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Abstract

The automated modeling of multi-physical dynamical systems is usually realized by cou-
pling different subsystems together via certain interface or coupling conditions. This approach
results in large-scale high-index differential-algebraic equations (DAEs). Since the direct nu-
merical simulation of these kind of systems leads to instabilities and possibly non-convergence
of the numerical methods a regularization or remodeling of the system is required. In many
simulation environments a kind of structural analysis based on the sparsity pattern of the sys-
tem is used to determine the index and a reduced system model. However, this approach is
not reliable for certain problem classes, in particular we show that it is not suited for coupled
systems of DAEs. We will present a new approach for the regularization of coupled dynamical
systems that combines the structural analysis, in particular the Signature Method [11], with
classical algebraic regularization techniques and thus allows to handle so-called structurally
singular systems and also enables a proper treatment of redundancies or inconsistencies in the
system.

Keywords: Differential-algebraic equation, coupled system, regularization, structural analysis,
signature method, structural singularity.

AMS(MOS) subject classification: 65L80, 34A09

1 Introduction

Modeling and simulation of multi-physics dynamical systems is an important issue in many indus-
trial applications. In modern simulation packages like Dymola, Matlab/Simulink, MapleSim,
SimulationX, etc. the modeling process is automated using various sophisticated libraries for the
different system components (from different physical domains). Then, these subcomponent can
be interconnected in a network structure in a hierarchical way. During the compilation process
these subsystems are coupled together via certain interface or coupling conditions. This way of
modeling dynamical systems via a network of subcomponents leads to large (but usually sparse)
systems of differential-algebraic equations (DAEs).
In this paper, we will consider coupled systems consisting of a set of subsystems Si, where the
dynamical behavior of each subsystem is described by a system of nonlinear DAEs

F i(t, zi,
.
z
i
, ui) = 0,

with states zi : I → Rni , inputs ui : I → Rpi , and compact interval I ⊂ R. The coupling of a
subsystem Si with other subsystems Sj1 , . . . ,Sjk is realized via coupling conditions of the form

ui = Gij1...jk(t, zj1 , . . . , zjk).
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Altogether, this yields a large nonlinear DAE system.
If this resulting system of DAEs is of high index, then the direct numerical simulation of these
kinds of systems leads to instabilities and possibly non-convergence of the numerical methods, see
[1, 3, 6]. Thus, a regularization or remodeling of the DAE is required to guarantee stable and
robust numerical computations [6].
In most modeling and simulation tools the current state of the art to deal with high index DAEs
is to use some kind of structural analysis based on the sparsity pattern of the system, e.g., the
Signature Method [11] or Pantelides Algorithm [10]. Here, generic structural information together
with certain computer-algebra packages or symbolic differentiation is used to identify the con-
straints and interface conditions, to determine the index of the system and to compute an index
reduced system model. Furthermore, symbolically sorting the equations by using graph-theoretical
algorithms enables the efficient solution of sparse equation systems. However, this approach is not
reliable for certain problem classes, e.g., for so-called structurally singular problems, and, in par-
ticular, we will show that this is the case for certain coupled systems of DAEs.
In this paper, we will present a new approach for the remodeling of coupled dynamical systems that
combines the structural analysis with classical algebraic regularization techniques and allows to
handle structurally singular systems and also a proper treatment of redundancies or inconsistencies
in the system.
The paper is organized as follows. In Section 2 we introducing some notation and present the main
results concerning general DAE theory and regularization techniques, including the structural
analysis for DAEs based on the Signature Method. In Section 3 we describe a regularization
technique for structurally well-posed problems. Furthermore, in Section 4, we show that the
structural analysis fails for coupled systems if the coupling leads to higher index DAEs. Thus, we
show how a combined structural-algebraic approach can be used in case of structurally singular
problems. Finally, in Section 5 we present some numerical examples.

2 Preliminaries

2.1 DAE Theory

In this section, we review the basic facts of DAE theory following the presentation in [6]. We
consider a general nonlinear DAE given by

F (t, z,
.
z) = 0, (1)

with a sufficiently smooth function F : I×Rn×Rn → Rm, z : I→ Rn and compact interval I ⊂ R.
In the following, for a differentiable time depending function x the ith (total) derivative of x(t)
with respect to t is denoted by x(i)(t) = dix(t)/dti for i ∈ N0, using the convention x(0)(t) = x(t),
x(1)(t) =

.
x(t), and x(2)(t) =

..
x(t). For a differentiable function f depending on x the (partial)

derivative of f(x) with respect to x is denoted by f,x(x) = ∂
∂xf(x). The same notation is used for

differentiable vector and matrix functions.
A regularization of the DAE (1) is an equivalent formulation of the system

F̂ (t, ẑ,
.
ẑ) = 0, (2)

in such a way that the index of the regularized system (2) is reduced and both systems have the
same solution sets, whereupon there is a unique mapping from the state ẑ of the regularized system
(2) to the state z of the original system (1).
In order to obtain a regularization, we introduce the derivative array Di of level i of the form

Di(t, z, .z, . . . , z(i+1)) :=


F (t, z,

.
z)

d
dtF (t, z,

.
z)

...
di

dtiF (t, z,
.
z)

 = 0, (3)
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which stacks the original equations of the DAE and all its derivatives up to level i into one large
system. To obtain existence and uniqueness results for general DAEs, a hypothesis was introduced
in [4].

Hypothesis 1. [4] Consider a nonlinear DAE (1). There exist integers µ, r, a, d and v such that
the solution set of the derivative array Dµ

Lµ = {(t, z, .z, . . . , z(µ+1)) ∈ I× R(µ+2)n| Dµ(t, z,
.
z, . . . , z(µ+1)) = 0}

is not empty, and the following properties hold:

1. The set Lµ ⊂ R(µ+2)n+1 forms a manifold of dimension (µ+ 2)n+ 1− r.

2. We have rankDµ,[z, .z,...,z(µ+1)] = r on Lµ.

3. We have corankDµ,[z, .z,...,z(µ+1)] − corankDµ−1,[z,
.
z,...,z(µ)] = v on Lµ. (The corank is the

codimension of the range and we use the convention that corankD−1,z = 0.)

4. We have rankDµ,[ .z,...,z(µ+1)] = r − a on Lµ such that there are smooth full rank matrix
functions Z2 and T2 defined on Lµ of size ((µ+1)m,a) and (n, n−a), respectively, satisfying

ZT2 Dµ,[ .z,...,z(µ+1)] = 0, rankZT2 Dµ,z = a, ZT2 Dµ,zT2 = 0

on Lµ.

5. We have rankF, .zT2 = d = m− a− v on Lµ such that there exists a smooth matrix function

Z1 defined on Lµ of size (m, d) with ZT1 F, .zT2 having full rank.

The smallest possible µ in Hypothesis 1 is called the strangeness index (s-index) of the DAE (1)
and a system with vanishing strangeness index is called strangeness-free. Further, a DAE (1) with
m = n that satisfies Hypothesis 1 with v = 0 is called regular, otherwise it is called singular. The
quantities d and a are the numbers of differential and algebraic equations of the DAE.
It has been shown in [4] that Hypothesis 1 implies (locally) the existence of a reduced system (in
the original variables) of the form

F̂1(t, z,
.
z) = 0, (4a)

F̂2(t, z) = 0, (4b)

with F̂1 = ZT1 F , F̂2 = ZT2 Dµ. An initial condition z(t0) = z0 with t0 ∈ I, z0 ∈ Rn is said to be

consistent with the DAE (1), if it satisfies the algebraic equation F̂2(t0, z0) = 0. Furthermore, it
has been shown in [6] that the system (4) is locally equivalent to a semi-explicit DAE of the form

.
z1 = L(t, z1, z2,

.
z2), (5a)

z3 = R(t, z1, z2), (5b)

with differential components z1 ∈ C1(I,Rd), algebraic components z3 ∈ C0(I,Ra), and undeter-
mined components z2 ∈ C1(I,Ru), with u = n − d − a. When the undetermined components z2

are fixed, then the resulting system has (locally) a unique solution for z1 and z3, provided that a
consistent initial condition is given.

Theorem 1. [4] Let F in (1) be sufficiently smooth and satisfy Hypothesis 1 with µ, r, a, d, v and
u = n− d− a. Then every solution of (1) also solves the reduced problems (4) and (5) consisting
of d differential and a algebraic equations.

