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Abstract

A spatially two-dimensional sixth order PDE describing the evolu-
tion of a growing crystalline surface h(x, y, t) that undergoes faceting is
considered with periodic boundary conditions, such as its reduced one-
dimensional version. These equation are expressed in terms of the slopes
u1 = hx and u2 = hy to establish the existence of global, connected
attractors for both of the equations. Since unique solutions are guar-
anteed for initial conditions in Ḣ2

per, we consider the solution operator

S(t) : Ḣ2
per → Ḣ2

per, to gain the results. We prove the necessary continu-
ity, dissipation and compactness properties.

1 Introduction

We study the long time dynamics of the following system arising in modeling of
the self assembly of nanostructures,

ht = δ
2 |∇h|

2 + ∆(∆2h−∆divDFW (∇h)) in Ω2 × R+,
h(x, 0) = h0(x) for x ∈ Ω2.

(1)

Here, h : Ω2×R+ → R is the height of a growing crystalline surface undergoing
faceting during growth, δ > 0 is related to the deposition strength, W : Rd → R
is the anisotropy function derived from the surface energy anisotropy and Ω2 ⊂
Rd is the spatial domain with d = 1 or d = 2. Dependent on the dimension
we consider two specific cases for W given below, see (2), (3). We restrict
our attention to special geometries and work with Ω2 = (0, L)d, d = 1, 2 and
furthermore we assume periodic boundary conditions for h.

We show existence of global attractors for above system and we shall also ex-
plain, why this result seems best we can hope for. The PDE was introduced by
Savina et al., see [14]. It has been derived by invoking Mullins’ surface diffusion
formula [11], a normally impinging flux of adatoms to the surface and a strongly
anisotropic surface energy formula. The reduced evolution equation is obtained
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by carrying out a long-wave approximation. The choice of periodic boundary
conditions is realistic as the patterns of the nanostructures statistically repeat
throughout the domain, which is much larger than the length-scales of inter-
est. Numerical simulations imposing these kind of boundary conditions show
good agreement with experimentally observed behavior of crystalline materials
undergoing faceting and coarsening [14, 5]. We also notice that the analysis
on periodic domains is easy to transfer for the numerical analysis of simulation
schemes based on trigonometric interpolation. Such collocation methods are
applied frequently to such problems.

We consider the following anisotropy functions W . If d = 1, then we take

W (F ) =
1

4
(F 2 − 1)2 (2)

yielding a double well potential and in the case d = 2 we deal with

W (F ) ≡W (F1, F2) =
α

12
(F 4

1 + F 4
2 ) +

β

2
F 2

1F
2
2 −

1

2
(F 2

1 + F 2
2 ) +A, (3)

where α, β > 0 are anisotropy coefficients.
Formula (3) gives a quadruple well that is responsible for the faceting of

the growing surface in shape of pyramids with four preferred orientations and
hence preferred slopes. A constant A may be chosen such that W is always
nonnegative.

In two related works, [7, Theorem 1.1] and [8, Theorem 2.1], we proved the
existence of global in time weak solutions to (1) with periodic boundary data.
There was no size restrictions on the data.

In [7] and [8] we showed only exponential bounds on the growth of solutions
which is not particularly suitable for studying long time behavior. We will
find the remedy here and we will show existence of a global attractor of (1)
for d = 1, 2. The destabilizing term does not give us much hope to establish
convergence to an equilibrium state. However, if we had a Liapunov functional,
then we could hope to use methods based on  Lojasiewicz inequality to show
convergence of solutions to a steady state, see [12].

Our plan is to study first the one-dimensional problem, so that we can de-
velop ideas that are used later also in the more complex case. It turns out that
the trick applied in [14] and [8] works very nicely. Namely, after differentiating
(1) with respect to x we obtain a slope equation for the new unknown quantity
u = hx, see (4). One advantage is that we obtain a new conserved quantity,∫ L

0
u dx = 0. This will imply that the semigroup generated by ∆3 has an ex-

ponential decay. Another advantage is, the resulting equation is similar to the
convective Cahn-Hilliard equation, which has already been analyzed to some
extent. Equation (1) may be interpreted as a convective Cahn-Hilliard (CCH)
type equation of higher order, hence we call it the HCCH equation. Note that
it is a gradient system perturbed by a destabilizing Kardar-Parisi-Zhang type
term |∇h|2.

Here, we use ideas from the theory of infinite dimensional dynamical sys-
tems [13, 4] combined with the available results on convective Cahn-Hilliard
equation, e.g. [9, 3, 1]. Eden and Kalantarov noticed, see [1], that the structure
of the lower order convective Cahn-Hilliard equation permits to deduce bounds
implying existence of an absorbing set. The same method can be applied here.
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We first prove the existence of an absorbing set in the H1 topology, then we
extend the result to H2. Showing its compactness in H2 requires further im-
provement of the regularity of weak solutions. Once we achieve that we can
conclude existence of a global attractor, see [2, Theorem 1].

We notice that, if we take gradient of (1) with respect to the spatial variables
in the two dimensional case, then the resulting system, see (8), has the structure
which permits to carry the calculations we did for the one-dimensional problem.
Thus, we establish existence of the global attractor for the corresponding slope
systems, u = ∇h. Finally, we deduce from this existence of a global attractor
of the original equation (1), see Theorems 1, 2, 3.

We proceed as follows. In the next section we recall the notions of weak
solutions and the necessary facts from [7, 8], in addition we state the main
results. In Section 3 we prove the existence of absorbing balls in H1 for the
one-dimensional problem (4). This is done with the help of ideas taken from
[1]. We also show in this section the necessary auxiliary facts. In Section 4, we
study system, which is the result of gradient of (1), we call it the slope system.
Its advantage is we can use exactly the same method, as in one-dimension to
show existence of an absorbing ball in H1. Next section is devoted to the proof
of higher order regularity and compactness in H2 of the absorbing balls, we use
the parameter variation formula for this purpose. This is done both cases of the
space dimension.

