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Zusammenfassung

Kolloidale Suspensionen im Scherrfluss migrieren in Richtung kleiner Scherrate. Sus-
pensionen mit zwei verschiedenen Teilchengrößen entmischen sich im Zentrum eines
Mikrokanals. Kolloide in Kanälen mit sehr hoher Packungsdichte können Staus bilden
welche reguläre Oszillationen in der Flussgeschwindigkeit auslösen. Diese Geschwindigkeit-
soszillationen werden von Verdünnungswellen in der Packungsdichte begleitet. Wird die
Dichte noch weiter erhöht, treten die Oszillationen unregelmäßig auf.

Um ein theoretischen Verständniss dieser Effekte zu vertiefen, simulieren wir Kugeln
im Fluss eines Kanals in zwei und drei Dimensionen. Dabei verwenden wir die mesosokopis-
che Simulationsmethode der Vielteilchen-Stoßdynamik für die Modellierung der Flüssigkeit.

Um die hydrodynamische Segregation zu modellieren, formulieren wir eine phenome-
nologisches Model für den lateralen Teilchenfluß auf Basis der Arbeit von J. Phillips et
al. [Phys. Fluids 4, 30 (1992)]. Die neu formulierte Theorie trifft gute Vorhersagen
für die simulierte Dichteverteilung entlang des Kanalquerschnitts. Wir präsentieren
eine ausführliche Parameterstudie wie Suspensionen einer Teilchengröße sich in der
Kanalmitte anreichern und Suspensionen zweier Teilchengrößen sich entmischen. Dabei
finden wir stets eine stärkere Anreicherung der großen Teilchen im Zentrum.

Für die Simulation noch dichterer Systeme benutzen wir ein elastisches Kontakt-
modell mit Reibung für die Kolloide. Mit deisem Modell ist es möglich die periodischen
Geschwindigkeits- und Dichtepulse zu simulieren welche auch in den Experimenten von
L. Isa et al. [Phys. Rev. Lett. 102, 058302 (2009)] beobachtet wurden. Wir zeigen
dass die Reibung zwischen Kolloiden und den Kanalwänden ein notwendiges Kriterium
für die Formation der Pulse ist. Mit ansteigender Packungsdichte formieren sich die
Pulse zuerst als einzelne Staus, welche bei höherer Dichte die Form eines periodischen
Pulszuges annehmen. Bei der höhsten Packungsdichte findet man vereinzelte instabile
Pulse. Wir formulieren ein neues phenomenologisches Kontinuummodell und zeigen dass
die laufenden Pulse als periodische und homokline Orbits in den zugehörigen Differen-
tialgleichungen verstanden werden können.
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Abstract

Colloids in suspensions exhibit shear-induced migration towards regions of low viscous
shear. In bidisperse suspensions under pressure driven flow large particles can segregate
in the center of a microchannel and the suspension partially demixes. In channels
containing very dense suspensions, colloids may jam and produce regular flow speed
oscillations generated by density rarefaction waves. Increasing the density even further
the oscillations become irregular.

To develop a theoretical understanding of these effects, we simulate spheres under
pressure-driven channel flow in two and three dimensions using the mesoscale simulation
technique of multi-particle collision dynamics.

To model hydrodynamic segregation, we formulate a phenomenological model for the
particle currents based on the work of R. J. Phillips et al. [Phys. Fluids 4, 30 (1992)].
Using a single fit parameter for the intrinsic diffusivity, our theory accurately reproduces
the simulated density profiles across the channel. We present a detailed parameter study
on how a monodisperse suspension is enriched in the channel center and quantitatively
confirm the experimental observation that a binary mixture partially segregates into its
two species. In particular, we always find a strong accumulation of large particles in the
center.

For our simulations on jamming, the colloids are modeled as elastic and frictional
disks. The model reproduces periodic velocity and density pulse trains, traveling up-
stream in the microchannel, which are found in experiments conducted by L. Isa et al.
[Phys. Rev. Lett. 102, 058302 (2009)]. We show that colloid-wall friction and the re-
sultant force chains are crucial for the formation of these pulses. With increasing colloid
density solitary jams occur, which become periodic pulse trains at intermediate densi-
ties and unstable solitary pulses at high densities. We formulate a phenomenological
continuum model and show how these spatio-temporal flow and density profiles can be
understood as homoclinic and periodic orbits in traveling-wave equations.
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nicht möglich gewesen wäre.
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1
Introduction

Colloidal suspensions have gained widespread attention from about the 1970s for their
rich static and dynamic properties as well as their role in commonplace objects like
paints, cosmetics, detergents, food, and fuel [1–5]. Understanding the collective dynam-
ics of colloids in viscous fluids is an ongoing challenge [6–12]. The complexity of col-
lective phenomena contrasts with the simplicity of low-Reynolds-number flow, which is
governed by the linear Stokes equation [13]. Dense colloidal suspensions in microfluidic
flow pose fundamental questions about the interplay between confinement, structure,
and flow behavior. In particular, the role of jamming and dynamical heterogeneities has
come into focus [14, 15].

Research has shown that in moderately dense suspensions particle migrate towards
regions of low shear rate. This migration finds applications in several industrial processes
such as microfiltration [16], fluidized beds, and fractionation of particle suspensions [17].
After some initial work by Eckstein et al. [18] quantifying shear-induced diffusion,
Leighton and Acrivos [19] described shear-induced migration. Leighton wanted to ex-
plain the unexpected decrease of shear viscosity of a colloidal suspension in a Couette
cell [20]. He found that the polystyrene spheres migrated out of the high-shear region
between the rotating cylinders. Since this work, shear-induced migration was reported
in several experimental setups. Examples include circular Couette flow [21, 22], pressure
driven Poiseuille flow between parallel plates [23], as well as microchannels, where the
particles segregate in the center [24–27].

At small Reynolds numbers, such a segregation cannot be explained by pure hy-
drodynamic forces due to the kinematic reversibility of the governing Stokes equations.
According to this symmetry, reversal of time should reverse the segregation towards, for
example, a uniform initial state. However, also the direction of Poiseuille flow is simply
reversed with time and both the original and time-reversed system should behave the
same. Only physical features, which are not included in the Stokes equations, such as
direct particle-particle contacts, thermal motion, or residual inertia [28–30] can break
the kinematic reversibility and induce cross-streamline migration in dense suspensions.

Another branch of phenomena occurring in suspensions near random close packing
density stems from particle jamming. Here, the colloidal flow in confinement is arrested
due to the self-organized formation of force chains [31]. The colloidal system thus
becomes solid, although fragile with respect to small perturbations. Since jamming
occurs in such diverse systems as granular matter [32], pedestrian and traffic flow [33–
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35], and very prominently, during shear thickening of corn starch [36, 37], Liu and Nagel
[38] suggested it as a universal principle governing dense particle systems.

It is well known that hydrodynamic lubrication prevents direct contact during colli-
sions of micron-sized colloids suspended in a viscous fluid [39]. However, over the past
years research has found cues for the necessity of direct particle contacts to explain phe-
nomena such as shear migration, discontinuous shear thickening [40, 41], and jamming
[6]. For example, numerical studies by Seto et al. [42] and work by Heussinger [43]
and Fernandez et al. [41] stressed the importance of implementing contact friction to
successfully model discontinuous shear thickening.

Recent research showed that pressure driven flow of dense colloidal suspensions
through microchannels produces regular [44] and irregular [45] oscillations in flow speed,
that can be attributed to the formation of transient jams. Furthermore, Isa et al. [44]
could indirectly verify the existence of rarefaction pulses traveling upstream and stressed
the importance of shear thickening under confinement for explaining this observation
[36].

The aim of this thesis is to obtain further insight into the underlying principles
governing shear-induced segregation and colloidal jamming, in particular, in bidisperse
suspensions under pressure-driven flow through a microchannel. With simulations, we
first want to be able to capture and study the experimentally observed phenomena for
a wide range of parameters. Secondly, by reducing the complex interplay of hydrody-
namics, thermal motion and contact networks to key mechanisms, we propose or modify
equations which produce the same phenomena to deepen our understanding further.
Using simulation we have the significant advantage of fine-tuning every parameter in-
dividually and measuring quantities from our data directly. To accomplish this, the
method of multi-particle collision dynamics (MPCD) is employed to solve the Navier-
Stokes equation [46, 47]. MPCD is computationally fast, simple to implement, and
capable of reproducing analytically known results [48–50]. MPCD has been successfully
used to tackle diverse problems in soft matter physics [51, 52]. Recent examples are the
collective dynamics of squirmers [53], a detailed modeling of the swimming mechanism
of the African trypanosome [54], diffusion of star polymers [55], and the sedimentation
of a red blood cell [56]. To simulate fluid flow, MPCD uses a sequence of streaming and
collision steps of point-like effective fluid particles. In the streaming step the particles
move forward ballistically. In the collision step the particles are grouped into cubic
cells. All fluid particles within the same cell collide according to a specific collision rule
keeping the mean velocity constant in order to conserve momentum. This procedure is
sufficient to create a fluid flow field that solves the Navier-Stokes equations. In addition,
thermal noise is incorporated due to the stochastic character of MPCD.

This thesis is organized as follows: Chapter 2 gives an overview on historical and
recent research on colloidal particles in flow and highlights key insights. Some articles are
presented in more detail, which had a great impact on this work for either encouraging
simulations or suggesting analytical models.

In chapter 3 we present the physical foundations starting with the hydrodynamic
equations of motion, followed by basic principles of the statistical physics of passive
Brownian particles and kinetic gas theory of a canonical ensemble. The chapter con-
cludes with an introduction to nonlinear dynamics and bifurcation theory.

Subsequently, in chapter 4 we outline the numerical method of multi-particle col-
lision dynamics together with details on its implementation. Moreover, we introduce
and motivate two methods for implementing the contact interactions between colloidal
particles. The first uses event-driven molecular dynamics to resolve collisions between
hard spheres instantaneously. The second generates repelling forces from linear springs
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in normal and tangential direction to the contacts that obey Coulomb’s law of friction”.
In chapter 5 we present the results on shear induced size segregation in microchan-

nels. On the one hand, we extend the phenomenological model of Phillips et al. [57] to
bidisperse suspensions using scaling arguments for the involved particle radii and also
formulate a more realistic expression for the collective diffusion tensor. On the other
hand, we employ MPCD to efficiently solve the governing Navier-Stokes equations. We
show results of our extensive two-dimensional simulations of pressure-driven colloidal
flow in microchannels. By varying total area fraction, packing composition, and flow
speed, we confirm the segregation of large particles in the channel center. A single
fit parameter for the diffusivities is sufficient to obtain an accurate agreement between
the simulated density profiles and the profiles from the phenomenological model. Three-
dimensional simulations with hard spheres reveal only minor differences compared to two
spatial dimensions. Simulations and the phenomenological model equations reproduce
fine details in the experimental profiles of Ref. [58].

In chapter 6 we combine MPCD with a frictional contact model for particles [59], in
order to thoroughly study jamming of dense colloidal suspensions in microchannels in
two dimensions. With increasing colloid density, we identify solitary jams, regular pulse
trains, and solitary pulses in the colloidal flow similar to experimental observations
[44, 45]. We stress the importance of colloid-wall friction and the formation of force
chains for inducing a transition between free and jammed flow. This is the origin for
traveling rarefaction pulses to occur. A newly formulated nonlinear continuum model
reproduces the flow instabilities from our simulation study.

Finally, in chapter 7 we summarize the results and give an outlook.
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2
Review of the State of the Art

From the first experiments conducted on colloidal gold suspensions by Michael Faraday
in 1857 [60] to the present day there have been several findings that have affected our
understanding of how colloidal particles move and interact. As in all disciplines of
physics, sometimes all it takes is an inexplicable experiment for new models to thrive,
capable of explaining the new phenomenon. The objective of this chapter is to place the
results of this thesis into the context with historical and recent experiments and their
conclusions. We start by outlining the characteristics of colloidal particles in flow, which
will be discussed in more depth and mathematically derived in chapter 3. We close by
presenting some of the most important experimental and theoretical works in the field
of dense colloidal suspensions. All of these deserve great credit in the creation of this
thesis for either motivating simulations or inspiring analytical modeling.

2.1 Colloids: Physics on Small Length Scales

The name “colloid” comes from Greek and is composed of κóλλα, kólla, “glue” and ε̃iδoς,
eidos, “look”. All particles which bear the name share one common feature: they are
very small. More specifically, their radii range from a few micro meters (10−6m) down to
a few nano meters (10−9m). Furthermore, colloids are usually dispersed in a fluid. The
fluid is composed of molecules, which are thermally driven, i.e. each molecule has an
undirected movement with a mean kinetic energy proportional to kBT , where kB denotes
the Boltzmann constant and T the absolute temperature. The molecules erratically
collide with the particle which is a few orders of magnitude larger than a molecule.
These momentum exchanges become visible under a microscope as diffusive motion
(Brownian motion) of the colloid and contributed to proving the molecular character of
matter in 1905 by Albert Einstein [61].

The time scale τD for a colloid to diffuse the distance of its own radius is typically
around τD ≈ 100 − 101s. In research this time scale is commonly compared to the
convective time scale τv, i.e. the time required for the colloid to travel the distance of its
own radius due to external flow. The ratio of both time scales is named Péclet number
and defined as

Pe =
τD
τv

=
va

D
, (2.1)

where v is the flow speed, a the colloidal radius and D the diffusion constant. The Péclet
number is an important dimensionless number characterizing flows in non-equilibrium.
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Figure 2.1: Trajectories of two spheres with radii a1 = a2 in unbounded shear flow
calculated with the aid of Stokes equation before interaction a) and after interaction b).

Small Péclet numbers, Pe � 1, correspond to flows where the transport is dominated
by diffusion whereas flows at Pe � 1 are dominated by convection. A more detailed
and quantitative description of Brownian motion based on Einstein’s theory follows in
chapter 3.

The micro size of the colloids has yet another consequence because the correspond-
ing Reynolds numbers are vanishingly small. The Reynolds number is a dimensionless
number that determines the ratio of inertial forces to viscous forces in the fluid. It is
defined by

Re =
va

ν
, (2.2)

where again v is the flow speed, a a characteristic length scale, and ν the kinematic
viscosity of the fluid.

For a colloidal particle dragged through water with a speed of v = 10µms−1, the
characteristic size a is the colloidal radius which ranges between 10−9 and 10−6m. The
kinematic viscosity of water at room temperature is ν ≈ 1 × 10−6m2s−1. With help
of Eq. (2.2) we can calculate a Reynolds number of Re ≈ 10−8 − 10−5. This has
tremendous consequences for the swimming behavior of the colloid as inertia becomes
insignificant. Whereas a submarine (Re ≈ 10000000) would continue to move under
water for a long time after its engines had stopped, a colloidal particle would immediately
be arrested by the viscous friction of the fluid. In other words, colloidal particles respond
instantaneously to changes in flow. A mathematical implication of this is that a reversal
of flow is equivalent with a reversal of time as pointed out by Stokes in 1851 [62].

The same is true for hydrodynamic interactions between colloidal particles. Two
colloids in shear flow will be displaced by each other orthogonal to the flow as the
stream lines get distorted by their own flow field, but they will return to the lateral
position before the encounter as they gain distance, see Fig. 2.1. When the initial
lateral distance in a setup like that in Fig. 2.1 is decreased, the colloids can come
very close to each other when they pass. In 1973, Hocking [63] found that in the limit
of the Stokes equation, which describes the flow at vanishing Reynolds numbers (see
chapter 3), the lubrication force between two spheres or between a sphere and a wall
is inversely proportional to the gap. Consequently, from a mathematical point of view
it is impossible for a finite force to produce a physical contact. However, it needs to
be stressed that the Stokes equation holds true only on length scales significantly larger
than the fluid molecules.
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Figure 2.2: a) Schematic diagram of the R-17 Weissenberg Rheogoniometer torsion
measurement apparatus. A: bob, B: cup, C: torsion bar, D: torsion arm, E: transducer,
F: air bearing, G: torsion shaft. b) Relative viscosity of a suspension with φ = 0.45 as
a function of time. Polystyrene spheres, 40-50 µm in diameter in a mixture of silicone
oils. Reprinted with permission from F. Gadala Maria and A. Acrivos [J. Rheol. 24,
799 (1980)]. Copyright (1980), The Society of Rheology.

2.2 Shear-induced Cross-streamline Migration

Given the insights of lubrication and reversibility, until the beginning of the 1980’s it
was believed that colloids would not physically touch in a suspension and would not
leave their streamlines except through thermal fluctuations. However, in the course of
viscometric measurements of concentrated suspensions of colloids in Newtonian fluids
using a Couette device, Gadala-Maria and his colleague Acrivos made a strange discovery
[20]. Their observation was later linked to an underlying principle that violated the
former belief of reversibility.

2.2.1 The Couette-flow dilemma

A Couette viscometer displayed in Fig. 2.2 a) shears a sample fluid in the gap between
two cylinders by rotating the inner cylinder with a constant torque. The viscosity is
then determined from the linear relation between applied torque and angular speed of
the cylinder.

In 1980 Gadala-Maria and Acrivos reported the puzzling observation that, at very
high colloidal volume fractions φ > 0.40, the effective viscosity µ of the suspensions
decreased slowly with prolonged shearing and eventually reached a steady-state value,
which then remained constant as displayed in Fig. 2.2 b). The relative magnitude of
this decrease was quite significant and strongly depends on the overall volume fraction
φ of the colloidal particles. This phenomenon could easily be reproduced but was not
reversible upon inverting the direction of rotation. The colloids were sufficiently large
such that Brownian or electroviscous forces should not play a significant role. In their
paper, Leighton and Acrivos [64] were able to reproduce the viscosity decrease and
argued that the particles had migrated out of the gap into the reservoir, thus decreasing
the packing fraction φ inside the gap and therefore the effective viscosity. Gravity as a
cause for the migration could be excluded because the particles were density matched
with the fluid. Because inertial effects were insignificant due to a Reynolds number



8 CHAPTER 2. REVIEW OF THE STATE OF THE ART

Figure 2.3: Initial (empty circles) versus steady-state (filled circles) density profile of
suspension of 615 µm particles at a volume fraction of φ = 0.55 in Couette flow. The
lines correspond to steady-state solutions of the phenomenological theory for various
fitting values Kc/Kη. Reprinted from R. J. Phillips et al. [Phys. Fluids 4, 30 (1992)],
with the permission of AIP Publishing.

of roughly Re ≈ 10−4, they concluded that the migration occurred due to a so far
unknown mechanism. They developed an idea about the need for irreversible binary
particle interactions to model shear migration. The frequency of interactions in a sheared
suspension scales with ∝ γ̇φ, where γ̇ denotes the shear rate. They argued that each
interaction leads to a permanent displacement orthogonal to the flow and proportional
to the size a of the colliding particles. As a result, the suspension experiences a net
migration velocity vmig given by

vmig ∝ −a2∇|γ̇|φ, (2.3)

with ∇ the gradient operator. Eq. (2.3) predicts a migration towards areas of low shear
rate, which agrees with the experimental finding of particles migrating away from the
sheared fluid between the cylinders into the quiescent reservoir.

The fact that colloidal interactions were leading to cross-streamline migration in
dense suspensions contradicted the principle of reversibility in Stokes flow. Experimen-
talists looked for an answer and finally concluded that colloidal surface roughness could
lead to physical contacts between particles in sheared dense suspensions [65, 66]. A
recent experiment by Pine et al. [67] directly demonstrated the violation of kinematic
reversibility for a particle suspension in an oscillating Couette device above a threshold
value for density and amplitude.

2.2.2 Modeling of shear migration

Since the work of Leighton and Acrivos [64], shear-induced migration was reported in
several experimental setups using stiff particles for instance in circular Couette flow
[21, 22], and in pressure driven Poiseuille flow between parallel plates [23] as well as in
microchannels, where the particles enrich the center [24–27]. In addition, deformable
objects such as a semiflexible polymers [68–71], emulsion droplets [72, 73], and red blood
cells [74–76] show cross-streamline migration.
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Mainly two theoretical approaches have been used to describe particle migration to-
wards regions of lower shear rate in monodisperse suspensions. Based on the ideas of
Leighton and Acrivos [19], Phillips et al. formulated a phenomenological theory for the
lateral particle current [22]. They compared their experimental data of particle migra-
tion in Couette flow to the predictions of their theory depending on fitting parameters
Kc and Kη, shown in Fig. 2.3, and obtained good agreement. Later, the theory was
complemented by a migration flux due to curvature in flow geometry [77]. More recently,
it was applied to suspensions of Brownian particles [78].

The second approach, the suspension balance model, derives the lateral particle
current from the continuity equations for mass and momentum averaged over the volume
just occupied by the particle phase [79, 80]. This model was later refined to account for
Brownian motion [25], to treat more complex channel geometries, and it is extensively
studied in Ref. [81]. However, in a recent publication, Nott et al. [82] confirm an
earlier conclusion of Lhuillier [83] that the suspension balance model does not properly
distinguish between hydrodynamic and non-hydrodynamic stresses.

2.2.3 Size segregation in channel flow

Using a binary suspension, Husband et al. [84] were the first to note that in an initially
well-mixed suspension larger particles migrate faster than the smaller ones, ultimately
leading to size segregation. In Ref. [58], Semwogerere and Weeks presented a careful
study of a binary mixture of 1.4 and 3.0µm Brownian particles in a pressure driven flow.
Since Brownian motion limits the inhomogeneity of the fully developed concentration
profiles they used flow speeds that correspond to a Péclet number of roughly Pe ≈ 100.
The recorded concentration profiles confirmed that at equal volume fractions the larger
species enriches the center, whereas the smaller species shows slight depletion. However,
this effect reverses when the smaller species is in the majority with a volume fraction
larger by a factor 2.5, as displayed in Fig. 2.4.

The very few theoretical approaches describing particle segregation in sheared binary
suspensions adapt the models described above. However, they neglect or simplify how
the smaller species effects the larger one [85, 86]. Shauly et al. [87] generalized the
model of Phillips et al. to treat polydisperse suspensions. They used a simplified
coupling between different particle species and included curvature in the flow geometry
but neglected thermal diffusion. In contrast to the scope of this thesis, the authors
focused on particle segregation in Couette flow. A very recent model uses a multi-fluid
approach and introduces an effective temperature for the particle’s osmotic pressure,
which depends on the shear rate [88].

2.3 Colloidal Jamming

Jamming has gained considerable attention in the last decades, being present in our
daily life, e.g., occurring in systems such as granular matter [32], pedestrian and traffic
flow [33–35], and also colloidal suspensions [6]. Since jamming occurs in such diverse
systems, Liu and Nagel [38] suggested that a universal principle must be responsible.
During jamming a system is caught in a small region of the phase space due to an
externally applied stress. In this state the system has properties akin to a solid body,
thus being able to withstand heavy loads as long as the stress vector does not change
its direction. However, as soon as the stress vector shifts out of its initial alignment, the
system flows until the elements readapt to the new stress and jam once again.

Cates et al. [31] described these kind of systems as “fragile matter”. In response to
external stresses force chains based on physical contact between the individual elements
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Figure 2.4: Top: Schematic representation of the rectangular-cross-section flow chamber
showing the relative position of the microscope. Bottom: Concentration profiles along
z showing enrichment of the channel center by large and small particles of a binary
suspension.(a) Center enrichment by the large particles for (φl, φs) = (0.1, 0.1), with
al/as ≈ 2. (b) Center enrichment by the small particles for (φl, φs) = (0.1, 0.25). (c)
Comparison of monodisperse suspension of φs = 0.1 with the small particles in binary
suspension (φl, φs) = (0.1, 0.1). (d) Comparison of monodisperse suspension of φl = 0.1
with the large particles in binary suspension (φl, φs) = (0.1, 0.25). Reprinted from D.
Semwogerere and E. R. Weeks [Phys. Fluids 20, 043306 (2008)], with the permission of
AIP Publishing.

of a granular system are formed. For hard particles such force chains are extremely
sensitive to perturbations. A prominent example is a sand pile that maintains its shape
under the influence of gravity due to jamming. As soon as the pile is externally vibrated
its heaped structure would melt down.

In contrast to granular matter, colloidal suspensions are characterized by thermal
noise and repelling lubrication forces which appear to hinder the formation of force
chains. In the literature on colloidal suspensions, it is still hotly debated whether col-
loidal systems bear analogies to granular systems [39, 89].

2.3.1 Discontinuous Shear Thickening

Dense suspensions exhibit rich non-Newtonian rheology. At low to intermediate densi-
ties an applied shear stress can lead to shear thinning [90–92], i.e., a decrease in shear
viscosity as the applied stress is increased. During shear thinning particles form bands
parallel to the shear, which allows the layers to slip past each other with reduced fric-
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Figure 2.5: Shear rate Γ̇ dependence of the relative viscosity ηr. The friction coefficient is
µ = 1 except for the dashed and dotted blue lines, for which µ = 0.1 and 0, respectively.
Red symbols show the results with 1.5 times stiffer particles. Reprinted figure with
permission from R. Seto et al. [Phys. Rev. Lett. 111, 218301 (2013)] Copyright (2013)
by the American Physical Society.

tion. On the other hand, suspensions with high packing fractions experience shear
thickening with the shear viscosity increasing with increased shear stress. A prominent
example is the shear thickening of corn starch [36, 37], which enables a person to run
over the liquid surface. Also, cases of discontinuous shear thickening were reported in
both colloidal and non-Brownian suspensions [40, 93]. In discontinuous shear thickening
the viscosity jumps at a critical shear stress with a constant volume fraction φ. Dis-
continuous shear thickening has been difficult to reproduce by numerical simulations
although considerable effort has been put into understanding the underlying principles.
In colloidal suspensions, so called “hydroclusters” have been proposed as possible mech-
anism for shear thickening [91, 94]. In this model the forces keeping particles apart
like lubrication and thermal motion compete with forces imposed by the shear stress
tending to push particles together. Although continuous shear thickening is captured,
discontinuous shear thickening has never been reproduced by contact-free models.

