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Abstract

We consider geometric instances of the problem of finding a set of k ver-
tices in a complete graph with nonnegative edge weights. In particular, we
present algorithmic results for the case where vertices are represented by
points in d-dimensional space, and edge weights correspond to rectilinear
distances. This problem can be considered as a facility location problem,
where the objective is to “disperse” a number of facilities, i.e., select a
given number of locations from a discrete set of candidates, such that the
average distance between selected locations is maximized. Problems of
this type have been considered before, with the best result being an ap-
proximation algorithm with performance ratio 2. For the case where k is
fixed, we establish a linear-time algorithm that finds an optimal solution.
For the case where k is part of the input, we present a polynomial-time
approximation scheme.

1 Introduction

A common problem in the area of facility location is the selection of a given num-
ber of k locations from a set P of n feasible positions, such that the selected
set has optimal distance properties. A natural objective function is the maxi-
mization of the average distance between selected points; dispersion problems
of this type come into play whenever we want to minimize interference between
the corresponding facilities. Examples include oil storage tanks, ammunition
dumps, nuclear power plants, hazardous waste sites, and fast-food outlets (see
[10, 3]). In the latter paper the problem is called the Remote Clique problem.

Formally, problems of this type can be described as follows: given a graph
G = (V,E) with n vertices, and non-negative edge weights wv1,v2 = d(v1, v2).
Given k ∈ {2, . . . , n}, find a subset S ⊂ V with |S| = k, such that w(S) :=∑

(vi,vj)∈E(S) d(vi, vj) is maximized. (Here, E(S) denotes the edge set of the
subgraph of G induced by the vertex set S.)
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From a graph theoretic point of view, this problem has been called a heaviest
subgraph problem. Being a weighted version of a generalization of the problem of
deciding the existence of a k-clique, i.e., a complete subgraph with k vertices, the
problem is strongly NP-hard [12]. (It should be noted that H̊astad [7] showed
that the vertex-oriented problem Clique is in general hard to approximate
within n1−ε. The heaviest subgraph problem is edge-oriented, so H̊astad’s result
does not imply an immediate performance bound.)

Related Work

Over recent years, there have been a number of approximation algorithms
for various subproblems of this type. Feige and Seltser [5] have studied the
graph problem (i.e., edge weights are 0 or 1) and showed how to find in time

nO((1+log n
k )/ε) a k-set S ⊂ V with w(S) ≥ (1 − ε)

(
k
2

)
, provided that a

k-clique exists. They also gave evidence that for k % n1/3, semidefinite pro-
gramming fails to distinguish between graphs that have a k-clique, and graphs
with densest k-subgraphs having average degree less than log n.

Kortsarz and Peleg [8] describe a polynomial algorithm with performance
guarantee O(n0.3885) for the general case where edge weights do not have to
obey the triangle inequality. For the case where k = Ω(n), Asahiro, Iwama,
Tamaki, and Tokuyama [2] give a greedy constant factor approximation, while
Srivastav and Wolf [11] use semidefinite programming for improved performance
bounds. For the case of dense graphs (i.e., |E| = Ω(n2)) and k = Ω(n), Arora,
Karger, and Karpinski [1] give a polynomial time approximation scheme.

For the case where edge weights fulfill the triangle inequality, Ravi, Rosen-
krantz, and Tayi [10] give a heuristic with time complexity O(n2) and prove
that it guarantees a performance bound of 4. (See Tamir [13] with reference to
this paper.) Hassin, Rubinstein, and Tamir [6] give a different heuristic with
time complexity O(n2 +k2 log k) with performance bound 2. On a related note,
see Chandra and Halldórsson [3], who study a number of different remoteness
measures for the subset k, including total edge weight w(S). If the graph from
which a subset of size k is to be selected is a tree, Tamir [12] shows that an
optimal weight subset can be determined in O(nk) time.

In many important cases there is even more known about the set of edge
weights than just the validity of triangle inequality. This is the case when the
vertex set V corresponds to a point set P in geometric space, and distances
between vertices are induced by geometric distances between points. Given the
practical motivation for considering the problem, it is quite natural to consider
geometric instances of this type. In fact, it was shown by Ravi, Rosenkrantz,
and Tayi in [10] that for the case of Euclidean distances in two-dimensional
space, it is possible to achieve performance bounds that are arbitrarily close
to π/2 = 1.57.... For other metrics, however, the best performance guarantee
remains at 2.

