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ABSTRACT
A tracking �ow is a �ow between an end user and a Web track-
ing service. We develop an extensive measurement methodology
for quantifying at scale the amount of tracking �ows that cross
data protection borders, be it national or international, such as the
EU28 border within which the General Data Protection Regulation
(GDPR) applies. Our methodology uses a browser extension to fully
render advertising and tracking code, various lists and heuristics to
extract well known trackers, passive DNS replication to get all the
IP ranges of trackers, and state-of-the art geolocation. We employ
our methodology on a dataset from 350 real users of the browser
extension over a period of more than four months, and then gener-
alize our results by analyzing billions of web tracking �ows from
more than 60 million broadband and mobile users from 4 large
European ISPs. We show that the majority of tracking �ows cross
national borders in Europe but, unlike popular belief, are pretty
well con�ned within the larger GDPR jurisdiction. Simple DNS
redirection and PoP mirroring can increase national con�nement
while sealing almost all tracking �ows within Europe. Last, we
show that cross boarder tracking is prevalent even in sensitive and
hence protected data categories and groups including health, sexual
orientation, minors, and others.

1 INTRODUCTION
Online advertising, including bahavioral targeting over the Real
Time Bidding protocol (RTB) [62], fuels [26] most of the free ser-
vices of the web. In its principle, the concept of targeted (or per-
sonalized) advertising is benign: products and services o�ered to
consumers that they truly care about. It is in its implementation and
actual use when controversies arise. For example, tracking should
respect fundamental data protection rights of people, such as their
desire to opt-out, and should keep clear from sensitive personal
data categories, such as health, political beliefs, religion or sexual
orientation. One of the most important changes on how to process
and store personal data is the European Union General Data Protec-
tion Regulation (GDPR) [5]. GDPR o�ers protection to European
citizens across a wide range of privacy threats, including tracking
on sensitive categories such as those mentioned above. Now that
Europe’s new data protection law is in place (implementation date
of the GDPR across the European Union was on May 25, 2018; the
regulation entered into force on May 24, 2016), the next challenge
becomes implementing it in practice. GDPR has provisions that
include steep �nes reaching up to 4% of worldwide turnover or
20 million euros, whichever is higher, for any company found in
violation. Monitoring the e�ectiveness of the law, investigating
complaints, and prosecuting violators can only be carried out based
on sound factual data. The measurement community, therefore,
has an important role to play in developing the necessary new

methodologies and in collecting data for GDPR related topics and
investigations.

A fast growing body of literature already exists around top-
ics such as “What information is leaking while users navigate
the web with �xed [28–30, 35, 41, 43, 44, 51, 58, 61] or mobile de-
vices?” [42, 52, 53, 60], “Who is collecting it?” [29, 52, 58], “How is it
being collected?” [27, 47, 57], “What is its �nancial worth?” [48, 49],
“Which are the potential hazards for citizens?” [45], etc. (see Sect. 8
for more related work). An area, however, that has received rela-
tively small attention has to do with the geographical aspects of
tracking, including questions such as: Where is the back end of a
tracker?, How far does a tracking �ow go?, Which borders does it
cross?, What can be done to contain tracking within a certain data
protection jurisdiction?

Extracting the geographical footprint of trackers and tracking
�ows is di�cult for a number of reasons: It requires having access
to real tracking �ows originating from real users and terminating
at dynamically bound trackers. The obtained sample needs to be
representative, unbiased, and complete in terms of coverage. The
obtained measurements need to be precise, especially in terms of
geolocation accuracy.
Our contribution: In this paper, we develop a novel measure-
ment methodology for mapping the geographic characteristics of
tracking �ows at scale. Our methodology is hybrid in nature – it
is using fully rendered webpages and executed tracking code to
detect tracking �ows. For this we use a population of test users
from the CrowdFlower platform [4] who have installed our browser
extension. With trackers identi�ed, we then look them up in large
NetFlow datasets from entire ISPs. Therefore, our browser exten-
sion is adding precision, and our lookup step, scale. An important
intermediate step has to do with guaranteeing the completeness
of the lookup, i.e., that we have identi�ed all the IPs of a tracker,
and that we con�rm that these IPs are dedicated for tracking. For
this we utilize DNS databases (archived passive DNS records, see
Sect. 3.3).

In summary, our methodology manages (i) to double the amount
of tracking �ows detected compared to previous simpler approaches,
(ii) improve their geolocation accuracy, and (iii) monitor the track-
ing ecosystem continuously for a time period of more than four
months capturing any possible temporal variations.
Our �ndings: By applying our methodology on data from 350
CrowdFlower users and NetFlow data from 60M ISP subscribers,
we show that:

• Most tracking �ows, typically around 90%, originating at
userswithin EU28 terminate at tracking servers hostedwithin
EU28. This result contrasts popular belief, as well as recent
studies, claiming that most tracking of European citizens
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is conducted by trackers physically located outside Europe.
The discrepancy owes to geolocation accuracy, among other
reasons.

• Con�nement within national borders is much lower: peaking
at less than 70% in the best case and becoming single digit
for small countries. There exists a correlation between the
density level of IT infrastructure of a country, mostly in
terms of datacenters, and the con�nement of tracking �ows
within its borders.

Subsequently, we turn our attention on what can be done to im-
prove the locality of tracking �ows. We consider two mechanisms:
DNS redirection and PoP mirroring.

• With a more thoughtful DNS redirection on behalf of the
tracking domains administrators, the overall con�nement
percentage can be improved at both, country and continent
level, at a minimal �nancial cost for the tracking domains.

• Applying PoP mirroring over popular public clouds also im-
proves the con�nement percentage within the GDPR region,
but when applied on top of locality-improving DNS redirec-
tion, the improvement at national level is rather marginal
for all but a few countries.

Last, we look at sensitive personal data by tracing tracking �ows
induced by websites involving sensitive categories, such as, ethnic-
ity and sexual orientation.

• We show that despite the threat of steep �nes under GDPR,
around 3% of the total tracking �ows identi�ed, relate to
protected data categories.

• The percentage of such �ows crossing borders appears to be
similar with that for general tracking tra�c.

2 BACKGROUND
Before delving into technical details, we outline the current legisla-
tive and operational setting that motivate our study, and highlight
the challenges we want to overcome.

2.1 Why location matters?
As with most things, location matters also with data protection.
This may seem counter-intuitive since GDPR only requires that
an online service access a European citizen’s data to hold it ac-
countable independently of the location of its legal or technical
base. Thus a company incorporated in the US with its servers in,
for example, Singapore can still get �ned if it fails to conform to
GDPR requirements while processing data of European citizens.
Then why is it important to know whether a tracking �ow crosses
the EU28 borders? The answer is – investigation & enforcement.
Indeed data protection complaints can be investigated in greater
depth when a Data Protection Authorities (DPA) can be granted
legal access to the tracking backend. This is far easier done when
the tracking end point is within EU28 borders.1

1Notice that terminating a tracking �ow within Europe does not guaranteed that
the personal data of citizens have not �own outside the continent. Once collected
by a tracker the data can be moved in any place in the world in a variety of means.
Having the terminating end-point within Europe, however, is important since it allows
a more thorough investigation to access the end-point and verify what data have been
collected and where else they have been transmitted. Data can also cross in and out of
Europe multiple times while in transit due to IP routing. In the process eavesdroppers

Figure 1: High-level communication between parties in the
OpenRTBEcosystem [25] (courtesy: Interactive Advertising
Bureau).

