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Abstract

This article reports on the calibration and analysis of §fdisaggregate (agent-based) trans-
port simulation for the metropolitan area of Zurich. Therageased simulation goes beyond
traditional transport models in that it equilibrates notyoroute choice but all-day travel be-
havior, including departure time choice and mode choicesviBus work has shown that the
application of a novel calibration technique that adjuitsteice dimensions at once from traf-
fic counts yields cross-validation results that are corntipetivith any state-of-the-art four-step
model. While the previous study aims at a methodologicasithtion of the calibration method,
this work focuses on the real-world scenario, and it elalesran the usefulness of the obtained
results for further demand analysis purposes.



1 Introduction

The well-known four-step process, consisting of trip gatien, trip distribution (= destination
choice), mode choice, and route assignment, has teenodeling tool in urban transportation
planning for many decades [1]. However, the four-step m®cat least in its traditional form,
has many problems with modern issues, such as time-depeeifiects, more complicated de-
cisions that depend on the individual, or spatial effecth@tmicro (neighborhood) scale [2].

An alternative is to use a microscopic approach, where etrameler is modeled individu-
ally. One way to achieve this is to start with the synthetipydation and then work the way
“down” towards the network assignment. This typically lesin activity-based demand models
(ABDM), e.g, [3, 4, 5, 6], which sometimes do and sometimesaoiinclude the mode choice,
but typically end with time-dependent origin-destinati@D) matrices, which are then fed to
a separate route assignment package. The assignment paagutes a (typically dynamic)
route equilibrium and feeds the result back as time-depdrame-to-zone travel impedances.
When feedback is implemented, then the activity-based ddmeodel recomputes some or all
of its choices based on those travel impedances [7].

This type of coupling between the ABDM and the traffic assigntrieaves room for improve-
ment [8, 9]. In particular, it can be argued that route chdécalso a behavioral aspect, and in
consequence the decision to include route choice into igrasent model rather than into the
demand model is arbitrary. Problems immediately show upéfattempts to base a route choice
model in a toll situation on demographic characteristiche-demographic characteristics, al-
beit present in the ABDM, are no longer available at the |®fg¢he assignment. Similarly, in
all types of intelligent transport system (ITS) simulaspany modification of the individuals’
decisions beyond route choice becomes awkward or impedsitinplement.

An alternative is to split the assignment into a route choioelel and a network loading model
and to add the route choice to the ABDM, which leaves the ndtwaading as the sole non-

behavioral model component. If it is implemented as a trdffiw microsimulation, then the

integrity of the simulated travelers can be maintainedughmut the entire modeling process.
This has the following advantages:

¢ Both the route choice and the network loading can be relaietie characteristics of
the synthetic person. For example, toll avoidance can bedbas income, or emission
calculations can be based on the type of vehicle (computad impstream car-ownership
model).

¢ Additional choice dimensions besides route choice candaded in the iterative proce-
dure of assignment (also see [10, 11, 12]).

e The fully disaggregate approach enablegapostanalysis of arbitrary demand segments.
This is an important advantage over any simulation based Dbmftrices, where the
aggregation is dongrior to the simulation.

This implies that, at least in principle, all choice dimems of the ABDM can react to the
network conditions, but it also requires to build modelshi$ ffeedback for all affected choice
dimensions. While, for example, route choice only lookshat generalized cost of the trip,
departure time choice also includes schedule delay coste mimoice compares the generalized
costs between different modes, location choice includesatiractiveness of the possible des-
tinations, etc. This brings along a vast increase in modeadipportunities, but it also requires
substantially more modeling efforts.

In this article, we report on how such an approach can be mngi¢ed, calibrated, and analyzed,
using the metropolitan area of Zurich as an example (as aegibn of an “all-of-Switzerland”



scenario [13]). In previous work [14, 15], the results of dadibrated simulation are compared
to 161 counting stations in the Zurich metropolitan areasite of the vastly increased scope
of the model when compared to a four-step approach, we aeetalsbproduce traffic counts
with an error of 10 % to 15 % throughout the entire analysisoperQualitatively, these results
are competitive with any state-of-the art four-step mobet they come along with entirely new
modeling perspectives. While the previously publishediltesaimed at an illustration of the
deployed calibration method, this work gives a detailedyaimof the real-world scenario and
the calibration results, and it elaborates on the usefsloéshese results for further demand
analysis purposes. Specifically, we investigate how certharacteristic numbers generated
by the calibration can be behaviorally interpreted, and tiowinterpretation facilitates further
demand analysis purposes in terms of trip generation¢éitiraanalysis and the identification of
over/under-estimated demand segments.