Note that in the reduced systems (4) and (5) we have not used the quantity v. This quantity
measures the number of equations in the original system that give rise to trivial equations 0 = 0,
i.e., it counts the number of redundancies in the system. Together with a and d it gives a complete
classification of the m equations into d differential equations, a algebraic equations and v trivial
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equations. Of course, trivial equations can be simply removed without altering the solution set.
Thus, the reduced systems (4) and (5) are regularizations of the original system (1).
Note that it can be sufficient to differentiate only a subset of equations in order to be able to
obtain a regularization. Then, the inflated system that is formed by adding only this subset of
derivatives to the original system is called a reduced derivative array.
In the following, the previously described approach of obtaining a regularized system via Hypoth-
esis 1 will be called the derivative array approach or algebraic approach.

Besides the strangeness index, another frequently used index concept is the concept of the differen-
tiation index (d-index). Roughly speaking, the d-index is defined as the minimal number of times
that all or part of the equations in the system must be differentiated in order to obtain an explicit
ordinary differential system for the unknown function z, for details see e.g. [1, 2]. This approach,
however, is only feasible for uniquely solvable square systems, since a DAE with free solution com-
ponents cannot lead to an ordinary differential equation. For a regular DAE, i.e., m = n = d+ a,
with well-defined strangeness index µ the differentiation index νd is also well-defined and

νd =

{
0 for a = 0,

µ+ 1 for a 6= 0.

In the following, we will consider a class of specially structured DAE systems, namely semi-explicit
DAEs of the form

.
x = f(t, x, y), (6a)

0 = g(t, x, y), (6b)

with f : I×Rnx ×Rny → Rnx and g : I×Rnx ×Rny → Rny , x : I→ Rnx , y : I→ Rny . We assume
that L0 6= ∅, where

L0 = {(t, x, y, .x) | .x = f(t, x, y), 0 = g(t, x, y)},
i.e., in particular, the constraints g(t, x, y) = 0 can be satisfied. Then, if the Jacobian

g,y is nonsingular for all points in L0, (7)

the system (6) satisfies Hypothesis 1 with n = m = nx + ny and characteristic values µ = 0,
a = ny, and d = nx, see [6]. In particular, semi-explicit systems (6) that satisfy the condition (7)
are of d-index νd = 1.

2.2 Structural Analysis for DAEs

In this paper we restrict our investigations to the Signature Method (or Σ-method) [11] for the
structural analysis of differential-algebraic systems. In contrast to the algebraic approach presented
in the previous section the Σ-method analyzes the properties of the system based on its sparsity
pattern. Other methods, in particular Pantelides Algorithm [10] are related to this method, see
Section 3.1. Here, we only shortly review the basic steps of the Σ-method. For more details, see
[8, 9, 11].
The Σ-method can be applied for general nonlinear DAEs of arbitrary high order p of the form

F (t, z,
.
z, . . . , z(p)) = 0, (8)

with F : I×Rn×· · ·×Rn → Rn sufficiently smooth and I ⊂ R. We denote by Fi the ith component
of the vector-valued function F and by zj the jth component of the vector z.
Then, the Σ-method consists of the following steps:

1. Building the signature matrix Σ = [σij ]i,j=1,...,n with

σij =

{
highest order of derivative of zj in Fi,

−∞ if zj does not occur in Fi.
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2. Finding a highest value transversal (HVT) of Σ, i.e., a transversal T of Σ

T = {(1, j1), (2, j2), . . . , (n, jn)},

where (j1, . . . , jn) is a permutation of (1, . . . , n), with maximal value

V al(T ) :=
∑

(i,j)∈T

σij .

3. Computing the offsets vectors c = [ci]i=1,...,n and d = [dj ]j=1,...,n with ci ≥ 0, dj ≥ 0 such
that

dj − ci ≥ σij for all i, j = 1, . . . , n, (9a)

dj − ci = σij for all (i, j) ∈ T. (9b)

4. Forming the Σ-Jacobian J = [Jij ]i,j=1,...,n, with

Jij :=


∂Fi

∂z
(σij)

j

if dj − ci = σij ,

0 otherwise.

(We call J the Σ-Jacobian since it is in general not equal to the analytical Jacobian, but
defined by the offset vectors.)

5. Building the reduced derivative array

F(t,Z) =



F1(t, z,
.
z, . . . , z(p))

d
dtF1(t, z,

.
z, . . . , z(p))
...

dc1

dtc1 F1(t, z,
.
z, . . . , z(p))
...

Fn(t, z,
.
z, . . . , z(p))

d
dtFn(t, z,

.
z, . . . , z(p))
...

dcn

dtcn Fn(t, z,
.
z, . . . , z(p))


= 0, (10)

with

Z =
[
z1

.
z1 . . . z

(d1)
1 . . . zn

.
zn . . . z

(dn)
n

]T
.

6. Success check: if the algebraic system F(t∗,Z∗) = 0 corresponding to (10) has a solution
(t∗,Z∗) with t∗ ∈ I and

Z∗ =
[
z1 w1

1 . . . wd11 . . . zn w1
n . . . wdnn

]T ∈ Rn+
∑n
i di

and J is nonsingular at (t∗,Z∗), then (t∗,Z∗) is a consistent point and the method succeeds.

If the Σ-method succeeds, it allows to determine the structural index of the DAE as

νS := max
i
ci +

{
0 if all dj > 0,

1 if some dj = 0,

and V al(Σ) defined as the value of the highest value transversal T corresponds to the number of
degrees of freedom of the system (i.e., the number of differential components d in Hypothesis 1).
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The HVT defines a mapping between variables and equations of maximal value, but it is usually
not uniquely determined. Also the offset vectors c and d are not uniquely defined by the conditions
(9), since for any feasible solution c, d, also the vectors [ci + θ]i, and [dj + θ]j for any θ > 0 form
a solution. A HVT as well as the offset vectors can be computed by solving a linear assignment
problem (LAP), see [11], i.e., Σ is the matrix of the LAP where each assignment is specified by
a transversal. This LAP (as a special kind of a linear programming problem) also has a dual
problem, and the offset vectors c and d are the corresponding solutions of the dual problem. Since
there exists a unique element-wise smallest solution of the dual problem, these so-called canonical
offsets are also uniquely determined and independent of the chosen HVT.

Remark 2. Note that the definition of the signature matrix Σ can be generalized for rectangular
systems with F : I× Rn × · · · × Rn → Rm and m 6= n in an analogous way.

Example 3. The basic steps of the Σ-method are illustrated for the example of the simple pen-
dulum of mass m = 1, length ` > 0 under gravity g, see also [11]. The system equations are given
by

F1(z,
.
z) =

.
p1 − q1 = 0,

F2(z,
.
z) =

.
p2 − q2 = 0,

F3(z,
.
z) =

.
q1 + 2p1λ = 0,

F4(z,
.
z) =

.
q2 + 2p2λ+ g = 0,

F5(z,
.
z) = p2

1 + p2
2 − `2 = 0,

(11)

where z =
[
p1 p2 q1 q2 λ

]T
. The signature matrix for the system (11) is given by

Σ =


1 − 0 − −
− 1 − 0 −
0 − 1 − 0

− 0 − 1 0

0 0 − − −

 , (12)

where the two possible HVTs are marked by gray and blue boxes. (Here, the entries − stand
for −∞.) The canonical offset vectors are given by c = [1, 1, 0, 0, 2] and d = [2, 2, 1, 1, 0], and
V al(Σ) = 2 (independently of the chosen HVT). The corresponding Σ-Jacobian is given by

J =


F1,

.
p1

0 F1,q1 0 0

0 F2,
.
p2

0 F2,q2 0

0 0 F3,
.
q1

0 F3,λ

0 0 0 F4,
.
q2

F4,λ

F5,p1 F5,p2 0 0 0

 =


1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 2p1

0 0 0 1 2p2

2p1 2p2 0 0 0


and the reduced derivative array (10) takes the form

F(t,Z) =



.
p1 − q1..
p1 −

.
q1.

p2 − q2..
p2 −

.
q2.

q1 + 2p1λ.
q2 + 2p2λ+ g
p2

1 + p2
2 − `2

2p1
.
p1 + 2p2

.
p2

2p1
..
p1 + 2

.
p

2
1 + 2p2

..
p2 + 2

.
p

2
2


= 0, (13)

with Z =
[
p1

.
p1

..
p1 p2

.
p2

..
p2 q1

.
q1 q2

.
q2 λ

]T
. Thus, the Σ-Jacobian J is nonsingu-

lar at every consistent point and the Σ-method succeeds with νS = maxi ci + 1 = 3. /
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The crucial step in the Σ-method is the success check, i.e., verifying the regularity of the Σ-
Jacobian at a consistent point. Systems for which the Σ-Jacobian is singular for all points (t,Z)
that solve the enlarged system (10) are called structurally singular∗. Accordingly, we will call
systems for which the Σ-method succeeds structurally regular.

