Time Evolution of Quantum Resonance States

M. Klein* J. Rama ${ }^{\dagger} \quad$ R. Wüst ${ }^{\dagger}$

August 2005

Abstract

Let H_{0} be self-adjoint with E_{0} a possibly degenerate eigenvalue embedded in the continuous spectrum $\sigma_{c}\left(H_{0}\right)$ and ψ_{0} a normalized eigenfunction. For a certain class of perturbations W and $H=H_{0}+W$ we investigate the asymptotics of the (naive) resonance state $e^{-i t H} \psi_{0}$ in the limit $W \rightarrow 0$. This amplifies previous results of Merkli and Sigal.

1 Introduction and Results

Let H_{0} be a self-adjoint Hamiltonian in a complex Hilbert space $\langle\mathcal{H},\|\cdot\|\rangle$. Let E_{0} be a possibly degenerate eigenvalue of H_{0}, embedded in its continuous spectrum $\sigma_{c}\left(H_{0}\right)$, with (normalized) eigenfunction $\psi_{0}: H_{0} \psi_{0}=E_{0} \psi_{0}$. Let Π_{0} be the orthogonal projection onto $\operatorname{Ker}\left(H_{0}-E_{0}\right)$ and

$$
\begin{equation*}
\bar{\Pi}_{0}:=\mathbb{1}-\Pi_{0} . \tag{1.1}
\end{equation*}
$$

Now let H_{0} be perturbed by an operator W, where
(C0) W is symmetric in $\mathcal{H}, \quad H:=H_{0}+W$ is self-adjoint in $\mathcal{H} \quad$ and $\mathcal{D}\left(H_{0}\right)=\mathcal{D}(H)$.
For a small perturbation W - where "small" is specified by (C2) through (C5) below - E_{0} should turn into a resonance; see [AHSk] for results in this direction. More naively, one may directly investigate $e^{-i t H} \psi_{0}$. One expects that $e^{-i t H} \psi_{0}$ shows the typical behavior of a resonance: Up to the order of the expected lifetime (given by the Fermi golden rule) $\left\|\Pi_{0} e^{-i t H} \psi_{0}\right\|$ decays (roughly) exponentially; see (1.23). For large times $e^{-i t H} \psi_{0}$ may tunnel completely to the spectral complement $\operatorname{Ran} \bar{\Pi}_{0}$, but there it is (in some weak sense) outgoing. This can be defined to mean that $e^{-i t H} \psi_{0}$ belongs to a subspace of large spectral values for an operator A conjugate to H (as specified below). Thus the last statement may be rephrased by saying that the weighted norm $\left\|\langle A\rangle^{-\alpha} \bar{\Pi}_{0} e^{-i t H} \psi_{0}\right\|$ is small uniformly in time.

Such an approach was introduced in [MerSi], following [SoWei]. It is the main purpose of this paper to show that the statements above - although they are not explicitly proved in [MerSi] - actually follow from the estimates of [MerSi] by standard techniques.

To formulate our results more precisely, we shall introduce some notations and briefly recall the central result of [MerSi]. For any bounded interval I let $g_{I} \in C_{0}^{\infty}$ be a smoothed out version of the characteristic function 1_{Δ}, i.e.

$$
g_{I}(\mu)=\left\{\begin{array}{lll}
1 & , & \mu \in I \tag{1.2}\\
0 & , \quad \mu \text { outside some neighborhood of } I
\end{array}\right.
$$

We fix some neighborhood Δ of E_{0} (assumed to contain no eigenvalue of H_{0} different from $\left.E_{0}\right)$ and an interval $\Delta \subset \Delta^{\prime}$ a little bigger than $\Delta . g_{\Delta}(H)$ is a smoothed out version of the

[^0]spectral projection $E_{\Delta}(H)=1_{\Delta}(H)$. We assume that $\operatorname{supp} g_{\Delta} \cap \operatorname{supp}\left(1-g_{\Delta^{\prime}}\right)=\emptyset$ and Δ^{\prime} also contains no eigenvalues of H_{0} different from E_{0}. We set
\[

$$
\begin{equation*}
\overline{g_{I}}:=\mathbb{1}-g_{I} \tag{1.3}
\end{equation*}
$$

\]

for any interval I and

$$
\begin{equation*}
\bar{H}:=\bar{\Pi}_{0} H \bar{\Pi}_{0} . \tag{1.4}
\end{equation*}
$$

Assume that there exists a self-adjoint operator A in \mathcal{H} and $\alpha>2$ such that

$$
\begin{equation*}
\left\|\langle A\rangle^{\alpha} \Pi_{0}\right\|<\infty, \quad\langle A\rangle:=\left(|A|^{2}+1\right)^{1 / 2} . \tag{C1}
\end{equation*}
$$

Next we state, in addition to (C0), further conditions on W.
(C2) $\quad \kappa:=\left\|\langle A\rangle^{\alpha} W \Pi_{0}\right\|<\infty$.
Remark: $\quad \kappa$ is a measure for the size of the perturbation W. In this work we are interested in κ small.
(C3) The k-fold commutators $a d_{A}^{k}(H)$, recursively defined by $a d_{A}(\cdot):=[A, \cdot]$, are H bounded for all $k \in\{1,2, \ldots, n\}$ and some $n>\alpha+1>3$, uniformly in $\kappa<\kappa_{0}$ for some κ_{0} sufficiently small.
(C4) For all $\phi \in \mathcal{D}\left(\langle A\rangle^{\alpha}\right)$ and $t \geq 0$ the following local decay estimate holds:

$$
\left\|\langle A\rangle^{-\alpha} e^{-i t \bar{H}} g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} \phi\right\| \leq C\langle t\rangle^{-\alpha}\left\|\langle A\rangle^{\alpha} \bar{\Pi}_{0} \phi\right\|
$$

for some $C<\infty$, independent of t and $\kappa<\kappa_{0}$ for some κ_{0} small enough. $\langle t\rangle:=\left(1+|t|^{2}\right)^{1 / 2}(t \in \mathbb{R}) ; \quad \bar{\Pi}_{0}, \bar{H}, \Delta^{\prime}, g_{\Delta^{\prime}}$ are defined in (1.1) - (1.4).

Remark: (C4) is a consequence of the Mourre estimate.
(C5) Non vanishing of the Fermi golden rule holds, i.e.

$$
\begin{equation*}
\Gamma:=\pi \cdot \Pi_{0} W \delta\left(\bar{H}-E_{0}\right) \bar{\Pi}_{0} W \Pi_{0}, \quad \Gamma \upharpoonright \operatorname{Ran} \Pi_{0} \geq c_{0} \kappa^{2} \tag{1.5}
\end{equation*}
$$

for some $c_{0}>0$, uniformly in $\kappa<\kappa_{0}$ for some κ_{0} sufficiently small.
Remark: In analogy to the well known formula

$$
\lim _{\varepsilon \downarrow 0}(x-i \varepsilon)^{-1}=\text { P.V. }\left(\frac{1}{x}\right)+i \cdot \pi \delta(x)
$$

which holds in the space of tempered distributions, we define

$$
\begin{align*}
& \langle A\rangle^{-\alpha} \delta\left(\bar{H}-E_{0}\right) \bar{\Pi}_{0}\langle A\rangle^{-\alpha}:=\frac{1}{\pi} \cdot \operatorname{Im}\left(\mathrm{~s}-\lim _{\varepsilon \downarrow 0}\langle A\rangle^{-\alpha}\left(\bar{H}-E_{0}-i \varepsilon\right)^{-1} \bar{\Pi}_{0}\langle A\rangle^{-\alpha}\right), \tag{1.6}\\
& \langle A\rangle^{-\alpha} \text { P.V. }\left(\bar{H}-E_{0}\right)^{-1} \bar{\Pi}_{0}\langle A\rangle^{-\alpha}:=\operatorname{Re}\left(\mathrm{s}-\lim _{\varepsilon \downarrow 0}\langle A\rangle^{-\alpha}\left(\bar{H}-E_{0}-i \varepsilon\right)^{-1} \bar{\Pi}_{0}\langle A\rangle^{-\alpha}\right), \tag{1.7}
\end{align*}
$$

whenever the limits on the r.h.s. exist. In fact the existence of the limits follows from (C4) (see A Appendix). Obviously $\Gamma \geq 0$. The actual assumption in (C5) is the positivity of Γ on $\operatorname{Ran} \Pi_{0}$. Note that $\Gamma=O\left(\kappa^{2}\right)$ by (C2), if the limit in (1.6) exists.