Recently, Seto et al. [42] provided simulation results using frictional contacts between
particles that successfully produced discontinuous shear thickening, see Fig. 2.5. The
authors combined Stokesian dynamics simulations with a frictional contact model usually
used for describing granular matter. The tangential forces Ft of the particles were subject
to Coulomb’s law of friction, which reads

Ft ≤ µFn, (2.4)

with normal force Fn and the friction coefficient µ. Eq. (2.4) states that forces of
static friction between colloids in contact cannot exceed a threshold µFn. This results
in particles, which stick if Ft < µFn and in frictional sliding if Ft = µFn. A coefficient
of µ = 0 corresponds to frictionless sliding because Ft = 0 must hold independent of the
normal force.

The blue dashed and dotted lines in Fig. 2.5 correspond to µ = 0.1 and 0 at φ = 0.54
and exhibit little to no shear thickening indicated by a roughly constant viscosity ηr

along the shear rate Γ̇. In contrast, if µ = 1 (solid lines) discontinuous shear thickening
is evident for a volume fraction of φ = 0.58 indicated by the jump in friction around
Γ̇ = 0.02.
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Figure 2.6: (a) Normalized particle volume fraction as a function of x (along the channel
with the inlet at x = 0). (b) Velocity profiles along the width of the channel correspond-
ing to points 1 and 2 in (a). (c) Velocity offset by the long-time average as a function
of time for three different channel sizes. (d) Space-time (x-t) diagram of oscillating
flow in a = 20D channel. The arrows highlight jamming events. Reprinted figure with
permission from L. Isa et al. [Phys. Rev. Lett. 102, 058302 (2009)] Copyright (2009)
by the American Physical Society.

In the same year Heussinger [43] and also Fernandez et al. [41] provided evidence
supporting the importance of implementing contact friction to model discontinuous shear
thickening. These results strongly justify using tools from granular matter research to
describe flow of dense colloidal suspensions.

2.3.2 Velocity Oscillations in Channel Flow

In their experiment on pressure driven flow of dense colloidal suspensions through mi-
crochannels, Isa et al. [44] verified regularly spaced oscillations in flow speed v. The
authors used spheres of diameter D = 2.6±0.1µm suspended in a density matched fluid
with a volume fraction of φ & 0.63. Using confocal microscopy, the colloidal fluid was
shown to alternate between plug like creeping flow and parabolic free flow, as displayed
in Fig. 2.6 b). The oscillations have been attributed to the formation of transient
jams for which the authors stressed the importance of shear thickening under confine-
ment [36]. The oscillations are absent in wider channels as can be seen in Fig. 2.6 c).
Strong oscillations are evident in a channel with width 20D, decrease with width 30D
and disappear for a width of 40D. As Brownian motion hinders the formation of jams,
the oscillations only emerge at a mean flow speed threshold 〈v〉thr, that is when the
corresponding Péclet number is large. Above this threshold the frequency follows the
power-law f ∝ (〈v〉− 〈v〉thr)

β , with exponent β = 0.34±0.13. Furthermore, the authors
could indirectly verify the existence of density-rarefaction in pulses traveling upstream
by measuring the gradient of the flow speed of tracer particles in the frame of the pulse.

In a different experiment Campbell and Haw [45] investigated the pressure-driven
flow of concentrated colloidal suspensions into a converging channel geometry. Using
optical microscopy, the authors imaged the flow speed in the entrance zone and found
regular oscillations with long period above a volume fraction of φ = 0.505 as displayed
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Figure 2.7: Mean flow rates 〈V 〉 for dispersions drawn into the capillary using a pump
over full image area (solid line), within the entrance zone (dashed-dotted line) and
outside of the zone (dashed line). For φ = 0.505, long period oscillations are clearly
visible in the flow rate. For φ = 0.52, the dispersion cycles through numerous flow-jam-
flow states. Reproduced in part from A . I. Campbell and M. D. Haw [Soft Matter 6,
4688 (2010)] with permission of The Royal Society of Chemistry.

in Fig. 2.7 top. They found that by slightly increasing the colloidal volume fraction
to φ = 0.52, the periodic oscillations in flow speed transformed into transient pulses
separated by irregular long-lived jams, see Fig. 2.7, bottom. They argued that the
observed phenomena are consistent with computer simulations of granular systems and
linked the behavior to the concept of fragile matter [31].
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3
Theoretical Foundations

As outlined in the previous chapter, colloidal particles interact via hydrodynamic flow-
fields at vanishingly small Reynolds numbers. In this regime, inertial forces are dom-
inated by viscous forces of the fluid. Consequently, passive particles only move when
there is an active flow field. This chapter introduces the physical principles of creeping-
flow hydrodynamics governed by the Stokes equation. Solutions for flow fields in channel
geometries and around spheres are presented. Moreover, the physics of Brownian mo-
tion are discussed in more detail by presenting the fundamental fluctuation-dissipation
theorem. Next, to understand the properties of our particle based simulation method,
we derive the properties of an ideal gas and the Maxwell Boltzmann distribution from ki-
netic gas theory. Finally, we introduce mathematical tools to conduct a stability analysis
and identify bifurcations in nonlinear differential equations.

Throughout this chapter and beyond the following notation is adopted using Einstein
summation convention: Vectors are denoted by bold symbols v = viei ∈ Rd with basis
vectors ei and where d marks the spatial dimension. The tensor product between two
vectors v and u results in a second rank tensor T = v ⊗ u := viujei ⊗ ej ∈ Rd × Rd.
The transposed of a second-rank tensor is defined as T> = (Tijei ⊗ ej)

> := Tjiei ⊗ ej .
The unit tensor is represented by 1 = δijei⊗ej , where δij is the Kronecker delta, which
is 1 for i = j and 0 otherwise. The scalar product between two vectors v and u is
symbolized by v ·u := viui. With the scalar product we can define the length of a vector
as |v| = v :=

√
v · v. The time coordinate is denoted by t. Spatial coordinates are

commonly represented by the position vector r = xiei. In chapters 5 and 6 the vector
components x1, x2 and x3 are typically shortened to x, y and z. The nabla operator is
defined as ∇ = ei

∂
∂xi

and the Laplace operator as ∆ := ∇·∇.

3.1 Hydrodynamics at Low Reynolds Number

On length scales much larger than the composing molecules, the fluid can be described
as a continuum with fields of density ρ(r, t), velocity v(r, t), stresses σ(r, t), and tem-
perature T (r, t). For simplicity, in the following we omit in the notation the dependence
of the fields on point in space r and time t.

Given some initial conditions, the famous Navier-Stokes equations determine the
flow field of a fluid. The equations were developed by Claude-Louis Navier and George
Gabries Stokes in 1822 [95] based on the classical mechanics established by Newton. The
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Navier-Stokes equations combine Newton’s second law with a fluid stress due to viscous
and pressure forces and forms a system of nonlinear partial differential equations. The
nonlinearity causes turbulence and unpredictability, which makes it difficult to solve the
equation analytically in most practical applications.

The Navier-Stokes equation can be derived from conservation laws applied to mass
density and momentum of the fluid [96]. For the mass density ρ the continuity equation
reads

∂ρ

∂t
+ ∇ · (ρv) = 0. (3.1)

In most applications it is safe to assume that the flow is incompressible, i.e., ρ =const.
This is especially true for low Reynoldsnumber flow at room temperature. Equation
(3.1) then simplifies to

∇ · v = 0. (3.2)

The conservation law for the momentum ρv for an incompressible fluid reads

ρ

(
∂v

∂t
+ v ·∇⊗ v

)
= ∇ · σ + f , (3.3)

where the right hand side are forces acting on the fluid due to both external forces f and
divergence of stress σ. The stress tensor σ is composed of normal volumetric stresses
due to fluid pressure p and of shear stresses denoted by τ , such that

σ = −p1 + τ . (3.4)

For a Newtonian fluid the components of the shear stress τ are proportional to the rate
of deformation, i.e., the gradient of the flow field v. The shear stress is defined as

τ = η
(
∇⊗ v + (∇⊗ v)>

)
, (3.5)

where η is called the shear viscosity of the fluid, which is a measure of the resistance of
the fluid to gradual deformation by shear stress.

Combining equations (3.3)-(3.5), the Navier-Stokes equation for an incompressible
Newtonian fluid reads

ρ

(
∂v

∂t
+ v ·∇⊗ v

)
= −∇p+ η∆v + f . (3.6)

To solve for the unknown fluid velocity field v and pressure field p, Eqs. (3.6) and (3.2)
need to be integrated with respective boundary and initial conditions.

A major simplification of Eq. (3.6) results from restricting the investigated flow to
small velocities and length scales. This eliminates the nonlinear term and makes the
equations much easier to handle.

3.1.1 The Stokes equation

We rewrite Equation (3.6) in dimensionless units by introducing characteristic length a,
characteristic time τ and characteristic flow velocity v. Rescaled dimensionless variables



3.1. HYDRODYNAMICS AT LOW REYNOLDS NUMBER 17

are denoted by a prime (...)′, so that

x′ = x/a, (3.7)

v′ = v/v, (3.8)

t′ = t/τ, (3.9)

∇′ = a∇, (3.10)

∆′ = a2∆, (3.11)

p′ = p/
vη

a
, (3.12)

f ′ = f/
vη

a2
. (3.13)

With the rescaled variables Eq. (3.6) reads

a2ρ

ητ

∂v′

∂t′
+ Re v′ ·∇′ ⊗ v′ = −∇′p′ + ∆′v′ + f ′. (3.14)

The dimensionless number Re is called Reynolds number and has already been intro-
duced in chapter 2. With the dynamic viscosity η the Reynolds number is defined as

Re =
ρva

η
. (3.15)

The kinematic viscosity ν is related to the dynamic viscosity η by the relation η = ρν,
so that an equivalent representation of the Reynolds number is Re = va/ν.

Now, if the Reynolds number is small (Re � 1) the force terms on the right-hand
side of Eq. (3.14) become important. The nonlinear convective term on the left side
of Eq. (3.14) becomes insignificant. Consequently, for problems with small Reynolds
numbers, e.g., in creeping flow, swimming bacteria and colloidal dynamics, the nonlinear
term v′ ·∇′⊗v′ is typically omitted. As a result, one obtains the time-dependent Stokes
equation [97]:

ρ
∂v

∂t
= −∇p+ η∆v + f . (3.16)

The flow described by Eq. (3.16) is laminar and free of turbulence. Moreover, since it
is linear the superposition of solutions of Eq. (3.16) are also valid solutions.

In most applications the left-hand side of Eq. (3.14) can be omitted completely as
characteristic time scales τ of interest are typically much larger than the viscous time
scale τη = a2ρ/η, which appears as a factor of the time derivative in Eq. (3.14). For
example, for a passive Brownian particle of radius a and density ρ the relaxation time
is typically small a2ρ/η ≈ 1ns − 100ns. In this the case, Eq. (3.16) simplifies to the
famous Stokes equations

∇p− η∆v = f and ∇ · v = 0. (3.17)

The Stokes equations do not depend on time explicitly. As a result, the flow field adapts
instantaneously to time variations of acting forces or moving boundaries. Furthermore,
from the invariance of Eq. (3.17) to the transformation t→ −t it becomes evident that
processes described by the Stokes equation are time reversible when the external forces
f are reversed.

Because the Stokes equation is linear, it can be solved with the aid of the Green
function [98]. The flow field generated by a point force g0 located at the origin poses
a fundamental solution of the Stokes equation and is called stokeslet. The force field is
given by g(r) = g0δ(r), where δ(r) is the Dirac delta function defined as

δ(r) =

{
+∞ if r = 0

0 if r 6= 0
, (3.18)
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Figure 3.1: The fundamental solution of the Stokes equation showing a flow field around
a point force g0. a) For 3 dimensions calculated from Eq. (3.20). b) For 2 dimensions
calculated from Eq. (3.21)

and which satisfies
∫∞
−∞ δ(r)ddr = 1.

The stokeslet is then calculated from [99]

v(r) = G(r) · g0, (3.19)

where the second rank tensor G, commonly referred to as Oseen tensor, has been intro-
duced. In three dimensions it is defined by

G3D(r) =
1

8πη

(
1

r
+

r⊗ r

r3

)
. (3.20)

On the other hand, the Green tensor for two dimensional flow reads

G2D(r) =
1

4πη

(
−1 ln r +

r⊗ r

r2

)
. (3.21)

In Fig. 3.1 we plot the flow field of a point force in x1 direction for two and three
dimensions. From Eq. (3.20) it can be seen that the flow field far away from the point
force decays as 1/r. The next higher-order term is the stresslet generated by a force
dipole, which decays as ∝ 1/r2 with growing distance to the dipole. In the case of
two dimensions the flow generated by a force monopole looks qualitatively the same.
Note that the flow strength decays more slowly with growing distance than its three-
dimensional counter part, i.e., logarithmically, |v(r)| ∝ − ln r. Due to the linearity of
the Eqs. (3.17),for a continuous force density g(r), the flow is a superposition of fields
generated by forces acting on each point of the fluid. Equation (3.19) can then be
written as the volume integral

v(r) =

∫
G(r) · g(r)dV. (3.22)

3.1.2 No-slip boundary condition

In most practical applications, flow with confining boundaries is considered. Due to
attractive interaction between fluid molecules and rigid boundaries, e.g., walls and sur-
faces of suspended particles, the slip close to the wall does not exceed that of the mean
free path of the fluid molecules [100]. On length scales much larger than the mean free
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Figure 3.2: View of the Poiseuille flow profile inside a channel of width 2w in the x1, x2-
plane calculated from Eq. (3.26).

path the fluid is assumed to “stick” to the surface. As a result, throughout this thesis
we assume a no-slip boundary condition [101] which reads

v(r)|r∈∂Ω = 0, (3.23)

where ∂Ω is the surface of an object defined by Ω. For a rigid body suspended in the
fluid that can freely translate with velocity u and rotate with angular velocity ω, the
no-slip boundary condition reads

v(r)|r∈∂Ω = u+ ω × (r− rc), (3.24)

where rc denotes the center of mass of the rigid body.

3.1.3 Poiseuille flow

Analytic solutions of the Navier-Stokes equations (3.6) as well as the Stokes equations
(3.17) only exist in rare cases. The pressure-driven flow in channel geometries represents
one of such cases and is of practical relevance in microfluidics and biophysics [102, 103].
The corresponding solution of Eq. (3.17) is called Poiseuille flow. The particular solution
presented here is that of flow between two infinite parallel plates [104]. This geometry
induces flow, which is effectively two-dimensional and of great relevance for this thesis as
most simulation were conducted in two dimensions. For simplicity, we consider infinite
parallel walls in the x1, x3-plane, which are separated by a distance 2w, so that one
wall is located at x2 = −w and the other at x2 = w. A constant pressure gradient
∇p = −ge1 is applied and drives the Newtonian fluid along x1. External forces f are
neglected.

We assume a no-slip boundary condition. Consequently, at the walls the boundary
condition v(−w) = 0 and v(w) = 0 holds. Furthermore, due to symmetry, the flow
orthogonal to the pressure gradient is zero, i.e. v · e2 ≡ 0 and v · e3 ≡ 0 as are the
gradients of the flow in direction parallel to the wall, i.e. ∂

∂x1
v = 0 and ∂

∂x3
v = 0.

Equation (3.17) then reads

− ge1 − η
∂2v

∂x22
e1 = 0, (3.25)

where we can omit the unit vectors. Eq. (3.25) can be easily integrated and after using
the no-slip boundary condition the flow field is found to be

v(x2) =
g

2η
(w2 − x22). (3.26)
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Figure 3.3: Stream line plot of flow past a sphere in the x1, x2-plane calculated from
Eq. (3.28) for: a) In the frame of a quiescent observer. b) In the frame of the moving
sphere.

The flow is displayed in Fig. 3.2 in the x1, x2-plane, showing a parabolic flow profile
with zero velocity at the walls and maximum velocity in the center of the channel. The
value of the latter can be calculated from setting x2 = 0:

vmax =
gw2

2η
. (3.27)

3.1.4 Flow past a sphere

In the following, we deal with the flow past a sphere of radius a. Two approaches
to obtain the flow field prove to be equivalent. One can either drag the sphere with
a constant force F = Fe1 through the liquid or imagine the sphere put at rest in a
constant flow field v(r, t) = v∞e1. In the frame of an observer at rest, the flow field can
be expressed as [99]

v(r) = S(r) · v∞, (3.28)

where

S(r) =
3

4

a

r

(
1 +

r⊗ r

r2

)
+

1

4

a3

r3

(
1− 3

r⊗ r

r2

)
, (3.29)

which can be calculated from Eq. (3.22) using the multi-pole expansion of the Oseen
tensor (3.20) to fit the boundary conditions represented by Eq. (3.24) for zero angular
velocity ω and for drag velocity v∞ [99]. In Fig. 3.3 a) we show the flow field in the
frame of a resting observer generated by Eq. (3.28) and (3.29). The flow field far from
the sphere reminds of that generated by a stokeslet in Fig. 3.1. And indeed, at large
distances to leading order the tensors G and S behave identical, since S is dominated by
the force monopole. Figure 3.3 b) shows the same flow field but placed in the frame of
the moving sphere. Mathematically, both flow fields are merely shifted by the constant
vector v∞.

The force F required to drag the sphere with velocity v∞ or the drag force F exerted
on a resting sphere by an external flow field v∞, can be calculated using the surface
integral

F =

∫

∂Ω
σ · ndS. (3.30)

The drag force F for a spherical particle then becomes

F = 6πηau∞ = ζ3D
dragu∞, (3.31)
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where

ζ3D
drag = 6πηa (3.32)

is the translational friction constant [99].

Equation (3.32) is commonly known as the Stokes formula for a sphere dragged
through a viscous fluid. By changing the boundary conditions to that of a station-
ary (v∞ = 0) rotating sphere with angular velocity ω, the rotational friction constant
becomes [99]

ζ3D
rot = 8πηa3. (3.33)

3.1.5 Stokes paradox and flow past a cylinder

The Stokes equation (3.17) as presented in section 3.1.1 does not have a solution for
unbounded flow past a circular cylinder. This problem is known as the Stokes paradox
[105, 106]. The reason for this can be found in the decay rate of the flow strength of
the stokeslet at infinity. Whereas in three dimensions the flow field converges to zero
at large distances with 1/r, it does not in two dimensions, where the flow field decays
proportional to − ln r. The paradox itself results from the failure to balance the viscous
forces at infinity, however small the Reynolds number of the given problem.

Oseen elucidated the paradox and solved it by introducing an approximate inertial
term into the Stokes equation that properly accounts for the singular nature of the limit
Re → 0 [107]. For a constant background flow v∞ = v∞e1 in the direction of x1, the
approximate inertial term reads

v ·∇⊗ v ≈ v∞ ·∇⊗ v = v∞
∂v

∂x1
. (3.34)

The so-called Oseen equations then read

ρv∞
∂v

∂x1
+ ∇p− η∆v = f and ∇ · v = 0. (3.35)

With Eq. (3.35) the boundary conditions at infinity can be met and the friction coeffi-
cient for a cylinder of radius a and nonzero Reynolds number becomes [108]

ζ2D
drag =

4πη
1
2 − γ − log(8Re)

. (3.36)

Here, γ ≈ 0.577 denotes Euler’s constant and the Reynolds number corresponds to
Re = ρav∞/η. In accordance with the three dimensional case, the friction is proportional
to the fluid viscosity η. However, in two dimensions the particle size a enters weakly
inside the logarithm of the Reynolds number in the denominator instead of linearly in
Eq. (3.32).

The rotational friction of a cylinder in two dimensions is exactly described by Faxén’s
law and reads [109]:

ζ2D
rot = 4πηa2. (3.37)

By comparing Eq. (3.37) with Eq. (3.33) it becomes evident that the rotational drag
also scales differently with particle size a for different dimensions, i.e., square versus
cubic dependence.

The dependence of the drag coefficients on the spatial dimension will be addressed
in chapter 5 by direct comparison of two and three dimensional simulations as well as
within the formulation of a phenomenological theory.
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Figure 3.4: Random walk process of three particles generated by the simulation method
multi-particle collision dynamics.

3.2 Statistical Physics of Passive Particles

The hydrodynamic forces and flow fields derived in the previous section are perfectly
deterministic. Based on Newton’s classical mechanics, given initial and boundary con-
ditions, the flow field can therefore be determined for all times in the future. This
conflicts with the observations of Scottish botanist Robert Brown during the examina-
tion of grains of pollen suspended in water under the microscope in 1827. He found
that the amyloplasts and spherosomes, which were emitted by the pollen, to undergo
erratic movements (see Fig. 3.4). The origin of this motion was attributed much later
to the thermally driven collisions of the surrounding fluid molecules with the particles
[61, 110]. This stochastic motion, commonly known as Brownian motion, is a character-
istic property of micron sized objects. Collisions with the fluid molecules become visible
as Brownian motion when the object is not significant larger than the fluid molecules,
whereas suspended macroscopic objects average over a huge number of collisions with
fluid molecules. Consequently, while the deterministic hydrodynamic equations suffice
to treat the dynamics of macroscopic bodies suspended in fluid, for mesoscopic particles
the fluid needs to be treated as a source of noise that causes random motion.

3.2.1 The Langevin equation

A single particle of mass m suspended in a fluid obeys Newton’s equation of motion. The
force acting on the particle is composed of external forces fext and translational friction.
For the latter, in the limit of the Stokes equation, a linear relation between drag force
and swimming velocity with constant of proportionality ζ is found (see Section 3.1.4).
Moreover, to account for the thermal noise a stochastic force Γ(t) needs to be added.
The equation of motion then reads

m
dv

dt
= −ζv + Γ(t) + fext. (3.38)

Eq. (3.38) is known as the Langevin equation [111]. It can be formally solved as a
first-order inhomogeneous differential equation, to yield

v(t) = v(0) exp (−t/τr) +
1

m

∫ t

0
dt′ exp

(
−(t− t′)/τr

)
Γ(t′), (3.39)

where the relaxation time τr = m/ζ is a measure for the time required for the inertial
movement of the particle to decay due to viscous friction. Due to the stochastic character
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of Γ(t), Eq. (3.40) cannot be solved explicitly. Instead, ensemble averages denoted by
the operator 〈...〉, are applied to describe the dynamics of the stochastic differential
equations for a large number of possible realizations.

On time scales well above the relaxation time of the particle t � τr, the Langevin
Eq. (3.38) reduces to the overdamped Langevin equation

ζ
dr

dt
= Γ(t) + fext. (3.40)

3.2.2 Fluctuation-dissipation theorem

For further calculations we need to define the properties of the noise term Γ(t). For
simplicity we assume no external force, fext = 0. As the random force has no preferred
direction, the ensemble average vanishes

〈Γ(t)〉 = 0. (3.41)

Because the relaxation time τr of the particle is much larger than the inverse collision
frequency of fluid molecules with the particle, it is plausible to assume a delta, correlated
random force in time,

〈Γ(t)⊗ Γ(t′)〉 = cδ(t− t′)1. (3.42)

Here, c is a constant which describes the strength of fluctuations. With aid of Eq. (3.39),
the mean kinetic energy of translation of the particle yields

1

2
m〈v2〉 =

1

2
mv2(0) exp (−2t/τr)+

1

2m

∫ t

0

∫ t

0
dt′dt′′ exp

(
−(2t− t′ − t′′)/τr

)
〈Γ(t′)·Γ(t′′)〉,

(3.43)
where we used Eq. (3.41). Equation (3.43) can be integrated utilizing Eq. (3.42) and we
obtain

1

2
m〈v2〉 =

1

2
mv2(0) exp (−2t/τr) +

τr

4m
c
t�τr=

τr

4m
c. (3.44)

In the last step the mean kinetic energy is written at times when the initial velocity has
completely decayed.

From the equipartition theorem it is known that on average and in equilibrium each
degree of freedom of a system obtains the thermal energy kBT/2 [112]. For a rigid
particle in d dimensions the translational kinetic energy reads

1

2
m〈v2〉 =

d

2
kBT, (3.45)

where kB is the Boltzman constant and T the absolute temperature. Comparing Eq.
(3.44) with (3.45) leads to

〈Γ(t) · Γ(t′)〉 = 2dkBTζδ(t− t′). (3.46)

The relation (3.46) is referred to as the fluctuation-dissipation theorem of thermody-
namics [113, 114]. The theorem states that if drag dissipates kinetic energy into heat
there is a reverse process that causes thermal motion, i.e., heat translated into kinetic
energy caused by the collisions of the fluid molecules.