Lemma 4. Consider a nonlinear DAE of the form

F (t, z,
.
z) = 0, (14)

with sufficiently smooth function F : I×Rn×Rn → Rn that satisfies Hypothesis 1. If the Σ-method
succeeds (locally at a consistent point), then the DAE (14) is (locally) regular.

Proof. Let (14) satisfies Hypothesis 1 with µ, r, a, d, v and u = n − d − a and assume that the
system is singular, i.e., u = v > 0. Thus, there are undetermined components of the solution
vector z of dimension u and redundancies or inconsistencies in the system. If no equation can
be assigned to be solved for an undetermined solution component, it means that there exists no
HVT in the corresponding signature matrix and the Σ-method fails. The same is true if there are
equations of the form Fi(t) = 0 in the system. On the other hand, redundancies in the system
lead to linear dependent rows in the corresponding Σ-Jacobian J and the success check of the
Σ-method will fail.

Remark 5. The sparsity structure of the system is essential for the success of the Σ-method.
Consider e.g. the system

F (t, z,
.
z) =

[ .
z1 − t .z2 + f1(t)
z1 − tz2 + f2(t)

]
which is regular and of d-index 2. For this system the success check of the Σ-method fails due
to a singular Σ-Jacobian. However, a simple equivalence transformation of the system using the
coordinate transformation [

z̃1

z̃2

]
:=

[
z1 − tz2

z2

]
leads to the equivalent system

F (t, z̃,
.
z̃) =

[ .
z̃1 + z̃2 + f1(t)
z̃1 + f2(t)

]
,

for which the Σ-method succeeds.

It has been shown in [11] that the Σ-method works successfully for certain classes of DAE systems,
amongst others for systems in Hessenberg form of size r ≥ 2 given by

0 =


G1(z1)

− .z1 +G2(z1, z2)
− .z2 +G3(z1, z2, z3)

...
− .zr−1 +Gr(z1, z2, . . . , zr−1, zr)


(of dimension n1)
(of dimension n2)
(of dimension n3)

...
(of dimension nr)

(15a)

with zi ∈ C1(I,Rni+1), i = 1, . . . , r − 1, and zr ∈ C(I,Rn1) and

G1,z1 ·G2,z2 · . . . ·Gr,zr is nonsingular (15b)

in a neighborhood of the solution. It is well known that systems in Hessenberg form have d-index
νd = r, see [1] (or s-index µ = r − 1, and a = rn1, d = n− a, n =

∑r
i=1 ni, see [6]). In particular,

Hessenberg systems include semi-explicit systems of d-index 2 and the equations of motion of
constrained multibody systems.

∗Note that the term structurally singular is also used slightly different in the literature: on the one hand, it is
used for systems that do not allow an assignment of the highest occurring derivative of each variables to an specific
equation (i.e., systems that do not have an HVT), and on the other hand it is used for systems with singular
Σ-Jacobian. Here, we use the term with respect to the second meaning.
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Theorem 6 ([11]). Consider a DAE system in Hessenberg form (15a) (of size r ≥ 2) that satisfies
condition (15b). Then, the Σ-method applied to (15a) succeeds (locally at a consistent point) with
νS = maxi ci + 1 = r = νd.

If the Σ-method succeeds the structural index determined by the offset vectors gives an upper
bound for the d-index of the system, i.e., νd ≤ νS , and only for specially structured systems as e.g.
systems in Hessenberg form we have equality of the two indices. Examples where the structural
index νS exceeds the d-index can be found in [12].
Another information that can be obtained from the structural analysis is a block triangular form
of the signature matrix Σ or of the Σ-Jacobian J, respectively. We define

SΣ := {(i, j) |σij > −∞}

as the sparsity pattern of Σ, and

SJ := {(i, j) | dj − ci = σij}

as the sparsity pattern of J. SJ depends on the offsets c and d obtained by the structural analysis,
while SΣ only depends on the structural information given by the DAE (8). In general, it holds that
SJ ⊆ SΣ for any offset vectors c, d. A block triangular form based on a specific sparsity pattern
is created by forming permutations of equations and variables. In the following, the permuted
matrices are denoted by

Σ̃ =

Σ̃11 . . . Σ̃1p

...
. . .

...

Σ̃p1 . . . Σ̃pp

 and J̃ =

J̃11 . . . J̃1p

...
. . .

...

J̃p1 . . . J̃pp

 ,
with blocks Σ̃ij , J̃ij of size Ni × Nj with Ni > 0 and

∑p
i=1Ni = n. The system is said to be in

block lower triangular (BLT) form based on SΣ, if the permuted signature matrix is in the form

Σ̃ =


Σ̃11 −∞ . . . −∞

... Σ̃22

...
...

. . . −∞
Σ̃p1 . . . . . . Σ̃pp

 ,
and the system is said to be in BLT form based on SJ, if the permuted Σ-Jacobian is in the form

J̃ =


J̃11 0 . . . 0

... J̃22

...
...

. . . 0

J̃p1 . . . . . . J̃pp

 .
Note that a BLT form based on SJ is often finer than a BLT form based on SΣ, since it puts J
into BLT form but not necessarily Σ. However, a BLT form based on SJ is only meaningful if the
structural analysis succeeds. Furthermore, the values of J may change with time, so the results
only hold locally.

3 Regularization for Structurally Regular DAEs

In order to obtain a regularized index reduced formulation of a given DAE system the information
provided by the structural analysis, e.g., by the Σ-method can be used. If the Σ-method succeeds
for a given system (8), the canonical offset vector c gives the required information which equations
have to be differentiated and how many times in order to be able to extract all hidden constraints,
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similar as in the derivative array approach. The reduced derivative array can be obtained by
adding the derivatives of Fi up to order ci to the original system resulting in system (10). Note
that this system is in general not the minimal reduced derivative array as considered e.g. in [5].
The extended system (10) consists of M =

∑
i ci + n equations in n unknowns z1, . . . , zn, more

precisely it depends on z1,
.
z1, . . . , z

(d1)
1 , . . . , zn,

.
zn, . . . , z

(dn)
n . Thus, we have to introduce

∑
i ci new

variables to get the same number of equations and unknowns. For each equation Fi, i = 1, . . . , n
we can select a variable zji based on the information provided by the HVT, i.e., we choose the
unique ji such that (i, ji) ∈ T . Then, in the case that ci > 0, we introduce the following new
variables:

w
σiji+1

ji
replacing z

(σiji+1)

ji
,

...

w
σiji+ci
ji

replacing z
(σiji+ci)

ji
= z

(dj)
j .

(16)

We collect these new variables into the vectors

wji :=


w
σiji+1

ji
...

w
σiji+ci
ji

 for ci > 0, and wji =
[
.
]

for ci = 0.

Note that this replacement of variables is not unique, since it depends on the chosen HVT. In order
to choose the best suitable HVT, i.e., one that is valid in a maximal neighborhood of a consistent
point, we use a weighting for the different possible HVTs. We define a (local) weighting coefficient
for each possible HVT by

κT :=
∏

(i,j)∈T

|Jij |.

If there is more than one possible HVT we choose one with largest value κT . In the following, we
denote by T ∗ a HVT of Σ with κT∗ = maxT (κT ).

Theorem 7. Consider a nonlinear DAE

F (t, z,
.
z) =

F1(t, z,
.
z)

...
Fn(t, z,

.
z)

 = 0 (17)

with sufficiently smooth function F : I× Rn × Rn → Rn that satisfies Hypothesis 1 and for which
the Σ-method succeeds with canonical offsets vectors c = [c1, . . . , cn] and d = [d1, . . . , dn]. Let T ∗

be a HVT of the corresponding signature matrix with κT∗ = maxT (κT ). The augmented system

F(t, z,
.
z, w) = 0, (18)

with
w =

[
wT1 . . . wTn

]T
is obtained by appending the differentiated equations

d`

dt`
Fi(t, z,

.
z) = 0, ` = 1, ..., ci, (19)

for each equation with ci > 0, i = 1, ..., n to the DAE (17) and introducing new variables

wji =
[
w
σiji+1

ji
. . . w

σiji+ci
ji

]T
for z

(σiji+1)

ji
, . . . , z

(σiji+ci)

ji
for the unique ji such that (i, ji) ∈ T ∗ whenever ci > 0, and wji = [.]

for ci = 0. Then the augmented system (18) is (locally) a regular system of d-index 1 (or s-index
µ = 0).
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Proof. We show that for the augmented system (18) the Σ-method succeeds with νS = 1. Then,
from Lemma 4 it follows that (18) is (locally) regular and of d-index νd = 1.
We start with a stepwise construction of the signature matrix for the augmented system (18). At
first we construct the signature matrix for the reduced derivative array (10) on the basis of the
given signature matrix Σ of (17). W.l.o.g. we can assume that the HVT T ∗ is on the diagonal
of Σ (otherwise we can permute the rows of Σ). For each row σi =

[
σi1 σi2 . . . σin

]
of Σ

corresponding to an equation with offset ci > 0 we add ci rows of the form

σ̃1
i =

[
σi1 + 1 σi2 + 1 . . . σin + 1

]
...