An important application of our problem is data sampling and clustering,
where points are to be selected from a large more-dimensional set. Different
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metric dimensions of a data point describe different metric properties of a cor-
responding item. Since these properties are not geometrically related, distances
are typically not evaluated by Euclidean distances. Instead, some weighted L1

metric is used. (See Erkut [4].) For data sampling, a set of points is to be
selected that has high average distance. For clustering, a given set of points
is to be subdivided into k clusters, such that points from the same cluster are
close together, while points from different clusters are far apart. If we do the
clustering by choosing k center points, and assigning any point to its nearest
cluster center, we have to consider the same problem of finding a set of center
points with large average distance, which is equivalent to finding a k-clique with
maximum total edge weight.

Main Results

In this paper, we consider point sets P in d-dimensional space, where d is some
constant. For the most part, distances are measured according to the rectilinear
“Manhattan” norm L1.

Our results include the following:

• A linear time (O(n)) algorithm to solve the problem to optimality in case
where k is some fixed constant. This is in contrast to the case of Euclidean
distances, where there is a well-known lower bound of Ω(n log n) in the
computation tree model for determining the diameter of a planar point
set, i.e., the special case d = 2 and k = 2 (see [9]).

• A polynomial time approximation scheme for the case where k is not fixed.
This method can be applied for arbitrary fixed dimension d. For the case
of Euclidean distances in two-dimensional space, it implies a performance
bound of

√
2 + ε, for any given ε > 0.

2 Preliminaries

For the most part of this paper, all points are assumed to be points in the plane.
Higher-dimensional spaces will be discussed in the end. Distances are measured
using the L1 norm, unless noted otherwise. The x- and y-coordinates of a point
p are denoted by xp and yp. If p and q are two points in the plane, then the
distance between p and q is d(p, q) = |xp − xq| + |yp − yq|. We say that q is
above p in direction (a, b) if the angle between the vector in direction (a, b) and
the vector q − p is less than π/2, i.e., if the inner product 〈q − p, (a, b)〉 of the
vector q − p and the vector (a, b) is positive. We say that a point p is maximal
in direction (a, b) with respect to a set of points P if no point in P is above p
in direction (a, b). For example, if p is an element of a set of points P and p
has a maximal y-coordinate, then p is maximal in direction (0,1) with respect
to P , and a point p with minimal x-coordinate is maximal in direction (-1,0)
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with respect to P . If the set P is clear from the context, we simply state that
p is maximal in direction (a, b).

The weight of a set of points P is the sum of the distances between all pairs
of points in this set, and is denoted by w(P ). Similarly, w(P,Q) denotes the
total sum of distances between two sets P and Q. For L1 distances, wx(P ) and
wx(P,Q) denote the sum of x-distances within P , or between P and Q.

3 Cliques of Fixed Size

Let S = {s0, s1, . . . , sk−1} be a maximal weight subset of P , where k is a fixed
integer greater than 1. We will label the x- and y-coordinates of a point s ∈ S
by some (xa, yb) with 0 ≤ a < k and 0 ≤ b < k such that x0 ≤ x1 ≤ . . . ≤ xk−1

and y0 ≤ y1 ≤ . . . ≤ yk−1. So

w(S) =
∑

0≤i<j<k

(xj − xi) +
∑

0≤i<j<k

(yj − yi)

We denote the first part of this sum by wx(S). The second part of this sum is
denoted by wy(S). We can derive the following equation:

wx(S) =
k−1∑

i=1

i(k − i)(xi − xi−1).

From this we derive that if k is odd, we have

wx(S) = (k−1)(xk−1−x0)+(k−3)(xk−2−x1)+ . . . +2(x(k+1)/2−x(k−3)/2)

and for even k we have

wx(S) = (k − 1)(xk−1 − x0) + (k − 3)(xk−2 − x1) + . . . + (xk/2 − x(k−2)/2).

