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Decision-making is a high-level cognitive process based on cognitive processes like

perception, attention, and memory. Real-life situations require series of decisions to be

made, with each decision depending on previous feedback from a potentially changing

environment. To gain a better understanding of the underlying processes of dynamic

decision-making, we applied the method of cognitive modeling on a complex rule-based

category learning task. Here, participants first needed to identify the conjunction of

two rules that defined a target category and later adapt to a reversal of feedback

contingencies. We developed an ACT-R model for the core aspects of this dynamic

decision-making task. An important aim of our model was that it provides a general

account of how such tasks are solved and, with minor changes, is applicable to other

stimulus materials. The model was implemented as a mixture of an exemplar-based and

a rule-based approach which incorporates perceptual-motor and metacognitive aspects

as well. The model solves the categorization task by first trying out one-feature strategies

and then, as a result of repeated negative feedback, switching to two-feature strategies.

Overall, this model solves the task in a similar way as participants do, including generally

successful initial learning as well as reversal learning after the change of feedback

contingencies. Moreover, the fact that not all participants were successful in the two

learning phases is also reflected in the modeling data. However, we found a larger

variance and a lower overall performance of the modeling data as compared to the

human data which may relate to perceptual preferences or additional knowledge and

rules applied by the participants. In a next step, these aspects could be implemented in

the model for a better overall fit. In view of the large interindividual differences in decision

performance between participants, additional information about the underlying cognitive

processes from behavioral, psychobiological and neurophysiological data may help to

optimize future applications of this model such that it can be transferred to other domains

of comparable dynamic decision tasks.
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INTRODUCTION

Backcountry skiers (and snowboarders) strive for the unique
thrill of skiing or snowboarding down powder covered
mountains, drawing the first line into freshly fallen snow. Before
deciding to go down a particular mountain slope, they check the
snowpack, the temperature and wind conditions to avoid setting
off an avalanche. Often not a single snow characteristic is crucial
but conjunctions of them can change the conditions of safe
skiing. The decision to continue on a slope is re-evaluated often,
depending on the feedback from the snow (e.g., collapsing snow,
snow-brakes vs. nice powder snow) and previous experience.

The described scenario gives a good example of complex
cognition. Complex cognition (Knauff and Wolf, 2010)
investigates how different mental processes influence action
planning, problem solving and decision-making. The term
“mental processes in complex cognition” includes not only
cognitive but also motivational aspects. Naturalistic decision-
making research investigates how decisions are made “in
the wild.” Real-life decisions made by people with some
kind of expertise are investigated in the context of limited
time, conflicting goals, dynamically changing conditions, and
information sources of varying reliability.

Such complex situations involve further aspects that
cannot all be covered in combination when studying complex
cognition. Nevertheless, researchers should aim at describing,
understanding and predicting human behavior in its complexity.

A model situated within cognitive architectures can simulate
multiple parallel processes, thereby capturing multifaceted
psychological phenomena and making predictions, sometimes
even for complex tasks. Nevertheless, developing such models
requires a stepwise procedure to distinguish different influencing
factors. For our skiing example, first a model of the core
decision-making process (e.g., based on category learning from
snow characteristics and feedback) of a backcountry skier needs
to be developed and tested. Afterwards this approach can be
extended withmodeling approaches of other decision influencing
processes (e.g., motivation) to predict decision-making in the
wild.

To come closer to the overall goal of understanding cognition

as a whole, studying dynamic decision-making with cognitive

architectures constitutes a step in the right direction. In dynamic

decision-making, decisions are not seen as fixed but can be

modified by incoming information. So, not only singular aspects
of decision-making are considered, such as attentional influence,
but also environmental factors that give feedback about an
action or lead to major changes requiring an adaptation to new
conditions.

In real-life decisions, however, our future choices and our
processing of decision outcomes are influenced by feedback
from the environment. This is the interactive view on decision-
making, called dynamic decision-making (Gonzalez, 2017), of
which the scenario presented above is an example. According to
Edwards (1962), three aspects define dynamic decision-making.
First, a series of actions are taken over time to achieve a certain
goal. Second, the actions depend on each other. Thus, decisions
are influenced by earlier actions. Third, and most difficult to

investigate, changes in the environment occur as a result of these
actions but also spontaneously (Edwards, 1962). According to
Gonzalez (2017), dynamic decision-making is a process where
decisions are motivated by goals and external events. They are
dependent on previous decisions and outcomes. Thus, decisions
are made based on experience and are dependent on feedback.
Most of the time, these kinds of decisions are made under time
constraints. Therefore, long mental elaborations are not possible.
To sum up, dynamic decision-making research investigates a
series of decisions which are dependent on previous decisions
and are made under time constraints in a changing environment.

Another view on dynamic decision-making as a continuous
cycle of mental model updating is introduced by Li and
Maani (2011). They describe this process using the CER Cycle.
CER stands for Conceptualization–Experimentation–Reflection.
Conceptualization is obtaining an understanding of the situation
and mentally simulating the outcome of potential decisions and
related actions. Thus, the decision maker compares the given
situation with related information in his or her mental model and
integrates new information obtained from the environment to
develop a set of decisions. During experimentation, the decisions
and interventions devised from the decision-maker’s mental
model are tested in the dynamics of the real world. In the
reflection phase, the outcome of the experimentation phase is
reflected on, e.g., feedback is processed. If the expected outcome
is achieved (e.g., positive feedback), the initial decisions are
sustained. If, however, the outcome is unexpected (e.g., negative
feedback) or if obtained results differ from the expected outcome,
the decision maker updates his or her mental model. To do this,
he or she decides for alternative actions such as searching for new
sources of information for making better decisions.

These kinds of decision-making procedures have been
suggested to sharemany processes with the procedure of category
formation (Seger and Peterson, 2013). Categorization is a mental
operation that groups objects based on their similar features.
When new categories are formed from a given set of items
without explicit instruction, the features distinguishing the
different items must first be extracted. Then hypotheses about
the relevant features must be formed and tested by making serial
decisions.

Category learning experiments in cognitive science often
require participants to establish explicit rules that identify the
members of a target category. The serial categorization decisions
are reinforced by feedback indicating whether a decision
was correct or not. The success in such rule-based category
learning experiments critically depends on working memory and
executive attention (Ashby and Maddox, 2011). The fact that
real world decisions critically depend on success and failure in
previous trials qualifies category learning as a model for dynamic
decision-making.

There are numerous advanced computational models of
categorization which explain behavioral performance of subjects
in various categorization tasks (e.g., Nosofsky, 1984; Anderson,
1991; Ashby, 1992; Kruschke, 1992; Nosofsky et al., 1994;
Erickson and Kruschke, 1998; Love et al., 2004; Sanborn
et al., 2010). These competing models differ in their theoretical
assumptions (Lewandowsky et al., 2012) and there is currently no
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consensus on how different models can be compared and tested
against each other (Wills and Pothos, 2012).

Another requirement for dynamic decision-making is the
occurrence of changes in the environment. A well-known
categorization task using such changes is implemented in the
Wisconsin Card Sorting Test (WCST; Berg, 1948). In this test,
participants must first select a one-feature rule (color, shape,
number of symbols) and are then required to switch to a
different one-feature rule. This task tests for the ability to display
behavioral flexibility. Another experimental approach to test for
behavioral flexibility in humans and animals is reversal learning
(e.g., Clark et al., 2004; Jarvers et al., 2016). Here, subjects need to
adapt their choice behavior according to reversed reinforcement
contingencies.

Thus, category learning experiments with changing rules can
serve as suitable paradigms to study dynamic decision-making in
the laboratory, albeit with limited complexity as compared to real
world scenarios.

