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Abstract

The fields of plasmonics and two-dimensional semiconductors represent some of the most
rapidly advancing areas in current solid-state research, driven by the immense potential
of these materials for numerous technological applications. This work is situated at the
intersection of these two dynamic fields. It focuses on the development of the microscopic
framework to describe the electron dynamics in metal nanostructures and the theoretical
understanding of exciton dynamics in hybrid metal-semiconductor nanostructures.

The methodological umbrella is provided by the Heisenberg equations of motion. It
is employed to derive a spatio-temporal, momentum-resolved phase space description of
the electron dynamics in metal nanostructures as well as a momentum-resolved descrip-
tion of excitons in hybrid systems consisting of transition metal dichalcogenide (TMDC)
monolayers and metal nanostructures.

The first part of this thesis focuses on studying a system comprising a metal nanopar-
ticle and a TMDC monolayer using self-consistent Maxwell-Bloch theory. The combined
system yields an effective eigenvalue equation governing the center-of-mass motion of
dressed excitons in a plasmon-induced potential. Bound states with negative eigenen-
ergies are found in the dynamical equation of the exciton-plasmon hybrid, indicating
exciton localization in the plasmon-induced potential. The coupling regime is quanti-
fied by computing the scattered light in the near-field, revealing strong exciton-plasmon
coupling with an avoided crossing behavior and an effective Rabi splitting of tens of meV.

The key achievement of this work lies in the successful development of a comprehen-
sive microscopic approach for studying spatio-temporal, momentum-resolved electron
and phonon dynamics in metals in a Wigner phase space representation. This approach
accurately reproduces macroscopic equations in both local and non-local formulations
and incorporates geometrical effects and multi-band processes, enabling a description
of interband transitions based on microscopic parameters. To investigate the poten-
tial of actively tuning the optical response of metal nanoparticles using strong THz
fields, we develop a fully numerical method combining the three-dimensional momentum-
resolved microscopic Boltzmann scattering equations for the electronic Wigner function
with a three-dimensional finite-difference time-domain solver. This approach allows for
a spatio-temporal treatment of microscopic dynamics, including non-equilibrium, non-
perturbative, and nonlocal phenomena, as well as interband transitions. The same sce-
nario is described using an analytical model, revealing that the additional THz pulse
effectively renormalizes the electronic ground state of the system through pressure renor-
malization of the electron gas within the nanoparticle. This leads to a blue shift of the
plasmon resonance, which is also observed in experiments.

Finally, the framework is applied to study the onset of radial oscillations in spherical
nanoparticles. This microscopic approach incorporates direct electron-coherent phonon
interaction, which reveals an additional driving source for nanoparticle oscillations. In
particular, we identify spatial electron density gradients as the dominant driving source
for the onset of radial oscillations on short time scales beyond thermal contributions,
providing a compelling explanation for recent experimental findings.
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Deutsche Zusammenfassung

Die Bereiche Plasmonik und zweidimensionale Halbleiter gehören zu den am schnellsten
wachsenden Gebieten der heutigen Festkörperforschung. Dies wird durch das enorme Po-
tential dieser Materialien für zahlreiche technologische Anwendungen angetrieben. Diese
Arbeit ist an der Schnittstelle dieser beiden dynamischen Gebiete angesiedelt. Ihr Fokus
liegt auf der Entwicklung einer mikroskopischen Beschreibung der Elektronendynamik in
metallischen Nanostrukturen und einem theoretischen Verständnis der Exzitonendyna-
mik in hybriden Metall-Halbleiter-Nanostrukturen.

Den methodischen Rahmen bilden die Heisenbergschen Bewegungsgleichungen. Die-
se werden verwendet, um eine raum-, zeit- und impulsaufgelöste Phasenraumbeschrei-
bung der Elektronendynamik in metallischen Nanostrukturen sowie eine impulsaufgelös-
te Beschreibung von Exzitonen in Hybridsystemen aus Übergangsmetalldichalkogenid-
Monolagen (TMDC-Monolagen) und metallischen Nanostrukturen abzuleiten.

Der erste Teil dieser Arbeit widmet sich der Untersuchung eines Systems bestehend
aus einem Metallnanopartikel und einer TMDC-Monolage, das mithilfe einer selbstkon-
sistenten Maxwell-Bloch Theorie beschrieben wird. Das kombinierte System liefert eine
effektive Eigenwertgleichung, welche die Bewegung des Massenschwerpunktes von dres-
sed excitons in einem plasmoninduzierten Potential beschreibt. In der dynamischen Glei-
chung für die hybriden Exziton-Plasmon-Teilchen finden sich gebundene Zustände mit
negativen Eigenenergien, was auf eine Lokalisierung der Exzitonen im plasmoninduzier-
ten Potential und eine starke Kopplung zwischen Exzitonen und Plasmonen hinweist. Die
Stärke der Kopplung wird durch die Berechnung des gestreuten Lichts im Nahfeld quan-
tifiziert und zeigt eine starke Exziton-Plasmon-Kopplung, die sich in der Vermeidung des
Kreuzens von Systemresonanzen und einem effektiven Rabi-Splitting von einigen zehn
Millielektronenvolt manifestiert.

