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Abstract

ℓp-norm minimization plays a significant role in a variety of disciplines. It is not only
important for the signal recovery in compressed sensing but also beneficial for finding
meaningful signal representations as for the sparse and anti-sparse coding related
applications. Therefore, minimizing ℓp-norms in an efficient manner sparked interest in
a variety of works.

This thesis is concerned with the noise-constrained ℓp-norm minimization for 1 ≤
p ≤ ∞. Although there are various optimization problem formulations that may be used
to minimize an ℓp-norm, constraining the noise can offer a more meaningful optimization
problem definition since when there is a known noise tolerance in an application, one
can simply canalise it into the optimization problem and formulate exactly what to
solve. Thus, it is often easier to set the noise tolerance from the optimization perspective.
Despite this, there is a lack of computationally efficient algorithms in the literature
for the noise-constrained ℓp-norm minimization problem because its feasible area can
be complicated. Different optimization problem formulations can provide equivalent
solutions and some of them might be easier to solve than the others. Therefore, it
might be tempting to solve a computationally efficient problem in order to have the
solution to another one. In this thesis, we solved constrained ℓp-norm regularization to
reach the solution of the noise-constrained ℓp-norm problem. We introduce optimality
tracing based ℓp-norm minimization approaches with simple root finding iterations
for 1 ≤ p ≤ ∞. The optimality trade-off between both objectives, the ℓp-norm and a
loss function that measures the data misfit, is formulated as a nonlinear equation root
finding problem. We present and employ several simple, derivative-free and cost-efficient
nonlinear equation root finding methods to trace this optimality over a Pareto frontier.
Some of these root finding methods do not require differentiable loss functions and
are applicable for both convex and nonconvex data misfits and extend such problems
to a broader class of applications. We also introduce a warm-start strategy of taking
linear least-squares solution with the one that has minimum ℓ2-norm which is named
method of frames (MOF) as an input to require fewer iterations. This warm-start
may provide flexible and meaningful starting point initialization for many applications
where MOF already exists and can be improved with a better understanding of finite-
dimensional geometry, e.g. n-widths. The impact of the overcomplete matrix on the



convergence rate of some of the presented approaches is demonstrated for matrices
fulfilling the Uniform Uncertainty Principle and Uncertainty Principle. These properties
were formerly introduced to analyze the performance of random matrices for ℓ1 and
ℓ∞-norm related applications respectively.

In the last part of the thesis, i.e. in Chapter 7, ℓp-norm minimization related
applications are probed with using several loss functions such as least-squares, Huber
and a nonconvex penalty Student’s t. ℓ1-norm is minimized with a typical compressed
sensing example. Also, a generic test benchmark is utilized for the comparison of
the nonlinear equation root finders for ℓ1-norm minimization. A new communication
scheme is introduced by minimizing ℓ∞-norm. Outlier detection problem is studied
with the minimized ℓ∞-norm, and a prior is offered for the minimized ℓ∞-norm with
its performance on peak-to-average power ratio (PAPR). Noise-constrained nuclear
norm is minimized as well for the Euclidean distance matrix completion problem with
the application of wireless sensor network localization.
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Zusammenfassung

Die Minimierung von ℓp-Normen spielt in einer Vielzahl von Disziplinen eine bedeutende
Rolle. Sie ist nicht nur wichtig für die Signalwiederherstellung bei der komprimierten
Abtastung, sondern auch nützlich, um sinnvolle Signaldarstellungen zu finden, wie
für Anwendungen mit geringer und anti-sparse Codierung. Daher hat die effiziente
Minimierung von ℓp-Normen das Interesse an einer Vielzahl von Arbeiten geweckt.

Diese Dissertation beschäftigt sich mit der rauschbeschränkten ℓp-Normminimierung
für 1 ≤ p ≤ ∞. Obwohl es verschiedene Formulierungen von Optimierungsproblemen
gibt, die verwendet werden können, um eine ℓp-Norm zu minimieren, kann die
Beschränkung des Rauschens eine sinnvollere Definition des Optimierungsproblems
bieten. Bei bekannter Rauschtoleranz in einer Anwendung kann man diese in
das Optimierungsproblem kanalisieren/integrieren/einbauen und genau formulieren,
was/welches Problem zu lösen ist. Daher ist es aus Optimierungssicht oft einfacher,
die Rauschtoleranz einzustellen. Trotzdem fehlt es in der Literatur an recheneffi-
zienten Algorithmen für das rauschbeschränkte ℓp-Norm-Minimierungsproblem, da
sein zulässiger Bereich kompliziert sein kann. Verschiedene Formulierungen von
Optimierungsproblemen können äquivalente Lösungen liefern und einige von ihnen
sind möglicherweise einfacher zu lösen als andere. Daher kann es verlockend sein, ein
recheneffizientes Problem zu lösen, um die Lösung für ein anderes zu erhalten. In dieser
Arbeit wurde die eingeschränkte ℓp-Norm-Regularisierung gelöst, um die Lösung des
rauschbeschränkten ℓp-Norm-Problems zu erreichen. Die auf der Optimalitätsverfolgung
basierenden ℓp-Norm-Minimierungsansätze mit einfachen Wurzelfindungsiterationen
für 1 ≤ p ≤ ∞ werden hierzu vorgestellt. Der Optimalitäts-Trade-off zwischen
beiden Zielen, der ℓp-Norm und einer Verlustfunktion, die die Datenfehlanpassung
misst, wird als nichtlineares Gleichungswurzelfindungsproblem formuliert. Mehrere
einfache, ableitungsfreie und kosteneffiziente Methoden zum Auffinden von nichtlinearen
Gleichungswurzeln werden präsentiert und verwendet, um diese Optimalität über
eine Pareto-Grenze zu verfolgen. Einige dieser Wurzelfindungsverfahren erfordern
keine differenzierbaren Verlustfunktionen und sind sowohl für konvexe als auch für
nichtkonvexe Datenfehlanpassungen anwendbar und erweitern solche Probleme auf
eine breitere Klasse von Anwendungen. Wir führen auch eine Warmstart-Strategie ein,
die eine lineare Lösung der kleinsten Quadrate mit derjenigen mit minimaler ℓ2-Norm,



die method of frames (MOF) heißt, als Eingabe verwendet, um weniger Iterationen
zu erfordern. Dieser Warmstart kann für viele Anwendungen, bei denen MOF bereits
existiert, eine flexible und sinnvolle Startpunktinitialisierung bieten und durch ein
besseres Verständnis der endlichdimensionalen Geometrie verbessert werden, z.B. n-
widths. Der Einfluss der übervollständigen Matrix auf die Konvergenzrate einiger der
vorgestellten Ansätze wird für Matrizen gezeigt, die das Uniform Uncertainty Principle
und das Uncertainty Principle erfüllen. Diese Eigenschaften wurden früher eingeführt,
um die Leistung von Zufallsmatrizen für ℓ1- bzw. ℓ∞-normbezogene Anwendungen zu
analysieren.

Im letzten Teil der Arbeit, d. h. in Kapitel 7, werden ℓp-Norm-Minimierungs-
bezogene Anwendungen mit verschiedenen Verlustfunktionen wie Least-Squares, Huber
und einer nichtkonvexen Penalty untersucht Student’s t. ℓ1-norm wird mit einem
typischen Compressed-Sensing-Beispiel minimiert. Außerdem wird ein generischer
Testbenchmark für den Vergleich der nichtlinearen Gleichungswurzelfinder für die
ℓ1-Norm-Minimierung verwendet. Durch Minimierung der ℓ∞-Norm wird ein neues
Kommunikationsschema eingeführt. Das Problem der Ausreißererkennung wird mit der
minimierten ℓ∞-Norm untersucht und ein Prior wird für die minimierte ℓ∞-Norm mit
ihrer Leistung auf peak-to-average power ratio (PAPR) angeboten. Die rauschbeschränk-
te Nuklearnorm wird auch für das Euklidische Distanzmatrix-Ergänzungsproblem mit
der Anwendung der drahtlosen Sensornetzwerklokalisierung minimiert.
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Chapter 1

Introduction

1.1 Motivation

ℓp-norm minimization is an important subject in a wide range of fields and applications
involving ℓp-norm minimization can be broadly divided into two categories.

The first category of ℓp-norm minimization problems pertains to the nonlinear
decoding, associates the applications of signal recovery and applied in compressive
sensing (CS) which is a procedure of reconstructing signals from a very few samples
and an emerging topic in signal processing, statistics, wireless communication, physics
and more after the prominent works of [Can+06; CRT06; CT06a],[Don06]. CS can
recover a signal from some incoherent measurements with a sampling rate significantly
lower than the Nyquist rate by using the fact that a signal is sparse in some transform
domain [Yar15]. For problems like compression [SCE01], image processing [PM92],
denoising [DD95], sparse signals and the concept of sparsity have been widely utilized
in signal processing. Mathematically, when a signal x has at most k nonzero elements,
it is said to be k-sparse, in other expression ∥x∥0 ≤ k. For a given linear map of a
signal x and under the assumption that the original signal x is sparse or compressible,
it is instinctive to minimize ∥x∥0 to recover sparse x from this linear mapping under the
constraint of some consistency [FR13]. However, ℓp-norms are nonconvex for p ∈ [0, 1),
and hence minimizing ∥x∥0 is difficult, computationally infeasible and NP-hard [Mut05;
Nat95]. Convex problems are computationally tractable and can be solved efficiently
with various optimization tools. ∥x∥1 is convex and also promotes sparsity, therefore
minimizing ∥x∥1 instead of ∥x∥0 makes the sparse recovery problem tractable and
solvable with several fast solvers.

The second category of ℓp-norm minimization problems involves the applications
that seek meaningful signal representations. They are referred to as pursuit of
overcomplete signal representations since the signal representations are found by using
an overcomplete matrix. Overcomplete signal representations provide many important
advantages like robustness to additive and quantization noise, resilience to erasures
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1. Introduction

and losses on the (communication) channel and design freedom for many problems
in signal processing, communications and information theory for the applications
in various areas such as coding theory [HP02], analog-to-digital converters [BH01;
BPY06], compressive sensing (CS) [CT06b], code division multiple access (CDMA)
[VA99], orthogonal frequency division multiplexing (OFDM) systems [CA07], denoising
[Dra+03], segmentation and classification [Uns95], multiantenna code design [Sho+01],
robust transmission [GKV99; GKK01], etc. Overcomplete signal representations can be
obtained in several ways and one important class of the overcomplete representations is a
representation with minimal ℓp-norm which can be obtained by solving an optimization
problem with the ℓp-norm regularizer and a penalty function to calculate the data
misfit. We call ℓp-norm representations for the overcomplete representations that are
obtained via minimizing an ℓp-norm.

ℓp-norm minimization is a significant topic in a variety of fields, therefore efficient
solvers are required. In this thesis, we introduce ℓp-norm minimization methods for
convex ℓp-norms, i.e. ℓp-norms for 1 ≤ p ≤ ∞, with simple root finding iterations. We
are particularly interested in the noise-constrained ℓp-norm minimization. Although
there are numerous optimization problem formulations that can be used to minimize an
ℓp-norm, constraining the noise can provide a more meaningful optimization problem
definition because when there is a known noise tolerance in an application, it can
simply be inserted into the optimization problem and clearly formulate what to
solve. Despite this, there are certain problems in addressing noise-constrained ℓp-
norm minimization and plentiful computationally more efficient methods have been
proposed for several forms of ℓp-norm minimization problem than the noise-constrained
one. Since several optimization formulations can provide equivalent solutions, we
solved a relatively simpler problem and used its solution to reach the solution of
noise-constrained ℓp-norm minimization problem by tracing the optimality between the
objectives ℓp-norm and a loss function which measures the data misfit. This optimality
tracing is formulated as a nonlinear equation root finding problem and several methods
are introduced and employed to solve it. The given root finders in this thesis can
handle both non-differentiable and nonconvex loss functions, which extends the ℓp-norm
minimization problems to a broader class of applications.

Unitary ℓp-norm balls for some different p values are depicted in Figure 1.1.

1.2 ℓp-norm Minimization

Let us assume that D ∈ RM×N is an overcomplete matrix (can also commonly named
as frame matrix) with the redundancy ratio ω = N

M where M < N , consider the
ℓp-norm as a regularizer and ρ as a gauge12 penalty to ensure data consistency, in

1A function ρ is called a gauge if it is nonnegative, positively homogeneous, convex and ρ(0) = 0.
2In this thesis, we considered ρ as to be a gauge for our analysis.
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Figure 1.1: Unitary ℓp-norm balls for some different p.

order to obtain an ℓp-norm representation of a signal y ∈ RM , or in other words
recover an original x ∈ RN from a given measurement y ∈ RM , first commonly utilized
formulation is called noise-aware (or noise-constrained) ℓp-norm minimization problem
and can be depicted as

(Ppσ) minimize
x∈RN

∥x∥p s.t. ρ(y − Dx) ≤ σ,

where σ indicates the noise tolerance level. Second one is an unconstrained optimization
problem, can be considered as a Lagrangian reformulation of (Ppσ), and interpreted
such

(Ppλ) minimize
x∈RN

λ ∥x∥p + ρ(y − Dx),

where 0 < λ is related to the Lagrange multiplier of the constraint in (Pσ) and controls
the trade-off between the data misfit and the ℓp-norm. Third approach is the ℓp-norm
constrained problem, which is

(Ppτ ) minimize
x∈RN

ρ(y − Dx) s.t. ∥x∥p ≤ τ.

Among these optimization problems, (Ppσ) is one of the most desired formulation to
solve because of its real-life implication, e.g. when there is a known noise tolerance in
an application, one can simply canalise it into the optimization problem and formulate
exactly what to solve. Thus, it is often easier to set σ rather than λ and τ . Despite this,
there are numerous computationally efficient algorithms introduced to solve (Ppλ) and
(Ppτ ) for several penalty functions which makes them more appealing and preferable to
deal with rather than (Ppσ).

Taking into account that (Ppσ), (Ppλ) and (Ppτ ) can provide equivalent solutions
[FR13], the idea of solving (Ppτ ) to obtain the solution of (Ppσ) is presented in [BF09;
BF11] and applied for the ℓ1-norm minimization. Their idea is based on tracing the
optimal trade-off between the minimum ℓp-norm and a differentiable convex Pareto
frontier which is the data misfit function. This optimality tracing is formulized as a
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non-linear equation root finding problem for a given σ such as

find τ such that ρ(rτ ) = σ, (1.1)

where rτ = y − Dxτ is the residual for xτ which is the optimal solution of the (Ppτ ).
Finding the τ that satisfies the noise tolerance condition in (1.1) is important, because
then instead of solving (Ppσ), solving (Ppτ ) that satisfies the condition in (1.1) can be
an option since they will share the equivalent solution on the Pareto optimality.

The same concept of solving (Ppσ) by tracing the Pareto optimal solutions has also
been applied in [GLW12]. In order to solve (P1

τ ), an accelerated proximal gradient
method is utilized in [GLW12], while a spectral gradient-projection method was employed
in [BF09; BF11]. These works use convex losses and employ Newton’s root finding
method to solve (1.1). Newton’s method requires differentiable loss functions, thus an
inexact secant method has also been developed to address the differentiability issue
in [Ara+19]. Ensuingly, it has been shown that the relationship between (Ppσ) and
(Ppτ ) does not require convexity [ABF13].

Newton’s, secant and their vaiants can not guarantee to solve (1.1) if ρ is a
nonconvex loss since the tangent or secant lines may cross the feasible region and can
arrive to a negative τ . Hence, new root finding methods which are applicable for both
convex and nonconvex losses can extend the problems (Ppσ), (Ppλ) and (Ppτ ) to the wider
class of applications. Furthermore, Newton’s method requires differentiable function
in τ and derivative calculation of a loss function can be a costly operation in most of
the cases. Beside differentiable loss function necessity and not offering convergence
guarantee for a nonconvex ρ, Newton’s method does not allow flexible starting points
as well. For example, τ = 0 is taken as an initial starting point of the Newton’s
method in [BF09; GLW12; BF11; Van09]. If ρ is convex, ρ(rτ ) is convex decreasing
in τ [Van09] and τ = 0 can be considered as a good starting point for convergence
speed since the absolute value of the derivative of a convex decreasing function also
decreases with the function itself (envelope), however τ = 0 relates to the maximum of
the Pareto frontier and occurs at the maximum noise tolerance since the data misfit
decreases in τ [Van09], i.e. it is the farthest point from the solution of small σ values.
Higher values of τ causes lower step sizes for Newton’s method iterations or even a
divergence. Thus, Newton’s method can not offer much flexibility about a warm-start
strategy, however designing algorithms with a warm-start strategy that can lead to
costly efficient iterations could be important.

1.3 Outline and Contributions of the Thesis

In this thesis, we introduce nonlinear equation root finding approaches to solve the
problem (Ppσ) for 1 ≤ p ≤ ∞. Some of these root finding methods do not require
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differentiable loss functions and are applicable for both convex and nonconvex data
misfits and extends ℓp-norm minimization problems to a broader class of applications.
We also introduce an n-widths based warm-start strategy that provides meaningful
and flexible starting point in many fields and accelerates (Ppσ) solving. For matrices
satisfying the uniform uncertainty principle (UUP) and uncertainty principle (UP),
the impact of the overcomplete matrix on the convergence rate of some of the provided
methods is presented. UUP and UP were formerly developed to investigate the
performance of random matrices in ℓ1 and ℓ∞-norm related applications. This thesis
is outlined as follows.

Chapter 2 introduces the frames and establishes the foundation for overcomplete
representations. We remind that ℓp-norm minimization problems are formulated with
using overcomplete matrices. Therefore, frame theory is required to comprehend
overcomplete representations and ℓp-norm minimization. MOF and some ℓp-norms as
overcomplete representations are also described in this chapter.

Chapter 3 explains the relation between finite-dimensional geometry in approxi-
mation theory and ℓp-norm representations using the concept n-widths. Unit ball in a
normed space should satisfy some inequalities that can be expressed by n-widths. We
use them to introduce ℓp-norm representation levels, which play an important role for
our warm-start strategy.

Chapter 4 presents the matrix properties UUP and UP, which are developed to
investigate the performance of random matrices in ℓ1 and ℓ∞-norm related applications.
UUP and UP are important properties for understanding the performance of the
measurement matrix for related recovery or representation methods. UUP and UP for
some random matrices are given as well.

In Chapter 5, we present Pareto approach for (Ppσ) minimization. The idea here
is to trace the optimality trade-off between an ℓp-norm and a loss function, which
makes possible to (Ppσ) by solving relatively considered to be simpler problem of (Ppτ ).
This optimality tracing is formulated as nonlinear equaiton root finding problem. We
introduce and propose several nonlinear equation root finders to make solving (Ppσ)
easier with simple iterations. We divided root finders into categories according to
whether they bracket the root or not. Every root finders have different benefits, e.g.
bracketing-type root finders ensure convergence while open-type ones usually converge
fast. Some of these root finding methods do not require differentiable loss functions
and are applicable for both convex and nonconvex data misfits and extends (Ppσ) to
a wider range of applications. Moving outside of the convex class opens the door to
many useful nonconvex models in (Ppσ) formulations and is an appealing feature since
loss functions in real-world applications are more likely to be nonconvex [GBC16]. For
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example, [SBV10] and [BG11] consider mixture models whose negative log-likelihood
are nonconvex, with applications to high-dimensional inhomogeneous data where the
number of covariates could be larger than sample size. Nonconvex losses are more
difficult to cope with, but they can outperform their convex counterparts [MBM18;
VAS21]. For instance, [ABP12; ABP13; Ara+12] use nonconvex Student’s t likelihoods
to develop outlier-robust approaches. In this chapter, we also introduce a warm-start
strategy based on n-widths to require less iterations for solving (Ppσ). Applicability of
nonconvex losses are also inspected.

Chapter 6 presents the steps of solving (Ppσ) which requires (Ppτ ) solvers and
nonlinear equation root finders. We employ both projected gradient and projection-free
Frank-Wolfe methods to solve (Ppτ ).

In Chapter 7, ℓp-norm related applications are investigated with some loss
functions including a nonconvex one. (Ppσ) is solved with some of the introduced
approaches in this dissertation. ℓ1-norm is minimized with a typical compressed sensing
example. With minimizing ℓ∞-norm a new communication architecture is introduced,
outlier detection problem is studied and a prior is proposed for the minimized ℓ∞-
norm based on its performance on PAPR. With the applications of noisy Euclidean
distance realization and wireless sensor network localization, the noise-constrained
nuclear norm is also minimized with the introduced Pareto approach for the Euclidean
distance matrix completion problem. Parts of the material in Chapter 7 were previously
published in [1], [2], [3], [4], [7], [8].

In Chapter 8, we summarize our findings and contributions.

Further results that are not part of this dissertation
During my doctoral study, we obtained some results that are not part of this

dissertation.
- In [5], we develop a novel semi-definite programming method to improve the

localization estimation accuracy in noisy non-line-of-sight environments especially when
there is not enough understanding of the environment. In addition to the localization
approach, an innovative obstacle prediction method in such surroundings is proposed.
Simulation results are significantly better than for existing similar approaches in the
literature.

- In [9], some physical layer design approaches for quantize and forward strategies
are investigated to improve and support machine type communication in existing and
near future small-cell networks. Quantization effects on sum rate, equalization and
soft demodulation are investigated with the introduced approaches.
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1.4 Notations

Copyright Information
Parts of this thesis have already been published as journal articles and in conference

and workshop proceedings as listed in the "List of Publication" on page 117. These
parts, which are, up to minor modifications, identical with the corresponding scientific
publication are copyrighted by the IEEE.

1.4 Notations

About notation, bold lowercase letters are used for vectors and bold uppercase letters
stand for matrices. supp(x) stands for the support of a vector x, which is the set of
the indices corresponding to the non-zero elements in the vector x. p∗ represents the
dual norm index of p, i.e. 1/p+ 1/p∗ = 1 and the ℓp-norm of a vector x ∈ RN is given
as follows:

||x||p =


(︄
N∑︁
i=1

|xi|p
)︄ 1

p

if 1 < p < ∞,

max
i∈{1,...,N}

{|xi|} if p = ∞.

(1.2)

The Frobenius norm defined as ||X||F =
√︂

tr(XXT ). ρ◦ represents the polar of a gauge
function ρ and defined as

ρ◦(a) := sup
b

{bTa| ρ(b) ≤ 1}. (1.3)

Reminding that if ρ is an ℓp-norm then ρ◦ is the dual norm [ROC70], and the convex
conjugate of a function f(a) is defined as

f∗(b) := sup
a

{bTa − f(a)}. (1.4)

sign is the signum function is defined as follows:

sign(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

(1.5)

BNp ≜ {c ∈ RN : ∥c∥p ≤ 1} is the unit ball in ℓp.
Apart from the above introduced notation, we also use the following symbols:
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Further notations

R the set of real numbers
C the set of complex numbers
P {.} probability
E[.] expectation operator
projB projection on set B
prox proximal operator
:= equal by definition
⊆ subset
∩ intersection
◦ Hadamard product
exp exponential function
sech hyperbolic secant
tanh hyperbolic tangent
log(.) the base 2 logarithm log2(.)
1 vector of all ones
tr (.) the trace operator
⌈.⌉ ceiling function that maps a real number to closest greater or equal integer
⟨., .⟩ inner product
∀ for all
|.| cardinality of a set or absolute value of a scalar
∇ gradient
Diag(X) diagonal entries of matrix X
O(.) order of the function
min minimum
max maximum
arg min argument of the minimum
I the identity matrix
(.)T transpose of a vector or matrix
(.)−1 inverse of a matrix
(.)∗ adjoint of a matrix
(.)† Moore–Penrose inverse
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Chapter 2

Frame Theory and Overcomplete
Representations

Frames were introduced for the first time by Duffin and Schaeffer [DS52] and have
gained increasing interest in many applications, specifically the aspect of redundant
linear signal expansion namely overcomplete representations, through these works
[Dau88; Dau90; Dau92; DGM09; HW89; Sid98]. In an overcomplete representation
the number of basis vectors is greater than the dimensionality of the input. Also, the
overcomplete representation of an input is not a unique combination of basis vectors and
there are infinitely many representation possibilities. Having representation solutions
regarding the number of basis vectors can be classified such:

• If the number of basis vectors is greater than the dimensionality of the input
data, we have infinitely many solutions. This is the overcomplete representation
case.

• If the number of basis vectors is equal to the dimensionality of the input data,
we have a unique solution.

• If the number of basis vectors is smaller than the dimensionality of the input
data, we may have no solutions. This condition occurs in the non-redundant
representation case.

Main disadvantage of non-redundant signal expansions is that any loss, corruption
or erasure of expansion coefficients can cause crucial reconstruction errors. On the
contrary, it is well-known that the frame based overcomplete signal representations offer
robustness to additive and quantization noise, resilience to erausures and losses on the
channel and design freedom for many problems in communications, signal processing
and information theory. The idea of using them is to benefit from the redundancy of
the frame both in the case of random losses of transmitted signal by alleviating the
reconstruction error and existing noises like quantization and/or channel. Distributing
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2. Frame Theory and Overcomplete Representations

the information (most preferably equally) among the transmitted signal and creating
dependency between transmitted signal elements is an important topic here since
dependency between these signal elements is a necessity to reconstruct the source
vector. Because of these appealing properties, overcomplete representations have been
studied in several different fields. A pleasant literature review about overcomplete
representations and applications can be found in [BES06; KC08] and references therein.

2.1 Frame-Based Approaches as Decomposition into Over-
complete Systems

Let us introduce a simple motivating signal expansion example.

V1

V2 V3

1

1

Figure 2.1: The Mercedes-Benz frame.

Example 2.1. (Mercedes-Benz Frame [KC08]). Consider following vectors

v1 =
[︄
0
1

]︄
, v2 =

[︄
−

√
3/2

−1/2

]︄
, v3 =

[︄√
3/2

−1/2

]︄
, (2.1)

in R2. Vectors v1, v2 and v3 forms the Mercedes-Benz frame which is depicted in
Figure 2.1. A signal y can be represented as the following linear combination of the
basis vectors v1, v2 and v3 such:

y = ⟨y,v1⟩v1 + ⟨y,v2⟩v2 + ⟨y,v3⟩v3. (2.2)

10



2.1 Frame-Based Approaches as Decomposition into Overcomplete Systems

Let us define the expansion coefficients as

x =


x1

x2

x3

 :=


⟨y,v1⟩
⟨y,v2⟩
⟨y,v3⟩

 =


vT1
vT2
vT3

y, (2.3)

and define the matrix

T :=


vT1
vT2
vT3

 =


0 1

−
√

3/2 −1/2
√

3/2 −1/2

 . (2.4)

Then it will be
x = Ty. (2.5)

The matrix T is called analysis operator which multiplies the signal y to generate the
representation vector and the signal y can be reconstructed from the representation
vector x such

y = TTx. (2.6)

The adjoint T∗ of the analysis operator T is called the synthesis operator.

Definition 2.1. A matrix TT ∈ RM×N with M ≤ N is a frame matrix where it
columns are set of vectors and satisfies following frame condition: if there exists
0 < A ≤ B < ∞ such that

A||t||22 ≤ ||Tt||22 ≤ B||t||22, (2.7)

holds for any vector t ∈ RM . A and B are called as lower and upper frame bounds
(A ∈ R, B ∈ R) respectively.
A frame is called

• tight frame if A = B,

• normalized tight frame (or Parseval) frame if A = B = 1,

• uniform frame if all of its rows have the equal norm and A = B,

• uniform tight frame if all of its rows have the same norm equal to 1 and A = B.
For a uniform frame, frame bound gives the redundancy ratio.

A shorthand formulation of (2.7) is

AIM ≤ TTT ≤ BIM , (2.8)

where IM is the M ×M identity matrix, and AIM = BIM = TTT if and only if TT is
a tight frame operator.
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2.2 Method of Frames

Overcomplete representation of a signal can be obtained in several ways as indicated
in [CDS01]. Some methods are matching pursuit [MZ93], basis pursuit [CDS01; CD94]
and best orthogonal basis [CW92]. Besides these methods, one of the well-known
decomposition into an overcomplete system method is called method of frames (MOF),
proposed in [Dau88]. MOF yields the linear least-squares solution with the minimum
ℓ2-norm.

Let us denote the MOF with xMF , then

xMF = arg min
x∈RN

{∥x∥2 s.t. y = Dx} . (2.9)

xMF can be obtained with the Moore–Penrose inverse linear mapping such that
xMF = D†y.