σ̃cii =
[
σi1 + ci σi2 + ci . . . σin + ci

]
to the original signature matrix Σ (using the convention that −∞ + k = −∞ for all k ∈ N).
Permuting the rows of the resulting signature matrix such that the first n rows correspond to the
original matrix Σ followed by the rows σ̃1

1 , . . . , σ̃
c1
1 up to σ̃1

n, . . . , σ̃
cn
n , the signature matrix of the

reduced derivative array can be written as

σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn
σj11 + 1 σj12 + 1 . . . σj1n + 1

...
...

. . .
...

σj11 + cj1 σj12 + cj1 . . . σj1n + cj1
...

...
σjm1 + 1 σjm2 + 1 . . . σjmn + 1

...
...

. . .
...

σjm1 + cjm σjm2 + cjm . . . σjmn + cjm



=: [σ̃ij ]i=1,...,M,j=1,...,n, (20)

with distinct j1, . . . , jm ∈ I := {i ∈ {1, . . . , n} | ci > 0}. To construct the augmented sys-
tem (18), for each equation Fi of (17) with corresponding offset ci > 0 new variables wi =

[wσii+1
i , . . . , wσii+cii ]T are introduced and every occurrence of z

(σii+1)
i in (10) is replaced by wσii+1

i ,

every occurrence of z
(σii+2)
i is replaced by wσii+2

i , and so on, up to z
(σii+ci)
i = z

(di)
i that is replaced

by wσii+cii in all equations of the reduced derivative array. Note that since T ∗ is assumed to be
on the diagonal of Σ we always have (i, i) ∈ T ∗ for i = 1, . . . , n.
Then, the signature matrix for the augmented system (18) can be constructed as follows: for
each equation Fi with i ∈ I we consecutively add new columns to the signature matrix (20)
corresponding to the newly introduced variables wσii+1

i , . . . , wσii+cii . Additionally, we update the
entries in i-th column of the signature matrix (20) (since T ∗ is on the diagonal). In detail this
process can be described as follows. We append a new column for the variable wσii+1

i to the matrix
(20). The entries σ̃`i in the i-th column of (20) are replaced by

σ̄`i :=

{
σ̃`i if σ̃`i ≤ σ̃ii
σ̃`i − 1 if σ̃`i > σ̃ii

(21)

for all ` = 1, . . . ,M . In the newly introduced column for the variable wσii+1
i , lets say column

n + 1, we set σ`,n+1 = 0 whenever σ̃`i > σ̃ii for all ` = 1, . . . ,M (see (21)), otherwise we set
σ`,n+1 = −∞. We proceed in the same way for the next variable wσii+2

i until we reach wσii+cii .
This process is repeated for all equations Fi with i ∈ I. Finally, we obtain a signature matrix of

10



the form

σ11 σ̃12 . . . σ̃1n ≤ 0 . . . . . . ≤ 0 ≤ 0 · · · · · · ≤ 0

σ̃21 σ22

...
... ≤ 0

... · · ·
... ≤ 0

...
...

. . .
...

...
. . .

... · · ·
...

. . .
...

σ̃n1 · · · · · · σnn ≤ 0 · · · · · · ≤ 0 ≤ 0 · · · · · · ≤ 0

σ̃n+1,1 · · · · · · σ̃n+1,n 0 ≤ 0 · · · ≤ 0 ≤ 0 · · · · · · ≤ 0
...

. . .
...

...
. . .

. . .
... · · ·

...
. . .

...
...

. . .
...

...
. . . ≤ 0

...
. . .

...

σ̃n+cj1 ,1
· · · · · · σ̃n+cj1 ,n

0 · · · · · · 0 ≤ 0 · · · · · · ≤ 0
...

...
...

. . .
...

σ̃M−cjm+1,1 · · · · · · σ̃M−cjm+1,n ≤ 0 . . . . . . ≤ 0 0 ≤ 0 . . . ≤ 0
...

. . .
...

...
. . .

... · · ·
...

. . .
. . .

...
...

. . .
...

...
. . .

...
...

. . . ≤ 0

σ̃M1 · · · · · · σ̃Mn ≤ 0 . . . . . . ≤ 0 0 . . . . . . 0



.

(22)

Note that the signature matrix obtained in this way might overestimate the real signature matrix
of the augmented system (18) since derivatives of lower order, e.g., of order σij − 1, might not
actually occur in the corresponding equation. However, as mentioned in [11], this overestimation
does not influence the result of the signature method.
The first n diagonal entries are not changed during this construction and all other entries in the
first upper left block (the original signature matrix Σ) are either decreased or unchanged. Also,
all entries in the first n columns are either smaller than the entries in the HVT position or of the
same magnitude. Furthermore, in the newly added columns only values σij ≤ 0 are introduced.
Thus, for the signature matrix (22) we have again a HVT on the diagonal. The canonical offset
vectors are given by c = [0, . . . , 0] and d = [σ11, . . . , σnn, 0 . . . , 0] (the values in the position of the
HVT). The Σ-Jacobian corresponding to the augmented system is still regular since by adding
the derivatives of equations and introducing the new algebraic variables no linear dependencies
are introduced and the Σ-Jacobian of the original systems has been regular. Thus, the Σ-method
succeeds (locally at a consistent point) with structural index νS = 1.

Theorem 7 allows us to compute a regularization for a nonlinear DAE (17) whenever the Σ-method
can be successfully applied. Thus, from Theorem 7 we can obtain a system of d-index 1 that is
much better suited for numerical computations. In the following, we call (18) the regularized system
and the proceeding as in Theorem 7 will be denoted as the structural approach for regularization.

Example 8. To clarify the above described regularization process we consider again the pendulum
equations (11) given in Example 3. The system (11) is regular and of d-index νd = 3 and s-index
µ = 2. It is well-known that the algebraic constraint is given by F5(z,

.
z) = 0 and this equation

has to be differentiated twice to obtain an d-index 1 system (using some algebraic manipulations
of the resulting equations). The extended system (13) consists of 9 equations in 5 unknowns. If
we choose the HVT T ∗ = T1 marked by the blue boxes in the signature matrix (12) (assuming
that κT1

= 2p2
2 ≥ κT2

= 2p2
1), then we introduce the new variables

w1
3 for

.
q1 (=̂

.
z3)

w2
2 for

..
p2 (=̂

..
z2)

w1
1 for

.
p1 (=̂

.
z1)

w2
1 for

..
p1 (=̂

..
z1)

11



and we get the augmented system

w1
1 − q1

w2
1 − w1

3.
p2 − q2

w2
2 −

.
q2

w1
3 + 2p1λ.

q2 + 2p2λ+ g
p2

1 + p2
2 − `2

2p1w
1
1 + 2p2

.
p2

2p1w
2
1 + 2(w1

1)2 + 2p2w
2
2 + 2

.
p

2
2


= 0 (23)

with unknowns p1, p2, q1, q2, λ, w
1
1, w

2
1, w

2
2, w

1
3. If we apply the Σ-method to the augmented system

(23) (with z =
[
p1 p2 q1 q2 λ w1

1 w2
1 w2

2 w1
3

]T
) we get the signature matrix

− − 0 − − 0 − − −
− − − − − − 0 − 0

− 1 − 0 − − − − −
− − − 1 − − − 0 −
0 − − − 0 − − − 0

− 0 − 1 0 − − − −
0 0 − − − − − − −
0 1 − − − 0 − − −
0 1 − − − 0 0 0 −


with HVT of value V al(Σ) = 2 and c = [0, . . . , 0], d = [0, 1, 0, 1, 0, 0, 0, 0, 0]. The corresponding
Σ-Jacobian is given by

J =



0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 −1
0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0

2λ 0 0 0 2p1 0 0 0 1
0 0 0 1 2p2 0 0 0 0

2p1 0 0 0 0 0 0 0 0
2w1

1 2p2 0 0 0 2p1 0 0 0
2w2

1 4
.
p2 0 0 0 4w1

1 2p1 2p2 0


which is nonsingular (at a consistent point) and the structural analysis succeeds with structural
index νS = 1. /

Theorem 7 can also be applied if the Σ-method overestimates the d-index as can be seen in the
following example.