Die wichtigste Errungenschaft dieser Arbeit ist die erfolgreiche Entwicklung eines um-
fassenden mikroskopischen Modells zur Untersuchung der raum-, zeit- und impulsauf-
gelösten Elektronen- und Phononendynamik in Metallen in einer Wigner-Phasenraum-
darstellung. Dieser Ansatz reproduziert bekannte makroskopische Gleichungen sowohl in
lokalen als auch in nichtlokalen Formulierungen und erlaubt die Einbeziehung von geo-
metrischen Effekten und Multibandprozessen, sodass eine Beschreibung von Interband-
übergängen auf der Basis mikroskopischer Parameter möglich ist. Um die Möglichkeit
der Beeinflussung der optischen Resonanzposition von metallischen Nanopartikeln durch
starke THz-Felder zu untersuchen, entwickeln wir ein vollständig numerisches Verfahren.
Dieses kombiniert die dreidimensionalen, impulsaufgelösten mikroskopischen Boltzmann-
Streuungsgleichungen für die elektrische Wigner-Funktion mit einer dreidimensionalen
Finite-Difference Time-Domain Methode. Dieser Ansatz liefert eine räumlich und zeitlich
aufgelöste Beschreibung der mikroskopischen Dynamik von nichtlokalen Nichtgleichge-
wichtsphänomenen, die nicht störungstheoretisch behandelt werden können, und erlaubt
die Einbeziehung von Interbandübergängen. Das gleiche Szenario wird durch ein analy-
tisches Modell beschrieben, das zeigt, dass der zusätzliche THz-Puls den elektronischen
Grundzustand des Systems durch Druckrenormierung des Elektronengases innerhalb des
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Nanopartikels renormiert, was zu einer Blauverschiebung der Plasmonenresonanz führt,
die auch experimentell beobachtet wird.

Schließlich wenden wir unseren mikroskopischen Ansatz an, um den Beginn von radia-
len Atmungsmoden in metallischen Nanokugeln zu untersuchen. Damit kann die Wech-
selwirkung zwischen Elektronen und kohärenten Phononen untersucht und in die theore-
tische Beschreibung des Oszillationsbeginns integriert werden. Hierbei identifizieren wir
räumliche Gradienten in der Elektronendichte als die dominante Antriebsquelle für radia-
le Oszillationen, insbesondere auf kurzen Zeitskalen, jenseits thermischer Beiträge, was
eine überzeugende Erklärung für jüngste experimentelle Ergebnisse liefert.
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1. Introduction

“I am among those who think that science has great beauty.”
– Marie Curie

Throughout history, humans have been eager to explore the capabilities of materials to
harness them for various purposes. From ancient times, when early humans crafted basic
tools from available materials, to milestones such as the invention of the wheel and the
industrial revolution, our ability to build tools has been the catalyst for transformative
technological developments.

Behind these monumental achievements lies the essential role of basic research, which
curiously explores and pushes the boundaries of what was previously known. It is this
relentless pursuit of understanding that has paved the way for groundbreaking innova-
tions shaping the course of human history. One example in the context of this work is
Mie’s early research on the color of colloidal gold solutions [1], which laid the founda-
tion for modern scattering theory. Another example is the fundamental understanding
of quantum mechanics during the first quantum revolution, which led decades later to
the development of first-generation quantum technologies such as transistors, lasers, and
MRIs – innovations that were unimaginable at the time when their foundations were
being studied, illustrating the beauty of scientific exploration.

In the last decades, our fabrication capabilities have reached the physical size limits,
allowing us to design and produce materials at the nanoscale with the ability to harness
quantum mechanical phenomena, marking yet another significant milestone in what is
now known as the second quantum revolution [2]. As we venture into this technologically
advanced field, it is essential to emphasize the importance of responsible progress [3]. At
a time when the costs of technological progress are evident, it is increasingly important
to carefully consider the implications of our innovations.

Novel nanoscale devices hold enormous promises, in particular by making devices more
cost and energy efficient, while at the same time improving their performance. In this
thesis, we explore two different nanoscale material systems, of which we show pictures in
Fig. 1.1: First, we study 2D semiconductors, where the physics is dominated by excitons.
Then, we move on to investigate metals at the nanoscale, with a special focus on localized
surface plasmons (LSPs).

