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Abstract

In this paper we theoretically investigate the statistical light-emission properties of an optically
injected bimodal quantum-dot micropillar laser with high spontaneous emission rates. The
nanostructured device is described in terms of a stochastic, semiclassically derived rate equation
model. We focus on the stochastic switching dynamics between the two fundamental modes and
correlate the results with an in-depth bifurcation analysis of the underlying deterministic
dynamics. By analyzing different statistical measures, e.g. average intensity, auto- and
cross-correlation functions, as well as dwell-time distributions, we give a road map on how to
unravel the different dynamic regimes in the presence of large noise from experimentally accessible
quantities.

1. Introduction

Micropillar lasers with an active medium formed by quantum dots are promising candidates for
nanophotonic applications. They can be implemented on a semiconductor chip and due to their small
footprint can be integrated in high densities [1]. The unique properties of micropillar lasers could enable
numerous innovative applications, e.g., in quantum optics [2], reservoir computing [3, 4], generation of
broadband chaos [5] or optical switches [6]. The emission of micropillar lasers is generally dominated by
strong spontaneous emission due to the low mode volume. Additionally, the geometry of the laser cavity
leads to the existence of two polarization modes, giving rise to stochastic mode switching [7].

The emission characteristics of solitary micropillar devices have been characterized experimentally [8, 9]
as well as theoretically with both fully quantum mechanical models [10, 11] and with semi-classical
approaches [7, 12, 13]. The emission states can also be controlled via external optical control schemes, e.g.,
optical injection [6, 13], optical coupling of two lasers [14] or optical self feedback [15, 16]. Due to the low
optical power and the high relative amount of spontaneous emission noise in the small cavity lasers, their
emission properties are usually characterized in terms of statistical measures. Such measures commonly
include correlation functions of the photon emission, such as the second-order photon auto-correlation,
which is a common tool in characterizing the emission photon statistics. A direct measurement of the
dynamical laser state as in macroscopic lasers is usually not possible. In this paper we want to deepen the
analysis of the noisy emission and clarify the relation between measurements of the stochastic micropillar
output and the underlying deterministic bifurcation structure.

In particular, we focus on a bimodal micropillar laser subjected to optical injection. Two-mode lasers
under optical injection have been the topic of previous research, e.g., for quantum well devices with two
longitudinal modes [17, 18], for VCSEL [19-26] with low spontaneous emission, or for two-mode QD
lasers [27—29] where the two modes do not share the same gain medium. Generally, optical injection can
lead to a multitude of different dynamics in the emitted light of a single mode laser, including stable
locking, periodic oscillations, and complex or chaotic emission [30]. Depending on the damping of the
relaxation oscillations of the optically injected laser, the regions of complex dynamics can be more or less
pronounced [31-33]. In a micropillar laser the dynamics under optical injection are more involved, due to
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the existence of the two modes and the high amount of noise, and a detailed understanding is still missing.
In this paper, we focus on the interrelation between the stochastic properties and the underlying
deterministic dynamics. We investigate the deterministic bifurcation structure of the bimodal micropillar
laser under optical injection and highlight the role of the mode competition in the context of multistability
between the emission in the two laser modes. Subsequently we perform a deep stochastic analysis of the
micropillar laser in terms of the photon auto-correlation in the individual modes as well as the
cross-correlation between the modes. The combination of these two techniques allows us to predict the
dependence of these experimentally accessible statistical quantities on the underlying dynamical

structure.

The paper is organized as follows. In section 2 we present the numerical model used for the investigation
of the bimodal micropillar laser in terms of its deterministic bifurcation structure and its stochastic
properties. The deterministic and stochastic dynamics under optical injection is presented in section 3,
focusing on the correlation properties of the emitted photons. We present results on the mode-switching
dynamics in section 4, which reveals further insight into the underlying dynamics. A summary is given in
section 5.

2. Theoretical model

The model used in this paper is based on semiclassical rate equations [34] taking into account the electron
scattering mechanisms into the quantum dots as derived in our previous works [7, 35, 36]. Due to
structural asymmetries in micropillar lasers the fundamental cavity mode splits into two orthogonal linearly
polarized modes [37]. In our model this is accounted for by two separate complex electric field equations,
denoted by Ej, with j € {s,w} for the strong and weak mode, respectively. Weak and strong corresponds to
the mode with lower and higher lasing intensity beyond threshold. We model the electrical fields E; of the
two modes, the occupation probability of the active and inactive quantum dots pj;,),» and the reservoir
carrier density #,. As the QD transitions are inhomogeneously broadened, only optical transitions which are
sufficiently close to the lasing mode in frequency contribute to the stimulated emission. Thus, parts of the
QDs present in the device are able to contribute to the lasing process and are therefore called active, whereas
the remaining QDs at the flanks of the inhomogeneous distribution are called inactive and increase the
optical losses inside the cavity [38, 39].

We implement the following model equations:

d hw 7P ) 0 0
&Ej(t) = {—bg & (2pact(t) — 1) — K;| (1 + i) E;(t) + EEJ»\SP + EEj|inj> (1)
d pact(D)? in
gl =~ > & 12paa(®) = 1 [E(D] — T—P + 8", (1) [1 = paa(D)], (2)
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ZQD nr(t) o ZZSaDctpinact
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The laser is pumped by applying an electric current J to the reservoir #, from where electrons may either
recombine without contributing to the lasing mode, denoted by the recombination rate 7, or scatter into
quantum dots with the rate S™. We account for experimental details in the pumping process by assuming an
injection efficiency 7, and a parasitic current J,, determined by fitting the experimental input-output curves
[6]. A and V are the effective mode area and volume, respectively, e, is the elementary charge, and 7P is
the number of quantum dots which actively contribute to lasing. The spontaneous recombination lifetime
in the quantum dots is given by 7,. The central lasing wavelength is given by w, x; denotes the cavity loss
rate of the respective laser modes, and €, = nﬁg is the background permittivity. The linewidth enhancement
factor is given by av.