So the class of perturbations in question is

$$
\mathcal{W}_{\kappa_{0}}:=\left\{W \mid W \text { satisfies }(\mathrm{C} 0)-(\mathrm{C} 5) \text { for } \kappa<\kappa_{0}\right\} .
$$

Assuming (C0) - (C5), results about time evolution of resonance states have been proved in [MerSi, Theorem 2.1]. These results are formulated in terms of the bounded operator [MerSi, p.559/560 and (A.17)]

$$
\Lambda:=E_{0} \Pi_{0}+\Pi_{0} W B \Pi_{0}-\Pi_{0} W\left(\bar{H}-E_{0}-i 0\right)^{-1} g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} W \Pi_{0}
$$

For κ sufficiently small,

$$
\begin{equation*}
B \quad:=\left(\mathbb{\Perp}-\overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0} g_{\Delta}(H)\right)^{-1}=\rrbracket+O(\kappa) \tag{1.8}
\end{equation*}
$$

exists by a Neumann series expansion, because $\overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0} g_{\Delta}(H)=O(\kappa)(\kappa \rightarrow 0)$; see [MerSi, Proposition 3.1]. The main result of [MerSi] is

Theorem 1.1 [MerSi, part of Theorem 2.1]
Assume (C 0$)-(\mathrm{C} 5)$. Let $\psi(t)=e^{-i H t} \psi(0)$ with initial condition $\psi(0)$ $\in \operatorname{Ran}\left(E_{\Delta}(H)\right) \cap \mathcal{D}\left(\langle A\rangle^{\alpha}\right)$. Let $0 \leq \beta<\min \left\{\frac{1}{2}, \alpha-2\right\}$. Then there exists a constant κ_{0} (depending on $\left.\alpha, \beta,|\Delta|\right)$ such that for $t \geq 0$ one has the following expansion:

$$
\begin{align*}
\psi(t) & =B \Pi_{0} \psi(t)+\psi_{\text {disp }}(t) \quad(\kappa \rightarrow 0) \quad \text { with } \\
\psi_{\text {disp }}(t) & :=B g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} \psi(t) \tag{1.9}\\
\Pi_{0} \psi(t) & =e^{-i \Lambda t} \Pi_{0} \psi(0)+O\left(\kappa^{1-4 \beta}\langle t\rangle^{-\beta}\right), \quad(\kappa \rightarrow 0) \tag{1.10}\\
\left\|\langle A\rangle^{-\alpha} \psi_{\text {disp }}(t)\right\| & \leq C\left(\left\|\langle A\rangle^{\alpha} \bar{\Pi}_{0} \psi(0)\right\|\langle t\rangle^{-\alpha}+\kappa^{1-2 \beta}\langle t\rangle^{-\beta}\right) \tag{1.11}
\end{align*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$.
Remark: Under the conditions outlined in this section, H has no eigenvalues in Δ (cf. [MerSi, Corollary 2.2]).

To understand the action of $e^{-i \Lambda t}$ in more detail, one needs a suitable expansion of $e^{-i \Lambda t}$. As a preparation, we collect results of [MerSi , Proposition 3.3] and [MerSi , A. Appendix, p. 573 ff.]:

Proposition 1.2 [MerSi, cp. Proposition 3.3]
Λ has the representation

$$
\begin{equation*}
\Lambda=E_{0} \Pi_{0}+\Pi_{0} W \Pi_{0}-\Pi_{0} W\left(P . V .\left(\bar{H}-E_{0}\right)^{-1}\right) \bar{\Pi}_{0} W \Pi_{0}-i \Gamma+K \tag{1.12}
\end{equation*}
$$

where

$$
\begin{array}{ll}
K=O\left(\kappa^{3}\right) & (\kappa \rightarrow 0), \\
\Gamma=O\left(\kappa^{2}\right) & (\kappa \rightarrow 0), \tag{1.14}\\
\Pi_{0} W\left(P . V \cdot\left(\bar{H}-E_{0}\right)^{-1}\right) \bar{\Pi}_{0} W \Pi_{0}=O\left(\kappa^{2}\right) & (\kappa \rightarrow 0),
\end{array}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.
Remark: Explicitly

$$
\begin{align*}
K:= & \Pi_{0} W \overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0} \int_{\mathbb{C}}(\bar{H}-z)^{-1} W \Pi_{0} \Pi_{0} W(H-z)^{-1} \frac{1}{2 \pi}\left(\bar{\partial} \tilde{g}_{\Delta}\right)(z) d x d y \Pi_{0}+ \\
& +\Pi_{0} W \sum_{j=2}^{\infty}\left(\bar{\Pi}_{0} \overline{g_{\Delta^{\prime}}}(\bar{H}) g_{\Delta}(H)\right)^{j} \Pi_{0} \tag{1.15}
\end{align*}
$$

where \tilde{g}_{Δ} is an almost analytic extension of g_{Δ} in the sense of Lemma 3.1. Our proof does not need this explicit representation of K.

Setting

$$
\begin{equation*}
G:=E_{0} \Pi_{0}+\Pi_{0} W \Pi_{0}-\Pi_{0} W\left(P . V .\left(\bar{H}-E_{0}\right)^{-1}\right) \bar{\Pi}_{0} W \Pi_{0}, \quad Q:=G-i \Gamma, \tag{1.16}
\end{equation*}
$$

we have by (1.12) $\Lambda=Q+K$.

Now we are ready to describe in more detail the asymptotic behavior of $\Pi_{0} \psi(t)$ (i.e. the decay of the resonance state), valid up to the expected lifetime, which is $O\left(\kappa^{-2}\right)$. The following theorems are the main result of our paper.

