
Concurrent Model Synchronization
with Conflict Resolution

Based on Triple Graph Grammars -
Extended Version

Frank Hermann, Hartmut Ehrig, Claudia Ermel,
and Fernando Orejas

Bericht-Nr. 2011-14
ISSN 1436-9915

User
Stempel

Concurrent Model Synchronization
with Conflict Resolution

Based on Triple Graph Grammars - Extended Version

Frank Hermann 1,2, Hartmut Ehrig 1, Claudia Ermel 1, and Fernando Orejas 3

1) Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany,
{hartmut.ehrig, claudia.ermel, frank.hermann}@tu-berlin.de

2) Interdisciplinary Center for Security, Reliability and Trust, Université du Luxembourg
3) Departament de Llenguatges i Sistemes Informàtics,

Universitat Politècnica de Catalunya, Barcelona, Spain, orejas(at)lsi.upc.edu

Abstract

Triple graph grammars (TGGs) have been used successfully to analyse correctness of bidirec-
tional model transformations. Most recently, also a corresponding formal approach to model syn-
chronization has been presented, where a forward propagation operation updates a source model
modification from source to target, and symmetrically, a backward propagation operation takes
care of updates from target to source models. However, a corresponding formal approach of con-
current model synchronization, where a source and a target modification have to be synchronized
simultaneously, has not yet been presented and analysed. This paper closes this gap taking into
account that the given and propagated source or target model modifications are in conflict with
each other. Our conflict resolution strategy is semi-automatic, where a formal resolution strategy
– known from previous work – can be combined with a user-specific strategy.

As first main result, we show correctness of concurrent model synchronization with respect to
the TGG. This means that each result of our nondeterministic concurrent update leads to a consis-
tent correspondence between source and target models, where consistency is defined by the TGG.
As second main result, we show compatibility of concurrent with basic model synchronization.
In other words, concurrent model synchronization can be realized either to coincide with forward
or with backward propagation. The main results are illustrated by a running example on updating
organizational models.

Keywords: Model Synchronization, Conflict Resolution, Model Versioning, Correctness,
Bidirectional Model Transformation, Triple Graph Grammars

1 Introduction

Bidirectional model transformations form a key concept for model generation and synchronization
within model driven engineering (MDE, see [21]). Triple graph grammars (TGGs) have been suc-
cessfully applied in several case studies for bidirectional model transformation, model integration and
synchronization [19, 24, 13] and for the implementation of QVT [14]. Based on the work of Schürr
et al. [23, 24], we developed a formal theory of TGGs [9, 15], which allows handling correctness,
completeness, termination and functional behaviour of model transformations. Inspired by existing
synchronization tools [13] and the replica synchronization framework in [4], we proposed an ap-
proach for basic model synchronization in [16], showing its correctness. More precisely, in that paper

1

we studied the problem of how updates on a given domain can be correctly propagated to another
model.

The main aim of this paper is to provide, on this basis, also a correct TGG framework for concur-
rent model synchronization, where concurrent model updates in different domains have to be merged
to a consistent solution. In this case, we have the additional problem of detecting and solving the con-
flicts between the given updates. In particular, these conflicts may be not obvious to detect, since they
may be caused by concurrent updates on apparently unrelated elements of the given models. On the
other hand, there may be apparently contradictory updates on related elements of the given domains
which may not be real conflicts.

The main idea and results of our approach are the following:

1. Model synchronization is performed by propagating the changes from one model of one domain
to a corresponding model in another domain using forward and backward propagation opera-
tions. The propagated changes are compared with the given local update. Possible conflicts are
resolved in a semi-automated way.

2. The operations are realized by model transformations based on TGGs [16] and tentative merge
constructions solving conflicts [10]. The specified TGG also defines consistency of source and
target models.

3. In general, the operation of model synchronization is nondeterministic, since there may be
several correct solutions to the given conflicts. The differences between the possible solutions
can be visualized by the modelers, who then decide which modifications to accept or discard.

4. The main result shows that the concurrent TGG synchronization framework is correct and com-
patible with the basic synchronization framework, where only single updates are considered at
the same time.

Based on TGGs we present the general concurrent model synchronization framework in Sec. 2,
the basic model framework in Sec. 3, and conflict resolution in Sec. 4. In Sec. 5 we combine these op-
erations with additional auxiliary ones and present the construction of the concurrent synchronization
operation, for which we show its correctness and its compatibility with the basic synchronization case
in Sec. 6. All constructions and results are motivated and explained by a small case study. Finally,
Secs. 7 and 8 discuss related work, conclusions and future work. Full proofs and technical details on
efficiency issues and the case study are presented in App. A-C.

2 Concurrent Model Synchronization Framework

Concurrent model synchronization aims to provide a consistent merging solution for a pair of concur-
rent updates that are performed on two interrelated models. This section provides a formal specifica-
tion of the concurrent synchronization problem and the corresponding notion of correctness. At first,
we motivate the general problem with a compact example.1

Example 1 (Concurrent model synchronization problem). The example in Fig. 1 starts with two mod-
els in correspondence. Each of them stores information about employees of a company, but they
concern different aspects. The source model contains information only about the employees of the
marketing department, but shows more detailed salary information. Two model updates have to be

1More complex case studies are also tractable by our approach, e.g. relating class diagrams to data base models [9].

2

Figure 1: Concurrent model synchronization: compact example
synchronized concurrently: on the source side (model update dS

1), Bill Clinton’s node is deleted and
Melinda Gates’ family name changes due to her marriage to Bill Gates; moreover, being married, her
bonus is raised from 1000 to 2000. On the target side (model update dT

1), Bill Clinton is switching
from the marketing department to the technical department (in the visualization in Fig. 1 this is in-
dicated by the role icon of Bill Clinton which now shows a man carrying a pencil). His department
change is combined with a raise of his salary from 5000 to 6000. After performing updates dS

2 and
dT

2 , a “consistently integrated model” (see below) is derived that reflects as many changes as possible
from the original updates in both domains and resolves inconsistencies, e.g. by computing the new
Salary of Melinda Gates in the target domain as sum of the updated source attributes Base and Bonus.
Note that Bill Clinton is not deleted in the target domain by the concurrent synchronization because
in this case, the changes required by dT

1 could not have been realized. This conflict can be considered
an apparent one. If a person leaves the marketing department, but not the company, its node should
remain in the target model. Thus, a concurrent model synchronization technique has to include an
adequate conflict resolution strategy.

A general way of specifying consistency between interrelated models of a source and a target
domain is to provide a consistency relation that defines the consistent pairs (MS ,MT) of source and
target models. Triple graph grammars (TGGs) are a formal approach for the definition of a language
of consistently integrated models [23, 9]. TGGs have been applied successfully for bidirectional
model transformations [24, 15] and basic model synchronization [13, 16], where no concurrent model
updates occur.

In the framework of TGGs, an integrated model is represented by a triple graph consisting of three
graphs GS , GC , and GT , called source, correspondence, and target graphs, respectively, together with
two mappings (graph morphisms) sG : GC → GS and tG : GC → GT . Further concepts like attribution
and inheritance can be used according to [9, 8]. The two mappings in G specify a correspondence
r : GS ↔ GT , which relates the elements of GS with their corresponding elements of GT and vice
versa. However, it is usually sufficient to have explicit correspondences between nodes only. For
simplicity, we use double arrows (↔) as an equivalent shorter notation for triple graphs, whenever the
explicit correspondence graph can be omitted.

(GS

mS
��

G GCsGoo

mC
��

tG // GT)

mT
��

(HSH

m
��

HC
sH
oo

tH
// HT)

Triple graphs are related by triple graph morphisms m : G → H
consisting of three graph morphisms that preserve the associated
correspondences (i.e., the diagrams on the right commute). Our
triple graphs are typed. This means that a type triple graph TG is
given (playing the role of a metamodel) and, moreover, every triple
graph G is typed by a triple graph morphism typeG : G → TG. It is required that morphisms between
typed triple graphs preserve the typing. For TG = (TGS ← TGC → TGT), we use VL(TG), VL(TGS),
and VL(TGT) to denote the classes of all graphs typed over TG, TGS , and TGT , respectively.

3

Figure 2: Two triple rules of the TGG

L

m
��

� � tr // R

n
��

(PO)

G �
�

t
// H

A triple rule tr = (trS , trC , trT) is an inclusion of triple graphs, represented
L ↪→ R. Notice that one or more of the rule components trS , trC , and trT may be
empty, i.e. some elements in one domain may have no correspondence to elements
in the other domain. In the example, this is the case for employees of the technical
department within the target model. A triple rule is applied to a triple graph G by
matching L to some subtriple graph of G via a match morphism m : L→ G. The result of this applica-
tion is the triple graph H, where L is replaced by R in G. Technically, the result of the transformation
is defined by a pushout diagram, as depicted above. This triple graph transformation (TGT) step is
denoted by G =

tr,m
==⇒ H. Moreover, triple rules can be extended by negative application conditions

(NACs) for restricting their application to specific matches [15].