The majority of rule-based category learning experiments are
simple and only use one relevant stimulus feature specification
(e.g., a certain color of the item) as categorization basis. In
principle, however, such a restriction is not required and rule-
based category learning experiments can become more complex
by using conjunction rules. These can still be easily described
verbally (e.g., respond A if the stimulus is small on dimension
x and small on dimension y). It has been shown that conjunction
rules can be learned (e.g., Salatas and Bourne, 1974) but are much
less salient and are not routinely applied (Ashby et al., 1998).

In the following, the main points mentioned above are
integrated in our backcountry skiing example: Since feedback
from the environment plays a central role in building a correct
mental model, feedback in the form of great powder snow
indicates that the current strategy is correct. By contrast,
negative feedback, for example breaking snow, indicates that one
should change the strategy, perhaps search for different feature
specifications or even for a different combination of features that
might promise a better outcome for skiing. Furthermore, sudden
changes of environmental conditions can result in a change of
which feature combinations are indicative of a positive outcome.
In our example, a change could be a different hill side with more
exposure to the sun or a rise in temperature, requiring that other
feature combinations should be taken as an indication for a safe
descent. There are a lot of possibilities which features and feature
combinations could indicate safe or unsafe conditions, making
such a task complex.

Thus, to study dynamic decision-making in a category
learning experiment requires a task with the above-mentioned
characteristics (successive decisions with feedback, multiple
feature stimuli, and switching of category assignments). To
determine how humans learn feature affiliation in a dynamic
environment and to investigate how strategies with rising
complexity emerge, a modeling approach addressing these
aspects first needs to be developed. If this model is useful
and plausible it should match average behavioral data. This is
an important milestone toward a more precise model which
in turn should predict more detailed empirical data (e.g.,
individual behavioral or neural data). If this step is achieved, then

models can be used as decision aiding systems at an individual
level.

In this paper, we use the behavioral data of an experiment,
described in the following, to develop an initial cognitive
model as described above. In the experiment, a large variety
of multi-feature auditory stimuli were presented to participants
in multiple trials. The participants were then required to learn
by trial and error which combinations of feature specifications
predict a positive or negative outcome. Since perceptual learning
of stimulus features is not the focus of our research, we used
salient and easy-to-recognize auditory features. To meet all of
the above-mentioned criteria for dynamic decision-making, we
further introduced a spontaneous change in the environment
such that previous decisions on feature combinations suddenly
needed to be re-evaluated to obtain positive feedback.

In particular, we would like to demonstrate how different
aspects that influence dynamic decision-making can be
addressed through a combination of existing and validated
cognitive mechanisms within an architecture. These are: learning
to distinguish positive and negative feature combinations
depending on feedback; successive testing of simple one-feature
rules first and switching to more complex two-feature rules later,
and using metacognition to re-evaluate feature combinations
following environment changes. Other modeling approaches are
also able to replicate such data, what distinguishes our approach
is that it has a theory grounded interpretation of plausible
cognitive mechanisms.

Why Use Cognitive Modeling?
The method of cognitive modeling forces precision of vague
theories. For scientific theories to be precise, these verbal theories
should be formally modeled (Dimov et al., 2013). Thus, theories
should be constrained by describable processes and scientifically
established mechanisms. As Simon and Newell (1971) claim,
“the programmability of the theories is a guarantee of their
operationality and iron-clad insurance against admitting magical
entities in the head” (p. 148).

Cognitive models can make predictions of how multiple
aspects or variables interact and produce behavior observed
in empirical studies. In real-life situations, multiple influences
produce behavior. Cognitive models are helpful to understand
which interrelated cognitive processes lead to the observed
behavioral outcome. Cognitive models can perform the same task
as human participants by simulating multiple ongoing cognitive
processes. Thereby, models can provide insight into tasks that
are too complex to be analyzed by controlled experiments.
Nevertheless, studying such a task with participants is mandatory
to compare the outcomes of models and participants. However,
understanding the process leading to an outcome is more
important than perfectly fitting a model to a given set of
experimental results. Our goal in this regard is to understand
the processes underlying human decision-making, not least to
aid humans in becoming better at decision-making (Wolff and
Brechmann, 2015).

Predictions made by cognitive models cannot only be
compared to average outcome data (such as reaction times, or
percentage of correct decisions) but also to process data. Process

Frontiers in Psychology | www.frontiersin.org 3 August 2017 | Volume 8 | Article 1335

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Prezenski et al. Strategy Formation in Decision Making

data represent patterns of information search, e.g., neural data.
In this regard, cognitive models can be informed by EEG and
fMRI data to achieve an empirical validation of such processes
(Forstmann et al., 2011; Borst and Anderson, 2015).

The development of neurobiologically plausible models is
specifically the focus of reinforcement learning (e.g., Sutton and
Barto, 1998). The aim of such computational models is to better
understand the mechanisms involved on the neural network
level as studied using invasive electrophysiological measures in
different brain regions in animals (e.g., sensory andmotor cortex,
basal ganglia, and prefrontal cortex). Such neural networkmodels
have recently been applied to learning tasks requiring flexible
behavior (e.g., contingency reversal tasks). The reader is referred
to a recent paper by Jarvers et al. (2016) that gives an overview
of the literature on reversal learning and describes a recurrent
neural network model for an auditory category learning task
such as the one applied in the current paper. This probabilistic
learning model resulted in a good fit to the empirical learning
behavior, but does not interpret the cognitive processes that
lead to this behavior. It postulates an unspecified metacognitive
mechanism that controls the selection of the appropriate strategy.
This is where the strength of our approach comes into play; It is
specific about the metacognitive mechanisms that drive behavior
in such tasks. An example would be processes which assure that
after a number of negative results, a change in strategy will be
initiated.

To summarize, cognitivemodeling is a falsifiablemethodology
for the study of cognition. In scientific practice, this implies
that precise hypotheses are implemented in executable cognitive
models. The output of these models (process as well as product)
is then compared to empirical data. Fit-Indices such as r2 and
RSME as well as qualitative trends provide information on the
predictive power of the cognitive models.

More specific, the central goals of cognitive modeling are
to (a) describe (b) predict, and (c) prescribe human behavior
(Marewski and Link, 2014). A model that describes behavior
can replicate the behavior of human participants. If the model,
however, reproduces the exact behavior found in the human data,
this is an indication of overfitting. In this case, the model has
parameters that also fit the noise found in the empirical data. To
address such issues of over specified models, it is important to
test the model on a new data set and thereby evaluate how well it
can predict novel data. Prescribemeans that the model should be
a generalizable model so that it can predict behavior in different
situations. Moreover, robust models are preferable this implies
that the output of the model is not easily influenced by specific
parameter settings.

The term cognitive model includes all kinds of models
of cognition—from very specific, isolated cognitive aspects
only applicable in specific situations to more comprehensive
and generalizable ones. The latter candidates are cognitive
architectures that consider cognition as a whole. They aim at
explaining not only human behavior but also the underlying
structures and mechanisms. Cognitive models written on the
basis of cognitive architectures therefore generally do not focus
on singular cognitive processes, such as some specific learning
process. By contrast, interaction of different cognitive processes

and the context of cognitive processes are modeled together.
Modeling the relations between different subsystems is especially
relevant for applied research questions. The structures and
mechanism for this are provided by the cognitive architecture
and should be psychologically and neurally plausible (Thomson
et al., 2015).

The most commonly used cognitive architectures, such as
ACT-R, predict processes at a fine-grain level in the range of
50 ms. These processes can be implemented computationally.
However, they are embedded in cognitive theories—this is what
distinguishes cognitive models built with cognitive architectures
from mathematical models such as neural networks. The latter
models formally explain behavior in terms of computational
processes. Thus, their explanation of behavior can be seen in
terms of computational processes but do not aim at cognitive
interpretations (Bowers and Davis, 2012).

The Cognitive Architecture ACT-R
The cognitive architecture ACT-R (Adaptive Control of
Thought—Rational) has been used to successfully model
different dynamic decision-making tasks and is a very useful
architecture for modeling learning (Anderson, 2007; Gonzalez,
2017). In the following, a technical overview of the main
structures and mechanisms that govern cognitive models in
ACT-R is given. We will focus only on those aspects that are
important to understand our modeling approach. For a more
detailed insight into ACT-R, we recommend exploring the
ACT-R website1.