A similar notion, frame expansion, is the case when the signal to be represented is
expanded by a frame matrix [GKV99; GKK01]. It has very close relation with the
MOF related with the frame bounds. A frame expansion of y denoted as xF = DTy
(and xF = AxMF = BxMF for tight frames since AIM = BIM = DDT ). For the
clearness of this work, analysis will be based on MOF in this thesis, however since
frame expansions have an important place in many fields, its relation with MOF is
pointed out as well.

Frame-based approaches as decomposition into overcomplete systems are not unique
and different applications may require different goals. Thus, several disciplines have
been looking for finding useful redundant representations using frames instead of frame
(or MOF) representations. Most obvious example for that is the ℓ1-norm representation
where most of the representation coefficients are equal to 0. Another, relatively very less
investigated, example is the ℓ∞-norm representation where most of the representation
coefficients are equal.

2.3 Some ℓp-norms as Approximate Overcomplete Repre-
sentations

ℓp-norms are used for finding approximate overcomplete representations for several
purposes in many applications and can be obtained by solving optimization problems
such (Ppσ), (Ppτ ) and (Ppλ). Because these optimization problems can take noise into
account, ℓp-norms are used to find approximate overcomplete representations. If σ = 0,
then the representations become exact.
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2.3.1 ℓ1-norm Representations

ℓ1-norm representations, also called sparse representations, are powerful tools for many
purposes like compressing, representing, efficiently acquiring and reconstructing of
signals, etc. Moreover, they have been widely used in recent years [Wri+10; DE03;
Ela10; EFM10; Fuc04; ZEP10; GN03; Yan+11; Mo+13; Nik+15]. The main purpose
of the sparse representations is to represent signals with as few meaningful coefficients
as possible. A comprehensive literature review about sparse representations and
applications can be found in [Zha+15] and references therein.

2.3.2 ℓ2-norm Representations

Finding ℓ2-norm representations, which can also be named least-squares representations,
is very common in many disciplines particularly in signal processing and communication
applications. For instance, ℓ2-norm representations are used for least-squares precoding,
i.e. linear zero-forcing precoding, as well as [SL13]. It is very commonly used in
communication because of computational efficiency, in contrast to other linear precoding
strategies [WES08].

The main motivation of minimizing ℓ2-norm is to find a representation with the
minimum energy. Particularly, when there is no noise, the solution of (P2

σ) will have
a closed form and unique solution which makes solving the optimization problem
unnecessary. This solution was formerly introduced as MOF.

2.3.3 ℓ∞-norm Representations

Although ℓ1 and ℓ2-norm representations are well studied, ℓ∞-norm representations
(can also be named as Kashin’s, democratic, spread, anti-sparse representations in
different studies) did not get the attention it deserved. It is a very useful instrument
in many applications such as peak-to-average power ratio (PAPR) reduction, vector
quantization, approximate neighbour search and control engineering [Stu+14], [SYB12].
The most appealing feature of the ℓ∞-norm minimization problem is to provide
democratic representation by enforcing the signal to be spread evenly [JFF11; Fuc11].
Lyubarskii presented that some frames that satisfy some properties yield computable
ℓ∞-norm representations that empower the representation with the smallest possible
dynamic range [LV10]. Studer proposed algorithms to obtain as they called democratic
representations and utilized them for peak to average power ratio reduction in multi-
carrier transmissions on orthogonal frequency division multiplexing systems [Stu+14;
SYB12; SL13]. [JFF11] and [VJS17a] both presented new methods to obtain these ℓ∞-
norm minimized representations and used them to perform better approximate nearest
neighbour search. [ECD17] and [VJS17b] approached this topic in a probabilistic
perspective and proposed priors. Minimized ℓ∞-norms are also utilized for robust
beamforming in [Jia+18] and for minimum-effort control problem in [Neu62; Cad71].
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2. Frame Theory and Overcomplete Representations

[FJ09] studied the relationship between the PAPR and achievable data rates via
ℓ∞-norm representations while [EH20] proposed a methodology to accelerate solving
the ℓ∞-norm minimization problem.

An example of ℓp-norm representations are depicted in Figure 2.3. A signal
y ∈ R75, plotted in Figure 2.2, is created and an example of its ℓ1, ℓ2 and ℓ∞-norm
representations, x ∈ R200, is generated with a normally distributed Parseval frame
D ∈ R75×200 via solving (Ppσ) with σ = 0.
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Figure 2.2: A signal y to be represented.
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Figure 2.3: From top to bottom, examples of ℓ1, ℓ2 and ℓ∞-norm representations.
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Chapter 3

n-widths and ℓp-norm
Representations

Finite-dimensional geometry in approximation theory helps us to understand the
relation between the ℓp-norm representation and the concept n-widths.

3.1 Gelfand n-widths

In this work, we utilize the Gelfand n-widths for our analysis. Comprehensive analysis
about n-widths can be found in [Pin85].

Definition 3.1. Let us denote ℓNq to represent ℓq-norm of a vector in RN and BNp ≜

{c ∈ RN : ∥c∥p ≤ 1} is the unit ball in ℓNq . For a normed linear space ℓNq and a
closed, convex, centrally symmetric subset like BNp , the Gelfand n-width is defined as

dn(BNp )ℓNq := inf
Ln

sup
x∈BN

p ∩Ln

∥x∥q , (3.1)

where Ln is a subspaces that varies over all subspaces of ℓNq of codimension n.

Corollary 3.1. Gelfand widths satisfy the inequality dn(BNp )ℓNq ≤ dn(BNq∗)ℓNp .

17



3. n-widths and ℓp-norm Representations

Proof.

dn(BNp )ℓNq = inf
Ln

sup
a∈BN

p ∩Ln

∥a∥q ≤ sup
a∈BN

p ∩Ln

∥a∥q

= sup
a∈BN

p ∩Ln

sup
b∈BN

q∗

⟨a,b⟩

= sup
a∈BN

p ∩Ln

sup
b∈BN

q∗ ∩Ln

⟨a,b⟩

= sup
b∈BN

q∗ ∩Ln

sup
a∈BN

p ∩Ln

⟨a,b⟩

≤ sup
b∈BN

q∗ ∩Ln

∥b∥p∗ sup
a∈BN

p ∩Ln

∥a∥p

≤ sup
b∈BN

q∗ ∩Ln

∥b∥p∗ sup
a∈BN

p

∥a∥p = dn(BNq∗)ℓNp

(3.2)

3.2 n-widths and ℓp-norm Representations

In order to obtain an ℓp-norm representation of a signal y ∈ RM , D is introduced as a
measurement matrix, can also be considered as an encoder, that maps RN into RM ,
where N > M such

y = Dx. (3.3)

We are aware that y holds information about x.
Allow us define a decoder, ∆, that performs reverse mapping from RM to RN ,

x̄ = ∆(y) = ∆(Dx). (3.4)

Essence of the ℓp-norm representations is to comprehend the relation between the
encoding and decoding, in particularly to answer what are the satisfactory D and ∆.

Let us measure the error on x between the encoder and the decoder with ℓX -norm
as following

E(x,D,∆)X := ∥x − ∆(Dx)∥X . (3.5)

Now consider any closed and bounded set in RN like BNp , then a worst-case error
between the mapping and the reverse mapping ∆ on BNp is

E(BNp ,D,∆)X := sup
x∈BN

p

E(x,D,∆)X (3.6)

since the largest error on the set BNp determines the error. Let AM,N denotes all
possible encoder/decoder pairs (D,∆). Then the worst reconstruction error for the
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3.2 n-widths and ℓp-norm Representations

best pair of (D,∆) is

EM,N (BNp )X := inf
(D,∆)∈AM,N

E(BNp ,D,∆)X , (3.7)

Between n-widths and the optimal ℓp-norm representations, there is a clear and
straightforward link.

Proposition 3.1. Assume X = (RN , ∥.∥X) is a normed space and K ⊂ RN is a closed
compact set such that K = −K and K +K ⊂ C0K for some constant C0. Then

dn(K)X ≤ EM,N (K)X ≤ C0d
n(K)X , 1 ≤ M ≤ N. (3.8)

For the proof of Proposition 3.1 please check [Proposition 3.8 [FR11]].

Theorem 3.1. [Glu84, Theorem 1] For 1 ≤ n ≤ N < ∞ and 1 ≤ p, q ≤ ∞, let us
define

Φ(N,n, p, q) =



(N − n+ 1)
1
q

− 1
p if 1 ≤ q ≤ p ≤ ∞(︂

min{1, N1− 1
pn− 1

2 }
)︂ 1

p − 1
q

1
p − 1

2 if 1 < p < q ≤ 2

max{N
1
q

− 1
p ,
√︂

1 − n
N

1
p − 1

q
1
2 − 1

q } if 2 ≤ p < q ≤ ∞

max{N
1
q

− 1
p ,min{1, N1− 1

pn− 1
2 }
√︂

1 − n
N } if 1 < p ≤ 2 < q ≤ ∞

(3.9)
Then

dn(BNp )ℓNq ≤ Cp,qΦ(N,n, p, q), (3.10)

where Cp,q is a constant that ensures dn(BNp )ℓNq ≤ 1, and only depends on p and q.

Furthermore, according to [GG84], there exists a constant C1,2 > 0 independent of
N and n for which

dn(BN1 )ℓN2 ≤ C1,2

(︄
log(1 + N

n )
n

)︄1/2

. (3.11)

Remark 3.1. By using eq. (3.11) and Corollary 3.1, it is also possible to note
dn(BN2 )ℓN∞ ≤ dn(BN1 )ℓN2 .

Asymptotic behavior of the Gelfand n-width of the unit ball in a normed space,
i.e. dn(BNp )ℓNq , is investigated in several works1 [Vyb08]. Bounds on the dn(BNp )ℓNq
implies the existence of a projection of the ℓp-ball onto a subspace with a lower
dimension and provides favorable properties for ℓp-norm representations, e.g. lower
bounds of dn(BN1 )ℓN2 allow us to analyze the minimal number of required samples for an
approximate sparse recovery using any recovery method via any measurement matrix

1Some studies investigated Kolmogorov widths which is related with the Gelfand widths by the
duality formula.
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3. n-widths and ℓp-norm Representations

D. In the same way upper bounds for dn(BNp )ℓNq provide insight about the order of the
projection of the ℓp-ball onto a subspace as it is investigated for dn(BN2 )ℓN∞ in [LV10].
Upper bounds for the dn(BNp )ℓNq are given in Theorem 3.1 for different p and q.

In this work, obtaining ℓp-norm representations took our interest and that can be
considered as finding an M -dimensional subset BN2 of ℓNp , thus bound of dN−M (BN2 )ℓNq
can provide some important knowledge about the representation level of ℓp-norms
which is introduced in Corollary 3.2.

Corollary 3.2. Representation level of ℓp-norms based on n-widths: For any M ≤ N ,
for all y there exists an x and D with y = Dx, satisfies ∥x∥p ≤ Kp ∥y∥2 with the level
of Kp = dN−M (BN2 )ℓNq .

Remark 3.2. With the help of Corollary 3.2

K∞ = C2,∞

(︄√︄
1

N −M
log

(︃
1 + N

N −M

)︃)︄

= C2,∞√
N

(︄√︄
ω

ω − 1 log
(︃

1 + ω

ω − 1

)︃)︄ (3.12)

and
K1 = C2,1

(︂√
M + 1

)︂
(3.13)

can be derived.

The term C2,∞

(︃√︃
ω
ω−1 log

(︂
1 + ω

ω−1

)︂)︃
is called Kashin level and depends only on

the redundany ratio ω = N/M . Reminding that K∞ is based on the classical result of
[Kas77] and the optimal dependency is given in [GG84].
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Chapter 4

Matrix Conditioning

One of the main concerns about ℓp-norm representations is to comprehend the
performance of the measurement matrix and in order to inspect the quality of the
measurement matrix for associated recovery or representation algorithms, there are
some properties that are introduced for some specific cases of (Ppσ), especially for (P1

σ),
such as k-neighborly polytopes [DT05], restricted isometry property (RIP) [Don06],
[CRT06], some modified versions of RIP [Ber+08] and some others can be found in
[IR08]. RIP, also called uniform uncertainty principle (UUP), places an isometry
condition on the measurement matrix D and it is the most referenced property in
regards to evaluating the measurement matrix quality. Similar notion is introduced in
[LV10] to show the existence of a Kashin level, called uncertainty principle (UP).

4.1 Matrix Properties

The UUP and the UP are analogous, however the UUP has stronger assumptions than
the UP [LV10]. Both of them condition the measurement matrix D ∈ RM×N with
bounds αt, βt ∈ R+, for given s such

αt ∥x∥t ≤ ∥Dx∥t ≤ βt ∥x∥t , for all |supp(x)| ≤ s. (4.1)

4.1.1 Uniform Uncertainty Principle

Definition 4.1. Uniform Uncertainty Principle [CT05]: A matrix D ∈ RM×N satisfies
the UUP, with order of s and constant ϵ ∈ (0, 1), if eq. (4.1) holds where t = 2,
α2 = (1 − ϵ), β2 = (1 + ϵ).

4.1.2 Uncertainty Principle

Definition 4.2. Uncertainty Principle [LV10]: A frame D ∈ RM×N satisfies the UP
with constants δ ∈ (0, 1) and η, if eq. (4.1) holds where t = 2, α2 = 0, i.e. there is no
condition on α2, β2 = η and s = δN .
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4. Matrix Conditioning

Relation between UP and UUP for matrices with orthonormal rows is given in
[LV10] with the following Corollary 4.1.

Corollary 4.1. The UUP with parameters s and ϵ follows the UP with η = 1+ϵ
1−ϵ

√︂
M
N , δ

for the uniform tight frames.

For the proof of Corollary 4.1, please check [LV10].

4.2 Random Matrices and Matrix Properties

In this section, UP and UUP with some random matrices are presented. UUP for
random sub-Gaussian matrices is given in Section 4.2.1 while UP for random orthogonal
matrices, random partial Fourier matrices and random sub-Gaussian matrices which
are given in [LV10] summarized in Section 4.2.2.

Definition 4.3. A random variable X is called to be sub-Gaussian with parameter ς
if

P{|X| > t} ≤ exp(1 − t2/ς2), ∀t > 0. (4.2)

Matrices with orthonormal rows plays an important role for the UP and sub-
Gaussian matrices, i.e. random matrices with independent identically distributed (i.i.d.)
sub-Gaussian entries, mostly do not have orthonormal rows. In order to handle this
situation, almost orthogonality of sub-Gaussian matrices expressed in [LV10; Lit+05].

Lemma 4.1. (Almost Orthogonality of sub-Gaussian Matrices) Assume D is a M ×N

matrix with i.i.d. zero mean sub-Gaussian random variable entries with parameter ς
and with variance 1. One can find some positive constants (e(ς), E(ς)) depending only
on ς such that N > E(ς)

ξ2 log
(︂

2
ξ

)︂
M for some ξ ∈ (0, 1) that (which) induces

P
{︃⃦⃦⃦⃦

IM×M − 1
N

DDT

⃦⃦⃦⃦
2
> ξ

}︃
≥ 1 − 2 exp(−e(ς)Nξ2), ∀t > 0. (4.3)

Corollary 4.2. Assume D ∈ RM×N is a matrix such as mentioned in Lemma 4.1.
Then 1√

N
D is a ξ-Parseval frame with the frame bounds A = 1 − ξ,B = 1 + ξ for some

small ξ > 0 (for proof check [LV10]).

4.2.1 UUP with Random Matrices

Theorem 4.1. UUP for sub-Gaussian Matrices: Consider a matrix D ∈ RM×N

with i.i.d. zero mean sub-Gaussian random variable entries with parameter ς. 1√
M

D
satisfies the Uniform Uncertainty Principle with probability at least 1 − ϵ provided that
M > Cςϵ

−2s log(N/s) where Cς is a constant depending on ς [FR13].
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4.2 Random Matrices and Matrix Properties

4.2.2 UP with Random Matrices

Theorem 4.2. (UP for Random Orthogonal Matrices) Assume there is a constant
0 < c1 = ω − 1. A random orthogonal matrix D ∈ RM×N satisfies the UP with the
parameters

η = 1 − c1
4 , (4.4)

δ = c2c
2
1

log
(︂

1
c1

)︂ , (4.5)

with probability at least 1 − 2 exp(−c2c
2
1M) where 0 < c2 is an absolute constant.

Theorem 4.3. (UP for Random Partial Fourier Matrices) Assume Ψ is an orthogonal
N × N matrix and its entries are upper bounded with c3

√
N with some constant c3.

Let D is a M ×N submatrix of Ψ and N = (1 + c4)M for some c4 ∈ (0, 1], then for
any p ∈ (0, 1) there exists a constant 0 < c5 depends on the p and c3 such that the
matrix D satisfies the UP with the parameters

η = 1 − c4
4 , (4.6)

δ = c5c
2
4

log4 (N)
, (4.7)

with probability at least 1 − p.

Theorem 4.4. (UP for sub-Gaussian Matrices) Consider a matrix D ∈ RM×N with
i.i.d. zero mean sub-Gaussian random variable entries with parameter ς. 1√

N
D satisfies

the UP for ω ≥ 2 with parameters

η = c6ς

√︄
log(ω)
ω

, (4.8)

s = c7
ω
, (4.9)

with probability at least 1 − (ω)−M where c6 and c7 are the positive absolute constants.

Corollary 4.3. Let us consider the following events: S1 as a matrix D as in Theorem
4.4 that satisfies the UP and S2 as the event of the same matrix being ξ-Parseval frame,
i.e. S2 :=

{︂⃦⃦⃦
IM×M − 1

NDDT
⃦⃦⃦

2
> ξ

}︂
. Probability of S1 and S2 happening at the same

time can be bounded such

1 − exp(min{−1,−Cς,ξ} log(ω)M) ≤ P {S1 ∩ S2} (4.10)

where Cς,ξ is a constant depends on ς and ξ.
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4. Matrix Conditioning

Proof. By using the union bound

P {S1} + P {S2} − 1 ≤ P {S1 ∩ S2}

1 − exp(−e(ς)Nξ2 + log 2) − exp(−M log(ω)) ≤ P {S1 ∩ S2}

1 − exp(min{−e(ς) log(ω)Mξ2,−M log(ω)}) ≤ P {S1 ∩ S2}

1 − exp(min{−1,−Cς,ξ} log(ω)M) ≤ P {S1 ∩ S2}
(4.11)

since N/M ≥ 2 is a requisite for S1, ω > log(ω) is taken into account for the derivation
of (4.11).

As a result of Corollary 4.2 and Theorem 4.4, frames whose entries are i.i.d. sub-
Gaussian random variables satisfy the UP with high probability for the frame bounds
A = 1 − ξ,B = 1 + ξ for small ξ > 0, therefore can be used to compute the ℓ∞-norm
representation. Probability of satisfying the UP and being a ξ-Parseval frame at the
same is bounded in Corollary 4.3.
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Chapter 5

Pareto Approach for ℓp-norm
Minimization

Problems (Pτ ), (Pσ) and (Pλ) are equivalent for some pair (τ, σ, λ) [FR13] and each
optimization problem can be considered as a bi-criterion problem with the objectives
∥x∥p and ρ(y − Dx). Pareto frontier approaches1 are commonly used in multiobjective
optimization [PMP08; SM12] and can be used to trace the optimality between these
objectives.

5.1 Pareto Optimality

Definition 5.1. Pareto optimal and Pareto frontier.

(i) Pareto optimal is the minimal achievable feasible point of a feasible set. E.g., p is
called Pareto optimal solution for (Pτ ), (Pσ) and (Pλ), if there is no any v such that
∥v∥p ≤ ∥p∥p and ∥v∥p ̸= ∥p∥p in the feasible solution set.

(ii) The set that comprised of Pareto optimal points is called the Pareto frontier.

In this thesis, the solution of (Pσ) is sought by solving (Pτ ). Thus, we are
particularly interested in the optimal objective value of the (Ppτ ) for a given y and τ

that can be expressed with the following function

ν(τ) := inf
x∈RN

{ρ(y − Dx)| ∥x∥p ≤ τ}, (5.1)

and we define corresponding Pareto frontier as

ψ(τ) := ν(τ) − σ. (5.2)

Theorem 5.1. Convexity of ψ.
1It is named after well-known Italian economist Wilfredo Pareto (1848-1923).
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5. Pareto Approach for ℓp-norm Minimization

(i) If ρ is a convex function (e.g. least-squares, Huber function), then so is ψ.

(ii) If ρ is a nonconvex function, convexity of ψ does not follow. When ρ is quasi-convex
function, then so is ψ.

Proof. Let us consider any two solutions x1 and x2 of (Ppτ ) for any τ1 and τ2 respectively.
Since ℓp-norm is convex for 1 ≤ p ≤ ∞, for any β ∈ [0, 1] following holds

∥βx1 + (1 − β)x2∥p ≤ β ∥x1∥p + (1 − β) ∥x2∥p = βτ1 + (1 − β)τ2. (5.3)

An immediate outcome of (5.3) is that βx1 + (1 − β)x2 is a feasible point of (Ppτ ) with
τ = βτ1 + (1 − β)τ2. Thus we can write the following inequality

ν(βτ1 + (1 − β)τ2) ≤ ρ(D(βx1 + (1 − β)x2) − y)

= ρ(β(Dx1 − y) + (1 − β)(Dx2 − y)).
(5.4)

i) If ρ is convex, then

ρ(β(Dx1 − y) + (1 − β)(Dx2 − y)) ≤ βρ(Dx1 − y) + (1 − β)ρ(Dx2 − y))

= βν(τ1) + (1 − β)ν(τ2),
(5.5)

that shows ν is convex as well as ψ.
ii) If ρ is quasi-convex, then

ρ(β(Dx1 − y) + (1 − β)(Dx2 − y)) ≤ max{ρ(Dx1 − y), ρ(Dx2 − y)}

= max{ν(τ1), ν(τ2)},
(5.6)

that shows ν is quasi-convex as well as ψ.

Pareto optimal points are unique for (Ppτ ) with convex losses ρ [PŽŽ17, Theorem 1.1,
Theorem 1.2], [Mie01]. Also, the feasible set of (Ppτ ) enlarges as τ increases [Van09],
thus ψ(τ) is nonincreasing for τ ∈ [0, τmax], where τmax is the maximal τ that minimizes
ψ(τ) and τ = 0 is the minimal τ that maximizes ψ(τ). Under the assumption of D
is full row-rank, one should notice that ρ(y − DxMF ) = 0. Therefore, τ = 0 and
τ = ∥xMF ∥p = τMF are the two points that provide opposite signs of ψ. Having two
points with opposite signs is required for a convergence guarantee for the bracketing
type root finding algorithms [DB03].

In Figure 5.1 and 5.2 an abstract ψ(τ) is depicted for a convex and quasi-convex
loss ρ respectively where the red line represents the σ level. Pareto optimal point for a
given σ is at the intersection of the red line and black curve.

Obtaining the solution of (Ppσ) by solving (Ppτ ) with the help Pareto frontier concept
proceeds as follows. We start with a τ to solve (Ppτ ), and using the solution of the
current τ parameter, and corresponding ψ(τ), a new τ will be found until τ → τσ
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5.1 Pareto Optimality

(
)

Figure 5.1: A Representative Pareto frontier for convex loss ρ.

(
)

Figure 5.2: A representative Pareto frontier for quasi-convex loss ρ.

by going over Pareto frontier iteratively, where τσ denotes the solution of (Ppσ), i.e.
ψ(τσ) → 0 and then algorithm concludes. At this point, τσ, it is straightforward to
remark that the solution of (Ppτ ) is also a solution of the (Ppσ), a fact proven formally
by [ABF13].

Finding τσ can be formulated as a non-linear equation root finding problem. We
will closely investigate the solving a non-linear equation root finding problem to find
τσ in Chapter 5.3.

Although we define a Pareto fronter for the constraint σ, we note that defining
different Pareto frontiers is also an option, pleace check Figure 5.3.
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||x||
p

(y
-D

x
)

(a) Constraint on τ

||x||
p

(y
-D

x
)

(b) Constraint on σ

||x||
p

(y
-D

x
)
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Figure 5.3: Typical Pareto frontiers for the constraints λ, τ, σ, with the objectives
∥x∥p and ρ(y − Dx).

5.2 Lagrangian Duality and the Slope of the Pareto Curve

In this subchapter, we bound the slope of the Pareto curve of the objectives ∥x∥p and
convex ρ(y − Dx). In that purpose, Lagrangian duality of the problems (Ppτ ), (Ppσ) are
inspected.

5.2.1 Lagrangian Dual of the Problems (Pp
τ ) and (Pp

σ)

5.2.1.1 Lagrangian Dual of (Pp
τ )

Let us rewrite the problem (Ppτ ) such as

minimize
x∈RN ,r∈RM

ρ(r) s.t. Dx + r − y = 0, ∥x∥p ≤ τ, (5.7)

where r is the residual term. The Lagrange dual associated with the (5.7) can be
written as

L(zτ , λ) := inf
x∈RN ,r∈RM

{ρ(r) − zTτ (Dx + r − y) + λ(∥x∥p − τ)}, (5.8)

where zτ and λ are the Lagrange multipliers. Let us rewrite (5.8) such

L(zτ , λ) = yT zτ − τλ− sup
r∈RM

{zTτ r − ρ(r)} − sup
x∈RN

{zTτ Dx − λ ∥x∥p}. (5.9)

Using the Lagrange dual given in (5.9), the Lagrange dual problem of (5.7) can be
written as

(Pp,dτ ) maximize
zτ ∈RM ,λ∈R

yT zτ − τλ s.t. ρ◦(zτ ) ≤ 1,
⃦⃦⃦
DT zτ

⃦⃦⃦
p∗

≤ λ
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5.2 Lagrangian Duality and the Slope of the Pareto Curve

5.2.1.2 Lagrangian Dual of (Pp
σ)

Lagrangian dual problem of (Ppσ) is straightforward [Ara+18] and can be written as

(Pp,dσ ) maximize
zσ∈RM

yT zσ − σρ◦(zσ) s.t. DT zσ ∈ BNp∗ ,

Lemma 5.1. Consider fixed s and assume that DDT is non-singular (i.e. D is a
frame) and satisfies the matrix condition (4.1).

(i) Any feasible point ẑσ of the dual problem (Pp,dσ ) satisfies following

∥ẑσ∥t ≤ s
(︁

1
t
− 1

p∗
)︁

dt
, (5.10)

(ii) any feasible point ẑτ of the dual problem (Pp,dτ ) satisfies following

∥ẑτ∥t ≤ s
(︁

1
t
− 1

p∗
)︁

dt
λ, (5.11)

where dt = 1/(βt∥(DDT )−1∥t→t) − ∥DT ∥t→t. For t = 2 we have d2 = A/β2 −
√
B.

Proof. Let us define a vector v = DT ẑ and partition it into s-size j disjoint subsets (i.e.
each of them has the cardinality of s), {Ti}i≥1, in such a way that T1 corresponds to
the s largest entries of v, T2 corresponds to the second largest s entries of v, and same
rule continues until to the last subset. With the help of this partitioning arrangement,
following can be written

∥Dv∥t =

⃦⃦⃦⃦
⃦⃦D∑︂

i≥1
PTiv

⃦⃦⃦⃦
⃦⃦
t

≤
∑︂
i≥1

∥DPTiv∥t (5.12)

where PTi is the projection matrix onto the set Ti. Since it is assumed that D satisfies
the eq. (4.1), eq. (5.12) can be written with βt such that

∥Dv∥t ≤
∑︂
i≥1

∥DPTiv∥t ≤
∑︂
i≥1

βt ∥PTiv∥t = βt ∥PT1v∥t +
∑︂
i≥2

βt ∥PTiv∥t . (5.13)

Let us denote vi as the vector projected onto the set Ti, following inequality can be
written for i ≥ 2 and any p∗ ≥ 1,

∥PTiv∥∞ = max
l∈Ti

|vl| ≤ min
l∈Ti−1

|vl| ≤

1
s

∑︂
l∈Ti−1

|vl|p
∗

 1
p∗

= s
− 1

p∗
⃦⃦
PTi−1v

⃦⃦
p∗ (5.14)
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since ∥PTiv∥t ≤ s
1
t ∥PTiv∥∞,

∥PTiv∥t ≤ s
(︁

1
t
− 1

p∗
)︁ ⃦⃦

PTi−1v
⃦⃦
p∗ . (5.15)

Merging eq. (5.15) and eq. (5.13) leads us to

∥Dv∥t ≤ βt ∥PT1v∥t +
∑︂
i≥2

βt ∥PTiv∥t ≤ βt ∥PT1v∥t +
∑︂
i≥2

βts
(︁

1
t
− 1

p∗
)︁ ⃦⃦

PTi−1v
⃦⃦
p∗

≤ βt ∥PT1v∥t +
∑︂
i≥1

βts
(︁

1
t
− 1

p∗
)︁

∥PTiv∥p∗ .

