
Wave Emission of Nonthermal Electron Beams Generated by Magnetic Reconnection

Xin Yao1,2 , Patricio A. Muñoz1,2 , Jörg Büchner1,2 , Jan Benáček2 , Siming Liu3,4 , and Xiaowei Zhou1,3
1 Max Planck Institute for Solar System Research, D-37077 Göttingen, Germany; xin.yao@campus.tu-berlin.de

2 Centre for Astronomy and Astrophysics, Technical University of Berlin, D-10623 Berlin, Germany
3 Purple Mountain Observatory, Chinese Academy of Sciences, 210034 Nanjing, People’s Republic of China

4 School of Physical Science and Technology, Southwest Jiaotong University, 610031 Chengdu, People’s Republic of China
Received 2021 July 30; revised 2022 May 12; accepted 2022 May 17; published 2022 July 15

Abstract

Magnetic reconnection in solar flares can efficiently generate nonthermal electron beams. The energetic electrons
can, in turn, cause radio waves through microscopic plasma instabilities as they propagate through the ambient
plasma along the magnetic field lines. We aim at investigating the wave emission caused by fast-moving electron
beams with characteristic nonthermal electron velocity distribution functions (EVDFs) generated by kinetic
magnetic reconnection: two-stream EVDFs along the separatrices and in the diffusion region, and perpendicular
crescent-shaped EVDFs closer to the diffusion region. For this purpose, we utilized 2.5D fully kinetic Particle-In-
Cell code simulations in this study. We found the following: (1) the two-stream EVDFs plus the background ions
are unstable to electron/ion (streaming) instabilities, which cause ion-acoustic waves and Langmuir waves due to
the net current. This can lead to multiple-harmonic plasma emission in the diffusion region and the separatrices of
reconnection. (2) The perpendicular crescent-shaped EVDFs can cause multiple-harmonic electromagnetic electron
cyclotron waves through the electron cyclotron maser instabilities in the diffusion region of reconnection. Our
results are applicable to diagnose the plasma parameters, which are associated to magnetic reconnection in solar
flares by means of radio wave observations.

Unified Astronomy Thesaurus concepts: Solar radio emission (1522); Solar electromagnetic emission (1490); Non-
thermal radiation sources (1119); Astronomical radiation sources (89)

1. Introduction

Flares are the most energetic phenomena in the solar corona.
During flares, magnetic reconnection releases stored magnetic
energy, and the energy can be converted into plasma bulk
flow kinetic energy, heat, and acceleration of particles up
to relativistic energies (Aschwanden 2005; Treumann &
Baumjohann 2013). In particular, the charged particles can be
accelerated by reconnection, e.g., in the reconnecting current
sheet (Somov & Kosugi 1997), by the formation of cascading
islands (Zhou et al. 2015, 2016), near magnetic null points
(Guo et al. 2010; Narukage et al. 2014; Chen et al. 2018), in the
outflow regions and separatrices (Büchner & Zelenyi 1990; Liu
et al. 2008, 2013; Glesener et al. 2012; Chen et al. 2015), and
in the underlying retracted magnetic arcades (Fletcher &
Hudson 2008). However, there are still open questions of
whether the electrons are mostly generated in the central region
or in the outflow region of reconnection, what kind of
reconnection takes place in solar eruptions, and what the
plasma conditions in the flaring regions are (Chen et al.
2015, 2018).

An important consequence of the acceleration of particles in
magnetic reconnection is the formation of nonthermal electron
velocity distribution functions (EVDFs; Yao et al. 2022).
Nonthermal EVDFs are prone to decay unstably (Lee et al.
2007), which might cause nonlinear phenomena like
double layers (Lee et al. 2008), anomalous transport, and
anisotropic heating of the coronal flare-loop plasma (Lee &
Büchner 2010, 2011a, 2011b). The nonthermal EVDFs can

cause microscopic plasma instabilities and generate electro-
magnetic emission across the entire spectrum including radio
waves. Previous radio and hard X-ray observations of
nonthermal radiation have confirmed the existence of such
nonthermal sources of wave emissions from reconnection
regions (Fletcher & Hudson 2008; Glesener et al. 2012;
Narukage et al. 2014). For example, solar radio bursts (SRBs)
are proposed to be caused by electron beams with nonthermal
velocity distribution functions (VDFs) energized by magnetic
reconnection in the solar flare regions (Benz 2002; Mann et al.
2009).
In general, several kinds of waves have been associated with

magnetic reconnection (see reviews in Fujimoto et al. 2011;
Khotyaintsev et al. 2019). Some of those waves can be
electromagnetic and in the radio-band, which are thought to be
caused by electron beams. Observations of those waves from,
e.g., the flaring solar corona, can serve as a remote diagnostics
tool to probe the plasma conditions of astrophysical reconnec-
tion processes. Based on observations of coronal Type III SRBs
by the upgraded Karl G. Jansky Very Large Array, Chen et al.
(2018) reported waves at the fundamental plasma frequency
and its harmonics, emitted from two separate source regions
near magnetic null points in the solar corona.
Other waves due to reconnection have been observed in situ

in the Earth’s magnetosphere. Not all of them are electro-
magnetic and therefore can escape the plasma, but they are part
of certain wave–wave interactions that can finally lead to
electromagnetic radiation. Large-amplitude and high-frequency
Langmuir waves were confirmed in magnetopause reconnec-
tion (Burch et al. 2016a, 2019; Graham et al. 2018). High-
frequency electrostatic upper-hybrid (UH) waves, generated
due to energetic electrons of perpendicular crescent-shaped
EVDFs, were observed by the high spatial and temporal
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resolution multispacecraft Magnetospheric Multiscale (MMS)
mission not only in the diffusion region of asymmetric
magnetopause reconnection (Graham et al. 2017) but also in
central reconnection regions of the Earth’s magnetotail (Dokgo
et al. 2019).

Menietti (2002) observed electrostatic electron cyclotron
waves (ECWs) due to energetic electron beams in Earth’s polar
regions detected by the Plasma Wave Instrument on the Polar
spacecraft. Harmonics of electrostatic ECWs have also been
observed in an overdense plasma in the diffusion region
of asymmetric reconnection in the Earth’s magnetopause
(Rönnmark & Christiansen 1981; Tang et al. 2013; Zhou et al.
2016; Li et al. 2020). By using MMS data, Li et al. (2020) found
that the generation of multiple-harmonic ECWs stands in close
relation to the observation of crescent-shaped EVDFs perpend-
icular to the local magnetic field in the Earth’s magnetopause.

There are several possible emission mechanisms that can be
responsible for the generation of radio waves by nonthermal
electrons accelerated by magnetic reconnection. The most
widely accepted mechanism is the so-called plasma emission
mechanism that relies on the wave–wave interaction of
Langmuir waves induced by electron beam instabilities with
ion-acoustic waves (e.g., see Ginzburg & Zhelezniakov 1958;
Melrose 1970a, 1970b, 2017; Reid & Ratcliffe 2014, and
references therein). According to the plasma emission mech-
anism, an electron beam first generates electrostatic Langmuir
waves (L) via streaming-like instabilities, which are due to a
positive velocity gradient in the EVDF in the direction parallel
to the magnetic field: v∥ · ∂f/∂v∥> 0. EVDFs prone to those
instabilities are known to be generated by magnetic reconnec-
tion (Yao et al. 2022). The energy density of the Langmuir
waves usually exceeds the thermal fluctuation level of the
ambient plasma by several orders of magnitude. The beam-
generated Langmuir waves L can decay into ion-acoustic waves
S and fundamental emission F (transverse electromagnetic
waves at the plasma frequency), i.e., L→ S+ F
(Melrose 1987, 2017). The fundamental emission can also be
generated by a coalescence process of backward-scattered
Langmuir waves L¢ and ion-acoustic waves S, i.e., L S F¢ + 
(Melrose 1987, 2017). The (second) harmonic emission H
(=H2), i.e., electromagnetic waves at harmonic frequencies
ω= 2ωpe, can be generated by a coalescence of Langmuir
waves L and back-scattered Langmuir waves L¢ through
L L H+ ¢  (Willes et al. 1996; Yoon 2006). These usually
circularly polarized transverse waves can escape from the
ambient plasma, if their frequencies exceed the local plasma
frequency, which depends on the plasma density in the source
region (Melrose et al. 1978; Melrose 2017). The phase
velocities of these waves must also approximately exceed the
speed of light; namely, they have to be superluminal. Other
mechanisms have also been recently developed to solve some
problems of the standard plasma emission mechanism. For
example, Che et al. (2017) proposed a wave–wave interaction
process where the modulation of Langmuir waves by whistler
waves during the nonlinear stage of an electron two-stream
instability allows a longer emission period (continuous
coherent emission) than in previous models.

Not only electron beams can generate Langmuir waves but
also a variety of other processes, like a current density possibly
driven by the relative drift between electrons and ions, as often
observed in current sheets. A relative electron/ion streaming
can offer a source of free energy for a family of instabilities

collectively called electron/ion (streaming) instabilities. There
are at least two well-studied instabilities. The high-frequency
one occurs when the relative streaming speed between the
electron and ion populations significantly exceeds the electron
thermal speed, and it is called the Buneman instability
(Buneman 1958, 1959), leading to the generation of Langmuir
waves (Gary 1993; Treumann & Baumjohann 2001; Jain et al.
2011). The low-frequency one is called the ion-acoustic
instability, which requires a relative drift speed much lower
than the Buneman instability, but well above the ion thermal
speed and mainly occurs for Te? Ti, leading to the generation
of ion-acoustic waves (Gary 1993; Treumann & Baumjo-
hann 2001; Hellinger et al. 2004). This way, a plasma featuring
an electron/ion streaming could also provide the ingredients
for the typical wave–wave interaction of the plasma emission
mechanism to generate (fundamental) electromagnetic waves at
the electron plasma frequency.
The third and higher harmonic plasma emissions, at the

frequency of multiples of the local plasma frequency, were also
observed in SRBs (Takakura & Yousef 1974; Cairns 1986;
Reiner & MacDowall 2019). Various schemes have been
proposed to explain the formation of higher harmonic plasma
emission. Zlotnik (1978) put forward that the third harmonic
emission H3 is generated by the coalescence process of the
Langmuir waves and the harmonic emission H, i.e.,
L+H→H3. Cairns (1988) generalized this idea to explain
higher harmonics of transverse wave emissions, claiming that
nth harmonic waves Hn could be generated by a coalescence of
beam-generated Langmuir waves L and adjacent transverse
waves Hn−1, i.e., L+Hn−1→Hn. An alternative way for the
generation of harmonic transverse waves would be an
interaction of Langmuir waves L and harmonic electrostatic
waves Ln−1, i.e., L+ Ln−1→Hn (Gaelzer et al. 2003; Yi et al.
2007). Ziebell et al. (2015) numerically solved the weak-
turbulence equations and theoretically demonstrate the process
of multiple-harmonic plasma emission, including the nonlinear
conversion from Langmuir turbulence to electromagnetic
radiation. Rhee et al. (2009), Ziebell et al. (2015), Yao et al.
(2021) investigated both schemes of multiple-harmonic plasma
emissions by means of Particle-In-Cell (PIC) code simulations.
They found that Cairns (1988)ʼs scheme can qualitatively
explain the third and fourth harmonic emissions while Yi et al.
(2007)ʼs theory is appropriate to explain the simultaneously
generated harmonics of electrostatic waves. PIC code simula-
tions of electron beams demonstrated that fundamental
transverse waves at the plasma frequency can be generated
because of the wave–wave interaction processes involving ion-
acoustic waves (Thurgood & Tsiklauri 2015; Henri et al. 2019).
The PIC simulations of ring-beam EVDFs by Zhou et al.
(2020) also provided evidence for the generation of the second
and third harmonic emission via wave–wave interactions.
Annenkov et al. (2019) used PIC code simulations to describe
localized beams and found that the emissions at harmonics of
the plasma frequency can be generated due to an antenna
mechanism.
ECWs at the relativistic electron cyclotron frequency and

their harmonics have been often observed in a variety of
environments. They can be generated by the so-called electron
cyclotron maser instability (ECMI). The source of free energy
of this instability is due to a positive velocity gradient in
EVDFs in the direction perpendicular to the local magnetic
field: ∂f/∂v⊥> 0. ECMI could be caused by EVDFs including,
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e.g., cup-like distribution functions (Büchner & Kuska 1996),
horseshoe-like EVDFs (Bingham & Cairns 2000; Melrose &
Wheatland 2016), ring- (Pritchett 1984; Lee et al. 2011; Yao
et al. 2021) and crescent-shaped EVDFs in the velocity space
perpendicular to magnetic field (Burch et al. 2016b; Chen et al.
2016b; Egedal et al. 2016). The ECMI produces electro-
magnetic waves at the local electron cyclotron frequency and
its harmonics as well as UH waves (Benáček & Karlický 2019;
Ni et al. 2020). The electron cyclotron maser emission (ECME)
mechanism predicts the electromagnetic emission amplified by
a quasi-linear wave–particle interaction in the magnetic field
(Twiss 1958; Melrose et al. 1984; Melrose 2017). Observations
show that ECWs are usually X-mode polarized (Ellis 1962;
Ellis & Mcculloch 1963; Melrose 2017). The ECME theory of
X-polarized ECWs at the fundamental electron cyclotron
frequency leads to the frequency condition Ωce> ωpe

(Ellis 1962; Ellis & Mcculloch 1963; Melrose et al. 1984;
Hewitt & Melrose 1985; Melrose 1986, 2017), which is also
necessary for electromagnetic ECWs to escape from the source
region. The above frequency condition implies a sufficiently
low plasma density ( npe ew µ , with ne the electron plasma
density) in regions of strong magnetic fields (Ωce∝ B with B
the background magnetic field strength). In the solar corona,
this condition can be fulfilled in some localized regions near
active regions and solar flares (Régnier 2015; Morosan et al.
2016).