ACT-R’s main goal is to model cognition as a whole using
different modules that interact with each other to simulate
cognitive processes. These modules communicate via interfaces
called buffers. ACT-R is a hybrid architecture, thus symbolic and
subsymbolic mechanisms are implemented in the modules of
ACT-R.

Our model uses the motor, the declarative, the imaginal, the
goal, the aural2, and the procedural module. The motor module
represents the motor output of ACT-R. The declarative module
is the long-term memory of ACT-R in which all information
units (chunks) are stored and retrieved. The imaginal module is
the working memory of ACT-R in which the current problem
state (an intermediate representation important for performing
a task) is held and modified. Thus, the imaginal module plays an
important role for learning. The goal module holds the control
states. These are the subgoals that have to be achieved for the
major goal. The aural module is the perceptual module for
hearing. The procedural module plays a central role in ACT-R.
It is the interface of the other processing units, since it selects
production rules (see below) based on the current state of the
modules.

Writing a model requires the modeler to specify the symbolic
parts of ACT-R. These are (a) the production rules, and (b)
the chunks. Chunks are the smallest units of information. All
information in ACT-R is stored in chunks. Production rules

1http://act-r.psy.cmu.edu/
2Please note that the aural module has two buffers. A tone is first encoded in the

aural-location buffer and its content can then be accessed using the aural buffer.
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(e.g., productions) consist of a condition and an action part.
Productions are selected sequentially, and only one production
can be selected at a given time. A production can only
be selected if the condition part of the production matches
the state of the modules. Then, the action part modifies
the chunks in the modules. If more than one production
matches the state of the modules then a subsymbolic production
selection process chooses which of the matching productions is
selected.

A further subsymbolic process in ACT-R is the activation of a
chunk. It determines if a chunk can be retrieved from memory
and how long this retrieval takes. The past usefulness of a
chunk (base-level activation), the chunk’s relevance in the current
context (associative activation) and a noise parameter sum up
to the chunk’s activation value. Modifying the subsymbolic
mechanisms of ACT-R is also part of the modeling procedure.
This can be done using specific parameters—however, most
parameters have default values derived from previous studies
(Wong et al., 2010) which should be used.

How Can Decision-Making and Category
Learning Be Modeled in ACT-R?
Many different styles for writing models in ACT-R exist (Taatgen
et al., 2006). The following modeling approaches have been used
for decision-making: (a) strategy or rule-based, (b) exemplar
or instance-based, and (c) approaches that mix strategies and
exemplars. These approaches will be compared to motivate our
chosen modeling approach.

In strategy or rule-based models, different problem solving
strategies are implemented with different production rules
and successful strategies are rewarded. Rule-based theories in
category learning postulate that the categorizer must identify the
category of an object by testing it against different rules. So, to
find a solution for a problem, strategies in the form of rules are
used.

Exemplar or instance-based models rely on previous
experience stored in declarative memory to solve decision-
making problems. The content and structure of the exemplars
depend on individual framing. It is not a complete representation
of the event, but represents the feature specifications the problem
solver is focused on, together with experienced feedback.
Exemplar theories of category learning postulate that category
instances are remembered. To decide if an instance belongs to
a category, a new instance is compared to an existing instance.
Instance-Based Learning (IBL) builds upon instances in the
context of dynamic decision processes and involves learning
mechanisms such as recognition-based retrieval. The retrieval
of instances depends upon the similarity between the current
situation and instances stored in memory. In IBL situations,
outcome observations are stored in chunks and retrieved from
memory to make decisions. The subsymbolic activation of the
retrieved instances determines which instances are likely to be
retrieved in a given situation. Instance Based Learning requires
some amount of previous learning of relevant instances. Then,
decision makers are able to retrieve and generalize from these
instances (Gonzalez et al., 2003).

Mixed approach models use both rules and instances to solve
decision-making problems.

Several authors implemented the described approaches in
category learning and decision-making environments. In a
strategy-based ACT-R model, Orendain and Wood (2012)
implemented different strategies for complex problem solving in
a microworld3 game called “Firechief.” Their model mirrored the
behavior of participants in the game. Moreover, different training
conditions and resulting behavior of the participants could be
modeled. The model performed more or less flexibly, just as
the participants, according to different training conditions. This
demonstrates that success in strategy learning depends on the
succession of stimuli in training conditions. Peebles and Banks
(2010) used a strategy-based model of the dynamic-stocks and
flows task (DSF). In this task, water level must be held constant
but the inflow and outflow of the water changes at varying rates.
An ACT-R model of strategies for accomplishing this task was
implemented in form of production rules. The model replicated
the given data accurately, but was less successful in predicting
new data. The authors proposed that by simply extending the
model so it contains more strategies and hypotheses, it would be
able to predict such new data as well. Thus, specifying adequate
rules is crucial for rule-based models.

Gonzalez et al. (2009) compared the performance of two ACT-
R models, an instance-based model and a strategy-based model,
in a RADAR task. In this task, participants and the model had
to visually discriminate moving targets (aircrafts) among moving
distractors and then eliminate the targets. Both models achieved
about the same overall fit to the participants’ data, but IBL
performed better in a transfer task.

Lebiere et al. (1998) tested two exemplar models that captured
learning during a complex problem-solving task, called the sugar
factory (Berry and Broadbent, 1988). The sugar factory task
investigates how subjects learn to operate complex systems with
an underlying unknown dynamic behavior. The task requires
subjects to produce a specific amount of sugar products. Thus,
in each trial the workforce needs to be adjusted accordingly.
The two exemplar models produced adequate learning behavior
similar to that of the subjects. In a subsequent study, Fum and
Stocco (2003) investigated how well these original models could
predict participants’ behavior in case of a much lower target
amount of the sugar product than in the original experiment.
Furthermore, they investigated if the models could reproduce
behavior in case of switching from a high product target
amount to a low product target amount and vice versa during
the experiment. The performance of the participants increased
significantly in the first case. The original IBL models were not
able to capture this behavior. The authors therefore developed a
rule based model that captured the subjects, switching behavior.

Rutledge-Taylor et al. (2012) compared a rule-based and
an exemplar-based model for an intelligence categorization
task where learned characteristics had to be studied and
assigned. Both models performed equally well in predicting the
participants’ data. No model was superior to the other.

3Microworlds are computer simulations of specific problems. They are applied to

study real-world problem solving in dynamic and highly complex settings.
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In a different categorization study, Anderson and Betz (2001)
studied three category-learning tasks with three different ACT-
R models, an exemplar-based model, a rule-based model and a
mixed model. The mixed model fitted best, reproducing learning
and latency effects found in the empirical data.

In summary, there is no clear evidence that one or the
other modeling approach is superior. In their paper, Anderson
and Betz (2001) state that the mixed approach is probably the
closest to how humans categorize, because the assumption that
categorization is either exclusively exemplar-based or exclusively
rule-based is probably too close-minded. Furthermore, stimulus
succession and adequate rule specification are important for
dynamic decision-making and category learning tasks.

In addition, models of complex tasks should incorporate
metacognitive processes such as reflecting and evaluating the
progress of the selected approach (Roll et al., 2004; Reitter, 2010;
Anderson and Fincham, 2014). Reitter’s (2010) model of the
dynamic stocks and flow tasks investigated how subjects manage
competing task strategies. The subject-to-subject analysis of the
empirical data showed that participants exhibited suddenmarked
changes in behavior. Learning mechanisms which are purely
subsymbolic cannot explain such behavior, because changes in
model behavior would take too long. Furthermore, the strategies
of the participants seemed to vary with the complexity of the
water flow. Thus, a model of this task must address switches in
strategy and not only gradual learning. Reitter (2010) assumes
that humans’ solutions to real-world problems emerge from a
combination of general mechanisms (core learning mechanisms)
and decision-making strategies common to many cognitive
modeling tasks. His model implements several strategies to deal
with the basic control task as well as a mechanism to rank and
select those strategies according to their appropriateness in a
given situation. This represents the metacognitive aspect of his
model.