Example 2 (Triple Rules). Fig. 2 shows two triple rules of our running example using short nota-
tion, i.e., left- and right-hand side of a rule are depicted in one triple graph and the elements to be
created have the label “++”. The first rule Person2NextMarketingP requires an existing marketing
department. It creates a new person in the target component together with its corresponding person
in the source component and the explicit correspondence structure. The TGG contains a similar rule
(not depicted) for initially creating the marketing department together with one person, where an ad-
ditional NAC ensures that none of the existing departments is called “Marketing”. The second rule in
Fig. 2 extends two corresponding persons by their first names. There are further similar rules for the
handling of the remaining attributes. In particular, the rule for the attribute birth is the empty rule on
the source component.

A triple graph grammar TGG = (TG, S ,TR) consists of a triple type graph TG, a triple start
graph S and a set TR of triple rules, and generates the triple graph language VL(TGG) ⊆ VL(TG).
A TGG is, simultaneously, the specification of the classes of consistent source and target languages
VLS = {GS | (GS ← GC → GT) ∈ VL(TGG)} and VLT = {GT | (GS ← GC → GT) ∈ VL(TGG)}
and also of the class C = VL(TGG) ⊆ VL(TG) = Rel of consistent correspondences which define the
consistently integrated models. The possible model updates ∆S and ∆T are given by the sets of all
graph modifications for the source and target domains. In our context, a model update d : G → G′

is specified as a graph modification d = (G ←i1−− I −
i2
−→ G′). The relating morphisms i1 : I ↪→ G and

i2 : I ↪→ G′ are inclusions and specify which elements are deleted from G (all the elements in G \ I)
and which elements are added by d (all the elements in G′ \ I). While graph modifications can also be
seen as triple graphs, it is conceptually important to distinguish between correspondences and updates
δ.

The concurrent synchronization problem is visualized in Fig. 3, where we use solid lines for the
inputs and dashed lines for the outputs. Given an integrated model G0 = (GS

0 ↔ GT
0) and two model

updates dS
1 = (GS

0 → GS
1) and dT

1 = (GT
0 → GT

1), the required result consists of updates dS
2 = (GS

1 →

GS
2) and dT

2 = (GT
1 → GT

2) and a consistently integrated model G2 = (GS
2 ↔ GT

2). The solution
for this problem is a concurrent synchronization operation CSynch, which is left total but in general
non-deterministic, which we indicate by a wiggly arrow “{” in Def. 1 below. The set of inputs is

4

Signature Laws

GS
1

dS
2
��

GS
0

dS
1oo oo r0 //

:CSynch��

GT
0

dT
1 // GT

1

dT
2
��

GS
2
oo

r2
// GT

2

∀ c ∈ C :
GS

1
��

⇓:CSynch

GS1oo oo c // GT 1 // GT

1
��

GS oo
c

// GT

(a)

GS
1

dS
2
��

⇓:CSynch

GS
0
oo
r0 //

dS
1oo GT

0

dT
1 // GT

1

dT
2
��

G2
S oo

r2:C
// G2

T

(b)

Figure 3: Signature and laws for correct concurrent synchronization frameworks

given by (R⊗∆S ⊗∆T) = {(r, dS , dT) ∈ R × ∆S × ∆T | r : GS
0 ↔ GT

0 , d
S : GS

0 → G2
S , dT : GT

0 → G2
T },

i.e., r coincides with dS on GS
0 and with dT on GT

0 .

Definition 1 (Concurrent Synchronization Problem and Framework). Given TGG, the concurrent syn-
chronization problem is to construct a left total and nondeterministic operation CSynch : (Rel⊗∆S ⊗

∆T){ (Rel×∆S ×∆T) leading to the signature diagram in Fig. 3, called concurrent synchronization
tile with concurrent synchronization operation CSynch. Given a pair (prem, sol) ∈ CSynch the triple
prem = (r0, dS

1 , d
T
1) ∈ Rel⊗∆S ⊗∆T is called premise and sol = (r2, dS

2 , d
T
2) ∈ Rel × ∆S × ∆T is called

a solution of the synchronization problem, written sol ∈ CSynch(prem). The operation CSynch is
called correct with respect to consistency relation C, if laws (a) and (b) in Fig. 3 are satisfied for
all solutions. Given a concurrent synchronization operation CSynch, the concurrent synchronization
framework CSynch is given by CSynch = (TGG,CSynch). It is called correct, if operation CSynch is
correct.

Correctness of a concurrent synchronization operation CSynch ensures that any resulting inte-
grated model G2 = (GS

2 ↔ GT
2) is consistent (law (b)) and, the synchronization of an unchanged and

already consistently integrated model always yields the identity of the input as output (law (a)).

3 Basic Model Synchronization Framework

This Section briefly describes the basic synchronization problem and its solution according to [16],
which is the basis for the solution for the concurrent synchronization problem in Sec. 5.

GS oo r //

a
��
u:fPpg

GT

b
��

G′S oo
r′
// G′T

GS oo r //

a
��
w:bPpg

GT

b
��

G′S oo
r′
// G′T

Figure 4: Propagation operations

Given an integrated model GS ↔ GT and an update on
one domain, either GS or GT , the basic synchronization prob-
lem is to propagate the given changes to the other domain.
This problem has been studied at a formal level by several
authors (see, for instance, [11, 18, 25, 3, 27, 17, 5, 6, 16]).
Many of these approaches [11, 18, 25, 27] are state-based,
meaning that they consider that the synchronization opera-
tions take as parameter the states of the models before and after the modification and yields new states
of models. However, in [3, 5] it is shown that state-based approaches are not adequate in general
for solving the problem. Instead a number of other approaches (see, for instance, [3, 17, 6, 16]) are
δ-based, meaning that the synchronization operations take modifications as parameters and returns
modifications as results. In particular, in [16], we describe a framework based on TGGs, where we

5

(a1) :

∀ c ∈ C :
GS oo c //

1
��
u:fPpg

GT

1
��

GS oo
c
// GT

(a2) :

∀ G′S ∈ VLS :
GS oo r //

a
��
u:fPpg

GT

b
��

G′S oo
r′:C
// G′T

(b1) :

∀ c ∈ C :
GS oo c //

1
��
w:bPpg

GT

1
��

GS oo
c
// GT

(b2) :

∀ G′T ∈ VLT :
GS oo r //

a
��
w:bPpg

GT

b
��

G′S oo
r′:C
// G′T

Figure 5: Laws for correct basic synchronization frameworks

include specific procedures for forward and backward propagation of modifications, proving its cor-
rectness in terms of the satisfaction of a number of laws. These results can be seen as an instantiation,
in terms of TGGs, of the abstract algebraic approach presented in [6].

To be precise, according to [16], a basic synchronization framework must provide suitable left
total and deterministic forward and backward propagation operations fPpg and bPpg solving this
problem for any input (see Fig. 4). The input for fPpg is an integrated model GS ↔ GT together
with a source model update (graph modification) a : GS → G′S , and the output is a target update
b : GT → G′T together with a consistently integrated model G′S ↔ G′T . The operation bPpg
behaves symmetrically to fPpg. It takes as input GS ↔ GT and a target modification b : GT → G′T

and it returns a source update a : GS → G′S together with a consistently integrated model G′S ↔ G′T .
Note that determinism of these operations means that their results are uniquely determined. Note also
that we require that the resulting model after a propagation operation must be consistent according to
the given TGG.

We may notice that in a common tool environment, the inputs for these operations are either
available directly or can be obtained. For example, the graph modification of a model update can be
derived via standard difference computation.

The propagation operations are considered correct in [16], if they satisfy the four laws depicted
in Fig. 5. Law (a1) means that if the given update is the identity and the given correspondence is
consistent, then fPpg changes nothing. Law (a2) means that fPpg always produces consistent corre-
spondences from consistent updated source models G′S , where the given correspondence r : GS ↔ GT

is not required to be consistent. Laws (b1) and (b2) are the dual versions concerning bPpg.
In [16], we also present specific propagation operations. More precisely, given GS ↔ GT and

the modification a : GS → G′S , the forward propagation operation consists of three steps. In the
first step, we compute an integrated model G′S ↔ GT by deleting from the correspondence graph all
the elements that were related to the elements deleted by the modification a. In the second step we
compute the largest consistently integrated model GS

0 ↔ GT
0 that is included in G′S ↔ GT . It must be

said that we do not build this model from scratch, but what we really do is to mark the corresponding
elements in G′S ↔ GT . Moreover, we delete from GT all the unmarked elements. Finally, using
the TGG, we build the missing part of the target model that corresponds to G′S \ GS

0 yielding the
consistently integrated model G′S ↔ G′T . Backward propagation works dually.

