c√
n

)
for some positive constant c ∈ R++, and thus vanishes as the

number of nodes n increases to infinity.

The analysis of [GK00] together with subsequent works (e.g. see [GK03]) show that the

main limiting factor in the asymptotic regime is interference which is the result of three

underlaying assumptions made by [GK00].

Assumption 1. The considered wireless ad-hoc network is static and wireless nodes are

stationary (do not move).

Assumption 2. All wireless nodes are equipped with standard air interfaces that treat

residual interference as noise.

Assumption 3. Communication is performed in a wireless multi-hop manner using only

other wireless nodes to relay the traffic. In other words, there is no infrastructure support.

With the goal to stabilize the per node throughput (i.e. Θ(1)) in the asymptotic regime,

the subsequent work has loosened Assumption 1-3.

2Users are usually termed wireless nodes. We adopt this notion.
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The effect of having mobile users in a wireless ad hoc network, and therefore lifting

Assumption 1, is analyzed in [GT02, NM05]. The work in [GT02] analyzes an infrastructure-

less wireless network with mobile nodes and interference treated as noise. It is shown that a

stable per node throughput can be achieved (i.e. Θ(1)) when exploiting the nodes mobility.

A two-hop relaying scheme that allows transmissions only when nodes are close to each

other is presented that achieves Θ(1) for an i.i.d mobility model of each node. However,

the improvement in throughput comes at the cost of potential excessive/unbounded delay.

The throughput-delay tradeoff is further studied in [NM05], where a capacity-achieving

scheme is presented that reduces the delay by sending redundant packets along multiple

paths to the destination. However, it was also shown that when exploiting mobility there

is a necessary delay-rate tradeoff: delay
rate ≥ O(n). We conclude that exploiting mobility of

nodes may be a viable method to improve the throughput but unfortunately many wireless

applications have strict delay constraints.

By dropping Assumption 2, we can make nodes exploit, shape, or reject interference through

advanced multi-user transmission and reception techniques. [GK03] presents a scheme

achieving Θ(1) by employing zero-forcing beamforming under perfect channel knowledge

at all nodes. Using a minimum separation distance and coherent multistage relaying with

interference subtraction is proposed in [XK04] to improve the throughput scaling. [OLT07]

also shows the benefits of hierarchical cooperation and other multi-user communication

strategies motivated by information-theoretic results on relay, multiple-access and broadcast

channels. The benefit of interference-shaping techniques such as interference alignment to

support non-vanishing throughputs is demonstrated in [CJ08]. Such schemes usually assume

global channel knowledge which is very restrictive for today’s communication networks.

We can summarize, that results have only been obtained for special networks with optimal

conditioning (arbitrary networks) or they are not easy to be implemented due to obstacles

in real systems, like high signaling and coordination requirements or the lack of perfect

synchronization. It is worth noting that even if such interference treatment schemes cannot

further improve the per-node throughput in the asymptotic regime, they can significantly

improve the throughput for a finite number of users (see Figure 2.1). Even if such physical

limits do exist and sophisticated strategies like the hierarchical cooperation cannot further

improve the per-node throughput in the scaling limit sense, these strategies generally could

be considerably beneficial in networks of any finite size.

The remaining pillar to overcome the problem of vanishing throughputs is to use an

underlaying infrastructure, i.e. base stations (Assumption 3). In fact, it has been shown

in [KT03, LLT03, AK04, ZdV05] that in hybrid networks, where m(n) infrastructure

nodes support the ad hoc communication of n wireless nodes, the throughput capacity

can be significantly improved. In particular, for random hybrid networks it was shown in

[KT03] that in a setting where the number of wireless nodes per infrastructure node is

bounded above and all nodes use a fixed transmission range, the throughput capacity can

be improved to Θ
(

1
logn

)
from Θ

(
1√

n logn

)
for pure ad-hoc networks [GK00]. Furthermore,

it was proven that in such scenarios, where no power control is employed a per node

12
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Figure 2.1: The throughput capacity in wireless networks with standard air interfaces
scales with c

√
1/n, where c is a constant depending on system parameters

and n denotes the number of nodes. Relaying and employing multiple
antenna systems cannot improve the (asymptotic) throughput order but
they can improve the constant c to shift the throughput capacity curve
upward (dashed line).

throughput of Θ(1) cannot be obtained. In turn, [AK04] shows that the throughput of

a constant fraction of wireless nodes in a random hybrid network can be improved from

Θ
(

1
logn

)
to Θ(1) with high probability when allowing for power control and using a slotted

operation. [LLT03] considers arbitrary hybrid networks where wireless nodes are randomly

placed but infrastructure nodes are arbitrarily placed according to a predefined pattern. It

is shown for two routing strategies that if the number of infrastructure nodes (base stations)

scales at least as Ω(
√
n), then adding new base stations results in a linear throughput

increase compared with the pure ad-hoc communication. Even more interestingly, for an

infrastructure node scaling of Θ(n) a constant per node throughput of Θ(1) for all nodes

is achievable.

Therefore, the following sufficient condition for non-vanishing throughput in arbitrary

hybrid networks can be derived.

Fact 2 (Stable Throughput). Non-vanishing throughput for all wireless nodes is possible

provided that the number of infrastructure nodes scales linearly with the number of wireless

nodes m ∈ Θ(n) → λ(m,n) ∈ Θ(1). In such a case, the throughput capacity per wireless

node is said to be of order Θ(1), which means that the per-user throughput does not vanish

asymptotically because it is of the same order as any constant function.

In other words, for the per node throughput to be non-vanishing the number of infrastructure

nodes should be as high as possible; optimally the same number of infrastructure nodes as

wireless nodes. The number of base stations needs to grow linearly with the number of

users (personal base stations) and power control is needed.

A concise overview of scaling regimes according to some infrastructure node scaling in
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Figure 2.2: Any constant function belongs to Θ(1), while the remaining functions
tend to zero at different rates and are therefore of different orders. In
particular, we have o

(
1√

n logn

)
⊂ o

(
1√
n

)
⊂ o

(
1

logn

)
.

arbitrary hybrid networks is presented in [ZdV05]. The linear scaling of throughput above

some threshold of infrastructure node scaling is confirmed. In addition, an upper bound

for the throughput scaling is presented originating from the used scheme to form source

destination pairs. In more detail, it is shown, that with some positive probability there

exists at least one node which is selected as an intended receiver by Θ(log n) wireless

nodes leading to an upper bound in throughput of Θ( 1
logn). In [ZdV05] it was shown

that without power control the asymptotic throughput capacity can be separated in three

different scaling regimes depending on the scaling of infrastructure nodes m(n). More

precise, for an infrastructure node scaling of m ∈ O
(√

n
logn

)
the per user throughput

is λ ∈ Θ
(

1√
n logn

)
, for m ∈ ω

(√
n

logn

)
and m ∈ O

(
n

logn

)
it is λ ∈ Θ

(
m
n

)
and for

m ∈ ω
(

n
logn

)
it is λ ∈ Θ

(
1

logn

)
. The different scaling regimes are illustrated in Figure 2.2.

The idea of densely deployed infrastructure nodes has been adopted by research activities

for future wireless networks to enhance the throughput and energy efficiency of cellular

networks at relatively low operational costs [HKD11]. It is envisioned that small and

low cost base stations form small cells to provide access by using short-distance links

[OBB+14].

Accompanied with the benefits of a high density of future wireless networks is the increase

in capital and operational costs. It is known that a significant part of the costs for

operating a wireless communication network lies in the energy costs for transmission

energy and operation of infrastructure [CZB+10]. Therefore, an important question is the

following: How dense do base stations (and other infrastructure nodes having access to a

wired backhaul network) need to be deployed in order to ensure the desired throughput-cost

tradeoff?

We are interested in the energy efficiency in such wireless communication systems with

infrastructure support. Classically, the energy efficiency of communication systems with

14



2.1 Background and contribution

finite energy constraints is understood to be the amount of energy needed to transmit a

finite number of bits under a given error probability. In literature there are two different

approaches towards investigating the energy efficiency. The work [Gal87] and also [GW02,

p.15] are interested in the maximum rate per energy and refer to the energy efficiency as

the capacity per unit energy (bits per second per Joule). For information-theoretic studies

a more suitable notion has been established, namely the energy per one bit. It is defined

as the energy required to reliably transmit one bit of information at some rate [Ver02].

Using this notion of energy efficiency the minimum energy per bit for the two terminal

additive white Gaussian noise (AWGN) channel with a relay is still an open problem. A

lower bound on the transmit energy per bit required in the broadcasting case for dense and

extended large networks is established in [JKV11]. [KNG11] studies the capacity per unit

energy of large wireless networks. For Gaussian fading channels with pathloss exponent α

it is shown that in dense networks the capacity per unit area scales as Θ (n) and Θ (n) for

2 ≤ α ≤ 3 and α ≥ 3 respectively.

The main point which distinguishes our work from other studies in literature is that we

not only consider the energy radiated by the transmitters but also incorporate the energy

consumption of hardware (e.g. for cooling, power amplifiers or signal processing). With this

compound notion of energy consumption we derive the energy required to reliably transmit

one bit of information in a hybrid ad hoc network. Along those lines our work will contribute

to a better understanding of the connection between approximate throughput scaling and

energy efficiency of large wireless networks employing infrastructure nodes. Moreover, it will

enable us to give justified suggestions for large wireless communication networks that will

lead to increased energy efficiency. Therefore, the energy required to operate a scheme which

achieves the throughput scaling presented in [ZdV05] is investigated.

2.1.3 Main contribution

Our main contribution to the field of scaling laws for wireless communication networks is

twofold.

1. First, we use existing results from literature considering infrastructure nodes (allow-

ing to model cellular networks) [KT03, LLT03, AK04, ZdV05] and evaluate their

throughput scaling laws. We provide a simulation environment that allows to verify

the scaling results predicted by theory and to assess the speed of convergence of the

asymptotic results.

2. The second cornerstone of this chapter is the derivation of growth rates for energy-per-

bit for practical communication schemes achieving the throughput scaling laws from

literature. The novelty of our study is the incorporation of static energy consumption

that is consumed by hardware in addition to the transmit energy consumption usually

included as only source of energy consumption in other studies.

In more detail, our first observation concerns the average per connection throughput in

wireless communication networks with standard air interfaces where no advanced techniques
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such as cooperative systems, massive MIMO and interference cancellation techniques are

used, and the residual interference is treated as noise. Such networks have been identified

to have vanishing throughput in the asymptotic regime. Our analysis and simulation results

point out the following fact.

Result 1. The results of vanishing throughput in random hybrid wireless communication

systems for the asymptotic regime are already observable for a finite number of users.

Thus the problem of diminishing per node throughput is a problem to be addressed even for

smaller number of nodes.

When looking at energy consumption we are not only accounting for transmit energy but

also for static energy. Usually information theory neglects static energy consumption only

focusing on transmit energy and sometimes processing energy. We extend existing scaling

results by taking into account the static energy consumed by hardware. We try to give

an answer to the question of how the total energy-per bit spent on both transmission and

hardware scales with the number of wireless nodes for different infrastructure growth rates.

The energy consumption and energy per bit results are not of general applicability, but

we conjecture that they provide scaling laws for specific communication schemes currently

used in cellular networks such as GSM, UMTS, LTE and future 5G. In particular, we

concentrate on a particular communication scheme presented in [ZdV05] that is justified by

its close relation to practical systems. It consists of a cellular network model where users

communicate with their closest infrastructure node and a high capacity backhaul network

is used interconnecting infrastructure nodes. For such networks we have our second main

result.

Result 2. The energy-per-bit Eb(m,n) of random hybrid networks with n wireless nodes and

m(n) infrastructure nodes operating under a practical communication scheme as outlined

in [ZdV05] satisfies

Eb(m,n) ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ω
(√

n log n hM
)

m(n) ∈ o
(√

n
logn

)
,

Ω
(√

n log n hM + hBS

)
m(n) ∈ Θ

(√
n

logn

)
,

Ω
(
n
mhM + hBS

)
m(n) ∈ ω

(√
n

logn

)
,O
(

n
logn

)
,

Ω
(
log n hM + log n m

n hBS

)
m(n) ∈ ω

(
n

logn

)
,

(2.1)

with hM and hBS the static energy consumption of wireless nodes and infrastructure nodes,

respectively.

Results from literature not taking into account the hardware energy consumption of a

network have shown that the transmission energy in a hybrid network operating under a

cellular communication scheme has to decrease in order to implement an acceptable level

of interference. When incorporating the energy consumption of hardware, the total energy

consumption increases whereas the transmit throughput is at most stable resulting in a

net increase of the energy-per-bit scaling.
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Result 3. In the asymptotic regime (wireless nodes n tend to infinity), the energy-per-bit

scaling of a random hybrid network operating under a cellular communication scheme

increases without bounds.

2.2 System model

In the following, we detail on the system model that underlies our scaling analysis. We first

describe the general setup and later detail on the communication scheme that achieves the

throughput scaling.

We consider a hybrid network where ad-hoc communication is supported by infrastructure

nodes. The communication area is a disc of area size A. In our study we scale space and

thus consider the area size to be fixed. Without loss of generality we use A = 1m2. Such a

network is referred to as a dense network as opposed to an extended network where the

area A scales with the number of wireless nodes n (representing user). We place n wireless

nodes uniformly at random in the area and refer to the k-th node as Xk, k = 1, . . . , n.

Each wireless node is both source and destination resulting in n communication pairs.

Without loss of generality, we assume that Xk transmits to Xk+1 for k ≤ n− 1 and Xn

transmits to X1. Each node transmits or receives data at an arbitrary rate of W bits

per second. Additionally, there are m(n) infrastructure nodes (representing base stations)

placed arbitrarily3 in the area, that support the communication of the wireless nodes. These

infrastructure nodes are interconnected by a wired backhaul network.

Assumption 4 (Backhaul Network). The backhaul network consists of wired links with

high capacity and zero delay.

Infrastructure nodes use the same channel to communicate with wireless nodes as the

wireless nodes itself. For a concise naming we refer to the k-th infrastructure node as Xk with

k = n + 1, . . . , n + m. In contrast to wireless nodes, infrastructure nodes are neither source

nor destination of data and thus act only as relays for wireless nodes.

2.2.1 Interference model

The wireless channel is shared between all transmissions from or to wireless nodes. The

transmission from one infrastructure node to another is realized in a wired fashion such

that it is subject to no capacity and delay constraint. We adopt the protocol model and

the physical model from [GK00].

The Protocol Model employs a common transmission radius r(m,n) and uses some guard

distance ∆ > 0. Then node Xi can successfully transmit to node Xj if and only if the

following two conditions hold:

d(Xi, Xj) ≤ r(m,n) (2.2)

3The position of infrastructure nodes could, e.g. be a pre-defined pattern, independent of the realization
of the wireless node placement.
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Figure 2.3: Illustration of the definition of the Protocol Model.

and

d(Xk, Xj) > (1 + ∆)r(m,n), (2.3)

where Xk is any other node simultaneously transmitting as Xi; d(Xi, Xj) denotes the

Euclidean distance between Xi and Xj (cf. Figure 2.3).

In the Physical Model we suppose that all nodes choose a common power level4 P and the

channel follows a distance dependent path loss model with path loss exponent α > 2; i.e.

the received power at distance d is given by

PRX(d) =
P

dα
. (2.4)

Then the transmission from node Xi to node Xj is successful if and only

if
P

d(Xi,Xj)α

N0 +
∑

k∈T
P

d(Xk,Xj)α

≥ β, (2.5)

where T is the set of nodes transmitting at the same time, N0 is noise power and

β > 0 is some constant specifying the SINR requirement at each node (cf. Figure 2.4).

The models are interchangeable under certain conditions. More precisely, the results for

the protocol model can be carried over to the physical model by choosing ∆ to satisfy (cf.

[GK00])

(1 + ∆)2 >

(
2

(
cβ

(
9 +

3

α− 1
+

6

α− 2

)) 1
α

− 1

)2

. (2.6)

for sufficiently large P and a positive constant c not depending on n or m. If a transmission

is successful, the source node can transmit W bits per second to its corresponding receiving

node. For simplicity we use W = 1. The data may be transmitted directly to its destination

4This assumption will simplify equations in the following but is no limitation to the approach.
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Figure 2.4: Illustration of the definition of the Physical Model.

node or in a multi-hop fashion, routing the data message through several wireless or

infrastructure nodes.

2.2.2 Definition of throughput and energy-per-bit

For any communication network, including ours, there exists a feasible throughput. The

following definitions have also been used by [GK00].

Definition 3 (Feasible Throughput). Let n denote the number of wireless nodes in the

system. A per-node throughput of λ(n) is said to be feasible if there exists a communication

scheme that allows, for each node, to transport λ(n) bits per second on average to its

destination node.

The scaling analysis carried out in this study is done for a class of random networks

where wireless nodes are randomly located according to some given distribution; i.e.,

independently and uniformly at random. Source-destination communication pairs are

as well chosen from a given random distribution. Hence, probabilistic tools are used to

analyze such networks. In particular we introduce the notation of the throughput capacity

scaling.

Definition 4 (Throughput capacity scaling [GK00]). The throughput capacity is of order

Θ(f) (also written as λ ∈ Θ(f)) if there are (deterministic) constants c > 0 and c′ <∞
such that

lim
n→∞

P [λ(n) = cf(n) is feasible] = 1 (2.7)

lim inf
n→∞

P [λ(n) = c′f(n) is feasible] < 1. (2.8)
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So, in words, we have throughput capacity scaling of order λ ∈ Θ(f) if λ(n) is equal to

f(n) up to a multiplicative constant with high probability provided that the number of

users is sufficiently large.

In Section 2.2.1 we will elaborate on our communication scheme that is used to achieve a

particular throughput scaling and derive the corresponding energy-per-bit scaling. This

quantity measures the amount of energy that is required to reliably communicate one bit of

information at a certain transmission rate. In contrast to most work in literature, in addition

to the transmit energy radiated by antennas we account for the energy consumption of

hardware that is consumed as long as the node is turned on. For this purpose we adopt a

simple, but commonly used energy consumption model [ABG+10]. The energy consumed

by hardware components at infrastructure nodes is denoted by hBS ∈ R+ whereas wireless

nodes have a static hardware energy consumption of hM ∈ R+. The chosen transmit

power at node Xk is denoted by PTX
k (m,n) ∈ R++. This gives us the average total energy

consumption of the network.

Definition 5 (Aggregate Network Energy Consumption). Given a particular communica-

tion scheme, the aggregate total energy consumption EΣ(m,n) is given by

EΣ(m,n) =
n∑

k=1

(
τkP

TX
k (m,n) + hM

)
+

m+n∑
k=n+1

(
τkP

TX
k (m,n) + hBS

)
, (2.9)

where τk is the average fraction of time that node k is transmitting.

Now, for a particular communication scheme achieving a total throughput T (m,n) for n

wireless nodes with the aggregate energy consumption EΣ(m,n), we say that the energy-

per-bit scaling of

Eb(m,n) =
EΣ(m,n)

T (m,n)
(2.10)

is feasible.

Definition 6 (Achievable Energy-per-Bit). An energy-per-bit scaling of order Eb(m,n) ∈
Θ(f(m,n)) is achievable if there is a (deterministic) constant c > 0 such that

lim
n→∞

P [Eb(m,n) = cf(m,n) is feasible] = 1. (2.11)

Definition 7 (Energy-per-Bit scaling). The energy-per-bit scaling is of order Eb(m,n) ∈
Θ(f(m,n)) if there are (deterministic) constants c <∞ and c′ > 0 such that

lim
n→∞

P [Eb(m,n) = cf(n) is feasible] = 1 (2.12)

lim inf
n→∞

P [Eb(m,n) = c′f(n) is feasible] < 1. (2.13)
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2.3 Throughput scaling

In the following we review the results of [ZdV05] on the throughput order capacity under

the protocol model which will serve as a basis for the derivation of the energy-per-bit

scaling behavior.

The throughput capacity per node in a pure ad hoc network under a random traffic pattern

exhibiting no spatial locality scales with Θ
(

1√
n logn

)
[GK00]. It has been lined out that

placing infrastructure nodes can be beneficial for the throughput order capacity. To this

end, three different regimes for the infrastructure node scaling have been identified, i.e.

the number of infrastructure nodes m(n) deployed depending on the number of wireless

nodes n. In order to refer to the three different scaling regimes we use the following

definition.

Definition 8. Infrastructure node scaling. The number of infrastructure nodes m scales

with the number of wireless nodes n according to

m(n) = Θ

((
n

log n

)b
)
, (2.14)

where b is a constant determining the regime according to

b =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
−∞, 12

]
regime i)(

1
2 , 1
]

regime ii)

(1,∞) regime iii).

(2.15)

Now the following corollary is an immediate consequence of [ZdV05, Theo-

rem 2].

Corollary 1. The aggregate system throughput in a random hybrid network under the

protocol model satisfies

T (m,n) ∈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O
(√

n
logn

)
b ≤ 1

2

O
((

n
logn

)b)
b ∈

(
1
2 , 1
]

O
(

n
logn

)
b > 1.

(2.16)

Proof. The per node throughput of a random hybrid network is of order

λ(m,n) ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O
(

1√
n logn

)
regime i)

O
(
m
n

)
regime ii)

O
(

1
logn

)
regime iii)

(2.17)

in [ZdV05, Theorem 2]. The result now follows with Definition 8 for the number of
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Figure 2.5: System area and regular base station placement with radius 1√
m

.

infrastructure nodes m and having n wireless nodes in the system with a per node

throughput of (2.17).

In the following, we briefly sketch how the above throughput scaling laws can be achieved

in the different regimes. The schemes presented below are just examples and it is not clear

whether there are other schemes achieving the same throughput capacity scaling. Note that

these capacity scaling laws are for a certain class of wireless networks and not of general

nature.

In regime i) the per node throughput is equivalent to the throughput order capacity of

pure ad-hoc networks proven by [GK00] and hence a communication scheme using ad-hoc

communication only can achieve λ(m,n) ∈ O
(

1√
n logn

)
.

A scheme which achieves the capacity scaling in regime ii) is as follows. The communication

area is divided by a hexagonal tessellation with a cell radius of ρ(m,n) = 1√
m

(see Figure

2.5). Each cell has an infrastructure node in its center and each wireless node is associated

with the infrastructure node closest to it. Transmission time slots are divided into uplink

phase and downlink phase. The uplink phase is reserved for wireless nodes transmitting to

associated infrastructure nodes. In the downlink phase infrastructure nodes transmit to

wireless nodes in corresponding cells. In line with the protocol model, a guard interval ∆ is

chosen which translates to a further division of the cell activity. This can be referred to

as the cell activation pattern and a practical implementation is a conventional frequency

reuse pattern (note that the activation pattern can equivalently be implemented by using

different sub-channels)5. See Figure 2.6 for a reuse 3 example which is also used in our

5More generally, as described in [GK00], the activation pattern corresponds to a coloring of the graph
modeling the neighboring cell structure using a constant number of colors.
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Figure 2.6: Cell activation (or frequency reuse) pattern using three different activation
slots (or frequencies).

simulations and which implements a guard distance of ∆ = 1. Additionally, infrastructure

nodes implement Round Robin to serve their wireless nodes in both phases. Messages are

routed with two wireless hops, i.e. wireless nodes transmit to the closest infrastructure node

that forward the message to the infrastructure node closest to the destination node (using

its wired connection). The infrastructure node sends the message to its final destination

node wirelessly. To ensure connectivity of all wireless nodes a transmission radius r is used

for the protocol model which satisfies (cf. [ZdV05, Proposition 1])

r(m,n) ∈

⎧⎪⎨⎪⎩
Ω

(√
logn
n

)
if m ∈ o

(
n

logn

)
Ω
(

1√
m

)
if m ∈ Ω

(
n

logn

)
.

(2.18)

In order to assure that each wireless node is able to communicate directly with its closest in-

frastructure node we use a transmission radius of (cf. [ZdV05, Fact 2])

r ∼ 1√
m
. (2.19)

Along the same line we have to specify a transmission power PTX for the physical model.

It is chosen as

PTX ∼ 1√
m

α (2.20)

at each node. The proportionality factor depends on the SINR requirement β and on the fre-

quency reuse pattern that is employed, which in turn specifies the guard distance parameter

∆. Further details on the exact value are provided in Section 2.6.

For an infrastructure node scaling as in regime iii) we observe that the throughput order
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capacity scales as for an infrastructure node growth of Θ
(

n
logn

)
even if the number of

infrastructure nodes scales faster. One implication is that the infrastructure nodes deployed

additionally in regime iii) to the ones already deployed in regime ii) are not beneficial for

the throughput order capacity. Hence, the scheme which achieves the throughput order

capacity of λ(m,n) ∈ O
(

1
logn

)
is the same as for regime ii) with only m′(n) = n

logn

infrastructure nodes used out of the m(n) available ones.

2.4 Scaling of energy-per-bit

To study the scaling of energy-per-bit, we show first how the aggregated energy consumption

scales with increasing number of nodes. For this purpose we use the physical model from

Section 2.2.1 which gives us the energy used for transmission and use (2.6) in order to

carry over the results from the protocol model to the physical model. To ensure a minimum

received power level in every cell a simple consequence from (2.4) is

PTX (m,n) ∼ r(m,n)α, (2.21)

which is used for all nodes. More precisely, we use the minimum connectivity range

(2.19).

With the achievable schemes for the three different regimes described in Section 2.3

and the notion of energy-per-bit (2.10) we are now able to derive the main result of

this chapter: the achievable energy-per-bit scaling for the three infrastructure scaling

regimes.

Theorem 1. The energy-per-bit growth rate Eb(m,n) of a random hybrid network with

m(n) ∈ O
(√

n
logn

)
infrastructure nodes operating under the protocol model and the ad-hoc

communication scheme described in Section 2.3 satisfies in the asymptotic regime

Eb(m,n) ∈

⎧⎨⎩Ω
(√

n log n hM
)

b < 1
2

Ω
(√

n log n hM + hBS

)
b = 1

2 .
(2.22)

Proof. By definition of regime i) there are m(n) =
(

n
logn

)b
, b ≤ 1

2 infrastructure nodes

deployed consuming hBS amount of static energy each. Wireless nodes consume hM of

static energy in addition to the energy spent when transmitting with power level of

PTX =
√

logn
n

α

. Definition 5 gives the aggregate total energy consumption as

EΣ(m,n) = n

(
τ

√
log n

n

α

+ hM

)
+

(
n

log n

)b

hBS. (2.23)

Note, that infrastructure nodes spend no energy on transmission since they do not partici-

pate in the communication of regime i). However, since they are deployed, they consume
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some amount of static energy. Using (2.23) with τ = 1s and (2.16) for b ≤ 1
2 we obtain the

energy-per-bit scaling of

Eb(m,n) ∈
n

(√
logn
n

α

+ hM

)
+
(

n
logn

)b
hBS

O
(√

n
logn

)
= Ω

(
n

(
log n

n

) 1+α
2

+ hM
√
n log n + hBS

(
log n

n

) 1
2
−b
)
.

(2.24)

(2.25)

To find the dominant factor we analyze each summand individually. By applying l’Hopital’s

rule and noting that α > 2 we have

lim
n→∞

n

(
log n

n

) 1+α
2

= 0. (2.26)

Furthermore, we have

lim
n→∞

(
log n

n

) 1
2
−b

=

⎧⎨⎩0 b < 1
2

1 b = 1
2 ,

(2.27)

since 1
2 − b ≥ 0. Thus, the term for hardware energy consumption of wireless nodes

dominates the scaling behavior in the asymptotic regime and we obtain the scaling stated

in the theorem.

The following corollary is an immediate consequence from Theorem 1.

Corollary 2. Without the consideration of the static energy consumption of mobile nodes

hM and infrastructure nodes hBS, the energy-per-bit scaling tends to zero in the asymptotic

regime.

Proof. With no static energy consumption hM = hBS = 0 the energy-per-bit scaling in

(2.25) changes to

Eb(m,n) ∈ Ω

(
n

(
log n

n

) 1+α
2

)
, (2.28)

which tends to zero for n→∞ shown in (2.26).

Theorem 2. The energy-per-bit growth rate Eb(m,n) of a random hybrid network with

infrastructure node scaling according to (2.14) in regime ii) and iii), that operates under

the protocol model and the cellular communication schemes in Section 2.3 satisfies in the

asymptotic regime

Eb(m,n) ∈

⎧⎪⎪⎨⎪⎪⎩
Ω

(
n
(
logn
n

)b
hM + hBS

)
1
2 < b ≤ 1

Ω

(
log n hM +

(
n

logn

)b−1
hBS

)
b > 1.

(2.29)

Emmanuel Pollakis 25



2 Scaling of Infrastructure for Large Wireless Networks

Proof. Recall that m(n) =
(

n
logn

)b
with b > 1

2 . The cellular communication scheme requires

a successful end-to-end communication to consist of exactly two wireless hops with transmit

power PTX = 1√
m

α =
(
logn
n

) bα
2

; one from source node to its closest infrastructure node

and one from the destination’s closest infrastructure node to the destination. With n

wireless nodes and m infrastructure nodes we have the aggregate energy consumption for

the cellular scheme as

EΣ(m,n) = n

(
2

1√
m

α τ + hM

)
+ m hBS

= n

(
2

(
log n

n

) bα
2

τ + hM

)
+

(
n

log n

)b

hBS.

(2.30)

(2.31)

According to Corollary 1 the aggregate throughput scaling is different depending on b

resulting in different scaling regimes. We first show the result for 1
2 < b ≤ 1. Using this

and (2.30) with τ = 1s in (2.10) we obtain the energy-per-bit scaling as

Eb(m,n) ∈
n
(

2 1√
m

α + hM

)
+ m hBS

O (m)

= Ω

(
n

m

(
2

1√
m

α + hM

)
+ hBS

)
= Ω

(
2n

(
log n

n

) bα
2
+b

+ hM n

(
log n

n

)b

+ hBS

)
.

(2.32)

(2.33)

(2.34)

Analyzing each summand we have limn→∞ n
(
logn
n

)b
= limn→∞ n1−b(log n)b = ∞ since

1− b ≥ 0 for 1
2 < b ≤ 1 and limn→∞ 2n

(
logn
n

) bα
2
+b

= 0 bearing in mind that α > 2 and
1
2 < b ≤ 1. This gives the result of the theorem for 1

2 < b ≤ 1.