However, the plasma-to-cyclotron frequency ratio is usually
the opposite one in typical space and astrophysical plasmas, in
particular, in the solar corona, where the electron cyclotron
frequency is often smaller than the local plasma frequency
Ωce< ωpe. On the other hand, the observations of X-polarized
ECWs in dynamic spectra have shown that ECWs can possibly
not start with the fundamental but with a higher harmonic of
the electron cyclotron frequency. This implies its source region
may possibly be located in a plasma where Ωce/ωpe< 1
(Treumann et al. 2011; Treumann & Baumjohann 2017).
Treumann & Baumjohann (2017) proposed that a higher
harmonic of ECWs can be generated in a source region with
frequency condition Ωce/ωpe< 1; they may escape out and be
remotely observed if they are excited with high intensities.
Treumann & Baumjohann (2017) pointed out that the n= 5
harmonic ECWs can serve as the cyclotron harmonic seed of
the X-mode-polarized electromagnetic fluctuations after being
amplified. By means of PIC code simulations for the frequency
condition Ωce/ωpe= 0.1, Ni et al. (2020) found X-O-polarized
fundamental and harmonic plasma emissions induced by
electrostatic UH waves and other electromagnetic modes such
as Z and whistler modes.

A large number of numerical studies have been carried out to
study the EVDFs formed by kinetic magnetic reconnection
utilizing PIC code simulations (see, e.g., Hoshino et al. 2001;
Pritchett & Coroniti 2004; Ng et al. 2012; Shuster et al. 2014;
Muñoz & Büchner 2016; Yao et al. 2022, and references
therein). The most typical found distributions were field-
aligned electron beams (Drake et al. 2003; Pritchett &
Coroniti 2004; Che et al. 2010, 2011), which can cause
electromagnetic wave emission. The generation mechanisms of
those (parallel) beam distributions are well understood. They
are generated due to the reconnection electric field near the
X-point and eventually parallel electric fields near the
separatrices (Treumann & Baumjohann 2013).

Perpendicular ring- and crescent-shaped EVDFs, which can
trigger the ECMI mechanism, can also be generated by
reconnection. PIC code simulations revealed that the cres-
cent-shaped EVDFs can be formed by both symmetric (Bessho
& Bhattacharjee 2014; Shuster et al. 2014) and asymmetric
magnetic reconnection (Hesse et al. 2014; Bessho et al.
2016, 2017, 2019; Chen et al. 2016a; Price et al. 2016; Shay
et al. 2016; Le et al. 2017). Perpendicular crescent-shaped
EVDFs have often been detected in asymmetric magnetic
reconnection through the Earth’s magnetopause by the MMS
mission (Burch et al. 2016b; Chen et al. 2016b; Egedal et al.
2016; Hesse et al. 2016; Norgren et al. 2016; Phan et al. 2016;
Genestreti et al. 2018; Rager et al. 2018; Tang et al. 2019).
Several formation mechanisms of those perpendicular

crescent-shaped EVDFs have been proposed. The redistribu-
tion of the kinetic energy of the electron motion from the
direction parallel to the magnetic field into the motion in the
direction perpendicular to the local magnetic field can cause the
formation of the perpendicular ring- and crescent-shaped
EVDFs (Voitcu & Echim 2012, 2018). This process always
takes place in kinetic magnetic reconnection since this process
naturally occurs in steep magnetic gradients. Voitcu & Echim
(2018) demonstrated that, as electron beams propagate through
a tangential magnetic discontinuity, the magnetic gradient drifts
can redistribute the energy of the field-aligned electron motion
into that of the motion perpendicular to the local magnetic field.
The formation of perpendicular crescent-shaped EVDFs in the
diffusion region of reconnection can also be attributed to the
meandering motion of nongyrotropic and nonadiabatic elec-
trons across reconnecting current sheets (Hesse et al. 2014;
Bessho et al. 2016, 2019; Shay et al. 2016; Lapenta et al.
2017). The exact mechanisms are still under debate, but they
mostly have to do with the effects of either the E× B or
gradient-B drifts (Bessho et al. 2016; Shay et al. 2016; Lapenta
et al. 2017).
Many studies have been carried out to explain radio waves/

emission generated by unstable EVDFs, which are not
necessarily related to magnetic reconnection (Lee et al. 2011;
Ganse et al. 2012; Reid & Ratcliffe 2014; Thurgood &
Tsiklauri 2015; Zhou et al. 2020; Yao et al. 2021). There have
also been studies analyzing radio wave emissions due to
magnetic reconnection without focusing on specific features of
the EVDFs caused by reconnection or their associated kinetic
plasma instabilities (Sakai et al. 2005; Karlický & Bárta 2007).
A direct relation of the generation of electromagnetic waves to
nonthermal EVDFs generated by kinetic magnetic reconnection
is, to the best of our knowledge, still missing. In this paper, we
intend to bridge this gap.
Our approach is to directly use the nonthermal EVDFs

generated by numerical simulation of kinetic magnetic
reconnection, which feature sources of free energy for
microinstabilities, as initial conditions of beam–plasma simula-
tions with the objective to investigate their consequent radio
wave emission. This two-step approach allows a higher
frequency and wavenumber resolution than that of the
immediate diagnostics of radio waves in reconnection simula-
tions. This approach provides thus a better understanding not
only of the instabilities caused by nonthermal EVDFs but also
of the properties of the resulting radio waves.
For this purpose, we used the results of PIC code simulations

of 3D kinetic magnetic reconnection performed in a previous
study (Yao et al. 2022). They identified nonthermal EVDFs as
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potential sources of free energy for the generation of radio
waves in those reconnection simulations based on an
unsupervised machine learning technique (Dupuis et al.
2020). According to Yao et al. (2022), two characteristic
EVDFs that are prone to instabilities relevant to radio emission
were identified: two-stream EVDFs near the separatrices and
diffusion region, and perpendicular crescent-shaped EVDFs in
the diffusion and the outflow region of reconnection. We used
those EVDFs in a parameterized way as the initial conditions
for separate beam–plasma simulations.

Previous works have also extracted and parameterized
EVDFs from a reconnection simulation to assess their stability
properties via independent 2D simulations. This is because a
high frequency and wavenumber resolution are needed to
resolve the unstable waves, which is usually not feasible in 3D
reconnection simulations. The usual method is to simulate that
parameterized EVDF in a homogeneous background plasma in
a 2D or 1D geometry. Indeed, Goldman et al. (2008) carried
out 1D and 2D kinetic Vlasov simulations to understand the
electron holes caused by the Buneman instability, which is
triggered by an EVDF taken from 2D PIC simulations of
magnetic reconnection. They used a spatially varying parallel
velocity profile to mimic the current sheet width but otherwise
constant density. Divin et al. (2012) simulated separatrix
instabilities driven by unstable EVDFs from 2D PIC simula-
tions of magnetic reconnection with realistic mass ratio. A step
forward of this work is the inclusion of the force balance at the
separatrices into the initialization of the EVDF simulations.
They neglected, however, the gradients parallel to the magnetic
field. Note that none of those works aimed at the analysis of the
resulting radio emission or VDFs prone to the ECMI, so our
work attempts to bridge that gap. Hesse et al. (2018)
numerically solved the electrostatic dispersion relations of
typical EVDFs found in the separatrices of reconnection, with
the purpose of assessing their stability and role in generating
the resulting electrostatic soliton-like waves.

The main objective of this paper is thus to relate the
nonthermal EVDFs caused by magnetic reconnection with the
resulting electromagnetic radiation due to the kinetic instabil-
ities triggered by those EVDFs and also the ion distribution
functions. This is of fundamental importance to understand, for
example, the plasma properties of solar coronal reconnection
based on the observed radio waves caused by the accelerated
electron beams. We address only the initial stage of this process
at its source region; a more complete model would require
taking into account the transport of electrons as they propagate
through the solar corona and solar wind.

The content of this paper is organized as follows: In
Section 2, we first describe the numerical simulations of 3D
kinetic magnetic reconnection and the resulting characteristic
nonthermal EVDFs. We then describe the numerical setup of
simulations with a few of those nonthermal EVDFs as initial
conditions. In Section 3, we presented our analysis of the
resulting radio waves by these unstable EVDFs. Our conclu-
sions are summarized in Section 4.

2. Numerical Model

2.1. 3D Magnetic Reconnection Simulation

We first briefly summarized the 3D magnetic reconnection
simulation (Yao et al. 2022), from which we obtained the
EVDFs to be analyzed in this study. Those simulations were

performed with the fully kinetic 3D PIC code ACRONYM
(Kilian et al. 2012), which is appropriate to model the
collisionless plasmas of the solar corona as it solves the fully
kinetic Vlasov–Maxwell system of equations.
The initial equilibrium was a double Harris current sheet

equilibrium without an external guide field (also known as
antiparallel reconnection). Both electrons and ions are
initialized following this equilibrium. From now on, we will
denote those species as Harris population. In addition, we also
impose a homogeneous background consisting also of ions and
electrons with the same temperature as the Harris population
and with a density 0.1625 times that of the peak Harris current
sheet density.
A small perturbation was applied to the equilibrium

magnetic field in order to accelerate the reconnection onset.
The number of grid points of the simulation box was
256× 512× 1024, and the physical simulation domain was
4di× 8di× 16di, where di is the ion skin depth. We apply
periodic boundary conditions in all directions. The ion-to-
electron mass ratio was mi/me= 100. Other parameters of this
simulation can be seen in the central column of Table 1.
As described in Yao et al. (2022), the evolution of this

magnetic reconnection simulation is characterized by reconnec-
tion rates that keep increasing almost until the end of the
simulated time. The same can be observed by means of other
diagnostics, like the root mean square values of the magnetic
field, magnetic energy, etc. Our system does not reach a steady
state. The reconnection rates reach a value of 0.1 in normalized
units (i.e., vAB∞/c in CGS units) at t 5.25 ci

1= W- . This is the

Table 1
A Comparison of Parameters of the 3D Simulations of Magnetic Reconnection

and 2.5D Simulations of a Beam–Plasma System

Parameter 3D Magnetic Reconnection
2.5D Beam–Plasma

System

Grid points 256 × 512 × 1024 2048 × 2048
Physical size d4 8 16 i

3´ ´ d14.3 14.3 i
2´

Δx [λD] 1.56 1
mi/me 100 100
vth,e/c 0.1 0.07
Te [eV] 5110 2503
Ti/Te 1 1
vA/c 0.05→ 0 0.045
βe 0.08→ ∞ 0.047
ωpe/Ωce 2 →∞ 2.2
ne [cm

−3] 1.3 × 109 → (7.9 + 1.3) × 109 (7.9 + 3.95) × 109

Particles
per cell

13 → (80+13) 100 + 50

t pe
1[ ]wD - 0.087 0.035

Total time ci
1[ ]W- 9 3.6

Output per-
iod pe

1[ ]w-
55.5 0.35

Note. For reconnection simulations, some parameters have different values
depending on their distance from the current sheet center (as per the Harris
current sheet equilibrium). In this case, the first indicated value is the
asymptotic value, while the values to the right of the arrows are calculated at
the current sheet center. Here λD is the Debye length, di the ion skin depth, ωpe

the electron plasma frequency calculated at the current sheet center. Ωce and Ωci

are the electron and ion cyclotron frequencies calculated asymptotically away
from the current sheet center, respectively. vA is the Alfvén speed, βe the
electron plasma beta, ne the electron number density, Δx the grid cell size, Δt
the time step.
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standard value for fast reconnection (Cassak et al. 2017) as well
as the value reported by some turbulent reconnection simula-
tions (Wendel et al. 2013; Liu et al. 2018), although it can be
higher in some cases, specially when Buneman-like turbulence
is triggered in magnetic reconnection (Che et al. 2011;
Che 2017; Muñoz & Büchner 2018). Simulations of kinetic
turbulence where many sites of magnetic reconnection occur
show a distribution of reconnection rates below and above 0.1
(Haggerty et al. 2017). In our case, the time after the
reconnection rates reach values higher than 0.1 is dominated
by unphysical effects, which are the interaction with the second
current sheet in magnetic reconnection (because of periodic
boundary conditions) and the depletion of the available
magnetic flux (which is due to the reduced simulation box
size). Previous 3D magnetic reconnection simulations also
usually focused on diagnostics at times when the reconnection
rates are near 0.1 (Che et al. 2011; Muñoz & Büchner 2018). In
this study, we decided to analyze EVDFs at t 5.25 ci

1= W- when
the reconnection rates reach 0.1, the same as those in the
analysis of Yao et al. (2022).