But what about national borders? These are important for ju-
risdiction reasons. Although GDPR is the common data protection
law of all EU28 countries, its implementation is left to the corre-
sponding national DPAs. The national DPA is responsible for the
handling of a complaint of the citizen or legal entity �lling the
complaint. Therefore, it is important to know how many tracking
�ows cross national borders and where the tracking servers are
physically hosted.

Last but not least, other pieces of legislation exist thatmay impact
on tracking (e.g., security related, protection of minors, data or
server logs storage duration etc.), which only have a national scope.
For these cases it is also important to know whether a tracking �ow
stays within national borders.

2.2 Online tracking over RTB
Figure 1 depicts a high level block diagram of the di�erent entities
involved in targeted advertising over real-time bidding (RTB), one
of the main advertising and marketing applications that require
tracking end users across di�erent publisher websites.2 For a de-
tailed description of the di�erent entities, the reader is referred
to [62]. Virtually all the entities depicted in the diagram may be
present with advertising and/or tracking code at the publishers web-
site and thus, be rendered by a consumer’s browser while visiting
the publisher. The execution of such code induces tracking �ows
between the consumer and the corresponding entity. Of course
there are additional �ows related to tracking that are exchanged
directly between the entities without going through the end user’s
device. In this paper, we report only upon the directly visible track-
ing �ows, i.e., those that involve execution of tracking code at the
consumer’s browser.

2.3 Challenges
Tracing the geographic aspects of tracking �ows has received rel-
atively little attention. This is not surprising given the involved
technical challenges.
Challenge 1 - Collecting real tracking�ows: Existing work has
gone mostly into quantifying and cataloging the trackers found
present in di�erent publisher websites [29, 35, 36, 41, 58]. This is

can take a look at them. We don’t consider such matters since they are subject to
di�erent laws about telecommunications and surveillance.
2Open RTB [14] is the industrial standard of Interactive Advertising Bureau (IAB).
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already challenging since identifying tracking code requires full
rendering of publisher webpages. In our case things are even more
di�cult since rendering webpages through automated crawlers is
not enough – we need real users, with real credentials and web
browsing history, at di�erent locations to capture the full spatial
aspects of tracking �ows. Releasing measurement code to real users
is di�cult to scale, while passive network logs, e.g., NetFlow [32]
or sFlow [55], are at a much higher level that makes identifying
tracking �ows di�cult, either because there is no payload (NetFlow)
or there is partial or encrypted payload (sFlow).
Challenge 2 - Completeness of measurement: If one attempts
to combine the precision of full rendering via dedicated measure-
ment code with the scale of passively collected network logs, they
will eventually run into issues of completeness such as: Are there
any additional tracking domains other than the ones seen by the
measurement code? Which are the IPs associated with these do-
mains? Are there any additional IPs associated with these domains
that were not returned to the real users?
Challenge 3 - Precision of analysis: Collecting complete mea-
surements is only a �rst step. Next, the analysis has to be conducted
with care. For our study, accurate IP geolocation is key to deriving
reliable results and conclusions. It is well known that infrastructure
IPs, such as servers [31, 56] and routers [34, 37, 39, 50], are prone
to imprecise geolocation. It is also important to investigate if the
tracking IPs are dedicated to tracking, or are shared with other ser-
vices and domains. It is also important to identify the time period
that a speci�c IP is associated with a tracking service in order to
remove noise from dynamic use of IPs.

3 METHODOLOGY
To address Challenge 1, we present in this section the design and im-
plementation of a browser extension for identifying tracking �ows
triggered by real users’ actions and data. We also outline method-
ologies for improving the completeness and the precision of our
measurements, thereby addressing Challenges 2 and 3, respectively.

3.1 Our browser extension
To identify as many ad and tracking related domains, and their
associated IPs, as possible, requires collecting visits of real users
to websites (�rst-party request/domain) that embed such services.
User state information, such as their browsing history, cookies,
exact location, time of visit, etc., impact on the behavior of tracking,
e.g., through winning bids and tracking connections opened. Fur-
thermore, using real users’ browsers has the additional advantage
of capturing the interaction of the user with the elements of the
webpage, which itself alone can lead to the launching of additional
tracking requests. Finally, it is important to monitor requests from
as many geographic locations as possible, which becomes easier
when having a real user base across the globe. Many of the above
are impossible to achieve using scripted crawlers launched from few
measurement locations that do not correspond to usual residential
broadband networks and real user behavior.

To address all of the above, we have developed and distributed a
browser extension for Google Chrome. The extension is used for a
related measurement project about targeted advertising detection.
In the process, however, we obtain valuable data for this study as

Table 1: The real users dataset statistics.

# Users # 1st party
Domains

# 1st party
Requests

# 3rd party
Domains

# 3rd party
Requests

350 5,693 76,507 19,298 7,172,752

well. Speci�cally, we can identify and monitor all outgoing third-
party requests, i.e., requests towards domains apart from the one
that the user is actually visiting during their normal browsing
sessions. For each outgoing third-party request, our extension maps
the associated server IP as observed in the corresponding response
header. Since we operate in the users’ browser, we only focus on
the �nal server that serves the third-party requests. The browser
API does not report on JavaScript or DNS redirections. However, it
reports the �nal IP that serves a request.

The small number of published reports based on measurements
from real users is indicative of the involved di�culties related with
such studies. To the best of our knowledge, apart from Razaghpanah
et al. [52] for mobile apps, this is the �rst time that a crowdsourced
approach is utilized to report on geographic aspects of tracking
using real users’ data.

We recruited users from the CrowdFlower platform [4]. We
excluded users having ad-blocking extensions installed on their
browser, such as, AdBlockPlus, Ghostery, etc. In total, 350 users
have installed the browser extension and contributed data to our
study in a time window of more than four months, from Sep. 1, 2017
to mid-Jan., 2018. The number of unique visited websites is more
than 76K and the total third-party requests logged exceeds 7.1M
over more than 19K third-party domains. For a detailed summary,
see Table 1. The collected dataset includes the user’s country, the
�rst-party visited domain, the third-party contacted URL and the
associated IP.

Ethical considerations: As we have previously stated, all the
users in this study were recruited from the CrowdFlower plat-
form [4]. All the users were informed in detail about what data we
collect and gave their explicit consent before installing the extension.
Users could choose at any point to opt-out of the experiment by sim-
ply uninstalling the browser extension. This would stop any data
transfer to our servers. Regarding already collected data, although
we can delete any part of it, it’s impossible to identify speci�c users
since we do not store any unique identi�er on users. For example,
we did not keep logs of actual IPs, but only the geolocated regions.
We also took additional measures to protect the identity of the user,
namely, we only collected domain names instead of full URLs. Thus,
we avoided inadvertently collecting the full browsing history of
a user, or storing identity information that may appear on URLs.
Obviously we refrained from asking or collecting any personally
identi�able information such as the real name of the users, emails,
addresses, etc. All users were compensated through the platform
for keeping the browser extension running for an amount of time.