Now, if b > 1 the aggregate throughput is T (m,n) ∈ O
(

n
logn

)
and thus

Eb(m,n) ∈
n
(

2 1√
m

α + hM

)
+ m hBS

O
(

n
logn

)
= Ω

(
log n

(
2

(
log n

n

) bα
2

+ hM

)
+

(
n

log n

)b−1

hBS

)
.

(2.35)

(2.36)

We can see that limn→∞ log n
(
logn
n

) bα
2

= 0 which yields the result of the theorem for

b > 1.

The question remains, for which infrastructure node scaling we obtain the best energy-

per-bit scaling. In order to answer this question we search for the value of b yielding the

energy-per-bit scaling with the slowest growth rate.

Proposition 1. In a random hybrid network under the protocol model and using the ad-hoc
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and the cellular communication scheme for b ≤ 1
2 and b > 1

2 , respectively, the energy-per-bit

scaling has the slowest growth rate for b′ = 1.

Proof. With the energy-per bit scaling from Theorem 1 and Theorem 2 we have

b′ = argmin
b∈R

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
n log n hM for b < 1

2
√
n log n hM + hBS for b = 1

2

n
(
logn
n

)b
hM + hBS for 1

2 < b ≤ 1

log n hM +
(

n
logn

)b−1
hBS for b > 1.

(2.37)

First we observe that n
(
logn
n

)b
hM + hBS is monotonically decreasing for fixed n with

increasing parameter b resulting in faster decrease in the scaling behavior for larger values

of b. Similarly, we see that log n hM +
(

n
logn

)b−1
hBS is monotonically increasing for fixed n

with increasing b which in turn leads to a faster increase of larger values of b. Now we can

show that limb→1 log n hM +
(

n
logn

)b−1
hBS = limb→1 n

(
logn
n

)b
hM + hBS = log nhM + hBS.

We also have limb→ 1
2
n
(
logn
n

)b
hM +hBS =

√
n log n hM +hBS which is the scaling function

for b = 1
2 . We complete the proof by noting that

√
n log n hM + hBS ≥ n

(
logn
n

)b
hM + hBS

for b ≥ 1
2 in the asymptotic regime (large n).

2.5 Discussion of the results

We have derived the energy-per-bit scaling for two communication schemes achieving the

throughput order capacity of (2.16) depending on the infrastructure growth rate. In all

cases the terms accounting for transmit energy consumption tend to zero for large n.

The densification of infrastructure nodes results in a reduced transmit radius, which in

turn, allows for a decreased transmit energy. This decrease is faster than the decrease in

throughput and hence gives the observed result.

In contrast, the static energy consumption of hardware is not decreasing with the in-

crease in infrastructure nodes. The derived energy-per-bit scaling for the schemes used

in the three regimes is depicted in Figure 2.7. For better illustration we have provided

a plot with linear axes in Figure 2.7(a) and a second plot with logarithmic axes in Fig-

ure 2.7(b).

Unfortunately, the energy-per-bit scaling tends to infinity with increasing number of wireless

nodes n in all three regimes, but for a finite number of nodes there are significant differences

between them. The benefits of deploying infrastructure nodes is evident from the comparison

of the energy-per-bit scaling for an increasing infrastructure node growth rate. When the

number of infrastructure nodes relative to the number of wireless nodes is increased the

energy-per-bit growth rate is decreased. In fact, the best energy-per-bit scaling is achieved
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Figure 2.7: Illustration of the Energy-per-Bit scaling Eb(m,n) for different infras-
tructure growth rates.

for b = 1 where the infrastructure growth rate is m(n) = n
logn . When the infrastructure

nodes scale faster (b > 1) the energy-per-bit scaling can not be improved, because the

additional infrastructure nodes are not needed in the used communication scheme and

thus, do not contribute to the communication6. From an energy-per-bit perspective it

is hence suggested to implement an infrastructure node scaling with b = 1 resulting in

m(n) = n
logn .

Not only in terms of energy-per-bit scaling but also for a good throughput scaling using

b = 1 seems beneficial. Figure 2.8 illustrates the throughput scaling behavior for various

infrastructure growth rates. In all cases the throughput tends to zero with increasing n.

However, it can be observed that the decrease is slower, the more infrastructure nodes

there are deployed until m(n) = n
logn (b = 1) is reached where the throughput scaling can’t

be improved any more. Thus, for a finite number of nodes the deployment of infrastructure

nodes according to m(n) = n
logn will result in the best throughput performance for the

outlined schemes.

From this discussion, we conclude that the scaling behavior of the (natural cellular commu-

nication) scheme we used for deriving the achievable energy-per-bit scaling is optimal for

a choice of b = 1 both in terms of throughput and energy-per-bit values. In other words,

this suggests to use m(n) = n
logn infrastructure nodes. We remark that of course, there

might be other communication schemes that are more efficient in terms of energy-per-bit

scaling. Here, we provide achievable scaling laws and derived the optimal operating point

for a large class of schemes.

6The reason for this behavior is the upper bound in throughput identified by [ZdV05]. However, since
this result is due to the chosen way how source-destination pairs are selected, in other cases this upper
bound might be lifted.
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Figure 2.8: Illustration of the throughput per node scaling for different infrastructure
node growth rates. The y-axis is in logarithmic scale.

2.6 Numerical evaluation

In order to evaluate the theoretical statements from Section 2.3 and 2.4, we perform

simulations for several random realizations of the network. In our simulations, we focus

on regime ii), where infrastructure nodes are used. The simulation setup and the results

will be discussed in detail in the subsequent section. Our simulation scenario resembles

the cellular communication scheme presented in Section 2.3. For the purpose of varying

the infrastructure node growth rate we use (2.14) with different values of b. The resulting

infrastructure growth rate for selected values of b is illustrated in Figure 2.9. Our simulations

are performed for values of 1
2 ≤ b ≤ 1. By doing so, we obtain networks which exploit the

throughput gains from placement of infrastructure nodes as identified by [ZdV05]. For

completeness, we summarize the construction of the simulation scenario for a fixed number

of users n.

The underlying communication area is a circular area with unit area. We deploy hexagonal

cells with equal sides of 1√
m

. The infrastructure nodes are placed in the center of each

hexagonal cell that is fully contained within the unit area disc.

Remark 1. Here we differ from the scheme in [ZdV05] in the sense that we do not apply

a Voronoi tessellation to increase the service area of the outmost infrastructure nodes. We

just decrease the total simulation area to the size which is actually covered by the remaining

hexagons. This approach is reasonable because for increasing number of wireless nodes and

hence increasing number of infrastructure nodes within the unit area disc, the area which

will be removed tends to zero.

The obtained layout has been depicted in Figure 2.5. Wireless nodes are placed according to
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Figure 2.9: Illustration of different infrastructure growth rates m(n).

a random uniform distribution on the unit area disc. Recall that the actual communication

area is slightly decreased since we discard cells which are not fully contained within the

unit area disc. Thus, we also discard all wireless nodes placed outside these hexagonal

cells. This determines the actual number of wireless nodes and infrastructure nodes for our

simulation.

According to the achievable scheme we have to choose a frequency re-use pattern which

ensures the achievability of the minimum SINR β at each node. The SINR for our communi-

cation scenario using the physical model is lower-bounded by [GK00]

β >

P (m,n)
N0

rα(n) + 1

(1+∆
2 )

α
P (m,n)

N0

(
9 + 3

α−1 + 6
α−2

) . (2.38)

Together with equation (2.6) the transmit power P (m,n) can be chosen such that the results

from the protocol model carry over to the physical model. The simulated communication

scheme is the physical model from Section 2.3 and the noise power is calculated according

to N0 = k ·T ·BS ≈ 8 ·10−16W = −120.98dBm with system bandwidth BS = 200, Boltzman

constant k = 1.3807 ·10−23 and temperature T0 = 290K. The guard transmit power and the

corresponding guard interval ∆ in the protocol model is chosen according to Equation (2.6).

This choice corresponds to a frequency re-use pattern of three (as shown in Figure 2.6)

which in turn results in ∆ = 1.

Remark 2. Note, that the chosen parameter values strongly depend on the considered

scenario and will have influence on absolute values. Though the scaling behavior and trends

will not be affected by the choice as long as they are chosen according to the limitations

outlined above.
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Figure 2.10: Throughput vs. number of users for scaling of number of base stations
m(n). The solid line is the theoretical scaling function and the markers
are the actual data points obtained by simulation.

2.6.1 Throughput scaling

The scaling behavior of the throughput achieved by the cellular communication scheme is

shown for a number of wireless nodes n ∈
[
500, 106

]
. We simulate for different infrastructure

growth rates achieved by selecting b ∈ [0.5, 1] in Equation (2.14). The simulation results are

illustrated in Figure 2.10. The decrease in throughput with increasing number of wireless

nodes is shown in Figure 2.10(a). The resulting throughput values from our simulations

are represented by the respective markers, whereas the solid lines represent fitted curves of

the theoretical results from Equation (2.29). For an increase in the infrastructure growth

rate we can observe an improvement in the throughput in the finite regime as expected

by the theory. Furthermore, we can see that in the finite regime the throughput decrease

matches closely the theoretical evolution. Even for a small number of wireless nodes the

theory is matched with acceptable margins which can be seen in the detailed view in

Figure 2.10(b).

2.6.2 Energy-per-bit scaling

The energy consumption in our simulation setup follows the model defined in Definition 5.

The energy consumption parameters are chosen to be in the order of magnitude of the

chosen transmit powers for the different links and cell sizes. In particular, we choose

hMS = hBS = −120 dBm for the transmit power obtained with ∆ = 1 and c = 3.1 for

our simulations. As for the throughput scaling we apply a fitting procedure to compare

the simulation results with the theoretical findings from Section 2.4. The resulting plot

is shown in Figure 2.11. The simulation results support the theoretical findings that the

energy-per-bit growth rate increases for an increasing number of wireless nodes n and

thus, an increase in the infrastructure nodes m(n). We observe that the simulation results

closely follow the theoretical scaling curves approving the theory. We also see that for a
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Figure 2.11: Energy-per-bit in J for different regimes and number of users. Theoretical
scaling behavior shown by solid line and simulations as markers.

faster infrastructure node growth rate we can achieve better energy-per-bit scaling rates

with the slowest energy-per-bit scaling for b = 1. However, we can also identify that for

all infrastructure growth rates the energy-per-bit tends to infinity for n→∞. Thus, it is

suggested to operate the network under the proposed cellular communication scheme with

an infrastructure growth rate of b = 1→ m(n) = n
logn . The scaling behavior matches more

closely the theory for increasing number of wireless nodes n.

2.7 Conclusion

In this chapter we have presented an information-theoretic analysis for estimating the

scaling behavior of throughput and energy-per-bit in hybrid wireless communications

networks. Of particular interest is the asymptotic regime of large-scale random wireless

networks with a reasonable communication scheme in which the number of users randomly

placed over some area in the plane tends to infinity. Results from literature have shown

that the throughput per user in such networks will vanish in the asymptotic regime with

the increasing traffic demand, unless cooperation, mobility or the placement of additional

infrastructure nodes is exploited. We have highlighted the cause for those discouraging

results of vanishing throughputs. The fundamental limit is that wireless resources shared

by every node in the network which constricts the capacity. This fact causes that nodes

transmitting concurrently over the same wireless channels create mutual interference and

thereby limiting its capacity.

In order to overcome the vanishing throughput in the case of finite wireless nodes, we

showed the benefits of deploying infrastructure nodes. We argue for the infeasibility of a

linear infrastructure node scaling (m(n) = n) and highlight good alternative growth rates

for which the throughput per user moderately tends to zero. By doing so, the throughput
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regime used scheme energy-per-bit scaling per node throughput
Eb (m,n) scaling λ (m,n)

b < 1
2

multi-hop
Ω
(√

n log n hM
)

Θ
(

1√
n logn

)
ad-hoc

b = 1
2

multi-hop
Ω
(√

n log n hM + hBS

)
Θ
(

1√
n logn

)
ad-hoc

1
2 < b ≤ 1

cellular
Ω

(
n
(
logn
n

)b
hM + hBS

)
Θ

(
1
n

(
n

logn

)b)
communication

b > 1
cellular

Ω

(
log n hM +

(
n

logn

)b−1
hBS

)
Θ
(

1
logn

)
communication

Table 2.1: Energy-per-bit scaling E (m,n) and per node throughput scaling λ (m,n)
for the three different regions. To arrive at different infrastructure node

growth rates we use m(n) =
(

n
logn

)b
with b ∈ R.

performance is traded in for higher energy efficiency expressed in terms of scaling laws in the

asymptotic regime. Most of the existing scaling law results are applicable to infrastructure-

less and cellular wireless network, where each user (transmitter-receiver pair) is equipped

with a standard air interface that treats interference from other users as noise; this includes

radio access technologies of all existing telecommunications standards such as GSM, UMTS,

WiMAX and LTE. The main distinguishing point of our study to existing studies is that

we take into account the energy consumption for hardware components of all wireless

nodes including the infrastructure nodes. The analysis provides a valuable insight into

the rate at which the cellular infrastructure needs to grow to provide a good compromise

between throughput and energy efficiency. It becomes evident that the energy consumption

of hardware can not be neglect. In fact, we have shown that the energy-per-bit scaling is

governed by the static energy consumption of hardware. The obtained results for energy-

per-bit scaling Eb (m,n) and throughput scaling λ (m,n) depending on the infrastructure

growth rate are summarized in Table 2.1.

A main point of scaling laws is that they are effective in the asymptotic regime, i.e. for a

large number of wireless nodes n. Therefore, a highly relevant question is how large the

number of wireless nodes n needs to be for the scaling laws to be effective. This question

is addressed in Section 2.6.1 and Section 2.6.2. We are not aware of any publication that

provides simulations to evaluate the scaling behavior in order to see how large n should

be for the network to behave as predicted by the scaling laws. By means of simulation we

can observe, that the theoretical scaling behavior of throughput and energy-per-bit for

the asymptotic regime (n→∞) is already valid for a relatively small number of wireless

nodes in the finite regime. The scaling behavior matches the theory more closely for an

increasing number of wireless nodes n.

We see that the static energy consumption of the hardware plays a key role when investi-

gating the energy efficiency of a cellular communication network in terms of energy-per-bit.
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Therefore, future wireless communication networks will have to reduce the energy con-

sumption of hardware by i) making hardware itself more energy efficient and ii) designing

communication schemes that minimize the active time of hardware.

From these observations we can draw conclusions for large-scale networks (large values of

n)

• For a practical communication scheme the infrastructure nodes need to scale accord-

ingly to have the best energy per bit scaling.

• Under our considered communication scheme, a too large infrastructure scaling is

not beneficial in terms of energy per bit.

• More advanced radio access technologies are needed to fully exploit the potential

of cellular networks with very dense infrastructure and to achieve a better scaling

tradeoff between throughput and energy efficiency.
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This chapter addresses the energy consumption of cellular communication networks for

longer time periods in the order of several minutes or hours. We propose novel techniques to

save energy in such networks by exploiting redundancies and finding network configurations

that better match the capacity of the network to the actual demand over longer time

periods.

Networks deployed today are typically designed and operated to provide the best QoS

during peak demand. Global network parameters and the network topology are largely

static, although, as pointed out in many studies (see for instance [WMBW09, CH08,

OKLN11, AL08]), the traffic load fluctuates significantly over time and space. In a static

network setup such spatio-temporal load fluctuations lead to huge capacity surpluses at

times of low traffic demand; a generic example is depicted in Figure 3.1. These surpluses

are amenable for energy savings when adapting the provided service to the actual demand.

In order to exploit the fluctuations for energy savings, it is essential to reduce the energy

consumed by hardware and auxiliary equipment (e.g. coolers). Studies have shown that,

in typical networks with current technology, the energy consumption of base stations

exceeds 50% of the total network energy budget [HHA+11]. The largest portion of energy

is consumed by powering base station hardware and auxiliary equipment. Here, we see

large potential to save energy by temporarily disengaging redundant hardware components

of base stations or even entire base stations. Indeed, as pointed out by [OKLN11], reducing

the number of active base stations in periods of low traffic load offers a huge potential

for energy savings. It is envisioned that switching off base stations of multiple operators,

that cooperate by sharing their network equipment, can lead to a reduction in energy

consumption of up to 29% [OKLN11] in real network deployments. In the future, where we

expect the network density to grow significantly in order to meet the growing demand for

wireless access [TN12], such savings will become more pronounced.

We approach this idea and propose a novel optimization framework that considers both

the load-dependent energy radiated by the antennas and the remaining forms of energy

needed for operating the base stations. To this end, we divide the traffic demand into

multiple time slots, and we show optimization tools for a given time slot. The objective of

our optimization problem is to select network components consuming the least amount

of energy while ensuring that the data rate requirements of the users are met throughout

the coverage area. The starting point are techniques used for sparse optimization and we

develop a majorization-minimization (MM) algorithm that gives good solutions to our

energy minimization problem. The iterative algorithm is load-aware, has low computational
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Figure 3.1: Mismatch of demanded (blue) and over-provisioned capacity (black) leads
to waste of energy. Optimize provided capacity (green) to more closely
resemble actual demand and save energy.

complexity, and can be implemented in an online fashion to exploit load fluctuations on a

short time scale.

Remark 3. In contrast to many studies in literature, our metric of interest is not the

energy efficiency of cellular networks which is usually defined as C
E , where C is the network

capacity and E denotes the total energy consumption of the network. Since we are interested

in the actual demand rather than the capacity, the energy efficiency of the network is not a

suitable metric. In fractional programming, which is usually applied to maximize the energy

efficiency the capacity is to be maximized at the same time as the energy consumption is

minimized. However, our interest is in a capacity that matches the actual demand and can

be achieved with the least energy consumption.

3.1 Main contribution

The main objective of our work is the minimization of the overall energy consumption in

the downlink channel of mobile cellular networks. In contrast, to most existing approaches,

we take into account the energy consumed by hardware and auxiliary equipment. By

mitigating this shortcoming, we put ourselves in a position to boost the energy savings in

cellular networks. The underlying problem is of combinatorial nature because it essentially

amounts to selecting a subset of network components that consume the least amount of

energy, while providing the desired coverage and capacity to the users. More precisely,

motivated by [ZGY+09], we formulate a combinatorial optimization problem to find a

network configuration that saves the most amount of energy while satisfying traffic demands

expressed in terms of minimum data rate requirements. Our optimization framework takes

into account the static energy consumed by hardware as well as the load-dependent energy

spent on transmission in an optimal manner and thus, is able to balance between the

different sources of energy consumption. The constraints of our optimization problem model
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the technology specific capabilities and limitations to provide the desired QoS to the users.

This approach enables us to apply our framework to multi-RAT systems by incorporating

different RAT specific constraints and account for a broad variety of hardware energy

consumption models.

The core of our optimization problem is of combinatorial nature. In fact, we show that

the problem we pose is a special case of the standard bin-packing problem, which is

known to be NP-hard. An immediate consequence is that even problems of moderate size

are hard to solve. Thus, we follow a widely-known relaxation approach (see for instance

[Lib04]) to arrive as an intermediate step at a closely related problem that can be solved

efficiently. More precisely, we approximate the objective function by a concave function

and relax all non-convex constraints to arrive at a problem that minimizes a concave

function subject to a convex set. For this task we make use of a majorization-minimization

(MM) technique [HL04]. Thus, we first point out that in contrast to most existing work in

this field our approach has a theoretical justification for its good performance. But the

combination of these techniques has many more major advantages over existing approaches

to the problem. In particular, the proposed algorithm is able to find good solutions in a

relatively short time so that it can even be used to utilize fluctuations in traffic demand

on a relatively short time scale. Another major advantage is its ability to cope with a

variety of network elements. It is easy to account for different energy consumption models

of different hardware, e.g., base stations of different generations, sectors or even antennas

as long as they can be modeled as any concave or convex function of the load. This ability

puts us in the position to optimize for the network configuration that gives the smallest

total network energy consumption. Furthermore, our approach is easy to modify in order

to balance the minimization of the static energy consumption against the minimization

of the load-dependent energy consumption. Thereby, more weight can be given to the

deactivation of as many network elements as possible or an appropriate load balancing to

avoid highly loaded base stations.

Starting from the core optimization framework, we show how it can be extended in several

directions. First, we present how to incorporate techniques motivated by coordinated multi-

point (CoMP) transmission [HV04], which actually make some relaxations superfluous and

lead to further energy savings. We then delve into the application of the framework to a

single-RAT LTE network followed by a brief extension to multi-RAT systems consisting of

UMTS and LTE cells. Thereby, we underline the broad applicability of our optimization

framework to different types of network settings. Further examples of network settings that

can be addressed by our framework are sketched in Appendix B.3. Apart from that, in the

main part of this chapter we present a modification of the optimization framework that

makes it amenable for a distributed implementation. Such a distributed implementation

significantly reduces the signaling overhead and helps to implement our algorithms in

larger regions without the necessity of extensive communication with a central computation

unit.

At last, we extend our optimization framework into the direction of anticipatory scheduling,
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where the decisions on resource allocation and user-cell assignments are based not only

on present channel state information but also on information about future propagation

conditions. With such techniques, also referred to as proactive resource allocation and user

assignment (PRAUA), the network performance and energy savings can be significantly en-

hanced. PRAUA has broad applicability in problems of smooth media streaming and traffic

offloading and we focus on the latter one. PRAUA helps ’smear’ the traffic requirements

in time and space allowing for maintaining energy-efficient network configurations over

a longer period of time. Thereby, PRAUA exploits the knowledge about users’ mobility

and path loss to proactively build user-cell assignment and resource allocation schedules

that greatly support energy savings in cellular communication systems. In particular, we

develop algorithms that schedule data transmissions for new service applications when it is

favorable for energy savings. The developed mechanisms target new service types enabled

by the storage capabilities at user devices such as buffered delay-sensitive applications.

For such applications we investigate an optimization problem that jointly assigns users to

serving cells and schedules resources over a finite time horizon with the goal of minimizing

the total network energy consumption. We transfer the non-convex optimization problem

into a format that makes it possible to apply reformulation and relaxation techniques

introduced in the coarse of our main optimization framework of this section. In contrast to

most existing work in literature, we explicitly incorporate the user-cell assignment in the

optimization framework and target energy savings with a guaranteed QoS level instead of

maximizing the QoS.

The chapter is organized as follows. Section 3.2 positions our work in the context of current

results in literature. In Section 3.3 we provide our main optimization framework including

the general system model and the energy consumption model used in our optimization

problem. The general problem formulation and the derivation of the algorithm to find

good solutions to the problem is presented. Section 3.3.5 outlines on modifications for

including CoMP like transmission modes. In Section 3.4 and Section 3.5 we show how to

apply the optimization framework to a single-RAT LTE and a mutli-RAT UMTS/LTE

network respectively. A semi-decentralized implementation of the framework is sketched in

Section 3.6. Section 3.7 presents numerical evaluations for the developed algorithms. The

framework for PRAUA is introduced in Section 3.8, as well as numerical evaluations are

presented. Finally, we conclude this chapter in Section 3.9.

3.2 Related work

The exploitation of temporal and spatial redundancies in wireless systems for energy savings

has been studied by the research community over the past years. Mainly for the application

in network planning references [GBGF+11, NWGY10, CCK+12] address the problem of

finding an optimal number of cell sites and base station placements so as to minimize

the overall energy consumption subject to some QoS requirements of users. The study

in [GBGF+11] optimizes the number of base stations and their locations targeting the
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minimization of the overall expected energy consumption in a wireless network employing

time division multiple access (TDMA). The approach taken by the authors involves a

mixed integer programming problem and proposes a scheme to solve the problem involving

a simplex method together with the branch and bound algorithm. The choice of branch

and bound has a sever impact on the applicability to real-time scenarios, because it

may be slow, even if the underlying problem is of moderate size [JB09]. In addition, the

assumption of TDMA is very limiting, since the analysis does not carry over to systems

where inter-cell interference is experienced. Inter-cell interference has been identified as

one of the major challenges faced by designers of modern wireless communication systems

[MK10, LPGdlR+11].

The problem of base station selection in the presence of traffic load fluctuations is ad-

dressed by references [NWGY10, ZGY+09]. They propose algorithms of centralized and

decentralized nature that show good performance giving good results in reasonable time.

However, the underlying system model does not allow to incorporate different sources of

energy consumption, which is of utmost importance in modern wireless communication

networks consisting of hierarchical structures. Furthermore, the performance is evaluated

only on basis of numerical evaluation and no analytical justification for the performance is

provided.

The authors of [CCK+12] argue in favor of sleep mode techniques coupled with various

network planning schemes. The authors focus on a genetic algorithm to find energy-efficient

network deployments by putting selected base stations into sleep mode. The major drawback

of this purely heuristic approach is the lack of any mathematical justification and that

the proposed approach cannot incorporate other radio technologies other than UMTS.

In contrast, as mentioned before, our optimization framework is general enough to be

applied to multi-RAT scenarios, including the second, third, fourth and future generations

of cellular networks.

In the field of multi-RAT network optimization most work has the objective of enhancing

coverage and capacity [VPRSA09, GAPRS05, YTW+11]. Mainly, the complementarity

between different radio technologies is used for enhanced radio resource management

(RRM) without consideration of the energy consumption. So does the work in [VPRSA09]

that proposes a dynamic joint radio resource management mechanism for LTE-UMTS

coexistence scenarios. For the decision on which RAT is most suitable for each user a

Reinforcement Learning based algorithm is implemented at each base station. However,

the work only considers networks where UMTS and LTE are collocated on the same base

station. In addition, the user assignment is assumed to be given and is therefore not part

of the optimization. Reference [GAPRS05] uses Fuzzy-Neural systems and neural networks

for the task to coordinate the radio resource management of different RANs. The main

focus lies on guaranteeing a certain QoS level to all users and at the same time keeping an

acceptable value of the dropping and blocking probabilities.

Anticipatory networking which is sometimes referred to as proactive resource allocation is

applied in wireless networks to optimize resource allocation and user assignments with a
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large number of different objectives. Among others, it is used for anticipatory buffering,

which targets smooth media streaming by filling the play-out buffer of mobile users in

advance of predicted poor coverage situations. Another application is anticipatory traffic

offloading, where the load at base stations is reduced by preloading or postponing the

data transmission of mobile users to neighboring cells. In this context [SY12] proposes

techniques based on load estimation to implement data offloading and thereby leveraging

the throughput-coverage trade-off. The work highlights the importance of accurate load

prediction. When the load at base stations is known in advance the resource allocation can

be adjusted over the time horizon in order to optimize the load according to the desired

optimization goal. In [GPMM14] potential energy savings of techniques exploiting the

users’ delay-tolerance are evaluated. The work switches between predetermined network

configurations when the users’ QoS requirements allow for delay tolerance. A key finding

is the improved energy savings when users can be scheduled for a later point in time

and thereby energy efficient network configurations can be operated for a longer time

period. Proactive scheduling has been considered in [AzHV13] to improve the QoS of users

traveling through the service area of several cells. The presented framework plans the

resource allocation over a certain time horizon for fixed user-cell assignments to maximize

the throughput of users. The authors of [AzHV14] propose a predictive framework for

video streaming applications to increase the energy-efficiency in wireless networks. The

framework is based on rate predictions for known user-cell assignments and considers the

energy consumption when base stations can be switched off in deep sleep mode. The problem

is formulated as a mixed integer linear program (MILP) where decisions on multiuser rate

allocation, video segment quality, and base station transmit power are jointly optimized.

Thus, the proposed approach trades off video quality for an improved energy-efficiency.

A heuristic multi stage algorithm is used to derive solutions for the MILP problem by

first allocating rates to users and then determining the segment quality and active base

station set. The reasoning is based on the observation that efficient rate-allocation schemes

provide power savings. Other analytical justifications for the performance are not given.

By proactive resource allocation and video quality decisions the authors in [GIAT15]

reduce the energy consumption of the whole network by solving a mixed integer non-linear

program (MINLP) problem. An algorithm is proposed that decomposes the association

and resource allocation problem in a master problem and several sub-problems to make the

problem tractable. Thereby, the authors leverage energy costs and video quality taking into

account backhaul costs. The resulting integer programs are solved directly by mathematical

solvers and the authors argue to achieve decent scalability. However, this is achieved by

assuming the allocation of an equal number of resource blocks to all users in the master

problem.
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(b) Exemplary traffic demand map.

Figure 3.2: Illustration of the test point concept.

3.3 General problem definition and solution

This section presents the general system model used throughout this chapter. We further

confine ourselves to a general problem formulation that highlights the challenges in devising

algorithms for energy savings.

3.3.1 System model

We consider a cellular communication network with an established network topology. The

focus is on the downlink channel and we assume that there is a central network controller

that is responsible for collecting measurements, executing the proposed algorithm, and

propagating updated network configuration parameters throughout the network. In the

most general case we assume that there are L base stations deployed in the network with

one or more sectors (called cells in the following). We denote the set of all base stations by

L, and the cells belonging to base station l by Sl. The full set of all M cells in the network

is thus M := ∪l∈LSl.

Assumption 5. The cell deployment is dense enough so that coverage areas of different

cells overlap creating redundancies in large geographical areas.

By Assumption 5 users can potentially be connected to a set of neighboring cells in

most cases. The particular section of the serving cell is subject to optimization in this

study.

Ensuring coverage via test points

In order to ensure the desired coverage anytime and everywhere in the considered area, we

impose coverage constraints by adopting the concept of test points, which is widely used in

network planning and optimization [Tut98, ACMS03].
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Definition 9 (Test point). A test point (TP) is a centroid of a predefined subarea that

represents an aggregated QoS requirement resulting from individual QoS demands of all

potential users in this subarea.1 Without loss of generality, we assume N TPs with the set

of all TPs denoted by N := {1, 2, ..., N}.

An interpretation of this definition is depicted in Figure 3.2 for a generic service area. A con-

sequence of Definition 9 is that small-scale fluctuations in QoS demand at the user level are

averaged out at the TP level. We assume that lower layers of the protocol stack (e.g. through

adaptive modulation or coding) can compensate for those small scale fluctuations. On a

large scale, the traffic demand is assumed to be static for a sufficiently large period of time

for which we derive a feasible network configuration that supports this traffic demand. The

duration of this period depends on the accuracy of the demand estimates and other factors

such as security margins included in the optimization framework.