Finally we discuss the results and future plans in Section 6.

2 Preliminaries and main statements

2.1 Properties of solutions and main statements

As we mentioned in the introduction, we treat cases d = 1 and d = 2 differently.
For the one-dimensional problem we switch to a new variable, the slope u = hx,
i.e. we differentiate (1) with respect to x. The resulting problem is

ut − δ
2 (u2)x − (uxx − f(u))xxxx = 0, in (x, t) ∈ (0, L)× R+,

u(x, 0) = u0(x) for x ∈ (0, L),
(4)

where
f(u) = W ′(u) = u3 − u.

In [8] we adopted a natural definition of a weak solution of the one-dimensional
problem (4). We say that a function

u∈L2(0, T ; Ḣ3
per(Ω))∩L4(0, T ; L̇4(Ω))∩C0([0, T ], L̇2(Ω)) with ut∈L2(0, T ;H−3(Ω))

is a weak solution to (4) provided that it fulfills (see [8]),∫
ΩT

utϕdxdt+ δ

∫
ΩT

g(u)ϕxdxdt+

∫
ΩT

uxxxϕxxxdxdt−
∫

ΩT

f ′(u)uxϕxxxdxdt = 0,

for all ϕ ∈ L2(0, T, Ḣ3
per(Ω)) . (5)

We showed the existence of such solutions in [8, Theorem 2.1] for initial condition
u0 ∈ Ḣ1

per. The symbol Ḣk
per denotes the Sobolev spaces of periodic functions

with zero mean.
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For the two-dimensional problem (1) and (3) we established a similar result
in [7, Theorem 1.1], i.e. we have shown the existence of a weak solution to (1)
with periodic boundary conditions, understood as a function h ∈ C([0, T ), H3

per)
with h(·, 0) = h0 and ht ∈ L∞((0, T ), H−3), such that h satisfies (1) in the
distributional sense. We assumed that h0 ∈ H2

per. Here, Ω2 is a two-dimensional
flat torus, that may be scaled to represent (0, L)2 for arbitrary L and periodic
boundary conditions.

We showed global in time existence and uniqueness (see [8, Theorem 4.2]
and [7, Theorem 1.1]) for more regular weak solution. Namely, for any T > 0
and d = 1 we used

u ∈ L2(0, T ; Ḣ4
per(Ω) ∩ L∞(0, T ;W 1,∞(Ω)), (6)

while for d = 2 we needed,

h ∈ L2(0, T ;H5
per(Ω)) ∩ L∞(0, T ;H2

per(Ω)), ht ∈ L2(0, T ;H−1
per(Ω)). (7)

This kind of smoothness is implied by better regularity of the initial data, i.e.
u0 ∈ Ḣ2

per and respectively h0 ∈ H3
per, (see [8, Theorem 3.3] and [7, Theorem

1.2]). The solutions depend continuously on the initial conditions.
Furthermore, analysis of the two-dimensional problem gets simplified after

we transform equation (1) to a system for the slopes, u = (u1, u2) = (hx, hy)
and we study

ut = δ
2∇|u|

2 + ∆3u−∇∆divDuW (u1, u2) in Ω2 × R+

u(x, 0) = u0(x) for x ∈ Ω2.
(8)

The derivation of this equation and specification of W will be carried out in
Section 5.

The following theorems are our main results proved in this paper. Here, we
denote by S(t)u0 the unique solution u(t) to (4) if d = 1, respectively (8) if
d = 2, with u0 ∈ (H2

per)
d. This way of writing exposes the family of opera-

tors S(t) : (Ḣ2
per)

d → (̇H2
per)

d. Their continuity follows from results in [7, 8].
The uniqueness theorems imply that the family {S(t)}t≥0 has the semigroup
property.

Theorem 1 (1D Attractor in Ḣ2
per(Ω)) Let us consider Ω = (0, L) with L >

0 arbitrary. The semigroup S(t) : Ḣ2
per(Ω) → Ḣ2

per(Ω), u0 7→ S(t)u0 = u(t)
generated by the HCCH equation (4) with periodic boundary conditions has a
global attractor.

Theorem 2 (2D Attractor in (Ḣ2
per(Ω

2))2) Let us consider Ω2 = (0, L)2 with

L > 0 arbitrary. The semigroup S(t) : (Ḣ2
per(Ω

2))2 → (Ḣ2
per(Ω

2))2, u0 7→
S(t)u0 = u(t) generated by equation (8) with periodic boundary conditions has
a global attractor.

Once we show these results we may address the question of behavior of the
solutions once they are transformed back to the actual shape h of the original
problem. We notice that one can easily recover a continuous function f from
its derivative and its mean. Thus, the above results imply.
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Figure 1: Simulation of the evolution of the one-dimensional HCCH equation
(4). Initial condition: small random perturbation of the zero state. (a) Time-
space plot of the evolution for δ = 8, brighter areas correspond to larger values;
chaotic evolution; (a’) shows the solution at one point of time; The time-space
plot in (b) and one of the solutions at a late time point in (b’) show regular
coarsening similar as in the Cahn-Hilliard equation, here for δ = 0.2.

Theorem 3 The semigroup generated by equation (1) has a global attractor
in H3

per for d = 1 and d = 2.