The quality of the presented real-world results is to a lamgent due to new methodological
advances on the calibration side: Until recently, the #-gi@cess was ahead of our approach
in this regard because its simple mathematical structlowevedi for the development of a broad
variety of (more or less automated) demand calibration g@omes. In this article, however,
we deploy a novel methodology for the calibration of demancrosimulations from network
conditions such as traffic counts. The theory for this waslbged over the last couple of years
[15, 16].

The remainder of this article is organized as follows. &2 and 3 introduce the used mi-
crosimulation and the deployed calibration system. The fstidy is described in Section 4.
Section 5 details the mechanisms through which the calilorabkes effect and elaborates on
the further demand analysis opportunities this bringsaldfinally, Section 6 summarizes the
article and indicates future research opportunities.

2 Transport microsimulation

The MATSIim (“Multi-agent transport simulation toolkit”1[7, 18]) transport microsimulation is
used for the purposes of this study. This simulation is caostd around the notion afgents
that make independent decisions about their actions. Eaeblér of the real system is modeled
as an individual agent. The simulation consists of two miajoiding blocks, which are mutually
coupled:

e On the demand side, each agent independently generatesaiestplan, which encodes
its intentions during a certain time period, typically a dayhe plan is an output of an
activity-based model that comprises but is not constrainedute choice, and its genera-
tion depends on the network conditions expected by the agent

¢ On the supply side, the plans of all agents are simultang@xslcuted in a simulation of
the physical system. This is also called treffic flow simulation or mobility simula-
tion.

The mutual coupling of demand and supply is iteratively kesahy which can be seen as a mech-
anism that allows agents tearn. The simulation iterates between plan generation anddraffi
flow simulation. It remembers several plans per agent anii@es the performance of each
plan. Agents normally prefer plans with good performanad, they sometimes re-evaluate
inferior plans, and they sometimes obtain new plans by misdjfcopies of existing plans.

The following subsections explain these items in great&ailde



2.1 Choice set generation

A plan contains the itinerary of activities the agent wantpérform during the day, plus the
intervening trip legs the agent must take to travel betwetiniies. An agent’s plan details the
order, type, location, duration and other time constraiftsach activity, and the mode, route
and expected departure and travel time of each leg.

A specification of the plan choice set for every agent befbeeiterations is computationally
extremely cumbersome because of the sheer number of posdibtnatives [19]. Such an ap-
proach also is conceptually questionable because thesiuitigs measures that affect the in-
clusion of a plan in the choice set are an outcome of the ibergtand hence they are a priori
unknown. Therefore, the choice set is continuously upddteihg the iterations. Speaking in
the technical terms of MATSim, a plan can be modified by varimedules This paper makes

use of the following modules.

e Theactivity times generator randomly changes the timing of an agent’s plan. In every
iteration, there is a 10 % chance that this module is usedrtergée a new plan.

e Therouter is implemented as a time-dependent Dijkstra algorithmrilnad based on link
travel times obtained from the mobility simulation. In eyéteration, there is a 10%
chance that this module is used to generate a new plan.

e Mode choiceis enabled by ensuring that the choice set of every agenaicsnat least
one “car” and one “non-car” plan.

These modules are used in the following way. In every iterateach agent selects one plan for
execution. With a 10 % probability, this plan is uniformlylesgted, the activity times generator
is applied, and then the modified plan is executed. Likewtsere is a 10 % probability to
uniformly select a plan to which the router is applied beftite plan is executed. With the
remaining 80 % probability, no plan-changing module is ysedl an existing plan is selected
for execution according to the choice model described imthe subsection.

The choice set generation is turned off after a pre-spedifiedber of iterations such that the
agents select from a stable choice set using the utilitpdbatoice model described next. This
choice model is also applied during the choice set generatiorder to drive the system towards
a plausible state from the very beginning.