The occupation probability of the inactive quantum dots is calculated from the steady-state value of an
equation equivalent to equation (2) but without the stimulated emission term and reads:

Pinact(t) = (TpS™ ) (1 4 75,8™n,) . (4)

The electric fields of weak and strong mode both interact with the active QDs by stimulated emission. Since
the frequencies of the two modes differ by only a few tens of 1.V, we consider only one carrier population
that is interacting with both optical modes. Thus, both modes compete for the same gain medium and the




10P Publishing

New J. Phys. 22 (2020) 073052 B Lingnau et al

gain coefficient & in equations (1) and (2) is given by

-1

g =g | 1+ecomgo ¥ SGlE®] (5)

ic{s, w}

where ¢ is the vacuum speed of light. The two laser modes are considered to only interact via the common
gain medium, without a direct interaction of the optical fields. Our results therefore hold for a large range
of frequency spacing between the modes, provided a common gain medium exists. The gain compression
coefficients ;; with 4,j € {s, w} have been chosen to best fit the experimental results, however, the
coefficients can also be derived from the spin-flip model (or San-Miguel-Feng—Moloney model) [40],
which is commonly used to describe polarization dynamics in vertical-cavity surface emitting lasers. The
derivation of our model equations from the spin-flip model is detailed in appendix A.

Spontaneous emission into the lasing modes is modeled via a complex Gaussian white noise source

&(t) € C, where <§j(t)j> = 0and <§j(t)§j/(t +1)) = 5(t’)5j,j/, where (-) denotes the time average, such that

0 hw 2Z® p2
—Elp =1/ f—— ().
ot il Bsosbg Vo 1y §() (6)

The factor 3 describes the fraction of spontaneously emitted photons coupled into the laser modes.
Without the contribution of the spontaneous emission, i.e. for 5 = 0, we have a deterministic differential
equation system, which we will also analyze in terms of its bifurcation structure in section 3. We do not
consider charge-carrier noise in the model equations as the spontaneous emission noise in the optical field
dominates the stochastic properties of the laser.

The field equation (1) is formulated within the rotating frame of the cold-cavity frequency w = 27v.
The free-running frequency of each micropillar mode, 1/]»(0), deviates from v due to the amplitude-phase

coupling. We define this shift as § I/j(o) =v— 1/]»(0). When we consider optical injection into the strong mode
of the micropillar, the detuning Avjy; = vy — 1/5(0) measures the distance between the injecting master laser
frequency i, and the free-running strong mode frequency v”). Within the rotating frame of w, the optical
injection term in equation (1) for strong mode injection reads:

QES — KFCSE()eZWi(Vi“j —u)t KHSEOeZﬂ'i(AI,injﬂgng))t’
ot inj
0
ot inj
The injection strength is normalized to Ey = /(|E|?) + (|[E4|?), the averaged free-running amplitude of

the electric field inside the micropillar laser device. The parameter K is related to the optical power of the
free-running laser P'”) and the injected power Pyyj via K = /Pinj/P©. The weak mode is assumed to be
perfectly isolated from the injected signal, and the injection term is only added in the strong mode
equation. The parameters used in the simulations are listed in table D1.

3. Statistical evaluation of the lasing dynamics

The solitary bimodal micropillar laser without optical injection (K = 0) emits light at both cavity modes,
which are typically separated by only a few tens of ;1eV in energy. A sketch of the laser is shown in

figure 1(a). A typical input—output curve is shown in figure 1(b). Here, the averaged output intensity of the
two modes (I;) = 2k;eoeng V{|E;(1)|?) is plotted as a function of the pump current J. For injection currents J
below threshold (Jy, =~ 17 1A), the averaged mode intensities are mainly determined by spontaneous
emission and coincide. A statistical representation of the stochastic emission can be seen in figures 1(c) and
(d), where the histograms of the intensity distribution are projected onto the (|E|?, |Ey|*)-plane (darker
colors correspond to higher probability).