We note that we have numerical evidence of the existence of such an attractor
in the one-dimensional setting. Figure 1 shows similar pictures of the evolution
as in [8] for two values of δ. For its large value δ a strange attractor seems to
be existent, see the time-space plot in (a) and one particular solution in (a’).
For smaller values we numerically expect stationary solutions as in (b) and
(b)’, or traveling wave (time-periodic) solutions. Note that once the structures
form, the solutions stay in an Ḣ2

per ball as the theory predicts. One might
hope to be able to prove that at least for small initial data the L∞ norm of u
stays roughly below 1, independently of the value for δ. Our analytical result
however gives us information of different nature. We can take bigger initial
conditions and still the absorption is in the same ball. This property is indicated
in Figure 2 where another typical evolution of equation (4) is shown together
with the decrease of the norm of the discrete solution and the three phase
spaces (u, ux), (u, uxx) and (ux, uxx). However, these runs calculated with a
pseudospectral method discussed elsewhere [8], are particular examples with
special initial conditions, fixed domain length and deposition parameter. The
theory establishes a general result. We like to remark, that more simulation
results, also for the two-dimensional setting, can be found in [14].

2.2 Tools of dynamical systems

We will use the methods of the infinite dimensional dynamical systems, see the
books by Hale, [4], Temam, [16] or Robinson, [13]. However, we will use the
theorem guaranteeing existence of a global attractor as stated in [2]. From now
on we shall assume that S(t) : H → H is a semigroup, here H is a Hilbert space.
Following [2], we recall the necessary notions.

Let us suppose C1, C2 ⊂ H, by dist (C1, C2) we denote their Hausdorff semi-
distance,

dist (C1, C2) = sup
x∈C1

inf
y∈C2

d(x, y).
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Figure 2: Top: Initial condition u0(x) = 2 sin(x/2) and shape of u after evolution
of the HCCH equation to near stationary state on a 20π long domain. The figure
on the right indicates a decrease of the L2-norm of u. Bottom row: Phase spaces
(u, ux), (u, uxx), (ux, uxx) for the same initial condition. The lines indicate the
solutions at different times, all shrinking in these plains.

A non-empty set K ⊂ H is invariant, if

S(t)K = K, t ≥ 0,

it attracts B ⊂ H if
lim
t→∞

dist (S(t)B,K) = 0.

A set K ⊂ H is called an absorbing set if for any bounded B ⊂ H there is time
tK,B ≥ 0 such that

S(t)B ⊂ K for t ≥ tK,B .

Here, we note that any absorbing set attracts bounded sets.
For a bounded set B ⊂ H, we define its ω-limit set by formula

ω(B) =
⋂
s≥0

⋃
t≥s

S(t)B.

A global attractor for S(·) is a maximal compact invariant set.

Theorem 4 (see [2, Theorem 1]) Let us suppose that S(·) has a compact at-
tracting set K. Then there is a global attractor for S(·) and A = ω(K).

This result will imply our Theorems 1 and 2 once we show its assumptions
are fulfilled. For this purpose we need to show the following properties of the
solution operator S(t) : (Ḣ2

per)
d → (Ḣ2

per)
d, d = 1, 2.

• S is a C0-semigroup operator on Ḣ2
per. This is to be established for the

one-dimensional case. This property was proved in [7] for (1) in 2-D.
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• Existence of a compact attracting set K. This will be achieved in two
steps. First, we will show existence of an absorbing set in H1. Next, by
application of a different method, the existence of an absorbing set in H2

and its compactness will be proved.

Note that Ḣ2
per is the correct choice of space for the slope systems (4) and (8),

because we could not work with solution operators acting on lower order spaces
due to the lack of uniqueness.

We also we have to show that the Galerkin method applied to (4) yields a
strongly continuous semigroup S(t) : Ḣ2

per → Ḣ2
per.

2.3 The inverse Laplacian

We present an important tool that will be useful throughout the document.

Lemma 5 The operator (−∆)−1 : Ḣk
per(Ω) → Ḣk+2

per (Ω), where Ω = (0, L)d,
d = 1, 2 given by (9) is well defined and continuous.

Let us define the operator L : Ḣk
per(Ω) → Ḣk+2

per (Ω) as an multiplicator acting
on the Fourier series of u by the formula

(Lu)∧(ξ) =

{ (
L
2π

)2 û(ξ)
|ξ|2 ξ 6= 0,

0 ξ = 0,

where ξ ∈ Zd, d = 1, 2 and | · | is an Euclidean norm. We have

‖Lu‖2Hk+2
=

∑
ξ∈Zd,ξ 6=0

(
L

2π

)2 (
1 + |ξ|2

)k+2 |û(ξ)|2

|ξ|4

≤ C(L)
∑

ξ∈Zd,ξ 6=0

(
1 + |ξ|2

)k |û(ξ)|2 = C(L)‖u‖2Hk .

Also
∫

Ω
Lu = |Ω|(Lu)∧(0) = 0. Note that

(−∆u)∧(ξ) =

(
2π

L

)2

û(ξ)|ξ|2. (9)

Since for u ∈ Ḣk
per(Ω), we have û(0) = 0, we obtain

(L ◦ (−∆)u)∧(ξ) =

{ (
L
2π

)2 1
|ξ|2
(

2π
L

)2
û(ξ)|ξ|2 ξ 6= 0

0 ξ = 0

Thus, (L ◦ (−∆)u)∧(ξ) = û(ξ) and therefore L ◦ (−∆) = Id. 2

The above argument justifies the natural definition of (−∆)s : Ḣt
per → Ḣt+s

per

by the following formula,

((−∆)su)∧(ξ) := |ξ|sû(ξ).
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3 The one-dimensional problem

In the following subsections we prove, by using Gronwall estimates, that there
exists an absorbing ball in H1. Throughout the calculations, we denote by C
a constant that may change from estimate to estimate, but does not depend
on the initial condition. This quantity may rely on the domain length and the
deposition related parameter, L and δ, respectively. Numbers whose actual
value is needed for balances with other estimates are denoted by Cj , where j is
an integer index, and these numbers are fixed.

In the second part of this section we will show that the semigroup S(t) :
Ḣ2
per → Ḣ2

per is indeed strongly continuous. This will be done by a series of a
priori estimates of Galerkin approximations and passing to the limit.