Remark 1 (Correctness of Derived Basic TGG Synchronization Framework). Correctness of the de-
rived propagation operations fPpg, bPpg is ensured if the given TGG is equipped with deterministic
sets of operational rules [16]. This essentially means that the forward and backward translation rules
ensure functional behaviour for consistent inputs. For the technical details and automated analysis
of this property using the tool AGG [26] we refer to [16], where we have shown this property for
the TGG of our example and discussed the required conditions of a TGG in more detail. Note that
the concurrent synchronization procedure in Sec. 5 only requires correctness of the given propagation
operations and does not rely on the specific definition in [16].

6

4 Semi-Automated Conflict Detection and Resolution

We now review the main constructions and results for conflict resolution in one domain according
to [10]. Note that we apply conflict resolution either to two conflicting target model updates (one of
them induced by a forward propagation operation fPpg) or to two conflicting source model updates
(one of them induced by backward propagation). Hence, we here consider updates over standard
graphs and not over triple graphs.

Two graph modifications (G ← Di → Hi), (i = 1, 2) are called conflict-free if they do not interfere
with each other, i.e., if one modification does not delete a graph element the other one needs to
perform its changes. Conflict-free graph modifications can be merged to one graph modification
(G ← D→ H) that realizes both original graph modifications simultaneously.

If two graph modifications are not conflict-free, then at least one conflict occurs which can be of
the following kinds: (1) delete-delete conflict: both modifications delete the same graph element, or
(2) delete-insert conflict: m1 deletes a node which shall be source or target of a new edge inserted by
m2 (or vice versa). Of course, several of such conflicts may occur simultaneously. In [10], we propose
a merge construction that resolves conflicts by giving insertion priority over deletion in case of delete-
insert conflicts. The result is a merged graph modification where the changes of both original graph
modifications are realized as far as possible2 We call this construction tentative merge because usually
the modeler is asked to finish the conflict resolution manually, e.g. by opting for deletion instead of
insertion of certain conflicting elements. We summarize the main effects of the conflict resolution
strategy by Fact 1 below (see also Thm. 3 in [10] for the construction).

Fact 1 (Conflict resolution by tentative merge construction). Given two conflicting graph modifica-

tions mi = G
Di

=⇒ Hi (i = 1, 2) (i.e., they are not conflict-free). The tentative merge construction yields
the merged graph modification m = (G ← D→ H) and resolves conflicts as follows:

1. If (m1,m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G, then x is deleted
by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge e2 created by m2 with x = s(e2) or
x = t(e2) preserved by m2, but deleted by m1. Then x is preserved by m (and vice versa for
(m2,m1) being in delete-insert conflict).

Note that attributed nodes which shall be deleted on the one hand and change their values on the
other hand would cause delete/insert-conflicts and therefore, would not be deleted by the tentative
merge construction. Attributes which are differently changed by both modifications would lead (ten-
tatively) to attributes with two values which would cause conflicts to be solved by the modeller, since
an attribute is not allowed to have more than one value at a particular time.

G0
m1 //

m2

��
u:Res

G1

��
G2 // H

Throughout the paper, we depict conflict resolution based on the tentative
merge construction and manual modifications as shown to the right, where m1 and
m2 are conflicting graph modifications, and H is their merge after conflict resolu-
tion. The dashed lines correspond to derived graph modifications (G1 ← D3 → H)
and (G2 ← D4 → H) with interfaces D3 and D4.

Example 3 (Conflict resolution by tentative merge construction). Consider the conflict resolution
square 3:Res in the upper right part of Fig. 8. The first modification dT

1,F deletes the node for Bill

2Note that the conflict-free case is a special case of the tentative merge construction.

7

Clinton and updates the attribute values for Surname and Salary of Melinda French. The second mod-
ification dT

1,F relinks Bill Clinton’s node from the marketing department to the technical department
and updates his Salary attribute. The result of the tentative merge construction keeps the Bill Clinton
node, due to the policy that nodes that are needed as source or target for newly inserted edges or
attributes will be preserved. Technically, the attribute values are not preserved automatically. This
means that the tentative merge construction only yields the structure node of “Bill Clinton” (and the
updated attribute), and the modeller should confirm that the remaining attribute values should be
preserved (this is necessary for the attribute values for FirstName, LastName and Birth of the “Bill
Clinton” node).

Variant: As a slight variant to the above example, let us consider the case that modification dT
1

also modifies Melinda’s surname from “French” to “Smith”. Since the same attribute is updated
differently by both modifications, we now have two tentative attribute values for this attribute (we
would indicate this by <Gates|French> as attribute value for Melinda’s Surname attribute). This can
be solved by the modeller, as well, who should select one attribute value.

5 Concurrent Model Synchronization with Conflict Resolution

The merge construction described in the previous section cannot be applied directly to detect and solve
conflicts in concurrent model synchronization. The problem here is that source and target updates
occur at different graphs and not the same one. To solve this problem we use forward and backward
propagation operations (Sec. 3) that allow us to see the effects of each source or target update on
the other domain, such that we can apply the merge construction of Sec. 4. In addition, we use
two further operations CCS and CCT for reducing a given domain model to a maximal consistent
submodel according to the TGG.

GS
1

u:CCSdS
1,C

--

GS
0

dS
1oo

dS
1,C◦d

S
1

��

GS
1,C

GT
0

w:CCTdT
1,C◦d

T
1
��

dT
1 // GT

1

dT
1,C

qqGT
1,C

Figure 6: Consistency creating operations

Given a source update dS
1 : GS

0 → GS
1 , the con-

sistency creating operation CCS (left part of Fig. 6)
computes a maximal consistent subgraph GS

1,C ∈ VLS

of the given source model GS
1 . The resulting up-

date from GS
0 to GS

1 is derived by update composi-
tion dS

1,C ◦dS
1 . The dual operation CCT (right part of

Fig. 6) works analogously on the target component.

Remark 2 (Execution of Consistency Creating Operation CCS). Given a source model GS
1 , the con-

sistency creating operation CCS is executed by computing terminated forward sequences (H0 =
tr∗F
==⇒

Hn) with H0 = (GS
1 ← ∅ → ∅). If the sets of operational rules of the TGG are deterministic (see

Rem. 1), then backtracking is not necessary. If GS
1 is already consistent, then GS

1,C = GS
1 , which can

be checked via operation CCS. Otherwise, operation CCS is creating a maximal consistent subgraph
GS

1,C of GS
1 . GS

1,C is maximal in the sense that there is no larger consistent submodel HS of GS
1 , i.e.

with GS
1,C ⊆ HS ⊆ GS

1 and HS ∈ VLS . From the practical point of view, operation CCS is performed
using forward translation rules [15], which mark in each step the elements of a given source model
that have been translated so far. This construction is well defined due to the equivalence with the

corresponding triple sequence (∅ =
tr∗
=⇒ Hn) via the triple rules TR of the TGG (see Construction 2).

The concurrent model synchronization operation CSynch derived from the given TGG is executed
in five steps. Moreover, it combines operations fSynch and bSynch depending on the order in which
the steps are performed. The used propagation operations fPpg, bPpg are required to be correct and

8

Signature

GS
1

dS
2
��

GS
0

dS
1oo oo r0 //

⇓:fSynch

GT
0

dT
1 // GT

1

dT
2
��

GS
2
oo

r2
// GT

2

Definition

of

Components

GS
1

u1:CCS

dS
F

//

dS
2,FCB

,,

GS
0

dS
1oo oo

r0 //

dS
1,CC
��

u2:fPpg

GT
0

dT
1,F
��

dT
1 //

u3:Res

GT
1

dT
2,FC
��

GS
1,C
oo r1,F //

dS
2,CB
��

w5:bPpg

GT
1,F d′T2,FC

//

dT
2,CC
��

GT
2,FC

dT
B

pp

w4:CCT

GS
2,FCB

oo
r2,FCB

// GT
2,FCB

dS
2,FCB = dS

2,CB ◦ dS
F , d

T
2,FCB = dT

B ◦ dT
2,FC , (r2, dS

2 , d
T
2) = (r2,FCB, dS

2,FCB, d
T
2,FCB)

Figure 7: Concurrent model synchronization with conflict resolution (forward case: fSynch)

we can take the derived propagation operations according to [16]. The steps of operation fSynch are
depicted in Fig. 7 and Construction 1 describes the steps for both operations.