For the following investigation of the dynamics under optical injection (strong mode injection), we
choose a pump current of ] = 30 pA (thick vertical dashed line in figure 1). At this operation point the
average intensities of the two modes are already clearly separated. Nevertheless, even well above threshold
stochastic switching between weak and strong modes occurs [compare figures 1(c) and (d)]. A switching
event denotes a momentary, usually very short, exchange of intensities between weak and strong mode. For
the solitary laser, it is due to the coexistence of two stable solutions [7].
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Figure 1. (a) Sketch of the bimodal micropillar laser. (b) Input—output characteristic of the modeled micropillar laser showing
the averaged strong (blue) and weak (orange) mode intensities as a function of the pump current J. The dashed vertical lines
indicate the threshold current J,, as well as the pump currents used in (c) and (d) where the stochastic dynamics of the intensity
distribution in the (|E|?, |Ey|*)-plane is shown as histograms [dark red (white) contour lines indicate high(low) frequency]. A
current of ] = 30 pA is used in the remainder of this paper.
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Figure 2. (a) Intensity ratio of the strong and weak mode (color code) and deterministic bifurcation structure (solid lines) of the
optically injected micropillar laser plotted as a function of injection strength K and the detuning Awv;y;. Bifurcations of stable
(unstable) solutions are shown as solid (dashed lines). Saddle-node-infinite-period bifurcations (SNIPER, thin black line) and
transcritical bifurcations (TC, thin orange line) delimit the locking region; outside of this region periodic solutions exist. TC
bifurcation of limit cycles (TCLC, thick orange lines) delimit the region of strong mode suppression. At negative detuning, a
two-mode oscillatory solution is born in a Hopf bifurcation (green line). GH denotes a generalized Hopf point, in which the
Hopf bifurcation changes criticality. (b) Solution structure for a cut at K = 0.75 [dashed white line in (a)], showing the average
strong mode output power as a function of Avj,;. We distinguish between single-mode solutions (black lines) and two-mode
solutions (red lines). Thin (thick) lines correspond to fixed-point (limit cycle) solutions. Stable (unstable) solutions are shown as
solid (dashed) lines. Symbols show TC (orange squares), SN (white circles), and Hopf (green cross) bifurcation.

average strong mode output power (I) (nW)

To characterize the dynamics of the optically injected bimodal emitting high- 3 laser, usually the mean
intensities of both weak and strong mode as a function of the injection parameters (injection strength K
and frequency detuning Av) are evaluated. This has been done experimentally and numerically for this
kind of lasers in [6, 13]. Figure 2(a) shows the ratio between the intensity of both modes color-coded as a
function of the injection parameters. Within the locking region (light colors) the strong mode is locked to
the injected signal and the weak mode is suppressed, i.e. the spontaneous switching is much less likely to
occur. Outside the locking cone we observe regions where the strong mode is suppressed in favor of the

weak mode (dark blue colors).

In order to explain the occurrence of the different dynamic regimes, we investigate the underlying
deterministic dynamics, i.e., the bifurcation structure of the injected two-mode laser without noise (3 = 0).
The bifurcation lines define the boundaries between different solutions in the injection-parameter plane.
We obtain the deterministic bifurcation lines via numerical path continuation of equations (1)—(3) using
the AUTO-07p package [41]. In the deterministic system, for 5 = 0, the dynamics are characterized by the
coexistence of single-mode solutions, in which only the strong mode is lasing, and two-mode solutions with
simultaneous strong and weak-mode emission. The bifurcation lines are shown in figure 2(a), with the
color code showing the intensity ratio of the strong and weak mode, obtained from stochastic simulations.
The orange lines mark transcritical bifurcations (TC) where two-mode solutions intersect single-mode
solutions (TCLC mark TC bifurcations of limit cycles). Within these regions the strong mode is suppressed
in the stochastic simulations [dark blue color in figure 2(a)], indicating that the weak mode has turned on.
In the stochastic simulations these transitions are smoothed out, but nevertheless can be attributed to the
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nearby deterministic bifurcations. In the regions where only the deterministic strong-mode solution is
stable and the weak mode is not lasing, a small weak mode intensity is found due to the spontaneous
emission. The locking region [white in figure 2(a)] is bounded by an SNIPER bifurcation
(saddle-node-infinite-period bifurcation) for negative detuning and by a TC bifurcation line at positive
detuning, beyond which the weak mode slowly turns on. It is noted that only the physically relevant
bifurcations, i.e. the ones that occur on stable and thus observable solutions are plotted in order to aid
clarity of the bifurcation diagram.

A more detailed picture of the solutions and their bifurcations is shown in figure 2(b) along a vertical
cut through the bifurcation diagram at K = 0.75. It displays the average intensity of the deterministically
found stable and unstable solutions of the strong mode emission. Black lines indicate single-mode solutions
where the weak mode is off, while red lines indicate solutions with two-mode emission (we show only the
strong mode intensity for clarity). The nonlinear oscillations outside the locking region (limit cycle
dynamics, LC) are indicated with thick lines (the lines indicate the mean intensity of the oscillations, the
time dependence for the single mode oscillations can be seen in figure 5(a)). Dashed lines represent
unstable solutions. Starting from negative detuning [upward along the vertical dashed line in figure 2(a)]
two solutions coexist; a single-mode limit cycle and a stable two-mode emission which is stable below the
Hopf bifurcation (green cross in figure 2(b)). At the Hopf bifurcation, a two mode LC is born (thick red
line) which loops back and changes stability at the saddle node of limit cycles (SNLC) around -10GHz. At
the transcritical bifurcation of limit cycles (TCLC), the strong-mode limit cycle intersects the two-mode LC
solution under a change of stability. Thus, in between the transcritical bifurcation curves [within the dark
blue region in figure 2(a)], only the stable two-mode fixed-point solution remains. In the region between
the SNLC and SNIPER bifurcations (open circles) only the oscillating single-mode solution is stable, which
disappears in the SNIPER bifurcation, in which the LC connects to the phase-locked solution. In the
single-mode phase-locked solution the weak mode is suppressed until the TC bifurcation is reached at
positive detuning (orange square at 5GHz), in which again a stable two-mode fixed-point solution becomes
stable. From the TCLC bifurcation at 15 GHz on, again a bistability between a single-mode oscillation and a
two-mode steady-state emission is found, which exists for all positive values of detuning beyond this point.