3.2.3 Mean square displacement and Einstein relation

A key property in describing stochastic motion is the coefficient of diffusion D. It is a
measure of the strength of the thermal motion of a particle. It is formally defined by

2dD = lim
t→∞

d

dt
〈(r(t)− r(0))2〉. (3.47)
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The term 〈(r(t) − r(0))2〉 on the right hand side of Eq. (3.47) is called mean square
displacement. It is a convenient measure describing stochastic dynamics due to its easy
accessibility in experiments and simulation. The distance r(t)− r(0) can be represented
by the integral

r(t)− r(0) =

∫ t

0
dt′v(t′). (3.48)

Using Eq. (3.48), the mean square displacement can be written as

〈(r(t)− r(0))2〉 =

∫ t

0
dt′
∫ t

0
dt′′〈v(t′) · v(t′′)〉 = 2

∫ t

0
dt′
∫ t′

0
dt′′〈v(t′) · v(t′′)〉. (3.49)

In the last step of Eq. (3.49) the symmetry of 〈v(t′) · v(t′′)〉 was used to half the inte-
gration domain of the second integral. Taking the derivative with respect to time t as
well as the limit of large times on both sides of Eq. (3.49), yields

lim
t→∞

d

dt
〈(r(t)− r(0))2〉 = lim

t′→∞
2

∫ t′

0
dt′′〈v(t′) · v(t′′)〉, (3.50)

where we eliminated one of the integrals on the right hand side. If the system behaves
ergodic, i.e., the ensemble average behaves as the time average, one can exploit the
translational invariance in time. It states that the ensemble average of the product of
velocities at different times t′ and t′′ only depends on the difference t′− t′′. We can write

〈v(t′) · v(t′′)〉 = 〈v(t′ − t′′) · v(0)〉, (3.51)

where the time was shifted by t→ t− t′′.
Finally, by denoting τ = t′ − t′′ Eq. (3.50) and Eq. (3.47) give the Green-Kubo

formula for the diffusion constant [99, 115]:

D =
1

d

∫ ∞

0
dτ〈v(τ) · v(0)〉. (3.52)

The right-hand side of Eq. (3.52) is called velocity autocorrelation function.

In the limit of small Reynolds numbers the velocity of a diffusing particle is pro-
vided by the overdamped Langevin equation (3.40). Using Eq. (3.40) together with
the fluctuation-dissipation theorem Eq. (3.46), the right hand side of Eq. (3.52) can be
integrated. Eq. (3.52) then shortens to

D =
kBT

ζ
. (3.53)

This is the famous Einstein relation (also known as Einstein-Smoluchowski relation)
that connects the diffusion constant to the friction constant of a suspended object [61].

3.2.4 The Smoluchowski equation and Fick’s law

Instead of following the evolution of a single trajectory r(t) determined by a unique
realization of Γ(t) of the Langevin equation, the evolution of the probability density
ϕ(r, t) can be calculated. The probability of finding the particle in an infinitesimal small
volume dV at time t is then simply ϕ(r, t)dV . It can be shown that the overdamped
Langevin equation (3.40) corresponds to the so-called Smoluchowski equation [116] (see
Fig. 3.5)

∂ϕ

∂t
= −∇ · (udriftϕ−K∇ϕ) . (3.54)
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Figure 3.5: Illustrative solution of the Smoluchowski equation in one dimension with
constant drift velocity udrift and diffusion coefficient D.

Eq. (3.54) is a transport equation of probability density ϕ with the current J = udriftϕ−
D∇ϕ. The current consists of the deterministic drift udriftϕ and the diffusive current
−D∇ϕ with diffusion coefficient D. The latter current is commonly referred to as Fick’s
first law

Jdiff = −D∇ϕ. (3.55)

In order to show that Eq. (3.54) actually reproduces the well-known diffusive behavior
of particles, we link it to the equilibrium properties presented in the previous section.
In the following we therefore assume equilibrium, i.e. udrift = 0, as well as a constant
diffusion coefficient D. The mean square displacement of a single particle can then be
written with aid of the solution of Eq. (3.54) in the following way

〈(r(t)− r(0))2〉 =

∫ ∞

−∞
dV (r(t)− r(0))2ϕ. (3.56)

Multiplying Eq. (3.54) with (r(t)− r(0))2 and integrating yields

d

dt
〈(r(t)− r(0))2〉 = D

∫ ∞

−∞
dV (r(t)− r(0))2∆ϕ, (3.57)

where the identity (3.56) has been applied to the left hand side. Green’s theorem for
two functions g and h reads

∫ ∞

−∞
dV (g∆h− h∆g) =

∫ ∞

−∞
dS (g∇h− h∇g) · n. (3.58)

for an infinite volume. Considering the fact that ϕ must vanish at infinity, Eq. (3.57)
results in

d

dt
〈(r(t)− r(0))2〉 = D

∫ ∞

−∞
dV ϕ∆(r(t)− r(0))2. (3.59)

With the identity ∆(r(t)− r(0))2 = 2d, the equation becomes

d

dt
〈(r(t)− r(0))2〉 = 2dD

∫ ∞

−∞
dV ϕ. (3.60)

After using the fact that ϕ is normalized, we finally arrive at

d

dt
〈(r(t)− r(0))2〉 = 2dD. (3.61)
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We can conclude that the Smoluchowski Eq. (3.54) yields identical behavior as the
overdamped Langevin Eq. (3.40) by comparing Eq. (3.61) with Eq. (3.47) at large times.
Here, we can identify D with the diffusion coefficient defined by the Einstein relation
(3.53).

3.3 Kinetic Gas Theory

The subject of this thesis is the investigation of processes on length scales where molecu-
lar movement is important. Having said this, finding the solution of a dynamical system
described by a Hamiltonian featuring 1024 fluid molecules per gram of liquid is impossi-
ble and fortunately not necessary. As in the previous section, ensemble averages suffice
to calculate important observables such as pressure and temperature from microscopic
properties. The relations derived here become important in the next chapter when the
mesoscopic simulation method multi-particle collision dynamics is introduced, which
behaves as an ideal viscous gas.

3.3.1 The canonical ensemble

Imagine a closed system of N particles enclosed in a volume V . If the total energy E
in the system is conserved, the number of microscopic states accessible for the system
is denoted by Ω(E, V,N). The quantity Ω(E, V,N) is called partition function of the
microcanonical ensemble and can be explicitly written as [112]

Ω(E, V,N) =
1

N !hdN

∫

V
ddNq

∫ ∞

−∞
ddNpδ (E −H(q, p)) , (3.62)

where q ∈ RNd and p ∈ RNd denote generalized coordinates and momenta of the parti-
cles. The Planck constant h comes from the semi-classical approach and quantizes the
phase space. The N ! in the denominator ensures that particles are indistinguishable.
Moreover, the function H(q, p) denotes the Hamiltonian energy function of the system.
The partition function Ω is an important quantity in statistical physics as it allows for
direct calculation of the thermodynamic variables such as temperature, entropy and
pressure.

Because many processes in nature allow for an energy transport across boundaries
due to heat diffusion, a different representation of Ω is desired as in Eq. (3.62). In the
following we consider the situation displayed in Fig. 3.6. Both volumes V1 and V2 are
fixed and are allowed to exchange heat across the boundaries but no particles. Both
systems together are perfectly isolated so that the total energy E = E1+E2 is conserved.
The total number of accessible states of the coupled system is calculated by

Ω(N,E) =
∑

E1

Ω1(N1, E1)Ω2(N,E − E1), (3.63)

The probability P (E1) of finding the small system in a state of energy E1 is therefore

P (E1) =
Ω1(N1, E1)Ω2(N,E − E1)

Ω(N,E)
. (3.64)

In equilibrium, the probability density of a system consisting of many particles has a
sharply peaked maximum. Consequently, it can be expected that E1 assumes the most
likely value. This value is obtained by differentiating with respect to E1:

∂ (Ω1(N1, E1)Ω2(N2, E − E1))

∂E1
= 0. (3.65)
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N2, V2

N1, V1

Figure 3.6: Small system (N1, V1) inside a heat bath (large system with N2 and V2).
Energy can be exchanged via the walls. The entire system is isolated.

Using the product rule of derivatives yields

∂Ω1(N1, E1)

∂E1
Ω2(N2, E − E1) = Ω1(N1, E1)

∂Ω2(N2, E2)

∂E2

∣∣∣∣
E2=E−E1

. (3.66)

Finally, by exploiting the identity 1
y
∂y
∂x = ∂ ln y

∂x , we write

∂ ln Ω1(N1, E1)

∂E1
=
∂ ln Ω2(N2, E2)

∂E2

∣∣∣∣
E2=E−E1

. (3.67)

Consequently, For two systems in thermal equilibrium there exists a quantity which is
equal in both. This quantity is the temperature T . In statistical physics it is defined by

1

kBT
=
∂ ln Ω(N,E)

∂E
. (3.68)

Now, if the system N1, V1 is much smaller than N2, V2 it is safe to assume that E1 � E.
Rewriting Eq. (3.64), so that

P (E1) =
Ω1(N1, E1)

Ω(N,E)
exp (ln Ω2(N2, E − E1)) , (3.69)

and expanding the exponent around E for small E1 in a Taylor series, yields

P (E1) ≈ Ω1(N1, E1)

Ω(N,E)
exp

(
ln Ω2(N2, E)− E1

∂ ln Ω2(N2, E)

∂E

)
, (3.70)

=
Ω1(N1, E1)

Ω(N,E)
exp

(
ln Ω2(N2, E)− E1

kBT

)
, (3.71)

where we used Eq. (3.68) in the second step. We can eliminate the logarithm by writing

P (E1) =
Ω2(N2, E)

Ω(N,E)
Ω1(N1, E1)e

− E1
kBT . (3.72)

Next, we introduce Z1 = Ω(N,E)/Ω2(N2, E), which denotes the canonical partition
function for the system 1 and which normalizes the probability P . By omitting the
subscripts we write the Boltzmann distribution

P (E) =
Ω(N,E)

Z
e
− E
kBT , (3.73)
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with the canonical partition function

Z(N,T ) =

∫
dE Ω(N,E)e

− E
kBT . (3.74)

The factor e
− E
kBT is called Boltzmann factor.

3.3.2 Properties of an ideal gas

The ideal gas is the simplest model to study equilibrium thermodynamics. It consists
of N point like particles with mass m. Steric interactions between the particles can be
neglected. The corresponding Hamiltonian can be written as

H(v, r) = Θ(r1, ..., rN ) +
N∑

i=1

mv2
i

2
, (3.75)

where Θ is the potential energy. Combining the equations (3.75), (3.74) and (3.62)
yields the canonical partition function

Z =
mdN

N !hdN

∫

V
ddNr e

− 1
kBT

Θ(r1,...,rN )
∫ ∞

−∞
ddNv e

− 1
kBT

∑N
i=1

mv2i
2 . (3.76)

We assume a potential Θ decomposable to the potential of individual particles such that
Θ(r1, ..., rN ) = Θ(r1) + Θ(r2) + · · ·+ Θ(rN ), and with

Θ(ri) =

{
0 if ri ∈ V
∞ else

. (3.77)

Both integrals can then easily be evaluated so that we obtain

Z =
1

N !

(
V

λd

)N
, (3.78)

where the relation
∫∞
−∞ exp(−x2)dx =

√
π has been used. The quantity λ = h/

√
2πmkBT

corresponds to the de Broglie wavelength of a particle with the energy kBT/
√
π.

The free energy F can be calculated from the relation [117]

F = −kBT lnZ ≈ −kBTN

(
ln
V

N
+
d

2
ln

2πmkBT

h2
+ 1

)
, (3.79)

where the Stirling approximation lnN ! ≈ N lnN−N for large N has been used. Finally,
expressions for entropy S, internal energy U and pressure p can be found. They are
derived as follows [117]:

S = −∂F
∂T

= kBT

(
ln
V

N
+
d

2
ln

2πmkBT

h2
+

2 + d

2

)
, (3.80)

U = F + TS =
d

2
NkBT, (3.81)

p = −∂F
∂V

= kBT
N

V
. (3.82)

Equation (3.81) expresses the energy contained within the system. The Eq. (3.82) is
called the equation of state for an ideal gas. It relates the state variables T , V and p to
each other, which cannot be chosen independently.



3.3. KINETIC GAS THEORY 29

Figure 3.7: Maxwell-Boltzmann distribution for a single velocity component of a particle
part of an ideal gas in a canonical ensemble with standard deviation σ =

√
Var =√

kBT/m.

From the equation of state (3.82) several useful relations can be derived, which will
help to understand the properties of the fluid generated by the numerical method multi-
particle collision dynamics presented in the next chapter. The isothermal compressibility
β is a measure of the relative volume change in response to a pressure change. It is
defined as

β = − 1

V

∂V

∂p
=

1

ρkBT
, (3.83)

where the density ρ = N/V has been substituted.

Perturbations of pressure and density propagate adiabatically with the speed of
sound c. It is calculated by

c =

√
∂p

∂ρ

∣∣∣∣
S

=

√
d+ 2

d

kBT

m
. (3.84)

3.3.3 Maxwell-Boltzmann distribution

Finally, we are interested in the probability of finding the velocity of a randomly picked
particle to be between v and v + dv. The probability can be calculated from the Boltz-
mann Eq. (3.73) for a single particle, by finding P (v) = P (E=mv2/2). In three dimen-
sions the partition function Ω is proportional to the volume of the spherical shell defined
by the vector v between radius v and v + dv. Consequently, we find Ω ∝ 4πv2dv. The
probability then reads

P (v) ∝ 4πv2e
− mv2

2kBT dv. (3.85)

After normalization, we can write for the probability density

P (v) =

√
2

π

(
m

kBT

) 3
2

v2e
− mv2

2kBT , (3.86)

which is the famous Maxwell-Boltzmann distribution. For a single velocity component
u of the vector v, the normalized probability density reads

P (u) =

√
m

2πkBT
e
− mu2

2kBT . (3.87)
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The distribution function is displayed in Fig. 3.7. It is a normal distribution with
variance Var(u) = kBT/m. Note that the distribution in Eq. (3.87) is valid for every
Hamiltonian of the form (3.75).

3.4 Nonlinear Dynamics

To close this chapter, we introduce some useful tools which tackle nonlinear differential
equations that will arise during our analytical modeling. Finding the governing differen-
tial equations of a complex system holds great predictive power. However, in most cases
the equations cannot simply be solved analytically. The theory of nonlinear dynamics
allows to decipher the behavior of a system of nonlinear differential equation of many
degrees of freedom. We restrict this chapter to the study of two-dimensional nonlinear
systems in the variables x1 and x2. Firstly, some general properties will be considered.
Afterwards, fixed points will be defined and characterized building on our knowledge of
linear systems. The section concludes with a discussion of bifurcations, which change
the qualitative properties of a nonlinear system drastically by changing a single variable
called the bifurcation parameter.

3.4.1 The phase portrait

The general form of an arbitrary vector field in the phase plane x1, x2 is

dx1

dz
= f1(x1, x2),

dx2

dz
= f2(x1, x2), (3.88)

where f1 and f2 are given functions. A more compact but equivalent notation is

dx

dz
= f(x). (3.89)

The vector x represents a point in the phase plane, whereas f(x) defines a vector along
changes of the variable z. Note that typically z stands for time. However, in chapter 6
we treat an example, where z becomes a space variable.

The integration of Eqs. (3.88) for a specified starting value traces out a solution
x(z) in the phase plane. Because every point can serve as the starting value it becomes
obvious that the entire phase plane is filled with trajectories. When the function f is
nonlinear in x, there is typically no analytical solution available. Solutions must then
be found numerically using a solver for ordinary differential equations, e.g., the Runge-
Kutta method [118]. Since there exist infinitely many trajectories, a complete analysis
is impossible but luckily not necessary. Fixed points x0 of the system (3.89) can be
found without great effort simply by solving f(x) = 0. Moreover, the lines defined
by f1(x1, x2) = 0 and f2(x1, x2) = 0 correspond to zero growth lines of the respective
variables. They are commonly called nullclines. These information suffice to obtain a
good idea of how trajectories behave in the phase plane as displayed in Fig. 3.8 a). The
presented plot is called phase portrait and a powerful tool for analyzing two dimensional
nonlinear systems. In Fig. 3.8 b) some trajectories have been plotted with the aid of a
Runge-Kutte integration scheme. In the following we outline some of the properties of
a phase portrait. According to the existence and uniqueness theorem it can be shown
that there exists a unique solution if f is continuously differentiable [119]. An important
consequence from the existence and uniqueness theorem is that different trajectories
never intersect. If several trajectories were to intersect at a point that would mean that



3.4. NONLINEAR DYNAMICS 31

Figure 3.8: Plot of the nonlinear system dx1
dz = x1+e−x2 and dx2

dz = −x2. The green and

the red line denote the respective nullclines dx1
dz = 0 and dx2

dz = 0. a) Sketch of the phase
portrait using only analytical considerations. The arrows indicate the flow direction.
b) Plot of a few selected trajectories of the phase portrait with the aid of a numerical
ODE-solver.

this point has multiple solutions, which contradicts the theorem. In two dimensions this
inherits topological consequences. A trajectory starting at a point enclosed by a periodic
orbit (see Sec. 3.4.3) will have to converge towards the periodic orbit at z → ±∞ and
towards a fixed point inside the orbit at z → ∓∞ as proven by the Poincaré-Bendixson
theorem [120].

3.4.2 Linear stability analysis

A very useful tool to characterize fixed points of a nonlinear system is the linear stability
analysis. The main idea is to approximate the nonlinear system close to the fixed points
with the corresponding linear system. The system of Eqs. (3.89) can be linearized around
fixed points x0 for which f(x0) = 0,

dδx

dz
= A · δx+O(δx2), (3.90)

where δx = x − x0 denotes small deviations from the fixed points. The second-rank
tensor A is called the Jacobian matrix and defined by

A =

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)∣∣∣∣∣
x0

. (3.91)

Since δx is small, O(δx2) is very small and can be omitted. Equation (3.90) is a linear
system, which has a general solution of the form x(z) = x0 + eλze, where λ are the
eigenvalues and e the eigenvectors of A. In general, the eigenvalues of a matrix A
are given by the solution of the characteristic equation det(A − λ ) = 0, where “det”
denotes the determinate. For a matrix A ∈ R2×R2, the characteristic equation reduces
to

λ2 − trace(A)λ+ det(A) = 0. (3.92)

The eigenvalues can then be calculated from

λ1/2 =
trace(A)±

√
trace(A)2 − 4det(A)

2
. (3.93)
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Figure 3.9: Characterization of the fixed points with respect to the trace(A) and
determinate det(A). The separation line corresponds to the parabola defined by
trace(A)2 − 4det(A) = 0.

From Eq. (3.93) we note that different configurations of λ1 and λ2 are possible. To
arrive at Fig. 3.9 we make the following observations:

det(A) < 0: Both eigenvalues are real and have opposite signs. As a result there exist
trajectories entering the fixed point as a consequence of the negative eigenvalue
as well as trajectories leaving the fixed point due to the positive eigenvalue. The
fixed point is then called saddle.

det(A) > 0: The real part of both eigenvalues are either positive for trace > 0 or nega-
tive for trace < 0. The corresponding fixed point is a node which acts as a source
or a sink for the trajectories. If trace(A)2 < 4det(A), the eigenvalues are complex
λ ∈ C and the fixed points either a spiral source or a spiral sink.

det(A) = 0: In this case at least one of the eigenvalues is zero. In the phase portrait
this borderline case appears as an one-dimensional fixed point.

3.4.3 Bifurcations and limit cycles

If the dynamical system defined in Eq. (3.89) depends on additional parameters so that
f(x, α), it is possible that the qualitative picture of the phase portrait changes as α is
varied. In particular, fixed points can emerge, dissolve or change stability. Moreover
limit cycles may appear and collide with fixed points. These qualitative changes in
the behavior of the dynamic system are called bifurcations and α the corresponding
bifurcation parameter.

The so called saddle-node bifurcation is the basic process during which fixed points
are created or destroyed. Consider the prototypical one-dimensional system [119]

dx

dz
= α+ x2, (3.94)

with α ∈ R the bifurcation parameter. It can easily be shown that there exist two fixed
points for α < 0 and zero fixed points for α > 0 (see Fig. 3.10). In the first case it can
be tested with linear stability analysis that the fixed point in the negative half space of
x is a sink whereas the other one is a source node. As α approaches 0 from the negative,
the two fixed points approach each other and eventually merge at a single saddle point
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Figure 3.10: Saddle-node bifurcation of the system Eq. (3.94). The color scheme of the
fixed points is the same as in Fig. 3.9.
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Figure 3.11: Example of a subcritical Hopf bifurcation given by the equations dx1
dz =

αx1−x2+x1x
2
2 and

dx2
dz = x1+αx2+x32. At α = 0 there is a subcritical Hopf bifurcation

that leads to a growing limit cycle (black line) for α < 0. The color scheme of the fixed
points is the same as in Fig. 3.9.

as α = 0, which vanishes as soon as α > 0. The saddle-node bifurcation therefore occurs
at α = 0, which corresponds to crossing the line trace(A) = 0 in Fig. 3.9.

A second way for a fixed point to switch stability by varying a bifurcation parameter
α is by crossing the line trace(A) = 0 for det(A) > 0 in Fig. 3.9. Please note that this
is only possible when the fixed point is a spiral. Upon crossing the real parts of both
eigenvalues λ change sign. This is commonly known as a Hopf bifurcation [119]. During
a Hopf bifurcation a small amplitude limit cycle is either created or destroyed. A limit
cycle is a closed trajectory in the phase space that corresponds to a periodic solution of
a dynamic system. Limit cycles can arise in different situations.

Supercritical Hopf bifurcation: In terms of the flow in phase space, a supercritical
Hopf bifurcation occurs when a spiral sink changes into a spiral source surrounded
by a small amplitude limit cycle. Consequently, trajectories emerging from the
fixed point approach the limit cycle.

Subcritical Hopf bifurcation: A subcritical Hopf bifurcation on the other hand oc-
curs when a spiral source changes into a spiral sink surrounded by a small ampli-
tude limit cycle, see Fig. 3.11. In contrast to the supercritical Hopf bifurcation,
trajectories inside the limit cycle converge towards the fixed point.

The bifurcations presented so far are localized around fixed points and the quali-
tative changes in the phase space effect manly the neighborhood of those fixed points.
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Figure 3.12: Example of a homoclinic bifurcation given by the equations dx1
dz = x2 and

dx2
dz = αx2 + x1 − x21 + x1x2. At αc ≈ −0.8645 the limit cycle (black line) collides with
the saddle point resulting in a homoclinic orbit [119]. The color scheme of the fixed
points is the same as in Fig. 3.12.

Those bifurcations are classified as local bifurcations. On the other hand, there exist
also bifurcations that involve larger regions of the phase plane called global bifurca-
tions. Given the variety of such global bifurcations we restrict this section to homoclinic
bifurcation which will play a role in Chapter 6.

Homoclinic bifurcation: During a homoclinic bifurcation, a part of a limit cycle
moves closer to a saddle point. At the bifurcation (α = αc) the cycle touches
the saddle point and becomes a so called homoclinic orbit (see Fig. 3.12). A ho-
moclinic orbit has an infinite period as the trajectory approaches the saddle point
at z → ±∞. Beyond the global bifurcation (α > αc), the limit cycle is destroyed.
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4
Multi-Particle Collision Dynamics

Numerical methods arose in the second half of the last century as an indispensable tool
for tackling problems too complex for analytical treatment. Nonlinear partial differential
equations describe most phenomena occurring in nature and can only be solved analyt-
ically in rare cases. Instead, many numerical methods aim at discretizing the geometry
and space and generate approximations of derivatives by, e.g. finite differences [121],
finite elements [122, 123]. The equations can then be integrated and solutions generated
at discrete points in time.

Computers can be further utilized as powerful random number generators to feed
stochastic ensembles. The Monte Carlo method arose as one of the first tools using
random numbers to solve deterministic problems [124]. In physics-related fields this
method excels at problems having a probabilistic interpretation and with a high number
of coupled degrees of freedom [125]. In the field of soft matter physics particle based
simulation techniques became popular with the introduction of cellular automaton [126].
The basic algorithm is formed of particles jumping between nodes of a lattice at discrete
time intervals. If two particles jump onto the same node, collision rules apply imposing
mass and momentum conservation. The lattice-Boltzmann method is a generalization of
this technique and solves the Boltzmann equation on a lattice by following the evolution
of the single-particle probability distribution at each node [126, 127].

A lattice-free particle-based mesoscopic simulation method was introduced by Mal-
evants and Kapral [46, 47] and named multi-particle collision dynamics (MPCD). It
solves the Navier-Stokes equation on a coarse-grained level and naturally includes ther-
mal fluctuations. MPCD is computationally fast, simple to implement, and capable of
reproducing analytically known results. This includes for example the friction coeffi-
cient for a particle approaching a plane wall at distances as small as 5 % of the particle
diameter [48], the flow field around a passive sphere [49], as well as the swimming ve-
locity of a model swimmer called squirmer [50] and the torque acting on it in front of a
plane wall at distances, where lubrication theory has to be applied [128]. In recent years
the method has been applied to diverse problems of soft matter physics as reviewed in
Refs. [51, 52]. Examples include the modeling of the flow field around passive particles
[29, 55, 129] or active swimmers [53, 130–132].