In this study, we choose two characteristic EVDFs formed at
two different locations on a given reconnection plane. The
locations are denoted by the points A and B (see red dots) in
Figure 1(a0). The characteristic nonthermal EVDFs for

fast-moving electron beams (FEBs) at these locations are as
follows: (A) two-stream EVDF generated in the separatrix
region (see Figure 1(a1)–(a2)) and (B) perpendicular crescent-
shaped EVDF formed near the diffusion region (see
Figure 1(b1)–(b2)). Those EVDFs were calculated with the
electrons that belong to the so-called Harris population (which
initially establishes the initial equilibrium), which, for the
purposes of the present work, can be considered as the electron
beams. They can provide the source of free energy for
electron/electron streaming instabilities depending on their
positive velocity gradients, and also for electron/ion streaming
instabilities that depend on the relative drift speed between the
bulk flow speed of the entire EVDF and the ion distribution. A
positive velocity gradient in the parallel EVDFs is a necessary
condition for the streaming instabilities, eventually causing
Langmuir waves due to inverse Landau damping, as per the so-
called Penrose criterion (Penrose 1960). The rigorous necessary
and sufficient conditions require to not only determine the
regions with positive velocity gradients but also take into
account any negative contribution to the instability from the
rest of the distribution function.
There is also a background population not shown in

Figure 1, which tends to reduce positive velocity gradient(s)
due to the beam population and thus suppress streaming-like

Figure 1. Nonthermal EVDFs generated by 3D kinetic simulation of antiparallel magnetic reconnection on the plane z = 8.0di during time t 5.25 ci
1= W- (see details in

Yao et al. 2022). (a0): normalized current density jz on the x–y reconnection plane z = 8 di (with z along the out-of-plane direction), and here j0 = en0vthe. Magnetic
field lines (white curves) on the reconnection plane are overlaid. (a1)–(a2): the two-stream EVDF generated in the separatrix region (point A). (b1)–(b2): the
perpendicular crescent-shaped EVDF generated near diffusion region (point B) in the v∥–v⊥ and v⊥1–v⊥2 planes separately. The parallel-∥direction is along the local
magnetic field. The EVDFs are estimated as the normalized probability density function of electrons of the Harris population in the velocity space.
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instabilities. However, the electron beam can propagate
through a background with different densities, and so this
effect will vary point to point within the reconnection region,
so we focus mainly on the beam population.

In this 3D antiparallel magnetic reconnection simulation, the
magnetic field lines roughly are onto the reconnection plane.
Electron beams then move along the magnetic field lines (see
white curves in Figure 1(a0)) from the X-point toward the
separatrices.

Note that the third dimension of this magnetic reconnection
study (in contrast to other 2D reconnection simulations) allows
the release of energy of the unstable distributions in this
direction. More precisely, the field-aligned beams along the
third direction will generate unstable waves with a wavenum-
ber in this direction. In a pure 2D configuration, that process is
prohibited, and therefore, a distribution that could be unstable
in 3D will be stable in a 2D geometry. As a result, there should
be very different waves due to those unstable EVDFs in a 3D
simulation in comparison to its 2D counterpart. The unstable
EVDFs in 3D magnetic reconnection are observed for
relatively long timescales (i.e., ion timescales), and thus they
are always continuously generated even though their free
energy should be depleted due to streaming-like instabilities.

For further details about this simulation and a more
comprehensive analysis of EVDFs, see Yao et al. (2022).

2.2. 2.5D Beam–Plasma Simulations

We used two characteristic EVDFs described above as initial
conditions for independent simulations performed with the 2.5D
version of ACRONYM, i.e., a 2D mesh grid in space and the full
3D velocity coordinates. We considered an electron-ion plasma
with an ion-to-electron mass ratio mp/me= 100, same as the
reconnection simulations. The plasma consists of three species of
particles: background electrons and ions, and beam electrons
streaming at a given drift speed. The initial electron plasma
frequency is set to be ωpe= 5.0× 109 rad s−1, which corresponds
to an electron number density of n0= 7.9× 109 cm−3, typical for
the solar corona (Aschwanden 2005), and also the same values as
the reconnection simulations. The ratio of the electron cyclotron
frequency to the electron plasma frequency is Ωce/ωpe= 0.45.
Such frequency ratio is generally found in the separatrices in our
3D kinetic collisionless magnetic reconnection simulation. It can
also be found at some locations in the solar corona (Morosan
et al. 2016). This implies an electron plasma beta of βe= 0.047.
The size of the simulation box is (Lx, Ly)= (Nx, Ny)×
Δx= (2048, 2048)×Δx along the x and y directions, respec-
tively. We set the grid cell size to be Δx= λD (with the Debye
length of λD= 0.42 cm). In order to satisfy the Courant–
Friedrichs–Lewy condition, we imposed the condition
c t x 1 2 1 2D D = < . Periodic boundary conditions are
applied in both directions of the simulation box. The time step
is t 0.035 pe

1wD = - . The background magnetic field is assumed
to be constant throughout the box, and the direction of the
magnetic field defines the x direction of the simulation box,
namely, B0= B0ex. From here on, we refer to the x direction as
the parallel direction. We set the thermal speed of the background
electron plasma as vthe= 0.07c and of beam electrons
vth,bm= 0.08c. This beam thermal speed was calculated by fitting
the parallel electron distribution function shown in Figure 1(a1)
and determining its standard deviation. The perpendicular
distribution exhibits similar values. Because of the strong non-
Maxwellian features of the crescent-shaped EVDF shown in

Figure (b1)–(b2), a Maxwellian fitting is not meaningful, so we
choose to use the same temperature values as those determined
for the point A. As for the background population, not shown in
Figure 1, we used the thermal speed values resulting from the
Maxwellian fitting carried out in Figure 8(b2) of Yao et al.
(2022). Nevertheless, all the results obtained in this work are
relatively insensitive to small variations in the thermal speed (or
temperature) within the range 0.05� vthe/c� 0.1.
Table 1 shows a comparison between the parameters of the 3D

simulation of magnetic reconnection and those of the 2.5D
simulation of beam–plasma system. In contrast to magnetic
reconnection simulations, these beam–plasma simulations allow
us to reach a higher frequency and wavenumber resolution and
provide a better understanding of the stability properties and the
resulting radio waves. For the 2.5D simulation of beam–plasma
systems, the size of the simulation box allows a wavenumber
resolution of Δkx=Δky= 0.044ωpe/c. Based on a sampling
period of 10Δt, the simulation allows us to obtain a frequency up
to 3 pemaxw pw» in the frequency domain. The presented
dispersion relation analysis is based on a time window that
allows a frequency resolution of Δω= 0.035ωpe (by 512
samplings) or even higher frequency resolution such as
Δω= 0.0175ωpe (by 1024 samplings) or Δω= 0.0044ωpe (by
4096 samplings). For the 3D simulation of magnetic reconnection,
the size of the simulation box allows a wavenumber resolution of
Δkx= 0.08ωpe/c, Δky= 0.04ωpe/c, Δkz= 0.02ωpe/c. However,
the 3D simulation allows maximum frequency only up to

0.025 pemaxw w= , which is not enough to analyze the high-
frequency waves such as Langmuir waves and ECWs caused by
microinstabilities. Due to the large output period comparable to
the reconnection timescale at ion cyclotron time (i.e.,

t1429 0.025 ci
1D = W- ), only a few outputs are available. This is

because of computational limitations: the parallel output (in HDF5
format) of those simulations that utilize thousands of cores tends
to slow down the entire simulation in most supercomputers’ file
systems, so that a too often output significantly hinders the speed
of the code. Therefore, a 2.5D simulation with high frequency and
wavenumber resolutions is necessary to investigate the waves
caused by the relevant microinstabilities that are studied here.
For the simulations in this study, we choose Nbg= 100

macroparticles per cell for the background plasma
and Nbm= 50 macroparticles per cell for the electron beam.
This represents a beam-to-background density ratio of
nbm/nbg= 1/2 since the number of macroparticles per cell is
proportional to the physical number density, provided a
constant ratio of macroparticles to physical particles. Such a
relatively high beam-to-background density ratio can be
generated in a local region in the above-described 3D magnetic
reconnection simulation (see locations denoted by solid red
circles in Figure 1(a0)). Several examples of distributions with
this beam-to-background density ratio can be found in Yao
et al. (2022). We noted that our convergence tests of similar
beam–plasma simulations verified that the simulations with a
larger number of macroparticles per cell for both background
and beam plasma basically produce similar results (Yao et al.
2021). In order to reduce the level of numerical noise, a
second-order shape function was used.
From here on, we use the term momentum for the momentum

per unit mass, which is equivalent to the relativistic velocity in its
four-vector form, namely, p∥= v∥, p⊥= v⊥. Note that the four-
velocities v∥ and v⊥ differ from the ordinary three-velocity by a
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factor of γ, where the Lorentz factor is v v c1 2 2 2( )g = + + ^ .
The particle kinetic energy is Ek= (γ− 1)mec

2.
For the nonthermal EVDFs generated in our kinetic magnetic

reconnection simulation, the averaged kinetic bulk flow speed
(or drift speed) of beam electrons along the direction of the
local magnetic field (i.e., the parallel drift speed) is |ud∥|< 0.2c.
The maximum value 0.2c corresponds to the typical drifts
speeds obtained by fitting Maxwellian distributions to our two
selected EVDFs found in the separatrices and the diffusion
region (see Figure 1(a1), (b1)). We also found the excitation of
harmonic(s) of plasma emission is sensitively dependent on the
parallel drift speed of electron beam and the beam-to-
background number density ratio (this will be discussed
below). Therefore our beam–plasma simulations are initialized
with a beam drift speed of ud∥= 0.2c. In observations, the drift
speed of electron beams is found to be either nonrelativistic,
0.2–0.5c (Wild et al. 1959; Alvarez & Haddock 1973) or
mildly relativistic with>0.6c (Poquerusse 1994; Klassen et al.
2003). The drift speed of the electron beams can be deduced
from observations of Type III radio bursts as summarized in
Reid & Ratcliffe (2014), Reid & Kontar (2018). Meanwhile,
the kinetic bulk flow speed perpendicular to the direction of the
local magnetic field (i.e., the perpendicular drift speed) of the
electron beam with perpendicular crescent-shaped EVDF is set
to the same value obtained by the fitting of the EVDFs from
Figure 1(b1), (b2), i.e., ud⊥= 0.2c. Both the parallel and
perpendicular drift speeds ud∥= ud⊥= 0.2 c correspond to a
Lorentz factor γ= 1.02 and kinetic energy Ek= 10.13 keV.

We conducted three simulation runs that are summarized in
Table 2. Among them, Run1 represents a control case with only
background plasma. This thermal and homogeneous plasma
can excite most of the normal plasma modes (surfaces or curves
in the frequency-wavenumber space) due to the fluctuations
caused by the thermal noise. In a PIC simulation, the physical
thermal noise is provided by the macroparticles, where each of
them represents a bulk of physical particles. Therefore the
thermal noise level in a PIC simulation is higher than in a real
plasma (see, e.g., Section 5.3 of Melzani et al. 2013). In either
case, the normal plasma modes are excited above the thermal
level, but only in the Fourier space (frequency-wavenumber)
region where they are either undamped or weakly damped. The
excitation of all plasma normal modes is routinely used as a test
problem to verify the correctness of PIC-code algorithms. For
example, Kilian et al. (2017) showed the presence of most
plasma modes in simulations of a homogeneous thermal plasma
(i.e., without sources of free energy) with a variety of kinetic
codes and plasma models, including a fully kinetic PIC code.