Our Aim
Our aim is to develop an ACT-R modeling approach for dynamic
decision-making in a category learning task. A suitable task for
such a modeling approach needs to fulfill several requirements.
First, it should use complexmulti-feature stimuli for themodel to
build categories from combined features. Second, the task needs
to provide feedback, thereby allowing the model to learn. Third,
changes in the environment should occur during the task forcing
the model to act on them by refining once learned category
assemblies.

To model performance in such a task, the modeling approach
will need to incorporate mechanisms for strategy learning and
strategy switching. It should precisely specify how hypotheses
about category learning can be implemented with ACT-R. A
mixed modeling approach of rules and exemplars should be used
since previous work indicates that such models are most suitable
for dynamic decision-making tasks. Furthermore, since switches
in category assignments as well as monitoring of the learning
progress need to be addressed, metacognitive aspects should be
incorporated in the modeling approach.

Our modeling approach should provide information on
the actual cognitive processes underlying human dynamic

decision-making. Hence, it should be able to predict human
behavior and show roughly the same performance effects that
can be found in empirical data reflecting decision-making, e.g.,
response rates. Even more importantly, we aim at developing a
general model of dynamic decision-making. For the model to
be general (e.g., not fit exclusively to one specific experimental
setting or dataset), it needs to be simple. Thus, only few
assumptions should be used and unnecessary ones avoided. As
a result, the modeling approach should be capable to predict
behavior with other stimulus materials and be transferable to
other similar tasks.

To summarize the scope of this article, our proposedmodeling
approach aims to depict the core processes of human decision-
making, such as incorporating feedback, strategy updating, and
metacognition. Building a model with a cognitive architecture
ensures that evaluated cognitive processes are used. The quest is
to see whether these cognitive aspects including the processes of
the architecture can produce empirical learning behavior:

First, performance improvement through feedback should be
included in the model. In the case of feature learning and strategy
updating, improvements in one’s strategy are only considered in
the case of negative feedback (Li and Maani, 2011). If feedback
signals a positive decision, people consider their chosen strategy
for later use. Thus, people update their mental model during
dynamic decision-making only if they receive negative feedback
(Li andMaani, 2011). For our feature learningmodel, this implies
that once a successful strategy has been chosen over alternatives,
revisions to this strategy will require negative feedback on that
strategy rather than positive experience with others, as these are
no longer explored.

Second, the model should include transitions from simple
to complex strategies. Findings suggest that people initially
use simple solutions and then switch to more complex ones
(Johansen and Palmeri, 2002). The modeling approach under
discussion should be constructed in a similar fashion. In the
beginning, it should follow simple one-feature categorization
strategies and later switch to more complex two-feature
strategies.

Third, the model needs to use metacognitive mechanisms. For
example, it needs specifications for which conditions switching
from a single-feature strategy to a multi-feature strategy is
required. The metacognitive aspects should furthermore reflect
previous learning successes. Thus, keeping track of which
approaches were helpful and which were not, or of how often a
strategy has been successful in the past, should be implemented
in the model. Moreover, such mechanisms should ensure that
if a strategy was successful in the past and fails for the first
time, it is not discarded directly, but tested again. Furthermore,
metacognitive mechanisms should not only address the issue of
switching from single-feature to multi-feature strategies but also
incorporate responses to changes in the environment.

MATERIALS AND METHODS

In the following, an experiment of dynamic decision-making and
our model performing the same task are presented. The model
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includesmechanisms to integrate feedback, to switch from simple
to complex strategies and to address metacognition. The model
was built after the experimental data were obtained.

This section is subdivided in the following manner: First, the
participant sample, setup and stimuli of the empirical experiment
are described. Then, themodeling approach is explained in detail.
Afterwards, the model setup and stimuli are presented. Finally,
the analytical methods to evaluate the fit between the model and
the empirical results are outlined.

Experiment Participants
55 subjects participated in the experiment that took place inside
a 3 Tesla MR scanner4 (27 female, 28 male, age range between
21 and 30 years, all right handed, with normal hearing). All
subjects gave written informed consent to the study, which
was approved by the ethics committee of the University of
Magdeburg, Germany.

Experimental Stimuli
A set of frequency-modulated different tones served as stimuli
for the categorization task. The tones differed in duration (short,
400 ms, vs. long, 800 ms), direction of frequency modulation
(rising vs. falling), intensity (low intensity, 76–81 dB, vs. high
intensity, 86–91 dB), frequency range (five low frequencies, 500–
831 Hz, vs. five high frequencies, 1630–2639 Hz), and speed
of modulation (slow, 0.25 octaves/s, vs. fast, 0.5 octaves/s),
resulting in 2 × 2 × 2 × 10 × 2 (160) different tones. The
task relevant stimulus properties were the direction of frequency
modulation and sound duration, resulting in four tone categories:
short/rising, short/falling, long/rising, and long/falling. For each
participant, one of these categories constituted the target sounds
(25%), while the other three categories served as non-targets
(75%).

As feedback stimuli, we used naturally spoken utterances (e.g.,
ja, “yes”; nein, “no”) as well as one time-out utterance (zu spät,
“too late”) taken from the evaluated prosodic corpus MOTI
(Wolff and Brechmann, 2012, 2015).

Experimental Paradigm
The experiment lasted about 33 min in which a large variety
of frequency-modulated tones (see Section Experimental Stimuli
above) were presented in 240 trials in pseudo-randomized order
and with a jittered inter-trial interval of 6, 8, or 10 s. The
participants were instructed to indicate via button-press whether
they considered the tone in each trial to be a target (right index
finger) or a non-target (right middle finger). They were not
informed about the target category but had to learn by trial
and error. Correct responses were followed by positive feedback,
incorrect responses by negative feedback. If participants failed to
respond within 2 s following the onset of the tone, the time-out
feedback was presented.

After 120 trials, a break of 20 s was introduced. From the
next trial on the contingencies were reversed such that the target
stimulus required a push of the right instead of the left button.

4The experiments were performed inside an MR scanner to study the specific

neural correlates of strategy formation which is the subject of another paper.

The participants were informed in advance about a resting period
after finishing the first half of the experiment but they were not
told about the contingency reversal.

Model in Detail
In the following, the model is presented in detail. First, a
description of the main declarative representations (chunks)
is provided. They reflect strategy representations and
metacognitive processes. This is followed by a description
of how the model runs through a trial. Finally, the rules that
govern strategy learning are summarized.

Chunks and Production Rules Used in the Model
The chunks implemented in the model are shown in Figure 1.
“Strategy chunks” hold the strategies in form of examples
of feature-value pairs and responses. They are stored in and
retrieved from long-term memory (declarative module). The
current strategy is held in working memory (imaginal module).
Strategy chunks contain the following information about the
strategy: which feature(s) and what corresponding value(s) are
relevant (e.g., the sound is loud or the sound is loud and
its frequency range is high), what the proposed response is
(categorization, 1 or 0), and the degree of complexity of the
strategy (e.g., one or two-feature strategy). Furthermore, an
evaluation mechanism is part of this chunk. This includes noting
if a strategy was unsuccessful and keeping track of how often a
strategy was successful. This tracking mechanism notices if the
first attempt to use this strategy is successful. It then counts
the number of successful strategy uses; this explicit count is
continued until a certain value is reached. We implemented such
a threshold count mechanism to reflect the subjective feeling
that a strategy was often useful. We implemented different
threshold values for the model. We also differentiated between
the threshold for one-feature strategies (first count) and for
two-feature strategies (second count). The tracking mechanism
can be seen as a metacognitive aspect of our model. Other
metacognitive aspects are implemented in the “control chunk”
which is kept in the goal buffer of the model. These metacognitive
aspects include: first, the level of feature-complexity of the
strategy, i.e., if the model attempts to solve the task with a
one-feature or with a two-feature strategy; second, whether
or not a long-time successful strategy caused an error, this
signifies the model’s uncertainty about the accuracy of the
current strategy; third, whether changes in the environment
occurred that require to renew the search for an adequate
strategy.