Theorem 1.3 Assume (C0) - (C5). Let $\psi(t)=e^{-i H t} \psi(0)$ with $\psi(0) \in \operatorname{Ran}\left(E_{\Delta}(H)\right) \cap$ $\mathcal{D}\left(\langle A\rangle^{\alpha}\right)$. Then there exists $\epsilon \in(0,1]$ and $C>0$ such that for $0 \leq t \leq C \kappa^{-2}$

$$
\begin{equation*}
\Pi_{0} \psi(t)=e^{-i G t} e^{-\Gamma t} e^{-i K t} \Pi_{0} \psi(0)+O\left(\kappa^{2} t\right)+O\left(\kappa^{\epsilon}\right), \quad(\kappa \rightarrow 0) \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{-\Gamma t} e^{-i K t} \Pi_{0} \psi(0)=e^{-\Gamma t} \Pi_{0} \psi(0)+e^{-\Gamma t} O(\kappa) \Pi_{0} \psi(0) . \quad(\kappa \rightarrow 0) \tag{1.18}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\left\|\Pi_{0} \psi(t)\right\|=\left\|e^{-\Gamma t} \Pi_{0} \psi(0)\right\|+O\left(\kappa^{2} t\right)+O(\kappa)+O\left(\kappa^{\epsilon}\right), \quad(\kappa \rightarrow 0) \tag{1.19}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{-c \kappa^{2} t}\left\|\Pi_{0} \psi(0)\right\| \leq\left\|e^{-\Gamma t} \Pi_{0} \psi(0)\right\| \leq e^{-c_{0} \kappa^{2} t}\left\|\Pi_{0} \psi(0)\right\| \tag{1.20}
\end{equation*}
$$

for some $c_{0}>0, c>0$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. (See (1.16), (1.15), (1.5) for the definitions of G, K, Γ.)

We shall now show that $\psi(0)$ in Theorem 1.3 can be replaced by ψ_{0} and that $\psi(t)$ is outgoing (in the sense described above).

Theorem 1.4 Let E_{0} be an embedded eigenvalue of $H_{0}, H_{0} \psi_{0}=E_{0} \psi_{0}$. Assume (C0) (C5). Then for $0 \leq t \leq C \kappa^{-2}$ and some $\epsilon \in(0,1]$ the results of Theorem 1.3 yield

$$
\begin{align*}
\Pi_{0} e^{-i t H} \psi_{0} & =e^{-i G t} e^{-\Gamma t} e^{-i K t} \psi_{0}+O\left(\kappa^{2} t\right)+O(\kappa)+O\left(\kappa^{\epsilon}\right),(\kappa \rightarrow 0)(\tag{1.21}\\
e^{-\Gamma t} e^{-i K t} \psi_{0} & =e^{-\Gamma t} \psi_{0}+O(\kappa) \tag{1.22}\\
\left\|\Pi_{0} e^{-i t H} \psi_{0}\right\| & =\left\|e^{-\Gamma t} \psi_{0}\right\|+O\left(\kappa^{2} t\right)+O(\kappa)+O\left(\kappa^{\epsilon}\right), \quad(\kappa \rightarrow 0) \tag{1.23}\\
e^{-c \kappa^{2} t}\left\|\psi_{0}\right\| & \leq\left\|e^{-\Gamma t} \psi_{0}\right\| \leq e^{-c_{0} \kappa^{2} t}\left\|\psi_{0}\right\| \tag{1.24}
\end{align*}
$$

for some $c_{0}>0, c>0$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. For $t \geq 0$ and some $\epsilon \in(0,1]$

$$
\begin{equation*}
\left\|\langle A\rangle^{-\alpha} \bar{\Pi}_{0} e^{-i t H} \psi_{0}\right\|=O\left(\kappa^{\epsilon}\right)+O(\kappa), \quad(\kappa \rightarrow 0) \tag{1.25}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.
We shall prove these Theorems in Section 2 and 3.

2 Proof of Theorem 1.3

In the following $\langle B(\mathcal{H}),\|\cdot\|\rangle$ will denote the Banach space of bounded linear operators on $\mathcal{H}, \sigma(\cdot)$ the spectrum of an operator and C a generic positive constant, independent of κ and t.

We have the following decomposition of $e^{-i \Lambda t}$:
Lemma 2.1 For $0 \leq t \leq C \kappa^{-2}$ with some $C>0$ the following is true:

$$
\begin{equation*}
e^{-i \Lambda t}=e^{-i G t} e^{-\Gamma t} e^{-i K t}+F(t) \tag{2.1}
\end{equation*}
$$

where $\quad B(\mathcal{H}) \ni F(t)=F_{1}(t)+F_{2}(t)+F_{3}(t)=O\left(\kappa^{2} t\right) \quad(\kappa \rightarrow 0) \quad$ and

$$
\begin{array}{ll}
F_{1}(t)=O\left(\kappa^{2} t\right) & (\kappa \rightarrow 0), \\
F_{2}(t)=O\left(\kappa^{3} t\right) & (\kappa \rightarrow 0), \\
F_{3}(t)=O\left(\kappa^{5} t^{2}\right) & (\kappa \rightarrow 0), \tag{2.4}
\end{array}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.
G, K, Γ are defined in (1.16), (1.15), (1.5).

Remarks on Γ :

Since $\Gamma=O\left(\kappa^{2}\right)$ is self-adjoint on \mathcal{H}, positive on $\operatorname{Ran} \Pi_{0}$ and (C5) holds, we have $\sup \sigma(\Gamma)=\|\Gamma\| \leq c \kappa^{2}$ for some $c>0$, and for $\phi \in \mathcal{H}$ and $t \geq 0$ we get via functional calculus

$$
\begin{equation*}
e^{-c \kappa^{2} t}\left\|\Pi_{0} \phi\right\| \leq\left\|e^{-\Gamma t} \Pi_{0} \phi\right\| \leq e^{-c_{0} \kappa^{2} t}\left\|\Pi_{0} \phi\right\|, \quad e^{-c \kappa^{2} t} \leq\left\|e^{-\Gamma t}\right\| \leq 1 \tag{2.5}
\end{equation*}
$$

for some $c_{0}>0, c>0$. In particular for any $0<C<\infty$ and $0 \leq t \leq C \kappa^{-2}$

$$
\begin{equation*}
e^{\Gamma t}=O(1), \quad(\kappa \rightarrow 0) \tag{2.6}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.
To prove Lemma 2.1, we will need
Lemma 2.2 Let $K=O\left(\kappa^{3}\right)(\kappa \rightarrow 0)$ as in (1.13). Let $\varepsilon>0$. Then for any $0<C<\infty$ and $0 \leq t \leq C \kappa^{-3+\varepsilon}$ we have

$$
\begin{equation*}
e^{ \pm i K t}=\rrbracket+O\left(\kappa^{\varepsilon}\right), \quad(\kappa \rightarrow 0) \tag{2.7}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.

Proof: \quad Since $K \in B(\mathcal{H})$ we have $\left\|e^{ \pm i K t}-\mathbb{1}\right\| \leq \sum_{j=1}^{\infty} \frac{1}{j!}\|K t\|^{j}$. Then for $0 \leq t \leq C \kappa^{-3+\varepsilon}$ we have $K t=O\left(\kappa^{\varepsilon}\right)(\kappa \rightarrow 0)$ by (1.13). Thus

$$
e^{ \pm i K t}=\mathbb{1}+O\left(\kappa^{\varepsilon}\right) \sum_{j=1}^{\infty} \frac{1}{j!}=\mathbb{1}+O\left(\kappa^{\varepsilon}\right), \quad(\kappa \rightarrow 0)
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.

