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Abstract—Passive Brain-Computer-Interfaces provide a 
promising approach to the continuous measurement of mental 
workload in realistic scenarios. Typically, a BCI is calibrated to 
discriminate between different levels of workload induced by a 
specific task. However, workload in realistic scenarios is typically 
a result of a mixture of different tasks. Here, we present a study 
on investigating the possibility of a task-independent classifier, 
which can be applied to classify mental workload induced by 
various tasks (including n-back, backward span, addition, word 
recovery and mental rotation). Furthermore, our approach is not 
limited to binary classification of workload but can discriminate 
it on a continuous metric.  

Keywords—passive Brain-Computer-Interfaces, neuroadaptive 
technology, mental workload, task-independent classifier, 
continuous metric 

I. INTRODUCTION 
Passive brain-computer interfaces (pBCI) provide a tool for 

Human-Computer Interaction that allows the assessment of 
cognitive and affective states in real-time [1]. This allows a 
technical system to adapt itself to changes in user state in order 
to support the ongoing interaction, leading to neuroadaptive 
technology [2][3]. For example, during driver-vehicle-
interaction, passive BCI could enable the real-time detection of 
the driver’s mental state like fatigue, workload, and degree of 
relaxation [4], and could provide this essential information 
regarding driver’s state to the car. Combining with other sensor 
data, the car could adapt to individual aspects of the driver in 
their context and change its behavior accordingly.  

Mental workload is an important part of a users' state, 
specifically in safety-critical environments. It has been 
identified as having a great influence on performance in many 
tasks, such as in learning, driving, or monitoring (e.g. [5], [6]). 
Currently, the user’s actual mental workload is difficult to 
assess during human-computer interaction, making mental 
workload a covert aspect of user state [7]. Regardless of this 
difficulty, a reliable estimation of the actual mental workload 
during the execution of the task is highly valuable [8], [9]. 
Currently, the most used method for assessing a subjects’ 
mental workload are subjective measures, e.g. questionnaires. 
Such methods are typically intrusive and prone to social 
expectance and are hence unsuitable for continuous workload 
assessment. Alternatively, psychophysiological measures can 

be used to measure correlates of user state nonintrusively and 
continuously. Human brain activity reflects an increase of 
mental workload by an increase in frontal theta power and a 
decrease in parietal alpha power [10]. These changes can be 
detected reliably by a passive Brain-Computer Interface during 
an ongoing Human-Computer Interaction [11]. 

Current approaches to workload detection are typically 
limited to the investigation of a specific task. As long as it 
remains unclear how well an approach can be transferred 
between tasks, a classifier for each task needs to be calibrated 
which is a cumbersome and time-consuming procedure. 
Therefore, we are motivated to investigate whether we could 
calibrate a classifier that is transferable between different 
tasks. However, if we investigate different tasks it is unclear 
how we can compare the different difficulty levels of these 
tasks and how these affect the actual mental workload: an 
“easy” exercise in task A may still be more difficult than a 
“hard” one from task B. From this perspective, it becomes 
clear that binary classification as typically used in a BCI 
setting, does not make sense here. In the calibration phase, the 
decision threshold is chosen specifically for the calibration 
task, discriminating optimally between low and high workload 
as defined for that task. In another task the optimal threshold 
is likely to be very different which makes direct transfer of the 
classifier unfeasible. This is specifically a problem for realistic 
settings where we cannot foresee which kind of workload will 
be induced in the human user, as they might face a summation 
of different kinds of tasks, partially even simultaneously. 
Hence, it is necessary to omit binary classification when 
setting up a task-independent classifier.  

Here we present a study investigating the task-
independency of a classifier to indicate actual workload level 
using EEG, which is based on the preliminary study in [12]. 
We extend the application of this task-independent classifier 
to tasks that are commonly used in workload research and to 
application-oriented tasks. We show the unreliability of binary 
classification and instead define a continuous workload level 
by interpreting the classifier output directly.   
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II. METHODS 

A. Experiment Setup 
This experiment was conducted in a well-controlled 

laboratory and 15 participants with a mean age of 28.6 4.1 
participated in this experiment. The participants were 
instructed to carry out a few tasks on a 25-inch screen 
standing on a table in front of them. All participants 
performed a calibration task, a no-workload baseline session, 
and five testing tasks of two different workload levels each.  