Construction 1 (Operation fSynch and CSynch). In the first step (operation CCS), a maximal con-
sistent subgraph GS

1,C ∈ VLS of GS
1 is computed (see Rem. 2). In step 2, the update dS

1,CC is forward
propagated to the target domain via operation fPpg. This leads to the pair (r1,F , dT

1,F) and thus, to
the pair (dT

1,F , d
T
1) of target updates, which may show conflicts. Step 3 applies the conflict resolution

operation Res including optional manual modifications (see Sec. 4). In order to ensure consistency
of the resulting target model GT

2,FC we apply the consistency creating operation CCT (see Rem. 2)
for the target domain and derive target model GT

2,FCB ∈ VLT in step 4. Finally, the derived target
update dT

2,CC is backward propagated to the source domain via operation bPpg leading to the source
model GS

2,FCB and source update dS
2,CB. Altogether, we have constructed a nondeterministic solution

(r2, dS
2 , d

T
2) of operation fSynch for the premise (r0, dS

1 , d
T
1) with (r2, dS

2 , d
T
2) = (r2,FCB, dS

2,FCB, d
T
2,FCB)

(see Fig. 7). The concurrent synchronization operation bSynch is executed analogously via the dual
constructions. Starting with CCT in step 1, it continues via bPpg in step 2, Res in step 3, CCS in step
4, and finishes with fPpg in step 5. The non-deterministic operation CSynch = (fSynch∪ bSynch) is
obtained by joining the two concurrent synchronizations operations fSynch bSynch.

Example 4 (Concurrent Model Synchronization with Conflict Resolution). The steps in Fig. 8 specify
the execution of the concurrent synchronization in Ex. 1. Since the given model GS

0 is consistent,
step 1 (1:CCS) can be omitted, i.e. GS

1,C = GS
1 and dS

1,CC = dS
1 . Step 2:fPpg propagates the source

update to the target domain: Melinda Gates’ attributes are updated and the node representing Bill
Clinton is deleted. The resolution 3:Res resolves the conflict between the target model update dT

1 and
the propagated source model update on the target side dT

1,F (see Ex. 3). We assume that the modeler
selected the old attribute value for Bill Clinton’s birthday. Step 4:CCT does not change anything,
since the model is consistent already. Finally, all elements that were introduced during the conflict
resolution and concern the source domain are propagated to the source model via (5:bPpg). This
concerns only the Bill Clinton node, which now is assigned to the technical department. According
to the TGG, such persons are not reflected in the source model, such that the backward propagation

9

Figure 8: Concurrent model synchronization with conflict resolution applied to organizational model

does not change anything in the source model. The result of the concurrent model synchronization
with conflict resolution is r2,FCB, where as many as possible of both proposed update changes have
been kept and insertion got priority over deletion.

Variant: Let us consider the case that both modifications dT
1 dT

1,F insert additionally an edge of
type married between the nodes of Melinda French and Bill Gates. The conflict resolution operation
3:Res would yield two married edges between the two nodes. But the subsequent consistency creating
operation 4:CCT would detect that this is an inconsistent state and would delete one of the two married
edges.

Remark 3 (Execution and Termination of Concurrent Model Synchronization). Note that the effi-
ciency of the execution of the concurrent synchronization operations can be significantly improved by
reusing parts of previously computed transformation sequences as described in Rem. 5 in Appendix B.
In [16], we provided sufficient static conditions that ensure termination for the propagation opera-
tions and they can be applied similarly for the consistency creating operations. Update cycles cannot
occur, because the second propagation step does not lead to a new conflict.

Note that operation CSynch is nondeterministic for several reasons: the choice between fSynch
and bSynch, the reduction of domain models to maximal consistent sub graphs, and the semi auto-
mated conflict resolution strategy.

Definition 2 (Derived Concurrent TGG Synchronization Framework). Let fPpg and bPpg be cor-
rect basic synchronization operations for a triple graph grammar TGG and let operation CSynch
be derived from fPpg and bPpg according to Construction 1. Then, the derived concurrent TGG
synchronization framework is given by CSynch = (TGG,CSynch).

6 Correctness and Compatibility

Our main results show correctness of the derived concurrent TGG synchronization framework (Def. 2)
and its compatibility with the derived basic TGG synchronization framework (Sec. 3). For the proofs
and technical details see A and B. Correctness of a concurrent model synchronization framework re-
quires that the non-deterministic synchronization operation CSynch ensures laws (a) and (b) in Def. 1.
In other words, CSynch guarantees consistency of the resulting integrated model and, moreover, the
synchronization of an unchanged and already consistently integrated model always yields the identity
of the input as output (law (a)).

10

GS
1 ∈ VLS ,

GS
0
oo

r0 //

dS

��
u:fPpg

GT
0

dT

��

GS
1
oo

r1
// G1

T

⇒

GS
1

id
��

GS
0

dS
oo oo

r0 //

:CSynch
��

GT
0

id // GT
0

dT

��

GS
1
oo

r1
// GT

1

Figure 9: Compatibility with synchronization of single updates (forward case)

According to Thm. 1 below, correctness of the given forward and backward propagation opera-
tions already ensures correctness of the concurrent model synchronization framework.

Example 5 (Correctness and Compatibility). In [16], we presented a suitable realization of a cor-
rect propagation operations derived from the given TGG (see Rem. 1). This allows us to apply the
following main results Thm. 1 and 2 to our case study used as running example in Sec. 2-6.

Theorem 1 (Correctness of Concurrent Model Synchronization). Let fPpg and bPpg be correct basic
synchronization operations for a triple graph grammar TGG. Then, the derived concurrent TGG
synchronization framework CSynch = (TGG,CSynch) (see Def. 2) is correct (see Def. 1).

The second main result (Thm. 2 below) shows that the concurrent TGG synchronization frame-
work is compatible with the basic synchronization framework. This means that the propagation oper-
ations (fPpg, bPpg) (see Sec. 3) provide the same result as the concurrent synchronization operation
CSynch, if one update of one domain is the identity. Fig. 9 visualizes the case for the forward prop-
agation operation fPpg. Given a forward propagation (depicted left) with solution (r1, dT), then a
specific solution of the corresponding concurrent synchronization problem (depicted right) is given
by sol = (r1, id, dT), i.e. the resulting integrated model and the resulting updates are the same. Due to
the symmetric definition of TGGs, we can show the same result concerning the backward propagation
operation leading to the general result of compatibility in Thm. 2.

Definition 3 (Compatibility of Concurrent with Basic Model Synchronization). Let fPpg, bPpg be
basic TGG synchronization operations and let CSynch be a concurrent TGG synchronization oper-
ation for a given TGG. The non-deterministic synchronization operation CSynch is compatible with
the propagation operations fPpg and bPpg, if the following condition holds for the forward case (see
Fig. 9) and a similar one for the backward case:

∀ (dS , r0) ∈ ∆S ⊗ Rel, with (dS : GS
0 → GS

1) ∧ (GS
1 ∈ VLS) :

(id, fPpg(dS , r0)) ∈ CSynch(dS , r0, id)

Theorem 2 (Compatibility of Concurrent with Basic Model Synchronization). Let fPpg and bPpg
be correct basic synchronization operations for a given TGG and let operation CSynch be derived
from fPpg and bPpg according to Construction 1. Then, the derived concurrent TGG synchronization
operation CSynch is compatible with propagation operations fPpg, bPpg.

7 Related Work

Triple graph grammars have been successfully applied in several case studies for bidirectional model
transformation, model integration and synchronization [19, 24, 13] and for the implementation of
QVT [14]. Several formal results are available concerning correctness, completeness, termination,
functional behavior [15, 12] and optimization wrt. the efficiency of their execution [15, 20]. The
presented approach to concurrent model synchronization is based on these results and concerns model
synchronization of concurrent updates including the resolution of possible merging conflicts.

11

Egyed et. al [7] discuss challenges and opportunities for change propagation in multiple view
systems based on model transformations concerning consistency (correctness and completeness), par-
tiality, and the need for bidirectional change propagation and user interaction. Our presented approach
based on TGGs reflects these issues. In particular, TGGs automatically ensure consistency for those
consistency constraints that can be specified with a triple rule. This means that the effort for consis-
tency checking with respect to domain language constraints is substantially reduced.

Stevens developed an abstract state-based view on symmetric model synchronization based on
the concept of constraint maintainers [25], and Diskin described a more general delta-based view
within the tile algebra framework [4, 6]. These tile operations inspired the constructions for the basic
synchronization operations [16], which are used for the constructions in the present paper. Concurrent
updates are a central challenge in multi domain modeling as discussed in [27], where the general idea
of combining propagation operations with conflict resolution is used as well. However, the paper
does not focus on concrete propagation and resolution operations and requires that model updates are
computed as model differences. The latter can lead to unintended results by hiding the insertion of
new model elements that are similar to deleted ones.

Merging of model modifications usually means that non-conflicting parts are merged automati-
cally, while conflicts have to be resolved manually. A survey on model versioning approaches and
on (semi-automatic) conflict resolution strategies is given in [1]. A category-theoretical approach for-
malizing model versioning is given in [22]. Similar to our approach, modifications are considered as
spans of morphisms to describe a partial mapping of models, and merging of model changes is based
on pushout constructions. In contrast to [22], we consider an automatic conflict resolution strategy
according to [10] that is formally defined.