Proof of Lemma 2.1: In general Q, G, K and Γ do not commute. But

$$
\begin{equation*}
e^{-i \Lambda t}=e^{-i Q t} e^{-i K t} R(t) \tag{2.8}
\end{equation*}
$$

where the operator-valued remainder $R(t):=e^{i K t} e^{i Q t} e^{-i \Lambda t}$ solves the initial value problem $\frac{d}{d t} R(t)=i e^{i K t}\left[K, e^{i Q t}\right] e^{-i \Lambda t}, \quad R(0)=\mathbb{1}$. Thus

$$
\begin{equation*}
R(t)=\mathbb{1}+\int_{0}^{t} i e^{i K s}\left[K, e^{i Q s}\right] e^{-i \Lambda s} d s \tag{2.9}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
e^{-i Q t}=: \quad e^{-i G t} e^{-\Gamma t} \tilde{R}(t) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{R}(t)=1+\int_{0}^{t} e^{\Gamma s}\left[\Gamma, e^{i G s}\right] e^{-i Q s} d s \tag{2.11}
\end{equation*}
$$

Using (2.8) and (2.10) we obtain

$$
e^{-i \Lambda t}=\left(e^{-i G t} e^{-\Gamma t} \tilde{R}(t)\right) e^{-i K t} R(t)=e^{-i G t} e^{-\Gamma t} e^{-i K t}+F(t)
$$

where, using (2.11) and (2.9), $\quad F(t)=F_{1}(t)+F_{2}(t)+F_{3}(t) \quad$ with

$$
\begin{align*}
& F_{1}(t):=e^{-i G t} e^{-\Gamma t} \int_{0}^{t} e^{\Gamma s}\left[\Gamma, e^{i G s}\right] e^{-i Q s} d s e^{-i K t} \\
& F_{2}(t):=e^{-i G t} e^{-\Gamma t} e^{-i K t} \int_{0}^{t} i e^{i K s}\left[K, e^{i Q s}\right] e^{-i \Lambda s} d s \tag{2.12}\\
& F_{3}(t):=F_{1}(t) \cdot e^{i K t} e^{\Gamma t} e^{i G t} F_{2}(t) \tag{2.13}
\end{align*}
$$

We shall now estimate $F_{1}(t), F_{2}(t), F_{3}(t)$.
Upper Bounds on $F_{1}(t)$: To estimate $F_{1}(t)$, we observe that G is self-adjoint. Since $Q \in B(\mathcal{H})$, we have the representation $e^{-i Q t}=\lim _{n \rightarrow \infty}\left(e^{-i \operatorname{Re} Q t / n} e^{\operatorname{Im} Q t / n}\right)^{n}$, due to the Lie product formula [RS, Theorem VIII.29], which shows

$$
\begin{equation*}
\left\|e^{-i Q s}\right\| \leq\left\|e^{\operatorname{Im} Q s}\right\| \quad \text { with } \quad \operatorname{Im} Q \stackrel{(1.16)}{=}-\Gamma . \quad(s \geq 0) \tag{2.14}
\end{equation*}
$$

Thus

$$
\left\|F_{1}(t)\right\| \leq\left\|e^{-\Gamma t}\right\|\left\|e^{-i K t}\right\| \int_{0}^{t}\left\|e^{\Gamma s}\right\|\left\|\left[\Gamma, e^{i G s}\right]\right\|\left\|e^{-\Gamma s}\right\| d s
$$

Using (1.14), we have $\left[\Gamma, e^{i G t}\right]=O\left(\kappa^{2}\right)(\kappa \rightarrow 0)$. Using in addition Lemma 2.2 and (2.6), which holds for $0 \leq t \leq C \kappa^{-2}$, we obtain (2.2).

Upper Bounds on $F_{2}(t)$: Equation (2.12) yields

$$
\begin{equation*}
\left\|F_{2}(t)\right\| \leq\left\|e^{-i K t}\right\| \int_{0}^{t}\left\|e^{i K s}\right\|\left(2\|K\|\left\|e^{-\operatorname{Im} Q s}\right\|\right)\left\|e^{\operatorname{Im} \Lambda s}\right\| d s \tag{2.15}
\end{equation*}
$$

We have $\operatorname{Im} \Lambda \stackrel{(1.12)}{=}-\Gamma+\operatorname{Im} K \stackrel{(1.13)}{(1.14)}=O\left(\kappa^{2}\right)+O\left(\kappa^{3}\right)=O\left(\kappa^{2}\right) \quad(\kappa \rightarrow 0)$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Hence for any $0<C<\infty$ and $0 \leq s \leq C \kappa^{-2}$

$$
\begin{equation*}
\left\|e^{-i \Lambda s}\right\| \leq\left\|e^{\operatorname{Im} \Lambda s}\right\|=O(1), \quad(\kappa \rightarrow 0) \tag{2.16}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Using (1.13), (2.7), (2.14) and (2.16) in (2.15), we obtain (2.3).

Upper Bounds on $F_{3}(t)$: By use of (2.13) it suffices to show that $e^{i K t} e^{\Gamma t} e^{i G t}=O(1)$ $(\kappa \rightarrow 0)$ for $0 \leq t \leq C \kappa^{-2}$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. This follows from (2.7), (2.6) and the fact that G is self-adjoint. Thus by (2.2) and (2.3) we obtain (2.4).

Finally by (2.2), (2.3) and (2.4) we arrive at $F(t)=O\left(\kappa^{2} t\right)(\kappa \rightarrow 0)$ for $0 \leq t \leq$ $C \kappa^{-2}$ with some $C>0$. This completes the proof of Lemma 2.1.

Proof of Theorem 1.3: By Theorem 1.1 (1.10) we have for $t \geq 0$

$$
\begin{equation*}
\Pi_{0} \psi(t)=e^{-i \Lambda t} \Pi_{0} \psi(0)+f(t) \tag{2.17}
\end{equation*}
$$

with

$$
\mathcal{H} \ni f(t)=O\left(\kappa^{1-4 \beta}\langle t\rangle^{-\beta}\right) \quad(\kappa \rightarrow 0)
$$

for $\beta \in\left[0, \min \left\{\frac{1}{2}, \alpha-2\right\}\right)$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Then, possibly decreasing β to $\beta \in\left[0, \min \left\{\frac{1}{4}, \alpha-2\right\}\right)$, there exists an $\epsilon \in(0,1]$ such that $f(t)=$ $O\left(\kappa^{\epsilon}\right)(\kappa \rightarrow 0) \quad$ uniformly in $t \geq 0$ and $\kappa<\kappa_{0}$.
Substitution of (2.1) into (2.17) yields

$$
\Pi_{0} \psi(t)=e^{-i G t} e^{-\Gamma t} e^{-i K t} \Pi_{0} \psi(0)+F(t) \Pi_{0} \psi(0)+f(t)
$$

which shows (1.17) by use of Lemma 2.1. (1.18) is given by Lemma 2.2 with $\varepsilon=1$. Substitution of (1.18) into (1.17) yields

$$
\left\|\Pi_{0} \psi(t)\right\|=\left\|e^{-i G t} e^{-\Gamma t} \Pi_{0} \psi(0)\right\|+O\left(\kappa^{2} t\right)+O(\kappa)+O\left(\kappa^{\epsilon}\right), \quad(\kappa \rightarrow 0)
$$

which proves (1.19), since G is self-adjoint. (1.20) follows from (2.5). This completes the proof of Theorem 1.3.

3 Proof of Theorem 1.4

A convenient functional calculus for C_{0}^{∞}-functions of self-adjoint operators in Hilbert spaces is due to B. Helffer and J. Sjöstrand $[\mathrm{HeSj}]$, using the concept of almost analytic extensions. This calculus can be generalized to smooth functions with non-compact support, but satisfying certain growth conditions. Here we follow [DeGé, Chapter C. 2 and C.3]. We use the notations $\bar{\partial}:=\partial_{x}+i \partial_{y}, \mathbb{C} \ni z=x+i y$.