Comparing the results from the bifurcation analysis (the solution structure) with the information gained
from the mean intensities of the micropillar emission, it becomes obvious that an experimental
characterization via the mean intensities does not reveal the full dynamics. Especially the identification of
oscillating dynamics or multistability is not possible. Numerically, switching between strong and weak mode
emission, can be detected directly from the intensity time series. Experimentally, the fast time scale of the
switching and the low intensities in micropillar devices requires other statistical measures. We will show that
information about the underlying stability structure can be inferred from measurements of the photon
statistics. A well established and experimentally accessible statistical method is the measurement of auto-
and cross-correlation functions gi(jz)(r) [42, 43], where i, ] indicate either strong or weak mode. These
quantities characterize the emitted light of the laser and can be measured, e.g. by a Hanbury-Brown and
Twiss setup [44]. For our purposes, we use the classical representation of this quantum-mechanically
defined statistical measure:

(L(OI(r — 1))
(L)Lt = 1)

This allows us to calculate the correlation functions from the time series. Usually, for single mode emission,
g7 (1 = 0) is of interest, because it allows to differentiate among thermal, coherent and (when using the
quantum-mechanical definition) non-classical light. For thermal, i.e., spontaneous, emission the
auto-correlation function takes the value g''(0) = 2 while g'”(0) = 1 is obtained when the laser emits
coherent light. Values of gl-(iz) (0) > 2 are an indicator for super-radiance [45] or super-thermal bunching [7].
Since we are also interested in the correlation between strong and weak mode, we need to determine the
cross-correlation function gi(jz)(r) [6]. Here, anti-correlation of the two competing modes is the strongest,

gl (r) = (8)

where the cross-correlation function gl-(jz) (0) reaches its lowest value. A value of gl-(jz) (0) = 1 indicates
uncorrelated emission between the strong and weak mode.

To illustrate the signature of deterministic features in the stochastic dynamics, we again look at a line
scan at K = 0.75 as a function of the detuning and plot the mean intensities (I;) of the emission for the
deterministic simulation and the stochastic simulation in figures 3(a) and (b), respectively. Additionally, the
auto- and cross-correlation of the two modes, g{2)(0), g'2(0), and g{2)(0), are plotted in figure 3(c). We
obtain the deterministic results from direct numerical integration of the model equations using a
fourth-order Runge—Kutta integration scheme with a time step of 1 ps. The stochastic time series is
produced using a stochastic Euler integration scheme with a time step of 0.1 ps. Going from negative to
positive detunings Avj,; along the line scan (compare figure 2(b)) one comes across four distinct regions
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Figure 3. (a) Stable deterministic solutions in dependence of the detuning Av;y,; for K = 0.75 [cf figure 2(b)]. Solid lines denote
single-mode solutions, dashed lines denote two-mode solutions. The shaded regions show the amplitude of limit-cycle solutions.
Only the stable parts of the solutions are shown. (b) Averaged strong and weak mode intensity () (blue) and (I,,) (orange)
obtained from stochastic simulations. (c) Auto-correlation g (0) and g{) (0) (top) and cross-correlation g2 (0) (bottom)
obtained from stochastic simulations. (d) Real part of the eigenvalue of the deterministic solutions. The vertical dashed lines in
all panels show the position of the deterministic bifurcations, cf figure 2(b). We distinguish the following dynamical regions: I:
bistability between strong-mode oscillation and dual-mode fixed point, II: dual-mode fixed-point only, III: strong-mode
oscillation only, and IV: locked strong-mode fixed-point.

that are presented in detail in figure 3. I: bistability between LC oscillations and two-mode solution [shaded
and dashed lines in figure 3(a)]; II: stable two-mode solution only; III stable LC oscillations only; and IV
strong-mode locking. Interestingly, in the mean intensity in figure 3(b), the change between region I and II
shows up as an exchange of the role of strong and weak mode, however, not at the bifurcation (vertical
dashes lines in figure (3)) but well beyond at about -27GHz. The auto-correlation in region I, figure 3(c),
shows a similar behavior and low stochastic mean intensities [figure 3(b)] are accompanied by high g(z) (0)
values. The locking region IV is clearly identified by g{?)(0) = 2 and ¢g!?(0) = 1 while we can identify the
two-mode region II by ¢2)(0) = 1. In region II, a change in detuning induces a redistribution of the lasing
power between the strong and weak modes, while the total output power remains constant [46, 47]. The
bifurcation scenario observed here for the micropillar laser is similar to that observed in conventional
VCSELs with parallel optical injection [25] or comparable two-mode lasers [48] which exhibit comparable
polarization switching dynamics. As the strong-mode power is reduced in region II, its emission becomes
dominated by spontaneous emission, smoothly increasing g'? (0) toward 2 (see appendix B). We note that
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Figure4. (a)and (b) Auto-correlation g/?(0), g{?(0) and (c) cross-correlation functions g2 (0) color-coded within the
(K, Avjyj)-parameter space. The cross-correlation decay time 7, shown in (d) is obtained as full-width-at-half-minimum of
g9(7) (cf figure 6). The bifurcation lines of the deterministic system without noise are shown as in figure 2(a). The dynamical
regions I-IV are labeled as in figure 3.

in region II there is destructive interference between the injected signal and the laser mode, reducing the
strong-mode power. This region extends beyond the locked region obtained for a single-mode laser for
which the weak mode does not lase. The laser remains phase-locked only due to the presence of the weak
mode.