Assumption 6. The QoS requirement for a TP corresponds to the aggregated expected

traffic over the respective area per unit time. This traffic requirement is expressed in terms

of the minimum required data rate per TP.

Assumption 7. If the minimum rate requirement of TP j is met, so are the requirements

of the users in the associated subarea.2

For services with no explicit data rate requirements (e.g., voice calls), we assume that

they can be supported if a minimum data rate per service request is ensured which is a

reasonable assumption in systems employing VoLTE.3

By Assumption 6, each TP j ∈ N introduces a rate requirement rj to the system and we

collect the rate requirements of all TPs in the vector r = [r1, r2, . . . , rN ] ∈ RN
++. These rates

r need to be provided by the network. In general, a TP can be assigned to any cell and an

assignment should be understood as follows. If TP j ∈ N is assigned to a cell i ∈M that

provides the requested data rate rj , then all users in the respective subarea associated with

TP j are served by cell i. The assignment of the TPs to the cells is subject to optimization

in our work. We use X = [xi,j ] ∈ {0, 1}M×N to denote the assignment matrix, where

xi,j = 1 if TP j is assigned to cell i and xi,j = 0 otherwise.

Assumption 8. While each TP is assigned to exactly one cell, each cell can serve multiple

TPs, and the set of TPs served by cell i under assignment X is denoted by Ni(X) ⊂ N .

We point out that this assumption has been widely used in previous studies [ZGY+09,

NWGY10, ACMS03], and it is valid throughout our studies except for Section 3.3.5,

1A test point becomes a user if it represents a QoS requirement of one particular user, in which case the
subarea is a point corresponding to the position of this user.

2The smaller the area represented by each TP, the better is this approximation. However, smaller areas
imply an increased number of TPs, and the computational complexity of the proposed algorithm grows.

3In Section 3.5 where UMTS networks are considered, we present methods how to explicitly account for
voice calls in the multi-RAT scenario.
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where it is shown how to include scenarios in which each TP can be served by multi-

ple cells. Assumption 8 translates to the first set of constraints C1 for the assignment

problem ∑
i∈M

xi,j = 1, j ∈ N . (3.1)

The optimization of the assignment of TPs to cells is the main task of the optimization of

this work. The assignment will point out cells that can be deactivated for energy reasons.

More precise, if Ni(X) = ∅ for some i ∈M, then cell i can be deactivated because no TP

is assigned to cell i. In contrast, if Ni(X) ̸= ∅, then cell i is active and each TP connected

to it induces some amount of cell load ρi : [0, 1]MN → [0, 1].

Definition 10 (Cell Load). Given the assignment x̃ := vec(X), the load of cell i, denoted

by ρi(x̃) ∈ [0, 1] or simply ρi for notational simplicity, is defined to be the ratio of the

number of resource blocks requested by TPs served by cell i ∈ M to the total number of

resource units Bi available at this cell.4

We use ρ := [ρ1, . . . , ρM ]T ∈ [0, 1]M to denote the vector of all cell loads. From the definition

of cell load, we have the following:

Fact 3. The load at cell i satisfies ρi > 0 if and only if (iff) cell i serves at least one TP.

By Definition 10 the cell load is the relative number of resource units requested from all

TPs assigned to it. Generally, the type of resource unit is technology dependent and we

detail on the specifics for selected technologies in Section 3.4 and Section 3.5. Without

loss of generality we denote by bi,j > 0 the number of resource units at cell i necessary

to serve TP j with data rate rj and provide further details in the respective Sections.

For now we assume that bi,j > 0, ∀M, ∀N is a constant that does not depend on the

assignment X.5 In addition, following Definition 10, the load at cells can be computed

by

ρi =
∑

j∈Ni(X)

bi,j
Bi
≤ 1, i ∈M, (3.2)

which gives the second set of basic requirement C2 for the general assignment prob-

lem.

Remark 4. In practice, cells need to reserve some fraction of their resource units for

signaling. If cell i has B∗
i resource units in total, and it needs to reserve ai > 0 of its

resource units for signaling, then the resource units at cell i available for allocation to TPs

are Bi = B∗
i − ai.

4Note that for LTE networks Bi can also be interpreted as the total bandwidth available at cell i, in which
case ρi is expressed in terms of the fraction of required and available bandwidth.

5We will see that this assumption is generally not fulfilled but we show practical ways how to achieve it.
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Energy consumption model

Our model for energy consumption of base stations and its cells consists of two parts. On

the one hand, the cell load-dependent transmit energy radiated by antennas and on the

other hand remaining sources of energy consumption that are independent of the cell load

as long as the cell/base station is active. This stands in stark contrast to most work in

literature that confines itself to the transmit energy consumption.

Definition 11 (Active base station/cell). Consider a particular base station l ∈ L and its

cells i ∈ Sl. Let ρi ∈ [0, 1] be the load of cell i. We say that a cell i is active iff ρi > 0 and

that base station l is active iff one of its cells is active, i.e.
∑

i∈Sl
ρi > 0. If a cell or base

station is not active, it is said to be inactive.

With Definition 11 we are in the position to define the energy consumption El : [0, 1]M → R+

of a base station l.

Definition 12 (Energy consumption). Given a TP assignment X inducing a cell load

ρ, the energy consumption El(ρ) ≥ 0 of base station l is defined to be the power that the

respective base station consumes per unit of time, where El(ρ) = 0 iff base station l is

inactive.

The function El(ρ) depends on several different factors and generally is different between

base stations. However, we can classify three different classes of energy consumption parts

at the base station:

(i) The static energy consumption of the base station cl > 0 (due to shared hardware

between sectors e.g. cooling, power supply, etc.),

(ii) The static energy consumption ei > 0 (i ∈ Sl) of its active cells (e.g. due to power

amplifiers, signal processing units, etc.), and

(iii) the load-dependent dynamic energy consumption of its active cells fi(ρi) (i ∈ Sl),
where fi : [0, 1]→ R+ is a given continuous function relating the energy consumption

to the corresponding cell load.

By these definitions and Fact 3, the energy consumption El(ρ) of base station l is a

discontinuous function of the load, and we have

El(ρ) =

⎧⎨⎩0 cells i ∈ Sl serve no TP,

cl +
∑

i∈Sl,active
ei + fi(ρi) otherwise ,

where Sl,active ⊂ Sl is the set of active cells of base station l. Therefore, the total energy

consumption in a network, which is the accumulated energy consumption of all active base

stations, yields

E(ρ) =
∑
l∈L

El(ρ) =
∑
l∈L

⎛⎝cl

⏐⏐⏐∑i∈Sl
ρi

⏐⏐⏐
0

+
∑
i∈Sl

(ei|ρi|0 + fi(ρi))

⎞⎠. (3.3)
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For concreteness, we make the following assumption regarding the cell load-dependent

energy consumption (see also Remark 5).

Assumption 9 (Concave dynamic energy consumption). fi : [0, 1] → R+ (i ∈ M), is

concave and continuously differentiable.

In particular, this assumption is satisfied by a linear dependency of the base station energy

consumption and the cell load reported in current studies such as [ABG+10, CZB+10].

In fact, the optimization framework presented in the following can handle more general

functions for the load-dependent dynamic energy consumption.

Remark 5. The load dependent dynamic energy consumption can be assumed to be a

convex function of the load. Moreover, we could even assume that it is a sum of convex

and concave functions. The optimization framework can be straightforwardly extended to

cover these cases.

From (3.2) and Definition 10 we can observe that each load ρi is, in fact, a function of X.

The cell load at cell i is non-zero and |ρi|0 = 1, if at least one TP is served by cell i ( i.e.,∑
j∈N xi,j ≥ 1). We can therefore modify the network energy consumption model (3.3) to

have only X as a variable. We can equivalently write

E(ρ) =
∑
l∈L

⎛⎝cl

⏐⏐⏐⏐⏐⏐
∑
i∈Sl

ρi

⏐⏐⏐⏐⏐⏐
0

+
∑
i∈Sl

(ei |ρi|0 + fi(ρi))

⎞⎠
=
∑
l∈L

⎛⎝cl

⏐⏐⏐⏐⏐⏐
∑
i∈Sl

∑
j∈N

xi,j

⏐⏐⏐⏐⏐⏐
0

+
∑
i∈Sl

⎛⎝ei

⏐⏐⏐⏐⏐⏐
∑
j∈N

xi,j

⏐⏐⏐⏐⏐⏐
0

+ fi(ρi)

⎞⎠⎞⎠
=
∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

(
ei
⏐⏐sTi x̃⏐⏐0 + fi(ρi)

)⎞⎠,

(3.4)

where si := vec(Si) with Si ∈ {0, 1}M×N being a matrix of zeros, except for its ith row,

which is a row of ones; tl := vec(Tl) with Tl ∈ {0, 1}M×N is a matrix of zeros, except for

its rows i ∈ Sl, which are rows of ones. Remember that we use x̃ to denote the vector

obtained by stacking up the columns of X. The first equality in (3.4) follows from Fact 3

and the definition of the l0-norm, which does not account for magnitudes. More precisely,

if at least one TP is served by cell i (i.e.,
∑

j∈N xi,j ≥ 1), then the cell load at cell i is

non-zero ρi > 0 and we have |ρi|0 =
⏐⏐⏐∑j∈N xi,j

⏐⏐⏐
0

= 1. The second equality in (3.4) uses

vector multiplication to represent the sums in a more compact way.

Definition 13. Given the assignment x̃ and the load dependent energy consumption

fi(ρi(x̃)) of cell i, we define the function f̃i : [0, 1]NM → R+ : x̃ ↦→ fi(ρi(x̃)).

Thus, the energy consumption in (3.3) is equivalently obtained by

Ẽ(X) =
∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

(
ei
⏐⏐sTi x̃⏐⏐0 + f̃i(x̃)

)⎞⎠ . (3.5)
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3.3.2 Problem statement

Daytime fluctuations in traffic demand result in large spatio-temporal redundancies in

coverage and capacity opening great opportunities for energy savings. In times when the

traffic demand decreases and thus some entries in the rate requirement vector r ∈ RN
++

become relatively small or zero, redundant cells can be deactivated reducing the provided

capacity to match r. Finding the optimal set of redundant cells for deactivation and thus,

minimizing the total network energy consumption can be achieved by minimizing the cost

function in (3.3) subject to different constraints that follow from the system model and

technology specifics. By X1 we denote the set of assignments X ∈ {0, 1}M×N satisfying

some required constraints (e.g., capacity constraints) including C1 from (3.1) and C2 from

(3.2). The specific constraints are technology dependent and are presented in Section 3.4

and Section 3.5 for single-RAT LTE and multi-RAT LTE/UMTS, respectively. For now

we assume that the constraints belong to a convex set or can be relaxed to a convex

set.

Assumption 10. The set of constraints X1 is convex.

Now, the problem under consideration can be formally stated as follows:

minimize Ẽ(X) =
∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

(
ei
⏐⏐sTi x̃⏐⏐0 + f̃i(x̃)

)⎞⎠ (3.6a)

subject to X ∈ X1 (3.6b)

X ∈ {0, 1}M×N , (3.6c)

where the optimization variables are X.

We consider scenarios where the rate requirements of TPs are sufficiently low resulting in a

reasonable amount of redundancies that allow for deactivation of cells. In the problem, we

assume that there exists a feasible solution. If no feasible solution exists, we can add slack

variables and an additional l0 or l1 penalty norm to the merit function in order to create

feasible solutions indicating which cells are overloaded. Such extensions are presented in

Appendix B.3. Moreover, if the traffic requirements in the system are sufficiently low or

the number of cells is sufficiently large, X is expected to be row sparse with all zero rows

specifying cells that can be deactivated.

3.3.3 Problem solution

The difficulty of Problem 3.6 lies in its combinatorial nature. In fact, Problem 3.6 can

be shown to be closely related to the classical bin-packing problem which is known to be

NP-hard (non-deterministic polynomial-time hard), the connection of which is shown in

Appendix B.1. Consequently, the complexity is expected to grow exponentially with the
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number of cells. For such problems, we can make use of branch and bound algorithms to

find optimal solutions. However, such algorithms are typically slow and it takes a very long

time to solve even fairly small problems [JB09]. On the positive side, Problem 3.6 has a

special structure that can be exploited by majorization-minimization techniques [HL04],

which have been widely used in recent years to tackle various problems in compressed

sensing [CWB08] and machine learning [STL11].

Instead of finding a global solution to Problem 3.6, we will pursue a less ambitious

goal. We apply majorization-minimization techniques mentioned above to develop a low-

complexity anytime algorithm that has a strong analytical justification. This algorithm

is expected to provide good results (in terms of low energy consumption) with low com-

plexity. To this end, we reformulate and relax Problem 3.6 to pose it in a more tractable

form.

Problem reformulation and relaxation

To obtain an optimization problem that is computationally tractable, we first replace the

binary constraint in (3.6c) by6

X ∈ [0, 1]M×N . (3.7)

The above in combination with Assumption 10 makes the set of all constraints convex

and the solution to the resulting optimization problem serves as a guideline for other

heuristics to make the hard discrete decisions on which cell serves a particular test

point.

So now the only problem is the objective function, which is not continuous due to the

l0-norm. We also note that by Assumption 9 and Definition 13, the load-dependent

term f̃i(x̃) in the objective function (3.6a) is concave and continuously differentiable for

x̃ ∈ [0, 1]MN since these properties are preserved under a composition with a linear function

[BC11, BV06]. To address the non-continuity of the l0-norm, we consider the following

relation [CWB08, STL11]:

∀x∈RM |x|0 = lim
ϵ→0

M∑
i=1

log(1 + |xi| ϵ−1)

log(1 + ϵ−1)
, (3.8)

which, if each component xi of the vector x = [x1, . . . , xM ]T is constrained to be non-

negative as in (3.7), suggests the use of a function fϵ : RM
+ → R to equivalently reformulate

the l0-norm by

∀x∈RM
+
|x|0 = lim

ϵ→0

M∑
i=1

log(ϵ + xi)− log(ϵ)

log(1 + ϵ−1)
. (3.9)

6This relaxation together with (3.1) leads to a communication scenario where multiple cells are allowed to
serve the traffic requested at a TP by providing only a fraction each. A more detailed discussion on the
implications is presented in Section 3.3.5
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The choice of (3.9) is not the only choice but we will see that it has some neat properties

that we can exploit. For a discussion on the choices for the l0-norm approximations, we

refer to Appendix A.1.

We can now write the cost function (3.6a) equivalently

∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

ei
⏐⏐sTi x̃⏐⏐0 + f̃i(x̃)

⎞⎠
= lim

ϵ→0

∑
l∈L

⎛⎝cl
log(ϵ + tTl x̃)− log(ϵ)

log(1 + ϵ−1)
+
∑
i∈Sl

(
ei

log(ϵ + sTi x̃)− log(ϵ)

log(1 + ϵ−1)
+ f̃i(x̃)

)⎞⎠ ,

(3.10)

where we replaced the l0-norm in Problem 3.6 by (3.8) and used the non-negativity of si,

ti, x̃. We can therefore obtain an approximation to Problem 3.6 by replacing the objective

function by the right-hand side of (3.10) for a sufficiently small but fixed ϵ > 0 and ignoring

unnecessary constants. More precisely, for some ϵ > 0, the objective is to find a matrix

X ∈ [0, 1]M×N or, equivalently, a vector x̃ = vec(X) ∈ [0, 1]NM that solves the following

problem

minimize
∑
l∈L

⎛⎝cl
log(ϵ + tTl x̃)

log(1 + ϵ−1)
+
∑
i∈Sl

(
ei

log(ϵ + sTi x̃)

log(1 + ϵ−1)
+ f̃i(x̃)

)⎞⎠
subject to X ∈ X1

X ∈ [0, 1]M×N .

(3.11a)

(3.11b)

(3.11c)

Analyzing the structure of Problem 3.11 we see that solving it is not a straightforward

task as we need to minimize a non-convex function over a convex set. However, problems

of this type are amenable to majorization-minimization techniques [HL04] widely used to

tackle various problems in compressed sensing [CWB08] and machine learning [STL11].

This framework provides us with a computationally efficient tool to decrease the value of

the objective function. We provide the details of the majorization-minimization algorithm

in Appendix C and apply it to our problem in the next section.

Majorization-minimization (MM) algorithm

For notational convenience we define ĉl := cl
log(1+ϵ−1)

and êi := ei
log(1+ϵ−1)

, and we use these

definitions in (3.11a) to simplify the objective function:

h : X → R, h(x̃) =
∑
l∈L

(
ĉl log(ϵ + tTl x̃)

)
+
∑
i∈M

(
êi log(ϵ + sTi x̃) + f̃i(x̃)

)
, (3.12)

where X ⊂ RMN is the closed convex set of points satisfying the constraints (3.11b)

and (3.11c) and we have used the fact that M = ∪l∈LSl. It is now easy to see that

for any ϵ > 0, (3.12) is a concave and continuously differentiable function. Remember

that the load-dependent term f̃i(x̃) is also concave and continuously differentiable by

48



3.3 General problem definition and solution

Assumption 9 and Definition 13. Following the explanations in the Appendix C, the

function

g : X × X → R : (x,y) ↦→ h(y) +∇h(y)T (x− y) (3.13)

is used as a majorizing function of (3.12). Its gradient can be easily calculated

as

∇h(x̃) =
∑
l∈L

ĉl
1

ϵ + tTl x̃
+
∑
i∈M

(
êi

1

ϵ + sTi x̃
+∇f̃i(x̃)

)
. (3.14)

which yields the core problem solved in each iteration of the MM algo-

rithm:

x̃(n+1) ∈ arg min
x̃∈X

g(x̃, x̃(n))

= arg min
x̃∈X

∑
l∈L

ĉl
tTl x̃

ϵ + tTl x̃
(n)

+
∑
i∈M

(
êi

sTi x̃

ϵ + sTi x̃
(n)

+∇f̃i(x̃(n))T x̃

)
(3.15)

for some feasible starting point7 x̃(0) ∈ X . This concludes the derivation of the MM

algorithm. We have chosen the majorizing function (3.13) such that the obtained MM

algorithm solves iteratively a sequence of convex optimization problems. In fact, the

optimization problem solved in every iteration is a linear programming problem (LP), which

can be typically solved efficiently with standard optimization tools.

As discussed in the appendix, the sequence {x̃(n)}n∈N ⊂ X for some x̃(0) ∈ X generated

by (3.15) produces a non-increasing sequence {h(x̃(n))}n∈N of objective values. Therefore,

as n → ∞, we expect the corresponding sequence of assignment matrices {X(n)}n∈N
(note that x̃(n) =: vec(X(n))) to evolve towards network configurations with low energy

consumption. We stop the MM algorithm if the improvements in the objective value are

small enough, in the sense that for some sufficiently small ϵ⋆ > 0, the following condition

is met

h
(
x̃(n)

)
− h
(
x̃(n+1)

)
≤ ϵ⋆. (3.16)

Upon termination, the MM algorithm gives a feasible solution X(n) ∈ [0, 1]M×N to Prob-

lem 3.11. In order to obtain a feasible point to Problem 3.6, we need to map X(n) to

a matrix X⋆ ∈ {0, 1}M×N . For this purpose, we propose a heuristic described in Algo-

rithm 1. The main idea can be summarized as follows: we consecutively connect each test

point to the cell corresponding to the respective largest entry in X(n). If the obtained

intermediate assignment matrix does not belong to the feasible set X1\C1 of Problem 3.6

we try to connect the test point to the cell corresponding to the second largest entry in

X(n), and so forth. If this approach fails, we activate additional cells and connect TPs to

them.

Remark 6. The solutions X(n) ∈ [0, 1]M×N in our simulations obtained with the help of

the standard LP solver of CPLEX, are typically either zero or one. Thus, the assignment

7In our experience a good starting point is derived from a feasible assignment matrix obtained by connecting
each TP to the cell providing the strongest received signal strength.
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Algorithm 1 Heuristic to map [0, 1]M×N → {0, 1}M×N

Input: X(n), N , M, set of constraints X2 representing (3.2) and (3.6c)
Output: final assignment matrix X⋆

1: initialize: set of assigned TPs A = ∅ and final assignment matrix X⋆ = 0.
2: for all i ∈M, j ∈ N do

3: if x
(n)
i,j ∈ {1} then

4: x⋆i,j = x
(n)
i,j and A = A ∪ {j}.

5: end if
6: end for
7: Define set B =

{
x
(n)
i,j ∈ (0, 1) |∀i ∈M, ∀j ∈ N\A

}
.

8: while B ̸= ∅ do
9: (i, j) = argmaxi,j{B}

10: if x⋆i,j := 1→ X⋆ ∈ X2 then
11: x⋆i,j = 1 and A = A ∪ {j}.
12: B = B\{x(n)i,j |∀i ∈M}
13: else
14: B = B\{x(n)i,j }
15: end if
16: end while
17: for all j /∈ A do
18: activate closest non-active cell i which yields x⋆i,j := 1→ X⋆ ∈ X2 and assign x⋆i,j = 1.

19: A = A ∪ {j}.
20: end for

Algorithm 2 Network reconfiguration for improved energy efficient operation

Input: set of TPs, set of cells, constraints
Output: optimized network configuration according to X⋆.
1: initialize X(0) with a feasible point.
2: repeat
3: compute x̃(n) by solving (3.15)
4: increment n
5: until (3.16) is valid
6: use Algorithm 1 to map X(n) to X⋆ ∈ {0, 1}M×N

7: connect the TPs to cells according to X⋆.
8: deactivate all cells no TP is connected to.

of test points to cells with the largest entries in X(n) rarely results in a violation of a

constraint (but we emphasize that this is not guaranteed to be true in general).

There are many alternatives to the heuristic presented in Algorithm 1 and we present

one alternative which is based on a modified objective function with penalty functions in

Appendix B.2.

For convenience, we summarize the complete approach derived in this section in Algo-

rithm 2.
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3.3 General problem definition and solution

3.3.4 Notes on the convergence and the complexity

Although we have no guarantee that Algorithm 2 presented in Section 3.3.3 converges to

the global optimum, based on the theory of EM/MM algorithms, we can show the following

characteristics. Note that

h(x̃) :=
∑
l∈L

(
ĉl log(ϵ + tTl x̃)

)
+
∑
i∈M

(
êi log(ϵ + sTi x̃) + f̃i(x̃)

)
(3.17)

is monotonically decreasing by design (c.f. Appendix) and bounded from below, i.e.,

h(x̃) ≥
∑

l∈L ĉl log ϵ +
∑

i∈M êi log ϵ, ∀x̃ ∈ X , so the sequence {h(x̃(n))}n∈N converges by

the Monotone Convergence Theorem. We emphasize that this does not imply a convergence

of {x̃(n)}n∈N. For further properties of the sequence {x̃(n)}n∈N, we refer the reader to

[Wu83].

The complexity of the algorithm is of the same order of solving iteratively linear pro-

gramming problems, which is a class of problems that can be solved efficiently with many

standard optimization tools [BV06]. In our simulations for this task in Section 3.7, we use

CPLEX, which implements the dual simplex algorithm to solve LPs [IBM15]. Typically, our

proposed algorithm terminates after a few iterations (≪ 100) as seen in Section 3.7. The

complexity of the proposed algorithm is linear in the complexity of the simplex method,

which has a polynomial time complexity on average and an exponential time worst-case

complexity. In contrast, integer programming problems are typically solved by branch and

cut algorithms (also in CPLEX [IBM15]), which have an upper bound on the number of

nodes 2n, where n is the number of variables of the problem, and solve one LP per node

resulting in an exponential complexity.

3.3.5 Serving a test point with multiple cells

By Assumption 8 the used system model outlined in Section 3.3.1 dictates that each TP

is served by exactly one cell. However, this assumption may be restrictive and limits the

energy savings capabilities in the network. Consider the following simple example: Two

cells serve TPs in a common coverage area and both cells are heavily loaded. Now the

requirements of a TP increase to a level that cannot be fulfilled by either of the cells

individually. In the standard scenario an additional cell would have to be switched on

in order to provide the requested service to all TPs or if no cell can be switched on the

requirements cannot be met. However, if it were possible to split the traffic between the two

highly loaded cells, they might have enough resources to serve all users and no additional

cell would have to be switched on. This example highlights the benefit of using a joint

service provision for users with multiple cells in the same TP area.

The shared service of a TP, as described above, can be easily implemented by lifting

Assumption 8. The benefit of it is in fact twofold. Assumption 8 introduces the non-convex

constraint (3.6c) to the optimization Problem 3.6, which motivates the relaxation (3.7)
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and the heuristic mapping introduced in Algorithm 1. To avoid these heuristic approaches

for which we are not guaranteed to find solutions, we assume in this section that each TP

can be served by multiple cells. This assumption is implemented by using (3.7) directly

instead of (3.6c) in Problem 3.6. As a result, there is no need for a relaxation of the

constraints or the use of heuristic mappings such as that in Algorithm 1. We only need

to approximate the cost function as done in (3.11a) and apply the MM algorithm to the

resulting optimization problem. We note that these operations have a strong analytical

justification.

The assumption of multiple cells serving one TP has a practical interpretation when

considering Definition 9. It means that cells are allowed to serve only a fraction of the

traffic generated in the area corresponding to some TP. In other words, we do not use an

all-or-nothing approach, where cells should serve either all users or no users in the area

corresponding to a TP.

3.4 Single-RAT network topology control

In this section we show how to apply the general load-aware energy savings framework

introduced in Section 3.3 to a single-RAT LTE network. The technology specific constraints

are captured by C2 where we now define bi,j in (3.2) for LTE. LTE networks implement

OFDMA for the downlink communication and thus we adopt an OFDMA-based model

for the spectral efficiency that is widely used in literature [MK10, MNK+07, FF13]. The

spectral efficiency also depends on radio propagation properties. Therefore, we associate

a path-loss vector to each TP and write the path-loss vectors of all TPs as columns of

the path-loss matrix G = [gi,j ] ∈ RM×N
++ , where gi,j captures the long-term path loss and

shadowing effects for a radio link from cell i to TP j.

Assumption 11 (Reliable path-loss estimates). A reliable estimate of G is available at

the central network controller.

Remark 7. The problem of reliable estimation and tracking of the path-loss matrix is

out of the scope of this work. However, the matrix captures only long-term fading effects,

so reliable estimates of G can be obtained and tracked in practice. Promising algorithmic

solutions to this estimation problem are for instance presented in [KCV+16]. Moreover, in

network planning problems, knowledge of G is a very common assumption in the literature

[SY12, MK10, ACMS03].

Now, we are in a position to define the SINR γi,j : RM
+ → R+ between cell i ∈ M

and TP j ∈ N which is coupled by the load levels at other cells and is captured by

[HYLS15, CSS+14, MK10, SY12, FKVF13, MTHB07]:

γi,j(ρ) =
Pi gi,j∑

k∈M\{i} Pk gk,j ρk + σ2
, (3.18)
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where Pi > 0 is the transmit power per resource unit of cell i and σ2 > 0 is the noise power

per resource block. Accordingly, the link spectral efficiency ωi,j : RM
+ → R+ (in bits per

resource block8) for the link from cell i to TP j is given by [MNK+07]

ωi,j(ρ) = ηBW
i,j log2

(
1 +

γi,j(ρ)

ηSINR
i,j

)
, (3.19)

where ηBW
i,j ∈ R++ and ηSINR

i,j ∈ R++ are suitably chosen constants, referred to as bandwidth

and SINR efficiency, respectively. These constants represent system design choices, such as

the chosen multi-antenna techniques, scheduling protocols, modulation and coding schemes.

For realistic values of these constants, we refer the interested reader to [MK10, MNK+07]

and assume in our study that they are arbitrary and fixed since the particular choice has

no impact on our results.

We are now prepared to use (3.19) to compose the technology-specific constraints C2 for

LTE by defining bi,j :=
rj

ωi,j(ρ)
which is used in (3.2) yielding the following system of

non-linear equations

ρi =
∑

j∈Ni(X)

bi,j
Bi

=
∑

j∈Ni(X)

rj
Biωi,j(ρ)

=
∑
j∈N

rj
Biωi,j(ρ)

xi,j , i ∈M. (3.20)

One of the main complications to the computation of the cell load is the interference

coupling appearing in (3.20). For a fixed assignment X, the cell load ρ in (3.20) can be

efficiently computed by means of fixed-point algorithms (c.f. Chapter 4). However, the

assignment of TPs to cells is the main subject of our optimization problem and thus we

cannot evaluate (3.20) easily. In order to keep the complexity of the optimization problem

tractable, we fix the spectral efficiency of the link connecting cell i and test point j to some

constant ω̃i,j . We take a conservative approach and consider the worst-case interference

which constitutes a lower bound on the spectral efficiency ωi,j(ρ) ≥ ω̃i,j := ωi,j(1) for every

ρ ∈ [0, 1]M .

Assumption 12 (Worst-Case Interference). We have the worst-case interference scenario

if all cells are fully loaded, i.e. ρ = 1.

In general, this worst-case interference assumption and the resulting lower bound on the

true link spectral efficiency diminishes gains in energy savings when taking into account

the energy consumption of hardware, and we show in Section 4 how to incorporate the

actual link spectral efficiency to improve the energy savings. Nevertheless, having fully

loaded cells as in Assumption 12 is in some cases desirable because it has been proven

in [HYLS15] that full load (i.e. ρ = 1) is optimal with respect to the transmit energy

consumption (see also [CPS14]) without taking into account the energy consumed by

hardware.

8A resource block is defined as a portion of the available time-frequency plane spanning a number of
consecutive OFDM symbols in the time domain over a number of subcarriers in the frequency domain.
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Remark 8. The worst-case interference assumption cannot exploit the full potential for

energy savings, but the assumption is of high practical relevance because it is an effective

way to avoid coverage holes as a result of deactivating cells based, for instance, on imperfect

information.

With the above constraints used in Problem 3.6 we can state the load-aware energy savings

problem for a single-RAT LTE network as follows:

minimize
∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

(
ei
⏐⏐sTi x̃⏐⏐0 + f̃i(x̃)

)⎞⎠ (3.21a)

subject to
∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈M (3.21b)

∑
i∈M

xi,j = 1 j ∈ N (3.21c)

X ∈ {0, 1}M×N , (3.21d)

where the optimization variables are xi,j . In particular, (3.21b) is derived from (3.20),

Assumption 12 and Definition 10 which ensures that cells are not overloaded, whereas

(3.21c) together with (3.21d) come from Assumption 8.