The theory and implementation of MPCD for a microchannel as well as the inclusion
of colloidal particles with no-slip boundary conditions will be the main task of this
chapter. Moreover, two contact models between colloidal particles will be presented
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a)

t

b)

t +∆t

Figure 4.1: Illustrative streaming step. a) Positions before streaming. b) Updated
positions after the time ∆t.

and discussed. Finally, the MPCD system is mapped onto a physical system and the
transport coefficients are computed for the parameters mainly used throughout this
work.

4.1 Basics

A characteristic feature of some soft matter systems is the typical mesoscopic length
scale, ranging from nano to micrometer. As the foregoing chapters show, thermal fluc-
tuations becomes visible as Brownian motion on these length scales. This is mainly
because the characteristic energies become comparable to the thermal energy kBT .
However, length scales are still well above that of the atomic level so that quantum
effects can be ignored and classical mechanics based on Newtons equations suffice to
describe the system. The main difficulty in describing those systems numerically is to
resolve the interplay between the molecular fluctuations and hydrodynamic forces in a
fast and an efficient manner. Additionally, it is desirable that complex boundaries are
easily incorporated and the implementation engineered in a way that allows for parallel
execution using multiple processors. All this can be achieved by the particle based sim-
ulation method MPCD [46, 47]. A particle based approach seems rather intuitive as a
real fluid does actually consist of molecules. The microscopic interactions between the
molecules collectively emerge as conservations laws of mass and momentum known as
Navier-Stokes equations on a macroscopic level. However, a detailed simulation along
the lines of molecular dynamics proves impractical because one gram of water consists of
approximately 3.3× 1022 H2O-molecules. This goes beyond the memory and capability
of any supercomputer. Instead, in MPCD simulations typically 106 − 108 fluid parti-
cles are used. This coarse-graining usually leads to larger thermal fluctuations, which
can be interpreted as either high temperature or small characteristic length scales when
mapped on a real physical system. Bearing this in mind, MPCD coarse-grains over all
length and time scales. For example, the ratio of flow velocity to the speed of sound
in real system is usually ∼ 10−9, whereas in MPCD the ratio is typically only ∼ 10−1.
However, as long as the different time scales in the system are clearly separated the
correct physics should still emerge [49].

4.1.1 The streaming step

The MPCD method makes use of point-like fluid particles of mass m, which move in a
continuous space with a continuous distribution of velocities. We denote the position of
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the i-th particle by ri and its velocity by vi. Moreover, let us suppose that the particles
are subject to an external force Fext(r, t). After a time interval ∆t the position of the
particles can be computed with the velocity Verlet algorithm [133], so that

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2m
Fext(ri, t)∆t

2, (4.1)

vi(t+ ∆t) = vi(t) +
1

2m
(Fext(ri(t), t) + Fext(ri(t+ ∆t), t+ ∆t)) ∆t. (4.2)

This explicit integration scheme of Newton’s equation of motion provides numerical sta-
bility to second order O(∆t2) and is frequently used in molecular dynamics simulations
[134, 135].

In this thesis we only consider spatially and temporally constant external forces Fext

as generated by, e.g., a constant pressure gradient ∇p. The Eq. (4.2) then reduce to

ri(t+ ∆t) = ri(t) + vi(t)∆t+
1

2m
Fext∆t

2, (4.3)

vi(t+ ∆t) = vi(t) +
1

m
Fext∆t. (4.4)

Please note that Eq. (4.3) and (4.4) are exact, rendering the integration scheme uncon-
ditionally stable. During the streaming step the positions of all particles are updated
according to Eq. (4.3) and (4.4) and as illustrated in Fig. 4.1. Interactions between
particles are not considered within the streaming step, which makes it very fast.

4.1.2 The collision step

The novelty of MPCD stems from its collision step. A collision between particles occurs
at discretely spaced time steps ∆t. The fluid particles do not sterically collide. Instead,
particles are grouped in boxes with edge length b similar to that shown in Fig. 4.2 a).
Only particles assigned to the same box interact and exchange momenta.

Various mechanisms have been proposed to execute the collision step [136–139],
most notably stochastic rotation dynamics [46] and Anderson thermostat [136, 137].
The former is characterized by random rotations of the relative velocities δvi = vi − u,
where u is the mean velocity of all the particles in one box. The latter samples random
velocities from a Gaussian distribution and assigns them to each fluid particle after
the collision. The requirements for the collision rule in both realizations are the same:
collisions must conserve momentum and be statistically independent for different boxes
and at different times. We use the implementation of the Anderson thermostat, which
updates the velocities of a fluid particle according to [137]

v′i = u + vran
i − 1

Nb

∑

j∈box

vran
j , (4.5)

where v′ denotes the velocity after the collision (see Fig. 4.2). The sum on the right
hand side is over all particles Nb inside the same box and ensures that the total mo-
mentum of the box does not change. The mean velocity inside a box is computed from
u =

∑
j∈box

vj/Nb. The random velocities vran are sampled from a Maxwell-Boltzmann

distribution with variance kBT/m (compare Section 3.3.3), which acts as a thermo-
stat and classifies the simulations as performed in a canonical ensemble [136]. In our
implementation the random numbers are generated by a Ziggurat algorithm [140].

Normally, Eq. (4.5) produces a shift of the angular momentum that is computed
from

∆L = m
∑

i∈box

ri × (v′i − vi). (4.6)
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a)

b

b)

Figure 4.2: Illustrative collision step. a) Discretization of the domain in equally spaced
boxes with width b, which assign fluid particles to collision groups. b) After the execution
of the collision step the velocities are updated and momentum is conserved.

Angular momentum conservation can be added by imposing constraints on the new
relative velocities [137, 141]. Adding a correction velocity v′′ = v′+vcor

i to each particle
and demanding

∆L+m
∑

i∈box
ri × vcor

i = 0, (4.7)

angular momentum can be restored. With the relations

vcor
i = ωcor × (ri − rc) (4.8)

and
∆L = I · ωcor, (4.9)

where rc =
∑

j∈box
rj/Nb denote the box’s center of mass and

I = m
∑

j∈box

(
(ri − rc)

2 − (ri − rc)⊗ (ri − rc)
)
, (4.10)

the moment of inertia tensor, the post collision velocities finally read

v′′
i = v′

i +mI−1 ·
∑

j∈box

[
(rj − rc)× (vj − vran

j )
]
× (rj − rc). (4.11)

The velocities v′′ generated by Eq. (4.11) now successfully conserve translational and
angular momentum within the boxes.

If the parameters are chosen such that 〈|v|〉∆t � b, usually due to low temperatures
or small time steps, the particles interact repeatedly with the same collision partners
inside the same box before diffusing the distance b. This poses a problem as the algorithm
in this form is not Galilean invariant [142]. In other words, if particles interact with the
same collision partners over multiple collision steps, their velocities are correlated and
retain information of previous encounters. In a homogeneously imposed flow field V ,
where V∆t � b, these correlations are absent.

It was shown that the Galilean invariance can be remedied by performing a random
shift of the box grid before each collision [142, 143]. With xb the origin of the box grid,
the grid shift is implemented by performing xb + δx, where the components of δx are
generated from the uniform distribution in the interval [−b/2, b/2]. The implementation
of the grid shift ensures that independent of homogeneously imposed flow, constantly
new groups of collision partners are formed.



4.1. BASICS 39

10−2 10−1 100 101

∆t/t0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ν
/b

2 t
−
1

0 νkinνcol

Figure 4.3: Analytical predictions of the contributions to the net viscosity generated
by a MPCD simulation for large n, with angular momentum conservation and t0 =√
m/kBTb. The dashed grey line denotes the sum νν = kin + νcol.

4.1.3 Static and dynamic properties

The link between microscopic dynamics and macroscopic properties was shown in sec-
tion 3.3 for an ideal gas in a canonical ensemble. For large numbers of particles N , the
streaming step in MPCD with Maxwell-Boltzmann distributed velocities clearly gener-
ates a kinetic contribution to the pressure that obeys the same equation of state as Eq.
(3.82), namely

p = kBT
n

bd
, (4.12)

where n denotes the average number of fluid particles per box. We saw that properties
like speed of sound c [Eq. (3.84)], as well as isothermal compressibility β [Eq. (3.83)],
can be derived from the equation of state. These properties play an important role
when choosing the parameters for the simulation. In contrast to a Newtonian fluid, the
fluid produced by MPCD is compressible, so it is crucial that density fluctuations travel
much faster than the fluid itself.

The collision step does not contribute to the hydrostatic pressure but generates
shear stress. With the assumption of molecular chaos and for large enough n, it can be
shown that the streaming and collision step account for the following contributions of
the kinematic shear viscosity [144, 145]

νkin =
kBT∆t

m

(
n

n− (d+ 2)/4
− 1

2

)
and (4.13)

νcol =
b2

24∆t

(
n− 7/5

n

)
. (4.14)

Figure 4.3 plots the kinematic and collisional viscosity for various step sizes ∆t. The
figure shows that high viscosities can be produced for either very large or small time steps
∆t. From the perspective of numerical efficiency, large time steps are desirable. However,
this implies that the dynamics are dominated by kinematic effects, i.e., the streaming
step. In consequence, when using large time steps the MPCD fluid behaves more like a
gas than a liquid because the corresponding mean free streaming step λ = ∆t

√
kBT/m

of the particles is large. Instead and in order to avoid the local minimum in Fig. 4.3,
usually small time steps ∆t/t0 ∼ 10−2−10−1 are chosen, where t0 =

√
m/kBTb, so that

collisions dominate the momentum exchange [49].
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In conclusion, the method conserves momentum and generates hydrostatic and shear
stress. On length scales larger than both, the box size b and the mean free path λ of
the fluid particles as well as on time scales larger than the collision time ∆t the method
successfully solves the Navier-Stokes equation (3.6) [51]. Moreover, thermal fluctuations
are included by implication, which makes the solver a powerful tool in understanding
mesoscopic phenomena, where hydrodynamics and diffusion are important.

4.2 Implementation of Passive Particles and the Channel

The previous section introduced the MPCD method, which simulates a Newtonian fluid.
For most real applications it is necessary for the fluid to interact with swimming and
stationary objects. The fluid should not penetrate suspended objects and interact in a
way such that the no-slip boundary condition is recovered (see Sect. 3.1.2). Moreover, in
Chapter 2 we presented experiments and simulations from literature, which put forward
the claim that colloidal particles in dense suspensions do come in contact with each
other despite the repulsive lubrication. We introduce here two models of implementing
passive particles, which were utilized to simulate frictional contacts between colloids as
well as between colloids and walls.

4.2.1 Implementation of the no-slip boundary condition

In the following the implementation of impenetrable, solid bodies into the MPCD fluid
is presented. As discussed in Sect. 3.1.2, the fluid assumes the velocity of the body
directly at its surface. In order to achieve this, both the streaming and the collision step
must be adapted accordingly.

During the streaming step it must be checked whether a particle has penetrated the
surface of a solid body [see Fig. 4.4 a)]. If so, the bounce-back rule is applied in order
to enforce the no-slip boundary condition [146]. We restrict the discussion to movable
spherical objects of mass M and radius R. The rules for collisions with walls can be
derived accordingly. For the fluid particle, the bounce back rule reads

v′i + vi = 2 (u + ω × (ri − rc)) , (4.15)

where v′i is the updated velocity of the fluid particle after the collision and u and ω
denote translational and angular velocity of the sphere with rc its center of mass. After
the collision the change of momentum ∆pi = m(vi − v′i) is transfered to the sphere to
conserve momentum and angular momentum such that

u′ = u− 1

M
∆pi, (4.16)

ω′ = ω − 1

I
(ri − rc)×∆pi, (4.17)

where I is the moment of inertia of the sphere. In three dimensions it takes the value
I3D = 2

5MR2 and in two dimensions I2D = 1
2MR2, respectively. Note that the kinetic

energy after the collision is only conserved in the limit m�M , which can be accepted
due to the use of a thermostat in the collision step (see Sect. 4.1.2).

To accurately resolve when, where and in what order fluid particles collide with
objects is numerically expensive. The following alternative was proposed by Padding et
al. [147]. All particles are moved according to Eq. (4.3) and (4.4) during the time step
∆t. Secondly, all particles, which penetrated solid objects are moved backwards for a half
time step ∆t/2 and then placed closest on the surface of the object. To effectively retrieve
such penetrating particles, neighbor lists are used, which greatly improve performance
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Figure 4.4: Schematic example of solid objects immersed in the MPCD fluid. a) During
the streaming step, particle collisions with objects are checked and velocities redirected
according to Eq. (4.15). b) During the collision step ghost particles (red) are generated
inside the solid objects, which undergo collisions among themselves as well as with real
MPCD particles in the solvent.

[148]. The velocity of the fluid particle is then updated according to Eq. (4.15) and
the particle propagated forward for the time ∆t/2. In our implementation it is possible
for a fluid particle to undergo multiple collisions during one streaming step, e.g., when
located inside a narrow gap between two spheres. Those collisions are then identically
resolved each time the particle penetrates into a boundary but with a halved time step
∆t/2i, where i denotes the i-th collision.

During the collision step, the collision cells can overlap with the spheres as in Fig.
4.4 b). So called “ghost” particles have been proposed to deal with this issue [29, 146,
149]. Ghost particles are generated at equal density n at the end of each streaming step
and participate in the collision step and also exchange momentum. The implementation
of ghost particles has various benefits. They ensure that hydrostatic and hydrodynamic
properties close to solid objects are conserved on the box level because the average
number n of fluid particles inside overlapping boxes is recovered. In addition, ghost
particles enforce the no-slip boundary condition by having the same mean velocity as
the solid. Ghost particles are generated with the velocity

vg = u+ ω × (rg − rc) + vran. (4.18)

Here, vran is again drawn from a Maxwell-Boltzmann distribution [Eq. (3.87)] and rg is
the randomly assigned location of the ghost particle inside the solid. Please note that
the ghost particles need only be generated up to a depth of b

√
d into the solid to be able

to interact with real fluid particles as indicated in Fig. 4.4 b). After the collision, the
momentum changes of the ghost particles are conveyed to the spheres according to Eq.
(4.16)-(4.17).

4.2.2 Event-driven molecular dynamics

One of the method to resolve the contact interactions between hard and elastic spheres is
event-driven molecular dynamics. The name stems from the integration scheme, which
jumps forward in time until an event, i.e., a collision with another object occurs and
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Figure 4.5: Schematic view of the collision of two unequal spheres i and j with relative
velocity U at the point of contact. Upon collision U → U′ the parallel part U‖ and
perpendicular part U⊥ reverse in order to prevent slip.

resolves momentum exchanges instantaneously before jumping to the next event. Thus,
our main challenge is to determine the ordered sequence of sphere collisions.

During the streaming step the spheres move ballistically with their current velocities
to a new location given by

ri(t+ ∆tMD) = ri(t) + ui(t)∆tMD, (4.19)

where ∆tMD ≤ ∆t is the molecular dynamics time step, which denotes the time until
the next collision between two spheres and ri is the center of mass of the i-th sphere.
Let a pair of spheres be denoted by (i,j) and let us define

Rij = Ri +Rj , (4.20)

∆rij = ric − rjc, (4.21)

∆uij = ui − uj , (4.22)

bij = ∆rij ·∆uij , (4.23)

kij = b2ij −∆u2
ij(∆r

2
ij −R2

ij). (4.24)

For the pairs (i,j) that fulfill bij < 0, i.e., pairs that move towards each other, as well
as kij > 0, i.e., pairs that come within collision range rij < Rij of each other, the time
∆tMD until the next collision is calculated from [150]

∆tMD = min

(
−bij −

√
kij

∆u2
ij

)

∀i,j,i 6=j

. (4.25)

Equation (4.25) can be used to build a priority queue of future events ordered by time.
For numerical efficiency the implementation of Eq. (4.25) also uses neighbor lists [148].

Upon collision the relative velocity at the point of contact is calculated from

U = ∆uij −
1

Rij
(ωiRi + ωjRj)×∆rij , (4.26)

which can be decomposed in a parallel part U‖ = (U · n)n and perpendicular part
U⊥ = U − U‖, with n = ∆rij/Rij as displayed in Fig. 4.5. Assuming no losses due
to friction, the parallel component U‖ reverses. When modeling the no-slip boundary
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condition, the perpendicular component U⊥ must reverse as well. With momentum,
angular momentum, and energy conservation, the momentum exchange ∆p is computed
from

∆p = −2Mij

(
U‖ +

U⊥
1 +Mij/Iij

)
, (4.27)

with reduced mass and reduced moment of inertia

Mij =
MiMj

Mi +Mj
and (4.28)

Iij =
IiIj

R2
i Ij +R2

jIi
. (4.29)

Finally, the velocities and angular velocities of the spheres can be updated according
to

u′i = ui +
1

Mi
∆p, (4.30)

u′j = uj −
1

Mj
∆p, (4.31)

ω′i = ωi −
Ri
RijIi

∆rij ×∆p, (4.32)

ω′j = ωj −
Rj
RijIj

∆rij ×∆p. (4.33)

As spheres collide and change their direction, some events scheduled on the priority
queue become invalidated. As a result, collisions involving the spheres i and j must be
updated and inserted onto the priority queue. Eqs. (4.25)-(4.19) are executed consecu-
tively until the time ∆t has passed and the MPCD collision step is performed. During
the collision and streaming step momentum exchanges with the fluid are transfered to
the spheres so that Eq. (4.25) must be reinitialized every time before the next event
driven molecular dynamics step.

4.2.3 Linear spring model with friction

The second model we will use to resolve the interactions between the spheres is the
linear spring model. A direct consequence of this is that spheres and walls become
“soft”, i.e., can be penetrated by other spheres. The degree of softness is determined
by a repulsion potential, which needs to be steep enough to model nearly hard spheres.
This scheme excels in very dense sphere packings, where many collisions occur and
when compared to the event-driven molecular dynamics, where the priority queue must
be constantly initialized and updated. Moreover, the spring model is easily parallelized
whereas the event driven model can only be executed chronologically. Another difference
is that with the linear spring model several contacts between spheres are simultaneous
possible, which allows the occurrence of force chains and jamming.

In contrast to event driven molecular dynamics, this method discretizes the time in
equidistant time steps ∆tMD ≤ ∆t and integrates the positions and velocities between
the MPCD collision steps using the Euler method. Consequently, instead of instanta-
neously resolved momentum exchanges, this scheme uses forces F and torques T that
describe the steric repulsion between the spheres and the momentum exchange with the
fluid. The latter is generated by adding together interactions from the MPCD streaming
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Figure 4.6: Schematic view of two spheres in contact with relative velocity U at the
point of contact. The springs denote tangential δt and normal spring δt.

and collision step with the i-th colloid and reads

Fhyd
i = − 1

∆t

( ∑

stream.

∆pj +
∑

coll.

∆pj

)
, (4.34)

Thyd
i = − 1

∆t

( ∑

stream.

(rj − ri)×∆pj +
∑

coll.

(rj − ri)×∆pj

)
. (4.35)

The integration of positions and velocities of the spheres is then conducted by computing

ri(t+ ∆t) = ri(t) + ui(t)∆t, (4.36)

ui(t+ ∆t) = ui(t) +
∆tMD

Mi

(
Fhyd
i + Fi(t)

)
, (4.37)

ωi(t+ ∆t) = ωi(t) +
∆tMD

Ii

(
Thyd
i + Ti(t)

)
. (4.38)

The forces Fi(t) =
N∑
j 6=i

Fij(ri(t), rj(t)) and torques Ti(t) =
N∑
j 6=i

Tij(ri(t), rj(t)) depend on

positions and relative angles of all spheres at the time t. However, in our implementation
the sum over all spheres N is greatly reduced with the aid of neighbor lists [148]. The
forces between pairs are treated with a model commonly used in granular physics [59,
151].

When a sphere overlaps with another body, it experiences a repulsive spring force
Fn = −knδn, where kn is the spring constant (see Fig. 4.6). The vector δn measures the
overlap distance and always points towards the collision partner along the normal vector
n of both colliding surfaces. While in contact, the relative displacement δt in tangential
direction t ⊥ n results in an elastic force Ft = −ktδt and torque T = Rn × Ft, where
kt is the tangential spring constant. The frictional force generated by the tangential
shift δt depends on the relative rotation of both spheres and requires special treatment.
When contact is established the tangential overlap δ is incremented by computing

δt(t+ ∆tMD) = δt(t) + U⊥(t)∆tMD, (4.39)

where U⊥ again denotes the tangential relative velocity of both spheres. To prepare the
next iteration, one has to rotate the tangential spring into the actual tangential plane,
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since the frame of reference of the contact may have rotated by updating the positions
of the spheres. This correction is done by

δnew
t = f [δold

t − n(n · δold
t )], (4.40)

where the length of δt is preserved by an appropriate scaling factor f . We employ
Coulomb’s law of friction

|Ft| ≤ µ|Fn|, (4.41)

with µ the dimensionless friction coefficient. As soon as the tangential force |Ft| exceeds
the value of µ|Fn|, the particles start sliding and the tangential spring is adjusted to a
length consistent with Coulomb’s condition, so that

δt(t+ ∆tMD) = − 1

kt
µ|Fn(t)|t(t). (4.42)

In the simulation the spring constants kn and kt should be tuned such that the overlaps
δn � R and δt � R are small compared to the sphere size in order to resemble nearly
hard spheres.

4.3 Mapping between the Physical and Coarse-Grained
System

The ultimate goal of our MPCD implementation is to correctly describe physical phe-
nomena observed in experiments. For a coarse-grained solver such as MPCD it is im-
portant to include all the time and length scales relevant to a colloidal suspension.
However, correctly resolving the relaxation time of a fluid molecule τf ≈ 10−14s as well
as the diffusive time τD ≈ 100s of a colloidal particle, requires a simulation to distinguish
between durations separated by 14 orders of magnitude. Here, compromises must be
made. Nevertheless, a successful mapping is possible and profits from expressing the
physical properties of interest in dimensionless parameters such as the Reynolds number,
Mach number, Péclet number, and Schmidt number.

Schmidt number

When modeling a liquid it is important that the momentum transport within the fluid is
dominated by inter-particle collisions rather than by kinematics. This is best quantified
by the Schmidt number

Sc =
ν

Df
, (4.43)

where Df is the fluid particle self-diffusion coefficient and proportional to Df ∝ ∆t
[152]. For a gas, momentum transport is mainly governed by mass diffusion so that
Sc ≈ 1, while for larger Schmidt numbers Sc� 1 the dynamics shows collective behavior
reminiscent of that of a liquid. In MPCD this can only be achieved by choosing small
time steps ∆t, which simultaneously ensures large viscosities ν and a small self-diffusion
coefficients Df . In our simulations the Schmidt number is typically Sc & 25, which is
sufficient for the problems we study.

Mach number

The Mach number measures the ratio

Ma =
v

c
, (4.44)
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between the speed of the solvent or colloidal flow v and the speed of sound c. The
Mach number measures compressibility effects [153] and in contrast to the Schmidt
number directly depends on the flow velocity. The speed of sound in water at room
temperature measures c ≈ 1481m/s and is by far not attainable as flow speed in micro
flow experiments. As a consequence, under normal conditions the solvent can be safely
assumed as incompressible. On the other hand, to mimic a fluid with equal density, the
coarse grained solver MPCD uses a much lower number density of fluid particles with
much higher masses m. This implies that the speed of sound c is much lower in the
coarse grained system, which is calculated from Eq. (3.84). There exists evidence that
compressibility effects typically scale with Ma2 [153], so that for most applications it is
sufficient to limit the simulations to Ma . 0.2 [49].

In our implementation we set kBT = 1 and m = 1, so that the speed of sound
calculated from Eq. (3.84) is c2D ≈ 1.41b/t0 in two dimensions or c3D ≈ 1.29b/t0 in
three, respectively. Consequently, when running a simulation, it is always checked that
the flow speed v0 in the center of the channel does not exceed v0 . 0.2c to minimize
compressibility effects.

Reynolds number

The Reynolds number has been discussed in chapter 2 and 3. It measures the relative
strength of inertial forces when compared to viscous forces. For a particle it is defined
by

Rea =
va

ν
, (4.45)

where we denote by a the radius of a suspended colloid.

We can also define a channel Reynolds number for the flow through the channel with
width w

Rew =
v0w

νbulk
, (4.46)

where v0 denotes the maximum velocity in the center. We emphasize that the bulk
viscosity νbulk is a sensitive function of the colloidal packing fraction φ. In the conducted
simulations we typically use dense suspensions with packing fractions φ > 0.30 so that
usually νbulk � ν.

In real-world experiments on microfluidic flow, Re does typically not exceed 10−4,
rendering inertial forces insignificant. In order to keep Re small in a MPCD simulation,
one must either choose small particle sizes a or w, or use small flow velocities v. The
former are limited by discretization effects occurring at a . 2b [49]. Since simulation
time is important we aim on having large flow velocities v that do not violate Ma . 0.2
and are still well within the Stokes regime. To simulate Stokes flow the parameters are
typically chosen to keep Re . 0.2 [49].