2.2 Choice

In order to compare plans, it is useful to assign a quantéaitoreto the performance of each
plan. In principle, arbitrary scoring schemes can be usaf, prospect theory [20]. In this
work, a simple utility-based approach is used. The elemafrttse approach are as follows:

e The total score of a plan is computed as the sum of individaatributions consisting of
positive contributions for performing an activity and ntgg contributions for traveling.

¢ A logarithmic form is used for the positive utility earned pgrforming an activitya,
which essentially has the following form:

V})erf(a) = Bperf : t:; In tperf,a (1)

wheret,., s o is the actually performed duration of the activity,is the “typical” duration
of the activity, and3,,., s is the marginal utility of an activity at its typical duratioThese
durations are sampled from empirical distributions tha&t extracted from census data



[21]. Bpers is the same for all activities since in equilibrium all adies at their typical
duration need to have the same marginal utility. As long &sigcdropping or activity
insertion are not allowed, a minimal duration, sometimesdua other publications, has
no effect. Concrete values for the parameters are givenitatbe description of the case
study.

e The (dis)utility V;,...e(1) Of traveling along a led is assumed to be linear in the travel
time with different valuations of the time for different frgport modes. Again, concrete
parameter values are given later on.

The total utility of a plani can thus be written as

V(i) = Z V;?erf(a) + Z Viravet (1)- 2

acs lei

It is important to note that the score thus takes into accthntomplete daily plan. More details
can be found in [18, 22].

The plan choice is modeled with a multinomial logit model {gthclearly calls for enhance-
ments in the future) [23]. However, as stated before, it magpen that an agent receives a
newly generated plan from one of the aforementioned plaemion modules, which then is
chosen for execution without further evaluation. This isessary because the utility of a plan
is determined from its execution, and hence it is not avll&dr newly generated plans.

Summarizing, the probability, (i) that agent: chooses planis

®3)

Po(i =1 if 7 is newly generated
n( ,
~ exp(V(i)) otherwise

where the normalization of the logit model is omitted foratainal simplicity.

2.3 Traffic flow simulation

The traffic flow simulation executes the plans of all agentsutaneously on the network and
provides output describing what happened to each indiVidgent during the execution of its
plan. The traffic flow simulation is implemented as a queuaukition, which means that each
street (link) is represented as a FIFO (first-in first-outgwg with three restrictions [24, 25]:
First, each agent has to remain for a certain time on the Ginkiesponding to the free speed
travel time. Second, the outflow rate of a link is constraibgdts flow capacity. Third, a link
storage capacity is defined, which limits the number of agentthe link. If it is filled up, no
more agents can enter the link, and spillback may occur.

3 Calibration system

The previous section describes a simulation that prediggperformance of a transportation
system through an iterative process that couples compleanvimral and physical models. No-
tably, some aspects of the simulation are what one may cedicgulurally modeled” in that
there is no explicit mathematical specification of the reipe sub-model but rather a sequence
of processing steps that build the model output.

This lack of a comprehensive mathematical perspective ersithulation and its outputs has,
until recently, rendered the calibration of the system k b&sed on intuition and, unfortunately,



the arbitrariness this brings along. This section outlithes Cadyts (“Calibration of dynamic
traffic simulations” [26, 27]) calibration tool. Becausealtows to calibrate arbitrary choice
dimensions from traffic counts in a fully disaggregate manih&ends itself to an application in
the Zurich case studly.

3.1 Basic functioning

Cadyts makes no assumptions about the form of the plan cHa@ittébution or about the choice
dimensions it represents. It combines the prior choiceridigton P, (i) with the available
traffic countsy into a posterior choice distributioR, (:|y) in a Bayesian manner. The resulting
posterior distribution is, essentially, of the followingrin [15]:

Patly) ~ exp (G200 - P @

whereL(y) is the log-likelihood function of the sensor data

Some intuition into the workings of this quite general fotation can be obtained by adopt-
ing a simplified perspective where congestion is assumee i@bt and the traffic counts are
independently and normally distributed. In this settifg bove formula simplifies into

Patily) ~ T exp (20845 ) - i ©

ak€i Ug(k)

wherey, (k) is the available traffic count on link in simulation time steg, ¢, (k) is its simu-
lated counterpart, anef (k) is the variance of the respective traffic count. The produies over

all links a and time step$ that (i) are contained in planin that the plan schedules to cross that
link in the given time step and (ii) are equipped with a sen§bhe calibration functions with
arbitrary sensor configurations.)