8 Conclusion and Future Work

This paper combines two main concepts and results recently studied in the literature. On the one
hand, basic model synchronization based on triple graph grammars (TGGs) has been studied in [16],
where source model modifications can be updated to target model modifications and vice versa. On
the other hand, a formal resolution strategy for conflicting model modifications has been presented
in [10]. The main new contribution of this paper is the formal concept of concurrent model syn-
chronization together with a correct procedure to implement it, where source and target modifications
have to be synchronized simultaneously, which includes conflict resolution of different source or tar-
get modifications. The main results concerning correctness and compatibility of basic and concurrent
model synchronization are based on the formalization of bidirectional model transformations in the
framework of TGGs [23, 9, 15] and the results in [16, 10].

In future work, we plan to develop extended characterizations of the correctness and maximality
criteria of a concurrent synchronization procedure. In this paper, correctness is defined explicitly in
terms of the two laws formulated in Sec. 3 and, implicitly, in terms of the properties of compatibil-
ity with basic model synchronization proven in Thm. 2. We think that this can be strengthened by
relating correctness of a synchronization procedure with the total or partial realization of the given
source and target updates, for a suitable notion of realization. At a different level, we also believe
that studying in detail, both from theoretical and practical viewpoints, the combination of fSynch and
bSynch operations, discussed in Sec. 5, should also be a relevant matter. Finally, we also consider the
possibility of taking a quite different approach for defining concurrent synchronization. In the current
paper, our solution is based on implementing synchronization in terms of conflict resolution and the
operations of forward and backward propagation. A completely different approach would be to obtain

12

synchronization by the application of transformation rules, derived from the given TGG, that simulta-
neously implement changes associated to the source and target modifications. In particular, it would
be interesting to know if the two approaches would be equally powerful, and which of them could
give rise to a better implementation, on which we are working on the basis of the EMF transformation
tool Henshin [2].

References

[1] Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning approaches. IJWIS
5(3), 271–304 (2009)

[2] Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: Advanced concepts and
tools for in-place EMF model transformations. In: Proc. MoDELS’10. LNCS, vol. 6394, pp.
121–135. Springer (2010)

[3] Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching lenses: alignment
and view update. In: Proc. Int. Conf. on Functional Programming (ICFP’10). pp. 193–204. ACM
(2010)

[4] Diskin, Z.: Model Synchronization: Mappings, Tiles, and Categories. In: Generative and Trans-
formational Techniques in Software Engineering III, LNCS, vol. 6491, pp. 92–165. Springer
(2011)

[5] Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model transforma-
tions: the asymmetric case. Journal of Object Technology 10, 6: 1–25 (2011)

[6] Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From state- to delta-
based bidirectional model transformations: The symmetric case. In: Proc. MoDELS’11. LNCS,
vol. 6981. Springer (2011)

[7] Egyed, A., Demuth, A., Ghabi, A., Lopez-Herrejon, R.E., Mäder, P., Nöhrer, A., Reder, A.:
Fine-tuning model transformation: Change propagation in context of consistency, completeness,
and human guidance. In: ICMT’11. LNCS, vol. 6707, pp. 1–14. Springer (2011)

[8] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transforma-
tion. EATCS Monographs in Theor. Comp. Science, Springer (2006)

[9] Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving bidirectional
model transformations. In: Proc. FASE’07. LNCS, vol. 4422, pp. 72–86. Springer (2007)

[10] Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for operation-based conflicts in
model versioning using graph modifications. In: Proc. FASE’11. LNCS, vol. 6603, pp. 202–216.
Springer (2011)

[11] Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators for bidi-
rectional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst. 29(3) (2007)

[12] Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal Semantics
and Implementation of Triple Graph Grammars . Tech. Rep. 37, Hasso Plattner Institute at the
University of Potsdam (2010)

13

[13] Giese, H., Wagner, R.: From model transformation to incremental bidirectional model synchro-
nization. Software and Systems Modeling 8, 21–43 (2009)

[14] Greenyer, J., Kindler, E.: Comparing relational model transformation technologies: implement-
ing query/view/transformation with triple graph grammars. Software and Systems Modeling
(SoSyM) 9(1), 21–46 (2010)

[15] Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and
Complete Model Transformations Based on Triple Graph Grammars. In: Proc. Int. Workshop on
Model Driven Interoperability (MDI’10). pp. 22–31. MDI ’10, ACM (2010)

[16] Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Correctness of model
synchronization based on triple graph grammars. In: Proc. Int. Conf. on Model Driven Engineer-
ing Languages and Systems (MoDELS’11). LNCS, vol. 6981. Springer (2011)

[17] Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Proc. ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’11). pp. 371–384. ACM (2011)

[18] Hu, Z., Mu, S.C., Takeichi, M.: A programmable editor for developing structured documents
based on bidirectional transformations. Higher-Order and Symbolic Computation 21(1-2), 89–
118 (2008)

[19] Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. Tech. Rep. TR-ri-07-284, Dept. of Comp. Science, Univ. Paderborn, Ger-
many (2007)

[20] Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient
and Compatible Graph Translators. In: Graph Transformations and Model Driven Enginering,
LNCS, vol. 5765, pp. 141–174. Springer Verlag (2010)

[21] Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification. Version 1.0 formal/08-04-03. http://www.omg.org/spec/QVT/1.0/ (2008)

[22] Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A Category-Theoretical Approach to the Formalisa-
tion of Version Control in MDE. In: Proc. of Int. Conf. on Fundamental Approaches to Software
Engineering (FASE’09). LNCS, vol. 5503, pp. 64–78. Springer (2009)

[23] Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Int. Workshop
on Graph-Theoretic Concepts in Computer Science. LNCS, vol. 903, pp. 151–163. Springer
(1994)

[24] Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Intern. Conf. on Graph Transforma-
tion (ICGT 2008). pp. 411–425 (2008)

[25] Stevens, P.: Bidirectional model transformations in qvt: semantic issues and open questions.
Software and System Modeling 9(1), 7–20 (2010)

[26] TFS-Group, TU Berlin: AGG (2011), http://tfs.cs.tu-berlin.de/agg

[27] Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Synchronizing concurrent model updates based on
bidirectional transformation. Software and Systems Modeling p. 116 (2011)

14

http://tfs.cs.tu-berlin.de/agg

A Proofs of Main Results

This appendix provides the proofs for the main theorems of this paper. For this purpose, we first
review the correctness result for the basic TGG synchronization framework presented in [16].

As shown by Thm. 1 in [16] and stated below, the basic TGG synchronization framework derived
from a TGG with deterministic sets of operational rules is correct. This means that we can use the
derived forward and backward propagation operations for the derived TGG concurrent synchroniza-
tion framework. The sets of operational rules TROP of a TGG are deterministic, if the corresponding
forward and backward translation operations via TRFT and TRBT as well as the consistency creating
operation via TRCC are total functions. According to [15], we can check functional behaviour of these
sets with the automated analysis engine for critical pairs of the tool AGG3.

Fact 2 (Correctness of Basic TGG Model Synchronization Framework). Let TGG be a triple graph
grammar with deterministic sets of operational rules. Then, the derived basic TGG synchronization
framework is correct, i.e., it satisfies laws (a1) - (b2) in Fig. 5.

Based on Fact 2 above shown in [16], we now show correctness of concurrent model synchroniza-
tion by Thm. 1 below.

GS
1

u1:CCS

dS
F

//

dS
2,FCB

,,

GS
0

dS
1oo oo

r0 //

dS
1,CC
��

u2:fPpg

GT
0

dT
1,F
��

dT
1 //

u3:Res

GT
1

dT
2,FC
��

GS
1,C
oo r1,F //

dS
2,CB
��

w5:bPpg

GT
1,F d′T2,FC

//

dT
2,CC
��

GT
2,FC

dT
B

pp

w4:CCT

GS
2,FCB

oo
r2,FCB

// GT
2,FCB

dS
2,FCB = dS

2,CB ◦ dS
F , d

T
2,FCB = dT

B ◦ dT
2,FC , (r2, dS

2 , d
T
2) = (r2,FCB, dS

2,FCB, d
T
2,FCB)

Figure 10: Concurrent model synchronization: operation fSynch (see Fig. 7)

Theorem 1 (Correctness of Concurrent Model Synchronization). Let fPpg and bPpg be correct
basic synchronization operations for a triple graph grammar TGG. Then, the derived concurrent
TGG synchronization framework CSynch = (TGG,CSynch) is correct (see Def. 1).

Proof.

∀ c ∈ C :

GS

1
��

⇓:CSynch

GS1oo oo c // GT 1 // GT

1
��

GS oo
c

// GT

(a)

Law (a) in Fig. 3: Let (r, dS
1 , d

T
1) ∈ (R ⊗ ∆S ⊗ ∆T) with

r = c ∈ C = VL(TGG) and identities dS
1 = idS : GS

0 →

GS
0 , dT

1 = idT : GT
0 → GT

0 , such that G = (GS ↔ GT) =

(GS
0 ↔ GT

0) = G0. We have to show that operation
CSynch yields (c, idS , idT) as result, i.e. no further re-
sult is possible.