This way, the waves are excited due to the electron beams in
Run2 and Run3, which mostly (but not always) occur onto the
surfaces or curves (in the frequency-wavenumber space) of the
normal plasma modes, and can be compared to the waves
excited by thermal fluctuations onto those same normal modes

in Run1. Note that any wave excited by a plasma instability,
like in our Runs2 and Run3, features a spectral power that is
orders of magnitude larger than the normal plasma modes
excited by the thermal noise in Run1. So the waves by those
different processes can be easily distinguished.
We initialized the beam–plasma system by prescribing a

particle distribution function f (x, v) in the phase space (x,
y)× (v∥, v⊥). The distribution is spatially, homogeneously
distributed and thus independent on the (x, y) coordinates. The
background particle distribution function is expressed as
follows,

f x y v v n f v v f v v, , , ; ; 1bg 0,bg the the( ) ( ) ( ) ( )=^ ^ ^  
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where n0,bg=Nbg(M/ΔV )= n0 is the background number
density, Nbg is number of macroparticles per cell of the
background plasma, M is the ratio of physical to numerical
particles,ΔV is the cell volume, and vthe is the thermal speed of
the background electrons.
The distribution function of the beam electrons is expressed

in the following form:
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where n0,bm= Nbm(M/ΔV ) is the beam number density, and
Nbm is number of beam macroelectrons per cell.
The two kinds of EVDFs of FEB for Run2 and Run3 are as

follows:

1. Two-stream EVDF.
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where vth∥ and vth⊥ are the thermal speeds along and
perpendicular to the direction of the local magnetic field.
We consider here only the case of an initially isotropic
beam plasma, i.e., vth∥= vth⊥= vth,bm.

2. Perpendicular crescent-shaped EVDF.
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Table 2
Parameters for the Electron Velocity Distribution Function (EVDF) of the

Electron Beams for the Simulation Runs

Run Background Beam

vthe vth,bm ud∥ ud⊥ EVDF

1 0.07c L L L no beam
2 0.07c 0.08c 0.2c 0 two-stream
3 0.07c 0.08c 0.2c 0.2c drifting crescent-shaped
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where v varctan 2 1( )f = ^ ^ is the polar angle with the
two orthogonal components of the perpendicular speed
v⊥1 and v⊥2, and v v v1

2
2

2= +^ ^ ^ . Here fth determines
the angular width spread of VDF about the angle f0 in the
perpendicular velocity space v⊥1–v⊥2. The quantity N is
the normalization factor and v2 , 2th tha b f= =^ .
In our simulations, f0= 0 and fth= 0.6π, which
empirically correspond to the typical perpendicular
crescent-shaped EVDF found in diffusion region (see
Figure 1(b2)). Note that our simulations are implemented
in Cartesian coordinates: the parallel direction is field-
aligned as mentioned above; thus v∥= vx. For the
components of perpendicular velocity, we simply assign
v⊥1= vy and v⊥2= vz.

Both beam electrons, with the two-stream and perpendicular
crescent-shaped EVDFs, are initialized by using Equation (4)
(Figure 2). Note that both of these nonthermal EVDFs for FEBs
have the two-stream EVDF along the parallel direction in
velocity space (see Figure 2(a1), (b1) in v∥–v⊥ plane) because
FEBs inherently have a positive parallel drift speed (bulk flow
kinetic speed); namely, ud∥> 0.

The main three beam–plasma simulations to be investigated
in this paper and the associated kinetic processes that are
expected in them can be summarized as follows:

1. Run1. There is no beam at all. This is used as a control
case. Normal plasma wave modes are generated as a
result of the background thermal plasma noise . Those
visible waves include the following: Langmuir waves,
ordinary (O mode), extraordinary (X-mode) waves,
whistler waves, and electrostatic Bernstein waves
(EBWs). Note that they have small amplitudes in
comparison with the waves generated by instabilities.
Waves subject to kinetic damping, such as Langmuir
waves, are only visible for large wavelengths, where their
damping is weak.

2. Run2. We use an electron beam featuring a stream-like
EVDF. The kinetic processes are dominated by instabil-
ities due to the field-aligned Maxwellian electron beam,
which in general leads to a relative electron/ion
streaming. This relative streaming causes a net current
and thus oscillations at the electron plasma frequency.
Because of thermal effects, the waves at those frequencies
experience dispersion, and so they are commonly called
Langmuir waves. Later during the evolution of the
system, the same electron/ion streaming leads to an
electron/ion streaming instability, causing ion-acoustic
waves at much lower frequencies. The existing Langmuir
waves can then interact with the generated ion-acoustic
waves through a wave–wave interaction process known
as the plasma emission mechanism. The resulting
electromagnetic waves at the electron plasma frequency
(fundamental) and their harmonics can escape the plasma
and be remotely observed.

3. Run3. We use an electron beam featuring a crescent-
shaped EVDF. This beam is also characterized by the
same drift speed in the parallel direction to the local
magnetic field as the EVDF for Run2. Therefore all

kinetic processes taking place in Run2 also occur in this
simulation. In addition, this crescent-shaped EVDF
features a positive velocity gradient in the direction
perpendicular to the local magnetic field. The crescent-
shaped EVDF can cause ECMIs and generate multiple-
harmonic ECWs due to a wave–particle interaction at the
relativistic resonance condition ω= nΩce/γd+ ud∥k∥.
Here the Lorentz factor, γd, is due to the motion of the
electron beam, ud, which is the drift speed of the
electron beam.

3. Results

We present now the results of the simulations described
above, which were initialized with either a two-stream EVDF
(see Figure 2(a1), (a2)) or a perpendicular crescent-shaped
EVDF (see Figure 2(b1), (b2)). Those initial EVDFs lead to the
following instabilities, respectively:

1. Electron/ion streaming instabilities. They cause (electro-
static) ion-acoustic waves. In addition, the relative
streaming also generates electrostatic Langmuir waves.
Transverse emission in the form of harmonics of
Langmuir waves is generated via a nonlinear wave–wave
interaction process.

2. ECMIs. They cause multiple-harmonic electromagnetic
ECWs due to a wave–particle process.

3.1. Evolution of the Instabilities

Here we briefly describe the evolution of both instabilities to
understand the evolution of the beam–plasma system and the
resulting radiation properties from magnetic reconnection
EVDFs. More detailed stability analyses have been already
carried out in the past. See the references in the Introduction
and Yao et al. (2021), Zhou et al. (2020). We focus, in
particular, on the instabilities driven by the parallel drift speed,
since they are the most relevant for the generation of
electromagnetic escaping waves.
As time evolves, the kinetic energy of the electron beam is

transferred into the thermal energy of the beam–plasma system
and electric field energy. Meanwhile, the variation of magnetic
energy is negligible (Yao et al. 2021). This way the signatures
of the unstable waves due to this instability can be seen mostly
in the electric field energy. Figure 3(a) shows the temporal
evolution of Eln max x

2∣ ( )∣ (the electric field component parallel
to the background magnetic field) for three runs. For the control
case Run1 (with electron beam), the fluctuations of the electric
field component Ex always slightly oscillate in the thermal
noise level. The other two runs with a FEB, namely Run2 and
Run3, have initially larger electric field oscillations than those
of Run1, and they are also similar to each other. That indicates
that this enhanced initial level of electric field oscillations is
only due to the parallel drift speed of the beam, which
contributes to the relative streaming between the total EVDF
and the ion VDF (initially at rest), as we explain later.
The Maxwellian electron beam of Run2 causes longitudinal

electric field oscillations Eln max x
2∣ ( )∣ , which exponentially

grow between t 400 pe
1w» - and t 600 pe

1w» - , with an estimated
linear growth rate of 0.012ωpe. This linear growth phase is
followed by a saturation, where the electric field energy
remains roughly constant. This implies that the source of free
energy is depleted.
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In order to investigate the specific source of free energy for
this observed electric field growth in Run2, and so the
instabilities themselves, it is necessary to analyze the distribu-
tion functions. Figure 4(a) shows the time evolution of 1D
EVDFs along the parallel direction (i.e., x direction) for Run2.
The ion VDF (see the solid gray curve in Figure 4(a)) is also
present at vx = 0. We verified that the ion VDF practically does
not vary during the entire evolution of the system.

The initial total EVDF (sum of background and beam
electrons) at t = 0.0 does not feature a positive velocity
gradient and therefore is stable. But it has a net drift or bulk
flow speed vx> 0. That, combined with the fact that the ion
VDF is located at vx = 0, results in a net relative drift speed
between the ion VDF and EVDF, equal to Vei= 0.95vthe. This
relative drift represents a net current and is a possible source of
free energy for instabilities and waves. Due to Ampere’s law,
this causes the finite initial electric field amplitude for Run2 in
Figure 3, which represents the strong electric field oscillations
accompanied by associated oscillatory motions of the EVDF.
The initial EVDF only slightly changes during the time interval
in which the electric field energy remains constant in Figure 3,

i.e., up to t 400 pe
1w» - . The electric field oscillations occur at

the plasma frequency modified by thermal effects, which can
be identified as Langmuir waves.
After t 400 pe

1w» - the EVDF shifts to the left, i.e., the bulk
flow speed of the whole EVDF decreases and adopts negative
values in order to decrease the net current (relative electron-ion
streaming). As a consequence, the relative drift speed between
electrons and ions becomes negative as well, reaching values
up to Vei=− 0.71vthe at t 525.0 pe

1w» - . This makes the
electron-ion distribution unstable (see discussion below), since
the bulk of the ion VDF falls into the monotonously decreasing
part (or to the right side) of the EVDF. This unstable
distribution is correlated with the exponential growth phase
denoted by the red dashed line of Figure 3. As a consequence,
the source of free energy, the relative electron-ion drift speed, is
exhausted quickly, so that the final EVDF shown in Figure 4(a)
for t 612.5 pe

1w» - moves to a location closer to the initial
EVDF. This final EVDF also features a larger temperature
(broader distribution).
In order to numerically quantify the growth rates of the

instability driven by the relative electron-ion drift, we linearize

Figure 2. Initial EVDFs of our beam–plasma simulations parameterized from the reconnection EVDFs in Figure 1. Two-stream (a1)–(a2) and perpendicular crescent-
shaped (b1)–(b2) EVDFs in the v∥–v⊥ and v⊥1–v⊥2 planes, respectively. (a1)–(a2) are used to initialize Run2, while (b1)–(b2) are used to initialize Run3. The two-
stream EVDF is generated by the product of Equations (5) and (6) and the perpendicular crescent-shaped EVDF by the product of Equations (7) and (8). See details
about the specific parameters and the fitting of the reconnection simulations in the text.
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the 1D electrostatic Vlasov equation for three plasma species,
ion VDF (subscript i), background EVDF (subscript ec), and
beam EVDF (subscript eb). We assume for each one a 1D
drifting Maxwellian in the following way
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for ions and the total electron population, respectively. The
parameters are obtained from the fitting of the actual simulation
distribution functions at different times. The resulting disper-
sion relation yields the following (Gary 1993; Che et al. 2010):
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Here ωps is the plasma frequency, vth,s is the thermal speed, and
ud,s is the drift speed of the sth species, respectively. In this
subsection, we normalize our results to the electron plasma
frequency ωpe, electron thermal speed v k T mB e ethe = and
electron number density ne of the initial (t= 0) electron
background plasma (otherwise indicated with the subscript ec).
Note that we solve Equation (12) for a complex ω+ iγ,

where ω is the real frequency and γ the growth rate (or damping
rate) and for a given k. We search for the complex roots
(ω+ iγ, k) that satisfy the dispersion relation Equation (12) by
means of a multidimensional root-finding algorithm. This
method can find all infinite roots of Equation (12), which are
mostly heavily damped. We are only interested in the solutions
with positive γ, namely, growing waves.
For this purpose, we first fitted the simulation VDFs shown in

Figure 4 by the ion VDF Equation (10) and the EVDF
Equation (11). Note that the ion VDF does not practically vary
during the evolution of the system. The solutions of Equation (12)
show that most of the EVDFs shown in Figure 4 lead to stable
solutions, i.e., negative or zero γ. Only two (fitted) EVDFs,
namely, at t 437.5 pe

1w= - and t 525.0 pe
1w= - (see dashed curves

Figure 3. Temporal evolution of the maximum amplitude of the electric field oscillations (a) in x direction Eln max x
2∣ ( )∣ and (b) in y direction Eln max y

2∣ ( )∣ for all
simulations. The dashed lines indicate fittings to the linear growth phase; the numbers next to them indicate the growth rates’ values (in units of ωpe).