Intuitively, this works like a controller that steers thesats towards a reasonable fulfillment of
the measurements: For any sensor-equipped link, the aogardh(-) factor is larger than one
if the measured flow is higher than the simulated flow suchtttethoice probabilities of plans
that cross this link are scaled up. Vice versa, if the meaksfiosv is lower than the simulated
flow, the according factor is smaller than one such that fglagiscross this link are penalized.

What is described here is a calibration of the individuaklechoice distributions in the agent
population that does not change the parameters of the chuicke! that generates the prior
choice probabilitied?, (). On the one hand, this is a quite general result in thairidependent
of the specification of the choice model. On the other hand, dso implies that, without
further modifications, rather an improved picture of theent status quo is obtained than stable
parameter estimates that could be used for forecast andrez@malysis. However,

e other work demonstrates that it also is possible to estirpatameters of the demand
model [28], based on a straightforward generalization §f (4

e itis demonstrated in Section 5 that structural demand pitggecan be inferred even from
a calibration of the choice probabilities only.

!Cadyts is not constrained to the MATSim microsimulationibutesigned to be compatible with a wide variety of
transport simulation systems.

’The probability of a measurement, (k) would be p(y.(k)) ~ exp[—(ya(k) — qa(k))?/(202(k))]. Be-
cause of independence, the probability of a measuremery seiuld be the product of this, i.ep(y) ~
[Tk xp[—(9a(k) — qa(k))*/(202(k))). From there, 2200 — 202t 57 | e(thmse®) where the
sum now goes over aflk that are used by plaf) since plan choice probabilities translate in uncongested
ditions on average into vehicle counts on links containethérespective plans, the derivative @f(k) with
respect taP, (i) is one ifak € ¢ and zero otherwise.




3.2 Application to MATSIm

Apart from the immediate execution of newly generated pldresbehavioral model of MATSim
is of the multinomial logit formP, (i) ~ exp(V(7)). Substituting this into the posterior choice

model (4) yields
IL(y) >

9P (1) ()

That is, an implementation of the posterior choice distiiyu requires nothing but to add a
plan-specific utility correction to every considered plan.

Py (ily) ~ exp (V(i) +

For independently distributed traffic count errors witty) = >, £L(y4(k)), an assumption
that is maintained in the following, the above can be writisn

P, (ily) ~ exp (vu) +> %ﬂ‘gg))) =: exp (V(i) +> AVa(k)> . @)

ak€i ak€i

Here, the plan-specific utility corrections are composedindf and time-additive correction
termsAV, (k). These terms are computed per sensor location and -timédegendently of
which plan they affect. The utility correction of a full plaasults from summing up all, (k)
that are covered by the respective plan.

Returning to the intuitive example given in the previoussadbion, the correction terms would
be of the formAV, (k) = (yu(k) — qu(k))/c2(k). Again, the functioning of the calibration

can be interpreted as a controller in that the utility of gléimat improve the measurement re-
production is increased and the utility of plans that imph& measurement reproduction is
decreased.

As described in Section 2, MATSIim functions in two phasesemtthe first phase builds the

choice sets and the second phase simulates the choicesdrafigdd choice sets. Important

from a calibration perspective, plans that are newly gaadrduring the first phase are immedi-
ately chosen for execution in the mobility simulation in erdo assess their performance. The
utility-driven estimator (7) is applied in either phase lire following way:

e During the first phase, a newly generated plan is alwaysteeletf no new plan is gener-
ated, then an available plan is selected according to (7).

¢ During the second phase, no new plans are generated andiltihated choice distribution
(7) is always employed.

This means that the calibration takes full effect only after choice set generation is turned
off.

4 Zurich field study

This section describes a real-world case study for the ¢iBudch. The setting of the test case
is presented and some selected calibration results fronevéopis study are recalled [15, 14].
The utility offsets obtained from this calibration are giz&d in the next Section 5. This novel
analysis shows that the utility corrections, which origijnaesult from a formal solution of the
calibration problem, have not only an intuitive meaningddgb enable further demand analyses
and calibrations.