3.1 Absorbing ball in H1

Consider the HCCH equation (4) with periodic boundary conditions on a domain
Ω = (0, L) and initial condition u(x, 0) = u0(x). We extend the analysis from
[8] by showing that the solutions are in fact absorbed into a ball whose radius
does not depend on the initial value’s norm. To prove this result we will need
to combine several estimates that we want to formulate as separate statements.
Subsequently, we write the L2-norm as ‖ · ‖ = ‖ · ‖L2(0,L) and the L2 scalar
product by (·, ·). Other norms are equipped with a corresponding subscript.

Lemma 6 Weak solutions to equation (4) with u0 ∈ Ḣ2
per fulfill

d

dt

[∫
Ω

W (u)dx+
1

2
‖ux‖2

]
+

1

2
‖(−∆)−1ut‖2 ≤ C1‖u‖4L4 (10)

Proof Application of the integral operator (−∆)−2 : L̇2 → Ḣ4
per to both sides

of equation (4) yields

(−∆)−2ut − δ(−∆)−2[g(u)x] + u3 − u− uxx = 0 , (11)

with g(u) = u2/2. The regularity guaranteed by (6) and equation (4) imply that
we may test (11) with ut. Next, integration by parts, rearranging and using the
Cauchy inequality with ε yield,

d

dt

[
1

4
‖u‖4L4 −

1

2
‖u‖2 +

1

2
‖ux‖2

]
+ ‖(−∆)−1ut‖2

≤ δ

2ε0
‖(−∆)−1[g(u)x]‖2 +

δε0
2
‖(−∆)−1ut‖2 .

Since ‖(−∆)−1[g(u)x]‖ ≤ C‖g(u)‖, with an L dependent constant, we get

d

dt

[
1

4
‖u‖4L4 −

1

2
‖u‖2 +

1

2
‖ux‖2

]
+ (1− δε0

2
)‖(−∆)−1ut‖2 ≤

δC

4ε0
‖u2‖2 . (12)

Choosing ε0 = 1/δ, we obtain

d

dt

[
1

4
‖u‖4L4 −

1

2
‖u‖2 +

1

2
‖ux‖2

]
+

1

2
‖(−∆)−1ut‖2 ≤ C1‖u‖4L4 , (13)
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with a constant C1 = C1(L, δ). In fact, by noting that

0 ≤W (u) :=
1

4
(u2 − 1)2 =

1

4
u4 − 1

2
u2 +

1

4
,

we gain estimate (10). 2

The result shown above can be used for proving the existence of absorbing
sets in Ḣ1, therefore one needs to take care of the right hand side in (10). This
is done in the following lemma.

Lemma 7 The inequality

1

2

d

dt
‖(−∆)−1u‖2 +

1

2
‖u‖4L4 + ‖ux‖2 ≤ C2 . (14)

is true for all weak solutions of (4) with u0 ∈ Ḣ2
per.

Proof We use u as a test function in the same, transformed equation (11),

((−∆)−1ut, (−∆)−1u)−δ((−∆)−1[g(u)x], (−∆)−1u)+‖ux‖2+‖u‖4L4−‖u‖2 = 0 .

This permitted again by (6). Putting the convective term on the right hand
side, we estimate it as

δ((−∆)−1[g(u)x], (−∆)−1u) ≤ δ‖(−∆)−1[g(u)x]‖‖(−∆)−1u‖

≤ C‖u2‖‖u‖ ≤ C3 +
1

4
‖u‖4L4 .

Furthermore, by using ‖u‖2 ≤ 1
4‖u‖

4
L4 + ‖1‖ = 1

4‖u‖
4
L4 + C4 we finally derived

(14) with C2 = C3 + C4, where both C3 and C4 depend upon L. 2

Now we are able to prove the existence of the first absorbing set.

Theorem 8 (Absorbing balls in Ḣ1
per(Ω)) The semigroup S(t) : Ḣ2

per(Ω)→
Ḣ2
per(Ω), u0 7→ S(t)u0 = u(t) generated by equation (4) with periodic boundary

conditions (i.e. the unique weak solutions) has an H1 absorbing ball B = {u ∈
Ḣ1
per(Ω) : ‖u‖Ḣ1

per
≤ ρ}, i.e. for a set B ⊂ Ḣ2

per(Ω) bounded in the Ḣ1
per

topology there is tB ≥ such that S(t)u0 = u(t) ∈ B for u0 ∈ B and t ≥ tB .

Proof We define the ’energy’

E1(t) :=

∫
Ω

W (u)dx+
1

2
‖ux‖2 + 2C1‖(−∆)−1u‖2, (15)

Then, by adding 4C1 times estimate (14) to (10), we obtain

d

dt
E1(t) + εE1(t)− ε

(∫
Ω

W (u)dx+
1

2
‖ux‖2 + 2C1‖(−∆)−1u‖2

)
+ 2C1‖u‖4L4 + 4C1‖ux‖2 ≤ C1‖u‖4L4 + 4C1C2 .
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Here we added and subtracted a small fraction of E1 (ε > 0). A rearrangement
yields

d

dt
E1(t) + εE1(t) + C1‖u‖4L4 + (4C1 − ε/2)‖ux‖2

≤ 4C1C2 + ε

(∫
Ω

W (u)dx+ 2C1‖(−∆)−1u‖2
)
.