Remark 9. Without the worst-case interference Assumption 12, problem 3.21 has highly

non convex constraints. It is however possible to relax the constraints to obtain quadratical

constraints and state the problem as a quadratically constraint problem in standard form.

Unfortunately, we cannot guarantee that the constraint matrix is positive-semidefinite which

makes the solution of such a problem cumbersome. Therefore, we opt for another relaxation

technique presented in this work that has nicer properties in terms of computational

complexity.

After applying the reformulations to the objective function and the relaxation of (3.21d)

presented in Section 3.3.3 we arrive at the following problem:

minimize
∑
l∈L

⎛⎝cl
log(ϵ + tTl x̃)

log(1 + ϵ−1)
+
∑
i∈Sl

(
ei

log(ϵ + sTi x̃)

log(1 + ϵ−1)
+ f̃i(x̃)

)⎞⎠
subject to

∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈M

∑
i∈M

xi,j = 1, j ∈ N

X ∈ [0, 1]M×N .

(3.22a)

(3.22b)

(3.22c)

(3.22d)

The above problem is amenable to the optimization framework presented in Section 3.3.3.

More precisely, we can find good assignments by generating a sequence {x̃(n)}n∈N that is

obtained by iteratively solving
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minimize
∑
l∈L

ĉlt
T
l x̃

(n+1)

ϵ + tTl x̃
(n)

+
∑
i∈M

(
êis

T
i x̃

(n+1)

ϵ + sTi x̃
(n)

+∇f̃i(x̃(n))T x̃(n+1)

)
subject to

∑
j∈N

rj
Bi ω̃i,j

x
(n+1)
i,j ≤ 1 i ∈M

∑
i∈M

x
(n+1)
i,j = 1, j ∈ N

X(n+1) ∈ [0, 1]M×N ,

(3.23a)

(3.23b)

(3.23c)

(3.23d)

with a feasible starting point X(0) ∈ (3.23b) ∪ (3.23c) ∪ (3.23d) and using a termination

criterion as in (3.16).

3.5 Multi-RAT network topology control

In this section we turn to a multi-RAT system where two separate networks of different

radio access technologies are overlaid on the same geographical region. In particular, we

consider the multi-RAT scenario where an UMTS system and a LTE system provide

overlapping coverage to the users. To be consistent with the notation of previous sections,

we use the subscript ”UMTS” and ”LTE” for respective base stations and their cells. More

precisely, we have LUMTS = |LUMTS| and LLTE = |LLTE| denoting the number of all UMTS

and LTE base stations respectively. To avoid notational clutter, we assume that each

base station has exactly one cell, such that |LUMTS/LTE| = |MUMTS/LTE| = MUMTS/LTE.

In the text that follows we will only refer to base stations and note that the extension

to multiple cells per base station is straightforwardly derived from findings in previous

sections. We define L = LUMTS∪LLTE and use L = |L| = LUMTS+LLTE to denote the total

number of base stations. The test point concept is used to capture the QoS requirements

of all N users in the network as outlined in Section 3.3.1. The task of our multi-RAT

network optimization is to find an assignment matrix X ∈ {0, 1}L×N that supports all user

requirements and leads a low energy consumption. Thereby, the energy consumption in

(3.5) of the multi-RAT network is obtained by

Emulti-RAT(X) =
∑
l∈L

(cl + el)
⏐⏐tTl x̃⏐⏐0 + f̃l(x̃), (3.24)

where x̃ = vec(X) and tl := vec(Tl) with Tl ∈ {0, 1}L×N is a matrix of zeros, except for

its rows i ∈ Sl, which are rows of ones.

The LTE part of the multi-RAT system is modeled as described in Section 3.4 where the

assumptions and definitions are extended to multi-RAT where needed. We now describe

the system model for the UMTS part of the multi-RAT system. In contrast to the LTE

system, UMTS is a WCDMA based system. Thus, we express the QoS in terms of SINR

per code of the WCDMA system that is needed to provide a certain data rate over that
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link. Thus, the data rate requirement of test points can be captured by the number of codes

required. In more detail, the system is able to provide a data rate per code of rbase with

a downlink SINR of βmin according to the implemented modulation and coding scheme

(MCS), which we assume to be fixed. Therefore, the required data rate of test point j can

be provided with uj =
rj

rbase
codes. The downlink SINR βi,j : [0, 1]L×N → R++ of a link

from base station i to a test point j is computed as (c.f. [ACM03])

βi,j(X) =
PRX

α
(∑

k∈N uk
PRXgi,j
gi,k

xi,k − PRXuj

)
+
∑

l ̸=i

∑
k∈N uk

PRXgl,j
gl,k

xl,k + σ2
i,j

=

⎛⎝α

(∑
k∈N

uk
gi,j
gi,k

xi,k − uj

)
+
∑
l ̸=i

∑
k∈N

uk
gl,j
gl,k

xl,k + σ̃2
i,j

⎞⎠−1

,

(3.25)

with PRX the target receive power and σ̃2
i,j =

σ2
i,j

PRX
. For notational convenience we define

I intrai,j (X) =
∑

k∈N uk
gi,j
gi,k

xi,k−uj and I interi,j (X) =
∑

l ̸=i

∑
k∈N uk

gl,j
gl,k

xl,k for the normalized

(w.r.t PRX) intra- and inter-cell interference power at the test point location, respectively.

The parameter α accounts for the orthogonality loss of codes within one base station. With

the downlink SINR defined, we can formulate the set of constraints for the UMTS part of

the system similar to [ACM03], where minimum SINR limits and power constraints are

used to guarantee the target receive power PRX at each test point. Each base station is

constraint to the maximum transmit power Pmax per link and thus, we obtain the first

constraint for the UMTS system as

PRX ≤ gi,jPmax. (3.26)

Furthermore, the SINR is lower bounded βi,j ≥ βmin to ensure the required basic data rate

per link and if we denote the total available transmit power per base station by P tot
i , we

obtain for a power based power control mechanism

∑
j∈N

uj
PRX

gi,j
xi,j ≤ P tot

i . (3.27)

Now we have formalized all constraints to state the multi-RAT optimization problem that

minimizes the energy consumption in an UMTS-LTE network while meeting the QoS

constraints of all users. Using the above constraints in Problem 3.6 and combining it with
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the single-RAT LTE Problem 3.21 yields

minimize
∑
l∈L

(cl + el)
⏐⏐tTl x̃⏐⏐0 + f̃l(x̃)

subject to
∑
j∈N

uj
PRX

gi,j
xi,j ≤ P tot

i i ∈ LUMTS

xi,jPRX ≤ gi,jPmax i ∈ LUMTS, j ∈ N
xi,j

αI intrai,j (X) + I interi,j (X) + σ̃2
i,j

≥ βminxi,j i ∈ LUMTS, j ∈ N∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈ LLTE∑
i∈L

xi,j = 1 j ∈ N

X ∈ {0, 1}L×N ,

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.28e)

(3.28f)

(3.28g)

with the optimization variable being X. Constraints (3.28b)-(3.28d) capture the constraints

coming from the UMTS system with (3.28b) accounting for the total power limitation

at UMTS base stations, whereas inequality (3.28c) ensures the minimum received power

and (3.28d) the minimum SINR. The total bandwidth constraint for LTE base stations is

captured by (3.28e). In accordance with Assumption 8, we include constraints (3.28f) and

(3.28g).

In order to apply the reformulation and relaxation techniques from Section 3.3.3 to

find solutions9 to Problem 3.28, we have to express the non-convex constraint (3.28d)

equivalently as

βmin

[
α
(∑
k∈N

uk
gi,j
gi,k

xi,k − uj
)

+
∑
l ̸=i

∑
k∈N

uk
gl,j
gl,k

xl,k + σ̃2
i,j

]
− (1− xi,j)Ki,j ≤ 1 (3.29)

9We assume that the problem has a solution, i.e. is feasible.
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for some sufficiently large Ki,j (c.f. [BHM77]), which yields

minimize
∑
l∈L

(cl + el)
⏐⏐tTl x̃⏐⏐0 + f̃l(x̃)

subject to
∑
j∈N

uj
PRX

gi,j
xi,j ≤ P tot

i i ∈ LUMTS

xi,jPRX ≤ gi,jPmax i ∈ LUMTS, j ∈ N

βmin

[
αI intrai,j (X) + I interi,j (X) + σ̃2

i,j

]
− (1− xi,j)Ki,j ≤ 1

i ∈ LUMTS, j ∈ N

∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈ LLTE∑
i∈L

xi,j = 1 j ∈ N

X ∈ {0, 1}L×N .

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

(3.30f)

(3.30g)

Problem 3.30 has the structure to apply the relaxations from Section 3.3.3 to it and we

arrive at the following problem which we solve in order to derive network configurations

that save energy in multi-RAT UMTS/LTE networks.

minimize
∑
l∈L

(cl + el)
log(1 + ϵ−1 tTl x̃)

log(1 + ϵ−1)
+ f̃i(x̃)

subject to
∑
j∈N

uj
PRX

gi,j
xi,j ≤ P tot

i i ∈ LUMTS

xi,jPRX ≤ gi,jPmax i ∈ LUMTS, j ∈ N

βmin

[
αI intrai,j (X) + I interi,j (X) + σ̃2

i,j

]
− (1− xi,j)Ki,j ≤ 1

i ∈ LUMTS, j ∈ N

∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈ LLTE∑
i∈L

xi,j = 1 j ∈ N

X ∈ [0, 1]L×N .

(3.31a)

(3.31b)

(3.31c)

(3.31d)

(3.31e)

(3.31f)

(3.31g)

The solution is obtained by applying the MM algorithm from Section 3.3.3 to the objective

function (omitting constant)

h(x̃) :=
∑
l∈L

(cl + el) log(ϵ + tTl x̃) + f̃l(x̃), (3.32)

with the majorizing function

g(x̃, x̃(n)) :=
∑
l∈L

(cl + el)
tTl x̃

ϵ + tTl x̃
(n)

+∇f̃l(x̃(n))T x̃. (3.33)
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The resulting optimization problem solved in each step of the adapted iterative Algorithm 2

is

x̃(n+1) ∈ arg min
x̃∈Xmulti-RAT

g(x̃, x̃(n))

= arg min
x̃∈Xmulti-RAT

∑
l∈L

(cl + el)
tTl x̃

ϵ + tTl x̃
(n)

+∇f̃l(x̃(n))T x̃,
(3.34)

with Xmulti-RAT being the set of constraints (3.31b)-(3.31g) and x̃(0) ∈ Xmulti-RAT being

a feasible starting point. The algorithm is terminated when the termination criterion in

(3.16) is true.

3.6 Decentralized network topology control

The algorithm proposed in Section 3.3.3 aiming at energy savings in cellular communication

networks strongly relies on Assumption 11 requiring a central network controller that has

global knowledge about network parameters and propagation characteristics. However, in

real networks such information might not be available in the desired granularity or the col-

lection of which is infeasible due to the network size. Above all, such centralized algorithms

require a lot of signaling which increases the overhead burden on the network. Therefore,

we propose a heuristic operating in a distributed fashion where only information locally

available is used and that finds feasible solutions to Problem 3.6.

To avoid notational clutter we assume that all base stations have exactly one cell |Sl| =
1, l ∈ L, the load dependent part is negligible f̃i(x̃) = 0 and e1 = e2 = · · · = eL = 0 in (3.5).

Furthermore, we define yi := tTi x̃ and obtain the following reformulation of Problem 3.6

minimize
∑
i∈L

ci |yi|0 (3.35a)

subject to X ∈ XD (3.35b)∑
i∈M

xi,j = 1 j ∈ N (3.35c)

yi = tTi x̃ i ∈ L (3.35d)

X ∈ {0, 1}L×N , (3.35e)

where the optimization variables are X and yi. XD is the set of points satisfying the

technology specific constraints accounting for the limited amount of resources at cells.

Note, that XD is convex or can be relaxed to convex constraints due to Assump-

tion 10.

The main idea of the proposed scheme is based on the observation that each cell can locally

decide on which TPs it allows connection (admission control) and that a TP can select

from multiple cells it connects to based on some metric broadcasted by the cells in its
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proximity. The proposed algorithm is a two-step iterative scheme with an initialization

phase and we detail on each step in the following.

In the initialization phase of the algorithm each TP is been connected to the cell that

provides the best communication link in terms of its channel gain. More precise, each TP j

is connected to cell i with

i = arg min
i∈L

gi,j (3.36)

yielding the initial assignment matrix X(0). Based on this assignment each cell i solves

locally the following optimization problem:

maximize y
(0)
i

subject to X ∈ XD

xi,j ≥ x
(0)
i,j j ∈ N

y
(0)
i = tTi x̃

X ∈ {0, 1}L×N ,

(3.37a)

(3.37b)

(3.37c)

(3.37d)

(3.37e)

where the optimization variables are X and y
(0)
i which counts the TPs cell i allows

admission10. The initial set of those TPs cell i allows admission is denoted by Ñi. The

initialization phase is concluded by all cells broadcasting y
(0)
i and its energy consumption ci

to TPs j ∈ Ñi where TPs compose the set of admissible cells Lj from all y
(0)
i they received.

Now each TP connects to a cell according to

i = arg max
i∈Lj

y
(0)
i , (3.38)

giving the intermediate assignment matrix X(1).

After the initialization phase the following two steps are iteratively performed at cells and

TPs starting with n = 1 (Step 2 is performed locally at one TP and yi is updated in the

whole network):

1. (Step 1, cell metric calculation) Each cell i computes the number of TPs connected

to it by y
(n)
i =

∑
i∈Ñi

x
(n)
i,j and broadcast y

(n)
i and ci to TPs j ∈ Ñi.

2. (Step 2, TP assignment) TP j selects cell i to connect to with

i = arg max
i∈Lj

ck(n−1)

ci
y
(n)
i ,

where ci is the energy consumption of cell i and ck(n−1) is the energy consumption of

the cell it was connected to in the previous iteration.

The algorithm terminates when no TP switches to another cell any more or a maximum

10We assume that Problem 3.37 has a solution.
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3.6 Decentralized network topology control

Algorithm 3 Distributed network reconfiguration for improved energy efficient operation

Input: set of TPs, set of cells, constraints
Output: optimized network configuration according to X⋆.
1: initialize X(0) by assigning each TP to its closest cell.

2: Each cell i solves locally Problem 3.37 obtaining objective value y
(0)
i and the set of

TPs Ni allowed for admission.
3: All cells broadcast y

(0)
i to TPs j ∈ Ni.

4: TPs create the set of admissible cells Lj from all y
(0)
i they received and connect to cell

i ∈ Lj with largest y
(0)
i .

5: repeat

6: Cells count the number of TPs connected to them and broadcast the number y
(n)
i to

TPs j ∈ Ni.

7: TPs j connects to cell i = arg max
ck(n−1)

ci
y
(n)
i .

8: Deactivate cells with no user connected to it.
9: until TPs are not switching cells any more or n > nmax

number of iterations n > nmax is reached. The complete algorithm is summarized in

Algorithm 3.
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3.7 Performance evaluation

This section presents various simulation results for the algorithms presented in this chapter

so far. Thereby, we exemplify the theoretical results in exemplary simulation scenarios. The

simulation scenarios are chosen in such a way to illustrate specific characteristics of our devel-

oped algorithms and their applicability to a broad range of networks.

3.7.1 Numerical evaluation for LTE networks

In the following, we present a numerical evaluation of the performance of the algorithm

proposed in Section 3.4 for different setups of a single-RAT LTE network. We start by

outlining the basic simulation scenario followed by a comparison with two reference schemes

with respect to the energy savings and computational time. Next, we present the ability of

the proposed algorithm to incorporate a variety of different base station energy consumption

models.

3.7.1.1 Basic simulation scenario

The simulated network is located in a square-shaped area of size 2km×2km, where L base

stations are placed at locations chosen uniformly at random. Unless stated otherwise, each

base station has three cells directed at 0◦, 120◦ and 240◦ respectively. Traffic generated by

users is represented by N TPs on an irregular grid. Hence, each TP represents the traffic

requirements of an area of different size. To obtain spatially varying traffic requirements, we

use the following traffic model in each run of the simulations. We define three circular hot

spot areas with centers chosen uniformly at random within the area. There are two types

of TPs: “hot spot TPs (HTP)” and “standard TPs (STP)”. Each TP in the simulation

has probability 0.3 of being a HTP and probability 0.7 of being a STP. While the position

of STP is chosen uniformly at random within the whole area, a HTP can be assigned

uniformly at random to one of three hot spot areas. Its final position is determined in polar

coordinates by sampling the distance from the hotspot center from a normal distribution

and the angle from a uniform distribution. We use a wrap around model to avoid boundary

effects and determine the location of TPs to be placed outside the square-shaped area. The

data rate requirements of TPs are derived from a normal distribution with µd = 128 kbps

and variance σ2
d = 32 kbps2 with a lower bound of 1 kbps. The signal attenuation for

links between cells and TPs follows the ITU propagation model for urban macro cell

environments with a horizontal antenna pattern for 3-sector cell sites with fixed antenna

patterns [3GP10a].

Unless otherwise stated, we use the following simulation parameters: ϵ⋆ = 10−3, ϵ = 10−3,

Bi = 20MHz, Pi = 40dB, ηSINR = 1, ηBW = 0.83, ci = 500W and ei = 280W. The values of

the last six parameters have been chosen to mimic the behavior of commercial LTE systems.

Furthermore, we use fi(ρi) = 564 ρi to model the load-dependent energy consumption,
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which is a value similar to the dynamic energy consumption of current macro cells with 6

transmit antennas [ABG+10].

The proposed algorithms are compared with a solution of the original Problem 3.6 and,

where possible, with the centralized cell zooming approach from [NWGY10]. The solution

to Problem 3.6 is obtained by using Matlab 2014a in combination with IBM’s CPLEX

v12.5 on a Intel Core i7 PC with four cores and 8GB RAM. As shown later in this section,

the computational time to solve Problem 3.6 grows fast with the problem size. Therefore,

to solve Problem 3.6 in a reasonable time for comparison purposes, we confine our attention

to small networks with M = 102 cells (L = 34 base stations) and N = 100 TPs, unless

otherwise stated. We obtained the 95% confidence intervals depicted in the figures by

applying the bias corrected and accelerated bootstrap method [Efr87] to the outcome of

100 independent runs of the simulations. Results related to the overall network energy

consumption will be normalized to the energy consumption of the network when all cells

are active and fully loaded.

Definition 14 (Normalized network energy consumption). Given a TP assignment X in-

ducing cell load ρ and given the resulting network energy consumption E(ρ), the normalized

network energy consumption is defined to be

Enorm(ρ) :=
E(ρ)

E(1)
=

E(ρ)∑
l∈L cl +

∑
i∈M

(
ei + fi(1)

) , (3.39)

where the term in the denominator is the energy consumption for a fully loaded system

(ρ = 1).

We refer to the sparsity supporting majorization-minimization algorithm developed in

Section 3.4 as “sMM” and to any algorithm that solves Problem3.6 directly as “MIP”

algorithm (MIP: mixed-integer programming). We refer to solutions obtained by the

centralized cell zooming algorithm in [NWGY10] as “cCZ”.

3.7.1.2 Computational performance comparison between sMM, cCZ and MIP

The cCZ has limited capability to incorporate different energy consumption models and

base stations with several sectors, so we confine ourselves to a simple base station model.

We assume a homogeneous network model under which all base stations have only one

omni-directional cell, and all base stations have the same energy consumption model. More

precise, we use |L| = M = 100, |Sl| = 1 and (3.3) with cl = 500, ei = 280, fi(ρi) = 0 (l ∈ L,

i ∈M).

To show trends, we start with the standard setup described above and we gradually

increase the number of TPs in the system. Figure 3.3 shows the normalized network energy

consumption.

As expected, the normalized network energy consumption for all three algorithms increase

as the number of TPs increases. This is intuitive because additional TPs add extra rate
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Figure 3.3: Comparison of normalized network energy consumption obtained with
the sMM algorithm, the cCZ algorithm and the solution of the MIP
problem for increasing number of TPs. Normalization with respect to the
network energy consumption for a fully loaded system (ρ = 1) when all
cells are active. Results are averaged over 100 different realizations of the
network and the 95% confidence intervals are provided in gray.

requirements that increase the total system load, which in turn reduces the redundancy in

the network to be exploited for energy savings. The proposed sMM algorithm as well as

the MIP algorithm provide network configurations that exhibit much smaller normalized

network energy consumption when compared with the network configurations obtained

with the cCZ algorithm. The smallest energy consumptions are achieved with the MIP

algorithm, which outperforms the proposed sMM algorithm. For the scenario with 200 TPs,

the sMM algorithm results in normalized network energy consumption of 12% on average.

For the same number of TPs, the average normalized energy consumption under the cCZ

and MIP algorithm are 49% and 7%, respectively. Similarly, for 1000 TPs, the resulting

average normalized network energy consumption of 31% for the sMM algorithm is still

larger than the 21% normalized energy consumption corresponding to the MIP solutions.

However, it is still much smaller than cCZ with 88% normalized energy consumption.

These results emphasize that the sMM algorithm is a suboptimal heuristic, which is able

to find network configurations consuming low energy. Even though the resulting network

energy consumption is not globally optimal, it shows much larger energy savings than the

comparison scheme cCZ.

The main advantage of the proposed sMM algorithm is its fairly low computational

complexity, which is directly affecting the time required to obtain an optimization result.

Figure 3.4 depicts the normalized time needed to obtain the results of Figure 3.3. This time
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Figure 3.4: Comparison of normalized computation time to obtain results with the
sMM algorithm, the cCz algorithm and the direct solution of the MIP
problem. Normalization with respect to the empirical average of the
MIP ’s computation time for 100 cells and 100 TPs over 100 realizations.
The 95% confidence intervals are provided in gray.

is normalized with respect to the computation time of the MIP algorithm with 100 cells

and 100 TPs. The sMM algorithm always provides results in a substantially shorter time

than the MIP algorithm. Even for a relatively small scenario of 100 cells and 300 TPs, the

computation time is already about 200 times larger for the MIP algorithm compared to the

proposed sMM algorithm. For larger setups with 1000 TPs the normalized time to solve

the MIP was ≈ 237 compared to ≈ 0.49 for the sMM algorithm, which is an approximate

488 fold reduction in the computation time. We emphasize that the simulated scenarios are

small and the computation of the MIP solution becomes infeasible in practical scenarios.

Already for a network with 200 cells and 10,000 TPs, the sMM algorithm provided a

solution in about 13s, whereas the MIP algorithm could not find a solution within one hour.

Compared to the cCZ algorithm the proposed sMM algorithm takes longer time due to the

lower complexity heuristic used in the cCZ algorithm. For a scenario of 300 TPs the average

computation time is about 22 times larger for the sMM algorithm and with 1000 TPs it is

about 43 times larger. However, with typical values of less than 1s, the computation time

is still reasonably small to allow for an online implementation. Considering the advantages

in energy savings, as seen from Figure 3.3, the proposed sMM algorithm presents a good

trade off between computation time and energy savings.

Emmanuel Pollakis 65



3 Load-aware Network Topology Control

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

5

10

15

20

25

30

β = energy consumption type 2 BS / energy consumption type 1 BS

fr
a

c
ti
o

n
 o

f 
a

c
ti
v
e

 c
e

lls
 [

%
]

 

 
sMM type1

MIP type1

sMM type 2

MIP type 2

total sMM

total MIP

sMM type 2

total sMM

MIP type 2

total MIP

sMM type 1

MIP type 1

Figure 3.5: Cell selection for heterogeneous energy consumption models - random
deployment. Fraction of active type 1 and type 2 cells in the final solution
obtained with sMM and MIP. Deployment uniformly at random for type
1 and type 2 cells. Results are averaged over 100 different realizations of
the network and the 95% confidence intervals are provided.

3.7.1.3 Cells with different sources of energy consumption

In contrast to other approaches to the problem of energy-efficient network topology control,

our optimization framework can easily deal with heterogeneous networks in which cells

have different static and load-dependent energy consumptions accounted for in (3.3). In

other words, the proposed sMM algorithm can cope with different energy consumption

models of cells. It can select network configurations that exhibit as low overall energy

consumption as possible. To illustrate the impact of different energy consumption models

on the optimization result, we start by varying the static energy consumption of all cells,

while keeping the load-dependent energy consumption fixed. Later in this section, we show

the impact of the load-dependent energy consumption by changing the weight of the load

dependent part relative to the static part.

To study the impact of the static energy consumption of cells ei, in the following simulations

we use single cell omnidirectional base stations, and we set the load-dependent part for all

cells and the common static part at base stations to zero f(ρi) = 0 and cl = 0. The static

energy consumption of half of the cells is varied, while the static energy consumption of the

other half remains unchanged. We refer to the cells with standard fixed energy consumption

as type 1, while type 2 is used to refer to cells with a varying energy consumption. The

energy consumption of type 2 cells is specified relative to that of type 1 cells. More precisely,

an energy consumption relation of β = 0.5 means that if ci = 780W for type 1 cells, then

ci = 390W for type 2 cells. The results for a scenario consisting of 100 cells and 100 TPs

are shown in Figure 3.5.

The simulation confirms the ability of our optimization framework to incorporate different
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Figure 3.6: Cell selection for a heterogeneous energy consumption model - co-located
deployment. Fraction of type 1 and type 2 cells in the final solution
obtained with sMM and MIP. Deployment of type 1 cells uniformly at
random and type 2 cells are co-located with type 1. Results are averaged
over 100 different realizations of the network and the 95% confidence
intervals are provided.

static energy consumptions. When all cells consume the same amount of energy (β = 1),

the algorithm makes no difference between type 1 and type 2 cells. The energy consumption

of type 1 and type 2 cells is roughly the same indicating that an equal number of type 1 and

type 2 cells are active in the obtained solution. In contrast, if type 2 cells consume less energy

than type 1 (β < 1), then the algorithm prefers to deactivate type 1 cells, while attempting

to keep type 2 cells active. Obviously, if β > 1, the situation is reversed in the sense that,

if possible, type 2 cells are preferably selected for deactivation.

The differentiation becomes even more evident for cell deployments, where type 1 and type

2 cells are co-located. In such a case, two cells of different types are located at the same

site and are “exchangeable” with respect to the service provided to the TPs (recall that

we use omnidirectional cells in these simulations). In other words, if a TP is assigned to a

location with two co-located cells, then it does not matter which cell is used to provide

the service to the TP. This implies that the decision whether to deactivate a cell or not

should depend only on the energy consumption of this cell in relation to its co-located

cell11.

The simulations with such a deployment are shown in Figure 3.6, where we see that,

for β < 1, there is no active cell of type 1, while, for β > 1, type 2 cells consume more

energy and the simulations confirm that the algorithms clearly prefer to activate type 1

cell.

To obtain insight into the impact of the load-dependent energy consumption, we fix the

static energy consumption of a single-cell omnidirectional base station to be ei = 780W

11 Even though such setups are unlikely in practice, we use it for reasons of illustration.
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Figure 3.7: Fraction of active cells for different dynamic energy consumption c’
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realizations of the network and the 95% confidence intervals are provided.
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Figure 3.8: Normalized network energy consumption for different dynamic energy
consumption weights c’ with increasing number of TPs. Normalization
with respect to the energy consumption when all cells are active. Results
are averaged over 100 different realizations of the network and the 95%
confidence intervals are provided.

and cl = 0W, and we vary the load-dependent energy consumption fi(ρ) = 564 c′ ρi by

letting c′ take values on c′ ∈ {0, 1, 10}. For an increasing number of TPs, Figure 3.7 shows

the fraction of active cells, while the normalized network energy consumption is shown in

Figure 3.8.

First we observe that the network energy consumption always increases with an increasing
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number of TPs, which is in fact no surprise. Moreover, the fraction of active cell increases

with c′ for both the sMM algorithm and the MIP algorithm. An examination of the

objective function in (3.21a) shows that this is what we expect. If the ratio of the load-

dependent energy consumption becomes larger relative to the static one, then the algorithm

tends to increase the fraction of active cells for an improved load balancing in order

to keep the load of each active cell at a relatively low level. In other words, instead of

deactivating as many cells as possible to minimize the static energy consumption, the

algorithm deactivates the cells to find the best possible balance between the static and

load-dependent energy consumption. This can be observed in Figure 3.7 We can see that

the higher the load-dependent energy consumption (which is reflected by c′ ≥ 0), the more

cells are activated under both the sMM algorithm and MIP algorithm. In particular, if

c′ = 10, the fraction of active cells is significantly increased compared to the situation in

which the load-dependent energy consumption is negligible (c′ = 0).

3.7.2 Numerical evaluation for UMTS/LTE networks

We now present simulation results that show the performance of the algorithm for multi-

RAT UMTS/LTE networks proposed in Section 3.5. Since the underlaying algorithm that

finds good solutions to the stated optimization problem is the same as for the single-

RAT problem, we confine ourselves with a reduced set of simulations that highlight the

algorithm’s applicability and its good performance for multi-RAT problems. In contrast

to the considered scenarios in the previous section we have two networks with different

technologies (UMTS and LTE) serving the same coverage area. In more detail, the simulation

environment consists of 50 UMTS and 50 LTE base stations deployed uniformly at random in

a 2 km by 2 km area. For simplicity, we consider that each UMTS and each LTE base station

has only one omnidirectional cell and thus |LUMTS| = MUMTS = 50, |LLTE| = MLTE = 50,

|Sl| = 1. The traffic in the network is generated by users and their data rate requirements

are represented by TPs. These requirements are modeled in a similar way as done in

Section 3.7.1 for the single-RAT simulations. We define three circular hotspot areas with

radius 500m and place TPs in one of these areas with a probability of 5% each. Its final

position is determined in polar coordinates by sampling the distance from the hotspot

center of a normal distribution and the angle from a uniform distribution. All remaining

TPs are placed uniformly in the whole area. All TPs support both technologies which

enables them to connect to a UMTS base station or a LTE base station. The A wrap

around model is used to avoid boundary effects and to place TPs that have a location

outside the 2 km by 2 km area. The signal power gain of each link from all base stations to

all test points follows the ITU propagation model for urban macro cell environments with

fixed antenna patterns [3GP10a].