Example 9. We consider the simple RC-circuit example from [12] depicted in Figure 1. The
modified nodal analysis results in a DAE system of the form C −C 0

−C C 0
0 0 0

 .η1.
η3.
ι

−
0 0 1

0 −G 0
1 0 0

η1

η3

ι

 =

 0
0

V (t)


of d-index 1, where ι denotes the current in the voltage source, C denotes the capacitance of the
capacitor and G denotes the conductance of the resistor, V (t) is a function describing the voltage
at the voltage source, and η1, η3 are the node potentials at node 1 and 3. The signature matrix
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2 3

1

V

C

G

Figure 1: Simple electrical RC-circuit

and Σ-Jacobian are given by

Σ =

 1 1 0

1 1 −
0 − −

 , J =

 C −C −1
−C C 0
−1 0 0


and the Σ-method succeeds with c = [0, 0, 1], d = [1, 1, 0] and structural index νS = 2 > νd = 1.
The extended system is obtained by differentiating the last equation once, and introducing w1

1 for
.
η1 results in the augmented system

0 −C 0 0
0 C 0 0
0 0 0 0
0 0 0 0



.
η1.
η3.
j
.
w

1
1

−


0 0 1 −C
0 −G 0 C
1 0 0 0
0 0 0 1



η1

η3

j
w1

1

 =


0
0

V (t)
.
V (t)

 .
This system is still regular and of d-index 1, but now the Σ-method succeeds with structural index
νS = 1. /

3.1 Relation to Pantelides Algorithm and the Dummy Derivative Ap-
proach

Our approach of reducing the index of a DAE based on the structural analysis formulated in
Theorem 7 is similar to the Method of Dummy Derivatives [7], where Pantelides Algorithm [10] is
used to determine the number of times each equation has to be differentiated in order to obtain a
reduced derivative array. It has been shown in [11] that Pantelides Algorithm and the Signature
Method are essentially equivalent in the sense that if they both can be applied and they both
succeed (or converge) they result in the same structural index and the offset vector c = [ci]
corresponds to the number of differentiations for each equation Fi as determined by Pantelides
algorithm.
However, while in the dummy derivative method an algorithm (described in [7]) that is based
on selecting certain columns of the Jacobian to obtain a regular submatrix is described and the
selection of the variables which derivatives are replaced are based on this algorithm, in our method
the selection of variables is directly prescribed by the HVT T ∗ and the offset vectors. This selection
of variables is much easier to achieve and requires no further numerical computations once the
structural analysis has been done. As a result, the selected variables are not necessarily the same
and the two approaches might result in a different d-index-1 system.
A further great advantage of the signature method is the direct success check (i.e., checking the
regularity of the Σ-Jacobian) that clarifies if the structural analysis has been successful. In con-
trast, Pantelides Algorithm will not converge for structurally singular systems. Another difference
between the methods is that while the signature method can directly be applied to higher order
DAE systems Pantelides method cannot. Note that Pantelides algorithm might call for unneces-
sary differentiations in the same way as the signature method (see Example 9).
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Both approaches, the dummy derivative method and Theorem 7, only work for regular (uniquely
solvable) systems. However, the advantage of using the signature method as in Theorem 7 is the
direct success check that allows to use the results for further treatment, see Section 4.

4 Structural-Algebraic Approach for Coupled Systems

From now on we want to consider coupled systems of DAEs where in each subsystem Si the
dynamics are given by a semi-explicit DAE of the form

Si :

{ .
x
i

= f i(t, xi, yi, ui),
0 = gi(t, xi, yi, ui),

(24)

with differential state variables xi ∈ Rnix , algebraic state variables yi ∈ Rn
i
y and inputs ui ∈ Rniu .

We assume that for given input ui each of these subsystems is of d-index 1. By condition (7) this

means that the Jacobian gi,yi is nonsingular for all points (t, xi, yi,
.
x
i
) in the solution manifold

Li0 := {(t, xi, yi, .xi) ∈ I× Rn
i
x × Rn

i
y × Rn

i
x | .xi = f i(t, xi, yi, ui), gi(t, xi, yi, ui) = 0}

of the corresponding subsystem (assuming that ui is given). This assumption is justified by
considering a separate regularization of each (uni-physical) subsystem in a pre-processing step as
described in Section 2. Hereby, the special structure of each uni-physical subsystem can be taken
into account. Moreover, for reasons of clarity and readability we restrict to cyclic coupling of two
subsystems S1 and S2 via coupling conditions given by

ui = Gij(t, x
j , yj), i, j = 1, 2, i 6= j, (25)

see Figure 2. The functions Gij ∈ C(I× Rnjx × Rn
j
y ,Rniu), describing the connection of the states

S1

S2
u2

u1

(x2, y2)

(x1, y1)

Figure 2: Cyclic coupling of two subsystems.

of subsystem Sj to the input of subsystem Si, are assumed to be sufficiently smooth. With this
considerations the coupled system that we will consider is given by[

.
x

1

.
x

2

]
=

[
f1(t, x1, y1, G12(x2, y2))
f2(t, x2, y2, G21(x1, y1))

]
,[

0
0

]
=

[
g1(t, x1, y1, G12(x2, y2))
g2(t, x2, y2, G21(x1, y1))

]
,

(26)

or, equivalently, by

.
x = f(t, x, y),
0 = g(t, x, y)

(27)

using the notation

x =

[
x1

x2

]
∈ Rnx , y =

[
y1

y2

]
∈ Rny , f =

[
f1

f2

]
, g =

[
g1

g2

]
, (28)
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with nx = n1
x + n2

x and ny = n1
y + n2

y.
Even if both subsystems S1 and S2 are of d-index 1, a cyclic coupling as in (26) can easily lead to
a high index system as can been seen in the following example.

Example 10. Consider the two d-index 1 systems (for given ui)

Si :

{ .
x
i

= αiyi + bi(t),
0 = yi + ui + ci(t),

i = 1, 2

with non-zero coefficients αi ∈ R and coupling conditions

u1 = δx2 + εy2, u2 = γx1 + βy1, δ, ε, γ, β ∈ R. (29)

The coupled system is given by
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



.
x

1

.
x

2

.
y

1

.
y

2

 =


0 0 α1 0
0 0 0 α2

0 δ 1 ε
γ 0 β 1



x1

x2

y1

y2

+


b1

b2

c1

c2

 . (30)

If ε · β 6= 1, the coupled system (30) is regular and of d-index νd = 1. However, if ε · β = 1, the
Jacobian g,y of (30) is singular and depending on the parameter α1, α2, δ, γ different scenarios can
occur. If δ = γ = 0 the system is non-regular (i.e., the d-index is not defined), but strangeness-
free, i.e., the s-index is µ = 0, and for the solvability of the system the consistency condition
βc1(t) = c2(t) for all t has to be satisfied. For other choices of the parameters an increase in the
index and/or redundancies occur, e.g., if we chose β = ε = 1 as well as α1 = α2 = δ = 1 and
γ = −1 we get a regular system of d-index 3. /

In general, it holds that the system (27) is regular and of d-index 1 if and only if the Jacobian

g,y(t, x, y) =

[
g1
,y1 g1

,u1 ·G12,y2

g2
,u2 ·G21,y1 g2

,y2

]
(31)

is nonsingular for all points (t, x, y) ∈ M = {(t, x, y) ∈ I × Rnx × Rny | g(t, x, y) = 0} (cp. with
(7)). If the index-1-condition (31) is not satisfied, then an increase in the index can occur (that
can be arbitrary high) and/or equations of the form 0 = 0 + γ(t) are included in the system that
lead to redundancies or inconsistencies, i.e., the DAE is not or not uniquely solvable anymore. In
the latter case the concept of the d-index cannot be applied anymore and one has to consider the
more general strangeness-index concept.
In the following, we want to investigate the use of the structural analysis, in particular of the
Σ-method as presented in Section 2.2 and 3 , for the regularization of coupled systems (27).

4.1 The Signature Method for Coupled Systems

We apply the Σ-method presented in Section 2.2 to the coupled system (27). At first we review
the system of Example 10.

