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REGULARIZATION AND ROTHE DISCRETIZATION OF

SEMI-EXPLICIT OPERATOR DAES

R. ALTMANN∗, J. HEILAND†

Abstract. A general framework for the regularization of constrained PDEs, also called
operator differential-algebraic equations (operator DAEs), is presented. The given pro-
cedure works for semi-explicit and semi-linear operator DAEs of first order including the
Navier-Stokes and other flow equations. The proposed reformulation is consistent, i.e.,
the solution of the PDE remains untouched. Its main advantage is that it regularizes the
operator DAE in the sense that a semi-discretization in space leads to a DAE of lower
index. Furthermore, a stability analysis is presented for the linear case which shows that
the regularization provides benefits also for the application of the Rothe method. For
this, the influence of perturbations is analyzed for the different formulations. The results
are verified by means of a numerical example with an adaptive space discretization.
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1. Introduction

Constrained PDEs arise naturally in the modelling of physical, chemical, and many other
real-world phenomena. They occur whenever different PDE models are coupled, e.g., via
mutual variables at the interfaces, since the coupling is typically modelled via algebraic
constraints. Such models are widely used in flexible multibody dynamics, e.g., the pan-
tograph and catenary benchmark problem [AS00] or the flexible slider crank mechanism
[Sim96, Sim06]. Also flow equations such as the Navier-Stokes equations [Tem77, Wei97]
can be seen as constrained PDEs due to the coupling of momentum equation to the
divergence-free constraint. Further applications can be found in circuit simulation [Tis04],
electromagnetics, and chemical engineering [CM99].

We consider these equation systems of ordinary or partial differential equations (ODEs,
PDEs) and algebraic equations in line with other constrained PDEs – often referred to as
PDAEs – as differential-algebraic equations (DAEs) in function spaces, so-called abstract
or operator DAEs.

Despite the large range of applications and the advantages from the modeling perspec-
tive, the mathematical analysis of operator DAEs is full of open research questions. There
is still no common classification like the index concepts for DAEs [LMT13, Ch. 12]. The
generalization of the tractability index as proposed, e.g., in [Tis04] does not apply for the
commonly used formulation by means of Gelfand triples. The very general concept of the
perturbation index, as it was defined in [RA05] for linear PDAEs, applies under strong reg-
ularity conditions but is still ambiguous in the choice of the norm in which one measures
the perturbation and their derivatives. Also the differentiation index was generalized to
PDAEs [MB00] but has difficulties with the agreement of the PDAE index with the index
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of the semi-discretized DAE. Yet another idea is to classify the index of a PDAE directly
by the index that may be determined after a spatial discretization. This, however, leads
to the similar unclear problem, what a good discretization of a PDAE is.

Within this paper, we analyse constrained systems of first order and semi-explicit struc-
ture, particularly we consider systems of the form

u̇(t) +Ku(t) + B∗λ(t) = F(t),(1.1a)

Bu(t) = G(t).(1.1b)

Therein, λ denotes the Lagrange multiplier which enforces the linear constraint Bu = G.
In view of numerical simulations, the incorporation of the constraints via a Lagrange
multiplier and a suitable reformulation seem promising and follows the paradigm in the
treatment of DAEs, that it is preferable to collect all available information in the form of
constraints instead of eliminating them. For the Navier-Stokes equations this means to
maintain the pressure as part of the system.

In this paper, we introduce a regularization or index reduction method for the PDAE
(1.1) without introducing an index as such. We rather refer to the well-defined index
of the semi-discrete system after a spatial discretization by mixed finite elements. In
other words, we propose a reformulation of the given PDAE system such that a semi-
discretization leads to a DAE of lower index, as it was done for second-order systems
appearing in elastodynamics presented in [Alt13]. The advantage is that a transformation
on operator level can be the base for numerically advantageous discretization schemes. The
commonly taken approach of first discretizing and then transforming the equations comes
with the latent risk that the algebraic manipulation are not valid in infinite dimensions
[Hei14]. This may cause instabilities or inconsistencies as the discretization becomes more
accurate.

The main contribution of this paper is then the analysis of the Rothe discretization
through the application of the implicit Euler scheme to the operator DAE (1.1). As for
the finite-dimensional case, we expect a different behavior of the variables u and λ and it
will turn out, that we need stronger regularity assumptions to prove the convergence of
the Lagrange multiplier. Among others, we consider the influence of perturbations and
quantify them in a general convergence result for the Rothe method. We show that the
proposed reformulation improves the robustness against such perturbations, as we confirm
numerically for a simulation setup with adaptive, and thus changing, meshes.

The paper is organized as follows. In Section 2, we provide the theoretical framework
and recall the notion of Gelfand triples and Nemytskii maps which are basic tools in
functional analysis for the formulation of operator differential equations. These tools are
then used for the formulation and regularization of the operator DAEs in Section 3. Here
we provide a general framework for linear time-dependent constraints and analyse the
effect of perturbations. The advantages of the obtained formulation and the justification
of calling this procedure an index reduction on operator level is topic of Section 4.

In Section 5 we consider the discretization in time which corresponds to the Rothe
method for time-dependent PDEs. We prove the convergence of the Euler scheme and dis-
cuss the resulting advantages in terms of perturbations. Finally, we illustrate the obtained
theoretical results in numerical simulations of the Navier-Stokes equations in Section 6 and
conclude the paper in Section 7.
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2. Preliminaries

This section is devoted to the introduction of spaces and operators which are needed
for the analysis in Sections 3 and 5 below. Throughout this paper, we use the notion of
Sobolev spaces as in [AF03] and Bochner spaces as in [Rou05, Ch. 1.5].

2.1. Sobolev-Bochner Spaces. To keep the setting as general as possible, we consider
a real, separable, and reflexive Banach space V and a real separable Hilbert space H
with inner product (·, ·). We assume that the spaces V, H, and V∗ form a Gelfand triple
(also called evolution triple) [Zei90, Ch. 23.4]. This means that V is densely, continuously
embedded in H, written as V ↪→ H, and that H and its dual space H∗ are identified via
the Riesz isomorphism. Such a triple implies the inclusion H∗ ↪→ V∗ in the sense that for
h ∈ H ∼= H∗ and v ∈ V we have

〈h, v〉V∗,V = (h, v).

The space for the Lagrange multiplier is denoted by Q and is assumed to be a real, sep-
arable, and reflexive Banach space. The constraint operator B then maps from V to Q∗.
Together with its dual operator B∗, we obtain the following diagram:

V ↪→ H = H∗ ↪→ V∗

Q∗ Q
B B∗

Example 2.1. A typical example for a Gelfand triple V ↪→ H ↪→ V∗ is given by the
Sobolev spaces V := H1

0 (Ω), H := L2(Ω), and V∗ = H−1(Ω).

We consider time derivatives in the generalized sense as defined, e.g., in [Zei90, Ch. 23.5].
We require solutions of system (1.1) to satisfy

u ∈ Lp(0, T ;V) with u̇ ∈ Lq(0, T ;V∗),
where 1 < q ≤ p < ∞. If q is the conjugated exponent, i.e., 1/p + 1/q = 1, then, by the
well-known embedding theorems for Gelfand triples [Zei90, Th. 23.23], it holds that such
a solution u is continuous as a function u : [0, T ] → H, i.e., u ∈ C([0, T ],H). Thus, an
initial condition u(0) = a for a ∈ H is well-defined.

Remark 2.2. The regularization proposed in Section 3 operates with splittings of the state
space V and is independent of the time regularity of the function u or u̇. Thus, we can
also consider less regular systems with u̇ ∈ Lq(0, T ;V∗) with q ≤ 1 − 1/p, as they may
appear in applications. However, we will have to assume the well-posedness of the initial
condition.

Remark 2.3. Assuming that q ≤ p is no restriction for applications, where typically p ≥ 2
and, thus, the conjugated exponent is smaller than 2. In this case, from the boundedness
of the interval (0, T ) and from the continuous embeddings V ↪→ H ↪→ V∗, one can deduce
that v ∈ Lp(0, T ;V) is also a function in Lq(0, T ;V∗).

2.2. Operator K. Consider a possibly nonlinear operator K : (0, T ) × V → V∗ and let
1 ≤ q, p <∞. The question arises whether this operator induces a (bounded) operator of
the form

K : Lp(0, T ;V)→ Lq(0, T ;V∗),
(Ku)(t) := K(t, u(t)).
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If such an operator exists, then we do not distinguish between these two notions. We state
a well-known result for Nemytskij mappings for the considered setup of abstract functions.

Theorem 2.4 (cf. [Rou05, Thm. 1.43]). If the operator K : (0, T )× V → V∗ is such that

(a) K(t, ·) : V → V∗ is continuous for almost all t ∈ (0, T ),

(b) K(·, v) : (0, T )→ V∗ is measurable for all v, and

(c) ‖K(t, v)‖V∗ ≤ γ(t) + c‖v‖p/qV for some γ ∈ Lq(0, T ),

then the mapping defined via

(Kv)(t) := K(t, v(t)),

is continuous as a map K : Lp(0, T ;V )→ Lq(0, T ;V ∗), where 1 ≤ p <∞ and 1 ≤ q ≤ ∞.