Unless otherwise stated we use the following simulation parameters: rbase = 64kb/s,

Bi = 20 MHz ∀i ∈ MLTE, ui uniformly distributed in {1, 2}, Pmin = −100dBm,

Ptot = 40W, SIRmin = 12dB Pmax = 30dBm, Ki,j = 106, α = 0.5 and ci = 400W.
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Figure 3.9: Objective value of (3.33) and number of active base stations as a function
of the number of iterations before applying Algorithm 1. The results are
averaged over 100 realizations, and the confidence intervals indicate the
estimated error of the mean (95% confidence interval). The blue curve
with square markers shows the objective in (3.33) with corresponding
y-axis on the right. The black curve with triangle markers shows the
corresponding normalized network energy consumption for the result of
each iteration (legend on the left side).

The algorithm uses the stopping criterion (3.16) with ϵ⋆ = 10−3 and in LP (3.34) ϵ = 10−3

is used.

To obtain a better insight in the behavior of the proposed algorithm we evaluate the results

for an exemplary realization with N = 300 test points. Our algorithm identified 10 UMTS

base stations and 7 LTE base stations to be necessary to serve the QoS requirements of the

300 test points. Thereby, 163 test points have been connected to UMTS base stations and

137 test points have been connected to LTE base stations. Figure 3.9 shows the evolution

of the objective value and the corresponding normalized network energy consumption for

each iteration while executing the proposed algorithm. The results are averaged over 100

realizations, and the confidence intervals indicate the estimated error of the mean (95%

confidence interval) The algorithm shows the property to have a fast decaying objective

value; for this scenario, it needs only a small number of iterations to terminate. We further

observe that the objective value (3.33) decreases within the first five iterations and improves

only marginally after. Additionally, we plot the normalized network energy consumption

as defined in Definition 14 for the solution vector of each iteration (i.e., the results of

Algorithm 1 after the corresponding number of iterations of Algorithm 2). We observe

that it follows the same trend, and only a large reduction of the objective value leads to a

significant decrease in the normalized network energy consumption. Simulations for different
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energy consumption [W] active BS
UMTS / LTE UMTS / LTE

200 / 400 10.5 / 1.6
400 / 400 7.2 / 7.7
600 / 400 6.1 / 9.6
800 / 400 3.9 / 14.5

Table 3.1: Simulation results for different energy consumption of UMTS and LTE
base stations. Results are averaged over 30 simulations for MUMTS = 50,
MLTE = 50 and N = 300.

base station numbers and test points have shown similar patterns. A smaller ϵ⋆ (which

leads to more iterations) does not lead to an improved solution.

To evaluate the practical performance of the algorithm, which iteratively solves LP (3.34),

we compare it to the original Problem 3.28, solved by using Matlab 2014a in combination

with IBM’s CPLEX on a Intel Core i7 PC with four cores and 4GB RAM. For small

problem instances of 150 test points in a service area of 20 UMTS and 20 LTE base

stations, the computation time was around 15 minutes to solve Problem 3.28. The obtained

solution identified a set of six active base stations to serve the test points. In contrast,

our algorithm found a solution with the same number of active base stations in only 0.8

seconds. For larger problems with 50 UMTS, 50 LTE base stations and 300 test points, our

algorithm obtained a solution within a few seconds, whereas Problem 3.28 could not be

solved in reasonable time (less than four hours). These results are in line with performance

evaluations for single-RAT networks (c.f. Section 3.7.1). Note however, that they are not

directly comparable due to implementation specifics and different hardware setup used for

simulations.

Finally we demonstrate the ability of our algorithm to confine the traffic to base stations

that consume only little energy when both UMTS and LTE base stations can serve the

test points equally. We alternate the basic energy consumption ci of UMTS and LTE base

stations and record the averaged results in Table 3.1. Hereby, the results are averaged over

30 simulation runs for the setup with MUMTS = 50, MLTE = 50, and N = 300. It can be

observed that the algorithm tends to keep active base stations with low energy consumption,

and it tends to switch off base stations with high energy consumption, as expected and

already observed in the single-RAT case (see Section 3.7.1).

3.7.3 Numerical evaluation of the decentralized approach

The performance of the decentralized scheme proposed in Section 3.6 is empirically evaluated

by means of simulations. We compare the resulting network energy consumption to

the ones obtained by the MIP, sMM and cell-zooming algorithm. For the performed

simulations we reuse the simulation scenario and parameters from the single-RAT centralized

simulations in Section 3.7.1. For convenience we summarize the key simulation parameters
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Parameter Value

Simulated network area 2km × 2km
Number of base stations l |L| = 34
Number of cells M |M| = 102, |Sl| = 3
Energy consumption ci = 500W, ei = 280W, fi(ρi) = 0
Number of resource units per cell Bi = 20MHz
Data rate requirement per TP rj N (128 kbps, 32 kbps2)
Stopping criterion ϵ⋆ = 10−3

Relaxation parameter in (3.10) ϵ = 10−3

Table 3.2: Key simulation parameters used in empirical evaluation of decentralized
algorithm for single-RAT LTE network energy optimization.
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Figure 3.10: Comparison of sMM, MIP, cell-zooming and our decentralized approach.
95% confidence interval calculated for 100 random network realizations
according to the setup explained in Section 3.7.1

in Table 3.2. The comparison of the simulation results for different number of test points in

the system is provided in Figure 3.10 showing the normalized network energy consumption

defined in Definition 14. The results obtained with our proposed distributed algorithm

are following the same trend as the centralized reference schemes. For an increase in

traffic demand, represented by a higher number of test points with a constant data rate

requirement, the network energy consumption increases since there are less redundancies

in the network that can be exploited for energy savings. Compared to the optimal solution

and the centralized sMM solutions the decentralized algorithm gives network setups that

consume more energy when providing the same service to the test points. However, our

decentralized scheme has still a much better performance than the cell zooming scheme

from [NWGY10].
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3.8 Anticipatory scheduling for improved energy savings

In previous sections we have presented schemes that enable network reconfigurations to

reduce energy consumptions. In particular, we devised algorithms that deactivate network

elements in a coordinated manner to provide service to delay-sensitive applications at

any given point in time. Even though those mechanisms exhibit good energy saving gains

they are limited due to the fundamental trade-off between energy efficiency and delay

constraints which is still an open problem [CZXL11].

The recent technological development towards higher throughput in wireless communication

systems enables mobile users to use services with high data rate requirements like HD video

streaming on the go. For this example a seamless video playback is supported by buffering

data in the local memory of the user terminal. Thereby, a previously loaded fraction of the

movie can be replayed even in areas with bad or no connection. This buffering capability

builds the basis for our work in this section. We exploit the possibility to preload and save

data on user devices which will serve as an enabling concept to save energy in the commu-

nication system by disengaging certain network components12.

We now turn towards further improvements of these energy savings by exploiting users’

tolerance for delay. The techniques of previous sections are based on the load variations in

the network. It turns out that such spatial and temporal load fluctuations can be ”shaped”

to some extent. We drop the delay-sensitivity assumption of applications which is true

for a class of applications e.g. machine-to-machine communications, file transfer, buffered

media/video streaming etc. The service provision of moving wireless devices (e.g. cars,

pedestrians, trains) can be diverted to areas where available capacity is high enough or

to times that are favorable to save energy. We present a framework that helps prolong

the periods when the network can be operated in a state of low energy consumption.

This concept falls into the class of proactive resource allocation schemes and we extend it

to include also the user assignment to cells. The resulting class of algorithms is termed

Proactive Resource Allocation and User Assignment (PRAUA).

Consider the following example for better illustration. We have a dense cellular communica-

tion system consisting of cells with largely overlapping coverage area. We want to operate

the cellular communication network in a low energy consumption state and thus need to

identify cells that are not needed to provide the QoS demand of users. In our example we

have a single user moving along a known route. Along the way the user wants to stream

a video without any stalling and on its route the user passes through the service area

of three cells. The example setup is depicted in Figure 3.11. Without any delay tolerant

service scheduling, all three cells would have to be active in order to stream the video to

the user. However, it is beneficial to exploit the user’s mobility and buffering capabilities by

allocating more resources to the user in the first cell such that the video could be preloaded

12Notice, that we are looking only at capacity aiding base stations to turn off. The coverage has to be
secured at all times. We consider therefore a basic coverage by some legacy network and propose a
possible shutting down of capacity providing base stations.
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Figure 3.11: Exemplary illustration of a delay tolerant scheduling

in the user’s buffer. When moving through the service area of the second cell the user

streams the video content from its buffer instead of streaming it from the cell. Once entering

the service area of the third cell, the buffer streaming can continue from cell three. In this

simple example cell two can stay inactive resulting in energy savings.

The underlying idea is as follows. We apply the network reconfiguration techniques and

incorporate the delay-tolerance to allow for intermediate degradation in service provisioning

in order to improve the service before and after so that the energy saving state has more

degrees of freedom. By delaying the service provision of some users we may avoid to activate

network elements that are only needed when the traffic demand is of bursty nature. The

result is a data transmission schedule sending data to users for buffering in high capacity

cells whereas it avoids access to cells that are overloaded or switched of for reasons of

energy savings. The result is a resource usage that lets users buffer data in high capacity

cells whereas it avoids access to cells that are overloaded or switched off for reasons of

energy savings. We use the predicted routes of users and the learned path loss coverage

maps to find such a user-cell association and rate allocation policy under the exploitation

of the users’ buffers, i.e., when a user is predicted to pass an area without coverage it

will be allocated more resources right before, so that the data can be loaded in the buffer

(bridging the coverage hole).

3.8.1 Scenario and system model

We consider the downlink of a cellular heterogeneous communication system employing

an OFDM-based resource allocation. We are interested in switching off capacity units of
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the network, e.g. sectors, cells or the entire base station13; the corresponding decisions are

performed at a central network controller.

Assumption 13. Coverage is ensured by a legacy communication system.

As a consequence of Assumption 13 LTE cells can be switched off without loosing coverage in

that area. The set of all base stations is denoted by L = {1, 2, ..., L}, and the cells belonging

to base station l by Sl. The full set of all M cells in the network is thus M := ∪l∈LSl.
Each cell i has total number of resource blocks Bi to allocate to its users. There are N

users in the system to be served and we denote the set of all users as N = {1, 2, ..., N}.
The time is divided into K time slots of equal duration ∆k and we denote the set of

all time slots by K = {1, . . . ,K}. For each time slot, the objective is to find a resource

allocation and user-cell association. Each user is equipped with a first-in-first-out (FIFO)

buffer and we denote the buffer level (in bits) of user j in slot k by d
(k)
j ≥ 0 with d

(0)
j = 0

(empty buffer at start). We assume a sufficiently large buffer and refer to the technology

specific spectral efficiency per resource block of the link from cell i to user j in slot k as

ω̃
(k)
i,j .

Assumption 14. A reliable estimate of the users’ routes and the supported spectral

efficiency per resource block along those routes is available at the central controller.

Assumption 14 can be implemented by using side information or estimated mobility

trajectories based on the high regularity in human mobility [SQBB10] together with

techniques to learn path loss maps, e.g., [KCV+16]. If the supported spectral efficiency

per resource block is not available with sufficient accuracy, Assumption 12 can be used to

lower bound the spectral efficiency of a link between cell i and user j at time point t by

ω̃
(k)
i,j ≥ ω

(k)
i,j := ωi,j(1).

Remark 10. The task of learning various radio maps like coverage, path-loss or interference

maps is considered as a major challenge in radio network design [PSG13] and thus is a

hot topic in research as well as in industry. The retrieval of such maps is out of the scope

of this thesis but we refer to adaptive online learning mechanisms like Adaptive Projected

Sub-gradient Method (APSM) which are investigated in e.g. [KCV+16] and references

therein.

The task of our optimization framework is to provide a schedule of resource allocations

satisfying the rate requirements of users while trying to reduce the energy consumption.

Similar to the optimization task in Section 3.4 we want to find a user cell assignment that

allows for deactivation of network elements giving the largest possible energy savings. In

this chapter we additionally enable users to buffer data locally to be used at a later point

in time. Therefore, we do not impose constraints on a fixed rate per user per time slot

received from a particular cell. If a user j is served by cell i in time slot k we denote the

13In the text that follows we will use cells as a placeholder for any type of network element that can be
switched on/off independently.
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effective transmit data rate as r
(k)
i,j := b

(k)
i,j ω

(k)
i,j where b

(k)
i,j is the number of resource units

allocated to user j by cell i in slot k. We collect the rates allocated by cell i to all users at

time k in vector r
(k)
i =

[
r
(k)
i,1 , r

(k)
i,2 , ..., r

(k)
i,N

]T
. We further use R(k) =

[
r
(k)
1 , r

(k)
2 , ..., r

(k)
M

]
to

refer to all rates allocated over all cells to all users in slot k. We extend Definition 10 to

the time domain and obtain the following.

Definition 15 (Instantaneous Cell Load). Given the rate assignment matrix R(k), the

instantaneous load of cell i at time slot k, denoted by ρ
(k)
i

(
R(k)

)
∈ [0, 1] or simply ρ

(k)
i for

notational simplicity, is defined to be the ratio of the number of resource blocks allocated to

users served by cell i ∈M in slot k to the total number of resource blocks Bi available at

this cell, i.e., ρ
(k)
i =

∑
j∈N b

(k)
i,j

Bi
.

We use ρi := [ρ
(1)
i , . . . , ρ

(K)
i ]T ∈ [0, 1]K to denote the vector of cell loads at cell i for all time

slots and denote the collection of all cell loads over time by P := [ρ1, . . . ,ρM ]T ∈ [0, 1]M×K .

A consequence of Definition 15 is the following fact:

Fact 4. The load at cell i satisfies ρ
(k)
i > 0 if and only if (iff) cell i serves at least one

user in slot k.

In other words, |ρi 1|0 = 0 iff cell i serves no user in all time slots K, where 1 ∈ RK is a

vector of ones and | · |0 is the l0-norm. If |ρi 1|0 = 0 cell i can be deactivated for energy

saving reasons.

Remark 11. For simplicity we say that the service demand of all users starts at the same

time k = 0 and endures the same time K. This simplification is no limitation to our scheme

but more to make the formulas more readable.

We consider buffered delay-sensitive applications which are characterized by a strict per

time slot data rate requirement of each user. In more detail, the data transmitted to

the user is stored in its buffer from which the delay-sensitive application reads with

constant data rate rmin
j . If the scheduling algorithm allocates a higher data rate to a

user in time slot k, i.e., r
(k)
i,j > rmin

j , then the additional transferred data remains in

the users buffer d
(k)
j = d

(k−1)
j + ∆k(r

(k)
i,j − rmin

j ) and is read in the next time slot. If the

user is not allocated a sufficiently high rate in slot k, i.e., r
(k)
i,j < rmin

j , the buffer level

decreases as d
(k)
j = d

(k−1)
j − ∆k(rmin

j − r
(k)
i,j ). In every time slot k the aggregate data

rate from the buffer and streamed from a cell has to be large enough which yields the

constraint14 ∑
i∈M

r
(k)
i,j +

d
(k−1)
j

∆k
≥ rmin

j . (3.40)

The buffer level of user j at the end of time slot k is therefore described

by

0 ≤ d
(k)
j = d

(k−1)
j +

∑
i∈M

∆kr
(k)
i,j −∆kr

min
j . (3.41)

14 Note, that this definition allows users to be served by multiple cells as well as the buffer in a time slot.
In such cases fountain coding can be used to implement mutual information combing.
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Since each base station has only Bi resource units to allocate to users we have the

constraint ∑
j∈N

b
(k)
i,j

Bi
=
∑
j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i . (3.42)

3.8.2 Problem statement

We are now in the position to state the optimization problem that aims at finding the

optimal set of active cells, user-cell assignments and rate allocations while consuming the

least amount of energy. The objective function E : [0, 1]M×K → R+ is a combination of

static and dynamic sources of energy consumption. In more detail, each active cell has

static energy consumption of ei per time slot and a load dependent part which is captured

by a concave or convex function fi (ρi) ∈ R+ or simply fi. The total network energy

consumption in a so called on/off scheme is

Eon/off(P ) =
∑
i∈M

K ei |ρi 1|0 + fi. (3.43)

The above model assumes that cells are deactivated before the first time slot and stay

inactive for all K time slots. The model can easily be adapted to modes of operation where

so called micro-sleeps of cells are allowed. In such cases, a cell can be deactivated for a

single time slot k in order to save energy and be activated in the next time slot k + 1. The

energy consumption of such a mode of operation is captured by

Esleep(P ) =
∑
i∈M

K∑
k=1

ei

⏐⏐⏐ρ(k)i

⏐⏐⏐
0

+ fi. (3.44)

We refer to the scheme where micro-sleep of cells is allowed as micro sleep

scheme.

The complete optimization problem for buffered delay-sensitive applications with the on/off

scheme can be composed as

minimize
∑
i∈M

K ei |ρi 1|0 + fi

subject to
∑
j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈M, k ∈ K

∑
i∈M

r
(k)
i,j +

d
(k−1)
j

∆k
≥ rmin

j j ∈ N , k ∈ K

d
(k−1)
j +

∑
i∈M

∆kr
(k)
i,j −∆kr

min
j = d

(k)
j j ∈ N , k ∈ K

0 ≤ d
(k)
j j ∈ N , k ∈ K,

(3.45a)

(3.45b)

(3.45c)

(3.45d)

(3.45e)

where the optimization variables are r
(k)
i,j ∈ R+ and ρ

(k)
i ∈ [0, 1]. Thereby, (3.45b) assures
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that cells are not overloaded and (3.45c) guarantees that users receive the required instan-

taneous data rate. Constraint (3.45d) represents the buffer level increase or decrease at

each time slot k.

Problem (3.45) can be written in a more compact form as

minimize
∑
i∈M

K ei |ρi 1|0 + fi

subject to
∑
j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈M, k ∈ K

k∑
l=1

(∑
i∈M

r
(l)
i,j − rmin

j

)
≥ 0 j ∈ N , k ∈ K,

(3.46a)

(3.46b)

(3.46c)

since the buffer level at the end of time slot k can be stated as the data surplus of the

aggregated data transmitted up to time slot k.

In a similar way we can state the problem for the micro sleep scheme which uses (3.44)

and we obtain

minimize
∑
i∈M

K∑
k=1

ei

⏐⏐⏐ρ(k)i

⏐⏐⏐
0

+ fi

subject to
∑
j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈M, k ∈ K

k∑
l=1

(∑
i∈M

r
(l)
i,j − rmin

j

)
≥ 0 j ∈ N , k ∈ K,

(3.47a)

(3.47b)

(3.47c)

where the optimization variables are r
(k)
i,j ∈ R+ and ρ

(k)
i ∈ [0, 1].

Remark 12. By adjusting the buffer size it is possible to introduce some sort of delay-

robustness. The larger the buffer, the more data can be preloaded and the longer can a user

be without any service from any cell. In an extreme case all data is sent in the first time

slot and the rest of the time it is not served by any base station. In practice such scenarios

are unrealistic. User behavior often skips videos forward or changes to request other data

sets and in such cases the preloaded data would have wasted resources that could have been

used otherwise.

3.8.3 Network topology control for buffered delay-sensitive applications

Due to their non-convex objective function Problem 3.46 and Problem 3.47 are in general

hard to solve. Fortunately, both problems exhibit a structure that can be exploited by

low complexity algorithms to find good user-cell association and rate schedules consuming

low energy. In more detail, we apply a relaxation of the l0-norm in combination with the
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Majorization-Minimization method as proposed in Section 3.3.3. In the following we sketch

the solution approach.

The objective functions of Problem 3.46 and Problem 3.47 are not continuous due to the

involved l0-norm. To obtain an optimization problem that is mathematically tractable, we

address the non-continuity problem of the l0-norm by considering the following relation

[CWB08]:

∀z∈RK |z|0 = lim
ϵ→0

K∑
k=1

log(1 + |zk| ϵ−1)

log(1 + ϵ−1)
, (3.48)

Thus, (3.46a) can be equivalently written as

∑
i∈M

K ei |ρi 1|0 + fi = lim
ϵ→0

∑
i∈M

K ei
log(1 + ϵ−1 ρi 1)

log(1 + ϵ−1)
+ fi. (3.49)

Similarly, the objective function of the micro sleep scheme (3.47a) can be equivalently

written as

∑
i∈M

K∑
k=1

ei

⏐⏐⏐ρ(k)i

⏐⏐⏐
0

+ fi = lim
ϵ→0

∑
i∈M

K∑
k=1

ei
log(1 + ϵ−1 ρ

(k)
i )

log(1 + ϵ−1)
+ fi. (3.50)

We obtain a relaxed version of Problem 3.46 and Problem 3.47 by replacing the objective

function by the right-hand side of (3.49) and (3.50), respectively and fixing ϵ > 0 to a

sufficiently small value which yields

minimize
∑
i∈M

K ei
log(1 + ϵ−1 ρi 1)

log(1 + ϵ−1)
+ fi

subject to
∑
j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈M, k ∈ K

k∑
l=1

∑
i∈M

(r
(l)
i,j − rmin

j ) ≥ 0 j ∈ N

(3.51a)

(3.51b)

(3.51c)

for the on/off scheme. Accordingly, the we state the relaxed form of the micro sleep scheme

as

minimize
∑
i∈M

K∑
k=1

ei
log(1 + ϵ−1 ρ

(k)
i )

log(1 + ϵ−1)
+ fi

subject to
∑
j∈N

r
(k)
i,j

Biω
(k)
i,j

≤ ρ
(k)
i i ∈M, k ∈ K

k∑
l=1

∑
i∈M

(r
(l)
i,j − rmin

j ) ≥ 0 j ∈ N .

(3.52a)

(3.52b)

(3.52c)

Problem 3.51 and Problem 3.52 are still not easy to solve because we need to minimize

a non-convex function over a convex set. Fortunately, [CWB08] presents an optimization

framework based on the MM technique [HL04] to handle problems of this type. The

Emmanuel Pollakis 79



3 Load-aware Network Topology Control

Table 3.3: Network parameters of the simulation [MET13, Sect. 4.2].

Parameter Value

Antenna height of macro cells 53 m
Antenna height of micro cells 10 m
Carrier frequency of macro cells 800 MHz
Carrier frequency of micro cells 2500 MHz
Max. transmit power of macro cells 43 dBm
Max. transmit power of micro cells 30 dBm
ei of macro cells 400 W
ei of micro cells 100 W
Bi 100
Noise power spectral density -145.1 dBm/Hz
ϵ 10−2

framework can be used to decrease the value of the objective function in a computationally

efficient way. For notational convenience we define the sets X1 and X2 to be the set of

rate allocations R ∈ RN×M×K
+ and cell loads P ∈ RM×K

+ satisfying constraints (3.51b)-

(3.51c) and (3.52b)-(3.52c), respectively. In addition, we define the constant êi := ei
log(1+ϵ−1)

.

Applying the MM technique to Problem 3.51 and Problem 3.52 yields a fast algorithm that

iteratively solves

[(R,P)][n+1] ∈ arg min
(R,P)∈X1

∑
i∈M

(
K êi

ρi1

ϵ + [ρi]
[n]1

+∇fi
(

[ρi]
[n]
)T

ρi

)
(3.53)

for some feasible starting point and where we used the notation [·][n] to refer to the

respective variable in the n-th iteration of the MM algorithm.

Analogous to (3.53) we arrive at the following iterative algorithm for Prob-

lem 3.52

[(R,P)][n+1] ∈ arg min
(R,P)∈X2

∑
i∈M

( K∑
k=1

êi
ρ
(k)
i

ϵ + [ρ
(k)
i ][n]

+∇fi
(

[ρi]
[n]
)T

ρi

)
(3.54)

for some feasible starting point.

3.8.4 Empirical evaluation

In this section we present simulation results for the presented buffered delay-sensitive

optimization framework for the on/off scheme and the micro sleep scheme. The numerical

evaluation is based on the macro and micro layers of the ”dense urban information society”

scenario proposed in the METIS project [MET13, Sect. 4.2]. The basic layout is depicted

in Figure 3.12 where three macro and 12 pico cells are deployed on rooftops and in the

streets, respectively. The main parameters of the simulation scenario are listed in Table 3.3.

To obtain the information used in Assumption 14 we use the channel gain data provided

by the METIS consortium [MET15] for the scenario depicted in Figure 3.12. Additionally,
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Figure 3.12: Basic deployment model of METIS TC2 [MET13] used in simulations
for the buffered delay-sensitive optimization framework.

the provided mobility traces for cars are used to generate the traffic in our simulations. We

focus on car users only due to their high mobility which will serve well to illustrate the

gains achievable with anticipatory resource allocation. The data set for car users provides

mobility traces of N = 420 different car users in the central deployment and a wrap around

model is used to avoid boundary effects. The data set provides mobility traces for a time

duration of 3600 seconds for each car user. Further details on the scenario and mobility

model can be found in [MET13].

We normalize the energy consumption achievable by each scheme to the energy consumption

of the network topology where all cells are active the whole time. In more detail, we normalize

the network energy consumption by Eon/off(1) = Esleep(1) = K
(∑

i∈M ei + fi(1)
)

and

evaluate for our schemes

E′
on/off(R) =

Eon/off(R)

K
(∑

i∈M ei + fi(1)
) (3.55)

and

E′
sleep(R) =

Emicro sleep(R)

K
(∑

i∈M ei + fi(1)
) . (3.56)

In order to show the isolated effective gains from the anticipatory scheduling framework we

neglect the dynamic energy consumption of hardware and use fi(ρ) = 0, ∀i. The evaluation

of the effect of the dynamic energy consumption on the energy savings has been studied

in Section 3.7.1.3 for energy saving algorithms without proactive resource allocation. We
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Figure 3.13: Normalized network energy consumption of the micro sleep scheme and
the on/off scheme with increasing minimum per user rate requirement
and for different optimization windows. Normalization with respect to
all cells active the whole time.

expect the effects to carry over to proactive resource allocation schemes and the evaluation

of which will be part of future studies.

We evaluate the proposed algorithm for the on/off scheme and the micro sleep scheme in

terms of energy savings capabilities for the described scenario focusing on the influence

of the number of time slots the optimization is done for. More precise, we find tuples of

(R,P) for a different number of time slots K ∈ {40, 80, 120, 240} with time slot duration

∆k = 1s. The starting point k0 in the data set where we apply our optimization framework

is selected uniformly at random from {1, 3600−K + 1} and the optimization window is

selected as {k0, . . . , k0 + K − 1}.

Figure 3.13 depicts the achievable normalized network energy consumption with increasing

per user data rate requirement for the on/off scheme and the micro sleep scheme. We

observe the intuitive result that with an increasing minimum per user data rate requirement

the normalized network energy consumption increases. The more user demand there is

in the network the less redundancies are in the system that can be exploited for energy

savings. When comparing the two energy savings schemes it can be seen that the energy

savings potentials with the micro sleep scheme are larger than the ones with the on/off

scheme. The reason lies in the nature of the schemes that the micro sleep scheme allows

the deactivation and activation of cells on a smaller time scale which in turn enables the

scheme to save energy even for shorter time periods whereas the on/off scheme finds

a set of active cells only for the full optimization window. The effect of the size of the

optimization window is also evident from Figure 3.13. We can see that for both schemes

the normalized network energy consumption is higher for a smaller optimization window.
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3.8 Anticipatory scheduling for improved energy savings

A reason for this observation can be found in the better chances of larger optimization

windows to preallocate resources for more data transmission in advance in order to free

some cells from service provision.
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3.9 Conclusion and final remarks

We have introduced an optimization framework for enhancing the energy efficiency of

cellular networks. In cellular communication systems, problems of this type are hard to

solve because of their combinatorial nature and the nontrivial interference coupling among

cells. Indeed, even with a simplifying assumption of the worst-case interference, the energy

saving problem is a mixed integer programming problem that is strongly related to the

bin-packing problem, which in turn is known to be NP-hard. As a result, we cannot

expect to find optimal solutions quickly. Instead we focused on fast sub-optimal heuristics.

Unlike many existing approaches in the literature, the proposed methods can naturally

consider both the dynamic and static energy consumption of base stations with multiple

cells in heterogeneous networks. In the proposed heuristic, we relaxed the mixed integer

programming problem to a form suitable for the application of majorization-minimization

techniques. The resulting algorithm requires the solution of a series of linear programming

problems that can be efficiently solved with standard mathematical solvers. Therefore, it

can be applied to large-scale problems, and it is also suitable for online operation. By means

of simulations we showed that good sparse solutions are obtained with only few iterations

of the algorithm. We have also shown that our technique can outperform recent methods

from literature in practical scenarios. In several simulation scenarios of different kind we

highlighted the ability of the proposed algorithms to consider heterogeneous networks

where base stations have different static and dynamic energy consumption. Finally, we

showed the application of our algorithms to a network consisting of LTE and UMTS base

stations.

Motivated by the good energy saving results we presented a second optimization framework

that exploits the knowledge of user-cell trajectories and learned path-loss maps to find

network topologies with low energy consumption. It finds user-cell association and rate

schedules that provide the requested data rate of users and at the same time reduces the

energy consumption of cellular communication networks. The used energy consumption

model is general enough to capture static energy consumption for cooling, basic power

conversion etc. as well as dynamic load dependent energy consumption. The key ingredient

to these algorithms is the exploitation of end user devices’ storage capabilities to implement

buffered delay-sensitive applications with proactive resource allocation and user assignment.

Thereby, we stretch the applicability of cell sleep and switching on/off techniques in the

time horizon leading to significant energy savings. We have formalized the problem as a

non-convex optimization problem and have presented relaxation techniques that are able

to give good solutions to this problem in reasonable time making it amenable for online

implementation. We evaluated the proposed on/off scheme and the micro sleep scheme

in a realistic network deployment with realistic traffic demands and user mobility models.