Trial Structure
Production rules govern how the model runs through the task.
The flow of the model via its production rules is illustrated
in Figure 2. The following section describes how the model
runs through a trial, the specific production rules are noted in
parentheses.

A tone is presented to the model and enters the aural-location
buffer (listen). After the tone has finished, it is encoded in the
aural buffer (encode). Thus, a chunk with all audio information
necessary (duration, direction of pitch change, intensity, and
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FIGURE 1 | Schematic build-up of the structure of the control and the strategy chunk. Nil indicates that the variable has no value.

FIGURE 2 | Schematic overview of how the model runs through a trial. The

dark-gray boxes on the left represent the production rules, the light-gray ovals

on the right the main buffers involved.

frequency range—see Section Modeling Paradigm and Stimuli
below) is in the aural buffer and all four characteristics of the tone
are accessible to the model. The audio chunk in the aural buffer is
then compared to the strategy chunk held in the imaginal buffer
(compare). If the specific features (e.g., intensity is high) of the
strategy chunks are the same as in the audio chunk, the response
is according to the strategy proposed by the model (react-same),
if not, the opposite response is chosen (react-different). The
presented feedback is listened to and held in the aural-location
buffer (listen-feedback) and then encoded in the aural buffer
(encode-feedback). If the feedback is positive, the current strategy
is kept in the imaginal buffer and the count-slot is updated
(feedback-correct). If the feedback is negative, the strategy is
updated depending on previous experiences (feedback-wrong).
Thus, a different strategy chunk is retrieved from declarative
memory and copied to the imaginal buffer.

Finding an Adequate Strategy
All possible strategies are already available in the model’s long-
term memory. The currently pursued strategy is maintained
in working memory and evaluated regarding the feedback. For
positive feedback, the strategy is retained and it is counted how
often it is successful. If feedback is negative, the strategy is usually
altered. The following subsection is a summary of how strategy
updating is implemented. For more information see Figure 3.

The model always begins with a one-feature strategy (which
strategy it begins with is random) and then switches to another
one-feature strategy. The nature of the switch depends on how
often a particular strategy was successful. When the model
searches for different one-feature strategies, it retrieves only
strategies which were not used recently. In case of immediate
failure of a one-feature strategy, a different response is used for
the feature-value pair. In other cases, the feature-value pair is
changed, but the response is retained. If a one-feature strategy
has been successful often and then fails once, the strategy is not
directly exchanged, but re-evaluated. However, it is also noted
that the strategy has caused an error. Two possibilities explain
why switches from a one-feature to a two-feature strategy occur:
Such a switch can happen either because no one-feature strategy
that was not negatively evaluated can be retrieved or because an
often successful one-feature strategy failed repeatedly. Switches
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FIGURE 3 | Rules governing when and to what degree the strategies are

changed after negative feedback is received.

within the two-feature strategy are modeled the following way: If
a two-feature strategy was unsuccessful at the first attempt, any
other two-feature strategy is used (which one exactly is random).
If a two-feature strategy was initially successful and then fails,
then a new strategy which retains one of the feature-value pairs
and the response will be selected. This strategy only differs in
the other feature-value pair. When the environment changes, a

previously often successful two-feature strategy (and also a one-
feature strategy) will fail. Then a retrieval of another two-feature
strategy is attempted. If at the time the environment changes,
the model has not found a successful two-feature strategy, it will
continue looking for a useful two-feature strategy, and thus not
notice the change.

Modeling Paradigm and Stimuli
The following section briefly describes how the experiment was
implemented for the model. This includes a short overview of
how the stimulus presentation was modified for the model.

The task of the participants was implemented for the model
in ACT-R 7.3 with some minor modifications. The same four
pseudo-randomizations used for the participants were also used
for the model. Thus, 25% of the stimuli were target stimuli. A
trial began with a tone, which lasted for 400 ms. To model the
two stimulus durations, we used two different features in the
new-other-sound command. As soon as the model responded via
button press, auditory feedback was presented. Overall, a trial
lasted for a randomized period of 6, 8, or 10 s, similar to the
original experiment. There was no break for the model after 120
trials, but the targets switched after 120 trials, too.

Instead of employing all 160 different tones, sixteen different
tones were presented to the model. Each of the tones is a
composition of four characteristics of the four binary features:
duration (long vs. short), direction of frequency modulation
(rising vs. falling), intensity (low intensity, vs. high intensity),
and frequency range (low vs. high). Only binary features were
used for the model because the perceptual difference between
the two classes of each selected feature was high, except for
speed of modulation, which was therefore not implemented in
the model. For the participants, more feature variations were
used to ensure categorical decisions and to prevent them from
memorizing individual tone-feedback pairs. This is not an issue
for the model, since no mechanism allowing such memorizing
was implemented. As for the participants, auditory feedback was
presented to the model.

The modeling approach is a mixed modeling approach,
the strategies are encoded as instances, but which instance is
retrieved is mainly governed by rules.

To test if the model is a generalizable model, different
variations were implemented. The learning curves found in the
empirical data should still be found under different plausible
parameter settings. However, specific parameter settings should
influence the predictive quality of the model. The approach
typically chosen by cognitive modelers is to search for specific
parameter settings that result in an optimal fit and then report
this fit. The objective behind such an approach is to show that
the model resembles the ongoing cognitive processes in humans.
We have chosen a different approach. Our objective is to show
that our modeling approach can map the general behavior such
as learning and reversal learning as well as variance found in the
data. By varying parameter settings, we want to optimize the fit of
the model and examine the robustness of the model mechanisms
to parameter variations.

Regarding the choice of varying parameters, we use an
extended parameter term which includes not only subsymbolic
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ACT-R parameters (which are typically regarded as parameters)
but also certain (production) rules (Stewart and West, 2010).
In the case of this model, productions that control the tracking
mechanism of successful strategies are varied. The tracking
mechanism keeps track of how often a strategy is successful.
However, the model does not increase the count throughout
the entire experiment. After it reaches a threshold, a successful
strategy is marked as “successful often.” Thereafter, it is not
discharged directly in case of negative feedback but instead
reevaluated. So, to answer the question what the most suitable
values for the threshold of the first and second count are, these
values were varied. Another implemented model assumption
is that this threshold is different for single-feature vs. two-
feature strategies. We assumed that the threshold for two-feature
strategies should be double the value for one-feature strategies,
as if the model was counting for each feature separately. The first
count was varied for three, four and five and the second count for
six, eight, and ten.

Besides the parameters that control the tracking mechanism,
we also investigated a parameter-controlled memorymechanism.
The latter controls for how long the model can remember
if it had already used a previous strategy. This is the
declarative-finst-span5 parameter of ACT-R. We assumed that
participants remember which strategy they previously used for
around 10 trials back. We therefore tested two different values
(80 and 100 s) for this parameter, determining whether the model
can remember if this chunk has been retrieved in the last 80 (or
100) s. The combination of the declarative-finst-span (80, 100),
three values for the first count (3, 4, 5) and three values for the
second count (6, 8, 10) resulted in 18 modeling versions (see
Table 1).

Analyses
Each of the models was run 160 times, 40 times for each pseudo-
randomized order, using ACT-R 7.3. The data were preprocessed
with custom Lisp files and then analyzed with Microsoft Excel.

The model data and the empirical data were divided into 12
blocks, with 20 trials per block. The average proportion of correct
responses and the standard deviation per block was computed for
the experiment as well as for each of the 18 models.