10

The Astrophysical Journal, 933:219 (25pp), 2022 July 10 Yao et al.



shown in Figure 4(a)), lead to a positive growth rate γ. The EVDF
at t 525.0 pe

1w= - features a larger source of free energy, namely, a
larger electron-to-ion drift speed and so a much larger growth rate
than for t 437.5 pe

1w= - . The fitting parameters for this EVDF at

t 525.0 pe
1w= - are drift speeds ud,ec=−1.87vthe, ud,eb= 0.4vthe,

electron beam-to-background density ratio neb/nec= 1.04, thermal
speeds vth,ec= 1.007vthe and vth,eb= 1.573vthe. The solution of
Equation (12) with those parameters (see sky-blue solid curve in
Figure 4(b2)) shows a positive growth rate γ> 0 in the
wavenumber range about k d0, 6 e

1[ ]Î -
 with a maximum

γ≈ 0.01ωpe, which is in rough agreement with the value
0.012ωpe obtained from the linear fitting of the electric field

amplitude in Figure 3(a). The difference can be attributed to the
dynamical evolution of the EVDF during the linear growth phase;
namely, it is hard to choose a representative set of parameters to
solve Equation (12) for the linear theory analysis within this time
period.
Figure 4(b1) shows the real frequency versus the wave-

number of the modes shown in Figure 4(b2). The unstable
branches at t 437.5 pe

1w= - (solid light-green curve) and
t 525.0 pe

1w= - (solid sky-blue curve) belong to the same wave
mode with a mostly linear dependence between frequency and
wavenumber. Its phase speed (or slope) is negative and equal to
ω/k∥≈−0.25vthe=−0.0175c (at t 525.0 pe

1w= - ). This implies
the existence of a resonant interaction between the left tail of

Figure 4. (a) 1D parallel total electron (sum of background and beam electrons) velocity distribution function (VDF) at different times for Run2. The ion VDF (solid
gray curve) nearly does not vary as time evolves. Note the ion VDF is scaled by a factor of 1/40 to visualize all the VDFs in the same panel. 1D parallel electron VDF
at t 437.5 pe

1w= - and t 525.0 pe
1w= - are fitted by Equation (11) (dashed curves). Unstable solutions of Equation (12) for the fitted VDFs at t 437.5 pe

1w= - and
t 525.0 pe

1w= - are shown in the bottom panels: (b1) frequency vs. wavenumber (i.e., ω − k∥) and (b2) growth rate vs. wavenumber (i.e., γ − k∥).
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the ion VDF and the EVDF at such a phase speed. The source
of free energy comes from the positive velocity gradient of
the ion VDF combined with the negative velocity gradient of
the EVDF. The ion-acoustic speed is defined as follows
(Baumjohann & Treumann 1997; Swanson 2003):

c
k T k T

m

3
, 15s

B e B i

i

2 ( )=
+

where cs≈± 0.014c, which in roughly agreement with the
theoretical phase speed of the unstable wave mode. The
differences can be attributed to the non-Maxwellian nature of
the EVDF, which in practice leads to a larger effective electron
temperature and thus increases the effective sound speed.
Therefore, we can identify the unstable wave mode as ion-
acoustic waves (see Section 3.2): strong ion density fluctua-
tions that start to develop during the unstable period after
t 400 pe

1w» - , with the frequency and wavenumber matching the
linear dispersion relation of ion-acoustic waves. Note that the
ion-acoustic waves are the essential ingredient, besides
Langmuir waves, to generate the fundamental plasma emission
via wave–wave interactions (see Section 1).

Those agreements between linear theory calculations and
simulation results are evidence that supports the development
of an electron/ion instability with the ion-acoustic branch as

the unstable mode in our system. This is despite the fact that
our system does not satisfy the standard threshold for such an
instability, which usually requires Te? Ti, and it is based on a
single drifting Maxwellian for the whole population
(Gary 1993; Treumann & Baumjohann 2001). For a plasma
with equal electron and ion temperatures, like the initial
conditions of our simulations, the ion-acoustic waves are
actually heavily Landau damped, so they are not observed in
the early time period (see Figure 5(a)). It is only later in the
evolution of the system (after t 400 pe

1w» - ) that the strong non-
Maxwellian EVDF, which is hotter than the initial one, with a
heavy skewed tail and interactions with the ion EVDF, can
allow the excitation of ion-acoustic waves with an amplitude
that exponentially grows.
The linear growth phase of the longitudinal Ex component of

Run2 is also associated with an exponential growth of the
transverse component Ey. This is the component responsible for
the electromagnetic radiation, which is observed as harmonics
of the electron plasma frequency in the electromagnetic wave
branch (see Figures 6 and 11). That means the excitation of ion-
acoustic waves during the linear growth phase of Ex is
correlated with the excitation of transverse electromagnetic
waves (harmonics) as seen in Ey. Note, however, that the
estimated linear growth rate is 0.07ωpe and therefore smaller

Figure 5. (a) Ion number density fluctuation n n ni i iD = - in x–t plane during time t · ωpe = 0 − 800. The ion density fluctuation Δni is normalized by n0. (b)
Corresponding PSD of the normalized ion number density ni(k∥, ω)/n0. Here the PSD is estimated by n nlog i10 0

2∣ ∣ . The beam mode (red dashed line) and the ion-
acoustic mode (blue dashed line) are overlaid. All data are from simulation Run2.
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than that for Ex, indicating that those waves are only indirectly
caused by the relative electron-ion drift speed.

Run3 with a crescent-shaped EVDF has a somewhat
different evolution. The evolution of the longitudinal electric
field component Ex also has a linear growth phase, similar to
Run2. It starts, however, a bit earlier t 300 pe

1w» - and ends near

t 400 pe
1w» - with the same saturation level as that of Run2 and

with a similar growth rate as well: 0.013ωpe. That implies that
the linear growth phase is also driven by the relative electron-
ion streaming, since the parallel EVDFs for both Run2 and
Run3 have the same parallel drift speed. The earlier start of the
linear phase for the evolution of the Ex component of Run3 can
be attributed to the perpendicular EVDF, which is different
from Run2. Indeed, the transverse component Ey for Run3
grows from the very beginning, saturating at the same time
(t 400 pe

1w» - ) as the longitudinal component. This implies that
the positive perpendicular velocity gradients generate unstable
waves from the very beginning due to the ECMI, as shown
below.

3.2. Langmuir Waves

The introduction of beam plasma to the background plasma
has a significant influence on the local plasma frequency for
Run2 and Run3, because the local electron number density is
heavily affected by the density fluctuations as the electron
beam propagates through the ambient plasma. Integrating the
power spectral density (PSD) of Ex over the wavenumber k∥
yields the power spectra with respect to frequency, namely

E k B dk, . 16x 0
2( ) ∣ ( ) ∣ ( )òw w= / 

The local plasma frequency ωloc can then be numerically
determined by the corresponding frequencies of those maxima
of the ( )w (see more details in Yao et al. 2021). In this study,
the effective local plasma frequency is about ωloc≈ 0.95 ωpe

both for Run2 and Run3, while ωloc= ωpe for Run1.
Harmonics of Langmuir waves at the frequency of multiples

of the local plasma frequency, i.e., ω= nωloc (n= 1, 2, 3, K),
due to two-stream EVDFs are observed both in Run2 and

Figure 6. Power spectral density (PSD) for Run1 (a1)–(a2) and Run2 (b1)–(b2) in the time window t · ωpe = 455–634. PSDs estimated by E B i x ylog ,i10 0
2∣ ∣ ( )= are

displayed in the k∥–ω plane. Dispersion relation curves of Langmuir mode (orange dashed curve), harmonics of the plasma frequency ω = nωloc (black dashed lines),
beam mode (magenta dashed curve), R (red dashed curve), L (green dashed curve), and Whistler (blue dashed curve) are overlaid. Integrated power spectra k( )  of
corresponding harmonics (fundamental F, harmonic H, and higher harmonics Hn (n = 3, 4, 5)) of Langmuir waves in (c1) Ex and (c2) Ey for Run2 are shown in k –
plane. The power spectrum  is normalized by the initial magnetic power density BB 0

2∣ ∣= .

13

The Astrophysical Journal, 933:219 (25pp), 2022 July 10 Yao et al.



Run3. In this part, we analyze the results of Run2 as an
example to explain the generation of Langmuir waves. Similar
phenomena are also observed in Run3.

Due to the small mass ratio μ=mi/me= 100 used in this
study, ion-acoustic waves can be generated within the timescale
of our simulations. They start to be visible from t · ωpe≈ 100
on (see Figure 5). Figure 5(a) shows the ion number
density fluctuation n n ni i iD = - within the time interval
t · ωpe= 0− 800 in the x–t plane. Figure 5(b) shows the PSD
derived from the ion number density ni(k∥, ω) in Fourier space.
The PSD of ni(k∥, ω) in the low-frequency region is broadly
thermally spread near the dispersion relation curve of ion-
acoustic waves (Baumjohann & Treumann 1997; Swan-
son 2003):
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Here cs is the ion-sound speed defined in Equation (15). Note
that this expression contains short-wavelength corrections
(contained in the denominator k1 2

D
2l+ ). In the long-

wavelength limit (kλD= 1, or kde= 14.28), this expression
reduces to ω= csk. All calculations and results in this work
satisfy this approximation very well, since the spectral power is
confined to k · de< 4 as seen in Figure 5(b).

This way, the spectral power near this branch implies the
existence of low-frequency ion-acoustic waves S.

Figure 6 shows a comparison of power spectral densities
between Run1 and Run2. For Run1, which works as our
control case for a thermal plasma without an energetic electron
beam, we only see the electrostatic Langmuir mode in
the Ex component, while the R, L, and whistler modes are in the
Ey component. The electrostatic Langmuir waves are
fitted by the standard Bohm–Gross dispersion relation, i.e.,

v k3pe
2

the
2 2w w= + (Bohm & Gross 1949). The dispersion

relations of R, L, and whistler modes are solved by using the
dispersion relation of waves in the cold plasma approximation
(Stix 1992; Swanson 2003).

For Run2, we found harmonics of electrostatic Langmuir
waves in the parallel direction, i.e., k∥, (Figure 6(b1)) and
harmonics of the transverse waves in the perpendicular
direction, i.e., k⊥, (Figure 6(b2)). In Figure 6(b2), the
dispersion relation curves of R, L, and Whistler modes are
also overlaid. The dispersion relation curves of the electro-
magnetic R and L modes approach and merge when ω� 2ωloc.
The multiple-harmonic wave modes with a parallel phase speed
equal to or faster than the speed of light in the long-wavelength
regime, i.e., the superluminal regime ω� ck∥, are the transverse
waves.

By assuming that the power spectrum of a wave mode
follows a Gaussian power distribution along its dispersion
relation curve in the k∥–ω domain, the integrated power
distribution for each harmonic of Langmuir waves can be
quantitatively estimated as follows:
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where σ= 0.02ωpe is the frequency width spread along the
theoretical dispersion curve.

Figure 6(c1) shows this integrated power spectra ki( ) versus
wavenumber k∥ of harmonics of the electrostatic Langmuir
waves for Run2. The power spectrum of the fundamental
Langmuir waves decrease from a magnitude of 10−1 at k∥= 0
to 10−7 at k∥ · de= 12. But most of the power is concentrated
between kde = 0 and kde = 0.96, both of which represent a
local maxima. Meanwhile, the power spectra of the second to
fifth harmonic of electrostatic Langmuir waves increase to their
maximum and then decrease to a magnitude of 10−7 at
k∥ · de= 12. As the harmonic number increases, the magnitude
of power spectrum of each harmonic electrostatic Langmuir
wave decreases significantly, roughly by two orders of
magnitude. Similar phenomena are found in the transverse
emission at the frequency of multiple ωloc. Figure 6(c2) shows
the power spectra k( )  of harmonics of transverse waves at the
frequency of multiple local plasma frequencies. They increase
to their maximum and then decrease to a magnitude of 10−11 at
k∥ · de= 12. For fundamental waves, a hump in the power
distribution curve corresponds to a wave interaction with the L
mode at k∥ · de≈ 0.48 (see the red curve in Figure 6(c2)). In
general, the humps represent an enhancement of the spectral
power at the intersection of wave modes indicating a wave–
wave interaction process (see more details at the end of
Section 3.4). While for the higher harmonic transverse waves,
humps form at k∥ · de≈ 1.67, 2.67, 3.68, 4.69, respectively.
They are related to a wave interaction with the R mode. This
implies the wave interactions with L and R modes have a
significant influence on the power spectra of harmonics of
transverse waves.
Figure 7 shows the PSD of Ex for electrostatic Langmuir

waves and of Ey for the fundamental and up to the fifth
harmonic of transverse waves in the k∥–k⊥ plane. The PSD of
the electrostatic Langmuir waves and these transverse harmo-
nics are anisotropic, and their radiation intensities are
significantly angle dependent. An analytical analysis of the
radiation intensity pattern due to the most probable wave–wave
interactions for multiple-harmonic transverse emission is
discussed in the Appendix, in which we solved those equations
for the radiation intensity in dependence on the angle. The
dashed oblique lines in each panel of Figure 7 indicate the
symmetry axis of the angle range where the maximum radiation
intensity is theoretically expected to take place. For example,
the radiation intensity of the electrostatic Langmuir waves L
and backward, scattered Langmuir waves L¢ (propagating in
the negative k∥ direction) are mainly distributed in a range
about the axis of symmetry θ= 0° in the right half-plane k∥> 0
and θ= 180° in the left half-plane k∥< 0 with a broad angle
width spread (Figure 7(a)).
For the fundamental transverse mode, the maximum

radiation intensity takes place about the angle θ= 90° in the
top half-plane and θ= 270° in the bottom half-plane with broad
width spread in angle (see Figure 7(b)). For the harmonic
transverse emission H (see Figure 7(c)), the maximum wave
intensity mainly occurs at each quadrant in the k∥–k⊥ plane,
e.g., around angles θ= 45°, 135°, 225°, 315°, respectively. The
wave radiation intensity of the third transverse emission H3

(see Figure 7(d)) is observed in an angle range about angles
θ= 20°, 160°, 200°, 340° and with a broad spread width in
angle about Δθ∼ 15°. For the fourth transverse emission (see
Figure 7(e)), the wave radiation intensity mainly occurs in the
ranges θ= 10° ± 5°, 170° ± 5°, 190° ± 5°, 350° ± 5°, respec-
tively. While for the fifth transverse emission, its radiation
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intensity is weak in the transverse direction comparing to that
of lower harmonic transverse emission, and it mainly appears
in the angle range θ= 7° ± 3°, 173° ± 3°, 187° ± 3°,
353° ± 3°, respectively.