Results for the METIS TC2 deployment show good energy saving potentials for both

schemes and we have empirically evaluated the influence of the optimization windows with

respect to energy savings.
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to Network Topology Control for Load

Aware Energy Savings

In Chapter 3 we have developed algorithms for energy savings in current communication

networks that rely on the well-predicted behavior of traffic over time. To make those

algorithms mathematically tractable we used a conservative approach which is not able to

exploit the full potential of energy savings. The algorithms are designed to provide feasible

solutions supporting the QoS requested by users even in the worst case scenario where the

system is fully loaded and there is a lot of inter-cell interference. However, this assumption

is very conservative since in practice, especially in low load situations, the interference is

much lower and the QoS requirements could be provided with less resources of the cells. So

by considering the true load values in the network topology optimization problem opens

further opportunities to improve system performance in terms of either more energy savings

or increased total system throughput. This becomes even more pronounced in todays and

future networks where network designers need to address the ever-increasing data rate

requirements in wireless networks. So by using such techniques, radio engineers are put into

the position to evaluate if a given network configuration (base station tilts, power, etc.) is

able to support the expected traffic demand. First results in this respect are available in

literature [MK10, SY12] providing iterative techniques to compute the true cell load for

particular interference coupling models in LTE systems. Alongside with these results, there

has been considerable efforts to advance the theory in the field of interference calculus

[SB12, Yat95]. This general framework is typically used to study interdependencies among

users in interference-coupled systems. First results [FKVF13, CSS+14, HYLS15] connect

these two fields, namely the load/interference coupling models and interference calculus.

Recent results show that the total transmit power in coupled cellular communication

networks can be reduced without degrading the users’ QoS when allowing the load to

increase.

Based on these studies we present a unified framework to compute the actual load of

cells which will put us in the position to answer questions of feasibility of given network

configurations and the effectiveness of changes in the configuration (e.g., a change in

antenna tilts). We combine the load based model of [SY12] for interference-coupled cellular

networks with the framework of standard interference functions [Yat95]. Thereby, we are

able to obtain a better approximation of the mutual interference and thus more accurate
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cell load levels allowing for larger energy savings at the cost of slightly increased complexity

and overhead. We are also able to derive novel algorithms for power computation that

do not require nested iterative techniques such as that in [HYLS15]. In particular, if we

are given the task to recompute power assignments to increase load (e.g., to decrease

the transmit energy as discussed above), we can derive simple algorithms that can give

information about the precision of the power estimates at each iteration. We also combine

these techniques with the topology optimization techniques described in Chapter 3 in order

to exploit the energy savings gains that were previously omitted due to the worst-case

interference levels. Finally, we show how we can include the optimization of different

system parameters such as antenna tilts. Even though, the resulting algorithms are based

on heuristics, we demonstrate the energy savings gains compared to the pure topology

optimization from Chapter 3.

4.1 Contribution

We build upon the energy savings techniques introduced in Chapter 3 and extend them

towards realistic load models based on the general framework of interference calculus.

Starting from available results for standard interference functions we use the result that the

computation of load in cellular communication systems considered in our study can be posed

as the problem of finding fixed points of standard interference mappings. This provides us

with readily available, computational efficient techniques (standard iterative algorithms) to

find the load at cells for a given network setup and puts us in the position to identify feasible

network settings. These results are used to improve and extend the optimization algorithms

for energy savings developed in Chapter 3. Finally, we present a framework which allows to

incorporate finding feasible cell configurations (e.g., antenna tilts) supporting the energy

savings algorithm that deactivate redundant network elements.

In the following we highlight the main contribution of the chapter:

• We show how the framework of standard interference functions can be applied to our

problem of identifying feasible network setups. Thereby, the involved computations

are of low complexity due to the involved fixed point algorithms that are used.

• We use interference mappings that are able to capture many practical limitations,

such as an upper bound for the spectral efficiency or a constant signaling overhead.

• We present a non-heuristic stopping criterion to compute fixed points of our interfer-

ence mappings that lead to an arbitrary but fixed precision.

• We show how the framework of standard interference functions is used to compute

the actual load for a fixed network setup and how this information is used to improve

the performance of our topology control algorithms from Chapter 3.

• With the help of heuristic arguments we combine the improved algorithm for topology

control with the optimization of cell configurations. In particular, we show how the

optimization of down tilts can help to save energy.
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4.2 Related work

The problem of identifying the interference coupling in wireless communication systems

has been a long standing problem. A significant body of work [MNK+07, MTHB07, MK10,

SY12, FF12, FKVF13, HYS14, CSS+14, CSS15] relates the interference in the system to

the cell load which is defined as the fraction of resource blocks used for transmission.

Early research results [Gee08, MK10, SY12] introduce a model that computes the load

via the solution of a system of non-linear equations for fixed network settings such as

down-link powers and antenna tilts. The work in [MK10] is about wireless network design

and optimization. The authors establish a model for cell load computation in large radio

networks where the downlink bitrate follows a behavior approximating the Shannon-Hartley

formula for achievable bitrates in a noisy transmit channel. This is used to deduce the

network capacity and the suggested iterative algorithm is reasonably fast. The result is

a local search algorithm to make decisions on site selections for network planning. The

work in [SY12] presents a similar model characterizing the coupling relation between the

cell load factors. Thereby, the intercell interference is taken into account for arbitrary

network topologies enabling a performance analysis of the whole network in terms of

resource consumption. The problem at hand is posed as a system of non-linear equations.

A first attempt to solve these equations based on linearization and bounding is presented

but ultimately, only sufficient and necessary conditions are derived for the existence of a

solution.

In parallel, there has been advances in the theory of standard interference functions

[Yat95, SWB09, SB12]. This framework provides computationally efficient fixed point

algorithms to find solutions to fixed point problems of functions with specific properties.

The applications of this framework are very broad. Its original application is rooted in

power control in code division multiple access systems [Yat95] but it is applicable to many

modeling and analyzing interference scenarios in multi-user systems.

First results that highlight the connection of load computation and interference calculus

can be found in [FF12, FKVF13, CPS13a, CSS+14, CSS15]. It was shown that the problem

of load computation can be posed as a fixed point problem involving standard interference

mappings. The work in [FF12] identified the load coupling model as a standard interference

function and proposed its solution by standard fixed point algorithms. In a parallel stream

of work [CPS13a, CSS+14], concave mappings for network planning using load computation

and interference have been proposed. Specific mappings have been proposed and the wider

applicability has been highlighted. The solutions are obtained by iteratively solving fixed

point problems involving standard interference mappings. The study [CSS15] improves

the convergence speed of the standard fixed point iteration by constructing a matrix that

has spectral radius strictly smaller than one if the corresponding mapping has a fixed

point. The application is of particular interest in large network planning tasks where the

computation of the fixed point may require time-consuming iterative methods and fast

solutions are desired.
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In [FKVF13], it was shown how to apply these results to a user association and antenna

tilt optimization problem targeting at load balancing and maximizing the average resource

available at cells. Motivated by this work we seek applications for energy savings as outlined

later in this chapter.

[HYLS15] has shown that, the revers estimation problem, where the power is to be found

inducing a particular load is of high practical relevance. A key result in this respect is

that the total transmit power reaches its minimum when the load is at its maximum. It

was shown that the reversed problem can also be posed as a fixed point problem but the

involved interference mappings could not be obtained in closed form, which made nested

iterative algorithms necessary. Such algorithms are likely to converge only after a large

number of iterations.

4.3 Preliminaries and basic concepts

We include some basic definitions and concepts from convex analysis ([BV06]) and the theory

of interference functions ([Yat95, SB12]) that are used in this chapter.

Definition 16 (Convex set). A set C is said to be convex if θx1 + (1− θ)x2 ∈ C for every

x1,x2 ∈ C and 0 ≤ θ ≤ 1. If, in addition to being convex, C contains all its boundary

points, then C is a closed convex set.

Definition 17 (Convex and concave functions). A function f : RN → R is said to be

convex if ∀x,y ∈ RN and 0 ≤ θ ≤ 1,

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

A function f is said to be concave if −f is convex.

Fact 5 (Selected properties of convex/concave functions). For convex functions, we have

the following properties [BC11, Ch. 8.2][BV06]:

1. The set of convex functions is closed under addition and multiplication by non-negative

constants.

2. If f1 : RM → R is a convex function, then f2(x) := f1(Ax + b) is a convex function,

where A ∈ RM×N , x ∈ RN , and b ∈ RM

3. If f1, f2 : RM → R are two convex functions, then their point-wise maximum f :

RM → R defined by

f(x) = max {f1(x), f2(x)}

is also convex.

4. (Perspective) Let f1 : RM → R be a convex function, then the function f2 : RM ×
R++ → R defined by:

f2(x, y) = yf1

(
x

y

)
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is convex.

5. (Dimension reduction) If f1 : RM → R is a convex function, then f2 : RM−1 →
R : x ↦→ f1([x

T 1]T ), which is obtained by fixing the last element argument of the

function f1 to one, is a convex function.

The following concepts and definitions play an important role in explanations of this

chapter. The presentation is based on [Yat95, SB12] and we refer to these references for a

more detailed discussion about interference functions.

Definition 18 (Standard interference functions [Yat95]). A function I : RM
+ → R++ is

said to be a standard interference function if the following holds:

1. (Positivity) I(x) > 0 for all x ∈ RM
+ .

2. (Scalability) αI(x) > I(αx) for all x ∈ RM
+ and all α > 1.

3. (Monotonicity) I(x1) ≥ I(x2) if x1 ≥ x2.

Fact 6. Concave functions I : RM
+ → R++ are standard interference functions [CSS+14].

Definition 19 (Standard interference mappings). A mapping J : RM
+ → RM

++ is a standard

interference mapping if it can be written as J (x) = [I1(x) . . . IM (x)]T , where each function

Ii : RM
+ → R++ (i = 1, . . . ,M) is a standard interference function.

Definition 20 (Fixed points). If a point x ∈ RM satisfies J (x) = x for a given mapping

J : RM → RM , then x is said to be a fixed point of J . The set of all fixed points of J is

denoted by Fix(J ) := {x ∈ RM | x = J (x)}.

Fact 7 (Existence and uniqueness of fixed points [Yat95]). Let J : RM
+ → RM

++ be a

standard interference mapping. If the mapping J has a fixed point, then the fixed point is

unique. Furthermore, the fixed point exists if and only if J (x′) ≤ x′ for some x′ ∈ RM
++.

Fact 8 (Computation of fixed points [Yat95]). Let J : RM
+ → RM

++ be a standard

interference mapping having a fixed point and denote this fixed point by x⋆ ∈ RM
++. By Fact

7, the fixed point is unique. Then x⋆ is the limit of the sequence {xn}n∈N generated by

xn+1 = J (xn), (4.1)

where x−1 ∈ RM
+ is arbitrary. In particular, if x−1 = 0, then the sequence {xn}n∈N is

monotone non-decreasing (xn ≤ xn+1 for every n ∈ N). In contrast, for x−1 ≥ x′, where

x′ ∈ RM
++ is any point satisfying J (x′) ≤ x′, then the sequence {xn}n∈N is monotone

non-increasing (xn ≥ xn+1 for every n ∈ N).

Fact 9. Let J : RM
+ → RM

++ be a mapping with J (x) =: [I1(x) . . . IM (x)]T . If, for each

i ∈ {1, . . . ,M}, the function Ii is concave (and, by definition, strictly positive on the

domain RM
+ ), then the following holds:

1. J is a standard interference mapping.
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2. The fixed point, if it exists, is the solution to the following convex optimization

problem [SB12]:

maximize 1Tx

subject to 0 ≤ x ≤ J (x)

Fact 10 (Operations that preserve standard interference functions). For standard inter-

ference functions we have the following properties [Yat95, SB12]:

1. The set of interference functions is closed under addition and multiplication by strictly

positive constants.

2. If Ii : RM
+ → RM

++ (i ∈ {1, . . . ,M}) are standard interference functions, then

I ′(x) := mini∈{1,...,M} Ii(x) and I ′′(x) := maxi∈{1,...,M} Ii(x) are standard interfer-

ence functions.

4.4 Standard system model

We use a similar system model as presented in Chapter 3. For convenience we summarize

the main points here. Our system consists of M cells and N test points forming a cellular

radio communication network. We denote the set of cells by M = {1, 2, . . . ,M} and the

set of test points by N = {1, 2, . . . , N}. The QoS requirements are stated in terms of

minimum data rate rj ∈ R++. The assignment matrix X =: [x1, . . . ,xN ]T ∈ {0, 1}M×N

assigns test points to cells, i.e., the component xi,j of X takes the value xi,j = 1 if test

point j is assigned to cell i or the value xi,j = 0 otherwise.

In this chapter we incorporate a parameterized model to allow for different antenna settings

at cells. In general, we use a number of Q parameters that can be adjusted (e.g., antenna

tilt, antenna height, etc.). The set of possible configurations is denoted by Xi ⊂ RQ. For a

particular cell i let θi ∈ Xi be a vector representing its used antenna configuration. All

antenna configuration of the whole network are collected in Θ := (θ1, . . . , θM ) ∈ X :=

X1 × · · · × Xn.

We denote the long term channel state information of the link between cell i and test

point j by gi,j : RD → R++. Besides antenna configuration settings, each cell chooses a

fixed Pi ∈ R+, which denotes the transmit power spectral density per minimum resource

unit and we define p := [P1, . . . , PM ]T . The number of available resource blocks at

cell i is limited to Bi ≤ B with B ∈ R++ the total number of resource blocks in the

system. We reuse Definition 10 and denote the vector of cell loads by ρ := [ρ1, . . . , ρM ]T

with ρi being the cell load of cell i ∈ M. We have shown in Chapter 3 that the load

vector can be characterized with the help of the link spectral efficiency per resource block

ω′
i,j : [0, 1]M ×X → R+ obtained by the modified Shannon capacity equation [MNK+07]
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which we define by

ω′
i,j(ρ,Θ) := ηBW

i,j log2

(
1 +

γi,j(ρ,Θ)

ηSINR
i,j

)

= ηBW
i,j log2

(
1 +

Pi gi,j(θi)

ηSINR
i,j

∑
l∈M\{i} Pl gl,j(θl) ρl + σ2

)
,

(4.2)

where σ2 is the noise density per resource block and ηBW
i,j ∈ R++ (ηSINR

i,j ∈ R++) is a

constant accounting for the bandwidth (SINR) efficiency of the link between cell i and test

point j. The last equation in (4.2) uses the definition of the SINR γi,j : RM
+ × X → R+

between cell i and test point j [SY12, FF12]:

γi,j(ρ,Θ) :=
Pi gi,j(θi)∑

l∈M\{i} Pl gl,j(θl) ρl + σ2
, (4.3)

The cell load ρi of cell i is computed by the fraction of resource blocks allocated to its

users plus some fixed fraction of resource blocks si ∈ [0, 1] for signaling when the cell is

active. More precise, with the link spectral efficiency at hand we can now compute the cell

load ρi of cell i for a given assignment matrix X as the solution to the following system of

nonlinear equations:

ρi =
∑
j∈N

rj
Biω′

i,j(ρ,Θ)
xi,j + si

⏐⏐⏐⏐⏐⏐
∑
j∈N

xi,j

⏐⏐⏐⏐⏐⏐
0

=
∑
j∈N

λi,j xi,j

log2

(
1 +

Pi gi,j(θi)

ηSINR
i,j (

∑
l∈M\{i} Pl gl,j(θl) ρl+σ2)

) + si

⏐⏐⏐⏐⏐⏐
∑
j∈N

xi,j

⏐⏐⏐⏐⏐⏐
0

i ∈M,

(4.4)

with constants λi,j :=
rj

BiηBW
i,j

. Unfortunately, solving the system of nonlinear equations in

(4.4) is not a trivial task. In fact, even when we fix the cell configurations Θ and the test

point assignment matrix X, the solution of (4.4), if it exists, can only be computed by

means of iterative methods. If not explicitly stated, we assume that the cell configuration

is not object to optimization and we use a known and constant configuration Θ and drop

the variable for notational convenience. Section 4.8 will address the task of how to choose

Θ.

4.5 Network feasibility analysis

In the process of planning a network it becomes of utmost importance to identify if the

designed network is feasible. Also when operating a network one needs to know if any

changes to the configuration will make the network unstable. In this section we follow up

on the question of how to identify if a network is feasible, i.e. if the coverage and capacity
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requirements defined can be satisfied. The main results of this section were also presented

by research work [SY12], using different arguments. For convenience, we formally define

our notion of a feasible network.

Definition 21 (Feasible Network). For a given network configuration Θ ∈ X and assign-

ment matrix X ∈ {0, 1}M×N , we say that the network is feasible if all test points can be

served while guaranteeing that the load in each base station i is strictly smaller than its

maximum allowed value; i.e., ρi <
Bi
B for every i ∈M.

We use the following assumption in this section to be able to identify feasible networks in

the sense of Definition 21.

Assumption 15. The network configuration variable Θ ∈ X , and assignment matrix

X ∈ {0, 1}M×N are fixed and arbitrary (test points can be assigned to only one cell; i.e.,∑
i∈M xi,j = 1 for every j ∈ N ).

Since by Assumption 15 the network configuration variable is fixed we omit the variable

Θ ∈ X and write gi,j := gi,j(θi).

Assumption 16. All cells considered in the feasibility analysis are active, i.e.,
∑

j∈N xi,j >

0, i ∈M.

Assumption 16 is no limitation to our framework. It can be easily assured by removing all

cells from set M that do not serve any test points.

With these assumptions we define the mapping:

J : RM
+ → RM

++ : ρ ↦→ [I1(ρ) . . . IM (ρ)]T , (4.5)

where Ii : RM
+ → R+ (i ∈M) is given by

Ii(ρ) :=
∑
j∈N

λi,j xi,j

log2

(
1 +

Pi gi,j
ηSINR
i,j

∑
l∈M\{i} Pl gl,j ρl+σ2

) + si

⏐⏐⏐⏐⏐⏐
∑
j∈N

xi,j

⏐⏐⏐⏐⏐⏐
0

. (4.6)

By means of the above mapping the cell load ρ in (4.4) can be equivalently written

as

ρ1 = I1(ρ)
...

ρM = IM (ρ).

(4.7)

The system in (4.7) allows us to compute the load as the fixed-point ρ ∈ Fix(J ), if it

exists, i.e., Fix(J ) ̸= ∅. Thus, the study of network feasibility amounts to studying the

properties of the mapping J . In particular, the question of existence and uniqueness of

Fix(J ) has to be answered.
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Proposition 2. Let the network configuration and test point assignment be fixed, then Ii,

i ∈M in (4.6) is a standard interference function and J in (4.5) is a standard interference

mapping ([FKVF13, CSS+14, HYLS15]).

Proof. The proof follows from the observation that the function f : R→ R : u ↦→ 1
log2(1+

1
u
)

is a concave function for u > 0 since it has has properties f ′(u) > 0 and f ′′(u) < 0.

Applying certain convexity preserving operations from Fact 5 we obtain the concavity of

Ii, i ∈M:

f(u) concave

⇒
(Fact 5.2)

f

⎛⎝ ηSINR
i,j

Pi gi,j

⎛⎝ ∑
l∈M\{i}

Pl gl,j ρl + σ2

⎞⎠⎞⎠ concave (w.r.t. ρ)

⇒
(Fact 5.1)

∑
j∈N

λi,jxi,jf

⎛⎝ ηSINR
i,j

Pi gi,j

⎛⎝ ∑
l∈M\{i}

Pl gl,j ρl + σ2

⎞⎠⎞⎠+ si

⏐⏐⏐⏐⏐⏐
∑
j∈N

xi,j

⏐⏐⏐⏐⏐⏐
0

concave.

Incorporating Fact 6 shows that Ii is a standard interference function. Furthermore, J is

strictly positive; i.e., J (ρ) > 0 for every ρ ∈ RM
+ (due to Assumption 16) and it follows

from Fact 9.1. that J is a standard interference mapping.

From the result that we identified J as a standard interference mapping many conclusions

immediately follow. We know from Fact 7 that the fixed point of J , if it exists, is unique and

thus, also the load vector of the network ρ ∈ Fix(J ). Additionally, we have low complexity

schemes at hand to compute the fixed point by Fact 8 and Fact 9.2. In detail, there exist a

plethora of efficient numerical methods to solve the convex optimization problem shown

in Fact 9.2 [BV06, BC11, YO04, SB12, YYY11]. The test for network feasibility then

reduces to checking Definition 21 for the obtained fixed point, i.e., ρi < Bi/B for every

i ∈M.

Unfortunately, because of Fact 7 the standard interference mapping in (4.5) only has a

fixed point if there exists a ρ′ ∈ RM
++ satisfying J (ρ′) ≤ ρ′. In order to find such a ρ′ we

define a new mapping J : RM
+ → RM

++

J (ρ) := min
(
J (ρ), [Γ1, . . . , ΓM ]T

)
, (4.8)

that is guaranteed to have a fixed point. In (4.8) Γ := [Γ1, . . . , ΓM ]T are large constants

and the min-operator should be understood as a component-wise operation. In words, we

impose limits on the maximum load of each cell to derive the mapping J (ρ) from our

original mapping J (ρ)

We know J (ρ) is also a standard interference mapping (Fact. 10) and that it is also

bounded from above. Now all conditions of Fact 7 are fulfilled and we conclude that the

fixed-point always exists and is unique.
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Algorithm 4 Non-heuristic stopping criterion to compute fixed points of interference
mappings

Input: Standard interference mapping J : RM
+ → RM

++

Point ρ′ satisfying J(ρ′) ≤ ρ′

Desired precision ϵ > 0.

Output: Point ρ ∈ RM
++ satisfying ∥ρ− ρ⋆∥∞ ≤ ϵ, where ρ⋆ ∈ Fix(J ).

1: ρ(−1) = 0

2: ρ(−1) = ρ′

3: n = −1
4: while ∥ρ(n) − ρ(n)∥∞ > ϵ do

5: ρ(n+1) = J (ρ(n))

6: ρ(n+1) = J (ρ(n))
7: n← n + 1
8: end while
9: return either ρ(n) (if a lower bound of the fixed point with the desired precision is

desired) or ρ(n) (if an upper bound of the fixed point with the desired precision is
desired).

In the remainder of this section we present a low-complexity scheme to compute the fixed

point ρ⋆ ∈ Fix(J ). In particular, we use the iterative method following from Fact 8 and

introduce a non-heuristic stopping criterion to achieve an arbitrary precision ϵ > 0. Starting

from ρ(−1) = 0 and ρ(−1) = Γ we construct two sequences {ρ(n)}n∈N and {ρ(n)}n∈N
derived from (4.1). The sequences {ρ(n)}n∈N and {ρ(n)}n∈N are monotonically increasing

and decreasing respectively and by Fact 8 their limits are the unique fixed point ρ⋆ of J . The

non-heuristic stopping criterion is based on the observation that we have ρ
(n)
i ≤ ρ⋆i ≤ ρ

(n)
i

for every n ∈ N and i ∈M by construction (Fact 8). We stop the algorithm at iteration

N ∈ N when

max
i∈M

(ρ
(N)
i − ρ(N)

i
) ≤ ϵ (4.9)

is valid. We can use ρ(N) or ρ(N) as an approximation of ρ⋆ because the rela-

tions

∥ρ(N) − ρ⋆∥∞ = max
i∈M

⏐⏐⏐ρ(N)
i
− ρ⋆i

⏐⏐⏐ ≤ ϵ (4.10)

and

∥ρ(N) − ρ⋆∥∞ = max
i∈M

⏐⏐⏐ρ(N)
i − ρ⋆i

⏐⏐⏐ ≤ ϵ (4.11)

are valid for all n ≥ N and all components of the vectors ρ(N) and ρ(N) are within ϵ from

their corresponding components of the fixed point ρ⋆. The application of the non-heuristic

stopping criterion is summarized in Algorithm 4.

Numerical evaluation of network feasibility

In this section we present the application of the network feasibility test and perform a

numerical evaluation to show its performance in a practical scenario. We deploy a total
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Figure 4.1: Exemplary network configuration used in the analysis. Solid green circles
correspond to the cells that are deployed to provide service to the test
points. The solid blue lines show the resulting test point - cell assignments.
Note that we use a wrap-around model.

number of M = 50 cells in a square shaped area of size 2x2km according to a uniform

distribution. Users are represented by N = 500 test points dropped uniformly at random

in the area. A wrap around model is used to avoid boundary effects. We use the ITU

propagation model for urban macro cell environments with fixed antenna patterns [3GP10a]

and the test point assignment is based on a strongest serving cell metric. For illustration

we depict an exemplary deployment in Figure 4.1. We apply Algorithm 4 to the described

simulation scenario and evaluate the load evolution as a function of the number of iterations.

We choose the starting points ρ(−1) = 0 and ρ(−1) = Γ = 1 where 1 is a vector of all

ones of appropriate size. Further simulation parameters are presented in Table 4.1 if not

stated otherwise. As a reference we also track the load evolution obtained by (4.1) with a

random initialization ρ̃(−1) ∈ [0, 1]M with each element drawn from a uniform distribution

U(0, 1).

For an exemplary cell the simulated load evolution with increasing number of iterations

is depicted in Figure 4.2. The load evolution for ρ(−1), ρ(−1) and ρ̃(−1) is shown in

green, blue and red, respectively. By observation we can confirm the monotonicity of the

sequences {ρ(n)}n∈N and {ρ(n)}n∈N and that they are lower and upper bounds, respectively.

Furthermore, we observe that in this particular scenario, the termination criterion (4.9) is

satisfied after only three iterations resulting in an accuracy of ϵ = 10−5. The load evolution

at other cells exhibits a similar behavior.

We now turn to the actual task of identifying feasible network configurations. To do so,

we modify the same scenario as before to artificially simulate overload situations. In more
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Parameter Value

Communication area square shaped 2km × 2km
Number of test points N 500
Number of cells M 50
Data rate rj 16 kbit/s
Transmit power Pi 46 dBm, ∀i ∈M
Bandwidth efficiency ηBW

i,j 1.5

SINR efficiency ηSINR
i,j 0.6

Signaling overhead si 0.1
System bandwidth B 5MHz
Upper bound of cell load Γi 1, ∀i ∈M
Accuracy level ϵ 10−5

Lower starting point ρ(−1) 0

Upper starting point ρ(−1) Γ

Table 4.1: Standard simulation parameters for network feasibility evaluation.
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Figure 4.2: Load values generated by the fixed point algorithm as a function of the
number of iterations for three initial starting points for an arbitrarily
chosen cell (cell 36).

detail, we gradually increase the data rate requirements rj of each test point to induce more

demand in the network. In addition, we use Γi > 1, i ∈M to raise the upper bound on the

cell load in our algorithm. In particular, we use Γ1 = . . . = ΓM = 10 for these simulations.

The graph in Figure 4.3 shows the load after n iterations with accuracy of ϵ = 10−5 for an

increasing system sum rate requirement which is the aggregated data rate demand from all

test points. We first observe that the cell load of cells is increasing with increasing rate

requirement at test points. Three out of the five randomly chosen cells (cell 1, cell 11 and

cell 38) exhibit feasible load values (ρi ≤ 1) for all selected rate requirements, whereas cell

50 exceeds load level ρ50 > 1 at a system sum rate requirement of ≈ 370Mbit/s and cell 21

has ρ21 > 1 at around ≈ 320Mbit/s sum rate requirement.

To identify at which system sum data rate requirement the first cell is overloaded we
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Figure 4.3: Cell loads as a function of the system sum rate for five randomly chosen
cells. In addition the cell load of the cell with the highest load is shown
(red curve with circle markers).

evaluate maxi∈M ρi > 1 which is also plot in Figure 4.3. The feasibility of this particular

system setup and data rate demand is given up to a system sum rate requirement of

≈ 260Mbit/s.

4.6 Transmit power planning in LTE systems

A considerable body of work has investigated the load characterization in networks based

on standard load coupling models for LTE-like systems [MK10, SY12]. A recent study

[HYLS15] has highlighted the importance of a problem strongly related to that, namely, that

of computing the downlink transmit power inducing a given load profile. The authors of that

study prove that the users’ rate requirements can be satisfied with lower transmit power if

the load at each base station is allowed to increase. In addition, by using the framework

of standard interference functions the power assignment of base stations inducing a given

load profile can be computed as the fixed point of an interference mapping. Motivated by

these results we derive, in this section, an interference mapping having as its fixed point

the power allocation inducing a given load profile and propose an algorithm for power

computation. In particular, if we are given the task to recompute power assignments to

increase load (e.g., to decrease the transmit energy as discussed above), we can derive

simple algorithms that can give information about the precision of the power estimates at

each iteration.

Recall that the load ρi at cell i ∈M is the fraction of resources used to serve its users. Fur-

thermore, we have shown in Section 4.5 that for a fixed power assignment p ∈ RM
++, the load
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vector can be obtained by computing the fixed point of the mapping

J : RM
+ → RM

++ : ρ ↦→ [I1(ρ), . . . , IM (ρ)]T , (4.12)

with Ii defined in (4.6). Since the mapping J was identified to be a standard interference

mapping [CSS+14, FKVF13, HYLS15] we can apply standard techniques to compute its

fixed point (if it exists); i.e., we can use the standard iterative algorithm ρn+1 = J (ρn)

with an arbitrary starting point ρ1 ∈ RM
+ as outlined in Section 4.5. Once we have obtained

the load ρ⋆ ∈ Fix(J ) the total transmit power radiated by all cells in the network is given

by PTX
Σ :=

∑
i∈MBiρ

⋆
iPi.

In [HYLS15] the authors have highlighted that a fully loaded system, i.e., ρ = 1 is optimal in

terms of transmit energy consumption. In other words, to have the smallest transmit energy

consumption, all cells should use all their resources. So in what follows we investigate how to

set the downlink transmit power vector p to have a feasible system that consumes the least

amount of transmit energy PTX
Σ . To answer the above question we need to solve the system

of nonlinear equations (c.f. (4.4) ignoring unnecessary constants)

ρi =
∑
j∈Ni

rj
Biω′

i,j(ρ,p)
, i ∈M, (4.13)

for the power vector p ∈ RM
++ and a fixed but given cell load ρ ∈ RM

++. We define a

function P̃ρ,i : RM
++ → R++, that is obtained by multiplying both sides of (4.13) by

Pi
ρi

> 0:

Pi =
Pi

ρi

∑
j∈Ni

rj
Biω′

i,j(ρ,p)
=: P̃ρ,i(p), i ∈M. (4.14)

We continue by showing that the solution to (4.13) and (4.14), if it exists, can be computed

as a fixed point of a standard interference mapping. The particular standard interference

mapping relies on the following proposition.

Proposition 3. The function P̃ρ,i : RM
++ → R++ defined in (4.14) is concave for every

i ∈M.