3.2 Identifying trackers
In this section we explain our methodology for identifying whether
a third-party request is actually a tracking �ow or just some other
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Figure 2: Thenumber of 3rd party requests perwebsite based
on data collected from real users browsers. “Clean only” (top)
depicts the �ows related to other activities such as, live
chat services, commenting services, etc. “Ad + Tracking only”
(middle) depicts the �ows related to ad and tracking, and
�nally “All 3rd party” (bottom) depicts the CDF of all the
�ows.

Table 2: Comparison between theAdBlockPlus lists (easylist,
easyprivacy - top row) and the semi-manual classi�cation
(bottom row) to identify ad and tracking related third-party
requests.

# FQDN # TLD # Unique Requests # Total Requests
AdBlockPlus Lists 6,259 1,863 539,293 2,446,460
Semi-automatic 3,620 879 453,457 1,964,408

Total 9,879 2,742 992,750 4,410,868

type of service (i.e., voice chat, commenting services, etc.). Cur-
rently, the most common solution is to use a block-list. The most
popular lists for detecting ad- and tracking-related requests are
the “easylist” and the “easyprivacy” [7] list, respectively. The issue
with the above two lists is that they are constructed and used for
blocking third-party requests from web browser extensions, such as,
the AdBlockPlus [1] and Ghostery [9]. By blocking a tracking �ow
early, they do not allow any additional tracking code to be executed,
which in turn may open additional connections and thereby reveal
additional tracking requests that do not match any rules or domains
in the above two lists.

To overcome the above limitation, we �rst use the above two
lists (easylist and easyprivacy) to classify all the third-party �ows
that we collect either as tracking or not. This produces a list of
tracking �ows (LTF) that includes all third-party requests that the
two �ltering lists identify as ad or tracking related requests and a
list of non-tracking �ows (NTF). As a second step, we use the list of
LTF to classify additional third-party requests. We examine if the
referrer �eld of the remaining non-tracking �ows in the NTF list
includes any URL already detected in the LTF list and also if the URL
string includes any arguments. Note that argument parsing using
the URL is a widely used technique for passing information between

Figure 3: The top 20 TLD of ad + tracking domains based on
requests counts in the real users dataset.

tracking domains. If a non-tracking �ow satis�es both requirements
we then classify it also as a tracking �ow. Note that the execution of
additional requests using third-party code (JavaScript) embedded
directly into the �rst-party context populates the referrer �eld of
the request with the �rst-party URL. Nevertheless, most of this
cases are requests towards well known ad networks to initialize
the rendering process of the available ad slots within the �rst-party
webpage, such as, googlesyndication.com.

Finally, for the remaining non-tracking �ows, we also classify
third-party requests as tracking �owswhen the request URL include
arguments and also the URL string include some widely used key-
words related to web tracking and advertising, such as, “usermatch”,
“rtb”, “cookiesync”, etc. Note that we build the list of keywords em-
pirically.

Table 2 presents the third-party requests classi�cation results.
Using the two AdBlockPlus lists (easylist, easyprivacy), we manage
to classify a total of 2.4M third-party requests as tracking �ows
(Table 2 - Row 1). In total, we have more than 500K unique URLs
towards 1.8K top level domains (TLD). Using our semi-automatic
classi�cation (Table 2 - Row 2), we manage to classify an additional
1.9M third-party requests as tracking �ows from more than 400K
unique URLs and a total of 879 top-level domains.

In Fig. 2 we plot the CDF of the tracking and non-tracking �ows
that we detect in each website in our dataset. The top (dashed)
line depicts the CDF of the non-tracking �ows and the middle
(dot-dashed) line the tracking �ows. Finally, the bottom (solid) line
depicts the total of all requests that we observe including both
tracking and non-tracking �ows from within each website. The
main takeaway from Fig. 2 is that on average, most of the third-party
requests are ad and tracking related �ows.

Finally, Fig. 3 lists the top 20 TLDs of the tracking �ows that
we detect in our dataset. “ABP” denotes the number of tracking
�ows detected using the AdBlockPlus lists and “SEMI” denotes the
ones detected using the semi-automatic classi�cation. We observe
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Figure 4: The CDF of number of domains detected behind
each IP (right y-axis) and the total number of request (left
y-axis) observed in the real users dataset.

that most of the additional tracking �ows detected by the semi-
automaticmethodology involves domains belonging to ad networks,
mostly triggered by the (potentially blocked) ad related initial third-
party request and constituently not detectable by ABP.

3.3 Collecting tracker IPs
For each third-party domain, we collect all the associated IPs that
were returned to users who successfully established a connection.
Real users from all over the world participated in our four-month
experiment. In total, we collected 28,939 tracking IPs. More than
97% of them were IPv4.

Furthermore, to address Challenge 2, i.e., to improve complete-
ness of our measurement, we took some additional steps. First, we
utilized passive DNS replication (pDNS) [63], a method that collects
DNS data from production networks and stores it in a database
for later reference. In this work we rely on Robtex implementation
of pDNS [22]. These databases provide info on (i) forward DNS
records, i.e., the IPs associated with a given domain as well as the
starting and the end of the time period of this association, and, (ii)
reverse DNS records, that map an IP for a given time period to
the domains that were served by this IP. For the duration of the
experiment, we identi�ed only 806 additional IPs (i.e., small 2.78%
increase on the number of IPs, mainly IPv4 (60%) that served the
tracking domains but could not identify from the logs of the real
users. We also annotated the active periods for the pair domain-IP
based on the starting and end active time in the database.

Next, we investigate if other services/domains share the same
IP. In Fig. 4, we plot the histogram and the CDF for the number of
TLDs served by an identi�ed tracking IP weighted by the number
of requests. Around 85% of the requests served by IPs serve only
one TLD. This is to be expected as tracking services would like
to sustain a good performance and thus, dedicate the IP for this
service. Delays may reduce revenue, and if the tracker is involved
in RTB, it is important to guarantee a short round trip time with the
user, as the bidding time is typically in the order of 100 msec [13].
In the same �gure also shows that the fraction of IPs that serve

Figure 5: The number of IPs that host more than 10 ad +
tracking domains and their corresponding geolocation.

more than one domain is less than 2%. A closer investigation shows
that the other TLDs usually belong to the same organization, and
they are tracking related domains as well (e.g., in the case of Google,
doubleclick.net and googlesyndication.com). Thus, measuring the
�ows that involve the identi�ed tracking IPs, for the time period
that the pair tracking domain and tracking IP is valid, will give us
a good estimation of the tracking �ows.

Nevertheless, there are a few IPs (114 in total) – about half of
them in the USA and in EU28 (see Fig. 5) – that serve a large number
of domains – 10 or more. A closer investigation showed that these
IPs are used for ad related activities, such as, ad exchange points,
RTB auctions or cookie-syncing as they serve a large number of
domains related to the advertisement and tracking industry.

3.4 Geolocating web tracker IPs
To address Challenge 3, we geolocate the ad and tracking related
IPs as accurately as possible in order to minimize artifacts that can
bias our analysis. It is well reported that commercial geolocation
databases are unreliable when it comes to geolocating network
infrastructure [31, 34, 37, 39, 50, 56]. This is expected as the com-
mercial interest of these databases is to geolocate the end user
accurately – the customers of such databases are enterprises that
want to geolocate their visitors/clients. Several existing studies
have shown that commercial databases, such as MaxMind [16], are
particularly bad for geolocating web servers [31, 56]. For example,
in the case of Google, MaxMind typically geolocates a Google IP
to Mountain View, the headquarters of Google and not to the real
physical location of the server, which can be at any Google data-
center, at a peering facility (edge point of presence), or even inside
an ISP (edge cache) [12, 31, 59].