The case that the exponents 1 < p, q < ∞ are conjugated, i.e, 1/p + 1/q = 1, is often
assumed for the analysis of nonlinear evolution equations with monotonicity arguments
[Rou05, Ch. 2 and Ch. 8]. However, for nonlinear operators, even if they are uniformly
bounded as a map V → V∗, the conjugacy of the time exponents may not hold a priori
[Emm04, Ch. 8.2].

Example 2.5 (Navier-Stokes operator). Consider the nonlinear operator which arises in
the weak formulation of the Navier-Stokes equations,

K : V → V∗, 〈Ku,w〉V∗,V :=

∫ (
u · ∇

)
· uw dx.

Then, K : V → V∗ is bounded independently of t, cf. [Tem77, Lem. II.1.1], but, in the
three-dimensional case, it is only bounded as an operator K : L2(0, T ;V)∩L∞(0, T ;H)→
L4/3(0, T ;V∗), see e.g. [Rou05, Ch. 8.8.4].

Example 2.6 (p-Laplacian). For the p-Laplacian, i.e.,〈
Ku, v

〉
V∗,V :=

∫
Ω
|∇u|p−2∇u · ∇v dx,

we take the Sobolev space V = W 1,p
0 (Ω). This then induces an operator K : Lp

(
0, T ;V)→

Lp
′
(0, T ;V∗) with 1/p+ 1/p′ = 1, see [Ruž04, Ch. 3.3.6].

For special operators K, as, e.g., linear operators that are uniformly bounded with
respect to time, we state the following result.

Corollary 2.7. Consider 1 ≤ p < ∞ and an operator K : (0, T ) × V → V∗ which is
measurable for fixed v ∈ V and uniformly bounded in the sense that there exists a constant
CK such that ‖K(t)v‖V∗ ≤ CK‖v‖V for all v ∈ V and almost all t ∈ (0, T ). Then,
(Kv)(t) := K(t, v(t)) defines a continuous operator from Lp(0, T ;V) to Lp(0, T ;V∗).

Proof. The application of Theorem 2.4 with p = q and γ = 0 yields the result. �

Example 2.8 (Linear elasticity). In the case of linear isotropic material laws for a d-
dimensional domain Ω, i.e.,〈

Ku, v
〉
V∗,V :=

∫
Ω

(
2µε(u) + λ trace ε(u)Id×d

)
: ε(v) dx

with ε(u) denoting the symmetric gradient, with the Lamé constants µ, λ, cf. [BS08,
Ch. 11], and A : B :=

∑
i,j AijBij , we use as ansatz space V = H1(Ω). This setting then

implies an operator K : L2(0, T ;V)→ L2(0, T ;V∗).
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3. Regularization of Operator DAEs

In this section, we consider semi-explicit operator equations in a time interval (0, T ).
With a given linear constraint incorporated by the Lagrangian method, we obtain a system
of the form: find u : (0, T )→ V and λ : (0, T )→ Q such that

u̇(t) +K(t)u(t) + B(t)∗λ(t) = F(t) in V∗,(3.1a)

B(t)u(t) = G(t) in Q∗(3.1b)

for t ∈ (0, T ) a.e. with initial condition

u(0) = a ∈ H.(3.1c)

Therein, B∗ denotes the dual of the linear constraint operator B. The operator differential
equation (3.1a) with constraint B(t)u(t) = G(t) is a generalization of a semi-explicit DAE
since here, u(t) belongs to the infinite-dimensional Banach space V. Because of this, we
call system (3.1) a semi-explicit operator DAE.

Suitable function spaces for the solution (u, λ) will be discussed in Theorem 3.8 below.
We assume F ∈ Lq(0, T ;V∗) and G ∈ Lp(0, T ;Q∗). The equalities (3.1a) and (3.1b) should
be understood pointwise in L1

loc in the corresponding dual product. By the fundamental
theorem of variational calculus [Emm04, Thm. 8.1.3] and the definition of the weak time
derivative, this means that v̇(t) = F(t) in V∗ if

−
∫ T

0

〈
v(t), w

〉
V∗,V φ̇(t) dt =

∫ T

0

〈
F(t), w

〉
V∗,Vφ(t) dt

for all w ∈ V and φ ∈ C∞0 (0, T ). Furthermore, we assume operators K : Lp(0, T ;V) →
Lq(0, T ;V∗), cf. Section 2.2, and B : Lp(0, T ;V)→ Lp(0, T ;Q∗) with 1 < p ≤ q <∞.

3.1. Assumptions on B. In this subsection, we summarize the properties of the con-
straint operator B which we require for a reformulation of the operator DAE (3.1). Note
that we do not need additional assumptions of K at this point.

Assumption 3.1 (Properties of B). The constraint operator B(t) : V → Q∗ satisfies the
following conditions:

(a) B(t) is linear and uniformly bounded, and B(·)v is measurable for all v ∈ V,
(b) VB := kerB(t) is independent of time t,
(c) there exists a uniformly bounded right inverse of B(t), i.e., there exists a uniformly

bounded operator B−(t) : Q∗ → V such that for all q ∈ Q∗ it holds that

B(t)B−(t)q = q,

(d) the range of the right inverse Vc := rangeB−(t) is independent of time t, and

(e) there exist continuous time derivatives Ḃ(t) : V → Q and Ḃ−(t) : Q∗ → V.

Remark 3.2 (Time-independent constraint). If the constraint operator is independent of
time, i.e., B(t) ≡ B, then Assumption 3.1 reduces to the points (a) and (c).

Remark 3.3 (Induced operators). By Corollary 2.7 it follows that B(t) and B−(t) from
Assumption 3.1 induce bounded operators of the form

B : Lp(0, T ;V)→ Lp(0, T ;Q∗) and B− : Lp(0, T ;Q∗)→ Lp(0, T ;Vc).
Note that the choice of the right inverse in Assumption 3.1 is not unique. A special case,

for which the existence of a right-inverse is guaranteed, is when B(t) satisfies an inf-sup
condition of the form

inf
q∈Q

sup
v∈V

〈B(t)v, q〉
‖v‖V‖q‖Q

≥ β > 0.
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Nevertheless, this does not imply the time-independence of the range of B−(t). In the next
lemma, we summarize several properties of the right inverse B−(t) from Assumption 3.1.

Lemma 3.4 (Properties of B−). Let B satisfy Assumption 3.1. Then, the right inverse
B−(t) : Q∗ → V is linear and one-to-one. Furthermore, Vc := rangeB−(t) is a closed
subspace of V and the operator B−(t)B(t) : V → V, restricted to Vc, equals the identity.

Proof. The linearity of B−(t) follows from the linearity of the operator B(t) [RR04, Ch. 8.1.2].
For the one-to-one relation, consider q1, q2 ∈ Q∗ with B−(t)q1 = B−(t)q2. Then, the ap-
plication of B(t) yields q1 = B(t)B−(t)q1 = B(t)B−(t)q2 = q2.

The linearity of B−(t) and the continuity of B−(t) and B(t) imply that Vc is a closed
subspace of V. Finally, for v ∈ Vc and fixed t ∈ (0, T ) there exists q ∈ Q∗ with B−(t)q = v.
Then, Assumption 3.1 implies

v = B−(t)q = B−(t)
(
B(t)B−(t)q

)
= B−(t)B(t)v. �

Remark 3.5. Lemma 3.4 implies that B−(t)B(t) : V → V is a projection onto Vc. Further-
more, the induced Nemytskij mapping B− is a right inverse of B.

An important implication of Assumption 3.1 and Lemma 3.4 is the decomposition of
Lp(0, T ;V) as given in the following lemma. This decomposition will be the basis for the
index reduction procedure of Section 3.2.

Lemma 3.6 (Decomposition of Lp(0, T ;V)). Consider the subspaces VB and Vc of V from
Assumption 3.1. Then, we have the decomposition

Lp(0, T ;V) = Lp(0, T ;VB)⊕ Lp(0, T ;Vc).

Proof. For given v ∈ Lp(0, T ;V), we define r := Bv ∈ Lp(0, T ;Q∗), cf. Remark 3.3. Then,
a decomposition of v ∈ Lp(0, T ;V) is given by

v = v0 + vc :=
(
v − B−r

)
+ B−r.(3.2)

Obviously, vc = B−r ∈ Lp(0, T ;Vc) and v0 ∈ Lp(0, T ;VB) follows from Assumption 3.1 by
Bv0 = Bv − BB−Bv = 0. We show that the decomposition in (3.2) is unique. For this,
consider v0, w0 ∈ Lp(0, T ;VB) and vc, wc ∈ Lp(0, T ;Vc) with v = v0 + vc = w0 + wc. The
application of B yields Bvc = Bwc. Furthermore, there exist rv, rw ∈ Lp(0, T ;Q∗) such
that vc = B−rv and wc = B−rw. By Assumption 3.1 we then obtain

rv − rw = BB−rv − BB−rw = Bvc − Bwc = 0.