The H1 term does not make any trouble, as ε can be chosen arbitrarily small.
Furthermore, as∫

Ω

W (u)dx =

∫
Ω

(
1

4
u4 − 1

2
u2 +

1

4

)
dx ≤ 1

4

∫
Ω

u4dx+
L

4
,

and

‖(−∆)−1u‖2 ≤ C5

(∫
Ω

u4dx+ 1

)
we can estimate the right hand side and put the terms back on the left hand
side to balance them with the L4 term. In this way we derive

d

dt
E1(t) + εE1(t) + (C1 − ε(1/4 + 2C1C5))‖u‖4L4 + (4C1 − ε/2)‖ux‖2

≤ 4C1C2 + ε

(
L

4
+ 2C1C5

)
= C6 . (16)

Choosing ε sufficiently small yields

d

dt
E1(t) + εE1(t) ≤ C6

and Gronwall leads to

E1(t) ≤
(
E1(0)− C6

ε

)
e−εt +

C6

ε
. (17)

2

Remark We now know that ‖u‖2 ≤ C, ‖ux‖2 ≤ C and ‖u‖4L4 ≤ C, for a con-
stant C independent of the initial condition that is undershot after a transient
time. As we are in one dimension the result leads to a uniform L∞ bound
on u. Furthermore, it was neither necessary to impose any restrictions to the
deposition related parameter δ nor to the domain length L to achieve the result.

By the same method we can establish the existence of an absorbing set in
the H2 topology, but the argument is more involved. Possibly, we may show its
compactness. However, this is of no use in the two dimensional case. This is
why we will use a more general tool capable of handling both dimensional cases
simultaneously. However, the starting point is the specific estimate like (17).

3.2 Strong continuity of S(·)
Equation (4) generates in one dimension a strongly continuous semigroup. We
show this by applying the Galerkin method to equation (4). This gives a strongly
continuous semigroup on H2.
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Proposition 9 Let us suppose that u0 ∈ Ḣ2
per, then S(t)u0 ≡ u(t) converges

to u0 in the Ḣ2
per topology, as t→ 0+, where S(t) is the semigroup operator to

(4).

Proof We will use the observation that if we have u ∈ L2(0, T ; Ḣ3
per) and ut ∈

L2(0, T ; Ḣ−3
per), then u ∈ C0([0, T ], L̇2). By the same token, uxx ∈ L2(0, T ; Ḣ3

per)

and utxx ∈ L2(0, T ; Ḣ−3
per) will imply that

uxx ∈ C0([0, T ], L̇2).

The fact u ∈ L2(0, T ; Ḣ5
per) or equivalently ut ∈ L2(0, T ; Ḣ−1

per) is the content of
Lemma 11. 2

We need the Gagliardo-Nirenberg inequality that holds on bounded domains
Ω ⊂ Rn, for n ≤ 3. It states

‖Dju‖Lp ≤ c1‖Dmu‖aLr‖u‖1−aLq + c2‖u‖Lq , (18)

where

j/m ≤ a ≤ 1 and 1/p = j/n+ a(1/r −m/n) + (1− a)/q ,

and where c1 and c2 are positive constants. For p = ∞ the fraction 1/p is
interpreted as 0.

Lemma 10 Let us suppose that u0 ∈ B ⊂ Ḣ2
per, where B is a bounded subset

of Ḣ1
per. Then, weak solutions to equation (4) with u0 ∈ B for t ≥ tB fulfill

‖(u3)xxx‖2 ≤ C(‖uxxxx‖2 + ‖uxxx‖2 + 1) . (19)

Proof We note that∫
Ω

(u3)2
xxxdx ≤ C

(∫
Ω

u6
x + u2u2

xu
2
xx + u4u2

xxxdx

)
(20)

and we estimate each of the three terms separately. Using Gagliardo-Nirenberg’s
inequality with n = 1, j = 1, p = 6,m = 4, a = 1/3, r = 2 and q = 2 we deduce∫

Ω

u6
xdx ≤ C‖uxxxx‖2‖u‖4 + C‖u‖6 ≤ C(‖uxxxx‖2 + 1) . (21)

Now, the inequality a2b2 ≤ a6/3 + 2b3/3 for positive a and b implies∫
Ω

u2u2
xu

2
xxdx ≤ C

∫
Ω

1

3
u6
x +

2

3
|uxx|3dx (22)

The first term can be estimated as before, for the latter we again apply Gagliardo-
Nirenberg’s inequality. We set j = 2, p = q = 3,m = 4, r = 2, n = 1, a = 12/23
so that ∫

Ω

|uxx|3dx ≤ C‖uxxxx‖
36
23 ‖u‖

33
23

L3 + ‖u‖3L3 .

Finally, we use ab ≤ ap/p+bq/q for conjugate numbers p = 23/18 and q = 23/5.
This yields the overall estimate∫

Ω

|uxx|3dx ≤ C
(

18

23
‖uxxxx‖2 +

5

23
‖u‖33/5

L3 + ‖u‖3L3

)
≤ C(‖uxxxx‖2 + 1) .

The last term in (20) is just bounded by C‖uxxx‖2, so that we derived (19). 2

11



Lemma 11 Let us suppose that u is a weak solution to (4) with initial condition
u0 in Ḣ2

per. Then, u ∈ L2(0, T ; Ḣ5
per).

Proof It is sufficient to show that ut ∈ L2(0, T ;H−1) as one can also see from
(4) that

ut ∈ L2(0, T ; Ḣ−1
per)⇔ u ∈ L2(0, T ; Ḣ5

per).

We act at the level of Galerkin approximation uN . We apply the integral
operator (−∆)−1 : L̇2 → Ḣ2

per to both sides of equation (4) to derive

(−∆)−1uNt − δ(−∆)−1[g(uN )x](uNxx + uN − (uN )3)xx = 0 , (23)

We test this equation by uNt and estimate

‖(−∆)−1/2uNt ‖2 +
1

2

d

dt
‖uNxx‖2 (24)

≤ δ

2
((−∆)−1/2((uN )2)x, (−∆)−1/2uNt ) + (f(uN )xx, u

N
t )

≤ C‖(uN )2‖‖(−∆)−1/2uNt ‖+ ((−∆)1/2f(uN )xx, (−∆)−1/2uNt )

≤ C‖uN‖4L4 +
1

4
‖(−∆)−1/2uNt ‖2 + C(‖((uN )3)xxx‖+ ‖uNxxx‖)‖(−∆)−1/2uNt ‖

≤ C +
1

2
‖(−∆)−1/2uNt ‖2 + C(‖((uN )3)xxx‖2 + ‖uNxxx‖2). (25)

Collecting the ‖(−∆)−1/2uNt ‖2 term on the left hand side yields

1

2
‖(−∆)−1/2uNt ‖2 +

1

2

d

dt
‖uNxx‖2 ≤ C

(
1 + ‖((uN )3)xxx‖2 + ‖uNxxx‖2

)
.