One aim of this study was to predict average learning curves of
the participants. Thus, the proportion of correct responses of the
participants was compared to the proportion of correct responses
of each of the models. Visual graphs comparing the modeled to
the empirical data were analyzed with regard to increases and
decreases in correct responses.

As an indication of relative fit, the correlation coefficient
(r) and the determination coefficient (r2) were computed. They
represent how well trends in the empirical data are captured by
the model.

As an indication of absolute fit, the root-mean-square error
(RMSE) was calculated. RMSE represents how accurately the

5The declarative-finst-span parameter controls how long a finst (fingers of

instantiation) can indicate that a chunk was recently retrieved. The number of

items and the time for which an item can be tagged as attended is limited. These

attentional markers are based on the work of Zenon Pylyshyn.

TABLE 1 | Resulting modeling versions from combining the different parameter

settings for the first and second count and the declarative-finst-span.

First count 3 First count 4 First count 5

:declarative-

finst-span

80

Second count 6 3_06 _080 4_06 _080 5_06 _080

Second count 8 3_08 _080 4_08 _080 5_08 _080

Second count 10 3_10 _080 4_10 _080 5_10 _080

:declarative-

finst-span

100

Second count 6 3_06 _100 4_06 _100 5_06 _100

Second count 8 3_08 _100 4_08 _100 5_08 _100

Second count 10 3_10 _100 4_10 _100 5_10 _100

FIGURE 4 | Average performance and standard deviations of the human

participants, the best fitting model (3_06_100), and the worst fitting model

(5_10_100) in the 12 blocks of the experiment.

model predicts the empirical data. RMSE is interpreted as the
standard deviation of the variance of the empirical data that is
not explained by the model.

To compare the participant-based variance found in the
empirical data with the variance produced by the 160 individual
model runs, a Levene’s test (a robust test for testing the equality
of variances) was calculated for each block of the experiment.

RESULTS

In the following sections, the empirical data, the modeled
learning curves, and the results regarding the general fit of the
different model versions to the data are presented.

Empirical Learning Curves
The descriptive analysis of the empirical data (see Figure 4 and
Table 2) shows that on average, in the first block the participants
respond correctly in 64.3% (±13.5%) of the trials. The response
rate of the participants increases until the sixth block to 90.4%
(±12.2%) of correct trials. In the seventh block, the block in
which targets and non-targets switch, it drops to 56.5% (±17.7%)
of correct trials. It then increases again and reaches 81.0%
(±18.5%) of correct trials in the eighth block and 89.7% (±13.9%)
of correct trials in the last block. Across all 12 blocks, the standard
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deviation of the empirical data ranges from 10.7% minimum to
18.9% maximum, with an average standard deviation of 15.1%.
The standard deviation of the participants derives from the fact
that different participants showed different learning curves, and
not all participants reported to have found the correct strategy
in a post interview. Correspondingly, eleven participants (20.0%)
showed a performance below 85% by the end of the first part
of the experiment (Block 6), and 12 participants (21.8%) stayed
below 85% correct responses at the end of the second part
(Block 12).

Modeled Learning Curves
Figure 4 further shows the means and standard deviations of
the proportion of correct responses of the best (3_06_100) and
worst fitting (5_10_100) model (see below, Section Model Fit).
In addition, Table 2 lists the model performance means and
standard deviations for each of the twelve blocks for all 18
models, and Figure 5 shows the learning curves of all 18 models.

Both the best and the worst fitting model (as do all others)
capture the overall shape of the learning curve found in the
data. They both show an increase in the learning rate in the
first six blocks. Similarly, all models show a drop in performance
in the seventh block, which is followed by another increase in
performance. Even in the best fitting 3_06_100 model, however,
the proportion of correct responses is underestimated by the
model, especially in the first blocks. Also, the participants show a
more severe setback after the switch but then recover faster, while
the model takes longer until its performance increases again.
Nevertheless, for the best fitting model, the modeled data are
always within the range of the standard deviation of the empirical
data.

As Table 2 shows, each of the models shows a large degree
of variance across its 160 runs. The standard deviation averaged
across all 12 blocks ranges from 18.9 to 20.4%, depending on
the model’s parameter settings. For the best-fitting model, the
standard deviation in the individual blocks ranges from 11.6
to 23.4% and is significantly larger than the standard deviation

found in the empirical data, except for the first two blocks of the
experiment and the first two blocks after the switch (for all blocks
except Block 1, 2, 7, and 8: all Fs > 6.79, all ps < 0.010). This
high variation of the individual model runs indicates that the
same underlying rule-set with the same parameter settings can
still result in very different learning curves, depending on which
exact strategies are chosen at each point when a new strategy is
selected (e.g., initial strategy, alteration of one-feature strategy,
alteration of two-feature strategy). Furthermore, similarly to the
non-learners among the participants described above (see Section
Empirical Learning Curves), not every model run was successful,
resulting (for the best fitting model) in a performance below 85%
in 35.6% of the runs for Block 6 and in 30.0% of the runs for
Block 12.

Model Fit
The average correlation of the model and the empirical data
is 0.754. Between 43.9% and 67.1% of the variance in the
data is explained by the different models. The average standard
deviation of the unexplained variance is 0.136. All r, r2, and
RMSE values for the 18 model versions are presented in Table 3.

As Table 3 and Figure 5 show, the model shows relative
robustness to the influence of varying parameter settings. For the
first count, a lower value is somewhat better for the fit—there is
a stronger increase in the first part of the experiment (until Block
6) for a lower than for a higher first count value. For the second
count, a lower value results in a better fit as well. The influence
of the declarative-finst-span parameter on the fit-indices is very
small, resulting in a slightly better fit either for a declarative-finst-
span of 80 s or of 100 s, depending on the settings of first and
second count.

The best fit in terms of correlation was achieved for the model
with the declarative-finst-span value set to 100 (i.e., the model
was able to remember if it had already used a previous strategy
for 100 s), a first count of three (i.e., a one-feature strategy needed
to be successful at least three times to be considered as “often
successful”) and a second count of six (i.e., a two-feature strategy

FIGURE 5 | Average performance of the 18 versions of the model in the 12 blocks of the experiment, (A) models with a declarative-finst-span of 80 s, (B) models with

a declarative-finst-span of 100 s.
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TABLE 3 | Values of r, r2, and RMSE of the 18 versions of the model.

r r2 RMSE

3_06_080 0.812 0.659 0.124

3_06_100 0.820 0.672 0.109

3_08_080 0.745 0.555 0.134

3_08_100 0.803 0.645 0.119

3_10_080 0.785 0.616 0.132

3_10_100 0.798 0.636 0.114

4_06_080 0.805 0.649 0.128

4_06_100 0.794 0.631 0.124

4_08_080 0.726 0.527 0.138

4_08_100 0.743 0.552 0.135

4_10_080 0.745 0.555 0.146

4_10_100 0.741 0.549 0.133

5_06_080 0.733 0.537 0.146

5_06_100 0.722 0.521 0.152

5_08_080 0.697 0.485 0.164

5_08_100 0.718 0.516 0.158

5_10_080 0.721 0.520 0.144

5_10_100 0.663 0.439 0.156

OVERALL

MEAN 0.754 0.570 0.136

MIN 0.663 0.439 0.109

MAX 0.820 0.671 0.164

needed to be successful at least six times to be considered as
“often successful”). The worst fit was observed for the model with
the declarative-finst-span value set to 100, a first count of five and
a second count of ten.

The RMSE varies from a minimum of 0.106 (3_06_100) to a
maximum of 0.164 (5_08_100). Thus, themodel with a first count
of three, a second count of six and a declarative-finst-span set to
100 performs best, both in terms of correlation (r) and absolute
prediction (RMSE).