We found that the excitation of multiple-harmonic plasma
emission sensitively depends on the background-to-beam
plasma particle number density ratio r= nbg/nbm (or its inverse
nbm/nbg) and the field-aligned drift speed of the nonthermal
beam ud∥. We thus carried out numerical experiments to test the
dependence of the excitation of plasma emission on the
background-to-beam number density ratio r= 2–8 and the
parallel drift speed of the nonthermal beam ud∥= 0.1–0.5c.
Note that the parallel drift speed of the nonthermal electron
beams generated in the antiparallel magnetic reconnection
simulation presented above is within the range ud∥= [− 0.2c,
0.2c], while the background-to-beam plasma particle number
density ratio can be up to r= nbg/nbm� 2. The observations
show that the drift speed of the nonthermal electron beam is
possibly between [0.1c, 0.5c] (Wild et al. 1959; Alvarez &

Haddock 1973). Figure 8 shows an empirical parametric
regime of parameter pairs (r, ud∥) based on 20 additional
simulations similar to Run2. Due to limitations in computa-
tional resources, those runs are implemented at several discrete
parameter pairs (r, ud∥) (denoted by orange and green dots in
Figure 8), while other parameters are the same as those of
Run2. Based on the formation of harmonics of transverse
Langmuir waves, we separate the r–ud∥ plane into three
regimes: Regime I—where harmonics of transverse emission
can be generated, Regime III—where transverse emission is not
generated or at most the fundamental emission can be
generated, as well as a transition Regime II.
As mentioned above, two-stream EVDFs with |ud∥|� 0.2c

can be found in the diffusion region and separatrices. In these
regions, the background-to-beam particle density ratio is
usually nbg/nbm� 2. Figure 8 implies that only when the
linear relation ud∥/c� 0.1nbg/nbm− 0.05 (denoted by the blue
dashed line) is roughly satisfied, two-stream EVDFs generated
in magnetic reconnection can cause electron/ion streaming

Figure 7. PSD in k∥–k⊥ plane of (a) electrostatic Langmuir waves at ω = ωloc and (b)–(f) fundamental (ω = ωloc) to fifth harmonic (ω = 5ωloc) of transverse waves,
respectively. The radiation intensity is estimated by E k k B i x ylog , , ,i10 0

2∣ ( ) ∣ ( )w =^ at given ω = nωloc for Run2 in the time window t · ωpe = 455–831, with n = 1,
2,K,5 the harmonic number. Here k karctan ( )q = ^  is the wave propagation angle. These dashed oblique lines indicate the symmetry axis of the angle region where
the maximum radiation intensity of electrostatic Langmuir waves and transverse waves takes place (see Appendix).

15

The Astrophysical Journal, 933:219 (25pp), 2022 July 10 Yao et al.



instabilities causing ion-acoustic and Langmuir waves and, in
this way, generate at least the harmonic plasma emission.

An analytical estimation of the threshold (r, ud∥) for the
generation of plasma emission, i.e., harmonics of electrostatic/
transverse Langmuir waves, can in principle be constructed
based on the understanding of energy conversion in the mode
conversion process of plasma emission, which is beyond the
scope of this study.

3.3. Electron Cyclotron Waves

In the perpendicular direction k⊥, the EBWs and ECMI-
generated electromagnetic ECWs coexist.

The dispersion relations of Bernstein modes are solved from
the following equation (Bernstein 1958):
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where In(λ) is the modified Bessel function of the first kind
with argument k ve ce

2
the
2 2l = W^ , vthe is the electron thermal

speed of the background plasma. In the short-wavelength
regime, the frequency of the nth harmonic of Bernstein mode
asymptotically approaches to ω→ nΩce.

The dispersion relation of ECWs due to electron gyroreso-
nance conditions is ω= nΩce; this kind of gyroresonance-
related electromagnetic waves are named as electron gyrore-
sonance emission if their frequency exceeds the local plasma

frequency of the ambient plasma and thus can escape out
(Aschwanden 2005).
The electron beam with nonthermal EVDFs offering

perpendicular sources of free energy can drive ECMIs, and
generate electromagnetic ECWs at the relativistic electron
gyrofrequency and its harmonics (Melrose 1986), namely,

n
u k 20ce

d
d ( )w

g
=

W
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where the Lorentz factor u u c1d d d
2 2 2( )g = + + ^ with ud∥

and ud⊥ as the drifting speed of the electron beam. For Run3,
γd≈ 1.05.
Figure 9(a1)–(a2), (b1)–(b2) shows the PSD, i.e.,

E B i y zlog ,i10 0
2∣ ∣ ( )= , in the k⊥–ω plane for Run1 (without

beam) and Run3 in the time interval t · ωpe= 455–634,
respectively. EBWs are observed in PSDs for Run1 and
Run3. Multiple-harmonic gyroresonance-related ECWs are
observed in PSD of Ez for Run1, since the local plasma
frequency is ωpe≈ 2.2Ωce (denoted by white dashed lines in
panels of Figure 9); only the third and higher ECWs may
escape from the source region where they generated (see
Figure 9(a2)). For Run3, a perpendicular crescent-shaped
EVDF with a positive gradient in its 1D perpendicular EVDF,
i.e., ∂f (v⊥)/∂v⊥> 0, can offer the sources of free energy to
cause ECMIs and generate harmonics of electromagnetic
ECWs (see Figure 9(b1)–(b2)). Similarly, since the effective
local plasma frequency is about ωloc≈ 2.1Ωce for Run3, only

Figure 8. Parametric regime of ratio of background-to-beam plasma particle number density r = nbg/nbm and parallel drift speed of the electron beam ud∥ for the
generation of harmonic plasma emission. Regime I: harmonics of plasma emission can be generated; Regime III: transverse emission is not generated, or at most the
fundamental emission can be generated; Regime II: a transition region. Each point (denoted by green/orange dots) corresponds to the parameter pair (r, ud∥) for a
simulation. Orange dots indicate where harmonics of plasma emission are generated, while green dots imply where transverse emission is not generated, or at most the
fundamental emission can be generated. Blue dashed line: ud∥/c � 0.1nbg/nbm − 0.05 (see explanation in the text). Other parameters are same to those of Run2.
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the third and higher harmonic of ECMI-generated ECWs may
escape from the source region.

In order to quantitatively estimate the PSD of harmonics of
ECWs, Equation (18) is applied to calculate the power spectra
for each harmonic of the gyroresonance related for Run1 and
ECMI-generated ECWs for Run3 along their dispersion
relation curves separately. Figure 9(c1) shows the integrated
power spectra of each harmonic of the ECMI-generated ECWs
for Run3, while ECWs are absent in PSD of Ey for Run1. For
Run3, the magnitude of power spectra of ECWs is about
10−7

–10−2, and the power spectra of the second to fourth
harmonic ECWs are higher than that of the fundamental ECWs
due to a wave coupling between EBWs and ECWs. In the long-
wavelength regime, the interaction between Z mode with the
harmonic ECWs and X mode with the third harmonic ECWs
enhances the corresponding power spectra of ECWs. The
power spectra of the fifth ECWs are comparable to that of the
fundamental ECWs. If its power spectra are strong enough, the
third and higher harmonic ECWs may escape the source region
where they are generated.

Figure 9(c2) shows the power spectra of ECWs derived from
PSD of Ez. Power spectra of harmonics of the gyroresonance-
related ECWs for Run1 are generally by an order of 10−4 less
than those of ECMI-generated ECWs for Run3. In particular, in
the long-wavelength regime, the power spectra of the second
and higher harmonic are higher than those of the fundamental
ECWs due to the wave–wave interaction between Z and X
modes with these ECWs for Run3. While in the short-
wavelength regime, the power spectra of the harmonic and
higher harmonics of ECWs are slightly lower but generally
comparable to those of the fundamental ECWs for Run3.
Figure 10 show PSDs of Ey at ω= 3, 4, 5, 6Ωce/γd,

respectively, in k∥–k⊥ plane within time duration t · ωpe=
455–831 for Run3. The radiation intensity of the third and
fourth harmonic ECWs are nearly isotropic, while that of the
fourth harmonic ECWs is slightly more intense along the
perpendicular direction at k∥= 0 (see Figure 10(b)). For the
fifth harmonic ECWs, its radiation intensity is slightly stronger
along the parallel direction about k⊥= 0 at k∥ · de=± 2 (see
Figure 10(c)), but the radiation on the top half and bottom half
of the plane are still significant. The radiation intensity of the

Figure 9. Power spectral density (PSD) for Run1 (a1)–(a2) and Run3 (b1)–(b2) in the time interval t · ωpe = 455–634. PSD estimated by E B i y zlog ,i10 0
2∣ ∣ ( )= are

displayed in the k⊥–ω plane separately. Dispersion relation curves of X (red dashed curve), Z (green dashed curve), Bernstein modes (magenta dashed curves), and
ECWs at frequency ω = nΩce/γd (black dashed curves) are overlaid. Note the equivalent Lorentz factor for Run1 (without beam) is γd = 1. The white dashed line
corresponds to local plasma frequency ω = ωloc. Integrated power spectra k( )^ corresponding to the harmonics of ECWs ω = nΩce/γd are calculated in (c1) Ey and
(c2) Ez for Run1 (dashed curves) and Run3 (solid curves) separately. The power spectrum  is normalized by initial magnetic field power density.
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sixth harmonic ECW is weaker (see Figure 10(d)) than that of
the lower harmonics of ECWs.

3.4. Transverse Radio Waves

Figure 6(b1)–(b2) shows the dispersion relation of transverse
waves due to the electron/ion streaming of Run2. Similarly,
Figure 9 shows the dispersion relation of transverse waves due
to the ECMIs of Run3. However, not all those waves can
escape the plasma and be eventually remotely detected as radio
waves. Only a small region of those diagrams represents the
radio emission.

Figure 11 shows the dispersion diagrams of transverse
(electromagnetic) waves but constrained to two conditions: (1)
waves’ frequencies higher than the plasma frequency, i.e.,
ω> ωpe, (2) superluminal waves, namely, whose phase speeds
are larger than the speed of light, i.e., ω/k> c. Those
conditions are commonly known as “escaping waves” in the
radio emission literature (Melrose 1986). Figure 11 shows the
resulting dispersion relation of escaping electromagnetic waves
of our simulations, which mostly follow the dispersion relation
of the R-X mode with the presence of some harmonics of the
plasma frequency for Run 2.

Another common diagnostic for electromagnetic emission in
the radio wave range from the Sun is spectrograms (frequency–
time diagrams), in particular, for SRBs. So in the following, we
present this diagnostics from our simulations. The caveat of our
simulated spectrogram is, of course, that it is only due to the
radiation emitted at the source region of radio bursts. Observed
spectrograms of radio bursts follow the propagation of electron
beams for very long distances compared to our simulations,
actually comparable to the distance between the Sun and the
Earth.
Figure 12 shows the spectrogram of transverse waves

derived from Ey(t, x) for Run2 and from Ez(t, y) for Run3 in
the t–ω domain. Note that for Run3 similar results are found in
Ey(t, x); here we just take results derived from Ez(t, y) for
example. The PSDs are calculated in the time window
t · ωpe= 90–800 and with the window size ΔT · ωpe= 179.
Figure 12(a) shows significant features in the spectrogram of

multiple-harmonic plasma emission due to electron/ion
streaming instabilities. They are summarized as follows:

1. Harmonics of transverse waves, e.g., up to sixth
harmonic, are generated, even with (PSD of) the seventh
and eighth harmonic in a relatively weak level.

Figure 10. Power spectral density in the k∥–k⊥ plane of harmonics of ECWs at ω = 3, 4, 5, 6Ωce/γd, respectively. The PSD is estimated by E k k Blog , ,y10 0
2∣ ( ) ∣w ^ at

given ω for Run3 in the time interval t · ωpe = 455–831. When ω � 4Ωce/γd, the L-O mode approaches and merges with the R-X mode (denoted by the red circle at
each panel).
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2. All harmonic components of the transverse waves can be
generated in the same sources region at short electron
timescale t · ωpe� 500.