We consider the Greater Zurich region in Switzerland; theecstudy network consists of a
subset of an all-of Switzerland network with more than 60 00Ks [29]. Figure 1 shows the



Table 1: Simulation parameters.

parameter| value

Bper ¢ (activity coefficient in (1))| +12 Eur/h
Bear (cost of car travel)) —12 Eur/h
Bron—car (COSt Of nON-car travel) —6 Eur/h
size of plan choice set 4
total number of iterations 500
iterations for choice set generatior800
min. / avg. / max. home duration0.5/14.7 / 23.0
min. / avg. / max. work duration 0.5/6.1/20.0
min. / avg. / max. education duratign0.5/5.8/20.0

min. / avg. / max. shop duratio

n0.5/1.7/12.0

min. / avg. / max. leisure duratio

n0.5/2.6/20.0

£ 00:00 / 24:00

07:00/18:00
e07:00/18:00
£ 08:00 / 20:00
£ 00:00/ 24:00

home opening / closing tim
work opening / closing timg
education opening / closing tim
shop opening / closing tim
leisure opening / closing tim

analysis zone. The synthetic population generated for tiy gegion consists of more than
187 000 agents, which constitutes a random 10 % sample ofithedipulation that travels, at
any time during the considered 24 h period, within a 30 kmleiacound the center of the study
region. All travelers have complete daily activity patetmased on microcensus information
[21]. Such activity patterns can include activities of typeme work, education shopping and
leisure The typical durations for those activities are deriveadrfrine microcensus data and are
specified individually for each member of the synthetic gdafion.

The choice dimensions of all agents are route choice, depatime choice, and mode choice.
Table 1 shows the parameters used in the scenario. Actaigtions are given opening and
closing times in order to keep the agents within some timietjt! The opening and closing
times are classified by activity type, i.e., the opening anding times are distinguished for
home, work, education, shop, and leisure activities. Thgeret yet any distinction based on
the location of an activity. For simplicity, a physical nek simulation of public transport is
replaced by a “teleportation mode” that moves travelersudoip transport trips at half the speed
of a car in uncongested conditions [30, 31]. This fairly distjt approach was chosen due to
the lack of a proper public transport simulation in MATSimhieh, however, will be available
in the near future [32].

For calibration purposes, traffic counts from 161 inductiva@p sensor stations are available.
This data is used in the following way. First, the scenarigimsulated with MATSim alone,
without using the traffic counts. The results of this “bassetaimulation are then compared to
the traffic counts. Second, MATSim is run jointly with the ibaation in different settings that
use one subset of the traffic counts for calibration and theanging counts for validation. Table
2 gives an overview of the results, which are described helow

The first data column of Table 2 (“reproduction MWSE") congmathe measurement data fit
of a plain simulation without calibration to that of a simtide where the calibration uses all
available measurements at once. The MWSE (“mean weightetes@rror”) shown here is the
average quadratic deviation between simulated and olibeoumts at all sensor stations and in



Table 2: Simulation and estimation results.

reproduction| validation
MWSE MWSE

plain simulation 103.6 103.6
calibrated simulation 20.9 75.1
relative difference] -80% -28%

all time steps. All terms in this sum are weighted with oneraw® times the measured value;
this corresponds to the assumption of independently néyrdadtributed measurements with
variances equal to the measurements. Table 2 shows thatezluction MWSE is reduced by
80% through the calibration, which indicates an excelleljigtment to the data.

The second data column of Table 2 shows cross-validatioultsethat were obtained by (i)
splitting the sensors in ten disjoint subsets, (ii) runriigig calibrations based on the data from
nine subsets each, and (iii) comparing each calibratioultres the unused sensor data set. A
global improvement of almost 30% is obtained.

We stress that the fact that the validation improvement b 28 lower than the reproduction
improvement of 80% isota sign of overfitting: The calibration adjusts directly otig behav-
ior of those agents that may travel across sensors. The ibelodall other agents is implicitly
changed through interactions with the immediately adflisigents in the network (congestion
feedback). Having a lower validation improvement than edpction improvement indicates
that the number of sensor locations is insufficient to “rédbh entire agent population in the
calibration — some agents travel simply too far away fromgbmesors to be meaningfully ad-
justed. (The same observation holds for OD matrix estinsatahich adjust only those OD
flows directly that go across sensors.) In summary, rathaar ghulling only the simulated flows
at the sensor locations towards the measurements whilengneverything else, the calibration
pulls thewhole systentowards a more realistic state.