The bifurcations are not immediately visible in the stochastic data due to the smoothing of dynamical
transitions. Nevertheless, their statistical signature is visible as dips in the cross-correlation function g{?(0)
[black line in figure 3(c)], that show an increased anti-correlation between the strong and weak mode close
to the bifurcations. Especially the SNLC, SNIPER and TC bifurcations show up as narrow dips in g{2)(0)
[figure 3(c), black line]. The two pronounced regions of anti-correlation at large absolute detunings occur
within the region of bistability, region 1. They can be understood qualitatively by the evolution of the
stability of the solutions beyond the outermost TCLC bifurcation. In figure 3(d) we plot the real part of the
largest eigenvalue \ of the solutions. For the limit-cycle solution we evaluate A\ = (log M) /T from the
largest non-trivial Floquet multiplier M and the period T. While the strong-mode limit-cycle solution is
least stable close to the outermost TCLC bifurcations, its stability increases (Re\ becomes more negative)
when moving further away from zero detuning. Simultaneously, the stability of the dual-mode fixed-point
solution decreases as Re\ approaches zero. Consequently, the strong-mode solution becomes dominant far
away from the locked region, leading to the near-complete suppression of the weak mode as seen in
figure 3(b). In the transition region between the outermost TCLC bifurcation and the edges of the shown
detuning range, frequent and long-lived switching events take place in the regions where both bistable
solutions are still sufficiently stable. In the stochastic simulations, the bistability born in the TCLC
bifurcation thus becomes apparent only in a limited region of pronounced anti-correlation. Across the
whole detuning range, the cross-correlation function is closest to unity (uncorrelated strong and weak
modes) in regions where no bistability exists (IL, III, IV), as the switching events can be expected to be least
frequent in these regions.

In figure 4 we plot numerical results for the auto-correlation (a), (b) and cross-correlation (c) gig-z)(O)
within the full (K, Aviyj)-plane. Additionally, we show the cross-correlation time 7, in figure 4(d). It is
calculated from the full-width-at-half-minimum of gs(‘f,) (1) [see figure 6(b) for selected plots of gs(f,) (7)].

From the auto-correlation data the locking region IV with stable strong mode lasing and thermal weak
mode characteristics is easily identified by the auto-correlation values g2 (0) = 1 and g'2)(0) = 2 (region in
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between SNIPER and TC). The stable two-mode lasing regimes II are found in between the transcritical
bifurcation lines, characterized by g!?(0) ~ 1, g!2)(0) = 1. The very high value of g{)(0) at the edge of the
locking region IV at negative detuning is an indication for strong but rare spikes, which is commonly found
close to an SNIPER bifurcation [49]. For the strong mode, regions with g (0) > 2 are found within the
bistability region I close to the border of the two-mode regions II where the weak mode dominates. The
reason is the continuously increasing stability of the strong mode emission in I which eventually leads to
rare on-switching events of the strong mode and thus to g2 (0) > 2.

Considering the cross-correlation g{’(0) in figure 4(c) of the stochastic dynamics under optical
injection, we observe a similar structure in the (K, Avj,;)-plane, however this time we gain different
information. As expected, within region IV where the strong mode is locked, there is no correlation
between the lasing strong and the thermal weak mode (g{?(0) & 1; yellow colors). Interestingly, the same
holds for region II with stable two-mode lasing (the regions enclosed within the TC and TCLC curves).
Thus, when the laser operates in the two-mode lasing regime II, there is only weak anti-correlation between
the strong and weak mode emission.

Regions with the strongest anti-correlation [blue colors in figure 4(c)] are located within the bistability
region I, where the two-mode solution and the strong-mode limit cycle oscillations exist and are equally
stable. Their position is found well beyond the TCLC line, and next to the region where the strong mode
shows g (0) > 2 [compare panels (a)—(c)]. The results of the cross-correlation decay time 7, in
figure 4(d) show very high values (yellow colors) within the bands of strong anti-correlation [dark blue in
figure 4(c)] . Values up to ~ 6.5 ns are found which suggest a strongly enhanced and long-lived
anti-correlation between the modes. We want to clarify this further by analyzing the switching dynamics in
the next section.

4. Dwell-time statistics of mode switching events

In the following, we will investigate the interplay of the mode-switching dynamics and the underlying
deterministic dynamics. So far we have seen that depending on the injection parameters, the auto- and
cross-correlation functions of the emission show distinct features that allow us to characterize the emission.
From the numerically obtained time series, we can additionally extract the dwell-time distribution of the
occurring switching events. Within the stochastic time series of the two-mode emission, the time between
consecutive switching events can yield additional information about the underlying dynamical system. Both
the stability and the distance in phase space of coexisting solutions will influence the switching frequency
and the dwell-time statistics. Or, conversely, the measurement of the switching statistics along with
correlation functions will yield information about the underlying deterministic bifurcation structure.