3. The fundamental and harmonic transverse waves are
generated earlier than the third and higher harmonics of
plasma waves, e.g., the fundamental and harmonic waves
are produced at t · ωpe= 90, while the third to sixth
harmonic waves occur after t · ωpe= 500.

Note that Figure 12, in combination with our previous
discussions, also provides evidence for the role of ion-acoustic
waves in the generation of electromagnetic transverse emission.
Indeed, this figure shows that higher harmonic emission as well
as stronger fundamental and first harmonic emission only occur
after t · ωpe≈ 400–500. This agrees with the exponential
growth of transverse electromagnetic wave energy (seen in
Figure 3(b)), as well as with the growth of longitudinal
electrostatic wave energy (see in Figure 3(a)) at this same time
period. Note that longitudinal electrostatic wave energy
includes mainly (forward and backward) propagating Langmuir
waves as well as ion-acoustic waves. The growth of the latter in
form of ion density fluctuations can be clearly seen also at the
same time (see in Figure 5(a)). All those findings are also in

agreement with our linear theory calculations (based on the
instantaneous distribution functions) that predict the unstable
exponentially growing waves in the ion-acoustic branch only
after this time period (see Figure 4). In summary, those results
indicate that there is a correlation between the ion-acoustic
waves and the generation of electromagnetic waves by the
plasma emission mechanism. Note that this is not necessarily a
causal relation. It just provides evidence in favor of this
process.
Additional evidence for the relation between ion-acoustic

waves S and generation of electromagnetic emission is the
wave–wave matching (beating) conditions, which are a
manifestation of the conservation of momentum (for the
wavenumber) and energy (for the frequency). Here we focused
on one possible pathway of wave–wave interaction involving
ion-acoustic waves S and electrostatic Langmuir waves L. First
we provide the simulation evidence for the following standard
interaction:

L S F 21( )- 

where F represents the fundamental electromagnetic emission
at frequency ω= ωpe. This can be interpreted as a decay
process of L waves in the form L→ S+ F (discussed in the

Figure 11. Power spectral density for the escaping electromagnetic transverse waves for Run2 (left) and Run3 (right). The PSD are derived form Ey (top) and Ez

(bottom) components of the electric field, respectively. Other parameters and labels are same to those shown in Figures 6 and 9.
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introduction), but somehow different because the driver is ion-
acoustic waves. So it is not exactly the same process reported
before in the literature (see, e.g., Thurgood & Tsiklauri 2015).

The decay process in Equation (21) implies the following
beat conditions for frequency and wavenumber:

k k k 22L S F ( )- =

. 23L S F ( )w w w- =

In general Equation (22) involves all components of the
wavenumber vector (see Figure 7 for the angular pattern of
wave emission), but for the sake of simplicity, we will limit
ourselves to just the parallel direction (i.e., x direction).

For ion-acoustic waves S, the wavenumber kS can be
obtained from Figure 5(b). The region with significant (much
higher than the surrounding thermal noise) spectral power
along the dispersion relation curve of ion-acoustic waves is
roughly confined to k∥ · deä [0.4, 4] after t · ωpe≈ 400. An
analysis of the integrated 1D spectra k∥ as a function of time
(not shown here) shows that the spectral power is of course not
constant in time: it broadens from the lower to larger
wavenumbers as the time evolves. There is a broad spectral

peak that also shifts in time, but it is roughly located between
k∥ · de ä [0.4, 1.5]. This roughly agrees with the most unstable
wavenumbers at the beginning of the exponentially growing
phase of the instability (see Figure 4(b2)). Therefore, the
wavenumber of ion-acoustic waves is kS · de ä [0.4, 1.5], and
the corresponding frequency can be similarly obtained from
Figure 5(b) or be quantitatively estimated by Equation (17).
For the Langmuir waves L, the wavenumber kL can be

obtained from Figure 6(b1) and(c1). The red line in
Figure 6(c1) shows that most of the power is concentrated
between k∥ · de= 0 and k∥ · de= 0.75 (both of which represent
a local maxima), although strong power extends toward
significant higher wavenumbers (up to approximately
k∥ · de= 3). Note that the spectral power is directionally
asymmetric: Langmuir waves with negative k are a bit stronger
and extend to larger negative k than Langmuir waves with
positive k. The corresponding frequency ωL can be obtained
from Figure 6(b1), or quantitatively estimated by the standard
Bohm–Gross dispersion relation mentioned above.
For the fundamental emission, kF can be obtained from

Figure 6(b2) and (c2). There is a clear spectral power peak at

Figure 12. Spectrogram of harmonics of (a) transverse waves at frequency of ω = nωloc for Run2 and (b) ECWs at frequency of ω = nΩce/γd for Run3. PSD estimated
by E t B i y zlog , ,i10 0

2∣ ( ) ∣ ( )w = , respectively, is displayed in the t–ω plane, and the time window size is ΔT · ωpe = 179. The black dashed lines indicate frequency
locations by ω = nωloc and ω = nΩce/γd, separately. The white dashed line corresponds to ω = ωloc.
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the intersection of ω= ωpe with the electromagnetic mode
(green dashed curve in Figure 6(b2)), located at k∥ · de= 0.48.
However, there is still significant power in the wavenumber
range k∥ · de ä [0, 1] that comes from the projection to k⊥= 0
due to spectral power emitted at oblique angles (see
Figure 7(b)). The spectral power outside the electromagnetic
mode but around ω= ωpe, which is not described by linear
theory, is a manifestation of its nonlinear nature.

Note the wavenumber and frequency resolution for the
spectral power of ion density fluctuations (shown in
Figure 5(b)) is k d0.044 e

1D = - and Δω= 0.0044ωloc (with
4096 samplings in time) separately, while for the PSD of
electric fields (shown in Figure 6) k d0.044 e

1D = - and
Δω= 0.035ωloc (with 512 samplings in time) separately.

This way, one possible interaction leading to the funda-
mental emission as per Equations (22) and Equations (23) is as
follows:

k d k d
k d

0.96 0.04 1.45 0.04
0.48 0.04 24

L e S e

F e

( ) ( )
( ) ( )
=  - = 

 = - 

1.02 0.035 0.022 0.004
0.98 0.035 .

25

L S

F

loc loc

loc

( ) ( )
( )

( )

w w w w
w w

=  - = 
 = 

Note that this leads to a spectral peak in the electromagnetic
wave dispersion relation curve with antiparallel propagation
(negative k). The ambiguity in this equation is mainly
contained in kS (i.e., one of many possible values), since
the spectral power in ion-acoustic waves is broadly
distributed (while the Langmuir and fundamental emission
peaks are well defined). Frequencies for each wave
candidate are ωL= (1.02± 0.035)ωloc for Langmuir waves,
ωS= (0.022± 0.004)ωloc for ion-acoustic waves, and ωF=
(0.98± 0.035)ωloc for fundamental emission, respectively (see
Equation (25)). Note the errors due to the spectral resolution are
relatively large, which could explain the slight difference
between the calculated ωF and ωloc.

The complementary spectral peak (in the dispersion relation
curve of fundamental emission, ω= ωloc) with parallel
propagation (i.e., positive k∥) can be obtained from counter-
propagating Langmuir and ion-acoustic waves (often referred
in the literature as a coalescence process L S F¢ +  ), which
have spectral peak values with similar wavenumber magnitudes
but negative sign as per Figures 5(b) and 6(b1), namely

k d k d
k d

0.96 0.04 1.45 0.04
0.48 0.04 . 26

L e S e

F e

( ) ( )
( ) ( )
= -  - = - 

 = 

These somehow symmetric spectral peaks of fundamental
emission at kFde=±0.48, namely, positive and negative k∥
estimated by Equations (26) and (24), resemble the results
obtained by Ganse et al. (2012). They are, however, different
than the strongly peaked with only positive k fundamental
emission observed in the simulations by Thurgood & Tsiklauri
(2015). One reason for those discrepancies may lie on the very
different parameter set and distribution functions used for these
simulations.

The spectral power at the fundamental emission near
kFde= 0 (see Figure 6(2) and (c2)), and in general, in the
region in between the peaks at the electromagnetic mode, could
also be generated as a consequence of a wave–wave interaction

between Langmuir and ion-acoustic waves. For example,

k d k d
k d

0.96 0.04 0.96 0.04
0 0.04 27

L e S e

F e

( ) ( )
( ) ( )
=  - = 

 = 

1.02 0.035 0.013 0.004
1.05 0.035 .

28

L S

F

loc loc

loc

( ) ( )
( )

( )

w w w w
w w

=  - = 
 = 

Again, the mismatch between ωF= (1.05± 0.035)ωloc and ωloc

could be explained by the finite spectral resolution. In general, the
fundamental emission in the wavenumber range kFdeä [−0.48,
0.48] could originate primarily as a result of similar interactions
with ion-acoustic waves in corresponding range kSdeä [0.4, 1.5]
within which S waves are broadband with higher power.
Langmuir waves could have been also chosen at wavelengths
different from kLde=±0.48, since they are broadband all the
way up to kLde= 0, leading to similar possible interactions.
Frequencies for each wave candidate are ωL= (1.02± 0.035)ωloc

for Langmuir waves, ωS= (0.013± 0.004)ωloc for ion-acoustic
waves, and ωF= (1.05± 0.035)ωloc for fundamental emission,
respectively (see Equation (28)).
Counter-propagating Langmuir waves can be generated by

means of the process L S L+  ¢. For example,

k d k d
k d

0 0.04 0.96 0.04
0.96 0.04 29

L e S e

L e

( ) ( )
( ) ( )
=  + = - 

 = - ¢

1.02 0.035 0.013 0.004
1.033 0.035 .

30

L S

L

loc loc

loc

( ) ( )
( )

( )

w w w w
w w

=  + = 
 = ¢

It is also clear that a higher (and broadband) spectral power in
the S waves implies the generation of counter-propagating
Langmuir waves L¢. Equation (30) shows the frequencies for
each wave candidate are ωL= (1.02± 0.035)ωloc for Langmuir
waves, ωS= (0.013± 0.004)ωloc for ion-acoustic waves, and

1.033 0.035L loc( )w w= ¢ for back-scattered Langmuir waves,
respectively.
Another important remark is that this wave–wave interaction

may in principle always occur in a plasma where those L and S
waves are excited, even without a beam, like in our Run1.
Those modes are just linear plasma waves, but with very low
amplitude and, in the case of ion-acoustic waves, highly
damped. Therefore, any kind of fundamental emission is
negligible in this case. This absence of emission occurs also in
the initial stage of our simulation (tωpe< 400), since ion-
acoustic waves are damped and only grow later (see Figure 5).
The wave–wave interactions efficiently occur after this period
(tωpe> 400), as evidenced by the increased power at the
fundamental mode in the spectrogram of Figure 12(a).
The enhanced fundamental electromagnetic emission mode

plus forward- and backward-propagating Langmuir waves after
tωpe> 400 are the seeds for the harmonic (and higher
harmonic) electromagnetic emission that appears after this
time (see Figure 12(a)), as a consequence of the interaction
L L H+ ¢  . Since Langmuir waves are weak before this
time, H emission is barely observed. Note that finding a
combination of waves that corresponds to the spectral peaks of
H near the electromagnetic mode is not straightforward,
although it could be attributed to the broadband nature of
Langmuir waves.
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Similar features for multiple-harmonic ECWs due to ECMIs
are displayed in Figure 12(b). However, all harmonics of
ECWs are simultaneously formed in the source region, i.e.,
t · ωpe� 90. Higher harmonics of ECWs are generated earlier
than their counterparts of plasma emission caused by two-
stream EVDFs. For example, the third to higher harmonic of
ECWs can be already generated within t · ωpe= 0–500, while
their plasma emission counterparts have not yet formed.
Different from the ECWs caused by ECMIs, Figure 12(a)
shows that the fourth to sixth harmonics of transverse plasma
waves (caused by electron/ion streaming instabilities) reach
their maximum in t · ωpe= 520–700 and are damped signifi-
cantly after t · ωpe= 700. Because the multiple-harmonic
plasma emission is attributed to a series of multistage wave–
wave interaction processes as discussed before, the energy
density of higher harmonic plasma emission comes from the
lower harmonics. As a result, the energy density in higher
harmonic plasma emission is lower than that in the lower
harmonics.

4. Summary and Conclusions

By virtue of fully kinetic PIC code simulations, we
investigated the generation of unstably growing plasma
oscillations and the excitation of radio waves due to nonthermal
EVDFs generated by 3D kinetic magnetic reconnection. The
reconnection-generated nonthermal EVDFs have previously
been found in numerical experiments of PIC simulations and
by in situ observations.