Thus, it holds that vc = B−rv = B−rw = wc and finally also v0 = w0. �

Within the last lemma of this subsection we consider time derivatives of functions in
Lp(0, T ;V).

Lemma 3.7. LetW be a closed subspace of V such that there exists a projection P : V → V
that maps V ontoW and consider v ∈ Lp(0, T ;W). Then, the existence of a time derivative
v̇ ∈ Lp(0, T ;V) implies v̇ ∈ Lp(0, T ;W).

Proof. Assume v ∈ Lp(0, T ;W) with v̇ ∈ Lp(0, T ;V). By assumption, it holds that
(id−P)v(t) = 0 for almost all t ∈ (0, T ) with id denoting the identity. Since the time
derivative of v exists (at least in a generalized sense [Zei90, Ch. 23.5]), we can write
(id−P)v̇(t) = 0, which implies for t ∈ (0, T ) a.e.,

v̇(t) = P v̇(t) ∈ W. �
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3.2. Reformulation. This subsection is devoted to the reformulation of the operator
DAE (3.1). In Section 3.3 we discuss the resulting positive effects in terms of the sensitivity
to perturbations. In Section 4 we then show that the presented reformulation is in fact an
index reduction on operator level.

We adapt the technique of minimal extension [KM04], which is an index reduction
procedure especially suitable for semi-explicit DAEs. For this, we first add to system (3.1)
the time derivative of the constraint,

Bu̇+ Ḃu = Ġ.
Clearly, this requires the right-hand side G to be differentiable in the generalized sense,
i.e., G ∈ W 1,p(0, T ;Q∗). Note that this assumption is already needed for the existence of
a solution of (3.1). This fact comes from the theory of DAEs, see for example [KM06,
Th.2.29] which shows that even for the finite dimensional case with constant coefficients
higher derivatives of the right-hand side are necessary. At this point, also u̇ ∈ Lp(0, T ;V)
seems to be a necessary condition. However, as the next paragraph shows, this requirement
applies only to a part of u̇.

Second, we use the decomposition from Lemma 3.6 to split u into u1 ∈ Lp(0, T ;VB) and
u2 ∈ Lp(0, T ;Vc). Therewith, the two constraints reduce to

Bu2 = G and Bu̇2 + Ḃu2 = Ġ.
Thus, it is sufficient that the derivative of u2 is an element of V. For u in general, we only
need that u̇ ∈ Lq(0, T ;V∗). The assumed regularity of G implies with Assumption 3.1,
Lemma 3.4, and equation (3.1b) that u2 ∈W 1,p(0, T ;Vc).

Having added one equation, in a third step, we introduce a new variable v2 := u̇2 ∈
Lp(0, T ;Vc). Recall that Vc is a subspace of V for which there exists a projection, cf.
Lemma 3.4. Thus, we can apply Lemma 3.7 at this point. The addition of a new variable
compensates the redundancy of the two constraints. Note that in the reformulated system
the variable u2 is not differentiated anymore such that we only need an initial condition
for u1. The initial condition for u2 in the original formulation corresponds to a consistency
condition, which typically appears for DAEs [KM06, Ch. 1]. In the sequel, we omit the
time-dependency of the operators K and B. The overall system then reads: for data
F ∈ Lq(0, T ;V∗) and G ∈ W 1,p(0, T ;Q∗) find functions u1 ∈ Lp(0, T ;VB) with u̇1 ∈
Lq(0, T ;V∗), u2, v2 ∈ Lp(0, T ;Vc), and λ ∈ Lp′(0, T ;Q) such that

u̇1(t) + v2(t) +K
(
u1(t) + u2(t)

)
+ B∗λ(t) = F(t) in V∗,(3.3a)

Bu2(t) = G(t) in Q∗,(3.3b)

Bv2(t) + Ḃu2(t) = Ġ(t) in Q∗(3.3c)

holds for t ∈ (0, T ) a.e. with the initial condition

u1(0) = a0 := a− B−G(0) ∈ H.(3.3d)

The initial condition is well-posed for time differentiable G, since W 1,p(0, T ;Q∗) is con-
tinuously embedded in the space of continuous functions with values in Q∗, namely
C([0, T ],Q∗) [Rou05, Lem. 7.1]. Further, note that Lp

′
(0, T ;Q) is the right space for

the multiplier λ, since for a separable Banach space Q∗ the dual space of Lp
′
(0, T ;Q) can

be identified with Lp(0, T ;Q∗), cf. [Rou05, Prop. 1.38].
In the following theorem, we discuss the connection of the original system (3.1) and the

regularized formulation (3.3).

Theorem 3.8 (Equivalence of the reformulation). Consider exponents 1 < q ≤ p < ∞,
and p′ with 1/p′ + 1/p = 1. Assume that F ∈ Lq(0, T ;V∗), G ∈ W 1,p(0, T ;Q∗), and
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a ∈ H as well as the operator B satisfying Assumption 3.1. Then, the operator DAE (3.1)

has a solution (u, λ) with u ∈ Lp(0, T ;V), u̇ ∈ Lq(0, T ;V∗), and λ ∈ Lp′(0, T ;Q) if and
only if system (3.3) has a solution (u1, u2, v2, λ) with u1 ∈ Lp(0, T,VB), u̇1 ∈ Lq(0, T ;V∗),
u2, v2 ∈ Lp(0, T ;Vc), and λ ∈ Lp′(0, T ;Q). Furthermore, it holds that u = u1 + u2 and
u̇2 = v2.

Proof. Let (u, λ) be a solution of (3.1). We define

u1 := u− B−Bu ∈ Lp(0, T ;VB) and u2 := B−Bu ∈ Lp(0, T ;Vc).

With equation (3.1b), we obtain u2 = B−G and thus, by the regularity of G and Assump-
tion 3.1, u̇2 ∈ Lp(0, T ;Vc). With v2 := u̇2 the quadruple (u1, u2, v2, λ) satisfies equations
(3.3a-c). The initial condition (3.3d) is satisfied because of

u1(0) = u(0)− u2(0) = a− B−G(0).

For the reverse direction consider a solution of (3.3), namely (u1, u2, v2, λ). Then,
u := u1 + u2 ∈ Lp(0, T ;V) and because of the regularity of G and equation (3.3b), by
Remark 2.3, it holds that u̇ = u̇1 + u̇2 ∈ Lq(0, T ;V∗). We show that u̇2 = v2. Equation
(3.3c) and the time derivative of equation (3.3b) yield

Bv2 + Ḃu2 = Ġ =
d

dt

(
Bu2

)
= Bu̇2 + Ḃu2.

Note that u̇2 ∈ Lp(0, T ;Vc), as shown in the first part of the proof. The invertibility of B
on Vc, see Lemma 3.4, then gives u̇2 = v2. Thus, the pair (u, λ) satisfies equations (3.1a)
and (3.1b). For the initial condition (3.1c), we obtain

u(0) = u1(0) + u2(0) = a− B−G(0) + B−G(0) = a. �

From the solution representation given in Theorem 3.8 we deduce that not every initial
condition a ∈ H admits a solution to (3.1).

Corollary 3.9. Let the assumptions of Theorem 3.8 hold. For the existence of a solution
to (3.1) it is necessary that the initial data a ∈ H can be decomposed as a = a0 +B−G(0),
where B−G(0) ∈ Vc and a0 is in the closure of VB in H.

We discuss two examples for which we obtain different kinds of consistency conditions.

Example 3.10. If the operator B equals the divergence operator and V = [H1
0 (Ω)]d, then

VB denotes the space of divergence-free functions in V. In this case, the closure of VB with
respect to H = [L2(Ω)]d is a proper subspace of H, cf. [Tem77, Ch. 1, Thm. 1.4],

VB
H

=
{
v ∈ H | ∇ · v = 0, v · ν∂Ω = 0

}
6= H.

Therein, ν∂Ω denotes the normal outer vector along the boundary. Note that the closure
is even a subspace of H(div,Ω) = {v ∈ H | ∇ · v ∈ L2(Ω)}. Thus, the initial value a0

cannot be chosen arbitrarily in H.

Example 3.11. If B equals the trace operator, i.e., B : V := H1(Ω)→ H1/2(∂Ω), then we
have VB = H1

0 (Ω). Since the closure of H1
0 (Ω) in H := L2(Ω) equals H itself, the initial

data only has to satisfy a0 ∈ H. This means, however, that the initial data a = a0+B−G(0)
can also be chosen arbitrarily in H such that there is no consistency condition.
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3.3. Influence of Perturbations. As mentioned in the introduction, we do not define an
index for operator DAEs. Nevertheless, the influence of perturbations provides information
about the stability of the system, similar to the perturbation index for DAEs.