After the application of estimate (19) and integrating with respect to t we get,

1

2

∫ T

0

‖(−∆)−1/2uNt ‖2dt+
1

2
‖uNxx‖2(T ) (26)

≤1

2
‖uNxx‖2(0) + C

∫ T

0

(
1 + ‖uNxxxx‖2 + ‖uNxxx‖2

)
dt.

Since the right hand side is bounded uniformly in N due to the existence result
established for the HCCH equation, we can pass to the limit and conclude that
indeed that our claim holds.

2

4 The slope system in the two dimensional set-
ting

For the purpose of analysis of the two-dimensional spatial domain, we rewrite
equation (1) as a system of slope equations. The surface with height h over
the reference plane depends on the domain size, it grows due to coarsening that
leads to an increase of the average size of the evolving structures. The slopes
have a more dissipative character as the anisotropy of the surface energy forces
the slopes to stay at a certain level that is independent of the domain size.
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We write u1 = hx, u2 = hy and note that the function in (3) is now used
with u1 and u2 as arguments. In the evolution equation we need to calculate
the gradient of W with respect to its arguments u1 and u2, we denote it here
by Du,

DuW =

(
α
3 u

3
1 + βu1u

2
2 − u1

α
3 u

3
2 + βu2u

2
1 − u2

)
and further note that divDuW yields the second order linear and nonlinear
terms. The fourth order term in the same potential stems from a corner regu-
larization in the extended surface energy W̃ = W + (∆h)2/2.

Now we transform equation (1) to a slope equation, using the same notation
as introduced above. For this purpose we apply a gradient to (1). If we set

u =

(
u1

u2

)
=

(
hx
hy

)
= ∇h, then we will arrive at

ut =
δ

2
∇|u|2 + ∆3u−∇∆divDuW (u1, u2). (27)

It is obvious from (27) that any solution to this equation is a gradient.
The advantage of (27) is that it has the same structure as in the one-

dimensional setting. Due to this fact and the prescription of periodic boundary
conditions we have ∫

Ω

u dx = 0 (28)

and hence again work with Sobolev spaces with zero mean. We establish the
first absorption property:

Lemma 12 There is a constant C > 0 such that for initial conditions in a
bounded (Ḣ2

per)
2 set, u0 ∈ B ⊂ (Ḣ2

per)
2 after sufficient time of evolution t̃B the

following uniform bounds are given

‖∇u‖2 + ‖W (u1, u2)‖2 ≤ C .

Proof We consider now (−∆)−2 to be the inverse operator of the bi-Laplacian
∆2 : Ḣ4

per ⊂ L̇2 → L̇2 and apply it to our new transformed system,

(−∆)−2ut = δ
2 (−∆)−2∇|u|2 + ∆u−∆−1∇divDuW (u1, u2)

= δ
2 (−∆)−2∇|u|2 + ∆u−∇∆−1divDuW (u1, u2).

(29)

The last equality is based on the observation that for any vector field X ∈
Ḣ1
per(Ω

2;R2) we have

∆−1∇divX = ∇∆−1divX. (30)

This becomes obvious, after application of the Fourier transform to both side
to (30),

−|ξ|−1ξ(divX)∧ = ξ(−|ξ|−1)(divX)∧.

As before, we can test (29) by ut. However, this time we integrate over a
two-dimensional domain, and as we deal with a system, we add the two com-
ponents together, where we write shortly ‖(−∆)−1ut‖2 = ‖(−∆)−1(u1)t‖2 +
‖(−∆)−1(u2)t‖2 and keep this notation for all norms with arguments that are
two-dimensional vectors, i.e. ‖u‖Lp = ‖

√
(u1)2 + (u2)2‖Lp .

13



We arrive at

‖(−∆)−1ut‖2 =
δ

2
((−∆)−1∇|u|2, (−∆)−1ut)−

∫
Ω2

∇u · ∇utdxdy

−
∫

Ω2

∇∆−1divDuW (u1, u2)utdxdy. (31)

A series of integration by parts based on ut = ∇ht yields,∫
Ω2

∇∆−1divDuW (u1, u2)utdxdy =

∫
Ω2

∇∆−1divDuW (u1, u2)∇htdxdy

= −
∫

Ω2

∆∆−1divDuW (u1, u2)htdxdy = −
∫

Ω2

divDuW (u1, u2)htdxdy

=

∫
Ω2

DuW (u1, u2)∇htdxdy
∫

Ω2

DuW (u1, u2)utdxdy =
d

dt

∫
Ω2

W (u1, u2) dxdy.

Using the identity in (31) we derive

d

dt
[

∫
Ω2

1

2
|∇u|2dxdy +

∫
Ω2

W (u1, u2)dxdy] +
1

2
‖(−∆)−1ut‖2 =

δ2

8
‖(−∆)−1∇|u|2‖2

≤ D1‖u‖4L4 , (32)

corresponding to (10) in the one-dimensional setting.
Testing (29) by u and adding the components yields

1

2

d

dt
‖(−∆)−1u‖2

=
δ

2
((−∆)−1∇|u|2, (−∆)−1u)−

∫
Ω2

|∇u|2dxdy −
∫

Ω2

α

3
(u4

1 + u4
2) + 2βu2

1u
2
2 −u2

1 −u2
2dxdy

≤ δ

2
‖(−∆)−1∇|u|2‖‖(−∆)−1u‖ − ‖∇u‖2 − α

6
‖u‖4L4 − 2β‖u1u2‖2 + ‖u‖2.