A number of active techniques have been developed for improv-
ing the IP geolocation accuracy for the server infrastructures [31].
RIPE has incorporated these techniques in a single publicly available
tool called RIPE IPmap [21]. IPmap uses a large global installation of
more than 11K active measurement probes, namely RIPE Atlas [20],
to perform active measurements in order to geolocate an IP. The
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Table 3: Pair-wise agreement across geolocation tools.

Service ip-api MaxMind RIPE IPmap
Country Cont. Country Cont. Country Cont,

ip-api 100% 96.13% 99.15% 53.24% 65.62%
MaxMind 96.13% 99.15% 100% 53.4% 64.96%
RIPE IPmap 53.24% 65.62% 53.4% 64.96% 100%

Table 4: Wrong geolocated IPs/Requests using MaxMind
database for Google, Amazon and Facebook ad and tracking
domains.

# IPs Wrong
Country

Wrong
Cont. # Requests Wrong

Country
Wrong
Cont.

Google Ads + Tracking 4,873 2,822
57.91%

2,099
43.07% 1,941,301 1,231,298

63.43%
1,157,910
59.65%

Amazon Ads + Tracking 3,306 1,951
59.01%

1,948
58.92% 165,181 53,434

32.35%
53,109
32.15%

Facebook Ads + Tracking 646 292
45.20%

191
29.57% 67,805 8,181

12.06%
5,279
7.79%

footprint of the RIPE Atlas probes is particularly dense in Europe
(more than 5K probes) thus, in Europe the accuracy is expected to
be high, especially at country level, which su�ces for our study.
RIPE Atlas has also a large footprint in the US, with more than 1K
probes thus, using IPmap we can accurately distinguish if a server is
in Europe or in the US. For every IP geolocation request, more than
100 RIPE Atlas probes are assigned to perform active measurements.
After the geolocation process is �nished, each probe replies with an
estimation of the physical location of the target (server in our study)
at the city, country, and continent level. We noticed that, across all
our measurements, the replies from the involved probes agree on
the continent, and also with a majority of above 90% on the country.
We also noticed that the disagreement on the country level (less
than 10%) occurs around the borders of neighboring countries. For
our analysis, we do a majority voting and we keep the most popular
estimation. To further evaluate the accuracy of RIPE IPmap, we
geolocated the IP ranges of two large content providers, Amazon
AWS [2] and Microsoft Azure [17], that made the location of the
servers in these ranges publicly available. Our analysis about the
active IPs that replied to our requests showed that RIPE IPmap
accurately geolocate the server IPs at both country (99.58%) and
continent level (100%) for the above two cloud services.

In Table 3 we compare the pair-wise agreement on the country
and continent, across geolocation tools, namely, (i) IP-API free ge-
olocation tool [15], (ii) MaxMind [16], and (iii) RIPE IPmap [21], for
the tracking IPs we inferred with the browser extension (includ-
ing the additional IPs we found with forward DNS). The overlap
between IP-API and MaxMind is very high, more than 96% on the
country level and 99% on the continent level. However, both dis-
agree when compared with the IPmap. About half of the IPs are
mapped to a di�erent country and approximately a third of the
IPs are mapped to a di�erent continent. This is an indication that
using MaxMind or IP-API would yield incorrect geolocation in our
analysis, since one of the end points of all our �ows is always a
backend infrastructure server.

To further investigate the impact of the MaxMind database as
opposed to RIPE IPmap, we concentrate on three large ad + tracking
provider, namely, Google Ads+Tracking IPs, Amazon Ads+Tracking

IPs3 and Facebook Ads+Tracking IPs. In Table 4 it is clear that about
half of the IPs of these major providers are mis-geolocated to the
wrong country, and anywhere between 30%-60% are mis-geolocated
to the wrong continent.

4 QUANTIFYING BORDER CROSSING
In this section, we present our measurement results on the amount
of tracking �ows crossing di�erent national and international bor-
ders. All the results of this section are based on measurements
obtained with our browser extension and recruited users. Later in
Sect. 7, we present corresponding results from four large ISPs with
more than 60 million users.

Figure 6 shows the percentages of tracking �ows exchanged be-
tween continents (or geographic regions like EU28). The thickness
of the Sankey diagram is proportional to the amount of measure-
ments that we have from each region. We see that most tracking
originating at users within EU28 terminates at tracking servers within
EU28. The actual percentage is 84.9% as shown in the more de-
tailed Fig. 7(b). This result contrasts popular belief, as well as recent
reports [52] claiming that most tracking of European citizens is
conducted by trackers physically located outside Europe. The dis-
crepancy is explained by the di�erent IP geolocation methods used
(see Sect. 3.4 for details) but also owes to other reasons. For example,
in the case of [52] the variations are also due to di�erence in the
platforms in use (Mobile vs. Desktop in our case) and the variation
between the two platforms (mobile apps vs. web browsing), see
Sect. 8 for more details.

Unlike EU28 that exhibits high con�nement of tracking �ows
within the continent, our second larger user base in South America
sees most of its tracking �ows (95%) leaking out of the continent and
into North America (90%). Since we mainly focused on recruiting
European users for our study, the other continents shown in the
diagram have small user bases and therefore the con�nements
ratios are not easy to read from the diagram. The actual numbers
are Africa 2.11% (22), Asia 16.39% (20), Rest of Europe 12.94% (23),
South America 4.42% (86), North America 86.83% (16), con�nement
percentage (number of users), respectively.

Overall, we see that EU28 and North America host most of the
tracking backends, 51% and 40% of all tra�c �ow terminations,
respectively. Other countries, with large IT infrastructure/server
hosting receive a disproportionally high number of �ows compared
with the users in our dataset, e.g., Ireland (3.4%), Switzerland (2%),
France (6%), Russia (1.5%).4

4.1 EU28 GDPR jurisdiction
In the remainder of the paper, we focus on tracking of users in
EU28, where we have our largest user base (183 users). Figure 7(a)
shows the percentage of tracking �ows that terminate in di�erent
continents for users within EU28 under MaxMind geolocation. Fig-
ure 7(b) shows the same percentages under RIPE IPmap geolocation,
and the di�erence in numbers is astonishing. In fact, this single
property of the methodology - the method used for IP geolocation
can �ip the qualitative takeaway of the result. Under MaxMind one

3Amazon uses di�erent IP addresses for such activities not included within the AWS
IP ranges
4Results not shown in the diagram.
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Figure 6: The �ow of ad + tracking domains between conti-
nents using the RIPE IPmap geolocation service.
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Figure 7: The �ow of ad and tracking domains between con-
tinents from EU28 countries using the (a) MaxMind and (b)
RIPE IPmap geolocation services.

concludes that most European tracking �ows leak towards North
America, whereas under RIPE IPmap, they remain con�ned within
Europe. As explained in Sect. 3.4, RIPE IPmap is way more accurate
for the problem at hand and therefore we conclude that most track-
ing �ows a�ecting European citizens terminate within GDPR’s legal
jurisdiction. The only sizeable percentage leaking outside Europe is
towards North America (10% of European tracking �ows). Another
3% goes to neighboring non-EU28 European countries, such as,
Switzerland and Russia.