(5.16)

(i) For any feasible point ẑσ of (Pp,dσ ), v = DT ẑσ ∈ BNp∗ . Thus eq. (5.16) can be
concluded as

∥Dv∥t ≤ βt ∥PT1v∥t + βts
(︁

1
t
− 1

p∗
)︁
. (5.17)

Furthermore, ∥PT1v∥t can be bounded as

∥PT1v∥t ≤ ∥v∥t =
⃦⃦⃦
DT ẑσ

⃦⃦⃦
t

≤ ∥DT ∥t→t ∥ẑσ∥t . (5.18)

∥ẑσ∥t =
⃦⃦⃦
(DDT )−1DDT ẑσ

⃦⃦⃦
t

≤ ∥(DDT )−1∥t→t

⃦⃦⃦
DDT ẑσ

⃦⃦⃦
t

= ∥(DDT )−1∥t→t ∥Dv∥t.
Therefore, with the help of eq. (5.17) and eq. (5.18), following can be derived

∥ẑσ∥t ≤ ∥(DDT )−1∥t→t

(︃
βt∥DT ∥t→t ∥ẑσ∥t + βts

(︁
1
t
− 1

p∗
)︁)︃

(5.19)

which can be simplified as

∥ẑσ∥t ≤ s
(︁

1
t
− 1

p∗
)︁

dt
. (5.20)

where dt = 1/(βt∥(DDT )−1∥t→t) − ∥DT ∥t→t.

(ii) For any feasible point ẑτ of (Pp,dτ ), v = DT ẑτ and since
⃦⃦⃦
DT ẑτ

⃦⃦⃦
p∗

≤ λ, eq. (5.16)
can be concluded as

∥Dv∥t ≤ βt ∥PT1v∥t + βts
(︁

1
t
− 1

p∗
)︁
λ. (5.21)

Let us follow similar steps that are applied for ẑσ and bound ∥PT1v∥t as

∥PT1v∥t ≤ ∥v∥t =
⃦⃦⃦
DT ẑτ

⃦⃦⃦
t

≤ ∥DT ∥t→t ∥ẑτ∥t (5.22)

Since, ∥ẑτ∥t =
⃦⃦⃦
(DDT )−1DDT ẑτ

⃦⃦⃦
t

≤ ∥(DDT )−1∥t→t

⃦⃦⃦
DDT ẑτ

⃦⃦⃦
t

= ∥(DDT )−1∥t→t ∥Dv∥t,
with the help of eq. (5.17) and eq. (5.18), following can be derived

∥ẑτ∥t ≤ ∥(DDT )−1∥t→t

(︃
βt∥DT ∥t→t ∥ẑτ∥t + βts

(︁
1
t
− 1

p∗
)︁
λ

)︃
(5.23)
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which can be simplified as

∥ẑτ∥t ≤ s
(︁

1
t
− 1

p∗
)︁

dt
λ. (5.24)

where dt = 1/(βt∥(DDT )−1∥t→t) − ∥DT ∥t→t.

5.2.2 Slope of The Pareto Curve

Subdifferential of the Pareto frontier is related with the Lagrange multipliers of dual
problem formulation (Pp,dτ ) and explicitly given in [ABF13, Theorem 5.2], and we
accommodate it with the Theorem 5.2.

Theorem 5.2. For all τ ∈ [0, τMF ), subdifferential of the ν with respect to τ is given
∂τν(τ) ̸= ∅ with

∂τν(τ) = {−λ| λ ∈ {arg min
λ≥0

τλ+
⃦⃦⃦
DT zτ

⃦⃦⃦
p∗

}} (5.25)

As long as τ > 0, λ is compelled to be at its lower bound, i.e. λ =
⃦⃦⃦
DT zτ

⃦⃦⃦
p∗

,
otherwise the objective can increase. Thus, an immediate outcome of Theorem 5.2 is

∂τν(τ) = −
⃦⃦⃦
DT zτ

⃦⃦⃦
p∗
. (5.26)

Proposition 5.1. Under the conditions of Lemma 5.1, subdifferential of the ν with
respect to τ ∈ [0, τmax) satisfies following

−

⃦⃦⃦
DTy

⃦⃦⃦
p∗

ρ◦(y) ≤ ∂τν(τ) ≤ − ∥rτ∥t
ρ◦(rτ )

× dt

s
(︁

1
t
− 1

p∗
)︁ (5.27)

where rτ = y − Dxτ , xτ is the optimal solution of (Ppτ ).
For ρ is ℓ2-norm and t = 2, (5.27) becomes

−

⃦⃦⃦
DTy

⃦⃦⃦
p∗

∥y∥2
≤ ∂τν(τ) ≤

β2
√
B −A

β2s
(︁

1
2 − 1

p∗
)︁
 (5.28)

Proof. Let us take zτ = rτ/ρ◦(rτ ), it is feasible for (Pp,dτ ) since ρ is positive
homogeneous. Then with the help of (5.11) and (5.26), upper bound of ∂τν(τ) can be
found. Since ν(τ) is convex decreasing in τ , the minimum of ∂τν(τ) occurs where the
ν(τ) is maximum, i.e. ν(τ = 0). For τ = 0, xτ is also a vector with zeros. In that case
r0 = y, and taking r0 = y provides the lower bound of ∂τν(τ). For ρ is ℓ2-norm, ρ◦ is
also ℓ2-norm and for t = 2 we can directly employ d2 and obtain (5.28).
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5. Pareto Approach for ℓp-norm Minimization

5.3 Nonlinear Equation Root Finding

In the pursuit of the solution of (Ppσ) with the help Pareto frontier approach, our aim
is to

find τ such that ψ(τ) = 0, (5.29)

which is a nonlinear equation root finding problem indeed.
There are various problems in different fields require to find a solution of a nonlinear

equation [TCS19] Hence, there have been numerous works on this topic. Depending
on the properties of the function to be analyzed (e.g. the differentiability), and the
requirements of the application itself (e.q. convergence order), several methods are
introduced in the literature to deal with the nonlinear equation root finding problems.

Root finding problems generally can be classified into two categories: open-type
root finding methods and bracketing-type root finding methods as follows

I) Open-type root finding methods

i) Newton’s method (also known as the Newton Raphson method) is very
commonly used and mostly very efficient. It is derived from [New11],
requires a differentiable function, mostly converges faster if the starting
point lies near the root.

ii) Halley’s method is similar to Newton’s method in terms of using a variable
with continuous derivative and requires first and second derivative of a
function [Hal07].

iii) Steffensen’s method is similar to Newton’s method in terms of using a
variable with continuous derivative. However, instead of the derivative of a
function, it uses the first-order divided difference of the function between
two points [Ste33].

iv) Secant method uses the secant through the last two calculated points in
contrast to tangent of a single point. It needs two starting points and does
not require a differentiable function.

v) Müller’s method [Mul56] is similar to the secant method, however requires
three starting points. It does not require a differentiable function.

II) Bracketing-type root finding methods

i) Bisection method repeatedly halves the given interval that contains the root.
It is a simple and robust method, requires two starting points with opposite
signs and does not require a differentiable function. It always converges.

ii) Regula falsi (false position) method repeatedly splits the interval that
contains the root by using linear interpolation. It is an old, simple and
efficient method, requires two starting points with opposite signs and does
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5.3 Nonlinear Equation Root Finding

not require a differentiable function. It retains the last two points that
bracket the root and always converges. It has several modified versions.
The well-known versions are

• Illinois,
• Pegasus,
• Anderson-Björk.

We summarized major open and bracketing type root finding methods above.
There are more methods proposed, however they are mostly hybrid models or modified
versions of the existing methods. For example, improved and modified versions of
the Newton’s and secant methods are proposed in [Kou07; Hom03; RAS+21; Xin99;
Sah+16] and [Tir19; MT13; Bar65; Tek19] respectively. Similarly, [Chh14; OT20;
MR16] introduced versions of bisection method. Many modified versions of Regula
falsi have been proposed as well, such as [Gal; For; SM15; Che07; Kin73].

The difference between the open and bracketing type root finding methods is that,
in contrast to bracketing methods, open-type methods require only a single starting
value or two starting values which do not have to bracket a root while bracketing-type
root finding methods necessitate two starting points which bracket a root. Unlike the
open-type methods, bracketing-type methods divides the root searching interval into
two and continues over the one that contains the root in each iteration.

Each of the existing nonlinear equation root finding methods have their own
advantages and disadvantages. The applicability and the efficiency of these methods
depend on the function. Thus, chosing one of them is function dependent. Comparison
of the open-type and bracketing-type root finding methods is given in Table 5.1.

In this thesis, we solve (5.29) with some of the open-type and bracketing-type
methods. We employ Newton’s method as open-type and several Regula falsi versions
as bracketing-type methods. We also introduce an approach called one-point retention
(OPR) method which is inspired from Regula falsi however does not necessarily bracket
the root searching interval, does not require differentiable function, applicable for
nonconvex losses and is flexible about the starting point choice.

5.3.1 Open-type Root Finding Methods

In order to solve (Ppσ) with the Pareto frontier approach introduced in Chapter 5.1,
(5.29) needs to be solved. For that purpose, Newton’s and OPR methods are employed
as open-type root finders.

5.3.1.1 Newton’s Method

Newton’s method is a simple and a very commonly utilized approach in many nonlinear
equation root finding problems. Nevertheless, it might have some drawbacks though.
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5. Pareto Approach for ℓp-norm Minimization

Table 5.1: Comparison of the open-type and bracketing-type root finding methods.

Advantages Disadvantages

Open-type root finding
methods - Usually converges fast.

- Convergence depends on
the starting point and
is not guaranteed, i.e. may
diverge.
- Most of its versions
require differentiable
functions.
- Not flexible about
starting points.
- Usually can not handle
nonconvex losses.

Bracketing-type root
finding methods

- Always converges
if two starting points
with opposite signs is
given.
- Applicable for nonconvex
losses.
- Does not require
differentiable functions.
- Flexible about
starting points.

- May convergence slowly
if the function has
significant curvature.

First of all, the derivative of a nonlinear equation needs to be calculated. Depending
on the problem, derivative calculation of a nonlinear equation may bring extra
computational cost to the algorithm or it may not be possible. Another drawback of
the Newton’s method or alternative secant variants is that if ρ is nonconvex they are
not guaranteed to solve (5.29). In particular, the tangent lines may cross the feasible
region and can end up at a negative τ . The reason of why Newton’s method can
not offer convergence guarantee for the nonconvex ρ is explained more detailed in
Chapter 5.4.

The recursion formula of the Newton’s method to solve (5.29) is

gN (τn) = τn+1 = τn − ψ(τn)
∂τψ(τn) for n = 0, 1, . . . , τσ (5.30)

where τ0 = 0. Newton’s method starts with τ = 0 and move along the Pareto frontier
ψ(τ) with tangent lines. Iterations are depicted in Figure 5.4 for a convex decreasing
ρ.

5.3.1.2 One-Point Retention (OPR) Method

OPR is a derviative-free approach with simple iterations intoduced in this thesis.
Derivative-freeness can be very favorable and preferable when derivative calculation
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(
)

0 1
...

MF

Figure 5.4: Newton’s method iterations over the Pareto frontier ψ(τ), i.e. gN steps
in (5.30).

of the Pareto frontier ψ(τ) costly or not possible. Except necessity of differentiable
ψ(τ), OPR differs from Newton’s method in starting points as well. Newton’s method
starts with τ = 0 and trace the root over the Pareto frontier with tangent lines, while
the OPR starts with τ = µ ∥xMF ∥p and draws secant line between ψ(τ = 0) and
ψ(τ = µ ∥xMF ∥p) then continues drawing secant lines between ψ(τ = 0) and several
ψ(τ) values until it converges. OPR can handle nonconvex losses also unlike the
Newton’s method or Newton’s method like variants. OPR retains one point and update
the other point of the bracket.

The recursion formula for the OPR method to solve (5.29) is

gO(τn) = τn+1 = τn × ψmax
ψmax − ψ(τn) , for n = 0, 1, . . . , τσ (5.31)

where τ0 = µτMF with 0 < µ ≤ 1, ψmax is the maximum value of the function ψ. By
the definition of ψ, i.e eq. (7.49), it can be inferred that ψmax occurs for τ = 0.

Iterations to solve (Ppσ) with the OPR method for a convex decreasing ρ is shown
in Figure 5.5 and 5.6 for τσ < τ0 and τ0 < τσ respectively.

5.3.2 Bracketing-Type Root Finding Methods

It is necessary to solve (5.29) in order to solve (Ppσ) using the Pareto frontier approach
described in Section 5.1. Bisection and regula falsi type methods such as Illinois,
Pegasus and Anderson-Björk are presented as bracketing-type root finders.

If one knows two values of a function with opposite signs, then there must be some
value between these two points at which the function is zero, follows by the Bolzano’s
theorem [Bol17] which is a corollary of the intermediate value theorem.
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(
)

0

MF

1
...

Figure 5.5: OPR iterations over the Pareto frontier ψ(τ), i.e. gO steps in (5.31) when
τσ < τ0.

(
)

10

MF

...

Figure 5.6: OPR iterations over the Pareto frontier ψ(τ), i.e. gO steps in (5.31) when
τ0 < τσ.

5.3.2.1 Bisection Method

Bracketing the root of a function between two values with opposite sign enables to use
a very simple and efficient method called bisection as root finder. Bisection method
repeatedly halves the given interval that contains the root, always converges and does
not require a differentiable function.

Let us denote the solution of a nonlinear equation of f with the x∗, i.e f(x∗) = 0,
bisection method starting with the points a and b can be demonstrated with following
steps

1. Calculate the midpoint of a and b, that is c = (a+ b)/2.
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5.3 Nonlinear Equation Root Finding

2. Calculate f(c). If f(c) is equal to zero or sufficiently small for convergence then
x∗ = c, otherwise continue.

3. Adjust the new interval: if f(c)f(b) < 0, x∗ should be in between b and c. Set
a = b, b = c, if f(c)f(b) > 0, x∗ should be in between a and c, set b = c, go back
to 1.

(
)

0 3
...

MF

4
1

2

Figure 5.7: Bisection iterations over the Pareto frontier ψ(τ).

Iterations to solve (Ppσ) with the bisecton method for a convex decreasing ρ is
shown in Figure 5.7 where τ0 = a, τ1 = b and ψ = f .

5.3.2.2 Regula Falsi-Type Root finding Methods

Similar to bisection method, Regula falsi-type methods offer convergence guarantee
if two values of a function with opposite signs given. They are derivative free and
repeatedly splits the interval that contains the root by using linear interpolation.

Let us denote the solution of a nonlinear equation of f by x∗, i.e f(x∗) = 0. With
this notation, Regula falsi type methods starting with the points a and b proceed as
follows.

1. Calculate the secant line between a and b,

sab = f(b) − f(a)
b− a

, (5.32)

and find the point where (5.32) intersects the x-axis, which is c = b− f(b)
sab

.

2. Calculate f(c). If f(c) = 0 then x∗ = c, otherwise continue.

3. Adjust the new interval: if f(c)f(b) < 0, x∗ should be in between b and c. Set

a = b, b = c, and f(a) = f(b), f(b) = f(c), (5.33)

37



5. Pareto Approach for ℓp-norm Minimization

if f(c)f(b) > 0, x∗ should be in between a and c. Set

b = c, and f(a) = µf(a), f(b) = f(c), (5.34)

where µ is the scaling factor.

4. Check the ending condition: if |b− a| ≤ ϵ, stop the iteration. Take

x∗ =

b, if |f(b)| ≤ |f(a)|

a, if |f(b)| > |f(a)|
, (5.35)

if |b − a| > ϵ, continue the iteration, go back to 1) with the values a, b and
f(a), f(b) from 3).

Regula falsi-type methods differ from each other in the choice of the scaling factor µ.
Several commonly considered µ in the literature is summarized in Table 5.2. Additional
options for µ are studied in [Gal], [For].

(
)

MF

0

 (
0
)

2 1

Figure 5.8: Iterations of the Regula falsi-type methods over the Pareto frontier ψ(τ).

Iterations to solve (Ppσ) with the regula falsi-type root finding methods for a convex
decreasing ρ is shown in Figure 5.8 where τ0 = a, τ1 = b and ψ = f .

Table 5.2: Regula falsi-type methods with different µ values.

Method µ

Regula Falsi 1
Illinois 0.5
Pegasus f(b)

f(b)+f(c)
Anderson-Björck 1 − f(c)

f(b) , and in case 1 ≤ f(c)
f(b) set µ = 0.5.
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5.3.3 Newton’s and OPR Methods as Fixed-Point Iterations

In this subchapter, we express the fixed-point iteration and mention some properties
of Newton’s and OPR methods with it.

5.3.3.1 Fixed-Point Iteration

Fixed-point iteration is a method for calculating a function’s fixed points in numerical
analysis. Some nonlinear equation root finding methods can also be a fixed point
iteration under some conditions.

Let us assume a function f(x) is equal to zero at x∗, if we rearrange the function so
that f(x) = x− g(x). Then, g is called the fixed-point iteration function with following
recursion formula

xn+1 = g(xn), for n = 0, 1, . . . (5.36)

x0 represents a first guess at x∗. At x∗, x∗ = g(x∗).
Following can be remarked about a fixed point iteration,

• if x∗ = g(x∗), then a function g(x) has a fixed point at x = x∗,

• if a function g(x) has a fixed point at x = x∗, then the function f(x) = x∗ −g(x∗)
has a root at x = x∗,

• if a function f(x) has a root at x = x∗, then the function g(x) = x− f(x) has a
fixed point at x = x∗.

5.3.3.2 Convergence of a Fixed-Point Iteration

Let us take (5.36), consider x∗ as fixed-point of g and define en = xn − x∗ to be
the error between xn and x∗ for any n. Assume that the derivative of g exists and
continuous, then we can write following

en+1 = xn+1 − x∗

= g(xn) − g(x∗)

= g′(xu) · (xn − x∗)

= g′(xu) · en

(5.37)

where g′(xu) is some point between xn − x∗. Equation (5.37) derived with the help of
the mean value theorem.

An iteration in (5.36) comes closer to the fixed point x∗ if and only if | en+1 |<| en |
which occurs if and only if | g′(xu) |< 1. It can easily be seen that the smaller value of
the g′(xu) causes faster convergence.
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Theorem 5.3. (Mean Value Theorem) Assume f(x) is continous on [a, c] and
differentiable on (a, b), then there exists a b such that a < b < c and

f ′(b) = f(c) − f(a)
c− a

(5.38)

The fixed point method has four main types of convergence and divergence
depending on g′ which are

• monotonic convergence, if 0 < g′ < 1,

• oscillating convergence, if −1 < g′ < 0

• monotonic divergence, if g′ > 1,

• oscillating divergence, if g′ < −1,

and shown in Figure 5.9.

x0x1x2x22... x

y
y = x

y = g(x)

(a) Monotonic convergence

x0x1 xx2xx2... x

y

y = x

y = g(x)

(b) Oscillating convergence

x0 x1x1 ... x

y

y = x

y = g(x)

(c) Monotonic divergence

x0x1 x

y

y = xy = 

y = g(x)

x2

(d) Oscillating divergence

Figure 5.9: Convergence and divergence of a fixed point iteration.
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Theorem 5.4. Let g(x) be a fixed point iteration function on x ∈ [a, c]. Suppose that
g′ exists on (a, c) and satisfies following

|g′(x)| ≤ k < 1, ∀x ∈ [a, c]. (5.39)

Then by taking any initial value x0 ∈ [a, c], the sequence xn+1 = g(xn) converges to a
unique fixed point x∗ in [a, c], and satisfies following

(i) a-posteriori error estimate bounds

|xn+1 − x∗| ≤ k|xn − x∗|, (5.40)

|xn+1 − x∗| ≤ k

1 − k
|xn+1 − xn|. (5.41)

(ii) a-priori error estimate bound

|xn+1 − x∗| ≤ kn+1

1 − k
|x1 − x0|. (5.42)

Proof. By using the mean value theorem, it is possible obtain the eq. (5.40) directly
from following inequalities

|xn+1 − x∗| = |g(xn) − g(x∗)|

= |g′(xu)||xn − x∗|

≤ k|xn − x∗|,

(5.43)

where xu is any point between x∗ and xn, therefore |xn+1 − x∗| ≤ kn+1|x0 − x∗|. Since
lim
n→∞

|xn+1 − x∗| ≤ lim
n→∞

kn+1|x0 − x∗| = 0, the sequence xn+1 = g(xn) converges to the
fixed point b∗.

In order to show the uniqueness of the fixed point let us assume we have two fixed
points f1 and f2, with the help of the mean value theorem there should be a value d
such g(f1) − g(f2) = g′(d)(f1 − f2). So |f1 − f2| = |g(f1) − g(f2)| = |g′(d)||f1 − f2| ≤
k|f1 − f2| < |f1 − f2|, which is a contradiction. Therefore, it shows the uniqueness of
the fixed point.

To get the bound (5.41), by using the mean value theorem again we have following
inequality |xn+1 − xn| ≤ k|xn − xn−1|. By induction |xn+l − xn+l−1| ≤ kl|xn − xn−1|,
so |xn+m − xn| ≤ (k + k2 + ... + km)|xn − xn−1| = (∑︁∞

m=0 k
m − 1) |xn − xn−1|. By

letting m → ∞, we obtain (5.41).
With a focus on how to obtain the bound (5.42), note that |x0 − x∗| = |x∗ −

g(x0) + x1 − x0| ≤ |g(x∗) − g(x0)| + |x1 − x0| ≤ k|x0 − x∗| + |x1 − x0| from which it
can be written that |x0 − x∗| ≤ 1

1−k |x1 − x0|. Finally, bound (5.42) can be deduced as
|xn+1 − x∗| ≤ kn+1|x0 − x∗| ≤ kn+1

1−k |x1 − x0|.
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5.3.3.3 Newton’s and OPR Methods as Fixed Point Iterations

Newton’s and OPR methods are fixed point iterations.

Corollary 5.1. Assume τs is the root of the function ψ, while ∂τψ(τs) ̸= 0, gN (5.30)
and gO (5.31) are fixed point iterations for the function ψ.

Proof. It can be easily deduced gN (τs) =
(︂
τn − ψ(τn)

∂τψ(τn)

)︂
= τs and gO(τs) =(︂

τs × ψmax

ψmax−ψ(τs)

)︂
= τs.

Proposition 5.2. Some properties of the Newton’s and OPR Methods:

(i) gN (τn) and gO(τn) satisfies the convergence bounds indicated in (5.40), (5.41) and
(5.42) as fixed point iterations.

(ii) If gN (τn) starts with τ0 = 0, then ψ(τ) ≥ 0 and ψ(τ) monotonically decreases
until convergence (τ → τσ) while τ monotonically increases in every iteration (τ0 =
0 < . . . < τn).

(iii) For gO(τn), if τσ < τ0, ψ(τ) < 0 until convergence (τ → τσ) and τ monotonically
decreases in every iteration (τ0 > . . . > τn).

(iv) For gO(τn), if τ0 < τσ, 0 < ψ(τ) until convergence (τ → τσ) and τ monotonically
increases in every iteration (τ0 < . . . < τn).

Proof.

(i) gN (τn) and gO(τn) satisfies the convergence bounds indicated in (5.40), (5.41) and
(5.42) as fixed point iterations.

(ii) ψ(0) = ψmax > 0 by the definition of ψ. A convex function always lies above any
of its tangent lines. So, (τn+1, ψ(τn+1)) is above than (τn+1, ψ(τσ) = 0) which is on
the tangent line. Thus, ψ(τn) ≥ 0 for all n. ∂τψ(τn) is negative since ψ is a convex
nonincreasing function and (τn, ψ(τn)) lies above the x-axis. Therefore any τn+1 must
be on the left of (τn, τσ).

(iii) Since ψ is convex function, satisfies the following inequality

∀τ1, τ2 ∈ [0, τMF ], ∀t ∈ [0, 1] : ψ(tτ1 + (1 − t)τ2) ≤ tψ(τ1) + (1 − t)ψ(τ2), (5.44)

Eq. (5.31) simply produce the insersection point of the x-axis and the line between
ψ(0) = ψmax and τn. Assume τ1 = τn, τ2 = 0, and tτn + (1 − t)τ2 = τn+1 then it has
to be tψ(τn) + (1 − t)ψ(τ2) = 0 that leads ψ(τn+1) < 0 until τ → τσ where ψ(τσ) = 0
(Since (5.31) is a fixed point, according to fixed point theorem except the root τσ, ψ
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can not be equal to 0). Consider the τ0, since ψ(τ0) < 0,
(︂
0 < ψmax

ψmax−ψ(τ0) < 1
)︂

which
resulting τ0 > τ1 and ψ(τ0) < ψ(τ1) (since ψ is convex decreasing function). In a similar
way, if we consider the τ2 = τ1 × ψmax

ϕmax−ψ(τ2) = τ0 × ψmax

ψmax−ψ(τ1) × ψmax

ψmax−ψ(τ2) leads that
τ0 > τ1 > τ2. It goes on until τσ, which leads us to conclude that τ0 > τ1 > ... > τσ.

(iv) Following the similar steps in (iii), (iv) can be shown.

5.3.4 A Warm-Start Strategy for (Pp
σ)

A warm-start strategy provides an initial starting point to an algorithm instead a
random one. It is mostly about finding a point nearby the solution and it is possible
to gain some benefits in any algorithm if a priori information about the solution is
known. Therefore there has ben many works investigated algorithms with a warm-start
strategy such as [YW02; JY08; SKC10; CGG11; CPT17] to gain some benefits like
faster convergence and less iterations etc.

In Chapter 3, the relation between the ℓp-norm representation and the concept
n-widths is studied. There is a clear and direct link between n-widths and the optimal
ℓp-norm representations. The n-widths provide insight about the order of the projection
of the ℓp-ball onto a subspace.

In this subchapter, we introduce an ℓp-norm representation level based on n-widths
and matrix properties presented in Chapter 4.1. We also offer a warm-start strategy
for any algorithm which seeks the solution of (Ppσ) based on this representation level.

5.3.4.1 An ℓp-norm Representation Level Based on n-widths and the
Matrix Properties

The solution of (Ppσ) satisfies some inequalities. Proposition 5.3 exhibits the relation
between the solution of (Ppσ) and the solution of (Pp,dσ ) for a given signal y.

Proposition 5.3. For all y the solution of (Ppσ), i.e. xσ, satisfies following

∥xσ∥p ≤ ρ◦(ẑσ) (ρ(y) − σ) (5.45)

where ẑσ is the solution of (Pp,dσ ).

Proof. When there is no duality gap between (Ppσ) and (Pp,dσ ), following has to be
satisfied

∥xσ∥p = yT ẑσ − σρ◦(ẑσ). (5.46)

Furthermore since ρ and its polar ρ◦ satisfies yT ẑσ ≤ ρ(y)ρ◦(ẑσ) [Ara+18], (5.45)
simply can be derived.
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With the help of Proposition 5.3, an ℓp-norm representation level based on n-widths
and the matrix property (4.1) introduced in Proposition 5.4

Proposition 5.4. (ℓp-norm Representation Level Based on n-widths and the Matrix
Properties) For all y there exists a solution of (Ppσ), i.e. xσ, satisfies ∥xσ∥p ≤ Kp ∥y∥2,
with the representation level

Kp = β2s
(︁

1
2 − 1

p∗
)︁

A− β2
√
B
, (5.47)

for a frame matrix D that satisfies (4.1).

Proof. Reminding that if ρ is an ℓp-norm then ρ◦ is the dual norm [ROC70]. For ρ is
ℓ2-norm then (5.45) becomes ∥xσ∥p ≤ ∥ẑσ∥2 (∥y∥2 − σ), and since ∥ẑσ∥2 ≤ s

(︁
1
2 − 1

p∗
)︁
/d2

where d2 = A/β2 −
√
B from the Lemma 5.1, there is a

∥xσ∥p ≤ β2s
(︁

1
2 − 1

p∗
)︁

(A− β2
√
B)

(∥y∥2 − σ) , (5.48)

and for σ = 0, (5.47) can be derived.