We apply operation fSynch according to Fig. 7 and Fig. 10. Since r = G0 ∈ VL(TGG) and

GS
1 = GS

0 ∈ VLS we know that there is a model transformation sequence sF = (GS
1 ,G

′
0 =

tr∗F
==⇒ G′n,G

T
1)

based on forward rules using the completeness result for model transformations based on forward rules

3 See: TFS-Group, TU Berlin: AGG (2011), http://tfs.cs.tu-berlin.de/agg.

15

http://tfs.cs.tu-berlin.de/agg

GS
1 ∈ VLS ,

GS
0
oo

r0 //

dS

��

u:fPpg

GT
0

dT

��

GS
1
oo

r1
// G1

T

⇒

GS
1

id
��

GS
0

dS
oo oo

r0 //

:CSynch
��

GT
0

id // GT
0

dT

��

GS
1
oo

r1
// GT

1

Figure 11: Compatibility with synchronization of single updates (forward case)

(Thm. 1 in [12]). Therefore, operation CCS yields the maximal consistent subgraph GS
1,C = GS

0 and
update dS

1,CC = idS . By correctness of operation fPpg (law (a1) in Fig. 5) we derive that the second
step yields target model GT

1,F = GT
0 , correspondence r1,F = r and target update dT

1,F = idT . Therefore,
the resolution in step 3 concerns the updates dT

1 = idT and dT
1,F = idT , which are parallel independent

by definition leading to the merging result GT
2,FC = GT

0 and updates dT
2,FC = idT and d′T2,FC = idT . This

means that manual modification is not necessary and therefore not executed. Again, since GT
0 ∈ VLT

we know that there is a model transformation sequence sB = (GT
0 ,H

′
0 =

tr∗B
==⇒ H′n,G

S
1) based on backward

translation rules using the dual version of the completeness result for model transformations based on
forward rules (Thm. 1 in [12]). Therefore, operation CCT yields the maximal consistent subgraph
GT

2,FCB = GT
0 and update dT

B = idT . By correctness of operation bPpg (law (b1) in Fig. 5) we derive
that the fifth step yields source model GS

2,FCB = GS
0 , correspondence r2,FCB = r1,F = r = c and source

update dS
2,CB = idS . All together, operation fSynch yields the result (c, idS , idT) as required by law

(a). The same result holds for operation bSynch using the symmetry of the precondition and the sym-
metric definition of TGGs and the derived operations. Therefore, the result holds for the concurrent
synchronization operation CSynch.

GS
1

dS
2
��

⇓:CSynch

GS
0
oo
r0 //

dS
1oo GT

0

dT
1 // GT

1

dT
2
��

G2
S oo

r2:C
// G2

T

(b)

Law (b) in Fig. 3: Let (r0, dS
1 , d

T
1) ∈ (R⊗∆S ⊗∆T) as depicted

on the right and in Fig. 3. We have to show that the concurrent
synchronization operation yields a consistent correspondence
r2 ∈ VL(TGG).

We apply the concurrent synchronization operation fSynch
according to Fig. 7 and Fig. 10. All steps are well defined ac-
cording to Rem. 3. Step 4 (operation CCT) provides a maximal consistent subgraph GT

2,FCB ∈ VLT .
Therefore, we can apply law (b2) in Fig. 5 and derive that operation bPpg in step 5 yields a consis-
tent correspondence r2 (see Fact 2). The proof for the concurrent synchronization operation bSynch
is analogous using the symmetric definition of TGGs and the dual definitions of the steps according
to Rem. 3. Therefore, the concurrent synchronization operation CSynch always yields a consistent
correspondence r2 ∈ VL(TGG). �

Finally, we show the compatibility of concurrent with basic model synchronization. This means
that the non-deterministic concurrent synchronization operation is a generalization of the propagation
operations of the basic model synchronization framework.
Theorem 2 (Compatibility of Concurrent with Basic Model Synchronization). Let fPpg and bPpg
be correct basic synchronization operations for a given TGG and let operation CSynch be derived
according to Rem. 1. Then, the derived concurrent TGG synchronization operation CSynch is com-
patible with propagation operations fPpg, bPpg.

Proof. Let CSynch be obtained from the derived forward and backward synchronization operations

16

fSynch and bSynch, i.e. CSynch = (fSynch ∪ bSynch). According to Def. 3, we have to show
for the forward case that ∀ (dS , r0) ∈ ∆S ⊗ R, with dS : GS

0 → GS
1 ∧ GS

1 ∈ VLS : (id, fPpg(dS , r0)) ∈
CSynch(dS , r0, id). The result for the backward case holds by dualization due to the symmetric defi-
nition of TGGs and the derived operations.

Let r0 = (GS
0 ↔ GT

0) with GS
0 ∈ VLS and let dS : GS

0 → GS
1 be a source model update. Let

further (r1, dT) be the result of applying fPpg to (dS , r0) with r1 = (GS
1 ↔ GT

1) and dT : GT
0 → GT

1 .
We show that (id, r1, dT) ∈ fSynch(dS , r0, id) according to Fig. 7 and Fig. 10. Since GS

1 ∈ VLS

we have that step 1 (CCS) yields the maximal consistent subgraph GS
1,C = GS

1 (see Rem. 2) and
source update dS

F = id : GS
1 → GS

1 . Thus, step 2 applies operation fPpg to the same input as in the
precondition, such that we derive correspondence r1,F = r1 and target model update dT

1,F = dT . By
correctness of fPpg (law a2 in Fig. 5) we know that r1 = r1,F ∈ VL(TGG) and therefore, GT

1 ∈ VLT .
In step 3 (operation Res), the merge construction is applied to dT and the target update id, which
does not delete nor create anything (the corresponding minimal rule is the empty rule). This means
that the updates are conflict-free and the merge construction yields the target updates d′T2,FC = id
and dT

2,FC = dT . Since GT
1 ∈ VLT (see step 2 above), step 4 yields the maximal consistent subgraph

GT
2,FCB = GT

1 (see Rem. 2) and the target update dT
B = id : GT

1 → GT
1 . Therefore, the target update

dT
2,CC = dT

B ◦d′T2,FC is given by dT
2,CC = id. By r1 = r1,F ∈ VL(TGG) (see step 2 above) and correctness

of operation bPpg (law (b1) in Fig. 5) we know that step 5 yields source model update dS
2,CB = id and

correspondence r2,FCB = r1 ∈ VL(TGG). This leads to source model update dS
2,FCB = dS

2,CB ◦ dS
F = id.

All together, we have that s = (id, r1, dT) ∈ CSynch(dS , r0, id), i.e. s is a valid solution for the
concurrent synchronization problem of CSynch(dS , r0, id). �

B Efficient Execution

This section provides further details for the execution of the concurrent synchronization operation in
practice and discusses possibilities for an efficient execution.

At first, we formalize the notion of maximal consistent graphs, which is used for consistency
creating operations CCS and CCT.

Definition 4 (Maximal Consistent Sub Graph). Let TGG = (TG,TR) be a triple graph grammar and
GS be a graph typed over TGS , i.e., GS ∈ VLTGS . A graph HS ∈ VL(TGS) is a maximal sub graph
of GS , if HS ⊆ GS and there is no graph H′S ∈ VL(TGS) with HS ⊆ H′S ⊆ GS and H′S , HS . The
dual notion for maximal subgraphs concerning the target domain VLT is derived by replacing above
supscript S with T .

Construction 2 (Consistency Creating Sequences (Operation CCS)). Let TGG = (TG,TR) be a triple
graph grammar and GS ∈ VL(TGS). A maximal consistent subgraph HS of GS can be obtained by
applying forward translation rules [15] in the following way.

By Def. 4 we derive the requirement that HS ∈ VLS and HS ⊆ GS . According to Thm. 1 in [15]
(completeness of model transformations via forward translation rules) there is a model transformation

sequence (HS ,H′0 =
tr∗FT
==⇒ H′n,H

T) via forward translation rules. The initial graph H′0 is given by
H′0 = (H′S0) ← ∅ → ∅), where H′S0 is derived from HS by adding translation attributes for each
element and assigning them to the Boolean value F. This means that initially, no element is translated.
The terminal graph H′n is given by H′n = (H′Sn ← HC → HT), where H′Sn is derived from HS by
adding translation attributes for each element and assigning them to the Boolean value T, i.e., it
differs from H′S0 only on the value of the translation attributes. Using HS ⊆ GS we can extend

17

TGT-sequence s1 = (H′0 =
tr∗FT
==⇒ H′n) to s2 = (G′0 =

tr∗FT
==⇒ G′n), where we only add the additional context

elements of GS \ HS and assign the corresponding translation attributes with the Boolean value F,
i.e. these context elements are effectively not involved in the transformation steps. 4 This means
that the translation attributes in G′Sn are set to true for the elements of HS ⊆ GS and set to false for
the elements of GS \ HS . Summing up, for each possible maximal consistent subgraph HS we can
construct a TGT-sequence via forward translation rules yielding HS as result. This means that the
construction of possible forward translation sequences will potentially produce all possible maximal
subgraphs HS . For termination of this process, see Rem. 4.