In this subsection, we show the positive effect of the presented regularization in terms
of perturbations. For this, we restrict the analysis to the case p = q = 2 with a linear,
symmetric, on VB elliptic, and bounded operator K, i.e, for u ∈ VB and v, w ∈ V we
assume

〈Ku, u〉 ≥ k1‖u‖2 and 〈Kv, w〉 ≤ k2‖v‖‖w‖.
Note that we use ‖ · ‖ := ‖ · ‖V and later | · | := ‖ · ‖H to simplify the notation. We consider
the to (3.1) corresponding perturbed problem

˙̄u + Kū + B∗λ̄ = F + δ in V∗,(3.4a)

Bū = G + θ in Q∗.(3.4b)

Here, (ū, λ̄) denotes the solution if we include perturbations δ : [0, T ]→ V∗ and θ : [0, T ]→
Q∗. For the regularized equations, the perturbed problem has the form

˙̂u1 + v̂2 + K(û1 + û2) + B∗λ̂ = F + δ in V∗,(3.5a)

Bû2 = G + θ in Q∗,(3.5b)

Bv̂2 + Ḃû2 = Ġ + ξ in Q∗.(3.5c)

For this system, we consider perturbations of the form δ ∈ L2(0, T ;V∗) and θ, ξ ∈
L2(0, T ;Q∗) and the solution is denoted by (û1, û2, v̂2, λ̂). The initial condition is given
by û1(0) = u1(0) − e1,0, i.e., e1,0 contains the initial error. Because of Theorem 3.8, it
is sufficient to consider the regularized system (3.5). The result for the original operator

DAE then follows if we replace ξ by θ̇, cf. Remark 3.13 below.
By Cemb we denote the continuity constant of the embedding V ↪→ H. Furthermore, we

introduce the errors

e1 := û1 − u1, e2 := û2 − u2, ev := v̂2 − v2, eλ := λ̂− λ.

Theorem 3.12. Consider the perturbed problem (3.5) with a linear, symmetric, on VB
elliptic, and bounded operator K. Furthermore, let B satisfy Assumption 3.1 and the
perturbations δ ∈ L2(0, T ;V∗) and θ, ξ ∈ L2(0, T ;Q∗). Then, the error of the differential
variable satisfies with a positive constant c ∈ R that

‖e1‖2C([0,T ];H) + k1‖e1‖2L2(0,T ;V) ≤ |e1,0|2 + c
[
‖δ‖2L2(0,T ;V∗) + ‖θ‖2L2(0,T ;Q∗) + ‖ξ‖2L2(0,T ;Q∗)

]
.

Proof. Bounds of the errors e2 and ev can be easily found by the continuity of Ḃ and
the right-inverse of B. For the error in the differential part u1, we test the difference of
equations (3.5a) and (3.3a) by e1 ∈ VB. Thus, the term with the Lagrange multiplier
vanishes and the properties of the operator K can be exploited. The details can be found
in [Alt15, Sect. 6.1]. �

Remark 3.13. In order to transfer these results to the perturbation analysis of the original
formulation (3.1) we have to insert ξ = θ̇. Thus, the error also depends on the derivative
of the perturbation θ which leads to possible instabilities known from high-index DAEs.
If the perturbation is not smooth enough, it may even make the model useless.

In the given setting of the evolution equations, it is not possible to gain similar estimates
for eλ. Estimates of the error in the Lagrange multiplier are only possible if we consider
the primitive of eλ or assume more regular perturbations δ ∈ L2(0, T ;H∗) and e1,0 ∈ VB.
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4. Spatial Discretization

For the simulation of time-dependent PDEs, we need discretizations in time and space.
Because of the special role of the time variable in DAEs we do not consider space-time
schemes. Instead, we consider the approach of discretizing in space and time separately.
In this section, we consider the systems which result from a spatial discretization of the
operator DAE. Thus, we follow the method of lines [Hol07, Ch. 3.4]. The Rothe method
[Rot30], in which one discretizes in time first, is then discussed in Section 5.

As mentioned above, a spatial discretization of an operator DAE leads to a classical
DAE, for which the differentiation index is well-defined [BCP96, HW96, KM06]. Within
this paper, we simply write index, meaning the differentiation index. The index quanti-
fies the necessary number of differentiation steps, in order to obtain an ODE and thus,
describes to which degree the solution depends on derivatives of the involved quantities.
The dependence on derivatives may lead to instabilities within the numerical simulation.
For a precise definition, we refer to [BCP96, Def. 2.2.2]. Recall that we do not use any
index definition of PDAEs.

We show that the DAE corresponding to the original system (3.1) is of index 2 whereas
the DAEs resulting from the reformulated systems are of index 1. For this, only standard
assumptions on the used finite element schemes have to be considered.

4.1. Finite Element Discretization. For the spatial discretization, we consider finite
dimensional approximations of the spaces VB, Vc, and Q. We denote the approximation
spaces by VB,h, V c

h , and Qh, respectively. Furthermore, we define Vh = VB,h ⊕ V c
h as finite

dimensional approximation of V.
Thinking of finite elements on a regular mesh T of the domain Ω, cf. [Cia78, Bra07],

we consider basis functions {ϕi}1,...,n1 of VB,h, {ϕi}n1+1,...,n of V c
h , and {ψi}1,...,m of Qh

with m = n − n1. Hence, we assume that dimV c
h = dimQh. The finite dimensional

approximations of u1, u2, v2, and λ are then represented by the coefficient vectors q1, q2, r2,
and µ, respectively. By q ∈ Rn we denote the vector q = [qT1 , q

T
2 ]T . Based on this

discretization scheme, we define the positive definite mass matrix M ∈ Rn,n by Mi,j :=
(ϕi, ϕj). The discrete version of the constraint operator B is defined by

B(t) ∈ Rm,n, Bj,i(t) :=
〈
B(t)ϕi, ψj

〉
.(4.1)

Note that, according to Assumption 3.1, it is natural to assume that B is continuously
differentiable with respect to time and that B has full rank.

Remark 4.1 (Nonconforming discretization). In order that B is well-defined, the operator
B has to be defined for the given basis functions. Since nonconforming finite elements are
not excluded [BS08, Ch. 10], the application of B may be generalized to a piecewise (with
respect to the triangulation T ) application of the operator.

Remark 4.2 (Inf-sup stability). For the unique solvability of the semi-discrete systems
resulting from the finite element discretization it is sufficient that the constraint matrix
B is of full rank. For a stable approximation of the Lagrange multiplier λ in terms of
the discretization parameter h, one may assume an inf-sup condition, i.e., there exists a
constant βdisc > 0, independent of h and time t, such that

inf
qh∈Qh

sup
vh∈Vh

〈B(t)vh, qh〉
‖vh‖ ‖qh‖Q

≥ βdisc,

cf., e.g., [Bra07, Ch. III.4].
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Finally, we define the discrete version of the operator K by

K : Rn → Rn,
〈
K(q), ek

〉
:=
〈
K(

∑n

i=1
qiϕi), ϕk

〉
.

Here, ek denotes the k-th unit vector in Rn. As before, K can be written as a n×n matrix
if K is linear.

4.2. Discretization of (3.1). For the computation of the index of the resulting DAE
system, we assume that the mass matrix M is positive definite and that B is of full rank.
First, we consider the index of the DAE which results from a spatial discretization of the
original system (3.1). With the introduced notation, the DAE has the form

Mq̇ +K(q) +BT (t)µ = f,(4.2a)

B(t)q = g.(4.2b)

From [HW96, Ch. VII.1] we infer that the system (4.2) is of index 2, since BM−1BT is
invertible. The index-2 structure can also made visible through a differentiation of the
constraint (4.2b). This then leads to the (analytically) equivalent DAE[

M BT (t)
B(t) 0

] [
q̇
µ

]
=

[
f −K(q)

ġ − Ḃ(t)q

]
.

Again the assumptions on M and B imply that the matrix on the left-hand side is invert-
ible. Thus, a single differentiation leads to an ODE for q and an algebraic equation for
the Lagrange multiplier µ.

4.3. Discretization of (3.3). In the case of a conforming discretization, i.e., VB,h ⊂ VB,
V c
h ⊂ Vc, and Qh ⊂ Q, the matrix B(t) has the special structure B(t) = [0 B2(t)].

Therein, the matrix B2(t) is square and non-singular. In this case, the semi-discrete
version of (3.3) has the form

M

[
q̇1

r2

]
+K(q1, q2) +

[
0

BT
2 (t)

]
µ = f,(4.3a)

B2(t)q2 = g,(4.3b)

B2(t)r2 = ġ − Ḃ2(t)q2.(4.3c)

At this point we only mention that this system forms a DAE of index 1. We give the proof
in Lemma 4.3 below for the more general case.

In many cases, one depends on a nonconforming spatial discretization [BS08, Ch. 10],
i.e., the discrete ansatz spaces are not subspaces of the original search spaces. One sim-
ple example is the Crouzeix-Raviart element [CR73], a lowest order piecewise linear but
discontinuous discretization scheme. Since we do not assume VB,h ⊂ VB for general mixed
finite element discretizations, i.e., kerB 6⊂ kerB, cf. [GR86, Ch. 3], we lose the special
structure of B(t).