• Calibration task: This task consisted of 40 trials in 
random order (20 with high, 20 with no workload). 
During high workload conditions, participants were 
presented with an equation of the form a – b, instructing 
them to count backwards from a in steps of b (i.e. a 
modified Brown-Peterson distraction technique). a was 
any integer between 200 and 1200; b ranged from 6 to 
19, excluding 10 and 15. During no-workload phases, a 
crosshair was shown in the middle of screen and 
participants were instructed to relax, with eyes open. In 
50% random trials of both high and no workload 
conditions, there were 10 small visual lightly-colored 
“sparkles” wandering smoothly over the screen in 
random walks governed by perlin noise, providing 
visual distraction. This 50% chance of sparkles was 
presented so as to evenly balance eye movements 
between classes. A self-paced break was implemented 
after every 10 trials. Each trial lasted 10 seconds, for a 
total of 200 seconds of EEG data per workload class. 

• In the testing phase there were three conditions of 
different demand levels. One is the no-workload 
condition. In this session, participants were instructed to 
relax themselves and press a button when a certain 
letter was shown in the middle of the screen. This no-
workload session was to serve as a reference. As other 
testing tasks also involved button presses, we included 
these in the baseline session as well. Participants were 
informed that reaction time of button press would not 
be recorded in order to minimize any pressure they 
might experience. Following this, the testing phase 
continued with different low- and high-workload 
conditions. Five tasks were performed: n-back, 
backward digit span, addition, scrambled word recovery 
and mental rotation, each consisting of two difficulty 
levels to induce different workload. N-back task [13] 
and digit span task [14] are commonly used for 
inducing workload and represent two different theories 
of mental workload [15]. The addition, word recovery, 
and mental rotation tasks are more practical tasks 
representing different aspects of cognitive abilities, i.e. 
mathematical, linguistic and spatial ability, and could 
be used to investigate the applicability of workload 
detection in more real-life tasks (e.g. [16], [17], [18]). 

• N-back task: Participants were given a sequence of 
numbers and had to indicate when the currently 
displayed number was equal to the number displayed n 
elements previously. Participants performed 24 trials of 
25 seconds each, among them 12 trials with high 

difficulty, 12 with low difficulty. We used 1-back (low 
difficulty) and 3-back (high difficulty) varieties of the 
n-back task to manipulate the task difficulty and the 
task load. The sequence of high/low workload blocks is 
randomized. The same applies to the following tasks. 

• Backward span task: Participants were given a sequence 
of numbers which they then had to repeat in reverse 
order. This task consisted of 2-digit span task (low 
difficulty) and 6-digit span task (high difficulty) 
conditions, and had 20 blocks each lasting 30s: 
randomly 10 with high difficulty and 10 with low 
difficulty (the same for the following three tasks).  

• Addition task: Participants were given two numbers to 
add. The workload level was varied according to the Q-
value of the equation ([16], [19]): for low difficulty 2-
digit additions with Q-value from 2 to 2.5, for high 
difficulty 4-digit additions with Q-value from 4 to 5.  

• Word recovery task: Participants were presented 
scrambled German words and they had to recover the 
original words. The workload level was differentiated 
by the use frequency and syllable number of the words 
[20]. The scrambled words in the low-difficulty 
condition are frequently-used 2-syllabled words, and 
those in high-difficulty condition are infrequent 3-
syllabled words.  

• Mental rotation task: Participants were presented either 
two figures of 2D objects containing 6 squares (low 
difficulty) or two figures of 3D objects containing 9 
cubes (high difficulty) and were instructed to determine 
whether they were the same object (dataset from [18]).  

The two difficulty levels in each of these five tasks were 
validated in a pretest with 9 participants reporting mental 
workload levels using the NASA-TLX and a one-itemed scale 
on task difficulty. Their subjective ratings were significantly 
different between the workload levels of each task. In this 
experiment, after the first and last blocks of each workload 
level, participants reported their subjective mental workload 
rating using the one-itemed scale. 