Proof. First notice that the function f (1) : R → R : u ↦→ 1
log2(1+

1
u
)

is concave. Let

p−i ∈ RM−1
++ be a power vector obtained by excluding the ith component of the power

vector p, where i is arbitrary. Now we can verify that

f
(2)
i,j : RM

++ → R++ :

[
p−i

σ2

]
↦→ rj

Bi
f (1)

⎛⎝ ∑
k∈M\{i}

ρkPkgk,j + σ2

⎞⎠ ,

is concave for i ∈M and j ∈ N by Fact 5.2. Furthermore, by Fact 5.4, the function

f
(3)
i,j : RM+1

++ → R++ :

[
p

σ2

]
↦→ Pif

(2)
i,j

(
1

Pi

[
p−i

σ2

])
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is concave. Applying Fact 5.5 to f
(3)
i,j we arrive at a new concave function f

(4)
i,j : RM → R :

p ↦→ Pirj
(Biω′

i,j(ρ,p))
. Concavity of P̃ρ,i now follows from this last result and Fact 5.1.

For P̃ρ,i to be standard interference function we have to extend it to the closure of its

domain. For every i ∈ M, the concave function P̃ρ,i : RM
++ → R++ can be continuously

extended to the domain RM
+ . This extension, denoted by Pρ,i : RM

+ → R++, which is also a

concave function, is given by [CSZZ16]

Pρ,i(p) =

⎧⎪⎪⎨⎪⎪⎩
Pi

ρi

∑
j∈Ni

rj
Biω′

i,j(ρ,p)
, if Pi ̸= 0∑

j∈Ni

rj ln 2

Bigi,jρi

(∑
k∈M\{i} ρkPkgk,j + σ2

)
, otherwise.

(4.15)

With the above extension, we have that Pρ,i is also a positive concave function for every

i ∈M and as a result, we can apply Fact 6 to conclude that the mapping Pρ : RM
+ → RM

++

by Pρ(p) := [Pρ,1(p), . . . ,Pρ,M (p)]T is a standard interference mapping. By Fact. 7, the

fixed point p⋆ ∈ Fix(Pρ), if it exists, is unique and strictly positive. These facts imply the

equivalence between the solution of the nonlinear system in (4.14) and the fixed point p⋆

of Pρ.

A practical consequence of the above is that the power assignment p inducing a given

load ρ (if it exists) is the limit of the sequence {pn} generated by pn+1 = Pρ(pn), where

p1 ∈ RM
+ is arbitrary. Note that this simple iterative scheme eliminates the need for the

bisection technique required by the scheme in [HYLS15]. In the remainder of this section

we develop an iterative algorithm that provides the power vector p in order to increase the

load of the current network configuration. In words, for a given power assignment p′ that

induces a load ρ′ we iteratively find a power vector p′′ that increase the load from ρ′ to

ρ′′ ≥ ρ′. All other parameters of the model are fixed. We will see that the algorithm has

the property p′′ < p′ and that ρ′′i P
′′
i < ρ′iP

′
i for every i ∈ M which shows that the users’

data rate requirements can be satisfied with lower transmit power if we allow the load

to increase1. The proposed algorithm is based on Proposition 4, and the proof of which

requires the following lemma.

Lemma 1. The function f : R++ → R++ : x ↦→ x ln(1 + 1/x) is strictly increasing; i.e.,

y, x ∈ R++ with y > x implies f(y) > f(x).

Proof. First recall that
y

y + 1
< ln(1 +y) for every y > 0 [Lov80]. Now, for y = 1/x ∈ R++,

we deduce: 0 < ln

(
1 +

1

x

)
− 1

1 + x
= f ′(x) for every x ∈ R++, which implies the desired

result.

Proposition 4. Let ρ′ ∈ RM
++ be the load corresponding to the power assignment p′ ∈ RM

++;

i.e., ρ′ ∈ Fix(Jp′), or, equivalently, p′ ∈ Fix(Pρ′). Choose an arbitrary vector satisfying

1Note that this conclusion has been originally obtained in [HYLS15].
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ρ′′ ≥ ρ′ and ρ′ ̸= ρ′′, and define αi = ρ′′i /ρ
′
i ≥ 1 for i ∈M. Then the interference mapping

Pρ′′ : RM
+ → RM

++ has a uniquely existing fixed point p′′ ∈ RM
++. Furthermore, we have

0 < p′′ < p < p′ and ρ′′i P
′′
i < ρ′iP

′
i for every i ∈ M, where the ith element of the vector

p = [P1, . . . , PM ]T is given by Pi := P ′
i/αi. Moreover, the sequence {Pn

ρ′′(p)}n∈N, which
converges to p′′, is monotonously decreasing.

Proof. By definition, Piρ
′′
i = P ′

iρ
′
i for every i ∈ M. As a result, by Lemma 1 and p′ ∈

Fix(Pρ′), we deduce

Pρ′′,i(p) =
P ′
i

αiρ′i

∑
j∈Ni

rj

αiBi log2

⎛⎝1 +
P ′
igi,j

αi

(∑
k∈M\{i} ρ

′
kP

′
kgk,j + σ2

)
⎞⎠

≤ P ′
i

αiρ′i

∑
j∈Ni

rj
Biωi,j(ρ′,p′)

=
1

αi
Pρ′,i(p

′) =
P ′
i

αi
= Pi, (4.16)

and the inequality is strict if and only if i ∈ I := {k ∈ M | αk > 1} ̸= ∅. Therefore,

Pρ′′(p) ≤ p, which is already enough to show by Fact 7 that the fixed point p′′ of the

mapping Pρ′′ exists, it is unique, and it satisfies p′′ ≤ Pn
ρ′′(p) ≤ p for every n ∈ N. This last

inequality and Fact 8 also show that the sequence {Pn
ρ′′(p)}n∈N is monotonously decreasing

(and converges to p′′ ∈ Fix(Pρ′′)). From (4.16) and the assumption that gi,j > 0 for every

i ∈ M and j ∈ M,2 we observe that Pρ′′,i(p)ρ′′i < Piρ
′′
i = P ′

iρ
′
i for every i ∈ I (for i /∈ I,

we have Pρ′′,i(p) = Pi). We can now verify that Pρ′′(p) < p, which, by Fact 8, shows that

p′′ < p, and we conclude that P ′′
i ρ

′′
i < Piρ

′′
i = P ′

iρ
′
i for every i ∈M.

With the findings from Proposition 4 and based on [CSS+14, Remark 1] we derive a simple

algorithm to compute new power assignments to increase the load of a given network

configuration (as proved above, and also in [HYLS15], by doing so we decrease the transmit

power).

We start with p′ ∈ Fix(Pρ′) and ρ′ ∈ Fix(Jp′) as the power and load for the current

network configuration, respectively and fix all other parameters to a constant value (e.g.,

the users’ data rates). To compute a new power assignment p′′ inducing a load ρ′′ ≥ ρ′,

we construct in parallel two sequences {pn} and {p
n
} where p

0
:= 0, p0 := p, and p is the

vector defined in Proposition 4. Fact 8 and Proposition 4 show that the sequences {pn}
and {p

n
} are monotonously decreasing and increasing, respectively, and both sequences

converge to p′′ ∈ Fix(Pρ′′) ̸= ∅. As a result, p
n
≤ p′′ ≤ pn for every n ∈ N, and the

monotonously decreasing sequence {ϵn := ∥p
n
−pn∥∞} provides us with information about

the numerical precision obtained at each iteration n because we have both ∥p
n
−p′′∥∞ ≤ ϵn

and ∥pn− p′′∥∞ ≤ ϵn. Based on these facts we propose Algorithm 5.

2If we replace this assumption by the weaker assumption that only the pathloss between users and
their serving base stations are not zero, then the next strict inequalities should be replaced by their
corresponding non-strict inequalities.
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Algorithm 5 Transmit power assignment for desired load

Input: Current load ρ′, current power assignment p′, desired load ρ′′ ≥ ρ′, maximum
number of iterations m, vector p defined in Proposition 4, and desired numerical
precision ϵ > 0 of the power assignment p′′ inducing the load ρ′′.

Output: Power assignment p̃ and numerical precision ϵ̃ satisfying ∥p̃− p′′∥∞ ≤ ϵ̃.
1: Initialization: p

0
← 0, p0 ← p, n← 0, ϵ̃ = ∥p∥∞.

2: while While ϵ̃ > ϵ and n ≤ m do
3: Compute value of lower sequence p

n
← P(p

n−1
)

4: Compute value of upper sequence pn ← P(pn−1)
5: Compute numerical precision ϵ̃← ∥p

n
− pn∥∞

6: Increment n← n + 1
7: end while
8: Return the power assignment p̃← pn−1 and the numerical precision ϵ̃.

We note that, by Fact 8, the above algorithm terminates after a finite number of iteration

even if we set m =∞, in which case ϵ̃ ≤ ϵ upon termination.

4.7 Improved network topology control via load computation

In Chapter 3 we have introduced an optimization problem which addresses the task of

selecting the set of network elements consuming the least amount of energy while satisfying

the service demand from users. In this section we combine the algorithms developed

to find solutions to this problem with our findings from the framework of standard

interference functions. For convenience we recall the optimization problem for an LTE

based communication system (c.f. Problem 3.21).

minimize
∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

(
ei
⏐⏐sTi x̃⏐⏐0 + f̃i(x̃)

)⎞⎠ (4.17a)

subject to
∑
j∈N

rj
Bi ωi,j(ρ)

xi,j ≤ 1 i ∈M (4.17b)

∑
i∈M

xi,j = 1 j ∈ N (4.17c)

X ∈ {0, 1}M×N . (4.17d)

The above problem has been shown to be NP-hard because of (4.17b) and (4.17c). It can not

be solved in a straightforward and computationally tractable manner. We presented several

simplifications and relaxations to be able to approach the problem with techniques based

on majorization-minimization theory. A key step to do so is Assumption 12 which installs

a conservative lower bound on the spectral efficiency in order to make (4.17b) tangible.

However, this practice to lower bound the spectral efficiency can be very pessimistic leading

to sub-optimal performance in terms of energy savings. With a too low estimate of the

spectral efficiency users get allocated more resource blocks than required. An immediate
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consequence of this is that the cell load is estimated higher than it actually is resulting in

more active network elements.

Therefore, we seek to derive an algorithm that is able to produce better results based on

more accurate values for the spectral efficiency. Fortunately, we have now a method at

hand to compute the cell load and thereby the link spectral efficiency more accurate by

the scheme outlined in Section 4.5. We now have the tools at hand to concurrently address

two non-trivial challenges:

1. The assignment of test points to cells leading to a reduced energy consumption

2. Computation of the actual cell load for a given network setup.

In the following we present how to combine the results from Section 4.5 and the algorithm

developed in Chapter 3. This forms our basis for the following two-step alternating

iterative scheme and to find better solutions for Problem 4.17. Starting with the worst-case

interference assumption ρ(−1) = 1:

Step 1 Compute the link spectral efficiency ω
(n)
i,j (ρ(n−1)) at iteration n by (3.19) with the

help of the cell load vector ρ(n−1) obtained in the previous iteration. Use ω
(n)
i,j (ρ(n−1))

in (4.17b) and derive test point cell assignment X(n) for Problem 4.17 with the

framework described in Section 3.3.3.

Step 2 Use the obtained test point cell assignment X(n) and find the fixed point ρ(n) ∈ Fix(J )

for the standard interference mapping J in (4.8).

To compute the fixed point in Step 2 we can use Algorithm 4. In words, the first step

assigns test points to cells for a fixed link spectral efficiency with the goal of reducing

the overall network energy consumption. The second step then computes the actual link

spectral efficiency for the resulting assignment from step one. These two steps will be

executed in an alternating manner to arrive at feasible network configurations consuming

low total energy.

The complete alternating iterative scheme is summarized in Algorithm 6.

Algorithm 6 Energy minimization with the actual spectral efficiency of links

Input: Worst-case spectral efficiency ω(−1) = ω(1). Maximum number of iterations Z.
Output: Network configuration X(Z) with low energy consumption.
1: for n = 0 : Z do
2: Use ω(n−1) to construct Problem (3.6).
3: Use Algorithm 2 to obtain X(n) and remove deactivated cells from the set of cells to

be considered in subsequent iterations.
4: Compute the new link spectral efficiency ω(n) for the assignment X(n) by computing

the fixed point of the standard interference mapping J .
5: end for
6: Return the network configuration resulting from X(Z).
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Parameter Value

Communication area square shaped 2km × 2km
Number of test points N 500
Number of cells M 100
Data rate rj 16 kbit/s
Transmit power Pi 46 dBm, ∀i ∈M
Bandwidth efficiency ηBW

i,j 1.5

SINR efficiency ηSINR
i,j 0.6

Signaling overhead si 0.1
Carrier frequency fc 1800MHz
System bandwidth B 5MHz
Upper bound of cell load Γi 1, ∀i ∈M
Accuracy level ϵ 10−5

Lower starting point ρ(−1) 0

Upper starting point ρ(−1) Γ with Γi = 10
Number of alternating iterations Z 15

Table 4.2: Standard simulation parameters for improving energy savings with the
framework of interference calculus.

Remark 13. The convergence of this Algorithm 6 follows from the convergence of Step

1 for a fixed load as outlined in Section 3.3.3 and the property of the algorithm that we

only allow for deactivation of cells (we do not allow reactivation of cells deactivated in

a previous iteration step). The latter property guarantees that the assignment from the

previous iteration is always feasible in the current iteration. The complexity of the algorithm

follow analogous to the explanations in Section 3.3.4.

Numerical evaluation of network topology control with load computation

(Algorithm 6)

Before we detail on the gains in energy consumption with the proposed alternating algorithm

we present a numerical study about the inaccuracy of the cell load based on the worst

case lower bound on the spectral efficiency and the more accurate value obtained by

the framework of standard interference functions presented in Section 4.5. We reuse the

simulation scenario from Section 4.5 but deploy a total number of M = 100 cells. This

will give sufficient redundancies to identify cells for deactivation even with the worst-case

interference assumption. The complete set of simulation parameters is presented in Table 4.2.

The results are produced by the following procedure:

1. Deploy M cells and N test points in the area.

2. Execute Algorithm 2 from Section 2 to generate a feasible test point assignment X⋆

for Problem 4.17 and deactivate cells with no test point connected to it.

3. For X⋆ compute the load vector ρ⋆ by (4.4) using the worst case interference ω̃i,j =

ωi,j(1).

Emmanuel Pollakis 103



4 The Application of Interference Calculus to Network Topology Control for Load Aware

Energy Savings

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

active cell

c
e
ll 

lo
a
d
 ρ

i

 

 

worst case ρ*

actual ρ°

Figure 4.4: Load values ρ⋆ at cells by considering the worst case spectral efficiency
and by computing the actual load ρ◦ with the fixed point iterations in
Algorithm 4 (with precision ϵ = 10−5).

4. Apply Algorithm 4 to calculate the more accurate cell load ρ◦.

For an exemplary simulation run the first execution of Step 2 of Algorithm 2 reduced the

initial set of 100 cells to a total of 47 necessary to accommodate all test point demands.

For this reduced set of active cells Figure 4.4 shows the load values ρ⋆ obtained with the

worst case interference assumption and the load values ρ◦ computed by Algorithm 4. Note

that we do only display the load value for active cells since the load at deactivated cells

is zero. Although, the result is depicted only for one particular simulation setup, other

simulations show a similar behavior. The cell load for the worst case interference scenario

(indicated by the red bars) is always larger or equal to the more accurate values (indicated

by the green bars). We can see that the gap in many cases is significant. Furthermore,

in the case of worst case interference assumption there are several cells with large load

values ρ⋆ indicating that almost all resources are used. Therefore, these cells are not able

to provide service to additional test points which in turn could lead to the deactivation

of additional cells. This observation also supports the correct operation of Algorithm 2.

However, when the actual load is considered it becomes evident that most cells are actually

lightly loaded with many cells not even half loaded. This fact shows that there exists a

great potential for further energy savings by reassigning test points and thereby freeing

other cells. Another way to exploit this observation is that test points have significant

room to increase their data rate requirements and at the same time the system is feasible

(c.f. Section 4.5).

We now proceed with the empirical evaluation of the full Algorithm 6. The standard

simulation setting described earlier in this section is used and we limit the total number of

alternating iterations to Z = 10. To obtain results for different system loads we simulate
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MIP 64 kbps

sMM 64 kbps

MIP 256 kbps
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Figure 4.5: Alternating sMM algorithm. Normalized network energy consumption
when applying Algorithm 6 with the sMM algorithm compared to the use
of the MIP solution in each iteration. Normalization with respect to the
energy consumption when all cells are active. Results are averaged over
100 different realizations of the network and the 95% confidence intervals
are provided.

the system for different mean data rates µd at TPs and, for each mean data rate, we

use 100 different realizations of the simulation scenario. Recall, that the starting point of

Algorithm 6 uses the worst-case spectral efficiency ω(−1) = ω(ρ⋆) with ρ⋆ = 1. Figure 4.5

depicts the resulting normalized network energy consumption together with the 95%

confidence levels for the application of Algorithm 6 with the sMM and alternatively with

the MIP algorithms from Chapter 3. The results have been normalized with respect to

the energy consumption when all cells are active and fully loaded, i.e., Enorm = E(ρ)
E(1) . A

significant increase in energy savings is observed when applying Algorithm 6 to the system

for our sMM algorithm from Chapter 3 as well as for the optimum solution MIP. In all

simulations the largest reduction in energy consumption is observed in the first iteration

which corresponds to the first time use of the more accurate spectral efficiency after using

the worst-case interference assumption. We can conclude that there are huge potentials for

additional energy savings when taking into account a better estimate of the link spectral

efficiency compared to the worst-case spectral efficiency. The worst-case assumption is very

conservative and diminishes performance gains.
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4.8 Joint base station configuration and network topology

control

In this section we extend our analysis of identifying a network topology that saves the most

amount of energy from the cell selection problem towards the consideration of different cell

settings of active elements. Thereby, we try to answer the question of how to choose the

settings of identified active cells in such an topology control optimization. The ultimate

goal is to jointly optimize the topology of a network and the cell configuration such as

antenna settings to attain configurations supporting the energy savings by topology control.

Based on our standard system model we can write our standard optimization problem

(4.17) as

minimize
∑
l∈L

⎛⎝cl

⏐⏐⏐⏐⏐⏐
∑
i∈Sl

ρi

⏐⏐⏐⏐⏐⏐
0

+
∑
i∈Sl

ei |ρi|0

⎞⎠ (4.18a)

subject to
∑
j∈N

rj
Bi ω′

i,j(ρ,Θ)
xi,j = ρi i ∈M (4.18b)

∑
i∈M

xi,j = 1 j ∈ N (4.18c)

X ∈ {0, 1}M×N (4.18d)

ρ ∈ [0, 1]M (4.18e)

Θ ∈ X , (4.18f)

where we used relation (3.4) in the objective function (4.18a) and omitted the load dependent

energy consumption fi(ρi) to avoid notational clutter3. X in (4.18f) is the antenna configu-

ration of the whole network defined in Section 4.4. We define the set of feasible solutions

as D := {(X,ρ,Θ) ∈ RM×N × RM × RK×M |(4.18b)− (4.18f)}.

Now recall, that standard interference functions are monotone functions (Definition 18)

and thus we can assume the following, based on the definition of the spectral efficiency

(4.2):

Assumption 17. If ρ1,ρ2 ∈ [0, 1]M satisfies ρ1 ≤ ρ2 then ω′
i,j(ρ1,Θ) ≥ ω′

i,j(ρ2,Θ).

The practical interpretation of Assumption 17 is that a decrease in the load of neighboring

cells cannot reduce the spectral efficiency of a link. This assumption has been implicitly

used before to calculate the worst-case spectral efficiency ω̃′
i,j(Θ) := ω′

i,j(1,Θ) and with

fixed Θ, ω̃i,j := ωi,j(1).

Problem 4.18 is difficult to solve since we have highly non-convex constraints, i.e. (4.18b).

Therefore, to obtain good solutions to the problem we devise a greedy two-step approach.

The first step uses fixed antenna configuration and load values to find an assignment matrix

X resulting in a low network energy consumption. The second step fixes the assignment to

3The load dependent energy consumption can be straightforwardly included.
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X found in the previous step and chooses an antenna configuration that is likely to help

decrease the objective function of the optimization problem with fixed antenna configuration

in the next iteration. The procedure is repeated until no more sites can be eliminated or

the maximum number of iterations is reached.

In detail, we define a cost function zD(X,ρ,Θ) : RM×N × RM × RK×M → R+

as

zD(X,ρ,Θ) =
∑
l∈L

⎛⎝cl

⏐⏐⏐⏐⏐⏐
∑
i∈Sl

ρi

⏐⏐⏐⏐⏐⏐
0

+
∑
i∈Sl

ei |ρi|0

⎞⎠+ δD(X,ρ,Θ), (4.19)

where we use the indicator function

δD(X,ρ,Θ) :=

⎧⎨⎩0, if (X,ρ,Θ) ∈ D

∞, otherwise.
(4.20)

With (4.19) and (4.20), problem (4.18) amounts to finding a point in the

set

arg inf
(X,ρ,Θ)∈RM×N×RM×RK×M

zD(X,ρ,Θ). (4.21)

To find such a point we propose a scheme that produces a sequence {(X(n),ρ(n),Θ(n))}n∈N ⊂
RM×N × RM × RK×M monotonically decreasing (4.19), i.e.,

zD(X(n+1),ρ(n+1),Θ(n+1)) ≤ zD(X(n),ρ(n),Θ(n)). (4.22)

The main idea of our scheme is summarized in Algorithm 7 and we proceed by detailing

on each step of the algorithm. In order to find X(n) and ρ′(n) in step 1 we can use any

Algorithm 7 Joint site selection and configuration for energy saving

Input: Tuple (X(−1),ρ(−1),Θ(−1)) satisfying zD(X(−1),ρ(−1),Θ(−1)) < ∞. Number of
iterations Lo

1: for n = 0 : Lo do

2: (Step 1) Set X(n) and ρ′(n) to any value satisfying zD(X(n),ρ′(n),Θ(n−1)) ≤
zD(X(n−1),ρ(−1),Θ(n−1)).

3: (Step 2) Set Θ(n) and ρ(n) to any value satisfying zD(X(n),ρ(n),Θ(n)) ≤
zD(X(n),ρ(n),Θ(n−1)) and that are likely to help Step 1 to make progress in the
next iteration.

4: (If progress cannot be made for too many iterations, exit by returning the current
feasible configuration)

5: end for
6: return (X(Lo),ρ(Lo),Θ(Lo))

suitable heuristic. One possibility is to use the heuristic described in Section 4.7 that gives

good solutions in reasonable time. Step 2 consists of finding an antenna configuration Θ(n)

supporting (4.22) which is a challenging task because only changing antenna configurations

at cells (without reassigning test points) is not sufficient enough to free cells for deactivation.
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However, the antenna configuration can be optimized in order to help Algorithm 7 make

progress in Step 1.

Examining the objective function (4.18a) of Problem 4.18 we can identify that good solutions

attaining low energy consumption are characterized by a sparse cell load vector ρ ∈ [0, 1]M .

In (4.18a) the sparsity is perused by the sparsity promoting l0 operator | · |0. Unfortunately,

such highly non-convex functions are difficult to handle but we have presented a way in

Chapter 3 how to approach this problem. The basic approach is to replace the non-convex

function by its convex envelope, i.e., to replace |x|0 on {x ∈ R | |x|∞ ≤ C} by the function

f(x) = |x|1/C. Now, recall that ρ ∈ [0, 1] and we can formulate the convex envelope of the

objective function (4.18a) as

∑
l∈L

⎛⎝ cl
|Sl|

∑
i∈Sl

ρi +
∑
i∈Sl

ei ρi

⎞⎠ =
∑
l∈L

∑
i∈Sl

(
cl
|Sl|

+ ei

)
ρi. (4.23)

Note that the cell load in (4.23) is a function of the antenna configuration Θ (c.f. (4.18b)).

Thus, we intuitively obtain a method to be applied in Step 2 of Algorithm 7 by choosing an

antenna configuration Θ that decreases (4.23). By this approach we try to enforce sparsity

in the cell load vector ρ.

The techniques to optimize (4.23) depend on the adopted site antenna configuration model

and we present in Algorithm 8 a simple method to be applied for antenna configuration

models with a discrete set of possible configurations Xi, i ∈M. We present the algorithm

for site configuration to be applied in Step 2 of Algorithm 7 in Algorithm 8. The difficulty of

Algorithm 8 Site configuration for Step 2 of Algorithm 7

Input: Configuration (X,ρ,θ
(−1)
1 , . . . , θ

(−1)
M ) satisfying δD(X,ρ,θ

(−1)
1 , . . . , θ

(−1)
M ) < ∞.

Number of iterations Lin. (For notational convenience, the configuration of a site i ∈M
at iteration n is denoted by θ

(n)
i .)

1: for n = 0 : Lin do
2: for i = 1 : M do
3: Update θ

(n)
i according to

(θ
(n)
i ,ρ) ∈ argmin

θ∈Xi, ρ∈RM
+

zD(X,ρ,θ
(n)
1 , . . . , θ

(n)
i−1,θ,θ

(n−1)
i+1 , . . . , θ

(n−1)
M ) (4.24)

4: end for
5: end for
6: return θ

(Li)
1 , . . . , θ

(Li)
M

Algorithm 8 lies in solving the optimization Problem 4.24. Since it is of combinatorial nature,

to find the solution might involve exhaustive search. However, if the cardinality of the sets

Xi (i ∈M) is small, the application of a grid search is practically. Furthermore, the value of

the indicator function δD can be computed by evaluating the current antenna configuration

for its feasibility by means of feasibility analysis of fixed network configurations as shown

in Section 4.5.
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Figure 4.6: Network configuration. The network consists of a single layer LTE network
at 1800MHz with 300 cells at 100 different sites. Sites are depicted as
red dots and the azimuth direction of each cell is shown by a colored line
departing at the corresponding site.

Numerical evaluation of joint base station configuration and network

topology control (Algorithm 7)

We now evaluate the energy savings gains achieved by applying an antenna tilt optimization

phase to the load aware topology control mechanism presented in Section 4.7. This

corresponds to finding the optimal downtilt at each cell, i.e., θi ∈ Xi ⊂ R. For this purpose

we use our standard simulation setup with a total number of 100 three-sectored LTE base

stations distributed in a uniformly at random manner. Each base station site has three

co-located cells with different azimuth direction (0◦, 120◦, 240◦). For simplicity, we assume

that all cells consume the same static energy ei = 400W while active and the additional

static base station energy consumption is zero, i.e. cl = 0. An exemplary layout is depicted

in Figure 4.6, where the main azimuth direction of a sector is indicated by a line originating

from the cell. The user distribution is according to our three hotspot model. In order to

incorporate the effect of different antenna settings we use the standard 3rd Generation

Partnership Project (3GPP) spatial channel model for a typical urban scenario with 3D

antenna patterns [3GP10b]. The search space for downtilts at cells is θi ∈ [0, 20] and we

limit Algorithm 7 to a total number of Lo = 10 alternating iterations and Lin = 1 inner

iterations for Algorithm 8. The remaining simulation parameters are according to our

standard simulation settings for energy savings with the framework of interference calculus

summarized in Table 4.3.

The results for the exemplary deployment are depicted in Figure 4.6 and the results

obtained by applying Algorithm 7 to it are provided in Figure 4.7. Figure 4.7(a) shows the
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Parameter Value

Communication area square shaped 2km × 2km
Number of test points N 500
Number of cells M 100
Data rate rj 16 kbit/s
Transmit power Pi 46 dBm, ∀i ∈M
Bandwidth efficiency ηBW

i,j 1.5

SINR efficiency ηSINR
i,j 0.6

Signaling overhead si 0.1
Carrier frequency fc 1800MHz
System bandwidth B 5MHz
Upper bound of cell load Γi 1, ∀i ∈M
Accuracy level ϵ 10−5

Lower starting point ρ(−1) 0

Upper starting point ρ(−1) Γ with Γi = 10
Number of alternating iterations Z 15

Table 4.3: Standard simulation parameters for the evaluation of Algorithm 7.

final test point assignment after the first time Step 1 of Algorithm 7 was executed. At this

point the tilt has not been optimized yet, which is illustrated by the red bars having all

the same length. The downtilt of all cells is still set to its initial value of θi = 15, i ∈M.

In Figure 4.7(b) the final test point assignment and tilt settings are depicted after Lo = 10

alternating steps. After executing Step 1 of Algorithm 7 the first time (Lo = 0) the

final network configuration results in 100 active cells at 74 different locations. Step 1

was terminated because solely by reassigning test points it is not possible to deactivate

more cells. Thus Step 2 aims at helping the algorithm in Step 1 to further reduce this

number of active cells. For this purpose Algorithm 8 is used in Step 2 of Algorithm 7 in

order to find a good set of tilts resulting in a feasible setup that opens opportunities to

deactivate more cells. Remember that for each antenna reconfiguration θi we recompute

the channel gain gi,j(θi) to all test points j ∈ N with the help of the 3GPP spatial channel

model.

Comparing Figure 4.7(a) and Figure 4.7(b) it can be observed that Step 2 helps Step 1 to

further reduce the number of active cells. After Lo=10 alternating executions of Step 1 and

Step 2 of Algorithm 7 the number of active cells is reduced to 65 at 56 different locations

and the tilts have been adjusted as indicated by the length of the red lines in Figure 4.7(b).

The effect of the tilt optimization opened opportunities in Step 1 to reassign test points to

other cells and free resources leading to cell deactivation. In consequence, the algorithm is

able to steer the downtilt in the direction of the test points that are served by the cell. For

cells with many connected test points far away the downtilt is low and where test points

are close the downtilt is high. Note, that in some cases a cell serves a test point very close

to its own location and the resulting tilt is very low. This is due to the used 3GPP spatial

channel model which caps the maximum loss for the antenna tilt mismatch resulting in all
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(a) After Step 1 of the first alternating iteration Lo.
The tilts have not been optimized (θi = 15, i ∈ M).
The configuration consists of 100 active cells at 74
different locations.

(b) Final tilt settings and test point assignment
(L = 10). The final configuration consists of 65
active cells at 56 different locations.