4.2 National jurisdiction
Figure 8 is a Sankey diagram for the origin-destination of tracking
�ows originating in EU28 countries, where we have users in our
dataset (the thickness of a �ow is proportional to the user base in
each country on the left column). We observe di�erent levels of
national con�nement. The UK leads with the highest con�nement

Poland

Poland 0.377%

Netherlands 13.955%

Switzerland 2.276%

Germany 9.631%

Italy 1.448%

United States 10.552%

Denmark 0.584%

Ireland 6.628%

United Kingdom 12.255%

France 9.541%

Russia 0.704%

Greece

Finland 0.046%

Tunisia 0.007%

Lithuania 0.430%

Greece 0.381%

Belgium 0.098%

Canada 0.196%

Cyprus 0.149%

Czechia 0.968%

Malaysia 0.295%

Austria 0.086%

unknown 0.038%
Japan 0.085%

Panama 0.006%

Hungary 5.149%

Bulgaria 4.112%

Australia 0.015%

Sweden 0.509%

Romania 0.787%

South Africa 0.042%

Spain 17.627%

Hong Kong 0.007%

Brazil 0.167%

Taiwan 0.512%

Denmark

Spain

Thailand 0.042%

Singapore 0.012%

Portugal 0.158%

United Kingdom

Belgium

Cyprus

Serbia 0.017%

Germany

Romania

Moldova 0.070%

Italy

Figure 8: The �ow of ad and tracking domains from Euro-
pean Union (EU28) countries using the RIPE IPmap geoloca-
tion service.

of 58.4% within its borders. Spain follows with a con�nement of
33.1%. Smaller counties like Greece, Romania, and Cyprus have
lower con�nements, 6.77%, 5.1%, and 1,16% respectively. From this
data, there appears to be a positive correlation between the size
of a country and the amount of tracking �ows con�ned within its
borders, but there are other important reasons that determine the
level of national con�nement, as we explain in Sect. 5. In Sect. 7,
we use large ISP datasets to cover additional central and north
European countries for which we have rather few users in the
Sankey diagram to further investigate if the number of users can
in�uence the con�nement level for such countries.

5 KEEPING TRACKING FLOWS LOCAL
In this section, we look at the e�ectiveness of di�erent methods
for improving the localization of tracking �ows. We consider two
methods to increase localization, namely, (i) DNS redirection, and
(ii) mirroring of tracking PoPs.

Apart from its value for privacy, localization can be bene�cial
also for the ad domains, especially those serving targeted ads using
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Table 5: Potential localization improvements under di�er-
ent scenarios.

EU28 - 1,824,873 Percentage In Improvement
Country Cont. Country Cont.

Default 27.60% 88.00% - -
Redirections (FQDN) 52.15% 93.53% 24.55% 5.53%
Redirections (TLD) 66.13% 98.33% 38.53% 10.33%

POP Mirroring (Cloud) 30.79% 92.09% 3.19% 4.09%
Redirection (TLD) +

POP Mirroring (Cloud) 68.12% 99.20% 40.52% 11.20%

the RTB protocol. In RTB delivery delays need to be kept low to
improve the performance of real time bidding.

5.1 Localization potential using DNS
Our �rst investigation involves a simple DNS redirection based on
alternative servers that we have observed in our dataset for the same
tracking domain. We �rst quantify the improvement potential by
looking for alternative server locations operate under the same fully
quali�ed domain names (FQDN). Then, we �nd the corresponding
TLD for each FQDNs and consider the case of redirecting requests
for the FQDN to any alternative servers that belong to the same
TLD level that can further improve the con�nement.

Table 5 depicts the results of the di�erent approaches. The �rst
row (Default) depicts the base line of the con�nement percentage
at country and continent level for all the tracking �ows that we
observe in our dataset. In the case of DNS redirections based on
FQDN level, we observe an additional con�nement up to 5.5% and
24.55% at continent and country level, respectively (Table 5 - Row
2, Right column). DNS Redirection has a non-negligible positive
contribution to keeping tracking local within GDPR jurisdiction. If
applied at TLD, the improvement in our dataset is more than 10%.
However, it plays an even higher role in improving con�nement
within national boarders. In this case, the improvement under TLD
redirection is an impressive 38%.

Based on our “what-if" analysis, we conclude that, with a more
thoughtful (or GDPR friendly) DNS redirection on behalf of the
tracking domain administrators, the overall con�nement can be im-
proved at both country and continent level, with minimal additional
�nancial cost (that includes additional server and network capacity
as appropriate). Note that with DNS redirection, it is easy to change
the assignment of users to a server IP. For example, google time
to live (TTL) for DNS records is 300 seconds and facebook TTL is
7,200 seconds. Thus, DNS redirection can take place in relatively
small time scale, from seconds to a few hours.

5.2 Localization potential using Mirroring
For our second investigation, we turn our attention to PoP mirror-
ing using cloud services and the potential localization that such an
optimization can o�er. For this hypothetical setup, we collect infor-
mation from nine major cloud service providers in which we know
from our dataset that tracking domains lease servers. These public
clouds make their global footprint and, in some cases, the associated
IP ranges publicly available in order to: (i) attract new customers by

Table 6: Potential localization improvement over TLD opti-
mizations for EU28 countries using alternative large public
Cloud PoPs.

PoP Mirroring (Cloud)
Over Redirection (TLD)

Migration to Cloud
Over Redirection (TLD)

Country # Requests % Impr. Country % Impr.
UK 261,915 5.47 Denmark 96.85
Spain 961,231 1.84 Greece 79.25
Greece 98,281 1.29 Romania 72.12
Italy 19,801 1.14 Italy 25.64

Romania 236,528 1.13 UK 18.20
Cyprus 234,433 0 Spain 12.15
Denmark 7,503 0 Cyprus 0

advertising their presence at di�erent regions, (ii) improve the oper-
ation of current customers by providing an accurate and up-to-date
map of IP ranges to physical location, and (iii) to white-list the IP
ranges, e.g., to update �rewall rules. The major cloud providers we
consider in this study are: Amazon AWS [2], Microsoft Azure [17],
IBM Cloud [24], CloudFlare [23], Digital Ocean [6], Equinix [8],
Oracle Cloud [18], Rackspace [19], and Google Cloud [11]. For each
cloud service we collect the physical location of their operational
datacenters, at a country level, as advertised in each cloud service
website.

First, we check if the the con�nement within the user’s region
can be further improved if tracking domains that are already host-
ing their server on these cloud services utilize additional PoPs
(PoP Mirroring), i.e., di�erent datacenters of the same cloud service
provider. Under the “PoP Mirroring” scenario (Table 5 - Row 3),
it is evident that PoP mirroring yields good improvement of con-
�nement within the GDPR legislation region, but not so great on
the national level. Furthermore, we observe that many countries
lack large public cloud PoPs, and the improvement in con�nement
is expected to be marginal for these countries. Finally, at Table 5 -
Row 5, we present the con�nement percentage and improvement,
respectively, by combining DNS redirection at TLD level with PoP
Mirroring. The combination yield an additional improvement of
40.52% and 11.2% at the country and continent level, respectively.