Péclet number

Finally, the Péclet number compares convective transport to diffusive transport. A
colloidal particle of radius a in flow of speed v diffuses the distance of its radius after
the time τD = a2/D, with D the self-diffusion coefficient of the colloid. It is transported
by flow over the same distance after the time τv = a/v. The Péclet number is then
calculated by

Pe =
τD
τv

=
va

D
. (4.47)

Brownian fluctuations are expected to be less important if Pe � 1. In this regime
hydrodynamics is dominant and MPCD generates data that is less noisy. When studying
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Figure 4.7: Parabolic flow between two infinite plates generated by MPCD in three
dimensions using following parameters: n = 10, ∆t = 0.2, σ = 0.001 and w = 10b. For
comparison the analytical result is displayed using the predicted viscosity calculated
from Eq. (4.13) and (4.14).

non-equilibrium phenomena the Péclet number is typically large, e.g. Pe ≈ 50− 500 in
the experiment on shear-induced size segregation [58].

In MPCD, Pe can be tuned by varying the flow speed v, which is however restricted
by limitations given by Re and Ma number. Increasing the size a of the particle is nu-
merically expensive when keeping the ration a/w constant and simultaneously increases
the particle Reynolds number Rea. Another way to increase Pe is to decrease the dif-
fusion coefficient D defined by the Einstein relation Eq. (3.53). This is best be done
by increasing the number density n of fluid particles per collision box. In consequence,
the dynamic viscosity η increases and the colloid interacts with a larger number of fluid
particles, which reduces fluctuations and thus its diffusivity.

4.4 Transport Coefficients

Now that we have established the frame conditions to model microfluidic flow with the
aid of MPCD, we want to confirm the analytically known result for channel flow (see
Sect. 3.1.3) in absence of colloidal particles. This setup together with Eq. (3.27) can
then be used to exactly measure the viscosity ν of the fluid for various parameters.
Secondly, we want to measure the diffusion coefficient D of suspended particles inside
an open box. For this purpose we numerically integrate the velocity autocorrelation
function introduced in Sect. 3.2.3.

4.4.1 Computation of viscosity

In Sect. 3.1.3 we saw that a constant pressure gradient σ = |∇p|/ρ along a channel
with walls separated by the distance 2w generates a Poiseuille flow that obeys

v(y) =
σ

2ν
(w2 − y2), (4.48)

with the maximum velocity v0 = σw2/2ν in the center of the flow. We can confirm the
parabolic flow profile in Fig. 4.7 using our implementation. Also, a good quantitative
agreement is obtained when compared to the analytical known result of the Navier-
Stokes equation (4.48) using the viscosity predicted by Eq. (4.13) and (4.14). In this
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Figure 4.8: Measurement of the viscosity of a MPCD fluid in three dimensions for various
time step lengths ∆t and for n = 10. For comparison the analytical result is displayed
using the predicted viscosity calculated from Eq. (4.13) and (4.14). The inset shows the
relative deviation between analytical and measured viscosities.

setup we can measure the viscosity of the MPCD fluid by generating a Poiseuille flow
and measuring the velocity v0 in the center of the channel. Then, by rewriting Eq. (4.48)
we find

νMPCD =
σw2

2v0
. (4.49)

In Fig. 4.8 we compare the measured viscosities νMPCD to the analytical prediction
νana = νkin + νcol and also display the ratio νana/νMPCD. We notice that for small ∆t
the viscosity increases, which is desirable for our application. When compared with
the analytical prediction νana the ratio νana/νMPCD becomes larger for smaller time
steps up to 14% for ∆t = 0.01. In doing so, the analytical predictions overestimates
the MPCD viscosity. The reason for this is the unmet assumption of molecular chaos,
which was made when deriving Eq. (4.13)-(4.14). For small ∆t, fluid particles interact
with neighboring fluid particles over several consecutive collision steps due to their small
mean free path, even though grid shift is enabled. This causes correlations similar to
those experienced by stochastic rotation dynamics [139, 154]. Taking this into account,
we measure the viscosity directly by utilizing Eq. (4.49) for all our simulations.

4.4.2 Diffusion coefficient

In order to estimate the Péclet number for colloids in flow, we need to know the diffusion
coefficient D. To calculate the diffusion coefficient with the aid of the Einstein relation
Eq. (3.53), requires knowledge of the friction coefficient ζ, which depends on viscosity
and in two dimensions even on the Reynolds number (see Sect. 3.1.5). To avoid un-
certainties, the diffusion coefficient D is best directly computed from either the mean
square displacement at large times like in Eq. (3.47) or more elegantly with the velocity
autocorrelation function introduced in Sect. 3.2.3, which is defined by

C(τ) = 〈v(t) · v(t+ τ)〉. (4.50)

The diffusion coefficient is then found by integrating over τ [compare with Eq. (3.52)],
so that [99, 115]

D =
1

d

∞∫

0

dτ C(τ). (4.51)
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Figure 4.9: Velocity autocorrelation function for a single particle of size 2b and 4b in
a periodic box of length l = 20a in two (n = 50) and three (n = 10) dimensions with
time step ∆t = 0.01. The inset shows the integration of the function with respect to
the upper integration limit t′.

In Fig. 4.9 the velocity autocorrelation functions are shown for a single colloid suspended
in a bulk MPCD fluid with periodic boundary conditions in all spatial dimensions and
length of l = 20a. We compute the velocity autocorrelation function for colloids of size
a = 2b and a = 4b as well as in two and in three dimensions. The velocity autocorrelation
function completely decays and its integration displayed in the inset saturates after
approximately t ≈ 15t0. After this time the colloids have completely lost memory of
their initial velocity. By assuming D(t′ = 15t0) ≈ D(t′ = ∞), the diffusion coefficients
can be taken off the insets of Fig. 4.9. For larger colloids, D is smaller in two and
three dimensions. In three dimensions the ratio between the diffusion coefficient for
radius 2b and 4b is roughly 2 as predicted by the Stokes formula (3.32) together with
the Einstein relation (3.53). In two dimensions the translational friction ζ, determined
in Eq. (3.36), exhibits only weak dependence on the size of the sphere. This is attributed
to the infamous Stokes paradox (Sect. 3.1.5). In Fig. 4.9 left, the paradox is reflected
by a lower ratio of D for differently sized spheres.

4.5 Parallelization with Open-MP

OpenMP is an application programming interface for shared memory multiprocessing
[155, 156]. It consists of a set of compiler directives and library routines that allow to
access and use multiple cores of a processor during run time. OpenMP is well suited
for parallelizing loops, for which the individual iterations are independent of each other.
The tasks are then divided among multiple so-called threads, for which each corresponds
to a single processor core. The sequential part of the code is executed by a master thread,
which forks into multiple threads just before a parallel region is entered as can be seen in
Fig. 4.10. When all the iterations within the parallel region are completed, the master
thread leads to the next parallel region while the remaining threads are on stand by.

In the implementation used throughout this work, parallel regions are used around
the streaming and collision step. The streaming step is treated within a for -loop over
all fluid particles executing the steps described in Sect. 4.1.1. When using OpenMP,
the single iterations of the loop are dynamically distributed over all available threads.
Similarly, the positions and velocities of the colloids are updated within a parallelized
for -loop. The colloidal interactions are computed pairwise so that the i-th colloid needs
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Figure 4.10: Schematic representation of the parallelization of the program code during
one iteration step. The master thread computes the serial part of the program and forks
into multiple threads when entering a parallelized region.

5 10 15 20
number of threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ru
n
ti
m
e
it
/s

i7−2600 3.4GHz,HT

XeonE5−2687W 3.1GHz,HT

0 5 10 15 20
number of threads

0

2

4

6

8

10

sp
ee
d
u
p

Figure 4.11: Benchmark of two processors using OpenMP with respect to the number of
threads. Hyper threading (HT) is enabled. Left: runtime for one iteration of simulating
a periodic channel of length l = 12000b, width 2w = 50b, fluid density n = 25 and 21886
suspended colloids using the linear spring model in two dimensions. Right: relative
speedup when compared to the run time of only one single thread.

only to check for collisions with partners j, for which j > i holds. To ensure that multiple
threads do not simultaneously write on the same memory block, locks are used, which
allow access of designated memory address only one at a time. Each thread generates
random numbers from a different pseudo random number generator of periodicity 2128.
Experience has shown that the streaming and collision step of the MPCD fluid require
approximately 95% of the runtime. Consequently, most optimization has been dedicated
towards the respective program parts.

In Fig. 4.11 we check run time and speed up of our MPCD realization with respect
to the number of utilized threads. We consider two processors architectures, which have
been used throughout this work to simulate colloidal flow. The first is an Intel core i7
clocked with 3.4GHz and 8MB cache memory. The processor has 4 physical cores and
supports hyper threading (HT). HT generates for each physical core two virtual cores,
which share the workload in parallel applications if possible. This is especially useful
when much memory needs to be shifted meanwhile one physical core would stay idle.
The second processor is a Xeon E5 with 10 physical cores (HT) at 3.1GHz and with
30MB cache. The first processor type was mainly used to generate results presented in
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this thesis.
A theoretical perfect parallelization would result in a linear increase of the speedup

over number of threads with a slope equal to 1. In reality this is of course impossible
to attain as some program parts remain to be executed in serial and threads might be
waiting for each other to finish. Nonetheless, we find for both processor types under
consideration a clear linear behavior with slope ≈ 0.82 up to a number of threads equal
to the number of physical cores. For larger number of threads, HT still generates a
speed up equal to a slope of ≈ 0.2. As a result, our implementation of MPCD benefits
from HT as with 4 physical cores a speed up of roughly ≈ 4.5 and with 10 physical cores
a speed up of roughly ≈ 10.3 can be achieved.
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5
Hydrodynamic Segregation in a
Bidisperse Colloidal Suspension

The results presented in the following chapter are based on the publication [A].

In this chapter we finally want to put our implementation of MPCD to use in order
to validate the results against experimental data and obtain further insight into the
governing physics. In chapter 2, we presented experiments showing that colloids in
dense suspension exhibit shear-induced migration towards regions of low viscous shear
attributed to irreversible binary particle interactions [21–23, 64]. Inside a microchannel
this area is the channel center, which accumulates particles [24–27]. Moreover, in dense
bidisperse colloidal suspensions under pressure driven flow it was shown that the same
mechanism leads to a segregation of large particles towards the center of a microchannel
and the suspension partially demixes [58].

To develop a more thorough theoretical understanding of these effects we present
results on hydrodynamic segregation in binary colloidal dispersions using MPCD. As
argued in the previous chapter, this method is very suitable for simulating micron sized
particles in flow because it combines the effects of hydrodynamic interactions and ther-
mal motion.

For reasons of numerical efficiency most of the simulations for the parameter studies
were conducted in two dimensions. However, in section 3.1.5 it was shown that the hy-
drodynamic friction coefficient ζdrag in two dimensions depends only weakly on particle
size a, in contrast to linear in three dimensions. This undoubtedly effects the quali-
tative diffusive behavior in polydispersed suspensions when comparing two and three
dimensions. In this chapter a binary suspension of particles with size ratio two is used.
Consequently, for some parameters simulations were conducted in three dimensions in
order to not overlook the effect of spatial dimensionality on the results.

Additionally, a phenomenological model for the particle currents based on the work
of Leighton and Acrivos [64] and Phillips et al. [22] is formulated. Using a single fit
parameter for the collective diffusivity of the colloids, this theory predicts steady-state
density profiles across the channel. Firstly, this theory will be evaluated against pro-
files generated by monodisperse suspensions and secondly against profiles generated by
binary suspensions. A detailed parameter study on how Péclet number and density
composition of the two species affect the steady-state density profiles will be presented
and discussed.
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Figure 5.1: Channel geometry of width 2w and length l. Channel walls are at y/w = 1
and y/w = −1 and periodic boundary conditions in x-direction apply. A pressure
driven Poiseuille flow with flow speed v0 in the center is initiated. A bidisperse colloidal
suspension develops a non-uniform density profile and distorts the parabolic flow profile.
For three-dimensional channels also periodic boundary conditions in z-direction apply.

5.1 Setup and Parameters

We know from Sect. 2.1 that colloids move at vanishing Reynolds numbers. In order
to mimic a highly viscous fluid with multi-particle collision dynamics we need to set
a small collision time step (see Fig. 4.3). In our simulations the time step between
collisions was chosen to be as small as ∆t = 0.01t0, with t0 =

√
mb2/kBT in two

and three dimensions. In this regime, momentum exchange is mainly governed by the
collision step, which yields a liquid like character [49] and simulations are performed in
the Stokes regime at low Reynolds numbers, such that Re = v0ρw/η does not exceed ca.
0.2. Here w is half the channel width and v0 is the maximum velocity of the Poiseuille
flow generated by a constant pressure gradient ∇p along the channel (see Fig. 5.1). To
evaluate Re, the bulk viscosity η of the dense colloidal suspensions simulated in this
work has been used. The channel walls obey the no-slip boundary condition and are
implemented according to Sect. 4.2.1.

The average fluid particle number density is ρ = 10/b3 in 3D, and ρ = 50/b2 in
2D. Single colloidal spheres and disks performing Brownian motion in the fluid have
roughly the same diffusion coefficients D with these parameters, since the number of
fluid particles interacting with the colloid is roughly the same, 2πaρ2D ≈ 4πa2ρ3D.

Interactions between colloids within the suspensions are resolved using the event
driven molecular dynamics simulation introduced in Sect. 4.2.2. This method treats
the colloids as hard and generates elastic collisions without slip that conserve energy
and translational as well as angular momentum following Ref. [157]. This direct colloid-
colloid contact but also thermal motion break the kinematic reversibility of the Stokes
equations and enable cross-streamline migration in our simulations.

The Péclet number Pe = vDa/D introduced in Sect. 2.1, quantifies the relevance of
the thermal motion of a colloid of radius a compared to its drift motion with velocity
vD. From the phenomenological model proposed by Leighton and Acrivos [64] (Eq. 2.3
in Sect. 2.2) we can roughly estimate the drift velocity in the lateral channel direction
as v0a

2/w2 so that the Péclet number used in the following becomes

Pe =
a3

w2

v0

D
. (5.1)

To initiate a simulation, binary mixtures of neutrally buoyant colloidal particles with
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Figure 5.2: a) Translational and b) rotational diffusion coefficient for a single colloid
in a periodic cubic box of length l computed with aid of the velocity autocorrelation
function (see Sect. 4.4.2). Particle size is a = 2b, time step ∆t = 0.01t0 and density
ρ = 10m/b3.

respective mean radii aS for the small and aL for the large particles are placed inside the
microchannel with an initial homogeneous distribution as displayed in Fig. 5.1. The col-
loidal radii for both species are generated from respective narrow Gaussian distributions
with standard deviations σi = 0.02ai with i = L, S in order to prevent crystallization.
A pressure gradient implemented by a constant force acting on each fluid particle then
drives the solvent out of equilibrium and the steady-state concentration profile of the
colloids are monitored. Periodic boundary conditions apply in flow direction as well as
in z-direction for the three-dimensional case to mimic the large channel aspect ratio of
the experiments reported in Ref. [58].

We always choose the channel half width w as w = 20aS . The length of a two-
dimensional channel is l = 100aS and for three-dimensional channels l = 20aS . In the
latter case, the height of the simulation box along the z-direction typically is h = 20aS .
Periodic boundaries produce infinite mirror images of colloidal particles at distance ±l,
±2l, etc., which may cause finite size effects. In order to show that the finite size
effects generated by relatively short channel in three dimensions are negligible, we plot
translational and rotational diffusion coefficient D and Drot for a single colloid inside
a periodic cubic box of length l in Fig. 5.2. Finite size effects are strong for small
l especially for translational diffusion but reach a constant value at roughly l � 10a.
Rotational diffusion reaches a constant value at much smaller box sizes.

All parameters and transport coefficients in MPCD units are summarized in table
5.1.

In order to determine smooth density and velocity profiles along the y-axis from
discrete colloidal values, we employed kernel density estimation using Epanechnikov
kernel functions [158] k(y). Summation over all colloids N yields a smooth lateral
profile.

F (y) =

N∑

i=1

fiki(y) =

N∑

i=1

fi
3

4ε3
(
ε2−(y−yi)

2
)
H(ε−|y−yi|) (5.2)

Here H is the Heaviside step function. To evaluate the respective density or velocity
profiles, one takes for fi either 1/N or the velocity component vix of particle i. For
the kernel width we chose ε = 0.005w so that packing effects were clearly resolved.
Densities of the large and small particles were determined by replacing N by their
respective numbers NL and NS . Finally, to obtain the final profiles, time averages of
F (y) were taken after the system had reached steady state.

The number of colloidal disks in the two-dimensional case spans between 200 and
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parameter 2D 3D

m 1 1
b 1 1

kBT 1 1

∆t 0.01t0 0.01t0
ρ 50m/b2 10m/b3

aS 2b 2b
aL 4b 4b
w 40b 40b
l 200b 40b

ν 3.22b2/t0 3.15b2/t0
DS 0.00137b2/t0 0.00214b2/t0
DL 0.000973b2/t0 0.000852b2/t0

Table 5.1: Overview of the MPCD simulation parameters and transport coefficients
in units of fluid-particle mass m, collision box length b, and temperature kBT for the
simulations in two and three dimensions.

600 with up to 8 × 105 fluid particles. In the three-dimensional channel the number of
colloidal spheres varies between 200 and 1000 with up to 1.2 × 106 fluid particles in a
single simulation. Given the generally slow dynamics of shear-induced migration, we
use the program interface OpenMP (see Sect. 4.5) to execute simulations on 4 to 8 Intel
i7 cpu cores (HT) simultaneously.

5.2 Phenomenological Theory

We now develop a phenomenological theory to describe shear-induced segregation of
bidisperse colloidal suspensions in a Poiseuille flow. As reviewed in Sect. 2.2, such a
segregation cannot be explained by purely hydrodynamic forces due to the kinematic
reversibility of the governing Stokes equations. In a careful study Leighton and Acrivos
proposed surface roughness and the resulting irreversible particle interactions, as they
call them, as the major cause for the observed shear migration [19]. They developed
an understanding for the resulting particle drift motion, which was put into a phe-
nomenological theory by Phillips et al. [22] and later generalized by Pesche et al. [85]
to bidisperse suspensions with a large size difference between the two particle species.
In the following we review the main ideas for the phenomenological theory and develop
our own approach for bidisperse suspensions in order to explain our numerical results.

Two colloids in a Poiseuille flow either form bound states or during collision move on
swapping trajectories where they exchange their lateral positions [159]. When moving on
different sides of the centerline, they even perform cross-swapping trajectories where the
center of mass just crosses the centerline [159]. However, real shear-induced migration
does not occur. According to Leighton and Acrivos [19], to observe migration towards
lower shear rate γ̇ := |∂vx/∂y|, two colloidal particles have to encounter in an irreversible
collision, where they move away from each other. So they perform cross-streamline
displacements of the order of particle size a. The frequency of collisions in a sheared
suspension with volume fraction φ := Vsphc scales with φγ̇. Here, c is the number
particle density and Vsph the volume of a sphere or the area of a disk. Now, the collision
frequency across the particle radius varies as a∇φγ̇ and colloids migrate towards regions
of low shear rate with a drift velocity vD proportional to −a2∇(φγ̇).
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Furthermore, the shear viscosity is a sensitive function of density. As a result, one
can show that in a spatially varying viscosity field, the displacements towards a region of
higher viscosity are smaller [19]. So the effective displacement in an irreversible collision
scales as a2∇η/η. Together with the collision frequency this gives a drift velocity vD
proportional to −a2φγ̇∇η/η.

5.2.1 Monodisperse suspension

Based on the above arguments, Phillips et al. formulated the constitutive equation for
the particle current J as the sum of drift (φvD) and diffusional currents:

J = −φ
(
Kca

2∇(φγ̇) +Kηa
2φγ̇
∇η
η

)
−DC∇φ (5.3)

In the following, we only consider one-dimensional shear migration in y-direction and ∇
then means ∂/∂y. The positive phenomenological parameters Kc and Kη are of order
one and can be obtained in experiments and simulations. The last term on the right-
hand side describes thermal collective diffusion and DC is the collective diffusivity, also
referred to as down-gradient diffusivity. Typically, close to the channel walls the shear
rate γ̇ is large and dominates over collective diffusion, whereas at the centerline γ̇ is zero
and also DC becomes important. We will use this to make predictions for the density
profile at the channel walls and around the centerline.

In steady state, J = 0 and using ∇η = ∇φ∂η/∂φ, Eq. (5.3) can be rewritten as

φ2Kca
2∇γ̇ = −

[
φγ̇a2

(
Kc +Kηφ

1

η

∂η

∂φ

)
+DC

]
∇φ. (5.4)

The term on the left side drives shear migration by transporting particles from regions
of high shear to low shear rate. All terms on the right side effectively are diffusion terms
and tend to homogenize the density profile but with different significance across the
channel width. We identify two regions with different governing terms.

Close to the wall: φγ̇a2 � DC

In the vicinity of the wall the terms in Eq. (5.4) linear in γ̇ dominate over DC and Eq.
(5.4) becomes

φ∇γ̇ ≈ −γ̇∇φ− Kη

Kc
φγ̇
∇η
η
. (5.5)

This equation can directly be integrated using ∇f/f = ∇ ln f . We arrive at an implicit
equation for the lateral profile of the particle density, written here for positive y,

φ(y)

φ(w)
=
γ̇(w)

γ̇(y)

(
η(φ(w))

η(φ(y))

)Kη
Kc

, (5.6)

with φ(w) and γ̇(w) evaluated directly at the wall. In the Poiseuille flow γ̇ decreases
away from the wall and thereby drives a particle current towards the centerline so that
φ increases. The accompanying increase in viscosity initiates a particle current towards
the wall, which ultimately stabilizes the density profile. To see this behavior in Eq.
(5.6), we rewrite it as

γ̇(y)φ(y)η(φ(y))Kη/Kc ≡ const. (5.7)

The density φ always has to increases towards lower shear rate, since η is a monotonically
increasing function in φ.



58 CHAPTER 5. HYDRODYNAMIC SIZE SEGREGATION

Close to the channel center: φγ̇a2 � DC

Now, collective thermal diffusion in Eq. (5.4) becomes the leading term close to the
channel center for two reasons. First, the shear rate approaches zero at y = 0 and
second, the collective diffusion constant Dc increases with colloidal density, especially
near random close packing [160]. So, Eq. (5.4) approximates the density gradient as

∇φ ≈ −Kca
2φ2∇γ̇

DC
. (5.8)

Since ∇φ∝−∇γ̇, we again find an enrichment of particles in the low-shear region, only
this time balanced by collective thermal diffusion.

In summary, in the steady state of a monodisperse suspension, the particle density
or volume fraction φ increases monotonically away from the channel walls towards the
centerline in the direction of decreasing shear rate γ̇. Since the shear rate is zero in the
channel center, here the highest concentration occurs.

5.2.2 Extension to a bidisperse suspension

We generalize the phenomenological theory to a bidisperse colloidal suspension with par-
ticle radii a1 and a2. The shear-induced drift velocity resulting from collisions between
particles of the same type i is determined as before, only the radius and volume fraction
are replaced by the respective quantities for species i, ai and φi. Particles of different
type also collide and we expect the resulting drift velocity of species i to be written as

v
(i)
D = Aij [Kc∇(φj γ̇) +Kηφj γ̇∇η/η] , (5.9)

where Einstein’s convention for summing over repeated indices is used. The coupling
matrix A contains geometrical factors, which for collisions between particles of the same
type are Aii = a2

i , as before.
For collisions between particles of different type, we argue as follows. The frequency,

with which a colloid of type i colloids with a colloid of type j is proportional to γ̇ times
the number of type-j colloids in the collision volume ∝(ai + aj)

d. Therefore,

fij ∝ cj γ̇(ai + aj)
d ∝ φj γ̇

(
1 +

ai
aj

)d
, (5.10)

where we used cja
d
j∝φj . At the instant of a collision, the colloids are separated by the

distance ai + aj and they rotate about the common center of mass [19], with respective
distances li and lj from the particle centers, which obey

lia
d
i = lja

d
j . (5.11)

The distance ∆di that particle i migrates during an irreversible collision scales like li,

∆di ∝ li = li
ai + aj
li + lj

=
ai + aj

1 +
(
ai
aj

)d , (5.12)

where we used Eq. (5.11). Now, the collision frequency along the y direction varies as
(ai + aj)∇fij giving rise to the drift velocity viD∝∆di(ai + aj)∇fij . Comparison with
Eq. (5.9) then allows to identify the components of the coupling matrix A as

Aij =
(ai + aj)

2

2d+1

(
1 + ai

aj

)d

1 +
(
ai
aj

)d . (5.13)
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The denominator 2d+1 is introduced in order to have Aii = a2
i as in the monodisperse

case.

Now, Eq. (5.3) can be generalized to obtain an expression for the particle current Ji

of type i as the sum of drift (φiv
(i)
D ) and diffusional currents:

Ji = −φiAij
(
Kc∇(φj γ̇) +Kηφj γ̇

∇η
η

)
−Dij

C∇φj . (5.14)

The collective diffusion matrix DC couples a non-uniform φj to a particle current of
type i and should be positive definite. Approximations for its components are proposed
in the following subsection.

From here on, we denote the smaller species with the subscript S and the larger
with L. We again look at the density profiles in steady state (JS = 0 and JL = 0) and
consider the two limiting cases close to either the channel walls or the centerline. To
compare γ̇A and DC to each other, we introduce an appropriate norm | . . . |.