Lemma 3.1 [DeGé, Proposition C.2.2]
Let $\rho \in \mathbb{R}$. Define the following class of smooth functions:

$$
\begin{equation*}
\mathbf{S}^{\rho}:=\left\{f \in C^{\infty}(\mathbb{R})| | \partial_{\lambda}^{k} f(\lambda) \mid \leq C_{k}\langle\lambda\rangle^{\rho-k}, k \geq 0\right\} \tag{3.1}
\end{equation*}
$$

Then for $f \in \mathbf{S}^{\rho}$, there exists an almost analytic extension $\tilde{f} \in C^{\infty}(\mathbb{C})$ of f in the sense, that $\left.\tilde{f}\right|_{\mathbb{R}}=f$,

$$
\begin{equation*}
|(\bar{\partial} \tilde{f})(z)| \leq C_{k}\langle x\rangle^{\rho-1-k}|y|^{k}, \quad(k \in \mathbb{N}) \tag{3.2}
\end{equation*}
$$

$$
\operatorname{supp} \tilde{f} \subset\{x+i y| | y \mid \leq C\langle x\rangle\} \quad \text { and }
$$

$$
f(\lambda)=\int_{\mathbb{C}}(\lambda-z)^{-1} \frac{1}{2 \pi}(\bar{\partial} \tilde{f})(z) d x d y . \quad(\lambda \in \mathbb{R})
$$

In particular for any self-adjoint operator T and $f \in \mathbf{S}^{\rho}$

$$
\begin{equation*}
f(T)=\int_{\mathbb{C}}(T-z)^{-1} \frac{1}{2 \pi}(\bar{\partial} \tilde{f})(z) d x d y \tag{3.3}
\end{equation*}
$$

$\underset{\sim}{R e m a r k}:$ If $f \in \mathbf{S}^{\rho}$ with compact support, we can choose \tilde{f} with compact support, i.e. $\tilde{f} \in C_{0}^{\infty}(\mathbb{C})$.
We shall use the following result from [DeGé, Lemma C.3.2]:
Lemma 3.2 Let T, S be self-adjoint operators with $\|[T, S]\|<\infty$. If $f \in \mathbf{S}^{\rho}$ with $\rho<1$, then

$$
\|[f(T), S]\| \leq C\|[T, S]\|
$$

for some $C<\infty$.

Our proof of Theorem 1.4 (respectively of Proposition 3.3 and Proposition 3.4) uses the following expansions and estimates:
For linear operators T and S we formally have

$$
\begin{equation*}
T^{m} S=S T^{m}+\sum_{\substack{j+=m \\ j, l \geq 1}} c_{j l} a d_{T}^{j}(S) T^{l}+a d_{T}^{m}(S) \tag{3.4}
\end{equation*}
$$

for all $m \in \mathbb{N}$ and some $c_{j l} \in \mathbb{R}$. Furthermore for T self-adjoint and any Borel-function f

$$
\begin{equation*}
a d_{T}^{m}([f(T), S])=f(T) a d_{T}^{m}(S)-a d_{T}^{m}(S) f(T) . \quad(m \in \mathbb{N}) \tag{3.5}
\end{equation*}
$$

The proofs of (3.4) and (3.5) are by induction.
Assume (C0) - (C3). Let $g \in C_{0}^{\infty}(\mathbb{R})$, let $\tilde{g} \in C_{0}^{\infty}(\mathbb{C})$ be an almost analytic extension of g in the sense of Lemma 3.1. By functional calculus and (C3)

$$
\begin{equation*}
\left\|[H, A](H-z)^{-1}\right\| \leq c(1+|z|)|\operatorname{Im} z|^{-1} \tag{3.6}
\end{equation*}
$$

for some $c<\infty$. By induction

$$
\begin{equation*}
\left\|a d_{A}^{k}\left((H-z)^{-1}\right)\right\| \leq C \sum_{j=2}^{k+1}|\operatorname{Im} z|^{-j} \quad(k \in\{1, \ldots, n\}) \tag{3.7}
\end{equation*}
$$

for some $C<\infty$, locally uniformly in z. Consequently for $k \in\{1, \ldots, n\}$ and some $C<\infty$

$$
\begin{align*}
\left\|a d_{A}^{k}(g(H))\right\| & \stackrel{(3.3)}{\leq} \int_{\mathbb{C}}\left\|a d_{A}^{k}\left((H-z)^{-1}\right)\right\| \frac{1}{2 \pi}|(\bar{\partial} \tilde{g})(z)| d x d y \\
& \stackrel{(3.7)}{\leq} C \int_{\mathbb{C}} \sum_{j=2}^{k+1}|y|^{-j} \frac{1}{2 \pi}|(\bar{\partial} \tilde{g})(z)| d x d y \stackrel{(3.2)}{<} \infty . \tag{3.8}
\end{align*}
$$

To prove Theorem 1.4, we will need

Proposition 3.3 Let E_{0} be an embedded eigenvalue of $H_{0}, H_{0} \psi_{0}=E_{0} \psi_{0}$. Assume $(\mathrm{C} 0)-(\mathrm{C} 3)$. Let Ω be an interval around E_{0} such that $\operatorname{supp} g_{\Omega} \subset \Delta$. Let $\psi(0):=$ $g_{\Omega}(H) \psi_{0}$. Then $\psi(0)$ fulfils the requirements of Theorem 1.1 and Theorem 1.3, i.e. $\psi(0) \in \operatorname{Ran}\left(E_{\Delta}(H)\right) \cap \mathcal{D}\left(\langle A\rangle^{\alpha}\right)$. Furthermore

$$
\begin{equation*}
\psi(0)=\psi_{0}+O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.9}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.
Proof: $\quad \psi(0) \in \operatorname{Ran}\left(E_{\Delta}(H)\right)$ is obvious, since $\psi(0):=g_{\Omega}(H) \psi_{0}$ and $\operatorname{supp} g_{\Omega} \subset \Delta$. To prove $\psi(0) \in \mathcal{D}\left(\langle A\rangle^{\alpha}\right)$, it suffices to show $\langle A\rangle^{\alpha} g_{\Omega}(H) \Pi_{0} \in B(\mathcal{H})$.
Let $N:=\lfloor\alpha\rfloor \in \mathbb{N}$ be the floor of α, i.e. $\alpha=N+\varepsilon$ for some $\varepsilon \in[0,1)$. Let

$$
\begin{equation*}
f(A):=(A+i)^{-N}\langle A\rangle^{\alpha} \tag{3.10}
\end{equation*}
$$

Then $\langle A\rangle^{\alpha}=(A+i)^{N} f(A)$ and $f \in \mathbf{S}^{\varepsilon}$; for the definition of \mathbf{S}^{ε} see (3.1). Using (3.10) we get

$$
\begin{equation*}
\langle A\rangle^{\alpha} g_{\Omega}(H) \Pi_{0}=(A+i)^{N} g_{\Omega}(H) f(A) \Pi_{0}+(A+i)^{N}\left[f(A), g_{\Omega}(H)\right] \Pi_{0} \tag{3.11}
\end{equation*}
$$

To estimate (3.11), we shall use the following spectral argument: Since for any $k \geq 0$ there exists $c \geq 0$ such that for all $\lambda \in \mathbb{R}$

$$
\left(\lambda^{2}+1\right)^{k / 2} \leq c\left(|\lambda|^{k}+1\right) \quad(k \geq 0)
$$

functional calculus yields

$$
\begin{equation*}
\left\|(A+i)^{N} \phi\right\|=\left\|\langle A\rangle^{N} \phi\right\| \leq c\left(\left\|A^{N} \phi\right\|+\|\phi\|\right) . \quad\left(\phi \in \mathcal{D}\left(|A|^{N}\right)\right) \tag{3.12}
\end{equation*}
$$