Similarly, as before use the identity∫
Ω2

∇∆−1divDuW (u1, u2)u dxdy =

∫
Ω2

DuW (u1, u2)u dxdy,

which can be derived by the same argument as above.
We estimate the two terms with the wrong sign as

δ

2
‖(−∆)−1∇|u|2‖‖(−∆)−1u‖+ ‖u‖2 ≤ C‖u2‖‖u‖+ ‖u‖2 ≤ C +

α

18
‖u‖4 ,

where C depends on the domain parameter L as we applied Young’s inequality
to u2 · 1. Overall we have derived

1

2

d

dt
‖(−∆)−1u‖2 + ‖∇u‖2 +

2α

9
‖u‖4L4 + 2β‖u1u2‖2 ≤ D2 (33)

Multiplication of (32) by α/(9D1) and adding to the above estimate yields

d

dt
[
1

2
‖(−∆)−1u‖2 +

α

9D1
(‖∇u‖2 + ‖W (u1, u2)‖2)]

+
α

18D1
(‖(−∆)−1ut‖2) + ‖∇u‖2 +

α

9
‖u‖4L4 + 2β‖u1u2‖2 ≤ D2
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We define the energy

E1,2D(t) =
1

2
‖(−∆)−1u‖2 +

α

9D1
(‖∇u‖2 + ‖W (u1, u2)‖2) (34)

and proceed in exact analogy as in the proof of Theorem 8. Hence, once again
Gronwall yields the existence of absorbing sets in H1. 2

5 The global attractor

5.1 The integral representation of solutions

The energy estimates become more tedious in two dimensions. Therefore, we
choose a different approach to prove the higher oder absorption.

Let us consider the 2-d system, (27), for u = (u1, u2). We note that we have
the formula

u(t) = e∆3(t−t0)u0 +

∫ t

t0

e∆3(t−s)(δ∇|u|2 +∇∆divDuW (u)) ds. (35)

that has been used for the surface equation for h in [7]. Here the exponential
operator is defined by

e∆3tf =
(
e−|·|

6tf̂(·)
)∨

,

where the right hand side is the inverse Fourier transform, while f̂ denotes the
Fourier coefficients. For more details we refer to the cited work.

It turns out that we can derive the same formula for solutions of the one
dimensional problem (4). Indeed, since we have a unique weak solution, we
may apply the Fourier transform to both sides of (4). The knowledge of the
parameter variation formula for ODE’s yields,

u(t) = e∆3(t−t0)u0 +

∫ t

t0

e∆3(t−s)(δ(|u|2)x + (DuW (u))xxxx) ds. (36)

Let us come back to the two-dimensional case. The inspection of the proof of
[7, eq. (10)] reveals that in the case considered here we obtain a better estimate,
due to the fact that u has zero mean. Namely, after setting

v(s) = (δ∇|u|2 +∇∆divDuW (u))(s)

we can prove

Lemma 13 If ε > 0 and sups∈[t0,t] ‖v(·, s)‖Hp−6(1−ε) <∞, then

Jp := ‖
∫ t

t0

e∆3(t−s)v(s) ds‖Hp ≤ C(ε, λ0) sup
s∈[t0,t]

‖v(·, s)‖Hp−6(1−ε) , (37)

where λ0 = L6/2.
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We will present a sketch of argument. We work with the Fourier variables (see
also [7] for the details). Because of (28) there is no zeroth mode in the Fourier
variables, hence

|ξ|6 − L6

2
≥ λ0 > 0. (38)

Thus, there is a positive constant Cp > 0 such that for all 0 6= ξ ∈ (LZ)d,
d = 1, 2, we have

(1 + |ξ|2)3 ≤ Cp(|ξ|6 −
L6

2
). (39)

This and the identity e−|ξ|
6(t−s) = e−λ0(t−s)e−(|ξ|6−λ0(t−s) imply that

e−|ξ|
6(t−s)(t− s)1−ε(1 + |ξ|2)3(1−ε)

≤ Ceλ0(t−s)e−(t−s)(|ξ|6−λ0)(t− s)1−ε(1 + |ξ|2)3(1−ε)

≤ Ceλ0(t−s)e−(t−s)(|ξ|6−λ0)(t− s)1−ε(|ξ|6 − λ0)1−ε

≤ C̃(ε)e−λ0(t−s). (40)

Here the last inequality follows from fast exponential decay e−yy1−ε ≤ C̃ that
is true for any positive y. We used y = (t− s)(|ξ|6 − λ0). Thus,

Jp ≤ C̃(ε)

∫ t

t0

e−
1
2 (t−s)

(t− s)1−ε ‖v(s)‖Hp−6(1−ε) ds

= C̃(ε)

(∫ t−1

t0

+

∫ t

t−1

)
e−λ0(t−s)

(t− s)1−ε sup
s∈[t0,t]

‖v(s)‖Hp−6(1−ε)

+C(ε, λ0) sup
s∈[t0+1,t]

‖v(s)‖Hp−6(1−ε) .

and hence (37). We notice that the dimensionality of the problem does not
intervene here.

We may now establish new results based on (37).

Lemma 14 There is a constant C > 0 such that for any u0 ∈ B, where B ⊂
Ḣ2
per is bounded, there exist a time instant tB > 0 such that

sup
t≥tB
‖u‖∞ ≤ C.