Corollary 5.2. [Studer, [Stu+14]]. For all y there exists an xσ satisfies, ∥xσ∥∞ ≤
K∞ ∥y∥2, with the representation level K∞ = η

(A−η
√
B)√

δN
, for a frame matrix D that

satisfies UP.

Proof. K∞ can be written by using equation (5.47) with β2 = η, s2 = δN and p∗ = 1.
Remark that K∞

√
N is called Kashin level and for a given D, it only depends on η

and δ.

5.3.4.2 A Warm-Start Strategy

ℓp-norm representation level can help us to introduce a warm-start strategy for the
problem (Ppσ). For a decent warm start strategy, it is needed to find a point that is
close to the solution. Let us introduce an upper bound for the solution of (Ppσ) in
Proposition 5.5.

Proposition 5.5. For all y there exists an xσ satisfies

∥xσ∥p ≤ Kp ×
(︄
Nmax{0,(1/2−1/p)} ∥xMF ∥p

A
3
2

− σ

)︄
, (5.49)

for a frame matrix D that satisfies (4.1).

Proof. By using the frame inequalities following can be written

∥y∥2 ≤ 1
A

1
2

⃦⃦⃦
DTy

⃦⃦⃦
2

≤ 1
A

3
2

⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
2
. (5.50)
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Since
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
2

≤ Nmax{0,(1/2−1/p)}
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p

and ∥xMF ∥p =⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p
, using representation level of ℓp-norms, (5.49) can be derived.

With the help of Proposition 5.5, following warm start strategy is introduced for
the algorithms that searches the solution of (Ppσ).

Proposition 5.6. For all y there exists an τσ, satisfies τσ ≤ µpτMF where

µp = Kp ×
(︄
Nmax{0,(1/2−1/p)}

A
3
2

− σ

τMF

)︄
. (5.51)

Proof. Reminding τσ = ∥xσ∥p, τMF = ∥xMF ∥p, and using Proposition 5.5, (5.51) can
be obtained.

Numerically Kp is not known, however its order depending on N , M and p is given
in Corollary 3.2. One can try to seek a decent starting point for the root finding
methods with a better understanding of Kp.

5.3.5 Bracketing the Root of the Nonlinear Equation

The bracketing type root finding methods require two points with opposing signs to
assure convergence. [DB03]. In order to choose the root searching interval, we consider
the MOF given in Chapter 2.2. Many common loss functions ρ are nonnegative and
vanish at the origin, including gauges like Huber, least-squares and nonconvex losses
such as Student’s t. For these kind of losses, under the assumption that D is full
row-rank, ρ(y − DxMF ) = 0 and ψ(τMF ) = −σ with τMF = ∥xMF ∥p. For the left
endpoint, we consider x = 0, and τ = 0, with loss equal to ρ(y). Bracketing the root
searching interval between the points xMF and 0 ensures finding a solution for (5.29)
since they provide two initial points with opposite signs for ψ, as long as ρ(y) > σ.

5.4 Nonconvexity and the Pareto Curve

In this subchapter, we investigate the ℓp-norm level-set formulations ((Ppσ), (Ppλ) and
(Ppτ )) with a nonconvex ρ. All of the root finding methods given in thesis can find a
solution of (Ppσ) if ρ is convex. However, if the ρ is nonconvex, some of the methods
may not offer a solution for (Ppσ).

Moving outside of the convex class is an appealing property since the loss functions
can be more likely to be nonconvex in real world applications [GBC16] and opens the way
for using many useful nonconvex models in (Pσ) formulations. For example, [SBV10]
and [BG11] consider mixture models whose negative log-likelihood are nonconvex,
with applications to high-dimensional inhomogeneous data where number of covariates
could be larger than sample size. It is much harder to deal with the nonconvex losses
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since they may have multiple local optimal points in multiple feasible regions and
nonconvex optimization problems can not be solved adequately [Dan+20]. However,
they can achieve better performances than the convex ones [MBM18; VAS21]. For
instance, [ABP12; ABP13; Ara+12] use nonconvex Student’s t likelihoods to develop
outlier-robust approaches.

5.4.1 Open-type Root Finding Methods and Nonconvexity

In order to solve the (Ppσ), (5.29) needed to be solved. One possible approach to solve
(5.29) is to deploy an open-type root finding method. In general, they are known
with their speed and efficiency and mainly they do not assure convergence. In this
subsection, Newton’s and OPR methods are inspected.

5.4.1.1 Newton’s Method and Nonconvex Pareto Frontiers

Newton’s method can not maintain a convergence guarantee for the (Ppσ) with a
nonconvex ρ. An example of Newton’s method divergence for nonconvex Pareto curves
is shown in Figure 5.10. Green lines represent the tangent line for ψ at some τ . For
some τ the tangent line can leave the feasible area, can be negative or equal to zero. In
these conditions, it is not possible for Newton’s method iterations to proceed further.
Same situation is valid for secant method and its variants as well.

τ0 

Figure 5.10: An example of Newton’s divergence for nonconvex Pareto curves.

5.4.1.2 OPR and Nonconvex Pareto Frontiers

Although the OPR is an open-type root finding method and does not necessarily
bracket the root, it ensures convergence guarantee for the Pareto frontier (7.49) for
the (Ppσ) even with a nonconvex ρ.

An example of OPR method convergence for nonconvex Pareto curves is shown in
Figure 5.11. Green lines represent the secant line for ψ at some τ . The OPR draws a
secant line between ψ(τ = 0) and any ψ(τ) until it converges. τ can not be negative
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for the OPR since the secant can not leave the feasible area. Thus, the OPR ensures
convergence to solve (Ppσ) with both convex and nonconvex loss ρ.

τ0 τ1 

Figure 5.11: An example of OPR convergence for nonconvex Pareto curves.

5.4.2 Bracketing-type Root Finding Methods and Nonconvexity

The bracketing-type root finding methods must have two points with opposing signs in
order to guarantee convergence [DB03] and as long as it is provided they are compelled
to find a solution. Bracketing the root of (5.29) as it is introduced in 5.3.5 ensures
convergence for the bracketing-type root finding methods to solve (Ppσ).

5.5 Error Bounds for the Fixed Point Root Finding
Methods

Newton’s and OPR are deployed to solve (5.29) as fixed point iterations. In this
subchapter, convergence of the these methods are analyzed with the matrix properties
given in Chapter 4.1.

5.5.1 Error Estimate Bounds for the Newton’s Method Iterations

The error bound for Newton’s method iterations of solving (5.29) is derived in
Proposition 5.7.

Proposition 5.7. (Convergence with gN Iterations) For τ0 = 0, error bound of the
Pareto curve method with (5.30), i.e. τn+1 − τσ, satisfies (5.40), (5.41) and (5.42) for
ℓp-norm minimization where

k =
(︄

1 − ψmax
τσ

× ρ◦(y)
∥DTy∥p∗

)︄
. (5.52)
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Proof. Let us consider the relation between τ1 − τσ and τ0 − τσ for τ0 = 0,

τ1 − τσ
τ0 − τσ

= 1 − τ0 − τ1
τ0 − τσ

= 1 −
τ0 −

(︂
τ0 − ψ(τ0)

∂τν(τ0)

)︂
τ0 − τσ

= 1 + ψmax
τσ∂τν(τ0)

= 1 − ψmax
τσ

× ρ◦(y)
∥DTy∥p∗

.

(5.53)

From (5.43), it can be inferred that τ1 − τσ ≤ k(τ0 − τσ) where k < 1. Equation (5.53)
shows that there exists a k =

(︃
1 − ψmax

τσ
× ρ◦(y)

∥DT y∥p∗

)︃
.

5.5.2 Error Estimate Bounds for the OPR Iterations

The error bound for the OPR method iterations of solving (5.29) is derived in
Proposition 5.8.

Proposition 5.8. (Convergence with gO Iterations) Under the conditions of Lemma
5.1, and for τ0 = µτMF , error bound of the Pareto curve method with (5.31), i.e.
τn+1 − τσ, satisfies (5.40), (5.41) and (5.42) for ℓp-norm minimization where

k =
(︄

1 − dt

s
(︁

1
t
− 1

p∗
)︁ × ∥y∥t

∥DDT ∥t→tN
max{0,(1/p∗−1/p)} × µ

ψmax + σ
×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓)︄
(5.54)

if βt < ∥DT ∥t→t/
⃦⃦⃦
DDT

⃦⃦⃦
t→t

and 0 < s < N .
For t = 2, (5.54) becomes

k =

1 −

A− β2
√
B

β2s
(︁

1
2 − 1

p∗
)︁
× ∥y∥2

BNmax{0,(1/p∗−1/p)} × µ

ψmax + σ
×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓ .
(5.55)

For t = 2 and if ρ is ℓ2-norm, (5.54) becomes

k =

1 −

A− β2
√
B

β2s
(︁

1
2 − 1

p∗
)︁
× µ

BNmax{0,(1/p∗−1/p)} ×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓ . (5.56)

Proof. Let us consider the relation between τ1 − τσ and τ0 − τσ for τ0 = µτMF ,

τ1 − τσ
τ0 − τσ

= 1 − τ0 − τ1
τ0 − τσ

= 1 −
µτMF − µτMFψmax

ψmax−ψ(µτMF )
µτMF − τσ

= 1 + µτMFψ(µτMF )
(ψmax − ψ(µτMF )) (µτMF − τσ) .

(5.57)

The term ψ (µτMF ) / (µτMF − τσ) is always negative since 0 < ψ(µτMF ), if µτMF > τσ

and 0 > ψ(µτMF ), if µτMF < τσ, and µτMF / (ψmax − ψ(µτMF )) is always positive. We
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know that (ψmax − ψ(µτMF )) ≤ ψmax − (ν(µτMF ) − σ) ≤ ψmax + σ. Then, following
inequality can be deduced

τ1 − τσ
τ0 − τσ

= 1 − µτMF

(ψmax − ψ(µτMF ))

⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓
≤ 1 − µτMF

ψmax + σ

⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓
.

(5.58)

Reminding that τMF = ∥xMF ∥p =
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p
, with the help of

Lemma 5.1,
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p

can be bounded. Let us consider the point

ẑσ = (DDT )−1y/
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p∗

, which is a feasible point of (Pp,dσ ), then it
should satisfies following

dt

s
(︁

1
t
− 1

p∗
)︁ ≤

⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p∗

∥(DDT )−1y∥t
≤

⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p∗

⃦⃦⃦
DDT

⃦⃦⃦
t→t

∥y∥t
, (5.59)

then since
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p∗

≤ Nmax{0,(1/p∗−1/p)}
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p
,
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p

can be bounded as

dt

s
(︁

1
t
− 1

p∗
)︁ × ∥y∥t

∥DDT ∥t→tN
max{0,(1/p∗−1/p)} ≤

⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
p

(5.60)

and eq. (5.57) can be induced as

τ1 − τσ
τ0 − τσ

≤ 1 − dt

s
(︁

1
t
− 1

p∗
)︁ × ∥y∥t

∥DDT ∥t→tN
max{0,(1/p∗−1/p)} × µ

ψmax + σ

⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓
(5.61)

From (5.43), it can be inferred that τ1−τσ ≤ k(τMF−τσ) where k < 1. Eq. (5.61) shows

that there exists a k =
(︄

1 − dt

s

(︁
1
t − 1

p∗
)︁ × ∥y∥t

∥DDT ∥t→tN
max{0,(1/p∗−1/p)} × µ

ψmax+σ

⃓⃓⃓
ψ(µτMF )

(µτMF −τσ)

⃓⃓⃓)︄
.

For ρ is ℓ2-norm ψmax = ∥y∥2 − σ and by taking t = 2, (5.55) can be derived.

5.5.2.1 Error Bounds of the ℓ1-norm Minimization via OPR Iterations
with the Matrix Properties

Corollary 5.3. Convergence of (P1
σ): Assume 1√

M
D is a M ×N matrix with i.i.d zero

mean sub-Gaussian random variable entries with parameter ς and satisfies the UUP.
Error bound of the Pareto curve method with gO iterations satisfies (5.40), (5.41) and
(5.42) for ℓ1-norm minimization with

k =

1 −

(︂
A− (1 + ϵ)

√
B
)︂

B(1 + ϵ)
√
s

× µ ∥y∥2
ψmax + σ

×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓ (5.62)
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and for ρ is ℓ2-norm,

k =

1 −

(︂
A− (1 + ϵ)

√
B
)︂

B(1 + ϵ)
√
s

× µ×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓ (5.63)

provided (with the assumption of) M > Cςϵ
−2s log(N/s) and Cς is a constant depending

on ς.

Proof. Consider t = 2 for (4.1). With p = 1 (i.e. p∗ = ∞), (5.62) can be obtained by
using (5.55). If ρ is ℓ2-norm then ψmax = ∥y∥2 − σ. Reminding that for a matrix that
satisfies UUP, β2 = 1 + ϵ.

5.5.2.2 Error Bounds of the ℓ∞-norm Minimization via OPR Iterations
with the Matrix Properties

Corollary 5.4. Convergence of (P∞
σ ): Assume 1√

N
D is a M×N ξ-Parseval frame with

i.i.d zero mean sub-Gaussian random variable entries with parameter ς and satisfies
the UP. Error bound of the Pareto curve method with gO iterations satisfies (5.40),
(5.41) and (5.42) for ℓ∞-norm minimization with

k =

1 −

(︂
A− η

√
B
)︂
δ ∥y∥2

ηB
√
N

× µ

ψmax + σ
×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓ (5.64)

and for ρ is ℓ2-norm,

k =

1 −

(︂
A− η

√
B
)︂
δ

ηB
√
Nµ

× µ×
⃓⃓⃓⃓
ψ(µτMF )

(µτMF − τσ)

⃓⃓⃓⃓ (5.65)

where A = 1 − ξ,B = 1 + ξ frame bounds with small ξ > 0.
If

• 1√
N

D is a M ×N ξ-Parseval frame with i.i.d zero mean sub-Gaussian random
variable entries with parameter ς and satisfies the UP, then (5.65) holds for

η = ςc6

√︄
log(ω)
ω

, (5.66)

δ = c7
ω

(5.67)

where c6 and c7 are the positive constants.

• D is a M ×N random orthogonal matrix satisfies the UP, then (5.65) holds for

η = 1 − c1
4 , (5.68)
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δ = c2c
2
1

log
(︂

1
c1

)︂ , (5.69)

where 0 < c1 = ω − 1 and 0 < c2 is an absolute constant.

• D is a M ×N random partial Fourier matrix as it is described in Theorem 4.3
and satisfies the UP, then (5.65) holds for

η = 1 − c4
4 , (5.70)

δ = c5c
2
4

log4 (N)
, (5.71)

where c4 = ω − 1 for some c4 ∈ (0, 1] and 0 < c5.

Proof. Consider t = 2 for (4.1). With p = ∞ (i.e. p∗ = 1), (5.64) can be obtained by
using (5.55). If ρ is ℓ2-norm then ψmax = ∥y∥2 − σ. Reminding that for a matrix that
satisfies UP, β2 = η, s = δN . Using the UP parameters given Section 4.2.2 for several
random matrices, η and δ can be written.
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Chapter 6

Solving (Pσ)

In order to solve (Ppσ), (Ppτ ) needs to be repeatedly solved. In this thesis, two methods
are introduced to solve (Ppτ ). First one is the well-known, simple and efficient projected
gradient method and the second one is the projection-free Frank-Wolfe method.

6.1 (Pτ) Solver

(Pτ ) can be solved using the simple projected gradient method

6.1.1 Projected Gradient Method to Solve (Pτ )

Let us reformulate the optimization problem (Pτ ) as Nesterov’s first-order method for
smooth convex functons

minimize
∥x∥p≤τ

f(x), (6.1)

where f(x) = ρ(y − Dx). Eq. (6.1) can be solved with the well known basic gradient
descent method, which requires computing

x(k) = x(k−1) − γ∇f(x(k−1)) (6.2)

iteratively until the stopping criteria is met, where k is the iteration number and γ

is a suitable step size. Although γ has key importance to the speed of the algorithm
itself, in this study, we avoid applying any acceleration methods regarding γ to solve
(6.2) for the sake of analysis simplicity.

For mathemaical convenience, eq. (6.2) can be interpreted via an approximation
scheme which replaces the original problem with a quadratic approximation function
of the objective function such as f(x) ≈ f(v) + ⟨∇f(v),x − v⟩ + 1

2γ ∥x − v∥2
2. Then

for a fixed point x(k−1), a minimizer x(k) to solve (6.1) for v = x(k−1) is going to be

x(k) = arg min
∥x∥p≤τ

{f(x(k−1)) + ⟨∇f(x(k−1)),x − x(k−1)⟩ + γ

2
⃦⃦⃦
x − x(k−1)

⃦⃦⃦2

2
}, (6.3)
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by ignoring the constant term and after some simplifications, (6.3) can be written as

x(k) = arg min
∥x∥p≤τ

1
2
⃦⃦⃦
x −

(︂
x(k−1) − γ∇f(x(k−1))

)︂⃦⃦⃦2

2
. (6.4)

With the problem definition of (Pτ ), it can be easily deduced that (6.4) is just the
orthogonal projection of the vector

(︂
x(k−1) − γ∇f(x(k−1))

)︂
onto the ℓp-ball of radius

τ , which will be denoted as

x(k) = projBp

(︂
x(k−1) − γ∇f(x(k−1)), τ

)︂
, (6.5)

that is
x(k) = projBp

(︂
x(k−1) + γDT∇ρ(y − Dx(k−1)), τ

)︂
. (6.6)

6.1.1.1 Projection onto the ℓ1-ball

Projection of a vector a = [a1, a2, ..., aN ] onto the ℓ1-ball can be written as following

projτB1 (a) =
{︄

a, if ∥a∥1 ≤ 1
sgn(ai)max{|ai| − κ, 0}, else

(6.7)

where κ is the Lagrangian multiplier of projτB1 (a) [Duc+08]. The tricky part of the
projection is to find the κ that satisifes Karush-Kuhn-Tucker optimality condition∑︁N
i=1 (|ai| − κ) = τ in an efficient way.

In order to find κ, we utilized the simple, sorting based approach introduced in
[HWC74]. Additional variations of this method are described in [Con16].

To find κ:

• Sort |a| as: c1 ≥ c2 ≥ ... ≥ cN ,

• Find K = max
1≤k≤N

{︂
k |
(︂∑︁k

j=1 cj − τ
)︂
/k ≤ ck

}︂
,

• Calculate κ =
(︂∑︁K

k=1 ck − τ
)︂
/K.

6.1.1.2 Projection onto the ℓ∞-ball

Projection onto the ℓ∞-ball is a simple thresholding operation and with the help of
Moreau Decomposition and soft thresholding operator can be written as:

projB∞(a, τ) =

τsgn(τ), if |ai| ≥ τ

ai, if |ai| < τ
. (6.8)

6.1.1.3 A Duality Gap

Since Pareto curve depicts the optimal solution, duality of (Ppτ ) is important to bound
the accuracy of the calculated ψ. Let us consider a feasible solution x̄τ and corresposing
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residual vector rτ̄ = y − Dx̄τ for a τ . Pareto curve is convex decreasing in τ and a
given has to be higher than the optimal. Similarly a residual for a feasible point has
to be higher than the optimal residual, thus we can write

0 < ρ (rτ ) ≤ ρ (rτ̄ ) (6.9)

where rτ = y − Dxτ and xτ is the optimal solution for a given τ .
Remember the Lagrangian dual of (Ppσ). The objective of (Pp,dτ ) should satisfy

yT zτ − τλ ≤ ρ (rτ ) ≤ ρ (rτ̄ ) (6.10)

Let us take zτ = rτ̄/ρ◦(rτ̄ ), it is feasible for (Pp,dτ ) since ρ is positive homogeneous and
λ =

⃦⃦⃦
DT zτ

⃦⃦⃦
p∗

. Then

yT rτ̄ − τ
⃦⃦⃦
DT rτ̄

⃦⃦⃦
p∗

ρ◦(rτ̄ )
≤ ρ (rτ ) ≤ ρ (rτ̄ ) . (6.11)

By using (6.11), following duality gap gτ can be defined.

gτ :=
yT rτ̄ − τ

⃦⃦⃦
DT rτ̄

⃦⃦⃦
p∗

ρ◦(rτ̄ )
− ρ (rτ̄ ) . (6.12)

6.1.1.4 Fast Iterative Shrinkage Thresholding Algorithm

(Pτ ) can be solved with the projected gradeient method Fast Iterative Shrinkage
Thresholding Algorithm (FISTA) with the steps given in Algorithm 1.

Algorithm 1 FISTA (τ)
Input: y, D, τ , ζ,
Initialization: x(0) = x, z(1) = x, t1 = 1,

1: for k=1,2,3,...,iter do
2: x(k) = projBp

(︂
z(k) − γDT∇ρ(y − Dz(k)), τ

)︂
3: tk+1 = 1+

√
1+4t2

k
2

4: z(k+1) = x(k) + tk−1
tk+1

(x(k) − x(k−1))
5: if gτ ≤ ζ then
6: return xτ = z(k+1)

7: end if
8: end for

Output: xτ = arg min (Ppτ ).
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6.1.2 Projection-Free Frank-Wolfe to Solve (Pτ )

(Ppτ ) can be solved with the projected gradient methods. However, especially in big data
sets projection steps could be notably costly [HK12]. There is a simple projection-free
algorithm called Frank-Wolfe that performs linear optimization over the constraint set
has been introduced in [FW+56]. The Frank-Wolfe algorithm can be a very preferable
alternative to projection gradient methods since linear optimization over the ℓp-ball
constraint is much faster and simpler than projection onto it [DU18].

Algorithm 2 Frank-Wolfe(τ) to Solve (Ppτ )
Input: y, D, τ , ζ,
Initialization: Let

⃦⃦⃦
x(0)

⃦⃦⃦
p

≤ τ ,
1: repeat
2: for k = 0, . . . do
3: s(k−1) = arg min

∥s∥p≤τ
⟨s,DT∇ρ(y − Dx(k))⟩

4: x(k+1) = (1 − γ) x(k) + γs, with γ = 2
k+2

5: end for
6: until gτ ≤ ζ1

Output: xτ = arg min (Ppτ ).

6.1.2.1 Duality Gap for the Frank-Wolfe Iterations

Pareto curve depicts the optimal solution, therefore stopping criteria is important
for (Ppτ ). Frank-Wolfe iterations most oftenly enforces a duality gap as a stopping
condition that is given in [Jag13] such

gτ := max
∥s∥p≤τ

⟨x − s,DT∇ρ(y − Dx)⟩. (6.13)

(7.52) can be simplified as

gτ := max
∥s∥p≤τ

⟨x − s,DT∇ρ(y − Dx)⟩ = ⟨x,∇DT∇ρ(y − Dx)⟩ + τ
⃦⃦⃦
DT∇ρ(y − Dx)

⃦⃦⃦
p∗
.

(6.14)

6.2 Solving (Pp
σ)

(Ppσ) can be solved by combining the root finding methods presented in Section 5.3
with a (Ppτ ) solver as follows:

• Choose initial τ values.

Some root finding approaches require one single starting point like Newton’s
method while some require two like the bracketing-type methods. Choose
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two initial values with opposite signs to ensure convergence of bracketing-type
methods. The default choice can given by τ = 0 and τ = τMF to secure two
points with opposite signs as it is explained in Section 5.3.5.

• Apply the steps of a nonlinear equation root finding step to solve (5.29).

Different root finding methods come with different computational costs. Solving
(5.29) is more expensive for Newton’s method than for bracketing-type methods
since the derivative calculation of the nonlinear equation is required along with
the function evaluation, while bracketing-type methods need only the function
evaluation which does not required for the points τ = 0 and τ = τMF since we
can already calculate ν(τ = 0) and ν(τ = τMF ) without solving (Ppτ ).

• Terminate once the stopping criteria are met.

The steps above are algoritmized in Algorithm 3.

Algorithm 3 Solving (Ppσ)
Input: y, D, σ, ζ,
Initialization: Choose initial τ ,

1: repeat
2: for k = 1, . . . do
3: x(k−1) := The solution of (Ppτ−1)
4: τk := The solution of (5.29)
5: end for
6: until ρ(y − Dx(k−1)) − σ ≤ ζ2

Output: xσ = arg min (Ppσ).

6.3 Solving (P1
σ) and (P∞

σ ) with the OPR and Newton’s
Method Iterations

In this subchapter, numerical experiments are exhibited for solving (P1
σ) and (P∞

σ ) by
using the Algorithm 3. gO is compared to gN in terms of the results accuracy and the
iteration number (iter) which is the number of required (Ppτ ) solving steps to have the
solution of (Ppσ). Performances of the gO and gN iterations are investigated for three
different loss functions ρ which are

Least squares ρl(x) = ∥x∥2 , (6.15)

Huber ρh(x)i =
N∑︂
i=1


x2

i
2 , if |xi| ≤ Γ

Γ|xi| − Γ2

2 , otherwise
, (6.16)

Student’s t ρs(x)i =
N∑︂
i=1

κ log
(︂
1 + x2

i /κ
)︂
, (6.17)
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x

Least-squares

Huber

Student's t

Figure 6.1: Illustration of the loss functions least-squares, Huber and Student’s t.

where Γ and κ are the tunning parameters for ρh and ρs respectively; we take Γ and κ
0.1 for the simulations. Behaviours of the ρl, ρh and ρs are depicted in Figure 6.1.

ρl and ρh are employed as gauge penalties while ρs is utilized as a nonconvex
penalty. While ρl is the most commonly used loss function in numerous optimziation
problems, ρh is less sensitive to outliers in the data than ρl. ρs is also utilized to
develop outlier-robust approaches [ABP12; ABP13; Ara+12]. Thus, we include ρs for
the simulations as well.

For the gN iterations, ∂τν(τ) is needed to be calculated. ∂τν(τ) calculation requires
the feasible solution of (Pp,dτ ) which can be found in [Ara+19] for several loss functions.

6.3.1 Using the Warm-Start Strategy for (P1
σ) and (P∞

σ )

From the Proposition 5.6, it is known that for all y there exists an τσ, satisfies
τσ ≤ µτMF where

µ = K1

(︃ 1
A

3
2

− σ

τMF

)︃
, (6.18)

µ = K∞

(︄√
N

A
3
2

− σ

τMF

)︄
, (6.19)

for (P1
σ) and (P∞

σ ) respectively. Having a decent bound on C2,1 and C2,∞ could assist
us to adopt a µ that makes τMF close to τσ which inherently leads less gO iterations.

In the literature Cp,q is upper bounded to assure dn(BNp )ℓNq ≤ 1 in [Kas77; GG84;
Glu81; Glu84] for the corresponding Kp. In the simulations, we observed that these
bounds on C2,1 and C2,∞ are not very tight, especially for C2,∞. Therefore, instead
of using the upper bounds of C2,1 and C2,∞, we introduce and choose experimental
constants Ce2,1 and Ce2,∞ to generate a corresponding experimental µe for (P1

σ) and
(P∞

σ ) respectively. µe is generated to satisfy τσ = µeτMF .
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6.3.1.1 Simulation Settings

For the simulations, different ω = N/M values such 2, 4, 8 and 16 are taken into
account. y is created as a normally distributed signal with a variance of 1 and D is
constructed as to be a Parseval frame.

In order to employ µ values for the gO iterations, (P1
σ) and (P∞

σ ) are solved 100
times and experimental µ values, denoted with µe, are obtained for several σ/ρ(y) and
ω. Averaged µe values are used for the simulations and shown in Table 6.1 and 6.2 for
the (P1

σ) and (P∞
σ ) respectively. Corresponding Ce2,1 and Ce2,∞ values are depicted in

Figure 6.2 and 6.3.
We also want to mention the bound on C2,1 and C2,∞. C2,1 = 0.088, for M = 128

while C2,∞ is equal to 10.79, 21.2886, 34.2876 and 51.4282 for N/M is equal to 256/128,
512/128, 1024/128 and 2048/128 respectively.

Table 6.1: Chosen µe values for the (P1
σ) experiments.