In general, we have B(t) = [B1(t) B2(t)] and simply assume that the block B2 is
non-singular. This is no restriction, since one may always permute the columns of B
(corresponds to a reordering of basis functions in VB,h and V c

h ) such that the B2 block is
regular. Then, the semi-discretized system reads

M

[
q̇1

r2

]
+K(q1, q2) +BT (t)µ = f,(4.4a)

B2(t)q2 = g −B1(t)q1,(4.4b)

B2(t)r2 = ġ −B1(t)q̇1 − Ḃ1(t)q1 − Ḃ2(t)q2.(4.4c)
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Lemma 4.3 (Index-1 DAE). For a positive definite mass matrix M and a continuously
differentiable constraint matrix B with a non-singular block B2, the DAEs (4.3) and (4.4)
are of index 1.

Proof. Similar to the proof of [KM06, Th. 6.12], we show that (4.4) is of index 1. The
property then follows for system (4.3) as well because it is a special case.

Since the matrix B2(t) is of full rank, equations (4.4b) and (4.4c) yield direct expressions
of q2 and r2 in terms of q1 and q̇1. Furthermore, a multiplication of (4.4a) from the left
by BM−1 provides a formula for µ in terms of q1. Here we use the assumptions on M
and B which imply that the matrix BM−1BT is invertible. Finally, inserting all these
expressions into equation (4.4a), we obtain an ODE in q1. Thus, we can solve system (4.4)
without any further differentiation steps. �

4.4. Commutativity. The connection between the presented regularization on operator
level in Section 3 and the index reduction for DAEs is illustrated in Figure 4.1, cf. [Alt13]
for second-order systems. The scheme shows that regularization and spatial discretiza-
tion commute if corresponding discretization schemes are used and the index reduction is
performed by minimal extension. Note that this is beneficial for adaptive simulations as
modifications of the finite element schemes such as a refinement of the underlying mesh
do not call for another index reduction step afterwards. This fact is also of importance
for the Rothe discretization as shown in the numerical example in Section 6.

operator DAE of
’index-2 type’ (3.1)

operator DAE of
’index-1 type’ (3.3)

DAE of index 2 (4.2) DAE of index 1 (4.3)

regularization

of operator DAEs

index reduction by

minimal extension [KM04]

spatial
discretization

spatial
discretization

Figure 4.1. Illustrative scheme of the commutativity of regularization and discretization.

Since the index of the DAE (4.3) is, compared to the DAE (4.2), reduced by one, we may
call the proposed regularization procedure from Section 3 an index reduction on operator
level.

5. Temporal Discretization

For the time integration of the operator DAE (3.3) we restrict ourselves to the implicit
Euler method. We prove the convergence of the scheme and highlight the needed ad-
justments in contrast to operator ODEs (time-dependent PDEs without constraint) for
which the convergence is well-known. Again we benefit from the regularization introduced
in Section 3. Furthermore, we consider perturbations of the right-hand sides in order to
analyse the convergence of the Rothe method applied to operator DAEs.
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5.1. Time-discrete Systems. As in Section 3.3, we restrict the analysis to the linear
case with p = q = 2, i.e., we consider a linear operator K which is symmetric, continuous,
and positive on VB. Furthermore, we assume B to be time-independent with right inverse
B− : Q∗ → Vc and continuity constant CB− , cf. Assumption 3.1. Recall that (·, ·) := (·, ·)H
denotes the inner product in H.

Remark 5.1. The given assumptions on the operator K already imply that VB is a Hilbert
space. In many applications (·, ·) + 〈K·, ·〉 defines an inner product in V. In this case,
we may assume that the splitting V = VB ⊕ Vc is orthogonal with respect to this inner
product. This then allows to prove stronger convergence results.

For the temporal discretization we consider an equidistant partition 0 = t0 < t1 < · · · <
tn = T of the interval [0, T ] with time step size τ . The semi-discrete approximations of

u1, u2, v2, and λ at time tj = jτ are then denoted by uj1, uj2, vj2, and λj , respectively.
For the application of the implicit Euler scheme to system (3.3) we replace the derivative

u̇1 by the discrete derivative Duj1 := (uj1 − u
j−1
1 )/τ . This then leads to stationary PDEs

which have to be solved in every time step. The differential equation (3.3a) turns into

(Duj1, v) + 〈Kuj1, v〉+ 〈λj ,Bv〉 = 〈F j , v〉 − (vj2, v)− 〈Kuj2, v〉(5.1)

for j = 1, . . . , n, whereas the constraints (3.3b) and (3.3c) result in

〈Buj2, q〉 = 〈Gj , q〉, 〈Bvj2, q〉 = 〈Ġj , q〉.(5.2)

Therein, we assume that uj−1
1 ∈ H is given and search for uj1 ∈ VB, uj2, v

j
2 ∈ Vc, and

λj ∈ Q. The test functions are given by v ∈ V and q ∈ Q.
Since G is continuous, we set Gj = G(tj). Note, however, that F j and Ġj cannot equal

the function evaluations of F and Ġ at time tj , since this is not well-defined. Instead, we
use integral means over a time interval, i.e.,

F j :=
1

τ

∫ tj

tj−1

F(t) dt ∈ V∗, Ġj :=
1

τ

∫ tj

tj−1

Ġ(t) dt ∈ Q∗.

With these approximations we define Fτ , Gτ , and Ġτ as the piecewise constants

Fτ (t) := F j , Gτ (t) := Gj , Ġτ (t) := Ġj ,
for t ∈]tj , tj+1] and continuous extension in t = 0. This then implies

Fτ → F in L2(0, T ;V∗), Gτ → G, Ġτ → Ġ in L2(0, T ;Q∗).(5.3)

Since the operator B is invertible on Vc, we argue from (5.2) that uj2 = B−Gj and

vj2 = B−Ġj . Inserting this into (5.1) and testing only with functions v ∈ VB, we obtain

(Duj1, v) + 〈Kuj1, v〉 = 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉.(5.4)

This equation will be used for the stability estimates in the following subsection. It

remains to discuss the solvability of system (5.1) for uj1 and λj . With the bilinear form
c : V × V → R, given by c(u, v) := τ−1(u, v) + 〈Ku, v〉, and the functional F ∈ V∗,

〈F, v〉 := 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉+
1

τ
(uj−1

1 , v),

equation (5.4) can be written as c(uj1, v) = F (v) for all v ∈ VB. The unique solvability of

(5.4) for uj1 then follows by the Lax-Milgram lemma [Eva98, Sect. 6.2.1]. For the unique
solvability of λj we consider equation (5.1) tested by functions v ∈ Vc,

〈B∗λj , v〉 = 〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉 − (Duj1, v)− 〈Kuj1, v〉.(5.5)
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Equation (5.4) implies that the right-hand side of (5.5) vanishes for all functions in VB.
Thus, the functional is an element of the polar set Vo

B on which the operator B∗ is invertible
[Bra07, Ch. III, Lem. 4.2].

5.2. Stability Estimates. The most important ingredient for the convergence analysis
of the Rothe method are stability or a priori estimates which we provide in this subsection.

Since equation (5.4) is essentially an operator ODE for uj1, the shown bounds follow the
lines of the stability results in [Emm01, Ch. 4], see also [Tem77, Ch. III.4]. Amongst
others, we take advantage of the equality

2(Duj , uj) = D|uj |2 + τ |Duj |2.(5.6)

This identity follows by a simple calculation, cf. [Emm01, Lem. 3.2.2]. For the differential

variable uj1 we obtain the following result.

Lemma 5.2 (Stability). Assume F ∈ L2(0, T ;V∗B) and G ∈ H1(0, T ;Q∗). Then, the

approximations uk1 ∈ VB given by the Euler scheme (5.4) with u0
1 ∈ H satisfy for all

1 ≤ k ≤ n the estimate

|uk1|2 + τ2
k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2 ≤M2(5.7)

with the constant M2 := |u0
1|2 + 3

(
‖F‖2L2(0,T ;V∗B) + C2

B−(C4
emb + k2

2)‖G‖2H1(0,T ;Q∗)
)
/k1.

Proof. Using as test function v = uj1 ∈ VB, j ≥ 1, in the Euler scheme (5.4), we obtain

(Duj1, u
j
1) + 〈Kuj1, u

j
1〉 = 〈F j , uj1〉 − (B−Ġj , uj1)− 〈KB−Gj , uj1〉.(5.8)

Summation over j = 1, . . . , k, together with property (5.6), the Cauchy-Schwarz inequal-
ity, and the continuous embedding V ↪→ H yields

|uk1|2 − |u0
1|2 + τ2

k∑
j=1

|Duj1|
2 + 2τk1

k∑
j=1

‖uj1‖
2

(5.6)

≤ 2τ
k∑
j=1

(Duj1, u
j
1) + 2τ

k∑
j=1

〈Kuj1, u
j
1〉

(5.8)

≤ 2τ
k∑
j=1

(
‖F j‖V∗B + Cemb|B−Ġj |+ k2‖B−Gj‖

)
‖uj1‖.