Close to the wall: γ̇|A| � |DC|

Close to the wall the diffusional current is neglected, meaning v
(i)
D = Aij [Kc∇(φj γ̇) +

Kηφj γ̇∇η/η] = 0. Since A is an invertible matrix for aS 6=aL, the trivial solution is

0 =

(
Kc∇(φS γ̇) +KηφS γ̇

∇η
η

Kc∇(φLγ̇) +KηφLγ̇
∇η
η

)
. (5.15)

Integration then yields the same solutions for φS and φL as in Eq. (5.6). This means
that in the vicinity of the wall φS∝φL and equally ∇φS∝∇φL,. The densities for both
species increase towards low-shear regions as in the monodisperse case.

Close to the channel center: γ̇|A| � |DC|

Close to the channel center, thermal collective diffusion dominates and we we obtain the
following system of equations

(
DSS

C DSL
C

DLS
C DLL

C

)(
∇φS
∇φL

)
= −Kc∇γ̇

(
ASSφ

2
S +ASLφSφL

ALLφ
2
L +ALSφSφL

)
, (5.16)

which, by multiplying from the left with the inverse collective diffusion tensor D−1
C ,

becomes:

(
∇φS
∇φL

)
=
−Kc∇γ̇
det DC

(
DLL

C −DSL
C

−DLS
C DSS

C

)(
ASSφ

2
S +ASLφSφL

ALLφ
2
L +ALSφLφL

)
(5.17)

We now see that a new class of solutions is possible. At equal concentrations but for
different radii the coefficients of the matrix A behave as ALL > ASS , ASL ≈ ALS ,
whereas the elements of the diffusion tensor obey DLL

C < DSL
C and DSS

C > DLS
C as

seen from the model developed in the following subsection. This ultimately means that
∇φL∝ − ∇γ̇ and at the same time ∇φS∝ − ∇φL. Both species therefore demix in
the channel center, with the larger species enriching the center and the smaller species
pushed away from it. Interestingly, our observation is in accordance with experiments
conducted by Semwogerere and Weeks [58].
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5.2.3 Model for collective diffusion

Diffusion in a dense binary suspension of differently sized hard spheres is highly complex
given hydrodynamic interactions between the particles and the relevance of excluded
volume. Approximate models to accurately capture collective diffusion are scarce and
often only hold in the limit of aS/aL � 1 or in strong dilution [161, 162]. We present
here a simplified approach to calculate the diffusion coefficients in the high-density limit.

The collective diffusion coefficient DC describes the diffusive relaxation of spatial
inhomogeneities in a colloidal suspension at long wavelengths with ak � 1. For a
monodisperse suspension the collective diffusivity obeys

DC = S−1Dc.o.m. = S−1 lim
t→∞

1

2dt
〈R(t)2〉, (5.18)

where the static structure factor S = ckBTκT is proportional to the isothermal compress-
ibility κT and the particle density c of the suspension [163, 164]. The static structure
factor for a binary suspension in 2D was approximated by Boubĺık [165] and reads

S(φ) =
(1− φ2)

1− φ(1− γ)
, (5.19)

with

γ =
(cSaS + cLaL)2

cSa2
S + cLa2

L

(5.20)

and φ = φi+φj . The approximative equation for a 3 dimensional mixture was proposed
by [166] and reads

S(φ) =
(1− φ4)

(1 + 2φ)2 −∆
, (5.21)

with

∆ =
3x(1− x)φ(1− α)2

x+ (1− x)α3
×

(
(2 + φ)(1 + α) +

3φα

x+ (1− x)α3
((1− x)α2 + x)

)
,

(5.22)

where α = aS/aL, φ = φS + φL and x = cS/(cS + cL). The remaining coefficient Dc.o.m.

in Eq. (5.18) describes the center-of-mass diffusion of N particles in d dimensions and
R(t) =

∑N
i=1 [ri(t)− ri(0)] /N is the center-of-mass displacement. Dc.o.m. contains all

the dynamic information of the colloidal suspension and becomes the single-particle
diffusivity D0 in the dilute limit.

If hydrodynamics is included, Dc.o.m. decays fast in the dilute limit and slowly in
the dense limit, when increasing the density [160]. Therefore, in dense suspensions S−1

becomes the leading factor in Eq. (5.18). It strongly depends on density, tending to
infinity as the suspension approaches close packing density φrcp [160], while changes in
Dc.o.m. are less pronounced. For our dense systems, we therefore assume a functional
behavior of the form

DC(φ) ≈ D̃0S
−1(φ), (5.23)

in which D̃0 = KdD0 is constant in φ and 0 < Kd < 1 is a fitting parameter. The
behavior of Eq. (5.23) is plotted in Fig. 5.3 for the case of two dimensions.

Then, species i diffuses along its own density gradient ∇φi with the diffusivity

Dii
C(φ) = D̃i

0S
−1(φ), (5.24)
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Figure 5.3: Collective diffusivity DC of a binary suspension at equal concentration
cL = cS and size ratio aL/aS = 2 as a function of packing fraction φ according to Eq.
(5.23) in two dimensions.

where again we use D̃i
0 = KdD

i
0. The single-particle diffusivities Di

0 obey the Stokes-
Einstein relation so that Di

0/D
j
0 = aj/ai.

The non-diagonal elements of DC are obtained by a simple volume-exclusion ap-
proach [162]. We formulate an effective volume fraction φ∗

i of colloidal species i, which
accounts for the fact that the volume occupied by species j reduces the total volume
available to species i,

φ∗
i =

φi

1− φj
. (5.25)

We assume that species i, in the presence of species j, diffuses along its own effective
gradient, so that the concentration current can be written as

Ji = Dii
C∇φ∗

i . (5.26)

In the absence of a gradient, ∇φi = 0, the diffusive current Ji is solely caused by density
inhomogeneities of species j. Substituting Eq. (5.25) into Eq. (5.26), yields

Ji = Dii
C

φi

(1− φj)2
∇φj (5.27)

and we can now identify the non-diagonal diffusion coefficient as

Dij
C = Dii

C

φi

(1− φj)2
. (5.28)

5.2.4 Modeling the simulated density profiles

We use the phenomenological theory to replicate the density profiles determined in our
MPCD simulations, which we will present in Secs. 5.3 and 5.4. To complete the theory,
we use an empirical relation for the shear viscosity in colloidal suspensions, which was
suggested in Ref. [167] following the formulation of Krieger and Dougherty [168]. It
describes the divergence of the viscosity as maximum colloidal packing is approached:

η(y) = η0

(
1− φ(y)

φM

)−2

. (5.29)

Here φM is the maximum area or volume coverage of random close packing. For monodis-
perse systems, it is calculated to be 0.82 in two dimensions [169], as compared to 0.64
in three dimensions [170]. We used the same values for our binary mixtures, which was
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Figure 5.4: Measured viscosity with aid of Eq. (4.49) in a 3D MPCD simulation contain-
ing a suspension of volume fraction φ. Particle sizes are a = 2b, time step ∆t = 0.01t0
and density ρ = 10m/b3.

adequate within the accuracy of our simulations. In Fig. 5.4 the formula Eq. (5.29)
compares well to the viscosities measured in the MPCD channel (see Sect. 4.4.1) with
respect to the volume fraction φ of the suspended particles.

Together with the relations for the diffusivities and the viscosity, we now have a closed
system of (differential) equations, which we can solve numerically using a finite difference
scheme. With the particle currents from Eq. (5.14) we formulate the continuity equation
for colloidal species i,

∂φi

∂t
= −∂Ji

∂y
. (5.30)

We integrated it using a 4th order Runge-Kutta scheme until steady state of the density
profiles was reached. For the form of the steady state profiles only the ratios Kη/Kc

and Kd/Kc are relevant. The value for Kη/Kc = 1.51 was adopted from the fits to
experiments conducted in a Couette flow by Phillips et al. [22]. Although based on
three-dimensional experiments, comparison with our data from the two-dimensional
simulations indicated that the same ratio Kη/Kc can be used for the disks as well as for
the spheres.

The factor Kd in the diffusivities was the only fitting parameter we chose freely to
replicate the density profiles determined in our MPCD simulations. We calculated the
single particle diffusivities by employing the Stokes-Einstein relation Di

0 = kBT/6πηai,
where we used the measured shear viscosity of the pure MPCD fluid in table 5.1. For
all simulations in the 3D channel we set Kd/Kc = 0.61. For all simulations in the 2D
channel we setKd/Kc = 7.46. Consequently, the ratioKc/Kd comparing the relevance of
shear migration to diffusion is larger in three dimensions. This is very likely, considering
the difference in collision partners of a single particle in two and three dimensions. In
the latter case, the additional dimension allows for more collision partners and hence
for stronger shear migration.

5.3 Results in two-dimensional Channels

We start by investigating the pressure-driven flow of a bidisperse colloidal suspension in
a two-dimensional microchannel. Since simulations are not as computationally expensive
as their three-dimensional counterparts, we can indulge in a more thorough parameter
analysis. The capital letter subscripts S and L again account for quantities of the
smaller and larger particles, respectively. The respective particle sizes are aL/w = 0.1
and aS/w = 0.05, in all cases.
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Figure 5.5: (a): Evolution parameter ∆ plotted over time t for monodisperse suspen-
sions of large (∆L, red) and small (∆S , blue) colloids as well as a mixture (∆mix, black)
with φL/φS = 1. The overall area fraction is φ = 0.5. The same color code also applies
to (b) and (c). (b): Steady-state velocity profiles vx(y) of the colloids compared to the
parabolic flow profile of the initially uniform suspension of the small species (dot-dashed
line). (c): Steady-state profiles of shear viscosity η, obtained from data in (b) by use of
Eq. (5.33) (solid line), and from the analytical model using Eq. (5.29) (dashed).

First, we monitor the temporal evolution of the colloidal density towards steady state,
then we illustrate the steady-state flow and viscosity profiles, and finally extensively
discuss the particle number densities ci for either species across the channel, which we
normalize so that

∫
cidy = 2w.

5.3.1 Evolution of density profiles

We quantify the developing inhomogeneities in the density by an evolution parameter

∆(t) =

∫ w
−w dy [c(y, t)− c(y, 0)]2∫ w

−w dy [c(y, 0)]2
. (5.31)

Here c is the total density either of a monodisperse or a bidisperse suspension. When
∆(t) fluctuates about a constant value, steady state is reached. For each simulation run,
it is simply determined by visual inspection of ∆(t).

Figure 5.5(a) plots the temporal evolution of ∆(t) for monodisperse suspensions of
small (∆S , blue) and large (∆L, red) colloids, as well as their mixture (∆mix, black)
at a composition φL/φS = 1. Here, φi means mean area fraction and the overall area
fraction for both species together is φ = φS+φL = 0.5. The dynamics of shear migration
clearly is slow given the long axial distances d the colloids in the center travel before
∆(t) saturates and the steady state profiles emerge: for suspensions of large particles
we find that the steady state has fairly developed at dL ≈ 100w, whereas small particles
need longer distances with dS ≈ 400w. The lateral particle currents in the channel
scale with J ∝ a2, so that the larger species will tend to establish steady-state profiles
faster than the smaller species in quantitative agreement with our simulations since
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aL/aS = 2. However, the Péclet number defined in Eq. (5.1) scales roughly as Pe ∝ a3

in two dimensions, given the weak dependence of Di
0 on ai due to the Stokes paradox

[171] (Sect. 3.1.5). Consequently, the stronger lateral drift of large colloids results in
more inhomogeneous profiles compared to the smaller species as ∆L > ∆S shows, in
particular for t→∞.

The corresponding steady-state density profiles for monodisperse (top, middle) and
bidisperse (bottom) suspensions are shown in the right column of Fig. 5.6. In all cases the
total density in the channel center is enriched. In case of a mixture at equal composition,
the colloidal species partially demix favoring the larger species in the center. We will
discuss them in more detail below.

5.3.2 Steady-state flow and viscosity profiles

In Fig. 5.5 (b) we show the axial velocity profiles of the colloids. As the colloids deplete
from the wall and migrate towards the center, the initially parabolic flow profiles deform
and flatten in the channel center as illustrated in Fig. 5.5 (b). For comparison, we
plot the profile of the initially uniform suspension of small particles. The steady-state
velocity is always higher than the one of the initially uniform suspensions, which we
explain below.

The solid lines in Figure 5.5 (c) illustrate profiles of the shear viscosity η determined
from our MPCD-simulation data for the colloid velocities vx(y) in steady state. We use
the Stokes equation,

∂

∂y
ηγ̇ = −f , (5.32)

where f is the applied constant pressure gradient and shear rate γ̇ = ∂vx/∂y. Straight-
forward integration yields an expression for the shear viscosity,

η(y) = − fy

γ̇(y)
, (5.33)

plotted as solid line in Fig. 5.5 (c).

The dashed lines are predictions based on Eq. (5.29) using the steady-state density
profiles of the analytical model, which we show as dashed lines in the right column of
Fig. 5.6. The symbol η0 denotes the shear viscosity of a uniform colloidal suspension at
φ = 0.5 calculated according to the empirical formula of Eq. (5.29). The predictions of
the analytical model compare nicely with the results from our simulations, especially for
the maximum value and width of the peak. In all cases, the viscosity η/η0 drops below
1 in the vicinity of the wall and reaches a maximum in the center, the value of which
depends on the local area fraction. This behavior explains the formation of the plug
flow since the sharp increase of viscosity slows down the colloids the closer they are at
the center. Due to the region with η/η0 < 1, the colloidal plug glides more easily along
the wall, which gives the steep increase of the flow profile at the wall and the overall
larger velocities compared to a uniform suspension.

Furthermore, the peak in the viscosity profiles in Fig. 5.5 (c) is much more pro-
nounced for the large compared to the small colloids. We note that already individual
large colloids are more strongly slowed down compared to small colloids at the same
location in a Poiseuille flow since they pose more resistance to the fluid flow. This is
also stated in Faxén’s law [3]. In addition, also the particle density of larger colloids is
higher in the center (see Fig. 5.6, right column). Altogether, this qualitatively explains
the pronounced difference in the viscosity profiles.

Interestingly, the differences in the flow profiles of Fig. 5.5 (b) are more subtle.
For larger colloids the plug flow is more developed compared to small colloids due to
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Figure 5.6: Steady-state density profiles ci of monodisperse (top and middle) and bidis-
perse (bottom row) suspensions at φL/φS = 1. Total area fraction φ increases from left
to right. Particle sizes are aL/w = 0.1 and aS/w = 0.05. The solid lines correspond to
MPCD simulations, the dashed lines are determined from the phenomenological theory.
The Péclet number for the small particles is PeS ≈ 1.

the larger viscosity peak. In case of a mixture, higher center velocities compared to
monodisperse systems occur. The large colloids strongly enrich the center (see Fig. 5.6,
right column, bottom), whereas the small colloids are more pushed towards the wall.
Still, the absolute density of the latter is smaller than for a pure monodisperse dispersion
of the same total volume fraction. So, in the mixture the viscosity at the wall is also
smaller and the colloidal plug as a whole can slide more easily along the wall resulting
in the increased center velocity.

5.3.3 Steady-state density profiles

We now discuss the profiles of the particle densities for the large and small colloids either
in the monodisperse or in the bidisperse suspension. Each density plot shows the results
of the MPCD simulations (solid line) and the phenomenological theory (dashed line),
where the densities are normalized such that

∫
cidy = 2w. In the MPCD simulations

thermal motion and interparticle interactions give rise to stochastic fluctuations in the
density profiles. In order to minimize these density fluctuations around the steady-state
profiles, time averages were taken.

From left to right in Fig. 5.6, we vary the mean area fraction φ = φS + φL from
0.3 to 0.5. For the monodisperse suspensions in the top and middle row, we find a
clear enrichment in the channel center for both species. The enrichment decreases with
increasing mean area fraction since already in the center one approaches random close
packing and additional particles at increasing φ more and more fill up the space between
the walls and centerline. Thereby, the peak in the density profile decreases. However,
the absolute value of the area fraction in the center, given by φ ∝ φc, still increases
towards random close packing. The overall tendency of the profiles is well predicted by
our phenomenological theory, although, especially for the large species we notice a more
convex shape of the density profiles in the center, which is not captured by our model.
Presumably, for the small species the continuum approximation is better valid and our
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t = 104t0t = 0

Figure 5.7: View of the 2D channel with a binary suspension of φ = 0.3, φL/φS = 1 and
aL/aS = 2 at different times. Left: immediately after start of the simulation at t = 0.
Right: after steady-state has been reached at t = 104t0.

Figure 5.8: Steady-state density profiles ci of bidisperse suspensions with varying ratio
of mean area fractions φL/φS . Other parameters are φ = 0.5, aL/w = 0.1, aS/w = 0.05,
and PeS ≈ 1 for the smaller species. The solid lines correspond to MPCD simulations
and the dashed lines are determined from the phenomenological theory.

phenomenological model fits better.

The MPCD simulations clearly reveal packing effects close to the confining walls of
the channel. The disks form a layered structure indicated by the peaks in the density.
Accordingly, the first peak is at a distance ai from the wall and further peaks appear as
the mean area fraction is increased. Generally, the oscillations are stronger for the large
species, because scaled by the disk size, they are confined in a more narrow channel.

The mixture with equal mean area fractions for both particles species, φS = φL,
exhibits segregation of the smaller colloids away and of the larger colloids towards the
channel center in agreement with the solution discussed for Eq. (5.17), where collective
diffusion drives the small particles outwards (see also Fig. 5.7). However, in contrast to
our discussion of the profiles at the wall following Eq. (5.15), the density cS decreases
away from the wall. If we compare shear driven migration and diffusion close to the
channel walls, we find Kca

2
S γ̇φS/KdD

S
0 ≈ 3. This implies that the approximation of

neglecting thermal diffusion at the walls is not possible for small colloids. In contrast,
the density profiles in three dimensions presented in Sec. 5.4.2 but also the experimental
profiles of Ref. [58] are in agreement with this approximation. Finally, we also find that
in steady state the large particles are barely found in close contact with the channel
walls.
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Figure 5.9: Steady-state density profiles ci of bidisperse suspensions for decreasing ratio
of mean area fractions φL/φS from the top to bottom and increasing Péclet number PeS
of the small species from left to right. Other parameters are φ = 0.5, aL/w = 0.1 and
aS/w = 0.05. The solid lines correspond to MPCD simulations and the dashed lines are
determined from the phenomenological theory.

Next, we vary the ratio of mean area fractions, φL/φS , keeping the total area fraction
constant at φ = 0.5. The profiles are plotted in Fig. 5.8 with the area fraction of the
large species compared to the one of the smaller species decreasing from left to right
from 0.67 to 0.4. In all cases, the large species prevails its dominance in the channel
center, although greatly outnumbered by the smaller species. The central peak in cL
becomes more pronounced with decreasing φL/φS , since the few large colloids can all
accumulate close to the center. In contrast, the small colloids are less displaced to the
walls with decreasing φL/φS since the large colloids leave more space for them. Peak
values and tendencies in the numerical data are well predicted by the phenomenological
model.

In order to obtain a complete picture for the steady-state density profiles, we plot
them in Fig. 5.9 for increasing Péclet number PeS of the smaller colloid species by
adjusting the central flow speed v0. In addition, results for even smaller ratios φL/φS
are shown. The profiles are illustrated in one half of the channel at mean area fraction
φ = 0.5.

Again, the large species is enriched in the center for all cases with Pe 6=0. The
concentration in the center increases with Pe 6=0 ∝ v0 ∝ γ̇ and for decreasing φL/φS .
The profiles of the small particles deviate little from the uniform distribution since
the Péclet number is one at most, meaning that thermal collective diffusion is always
important. At the highest Péclet number the profile switches from a slight depletion in
the center to an enrichment when decreasing φL/φS from one to 0.08, where 48 small
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colloids per one large colloid occupy the channel. At this ratio the small colloids converge
towards the density profiles of the monodisperse suspension.

The simulated profiles are overall well described by the phenomenological theory. In
particular, the behavior of the small colloids with decreasing φL/φS is captured. For
small ratios φL/φS the peak of the large particles are somewhat underestimated. In
case of zero applied flow or zero Péclet number the constant equilibrium densities are
obtained. However, for decreasing ratio φL/φS , the layering of the large particles at
the channel walls becomes more pronounced and a tendency to accumulate at the walls
is visible. This should be due to depletion forces that large particles experience in a
suspension of small particles [172]. Already at the Péclet number PeL ≈ 2.5 of the large
particles (second column in Fig. 5.9), the trend is reversed and shear-induced migration
to the center prevails.

5.4 Results in a three-dimensional Channels

We expand our system into the third dimension by studying the flow of colloidal spheres
with mean volume fraction φ between two parallel plates. Monodisperse disks in two
dimensions can be packed much closer than spheres, as the random-close packing frac-
tions mentioned in Sec. 5.2.4 show, φ2D

M = 0.82 and φ3D
M = 0.64 , and the ratio is

φ3D
M /φ2D

M = 0.78. To be able to compare to the two-dimensional simulations conducted
at φ = 0.5, most of the simulations in three dimensions were conducted at φ = 0.35.

If not stated otherwise, particle sizes again are aS = 0.05w and aL = 0.1w. As
before, we start by analyzing the temporal evolution of the particle density towards
steady state, where we then monitor flow and viscosity profiles. Finally, for various
sets of parameters we present density profiles normalized as before so that

∫
cidy = 2w.

Throughout this section we discuss differences to the two-dimensional simulations.

5.4.1 Evolution of density profiles

We evaluate the temporal evolution of the density profiles with the same order parameter
∆(t) as in Sec. 5.3.1. Figure 5.10(a) plots ∆(t) versus time for monodisperse suspensions
of small (∆S , blue) and large (∆L, red) colloids, as well as their mixture (∆mix, black)
at equal volume fractions φL/φS = 1. We notice that the required time for the evolution
to the steady state profiles is comparable to the one for the disks. The large particles
rapidly establish steady state after traveling roughly a distance dL ≈ 100w, whereas for
the small particles ∆S converges only slowly towards its asymptotic value and reaches
it after a distance of roughly dS ≈ 500w.

The asymptotic values of ∆ for t→∞ certainly depend on the fact that colloids pack
differently in two and three dimensions. However, we notice that the difference in density
inhomogeneities between small and large spheres is more pronounced in three compared
to two dimensions. Presumably because single particle diffusion in two dimensions
scales only weakly in particle size ai, as a consequence of the Stokes paradox [171],
whereas in three dimensions it scales like 1/ai and therefore is weaker for larger particles.
Consequently, Péclet numbers here are PeS ≈ 1 and PeL ≈ 16, as opposed to PeS ≈ 1
and PeL ≈ 10 in two dimensions.

In case of the mixture the properties of the two species contribute so that we find
∆S < ∆mix < ∆L. The entrance length d of the binary suspension roughly measures
d ≈ 400.
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Figure 5.10: (a): Evolution parameter ∆ plotted over time t for monodisperse suspen-
sions of large (∆L, red) and small (∆S , blue) colloids as well as a mixture (∆mix, black)
with φL/φS = 1. The overall volume fraction is φ = 0.35. The same color code also
applies to (b) and (c). (b): Steady-state velocity profiles vx(y) of the colloids compared
to the parabolic flow profile of the initially uniform suspension of the small species (dot-
dashed line). (c): Steady-state profiles of shear viscosity η, obtained from data in (b) by
use of Eq. (5.33) (solid line), and from the analytical model using Eq. (5.29) (dashed).
Note the logarithmic scale for the red curve.

5.4.2 Steady-state flow and viscosity profiles

In Fig. 5.10(b) we plot the axial velocity profiles and compare them with the parabolic
flow field of the initially uniform suspension of the small species. Qualitative agreement
with the disks is obtained as the steady-state distributions of the spherical particles also
induces a plug flow. The same reasons provided in Sec. 5.3.2 apply here. However, the
plug flows are not as pronounced as in Fig. 5.5(b). Presumably, since the colloids in
three dimensions occupy less space than the fluid when compared to two dimensions
as the following ratios demonstrate: φ3D/(1 − φ3D) = 0.54 < φ2D/(1 − φ2D) = 1.0.
Furthermore, the two-plate geometry might also play a role. It allows the colloids to
move side wise in the shear plane so that the plug flow is less pronounced. Finally, the
flow profiles of the large-particle suspension and the mixture are identical, in contrast
to the results in two dimension.

The solid lines in Fig. 5.10(c) illustrate profiles of the shear viscosity η calculated
from Eq. (5.33) with the simulated colloid velocities vx(y) from Fig. 5.10(b). The dashed
lines again are predictions using the density profiles from our phenomenological theory
in the empiric formula (5.29) for η(φ). The respective profiles for the monodisperse
suspensions are shown in Fig. 5.12 and for the mixture in Fig. 5.14, lower left. The
relation between the shape of the flow and the viscosity profiles was already discussed
in Sec. 5.3.2.

Also in three dimensions, our phenomenological model provides predictions that
quantitatively agree with the simulated data. This supports our assumption that the
shear viscosity of the mixture can also be approximated by the empiric formula for η(φ)
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Figure 5.11: Steady-state density profiles c of monodisperse suspensions with particle
size a/w = 0.05. Total volume fraction φ increases from left to right. The solid lines
correspond to MPCD simulations, the dashed lines are determined from the phenomeno-
logical theory. The Péclet number is Pe ≈ 1.