(N,M)
ρ σ/ρ(y) (256, 512) (256, 1024) (256, 2048) (512, 1024) (512, 2048) (1024, 2048)

ρl

0.5 0.3599 0.3143 0.2791 0.36 0.3139 0.3601
0.05 0.783 0.6715 0.5873 0.7834 0.6705 0.7831
0.005 0.8284 0.7095 0.6199 0.8287 0.7085 0.8285

ρh

0.5 0.286 0.252 0.2261 0.2879 0.2521 0.2871
0.05 0.7434 0.6364 0.5594 0.7439 0.6379 0.7437
0.005 0.8105 0.6945 0.6071 0.8123 0.6949 0.8129

ρs

0.5 0.3459 0.299 0.2656 0.3451 0.2991 0.3452
0.05 0.7404 0.635 0.5559 0.7408 0.6344 0.7408
0.005 0.8098 0.6938 0.6063 0.8103 0.6929 0.8099

Table 6.2: Chosen µe values for the (P∞
σ ) experiments.

(N,M)
ρ σ/ρ(y) (256, 512) (256, 1024) (256, 2048) (512, 1024) (512, 2048) (1024, 2048)

ρl

0.5 0.2142 0.1917 0.1756 0.1976 0.1839 0.1931
0.05 0.4421 0.3766 0.3444 0.41 0.3601 0.3927
0.005 0.4673 0.396 0.3618 0.4336 0.3785 0.4153

ρh

0.5 0.1754 0.1612 0.1433 0.1675 0.153 0.1598
0.05 0.4161 0.3627 0.3261 0.3981 0.3446 0.3774
0.005 0.4544 0.3924 0.3528 0.5345 0.3702 0.4103

ρs

0.5 0.2013 0.1774 0.1592 0.1845 0.172 0.1757
0.05 0.4184 0.3569 0.3261 0.3904 0.338 0.3676
0.005 0.4588 0.3894 0.3588 0.4264 0.3699 0.374

6.3.1.2 Simulations

(P1
σ) and (P∞

σ ) are solved 100 times with g0 and gN iterations. µ is taken as µ = 1
and µ = µe from Table 6.1 and 6.2. Averaged results are shown in Table 6.3 and
Table 6.4 for (P1

σ) and (P∞
σ ) respectively. Several σ values are chosen relative to ρ(y),

in particular 5 × 10−1ρ(y), 5 × 10−2ρ(y) and 5 × 10−3ρ(y). Residual ρ(rσ) and ∥xσ∥p
values are depicted at the solution point xσ.

Newton’s method requires fewer (Ppτ ) solves (see Table 6.1 and 6.2). However,
solving (5.29) is more expensive for Newton’s method than for OPR since the derivative
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Figure 6.2: Ce2,1 values for several ρ(y)/σ and N/M .

calculation of the nonlinear equation is required along with the function evaluation,
while OPR need only the function evaluation. Also, Newton’s method does not ensure
convergence guarantee for nonconvex ρs.
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Table 6.3: Simulation results for (P1
σ) with ρl, ρh and ρs.

least squares Huber (Γ = 0.1) Students t (κ = 0.1)
(N,M) σ/ρ(y) Methods ρl(rσ) ∥xσ∥1

τσ
τMF

iter ρh(rσ) ∥xσ∥1
τσ
τMF

iter ρs(rσ) ∥xσ∥1 τσ/τMF iter

(5
12
,2

56
)

0.5
gO, (µ = 1) 8.005 104.15 0.36 6.94 9.63 83.2 0.287 6.06 11.14 100.2 0.3463 5.77
gO, (µ = µe) 8.005 104.15 0.36 3.78 9.63 83.2 0.287 2.39 11.14 100.2 0.3463 3.32

gN 8.005 104.15 0.36 3.09 9.63 83.2 0.287 3.05 − − − −

0.05
gO, (µ = 1) 0.8 226.49 0.783 9.06 0.963 215.5 0.7441 10.09 1.114 214.24 0.7406 13.02
gO, (µ = µe) 0.8 226.48 0.783 3.99 0.963 215.5 0.7441 2.61 1.114 214.23 0.7405 5.81

gN 0.8 226.48 0.783 3.8 0.963 215.5 0.7441 4.15 − − − −

0.005
gO, (µ = 1) 0.08 239.63 0.8285 40.57 0.09 236.2 0.8165 42.9 0.1114 234.3 0.81 53.85
gO, (µ = µe) 0.08 239.62 0.8284 4.22 0.09 236.2 0.8165 2.62 0.1114 234.28 0.81 11.04

gN 0.08 239.62 0.8284 3.8 0.09 236.2 0.8165 4.08 − − − −

(1
02

4,
25

6)

0.5
gO, (µ = 1) 8.012 128.62 0.3144 6.86 9.65 103.4 0.2526 6.07 11.16 122.55 0.2994 5.7
gO, (µ = µe) 8.012 128.62 0.3143 3.79 9.65 103.4 0.2523 2.42 11.16 122.54 0.2994 3.2

gN 8.012 128.62 0.3143 3.01 9.65 103.4 0.252 3.07 − − − −

0.05
gO, (µ = 1) 0.801 274.75 0.6715 11.93 0.965 262.53 0.6397 12.93 1.116 259.88 0.6351 15.91
gO, (µ = µe) 0.801 274.74 0.6715 3.93 0.965 262.51 0.6395 2.7 1.116 259.87 0.635 5.99

gN 0.801 274.73 0.6715 3.43 0.965 262.5 0.6395 4 − − − −

0.005
gO, (µ = 1) 0.08 290.29 0.7095 71.38 0.09 286.06 0.6994 73.77 0.112 283.93 0.6939 84.52
gO, (µ = µe) 0.08 290.28 0.7095 4.32 0.09 285.94 0.6963 3.039 0.112 283.9 0.6939 11.77

gN 0.08 290.27 0.7095 3.57 0.09 286.02 0.699 4 − − − −

(2
04

8,
25

6)

0.5
gO, (µ = 1) 7.997 161.24 0.2791 6.71 9.45 129.3 0.2267 6 11.136 153.74 0.266 5.6
gO, (µ = µe) 7.997 161.24 0.2791 3.64 9.45 129.01 0.2265 2.35 11.136 153.74 0.2659 2.99

gN 7.997 161.24 0.2791 3 9.45 128.95 0.2263 3 − − − −

0.05
gO, (µ = 1) 0.8 339.35 0.5874 14.32 0.95 321.083 0.5608 15.5 1.113 321.28 0.556 18.2
gO, (µ = µe) 0.8 339.35 0.5874 3.81 0.95 320.45 0.5597 2.938 1.114 321.27 0.556 5.67

gN 0.8 339.35 0.5874 3.07 0.95 320.575 0.5599 4 − − − −

0.005
gO, (µ = 1) 0.08 358.16 0.6199 98.23 0.09 351.02 0.609 101.3 0.111 349.23 0.6059 111.46
gO, (µ = µe) 0.08 358.15 0.6199 4.19 0.09 350.39 0.608 3.14 0.111 349.19 0.6058 11.28

gN 0.08 358.14 0.6199 3.22 0.09 351.76 0.61 4.143 − − − −

(1
02

4,
51

2)

0.5
gO, (µ = 1) 11.317 208.21 0.36 7 19.28 165.84 0.2866 6.56 22.23 199.81 0.3454 6.02
gO, (µ = µe) 11.317 208.2 0.36 3.84 19.28 165.68 0.2864 2.61 22.23 199.81 0.3454 3.55

gN 11.317 208.2 0.36 3.44 19.28 165.54 0.2861 3.833 − − − −

0.05
gO, (µ = 1) 1.132 453.05 0.7834 9.14 1.92 427.4 0.7413 11.46 2.223 428.49 0.7409 13.73
gO, (µ = µe) 1.132 453.04 0.7833 4.11 1.92 427.22 0.741 3.09 2.223 428.49 0.7409 6.24

gN 1.132 453.04 0.7833 3.99 1.92 427.9 0.7423 5.1 − − − −

0.005
gO, (µ = 1) 0.113 479.29 0.8288 40.64 0.19 469.9 0.8126 45 0.2223 469.56 0.8102 55.625
gO, (µ = µe) 0.113 479.28 0.8287 4.23 0.19 469.4 0.8117 3.2 0.2223 469.53 0.8102 12.96

gN 0.113 479.28 0.8287 4 0.19 470.5 0.8113 5.4 − − − −

(2
04

8,
51

2)

0.5
gO, (µ = 1) 11.31 256.36 0.3139 7 19.05 203.58 0.2501 6.7 22.2 244.41 0.2992 5.97
gO, (µ = µe) 11.31 256.35 0.3139 3.73 19.05 203.45 0.2499 2.4 22.2 244.41 0.2992 3.33

gN 11.31 256.34 0.3139 3.01 19.05 203.19 0.2496 3.5 − − − −

0.05
gO, (µ = 1) 1.13 547.6 0.6705 12.03 1.91 520.88 0.637 14 2.22 518.2 0.6348 16.44
gO, (µ = µe) 1.13 547.6 0.6705 3.85 1.91 520.42 0.6365 2.83 2.22 518.2 0.6348 6.11

gN 1.13 547.6 0.6705 3.85 1.91 520.9 0.6373 5 − − − −

0.005
gO, (µ = 1) 0.113 578.6 0.7085 71.85 0.19 563.45 0.6932 75.77 0.222 566.52 0.6932 86.44
gO, (µ = µe) 0.113 578.6 0.7085 4.09 0.19 563.1 0.6927 2.875 0.222 566.5 0.6932 12.41

gN 0.113 578.6 0.7085 3.9 0.19 564.15 0.6937 5 − − − −

(2
04

8,
10

24
)

0.5
gO, (µ = 1) 15.99 416.22 0.3601 7.02 38.36 333.67 0.2884 7 44.48 400.55 0.346 6.1395
gO, (µ = µe) 15.99 416.21 0.3601 3.75 38.36 333.52 0.2882 2.5 44.48 400.55 0.346 3.86

gN 15.99 416.21 0.3601 3.89 38.36 333.01 0.2878 4.167 − − − −

0.05
gO, (µ = 1) 1.599 904.97 0.7831 9.51 3.8 847.17 0.7443 11.75 4.448 857.33 0.7407 14.31
gO, (µ = µe) 1.599 904.95 0.7831 3.9 3.8 846.46 0.7437 3.5 4.448 857.32 0.7407 6.43

gN 1.599 904.95 0.7831 4 3.8 855.62 0.7517 7.26 − − − −

0.005
gO, (µ = 1) 0.16 957.45 0.8285 40.83 0.38 941.03 0.8135 45.2 0.445 934.37 0.8095 57.78
gO, (µ = µe) 0.16 957.43 0.8285 3.95 0.38 941.2 0.8135 3.52 0.445 934.35 0.8095 13.5

gN 0.16 957.43 0.8285 4 0.38 941 0.8135 14.5 − − − −
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Table 6.4: Simulation results for (P∞
σ ) with ρl, ρh and ρs.

least squares Huber (Γ = 0.1) Students t (κ = 0.1)
(N,M) σ/ρ(y) Methods ρl(rσ) ∥xσ∥∞

τσ
τMF

iter ρh(rσ) ∥xσ∥∞
τσ
τMF

iter ρs(rσ) ∥xσ∥∞ τσ/τMF iter

(5
12
,2

56
)

0.5
gO, (µ = 1) 8.005 0.4808 0.2126 6.34 9.63 0.397 0.1755 6.6 11.14 0.453 0.2002 5.11
gO, (µ = µe) 8.005 0.4808 0.2126 3.92 9.63 0.397 0.1754 3.64 11.14 0.453 0.2002 2.62

gN 8.005 0.4808 0.2126 3 9.63 0.397 0.1754 3 − − − −

0.05
gO, (µ = 1) 0.8 0.999 0.4418 20.2 0.96 0.9503 0.4205 22.72 1.11 0.945 0.418 21.88
gO, (µ = µe) 0.8 0.999 0.4418 5.33 0.96 0.9503 0.4202 6.65 1.11 0.945 0.418 5.65

gN 0.8 0.999 0.4418 3 0.96 0.9503 0.4203 3.7 − − − −

0.005
gO, (µ = 1) 0.08 1.057 0.4674 165.7 0.09 1.04 0.4602 162.2 0.11 1.038 0.459 167.99
gO, (µ = µe) 0.08 1.057 0.4674 13.16 0.09 1.04 0.4596 12.96 0.11 1.037 0.4583 16.57

gN 0.08 1.057 0.4674 4.03 0.09 1.04 0.4599 5.37 − − − −

(1
02

4,
25

6)

0.5
gO, (µ = 1) 8.013 0.3263 0.191 5.99 9.647 0.2721 0.1592 6.34 11.16 0.3038 0.1777 4.97
gO, (µ = µe) 8.013 0.3263 0.191 3.43 9.647 0.272 0.1592 3.32 11.16 0.3038 0.1777 2.57

gN 8.013 0.3263 0.191 2 9.647 0.272 0.1592 2.89 − − − −

0.05
gO, (µ = 1) 0.801 0.6438 0.3768 22.36 0.96 0.615 0.3604 24.94 1.116 0.6099 0.3569 24.59
gO, (µ = µe) 0.801 0.6438 0.3768 4.35 0.96 0.615 0.3601 5.95 1.116 0.6096 0.3568 5.29

gN 0.801 0.6438 0.3768 3 0.96 0.615 0.3602 3.39 − − − −

0.005
gO, (µ = 1) 0.08 0.6772 0.4002 195.3 0.09 0.6661 0.3951 191.6 0.112 0.663 0.388 195.13
gO, (µ = µe) 0.08 0.6772 0.4002 10.14 0.09 0.6654 0.3947 11.8 0.112 0.663 0.3877 14.91

gN 0.08 0.6772 0.4002 3 0.09 0.6662 0.3952 19.88 − − − −

(2
04

8,
25

6)

0.5
gO, (µ = 1) 7.997 0.227 0.1797 5.51 9.62 0.1892 0.1497 6.22 11.14 0.2095 0.1657 4.97
gO, (µ = µe) 7.997 0.227 0.1797 2.99 9.62 0.1891 0.1496 3.19 11.14 0.2095 0.1657 2.71

gN 7.997 0.227 0.1797 2 9.62 0.189 0.1496 2.79 − − − −

0.05
gO, (µ = 1) 0.7997 0.4369 0.3458 23.5 0.96 0.4187 0.3316 26.25 1.114 0.4131 0.327 26.07
gO, (µ = µe) 0.7997 0.4369 0.3458 3.8 0.96 0.4184 0.3314 5.46 1.114 0.4131 0.3269 5.08

gN 0.7997 0.4369 0.3458 2.71 0.96 0.4185 0.3315 3.412 − − − −

0.005
gO, (µ = 1) 0.08 0.4592 0.3635 207.52 0.09 0.4513 0.3553 212.5 0.111 0.448 0.355 212.73
gO, (µ = µe) 0.08 0.459 0.3633 10.96 0.09 0.4508 0.3549 13.125 0.111 0.448 0.355 14.72

gN 0.08 0.4587 0.3631 3.43 0.09 0.4515 0.3554 50.75 − − − −

(1
02

4,
51

2)

0.5
gO, (µ = 1) 11.317 0.4805 0.1973 6.82 19.22 0.396 0.1626 7.08 22.23 0.4518 0.1855 5.43
gO, (µ = µe) 11.317 0.4805 0.1973 4.05 19.22 0.396 0.1626 4 22.23 0.4517 0.1854 2.77

gN 11.317 0.4805 0.1973 3 19.22 0.396 0.1626 3.13 − − − −

0.05
gO, (µ = 1) 1.132 0.9988 0.41 21.85 1.922 0.9538 0.3942 24.76 2.223 0.945 0.3879 24.1
gO, (µ = µe) 1.132 0.9988 0.41 5.51 1.922 0.9534 0.3941 7.56 2.223 0.945 0.3878 6.29

gN 1.132 0.9988 0.41 3 1.922 0.9535 0.3941 4 − − − −

0.005
gO, (µ = 1) 0.1132 1.057 0.4338 171.74 0.19 1.041 0.4281 177.72 0.222 1.033 0.4242 179.38
gO, (µ = µe) 0.1132 1.057 0.4338 12.16 0.19 1.041 0.4279 14 0.222 1.033 0.4239 16.8

gN 0.1132 1.057 0.4338 3.96 0.19 1.041 0.4278 7.635 − − − −

(2
04

8,
51

2)

0.5
gO, (µ = 1) 11.31 0.3255 0.1828 6 19.2 0.271 0.1518 6.95 22.19 0.3026 0.1698 5
gO, (µ = µe) 11.31 0.3255 0.1828 3.42 19.2 0.271 0.1518 3.65 22.19 0.3026 0.1698 2.7

gN 11.31 0.3255 0.1827 2 19.2 0.271 0.1518 2.98 − − − −

0.05
gO, (µ = 1) 1.13 0.6418 0.3603 23.3 1.92 0.6139 0.3403 26.87 2.22 0.6076 0.3411 26.11
gO, (µ = µe) 1.13 0.6418 0.3603 4.29 1.92 0.6138 0.3402 6.47 2.22 0.6075 0.3411 5.67

gN 1.13 0.6418 0.3603 3 1.92 0.6138 0.3402 3.6 − − − −

0.005
gO, (µ = 1) 0.113 0.6785 0.3777 199.38 0.192 0.663 0.3807 199.3 0.22 0.6596 0.3707 205.69
gO, (µ = µe) 0.113 0.6785 0.3776 11.175 0.192 0.663 0.3805 8.33 0.22 0.6592 0.3704 14.85

gN 0.113 0.6785 0.3775 3.5 0.192 0.663 0.3805 23.67 − − − −

(2
04

8,
10

24
)

0.5
gO, (µ = 1) 15.995 0.4802 0.1883 6.99 38.43 0.3956 0.1553 7.4545 44.41 0.4511 0.1777 5.828
gO, (µ = µe) 15.995 0.4802 0.1883 4.05 38.43 0.3956 0.1553 4.273 44.41 0.4511 0.1777 2.88

gN 15.995 0.4802 0.1883 3 38.43 0.3956 0.1552 3.3 − − − −

0.05
gO, (µ = 1) 1.599 0.9974 0.391 22.96 3.84 0.9515 0.3662 27.14 4.44 0.9449 0.3717 25.566
gO, (µ = µe) 1.599 0.9974 0.391 5.44 3.84 0.9514 0.3662 8.21 4.44 0.9448 0.3717 6.55

gN 1.599 0.9974 0.391 3 3.84 0.9514 0.3662 4.07 − − − −

0.005
gO, (µ = 1) 0.159 1.0553 0.4068 184.7 0.38 1.0523 0.3747 206.5 0.44 1.031 0.3985 193.47
gO, (µ = µe) 0.159 1.0552 0.4068 12.39 0.38 1.0523 0.3747 14.23 0.44 1.031 0.3983 14.79

gN 0.159 1.0552 0.4068 4.056 0.38 1.0521 0.3747 8.5 − − − −
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6.3 Solving (P1
σ) and (P∞

σ ) with the OPR and Newton’s Method Iterations
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Figure 6.3: Ce2,∞ values for several ρ(y)/σ and N/M .
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Chapter 7

(Pσ) Related Applications

7.1 ℓ1-norm Minimization

ℓ1-norm minimization plays a major role in many signal processing applications. The
minimal ℓ1-norm solution is also the sparsest solution under certain conditions, as
outlined in compressive sensing theory.

7.1.1 ℓ1-norm Minimization using a Test Benchmark

In order to create the testing environment and benchmark for comparison of proposed
nonlinear equation root finding methods for solving (P1

σ), Sparco [Ber+09] framework is
utilized. Newton and main Regula falsi methods are deployed as the nonlinear equation
root finders. Real-valued problems are chosen from Sparco for the simulations among
the collection of test problems that include problems compiled from the literature as
well. Details about the problems and related publications can be found in [Ber+09].

Simulation results are shown in Table 7.2, 7.3, and 7.4. Different σ values from
high to low are set to solve (P1

σ) such 5 × 10−1ρ(y), 10−1ρ(y), 5 × 10−2ρ(y), 10−2ρ(y),
5×10−3ρ(y) and 10−3ρ(y). Residual vector ρ(rσ) = ρ(y−Dxσ), ∥xσ∥1 and the number
of nonzero (nnz) for each solution point xσ are depicted. N,M and ρ(y) values for
the chosen problems are given in Table 7.1.

The optimal objective values of the (P1
τ ), ν(τ), for a given y and τ is shown in

Figure 7.1, reminding that Pareto frontier ψ(τ) is the σ shifted from ν(τ).

Problems id M N ρl(y) ρh(y) ρs(y)
cos-spike 3 1024 2048 102.2423 2378.8 25.09
gauss-cos 5 300 2048 83.6987 1140.3 9.7146
gauss-en 11 256 1024 99.9055 1272.5 8.957
hdr 12 2000 8192 2327.5 83057 112.5971
jitter 902 200 1000 0.4476 4.6881 0.0901
sign-spike 7 600 2560 2.1934 41.6002 1.3892

Table 7.1: N,M , ρ(y) values for the problem setups.
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Figure 7.1: Optimal objective function ν(τ) for the problems.
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7.1 ℓ1-norm Minimization

Table 7.2: Simulation results for solving (P1
σ).

least squares Huber (δ = 5 × 10−3) Student’s t (ν = 10−2)
Problems σ/ρ(y) Methods ρl(rσ) ∥xσ∥1 nnz iter ρh(rσ) ∥xσ∥1 nnz iter ρs(rσ) ∥xσ∥1 nnz iter

co
s-

sp
ik

e

0.5

Regula Falsi 51.12 66.24 2 10 1189.4 68.328 2 8 12.545 129.52 55 12
Illinois 51.12 66.24 2 7 1189.4 68.328 2 7 12.545 129.52 55 9
Pegasus 51.12 66.24 2 7 1189.4 68.328 3 6 12.545 129.52 55 7

And.-Björck 51.12 66.24 2 9 1189.4 68.328 3 9 12.545 129.52 55 9
Newton 51.12 66.24 2 3 1189.4 68.328 2 3 − − − −

0.1

Regula Falsi 10.2242 144.82 26 67 237.852 126.92 2 29 2.509 190.74 81 24
Illinois 10.2242 144.82 26 10 237.852 126.92 2 10 2.509 190.74 81 19
Pegasus 10.2242 144.82 26 9 237.852 126.92 2 10 2.509 190.74 81 15

And.-Björck 10.2242 144.82 26 30 237.852 126.92 2 10 2.509 190.74 81 29
Newton 10.2242 144.82 26 6 237.852 126.92 2 3 − − − −

0.05

Regula Falsi 5.112 188.4 75 85 118.702 134.72 2 68 1.2545 207.66 95 57
Illinois 5.112 188.4 75 13 118.702 134.72 2 17 1.2545 207.66 95 20
Pegasus 5.112 188.4 75 12 118.702 134.72 2 15 1.2545 207.66 95 18

And.-Björck 5.112 188.4 75 46 118.702 134.72 2 17 1.2545 207.66 95 41
Newton 5.112 188.4 75 5 118.702 134.72 2 4 − − − −

0.01

Regula Falsi 1.0224 230 118 219 23.783 217.134 125 279 0.2509 234.171 123 196
Illinois 1.0224 230 118 16 23.783 217.133 125 12 0.2509 234.171 123 19
Pegasus 1.0224 230 118 15 23.783 217.133 125 12 0.2509 234.171 123 19

And.-Björck 1.0224 230 118 185 23.783 217.133 125 12 0.2509 234.171 123 164
Newton 1.0224 230 118 5 23.783 217.133 125 3 − − − −

0.005

Regula Falsi 0.5112 235.6 123 393 11.89 229.03 125 443 0.1254 237.044 126 372
Illinois 0.5112 235.6 123 17 11.89 229.03 125 15 0.1254 237.044 126 22
Pegasus 0.5112 235.6 123 16 11.89 229.03 125 15 0.1254 237.044 126 22

And.-Björck 0.5112 235.6 123 327 11.89 229.03 125 15 0.1254 237.044 126 316
Newton 0.5112 235.6 123 5 11.89 229.03 125 3 − − − −

0.001

Regula Falsi 0.1022 240.01 125 441 2.3745 238.542 125 662 0.0251 239.62 1024 799
Illinois 0.1022 240.01 125 27 2.3745 238.542 125 26 0.0251 239.62 1024 32
Pegasus 0.1022 240.01 125 27 2.3745 238.542 125 25 0.0251 239.62 1024 31

And.-Björck 0.1022 240.01 125 397 2.3745 238.542 125 25 0.0251 239.62 1024 762
Newton 0.1022 240.01 125 5 2.3745 238.542 125 3 − − − −

ga
us

s-
co

s

0.5

Regula Falsi 41.8493 65.6144 3 9 570.139 64.51 3 10 4.8573 124.76 73 9
Illinois 41.8493 65.6144 3 7 570.14 64.51 3 8 4.8573 124.76 73 11
Pegasus 41.8493 65.6144 3 7 570.14 64.51 3 7 4.8573 124.76 73 7

And.-Björck 41.8493 65.6144 3 9 570.14 64.51 3 7 4.8573 124.76 73 8
Newton 41.8493 65.6144 3 3 570.14 64.51 3 3 − − − −

0.1

Regula Falsi 8.3698 132.0913 12 42 114.018 132.336 12 40 0.9716 172.51 163 25
Illinois 8.3698 132.0913 12 13 114.018 132.336 12 13 0.9716 172.51 163 18
Pegasus 8.3698 132.0913 12 11 114.018 132.336 12 11 0.9716 172.51 163 16

And.-Björck 8.3698 132.0913 12 28 114.018 132.336 12 13 0.9716 172.51 162 23
Newton 8.3698 132.0913 12 5 114.018 132.336 12 4 − − − −

0.05

Regula Falsi 4.1849 154.764 52 66 56.97 153.284 66 64 0.4855 178.36 186 42
Illinois 4.1849 154.764 52 14 56.97 153.284 66 18 0.4855 178.36 186 20
Pegasus 4.1849 154.764 52 13 56.97 153.284 66 14 0.4855 178.36 186 19

And.-Björck 4.1849 154.764 52 51 56.97 153.284 66 14 0.4855 178.36 184 29
Newton 4.1849 154.764 52 5 56.97 153.284 66 5 − − − −

0.01

Regula Falsi 0.8370 179.2257 127 210 11.2807 177.6979 161 215 0.0969 183.82 237 183
Illinois 0.8370 179.2257 127 17 11.2812 177.6976 161 19 0.0969 183.82 237 29
Pegasus 0.8370 179.2257 127 17 11.2812 177.6976 161 17 0.0969 183.82 237 24

And.-Björck 0.8370 179.2257 127 174 11.2812 177.6976 161 20 0.0969 183.82 237 32
Newton 0.8370 179.2252 127 5 11.2812 177.69 161 5 − − − −

0.005

Regula Falsi 0.4185 182.9291 156 385 5.539 181.912 192 391 0.0487 184.82 252 364
Illinois 0.4185 182.9291 156 22 5.54 181.912 192 20 0.0487 184.82 252 31
Pegasus 0.4185 182.9291 156 20 5.54 181.912 192 19 0.0487 184.82 252 30

And.-Björck 0.4185 182.9291 156 340 5.54 181.912 192 23 0.0487 184.82 257 77
Newton 0.4185 182.9288 156 6 5.54 181.912 192 6 − − − −

0.001

Regula Falsi 0.0837 186.068 173 502 0.9534 185.7096 212 691 0.0097 185.99 352 792
Illinois 0.0837 186.068 173 25 0.9534 185.7096 212 26 0.0097 185.99 352 41
Pegasus 0.0837 186.068 173 25 0.9534 185.7096 212 26 0.0097 185.99 352 44

And.-Björck 0.0837 186.068 173 433 0.9534 185.7096 212 85 0.0097 185.99 352 70
Newton 0.0837 186.068 173 5 0.9579 185.7055 212 6 − − − −
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Table 7.3: Simulation results for solving (P1
σ).

least squares Huber (δ = 5 × 10−3) Student’s t (ν = 10−2)
Problems σ/ρ(y) Methods ρl(rσ) ∥xσ∥1 nnz iter ρh(rσ) ∥xσ∥1 nnz iter ρs(rσ) ∥xσ∥1 nnz iter

ga
us

s-
en

0.5

Regula Falsi 49.9527 11.9 16 9 636.264 11.966 19 8 4.4784 22.56 97 8
Illinois 49.9527 11.9 16 7 636.265 11.966 19 6 4.4784 22.56 97 8
Pegasus 49.9527 11.9 16 5 636.265 11.966 19 5 4.4784 22.56 97 7

And.-Björck 49.9527 11.9 16 7 636.265 11.966 19 5 4.4784 22.56 97 10
Newton 49.9527 11.9 16 4 636.267 11.97 19 3 − − − −