By use of (3.12) in (3.11), we obtain

$$
\left\|\langle A\rangle^{\alpha} g_{\Omega}(H) \Pi_{0}\right\| \leq c\left(\left\|A_{1}\right\|+\left\|A_{2}\right\|+\left\|A_{3}\right\|+\left\|A_{4}\right\|\right)
$$

for some $c<\infty$, where

$$
\begin{aligned}
A_{1} & :=A^{N} g_{\Omega}(H) f(A) \Pi_{0}, \quad A_{2}:=A^{N}\left[f(A), g_{\Omega}(H)\right] \Pi_{0}, \quad A_{3}:=g_{\Omega}(H) f(A) \Pi_{0} \\
A_{4} & :=\left[f(A), g_{\Omega}(H)\right] \Pi_{0}
\end{aligned}
$$

To finish the proof of $\langle A\rangle^{\alpha} g_{\Omega}(H) \Pi_{0} \in B(\mathcal{H})$, we shall now prove the boundedness of A_{j} $(j \in\{1,2,3,4\})$: By (C1) and functional calculus

$$
\begin{equation*}
A^{k} f(A) \Pi_{0} \text { is bounded for } k \in\{0,1, \ldots, N\} \tag{3.13}
\end{equation*}
$$

This proves $A_{3} \in B(\mathcal{H})$. By Lemma 3.2 we have for some $C<\infty$

$$
\begin{equation*}
\left\|\left[f(A), g_{\Omega}(H)\right]\right\| \leq C\left\|\left[A, g_{\Omega}(H)\right]\right\| \stackrel{(3.8)}{<} \infty \tag{3.14}
\end{equation*}
$$

Thus (3.14) yields $A_{4} \in B(\mathcal{H})$. Applying (3.4) to $A^{N} g_{\Omega}(H)$ yields

$$
\begin{aligned}
A_{1}= & g_{\Omega}(H) A^{N} f(A) \Pi_{0}+\sum_{\substack{j+l=N \\
j, l \geq 1}} c_{l j} a d_{A}^{j}\left(g_{\Omega}(H)\right) A^{l} f(A) \Pi_{0}+ \\
& +a d_{A}^{N}\left(g_{\Omega}(H)\right) f(A) \Pi_{0} .
\end{aligned}
$$

Combining (3.13) with (3.8) and using $N<n$ (see (C3)), we get $A_{1} \in B(\mathcal{H})$. First applying (3.4) to $A^{N}\left[f(A), g_{\Omega}(H)\right]$ and then using (3.5) gives

$$
\begin{align*}
A_{2}= & {\left[f(A), g_{\Omega}(H)\right] A^{N} \Pi_{0}+} \\
& +\sum_{\substack{j+l=N \\
j, l \geq 1}} c_{l j}\left(f(A) a d_{A}^{j}\left(g_{\Omega}(H)\right)-a d_{A}^{j}\left(g_{\Omega}(H)\right) f(A)\right) A^{l} \Pi_{0}+ \\
& +f(A) a d_{A}^{N}\left(g_{\Omega}(H)\right) \Pi_{0}-a d_{A}^{N}\left(g_{\Omega}(H)\right) f(A) \Pi_{0} . \tag{3.15}
\end{align*}
$$

By (C1) and functional calculus

$$
\begin{equation*}
A^{k} \Pi_{0} \text { is bounded for } 0 \leq k \leq N \leq \alpha \tag{3.16}
\end{equation*}
$$

Using (3.10) and (3.12) for $N=1$, we obtain

$$
\begin{equation*}
\|f(A) \phi\|=\left\|\langle A\rangle^{\varepsilon} \phi\right\| \leq\|\langle A\rangle \phi\| \leq c(\|A \phi\|+\|\phi\|) . \quad(\phi \in \mathcal{D}(|A|)) \tag{3.17}
\end{equation*}
$$

Thus (3.17) gives

$$
\begin{align*}
& \left\|f(A) a d_{A}^{j}\left(g_{\Omega}(H)\right) A^{l} \Pi_{0}\right\| \leq c\left(\left\|A a d_{A}^{j}\left(g_{\Omega}(H)\right) A^{l} \Pi_{0}\right\|+\left\|a d_{A}^{j}\left(g_{\Omega}(H)\right) A^{l} \Pi_{0}\right\|\right) \\
& \quad \leq \quad c\left(\left\|a d_{A}^{j}\left(g_{\Omega}(H)\right) A^{l+1} \Pi_{0}\right\|+\left\|a d_{A}^{j+1}\left(g_{\Omega}(H)\right) A^{l} \Pi_{0}\right\|+\left\|a d_{A}^{j}\left(g_{\Omega}(H)\right) A^{l} \Pi_{0}\right\|\right) \tag{3.18}
\end{align*}
$$

and a very similar estimate for $f(A) a d_{A}^{N}\left(g_{\Omega}(H)\right) \Pi_{0}$. Finally $A_{2} \in B(\mathcal{H})$ follows from using (3.18) in (3.15) and then taking into account (3.8), (3.13), (3.14) and (3.16).

To prove (3.9), we observe that

$$
\begin{equation*}
\psi(0):=g_{\Omega}(H) \psi_{0}=\psi_{0}+\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0} \psi_{0} \tag{3.19}
\end{equation*}
$$

which follows from $\Pi_{0} \psi_{0}=\psi_{0}$ and $g_{\Omega}\left(H_{0}\right) \psi_{0}=\psi_{0}$. By use of (3.3) and the second resolvent equation we get

$$
\begin{equation*}
\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0}=-\int_{\mathbb{C}}(H-z)^{-1} W \Pi_{0}\left(H_{0}-z\right)^{-1} \frac{1}{2 \pi}\left(\bar{\partial} \tilde{g}_{\Omega}\right)(z) d x d y \tag{3.20}
\end{equation*}
$$

where $\tilde{g}_{\Omega} \in C_{0}^{\infty}(\mathbb{C})$ is an almost analytic extension of g_{Ω} in the sense of Lemma 3.1. Then using $\left\|W \Pi_{0}\right\| \leq \kappa$ and (3.2) we obtain

$$
\begin{align*}
& \left\|\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0}\right\| \\
& \quad \leq \kappa \cdot \int_{\mathbb{C}}|\operatorname{Im} z|^{-2} \frac{1}{2 \pi}\left|\left(\bar{\partial} \tilde{g}_{\Omega}\right)(z)\right| d x d y=O(\kappa) . \quad(\kappa \rightarrow 0) \tag{3.21}
\end{align*}
$$

Thus (3.9) follows from (3.19) and (3.21). This completes the proof of Proposition 3.3.