Figure 5.12: Steady-state density profiles c of monodisperse suspensions with volume
fraction φ = 0.35. Particle size a/w increases from left to right. The solid lines corre-
spond to MPCD simulations, the dashed lines are determined from the phenomenological
theory. The Péclet number from left to right is Pe ≈ 1, 5, and 16.

using φ = φS+φL. As discussed before, quantitative differences between the two colloidal
species are more distinct than in two dimensions. Whereas small spheres as well as the
mixture show similar behavior as the disks, the large colloids approach random close
packing in the center, which results in the strong increase of η(y) to ca. 100η0, where η0

is the reference viscosity of the uniform suspension at the same mean volume fraction
φ = 0.35. The oscillations in the solid line are caused by slight undulations in the flow
profile of Fig. 5.10(c) and ultimately by the strong oscillations in the corresponding
density profile of Fig. 5.12, left, which are due to layer formation.

5.4.3 Steady-state density profiles

We now present the density profiles determined either from the MPCD simulations (solid
line) or the phenomenological theory (dashed line).

In Fig. 5.11, we increase the mean volume fraction from φ = 0.25 to 0.35 for the
suspension of the small colloids. As in two dimensions, we find a clear enrichment of
particles in the channel center. With increasing mean volume fraction φ, the density
peak relative to the uniform particle distribution decreases since colloids cannot pack
more densely in the center than random close packing. Finally, apart from the layering
of the colloids close to the walls, the phenomenological theory reproduces the profiles
very well, also in the following Fig. 5.12.

We vary the particle size a of the monodisperse suspension in Fig. 5.12 at total
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Figure 5.13: Steady-state density profiles ci of bidisperse suspensions with varying ra-
tio of mean volume fractions φL/φS . Other parameters are φ = 0.35, aL/w = 0.1,
aS/w = 0.05, and PeS ≈ 1 for the smaller species. The solid lines correspond to MPCD
simulations and the dashed lines are determined from the phenomenological theory.

volume fraction φ = 0.35. Shear migration more strongly enriches the larger colloids in
the channel center since shear-induced drift dominates over diffusion as documented by
the strong size dependence of the Péclet number, Pe ∝ a4. Note that the number of
oscillation peaks in all three cases is the truncated integer value of w/a; that is from
left to right in Fig. 5.12, we observe 20, 13, and 10 peaks in the density profiles. In
equilibrium at zero flow (v0 = 0), the oscillations in the channel center vanish for all
three particle sizes. Obviously, flow induces layering in the center, which is particularly
pronounced for the large particle species. Interestingly, in two dimensions we do not
observe pronounced layering close to the channel center. So, we expect sheared disks
to jam more easily than sheared spheres, which use the additional dimension to order
in layers parallel to the shear plane and thereby reduce viscous shear stress. This also
explains the more pronounced plug shape of the flow profiles in two dimensions [see Fig.
5.5(b)] compared to the three-dimensional counterparts in Fig. 5.10(b).

In Fig. 5.13 we show density profiles for mixtures consisting of both particle species
with respective radii aS/w = 0.05 and aL/w = 0.1 at different volume compositions. The
corresponding profiles of the two-dimensional channel are plotted in Fig. 5.8. The large
particles tend to form layers towards the wall. However, the profiles exhibit stochastic
irregularities due to the relatively small number of large particles used in the simulations
to determine cL(y). For example, at equal composition φL/φS = 1, one large sphere oc-
cupies the same space as 8 small spheres. The statistics worsens further with decreasing
φL/φS . However, the overall shape of the profiles emerge.

The profiles of the large particles do not vary so much with φL/φS in contrast to
the two-dimensional case. The large particles show a pronounced enrichment in the
center and are depleted from the wall. However, the region where they clearly demix
from the small particles is more narrow. The small colloids also behave differently
compared to two dimensions. The ratio of shear-induced migration to diffusion becomes
Kca

2
S γ̇φS/KdD

S
0 ≈ 12 and is by a factor of four larger compared to the ratio found for

colloidal disks. The approximation of neglecting diffusion close to the walls is therefore
justified and the density increases when going away from the wall, as predicted from Eq.
(5.15). Furthermore, for φL/φS & 0.4 the density profiles of the small colloids show a dip,
although not very pronounced. However, this unimposing characteristic is also visible in
the experiments in Ref.[58] and, furthermore, predicted by our phenomenological model
as discussed after Eq. (5.17). Ultimately, the dip vanishes at φL/φS . 0.3. In total, our
phenomenological theory very well describes all these features.

Finally, in Fig. 5.14 we compare two mixtures with size ratio aL/aS = 1.5 (top) and
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Figure 5.14: Steady-state density profiles ci of two mixtures with different ratios of
particle size ratio: aL/aS = 1.5 (top row) and aL/aS = 2.0 (bottom row) at two
composition values φL/φS . Mean volume fraction is φ = 0.35 and PeS ≈ 1 for the small
species with radius aS/w = 0.05. The solid lines correspond to MPCD simulations and
the dashed lines are determined from the phenomenological theory.

aL/aS = 2 (bottom) at compositions φL/φS = 1 (left) and φL/φS = 0.5 (right). Clearly,
demixing is less pronounced for the smaller size ratio. At equal composition we also find
a smaller peak in the profile of the larger particles. The phenomenological theory also
catches the observed size dependence and thereby confirms the major structure of the
coupling matrix A with its geometrical factors.

5.5 Summary and Conclusion

We compared a phenomenological model for shear-induced migration in colloidal dis-
persions to simulation data for hard spheres suspended in the MPCD fluid and flowing
through two- and three-dimensional microchannels. MPCD is a mesocale particle-based
simulation technique for solving Navier-Stokes equations and fully incorporates thermal
fluctuations. Our phenomenological theory introduces drift or migration currents due to
a gradient in the particle collision frequency as well as a spatially varying viscosity and
it also includes collective diffusion. Our model extends work by Phillips et al. [22] to
bidisperse suspensions of Brownian particles. Provided that the approximations for the
collective diffusion tensor and shear viscosity are still valid, the model can be extended
to n-species systems.

Collective diffusion in our phenomenological model is necessary to generate density
profiles where large particles segregate in the center of a microchannel whereas small
particles are depleted. Such segregation patterns are also observed in a model based
on stress and energy equipartition [88] and in dry granular flow [173], where collective
diffusion is not of thermal origin. In particular, the theoretical work of Ref. [174] on dry
granular matter, sliding in a vertical chute, shows similarities but also differences to our
work. Generally, all particles tend to migrate to the center of the channel. At relatively
low volume fractions, large particles segregate more strongly in the center and smaller
particles show layering at the walls similar to Fig. 5.14 (bottom, left). At higher particle
packing this segregation trend reverses.

Interestingly, we are able to reproduce viscosity and density profiles of the MPCD



5.5. SUMMARY AND CONCLUSION 73

simulations from our phenomenological equations using only one fit parameter for all
different cases studied in two and three dimensions. We achieved a good agreement for
the shape of the profiles and the range of density values.

In monodisperse suspensions particles enrich in the center of a microchannel due to
shear migration. Comparing viscosity, flow, and density profiles in two and three dimen-
sions, we noticed stronger differences between small and larger spheres as compared to
small and large disks with the same size ratio. Also, in three dimensions viscous shear in
the pressure driven flow induces layering of the particles throughout the channel width,
which is absent in two dimensions. We argued that the additional spatial dimension
enables layer formation and thereby reduces shear stress. For binary colloidal mixtures
we observed that the larger particle species enriches the center. In two dimensions the
smaller species is depleted from the center and the density grows steadily towards the
channel walls, which can only be explained by taking into account collective diffusion
even close to the wall, where shear-induced migration is strong. The effect of deple-
tion decreases with mean composition φL/φS . In three dimensions the densities of both
species grow from the wall towards the center. A narrow depletion dip of the smaller
species occurs in the center at ratios of mean volume fractions φL/φS & 0.4. This subtle
detail is predicted by our phenomenological theory and observed in experiments of Ref.
[58]. We attribute the qualitatively different behavior between disks and spheres to the
fact that in two dimensions shear-induced migration compared to collective diffusion is
less effective than in three dimensions.

In three dimensions our phenomenological model and the MPCD simulations show
good agreement with the experimental observations by Semwogerere and Weeks [58] in
a bidisperse suspension at composition φL/φS ≈ 1, mean volume fraction φ ≈ 0.35, and
particle size ratio aL/aS ≈ 2. Both densities increase away from the wall, whereas in
the center the large colloids strongly concentrate and the small colloids are depleted
as argued in Sec. 5.2.2. However, the authors also reported that the smaller species
dominates the channel center at φL/φS ≈ 0.4, which we do not observe neither in
theory nor in our simulations. To our knowledge, there is no model, which captures this
effect so far.

The behavior of dense colloidal suspensions in microfluidic flow is determined by
confinement and structure formation. Further increasing the density of monodisperse
suspensions flowing inside a microchannel, yields novel dynamic effects such as oscilla-
tions in flow speed and colloidal jamming [44, 45]. In the next chapter we will extend our
simulations into this regime and aim on contributing to their theoretical understand-
ing.
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6
Self-Organized Velocity Pulses of

Dense Colloidal Suspensions

The results presented in the following chapter are based on the manuscript [B].

In this chapter we deepen our understanding of pressure driven colloidal flow in the
densely packed regime. In Sect. 2.3.2 we showed that pressure driven flow of dense
colloidal suspensions through microchannels produces regular and irregular oscillations
in flow speed [44, 45]. In the presented works, these effects are connected with jamming
and the formation of force chains [31]. Prerequisites for the existence of force chains
are frictional contacts between particles. Over the past years research has stressed
the necessity for frictional contacts to explain discontinuous shear thickening [40–42],
jamming [6] and shear migration [57, 65].

In the following we again utilize the MPCD method to simulation low-Reynolds-
number flow. We combine it with a linear spring model including friction [59], in order
to simulate jamming and effectively embed a large number of colloidal particles. The
general setup is similar to that in the previous chapter with one major difference. The
mean packing fraction of the colloids within the channel is near the random close packing
density. The random close packing density is an empirical parameter used to quantify
the maximum packing density objects can obtain when packed randomly [170]. For mono
dispersed disks it is around φ = 0.82 [175], but may vary within confinements [176]. An
important implication of this is that while shear induced migration still exists, its effect
on the lateral density distribution is minimal. The reason for this is twofold. On the
one hand the collective diffusion coefficient Dc, which governs down-gradient diffusion,
is strong in very dense suspensions [160] (see also Fig. 5.3). On the other hand, the
colloidal flow profile is rather flat and the colloids therefore exhibit only weak shear
stress and mainly between the first colloidal layers at the channel wall.

Density inhomogeneities in flow direction are still produced due to the possibility of
colloidal jamming. Jams locally arrest the flow and give rise to rarefaction waves. These
waves experience fast dynamics when compared to shear induced migration. While for
shear migration particle fluxes scale with the shear rate ∝ v0a/w, for colloidal jamming
they scale with the flow velocity ∝ v0 along the channel. In consequence, shorter run
times allow for simulations on larger scale.

With our model we are able to produce velocity pulses that travel upstream of the
channel and we show that the properties are very similar to those observed in the ex-
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Figure 6.1: Channel geometry of width 2w and length l. Channel walls are at y/w = 1
and y/w = −1 and periodic boundary conditions in x-direction apply. A constant
pressure gradient σ drives a binary suspension out of equilibrium. While the ratio
between channel width w and particle size a is correctly displayed, the channel length l
is typically much larger.

periment by Isa et al. [44]. With increasing colloid density, these pulses emerge first
as solitary jams and later as regular pulse trains. At the highest simulated density we
observe unstable solitary pulses in the colloidal flow similar to experimental observations
[45]. We present a thorough parameter study on how friction and mean packing density
effect the formation of these pulses. Moreover, a newly formulated nonlinear contin-
uum model that reproduces the flow instabilities from our simulations is presented and
analyzed using the tools of nonlinear dynamics (Sect. 3.4).

6.1 Setup and Parameters

We simulate pressure driven flow of a very dense colloidal suspension inside a channel
of width 2w in two dimensions as illustrated in Fig. 6.1. The colloidal suspension is
modeled as a binary mixture of disks with neutral buoyancy and with radii a/w = 0.084
and 0.118. Both species are generated at equal number and have a size ratio of 1.4 in
order to prevent crystallization [176].

In a first attempt the colloidal interactions were resolved using event driven molec-
ular dynamics (Sect. 4.2.2). However, in the random close packing regime this model
exposed two major drawbacks. The first concerns numerical efficiency. The model leaps
chronologically to the next collision and then updates the subsequent events accord-
ing to the new velocities. Consequently the model is inherently serial and does not
profit much from parallelization. At intermediate densities as in the previous chapter
(φ ≈ 0.5), this has no tremendous consequence because the runtime is dominated by the
MPCD streaming and collision step. In the dense regime (φ & 0.75), where jamming
occurs, the hard spheres might find themselves in high frequency collision chains, which
notably increase the runtime. Secondly and more importantly, the model only allows for
a single contact between two colloids at one time independent of how large the system
is. Consequently and because the colloids have a thermal velocity, kinetic arrest can not
be captured by this model.

All this can be remedied by using a “soft” particle model using repulsive forces
instead of instantaneously resolved translational and rotational momentum exchanges.
Therefore, the frictional contacts of a colloid with the wall and other colloids are treated
with the linear spring model presented in Sect. 4.2.3. The model is commonly used
in granular physics [59, 151] and utilizes Coulombs law of friction Eq. (4.41), with the
dimensionless friction coefficient µ. In order to mimic nearly hard particles, we choose
the linear spring constant k in normal and tangential direction to be large, such that
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Figure 6.2: a) Time averaged probability distribution of overlaps in units of colloidal
radius. Simulation parameters are like in Tab. 6.1 with φ = 0.75. b) Dynamics of two
colloidal disks suspended in quiescent MPCD fluid with viscosity ν = 2.1b2/t0 (solid
line) and in vacuum (dashed line) for various initial overlaps δn.

kn = kt = 2500kBT/b
2. A constant pressure gradient σ = −∇p = 1.25kBT/b

3 is
then applied to drive the fluid out of equilibrium. In order to show that the collisions
between colloids are nearly hard and behave overdamped as required in the limit of low
Reynolds numbers, we refer to Fig. 6.2. The results represent a simulation with typical
parameters for this chapter. In Fig. 6.2 a) we present the time averaged distribution
of overlaps in normal direction in units of colloidal radius a and with a mean packing
density of φ = 0.75. The bulk of the penetrations is about 1− 2% deep. Less than 10%
of the contacts overlap as deep as > 0.04a. In Fig. 6.2 b) we show the dynamics of two
colloids for various initial overlap distances δn, with fluid and in absence of the fluid.
While on short time scales both setups produce a repelling outward push, the setup with
the MPCD fluid recovers damping on time scales larger than the sonic speed time scale
τc = a/c0, with c0 the speed of sound of the MPCD fluid defined in Eq. (3.84). The
time τc is required for the fluid particles to react and equilibrate density changes over
length scales of size a. On the viscous time scale τν = a2/ν the collision is completely
damped.

If not otherwise specified, the MPCD parameters used throughout this chapter are
summarized in Tab. 6.1.

As we have seen in the previous chapter, densely packed particles experience high
hydrodynamic friction quantified by the bulk viscosity νbulk (see Fig. 5.4). In this
chapter we use densities around the random close packing density, at which the bulk
viscosity diverges to infinity. As a result we are able to choose a slightly larger time
step ∆t = 0.02t0 for numerical speed and still maintain low channel Reynolds numbers
Rew . 0.2 (compare Eq. (4.46)). Simultaneously, it can be expected that single particle
diffusion becomes irrelevant so that we place our simulations in the high-Péclet number
regime.

In order to be able to observe several velocity pulses in the channel, we choose a
channel length as long as l/w = 480 and implement periodic boundary conditions in
flow direction, i.e. x-direction. Since the interesting variations of colloidal velocity v(x)
and local area fraction φ(x) occur along this direction, we average them over the channel
cross section, using

ψ(t, x) =
1

2w

w∫

−w

ψ(t, x, y) dy, (6.1)

with ψ = {v, φ}. In order to determine φ locally, we use a Voronoi tessellation for the
colloidal packing [177].
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parameter value

m 1
b 1

kBT 1

∆t 0.02t0
ρ 25m/b2

a 2.1b and 2.94b
kn 2500kBT/b

2

kt 2500kBT/b
2

σ 1.25kBT/b
3

w 25b
l 12000b

ν 1.98b2/t0
D 0.00411b2/t0

Table 6.1: Overview of the MPCD simulation parameters and transport coefficients in
units of fluid-particle mass m, collision box length b, and temperature kBT .

The high mean packing fractions φ > 0.7 are obtained by randomly placing up to
23000 initially pointlike colloids in the channel. Iteratively, they are expanded in size
and the overlaps are removed by the linear spring model in absence of the MPCD fluid
until the final colloidal size is reached [178]. Finally, the MPCD fluid is filled into the
free space.

6.2 Simulation Results

In the following we present the results of our simulations. Most of the simulations run
on either 6 or 8 Intel i7 processor cores and a few on 18 cores from a Xeon E5 processor.
All simulation runs use the parallel environment generated by OpenMP introduced in
Sect. 4.5.

6.2.1 Observations

Inside a channel using the parameters from Tab. 6.1 at φ = 0.75 and with µ = 1,
we make the following observations. As soon as the pressure gradient is switched on,
the suspension jams at different locations along the channel. Downstream of these
jams, colloids can still freely move, which produces a dilute region with increased flow
speed because the bulk viscosity decreases. Upstream of the jam, more colloids are
accumulated, which increases the size of the jam. As the jam develops it eventually
reaches a configuration, in which the rate of downstream outflow of colloids and upstream
inflow of colloids equilibrate. The structure then moves with constant velocity c and
constant shape upstream of the flow as indicated in Fig. 6.3. At t = 250t0 a rarefaction
pulse enters from the right and gradually dissolves the jam upstream. The jammed
region is indicated by a dense force chain network spanning across the channel, visualized
by the red lines that indicate contact between pairs of colloids. Due to the higher packing
density, the flow speed is close to zero and the flow profile flat. At t = 500t0 we observe
roughly parabolic flow throughout the section with maximum velocity in the section
center. At t = 750t0 the flow jams downstream of the pulse at a sharp transition and
becomes flat again. In doing so, the flow diverges at the transition and pushes the
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t = 750t0

t = 500t0

t = 250t0

Figure 6.3: Traveling pulse at various times propagating from right to left. Flow is in
the opposite direction and indicated by the black arrows. The lateral components of
the flow velocity have been amplified by a factor 5 for better visibility. Contacts are
indicated by red connecting lines between the colloids, where the line thickness scales
linearly with the repulsive normal force |Fn|.
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Figure 6.4: Simulation of a pulse train with parameters µ = 1 and φ = 0.75. a) Spatio-
temporal representation of v(x, t). separated by jammed regions (brown). The velocity
pulses are indicated by flowing colloidal regions (green) for mean velocity 〈v〉/v0 ≥ 0.005
or jammed regions if 〈v〉/v0 < 0.005, with v0 = v(φ = 0) being the velocity in absence
of colloidal particles. b) Power spectrum of v(x, t) at a fixed position x. The frequency
fpt corresponds to the periodicity of the pulse train.

colloids to the walls.

Several of these rarefaction waves ultimately self organize into a regularly spaced
pulse train, which moves with constant speed c. Fig. 6.4 a) shows how several pulses
self-organize into a stable regular pulse train. The resulting traveling pulses are visual-
ized as regularly spaced straight lines in the x, t plane indicating free-flow and jammed
regions. The constant slope of these lines represents the propagation speed c, which
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Figure 6.5: Simulation of a pulse train with parameters µ = 1 and φ = 0.75 for various
driving pressures σ. a) Normalized variance of v(x, t) plotted versus mean flow velocity
〈v〉 for channels of width w and 0.7w. b) Pulse train frequency fpt versus mean flow
velocity 〈v〉. Errorbars result from the finite channel length. The full red line is a
power-law fit with exponent 0.379 and offset 〈v〉thr = 0.00322v0.

is negative. Moreover, the pronounced peak of the power spectrum of v(x, t) in Fig.
6.4 b) also stresses the regularity of the pulse train. The frequency fpt = f(Pmax) is
most represented frequency in the power spectrum and matches the inverse of the time
between two pulses of the pulse train.

To quantify the strength of the traveling pulses, we introduce the variance of the
flow field 〈δv2〉/〈v〉2, where δv = v − 〈v〉 and 〈...〉 denotes the average over x and t.
We use the variance of the flow field as an order parameter and want to find at what
driving pressures gradients σ flow instabilities arise. Figure 6.5 a) shows that the pulse
train emerges at a threshold value of 〈v〉, which increases with the pressure force σ. The
corresponding colloidal Péclet number is large. We find that Pe = 〈v〉a/D ≈ 100, where
D is the measured average diffusivity of a single colloid of the binary suspension using
the velocity auto correlation function inside an unconfined box (see Sect. 4.4.2). The
threshold value decreases for a channel of width 2w = 35b, which suggests that the flow
instabilities are a confinement effect.

Moreover, in Fig. 6.5 b) we observe that the frequency fpt of the pulses increase

with 〈v〉, following the power law f ∝ (〈v〉 − 〈v〉thr)β with β = 0.38. This all agrees with
the experimental findings of Isa et al. [44] (see Sect. 2.3.2).

6.2.2 Role of friction and packing density

Similar to discontinuous shear thickening in hard-sphere suspensions, the implemented
Coulomb friction plays a decisive role in observing the regular pulse trains. In Fig.
6.6 we show the velocity and density profiles at one fixed position in the channel over
time for various friction coefficients µ. Hereby, we also consider results generated by the
theoretical value µ = ∞, which simply means that contacts are without any slip. We
note that after some initial runtime, equally spaced pulses are present in the cases for
µ = ∞ and µ = 1. The peaks are accompanied by rarefaction waves at approximately
φ ≈ 0.6 and separated by long jams, which nearly arrest the flow. Inside the jams we
find a packing density of roughly φ � 0.8, which slightly increases with decreasing µ.
The jams between the pulses become shorter and the pulses broader with decreasing
friction coefficient. In the case of µ = 0.5 the pulse train is frequently interrupted by
long-lived phases of free flow.

In Fig. 6.7 a) we can summarize the behavior of the pulses with respect to the friction
coefficient µ. We consider the following configurations of friction between colloids and
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Figure 6.6: Sample profiles at x = 0 measured over time t for friction coefficients µ = ∞,
µ = 1 and µ = 0.5. Mean packing density is φ = 0.75. Red lines denote local packing
density φ identified by the right axis, black lines denote local velocity v identified by the
left axis, respectively.

Figure 6.7: a) Pulse strength 〈δv2〉/〈v〉2 and b) pulse speed c plotted versus friction
coefficient µ on logarithmic scale and for different friction compositions at φ = 0.75.
Inset: Distance λ between pulses. Lines connecting the points are a guide to the eye.

between colloids and wall. In the first case, friction between colloids (µcc) and friction
between colloids and wall (µcw) are equal to µ. In a continuous transition, velocity
pulses emerge at µ ≈ 0.5 as indicated by a growing order parameter 〈δv2〉/〈v〉2, which
increases sharply for larger µ and saturates in the limit µ → ∞. Note that this increase
in 〈δv2〉/〈v〉2 is mainly due to the fact that the distance λ between the traveling pulses
sharply decreases as indicated in the inset of Fig. 6.7 b), while the pulse height remains
approximately the same as can be observed in Fig. 6.6. If the friction between the
colloids is switched off, µcc = 0, the distance λ is larger (see inset of Fig. 6.7 b)), which
explains the overall smaller pulse strength in Fig. 6.7 a). However, more importantly
for frictionless walls, µcw = 0, traveling pulses do not occur even if colloidal friction is
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Figure 6.8: Steady-state velocity vss for various friction coefficients µ. The symbols
indicate MPCD-simulation results whereas the solid lines are least-squares fits using
Eq. (6.4) and the fitting parameters from Tab. 6.2. Errorbars denote single standard
deviation of the mean value from 5 simulation runs.

present. Force chains spanning across the channel cannot form and thus the jammed
regions, essential for the pulses to occur, cannot develop. In Fig. 6.7 b) the pulse speed
c decreases close to the transition and then stays approximately constant. A similar
behavior is observed for the distance λ between the pulses. Moreover, we note that the
absolute value of the pulse speed c is roughly one order of magnitude larger than the
mean flow speed within the channel. This was also confirmed by Isa [179].

In simulations with sufficiently short channels (l = 200b), the colloidal flow remains
uniform. Figure 6.8 plots the flow velocity vss in this steady state versus packing fraction
φ for different friction coefficients µ. While for zero friction, µ = 0, vss decreases
smoothly towards zero, for finite friction, µ > 0, a jump of vss occurs at a critical density
φc and one can clearly distinguish between states of free flow and jammed flow. This
feature can qualitatively explain the formation of traveling pulses. The colloidal density
in the free-flow regime fluctuates locally about its mean value. If such fluctuations
exceed φc, the colloidal flow strongly slows down. Frictional contacts generate force
chains, which further arrest the flow as more colloids accumulate upstream of the jam.
Downstream, the suspension rarefies as colloids still flow freely. This rarefaction dissolves
the force chains and the jammed region moves upstream.