Figure 4.7: Network configuration when applying Algorithm 7. One inactive site is
depicted by a red circle. The final antenna tilt of a cell is indicated by
the length of its red line. Long lines stand for tilts close to 0 degree and
short lines indicate a high downtilt (in the order of 15-20 degrees).

tilts θi ∈ [0, 20] used in our simulations being equally bad. The choice of a low downtilt

results in the least interference to other users in the system.

To characterize the additional energy savings gains achievable with Algorithm 7 a number

of simulations with different random network deployments have been performed. The

simulation scenario outlined above is used and 50 different cell and test point deploy-

ments were generated. Figure 4.8 shows the average normalized network energy con-

sumption and the corresponding 95% confidence intervals for each alternating iteration

Lo = 0 . . . 10.

The results for three different per test point data rate requirements are provided. It

can be observed that significant energy savings in all three cases are achievable. The

savings are largest in the first few alternating iterations and gains diminish with increasing

number of iterations Lo. In the case of data rate requirements 1024Kb/s the average

normalized network energy consumption can be reduced from 0.396 to 0.300 and for data

rate requirements of 512Kb/s (256Kb/s) from 0.273 (0.217) down to 0.150 (0.100). Note

that the confidence interval for 1024Kb/s case is larger since it can be observed that in

such cases the general cell load is higher and the antenna configuration of Step 2 is not

able to succeed in helping Step 1 of the algorithm in all instances. In other words the

optimization of downtilts did not improve the interference scenario sufficiently much such

that additional cells can be deactivated.
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Figure 4.8: Normalized network energy consumption when applying Algorithm 8
to a network with 100 three-sectored LTE cells and 500 test points.
Normalization with respect to the energy consumption when all cells are
active. Results are averaged over 30 different realizations of the network
and the 95% confidence intervals are provided.

4.9 Conclusion

Starting from available results in the field of standard interference functions we exploited

that the computation of load in cellular communication systems can be posed as the

problem of finding fixed points of standard interference mappings. Thereby, we leveraged

the existing body of work to compute fixed points of standard interference mappings with

the general framework of interference calculus which gave us computationally inexpensive

techniques to compute more accurate network loads. We enhanced our models used in the

topology control for energy savings framework presented in Chapter 3 to more realistically

model the interference coupling between cells. These models use interference mappings

that are able to capture many practical limitations, such as an upper bound for the

spectral efficiency or a constant signaling overhead. With the help of these interference

mappings and the derived iterative algorithms we showed how the framework can be used

to easily crosscheck if an arbitrary network configuration is feasible in the sense that it is

able to provide all users with the desired QoS. Being based on the general framework of

interference calculus, the involved computations are of low complexity due to the involved

fixed point algorithms that are used. We presented a non-heuristic stopping criterion to

compute fixed points of our interference mappings that lead to an arbitrary but fixed

precision.

Building upon the results obtained from applying interference calculus to the problem

of finding the interference coupling and cell load in a cellular communication system,
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we derived a standard interference mapping in closed form that has as its fixed point

the power allocation inducing a given load in LTE-like systems. We showed that well-

known techniques to compute fixed points become readily available, and these iterative

techniques are remarkably simpler than previous methods that, for example, require

nested iterative approaches. In particular, the proposed iterative techniques is able to give

accurate information about the precision of the power assignment vector obtained at each

iteration.

Having at hand the tools for power allocation and cell load computation, we derived a

low-complexity algorithm that makes use of the general framework of standard interference

functions for the task of identifying network configurations consuming low energy. In

particular, we extended the algorithms for energy savings from Chapter 3 in the direction of

load computation which opens more opportunities to reduce the energy in cellular networks.

Unlike the approach in Chapter 3 where the worst case interference assumption was used in

combination with relaxations and majorization-minimization techniques, we incorporated

the actual cell load for the calculation of the interference coupling. The actual cell load

is computed by fixed point algorithms that guarantee convergence asymptotically. This

new enhanced topology control framework for energy savings has the ability to exploit

the full energy savings potential of a cellular communication system in low load scenarios

and incorporates computationally inexpensive algorithms that retain the frameworks

amenability for online implementation.

Lastly, we turned towards finding configurations of active network elements that support the

developed topology control framework. With the help of heuristic arguments we combined

the improved framework for topology control with the optimization of configurations of

active cells. An algorithm was developed that is able to identify different cell configurations

that help to save even more energy. In particular, we showed how the optimization of down

tilts can help to save energy. As a result, these algorithms are substantially better and

highly relevant for practical systems.
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5 Conclusions

In this thesis, we proposed solutions targeting at energy savings in wireless communication

systems. In particular we focused on the problem of network topology control that is

concerned with the energy consumption of all active network elements. Thereby, we tried to

give answers to the scaling of energy consumption in cellular communication systems and

proposed solutions how to minimize the energy consumption of the network by disengaging

certain network elements. In the first chapter of this thesis, we gave an insight in the

growth behavior of wireless communication systems when the number of users tends to

infinity. We started from a scaling law analysis of throughput as a function of the number

of users having some QoS requirement and extended the results into the direction of

embodied network energy consumption. In our analysis we specifically included the energy

consumed by hardware, for, e.g., cooling or processing, which is typically neglected in

theoretical studies from information theory. We derived three scaling regimes for hybrid

wireless networks where ad hoc communication is supported by infrastructure nodes. The

identified scaling regimes are further investigated by simulations that allow to verify the

scaling results predicted by theory and to assess the speed of convergence of the asymptotic

results. Our analysis and simulation results point out the fact that the results of vanishing

throughput in random hybrid wireless communication systems for the asymptotic regime

are already observable for a finite number of users. Thus the problem of diminishing per

node throughput is a problem to be addressed even for smaller number of nodes. The second

main result from the first chapter is that the energy-per-bit of random hybrid networks with

n wireless nodes and m(n) infrastructure nodes operating under a practical communication

scheme as outlined in [ZdV05] satisfies an upper bound. The energy consumption and

energy per bit results are not of general applicability, but we conjecture that they provide

scaling laws for specific communication schemes currently used in cellular networks such as

GSM, UMTS, LTE and future 5G. From the results of the first chapter we concluded that:

1) for a practical communication scheme the infrastructure nodes need to scale accordingly

to have the best energy per bit scaling; 2) Under our considered communication scheme,

a too large infrastructure scaling is not beneficial in terms of energy per bit; 3) More

advanced radio access technologies are needed to fully exploit the potential of cellular

networks with very dense infrastructure and to achieve a better scaling tradeoff between

throughput and energy efficiency. These three conclusions serve as motivation for the work

presented in the proceeding chapters of this thesis.

The main objective of the remaining chapters was the minimization of the overall energy

consumption in the downlink channel of mobile cellular networks including the energy

115



5 Conclusions

consumed by hardware and auxiliary equipment. We followed an approach that tries to

select the set of network elements consuming the least amount of energy while satisfying

the QoS requirements of all users in the system. The underlying problem is of combinatorial

nature and we formulated an optimization problem to find feasible network configurations

that show these properties. Our optimization framework takes into account the static

energy consumed by hardware as well as the load-dependent energy spent on transmission

in an optimal manner and thus, is able to balance between the different sources of energy

consumption. Furthermore, we modeled the technology specific capabilities and limitations

to provide the desired QoS to the users as constraints to our optimization problem. Thereby,

we were able to tailor the optimization problem to address networks of multiple radio

access technologies. As an example we included the problem definition of an LTE single-

RAT network and an UMTS/LTE multi-RAT network. Since the developed optimization

framework includes a combinatorial problem it is in general hard to solve. In fact, we

showed that the problem is related to the standard bin-packing problem, which is known

to be NP-hard. In order to obtain solutions in a computationally efficient manner we

applied relaxation techniques to approximate the objective function by a concave function

and relaxed all non-convex constraints which led to a problem that is amenable for the

majorization-minimization (MM) technique. With these steps we were able to propose

an optimization framework that can find good solutions to the combinatorial problem in

relatively short time. A major advantage is its ability to cope with a variety of network

elements. It is easy to account for different energy consumption models of different hardware,

e.g., base stations of different generations, sectors or even antennas as long as they can be

modeled as any concave or convex function of the load. We provided extensive simulation

results to show the framework’s performance. Finally, we included several extensions

to account for novel aspects of networks such as CoMP transmission, the desire for a

distributed implementation or to take into account buffering capabilities at user side. The

latter led to an extension into the direction of anticipatory scheduling, where the decisions

on resource allocation and user-cell assignments are based not only on present channel state

information but also on information about future propagation conditions. Thereby, we

were able to exploit the knowledge about users’ mobility and path loss to proactively build

user-cell assignment and resource allocation schedules that greatly support energy savings

in cellular communication systems. We showed by simulations that in such a scenario the

energy savings can be increased if the requested data of users can be preloaded in its

buffer.

In the last chapter we improved a drawback in the modeling of the technology specific

constraints from previous chapters, namely the worst-case interference assumption which

was necessary to arrive at convex set of constraints. This resulted in conservative network

configurations that were feasible solutions satisfying all user constraints but missed out

to exploit the full energy saving potential. For the purpose of having a more accurate

interference estimation in the network that could potentially help our optimization frame-

work to save more energy, we turned to the general framework of interference calculus.

116



Starting from available results for standard interference functions we used the result that

the computation of load in cellular communication systems considered in our study can

be posed as the problem of finding fixed points of standard interference mappings. This

provided us with readily available, computational efficient techniques (standard iterative

algorithms) to find the load at cells for a given network setup which in turn led to a more

accurate estimation of the interference in the network. Based on this result, in the first

step we developed a tool to classify the feasibility of network settings for a given user-cell

assignment. The results obtained from applying interference calculus to the problem of

finding the interference coupling and cell load in a cellular communication system, allowed

us to derive a standard interference mapping in closed form that has as its fixed point

the power allocation inducing a given load in LTE-like systems. These tool were then

combined with the network topology control optimization framework in order to increase

the energy savings. Finally, we presented a framework which allows to incorporate finding

feasible cell configurations (e.g., antenna tilts) supporting the energy savings algorithm

that deactivate redundant network elements. In other words, with the help of heuristic

arguments we combine the improved algorithm for topology control with the optimization

of cell configurations. In particular, we show how the optimization of down tilts can help

to save energy.
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A Comments on Sparsity

The notion of sparsity has been used differently in literature and thus we comment on

one interpretation that is used in this study. We denote a vector or matrix as sparse

when most of its elements are equal to zero and only very few are non-zero. A common

mean of describing the sparsity of a vector x ∈ R is to say that x is k-sparse if only k

elements of x are non-zero. To count the non-zero elements of a vector we have introduced

the | · |0-operator and have used it throughout our study in several sparsity promoting

optimization problems.

In a wider sense, the question of sparsity naturally arises in the context of find structured

solutions to under-determined systems of linear equations. Out of this research question the

fields of matrix completion and compressive sensing have evolved. These fields provide a

mathematically rich theory for the described task using convex optimization techniques. Ap-

plications are very broad and can be found for example in medical imaging [CRT06, LDP07],

digital photography [DDT+08], image processing [CW08], sensor networks [BHSN06], and

many others.

In Chapter 3 we have introduced a problem that needs to find sparse solutions satisfying a set

of constraints. In its most general from this problem can be stated as

minimize
x∈Rn

|x|0 (A.1a)

subject to Ax = y , (A.1b)

where A ∈ Rm×n is a constraint matrix and y ∈ Rm is the limit vector for the con-

straints. However, this problem is generally difficult to solve due to the non-convex

| · |0-operator and its discontinuity. For small problem instances an exhaustive combi-

natorial search will find a solution but for intermediate and large problems it becomes

intractable.

A typical way to address this problem is to relax the problem to arrive at a convex optimiza-

tion problem which can be solved efficiently with standard numerical solvers. A representa-

tive of this class is used with Basis pursuit [CDS98], where the cost function is replaced by

the l1-norm. Mathematically speaking, the problem is recast to

minimize
x∈Rn

|x|1 (A.2a)

subject to Ax = y . (A.2b)
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Figure A.1: The unit ball in different normed vector spaces.

It has been shown [CT06] that under certain conditions Problem A.1 and Problem A.2

are equivalent. The relaxation used to arrive at Problem A.2 uses the convex envelope

of the |x|0 for x ∈ [0, 1]. A natural questions arises, whether other relaxations giving

convex optimization problems can be used to achieve the same results with improved

performance. We comment on this question in Section A.1 and present selected sparsity

measure concluding this Chapter with comments on the measure of sparsity used in our

study in Section A.2.

A.1 Measures of sparsity and | · |0-operator approximations

Even though literature provides a huge variety of relaxation functions and approximations

for the | · |0-operator, the l1-norm has become the most used relaxation for the | · |0-operator.

It has good sparsity promoting properties while being a convex function which makes

problems involving the l1-norm amenable for recast to linear problems. However, it also

has certain drawbacks; one being the lack of being able to produce a sparse solution when

the magnitude of each element of the solution vector is very small. The reason is also the

key difference between the | · |0-operator and the l1-norm, namely the dependence of the

magnitude of the latter norm. The | · |0-operator does not penalize large non-zero entries

which the l1-norm does. Figure A.1 illustrates the unit ball of different normed vector

spaces from which the influence of the argument’s magnitude of a lp-norm can be observed.

In the following we comment on some continuous functions that are used to approximate the

|· |0-operator. The |· |0-operator for a vector x ∈ Rn can be written as

|x|0 =

n∑
i=1

δ(xi), (A.3)
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A.1 Measures of sparsity and | · |0-operator approximations
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Figure A.2: Three surrogate functions g1,p(x), g2,p(x) and g3,p(x) = that are used to
approximate |x|0, p = 0.2 [SBP15].

where δ : R→ {0, 1} is the indicator function

δ(x) :=

⎧⎨⎩1 if x ∈ R\{0}

0 if x ≡ 0.
(A.4)

A way to incorporate other approximations for the | · |0-operator is to replace the indicator

function δ(x) by some continuous function gp : R → R with desired sparsity promoting

property. The parameter p is used to control the quality of the approximation. Reference

[SBP15] analyzes the following three surrogate functions:

1. g1,p(x) = |x|p , 0 < p ≤ 1,

2. g2,p(x) =
log(1+

|x|
p
)

log(1+ 1
p
)
, p > 0,

3. g3,p(x) = 1− e
− |x|

p , p > 0.

The first one is commonly used in compressed sensing problems [GR97, CY08] and we

refer to it as the p-norm for p < 1. The second one was proposed in [STL11] for the sparse

generalized eigenvalue problem and the third one appears in [Man96] in the context of

feature selection problems. The different surrogate functions are plotted in Figure A.2

for fixed p = 0.2. Each surrogate function has its own strengths and downsides. The first

surrogate function g1,p(x) = |x|p , 0 < p ≤ 1 has favorable properties for x << 1 since it

shows a fast decay around x = 0. However, its mathematical properties make it less favorable

for cases where linear relaxations are pursued. The function g3,p(x) = 1− e
− |x|

p , p > 0 has

good properties for x > 1 since it does not give high weights to large arguments. Function

g2,p(x) =
log(1+

|x|
p
)

log(1+ 1
p
)
, p > 0 is a good compromise due to its acceptable weights for larger

arguments and its decaying property for x→ 0.
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A Comments on Sparsity

A.2 Notes on the | · |0-operator reformulation

Throughout our study we have used a particular reformulation and relaxation of

the | · |0-operator. In particular, in Section 3.3.3 we have used the following rela-

tion:

|h|0 =
M∑
i=1

|hi|0 =
M∑
i=1

lim
ϵ→0

log(1 + |hi|ϵ−1)

log(1 + ϵ−1)
. (A.5)

In the following we show the equivalence of the left-hand side and the right-hand side

of (A.5). To show this equivalence, we make use of the rule of l’Hopital which says the

following. Assume the two functions f : R → R and g : R → R are differentiable on an

open interval with endpoint x0 and g′(x) ̸= 0 on the interval. Then, if lim
x→x0

f ′(x)
g′(x) = L exists,

then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= L. (A.6)

This becomes useful when f(x)
g(x) leads to an undefined expression such as 0

0 , i.e. lim
x→x0

f(x) = 0

and lim
x→x0

g(x) = 0 or lim
x→x0

|f(x)| = ∞ and lim
x→x0

|g(x)| = ∞. Applied to the summands in

the right-hand side of (A.5) for hi ̸= 0 we have

lim
ϵ→0

f(ϵ)

g(ϵ)
= lim

ϵ→0

log(1 + |hi|ϵ−1)

log(1 + ϵ−1)
, (A.7)

with

f(ϵ) = log(1 + |hi|ϵ−1) (A.8)

g(ϵ) = log(1 + ϵ−1), (A.9)

where both functions are ∞ for ϵ = 0; i.e., f(0) = ∞ and g(0) = ∞. The respective

derivatives of (A.8) and (A.9) are

f ′(ϵ) = − |hi|
(|hi|ϵ−1 + 1) ϵ2

(A.10)

g′(ϵ) = − 1

(ϵ−1 + 1) ϵ2
(A.11)

and we can apply the rule of l’Hopital for hi ̸= 0 which yields

lim
ϵ→0

log(1 + |hi|ϵ−1)

log(1 + ϵ−1)
= lim

ϵ→0

− |hi|
(|hi|ϵ−1+1)ϵ2

− 1
(ϵ−1+1)ϵ2

= lim
ϵ→0

|hi|+ |hi|ϵ
|hi|+ ϵ

=
|hi|
|hi|

= 1.

(A.12)
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For hi = 0 we have the trivial result

lim
ϵ→0

log(1 + 0ϵ−1)

log(1 + ϵ−1)
= lim

ϵ→0

log(1)

log(1 + ϵ−1)

= lim
ϵ→0

0

log(1 + ϵ−1)

=
0

∞
= 0.

(A.13)

Combining (A.12) and (A.13) we obtain

lim
ϵ→0

log(1 + |hi|ϵ−1)

log(1 + ϵ−1)
=

⎧⎨⎩1 if hi ̸= 0

0 if hi ≡ 0
, (A.14)

which is exactly |hi|0.
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B Characteristics and Variations of the

Network Topology Control Problem

B.1 Bin-packing problem

In this section we show the relation of our standard problem from Chapter 3 to the

well known bin-packing problem [MT90]. The results have been partially published in

[CPS+13b]. For convenience we restate Problem 3.6 with the specific constraints for an

LTE network:

minimize
∑
l∈L

⎛⎝cl
⏐⏐tTl x̃⏐⏐0 +

∑
i∈Sl

(
ei
⏐⏐sTi x̃⏐⏐0 + f̃i(x̃)

)⎞⎠ (B.1a)

subject to
∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈M (B.1b)

∑
i∈M

xi,j = 1 j ∈ N (B.1c)

X ∈ {0, 1}M×N . (B.1d)

Problem B.1, which is akin to those in [ZGY+09, NWGY10, GBGF+11], is a generalized

bin-packing problem. In other words, the standard bin-packing problem, which is known to

be NP-hard, is a special case of Problem B.1. In particular, note that we can recover the

standard bin-packing problem from Problem B.1 by simplifying it to single cell base stations

(|Sl| = 1) with equal static energy consumption same c1 = . . . = cM = e1 = . . . = eM

and assuming that ω̃i,j depends only on j (i.e., ω̃i,j =: ωj for some ωj ∈ R++, j ∈ N ).

We simplify our objective function by assuming fi(ρi) = 0 and |Sl| = 1, ∀l ∈ L and

introducing the auxiliary variable yi :=
∑

j∈N xi,j . The resulting simplified problem is

stated as

minimize
∑
i∈M

yi

subject to
∑
j∈N

rj
Bi ωj

xi,j ≤ yi i ∈M

∑
i∈M

xi,j = 1, j ∈ N

X ∈ {0, 1}M×N

yi ∈ {0, 1} i ∈M.

(B.2a)

(B.2b)

(B.2c)

(B.2d)

(B.2e)
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B Characteristics and Variations of the Network Topology Control Problem

Problem B.2 is the generalized bin-packing problem and as such is also NP-hard, so we

cannot expect to obtain computationally efficient optimization schemes that are always

guaranteed to obtain optimal solutions.

B.2 Alternatives for the heuristic mapping [0, 1]→ {0, 1}

The developed framework of network topology control for energy savings in mobile com-

munication networks from the main part of this study (e.g. Section 3.3.3) incorporates a

step to map the solution matrix from X⋆ ∈ [0, 1]M×N to X ∈ {0, 1}M×N . For this step

we have used a heuristic that had reasonably low complexity and good performance in

practice. To overcome the necessity of a heuristic algorithm, this section gives some ideas

how to find better algorithms that have analytical justification to map X⋆ ∈ [0, 1]M×N to

X ∈ {0, 1}M×N .

We start by replacing the discrete constraint in Problem B.2 by a convex closed set. The idea

presented in this section can be straightforwardly used in other discrete linear programming

problems. For convenience we recall a simple version of our original discrete optimization

problem:

minimize
∑
i∈M

ci
⏐⏐tTi x̃⏐⏐0

subject to
∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈M

∑
i∈M

xi,j = 1, j ∈ N

X ∈ {0, 1}M×N .

(B.3a)

(B.3b)

(B.3c)

(B.3d)

With the above formulation, base station i can be switched off if
⏐⏐tTi x̃⏐⏐0 = 0. Now, define

µ :=
∑

i∈M ci (i.e., µ is the maximum static energy consumption, which corresponds to

the case where all base stations are switched on), and consider the following optimization

problem with convex constraints:

minimize
X∈RM×N

∑
i∈M

ci
⏐⏐xT

i 1
⏐⏐
0

+ µ |X|0

subject to
∑
j∈N

rj
Bi ω̃i,j

xi,j ≤ 1 i ∈M

∑
i∈M

xi,j = 1, j ∈ N

X ∈ [0, 1]M×N .

(B.4a)

(B.4b)

(B.4c)

(B.4d)

In the optimization problem above we have included a l0-penalty µ |X|0 inducing maximum

sparsity to promote sparse solutions also in the optimization variable. The inclusion of such

a l0-penalty is widely used in literature. It has been considered in, for example, sparse linear
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regression [SS12, BYD07, BD08, Nik13, ZDL13, DZ13, MUH15], sparse signal recovery

[Nik13], PCA and low rank matrix completion [US11, USM15].

Proposition 5. If Problem B.3 has a solution, then the optimal solution of Problem B.4

is also the optimum solution of Problem B.3.

We now sketch a proof of Proposition 5. For notational convenience, denote the sets of

matrices in RM×N satisfying (B.3b), (B.3c), (B.3d), and (B.4d) by, respectively, C1, C2,
C3, and C4.Furthermore, denote the functions f1, f2 : RM×N → R in (B.3a) and (B.4a) by

f1(X) :=
∑

i∈M ci
⏐⏐xT

i 1
⏐⏐
0

and f2(X) :=
∑

i∈M ci
⏐⏐xT

i 1
⏐⏐
0

+ µ |X|0. In doing so, Problem

(B.3) and Problem (B.4) can be compactly written as, respectively, min.
s.t. X∈C1∩C2∩C3

f1(X)

and min.
s.t. X∈C1∩C2∩C4

f2(X). To show the equivalence of these two problems, we use extensively

the simple observation below:

Remark 14. Assume that X ∈ C2. Then |X|0 ≥ N , and the equality |X|0 = N is achieved

if and only if X ∈ C2 also belongs to C3 (i.e., X ∈ C2 ∩ C3).

Proof. The inequality |X|0 ≥ N follows directly from the definition of the set C2, which

guarantees that there exists at least one nonzero component in each column of an arbitrary

matrix X ∈ C2 ⊂ RM×N . Furthermore, the equality |X|0 = N (which characterizes the set

of sparsest matrices in C2) is achieved if and only if a single component of each column of

X is one and the remaining components are zeros. Such matrices in the set C2 also belong

to C3, by definition of C3.

We are now ready to show the equivalence of the problems:

Proposition 6. Assume that Problem (B.3) has at least one solution. Then an assignment

matrix X⋆ solves Problem (B.3) if and only if X⋆ also solves Problem (B.4).

Proof. Define D := (C1 ∩ C2 ∩ C4)\C3, then we deduce:1

inf
X∈D

f2(X) = inf
X∈D

(f1(X) + µ |X|0) (B.5)

≥ inf
X∈D

f1(X) + µN + µ (B.6)

≥ inf
X∈D

f1(X) + min
X∈C1∩C2∩C3

(f1(X) + µN) (B.7)

= inf
X∈D

f1(X) + min
X∈C1∩C2∩C3

(f1(X) + µ |X|0) (B.8)

> min
X∈C1∩C2∩C3

(f1(X) + µ |X|0) (B.9)

= min
X∈C1∩C2∩C3

f2(X). (B.10)

1For an arbitrary function g, we define infx∈D g(x) = ∞ if D = ∅
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In the first inequality, we use the fact that X ∈ C2 and X /∈ C3 implies |X|0 ≥ N + 1

(Remark 14); in the second inequality, we use f1(X) ≤ µ for every X ∈ RM×N and the

assumption of the existence of a solution to Problem (B.3); in the second equality, we use

|X|0 = N for every X ∈ C2∩C3 (Remark 14); in the last inequality we use f1(X) > 0 for every

X ∈ C2. (Note: all above relations are trivially satisfied if D = ∅.)

In words, by C3 ⊂ C4, the above derivation shows that the set of solutions to Problem B.4

is a superset of C3 if a solution to Problem B.3 exists:

arg min
X∈C1∩C2∩C4

f2(X) = arg min
X∈C1∩C2∩C3∩C4

f2(X) (B.11)

= arg min
X∈C1∩C2∩C3

f2(X) (B.12)

with (B.11) conditioned on the existence of a solution to Problem B.3. We arrive at the

desired result by using |X|0 = N for X ∈ C2∩C3 (Remark 14) and by removing unnecessary

constants:

arg min
X∈C1∩C2∩C4

f2(X) = arg min
X∈C1∩C2∩C3

f2(X) (B.13)

= arg min
X∈C1∩C2∩C3

(f1(X) + µ |X|0) (B.14)

= arg min
X∈C1∩C2∩C3

(f1(X) + µN) (B.15)

= arg min
X∈C1∩C2∩C3

f1(X). (B.16)

again conditioned on the existence of a solution to Problem B.3.

Further investigations and the detailed proof is subject to future work.

B.3 Additional problem variation for handling infeasible

constraints

The underlaying assumption when trying to solve problems akin to Problem B.2 is that

it always has a feasible solution. However, depending on the data rate requirements r

of users, which typically have to be estimated, we cannot guarantee the existence of a

feasible solution. To handle infeasible cases, we can allow the optimization problem to add

bandwidth zi ≥ 0 to base station i ∈M if required. To do so we replace Problem B.2 with:
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minimize
∑
i∈M

yi + δ |z|1

subject to
∑
j∈N

bi,j
Bi

xi,j ≤ yi +
zi
Bi

i ∈M

∑
i∈M

xi,j = 1, j ∈ N

xi,j ∈ {0, 1} i ∈M, j ∈ N

yi ∈ {0, 1} i ∈M,

(B.17a)

(B.17b)

(B.17c)

(B.17d)

(B.17e)

where z := [zi · · · zM ], xi,j , yi are the optimization variables; and δ is a parameter penalizing

the addition of bandwidth to base stations. Note that, for z ∈ RN , the largest convex

function being an underestimator of |z|0 over the l∞ unit ball is the l1 norm, which shows

that the l1 norm is a sparsity-promoting norm (a property that has been widely exploited

in, among other fields, machine learning, geophysics, statistics, and signal processing

[CWB08]). As a result, if δ is sufficiently large, then we can expect that a solution to the

above optimization problem has a vector z with a large number of zero components (or

values close to zero). Note that solutions with large zi values typically indicate that base

station i is overloaded.
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C The Majorization-Minimization algorithm

In this section we briefly summarize the majorization-minimization (MM) algorithm [HL04],

which can be seen as a generalization of the well- known expectation-maximization (EM)

algorithm. The presentation that follows is heavily based on that in the study in [STL11]

(see also [PCS12][CSS+14]).

Suppose that the objective is to minimize a function h : X → R, where X ⊂ RN . Assume

that there exists a solution to this optimization problem, and let x⋆ ∈ X be a global

minimizer of h; i.e., h(x⋆) ≤ h(x) for every x ∈ X . Unless h has a special structure that can

be exploited (e.g. convexity), finding x⋆ is computationally intractable in general [Roc70].

Hence, we typically have to content ourselves with generating a sequence of vectors with

non-increasing objective value. To this end, we can use the majorization-minimization (MM)

technique, which drives h downhill with the help of a majorizing function g : X × X → R.

In more detail, we say that g is majorizing function for h if it satisfies the following

properties:

1. g majorizes h at every point in X , i.e.

h(x) ≤ g(x,y), ∀x,y ∈ X , (C.1)

2. g and h coincide at (x,x) so that

h(x) = g(x,x), ∀x ∈ X . (C.2)

By starting from a feasible point x(0) ∈ X , the MM algorithm generates a sequence{
x(n)

}
n∈N ⊂ X with monotone decreasing function values h(x(n)) according to (we assume

that the optimization problems have a solution)

x(n+1) ∈ arg min
x∈X

g(x,x(n)) . (C.3)

Irrespective of the choice of g, we can easily verify monotonicity of the objective value

with the help of (C.1), (C.2) and (C.3): h(x(n)) = g(x(n),x(n)) ≥ g(x(n+1),x(n)) ≥
g(x(n+1),x(n+1)) = h(x(n+1)). Therefore, since the function h is bounded below when

restricted to X by assumption, we can conclude that h(x(n))→ c ∈ R for some c ≥ h(x⋆)

as n→∞. However, we emphasize that this in general does not imply the convergence of

the sequence
{
x(n)

}
.
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The choice of the function g is problem dependent, but it should be sufficiently structured

in order to make the optimization problem in C.3 tractable. In particular, in our study

we deal with concave and continuously differentiable functions h. In such cases, a natural

choice for g satisfying (C.1) and (C.2) is

g(x,y) = h(y) +∇h(y)T (x− y). (C.4)

This particular choice is common in, for example, sparse signal recovery

[CWB08].

Remark 15. We note that, instead of solving the optimization problem in C.3 exactly, it is

sufficient for the monotonicity of the sequence {h(x(n))} that g(x(n+1),x(n)) ≤ g(x(n),x(n))

for every n ∈ N. This observation is relevant if the right-hand side of C.3 can only be

solved asymptotically, in which case the iteration can be truncated whenever the above

inequality is satisfied.
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