Proof. It is sufficient to show the following bound for any α > 0

‖u(t)‖H1+α ≤ K <∞

for all t ≥ tB .
We note that indeed

‖e∆tu0‖L2 ≤ Ce−λ0t‖u0‖L2 .

and
‖e∆3tu0‖Hp = ‖e−|ξ|

6

(1 + |ξ|2)s/2û0‖L2 .
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Proceeding as in the proof of (37), we conclude that

‖e∆3tu0‖Hs ≤ Ct−s/6e−λ0‖u0‖L2 .

Hence it follows from (37) for p = 1 + α, where α > 0,

‖u(t)‖H1+α ≤ Ce−λ0t‖u0‖H1+α + C sup
t
‖∇∆divDuW (u)‖H1+α−6(1−ε)

+ C sup
t
‖∇|u|2‖H1+α−6(1−ε) ,

where DuW (u) is the cubic nonlinearity.
We notice that

‖∇∆divDuW (u)‖H1+α−6(1−ε) = ‖DuW (u)‖H−1+α+6ε ≤ C‖DuW (u)‖L2

≤ C‖u‖3L6 ≤ C‖∇u‖3 ≤ C.

Furthermore, we can estimate the other nonlinear term by

‖∇|u|2‖H1+α−6(1−ε) = ‖|u|2‖H−4+α+6ε

≤ ‖|u|2‖ ≤ ‖u‖2L4 ≤ C‖W (u1, u2)‖ ≤ C.

The last estimate is a consequence of (34). The uniformity of the constants of
the last two estimates also comes from the uniform absorption of bounded sets
of the energy (34). 2

5.2 Compactness of absorbing balls

Using Lemma 13 we can not only show the existence of absorbing sets in H2

but also their compactness. Therefore we make the following key observation.

Proposition 15 There exists some α > 0 and a constant C(α) > 0, such that
for any initial condition u0 ∈ B, where B ⊂ (Ḣ2

per)
d, d = 1, 2, is a bounded set,

for all times bigger than t′B ≥ tB

sup
t≥t′B
‖u(t)‖H2+α(Ω2;Rd) ≤ C(α).

Proof. We use again formula (37), this time we take p = 2 + α. We get

‖u(t)‖H2+α ≤ ‖(−∆)α/2e∆3t∆u0‖
+C(ε) sup

t
‖∆2DuW (u)‖H2+α−6(1−ε)

We recall that ‖(−∆)αe∆3(t−t0)u0‖ ≤ C(t− t0)−α/3‖u0‖. Hence,

‖u(t)‖H2+α ≤ C(t− t0)−α/6‖u0‖H1 + C(ε) sup
t
‖DuW (u)‖Hα+6ε .

We also observe that

‖DuW (u)‖H1 ≤ C‖∇u3‖L2 ≤ C‖u‖2∞‖∇u‖L2 ≤ K for t ≥ tB .

Collecting these estimates we conclude that our claim holds for t ≥ tB + 1. 2
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We may complete the proofs of Theorems 1 and 2 in one stroke. Proposition
15 yields compactness of an absorbing ball in H2 topology. On the other hand
we have already established the strong continuity of the semigroup S(t). Thus,
an application of Theorem 4 finishes the proof. 2

Now, we prove the final assertion. We transfer the above results to the prob-
lem expressed in terms of the shape h in (1).

Proof of Theorem 3: Exactly as in the slope system it is sufficient to
show existence of a compact absorbing set in the H3 topology. First, we notice
that it is easy to reconstruct a function h : Ω = (0, L)d → R, when it is given
its derivative u = ∇h and the mean m =

∫
Ω
h. Indeed, we have the following

formulas,

h(x) =
1

L
(m−

∫ L

0

∫ x

0

u(s) dsdx) +

∫ x

0

u(s) ds, (41)

in case d = 1 and

h(x, y) =
1

L2
(m−

∫ L

0

∫ x

0

u(s) dsdx) +

∫ x

0

u1(s, 0) ds+

∫ y

0

u2(x, s) ds, (42)

if d = 2.
These two formulas and Theorems 1 and 2 imply existence of compact ab-

sorbing sets, hence existence of a global attractor in H3. 2

6 Conclusions and outlook

We have established the existence of global attractors in Ḣ2
per for the slope

equations (4) and (8). This enable us to show existence of global attractors in
H3
per for (1) in the 1+1D and 1+2D settings. On the way, we showed that so-

lutions to (4) and (8) enjoy further regularity. For the one-dimensional case we
succeed in deriving proper uniform estimates by repeated application of Gron-
wall inequality. As we needed uniform constants for the estimates, the work
may seem somewhat tedious at certain points, e.g. during the application of
Gagliardo-Nirenberg’s inequality. Because of its repeated application this ap-
proach is not feasible the two-dimensional setting. Instead we reconsidered the
constant variation formula from our previous work [7] to improve the regularity
result. It turns out, once this approach is understood, the semigroup ansatz
seems more elegant for this problem.

We are content with the results obtained for the presented equations. They
coincide with the observations made with the help of a pseudospectral numerical
method in the previous work [8], though we were not yet able to show or negate
the existence of stationary or traveling wave solutions, which have been discussed
in this publication. As we are not able to find a Lyapunov function, we were
not in the position to use approaches based on the  Lojasiewicz-Simon inequality
(e.g. [10, 15]).

We do not know much about the ω-limit set, but as Figure 1 has already
indicated, we expect to have time-periodic or stationary solutions for smaller
values of δ and a strange attractor for increased values of the deposition rate
dependent parameter. Note that once the structures form, the solutions in this
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figure stay in an Ḣ2
per ball as predicted. The numerical simulations suggest

that at least for small initial data the L∞ norm of u stays roughly below 1,
independently of the value for δ.

We plan to extend the analysis to heteroepitaxial quantum dot growth sys-
tems, where a nonlocal elastic term and a wetting nonlinearity are added to
the partial differential equation, which makes the analytical treatment more
challenging. In particular we will work on the PDEs discussed by Korzec et al.
[5, 6].
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