Example 11. If we apply the Σ-method to the coupled system (30) (with α1, α2, δ, γ, ε, β 6= 0),
we get the signature matrix

Σ =


1 − 0 −
− 1 − 0

− 0 0 0

0 − 0 0

 (32)
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with marked HVT on the diagonal and canonical offset vectors c = [0, 0, 0, 0] and d = [1, 1, 0, 0].
The corresponding Σ-Jacobian is given by

J =


1 0 −α1 0
0 1 0 −α2

0 0 −1 −ε
0 0 −β −1

 , (33)

and J is singular if ε · β = 1, i.e., the success check of the Σ-method fails. However, we have seen
in Example 10 that for the choice ε ·β = 1 the system can be regular but of d-index larger than 1,
i.e., the system is uniquely solvable, and from this perspective perfectly good-natured. Otherwise,
i.e., if ε ·β 6= 1, the Σ-Jacobian is nonsingular, and the structural index is determined to be νS = 1
which corresponds to the d-index. /

The same observations as in Example 11 can be made for general coupled systems of the form (26)
with

F (t, x1, x2, y1, y2,
.
x

1
,
.
x

2
) =


.
x

1 − f1(t, x1, y1, G12(x2, y2))
.
x

2 − f2(t, x2, y2, G21(x1, y1))
g1(t, x1, y1, G12(x2, y2))
g2(t, x2, y2, G21(x1, y1))

 = 0. (34)

At first we can formulate the following Lemma.

Lemma 12. Consider a coupled system of the form (34) which is composed by coupling two semi-
explicit d-index 1 subsystems (24), i.e., gi,yi is nonsingular for i = 1, 2. Then, the Σ-method applied

to (34) yield the canonical offset vectors c = [0, . . . , 0] and d = [di]i=1,...,n with

di =

{
1 for i ≤ nx,
0 for i > nx,

where nx = n1
x + n2

x.

Proof. The signature matrix of (34) is of the form

Σ =



1 ≤ 0 · · · ≤ 0

≤ 0 1
. . .

... ≤ 0
...

. . .
. . . ≤ 0

≤ 0 · · · ≤ 0 1
≤ 0 · · · ≤ 0

≤ 0
...

. . .
...

≤ 0 . . . ≤ 0


(35)

Since the Jacobians gi,yi , i = 1, 2 of (34) are assumed to be nonsingular, we can permute the
algebraic equations such that there are non-zero values on the diagonal of the lower right block
matrix in (35), i.e., the signature matrix of the permuted system is of the form

Σ̃ =



1 ≤ 0 · · · ≤ 0

≤ 0 1
. . .

... ≤ 0
...

. . .
. . . ≤ 0

≤ 0 · · · ≤ 0 1

0 ≤ 0 · · · ≤ 0

≤ 0 ≤ 0 0
. . .

...
...

. . .
. . . ≤ 0

≤ 0 . . . ≤ 0 0


(36)
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with HVT on the main diagonal. Thus, the canonical offsets are given by c̃i = 0 for i = 1, . . . , n,
d̃j = 1 for j = 1, . . . , nx, and d̃j = 0 for j = nx + 1, . . . , n. Since only the algebraic equations have
been permuted we get the same canonical offset vectors for the original system.

From Lemma 12 we immediately get that the structural index of the coupled system (34) deter-
mined by the canonical offset vectors of Σ-method is given by

νS = max
i
ci + 1 = 1.

Furthermore, the corresponding Σ-Jacobian of the coupled system (34) is given by

J =



1
. . . ∗

1

0 ∂g
∂ỹ


. (37)

Thus, J is nonsingular at a consistent point if and only if the Jacobian g,y is nonsingular at this
point, which means that the coupled system (34) is of d-index νd = 1. Otherwise, the success
check of the Σ-method fails due to singularity of the Σ-Jacobian. Altogether, we have shown the
following key result.

Theorem 13. The Σ-method applied to a coupled system of the form (27) that is composed by
coupling two semi-explicit d-index 1 systems (24) succeeds if and only if the the coupled system
(27) is again of d-index 1. If the Σ-method succeeds the structural index of (27) is determined to
be νS = νd = 1.

As a consequence of Theorem 13, if g,y is singular, i.e., the coupled system (34) is of higher index
and/or non-regular, the success check of the Σ-method fails and the structural analysis cannot
handle the problem. In this case, even if the coupled system (34) is regular and well-posed a
regularization using the structural approach is not possible. We want to emphasize that this is
not a weakness that occurs only for the Σ-method, but a problem that occurs for all structural
methods, cf. Section 3.1. Thus, in the following, we will present a new combined structural-
algebraic approach that allows to handle these kind of coupled problems in the cases where the
structural analysis fails.

Remark 14. For coupled systems of the form (27) that are composed of semi-explicit d-index-1
subsystems, the coupled system can only be of higher index if the system is structurally singular,
i.e., the signature method fails. It is not possible that the coupled system (27) is of higher index
and nevertheless the signature method can be applied successfully.

4.2 The Combined Structural-Algebraic Approach

A way out for structurally singular system is a combination of the structural approach presented in
Section 3 with the algebraic approach presented in Section 2 that will be discussed in the following.
We assume that the Σ-method applied to the coupled system (26) with appropriate reordering of
equations and variables yields a signature matrix of the form

 Σ11 Σ12

Σ21 Σ22

 :=

 Ĩnx ≤ 0

≤ 0 0̃ny

 (38)
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using the notation

Ĩn :=

 1 ≤ 0
. . .

≤ 0 1

 ∈ Rn×n, 0̃n :=

 0 ≤ 0
. . .

≤ 0 0

 ∈ Rn×n. (39)

Thus, we have a HVT on the main diagonal and the corresponding Σ-Jacobian is given by[
J11 J12

J21 J22

]
:=

[
Inx ∗
0 g,y

]
. (40)

If the Jacobian g,y = J22 is singular the success check of the Σ-method fails. A singular Jacobian
g,y means that the coupled system (26) is either regular but of d-index larger than 1, or non-regular
(in particular, if the Jacobian g,x vanishes identically) with also possibly higher s-index.
Our aim now is to use as much information as possible from the structural analysis in order to
classify the coupled system as regular or non-regular and, consequently, to compute a regularized
formulation that can be used for numerical computations. Therefore, we first have to identify the
equations and differential variables that are responsible for a d-index higher than 1. In a second
step, we have to differentiate these equations and add the differentiated equations to the original
system. For this enlarged system we can introduce new algebraic variables (for the identified
differential variables) and replace certain derivatives. We will see that, if the resulting system is
still of high index, we can repeat this process iteratively.
In order to reduce the numerical effort we first transform the block Σ22 of the signature matrix
(38) into BLT form, i.e., by row/column permutation we compute a block partitioning such that

Σ̃22 =


Σ̃11

22 −∞ . . . −∞
Σ̃21

22 Σ̃22
22

. . .
...

...
. . . −∞

Σ̃p122 . . . Σ̃p,p−1
22 Σ̃pp22


with square diagonal blocks Σ̃ii22 = 0̃Ñi of size Ñi × Ñi in the form (39) with

∑p
i=0 Ñi = ny. The

blocks Σ̃ij22 below the block diagonal only have entries ≤ 0. Note, that we still have an HVT on
the diagonal after permutation. The block J22 of the Σ-Jacobian (40) is permuted accordingly to
the form

J̃22 =


J̃11

22 0 · · · 0

J̃21
22 J̃22

22

. . .
...

...
. . . 0

J̃p122 . . . J̃p,p−1
22 J̃pp22

 .
In the following, the coupled system permuted and partitioned according to the BLT form of Σ
and J is denoted by

.
x = f(t, x, ỹ1, . . . , ỹp),

0 = g̃1(t, x, ỹ1, . . . , ỹp),

...

0 = g̃p(t, x, ỹ1, . . . , ỹp),

and ỹ =
[
ỹT1 . . . ỹTp

]T
, g̃ =

[
g̃T1 . . . g̃Tp

]T
. Note, that we have only permuted the algebraic

variables and algebraic equations. Now, the singularity of J corresponds to the singularity of some
of the diagonal blocks J̃ii22 of J̃22 and we denote by

J := {i ∈ {1, . . . , q} | det(J̃ii22) = 0}
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the index set of singular blocks J̃ii22. Using this information we can proceed as follows:

Procedure 1. Given a coupled system (27) with signature matrix Σ =: Σ0, canonical offset vectors
c and d, and Σ-Jacobian J =: J0, i = 0.

1. Transformation to BLT form: We transform the blocks Σi22 and Ji22 to the BLT forms
Σ̃i22 and J̃i22 and determine the set Ji of singular blocks in J̃i22. If Ji = ∅ the Σ-method
succeeds with νS = 1 and we proceed with Step 7.