5 Analysis of plan utility offsets

The ability of the Cadyts calibration system to adjust saed behavior at the level of indi-
vidual travelers enables an analysis at the fully disaggeetgvel. This section demonstrates
how the utility corrections generated by Cadyts can be usethé further analysis of virtually
arbitrary demand segments. The important advantage ofpimisoach over what one could do
based on OD matrices is that the definition of a demand segraertbe madafter the simula-
tion/calibration is conducted. This flexibility inevitabfjets lost in any approach that aggregates
the demangbrior to the simulation/calibration.

5.1 Direct inspection of utility offsets

One can plot the link- and time-additive correction terfxg, (k) from (7); results look like in
Figure 1. From such plots, investigated over all hourly tisliees, one obtains the following
insights:

e Cadyts compensates for overall bias; i.e., it adjusts thghnh of daily demand to the
counts: Figure 2 shows the average hourly bias (simulatedisnneasured counts) over

10
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Figure 1: Spatial layout of the link-based utility offset8am—9 am. Red: Counts are too high,
negative utility offsets try to discourage traffic. Greemu@ts are too low, positive
utility offsets try to encourage additional traffic. Widtbreesponds to the magnitude
of the utility offset.

all sensors before the calibration, the average effecteot#ibration over all sensor links
(all other links have zero utility offsets), and the hourlgdbafter the calibration. Clearly,
the calibration counteracts the bias: The utility cor@tsi are the more positive (i.e.,
encouraging traffic) the more negative the bias is (i.e.stimilated counts are lower than
the measured counts).

In contrast to other approaches, demand is not consider&dhaglastic, but it can be
moved between time slices. This is possible only becauseAnS3im, travelers possess
different plans with different time structuresnd Cadyts is designed to take advantage of
that feature. However, if the demand was elastic, e.g.,dhttiere was a “stay-at-home”
plan, then this elasticity would be exploited by Cadyts al.we

e Cadyts compensates for a directional bias; i.e., it redregagar commuting and increases
reverse commuting. This is already visible in Figure 1, butil become more evident in
the subsequent analysis.

e Cadyts attempts to compensate for a systematic over-pi@dic an east-west corridor
at the lake (orange circle in Figure 1). This feature is Wesicross all time slots. It is,
presumably, a network error in the sense that the links geds® much capacity in the
simulation.

This is likely to bias the demand estimation results in thetdemand is adjusted in an
attempt to correct for a supply error. This type of error camioided by jointly estimating
the demand side and the supply side of the simulation; this isnportant topic of future
research.

e As atendency, the corrective signal is the stronger theddeedensity of counting sta-
tions. This is plausible since with a high density of cougtstations several counting
stations can collaborate to correct traffic into the desitiegkction.

11
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Figure 2: Mean counts bias and utility correction as a fumctf time. The counts bias is com-
puted as the mean value of simulated minus measured cowaltsansor locations.

5.2 Trip generation/attraction maps

Equation (7) maps the link-based utility corrections ondaly travel plans. This allows to
analyze the effect of the calibration on arbitrary demanghsnts (by considering only the
respective subsets of the population) or on arbitrary dehdémensions (e.g., only route choice
between two certain regions within a certain time intejval.

We first adopt a trip-based perspective in that we extrach filwe agent-based demand model
only the trips that fall into the morning rush hour. For eagh, tve compute the utility correction
according to (7). We then plot the resulting informationwotways on a map of Zurich, cf.
Figures 3 and 4.

Both plots are generated by putting a 1 km times 1 km grid dwveanalysis region. In Figure 3,
the colors of the cells represent the average utility ctioes of all trips starting between 8 am
and 9 am in the respective cell, whereas in Figure 4 this aamesponds to the average utility
correction of all trips ending between 8 am and 9 am in theaesge cell.

Figure 3 (trip generation) shows positive trip utility agfs for trips originating in the city center,
and negative trip utility offsets for trips originating ihe surroundings. This can be interpreted
as having not enough trip generation between 8 am and 9 ane icitthcenter, and having too
much trip generation in the surroundings.

Figure 4 (trip attraction) shows negative trip utility a#ts for trips arriving in most of the center,
while a small area has positive offsets. This area contéieshistorical city center, the train
station, and important parts of two universities. Offsetsome of the far-away surroundings
are positive again. This can be interpreted as having tog/rimgas arriving in most of the city
center, while there are not enough arrivals in the indicatedll area. At the same time, there
are not enough arrivals in parts of the surroundings.