B. Data Acquisition 
EEG data were recorded continuously using a 64 active 

Ag/AgCl electrode mounted according to the extended 10–20 
system on an elastic cap (ActiCap by Brain Products GmbH, 
Gilching, Germany). The signal was sampled at 5000 Hz and 
amplified using BrainAmp DC amplifiers (Brain Products 
GmbH, Gilching, Germany). All electrodes were referenced to 
FCz and the ground electrode was placed at position AFz. 

C. Data Analysis 
To investigate the task-independence of the workload 

classifier, individual classifiers were first calibrated based on 
data from the calibration phase. The data were divided in 
consecutive 1-second epochs of high versus low condition 
data. Filter bank common spatial patterns [21] was applied to 
extract features describing the power in theta (4-7 Hz) and 
alpha (8-13 Hz) bands using three patterns per band. Linear 
discriminant analysis (LDA) was used to separate the classes 
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with a 5-fold nested cross-validation with margins of 5. The 
calibrated classifiers were then applied to 1-second epochs 
taken from the other five tasks. Classification was made 
between two different workload levels (high vs. low 
workload) as well as between high vs. no and low vs. no 
workload conditions. Furthermore, the classifier output of 
different workload conditions in all tasks was calculated. 
Differences were compared with permutation tests. 

Calibration and classification was done using the open-
source MATLAB-based toolbox BCILAB (version 1.2) [22]. 

III. RESULTS 
Table I lists the classification accuracies of a classifier 

trained on data from the calibration task, applied to the data 
from the five testing tasks. The mean estimated classification 
accuracy over participants in the calibration task reaches 
76% 11 (significance is reached at 55% or above). Applied to 
the five testing tasks, however, no meaningful performance 
can be reported.  

Table II lists the classification accuracies of applying the 
same calibrated classifier on testing data between high and no 
workload conditions, as well as between low and no workload 
conditions. In some tasks, we see average classification 
accuracies above 75%. However, there is a large variability in 
the results and some tasks, notably n-back and backward span 
tasks, appear to consistently elude reliable classification. 

Table III lists the mean classifier output values produced 
when applying the calibrated classifier to the data of the five 

testing tasks as well as the no-workload baseline recording. 
Values could vary between 0 and 1, and represent the 
classifier’s predictions, with 0.5 representing complete 
uncertainty between the classes, 0 representing certainty for 
class 1 (i.e. the classifier predicts a 100% chance of the data 
belonging to class 1, low workload) and 1 certainty for class 2 
(high workload).  

 
 

TABLE I.  CLASSIFICATION ACCURACIES OF HIGH VS. LOW WORKLOAD 
CONDITIONS 

Partici
pant 

Calibr
ation 

Classification Accuracy High vs. Low 
Workload Levels (%) 

N-
back Span Add Word Rotat. 

1 64 50 51 56 56 54 
2 84 65 60 62 60 53 
3 67 60 60 62 61 54 
4 60 54 64 55 51 54 
5 78 54 49 55 59 52 
6 71 55 56 54 58 56 
7 92 50 62 64 65 49 
8 78 58 65 61 55 49 
9 92 59 67 51 53 57 

10 82 54 60 57 50 54 
11 88 60 68 64 51 50 
12 82 59 51 74 62 58 
13 80 53 51 60 55 53 
14 62 49 58 54 47 49 
15 61 57 55 56 56 57 

Mean 76 56 59 59 56 53 
St.dev. 11 4 6 6 5 3 

  

 
 
 

TABLE II.  CLASSIFICATION ACCURACIES OF HIGH VS. NO WORKLOAD CONDITIONS AS WELL AS LOW VS. NO WORKLOAD CONDITIONS 

Participant Calibr 
Ation 

Classification Accuracy High vs. No Workload (%) Classification Accuracy Low vs. No Workload (%) 
N-back Span Add Word Rotat. N-back Span Add Word Rotat. 