0.1

Regula Falsi 9.9905 24.69 34 17 127.218 24.644 46 9 0.8956 27.651 102 15
Illinois 9.9906 24.69 34 9 127.218 24.644 46 9 0.8958 27.651 102 14
Pegasus 9.9905 24.69 34 9 127.218 24.644 46 9 0.8961 27.651 102 14

And.-Björck 9.9905 24.69 34 14 127.218 24.644 46 9 0.8958 27.651 102 17
Newton 9.9905 24.69 34 4 127.218 24.644 46 4 − − − −

0.05

Regula Falsi 4.995 26.453 35 26 63.586 26.4067 50 27 0.4482 27.905 102 24
Illinois 4.992 26.453 35 11 63.586 26.4067 50 13 0.4482 27.904 102 17
Pegasus 4.995 26.453 35 11 63.586 26.4067 50 12 0.4482 27.905 102 16

And.-Björck 4.995 26.453 35 24 63.586 26.4067 50 12 0.4482 27.905 104 23
Newton 4.995 26.453 35 4 63.586 26.4067 50 4 − − − −

0.01

Regula Falsi 0.999 27.877 35 105 12.6864 27.8557 45 106 0.0897 28.114 110 107
Illinois 0.999 27.877 35 14 12.6864 27.8557 45 16 0.0899 28.114 110 27
Pegasus 0.999 27.877 35 14 12.6864 27.8557 45 16 0.0895 28.113 110 23

And.-Björck 0.999 27.877 35 43 12.6864 27.8557 45 19 0.0897 28.114 112 57
Newton 0.999 27.877 35 3 12.6864 27.8557 45 4 − − − −

0.005

Regula Falsi 0.4995 28.055 35 205 6.314 28.038 46 207 0.0444 28.151 118 211
Illinois 0.4995 28.055 35 16 6.314 28.038 46 16 0.0444 28.151 118 28
Pegasus 0.4995 28.055 35 16 6.314 28.038 46 16 0.0445 28.151 118 26

And.-Björck 0.4995 28.055 35 88 6.314 28.038 46 16 0.0445 28.151 116 47
Newton 0.4995 28.055 35 3 6.314 28.038 46 4 − − − −

0.001

Regula Falsi 0.0999 28.2 35 701 1.183 28.185 39 443 0.0009 28.197 221 805
Illinois 0.0999 28.2 35 30 1.183 28.185 39 31 0.0009 28.197 221 36
Pegasus 0.0999 28.2 35 30 1.183 28.185 39 31 0.0009 28.197 221 44

And.-Björck 0.0999 28.2 35 67 1.183 28.185 39 44 0.0009 28.197 221 29
Newton 0.0999 28.2 35 3 1.183 28.185 39 4 − − − −

hd
r

0.5

Regula Falsi 1163.8 16864 56 14 41529 16806 56 12 56.379 39452 2684 22
Illinois 1163.8 16864 56 8 41529 16806 56 16 56.41 39447 2684 17
Pegasus 1163.8 16864 56 7 41529 16806 56 13 56.22 39469 2684 18

And.-Björck 1163.8 16864 56 8 41529 16806 56 10 56.36 39476 2684 13
Newton 1163.8 16864 56 4 41529 16806 56 4 − − − −

0.1

Regula Falsi 232.75 36691 139 29 8305.6 36573 152 29 11.251 47038 7966 41
Illinois 232.75 36691 139 12 8305.6 36573 152 13 11.164 47047 7966 30
Pegasus 232.75 36691 139 10 8305.6 36573 152 14 11.39 46883 7966 24

And.-Björck 232.75 36691 139 19 8305.6 36573 152 13 11.568 47002 7963 28
Newton 232.75 36691 139 5 8305.6 36573 152 5 − − − −

0.05

Regula Falsi 116.377 39905 177 43 4152.7 39831 224 44 5.6424 106753 8192 51
Illinois 116.377 39905 177 13 4152.7 39831 224 13 5.614 106739 8192 25
Pegasus 116.377 39905 177 11 4152.7 39831 224 12 5.6389 106792 8192 16

And.-Björck 116.377 39905 177 25 4152.7 39831 225 17 5.6163 106722 8192 16
Newton 116.377 39905 177 5 4152.7 39831 225 5 − − − −

0.01

Regula Falsi 23.2754 42877 287 147 830.2 42831 418 147 1.126 148920 8192 43
Illinois 23.2754 42877 287 20 830.2 42831 418 25 1.126 148920 8192 14
Pegasus 23.2754 42877 287 18 830.2 42831 418 18 1.126 148920 8192 18

And.-Björck 23.2754 42877 287 38 830.2 42831 417 21 1.126 148920 8192 11
Newton 23.2754 42877 287 5 830.2 42831 417 5 − − − −

0.005

Regula Falsi 11.6377 43301 347 215 414.84 43268 526 278 0.563 151560 8192 33
Illinois 11.6377 43268 347 23 414.84 43268 526 27 0.563 151560 8192 8
Pegasus 11.6377 43268 347 21 414.84 43268 526 22 0.563 151560 8192 12

And.-Björck 11.6377 43268 347 40 414.84 43268 526 33 0.563 151560 8192 10
Newton 11.6377 43301 347 6 414.84 43268 526 6 − − − −

0.001

Regula Falsi 2.3275 43655 375 411 82.5367 43644 596 502 0.1126 153500 8192 44
Illinois 2.3275 43655 375 31 82.5367 43644 596 37 0.1126 153500 8192 8
Pegasus 2.3275 43655 375 32 82.5367 43644 596 36 0.1126 153500 8192 7

And.-Björck 2.3275 43655 375 44 82.5367 43644 596 43 0.1126 153500 8192 7
Newton 2.3275 43655 375 5 82.5367 43644 596 5 − − − −
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7.1 ℓ1-norm Minimization

Table 7.4: Simulation results for solving (P1
σ).

least squares Huber (δ = 5 × 10−3) Student’s t (ν = 10−2)
Problems σ/ρ(y) Methods ρl(rσ) ∥xσ∥1 nnz iter ρh(rσ) ∥xσ∥1 nnz iter ρs(rσ) ∥xσ∥1 nnz iter

jit
te

r

0.5

Regula Falsi 0.2238 0.7664 3 7 2.3279 0.7012 3 7 0.0451 0.4548 2 9
Illinois 0.2238 0.7664 3 6 2.3279 0.7012 3 7 0.0451 0.4548 2 7
Pegasus 0.2238 0.7664 3 6 2.3279 0.7012 3 7 0.0451 0.4548 2 6

And.-Björck 0.2238 0.7664 3 8 2.3279 0.7012 3 7 0.0451 0.4548 2 6
Newton 0.2238 0.7664 3 3 2.3279 0.7012 3 2 − − − −

0.1

Regula Falsi 0.0448 1.4517 3 21 0.3499 1.3849 3 22 0.009 1.1063 3 31
Illinois 0.0448 1.4517 3 11 0.3499 1.3849 3 13 0.009 1.1062 3 10
Pegasus 0.0448 1.4517 3 11 0.3499 1.3849 3 12 0.009 1.1062 3 10

And.-Björck 0.0448 1.4517 3 25 0.3499 1.3849 3 12 0.009 1.1062 3 10
Newton 0.0448 1.4517 2 5 0.3499 1.3849 3 4 − − − −

0.05

Regula Falsi 0.0224 1.5373 3 39 0.1460 1.4762 3 41 0.0045 1.2588 3 54
Illinois 0.0224 1.5373 3 12 0.1460 1.4762 3 16 0.0045 1.2586 3 14
Pegasus 0.0224 1.5373 3 12 0.1460 1.4762 3 15 0.0045 1.2586 3 13

And.-Björck 0.0224 1.5373 3 34 0.1460 1.4762 3 15 0.0045 1.2586 3 13
Newton 0.0224 1.5373 3 2 0.1460 1.4762 3 3 − − − −

0.01

Regula Falsi 0.0045 1.6059 3 186 0.0235 1.5642 3 194 9e− 4 1.4609 3 216
Illinois 0.0045 1.6059 3 19 0.0235 1.5642 3 17 9e− 4 1.4604 3 14
Pegasus 0.0045 1.6059 3 19 0.0235 1.5642 3 16 9e− 4 1.4604 3 14

And.-Björck 0.0045 1.6059 3 48 0.0235 1.5642 3 16 9e− 4 1.4604 3 14
Newton 0.0045 1.6059 3 2 0.0235 1.5642 3 4 − − − −

0.005

Regula Falsi 0.0022 1.6144 3 371 0.0118 1.5814 3 382 4.46e− 4 1.5087 3 410
Illinois 0.0022 1.6144 3 20 0.0118 1.5814 3 14 4.5e− 4 1.5081 3 16
Pegasus 0.0022 1.6144 3 22 0.0118 1.5814 3 19 4.5e− 4 1.5081 3 16

And.-Björck 0.0022 1.6144 3 74 0.0118 1.5814 3 19 4.5e− 4 1.5081 3 15
Newton 0.0022 1.6144 3 2 0.0118 1.5814 3 3 − − − −

0.001

Regula Falsi 0.0004 1.6213 3 912 0.0024 1.6044 3 307 9e− 5 1.5716 3 511
Illinois 0.0004 1.6213 3 34 0.0024 1.6044 3 31 9e− 5 1.5716 3 28
Pegasus 0.0004 1.6213 3 34 0.0024 1.6044 3 30 9e− 5 1.5716 3 28

And.-Björck 0.0004 1.6213 3 92 0.0024 1.6044 3 30 9e− 5 1.5716 3 30
Newton 0.0004 1.6213 3 3 0.0024 1.6044 3 4 − − − −

sig
n-

sp
ik

e

0.5

Regula Falsi 1.0967 9.8766 20 6 20.763 9.5133 20 6 0.6946 7.4109 20 7
Illinois 1.0967 9.8766 20 3 20.763 9.5133 20 5 0.6946 7.4109 20 7
Pegasus 1.0967 9.8766 20 3 20.763 9.5133 20 5 0.6946 7.4109 20 6

And.-Björck 1.0967 9.8766 20 5 20.763 9.5133 20 5 0.6946 7.4109 20 6
Newton 1.0967 9.8766 20 2 20.763 9.5133 20 2 − − − −

0.1

Regula Falsi 0.2193 17.975 20 17 3.961 17.507 20 17 0.1389 14.99 20 25
Illinois 0.2193 17.975 20 7 3.961 17.507 20 12 0.1389 14.99 20 12
Pegasus 0.2193 17.975 20 7 3.961 17.507 20 12 0.1389 14.99 20 10

And.-Björck 0.2193 17.975 20 15 3.961 17.507 20 12 0.1389 14.99 20 11
Newton 0.2193 17.975 20 2 3.961 17.5027 20 3 − − − −

0.05

Regula Falsi 0.1097 18.988 20 30 1.7787 18.599 20 32 0.0695 16.514 20 44
Illinois 0.1097 18.988 20 10 1.7787 18.599 20 13 0.0695 16.514 20 14
Pegasus 0.1097 18.988 20 10 1.7787 18.599 20 13 0.0695 16.514 20 13

And.-Björck 0.1097 18.988 20 21 1.7787 18.599 20 13 0.0695 16.514 20 14
Newton 0.1097 18.988 20 2 1.7787 18.599 20 5 − − − −

0.01

Regula Falsi 0.0219 19.7975 20 142 0.2115 19.5754 20 145 0.0139 18.46 20 172
Illinois 0.0219 19.7975 20 19 0.2115 19.5754 20 21 0.0139 18.46 20 21
Pegasus 0.0219 19.7975 20 19 0.2115 19.5754 20 20 0.0139 18.46 20 19

And.-Björck 0.0219 19.7975 20 32 0.2115 19.5754 20 20 0.0139 18.46 20 20
Newton 0.0219 19.7975 20 2 0.2115 19.5754 20 3 − − − −

0.005

Regula Falsi 0.011 19.899 20 282 0.1041 19.7022 20 288 0.0069 18.914 20 323
Illinois 0.011 19.899 20 23 0.1041 19.7022 20 25 0.0069 18.914 20 24
Pegasus 0.011 19.899 20 23 0.1041 19.7022 20 24 0.0069 18.914 20 22

And.-Björck 0.011 19.899 20 39 0.1041 19.7022 20 25 0.0069 18.914 20 23
Newton 0.011 19.899 20 2 0.1041 19.7022 20 4 − − − −

0.001

Regula Falsi 0.0022 19.9798 20 496 0.0208 19.8668 20 353 0.0014 19.515 20 921
Illinois 0.0022 19.9798 20 37 0.0208 19.8668 20 32 0.0014 19.515 20 27
Pegasus 0.0022 19.9798 20 37 0.0208 19.8668 20 32 0.0014 19.515 20 26

And.-Björck 0.0022 19.9798 20 62 0.0208 19.8668 20 32 0.0014 19.515 20 26
Newton 0.0022 19.9798 20 2 0.0208 19.8668 20 5 − − − −
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7. (Pσ) Related Applications

Figure 7.2: Top to bottom: true signal, reconstructions with least squares, Huber
and Student’s t losses

7.1.2 A Typical Compressed Sensing Example

We also considered a typical compressed sensing example. A 15-sparse vector, x0, is
recovered using a normally distributed Parseval frame D ∈ R512×1024. Measurements
are generated according to y = Dx + w + ζ, where the noise w is zero mean normal
error with the variance of 0.005 and ζ has five randomly placed outliers with a zero
mean normal distribution variance of 1. (P1

σ) solved with the σ = ρ(ζ) for a fair
comparison of ρl, ρh and ρs. Averaged recovery error variances, i.e. 1

N ∥x0 − xσ∥2
2,

over 100 simulations are calculated as 0.0019, 2.015 × 10−5 and 1.589 × 10−5 for the ρl,
ρh and ρs respectively. An instance of these simulations is shown in Figure 7.2. Huber
loss is less sensitive to outliers in measurement data than least-squares, and Student’s
t marginally outperforms Huber based on error results; the residuals in Figure 7.3
show Student’s t more cleanly identifies outliers. The performance gap increases with
prevalence and size of outliers.

7.2 ℓ∞-norm Minimization

In this subchapter, applications related to the ℓ∞-norm minimization are probed.

7.2.1 A New Communication Scheme Based on ℓ∞-norm Representa-
tions

As it is already mentioned in Chapter 2.2, MOF has already plentiful applications for
several benefits. Since the presented warm-start strategy in Chapter 5.3.4 uses the
MOF, one can try to get some extra gains that MOF has already offered by solving
(Ppσ). In this thesis, that idea is cultivated and an ℓ∞-norm representations based
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7.2 ℓ∞-norm Minimization

Figure 7.3: Top to bottom: true errors, least squares, Huber and Student’s t residuals.

MOF linear reconstruction

-norm Minimization linear reconstruction
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Figure 7.4: a) MOF based communication architecture, b) Proposed ℓ∞-norm
representations based communication architecture.

communication architecture as an approximate overcomplete representation alternative
to the MOF based one for noisy channels is presented. The proposed approximate
overcomplete representation is based on ℓ∞-norm minimization problem. The most
important feature of that optimization problem is enforcing the signal to be spread
evenly [Fuc11]. Proposed scheme is demonstrated in Figure 7.4b while the state-of-art
is depicted Figure 7.4a that is detailed investigated in [GKV99].

One of the most common noise for any communication architecture is the
quantization noise. Thus, the universal (randomized) quantizer is utilized for a
fair comparison of the proposed communication scheme with the MOF based one.

7.2.1.1 Universal Quantizer (Unbounded Uniform Subtractive Entropy
Coded Dithered Quantizer)

The idea behind the universal quantizer is to breaking up the pattern of quantization
noise and make it statistically independent of the quantizer source. Most common and
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accepted way of doing that is to add a random signal which is called dither to the
source. Theoretical analysis of the dithering is studied by Schuchman [Sch64a] and it is
proved that under some conditions, the quantization error is uniformly distributed and
independent of the signal. The scalar universal quantizer with dither can be defined as
follows:

qo = Q∆(qi + z) − z, (7.1)

where qo is the output of the quantizer, qi is the quantizer source, z is the dither signal
and Q∆(.) is the quantizer operator which is considered as unbounded scalar uniform
quantizer with a ∆ quantization step size and defined as:

Q∆(t) = k∆ for k∆ − ∆/2 ≤ t < k∆ + ∆/2 . (7.2)

In order to satisfy Schuchman’s conditions [Sch64a], z is considered as uniformly
distributed in the interval [−∆/2,∆/2) and known at the receiver. With the introduced
quantizer model, it can be assumed that each quantization noise component n = qi−qo

has zero mean with σ2
q = ∆2

12 variance and the components are uncorrelated.

7.2.1.2 Linear Reconstruction and the Minimum Squared Error (MSE)
Analysis

For MOF and ℓ∞-norm representation based communication architectures with a noise,
the goal is to estimate y ∈ RM from given quantized representation coefficients. This
can be easily done with well known Moore–Penrose inverse approach such that D†y.
Note that because of the optimization problem, there will be a residual error for the
proposed scheme depending σ.

MSE for the MOF Based Communication Architecture: Let us assume
the received signal at the receiver is x̂MF ∈ RN which consists the quantization noise
n ∈ RN , (x̂MF = xMF + n), and the reconstructed signal denoted ŷMF ∈ RM for
the frame expansion based communication scheme. Then regarding minimum squared
error (MSE) is going to be

MSEMF = 1
M

E ∥y − ŷMF ∥2
2 . (7.3)

By using y = DxMF , ŷMF = D(xMF + n) and trace properties, (7.3) can be rewritten
as follows

MSEMF = 1
M

E ∥Dn∥2
2 = 1

M
tr
(︂
DE[nnT ]DT

)︂
= E[nnT ]

M
tr
(︂
DDT

)︂
= E[nnT ]

M

M∑︂
i=1

mi.

(7.4)
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where sum of eigenvalues of DDT equal to ∑︁M
i=1mi. Since A ≤ mi ≤ B, MSEMF

becomes
Aσ2

q ≤ MSEMF ≤ Bσ2
q . (7.5)

For the tight frames MSEMF will be equal to Aσ2
q , while σ2

q for Parseval frames.
MSE for the ℓ∞-norm Representation Based Communication Architec-

ture: Because of the optimization problem definition itself, there will be a residual
error, related with the choice of the parameters σ, λ and τ . With the consideration of
that, MSE for the proposed scheme can be written as

MSEσ = 1
M

E ∥y − ŷσ∥2
2 = 1

M
E
⃦⃦⃦
y − (DDT )−1D(xσ + n)

⃦⃦⃦2

2
. (7.6)

In order to derive the relation between MSEσ and MSEMF , let us rewrite the (7.6)
such

MSEσ = 1
M

E ∥y − ŷσ∥2
2

= 1
M

E
⃦⃦⃦
y − (DDT )−1D(xσ + n)

⃦⃦⃦2

2

= 1
M

E
⃦⃦⃦
y − (DDT )−1y + (DDT )−1(y − Dxσ) − (DDT )−1Dn

⃦⃦⃦2

2

(7.7)

by using Minkowski’s inequality following inequality can be derived for MSEσ

√︁
MSEσ ≤

√︃
1
M

(︃
∥y∥2 +

⃦⃦⃦
(DDT )−1y

⃦⃦⃦
2

+ E
⃦⃦⃦
(DDT )−1D(y − Dxσ)

⃦⃦⃦
2

+E
⃦⃦⃦
(DDT )−1Dn

⃦⃦⃦
2

)︃
.

(7.8)

It is possible to bound E
⃦⃦⃦
(DDT )−1D(y − Dxσ)

⃦⃦⃦
2
, since

E
⃦⃦⃦
(DDT )−1D(y − Dxσ)

⃦⃦⃦2

2
= tr

(︂
(DDT )−1DE[(y − Dxσ)(y − Dxσ)T ]((DDT )−1D)T

)︂
= E[(y − Dxσ)(y − Dxσ)T ]tr

(︂
(DDT )−1

)︂
= σ2

M∑︂
i=1

1
mi

(7.9)

such

σ

√︄
M

B
≤ E

⃦⃦⃦
(DDT )−1D(y − Dxσ)

⃦⃦⃦
2

≤ σ

√︄
M

A
, (7.10)
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and by using similar steps E
⃦⃦⃦
(DDT )−1Dn

⃦⃦⃦2

2
can be bounded, since

E
⃦⃦⃦
(DDT )−1Dn

⃦⃦⃦2

2
= tr

(︂
(DDT )−1DE[nnT ]((DDT )−1D)T

)︂
= E[nnT ]tr

(︂
(DDT )−1

)︂
= E[nnT ]

M∑︂
i=1

1
mi
.

(7.11)

such

σq

√︄
M

B
≤ E

⃦⃦⃦
(DDT )−1Dn

⃦⃦⃦
2

≤ σq

√︄
M

A
. (7.12)

By using E
⃦⃦⃦
(DDT )−1Dn

⃦⃦⃦
2

=
√︂

M
AB

√
MSEMF , MSEσ can be bounded in terms of

MSEMF such

√︁
MSEσ ≤

√︃
1
M

(1 −A) ∥y∥2 + σ√
A

+
√︄

MSEMF

AB
(7.13)

Corollary 7.1. It is straigthforward to obtain following MSEσ bound

σq

√︃
1
B

≤
√︁

MSEσ ≤
√︃

1
M

(1 −A) ∥y∥2 + (σ + σq)√
A

. (7.14)

Proof. Upper bound of (7.14) can be found simply by inserting (7.5) into (7.13).
Lower bound of MSEσ occurs when there is no reconstruction error comes from the
optimization problem itself, i.e. when σ = 0. In that case MSEσ=0 is going to be equal
to 1

ME
⃦⃦⃦
(DDT )−1Dn

⃦⃦⃦2

2
. With the eq. (7.12), lower bound of (7.14) can be derived.

7.2.1.3 Quantization Levels

By using the definition of uniform quantizer in eq. (7.2), required quantization level
with a symmetric source vector s can be written as:

L = 2
⌈︄

∥s∥∞
∆ + 1

⌉︄
, (7.15)

where ⌈.⌉ is the ceiling function.
Required quantization levels for the proposed ℓ∞-norm and MOF based represen-

tations are denoted with Lσ and LMF respectively.

Proposition 7.1. There exists a quantization level ratio between Lσ and LMF with
using unifom quantizer (i.e. (7.2)) such

0 < Lσ
LMF

≤ Aη(︂
A− η

√
B
)︂
N

√
δB

(∥y∥2 − σ)
∥y∥2

+ ∆. (7.16)
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Table 7.5: σ values for the simulations.

σ/ρ(y)
5 × 10−1 10−1 5 × 10−2 5 × 10−3

M = 256
N = 1024

M = 128
N = 4096

M = 256
N = 1024

M = 128
N = 4096

M = 256
N = 1024

M = 128
N = 4096

M = 256
N = 1024

M = 128
N = 4096

Least-squares 8.3577 5.8205 1.4945 1.1641 0.7473 0.5758 0.0747 0.0561
Huber
(Γ = 0.1) 91.0153 50.6534 18.2031 10.2527 9.1015 4.3262 0.9102 0.5065

Student’s t
(κ = 0.1) 10.7885 5.8809 2.1577 1.1952 1.0788 0.5881 0.1079 0.0588

for a frame matrix D that satisfies the UP.

Proof. By using (7.15) following can be derived

∥xσ∥∞
∥xMF ∥∞

≤ Lσ
LLS

≤ ∥xσ∥∞
∥xMF ∥∞

+ ∆. (7.17)

With the help of K∞ introduced in Corollary 5.2, following can be written

∥xσ∥∞ ≤ η(︂
A− η

√
B
)︂√

δN
(∥y∥2 − σ) (7.18)

In order to bound ∥xMF ∥∞, one can simply use following inequality ∥xMF ∥∞ =⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
∞

≤
√
N
⃦⃦⃦
DT (DDT )−1y

⃦⃦⃦
2

≤
√
NB

⃦⃦⃦
(DDT )−1y

⃦⃦⃦
2

≤
√
NB
A ∥y∥2.

7.2.1.4 Performance of the Proposed Communication Architecture

ℓ∞-norm representation based communication architecture is compared with the MOF
based one in terms of rate and MSE for several ∆ values. By reminding that ∆ = 12σ2

q ,
these comparisons answer two questions: one is what rates one can achieve, i.e what
the advantage of finding more equally spread representations in terms of required
quantization levels and second is what the cost is overall of spreading the signal more
uniformly in terms of MSE for a same noise variance. For the simulations y is created
as a normally distributed signal with a variance 1 and D constructed as to be a Parseval
frame. Results are averaged over 100 simulations. σ values of the simulations are given
in Table 7.5.

Figure 7.5, 7.6, 7.7 show the MSEMF and MSEσ values for M = 256, N = 1024.
Several σ/ρ(y) ratios such 5 × 10−1, 10−1, 5 × 10−2 and 5 × 10−3 are chosen for ρl, ρh
and ρs respectively.

Figure 7.8 shows the rate for ∆ values. Rate is calculated as (N/M) × log(L). and
rates for the ℓ∞-norm representation based communication architecture inspected from
high to low noise tolerances such σ/ρ(y) = 5×10−1, σ/ρ(y) = 10−1, σ/ρ(y) = 5×10−2

and σ/ρ(y) = 5 × 10−3.
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Figure 7.5: MSEMF and MSEσ for several σ/ρl(y).

In this subchapter, an approximate overcomplete representation based on ℓ∞-norm
representations is proposed to outperform the MOF based communication systems by
creating approximate overcomplete representations with lower envelopes. Introduced
method can be applied in many fields which utilize frame theory such as source-
channel coding, filter banks, robust transmission, classification and many others. Since
interference management is an important topic in cloud radio access networks (C-
RANs), C-RANs downlink precoding scheme can be chosen as an application to show
the advantage of the proposed method over the zero-forcing (ZF) precoding method
which is a linear precoding scheme and basically MOF of the signal to be coded.

7.2.1.5 C-RAN Fronthaul Downlink Precoding and Quantization

In the C-RANs cellular architecture, mobile devices are connected to remote radio
heads (RRHs) which basically serve as access points to the network and RRHs are
connected to the baseband unit (BBU) with wired fronthaul links. In order to allow
interference management, signals are precoded in the BBU, then quantized and sent
to the RRHs through wired fronthaul links. Let us assume that the signal vector to be
linearly precoded is sk ∈ CM with a matrix Pk ∈ CN×M such

xk = Q(Pksk), k = 1, ...,M (7.19)
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Figure 7.6: MSEMF and MSEσ for several σ/ρh(y).

where xk ∈ CN is the precoded vector, and Q(.) : CN → XN is the quantization
operation that maps input into the quantization alphabet set X . C-RAN downlink
system with M RRHs and N user equipments (UEs) are shown in Fig. 7.9.

There are several linear and nonlinear precoding schemes have been proposed in the
literature [Fat+18]. One very common and widely utilized linear precoding technique
is to use the pseudoinverse of the channel matrix (which is H† = HT (HHT )−1)
as precoding matrix. This method is called linear ZF precoding. In general, the
input-output relation of the channel with ZF coding is defined as

yk = Hkxk + nk = HQ(H†
ksk) + nk k = 1, ...,M (7.20)

where nk represents the channel noise and Hk ∈ CM×N is the channel matrix which is
known perfectly at the BBU.

ZF precoding simply creates the MOF representation of the signal vector sk. By
replacing ZF with the proposed communication architecture, one can use a lower
resolution quantizer for same quantization noise budget. In Figure 7.8, required rates
to obtain same quantization noise variances are shown for the MOF and the proposed
approximate overcomplete representation.
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Figure 7.7: MSEMF and MSEσ for several σ/ρs(y).

As a conclusion, in this subchapter, a new approximate overcomplete representation
scheme is presented to outperform the MOF based communication systems by producing
representations with lower envelopes. Proposed scheme is compared with the MOF
representation. The approach shown here may be used in a variety of disciplines
that make use of frame theory, including source-channel coding, filter banks, resilient
transmission, classification, etc.

7.2.2 ℓ∞-norm Representations Based Outlier Detection

Sparse representations of signals have received important attention in recent years
and been widely used in signal processing. It is a powerful tool for many purposes
like compressing, representing, efficiently acquiring and reconstructing of signals and
etc. [Wri+10]. Although the sparse penalties, ℓ0-norm and the ℓ1-norm, are well
studied, anti-sparse penalty (ℓ∞-norm minimization) did not get the attention it
deserved. It is very important in many applications such as PAPR reduction, vector
quantization, approximate nearest neighbour (ANN) search and control engineering
[Stu+14], [SYB12]. The most important feature of ℓ∞-norm minimization is enforcing
the signal to be spread evenly [JFF11].
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Figure 7.8: ∆ vs. rate.
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Figure 7.9: C-RAN downlink system with M RRHs and N UEs.