Similar equations for wy(S) can be found. These equations allow us to deduce
properties of a point s in a maximal weight subset S. For example, suppose s ∈ S
with s = (xi, yj). Suppose we add εx and εy to the the x- and y-coordinate of
s, such that δ = (2i + 1 − k)εx + (2j + 1 − k)εy > 0. From the above equations
we can derive that this increases the value of w(S) by at least δ. Since w(S) is
maximal, we derive that there can be no point p = (xi + εx, yj + εy) in P − S
for which (2i + 1 − k)εx + (2j + 1 − k)εy > 0. So s is maximal in direction
(2i + 1 − k, 2j + 1 − k) with respect to P − S. This observation allows us to
prove the following lemma.

Lemma 1 If S is a maximal weight subset of P of cardinality k, then each
point in S is maximal in direction (2i + 1− k, 2j + 1− k) with respect to P − S
for some values of i and j with 0 ≤ i, j < k.

Proof: Suppose a point p = (xi, yj) is in S. From the discussion above we
derive that p is maximal in direction (2i + 1 − k, 2j + 1 − k) with respect to
P − S.

!
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Theorem 1 Given a constant value for k, the maximal weight subset S of a
set of n points P , such that S has cardinality k, can be found in linear time.

Proof: Consider all directions of the form (2i+1−k, 2j+1−k) with 0 ≤ i, j < k.
For each direction (a, b), find Sk(a, b), a set of k points that are maximal in
direction (a, b) with respect to P − Sk(a, b). Compute the set ∪Sk(a, b) and try
all possible subsets of size k of this set until a subset of maximal weight is found.

Correctness follows from the fact that Lemma 1 implies that S ⊂ ∪Sk(a, b).
Since k is a constant, each set Sk(a, b) can be found in linear time. Since the
cardinality of ∪Sk(a, b) is less than or equal to k3, the result follows.

!

4 Cliques of Variable Size

In this section we consider the scenario where k is not fixed, i.e., part of the
input. We show that there is a polynomial time approximation scheme (PTAS),
i.e., for any fixed positive ε, there is a polynomial approximation algorithm that
finds a solution that is within (1 + ε) of the optimum.

The basic idea is to use a suitable subset of m coordinates that subdivide an
optimal solution into subsets of equal cardinality. More precisely, we find (by
enumeration) a subdivision of an optimal solution into m×m rectangular cells
Cij , each of which must contain a specific number kij of selected points. From
each cell Cij , the points are selected in a way that guarantees that the total
distance to all other cells except for the m − 1 cells in the same “horizontal”
strip or the m−1 cells in the same “vertical” strip is maximized. As it turns out,
this can be done in a way that the total neglected distance within the strips
is bounded by a fraction of (5m − 9)/(2(m − 1)(m − 2)) of the weight of an
optimal solution, yielding the desired approximation property. See Figure 1 for
the overall picture.

For ease of presentation we assume that k is a multiple of m and m > 2.
Approximation algorithms for other values of k can be constructed in a similar
fashion and will be treated in the full paper. Consider an optimal solution of
k points, denoted by OPT. Furthermore consider a division of the plane by a
set of m + 1 x-coordinates ξ0 ≤ . . . ≤ ξ1 ≤ ξm. Let Xi := {p = (x, y) ∈ ,2 |
ξi ≤ x ≤ ξi+1, 0 ≤ i < m} be the vertical strip between coordinates ξi and
ξi+1. By enumeration of possible choices of ξ0, . . . , ξm we may assume that the
ξi have the property that, for an optimal solution, from each of the m strips Xi

precisely k/m points of P are chosen.
In a similar manner, suppose we know m + 1 y-coordinates η0 ≤ η1 ≤ . . . ≤

ηm such that from each horizontal strip Yi := {p = (x, y) ∈ ,2 | ηi ≤ y ≤
ηi+1, 0 ≤ i < m} a subset of k/m points are chosen for an optimal solution.