The dwell time t4, of a given switching event is defined by the time interval over which the intensity of
one mode becomes dominant over the other. We mark the beginning of a switching event when the mode
intensity exceeds the other mode by one third of its value, I; > 3I;, and the switching event ends when the
inverse relation is fulfilled, I; > %Ii. An example of such switching events and the corresponding dwell time
is sketched in figure 5(c) for a section of the simulated stochastic time series. Here, at first a switching event
of the weak mode is seen, with a dwell time £}, followed by a strong-mode switching event with a dwell
time £;.¢. The time series thus consists of a series of alternating switching events of the two modes.
Depending on the injection parameters, the switching dynamics can change, with varying statistics of the
switching frequency and the dwell times. For comparison, we plot the two stable deterministic solutions
that coexist for parameters in region I without noise and thus without switching events in figures 5(a) and
(b), (Avijy; = 10 GHz, K = 0.2). The intensities perform either stable beating oscillations in the strong
mode close to the detuning frequency single mode limit cycle oscillations shown in (figure 5(a)) or stable
two-mode emission occurs [figure 5(b)]. The beating frequency of the LC oscillation is still observed in the
noisy time series in figure 5(c). It is, however, interrupted by the switching events. We note that the
two-mode solution, while being a fixed-point solution, possesses a pair of eigenvalues with imaginary parts
close to the beating frequency found in figure 5(a). In the stochastic time series, noise will therefore excite
oscillations at that frequency during the switching events also when the weak mode is dominant.

In the following, we evaluate the length of individual switching events, yielding a statistic distribution of
dwell times t4,,. To calculate the dwell-time distribution, we record all dwell times during a 10 ms long time
series. The results for Avj,; = 10 GHz (within region I at K = 0.2) are plotted as black and gray lines in
figures 6(a) and (b) for weak-mode and strong-mode dwell times, respectively. They show a multi-peaked
behavior, i.e. different intervals between switching events occur with higher probability while others are
improbable. We find minima in the probability distribution at integer multiples of the beating frequency,
i.e., close to the detuning |Avyj|. To understand those multi-peak distributions, one has to consider the
limit cycle solution of the underlying beating oscillations in region I. The strong and weak mode oscillate
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Figure 5. Intensities of the two-mode emission as a function of time for injection parameters within the bistability region I,
(Aviyj, K) = (10.0 GHz,0.2). (a) and (b) Possible stable solutions without noise, (a) shows single mode limit cycle oscillations
and (b) shows two-mode steady-state emission. (c) Stochastic dynamics with noise. The dwell times #}<* and tztvrv""g of
noise-induced weak-mode and strong-mode switching events, respectively, are marked by the horizontal arrows in (c).
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Figure 6. Dwell-time distribution for (a) weak-mode switching events £}, and (b) strong-mode switching events """, for
different detuning Av;,,; generated from time series of 10 ms at K = 0.2 (solid lines) and for K = 0 (dashed line, multiplied by 10
for better visibility). Black and gray lines show multi-peaked distributions obtained in region I where switching is induced by the
underlying beating oscillations, red lines correspond to the dwell-time distributions found within the two-mode region II. (c)

Cross-correlation function g (7) as a function of 7 for the detuning values chosen in (a) and (b). The arrows show the
correlation time 7y, for Avj, = 2.1 GHz.

periodically and in anti-phase (see figure 5). At time instances where both intensities are close, it is more
likely that a noise perturbation excites a switch than at time instances where they are far apart in phase

space. Thus, a higher probability of switching times repeats every full period of the oscillations and the
maxima can be described by

1
taw (1, Avyp) = (n + E) T (Avj), neN 9)
where the deterministic beating period T°* satisfies
T =~ |Al/inj‘71- (10)

At the detuning of Avj,; = £10 GHz (region I) both the strong-mode and weak-mode dwell-time
distributions show a similar histogram structure [black lines in figures 6(a) and (b)]. On the contrary, in
region IT at Avj,; = 2.1 GHz (red lines), a multi-peaked structure is only seen for the weak-mode
dwell-time distribution, whereas the strong mode exhibits a single exponential decay toward longer dwell
times (a semi-logarithmic plot of the distribution in shown in appendix C). The detuning of Ay, =
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Figure7. (a) Cross-correlation g2 (0), (b) cross-correlation times T4,, and (c) dwell-time distributions of weak mode switching
events as a function of the injection detuning Av;,;; K = 0.2. Horizontal green, black and orange lines indicate the Hopf,
SNIPER, and transcritical bifurcations. The color code in (c) represents the probability for a certain dwell time £}, the maxima
predicted by equation (9) are plotted as white lines for [Avjy| > 5 GHz (n € {0,...,9}). Dynamical regions I-IV are labeled as
in figure 3.

2.1 GHz is just beyond the first transcritical bifurcation on the positive detuning side (TC in figure 2),
where a stable two-mode fixed-point solution coexists with an unstable strong-mode fixed-point solution.
As the strong-mode solution is only weakly unstable, the laser can be stochastically excited onto a trajectory
close to that solution. The leading eigenvalues of the two-mode solution possess small nonzero imaginary
parts, denoting a slow deterministic oscillation frequency and leading to the minimum around 1.5 ns in the
red curve in figure 6(a). The imaginary part of the leading eigenvalue is zero in the strong-mode solution
which explains the missing minimum in the red curve in figure 6(b), i.e. there is no preferred time to switch
back. The underlying difference in the deterministic solutions in region II is thus revealed in the stochastic
dwell-time histograms: the double-peaked histogram for the weak mode indicates that the deterministic
solution is a focus, and the single-peaked strong-mode histogram indicates a saddle {similar to the case
without injection [dashed black line in figures 6(a) and (b)]}.