Summary
In general, the models predict the data well. The modeled
learning curves resemble the form of the average empirical
learning curve, with an increase in the first half of the experiment,
a short decrease at the beginning of the second half, followed by
another increase in performance. The correlation indices of the
best fitting model show a good fit, with 67.2% of the variance
of the data being explained by the model with a declarative-finst
span of 100 s, a first count threshold of three and second count
threshold of six. Note that this is also the model with the closest
absolute fit (RSME is 0.109).

However, in absolute percentages of correct responses, all of
the models perform below the participants in all blocks (except
Block 7). Also, the models show greater overall variance than the
empirical data. Furthermore, the models are initially less affected
by the switch in strategies but take longer to “recover” from the
switch in strategies.

In summary, the model replicates the average learning curves
and large parts of the variance. It does so with a limited set of

rules and the given exemplars, covering learning and relearning
processes which take place in dynamic environments. Moreover,
we found differences in model fit depending on the exact
specification of the parameters, with the best fit if the model
remembers previously employed strategies for 100 s, marks a
one-feature strategy as “often successful” after three successful
uses and a two-feature after six successful uses. However, all
of the 18 different parameter settings we tested resembled
the main course of the empirical data, thereby indicating
that the mechanisms of the model are robust to parameter
variations.

DISCUSSION

The discussion covers three main chapters. First, the fit of the
model is discussed and suggestions for possible improvements
are given. Second, the broader implications of our approach are
elaborated. Finally, future work is outlined.

Discussion of the Modeling Approach
Our modeling account covers relevant behavioral data of a
dynamic decision-making task in which category learning is
required. To solve the task, two features have to be combined,
and the relevant feature combination needs to be learned by trial
and error using feedback. The model uses feedback from the
environment to find correct categories and to enable a switch in
the assignment of response buttons to the target and non-target
categories. Metacognition is built into the model via processes
that govern under what conditions strategic changes, such as
transitions from one-feature to two-feature strategies, occur.

Overall, the fit indices indicate that this model solves the
task in a similar way as participants do. This includes successful
initial learning as well as the successful learning of the reversal
of category assignment. Moreover, the observation was made
that not all participants are able to solve the task, and the
same is observed in the behavior of the modeling approach.
Thus, the model is able to generate output data that, on a
phenomenological level, resemble those of subjects performing
a dynamic decision-making task that includes complex rule
learning and reversal processes. Although the overall learning
trends found in the data can be replicated well with the general
rules implemented in our model, there are two limitations: The
variance of the model is larger than that of the participants,
and the overall performance of the model is lower than the
performance of the participants.

It is likely that the participants have a different and perhaps
more specific set of rules than the model. For example, the
participants were told which of the two keys to press for the
target sound. However, it is unclear if they used this knowledge
to solve the task. To keep the model simple, it was not given
this extra information, so there was no meaning assigned to
the buttons. This is one possibility to explain the model’s lower
performance, especially in the first block. Another example for
more task specific rules used by the participants compared to
the model is that the four different features of the stimuli may
not be equally salient to the subjects, which may have led to
a higher performance compared to the model. For example,
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it is conceivable that the target-feature direction of frequency
modulation (up vs. down) was chosen earlier in the experiment
than the non-target feature frequency range, while the model
treated all features equally to keep the model as simple as
possible. Finally, after the change of the button press rule,
some participants might have followed a rule which states to
press the opposite key if a strategy was correct for many times
and then suddenly is not, instead of trying out a different
one- or two-feature strategy, whereas the model went the
latter way.

Adding such additional rules and premises to themodel would
possibly reduce the discrepancy between the performance of
the model and the behavioral data. However, the aim of this
paper was to develop a modeling approach that incorporates
general processes important for all kinds of dynamic decision-
making. This implies using only assumptions that are absolutely
essential (meta-cognition, switching from one-feature to two-
feature strategies, learning via feedback) and keeping the model
as simple as possible in other regards. As a consequence,
adding extra rules would not produce a better general model
of dynamic decision-making, but would only lead to a better fit
of the model for a specific experiment while making it prone
to overfitting. As mentioned earlier, good descriptive models
capture the behavioral data as closely as possible and therefore
always aim at maximizing the fit to the data they describe. Good
predictive models, on the other hand, should be generalizable
to also predict behavior in different, but structurally similar
situations and not just for one specific situation with one set of
subjects. In our view, this constitutes a more desirable quest with
more potential to understand the underlying processes of human
dynamic decision-making. This is supported by Gigerenzer and
Brighton (2009), who argue that models that focus on the core
aspects of decision-making, e.g., considering only few aspects,
are closer to how humans make decisions. They also argue that
such simplified assumptions make decisions more efficient and
also more effective (Gigerenzer and Brighton, 2009).

As stated earlier, one way to model dynamic decision-
making in ACT-R using only few assumptions is instance
based learning (IBL). This approach uses situation-outcome
pairs and subsymbolic strengthening mechanisms for learning.
However, IBL is insufficient to model tasks which involve
switches in the environment (Fum and Stocco, 2003). Such
tasks require adding explicit switching rules. Besides these
rules, our task needed mechanisms that control when to switch
from simple one-feature strategies to more complex strategies.
Since meta-cognitive reflections are not part of IBL, we used
a mixed modeling approach which incorporates explicit rules
and metacognitive reflection. IBL is insofar part of our approach
as the strategies are encoded as situation-outcome pairs and
subsymbolic strengthening mechanisms of ACT-R are utilized.

To evaluate if our modeling approach of strategy formation
and rule switching is in line with how participants perform in
such tasks, data reflecting learning success need to be considered.
Such data are the learning curves reported in this paper. We
believe that an IBL model alone cannot produce the strong
increase in performance after the environmental change in the
empirical data.

For a further understanding of complex decision-making,
other behavioral data, such as reaction times, could also be
modeled. However, not all processes that probably have an
impact on reaction time are part of our general modeling
approach. This is especially the case for modeling detailed aspects
of auditory encoding with ACT-R; for example, the precise
encoding of the auditory events can be expected to comprise a
different gain in reaction time for short compared with longer
tones. However, our modeling approach is expandable, allowing
the incorporation of other cognitive processes such as more
specific auditory encoding or attention. This extensibility is one
of the strengths of cognitive architectures and is particularly
relevant for naturalistic decision-making, where many additional
processes eventually need to be considered.

Scope of the Model
A formal model was built with ACT-R, it specifies the
assumptions of dynamic decision-making in category learning.
This model was tested on empirical data and showed similar
learning behavior. Assumptions about how dynamic decisions
in category learning occur, e.g., by learning from feedback
and switching from simple to more complex strategies, and
metacognitive mechanisms were modeled together. ACT-R aims
at modeling cognition as a whole, thus addressing different
cognitive processes simultaneously, an important aspect for
modeling realistic cognitive tasks.Moreover, themodel is flexible.
Thus, the model chooses from the available strategies according
to previous experience and random influences.

Ourmodeling approach is simple in the sense that it comprises
only few plausible assumptions, does not rely on extra parameters
and is nevertheless flexible enough to cope with dynamically
changing environments.

To test the predictive power of the model, it needs to
be further tested and compared to new empirical data that
are obtained using slightly different task settings. Our aim
was to develop a first model of dynamic decision-making
in category learning. Thus, relevant cognitive processes that
occur between stimulus presentation and the actual choice
response are included in the model. Furthermore, we wanted
to show how a series of decisions emerge in the pursuit of an
ultimate goal. Thus, as a first step we needed a decision task
that shows characteristics similar to natural dynamic settings.
Such aspects include complex multi-feature stimuli, feedback
from the environment, and changing conditions. Since explicit
hints on category membership are usually not present in non-
experimental situations, it is furthermore reasonable to use a
task without explicit instructions regarding which features (or
stimuli) attention should be focused on. The downside of using
unspecific instructions as done in our study is that from the
behavioral data, it will remain unclear how exactly individual
participants process such a task, since aspects such as which
exact rules are followed or which features are considered at the
beginning of a task, are uncertain.