Remark 4 (Termination of Operation CCS). Operation CCS is based on the execution of model
transformations based on forward translation rules. In order to ensure termination, we can check
statically that each forward translation rule is modifying at least one translation attribute, which is
a sufficient condition as shown by Thm. 1 in [15]. As a common requirement we assume that the set
of triple rules TR is finite and the given source model is finite on the structural part, i.e. only the
data part may be infinite. This ensures that there are only finitely many possible forward translation
sequences. Similarly, operation CCT is terminating if each backward translation rule is modifying at
least one translation attribute.

In order to improve the efficiency of the execution of the concurrent model synchronization op-
eration CSynch, we can combine some of the steps according to Rem. 5 below using the available
equivalence results for TGT-sequences based on the different kinds of operational rules.

Remark 5 (Efficient Execution of Concurrent Model Synchronization). Steps 1 and 2 as well as 4
and 5 in Fig. 7 and Fig. 10 can be executed in a combined way in order to improve the efficiency of
the execution. Essentially, when executing operation fPpg according to the presented construction
in [16], then the derived forward translation sequence can be used as well for operation CCS. The
only difference is that CCS allows for the additional inconsistent context of the given source model.
In more detail, given source model GS

1 , then operation CCS computes the maximal consistent sub-

graph GS
1,C of GS

1 by computing terminating forward translation sequences (H′0 =
tr∗FT
==⇒ H′n) via forward

translation rules according to Construction 2 above. Thus, H′0
C = H′0

T = ∅, where H′0
S extends

GS
1 with translation attributes that are assigned to the Boolean value F, and H′Sn differs from H′0

S on
the values of the translation attributes for the subgraph GS

1,C ⊆ GS
1 . The construction of the basic

synchronization operation fPpg as presented in [16] consists of three steps, where step 2 yields a
consistency creating sequence s1,CC via TRCC and step 3 yields a forward translation sequence s2,FT .
The marking sequence s1,CC is equivalent to a corresponding triple sequence via TR 5 and thus, to a
forward translation sequence s1,FT by completeness of model transformations based on forward trans-
lation rules (Thm. 1 in [15]). Sequence s1,FT can be composed with s2,FT leading to one terminated
forward translation sequence sFT . This means that the sequence does not need to be computed via
operation CCS before, but can be derived during the execution of fPpg. This means that the restric-
tion of GS

1 to GS
1,C can be performed on-the-fly during the computation of possible forward translation

sequences via the construction of fPpg. Similarly, the computation of backward translation sequences
4For the detailed construction of this extension see Fact 11 in Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin,

Z., Xiong, Y.: Correctness of Model Synchronization Based on Triple Graph Grammars - Extended Version. Tech. Rep.
TR 2011-07, TU Berlin, Fak. IV (2011), to appear, online available at http://tfs.cs.tu-berlin.de/publikationen/Papers11/
HEOCDX11b.pdf

5This equivalence is shown by Fact 11 in Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.:
Correctness of Model Synchronization Based on Triple Graph Grammars - Extended Version. Tech. Rep. TR 2011-07, TU
Berlin, Fak. IV (2011), to appear, online available at http://tfs.cs.tu-berlin.de/publikationen/Papers11/HEOCDX11b.pdf

18

http://tfs.cs.tu-berlin.de/publikationen/Papers11/HEOCDX11b.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers11/HEOCDX11b.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers11/HEOCDX11b.pdf

via operations CCT and bPpg can be joined and performed within bPpg. Effectively, this means that
operations fPpg and bPpg are extended to possibly inconsistent input models and thus, they become
non-deterministic operations due to the possible different maximal consistent sub graphs.

Finally, as described in [16], the performed TGT-steps in operations fPpg and bPpg can be
reduced by reusing the steps that were executed in a previous synchronization and are still valid.

C Details of the Case Study

In this section, we provide the details of our case study. At first we present the complete TGG in
Sec. C.1 for generating consistent organizational models. Thereafter, in Sec. C.2 – Sec. C.5, we ex-
plain the steps 2–5 of fSynch for concurrent model synchronization as sketched in Fig. 8: In Sec. C.2,
we illustrate how operation 2:fPpg is constructed as composition of auxiliary operations 〈fAln, Del,
fAdd〉 according to [16]. In Sec. C.3, we show how operation 3:Res resolves the conflict between
the two model updates on the target domain part. Operation 4:CCT is described in Sec. C.4 for the
variant of Ex. 4 that the resolution yields two “married”-edges between the same two nodes. Finally,
in Sec. C.5, operation 5:bPpg is explained, which is constructed symmetrically to operation 2:fPpg).

C.1 Components of the TGG

The triple graph grammar TGG = (TR,∅,TR) of our case study is given by the triple type graph TG
in Fig. 12, the empty start graph and the triple rules in the subsequent figures.

Example 6 (Type Graph). According to the triple type graph TG in Fig. 12, the models of the source
domain contain persons including their detailed salary information (bonus and base salary) and their
names. Models of the target domain additionally contain the departments to which a person is as-
signed to, information about his marriage status (if married to a person in the same company), the
birth date of a person, and a single value for the complete salary of a person, while the details about
bonus and base salary are not provided.

19

Figure 12: Triple type graph TG

Example 7 (Triple Rules (Parts 1 and 2)). The triple rules of the TGG are depicted in short notation
in Figs. 13 to 16 and in we first explain Figs. 13 and 14. The first rule (Empty2OtherDepartment) is
depicted additionally with explicit left and right hand side. It creates a new department in the tar-
get model, but does not change the source model. The negative application condition (NAC) ensures
that this rule cannot be applied for creating a department with name “Marketing”. For this purpose,
rule 2 (Person2FirstMarketing) is used, where the NAC ensures that the given target model does not
contain already a department with name “Marketing”. This rule additionally creates a person of the
new department in the target model and a corresponding person in the source model. Rule “Per-
son2NextMarketingP” is applied in order to extend both models with further persons in the marketing
department. Note that the attributes of the created persons are not set. This is possible in our formal
framework of attributed graph transformation based on the notion of E-graphs6. The main advantage
is that we can propagate changes of attribute values without the need for deleting and recreating the
owning structural nodes. This is important from the efficiency and application point of view.

6 for details see: Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theor. Comp. Science, Springer (2006).

20

Figure 13: Triple rules - part 1

Figure 14: Triple rules - part 2

Example 8 (Triple Rules (Parts 3 and 4)). The further triple rules of the TGG are depicted in
Fig. 15 to Fig. 16. The four rules in Fig. 15 concern the creation of attribute values only. Rules
“FName2FName” and “LName2LName” create new corresponding values for first and last names,
respectively. The next rule “Empty2Birth” assigns the of a birth date of a person in the target compo-
nent and does not change the source component. Rule “DetailedSalary2Salary” assigns the detailed
salary values (bonus and base) in the source component and the sum of them in the target compo-
nent. Rule “Empty2OtherPerson” of the TGG is presented in Fig. 16 and creates a new person of a
department that is not the marketing department. Therefore, there is no correspondence to the source
model and the rule directly creates the person including all attribute values. Similarly, the last rule

21

Figure 15: Triple rules - part 3

Figure 16: Triple rules - part 4

“Empty2Married” in Fig. 16 inserts a “Married”-edge between two person nodes when these persons
get married7.

7Note that we model a bidirectional edge by two edges, one for each direction.

22

C.2 Operation 2:fPpg: Forward Propagation

Given two corresponding models GS and GT and an update of GS via the graph modification a =

(GS
←

a1
−− DS

−
a2
−→ G′S) with G′S ∈ VLS , then, according to [16], the forward propagation fPpg of δS is

performed in three steps via auxiliary operations fAln, Del, and fAdd. First of all, the deletion per-
formed in a is reflected to the correspondence relation between GS and GT by calculating the forward
alignment remainder via operation fAln. Intuitively, operation fAln constructs the new correspondence
graph DC from the given GC by deleting all correspondence elements in GC whose associated ele-
ments in GS are deleted via update a and for this reason, do not occur in DS (see upper row in Fig. 17)
for the construction of the new correspondence). This step deletes all correspondence elements whose
elements in GS have been deleted. In the second step (see center row in Fig. 17), performed via
operation Del, the maximal subgraphs GS

k ⊆ GS and GT
k ⊆ GT are computed such that they form a

consistent integrated model in VL(TGG) according to the triple graph grammar. All elements that are
in GT but not in GT

k are deleted, i.e. the new target model is given by GT
k . Finally, in the last step

(operation fAdd, defined in the last row in Fig. 17), the elements in G′S that extend GS
k are transformed

to corresponding structures in G′T , i.e. GT
k is extended by these new structures. The result of fAdd,

and hence also fPpg, is a consistent integrated model.