2. Selection of equations: We need to identify the equations that are responsible for non-
regularity or high index. For each block J̃jj22 with j ∈ Ji we compute a smooth matrix function
Uj(t, x, ỹ) of pointwise full rank such that the columns of Uj(t, x, ỹ) form a basis of the null

space of (J̃jj22)T . Let Uj(t, x, ỹ) be of size Ñj × kj, i.e., kj = dim(kernel((J̃jj22)T )).

3. Construction of the enlarged system: For each j ∈ Ji we have to differentiate the
equations determined by

Uj(t, x, ỹ)T g̃j(t, x, ỹ) = 0.

Defining

hj(t, x, ỹ,
.
x,
.
ỹ) :=

d

dt

(
Uj(t, x, ỹ)T g̃j(t, x, ỹ)

)
for all j ∈ Ji

we can built up the enlarged system .x− f(t, x, ỹ)
g̃(t, x, ỹ)

h(t, x, ỹ,
.
x,
.
ỹ)

 =

0
0
0

 . (41)

where
h(t, x, ỹ,

.
x,
.
ỹ) := [hj(t, x, ỹ,

.
x,
.
ỹ)]j∈Ji

collects all added differentiated equations.

4. Introduction of new variables: For each j ∈ Ji we have to introduce kj new variables
and replace the derivatives of selected differential variables. The differential variables are
selected based on the sparsity pattern of the signature matrix of the enlarged system (41).
Let

Σ̃iE =

 Σi11 Σ̃i12

Σ̃i21 Σ̃i22

Σ̃i31 Σ̃i32


denote the signature matrix of the enlarged system (41). For the block Σ̃i31 of size Ki × nx
with Ki =

∑
j∈Ji kj, we determine a transversal

Th = {(1, `1), (2, `2), . . . , (Ki, `Ki)},

where {`1, . . . , `Ki} is a disjoint subset of {1, . . . , nx} and the value of Th is

V al(Th) =
∑

(i,j)∈Th

σ̃ij = Ki.

In addition, the condition that the Jacobian h,[ .x`1 ,...,
.
x`Ki

] is nonsingular has to be satisfied.

If we cannot find a transversal Th with V al(Th) = Ki and nonsingular h,[ .x`1 ,...,
.
x`Ki

] the

system is non-regular and we stop the procedure. Otherwise, each occurrence of
.
x`m in (41)

is replaced by a new variable w`m for m = 1, . . . ,Ki leading to the augmented system

F i(t,
.
x, x, ỹ, w) = 0, w =

[
w`1 . . . w`m

]T
. (42)
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5. Transformation to semi-explicit form: We transform the augmented system (42) again
to semi-explicit form by permuting the remaining differential variables to the front positions
and the remaining differential equations to the top, while replacing the (possibly occurring)
differential variables in the newly added equations. Thus, we get a semi-explicit augmented
system of the form

.
x̂ = f̂(t, x̂, ŷ),

0 = ĝ(t, x̂, ŷ),
(43)

with reduced number of differential variables x̂ and increased number of algebraic variables
ŷ.

6. Application of Σ-method to the augmented system: We apply the Σ-method to the
augmented semi-explicit system (43) and obtain the signature matrix Σi+1 and Σ-Jacobian
Ji+1. If the Σ-method succeeds with νS ≥ 1 we proceed with Step 7. Otherwise, i.e., if the
Σ-method fails, we go to Step 1 and proceed iteratively with i← i+ 1.

7. Index reduction: If the Σ-method succeeds we can use the index reduction proposed in
Theorem 7, if νS = 1 we are done and we have constructed a regularized system.

Remark 15. If the Σ-Jacobian has been nonsingular in the beginning, the Steps 2.-6. are omitted
since J0 = ∅. In this case, the semi-explicit augmented system (43) is just the original system (27)
and the Σ-method can be applied successfully. In each iterative step of Procedure 1 the newly
introduced variables are purely algebraic, i.e., the number of differential equations is reduced after
each iteration and, thus, the procedure terminates after finitely many steps.

Theorem 16. Consider a coupled system (27) of differential-algebraic equations. If we apply
Procedure 1, then the process terminates after finitely many steps, either with a resulting regularized
system for which the Σ-method succeeds, or due to observed redundancies in the system (43).

Proof. If the Σ-Jacobian J has been regular in the beginning, the procedure finishes in the 0th
iteration and the Σ-method can be applied successfully. Then, the index reduction proposed in
Theorem 7 can be applied resulting in a regularized system.
Otherwise, if at least one block of J̃i22 is singular in the i-th step of the iterative procedure, i.e.,
Ji 6= ∅, for each singular block J̃jj22, j ∈ Ji of dimension Ñj × Ñj the dimension of kernel(J̃jj22)T

is kj > 0. Thus in the enlarged system (41) Ki > 0 equations are added to the system. The
newly introduced variables are purely algebraic, i.e., in the augmented system the number of
differential variables is reduced after each iteration of the procedure and Procedure 1 terminates
after finitely many steps. If no transversal Th can be found with V al(Th) = Ki and h,[ .x`1 ,...,

.
x`Ki

]

nonsingular, the system (41) is non-regular. Otherwise, introducing new algebraic variables for
derivatives of some of the differential variables does not influence the regularity of the system,
but eliminates some of the coupling of algebraic variables into differential equations (causing the
higher index of the problem). If, after transformation to semi-explicit form, the Σ-method can
be applied successfully the regularization procedure of Theorem 7 can be applied. Otherwise,
iteratively applying the procedure either reveals non-regularities or results in a system for which
the Σ-method succeeds.

Example 17. We apply Procedure 1 to the system (30) for the case that ε ·β = 1 and γ 6= 0, i.e.,
in the case where the success check fails (see Example 11). The lower right block of the signature
matrix (32) is already given in BLT form, i.e., there is just one 2-by-2 block Σ̃0

22 and J̃0
22 is given

by

J̃0
22 =

[
−1 −ε
−β −1

]
.
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Therefore, we only need to compute the null space of J̃0
22 =

[
−1 −ε
−β −1

]
. We get U0

1 =

[
−β
1

]
as a

basis of kernel((J̃0
22)T ). Thus, we have to differentiate the equation

0 = γx1 − βδx2 − βc1 + c2,

yielding
0 = γ

.
x

1 − βδ .x2 − β .c1 +
.
c
2
.

Appending this equation to the original system (30) yields the enlarged system
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
−γ βδ 0 0



.
x

1

.
x

2

.
y

1

.
y

2

 =


0 0 α1 0
0 0 0 α2

0 δ 1 ε
γ 0 β 1
0 0 0 0



x1

x2

y1

y2

+


b1

b2

c1

c2

−β .c1 +
.
c
2

 . (44)

The signature matrix of this enlarged system is given by

Σ̃0
E =


1 − 0 −
− 1 − 0
− 0 0 0
0 − 0 0
1 1 − −

 (45)

and we can find e.g. the transversal
Th = {(1, 1)}

with h, .x1
=
[
−γ
]

nonsingular. Thus, each occurrence of
.
x1 is replaced by the new variable w1

and we get 
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 βδ 0 0 0



.
x

1

.
x

2

.
y

1

.
y

2

.
w

1
1

 =


0 0 α1 0 −1
0 0 0 α2 0
0 δ 1 ε 0
γ 0 β 1 0
0 0 0 0 γ



x1

x2

y1

y2

w1
1

+


b1

b2

c1

c2

−β .c1 +
.
c
2

 . (46)

The augmented system (46) again transformed to semi-explicit form
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



.
x

2

.
x

1

.
y

1

.
y

2

.
w

1
1

 =


0 0 0 α2 0
0 0 α1 0 −1
δ 0 1 ε 0
0 γ β 1 0
0 0 0 βδα2 −γ



x2

x1

y1

y2

w1
1

+


b2

b1

c1

c2

βδb2 + β
.
c
1 − .

c
2

 . (47)

Now, the Σ-method applied to this new system yields

Σ1 =


1 − − 0 −
− − 0 − 0

0 − 0 0 −
− 0 0 0 −
− − − 0 0


with c = [0, 0, 0, 0, 0], d = [1, 0, 0, 0, 0], and the Σ-Jacobian is given by

J1 =


1 0 0 −α2 0
0 0 −α1 0 1
0 0 −1 −ε 0
0 −γ −β −1 0
0 0 0 −βδα2 γ

 .
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The BLT form is given by

Σ̃1 =


1 − − 0 −
− 0 0 0 −
− − 0 − 0

0 − 0 0 −
− − − 0 0

 , J̃1 =


1 0 0 −α2 0
0 −γ −β −1 0
0 0 −α1 0 1
0 0 −1 −ε 0
0 0 0 −βδα2 γ

 .