The application of Young’s inequality [Eva98, App. B] and the boundedness of B− shows

|uk1|2 − |u0
1|2 + τ2

k∑
j=1

|Duj1|
2 + τk1

k∑
j=1

‖uj1‖
2

≤ 3τ

k1

k∑
j=1

(
‖F j‖2V∗B + C2

B−C4
emb‖Ġj‖2Q∗ + C2

B−k2
2‖Gj‖2Q∗

)
.

Finally, the assertion follows by properties of the Bochner integral which imply that

τ
∑k

j=1 ‖F j‖2V∗B ≤ ‖F‖
2
L2(0,T ;V∗B). �
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With the same assumptions as in Lemma 5.2, we may also prove that there exists a
positive constant c ∈ R such that

τ
n∑
j=1

‖Duj1‖
2
V∗B
≤ cM2.(5.9)

This result follows from equation (5.4) which yields for j ≥ 1,

‖Duj1‖V∗B := sup
v∈VB, ‖v‖=1

∣∣〈F j , v〉 − (B−Ġj , v)− 〈KB−Gj , v〉 − 〈Kuj1, v〉
∣∣

≤ ‖F j‖V∗B + CB−C2
emb‖Ġj‖Q∗ + k2CB−‖Gj‖Q∗ + k2‖uj1‖.

An application of Young’s inequality, the summation over j, and the estimate (5.7) finally
imply (5.9).

Remark 5.3. Assume that (·, ·)+〈K·, ·〉 defines an inner product in V with respect to which
the decomposition V = VB ⊕ Vc is orthogonal. If we assume more regularity of the given
data in the form of F ∈ L2(0, T ;H∗) and u0

1 ∈ VB, then we obtain the estimate

τ

n∑
j=1

|Duj1|
2 ≤M2

reg.

Here, the constant Mreg includes the terms ‖u0
1‖ as well as ‖F‖L2(0,T ;H∗). For this, equation

(5.4) has to be tested by Duj1 ∈ VB. Thus, we obtain the estimate (5.9) in a stronger norm
which is crucial in view of the Lagrange multiplier.

In order to prove the convergence of the Euler scheme, we need to define global approx-

imations. Given uj1, j = 0, . . . , n, we define the piecewise constant and piecewise linear

functions U1,τ and Û1,τ on the interval [0, T ] by

U1,τ (t) :=

{
u0

1 if t = 0,

uj1 if t ∈]tj−1, tj ]
, Û1,τ (t) :=

{
u0

1 if t = 0,

uj1 + (t− tj)Duj1 if t ∈]tj−1, tj ]
.(5.10)

We show that the sequences U1,τ and Û1,τ are uniformly bounded. The boundedness of
both sequences in L∞(0, T ;H) and L2(0, T ;VB) follows directly from (5.7) if we assume
u0

1 ∈ VB. Additionally, we obtain by the stability estimate (5.9) that∥∥ ˙̂
U1,τ

∥∥2

L2(0,T ;V∗B)
=

n∑
j=1

∫ tj

tj−1

‖Duj1‖
2
V∗B

dt = τ
n∑
j=1

‖Duj1‖
2
V∗B
≤ cM2.(5.11)

For the approximations of u2 and v2 we define similarly the piecewise constant functions

U2,τ (t) := uj2 if t ∈]tj−1, tj ], V2,τ (t) := vj2 if t ∈]tj−1, tj ](5.12)

with a continuous extension in t = 0. Note that this definition implies that U2,τ =

B−Gτ and V2,τ = B−Ġτ . Finally, we define as approximation of the Lagrange multiplier
Λτ : ]0, T ]→ Q by

Λτ (t) := λj if t ∈]tj−1, tj ].(5.13)

With this, we can rewrite equation (5.5) in the form

〈B∗Λτ , v〉 = 〈Fτ , v〉 − (B−Ġτ , v)− 〈KB−Gτ , v〉 − (
˙̂
U1,τ , v)− 〈KU1,τ , v〉.(5.14)

Here, we consider test functions v ∈ V and t ∈ (0, T ) a.e..
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Since the Lagrange multiplier corresponds to the algebraic variable in the finite-dimen-
sional case, we expect less regularity than for the other variables. Indeed, we are not able
to bound Λτ in L2(0, T ;Q) uniformly within the given weak setting. Note that with the
additional regularity assumptions from Remark 5.3, we would be able to show the desired
boundedness. Instead, we consider the primitive of Λτ which then leads to a weaker notion
of solvability, cf. [EM13]. We define Λ̃τ ∈ AC([0, T ];Q) by

Λ̃τ (t) :=

∫ t

0
Λτ (s) ds.(5.15)

With an integration of (5.14) over [0, t], we obtain an equation for the primitive of the
Lagrange multiplier,

〈B∗Λ̃τ , v〉 = 〈F̃τ , v〉 − (B− ˜̇Gτ , v)− 〈KB−G̃τ , v〉 − (Û1,τ , v)− 〈KŨ1,τ , v〉+ (u0
1, v).(5.16)

Therein, F̃τ , G̃τ , ˜̇Gτ , and Ũ1,τ denote the primitives of Fτ , Gτ , Ġτ , and U1,τ , respectively.

For Λ̃τ we are able to prove the boundedness independently of the step size τ .

Lemma 5.4 (Boundedness of Λ̃τ ). Assume F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗), and

u0
1 ∈ VB. Then, the sequence Λ̃τ is bounded in C([0, T ];Q).

Proof. We make use of the inf-sup condition of the operator B and, by equation (5.16),
we obtain the estimate

βinf‖Λ̃τ‖C([0,T ];Q) ≤ max
t∈[0,T ]

sup
v∈V

〈B∗Λ̃τ (t), v〉
‖v‖

(5.16)

≤ max
t∈[0,T ]

[
‖F̃τ (t)‖V∗ + Cemb|B− ˜̇Gτ (t)|+ k2‖B−G̃τ (t)‖

+ Cemb|Û1,τ (t)|+ k2‖Ũ1,τ (t)‖+ Cemb|u0
1|
]
.

By the properties of the Bochner integral and (5.7), this is bounded uniformly in terms of
T , the initial data, and the right-hand sides. For details we refer to [Alt15, Sect. 10.3]. �

5.3. Passing to the Limit. Since every bounded sequence has a weakly convergent sub-
sequence, the results from the previous subsection imply the existence of weak limits U1,
U2, V2, and Λ̃. More precisely, we obtain by (5.3) that

U2,τ = B−Gτ → U2 := B−G, V2,τ = B−Ġτ → V2 := B−Ġ in L2(0, T ;Vc).

The embedding H1(0, T ;Q∗) ↪→ C([0, T ];Q∗) implies additionally that U2 satisfies the

consistency condition U2(0) = B−G(0). By the boundedness of U1,τ and Û1,τ , we obtain
weak limits in L2(0, T ;VB). Furthermore, the estimate (5.7) implies that∥∥U1,τ − Û1,τ

∥∥2

L2(0,T ;H)
≤ τ

n∑
j=1

∣∣uj1 − uj−1
1

∣∣2 ≤ τM2 → 0.

Thus, the two limits coincide in L2(0, T ;H) and the continuous embedding V ↪→ H implies
that the same is true for the limit in L2(0, T ;VB). We denote the joined limit by U1, i.e.,

U1,τ , Û1,τ ⇀ U1 in L2(0, T ;VB).

Finally, Lemma 5.4 implies the existence of a weak limit Λ̃ for which

Λ̃τ ⇀ Λ̃ in Lp(0, T ;Q)
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for all 1 < p < ∞. It remains to show that the obtained limits solve the operator DAE
(3.3). For this, we assume u0

1 = a0 ∈ VB. Obviously, the limits U2 and V2 solve equations
(3.3b) and (3.3c). For U1 we obtain the following result.

Theorem 5.5. Assume F ∈ L2(0, T ;V∗B), G ∈ H1(0, T ;Q∗), and u0
1 = a0 ∈ VB. Then,

the weak limit U1 ∈ L2(0, T ;VB) of the sequence U1,τ solves equation (3.3a) in V∗B, i.e.,
for test functions in VB. Furthermore, U1 has a generalized derivative which satisfies
U̇1 ∈ L2(0, T ;V∗B).

Proof. As in [Emm01, Ch. 4], we consider equation (5.4) with test functions v ∈ VB in the
form

d

dt
(Û1,τ , v) + 〈KU1,τ , v〉 = 〈Fτ , v〉 − (B−Ġτ , v)− 〈KB−Gτ , v〉.