Let Cij := Xi ∩ Yj , and let kij be the number of points in OPT that are
chosen from Cij . Since

∑
0≤i<m kij =

∑
0≤j<m kij = k/m, we may assume by

enumeration over the possible partitions of k/m into m pieces that we know all
the numbers kij .
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Figure 1: Subdividing the plane into cells

Finally, define the vector ∇ij := ((2i + 1 − m)k/m, (2j + 1 − m)k/m). (As
we will see, ∇ij is the gradient of the total sum of distances from a point in
Cij to points not in Xi or Yj .) Now our approximation algorithm is as follows:
from each cell Cij , choose the kij points that are maximal in direction ∇ij .
(Overlap between the selections from different cells is avoided by proceeding in
lexicographic order of cells, and choosing the kij points among the candidates
that are still unselected.) Let HEU be the point set selected in this way.

It is clear that HEU can be computed in polynomial time. We will proceed
by a series of lemmas to determine how well w(HEU) approximates w(OPT).
In the following, we consider the distances involving points from a particular
cell Cij . Let HEUij be the set of kij points that are selected from Cij by the
heuristic, and let OPTij be a set of kij points of an optimal solution that are
attributed to Cij . Let Sij = OPTij ∩ HEUij . Furthermore we define Sij =
HEUij \ OPTij , and S̃ij = OPTij \ HEUij . Let HEUi•, OPTi•, HEU•j and
OPT•j be the set of k/m points selected from Xi and Yj by the heuristic and
an optimal algorithm respectively. Finally HEUi• := HEU \ HEUi•, HEU•j :=
HEU \ HEU•j , OPTi• := OPT \ OPTi• and OPT•j := OPT \ OPT•j .

Lemma 2

wx(HEUij ,HEUi•) + wy(HEUij ,HEU•j)
≥ wx(OPTij ,OPTi•) + wy(OPTij ,OPT•j).
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Proof: Consider a point p ∈ Sij . Thus, there is a point p′ ∈ S̃ij that was
chosen by the heuristic instead of p. Let h = (hx, hy) = p′ − p. When replacing
p in OPT by p′, we increase the x-distance to the ik/m points “left” of Cij

by hx, while decreasing the x-distance to (m − i − 1)k/m points “right” of Cij

by hx. In the balance, this yields a change of ((2i + 1 − m)k/m)hx. Similarly,
we get a change of ((2j + 1 − m)k/m)hy for the y-coordinates. By definition,
we have assumed that the inner product 〈h,∇ij〉 ≥ 0, so the overall change of
distances is nonnegative.

Performing these replacements for all points in OPT \ HEU, we can trans-
form OPT to HEU, while increasing the sum of distances wx(OPTij ,OPTi•) +
wy(OPTij ,OPT•j) to the sum
wx(HEUij ,HEUi•) + wy(HEUij ,HEU•j).

!

In the following three lemmas we show that the difference between the weight
of an optimal solution w(OPT) and the right hand side of the inequality in
Lemma 2 is a small fraction of w(OPT).

Lemma 3
∑

0<i<m−1

wx(OPTi•) ≤ wx(OPT)
2(m − 2)

.

Proof: Let δi = ξi+1 − ξi. For i = 1 and i = m − 2 we have

wx(OPTi•) ≤
k2

2m2
δi =

k

m

(m − 2)k
m

δi
1

2(m − 2)
.

For 1 < i < m − 2 we have

wx(OPTi•) ≤
k2

2m2
δi <

ik

m

(m − i − 1)k
m

δi
1

2(m − 2)
.

Since OPT has ik/m and (m − i − 1)k/m points to the left of ξi and right of
ξi+1 respectively, we have

wx(OPT) ≥
∑

0<i<m−1

ik

m

(m − i − 1)k
m

δi

so ∑

0<i<m−1

wx(OPTi•) ≤
1

2(m − 2)
wx(OPT).

!

Lemma 4 For i = 0 and i = m − 1 we have

wx(OPTi•) ≤ wx(OPT)
m − 1

7



Proof: Without loss of generality assume i = 0. Let x0, x1, · · · , x(k/m)−1 be
the x-coordinates of the points p0, p1, . . . , p(k/m)−1 in OPT0•. So

wx(OPT0•) = (
k

m
− 1)(x k

m−1 − x0) + (
k

m
− 3)(x k

m−2 − x1) + . . .