Recently, Lyubarskii [LV10] showed that some frames such as random subsampled
discrete Fourier transform (DFT) matrices, random orthogonal matrices, random
sub-Gaussian matrices which satisfy uncerainty principle yield a computable anti-
sparse representation (there are some other different names in the literature such as
Kashin‘s, democratic, spread) that empowers the representation with the smallest
possible dynamic range.

Studer studied ℓ∞-norm minimization and proposed efficient algorithms to obtain
anti-sparse vectors and developed bounds for anti-sparsity for the representation
vector [Stu+14]. Elvira proposed a prior and sample generators for anti-sparsity and
by using this probabilistic behavior, Bayesian linear inverse problem for anti-sparse
communication investigated [ECD17]. There are some other papers also studied ℓ∞-
norm minimization [SYB12], [JFF11], [Fuc11] for some intriguing applications. Most
interesting one was about considering anti-sparsity as a binarization scheme for ANN
search [JFF11]. This paper inspires us to use anti-sparsity for distance based outlier
detection.

Since ℓ∞-norm is a non-differentiable function, one important issue about the
optimization problem of ℓ∞-norm minimization is the difficulty of obtaining minimized
ℓ∞-norm of a vector. This motivates us using of smoothing concept. A smooth
approximation of the optimization problem makes possible to solve optimization
problems much easier. After solving optimization problem, the obtained anti-sparse
vector elements must be concentrated around the boundaries (i.e., absolute maximum
value) of the representation which offers a natural binarization scheme. Several
binarization methods are used for various applications and main motivation of
binarization is to embed input vector to a binary vector to have computational
gain. One application is to use binarized vector for ANN search. By using anti-
sparse binarization scheme nearest neighbor search based outlier detection can also
be performed. Detection of outliers provide very important knowledge for many
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applications. For example, one can identify denial-of-service (DoS) attacks which are
simple and powerful attempts to make network resource inaccessible. Since behaviours
of attacks do not fit the regular attitude of the network, DoS attacks can be considered
as outliers (anomalies).

In this subchapter, a new outlier detection method based on anti-sparse representa-
tion is proposed. First of all, obtaining anti-sparse vector, i.e. minimizing ℓ∞-norm, is
investigated. By inspired of the derived approximate absolute maximum value function
in [Lan+], a smooth objective function is presented to cope with the non-smoothness
of ℓ∞-norm. Anti-sparse representations offers to spread the signal over representation
elements evenly. As a result of this favorable property, anti-sparse representation is
considered as a natural binarization scheme. Finally, anti-sparse binarization scheme
is used for ANN search to detect DoS attacks.

7.2.2.1 Smooth Approximation of ℓ∞-norm

ℓ∞-norm representation of a signal can be obtained by finding x̂ = arg minxF∞(x),
where

F∞(x) = 1
2 ||y − Dx||22 + λ||x||∞, (7.21)

y ∈ RM is the signal to be represented, D ∈ RM×N denotes the representation matrix
with M < N . , and λ > 0 is the regularization parameter. Noting that F∞(x) is
(P∞

λ ) with ρ is ℓ2-norm. Because of ℓ∞-norm term, F∞(x), the objective function, is a
non-smooth function. Solving non-smooth convex optimization problems is much more
difficult than solving smooth differentiable ones. One way to deal with non-smoothness
is deriving sub-differentiable of a non-smooth function. Proximal gradient methods
are also widely used. There are some other methods like cutting-plane and bundle
methods.

One interesting way to solve non-smooth optimization problems is transforming
the problem to a differentiable smooth one. In this study, eq. (7.21) is transformed a
differentiable optimization problem by smoothing ℓ∞-norm.

Smooth approximations for the maximum function are used in many different
studies for several applications [Zha+13; HCB11; RB15]. One of the most recent,
simple and common utilized smoothing function for the maximum function is called
soft maximum, proposed in [Coo11] and defined as follows

Sα
(︁
{xi}ni=1

)︁
= 1
α

log
(︄

n∑︂
i=1

eαxi

)︄
, (7.22)

with α smoothing parameter which is necessary to regulate the quality of the
approximation.

In addition to smooth function for maximum of a function, smooth approximation
of the absolute value function is also necessary to generate a smoothing function for
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ℓ∞-norm. One of the commonly used smooth approximation of the absolute value
can be found in [SFR07]. According to [SFR07], a smooth approximation of the
absolute value (|x|α ≈ |x|) with an approximation parameter α, can be written as
|x|α = (x)+

α + (−x)+
α where

(x)+
α = x+ 1

α
log(1 + e−αx), (7.23)

and smooth approximation of the absolute value can be derived as follows:

|x|α = 1
α

log(2 + e−αx + eαx). (7.24)

For mathematical convenience, approximation parameter for absolute function and
smoothing parameter for maximum function considered as equal. By using (7.22) and
(7.24), smoothing function of ℓ∞-norm can be formulated as:

S∞
α

(︁
{xi}ni=1

)︁
= 1
α

log
(︄

n∑︂
i=1

(2 + e−αxi + eαxi)
)︄
, (7.25)

and the derivative of absolute maximum function can be calculated as:

∂S∞
α (xi)
∂xi

= eαxi − e−αxi

2 + eαxi + e−αxi
= tanh

(︃
αxi
2

)︃
. (7.26)

As a consequence of smoothing ℓ∞-norm, objective function can be replaced with
an approximate objective function (F∞(x) ≈ FS∞(x)) which is differentiable,

FS∞(x) = 1
2 ||y − Dx||22 + λ

α

(︄
n∑︂
i=1

(2 + e−αxi + eαxi)
)︄
. (7.27)

The new approximate objective function makes possible to solve eq. (7.21)
with descent methods which are commonly utilized algorithms to solve optimization
problems.

7.2.2.2 Gradient and Hessian of FS∞(x)

In order optimize convex, twice differentiable function without constrains, one can use
Newton’s method which is a frequently used descent optimization algorithm. In order
to use Newton’s method, gradient vector and Hessian matrix of FS∞(x) (∇FS∞(x) and
∇2FS∞(x) respectively) need to be computed. With the help of smoothing function,
gradient vector of approximate objective function,

∇FS∞(x) = DT (Dx − y) + λ
{︂∂S∞

α (x)
∂xi

}︂n
i=1

= DT (Dx − y) + λ
{︂

tanh
(︃
αxi
2

)︃}︂n
i=1
,

(7.28)
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and Hessian matrix of approximate objective function,

∇2FS∞(x) = DTD + λα

2 Diag
(︃

sech2
(︃
αxi
2

)︃)︃
, (7.29)

can be computed conveniently.

7.2.2.3 Newton’s Method for ℓ∞-norm Minimizaton

One of the well-known method for solving unconstrained optimization problems is the
Newton’s method that minimizes a cost function iteratively. When the cost function
(objective function) is a twice differentiable, then Newton’s method is a very efficient
way to solve the minimization problem.

In this subsection, Newton’s method for ℓ∞-norm minimizaton is presented with
the help of approximate objective function. One can easily find x̂ = arg minxF

S
∞(x)

by following the steps that are shown in Algorithm 4.

Algorithm 4 Newton’s Method for ℓ∞-Norm Minimizaton
Input: y ∈ Rm, x(0) ∈ Rn, D ∈ RM×N , ∇FS∞ and ∇2FS∞

1: for k=1,2,3,...,iter do
2: x(k) = x(k−1) − γδ(k−1));
3: with δ(k−1) = −

(︁
∇2FS∞(x(k))−1∇FS∞(x(k))

)︁
4: end for

where γ is a constant (γ ∈ (0, 1)) to satisfy Wolfe conditions.
Output: x̂, anti-sparse representation vector

Outliers are the data points that deviates too much from the other observed
data points. Detection of outliers can lead to use of important knowledge and will
be very crucial for some applications such as credit card fraud detection, network
intrusion, anomalous traffic pattern in a network spotting, data cleansing, and other
many statistics, machine learning and data-mining related tasks [HA04]. There are
several approaches to detect outliers. Most utilized methods include density based
methods, graph-based methods and distance-based methods. In this study anti-sparse
representation is employed for distance based outlier detection.

Distance-based outlier detection method, first studied for statics datasets [KN98], is
a computationally efficient approach because of monotonic non-increasing functions of
outlier scores [PDN10]. Besides computational advantage, another aspect of distance-
based outlier detection method is being not dependent on the distribution of data
which is a good feature for many applications. The idea behind the distance based
outliers detection methods, mostly based on nearest neighbor search, is that the greater
distance of the object to its neighbors is most likely an outlier. One outlier example
could be the DoS attacks.
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DoS attacks are simple and powerful techniques to make network resource
inaccessible. Attacks are mostly the behaviours that do not fit the regular attitude of
the network. That is why they can be considered as outliers (anomalies). Furthermore,
detection of these attacks important to create an intrusion (attack) prevention systems.

7.2.2.4 Approximate Nearest Neighbor Search with ℓ∞ Representations

One of the promising application area of ℓ∞-norm representations, a.k.a anti-sparse
representations, is nearest neighbor search related applications [JFF11]. The motivation
is to embed anti-sparse signal to Hamming space which is a set of binary strings. The
purpose of embedding approach is to map query vectors to the target vector in order
to perform fast and efficient comparison. In this study, anti-sparse representation is
considered as an application for ANN search as done in [JFF11].

By considering anti-sparse representations offers to spread the signal over
representation elements evenly, a binarization scheme with anti-sparse signal can
be created as: b(k) = sign(x), where x is the anti-sparse representation of relevant
input vector, k.

The idea is to compute approximate nearest neighbor for a query vector (q) and
determine whether it is an outlier or not. In order to determine how far query and
target vector, anti-sparse based ANN search can be considered as maximum inner
product search (MIPS). MIPS is an effective tool to search similarity for binary coding
techniques [SL14] and MIPS problem formulated as:

NN(b(q)) = arg max
y∈RM

b(q)T b(y). (7.30)

The input vectors correspond to NN(b(q)) < d, considered as outliers, where d is the
distance metric.

In order to analyze the performance of anti-sparse outlier detection method, well
known KDDCup99 dataset [Lic13] is used. This dataset includes several types of
network intrusions which are considered outliers. In this study, as an intrusion ’back’,
’land’, ’pod’, ’teardrop’ type DoS attacks and regarding to these attacks, most relevant
features ’src_bytes’ (number of data bytes sent from source to destination), ’dst_bytes’
(number of data bytes sent from destination to source), ’land’ (whether the connection
is from/to the same host/port or not), ’wrong_fragment’(number of wrong fragments)
are used.

Small set of the dataset is chosen randomly. 1000 outliers (DoS attacks) and 6000
inliers (normal) are used for analysis. Sample number of attributes are shown in Table
7.6.
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number of samples 6000 600 150 150 100

Table 7.6: Sample numbers of attributes for simulations.

In order to measure the performance of anti-sparse representation based outlier
detection method, two well known methods are employed which are recall and precision,
defined as:

Recall = number of detected relevant outliers
number of outliers , (7.31)

Precision = number of detected relevant outliers
number of relevant outliers . (7.32)

One important observation should be about how performance metrics varies
depending on the redundancy ratio ω = N/M . It should be noticed again, M and N is
the dimension of the input vector (which is feature number), and binarized anti sparse
signal respectively.

Figure 7.10 and 7.11 show the performance of the proposed outlier detection method
on KDDCup99 data set. It can be easily seen that when ω increases, proposed approach
gives impressive result in terms of recall and precision.

In this subchapter, a new outlier detection method based on anti-sparse representa-
tions is introduced. As a consequence of anti-sparse representation spreads the signal
over representation elements evenly, anti-sparse signal is used for binarization and
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Figure 7.11: ω vs. Precision.

embedded ANN search. Distance based anti-sparse ANN search is employed for DoS
attacks detection on a real data set.

7.2.3 Effect of ℓ∞-norm Representation Prior on PAPR Preformance
Analysis

Dynamic range of a signal plays a significant role in many communication applications.
In most applications, high dynamic range is considered a problem for technical reasons.
ℓ∞-norm minimization, or in other words anti-sparse penalty, offers to spread the
signal over representation elements evenly. One of the advantage of spreading the
signal is reducing the dynamic range of a signal which is a pleasant feature for many
application; e.g. PAPR reduction for OFDM systems. In this subchapter, some of
main proximal splitting algorithms are deployed for ℓ∞-norm minimization. Stochastic
model of anti-sparsity is investigated with the empirical results of proximal methods
and already existing ℓ∞-norm minimization methods. A flexible prior is proposed to
model anti-sparsity and it is used for more realistic PAPR performance analysis.

Sparse representations have gained significant attention in recent years and been
widely used in signal processing. It is a powerful tool for many purposes like
compressing, representing, efficiently acquiring and reconstructing of signals, etc.
[Wri+10]. Although the sparse penalties, ℓ0-norm and the ℓ1-norm, are well studied,
anti-sparse penalty (ℓ∞-norm minimization) did not get the attention it deserved. It
is very useful tool in many applications such as PAPR reduction, vector quantization,
approximate neighbour search and control engineering [Stu+14], [SYB12]. The most
important feature of ℓ∞-norm minimization is enforcing the signal to be spread evenly
[JFF11].
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Lyubarskii presented that some frames such as random subsampled discrete Fourier
transform (DFT) matrices, random orthogonal matrices, random sub-Gaussian matrices
which satisfy uncertainty principle yield a computable anti-sparse representation (there
are some other different nomenclatures in the literature like Kashin’s, democratic,
spread) that empowers the representation with the smallest possible dynamic range
[LV10]. Studer studied ℓ∞-norm minimization and proposed efficient algorithms to
obtain anti-sparse vectors and developed bounds for anti-sparsity for the representation
vector [Stu+14]. There are some other papers which have also studied ℓ∞-norm
minimization such as [SYB12], [JFF11], [Fuc11], however stochastic analysis of the
anti-sparsity was out of scope in these related works. Recently, [ECD17] proposed a
prior and sample generators for anti-sparsity and by using this probabilistic behavior,
Bayesian linear inverse problem for anti-sparse communication is studied.

There are some existing algorithms to obtain anti-sparse vector and we show that
all of them provides similar prior information about the anti-sparse signal, in this
subchapter. Availability of the prior information about a signal gives the opportunity
to have more computationally tractable performance measures. A realiable priori
information allows us to benefit from anti-sparsity in many areas. It also offers effective
solutions for Bayesian linear inverse problems, provides better quantization approaches,
gives statistically enhanced of the characteristics of the PAPR distribution. Therefore
stochastic behavior of anti-sparse representation is an important topic and need to be
investigated.

In this subchapter, main proximal splitting algorithms are deployed for ℓ∞-norm
minimization. Stochastic model of anti-sparsity is investigated with the empirical
results of proximal methods and existed other some ℓ∞-norm minimization methods.
Based on empirical observations, a flexible prior is introduced to model anti-sparsity
and it is used to improve statistical characteristics of PAPR distribution.

7.2.3.1 ℓ∞-norm Minimizaton with Proximal Gradient Methods

Anti-sparse representation of a vector can be found by solving the following optimization
problem

minimize
x̃∈RN

1
2 ||y − Dx̃||22 + λ||x̃||∞, (7.33)

where D ∈ RM×N denotes the representation matrix with M < N , y ∈ RM is the
signal to be represented, and λ > 0 is the regularization parameter. Noting that (7.33)
is (P∞

λ ) with ρ is ℓ2-norm. Solution of (7.33) provides a vector with elements that are
evenly spread.

Many constrained convex optimization problems can be interpreted as the following
composite form:

minimize
x∈RN

f(x) = g(x) + h(x), (7.34)
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where g(x) represents the convex, differentiable loss function, and h(x) is a convex,
yet not necessarily differentiable penalty function. By using composite form
representation, (7.33) can be presented with g(x) and h(x) where g(x) = 1

2 ||y − Dx||22
and h(x) = λ||x||∞. Since ℓ∞-norm term is not differentiable, solving (7.34) with simple
gradient-descent methods is not possible. However, one can solve (7.34) efficiently
with proximal gradient methods (also known as forward-backward splitting methods).
In order to employ proximal gradient methods to solve (P∞,2), proximal operator for
h, which is equation (7.35), need to be calculated. The algorithm that is defined in
[Stu+14] to have efficient solution for (7.35) can be used.

proxh(z, λ) = arg min
x∈RN

λ||x||∞ + 1
2 ||x − z||22. (7.35)

Owing to the many applications of forward-backward splitting (FB) methods for
sparse coding, several variations of FB are developed to enhance performance. One
improvement is about the speed of FB. Since the raw forward-backward method
generally may be considered slow, in order to overcome this slowness some accelerated
methods are introduced like Nesterov‘s method (NM) [Y83] and fast iterative shrinkage-
thresholding algorithm (FISTA) [BT09]. In this study, we deployed the raw FB
algorithm and it’s variants NM and FISTA to solve (P∞,2) as detailed in Algorithm 5.

7.2.3.2 Anti-Sparse Prior

Stochastic model of sparsity is investigated throughout many different works. There
are many several prior proposals for sparsity. Most of the effective priors considered
as mixture models (mostly with two mixtures) where one distribution imitates the
"significant" elements of the representation vector. However, probabilistic behavior of
anti-sparse representations is not well studied. In this section, a prior for anti-sparsity
based on empirical results of several ℓ∞-minimization methods is introduced.

Anti-sparse representation has some specific magnitude properties. With the help
of this knowledge, vector x can be categorized as it is described in [Stu+14],
Definition Extreme and Moderate Components of The Representation Vector x:
Assuming x= [x1, x2, ..., xN ] is the representation vector, an element of the vector
x ∈ CN , xi, is called extreme if |xi| = ||x||∞ + ϵ, in the meantime it is moderate if
|xi| < ||x||∞ +ϵ where ϵ ≈ 0. By using this definition, let denote xext for the sub-vector
of x which consists of extreme components and xmod is the sub-vector of x which
consists of moderate components.

In order to model anti-sparsity, symmetric Beta distribution is considered for each
sub-vector. Although the mathematical convenience of the Beta distribution is not
favorable for many applications, it is very flexible and can take on many different
shapes. Because of that reason, it is assummed that x is drawn independent and
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Algorithm 5 Main Proximal Gradient Methods to Solve (P∞,2)
Raw Forward-Backward Algorithm (FB)
Input: y(0) ∈ RM , x(0) ∈ RN , D ∈ RM×N , c1

1: for k=1,2,3,...,iter do
2: t(k) = x(k−1) − c1

L ∇g(x(k−1)), c1
L )

3: x(k) = proxh(t(k), cL)
4: end for

Nesterov’s Method (NM)
Input: y(0) ∈ RM , x(0) ∈ RN , D ∈ RM×N , κ(0), ξ(0), c2

1: for k=1,2,3,...,iter do
2: ζ(k) =

(︃
c2
L +

√︂(︁ c2
L

)︁2 + 4
(︁ c2
L

)︁
κ(k−1)

)︃
/2

3: p(k) = proxh(x(0) − ξ(k−1), κ(k−1))
4: r(k) = (κ(k−1)x(k)+ζ(k)p(k))

κ(k−1)+ζ(k)

5: x(k) = proxh(r(k) − 1
L∇g(r(k)), 1

L)
6: ξ(k) = ξ(k−1) + ζ(k)∇g(x(k))
7: κ(k) = κ(k−1) + ζ(k)

8: end for
FISTA
Input: y(0) ∈ RM , x(0) ∈ RN , D ∈ RM×N , γ(1) = 1

1: for k=1,2,3,...,iter do
2: x(k) = proxh(y(k−1) − 1

L∇g(y(k−1)), 1
L)

3: γ(k+1) = (1 +
√

1+4(γ(k))2

2 )
4: y(k) = x(k) + γ(k)−1

γ(k+1) (x(k) − x(k−1))
5: end for

where ∇g is Lipschitz-continuous with constant L > 0.

identically distributed (i.i.d.) from the marginal pdf

f(x) = wextBe(aext, aext) + wmodBe(amod, amod), (7.36)

where
Be(a, b) = (x−m)(a−1)(n− x)(b−1)

B(a, b)(n−m)(a+b−1) , (7.37)

wext and wmod are the weights (wext + wmod = 1), aext and amod are the shape
parameters of the Beta distributions for sub-vectors xext and xmod respectively. m and
n represent the lower and upper bounds of f(x) (which are −||x||∞ and ||x||∞) and
B(.,.) is the beta function which is a normalization constant. To ensure the symmetry
for ℓp-norm, shape parameters of Beta distributions considered as equal.

89



7. (Pσ) Related Applications

1/ω 

Figure 7.12: Linear relation between wext and ω

7.2.3.3 Anti-Sparse Behavior Depending Redundancy Ratio

Behavior of anti-sparse distribution is empirically investigated with different ℓ∞-norm
minimization methods. These methods includes convex reduction of amplitudes for
Parseval frames (CRAMP) [Stu+14], the fast iterative truncation algorithm (FITRA)
[SL13], anti-sparse solver (AS) [JFF11], and main proximal splitting algorithms
(introduced in Section 7.2.3.1) like raw FB, NM, and FISTA.

One important attitude of the anti-sparse pdf that should be examined is the changes
on weights of xext and xmod depending redundancy ratio (ω = N/M). Although, the
optimum weights for xext and xmod are investigated hypothetically in [Stu+14], [Fuc11],
Figure 7.12 shows the empirical wext for the sub-vector xext depending ω and one
should remember wmod is equals to the 1 − wext. Linear relationship between ω and
weights can be modeled as wext = −k/ω +C1 and wmod = k/ω +C2 where C1, C2 are
some constants and k values are shown in Table 7.7.

Other important observation about anti-sparse prior is the changes of Beta
distribution parameters with ω. Since the proposed pdf is a mixture of two Beta
distributions, finding parameters is a challenging maximum likelihood estimation (MLE)
problem that can not be analytically solved. The expectation maximization (EM)
algorithm is originally developed to simplify difficult MLE problems and provide a
closed form expression for the mixture model. It is frequently used for finding mixture
model parameters [BVK15; VKS15; VEA14; VJS16]. With the help of EM algorithm,
aext and amod with varying ω are found and shown in Figure 7.13. EM algorithm steps
for Beta mixture can be followed in [Ji+05].
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1/ω 

Figure 7.13: Anti-sparse prior parameters behavior.

One fact about a symmetric Beta distribution is when lima=b→0 Be(x|a, b), the
minimum value of excess kurtosis for Beta distribution is ensured. That means the pdf
is concentrated at the lower and upper bounds with equal 1/2 probability, or in other
words Beta distribution becomes a Bernoulli distribution. It should also be remembered
that when lima=b→1 Be(x|a, b), Beta distribution becomes a uniform distribution. By
using these observations, it is also possible to use other more mathematical convenient
priors1; however, we will move on with the Beta mixture.

Figure 7.14 shows an empirical pdf of an anti-sparse representation obtained
using a 2240×2560 overcomplete Gaussian matrix via FISTA with a proper anti-
sparse pdf fit (eq. (7.36)) with parameters aext = 0.58, amod = 1.9398). In order to
determine whether the proposed anti-sparse model is suitable for the actual histogram
Kolmogorov-Smirnov (KS) test is used as goodness-of-fit test.

1Probability distribution of the anti-sparse representation can also be represented with a Dirac
delta function for the extreme sub-vector and a Gaussian distribution for moderate sub-vector:

f(x) = wextδ(||x||∞ − |x|) + wmodN (x|0, σ2
mod). (7.38)

Using Dirac+Gaussian distribution prior (7.38) will provide mathematical convenience for some
performance analysis. For example, when D ∈ RM×N is a DFT matrix, envelope distribution of the
f(x) need to be defined for CCDF of PAPR distribution. By using (7.38), envelope distribution can
be found as a Rayleigh mixture. One could model Dirac function as a Gaussian distribution with an
arbitrary small variance (δ(x − µ) = N (x|µ, σ2), σ2 > 0 and µ is the mean).
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Table 7.7: k values for different algorithms.
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Figure 7.14: Empirical anti-sparse pdf with a proper fit.

7.2.3.4 Anti Sparse Prior on Dynamic Range Reduction

One significant advantage of the anti-sparse representation is reducing (or narrowing)
the dynamic range of a signal. One important promising area of using anti-sparse
signals with this purpose is PAPR reduction for OFDM signals.

OFDM is a widely used technique in many digital communication systems. Despite
the fact that it has many advantages like high spectral efficiency, simple channel
equalisation and more resistance communication channels, it has some problems to
be addressed and the major problem of OFDM signals is having potentially high
PAPR. The signals with high PAPR require power amplifiers with a large range of
dynamic linearity. However, this kind of power amplifier has poor efficiency and they are
expensive. Therefore PAPR reduction is an important and necessary field to investigate.
Anti-sparsity offers PAPR reduction and studied for this goal in [SL13], [IS09]. In this
study, by using prior for the anti-sparse representation, we offer statistically improved
of the characteristics of the PAPR distribution. PAPR of a signal x is defined as
follows

PAPR(x) = N ||x||2∞
||x||22

. (7.39)
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7.2.3.5 Performance of PAPR Reduction

One of the important characteristics of the PAPR is its distribution and it can be
expressed in terms of complementary cumulative distribution function (CCDF). It is
the most frequently used metric for measuring PAPR performance of a signal. It can
be considered as the probability of the PAPR that below some threshold.

It is assumed that magnitudes (elements) of the vector x are i.i.d random variables
which are drawn from the pdf (7.36). Then cumulative distribution function (CDF) of
the anti-sparse pdf can be written as

F (x) = wext
B(aext, aext)

x∫︂
0

taext−1(1 − t)aext−1 dt

+ wmod
B(amod, amod)

x∫︂
0

tamod−1(1 − t)amod−1 dt.

(7.40)

Then the probability of the PAPR exceeding a threshold (CCDF) can be written as
follow

CCDF = 1 − f(PAPR ≤ x), (7.41)

where
f(PAPR ≤ x) = F (x)N . (7.42)

1/ω 

Figure 7.15: ω vs PAPR

Figure 7.15 and 7.16 shows the PAPR performance depending ω and the empirical
CCDF with theoretical results according to proposed pdf (eq. (7.36)). It can be seen
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that well defined anti-sparse prior will let us have an more accurate PAPR performance
analysis.
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Figure 7.16: PAPR vs CCDF

In this subchapter, main proximal splitting algorithms are deployed for ℓ∞-norm
minimization. Stochastic model of anti-sparsity is investigated with the empirical
results of proximal methods and already existing ℓ∞-norm minimization methods.
Based on empirical observations, a reliable and flexible prior is introduced to model
anti-sparsity. Effect of the anti-sparse prior on dynamic range reduction is investigated.

7.3 Nuclear Norm Minimization

In this subchapter, Nuclear norm minimization, i.e. trace minimization, is studied and
an iterative algorithm for the Euclidean distance matrix completion (EDMC) problem
with noisy and incomplete distance measurements is introduced by using the approach
presented in Chapter 5. An abstract EDMC problem is depicted in Figure 7.17. The
proposed method is based on semidefinite programming (SDP) and combines the
Pareto approach with a projection-free convex optimization over the spectrahedron
that is formulated as a level-set problem. The optimality trade-off between the trace
of a positive semidefinite matrix and a loss function is traced with Regula Falsi-type
nonlinear equation root finding iterations since they are simple, derivative-free, costly
efficient and offer convergence guarantee with the proper choices of the root searching
interval: two initial points with the opposite signs assures convergence [DB03].

In EDMC applications different incidences cause noises with many variety of
distributions. One of the high likely noise models to occur in EDMC problems is the
heavy-tailed ones, e.g. the distance error in wireless sensor network localization is
expected to be lognormal [BVK15; VKS15; Vur14], weibull [Bit09] or similar. Thus, in
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Anchor Nodes

Unknown Nodes

Unknown Distances

Known Distances

Euclidean Distance Matrix 
(EDM)

Figure 7.17: An abstract EDMC problem.

various papers it is investigated to complete an Euclidean distance matrix (EDM) with
the loss functions like absolute value, Huber and pseudo-Huber losses which are more
robust against heavy-tailed noises [EG16; CA16; EM19; SGS11]. In order to inspect
the performance of the proposed algorithm, two loss functions are used to measure
the data misfit that are least-squares and Huber which is less sensitive to heavy-tailed
noise.