Now we turn to the exploitation of a feature that is unavddaim a purely trip-based (OD
matrix driven) traffic simulation: We analyze tl#-day utility offsets of theall-day plans that
correspond to the previously described trips.

12
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Figure 3: Spatial distribution of utility corrections faiifgs generated between 8am and 9 am.
Only gridcells with at least 50 generated trips are shown.
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Figure 4: Spatial distribution of utility corrections forigs attracted between 8am and 9 am.
Only gridcells with at least 50 attracted trips are shown.
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Figure 6: Spatial distribution of utility corrections foll-day travel plans, which have each at
least one trip attracted between 8 am and 9 am. Only grideélsat least 50 attracted

trips are shown.
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Figure 5 shows the plan-based counterpart of Figure 3the ytility offsets of the entire plans
that contain a trip that starts between 8 am and 9am in thetgdepgridcells. One observes
a qualitatively similar pattern with a somewhat higher allelevel of the corrections, which
results from the fact that the corrections are now summedamya whole day (and not just
one hour). Overall, the plan-based perspective confirmgifhéased analysis.

Figure 6 shows the plan-based counterpart of Figure 4fhe ytility offsets of the entire plans
that contain a trip that ends between 8am and 9 am in the depigidcells. Here, a striking
difference between the plan-based and the trip-basedquigp can be observed. Most impor-
tantly, the negative utility offsets in the trip-based pertive that discourage travel towards the
city center turn into positive utility offsets in the plamded perspective that encourage travel.
Also, the slightly negative trip utility offsets in the cisurroundings turn into mostly clearly
positive values in the plan based perspective. This diffegds explained in the following.

The analysis of all-day plans instead of separate tripsvallm account for the dynamical con-
straints that guide real travel: Behaviorally, it is welldam that travelers choose between trip
sequences and not between individual trips. Physicaleyntass conservation of persons and
vehicles must be accounted for. A first conlusion of the camspa between Figures 4 and 6 is
that the negligence of these constraints can lead to drasiaterpretations.

Regarding the concrete values shown in Figures 4 and 6, eaneotelude that th&ips ending

in the city center between 8am and 9am are not the result of/aralb demand surplus, but
only the result of a demand mis-allocation, possibly dueriprecise destination or departure
time choice modeling (see below): the calibration actualigourageplansthat end in the city
center between 8 am and 9 am, which is consistent with therglesemand underestimation in
the simulation as shown in Figure 2.

The completely different picture in the trip-based perspecmay be due to (i) errors in the
choice model specification and (ii) errors in the attribdeskinto the choice model.

e Choice model specification errors are very likely to be pregethe given scenario: The
simple multinomial logit plan choice model ignores cortigla across alternatives. The
choice model coefficients are not estimated from data betriiefl on a trial-and-error
basis. (Ongoing work indicates that this error source vabrs be removed in that the
calibration also adjusts choice model parameters [28]).

e Errors in the attributes fed into the choice models areyikelexist as well. Perhaps most
noteworthy is the assumption of identical opening and obpsimes for all facility types,
cf. Table 1. This is likely to result in an unrealistic morgipeak concentration that would
be smoothed out by more distributed starting times of, iti@aar, the work activity.

A more detailed analysis of these maps is the topic of ongaggarch and scenario refinements
for the city of Zurich. The analysis given here already desti@tes clearly that (i) utility offsets
computed from traffic counts can be used for an insightfutiggamporal demand analysis
and that (ii) the new approach of calibrating a fully disaggte demand of individual travelers
can lead to completely different (and structurally far moreaningful) results than what an
estimation of independent OD matrices per time slice sugges

5.3 Identification of underestimated demand segments
This subsection presents an exemplary analysis of how filigy worrections generated by

Cadyts can be used to identify demand segments that arg tikdde corrupted by modeling
errors.
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Figure 7: Historgram of trip utility offsets by purpose

For this, we analyze the travel demand by purpose, where stmgliish trips that head for

work, education, shopping, leisure or home, or belong télibeder-crossing” demand segment.
Figure 7 shows histograms of the offsets by purpose, withifanm histogram bin size of 0.25

and accounting only for such trips that cross a sensor at teee (all other trips would do

nothing but add a peak at a zero utility correction to theolgjstm).