A fully self-consistent kinetic simulation of radio emissions
by magnetic reconnection cannot be achieved due to the still
insufficiently low temporal and spatial resolution of 3D kinetic
magnetic reconnection simulations. Instead, we first carried out
3D PIC code simulations of kinetic reconnection with a
relatively sparse output in time, which is still computationally
expensive, to generate the characteristic nonthermal EVDFs
(Yao et al. 2022). Using them, we have carried out 2.5D PIC
code simulations of beam–plasma interactions, allowing a
sufficiently high frequency and wavenumber resolution in the
Fourier domain to derive the properties of the resulting radio
waves. As already explained in Yao et al. (2022), the magnetic
reconnection simulation does not show significant signatures of
streaming instabilities, mainly due to the fact that the possible
streaming instabilities are relatively weak in comparison with
the other macroscopic instabilities and plasma flows in
magnetic reconnection. Nevertheless, the numerical simula-
tions of a beam–plasma system with higher spectral resolution
allow for an analysis of the possible radio emission caused by
streaming instabilities.

In this way, we bridged the gap between the nonthermal
EVDFs generated in magnetic reconnection and the formation
of radio waves caused by the characteristic nonthermal EVDFs
offering sources of free energy. Therefore, remote observation
of the radio waves, e.g., during solar flares, can be used as a
tool for remote diagnostics of magnetic reconnection in
astrophysical plasmas.

We first investigated the consequences of multiple-harmonic
plasma waves caused by two-stream EVDFs formed along the
separatrix and in the diffusion region of 3D kinetic magnetic
reconnection; then we investigated the consequences of
multiple-harmonic ECWs caused by perpendicular crescent-
shaped EVDFs generated in the diffusion region of 3D kinetic
magnetic reconnection (Yao et al. 2022).

The two-stream EVDFs (Run2) can offer sources of free
energy to cause electron/ion streaming instabilities, which can
generate ion-acoustic waves. The relative electron/ion stream-
ing can also generate Langmuir waves. Those EVDFs are
found in the separatrices and diffusion region of kinetic
reconnection. Multiple-harmonic transverse plasma waves at
the frequency of multiples of the local electron plasma, i.e.,
ω= nωloc, due to nonlinear wave–wave interaction processes
are generated. The excitation of multiple-harmonic plasma
waves is sensitively dependent on the field-aligned drift speed
of the electron beam and on the beam-to-background electron
number density ratio nbm/nbg. For the small field-aligned
electron drift speed, the beam-to-background electron number
density ratio nbm/nbg must be large enough in order to excite
the harmonic(s) of plasma emission. Thus, the observations of
harmonic emission would allow us to constraint the values of
both the field-aligned drift speed and the beam-to-background
electron number density ratio of the electron beam.
We then investigated the perpendicular crescent-shaped

EVDFs (Run3) generated near and in the diffusion of
reconnection. Such kinds of EVDFs are able to offer sources
of free energy to cause electron cyclotron maser instabilities,
which can generate multiple-harmonic electromagnetic ECWs
due to a wave–particle interaction. After being amplified by
wave–particle interactions, the latter can be isotropically
emitted in all directions. Remote observations of electro-
magnetic ECWs can be used for the remote diagnostics of the
magnetic field as well as of the ratio of the electron cyclotron
frequency to the electron plasma frequency in reconnection
regions.
In both cases, the EVDFs of fast electron beams contain a

two-stream EVDF in the field-aligned direction. This results in
the formation of multiple-harmonic plasma emission.
Radiation intensities of harmonics of plasma emission are

anisotropically distributed and markedly angular-dependent
(Takakura & Yousef 1974; Zlotnik 1978; Reiner et al. 1992;
Rhee et al. 2009). The higher the harmonic number of the
plasma emissions, the closer the distribution of radiation
intensity approaches the field-aligned direction. Our findings
have a significant practical application on remote diagnostics of
reconnection by observations of harmonics of transverse
emission, namely, due to the fact that the radiation intensity
of harmonic of plasma emission heavily depends on the
observation angle and the relative intensity variation in
different locations.
Based on the angular pattern of radiation intensity of

multiple-harmonic plasma emission, our results can also serve
as a theoretical testing ground for verifying different processes
of the formation of each harmonic plasma emission (see
Appendix). Harmonics of electrostatic Langmuir waves are
excited through a coalescence process L+ Ln−1→ Ln (Yi et al.
2007; Rhee et al. 2009; Yao et al. 2021). Via a process
mediated by ion-acoustic waves S, the harmonics of transverse
emission at a frequency of multiples of the plasma frequency
can be generated by nonlinear wave–wave interaction pro-
cesses as follows:

1. Fundamental transverse emissions F can be generated by
a decay process of electrostatic Langmuir waves L and
ion-acoustic waves S, i.e., L→ S+ F (Robinson &
Cairns 1994; Melrose 2008; Reid & Ratcliffe 2014).

2. Harmonic transverse emissions H can be generated by a
coalescence process of electrostatic Langmuir waves L and
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backward, scattered Langmuir waves L¢ via L L H+ ¢ 
(Willes et al. 1996; Yoon 2006; Rhee et al. 2009).

3. Third and higher harmonics of transverse emission
Hn (n= 3, 4, 5...) can be generated by a coalescence process
of electrostatic Langmuir waves L and transverse emission
Hn−1, i.e., L+Hn−1→Hn (Zlotnik 1978; Cairns 1988; Rhee
et al. 2009).

Based on the above discussion, our findings can be used for
the remote radio diagnostics of magnetic reconnection by
which nonthermal EVDFs are generated and subsequently
cause radio waves, in particular in the course of solar flares.
Note that radio waves and emission generated directly in the
site where magnetic reconnection takes place were observed,
for example, observations of fundamental and harmonic plasma
emission near the null point of reconnection in solar flares
(Chen et al. 2018).

We did not consider propagation effects of the electron beam
in the ambient plasma, like in the solar corona or in the solar
wind, on the properties of radio waves. They should be taken
into account for the sake of a correct interpretation of the
observed radio signals. We just investigated the initial stage of
the emission process.

Another small caveat is that we are only considering the
EVDFs from magnetic reconnection as initial conditions for the
beam–plasma simulations, in addition to similar parameters.
We do not use other plasma conditions resulting from the
magnetic reconnection evolution, e.g., density gradients,
partially for simplicity but also because those effects have
already been investigated (Yao et al. 2021). In this same sense,
in our beam–plasma simulations, we do not initially impose
any of the additional waves caused by the reconnection
process. As it is well known, not only gradients in density or
bulk flow generated by reconnection can cause waves but also
Hall currents, which lead to streaming instabilities, temper-
ature-anisotropy-driven instabilities, etc. Those plasma micro-
instabilities can finally generate Langmuir waves, whistler
waves, kinetic Alfvén waves, etc. (Fujimoto et al. 2011;
Treumann & Baumjohann 2013; Khotyaintsev et al. 2019).
Some of those waves are caused by the EVDFs, but they can
also perturb and modify the EVDFs themselves, in particular
the high-frequency waves with phase speed near their tails via
resonant interactions. Both the waves and the distribution
function must obey the Vlasov–Maxwell system of equations,
which is coupled, and therefore there is always an interplay
between electromagnetic fields and distribution functions. One
of the most important effects of waves on EVDFs is their
apparent perpendicular heating and consequent anisotropic
heating, which is different from “real” heating in that it is
reversible (Verscharen & Marsch 2011). Since waves and
EVDFs are intrinsically linked, it is hard to disentangle
the individual effects of the waves caused by the EVDFs from
the waves that perturb and contribute to the formation of the
EVDFs. So we decide in the present work to analyze the
EVDFs and waves caused by them, not the waves that could
actually lead to the formation of EVDFs in reconnection.
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Appendix
Radiation Pattern of Multiple-harmonic Plasma Emission

Rhee et al. (2009) proposed that for each harmonic of
transverse emission the associated wave–wave interaction
processes can be verified by the angular pattern of its radiation
intensity. Based on previous studies of the radiation intensity
pattern (e.g., see Yoon 2006; Rhee et al. 2009), we extend the
derivation to cover the angular pattern of radiation intensity of
multiple harmonics of plasma emission.
For the fundamental transverse emission F, it is generated by

a decay process of electrostatic Langmuir waves L and ion-
acoustic waves S, i.e., L→ S+ F. It is intuitively understood
that the angular pattern of fundamental emission should be 90°
different from that of the electrostatic Langmuir waves L.
A theoretical analysis of the amplification of F emission due

to L→ S+ F can be estimated by the transverse wave kinetic
equation (Yoon 2005, 2006; Yoon et al. 2005) as follows:
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where IL(k) and IF(k) are the spectral intensities of electrostatic
Langmuir waves L and fundamental emission F separately.
Assume isotropic electrostatic Langmuir wave intensities, i.e.,

kI constL ( ) º ; then the radiation angular pattern for the
fundamental emission F is determined by the transition
probability term, i.e., k k sin2 2( ) q´ ¢ ~ . Here θ is the wave
phase angle in the k∥–k⊥ plane. As a result, the radiation
intensity of F emission mainly occurs in angle range about 90°
in the top half-plane and 270° in the bottom half-plane, as
shown in Figure 7(b). Note that the radiation pattern of the
electrostatic Langmuir waves is, however, strongly angle
dependent, i.e., at angles 0° and 180° (see Figure 7(a)).
Nevertheless, the isotropic assumption is still valid because
radiation of the electrostatic Langmuir waves is very strong
elsewhere (Rhee et al. 2009).
For the harmonic emission H, as we mentioned above, it is

generated by a coalescence process of beam-generated
Langmuir waves L and backward, scattered Langmuir waves
L¢, i.e., L L H+ ¢  (Willes et al. 1996; Yoon 2006). The
amplification of H radiation associated with this coalescence
process can be evaluated by the transverse wave kinetic
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equation (Yoon 2005, 2006; Yoon et al. 2005)

k
k

k k k k
k k

k k k k k k k

I

t

e

m
d

k k

k

I I

2

A2

H

e pe

L L H L L

2

2 2

2

2 2

2 2

2

( ) ( ) ∣ · ∣
∣ ∣

· ( ) ( ) ( ( ) ( ) ( )) ( )

ò
p
w

d w w w

¶
¶

µ ¢
´ ¢

¢
- ¢
- ¢

¢ - ¢ - ¢ - - ¢

where IH(k) is the spectral intensities of harmonic emission H. For
isotropic electrostatic Langmuir wave intensity, the transition
probability term, i.e., k k k kk 2 sin cos2 2 2 2 2( ) ∣ · ∣ q q´ ¢ - ¢ ~ ,
determines the angular pattern for radiation intensity of the
harmonic emission H. The harmonic emission H shows the
quadrupole pattern of radiation intensity, which mainly occurs in
each quadrant in the k∥–k⊥ plane, i.e., in angle range about
θ= 45°, 135°, 225°, and 315°; see Figure 7(c).

For the third and higher harmonics of transverse emission,
Rhee et al. (2009) pointed out that they are generated by a
coalescence process of electrostatic Langmuir waves L and
another transverse wave mode T. A candidate model that
satisfies this requirement is L+Hn−1→Hn, which means the
nth harmonic emission Hn is generated by a coalescence
process of electrostatic Langmuir waves L and transverse
emission Hn−1 (Zlotnik 1978; Cairns 1988).

We represent the wavevector of the nth transverse emission
Hn involved in the coalescence process L+Hn−1→Hn as
kn→ (kn, θn) and electrostatic Langmuir waves as kL→ (kL,
θL). Here the wave propagation angle θn is defined as the angle
between the direction of the local magnetic field and that of
wavevector kn.

They satisfy the beat condition kL+ kn−1= kn. Thus the
wavevector for L is kL= kn− kn−1, and the magnitude of
vector kn− kn−1 lies within the range

k kk k k k A3n n n n n n1 1 1∣ ∣ ( )- - +- - - 

where k n c1n pe
2 · w= - is the magnitude of vector kn; it

can be solved from the dispersion relation of the transverse
wave mode for transverse emission Hn (Melrose 1986).

The cosine of the angle of vector kL= kn− kn−1 therefore
reads
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Take Equation (A3) into account to yield the following
inequality:
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As mentioned above, the maximum radio intensity of the
electrostatic Langmuir waves occurs about θL= 0° and 180°
and of the harmonic emission H takes place about θ2= 45°,
135°, 225°, and 315° respectively; then radiation angle θ3, at
which the third emission H3 reaches its maximum radiation
intensity, can be solved based on Equation (A5). For example,
for θL= 0° and θ2= 45°, θ3 lies within range 0°–35°.
Figure 7(d) shows that for H3 the power spectrum within
angle range 0°–35° is more intense than that within the angle

range 35°–90° in the first quadrant in the k∥–k⊥ plane; for
simplicity without loss of generality, we choose θ3= 20°. In
the same vein, the radiation angles for H3 and H4 solved from
Equation (A5) are summarized in Table 3.
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