Next, we investigate the extreme scenario where all tracking
domains can potentially migrate to any cloud PoP from all PoPs
that we observe in all nine major cloud services. After examining
our results in Table 6 (Right column), we see that countries such
as, Denmark (69.85%), Greece (79.25%) and Romania (72.12%) can
achieve 96.85%, 79.25% and 72.12% additional con�nement over
the “Default” outgoing tracking �ows, respectively. In contrast,
using only PoP Mirroring (Table 6 - Right column) the con�nement
improvement is negligible, below 1.3%, for the above three countries.
On the other hand, countries such us Cyprus cannot bene�t from
this scenario since none of the nine cloud services in our study has
a presence in the country. Note that if a tracking operator is willing
to utilize any datacenter available in a country, then it is possible
to achieve complete �ow con�nement at the national level. In all
EU28 countries there is at least one datacenter, even in the smallest
country.
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Figure 9: The percentage of websites for each sensitive topic
that ad + tracking third-party domains where present in our
dataset. We observe 127K requests towards sensitive topics,
2.89% of the total tracking �ows we observed

In summary, we observe that there exists a correlation between
the density level of IT infrastructure of a country, mostly in terms
of datacenters, and the con�nement of tracking �ows within its
borders. The con�nement of tracking �ows within national borders
can be improved in many cases, either by using DNS or mirroring
of tracking PoPs, at a relatively low cost. However, in some small
countries with less developed IT infrastructure, the improvement
of the con�nement of tracking �ows within national borders may
require proportionally high cost or expansion of the footprint of
major cloud providers in these countries.

6 TRACING SENSITIVE TRACKING FLOWS
GDPR [5] de�nes sensitive personal data as any data “revealing
racial or ethnic origin, political opinions, religious or philosophical
beliefs, or trade union membership”, also “genetic data, biometric
data for the purpose of uniquely identifying a natural person, data
concerning health or data concerning a natural person’s sex life or
sexual orientation”. In this section, we try to �nd if tracking �ows
exist on sensitive data, and if they do, look at their geographic
con�nement.

6.1 Methodology
In total, we observemore than 76K �rst party domains in our dataset.
To identify domains that fall into the sensitive categories we use
a multi-stage �ltering process involving automated and manual
inspection of website content.

As a �rst step we use AdWords [10], an online tagging service
provided by Google, to detect the interest topics of the visited
domain. Usually we have 5 to 15 interest topics per domain. Next,
we use automated look up to detect whether any of the AdWords
categories of a speci�c domain contains any of the 7 sensitive
categories de�ned by GDPR. If a domain topic matched we include
it in our analysis. We also manually examine the remaining domains
to see if they contained any semantic categories that had a semantic

death
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EU 28 84.90%

cancer
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S. America 0.13%

Africa 0.19%
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Figure 10: The destination continent of tracking �ows for
each sensitive category using EU28 users.

relevance/overlap with GDPR de�ned sensitive terms. We used
multiple people for this and include a domain in our analysis when
at least 2 independent examiners agreed that it was relevant to a
GDPR sensitive term.

Overall, we inspected 5,698 domains over a period that spans
two weeks. We chose to manually inspect the content since most
tagging systems do not include sensitive categories. For example
a website related to pregnancy falls into the category “Health”.
Similarly, websites related to pornography, alcohol and gambling
will fall into the categories “Men’s Interests”, “Food & Drinks” and
“Games”, respectively. Thus, by manually inspecting the website
content we can identify websites belonging to sensitive categories
with high accuracy. In total we identify 12 sensitive categories (see
Fig. 9) from 1,067 domains. The total number of tracking �ows
related to sensitive categories is 127K.

6.2 Results
Figure 9 depicts the percentage of tracking �ows for each sensitive
category. The most heavily tracked category is “Health” with 38%
of the tracking �ows followed by gambling with 22%. Sex related
categories, such as, sexual orientation and pregnancy have identical
percentage ⇡ 11%, followed by politics and porn at 9% and 7%,
respectively. Religion, ethnicity, guns, alcohol, cancer and death
are below 3%. Note that in the case of the categories cancer and
death, both belong to the category “Health”, but we report them
separately due to their obvious sensitivity.

In Fig. 10, we present the destination continent of the tracking
�ows for each sensitive category. We observe similar trends as with
the aggregated results, i.e., most tracking �ows are con�ned within
GDPR (EU28 84.9%) but a non-trivial percentage (12.7%) is collected
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Figure 11: The percentage of tracking �ows from sensitive
websites that travels outside the users’ country using users
within EU28 countries.

in North America. The categories with the highest leakage out of
EU28 are: porn (44%), sexual orientation (36%) and alcohol (33%).

Finally, in Fig. 11, we plot the con�nement for each EU28 country,
where we observe tracking �ows on sensitive category domains.
The black numbers (right) depict the total number of sensitive �ows
for the corresponding country, and the white numbers (left) show
the �ows that travel outside the country. The trends are similar
to the aggregated results thus, countries with a small population
and limited IT infrastructure, e.g., Cyprus, Greece, Denmark and
Romania seem to experiencing more leakage on sensitive tracking
�ows.

7 SCALING UP: A VIEW FROM ISPS

Next, we examine the geographical distribution of tracking �ows
involving subscribers of various large European ISPs. In particular,
we analyze data from four ISPs in three European countries. The
analysis of ISP data contributes to our study in multiple ways:
(i) the ISP datasets capture the tra�c of millions of real users,
thereby allowing us to scale up our study and validate our previous
observations and conclusions drawn from our browser extension
users, (ii) they increase the diversity of our study, not only because
the studied ISPs operate in di�erent countries, but also because
their users are residential, mobile, or both, and (iii) they operate
in countries where we did not have a large user base in our active
experiment, thus, complementing our study.

7.1 Pro�le of ISPs
Table 7 provides a brief summary of the pro�le of the four ISPs.
DE-Broadband: This is one of the largest ISPs, in terms of both
customer base and tra�c volume in Germany and Europe with
more than 15 million broadband residential lines. Since it is di�cult
to estimate the number of users that take Internet access from these
lines, we refer to the number of broadband households.
DE-Mobile: This is one of the largest mobile providers, in terms of
both customer base and tra�c volume, in Germany and in Europe
with more than 40 million subscribers.

Table 7: Pro�le of the four European ISPs in our study.

Name Country Demographics
DE-Broadband Germany 15+ million broadband households
DE-Mobile Germany 40+ million mobile users
PL Poland 11+ million mobile and broadband users
HU Hungary 6+ million mobile and broadband users

PL: This is one of the largest mobile and broadband ISPs in Poland,
both in terms of customers and tra�c volume, that o�ers both
mobile and broadband services. Overall, it has more than 11 million
mobile and broadband users.
HU: This is one of the largest mobile providers in Hungary, that
has also a smaller fraction in the broadband market. Overall, this
ISP serves more than 6 million users in Hungary, primarily mobile
users.