The histograms reveal a striking difference between ths tior border-crossing and all other
travel purposes. While all other trips are quite symmellsiozentered around an almost zero
utility offset, the border-crossing trips are much more elydscattered around a mean of ap-
proximately +10 utility units.

This means that Cadyts strongly encourages border-copssiffic but is on average almost
indifferent with respect to the other demand segments. ifldisates that the border-crossing
demand is substantially underestimated in the syntheficilption of the Zurich scenario. This
observation motivated a re-examination of the demand nraglef this scenario, which indeed
revealed an inconsistency: The initial demand contairagistitally, all trips generated by per-
sons living in Switzerland, plus all trips generated by eéds crossing the borders of Switzer-
land. As a result, all border-crossing traffic by Swiss drvs, statistically, counted twice, while
non-border-crossing traffic by non-Swiss drivers is migsihis plausible to assume that, 50 km
away from the border, the second segment is larger than #igdird that the second segment
mostly comprises of through traffic, which looks somewhatilsir to the border-crossing traf-
fic. Here, the calibration has revealed a structural incetepless in the demand modeling that
should be corrected for in future work.

The wide histogram scatter of the utility corrections fordmr-crossing traffic can in part be
explained with the relatively low total number of bordeossing travelers simulated, which
naturally leads to a higher variability in the histogram. wéwer, the wide scatter of utility
values may also indicate that a further disaggregation isfdemand segment is neccessary.
This is quite plausible given the above observation thatirtitiel demand modeling in some
sense compensates for one demand segment through anothdégzaw®' the further analysis of
these details to future studies.

In summary, this section demonstrates that the utilityemirons computed by Cadyts for every
single synthetic traveler can be utilized for an ex postysiglbf the simulation system in various
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ways. It needs to be stressed that the manual/visual inepestinducted here has by no means
pushed this approach to its limits: a logical next step istiliza the utility corrections not only
for the calibration of the plan choice patterns in a givenytation but also for an adjustment of
the size of the different demand segments within that pajona

6 Discussion and Summary

A standard question in conjunction with calibration is imhfar the results are useful for pre-
diction. Based on the results of the last sections, one qredhat the results are useful for
short-term prediction: both in a real-time setting or fohars-term policy measure, the link off-
sets could be frozen and then used in the prediction. Asshsclin [16], care needs to be taken
that the offsets are only used for choice and not for choitgesgeration, i.e., not for routing.

Clearly, this approach runs into problems when anythingéslystem that is presumably related
to the link offsets changes. A simple example would be thetiaddof a lane to such a link.
For such situations, a calibration of “higher level” belumal parameters is necessary. We are
currently investigating two approaches:

e Calibration of the parameters of the utility function, s@&d,,o,,_car, from traffic counts
and supplementary observations [28].

e Calibration of location choice, in particular “secondagtivity location choice. This
would directly correspond to OD matrix estimation in therfstep procedure, except that
it would calibrate full daily plans.

Apart from the calibration of utility functions, an analgsif the utility offsets reveals further
calibration opportunities. Since the plan-specific wtitiffsets can be interpreted as encourage-
ments (when positive) or discuragements (when negativéjeofespective travel behavior, the
total levels of arbitrary demand segments can be analyshiohdsight. While this article only
indicates this opportunity through the analysis of sebactemand segements in a single sce-
nario, it appears feasible to develop a calibration methatldlso corrects such inconsistencies
in a statistically consistent manner.

In summary, this article demonstrates that a fully disag@te transport microsimulation that
represents travel demand at the level of individual persansbe applied to the realistic simula-
tion of large metropolitan systems. The agent-based stionlgoes beyond traditional transport
models in that it equilibrates not only route choice butdal travel behavior, including depar-
ture time choice and mode choice. A novel calibration metisaabplied to the calibration of
the microscopic travel demand from traffic counts. The metthoes not only generate a clear
improvement in measurement and validation data fit, it alfjosts the demand in a behav-
iorally interpretable way. It does so by computing utilityreections to which the utility-driven
travel demand simulator reacts with more realistic belravicdetailed analysis of these utility
corrections clarifies their behavioral interpretationpwh ways in which they can be applied
for demand analysis, and indicates possibilities for tifwither exploitation in the automatic
calibration of disaggregate travel demand models.
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