The state diagram in Fig. 6.9 summarizes the behavior in long channels. The colloidal
flow is classified as traveling pulses if 〈δv2〉/〈v〉2 > 0.1; otherwise, we refer to it as free
flow for mean velocity 〈v〉/v0 ≥ 0.005 or jammed flow if 〈v〉/v0 < 0.005. The region of
traveling pulses becomes narrower and shifts to higher densities as the friction coefficient
decreases. Larger densities are needed to build up force chains via frictional contacts,
while rarefaction pulses cannot develop if the density is too high.

6.2.3 Classes of traveling pulse profiles

Different flow patterns of traveling pulses occur for different mean densities φ as illus-
trated in Fig. 6.10. At lower densities solitary jams develop. They persist throughout
the simulation and the distance between the jammed regions may vary largely. Stable
and regular trains of pulses form close to the critical density φ ≈ φc. Finally, near the
boundary to the jammed flow in Fig. 6.9 only weak solitary pulses of finite life time
appear throughout the channel as evident by the green stripes, which start or end in the
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Figure 6.9: State diagram of friction µ versus mean density φ showing jammed, traveling
pulses, and free-flow regions. Friction coefficient µ is on logarithmic scale. Dots indicate
conducted simulations. The lines separating the flow domains were added by hand.
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Figure 6.10: Spatio-temporal representation (top) and snapshots (bottom) of flow ve-
locity v(x) and area fraction φ for different mean densities φ at µ = 1. The dashed lines
indicate the steady-state velocity vss at the respective mean packing density φ.

jammed flow region. Interestingly, Campbell and Haw [45] made a similar observation in
an experiment on dense colloidal flow into a channel with converging cross section (see
Sect. 2.3.2). They found that by slightly increasing the colloidal volume fraction, peri-
odic oscillations in flow speed measured at the channel inlet transformed into transient
pulses separated by irregular long-lived jams.

6.3 Continuum Model

In the following we present a phenomenological theory, which is able to explain and
mimic our numerical results. It is motivated by continuum traffic-flow models that
capture the formation of shock fronts [33], density autosolitions, and periodic density
modulations [180–182].
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6.3.1 Governing equations

The colloidal area fraction φ obeys the one-dimensional continuity equation, where the
current density J includes a drift and diffusion term:

∂φ

∂t
+
∂J

∂x
= 0 with J = vφ−D∂φ

∂x
. (6.2)

Here, D represents the collective diffusivity, which is assumed constant.
For the colloidal flow velocity we use Newton’s equation. From the steady-state

velocity vss plotted in Fig. 6.8 we extract a density-dependent friction coefficient ξ(φ) =
σ/vss(φ) that combines the effect of shear viscosity and colloidal contact friction. The
unsteady flow velocity then obeys

dv

dt
=
∂v

∂t
+ v

∂v

∂x
= σ − ξ(φ)v, (6.3)

where we divided by the mass density. Note that Eq. (6.3) is not derived in the limit of
low Reynolds numbers by not omitting the nonlinear convective part v ∂v∂x . However, we
will see that the convective part becomes insignificant in the regime, where we observe
our traveling pulses. For ξ(φ) = σ/vss(φ) we use an analytic function, which we obtain
by fitting the data for vss(φ) in Fig. 6.8. We fit our data for vss(φ) by choosing a linear
decline to the left of φc and a quadratic decay towards zero to the right of φc. The jump
in between both regimes is fitted with a hyperbolic tangent tanh[(φc − φ)/∆φ], where
∆φ controls its width. The fitting function then reads

vfit
ss(φ) = ∆v

[
1 + tanh

(
φc − φ

∆φ

)]

+

{
e1 + e2φ if φ < φc

e3(φ− φq)2 if φ ≥ φc

.

(6.4)

The fitting parameter e3 can be eliminated by requiring that linear and quadratic part
of vfit

ss connect at φc, which gives e3 = (e1 +e2φc)/(φc−φq)2. The remaining parameters
are determined using least-squares fits and are compiled in Tab. 6.2 for various friction
coefficients µ.

µ =∞ µ = 1 µ = 1/2 µ = 0

∆v 0.0489 0.0413 0.0247 0.0005
∆φ 0.00247 0.0025 0.00312 0.00233
φc 0.744 0.762 0.778 0.808
e1 2.82 2.56 2.78 2.90
e2 -3.68 -3.24 -3.45 -3.53
φq 0.819 0.845 0.854 0.846

Table 6.2: Fitting values of vss(φ) for various friction coefficients µ.

Finally, the system Eq. (6.2) and (6.3) can be normalized by introducing charac-

teristic time τ =
(
D/σ2

)1/3
and length η =

(
D2/σ

)1/3
. We rewrite the variables by

performing t/τ → t, x/η → x, vτ/η → v and ξτ/→ ξ in order to obtain

∂φ

∂t
+
∂φv

∂x
=
∂2φ

∂x2
(6.5)

∂v

∂t
+ v

∂v

∂x
= 1− ξ(φ)v. (6.6)
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Figure 6.11: Real part of the eigenvalue λ 1
η

with respect to mean packing fraction φ

with ξ(φ) sampled for various µ.

6.3.2 Linear stability analysis

We now conduct a stability analysis of the Eqs. (6.5)-(6.6) in order to investigate, for
which parameters the trivial solution φ(x, t) = φ and v(x, t) = v = 1/ξ(φ), which
represents homogeneous flow, is stable. We linearize Eq. (6.5) and (6.6) around the
homogeneous solution, φ = φ + δφ and v = v + δv, and neglect higher-order terms, so
that we obtain

∂δφ

∂t
= −φ∂δv

∂x
− 1

ξ

∂δφ

∂x
+
∂2δφ

∂x2
, (6.7)

∂δv

∂t
= −1

ξ

∂δv

∂x
− 1

ξ

dξ

dφ

∣∣∣∣
φ

δφ− ξδv. (6.8)

We substitute the following plane-wave ansatz: δφ = φk exp(ikx − λkt) and δv =
vk exp(ikx − λkt), which represents an oscillating harmonic perturbation of the sys-
tem around (φ, v). Here λk denotes an eigenvalue with the dimension of a frequency
and with respect to wavelength k. Writing the linearized equations in matrix form, we
then find

λk

(
δφ
δv

)
=



−ik 1

ξ − k2 −ikφ
−1
ξ

dξ
dφ

∣∣∣
φ
−ξ − ik 1

ξ



(
δφ
δv

)
. (6.9)

By defining λ∗k = λk + ik 1
ξ , we can simplify the equations to

λ∗k

(
δφ
δv

)
=

( −k2 −ikφ
−1
ξ

dξ
dφ

∣∣∣
φ
−ξ

)(
δφ
δv

)
. (6.10)

The eigenvalues λk can then be computed from Eq. (3.93), and read

λ∗k =
−k2 − ξ

2
±
√(−k2 − ξ

2

)2

− ξk2 + ik
φ

ξ

dξ

dφ

∣∣∣∣
φ

. (6.11)

In Fig. 6.11 we find the stability analysis for perturbations with wavelength equal to our
characteristic length so that k = 1/η. The result suggests that the trivial homogeneous
solution becomes linearly unstable close to the critical density φc for µ > 0. Beyond φc

the suspension is jammed and a homogeneous flow profile stable against perturbations.
In the case of µ = 0 the eigenvalue is close to zero for most packing fraction, which
makes any statement on stability difficult. Since no traveling pulses were observed for
µ = 0 in our simulation, we can conclude that the instability is not strong and localized
enough to trigger pulse formation.
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6.3.3 Traveling wave equations

Next, we want to analyze in what shape the instabilities arise. In doing so, we search
for traveling wave solutions of the form φ(z) and v(z) with z = x− ct and where c is the
dimensionless propagation speed of the traveling wave. Using this ansatz and the chain
rule, we can rewrite the equations and obtain for Eq. (6.5)

d

dz

[
φ(v − c)− dφ

dz

]

︸ ︷︷ ︸
flux in co-moving frame

= 0. (6.12)

Eq. (6.12) demands that the sum of diffusive flux and convective flux relative to c,
need to be constant along z. After integration we denote this constant q and yield the
traveling wave equations (TWE) for our system

dφ

dz
= (v − c)φ− q (6.13)

dv

dz
=

1− ξ(φ)v

v − c with c 6= v. (6.14)

The equations (6.13)-(6.14) form a closed set of non-linear ordinary differential equations
with respect to a spatial coordinate z. They define a set of trajectories in the φ,v phase
space that can be obtained by numerical integration.

We can use Eq. (6.13) to derive an expression for the pulse speed c. Imagine a jammed
region traveling along an infinitely long channel with mean area fraction φ < φc. Within
the jam the density is φj > φc and the particles creep with a velocity vj. At infinity
as well as at the peak value in the jam, the derivative of φ vanishes and thus in both
cases one can write q = [vss(φ)− c]φ = (vj− c)φj. This yields an expression for the pulse
speed,

c =
φjvj − φvss(φ)

φj − φ
≈ − φ

φj − φ
vss(φ) . (6.15)

To arrive at the second equation, we used vj � vss and φj ≈ φ. Now, since 0 <
(φj−φ)/φ� 1 in our simulations, Eq. (6.15) confirms our findings that the pulse speed
c is negative and that the pulse always travels against the colloidal flow with a speed
much larger than vss(φ).

6.3.4 Analysis of the phase portrait

As mentioned above, the equations (6.13)-(6.14) define trajectories in the φ,v phase
space, which can be drawn for arbitrary starting positions. This geometric representa-
tion of the behavior of the system is called phase portrait, which was introduced in Sec.
3.4. Closed trajectories in the φ,v phase portrait correspond to periodic traveling wave
solutions of the partial differential equations (PDE) (6.5-6.6). We study the behavior in
the phase portrait by varying the unknown parameters q and c. We start by determining
the Nullclines, from equations (6.13-6.14). In the phase portrait these lines correspond
to a zero-growth rate of φ or v, respectively. We obtain them by demanding dφ/dz = 0
and dv/dz = 0, which yields

vN1(φ) =
q

φ
+ c, (6.16)

vN2(φ) =
1

ξ(φ)
= vss(φ). (6.17)

Only the Nullcline vN1 depends on the unknowns q and c, whereas vN2(φ) is equal to
the steady state velocity vss(φ). Both are plotted in Fig. 6.12.
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Figure 6.12: Example Nullclines in the φ,v plane and their intersection points for one
choice of parameters c and q and ξ(φ) sampled for µ = 1. Parameters are c = 3 and
q = −2.6

Classification of fixed points

The intersections of both Nullclines define fixed points (φ0, v0). As a result, trajectories
in their vicinity approach or leave them at z → ±∞. Solutions directly at the fixed
points correspond to homogeneous solutions of the PDE (φ(x, t) = φ0 and v(x, t) = v0).
The Nullcine vN1 decays from infinity at φ = 0 to c as φ increases. Since c < 0 if v > 0,
it intersects vN2 at least once. In fact, for a range of q and c there exist up to 3 fixed
points in the system (see Fig. 6.12), for which holds vN1(φ0) = vN1(φ0). Using Eq.
(6.16-6.17) and rearrange, this condition reads

q = φ0(v0 − c) with v0 = vss(φ0). (6.18)

In order to classify φ0 and v0, we linearize Eqs. (6.13) and (6.14) around φ = φ0+ δφeλz

and v = v0 + δveλz. This first order approximation of the equations allows to study
the behavior of trajectories close to the fixed points by calculating the eigenvalues λ
(compare Sect. 3.4.2). In matrix form the equations reduce to the eigenvalue problem

λ

(
δφ
δv

)
=

(
v0 − c φ0

− v0
v0−c

dξ
dφ

∣∣∣
φ0

−ξ(φ0)
v0−c

)(
δφ
δv

)
. (6.19)

The eigenvalues are determined by Eq. (3.93) and read

λ1/2 =
1

2

(
v0 − c− ξ(φ0)

v0 − c

)
±
√

1

4

(
v0 − c− ξ(φ0)

v0 − c

)2

+ ξ(φ0)−
v0φ0

(v0 − c)

dξ

dφ

∣∣∣∣
φ0

.

(6.20)
In analogy to the stability analysis of dynamic systems, positive real parts of the
eigenvalues λ > 0 correspond to trajectories leaving the fixed point as perturbations
δφeλz and δveλz will grow along positive z. Contrary, negative real parts will result in
trajectories approaching the fixed points at z = ∞. Complex eigenvalues correspond
to spiraled trajectories centered at the fixed point. In our 2 dimensional system two
eigenvalues λ1/2 are associated with each fixed point (φ0, v0), which allows for different
combinations illustrated in Fig. 6.13.

In Fig. 6.14 left, the different classes of fixed points are shown for the our system
dependent on wave speed c and their location φ0 on the phase portrait. In this case the
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Figure 6.13: Classification of the fixed points in a 2 dimensional system with schematic
trajectories.

Figure 6.14: Left: Classification of the fixed points of the system (6.13) and (6.14) using
Eq. (6.20) for ξ(φ) sampled for µ = 1. The dashed line indicates a Hopf bifurcation
at the fixed point. Right: Zoomed in box view. In the striped areas limit cycles exist.
Solid black line corresponds to a homoclinic bifurcation. Sample plots of phase portraits
a)-l) below.

parameter q is exchanged for the parameter φ0, the location of a fixed point, by using
Eq. (6.18). Now, for each point on (c, φ0) one can draw a phase portrait. Moving along
the parameter space (c, φ0) the property of a fixed point might vary as it changes sign
or becomes complex. That change of properties of fixed points is commonly referred to
as local bifurcation, which alter the qualitative behavior of the system drastically where
ever they occur (see Sect. 3.4.3). Different kinds of bifurcation that can be observed in
our dynamical system will be discussed below.

In Fig. 6.12 we showed a configuration with 3 fixed points. However, not for all
choices of (c, φ0) there will be 3 fixed points in the system. For example, the phase
portrait at a) has only one fixed point as show in Fig. 6.15a), which can be identified
as a saddle. This fixed point inherits a repelling and attractive manifold so that all
trajectories arrive from infinite values and thrive to infinite values of v and φ, which can
not correspond to a physical trajectory. As a result, in the case of only one fixed point,
no steady state traveling wave solutions exist, but the trivial homogeneous solution at
the fixed point.

Phase portraits with two fixed points exist only in cases of both Nullclines crossing
at one point and being tangent at another point as illustrated in Fig. 6.15b) and c).
This is exactly the case along the border line between saddle and sink as well as between
saddle and source, where two fixed points collide in Fig. 6.14 left. This is known as a
saddle-node bifurcation, which is characterized by one of the eigenvalues λ becoming zero
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Figure 6.15: Example phase portraits for cases of one or two fixed points.

Figure 6.16: Example phase portraits and profiles between a subcritical Hopf bifurcation
and a homoclinic bifurcation.

(see Sect. 3.4.3). The second fixed point is a saddle. Along the lines of the saddle-node
bifurcation, closed trajectories were not found by us.

If the Nullclines intersect in three points, the fixed point located in between the
others becomes either a node or a spiral. For large enough |c|, this fixed point is located
close to the critical density φc of the system, as can be seen from Fig. 6.14 left. The
two other fixed points are saddles and are located on the free flow branch and on the
jammed flow branch of veq(φ) as in Fig. 6.12.

As introduced in Sect. 3.4.3, we speak of a Hopf bifurcation, when the eigenvalues of
a fixed point cross the complex plane imaginary axis, that is when a focus sink becomes a
focus source or vice versa along the dashed line in Fig. 6.14. The parameters, for which
the Hopf bifurcation occurs can be found analytically from Eq. (6.20) by demanding
that the real part of λ vanishes:

v0 − c− ξ(φ0)

v0 − c
= 0 and ξ(φ0)−

v0φ0

(v0 − c)

dξ

dφ

∣∣∣∣
φ0

< 0. (6.21)

At a Hopf bifurcation a small-amplitude limit cycle appears around the focus. A limit
cycle in our system Eq. (6.13-6.14) corresponds to a periodic and in z stationary solution
of a traveling wave.
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Figure 6.17: Example phase portraits and profiles between a supercritical Hopf bifurca-
tion and a homoclinic bifurcation.

The striped area in Fig. 6.14 right, marks the parameter space, where a limit cycle
occurs. The area is bounded by the Hopf bifurcation on one side, where the limit cycle
emerges, and by a homoclinic bifurcation on the other side, where the limit cycle has
grown to a size that it collides with one of the saddles. At the homoclinic bifurcation
the limit cycle becomes a homoclinic orbit with period infinity. Beyond the homoclinic
bifurcation the limit cycle no longer exists.

Noteworthy is that the fixed point φ0, for which limit cycles exist swaps from a focus
sink to a focus source as |c| is increased. As a result, the subcritical Hopf bifurcation
becomes supercritical as |c| is increased (see Sect. 3.4.3). Numerically it is challenging
to obtain limit cycles close to this transition, because the real part of the eigenvalues is
close to zero and trajectories converge only very slowly to the limit cycle. We mark this
area with the dotted line in Fig. 6.14 right.

Phase portraits plotting trajectories, fixed points and nullclines can be found in Fig.
6.16 and 6.17. Arrows on the trajectories point towards direction of positive z. Limit
cycles are highlighted with a thicker line. The limit cycles are plotted with respect to z
on the bottom of the respective phase portrait.

In Fig. 6.16 d) and Fig. 6.16 g), the fixed point φ0 lies directly on the Hopf
bifurcation, which marks the birth of a small amplitude limit cycle. As the absolute
value of the real part of φ0 increases, amplitude and period of the limit cycle grow as
displayed in e) and h). Further increasing the absolute value of the real part leads the
limit cycle to touch a saddle point, which marks the homoclinic bifurcation. In Fig. 6.16
f), the limit cycle collides with the saddle point located on the free flow branch of vss.
At larger values of |c| in Fig. 6.17 i) however, the limit cycle collides with the saddle
point located on the jammed flow branch of vss.

6.3.5 Modeling traveling pulses

Finally, we use our findings from the phase portrait analysis to model the different type
of rarefaction pulses illustrated in Fig. 6.10. In Fig. 6.18 c) we plot the different types of
traveling waves that we observed in our MPCD simulations. The respective parameters
φ0 and c, are indicated by the markers I-III in Fig. 6.18 a). The subcritical Hopf
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Figure 6.18: a) Classification of fixed points in the c, φ0 plane for Eqs. (6.13-6.14) using
vss = ξ−1 for µ = 1. Within the striped area limit cycles (LC) exist. b) Phase portrait
for q = 2.228 and c = −2.8 showing a limit cycle that corresponds to periodic pulse
train. The nullclines vN1, vN2 intersect in three fixed points classified by the color code
of a). c) Flow velocity v and packing density φ profiles generated by closed orbits in the
phase portrait for parameters marked with I-III in a).

bifurcation results in a periodic orbit that, if increased further touches the saddle on
the free flow branch of vss(φ). The respective homoclinic orbit can be interpreted as
a solitary traveling jam with propagation speed c. The profile resembles that of the
traveling jam presented in Fig. 6.10. It captures well the features of a wide jam with a
gradual unjamming front downstream and a sharp jamming front upstream. The profile
of the periodic orbit in Fig. 6.18 b), occurring between Hopf and homoclinic bifurcation,
represents the solution of a regular pulse train in our MPCD simulations. At the largest
pulse speeds c, the Hopf bifurcations become supercritical and the periodic orbit collides
with the saddle located at the jammed branch of vss(φ). This results in a homoclinic
orbit that resembles a solitary traveling pulse, similarly to the one observed in Fig. 6.10

Noteworthy is that because we find our simulated traveling pulses in the regime,
where |c| � v, we can place our phenomenological model in the low Reynolds number
regime. This is best seen in Eq. (6.3), where the nonlinear term gives rise to v in the
denominator v − c in Eq. (6.14). As we restrict our analysis in Fig. 6.18 to the case
of large pulse velocities in accordance with our simulations and the experiments, the
nonlinear convective term in Eq. (6.3) has little to no effect on our results.

6.4 Summary and Conclusion

The numerical model using MPCD and a frictional spring model between the colloids, re-
produces all features of the experimental counterpart including traveling pulse trains or
rarefaction pulses moving upstream. It identifies a transition between free and jammed
flow due to force chains spanning the channel cross section as the crucial reason for the
formation of flow instabilities. They include solitary jams, regular pulse trains, and soli-
tary pulses, which set in with increasing density, wall-colloid friction, and flow velocity.
A nonlinear phenomenological model, which we analyzed with methods from nonlinear
dynamics to identify traveling wave solutions, is able to describe all the traveling pulse
profiles from our simulations. Thereby, we identify periodic orbits in the phase portrait
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as periodic pulse trains in our simulations. Solitary pulses or jams can be identified
as homoclinic orbits in the traveling wave equations. The findings are a good example
of how the unifying idea of jamming determines the complex flow of dense colloidal
systems. Our insights may help in eliminating unwanted nozzle clogging in industrial
processing [183, 184], by either decreasing packing density, wall friction or flow speed.
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7
Conclusions

We employed the mesoscale simulation method of multi-particle collision dynamics to
simulate the pressure driven flow of dense colloidal suspensions inside a channel in two
and three dimensions. To solve the Navier-Stokes equations including thermal noise, the
method generates a flow field using pointlike fluid particles, which perform alternating
streaming and collision steps. The collision step conserves translational and angular
momentum as well as temperature using the Andersen thermostat for the collision rule.
To place passive particles into the flow, we combined MPCD with two models commonly
used in simulating granular matter. These models implement hard frictional contacts
between the colloids. The first method is based on an event-driven molecular dynamics
approach and was used for intermediate packing densities. In this model, collisions are
scheduled into a queue and the collisions are resolved elastically and instantaneously.
The second model uses linear spring forces to generate normal and tangential forces
between the colloids that obey Coulomb’s law of friction. At the cost of making the
particles “soft”, this model was very fast in the densely packed regime, where it was
applied. Moreover, in contrast to the event-driven approach, it allows for simulating
force chains and jamming.

Previous experimental work on pressure-driven colloidal flow in microchannels showed
that particles migrate towards the channel center. The authors argued that this mech-
anism emerges from interactions between sheared colloidal particles that lead to an ir-
reversible separation from each other orthogonal to the shear due to frictional contacts.
By using a binary suspension of particle species with different sizes, it was found that
the particles demix, favoring the larger species in the channel center. Based on these
findings, we presented a detailed parameter study on how binary colloidal suspensions
demix in the center of a microchannel. We also found that the larger species enriches
the center while the smaller species is driven towards the channel walls. We found this
to be true in two and in three dimensions as well as for a wide range of parameters, such
as size ratio, mean packing fraction, Péclet number, and concentration ratio. Using our
simulation results, we extended an existing phenomenological model of shear-induced
migration to account for binary suspensions. Thereby, we introduced collective diffusiv-
ity into the model, which predicts locally the down-gradient diffusion of each species.
This model gave good predictions, on which species enriches the center as well as the
strength of segregation. Additionally, it was able to detect the fine differences of the
profiles between two and three dimensions. For three dimensions, shear migration usu-
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ally developed stronger segregation, which we attributed to a larger number of collisions
between the colloids. Our model can easily be extended to more than two species when
the respective closure relations are known. The conclusions drawn from our model can
help to overcome undesired demixing inside channel geometries. On the other hand, it
can support the industrial application of shear-induced segregation for micro-filtration.

In the last part of this thesis, we presented results on suspensions near random close
packing. Our simulations were motivated by the experimental observations of regular
and irregular velocity oscillations inside microchannels. These oscillation emerged at a
threshold value of the applied pressure gradient and were attributed to colloidal jam-
ming by the authors. Using a combination of MPCD and the linear-spring model with
Coulomb friction for colloidal interactions, we were able to simulate jamming inside the
channel. Upon formation of a jam, colloids still freely move downstream of the jam,
thus producing a section with decreased density. Upstream of the jam, particles accu-
mulate and jam as well. After a short time, this procedure generates velocity pulses
traveling upstream, which self-organize to a regular pulse train at intermediate densi-
ties. We found that these pulses emerge at a pressure threshold, which decreases for
more narrow confinements. In agreement with the experiment, we detected a power-law
behavior between pulse frequency and mean flow velocity. Additionally, we identified
friction between channel walls and colloids as a requirement for jamming and velocity
oscillations to occur. By tuning the mean packing fraction inside the channel we ob-
served different traveling structures. The suspensions exhibit solitary traveling jams,
well below the critical density, at which particles jam. Above the critical density, the
suspension is mainly jammed and exhibits solitary traveling pulses, which we found to
be unstable.

We were able to explain the variety of the traveling pulses with a newly formulated
phenomenological model. The model consists of a conservation law for mass and New-
ton’s equation of motion with friction. The expression for the friction was obtained
by fitting measured flow velocities inside a short channel for various packing densities.
The profiles were generated from stationary solutions of the traveling wave equations.
Hereby, a limit cycle in the phase portrait corresponds to a periodic pulse train, which
compared nicely to our simulations. Also homoclinic cycles could be generated by the
model, which captured the features of our simulated solitary jams or pulses. The findings
demonstrate how the unifying idea of jamming determines the complex flow of dense
colloidal systems. They suggest that repulsive walls, that reducing colloid-wall friction,
packing fraction, or flow speed prevent colloidal jamming. These insights may help in
addressing unwanted channel or nozzle clogging in industrial processing.
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