We shall now show that the contribution of the dispersive part (see (1.9)) is small, both for $\psi(0)$ and ψ_{0}. More precisely:

Proposition 3.4 Let E_{0} be an embedded eigenvalue of $H_{0}, H_{0} \psi_{0}=E_{0} \psi_{0}$. Assume (C0) - (C5). Let Ω be an interval around E_{0} such that $\operatorname{supp} g_{\Omega} \subset \Delta$. Let $\psi(0):=g_{\Omega}(H) \psi_{0}, \psi(t)=e^{-i H t} \psi(0)$. Then:
(1) For $t \geq 0$ and some $\epsilon \in(0,1]$ we have

$$
\begin{equation*}
\left\|\langle A\rangle^{-\alpha} \psi_{\text {disp }}(t)\right\| \leq C\left\|\langle A\rangle^{\alpha} \bar{\Pi}_{0} \psi(0)\right\|+O\left(\kappa^{\epsilon}\right) \quad(\kappa \rightarrow 0) \tag{3.22}
\end{equation*}
$$

for some $C \geq 0$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. $\psi_{\text {disp }}(t)$ is defined as in (1.9). Furthermore

$$
\begin{equation*}
\langle A\rangle^{\alpha} \bar{\Pi}_{0} \psi(0)=O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.23}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.
(2) For $t \geq 0$

$$
\begin{align*}
\langle A\rangle^{-\alpha} \psi_{\text {disp }, 0}(t) & :=\langle A\rangle^{-\alpha} B g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} e^{-i H t} \psi_{0} \\
& =\langle A\rangle^{-\alpha} \psi_{\text {disp }}(t)+O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.24}
\end{align*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small.

Proof of Proposition 3.4, (3.22): (3.22) directly follows from (1.11).
Proof of Proposition 3.4, (3.23): From (3.19) and $\bar{\Pi}_{0} \psi_{0}=0$ we get

$$
\begin{equation*}
\langle A\rangle^{\alpha} \bar{\Pi}_{0} \psi(0)=\langle A\rangle^{\alpha} \bar{\Pi}_{0}\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0} \psi_{0} \tag{3.25}
\end{equation*}
$$

Using (1.1) we obtain

$$
\begin{equation*}
\langle A\rangle^{\alpha} \bar{\Pi}_{0}\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0}=\langle A\rangle^{\alpha}\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0}+O(\kappa) \tag{3.26}
\end{equation*}
$$

$(\kappa \rightarrow 0)$, since by use of (C1) and (3.21)

$$
\begin{equation*}
\langle A\rangle^{\alpha} \Pi_{0}\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0}=O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.27}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. In analogy to (3.20) we get the following estimate for the first term on the r.h.s. of (3.26):

$$
\begin{align*}
& \left\|\langle A\rangle^{\alpha}\left(g_{\Omega}(H)-g_{\Omega}\left(H_{0}\right)\right) \Pi_{0}\right\| \leq \\
& \quad \leq \int_{\mathbb{C}}\left\|\langle A\rangle^{\alpha}(H-z)^{-1} W \Pi_{0}\right\| \cdot\left\|\left(H_{0}-z\right)^{-1}\right\| \frac{1}{2 \pi}\left|\left(\bar{\partial} \tilde{g}_{\Omega}\right)(z)\right| d x d y \tag{3.28}
\end{align*}
$$

Thus we have to estimate $\left\|\langle A\rangle^{\alpha}(H-z)^{-1} W \Pi_{0}\right\|$. Let f be defined as in (3.10). Then

$$
\begin{align*}
& \langle A\rangle^{\alpha}(H-z)^{-1} W \Pi_{0} \\
& \quad=(A+i)^{N}(H-z)^{-1} f(A) W \Pi_{0}+(A+i)^{N}\left[f(A),(H-z)^{-1}\right] W \Pi_{0} . \tag{3.29}
\end{align*}
$$

Using (3.12) for an estimate of (3.29), we obtain

$$
\left\|\langle A\rangle^{\alpha}(H-z)^{-1} W \Pi_{0}\right\| \leq c\left(\left\|B_{1}\right\|+\left\|B_{2}\right\|+\left\|B_{3}\right\|+\left\|B_{4}\right\|\right)
$$

for some $c<\infty$, where

$$
\begin{array}{ll}
B_{1}:=A^{N}(H-z)^{-1} f(A) W \Pi_{0}, & B_{2}:=A^{N}\left[f(A),(H-z)^{-1}\right] W \Pi_{0} \\
B_{3}:=(H-z)^{-1} f(A) W \Pi_{0}, & B_{4}:=\left[f(A),(H-z)^{-1}\right] W \Pi_{0}
\end{array}
$$

We shall now prove $B_{j}=O(\kappa)(j \in\{1,2,3,4\})$, locally uniformly in z. Inserting $\langle A\rangle^{\alpha}(H-z)^{-1} W \Pi_{0}=O(\kappa)$, locally uniformly in z, into (3.28) and using (3.2) and (3.25) (3.27) will then finish the proof of (3.23). By (C2) and functional calculus

$$
\begin{equation*}
\left\|A^{k} f(A) W \Pi_{0}\right\| \leq \kappa \quad(0 \leq k \leq N), \quad\left\|A^{k} W \Pi_{0}\right\| \leq \kappa \quad(0 \leq k \leq \alpha) \tag{3.30}
\end{equation*}
$$

Thus we have $\left\|B_{3}\right\| \leq \kappa|\operatorname{Im} z|^{-1}$. Splitting $(H-z)^{-1}$ into its real and imaginary parts, Lemma 3.2 together with (3.6) yields

$$
\begin{equation*}
\left\|\left[f(A),(H-z)^{-1}\right]\right\| \leq C(1+|z|)|\operatorname{Im} z|^{-2} \tag{3.31}
\end{equation*}
$$

So $\left\|B_{4}\right\| \leq C \kappa|\operatorname{Im} z|^{-2}$ for some $C \in \mathbb{R}$, locally uniformly in z. Applying (3.4) to $A^{N}(H-z)^{-1}$ yields

$$
\begin{aligned}
B_{1}= & (H-z)^{-1} A^{N} f(A) W \Pi_{0}+\sum_{\substack{j+l=N \\
j, l \geq 1}} c_{j l} a d_{A}^{j}\left((H-z)^{-1}\right) A^{l} f(A) W \Pi_{0}+ \\
& +a d_{A}^{N}\left((H-z)^{-1} f(A) W \Pi_{0} .\right.
\end{aligned}
$$

Combining (3.7) and (3.30) leads to

$$
\left\|B_{1}\right\| \leq C \kappa \sum_{k=1}^{N+1}|\operatorname{Im} z|^{-k}
$$

for some $C<\infty$, locally uniformly in z. By first applying (3.4) to $A^{N}\left[f(A),(H-z)^{-1}\right]$ and then using (3.5), we obtain

$$
\begin{align*}
B_{2}= & {\left[f(A),(H-z)^{-1}\right] A^{N} W \Pi_{0}+} \\
& +\sum_{\substack{j+==N \\
j, l \geq 1}} c_{j l}\left(f(A) a d_{A}^{j}\left((H-z)^{-1}\right)-a d_{A}^{j}\left((H-z)^{-1}\right) f(A)\right) A^{l} W \Pi_{0}+ \\
& +f(A) a d_{A}^{N}\left((H-z)^{-1}\right) W \Pi_{0}-a d_{A}^{N}\left((H-z)^{-1}\right) f(A) W \Pi_{0} . \tag{3.32}
\end{align*}
$$

Using (3.17) yields

$$
\begin{array}{r}
\left\|f(A) a d_{A}^{j}\left((H-z)^{-1}\right) A^{l} W \Pi_{0}\right\| \leq c\left(\left\|a d_{A}^{j}\left((H-z)^{-1}\right) A^{l+1} W \Pi_{0}\right\|+\right. \\
\left.\quad+\left\|a d_{A}^{j+1}\left((H-z)^{-1}\right) A^{l} W \Pi_{0}\right\|+\left\|a d_{A}^{j}\left((H-z)^{-1}\right) A^{l} W \Pi_{0}\right\|\right) \tag{3.33}
\end{array}
$$

and a similar estimate for $f(A) a d_{A}^{N}\left((H-z)^{-1}\right) W \Pi_{0}$. Thus, combining (3.7), (3.30) and (3.31) with (3.32) and (3.33) and using $N+1<n$ (see (C3)), we obtain

$$
\left\|B_{2}\right\| \leq C_{1} \kappa \sum_{k=1}^{N+1}\left\|a d_{A}^{k}((H-z))^{-1}\right\| \leq C_{2} \kappa \sum_{k=2}^{N+2}|\operatorname{Im} z|^{-k}
$$

for some $C_{1}<\infty, C_{2}<\infty$, locally uniformly in z.