≤ (
k

m
− 1)(ξ1 − x0) + (

k

m
− 3)(ξ1 − x1) + . . .

≤ k

m
(ξ1 − x0) +

k

m
(ξ1 − x1) + . . .

Since ξ1 − xj ≤ x − xj where 0 ≤ j < k/m and x is the x-coordinate of any
point in OPT0• and since there are (m − 1)k/m points in OPT0•, we have

ξ1 − xj <
m

(m − 1)k
wx(pj ,OPT0•)

so
wx(OPT0•) ≤

k

m

m

(m − 1)k

∑

0≤i≤ k
2m−1

wx(pi,OPT0•)

≤ 1
m − 1

∑

0≤i< k
m

wx(pi,OPT0•) =
1

m − 1
wx(OPT0•,OPT0•) ≤

1
m − 1

wx(OPT).

!

Lemma 5
∑

0≤i<m

wx(OPTi•,OPTi•) +
∑

0≤j<m

wy(OPT•j ,OPT•j)

≥ (1 − 5m − 9
2(m − 1)(m − 2)

)w(OPT)).

Proof: From Lemmas 3 and 4 we derive that
∑

0≤i<m

wx(OPTi•) ≤ 5m − 9
2(m − 1)(m − 2)

wx(OPT)

and similarly
∑

0≤i<m

wy(OPT•j) ≤ 5m − 9
2(m − 1)(m − 2)

wy(OPT).

Since
w(OPT) = wx(OPT) + wy(OPT)

=
∑

0≤i<m

wx(OPTi•,OPTi•) +
∑

0≤i<m

wx(OPTi•)

∑

0≤j<m

wy(OPT•j ,OPT•j) +
∑

0≤j<m

wy(OPT•j)
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the result follows. !

Putting together Lemma 2 and the error estimate from Lemma 5, the ap-
proximation theorem can now be proven.

Theorem 2 For any fixed m, HEU can be computed in polynomial time, and

w(HEU) ≥ (1 − 5m − 9
2(m − 1)(m − 2)

)w(OPT).

Proof: The claim about the running time is clear. Using Lemmas 2 and 5 we
derive

w(HEU) ≥
∑

0≤i<m

wx(HEUi•,HEUi•) +
∑

0≤j<m

wy(HEU•j ,HEU•j)

≥
∑

0≤i<m

wx(OPTi•,OPTi•) +
∑

0≤j<m

wy(OPT•j ,OPT•j)

≥ (1 − 5m − 9
2(m − 1)(m − 2)

)w(OPT).

!

5 Implications

It is straightforward to modify our above arguments to point sets under L1

distances in an arbitrary d-dimensional space, with fixed d.

Theorem 3 Given a constant value for k and d, the maximal weight subset S
of a set of n points in d-dimensional space, such that S has cardinality k, can
be found in linear time. If d and ε are constants, but k is not fixed, then there
is a polynomial time algorithm that finds a subset whose weight is within (1+ ε)
of the optimum.

Furthermore, we can use the approximation scheme from the previous section
to get a

√
2(1 + ε) approximation factor for the case of Euclidean distances in

two-dimensional space, for any ε > 0: In polynomial time, find a k-set S1 such
that L1(S) is within (1 + ε) of an optimal solution OPT1 with respect to L1

distances. Let OPT2 be an optimal solution with respect to L2 distances. Then

L2(S) ≥ 1√
2
L1(S) ≥ 1√

2(1 + ε)
L1(OPT1) ≥

1√
2(1 + ε)

L1(OPT2)

≥ 1√
2(1 + ε)

L2(OPT2),

and the claim follows.
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6 Conclusions

We have presented algorithms for geometric instances of the maximum weighted
k-clique problem. Our results give a dramatic improvement over the previous
best approximation factor of 2 that was presented in [10] for the case of general
metric spaces. This underlines the observation that geometry can help to get
better algorithms for problems from combinatorial optimization.

Furthermore, the algorithms in [10] give better performance for Euclidean
metric than for Manhattan distances. We correct this anomaly by showing that
among problems involving geometric distances, the rectilinear metric may allow
better algorithms than the Euclidean metric.
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