With Φ ∈ C∞0 (0, T ), we may rewrite this in integral form, i.e.,∫ T

0
−
(
Û1,τ , v

)
Φ̇(t) +

〈
KU1,τ , v

〉
Φ(t) dt =

∫ T

0

〈
Fτ − B−Ġτ −KB−Gτ , v

〉
Φ(t) dt.

We advance to the limit τ → 0 and obtain for the right-hand side∫ T

0

〈
Fτ − B−Ġτ −KB−Gτ , v

〉
Φ(t) dt −→

∫ T

0

〈
F − V2 −KU2, v

〉
Φ(t) dt.

Furthermore, the weak convergence of U1,τ and Û1,τ in L2(0, T ;VB) implies∫ T

0
−
(
Û1,τ , v

)
Φ̇ +

〈
KU1,τ , v

〉
Φ dt −→

∫ T

0
−
(
U1, v

)
Φ̇ +

〈
KU1, v

〉
Φ dt.

As a result, the obtained limit U1 ∈ L2(0, T ;VB) satisfies for all v ∈ VB,

d

dt
(U1, v) + (U2, v) + 〈K(U1 + U2), v〉 = 〈F , v〉.(5.17)

It remains to show that U1 has a generalized derivative. From the definition of Û1,τ in

(5.10) we know that its time derivative equals Duj1 for t ∈]tj−1, tj [ and is bounded in
L2(0, T ;V∗B) due to (5.11). Thus, there exists a subsequence which weakly converges to
a limit V1 ∈ L2(0, T ;V∗B). For every Φ ∈ C∞0 (0, T ) and v ∈ VB this limit satisfies the
equality∫ T

0

〈
U1(t), v

〉
Φ̇(t) dt = lim

τ→0

∫ T

0

〈
Û1,τ (t), v

〉
Φ̇(t) dt

= lim
τ→0
−
∫ T

0

〈 ˙̂
U1,τ (t), v

〉
Φ(t) dt = −

∫ T

0

〈
V1(t), v

〉
Φ(t) dt.

This shows that U̇1 = V1 ∈ L2(0, T ;V∗B) in the generalized sense. Finally, we have to check

whether U1 satisfies the stated initial condition. Since Û1,τ ⇀ U1 as well as d
dt Û1,τ ⇀ U̇1 =

V1, for Φ ∈ C1([0, T ]) with Φ(T ) = 0 and arbitrary v ∈ VB, we derive by the integration
by parts formula that

0 = lim
τ→0

∫ T

0

〈 ˙̂
U1,τ − U̇1, v

〉
Φ dt = −

(
a0 − U1(0), v

)
Φ(0).

Since VB is dense in VB
H

by definition, this implies U1(0) = a0. �
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Since we were not able to show the uniform boundedness of Λτ , we cannot prove its
convergence to the weak solution of the operator DAE. However, we can show that the
limit Λ̃ solves the operator DAE in a weaker sense. To be more precise, we state this result
in the following theorem.

Theorem 5.6. Assume F ∈ L2(0, T ;V∗), G ∈ H1(0, T ;Q∗), and u0
1 = a0 ∈ VB. Then, for

any sequence of step sizes with τ → 0 the sequence Λ̃τ converges weakly to Λ̃ in L2(0, T ;Q)

and (U1, U2, V2, Λ̃) solves system (3.3) in the weak distributional sense, meaning that for
all v ∈ V and Φ ∈ C∞0 (0, T ) it holds that∫ T

0
−
(
U1, v

)
Φ̇ +

(
V2, v

)
Φ +

〈
K(U1 + U2), v

〉
Φ−

〈
B∗Λ̃, v

〉
Φ̇ dt =

∫ T

0

〈
F , v

〉
Φ dt.

Remark 5.7. If we assume more regularity of the data as in Remark 5.3, i.e., F ∈
L2(0, T ;H∗) and the orthogonality of the decomposition V = VB ⊕ Vc with respect to
the inner product (·, ·) + 〈K·, ·〉, then the (weak) limits U1, U2, V2, and Λ solve the regu-

larized operator DAE (3.3). In addition, we have U̇1 ∈ L2(0, T ;H).

5.4. Perturbations. In the previous subsection, we have proven the convergence of the
Euler scheme if we assume that the PDEs were solved exactly in every time step. In order
to prove the convergence of the Rothe method, errors due to the spatial discretization have
to be included as well. For this, we consider the time-discrete systems with additional
perturbations of the right-hand sides. This may then be interpreted as the error of a
spatial discretization, cf. [Alt15, Sect. 10.4].

We consider system (3.3), discretized by the implicit Euler scheme, with additional per-
turbations. Note that we still consider the linear case, cf. Section 5.1 for the assumptions

on K and B. The differences of the exact and perturbed solution (ûj1, û
j
2, v̂

j
2, λ̂

j), namely,

ej1 := ûj1 − u
j
1 ∈ VB, ej2 := ûj2 − u

j
2 ∈ V

c, ejv := v̂j2 − v
j
2 ∈ V

c, ejλ := λ̂j − λj ∈ Q

then satisfy the equations

Dej1 + ejv + K
(
ej1 + ej2

)
+ B∗ejλ = δj in V∗,(5.18a)

Bej2 = θj in Q∗,(5.18b)

Bejv = ξj in Q∗.(5.18c)

As in the previous section, the reachable results depend on the assumed smoothness of
the given data. Since we want to include estimates for the Lagrange multiplier, which
underlines the positive effects of the regularization from Section 3, we consider the more
regular case. For this, we consider perturbations δj ∈ H∗ and θj , ξj ∈ Q∗. Note that

for an estimate of the errors ej1, ej2, and ejv it would be sufficient to assume δj ∈ V∗.
Furthermore, we assume the spaces VB and Vc to be orthogonal with respect to the inner
product defined by (·, ·) + 〈K·, ·〉.

By equations (5.18b) and (5.18c) we directly obtain the estimates

‖ej2‖ ≤ CB−‖θj‖Q∗ , ‖ejv‖ ≤ CB−‖ξj‖Q∗ .(5.19)

For estimates on ej1, we may test equation (5.18a) by ej1, similarly as in Lemma 5.2.

Because of the additional smoothness δ ∈ H∗ we may also test equation (5.18a) by Dej1
and obtain, due to the assumed orthogonality of VB and Vc,

|Dej1|
2 + 〈Kej1, De

j
1〉 = 〈δj , Dej1〉 − (ejv, De

j
1) + (ej2, De

j
1).
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The equality 2〈Kej1, De
j
1〉 = D〈Kej1, e

j
1〉+ τ〈KDej1, De

j
1〉 then yields together with Young’s

inequality,

|Dej1|
2 +D〈Kej1, e

j
1〉+ τk1‖Dej1‖

2 ≤ 3‖δj‖2H∗ + 3C2
emb‖ejv‖2 + 3C2

emb‖e
j
2‖

2.

A summation for j = 1, . . . , k and a multiplication by τ finally leads to

k1‖ek1‖2 + τ
k∑
j=1

|Dej1|
2 ≤ k2‖e0

1‖2 + 3τ
k∑
j=1

(
‖δj‖2H∗ + C2

emb‖e
j
2‖

2 + C2
emb‖ejv‖2

)
.(5.20)

Furthermore, equation (5.18a) and the inf-sup condition of B yield

βinf‖ejλ‖Q ≤ sup
v∈Vc

〈B∗ejλ, v〉
‖v‖

≤ ‖δj‖V∗ + k2‖ej1‖+ k2‖ej2‖+ C2
emb‖ejv‖+ Cemb|Dej1|.

Putting the estimates (5.19) and (5.20) together, we obtain with a generic constant, which
we express by ., that

τβ2
inf

k∑
j=1

‖ejλ‖
2
Q

(5.19)

. τ
k∑
j=1

(
‖δj‖2V∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)
+ τ

k∑
j=1

(
‖ej1‖

2 + |Dej1|
2
)

(5.20)

. ‖e0
1‖2 + τ

k∑
j=1

(
‖δj‖2H∗ + ‖θj‖2Q∗ + ‖ξj‖2Q∗

)
.(5.21)

To summarize the result for the Lagrange multiplier, we assume that all the perturbations
are of the same order of magnitude, i.e., δj ≈ δ ∈ H∗, θj ≈ θ ∈ Q∗, and ξj ≈ ξ ∈ Q∗. Then,

the piecewise constant function Eλ : [0, T ] → Q, defined by Eλ(t) = ejλ for t ∈]tj−1, tj ],
satisfies

βinf ‖Eλ‖L2(0,T ;Q) . ‖e0
1‖+

√
T
(
‖δ‖H∗ + ‖θ‖Q∗ + ‖ξ‖Q∗

)
.

This estimate raises hope that numerical simulations can be performed in a reasonable
fashion. Note that this is only true for the regularized operator DAE. For an analogous

estimate for the original formulation, equation (5.18c) has to be replaced by BDej2 = Dθj .
Thus, the perturbation ξj has to be replaced by the discrete derivative of θj which then
leads to an additional term that scales with τ−1 in the error estimates.