7.2 Methodology
To identify the tracking �ows from ISP NetFlows, we rely on the list
of IPs of tracking services compiled using the browser extension as
described in Sect. 3. In addition, we also collected data for the period
mid-Jan. to July 2018 using the same methodology. We perform the
ISP study using daily snapshot activity, on four days: (i) Wednesday,
Nov. 11, 2017, (ii) Wednesday, April 4, 2018, (iii) Wednesday, May
16, 2018 (close to the implementation date of the EU GDPR law on
May 25, 2018), and (iv) Wednesday, June 20, 2018 (after the imple-
mentation date of the EU GDPR law). Note that the data collection
in the time period between mid- Jan. to end of July is related only
to the results presented in table 7 under the columns June 20 and is
only related to the ISP’s analysis after the implementation date of
GDPR. The data collected in the above time period are not included
in the data analysis in Sect. 4.

Our daily snapshots consist of 24 hour NetFlow [32] data col-
lected at both network edges, internal (e.g., end-users) as well as
external (i.e., peering links). The NetFlow data provides per �ow
the collection timestamp, exporting router and interface identi�ers,
the layer-4 transport protocol, the source and destination IPs and
protocol ports, the IP type of service �eld as well as sampled num-
ber of packets and bytes. The NetfFlow sampling rate is constant
throughout the experiment. For our study, we consider only the
router interfaces that carry user tra�c, i.e., internal network edge
routers. All the ISPs perform ingress network �ltering (BCP38 and
RFC2827 [33]) against spoo�ng. We noticed that the majority of the
�ows (more than 99.5%) that involve tracking IPs are Web tra�c
in ports 80 or 443, using either TCP or UDP (due to the increasing
usage of QUIC [40, 54]) protocols. Overall, more than 83% of the
tra�c used port 443, thus, it was encrypted.
Ethical considerations: To protect the privacy of users, the IPs
of the end users in the Net�ow data are anonymized, i.e., replaced
with the country code where each ISP operates. We do not collect,
store, or process any information regarding the users. For our study,
individual user IPs and activity are not important considering we
know that the users are located in the country that the ISP operates.
To report on the number of �ows that involve the tracking IPs, we
use a hash function to check if the source or the destination of
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Table 8: Sampled tracking �ow statistics across EU ISPs and over time.

DE-Broadband DE-Mobile PL HU
Nov 8 April 4 May 16 June 20 Nov 8 April 4 May 16 June 20 Nov 8 April 4 May 16 June 20 Nov 8 April 4 May 16 June 20

#Sampled Tracking
Flows (in Millions) 1,057.0 1,200.8 1,105.3 963.4 70.4 77.4 70.8 74.5 13.8 13.8 12.4 11.9 43.3 50.2 39.3 33.6

EU28 88.5% 87.7% 86.5% 88.3% 91.1% 90.8% 89.9% 92.5% 77.5% 75.6% 74.7% 75% 89.5% 93.1% 92.4% 91.6%
N. America 10% 9.3% 9.2% 8.4% 6.9% 6.6% 6.4% 5.1% 19.8% 21.5% 22% 21.3% 10.2% 6.3% 7% 7.7%
Rest Europe <1% 1.7% 2.9% 1.8% <1% 2% 3.1% 1.3% 1.9% 1.9% 1.7% 3.4% <1% <1% <1% <1%
Asia <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% <1%
Rest World <1% <1% <1% <1% <1% <1% <1% <1% <1% <1% 1.1% <1% <1% <1% <1% <1%
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Figure 12: The top 5 countries for each ISP dataset where the tracking �ows are terminating (April 4).

the �ow matches any tracking IP. If it matches, we increase the
counter for this tracking IP by one. For our analysis we follow the
methodology described in Sect. 4 to infer border crossing.

7.3 Results
We now turn our attention to the assessment of the con�nement of
tracking �ows within EU GDPR (EU28) and national borders. For a
summary of results, we refer to Table 8. Notice that the sampled
tracking �ows are in the order ofmultiplemillions, but the estimated
number of tracking �ows is several orders of magnitude larger. For
example, the estimated number of tracking �ows for DE-Broadband
on April 4, 2018 is more than 1 Trillion �ows. This highlights the
large number of �ows that are dedicated to tracking, which accounts
for, in the case of DE-Broadband, around 3% of the total �ows in
this ISP. It is also worth mentioning that the number of tracking
�ows in mobile operators, e.g., DE-Mobile, is relatively lower. This
happens becauseWeb activity in mobile is lower than in �xed, since
much of the tra�c goes over smartphone apps instead of browsers.
Baseline results: Overall, the analysis of the four large European
ISPs shows comparable con�nement ratios as those reported based
on browser extension data. Indeed, the analysis of tracking �ows
observed by 183 users in EU28 countries over a period of four
months (see Sect. 4) and the post GDPR period between mid-Jan.-
July 2018 showed that around 85% of the tracking �ows terminated
within EU28 borders. As shown in Table 8, the con�nement of
tracking �ows within EU28 as observed from more than 60 million
European users in three EU28 countries for the same period ranges
from 76% to 93%, which is in pretty good agreement with the results
of Fig. 7(b) derived based on browser extension data. When focusing
on the di�erence across time, we observe that the con�nement of
tracking �ows within EU28 has not changed dramatically in the
last six months, and it has been high throughout this period as
well as before the EU GDPR implementation date (May 25, 2018).
Similar observations apply for June 20, 2018 after the EU GDPR
implementation date. This is an indication that many companies in

the ad and tracking space took measures to con�ne tracking �ows
within EU28 borders according to GDPR law.
The e�ect of provider type:When comparing the con�nement
across networks, there are some noticeable di�erences. The ISPs
that are primarily mobile operators, namely DE-Mobile and HU,
yield higher con�nement (above 90%). This is to be expected as
mobile users typically rely on the DNS service of their provider,
and, thus get mapped to nearby tracking servers more frequently, if
available. On the other hand, broadband users increasingly rely on
third-party DNS services [46], e.g., Google DNS, Quad9, Level3, etc.,
and thus, may be mapped to available servers in di�erent countries
and regions.
The e�ect of local IT infrastructure: We also assess the extend
of which local IT infrastructure deployment plays an important
role in increasing the con�nement of tracking �ows within national
borders. In Fig. 12, we show the con�nement of tracking �ows in
the top �ve countries for the four ISPs on April 4, 2018; similar
observations are derived for the other two dates in our dataset. The
two ISPs that operate in Germany, a country with very developed IT
and networking infrastructure in Europe, have considerably higher
con�nement within national borders, 69% for DE-Broadband and
67.31% for DE-Mobile, compared to 0.25% (not visible in Fig. 12(c))
and 6.85% for PL and HU, respectively. As expected, a large fraction
of tracking �ows that cross borders are served by servers in other
neighboring EU countries, with a heavy bias on countries with
advanced IT infrastructure, such as the Netherlands and Ireland in
the case of German operators, Germany and the Netherlands in the
case of PL, Austria in the case of HU. This analysis agrees with the
analysis of the data collected from the real users using the browser
extension (see Sect. 4).