1 64 48 62 86 81 83 47 61 76 73 76 
2 84 69 72 83 78 72 51 58 67 65 67 
3 67 70 67 89 87 89 60 55 75 74 83 
4 60 63 70 64 69 56 58 53 58 70 51 
5 78 54 58 88 80 87 50 59 83 69 87 
6 71 60 59 65 69 73 54 52 60 61 64 
7 92 64 66 75 59 74 64 53 58 41 76 
8 78 60 74 86 86 86 52 57 73 83 87 
9 92 67 80 88 84 90 56 67 88 82 82 

10 82 46 60 72 80 73 42 48 63 82 69 
11 88 62 73 92 96 98 50 53 74 96 98 
12 82 59 57 92 87 86 49 58 64 76 76 
13 80 46 56 85 68 76 43 56 75 62 74 
14 62 46 64 57 53 62 47 52 52 57 64 
15 61 59 58 69 55 63 51 53 61 47 54 

Mean 76 58 65 79 75 78 52 56 68 69 74 
St.dev. 11 8 7 11 13 12 6 4 10 14 13 
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Figure 1 presents the mean classifier output across all 
participants. We see that the mean output for the n-back task 
in both high and low workload conditions are below the 
middle line (0.5), and those of the addition task, word 
recovery task, and mental rotation task in are similarly all 
above 0.5. Table IV lists the results of permutation tests 
comparing the output within each participant between high 
and low workload conditions. For each task, over two-thirds 
of the participants had significantly different classifier output 
between conditions. Over all participants, in 76% of all tasks 
the differences between high and low conditions were 
significant.  

 
Fig. 1. Averaged classifier outputs across participants 

 
TABLE III.  MEAN CLASSIFIER OUTPUTS OF HIGH VS. LOW WORKLOAD CONDITIONS 

Participant 
Mean Continuous Classifier Output 

No 
Workload 

N-back Span Add Word Mental Rotation 
High Low High Low High Low High Low High Low 

1 0.26 0.31 0.32 0.54 0.52 0.82 0.69 0.76 0.65 0.8 0.69 
2 0.43 0.71 0.5 0.72 0.56 0.87 0.68 0.77 0.67 0.73 0.67 
3 0.23 0.49 0.46 0.62 0.41 0.57 0.49 0.64 0.63 0.45 0.38 
4 0.28 0.56 0.41 0.52 0.39 0.95 0.67 0.89 0.69 0.95 0.86 
5 0.35 0.41 0.39 0.48 0.52 0.93 0.79 0.75 0.62 0.92 0.92 
6 0.29 0.47 0.4 0.49 0.36 0.54 0.48 0.6 0.49 0.63 0.54 
7 0.54 0.66 0.69 0.71 0.57 0.77 0.58 0.6 0.46 0.75 0.79 
8 0.18 0.44 0.32 0.64 0.43 0.83 0.63 0.83 0.76 0.84 0.84 
9 0.23 0.54 0.42 0.71 0.53 0.85 0.79 0.77 0.71 0.84 0.72 

10 0.26 0.28 0.22 0.49 0.3 0.64 0.54 0.73 0.76 0.65 0.61 
11 0.04 0.35 0.19 0.51 0.23 0.81 0.58 0.87 0.88 0.8 0.79 
12 0.2 0.44 0.25 0.43 0.41 0.86 0.48 0.78 0.64 0.79 0.65 
13 0.36 0.37 0.29 0.51 0.5 0.86 0.73 0.64 0.57 0.76 0.7 
14 0.41 0.37 0.38 0.67 0.47 0.56 0.47 0.49 0.55 0.62 0.64 
15 0.34 0.53 0.4 0.49 0.43 0.63 0.54 0.48 0.36 0.56 0.49 

Mean 0.29 0.46 0.38 0.57 0.44 0.77 0.61 0.71 0.63 0.74 0.68 
St.dev. 0.12 0.12 0.12 0.10 0.10 0.14 0.11 0.13 0.13 0.14 0.15 

 
 