6. Examples

This section is devoted to illustrate the benefits of the regularization investigated in
Section 3 by means of numerical approximations of the Navier-Stokes equations. First, we
revisit the numerical results presented in [AH15] in the context of a Rothe discretization.
Second, we give a concrete example of the perturbation results from Section 5.4 by illus-
trating how a perturbation induced by a mesh adaption gets numerically differentiated in
the index-2 but not in the index-1 formulation.

6.1. Navier-Stokes Equations. We consider the standard formulation of the Navier-
Stokes equations [Tem77] for an incompressible flow in a domain Ω ⊂ Rd,
(6.1) u̇+ (u · ∇)u− ν∆u+∇p = f, ∇ · u = 0.

We interpret the pressure p as a Lagrange multiplier that couples the incompressibility
constraint ∇ ·u = 0 to the state equations. Then, equation (6.1) takes the form of system
(3.1) with the spaces chosen as V = [H1

0 (Ω)]d, H = [L2(Ω)]d, and Q = L2(Ω)/R.
The operator B : V → Q∗ is defined as the divergence and K : V → V∗ is the operator

representing convection and diffusion, cf. Example 2.5. Without further assumptions, the
nonlinearity K only extends to K : L2(0, T ;V) → L1(0, T ;V∗), cf. [Tem77, Lem. III.3.1].
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This causes the main difficulties in the existence theory for the Navier-Stokes equations.
However, this lower regularity does not affect the splitting as proposed in Section 3. In
particular, Assumption 3.1 is fulfilled. The weak divergence operator is linear and bounded
and there exists a continuous right inverse as shown, e.g., in [Tar06, Lem. I.4.1]. The
splitting V = VB ⊕ Vc is then given by the space of divergence-free functions and its
(orthogonal) complement. Note that our approach is different from [EM13] where the
splitting of V is used to eliminate the constraints rather then to augment the system.

For a fixed spatial discretization and for similar approaches to the nonlinear parts, the
discrete equations obtained via Rothe’s method coincide with the equations stemming
from the method of lines. Thus, the numerical study conducted in [AH15] also serves as
an example for the advantages of the index-1 formulation as the base for Rothe’s method.

6.2. Adaptive Changes of the Mesh. The benefits of the index-1 formulation become
particularly apparent for space discretizations that change with time, when, e.g., the mesh
is adapted to the current state of the system. Note that the opportunity to adapt the
mesh between time steps is the major advantage of Rothe’s method over the method of
lines.

Let the superscripts +, c, and − denote the next, current, and previous value of the
variables, respectively. We use the same superscripts for the discrete operators to denote
possibly different spatial discretizations. We consider the algebraic systems that are ob-
tained from (6.1) after the time-discretization and, subsequently, the discretization of the
space on the currently considered mesh. With the same notation as used in [AH15, Ch.
3.3] for the method of lines, for the original system (3.1), the update to (q+, p+) from the
current iterate (qc, pc) via a time step of length τ is obtained via

(6.2)

[
1
τM

+ −B+T

B+ 0

] [
q+

p+

]
=

[
1
τM

+qc + f+ −K+(q+)
g+

]
.

To advance by one time-step and the regularized index-1-type formulation (3.3), we pro-
pose the solution of

1
τM

+
11 M+

12 −B+
1
T

0
1
τM

+
21 M+

22 −B+
2
T

0
1
τB

+
1 B+

2 0 0
B+

1 0 0 B+
2



q+

1

q̃+
2
p+

q+
2

 =


1
τM

+
11q

c
1 + f+

1 −K
+
1 (q+

1 , q
+
2 )

1
τM

+
21q

c
1 + f+

2 −K
+
2 (q+

1 , q
+
2 )

1
τB

+
1 q

c
1 + ġ+

g+

 .(6.3)

The different stability properties become evident, if one examines the inherent equation
for the pressure update p+, derived via premultiplying the upper part of the equations by
B+(M+)−1. In the index-2 case (6.2), this leads to

(6.4) −B+(M+)−1B+T p+ =
B+qc −B+q+

τ
+B+(M+)−1

[
f+ −K(q+)

]
.

The index-1 formulation yields for the pressure

(6.5) −B+(M+)−1B+T p+ =
1

τ
B+

[
qc1 − q

+
1

−τ q̃+
2

]
+B+(M+)−1

[
f+ −K(q+

1 , q
+
2 )
]
.

Comparing equations (6.4) and (6.5) to the time-continuous formula for the pressure

−B+(M+)−1B+T p+ = −ġ+ +B+(M+)−1
[
f+ −K(q+)

]
,

we find that the consistency errors are given as

e+
ind2 := −1

τ
(B+qc − g+)− ġ+ and e+

ind1 := −1

τ
B+

[
qc1 − q

+
1

−τ q̃+
2

]
− ġ+
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for the index-2 and index-1 scheme, respectively. For different meshes B+qc 6= Bcqc = gc,
and, unless the changes in the discretization and in B are smooth, the consistency error
e+

ind2 will not approach zero as τ → 0. More likely, for switches in the mesh, which may
appear in every time step, this term leads to an error in p+ that scales with τ−1, cf.
Section 5.4. In the index-1 formulation, the error term e+

ind1 is not present at all since the

equation 1
τB

+

[
qc1 − q

+
1

−τ q̃+
2

]
− ġ+ = 0 is an explicit part of the numerical scheme.

Remark 6.1. The error e+ is due to the changing meshes. In the case of inexact system
solves it will add to the errors that were investigated in [AH15].

For a numerical example, we consider the following numerical approach to the cylinder
wake at Reynolds number Re = 60 as described in [AH15]. The spatial component is
discretized by means of Crouzeix-Raviart elements on a coarse grid with 7404 velocity
and 2413 pressure nodes and on a fine grid with 15110 velocity and 4963 pressure nodes.
The time evolution on the interval [0, 2] is discretized using the Euler scheme – implicit in
the linear parts and explicit in the nonlinearity – on a grid of 2048 and 4096 equidistant
points and starting with the steady state Stokes solution. As reference solution we use
the trajectory on the finer spatial mesh and a time discretization by means of the implicit
trapezoidal rule.

To illustrate the error in the pressure induced by changes in the mesh and its scaling
with the inverse of the time step length, we start the simulation on the fine grid and switch
to the coarse grid at t = 0.67. At t = 1.33 we switch back to the fine grid. The code for
this numerical example is available from the author’s public git repository [Hei16].

The error e+
ind2 and its scaling are well visible in the index-2 formulation while the

pressure error at the mesh switches in the index-1 formulation is less prominent and
obviously independent of the time-step size, cf. Figure 6.1(a). Therein we have plotted
the pointwise in time approximation errors ‖pref(t)−pNts‖L2(Ω), where pref is the reference
solution, pNts is the numerical approximation, and Ω is the computational domain. Note,
that in the index-2 case, the error e+

ind2 affects the pressure update only instantaneously.
This is due to the implicit decoupling of pressure and velocity that makes the velocity
approximation independent of the pressure so that an error in the pressure will not spread
in time. Accordingly, the large amplitude in the pressure error at the switching points is
not seen in the velocity approximations, cf. Figure 6.1(b), where the pointwise temporal
error in the velocity, that is defined in the same way as the pressure error, is plotted. For
inexact solves, however, the implicit splitting of q and p in (6.2) is not exact such that
a single occurrence of e+ will spread to the velocity computation and, thus, linger in the
velocity approximation forever, cf. the numerical results in [AH15].

Note that the error due to the time approximation is only visible in the beginning. After
the switch to the coarse mesh the spatial error dominates.

7. Conclusion

Within this paper, we have introduced a reformulation for a special class of semi-explicit
operator DAEs with linear constraints such that a spatial discretization by finite elements
leads to a DAE of index 1, rather than index 2. Thus, the procedure can be seen as an
index reduction for operator DAEs.

Furthermore, we have proven the convergence of the Rothe discretization on the base
of the implicit Euler scheme. We have quantified the advantages of the reformulation
over the original schemes in terms of stability estimates concerning the robustness against
perturbations in the right-hand sides. Particularly, we have shown that derivatives of
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time t

(a): pointwise error in the pressure p

Nts = 2048 (index-1)

Nts = 4096 (index-1)

Nts = 2048 (index-2)

Nts = 4096 (index-2)

0 0.67 1.33 2

10−5
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10−3
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(b): pointwise error in the velocity q

Nts = 2048 (index-1)

Nts = 4096 (index-1)

Nts = 2048 (index-2)

Nts = 4096 (index-2)

Figure 6.1. Pointwise in time error for q and p for the index-1 and index-2
formulations for various number of time steps Nts and with mesh switches
at t = 0.67 and t = 1.33 plotted at every 50-th point of the temporal grid
and at the points where the switches occur.

perturbations, that may occur in the original formulation, are not present in the solutions
of the reformulated equations.

Finally, we have illustrated the advantages of the regularized formulation in a numer-
ical simulation of flow equations where the spatial discretization changes at certain time
points.
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