8 RELATEDWORK
A subsequential amount of recent work has studied the privacy
implications of online advertising and web tracking in desktop [28–
30, 35, 41, 51, 58, 61], mobile [53, 60] or mixed platforms [36, 42, 52].
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Table 9: The comparison table of the related work and their corresponding key features

[52] [36] [29] [58] [30] [42] [53] [41] [35] [61] [28] [60] [51] This Work

? Request
Classi�cation

ABP • • • • • • • • • •
Ghostery •
Custom list • • • •

Other X Custom
Corrections

X Custom
Corrections

† Cookies
based

† Text
Ads

X Custom
Corrections

Requests
Type

Ads • • • • • • • • • • •
Tracking • • • • • • • • • •

Measurement
Type

Active • • • • • • • • • • • • •
Passive • • • •

Platform
Type

Desktop • • • • • • • • • • • •
Mobile • † User agent • • • •

Data
Collection

Crawling † † † † † † † † † †
Real Users X X

Other † Control
environment

• Apps
Store

• Net
Traces

• Net
Flows

Infrastructure
Geolocation

MaxMind † † †
Other † WHOIS

Legal Entities
† Legal
Entities

X RIPE
IPmap

Tra�c Type HTTPS X X X X X X X X X X

X Positive, † Negative, • Neutral. ? For AdBlockPlus (ABP) and Ghostery �lter lists, additional corrections are required depending on the use case, noted as “X Custom
Corrections”.

In Table 9, we summarize and compare some of the key features and
approaches from this literature. We highlight all positive features
of each work with a green checkmark, all negative ones with a red
cross, and all neutral ones with a black dot. The rating scheme in
use is based on the challenges stated in Sect. 2.3. To the best of our
knowledge, our work is the only existing work fully dedicated to
the study of cross border tracking on the web. Few other works
have touched upon geographic matters of tracking but never at the
depth and breadth that we have. Also, in order to carry our study,
we had to come up with methodological contributions that progress
the aggregate state of the art from previous work along multiple
directions (see the right column of Table 9 for an overview).

In regards to reviewing the literature, we focus on four key
aspects:
Third-party request classi�cation: One of the most critical and
non-trivial problems is to be able to distinguish a third-party re-
quest either as ad- or tracking-related or not. Currently, the most
common solution is to use the “easylist” and “easyprivacy” [7] lists
to detect ad- and tracking-related requests, respectively. A naive
usage of the above lists can lead to an over- or under-estimation
of the third-party requests belonging to each category depending
on how the lists are used. For example, one can consider all the
domains included in the list. This approach will lead to an overesti-
mation since domains such as “google.com” can serve all three types
of request. Another way of using the lists is by using the included
blocking rules and classify the third-party request only when there
is an exact match. Note that the lists are constructed to block third-
party requests as observed from the real users browser, thus, any
subsequent third-party requests that is initiated by the blocked
content may include additional domains that will stay outside the
list rules as explained earlier in Sect. 3.2. The above observations
are also identi�ed and reported in [52, 58] and are also con�rmed
by our own work. We refer to the extra work we do to collect addi-
tional trackers that do not appear in the standard lists as “Custom
Corrections” in Table 9.

Data collection: The data collection process (Table 9 - Row 5) can
also in�uence the results in some cases. The convenience of using
web crawling as oppose to real users can limit the number of observ-
able third-party requests due to the lack of user interaction (scroll or
page down) on a webpage that includes tracking code. To improve
user experience, reduce data consumption, and charge advertisers
accurately, ads are rendered only when the ad slot becomes visible
to the user. For more discussion about the advantages of using real
users in the mobile environment see [42, 52]. Web crawling is a bet-
ter approach (given that it is faster) for studies that do not require
user interaction with the content, e.g., collecting information about
mobile apps from app stores [53] or from web-archives [41]. In this
work, the data collection takes place on real users’ browsers using
a browser extension to overcome the above limitation as described
in Sect. 3.1.
Infrastructure geolocation: In order to improve the user experi-
ence, most web platforms and e-stores use a geolocation service
for things like customizing content language or currency based
on the location of a visitor. As a result, most geolocation services
turn their attention towards the accurate geolocation of end users
connecting from residential or mobile broadband networks. Accu-
rately geolocating server infrastructure is a secondary priority for
such services. Indeed, by manually examining some of the avail-
able geolocation services, we noticed that the location for most of
the IPs related to infrastructure servers was determined based on
the legal entity owner’s location (see Sect 3.4). Thus, using such
services to infer server location is problematic. If the focus of a
study is to only geolocate the legal entity behind a speci�c server
IP, then these services can be used safely (Table 9 - Row 6) [36, 53].
In this work we identify the above problem and we avoid it by
utilizing a state-of-the-art solution based on active measurement to
correctly geolocate infrastructure servers involved in web tracking
and advertising activities.
Tra�c type: An additional advantage is to have a methodology
that can work on encrypted tra�c (Table 9 - Row 7). Most ad and
tracking related third-party requests that we observe in our study
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have already moved to encrypted tra�c (83.14% based on the real
users dataset). As we can see in Table 9, ten out of fourteen studies
are able to operate on encrypted tra�c. In this work we propose
a novel methodology that can identify tracking �ows in the wild
using ISPs NetFlows. In more details, we use active measurement
to carefully identify the IPs associated with ad and tracking related
activities within real users browsers (see Sect. 3.3) irrespectively
of the protocol used (HTTP or HTTPS) and use this information
to analyze ISPs NetFlows at the IP level (see Sect. 7.2) avoiding the
need of any additional meta-data or contextual information.

9 CONCLUSION
We have developed an elaborate measurement and analysis method-
ology for quantifying the percentage of tracking �ows that ter-
minate within national borders. Our analysis reveals that most
tracking �ows on European Union citizens terminate within EU
members thus putting them under the full jurisdiction of GDPR
and permitting European data protection authorities to conduct full
investigations. This is a rather optimistic result when contrasted
with what happens in other continents, e.g., South America, that
has most of the tracking �ows on its citizens terminating in North
America.

Naturally, the level of con�nement within national borders is
substantially lower than continent-wide con�nement. Looking at in-
dividual European countries we see a clear correlation between the
size of a country and the amount of tracking that is con�ned within
its borders. There also exists a correlation between the density level
of IT infrastructure of a country, mostly in terms of datacenters,
and the con�nement of tracking �ows within its borders. National
con�nement can be improved substantially via simple DNS redi-
rection to alternative tracking end points. This is something that
most tracking companies could implement with a rather small cost.
However, for some smaller countries with less advanced IT infras-
tructure, DNS redirection alone is not enough but rather needs to
be paired with tracking PoP mirroring within the country.

An important �nding of our study is that the con�nement level
of tracking �ows relating to protected data categories is similar to
that of general tra�c. This is a positive or negative result depending
on one’s view-point: positive in the sense that such tracking can
readily be investigated since most of it terminates within GDPR
jurisdiction; negative in the sense that some of it should not be
occurring in the �rst place.

In this work we provide a methodology on how to bootstrap
and scale an experiment to detect and geolocate the di�erent ad
and tracking related stakeholders under the new regulations with
regards to data protection and we apply it to the timely topic of
GDPR. We can continuously monitor the compliance to GDPR over
time and also include the monitoring of other regulations in the
future at di�erent regional (e.g., USA ) or content scope (Children’s
Online Privacy Protection Act - COPPA [3, 38], etc.)

In our future work we intend to build a system around our
methodology, deploy it, and make it available to whomever would
like to have hard data on cross-border tracking in real-time and at
scale. We also plan to extend our methodology to go beyond the
terminating end-point of tracking to capture inter-tracker collabo-
ration and data exchange.
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