Signature Definition of Components

GS oo r=(s,t)
//

a=
(a1,a2) �� u:fAln

GT

1
��

G′S oo
r′=(s′,t′)

// GT

GS

(PB)

GCsoo t // GT

DS
?�

a1

OO

DC
?�

a∗1

OO

s∗
oo

s′ = a2 ◦ s∗,
t′ = t ◦ a∗1

GS oo r=(s,t)
//

a=
(f S ,1) ��

⇓:Del

GT

b=
(f T ,1)��

GS
k
oo
r′=(sk ,tk):C

// GT
k

G = (GS GCsoo t // GT)

∅
tr∗+3 Gk = (GS

k

?�
f S

OO

?�
f

OO

GC
k

?�
f C

OO

skoo
tk // GT

k)
?�

f T

OO ∅ =
tr∗
=⇒ Gk

is maximal w.r.t. Gk ⊆

G

∀ G′S ∈ VLS :

GS oo r=(s,t):C
//

a=
(1,a2) �� u:fAdd

GT

b=
(1,b2)��

G′S oo
r′=(s′,t′)

// G′T

(GS
� _

a2
��

G GCsoo t //
� _

1
��

GT)
� _

1
��

(G′S
� _

1
��

G0

� _
g
��

GC
� _

��

a2◦soo t // GT)
� _

b2
��

(G′SG′

tr∗F
��

G′Cs′oo t′ // G′T)

G0 =
tr∗F
==⇒ G′

with G′ ∈ VL(TGG)

Figure 17: Auxiliary operations fAln, Del and fAdd

Example 9 (Forward Propagation via Operation fPpg). Fig. 18 shows the application of the three
steps of synchronization operation fPpg to the visual models of our running example.

After removing the dangling correspondence node of the alignment in the first step (fAln), the
maximal consistent subgraph of the integrated model is computed (Del) by stepwise marking the
consistent parts: consistent parts are indicated by grey boxes with checkmarks in visual notation
and by bold font faces in graph representation. Notice that node “Bill Gates” is part of the target
graph in this maximal consistent subgraph, even if it is not in correspondence with any element of
the source graph. In the final step (fAdd), the inconsistent elements in the target model are removed
and the remaining new elements of the update are propagated towards the target model by model
transformation, such that all elements are finally marked as consistent.

23

Figure 18: Forward propagation in detail - top: visual notation, bottom: graph representation

24

C.3 Operation 3:Res: Conflict Resolution

In this section, we show how operation 3:Res resolves a possible conflict between the two model
updates m1 = (G ← D1 → H1) and m2 = (G ← D2 → H2) on one domain based on the tentative
merge construction for two conflicting graph modifications [10].

The tentative merge construction is performed in three steps via auxiliary operations rDel, rIns,
and rUnify: At first (using operation rDel in the upper row in Fig. 19), all deletion actions are merged
by computing the intersection of intermediate graphs yielding graph D. In case of delete-insert con-
flicts, D is too small and has to be extended again (to D, formally constricted in [10]). I.e. those node
deletion actions which conflict with edge insertions are taken back and the intermediate graphs of the
original modifications are extended such that all insertions can now take place. Thereafter (applying
operation rIns in the center row in Fig. 19 to each modification), insertions are performed on both
sides, yielding graphs X1 and X2 (a construction that is shown to be well-defined in [10]). Finally
(using operations rUnify in the last row in Fig. 19), the results from both sides are merged. After-
wards, G ← D → H forms the tentatively merged graph modification of m1 and m2. Note that this
tentative merge construction does not always lead to desired results, since the standard resolution of
delete-insert conflicts is not always adequate. In the second part of conflict resolution, we need to
identify non-performed deletions or even further, we have to identify not or just partially performed
operations which shall be resolved differently. Possible solutions are to take back the (potentially
partial) execution of an operation, to complete a partial execution, to perform a different operation or
a combination of those.

Signature Definition of Components

G oo

u:rDel

D1OO

��

D2

OO

oo // D

G
(PB)

D1oo id //

(=)

D1

D2

OO

id
��

(=)

D

OO

��

oo //

(PO)

D1

OO

��

D2 D2oo // D

D1 //

u:rIns

H1OO

��

D
��

OO

// X1

D2 oo //

u:rIns
��

D

��

H2 oo // X2

D1

(PO)

// H1

D1

OO

��

//

(PO)

X1

��

OO

D // X1

D2

��
(PO)

D2

��

oo //

(PO)

D

��

H2 X2oo // X2

D //

u:rUnify��

X1

��

X2 // H

D

�� (PO)

// X1

��

X2 // H

Figure 19: Auxiliary operations rDel, rIns and rUnify for conflict resolution

Example 10 (Conflict resolution based on tentative merge construction). We describe the conflict
resolution based on the tentatively merged graph modification for graph modifications m1 = (G ←
D1 → H1) and m2 = (G ← D2 → H2) and manual modifications in step 3:Res in Fig. 8.

Step rDel (see Fig. 20): Intersection graph D contains only those elements that are present both
in D1 and in D2, i.e. that are preserved by both modifications. Hence, the Bill Clinton node and its
incident edges are not in D, nor are the attribute values of attributes that are changed by any of the two

25

updates. The extension of D by nodes in D1 which shall be deleted by modification m2 but are needed
by modification m1 leads to the extended graph D1 where now a node corresponding to Bill Clinton has
been added since this node is needed for the insertion of an edge to the Technical Department node
and an attribute edge to the new Salary value. In our example, there is no need to extend D by nodes
in D2 since there is no node deletion in m1. Hence, D2 equals D2. D is constructed as union D1 ∪D2.
In addition to the common subgraph D of D1 and D2, the union graph D contains a Bill Clinton node
which is in D1 but not in D2. Now, graph D contains all objects that remain after both modifications
have performed their deletions plus those nodes that are needed for the insertion of edges by either
m1 or m2.

Figure 20: Step rDel of the tentative merge construction

Step rIns (see Fig. 21): Graphs Xi = Xi ∪D result after performing the creation of elements given
by either modification on D. I.e., X1 is graph D together with all elements created by m1 (the edge
from the Bill Clinton node to the Technical Department node, the new attribute value for Bill Clinton’s
Salary attribute and one new married-edge) , and X2 contains in addition to a copy of D one new
married-edge and two new attribute values for Melinda’s attributes LastName and Salary. We here
show explicitly the diagram for X1:

Step rUnify (see Fig. 22): In this last step, the creation parts of both modifications which have been
performed independently of each other on D in step rIns, are now merged by a union construction,
leading to the tentatively merged graph H.

After the tentative merged graph H has been computed automatically, the user is asked to finish
the conflict resolution manually. In our example, the user is asked to set values for the attributes
FirstName, LastName and Birth of the “Bill Clinton” node. To assist the user with this task, the
previous attribute values of the corresponding deleted node may be shown to the user s.t. he only
needs to confirm that these attribute values should be kept. The result after these manual modifications
is graph GT

2,FC in Fig. 23, where now (in contrast to graph H in Fig. 22) the attribute values are set
accordingly.

26

Figure 21: Step rIns of the tentative merge construction applied to m1

Figure 22: Step rUnify of the tentative merge construction

27

C.4 Operation 4:CCT: Consistency Creation of the Target Domain

Operation 4:CCT performs a consistency creation on the result of the conflict resolution on the target
domain (i.e. graph GT

2,FC in Fig. 23). Here, basically triple rules are applied aiming to derive this
graph. If this is not possible (and in our case it is not possible because we have two married-edges
between the same person nodes), then the conflict resolution result graph is replaced by the TGG-
derived graph that has the least differences compared to the conflict resolution result graph. In our
case, this is graph GT

2,FCB that equals GT
2,FC with the small difference that it contains only one married-

edge between the nodes of Bill Gates and Melinda Gates.

Figure 23: Operation 4:CCT for consistency creation on the target domain

28

C.5 Operation 5:bPpg: Backward Propagation

Finally, operation 5:bPpg is explained, which is constructed (symmetrically to operation 2:fPpg) from
auxiliary operations 〈bAln, bDel, bAdd〉. In essence, this operation propagates back all changes that
occurred on the target domain to the triple and adapts all elements on the source domain that are
concerned by these changes. Fig. 24 shows the backward propagation square for operation 5:bPpg
from Fig. 8 in abstract syntax. Since none of the changes on the target domain concern the source
domain model, the source domain is not changed but just connected to the changed target part of the
model.

Figure 24: Operation 5:bPpg for backward propagation to the source domain

29

	Introduction
	Concurrent Model Synchronization Framework
	Basic Model Synchronization Framework
	Semi-Automated Conflict Detection and Resolution
	Concurrent Model Synchronization with Conflict Resolution
	Correctness and Compatibility
	Related Work
	Conclusion and Future Work
	Proofs of Main Results
	Efficient Execution
	Details of the Case Study
	Components of the TGG
	Operation 2:fPpg Forward Propagation
	Operation 3:Res Conflict Resolution
	Operation 4:CCT: Consistency Creation of the Target Domain
	Operation 5:bPpg: Backward Propagation