Two test setups are established to inspect the performance of the introduced
algorithm. First one is created using real signal strength data obtained from sensors
for wireless sensor network (WSN) 3D-localization problem. For the second tests, a
dataset that comprises of the repesentive cartesian coordinates of 128 cities in North
America is downloaded from [Bur09] and utilized. Coordinates are used to create a
distance matrix. Both of the setups are suitable for EDMC problem.

7.3.1 Euclidean Distance Matrix Completion Problem

An EDM is a matrix that comprises of the squared distances between points in a
set. Distance matrices like EDMs have been receiving increasing interest during
the past decade in numerous fields since they intrinsically arise when describing
pairwise geometric relationships. Especially after the developments in machine learning
and statistics, EDMs have become an important tool in e.g. genetics, biochemistry,
ecomomics, geography, pyschology and signal processing etc. Although they are
not oftenly exploited in signal processing, with the production of low-cost sensors
EDMs gained an increased attention for the applications such wireless sensor network
localization [Din+10]. EDMs first appeared in [Sch35], [YH38], a comprehensive
literature review can be found in [Dok+15] and references therein.

Most of the problems that involve EDMs seek to reconstruct a point set from noisy
and/or incomplete distance information, i.e. an incomplete EDM. As an alternative
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approach to geometric methods, e.g. triangularization, a semidefinite programming
(SDP) method is developed in [AKW99] to deal with completing the EDM, i.e. to solve
the EDMC problem. Several SDP formulations are investigated to provide solutions
for different application requirements. An important necessity of EDMC problems is to
constrain the penalty that measures the data misfit between the estimated and correct
data points since many EDMC problems involve noisy distance measurements. SDP
formulation of EDMC problems with noisy and/or incomplete distance information
are investigated in [Bis+06a; Bis+06b; Dru+17] with the application of wireless sensor
network localization.

7.3.2 Euclidean Distance Matrices

In the EDMC problem, the spatial distances between sensor nodes are expressed as a
matrix called EDM. The EDM comprises of the squares of distances between the sensor
locations. Let us consider the points p1, ...,pn ∈ Rr, and a vertex set V = {1, . . . , n}
where r = 3 for the 3D-problem formulation. The elements of the EDM D ∈ Rn×n

can be written for all known edges (ij) ∈ Θ ⊆ V × V as

Dij = pTi pi + pTj pj − 2pTi pj = ∥pi − pj∥2
2 (7.43)

Every EDM is a nonnegative symmetric matrix with zeros on the diagonal. The EDM
can be rewritten with the Gram matrix X := (pTi pj)ni,j=1 = PPT where the rows of
P ∈ Rn×r are the transpose of p1, . . . ,pn. The EDM then takes the form

Dij = ⟨Φij ,X⟩ := tr(ΦT
ijX), (7.44)

where Φij := (ei − ej)(ei − ej)T , and ei and ej are n dimensional i-th and j-th unit
vectors respectively [Dat10].

An EDM can also be represented with a linear transformation. One of the most
practical and commonly used one is applied at [Dat10], defined as

K(X)ij := Xii + Xjj − 2Xij , (7.45)

leads D = K(X) and the adjoint of the linear transformation K is given

K∗(X) = 2 (Diag(X1) − X) , (7.46)

satisfies ⟨K(X),Y⟩ = ⟨Y,K∗(X)⟩, ∀X,Y where 1 represents the vector of ones,
Diag(X1) is the column vector of the diagonal entries of X1, and the pseudoinverse of
K is written as

K†(X) = −1
2JXJ, (7.47)
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where J := I − 1
n11T and I is the identity matrix [Dat10; KW].

7.3.3 Low-Rank Matrix Completion Problem Formulation with
Incomplete and Noisy Distance Measurements

There has been several SDP formulations introduced for low-rank matrix completion
from incomplete distance measurements. In this thesis, the following problem is
considered:

(Pσ) min
X

tr(X) s.t
∑︂

(i,j)∈Θ
ρ (Wij · (⟨Φij ,X⟩ − Dij)) ≤ σ,

X1 = 0,

X ≽ 0,

where σ is the noise level on the distance measurements, tr (.) denotes the trace and
W is the mask matrix with zeros for the incomplete entries. Solving (Pσ) promotes
low rank solutions since minimizing tr(X) implies to minimize the sum of eigenvalues
the eigenvalues of positive semidefinite X.

(Pσ) is useful in applications where the obtained data contains noise and if a prior
information about the noise level is available. However, solving (Pσ) can be challenging
since its feasible area is still complicated. Therefore, the Pareto optimality concept is
used where one can obtain the solution of (Pσ) efficiently, i.e., under computational
limitations (on low-cost hardware) by solving a couple of times an another relatively
easier problem.

7.3.3.1 Pareto Optimality

Let us look at the following problem

(Pτ ) min
X∈τS

∑︂
(i,j)∈Θ

ρ (Wij · (⟨Φij ,X⟩ − Dij)) ,

where S := {X ≽ 0, tr(X) = 1,X1 = 0} is the set of positive semidefinite matrices
with unit trace and occasionally called spectrahedron. Although it is difficult to find a
closed form expression between the parameters of (Pτ ) and (Pσ) that provide the same
solutions of (Pτ ) and (Pσ), it can be shown that a solution of (Pτ ) is also a solution of
(Pσ) with Pareto frontiers [FR13].

Let us write the following optimal objective value of the (Pτ ) for a given τ and D,

ν(τ) := inf
X

{
∑︂

(i,j)∈Θ
ρ (Wij · (⟨Φij ,X⟩ − Dij)) | X ∈ τS}, (7.48)

97



7. (Pσ) Related Applications

and the corresponding Pareto frontier2 can be defined as

ψ(τ) := ν(τ) − σ. (7.49)

Obtaining the solution of (Pσ) by solving (Pτ ) proceeds as follows. We start with
a τ parameter to solve (Pτ ), and using the solution of (Pτ ), find a new τ value. We
proceed iteratively until τσ which leads ψ(τσ) → 0. We immediately see that the
solution of (Pτ ) is also a solution of the (Pσ). Finding τσ can be formulated as a
nonlinear root finding problem.

For the purpose of solving (Pσ), our aim is to

find τ such that ψ(τ) = 0. (7.50)

To solve (7.50), we employ Regula Falsi-type methods given in Section 5.3.2.2. Pareto
frontier approaches use root finding and inexact solutions to a sequence of (Pτ ) to
solve (Pσ).

7.3.3.2 Solving (Pτ )

In order to solve (Pτ ) efficiently, a projection-free first order method, also called Hazan’s
Algorithm [Haz08], [GM12] and given in Algorithm 3, is employed. The geometry of
the feasible set of (Pτ ) is uncomplicated [Pla] and solving (Pτ ) only requires a maximal
eigenvalue calculation of the gradient matrix of the loss function which can be simply
done by Lanczos’ or the Power method.

Algorithm 6 Projection-free Convex Optimization over the Spectrahedron to Solve
(Pτ )
Input: τ , Cf , ζ1

1: repeat
2: for k = 1, . . . do
3: γk = 2

k+1
4: ϵk = γkCf

τ
5: νk = ApproxEV(−∇f(Xk), ϵk)
6: Xk+1 = Xk + γk(τνkνTk − Xk)
7: end for
8: until gτ ≤ ζ1

where f(Xk) = ∑︁
(i,j)∈Θ ρ (Wij · (⟨Φij ,X⟩ − Dij)).

Output: Xτ = arg min (Pτ ).

In Algorithm 6, ApproxEV(A, ϵ) returns an approximate largest eigenvector to
the matrix A with the accuracy ϵ, in order words a unit length vector v such that
vTAv ≥ λmax(A) − ϵ. Cf is called the curvature constant which is used to measure

2Pareto optimal is the the minimal achievable feasible point of a feasible set. The set that comprised
of Pareto optimal points is called Pareto frontier.
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the deviation of the function f(X) from its linear approximation and given as

Cf := sup
X,V∈S,γ∈[0,1],
Y=X+γ(V−X)

1
γ2 (f(Y) − f(X) + ⟨Y − X,∇f(X)⟩) (7.51)

Cf values for several exemplary classes could be found in [Cla10].
Algorithm 6, performs a linear optimization over the constraint set and most oftenly

enforces a duality gap as a stopping condition which is given in [Lau12] such

gτ := max
Y∈τS

⟨X − Y,∇f (X)⟩ = τλmax(−∇f (X)) + ⟨X,∇f (X)⟩. (7.52)

7.3.3.3 Solving (Pσ)

The Regula falsi-type methods and Algorithm 6 can be combined to to solve (Pσ) as
follows:

• Choose initial τ values.

Choose two initial values with opposite signs to ensure convergence of Regula
falsi-type methods, i.e. bracket the root.

• Apply the steps of the Regula Falsi-type methods.

Every iteration of the Regula falsi-type methods requires solving (Pτ ).

• Terminate once the stopping criteria are met.

7.3.3.4 Bracketing the Root

Most classes of the loss functions are nonnegative and vanish at the origin such as
gauges as well as the one that is considered in this study. For these kind of losses
linear inverse mappings can be useful since for an observed measurement that will be
K†(D) − D = 0, i.e. ψ(τ) = −σ. At the point τ = 0, ψ(τ = 0) is positive since unless
W ◦ D ̸= 0, thus finding another point where ψ is negative guarantees convergence by
bracketing the root. K†(D) provides negative ψ for the aforementioned losses.

7.3.3.5 Loss Functions and the Gradient

Huber and least-squares losses are employed to solve (Pσ). While least-squares is
the most commonly used loss function in numerous optimziation problems, Huber
loss is less sensitive to outliers in the data than least-squares. Especially if the error
distribution is expected to be heavy-tailed, Huber loss could be a more proper choice
to calculate the error. Huber and least-squares losses are

ρH(x) =


x2

2δ , if |x| ≤ δ

|x| − δ
2 , otherwise

, (7.53)
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and ρL(x) = |x|2 respectively. δ is the tuning parameter of the Huber loss and depends
on the distribution of the error [EG+18]. The derivative of ρH is

ρ′
H(x) =


x
δ , if |x| ≤ δ

sign(x), otherwise
(7.54)

Let us rewrite the loss function f entry-wise such that f(X) = ∑︁
(i,j)∈ω ρ (⟨Φij ,X⟩ − Dij).

Then the gradient of f with respect to X will be

∇f(X) =
∑︂

(i,j)∈Θ
ΦT
ijρ

′ (⟨Φij ,X⟩ − Dij) (7.55)

Let f be least squares, i.e. f(X) = ∑︁
(i,j)∈Θ |Wij · (⟨Φij ,X⟩ − Dij) |2 =

∥W ◦ (K(X) − D)∥2, then the gradient of f with respect to X can simply be
written in terms of the linear transformation K as

∇f(X) = W∗ ◦ K∗(W ◦ (K(X) − D)). (7.56)

7.3.3.6 Reconstruction Points From the Gram Matrix

Solving (Pσ) provides a Gram matrix X that yields an EDM fulfilling the optimization
problem constraints. Numerous approaches have been introduced to reconstruct the
points from a Gram matrix. If all distances are measured, there is a simple and efficient
algorithm called multidimensional scaling (MDS) [Tor65] that finds the configuration of
nodes exactly. The following two steps have to be carried out to find the configuration
of points with MDS:

• Calculate the Gram matrix X for a given EDM D ∈ Rn×n.

That step can be performed such that X = K†(D).

• Execute eigendecomposition for the matrix X.

The rows of Y = VrΛ1/2
r are the relative coordinates of nodes where Λr =

Diag(λ1. . . . , λr) ∈ Rr×r is the matrix that comprises the λis on the diagonal
which are ith largest eigenvalues and Vr = (v1, . . . , vr) ∈ Rn×r is the matrix
contains the corresponding eigenvectors. In other words, every point pi ∈ Rr is
mapped to the ith row of Y.

EDMs are invariant under rigid transformation (including translations, rotations,
reflections) [FO12] and MDS gives us a point configuration that we therefore call relative
points which is equal to absolute points up to a rigid transformation. Estimating the
absolute points is not possible without additional information.

In many applications there are therefore some known points that can provide the
link between the absolute and relative point set. This points are called terminal points
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Table 7.8: Iteration complexity.

CVX O
(︁
n6)︁

Proposed Algorithm
(with Lanczos Method) O

(︂
nnz(∇ρ) ×

√︂
∥∇ρ∥2 × min{ϵ−1/2, log(1/ϵ)/χ1/2}

)︂
Proposed Algorithm
(with Power Method) O

(︂
nnz(∇ρ) ×

√︂
∥∇ρ∥2 × min{ϵ−1, log(1/ϵ)/χ1/2}

)︂

or anchor points in the nomenclature of sensor network localization problems. It is
possible to align the relative point set with the set of anchors since their coordinates are
known and fixed. This alignment can be done with the orthogonal procrustes analysis.

7.3.3.7 Orthogonal Procrustes Problem

Orthogonal procrustes analysis is an approximation problem that looks for an
orthogonal matrix O which closely maps given two matrices. Consider A, B are
centered at the origin, orthogonal procrustes problem seeks best maps A onto B by

arg min
O:OOT =I

∥OA − B∥2
F . (7.57)

Eq. (7.57) evaluates the squared distances of the points in B and corresponding points
in OA. The optimal O can be computed by the singular value decomposition of ABT ,
for details one can check [Sch64b; BG07; Dok+15].

In the applications where anchors exist, their points can be aligned with the relative
points that are obtained from MDS. After finding the optimal O, the alignment can
be applied to the whole relative point set.

Iteration complexity of the introduced algorithm is given in Table 7.8 and reached
from [Gar16; All+17] where nnz denotes the number of nonzeo entries, ϵ is the target
accuracy, χ is the difference between the two smallest eigenvalues of the gradient.
Comparing to the CVX [Van+05] which is an off-the-shelf solver and uses interior
point method to solve the SDP, introduced approach quite beneficial, especially in
large dimensions.

7.3.3.8 Test Setup 1: Wireless Sensor Network Localization

In this subchapter, so far, an approach for the matrix completion problem is proposed
with the instructions of how one can find the coordinates of a given distance matrix.

In order to test the introduced algorithm, we created a test setup and conducted
several experiments for WSN localization. We utilized 25 sensors of [Gro]. Most of
them placed in a building which has cellar + 6 floors and is approximately 150 years
old with solid brick walls, while couple of them are distributed in the surrounding
buildings. Positions of the sensors are shown in Figure 7.18. Sensors operated at an

101



7. (Pσ) Related Applications

-5

20

0

20

5z

10

y

10

x

0

15

0 -20

Figure 7.18: Sensor locations

ISM band, 896 MHz at 0.5 watt. We measured the received signal strengths (RSS)
values.

7.3.3.9 RSS and Propogation Model

There are several approaches to localize wireless devices [MFA07]. One of the most
common one is based on the RSS values. Conventionally, RSS of a communication
system is modeled with the log-distance path loss radio propagation model which is
defined in decibel (dB) scale for a given distance according to following

r = PT − 10n log10(d) + Xg [dB] (7.58)

where n is the path loss exponent, PT is the transmit power, d is the distance between
transmit and receiver and Xg is the shadow fading term which is an empirically justified
normal distributed random variable with zero mean [Rap01], i.e. it is a lognormal
random variable in linear scale.

Scatter plot of the 267340 measurements and the histogram of the shawoding is
depicted in Figure 7.19a and in Figure 7.19b respectively. The histogram of the
distance error corresponding to the path loss model given in (7.58) is also plotted in
Figure 7.19c which follows a lognormal distribution as expected.

In our experiments, the matrix that comprises of the mean RSS values between
sensor pairs is incomplete. Because some radio links are either noisy, erroneous or
weak etc., therefore some sensors could not get the signal. So, by using any path loss
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(a) Scatter plot of the 267340 measurements.
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(b) Histogram of the shadowing.
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(c) Histogram of the distance error.

Figure 7.19: Measurement characteristics.
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Figure 7.20: Partial mean RSS distance matrix.

model or any other method that helps to find distances are obsolete because it is not
possible to construct an EDM using only RSS values since they are incomplete. The
motivation is to fill the gaps in the EDM.

The partial mean RSS distance matrix is depicted in Figure 7.20. It is a dense
matrix, to make it more sparse, we randomly blocked some distance information and
created two more test scenarios as well. In the Scenario 1, we used the distance map
which we have from the experiments. Scenarios are shown in Figure 7.21. Density of
the scenarios are 0.7296, 0.3648 and 0.2144 for the Scenario 1, 2 and 3 respectively
which is calculated by following formula

Density = number of non−missing entries

number of all entries
. (7.59)

7.3.3.10 Simulations

For every scenario (Scenario 1, 2 and 3), there is an incomplete EDM with different
densities. (Pσ) is solved to find the missing entries and complete them. Here, only raw
Regula falsi method is employed to solve (7.50), i.e. µ = 1 is taken from the Table 5.2.
Huber loss with δ = 0.001 is utilized as a penalty function ρ with the parameter delta
to better address the heavy-tailed character of distance estimations can be obtained
by RSS values. σ is chosen as σ = n× n× α (reminding that n is the sensor number).

Solving (Pσ) gives a Gram matrix X that yields an EDM that satisfies the opti-
mization problem requirements. Relative coordinates of the sensors are reconstructed
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(b) Scenario 2.
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(c) Scenario 3.

Figure 7.21: Test scenarios.
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Figure 7.22: Localization results for the Scenario 1. Green dots represent the anchor
points, green circle shows the anchor point alignment, red x shows the real points
while black dots are used for the corresponding estimated points.
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Figure 7.23: Localization results for the Scenario 2. Green dots represent the anchor
points, green circle shows the anchor point alignment, red x shows the real points
while black dots are used for the corresponding estimated points.
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Figure 7.24: Localization results for the Scenario 1. Green dots represent the anchor
points, green circle shows the anchor point alignment, red x shows the real points
while black dots are used for the corresponding estimated points.
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with using the MDS. 6 anchor points are assigned and the alignment between the real
and relative coordinates are performed with the Orthogonal procrustes analysis given
in Section 7.3.3.7. root mean square deviation (RMSD) between the estimated point
coordinates and their real coordinates is calculated.

RMSD =

√︄∑︁n
i=1 (pi − p̂i)2

n
[m] (7.60)

We used 3 alfa values such as 0.1, 1 and 10 to indicate low, medium and high noise
tolerances. Localization results for the Scenario 1, 2 and 3 are shown in Figure 7.22, 7.23
and 7.24 respectively.

Results are consistent to CVX [GB14].

7.3.3.11 Test Setup 2: Graph Realization Perspective

Approximating the missing edges of a given graph is often equivalent of completing an
EDM. Algorithm 7 is presented to generate random graph instances for the EDMC
problems with noisy and incomplete distance measurements. A multiplicative noise
model comprising a Gaussian random variable with the zero mean and variance of 1,
N (0, 1), is employed to perturb the distance matrix as it is done in [Bis+06a; Bis+06b;
Dru+17].

Algorithm 7 Graph construction, the noise model and the mask matrix
Input: kn and (1 − k)n as the number of terminal points (anchors) and other points
respectively with 0 ≤ k ≤ 1, noise factor α, radio range R
Generate nodes

- Generate n uniformly distributed nodes pi ∈ Rr,
Perturb the distance matrix

D̂ij =
{︄

(1 + αN (0, 1))2 ∥pi − pj∥2
2 , if max{i, j} ≤ kn

∥pi − pj∥2
2 , otherwise

,

Build a graph
- Form the graph G = ({1, . . . , n}, E) where

E = {ij : ∥pi − pj∥2 < R or max{i, j} ≤ kn},

Generate the mask matrix W

Wij :=
{︄

1, if ij ∈ E
0, otherwise

In order to create a suitable test setup, we utilized a dataset which comprises of the
representative cartesian coordinates of 128 cities in North America that is created in
[Knu09] and can be downloaded from [Bur09]. The positions of the cities are shown in
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Figure 7.25: Position of the cities.

Figure 7.25. The distance matrix of the points is perturbed with the Algorithm 7 with
k = 1/16, i.e. 8 of the 128 points are considered to be terminal points. (Pσ) is solved
with several R,α and σ values where σ chosen as σ = ||W ◦ (D̂ − D)||2. R and α

values create graphs with various densities and the density of a graph is formulated as
density := number of edges

0.5n(n−1) where n is the number of points. After solving (Pσ), relative
points are reconstructed with MDS. Then the relative point set is aligned with the the
terminal points via orthogonal procrustes analysis. The average density, σ and RMSD
between the estimated point coordinates and their real coordinates, over 100 instances
are given in Table 7.9. iter is the total solves of (Pτ ) to reach the solution of (Pσ).

An instance of a constructed graph for α = 0.001 and R = 0.05 with k = 1/16, n =
128 is depicted in Fig. 7.26a. Blue and red lines represent the noisy and noiseless edges
respectively and green dots stand for the terminals. In Fig. 7.26b, estimated points are
shown for the corresponding graph. Green dots represent the terminal points, green
circles show the anchor point alignment, red x shows the real points while black dots
are used for the corresponding estimated points.

In this subchapter, an algorithm for the EDMC problem with noisy and incomplete
distance measurements is introduced. The algorithm efficiently solves the optimization
problem and the results are consistent to generic but less efficient semidefinite solvers
like CVX. Although not being in the focus of this thesis, our approach does not require
differentiable loss functions, which opens new possibilities for future research questions
and guarantees finding a solution since we use bracketing-type root finding approaches.
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Table 7.9: Simulation results for solving (Pσ).

α R density σ method RMSD iter

0.005

0.05 0.1409 0.0027

Regula Falsi 0.8632 3
Illinois 0.8632 3
Pegasus 0.8632 3

Anderson-Björk 0.8632 3

0.1 0.2323 0.0066

Regula Falsi 0.8669 3
Illinois 0.8669 3
Pegasus 0.8669 3

Anderson-Björk 0.8669 3

0.5 0.6158 0.0429

Regula Falsi 0.7977 3
Illinois 0.7977 3
Pegasus 0.7977 3

Anderson-Björk 0.7977 3

0.05

0.05 0.1411 0.0296

Regula Falsi 0.8629 3
Illinois 0.8629 3
Pegasus 0.8629 3

Anderson-Björk 0.8629 3

0.1 0.2327 0.0702

Regula Falsi 0.8674 3
Illinois 0.8674 3
Pegasus 0.8674 3

Anderson-Björk 0.8674 3

0.5 0.6154 0.4443

Regula Falsi 2.8561 4
Illinois 2.8561 3.53
Pegasus 2.8561 3.43

Anderson-Björk 2.8561 3.53

0.5

0.05 0.2282 6.32

Regula Falsi 13.37 9.1667
Illinois 13.32 6.5833
Pegasus 13.32 5.9167

Anderson-Björk 13.33 6.75

0.1 0.3232 8.2173

Regula Falsi 5.98 8.6667
Illinois 6.03 6.11
Pegasus 6.03 6

Anderson-Björk 6.03 6.08

0.5 0.6375 15.501

Regula Falsi 2.163 16.25
Illinois 2.162 7.875
Pegasus 2.16 7

Anderson-Björk 2.16 8.125
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(a) A graph for α = 0.001, R = 0.05 with the density 0.141.
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Figure 7.26: A graph instance and corresponding estimated points.
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Chapter 8

Summary and Conclusions

ℓp-norm minimization is a noteworthy subject in various disciplines not only for
signal recovery but also for finding meaningful signal representations. In this thesis,
we introduce noise-constrained ℓp-norm minimization structure for 1 ≤ p ≤ ∞.
Formulating ℓp-norm minimization problems by constraining the noise tolerance level
is required in many applications since it is easier to constrain the noise level and
to establish the optimization problem. However, solving noise-constrained ℓp-norm
minimization can be challenging and therefore there is a lack of computationally
efficient algorithms in the literature. Different formulations of optimization problems
can provide equivalent results. Thus, it may be appealing to solve one computationally
efficient problem in order to obtain the solution to another. By using this fact, we solved
constrained ℓp-norm regularization to reach the solution of noise-constrained ℓp-norm
problem by tracing the optimality between the objective ℓp-norm and a loss function.
This optimality trade-off between both objectives is formulated as a nonlinear equation
root finding problem. To trace this optimality over a Pareto frontier, we present and
utilize several simple, derivative-free, and cost-effective open-type and bracketing-type
nonlinear equation root finding methods. Each of the existing nonlinear equation root
finding methods has their own advantages and disadvantages. The applicability and
efficiency of these methods depend on the function. Thus, choosing one of them is
function dependent, e.g. bracketing-type methods converge slowly if the function has
significant curvature and most open-type methods can be inapplicable if the function
is non-differentiable.

Using a warm-start strategy while designing an algorithm might result in costly
efficient iterations. Choosing a starting point close to the solution point is desired.
In this thesis, we also introduce a warm-start strategy for the ℓp-norm minimization
problems by using the relation between n-widths and ℓp-norms. Effect of the given
warm-start strategy and root finding methods for solving noise-constrained ℓp-norm
minimization, i.e. (Ppσ), is shown by minimizing ℓ1 and ℓ∞-norm in Chapter 6.
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Convergence analysis of (Ppσ) solvers are given in Chapter 4 by using the matrix
properties UUP and UP which are formerly introduced to investigate the performance
of random matrices in ℓ1 and ℓ∞-norm related applications. Convergence bounds using
UUP and UP allow us to understand the performance of the measurement matrix and
inspect the quality of them for related recovery or representation methods. In order
to derive the convergence bounds, the slope of the Pareto curve is utilized which is
bounded by matrix property inequality in Chapter 5.

Some of the root finders presented in this thesis can handle solving ℓp-norm
minimization problem with nonconvex losses. Nonconvex losses are significantly more
difficult to cope with, yet they can outperform their convex counterparts [MBM18].
Considering the loss functions can be more likely to be nonconvex in real world
applications [GBC16], moving outside of the convex class is an appealing property.
The applicability of nonconvex losses is examined in Chapter 5.4. In this thesis, we
show how some root finding methods, e.g. OPR and Regula Falsi type methods like
Illinois, Pegasus, Anderson-Björck, can be used with the nonconvex Student’s t loss,
as well the convex least-squares and Huber losses.

Steps of (Ppσ) solvers given in Chapter 6 and results of ℓp-norm minimization are
applied in Chapter 7. ℓ1-norm minimization is an important topic for CS. We solved
(P1

σ) with a typical CS example. Ability to use of nonconvex losses inspired us to
develop an outlier-robust approach and for that we illustrated the performance of
ℓ1-norm regularized Student’s t inversion. We also examine the ℓ∞-norm minimization
which is relatively less investigated than ℓ1-norm. We introduce a new communication
scheme based on ℓ∞-norm representations. MOF has already been employed in many
applications to obtain an overcomplete representation and robust communication
channels with additive noises like quantization noise. Since the warm-start strategy
that we introduce is based on MOF, we tried to get some extra gains that MOF already
offers. Compared to MOF, ℓ∞-norm representations are spread evenly, meaning that
the representation elements are forced to be equal. We showed that one can use fewer
bits with the same MSE budget by using ℓ∞-norm representation based communication
architecture instead of MOF based one. Introduced architecture can be used where
MOF is already used as precoding like C-RANs fronthaul downlink precoding. We also
introduced a new outlier detection method based on ℓ∞-norm representations. Since the
representation elements spread evenly for ℓ∞-norm representations, they are considered
as a natural binarization scheme which we use this favorable property for ANN search
to detect DoS attacks. A smooth approximation of an optimization problem makes
it considerably easier to solve. In addition to these ℓ∞-norm related applications, we
also introduce a smooth approximation of ℓ∞-norm minimization problem. Lastly,
we offer a prior for ℓ∞-norm representations and investigate the performance of this
prior on PAPR reduction. Beside ℓ1 and ℓ∞-norms, noise constrained nuclear norm
is also minimized with the introduced Pareto approach. Minimizing nuclear norm
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promotes low rank solutions since it implies to minimize the sum of the eigenvalues
of a positive semidefinite matrix. Several SDP formulations for low-rank matrix
completion problems from incomplete distance measurements have been proposed. We
formulated a noise constrained nuclear norm minimization problem as an SDP, and
solve it for the EDMC problem with noisy and incomplete distance measurements. We
minimize the noise-constrained nuclear norm with the presented Pareto approach for
the EDMC problem with the application of noisy Euclidean distance realization and
WSN localization.
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