Long-time correlations that are induced by the underlying deterministic dynamics are directly visible in
the time-resolved cross-correlation between the two modes. This is shown in figure 6(c) where we plot the
corresponding g!?)(7) for the previously discussed detuning values. In the case of pronounced deterministic
oscillations (region I), the cross-correlation function has long exponential tails with a modulation at the
oscillation period. A time-resolved measurement of the second-order cross-correlation function can
therefore be used to gain further insight into the underlying deterministic dynamics.

The cross-correlation function and the dwell-time statistics can change significantly depending on the
injection parameters. We thus show the corresponding quantities along a detuning scan at an injection
strength of K = 0.2 in figure 7. Panels (a) and (b) show the cross-correlation depth gs(vzv)(O) and
cross-correlation time T, respectively. In panel (c) we show the corresponding dwell-time distribution for
weak-mode switching events £}<*¥. The horizontal axis represents the different times between switches (as in
figure 6) while the color code indicates the probability of a switch occurring with dwell time ;<. We show
the corresponding plots for K = 0.75 in appendix C.

The multi-peaked dwell-time distributions can be seen in the whole bistable region I. They form a
curved rippling structure in the (Avjp;, t4w)-plane as the underlying deterministic beating frequency
depends on the detuning Avj,;. The white lines in figure 7(c) are calculated from equation (9) and coincide
with the peaks in the dwell-time distribution. The ripple structure is most pronounced in the regions of
strong anti-correlation. This is accompanied by a significant increase in the correlation time, which can now
be understood from the deterministic oscillations introducing long-term correlations in the switching
dynamics. Conversely, close to the TC bifurcation in region II, a significant anti-correlation is observed,
while the correlation time remains relatively short. This is accompanied by the disappearance of the multi-
peaked structure in the dwell-time distribution as the imaginary part of the leading eigenvalue vanishes
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when approaching the TC bifurcation, thus suppressing the long-term correlation between the modes. In
contrast, the existence of a bistability greatly enhances the correlation time, as seen in region I [cf figure
4(d)]. In region III, behind the Hopf bifurcation that destabilizes the strong-mode oscillations, remnants of
the riple structure can be seen in figure 7(c) due to noise induced excitations of the former stable solution,
however with a correlation time close to zero. Within the locking region IV hardly any switches occur
[white in figure 7(c)] and the cross-correlation gs(fv’ (0) reaches 1, indicating no correlation. The dwell times
in optically injected micropillar lasers have not been directly measured and are accessible only via indirect
measures such as the cross-correlation time. In such measurements, correlation times of a few hundred

picoseconds to a few nanoseconds have been observed, which matches the results found here [6].

5. Conclusion

We characterized the stochastic emission of a two-mode micropillar laser under external optical injection
into its strong mode. The deterministic dynamics were investigated in terms of the bifurcation structure in
dependence of the injection strength and relative detuning frequency, revealing the interaction between the
two laser modes. Around the phase-locked region we found transitions between single-mode and two-mode
solutions, with significant regions of bistability which are delimited mainly by transcritical bifurcations of
fixed points and limit cycles. By comparison of the deterministic bifurcation analysis with the stochastic
simulations, we revealed the signatures of the underlying deterministic bifurcation structure in stochastic
measures. In particular, we found an enhanced anti-correlation between the two laser modes at these
bifurcations. This anti-correlation is found to be the result of enhanced stochastic mode-switching, i.e.,
intermittent emission on the respective weaker laser mode. Experimentally, the cross-correlation can be
measured even for the low output power encountered in these micropillar lasers, which could be used to
recreate the underlying bifurcation structure from the statistical analysis of high- /3 lasers.

Furthermore, we evaluated the stochastic dwell-time distribution of individual mode-switching events.
A multi-peaked dwell-time distribution is found in regions where the deterministic solutions possess an
intrinsic period, i.e., in foci or around periodic orbits. In regions of multistability between single-mode
beating oscillations and steady-state two-mode solution this multi-peaked distribution is especially
pronounced, and the deterministic dynamics introduce long-time correlations leading to a slowly decaying
cross-correlation between the laser modes. Instead, if no multistability exists, the dwell-time distribution
exhibits a single peak, as known from standard Kramers escape processes, and the correlation time is low.
These observations will aid the characterization of the dynamics of micropillar lasers and other low-power
devices by means of experimentally accessible quantities such as the second-order photon cross-correlation.
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Appendix A. Derivation of the cross-gain compression from the spin-flip model

We will derive the semi-classical model used throughout this paper from the established spin-flip model
[40, 50]. We start from the equations for left and right circularly polarized light E. and the associated
optical transition occupation probabilities p,,

C%Ei(t) = %Go (2p+(t) = 1) Ex(t) — KE4(t) — (ivp + 7a) Ex (1) (A.1)
d 0 T
a/’i(t) = api(t) T "u2|h22 2p=(t) — 1) [E=(0)]? (A.2)

with the phase and amplitude anisotropies, 7, and 7,, respectively, and the gain coefficient

hy 2790 |u]*T
Go = i "U/| 2.

= A3
gogpg V202 (A.3)

We define the following expressions:

p(0):= 3 (p4(0) + p-(1) (A4)

11
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Figure B1. Optical spectra of the strong (a) and weak (b) mode emission within region II defined in the above manuscript.
Different lines denote different detuning frequencies as indicated in the caption. K = 0.75.
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Figure C1. (a) Dwell-time distribution for different detuning Av;,; at K = 0.75 (solid lines) and for K = 0 (dashed line). (b)
Cross-correlation function ! (7) as a function of 7 for the detunings chosen in (a). Cf figure 6.