TABLE IV.  RESULTS OF PERMUTATION TESTS ON OUTPUTS OF HIGH VS. LOW WORKLOAD CONDITIONS OF EACH PARTICIPANT 

Participants 
P-value of Permutation Test Percentage of 

Significant Tasks (%) N-back Span Addition Word Rotation 
1 p = 0.801 p = 0.491 p < 0.001***a p < 0.001*** p < 0.001*** 60 
2 p < 0.001*** p < 0.001*** p < 0.001*** p < 0.001*** p = 0.001*** 100 
3 p = 0.002** p < 0.001*** p < 0.001*** p < 0.001*** p < 0.001*** 100 
4 p = 0.214 p < 0.001*** p = 0.002** p = 0.649 p = 0.004** 60 
5 p = 0.389 p = 0.191 p < 0.001*** p < 0.001*** p = 0.846 40 
6 p = 0.009** p < 0.001*** p = 0.029* p < 0.001*** p < 0.001*** 100 
7 p = 0.239 p < 0.001*** p < 0.001*** p < 0.001*** p = 0.014* 80 
8 p < 0.001*** p < 0.001*** p < 0.001*** p = 0.002** p = 0.762 80 
9 p < 0.001*** p < 0.001*** p = 0.002** p = 0.016* p < 0.001*** 100 

10 p = 0.012* p < 0.001*** p < 0.001*** p = 0.313 p = 0.102 60 
11 p < 0.001*** p < 0.001*** p < 0.001*** p = 0.433 p = 0.210 60 
12 p < 0.001*** p = 0.347 p < 0.001*** p < 0.001*** p < 0.001*** 80 
13 p = 0.002** p = 0.726 p < 0.001*** p < 0.001*** p = 0.004** 80 
14 p = 0.634 p < 0.001*** p = 0.015* p = 0.075 p = 0.604 40 
15 p < 0.001*** p = 0.023* p = 0.001** p < 0.001*** p = 0.004** 100 

Percent. of particip. 
w. significance (%) 66.7 73.3 100 73.3 66.7 Average: 

76 
a. * p < 0.05, ** p < 0.01, *** p < 0.001
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IV. DISCUSSION 
The main aim of this study was to investigate the 

feasibility of a task-independent classifier for mental workload 
detection. Such a classifier could potentially greatly simplify 
the calibration session in more practical environments. To 
manipulate workload levels, we exposed participants to one 
no-workload session and five different tasks inducing mental 
workload, each containing two different workload levels. 

From Table I and Table II it can be concluded that a direct 
transfer between tasks is not sufficient to separate high and 
low workload levels within new tasks with acceptable 
accuracy. This, however, was to be expected: different tasks 
are subjectively more or less demanding, and a direct 
comparison between “high” and “low” load levels across tasks 
is thus unrealistic. Instead, we turned to classifier output on a 
continuous scale.  

We can see from Figure 1 that the mean classifier output 
differs for each of the five testing tasks. The mean classifier 
outputs of both conditions in the n-back task are below 0.5, 
whereas those in addition, word recovery, and mental rotation 
tasks are all above 0.5. As the default separating threshold of 
high versus low workload conditions in our calibrated 
classifier is 0.5, the unreliable classification results in these 
tasks can be explained to some extent. Furthermore, the 
permutation tests on outputs of each subject reveal that for 
most subjects in most tasks there are significant differences 
between conditions. This implies that the calibrated classifier 
did in fact produce reliable differences between the workload 
levels, but that these differences were simply not centered on 
the original threshold.  

We conclude that, due to inherent differences between 
different tasks with respect to the induced workload, it is not 
advisable to directly transfer a binary classifier, calibrated on 
one task, to another task. Instead, a more reliable measure may 
be to use the raw classifier output mapped onto a linear scale. 

Alternatively, it is possible to adjust the decision threshold 
for each task individually. However, this would essentially 
again require a calibration phase for each task specifically, no 
longer making the procedure task-independent. 

We calibrated a classifier on a continuous subtraction task, 
and applied it to five other tasks that induced two different 
levels of workload, as well as to a no-workload condition. We 
found significant differences in the classifier output between 
conditions. The tasks we used represent a variety of different 
types of workload. These initial results imply that it is possible 
to calibrate a single classifier on a standardized workload-
inducing task, and use this same classifier to obtain 
meaningful information concerning workload levels induced 
by other tasks. This could greatly simplify the implementation 
of real-time, continuous workload detection into real-world 
applications.  

In future work, we will analyze how the classifier output 
correlates to the subjective ratings that participants gave after 
each block. Different participants could have different abilities 
and different perceptions of tasks, and this may help explain 
the variance still present in the results.  We will also 
investigate the generalizability of this classifier between 

subjects, i.e. we will take further steps towards a universal 
workload classifier—one that is both task- and subject-
independent.  
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