The regularity of

J̃1
22 =


−γ −β −1 0
0 −α1 0 1
0 −1 −ε 0
0 0 −βδα2 γ


depends on the given parameter. If det(J̃1

22) 6= 0, the success check of the Σ-method succeeds and
the procedure terminates, otherwise we have det(J̃1

22) = −γ(γα1ε+βδα2) = 0. In the second case,
since γ 6= 0, we have γα1ε+ βδα2 = 0 and a basis for the kernel of (J̃1

22)T is given by

U1
1 =


0
−γ
α1γ

1

 .
We have to differentiate the equation

0 = α1γδx2 − γb1 + α1γc1 + β
.
c
1 − .

c2 + βδb2,

giving

0 = α1γδ
.
x

2 − γ
.
b
1

+ α1γ
.
c
1

+ β
..
c
1 − ..c2 + βδ

.
b
2
.

The extended system is given by
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−α1γδ 0 0 0 0




.
x

2

.
x

1

.
y

1

.
y

2

.
w

1
1

 =


0 0 0 α2 0
0 0 α1 0 −1
δ 0 1 ε 0
0 γ β 1 0
0 0 0 βδα2 −γ
0 0 0 0 0




x2

x1

y1

y2

w1
1



+



b2

b1

c1

c2

βδb2 + β
.
c
1 − .

c
2

−γ
.
b
1

+ α1γ
.
c
1

+ β
..
c
1 − ..c2 + βδ

.
b
2


.

The signature matrix for the extended system is given by

Σ̃1
E =


1 − − 0 −
− − 0 − 0
0 − 0 0 −
− 0 0 0 −
− − − 0 0
1 − − − −

 (48)

and we can find the only transversal
Th = {(1, 1)}
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and h, .x2
=
[
−α1γδ

]
. If −α1γδ 6= 0 this Jacobian is is nonsingular (otherwise the system is

non-regular) and each occurrence of
.
x2 is replaced by the new variable w2 and we get the purely

algebraic system
0
0
0
0
0
0

 =


0 0 0 α2 0 −1
0 0 α1 0 −1 0
δ 0 1 ε 0 0
0 γ β 1 0 0
0 0 0 βδα2 −γ 0
0 0 0 0 0 α1γδ




x2

x1

y1

y2

w1
1

w1
2

+



b2

b1

c1

c2

βδb2 + β
.
c
1 − .

c
2

−γ
.
b
1

+ α1γ
.
c
1

+ β
..
c
1 − ..c2 + βδ

.
b
2


. (49)

Now, for this system the Σ-method succeeds with structural index νS = 1. /

Remark 18. In each iteration of Procedure 1 the signature matrix for the augmented system
can be obtained efficiently from the signature matrix of the previous step. Furthermore, the
information on the HVT and on the offsets can be used to speed up the structural analysis for the
augmented system. Also the regularity of J has to be verified already during the success check
of the Σ-method, thus, the required null space information of J is already (partially) available.
Thus, the described procedure requires relatively low additional computational effort.

5 Numerical Examples

Various kinds of simulation software packages uses some kind of structural analysis to treat DAE
systems. In this section we compare the behavior of three different simulation environments that
uses the modeling language Modelica for the system formulation for the numerical solution of
a coupled system of the form (27). In particular, we consider the simple coupled system given
in Example 10 that is regular but of higher index and compare the behavior of the simulation
environments OpenModelica (Version 1.6.0), Dymola (Version 2012) and MapleSim (Version
6.01).
We use two different models for describing the problem: the formulation as one system with system
equations given by (30) (Model (A)), and the formulation as interconnected system consisting of
the two subsystems S1 and S2 connected by Modelica connectors that define the given coupling
conditions (29) (Model (B)), see Figure 3. For all computation we choose the parameters α1 = α2 =

S1

Con1

S2

Con2

x1

y1

u2x2

y2

u1

Figure 3: Interconnection of subsystems

δ = ε = 1 and vary β with β ∈ {1.0− 10−4, 1.0, 1.0 + 10−4}. As simulation parameters we use the
stopping time T = 1.0 and we prescribe consistent initial values x1(0) = −2, and x2(0) = 3 for the
differential variables. Note that using Dymola only two initial conditions can be fixed. The right
hand side of equation (30) is given by the functions b1(t) = 1

100e
t, c1(t) = sin(3t), b2(t) = 1

1000e
−2t,
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c2(t) = cos(t). Furthermore, we use the default DAE solvers of each environment, i.e., the BDF-
solver Dassl in OpenModelica and Dymola, and the Cash-Karp 4(5) Runge-Kutta method in
MapleSim. Table 1 summarizes the behavior of the different simulation environments.

Model (A)
Simulation environment β = 1.0− 10−4 β = 1.0 β = 1.0 + 10−4

OpenModelica ok fail∗ fail†

Dymola ok fail‡ fail§

MapleSim ok ok ok

Model (B)
Simulation environment β = 1.0− 10−4 β = 1.0 β = 1.0 + 10−4

OpenModelica ok fail∗ fail†

Dymola ok fail‡ fail§

MapleSim ok ok fail¶

Table 1: Comparison of different simulation environments for Example 10

The simulation environments Dymola and OpenModelica are not able to simulate the system if
β ∈ {1.0, 1.0+10−4} due to the failure of the underlying structural analysis. However, MapleSim
is able to simulate the system of Example 10 if it is formulated as Model (A), but fails also for
Model (B) with β = 1.0 + 10−4. Thus, even for a very simple problems simulation environments
relying on a structural analysis can fail to simulate the DAE system. The simulation results for
β = 1.0 are depicted in Figure 4 for Model (A) and in Figure 5 for Model (B). We see that the
solver OpenModelica computes clearly wrong results while throwing an error message. The
solver Dymola does not provide any results in this case.
Next, we compare the behavior of the different simulation environments for the reduced formulation
(49) of (30) implemented as Model (C). Table 2 summarizes the behavior of the different simulation
environments using the same simulation parameter as before. The simulation results for β = 1.0

Model (C)
Simulation environment β = 1.0− 10−4 β = 1.0 β = 1.0 + 10−4

OpenModelica ok ok ok
Dymola ok ok ok
MapleSim ok ok ok

Table 2: Comparison of different simulation environments for Example 10

are depicted in Figure 6 together with the plots of the absolute errors in Figure 7.
We can see that now for all simulation environments the simulation succeeds yielding similar
results. Thus, the reformulation of the DAE system using a combined structural-algebraic regu-
larization technique allows the solvers to handle coupled DAE systems that are otherwise classified
as structural singular problem that cannot be solved.

∗Error message: “Error solving linear system of equations. System is singular.”
†Error message: “Error, simulation stopped at time: 7.14067 with idid: -3” (Dassl)
‡Error message: ”Scalar system is always singular”
§Integration is terminated at T=7.17 (local error test failure)
¶Error message: ”Cannot evaluate the solution further right of 7.1223287, probably a singularity“
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Figure 4: Simulation Results for Model (A)

6 Conclusions

The consideration of simple coupled systems (27) of semi-explicit d-index-1 DAEs has revealed
that an index reduction based only on structural information cannot reliably handle these kind
of systems if the system (27) is of higher index or non-regularities occur due to coupling, i.e., if
the coupled system (27) is structurally singular. Even if the system is regular and well-posed a
regularization and/or index reduction is not possible based on a structural analysis. Unfortunately,
various kinds of structural algorithms as, e.g., Pantelides algorithm in combination with the dummy
derivative method are used in many simulation environments as e.g. Dymola, OpenModelica
or MapleSim.
The results of Theorem 7 show how we can compute a regularization for systems for which the
Σ-method succeeds. However, in the case of coupled systems (27) this only covers d-index-1
systems. Our new combined structural-algebraic approach allows to handle structurally singular
systems and thus improves the treatment of high-index DAEs. Here, the somewhat expensive
computation of projections onto the corresponding subspaces is only required if the structural
analysis cannot handle the problem, and then only for small subproblems using a BLT partitioning.
Using additional information from the structural analysis, even if the success check fails, allows
to select equations and variables more efficiently. Moreover, we can detect non-regularities in the
system.
Still under investigation are the questions if we can use a similar approach if the system is not in
semi-explicit form, e.g., for quasilinear DAE system, and how this approach can be most efficiently
integrated into existing solvers or simulation environments.
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Figure 6: Simulation Results for reduced formulation

Figure 7: Absolute errors of the simulation results for reduced formulation
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