Proof of Proposition 3.4, (3.24): \quad Since $B g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} e^{-i t H} \in B(\mathcal{H})$ (cp. (1.1), (1.2), (1.8)), substitution of (3.9) into (1.9) yields

$$
\begin{equation*}
\psi_{d i s p}(t)=B g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} e^{-i t H} \psi_{0}+O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.34}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Thus (3.24) follows from (3.34). This completes the proof of the proposition.

Now we are prepared to give the
Proof of Theorem 1.4: (1.21) - (1.23) follow from using (3.9) in (1.17) - (1.19). The estimate (1.24) directly follows from (2.5). For the proof of (1.25) we need Proposition 3.4: By use of (1.8) and (1.9) we obtain

$$
\begin{array}{rll}
\psi_{\text {disp }}(t) & =g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0} \psi(t)+O(\kappa) \\
& \stackrel{(1.3)}{=} \bar{\Pi}_{0} \psi(t)-\overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0} \psi(t)+O(\kappa), & (\kappa \rightarrow 0)
\end{array}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Since $\psi(0) \in \operatorname{Ran} E_{\Delta}(H)$, we have $g_{\Delta}(H) \psi(t)=\psi(t)(t \geq 0)$ and therefore

$$
\psi_{d i s p}(t)=\bar{\Pi}_{0} \psi(t)-\overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0} g_{\Delta}(H) \psi(t)+O(\kappa), \quad(\kappa \rightarrow 0)
$$

for $t \geq 0$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. [MerSi, Proposition 3.1] gives $\overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0} g_{\Delta}(H)=O(\kappa)(\kappa \rightarrow 0)$. Thus for $t \geq 0$

$$
\begin{equation*}
\psi_{\text {disp }}(t)=\bar{\Pi}_{0} \psi(t)+O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.35}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Combining (3.23) and (3.22), we get for $t \geq 0$ and some $\epsilon \in(0,1]$

$$
\begin{equation*}
\left\|\langle A\rangle^{-\alpha} \psi_{\text {disp }}(t)\right\|=O\left(\kappa^{\epsilon}\right)+O(\kappa), \quad(\kappa \rightarrow 0) \tag{3.36}
\end{equation*}
$$

uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Substitution of (3.35) into (3.36) gives

$$
\begin{equation*}
\left\|\langle A\rangle^{-\alpha} \bar{\Pi}_{0} \psi(t)\right\|=O\left(\kappa^{\epsilon}\right)+O(\kappa) \quad(\kappa \rightarrow 0) \tag{3.37}
\end{equation*}
$$

for $t \geq 0$, uniformly in $W \in \mathcal{W}_{\kappa_{0}}$ for some κ_{0} sufficiently small. Finally inserting (3.9) into (3.37) yields (1.25). This completes the proof of Theorem 1.4.

A Appendix

Lemma A. 1 Assume (C0) - (C4). Then $\delta\left(\bar{H}-E_{0}\right)$ and P.V. $\left(\bar{H}-E_{0}\right)^{-1}$ exist in the sense of equation (1.6) and (1.7).

Proof: \quad Since $E_{0} \notin \operatorname{supp} \overline{g_{\Delta^{\prime}}}$, we have

$$
\begin{equation*}
\left(\bar{H}-E_{0}-i 0\right)^{-1} \overline{g_{\Delta^{\prime}}}(\bar{H})=\left(\bar{H}-E_{0}\right)^{-1} \overline{g_{\Delta^{\prime}}}(\bar{H}) \in B(\mathcal{H}) . \tag{A.1}
\end{equation*}
$$

By [MerSi, Proposition 3.2 (i)] with $t=0$,

$$
\begin{equation*}
\text { s- } \lim _{\varepsilon \downarrow 0}\langle A\rangle^{-\alpha}\left(\bar{H}-E_{0}-i \varepsilon\right)^{-1} g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0}\langle A\rangle^{-\alpha} \text { exists. } \tag{A.2}
\end{equation*}
$$

Thus (A.1) and (A.2) imply the existence of the limits in (1.6) and (1.7), since we have

$$
\begin{aligned}
\langle A\rangle^{-\alpha}\left(\bar{H}-E_{0}-i 0\right)^{-1} \bar{\Pi}_{0}\langle A\rangle^{-\alpha} \stackrel{(1.3)}{=} & \langle A\rangle^{-\alpha}\left(\bar{H}-E_{0}-i 0\right)^{-1} g_{\Delta^{\prime}}(\bar{H}) \bar{\Pi}_{0}\langle A\rangle^{-\alpha}+ \\
& \langle A\rangle^{-\alpha}\left(\bar{H}-E_{0}-i 0\right)^{-1} \overline{g_{\Delta^{\prime}}}(\bar{H}) \bar{\Pi}_{0}\langle A\rangle^{-\alpha} .
\end{aligned}
$$

The proof of [MerSi, Proposition 3.2 (i)] uses (C4); see [MerSi, p.573]. And (C4) is in fact a consequence of Mourre estimates. We refer the reader to [CyFKS, Chapter 4] for the definition and important results of Mourre estimates.

References

[AHSk] S. Agmon, I. Herbst, E. Skibsted: "'Perturbation of Embedded Eigenvalues in the Generalized N-Body Problem"', Commun. Math. Phys. 122, 411-438 (1989).
[CyFKS] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon: "Schrödinger Operators with Application to Quantum Mechanics and Global Geometry", Texts and Monographs in Physics, Springer-Verlag Berlin Heidelberg 1987.
[DeGé] J. Dereziński, C. Gérard: "Scattering Theory of Classical and Quantum N-Particle Systems", Texts and Monographs in Physics; R. Balian, W. Beiglböck, H. Grosse, E.H. Lieb, N. Reshetikhin, H. Spohn, W. Thirring (Eds.), Springer-Verlag 1997.
[HeSj] B. Helffer, J. Sjöstrand: "Equation de Schrödinger avec champ magnétique et équation de Harper", Lecture Notes in Physics 345; H. Holden, A. Jensen (Eds.): "Schrödinger Operators", Springer-Verlag 1989.
[MerSi] M. Merkli, I.M. Sigal: "A Time-Dependent Theory of Quantum Resonances", Commun. Math. Phys. 201, 549-576 (1999).
[RS] M. Reed, B. Simon: "Methods of Modern Mathematical Physics, Vol.I Functional Analysis" (revised and enlarged edition), Academic Press, Inc. (1980)
[SoWei] A. Soffer, M.I. Weinstein: "Time Dependent Resonance Theory", GAFA, Geom. funct. anal., Vol. 8 (1998) 1086-1128.

[^0]: *Universität Potsdam, Institut für Mathematik, D-14415 Potsdam, Germany
 ${ }^{\dagger}$ Technische Universität Berlin, Institut für Mathematik, D-10623 Berlin, Germany