As a next step we aim at modeling and predicting the dynamic
decision-making course of individual participants. In general,
a big advantage of cognitive modeling approaches is that they
can predict ongoing cognitive processes at any point in time. To
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evaluate the validity of such predictions, different approaches can
be followed.

One approach to constructing models in accordance with
the cognitive processes of participants is the train-to-constrain
paradigm (Dimov et al., 2013). This paradigm requires
instructing participants in a detailed step-by-step procedure on
how to apply specific strategies in decision tasks. This approach
gives the modeler insight into the strategies that participants are
using at a given time point. This again can be used to constrain
ACT-R models in the implementation of these strategies. In
future studies, we plan to adopt this paradigm by (a) instructing
the participants and (b) adjusting our model accordingly. To
ensure that the train-to-constrain paradigm was successfully
implemented, self-reports of the participants should be used.

Another approach is to conduct interviews while the
participant is performing the task. To confirm the model’s
predictions about the prospective behavior of participants,
subjects of future empirical studies should thus be asked about
their decisions during the course of the experiment. The first few
participant decisions can be expected to be strongly influenced
by random aspects (e.g., which feature is attended to first), but
after some trials, the modeling approach should be able to predict
the next steps of the participants. Thus, it should allow precise
predictions of the subsequent cognitive processes. To make such
predictions, a revised model would need to use the first couple of
trials as information about the strategy an individual participant
initially follows.

In a further step, the exact cognitive processes proposed by
the model should be tested on an individual level on more
fine grain data (e.g., fMRI) and then be readjusted accordingly.
Currently, different methods to map cognitive models to finer
grain data such as fMRI or EEG data have been proposed
(Borst and Anderson, 2015; Borst et al., 2015; Prezenski and
Russwinkel, 2016a). These methods are currently investigated
and have been applied for basic research questions. Nevertheless,
mapping cognitive models to neuronal data is a challenge. More
research is needed especially for applied tasks. To supplement
neuronal data, additional behavioral data, such as button press
dynamics (e.g., intensity of button press), can be added as an
immediate measurement of how certain an individual participant
is about a decision (Kohrs et al., 2014).

Besides using cognitive models to predict individual behavior,
we aim to develop more general cognitive mechanisms to model
learning, relearning and metacognition that are valid in a broad
range of situations. To test the applicability of our modeling
approach in a broader context and different situations, variations
of the experiment should be tested with different tasks and
materials. For example, the model proposed here should be able
to predict data from categorization experiments using visual
stimuli such as different types of lamps (Zeller and Schmid,
2016) with some modifications to the sensory processing of our
model. Furthermore, the model should be capable of predicting
data from different types of categorization tasks, for example a
task using a different number of categorization features, more
switches or different sequences. Such a task would be a predictive
challenge for our model; if it succeeds, it can be considered as a
predictive model.

The developed general mechanisms can also be used in
sensemaking tasks. Such tasks require “an active process to
construct a meaningful and functional representation of some
aspects of the world” (Lebiere et al., 2013, p. 1). Sensemaking
is an act of finding and interpreting relevant facts amongst the
sea of incoming information, including hypothesis updating.
Performance in our task comes close to how people make sense
in the real world because it involves a large number of different
stimuli, each carrying different specifications of various features.
Thus, “making sense of the stimuli” requires the participants
to validate each stimulus in a categorical manner and use the
extracted stimulus category in combination with the selected
button-press and the feedback that follows as information for
future decisions.

To conclude, such a cognitive model which includes general
mechanism for learning, relearning andmetacognition can prove
extremely useful for predicting individual behavior in a broad
range of tasks. However, uncertainty remains regarding whether
this captures the actual processes of human cognition. This is not
only due to the fact that human behavior is subject to manifold
random influences, but also to the limitation that a model
always corresponds to a reduced representation of reality. The
modeler decides which aspects of reality are characterized in the
model. Marewski andMehlhorn (2011) tested different modeling
approaches for the same decision-making task. While they found
that their models differed in terms of how well they predicted
the data, they ultimately could not show that the best fitting
model definitely resembles the cognitive processes of humans. To
our knowledge, no scientific method is ever able to answer how
human cognition definitely works. In general, models can only
be compared in terms of their predictive quality (e.g., explained
variance, number of free parameters, generalizability). Which
model ultimately corresponds to human reality, on the other
hand, cannot be ascertained.

Outlook
One reason for modeling in cognitive architectures is to
implement cognitive mechanisms in support systems for
complex scenarios. Such support systems mainly use machine
learning algorithms. Unfortunately, those algorithms depend on
many trials to learn from before they succeed in categorization
or in learning in general. Cognitive architecture inspired
approaches, on the other hand, can also learn from few samples.
In addition, approaches that rely on cognitive architectures are
informed models that provide information about the processes
involved and the reasons that lead to success and failure.

Cognitive models can be applied to a variety of real-world
tasks, for example to predict usability in smartphone interaction
(Prezenski and Russwinkel, 2014, 2016b), air traffic control
(Taatgen, 2001; Smieszek et al., 2015), or driving behavior
(Salvucci, 2006). Moreover, cognitive modeling approaches can
also be used in microworld scenarios (Halbrügge, 2010; Peebles
and Banks, 2010; Reitter, 2010). Not only can microworld
scenarios simulate the complexity of the real world, they also have
the advantage of being able to control variables. This implies that
specific variations can be induced to test the theoretical approach
ormodel in question (as demonstrated in Russwinkel et al., 2011).
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Many applied cognitive models are quite specific task models.
Our model, in contrast, aims at capturing core mechanisms
found in a variety of real world tasks. As a consequence, it
has the potential to be applied in many domains. So, our
model of dynamic decision-making in a category learning task
makes predictions about the cognitive state of humans during
such a task. This involves predictions about strategies (e.g.,
one-feature or two-feature strategies), conceptual understanding
(e.g., assumptions about relevant feature combinations) and
metacognitive aspects (e.g., information on the success of the
decision maker’s current assumption), all of which are aspects of
cognition in a multitude of tasks and application domains.

Our general modeling approach therefore has the potential to
support users in many domains and in the long run could be
used to aid decision-making. For this, the decisions of individual
users during the course of a task could be compared to the
cognitive processes currently active in the model. If for example
a user sticks to a one-feature strategy for too long or switches
rules in an unsystematic manner, a system could provide the
user with a supportive hint. Other than regular assistant systems,
such a support system based on our model would simulate the
cognitive state of the user. For example, this online support
system would be able to predict the influence of reoccurring
negative feedback on the user, e.g., leading him to attempt a
strategy change. If, however, the negative feedback was caused by
an external source such as a technical connection error, opting
for the strategy change would result in frustration of the user.
The proposed support system would be able to intervene here.
Depending on the internal state of the user, the support system
would consider what kind of information is most supportive or
if giving no information at all is appropriate (e.g., in case of
mental overload of the user). As long as no support is needed,
systems like this would silently follow the decisions made by a
person.

Moreover, if the goal of the user is known, and the decisions
made by the user have been followed by the system, it would
be possible to predict the user’s next decisions and also to
evaluate whether those decisions are still reasonable to reach
the goal. Many avalanches have been caused by repeated wrong

decisions by backcountry skiers stuck in their wrong idea about
a situation (Atkins, 2000). A support system that is able to
understand when and why a person is making unreasonable
decisions in safety critical situations would also be able to present
the right information to overcome the misunderstanding. A
technical support system for backcountry skiers would need
information about current avalanche danger, potential safe routes
and other factors. Such information is already provided by
smartphone applications that use GPS in combination with
weather forecasts and slope-steepness measures. In the future,
when this information is made available to a cognitive model-
based companion system that predicts the decisions of the users,
it could potentially aid backcountry skiers. Cognitive model-
based support systems designed in a similar manner could
equally well be employed in other safety-critical domains, as well
as to assist cyclist, drivers or pilots.
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