3p(1) =3 (p+(0) — p- (1) (A.5)
Ei():= % (B4 () + E_ (1)) (A.6)
E,(1):= % (B, (1) — E_(1)). (A7)

With these definitions, we can rewrite the field and gain equations in terms of the x and y polarization,
corresponding to strong and weak mode:

(%Ex(t) = %Go [(2p(£) = 1) Ex(t) + 20p(t)E, (1) ]| — KE(t) — (ivp + 7a) Ex(t) (A.8)
%Ey(t) = %Go [(2p(8) = 1) E,(£) + 26p(t) E(t) | — KE, (1) + (i + 7a) Ey (1) (A.9)
%p(t) = %pim - "Q';ZTZ p - 1) (EOF + [E0P) - “ l;Tz dp(t)Re (EX(DE,(D)  (A10)
d%ép(t) = —70p(1) — ";';Tz (2p — 1)Re (E(DE,(1)) — ";';Tz op(1) (IE«O* + [E,(0)*) . (A1)

We identify 2+, as the frequency difference between the two modes, and 27, the difference in the cavity
decay rate. The two linearly polarized modes are coupled via the population difference dp. In the limit of
fast spin relaxation rate, we can adiabatically eliminate the last dynamic equation by setting %5 p=0,
which yields the quasi-static relation

12
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Re (E; (1)E,(1))
00 4 |E (1) + |E (1)

[T,

op = (A.12)

We write E, = |E,|e!’ and set E, = |E|, such that 0 gives the phase difference between the two linearly
polarized modes. Inserting this into equation (A.8) yields:

d 1
SE() = -G |1
dr (#) =35 Go

2|E,(1)|*€" cos 0

A+ [EOP + B0

(2p(1) = 1) Ex(t) — KEL(t) — (ivp + 7a)Ex(2).  (A.13)
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Table D1. Parameters used in the simulations if not stated otherwise.

Parameter Value

Optical cavity losses, strong (weak) mode K (Ky) 39(38.5) ns~!
Dipole transition moment, strong (weak) mode s (py) 3.75(3.70) nm ey
Self-gain compression, strong (weak) mode £ (Eww) 10 (12) 10719 m?> W™!
Cross-gain compression, strong (weak) mode Eow (Ews) 16 (17.8) - 10710 m?> W!
Spontaneous emission [-factor 5 3.5%x 1073
Parasitic current I 2.3 pA

Pump efficiency n 5.96 x 10°°
Linewidth enhancement factor @ 1.69

Reservoir carrier life time T 1 ns

Effective scattering rate s 7 x 107" m? ps™!
Lasing mode volume %4 5 ym?
Number of (in)active QDs Zgr[‘)m) 312(938)
Background refractive index g 3.34

QD life time, slave laser Tep 155 ps

Mode area A 15 um?

Photon energy hw 1.38 eV

Initial gain value strong (weak) mode g 5.36 (5.21) m> V257!

For the noise-dominated and anti-correlated dynamics observed in the studied micropillar laser, we can
assume 6 to be randomly and uniformly distributed. We thus calculate the phase-average of the above

: : i0 _ 1.
equation using (¢ cos 6) = 3:

d 1 Gy .
&Ex(t) — EW (Zp(t) - 1)Ex(t) - KEx(t) - (l’yp + ’Ya)Ex(t) (A14)
where .
2h%y, -
£i= <|u2T2 + Ex(t)2> ) (A.15)

2, .
The second term can be neglected for \Ex(l‘)|2 < ‘ZNL‘LZ%, which, for our parameters, corresponds to output
powers below =~ 10 uW. The remaining term yields the cross-gain compression factor, with an equivalent

expression for %Ey(t).

Appendix B. Optical spectra in region II

The dual-mode fixed-point region, labeled region II in the above manuscript, corresponds to the IL + PS
region found in [25]. However, within this region the injected mode (strong mode) is not in a traditional
locked state. As was observed in reference [25] and in our manuscript, the injected mode intensity in this
dynamical region drops below its free-running value. This indicates a destructive interference between the
injected light and the laser mode. If the other mode was not present, the injected mode would be unlocked
in this region. In the stochastic simulation this leads to an onset of (mostly spontaneous) emission at the
free-running strong mode frequency with increasing detuning values. This is shown in the figure B1(a)
where optical spectra are displayed. The peak at 0GHz (free running strong mode frequency) becomes more
prominent with increasing detuning. The weak-mode emission (panel b) instead becomes more coherent as
its optical power increases with increasing detuning, quickly reaching ¢* (0)-values of 1. This smooth
transition from an injection-locked strong mode to incoherent emission is one example of the strong
spontaneous emission significantly changing the dynamics from the corresponding deterministic
prediction.

Appendix C. Dwell times for K = 0.75

Here we show the dwell-time dynamics of the laser at the higher injection strength K = 0.75. Figure Cl1
shows the dwell-time distribution for weak-mode peaks and strong-mode peaks in a semi-logarithmic
representation in panel (a) and (b), and the cross-correlation function gg‘zv)T between the strong and weak
modes in panel (c) at certain detunings. In figure C2 we show the cross-correlation at 7 = 0 (panel (a)), the
correlation time (panel (b)), and the dwell-time histogram of the weak-mode emission (panel (c)) as a
function of the injection detuning. Additionally, figure C3 shows the same as figure C2 but with the
dwell-time histogram of the strong-mode emission in panel (c).
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Appendix D. Parameters

See table D1.
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