Extensive research on 2D materials has been made possible by the development of
exfoliation techniques. Initially demonstrated with graphene [6, 7], these techniques
quickly expanded to include other van der Waals materials [8], making 2D materials
readily available for scientific study. In this work, our focus will be on transition metal
dichalcogenides (TMDCs), a class of materials that exhibit remarkable optical properties:
In the monolayer limit, TMDCs are direct band gap semiconductors with high absorption
rates of up to 10 % [8, 9]. Additionally, they exhibit valley-selective dichroism [10, 11] and
a spin-split band structure [11–13], promising their application in spintronic devices from
nonmagnetic materials [5, 14–16]. The reduced dimensionality of these atomically thin
materials enhances the Coulomb interaction, leading to the formation of tightly bound
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1. Introduction

Figure 1.1.: Images of Nanostructures. (Left) Transmission Electron Microscope
images of self-assembled gold nanoparticle arrays, reprinted with permission from
Ref. [4], © ACS 2023. (Right) Optical microscope image of a MoS2/WSe2 heterostruc-
ture, reprinted with permission from Ref. [5], © Springer Nature 2017.

electron-hole pairs known as excitons [17–19]. The large excitonic binding energies up to
several hundreds of meV in TMDCs provide an excellent platform for studying exciton
physics [20, 21].

These properties, along with their high sensitivity to the surrounding environment
[22–26], make them ideal for functionalization [27] with external nanoparticles, such as
molecules [25, 28–30], metal nanoparticles [31–33], or quantum dots [34] to locally tailor
their optical properties. Furthermore, recent research has taken advantage of the van
der Waals properties of these materials to create heterostructures [35–37], resulting in
the formation of interlayer excitons. Moreover, Moiré effects resulting from different
twist angles or lattice periodicities have been investigated [38–43]. These advancements
enable researchers to combine individual materials into unique configurations, using what
is often referred to as “atomic-scale Lego” [35], allowing for the effective design of hybrid
devices with tailored properties.

A promising technological application of TMDCs [44] is their use as single-photon
emitters [45, 46] through deterministic creation of defects within the structure [46], strain-
induced localization that attracts carriers [47, 48], and Moiré potentials [49, 50] that allow
localization of carriers within the TMDC monolayer.

The second material system considered in this thesis are metal nanostructures that
support plasmonic excitations [51–55]. This research field lies at the interface of material
science and classical electromagnetism. Over the years, it has evolved from its initial
focus on sub-wavelength field confinement and local field enhancement [56–60], as well
as guiding [61] into a transdisciplinary research field, spanning chemistry [62], optics
[63, 64], material science [65, 66], and energy harvesting [67, 68], holding great promise
for significant applications [69, 70].

In contrast to the field of 2D semiconductors, plasmonics, as a more mature research
area, is on the verge of finding practical applications on an industrial scale [71, 72].
Notable applications include plasmon-enabled catalysis, i.e., facilitating CO2 reduction
and hydrogen production [73–75], and metamaterials [65] for advanced antenna design
[76–78], active light guiding [79, 80], and plasmonic lenses [81, 82]. Additionally, plas-
monics finds applications in modulators [83, 84], photothermal cancer therapy [85, 86],
biochemical sensing [62, 87, 88], and energy harvesting [89, 90].
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In addition, exciting potential avenues for new applications are emerging, such as using
plasmonics to enhance nonlinearities [91–95], explore hot-electron physics [71, 96], utilize
Purcell enhancements [97–99], and implement active plasmonic systems [100–104].

Historically, a major driving force behind the field of plasmonics has been its ability to
enhance Raman spectroscopy, enabling single-molecule detection [105–107]. Over time,
this field has grown, particularly in the coupling of plasmonic systems with other (ex-
citonic) systems to enhance light-matter interactions up to the strong coupling regime
[108–118].

From a theoretical perspective, plasmons are classically understood as collective exci-
tations of conduction electrons [119]. From a quantum mechanical point of view, they are
interpreted as collective excitations around the Fermi energy, mediated by the Coulomb
interaction, resulting in significantly higher energies compared to individual electron-hole
excitations. Initial calculations were performed in Refs. [120–123]. Today, theoretical de-
scriptions of plasmons range from basic methods in quasi-static Mie scattering theory
[124, 125] to more advanced approaches such as quasi-normal modes [126–130] or full
numerical implementations of classical electrodynamics, such as finite-difference time-
domain [131], finite element [132], and boundary element methods [133].

Two of the most extensively studied plasmonic excitations are surface plasmon polari-
tons (SPPs), which are found in an increasing number of systems [134, 135], and localized
surface plasmons (LSPs) [51, 136]. Recently, there has been significant interest in gap
plasmons in micro- or picocavities [137–139].

As the size of nanoparticles and nanogaps has continuously decreased to the nanoscale
and below [140], it has become possible and crucial to include quantum properties in the
description of these systems. This development has led to the emergence of the field of
quantum (nano)plasmonics [141–144]: Two dominant models have been established to
incorporate quantum corrections into the classical description of plasmonic structures.
The first model is the hydrodynamic approach [145–152], which exploits the hydrody-
namic nature of the electron gas to incorporate nonlocal effects into the description. The
second model is the surface response formalism based on Feibelman parameters [153–
156], providing an alternative approach by considering the surface electronic response to
incorporate quantum effects into plasmonic phenomena.

Having introduced the two relevant systems in this thesis, it is essential to highlight
the significant research efforts dedicated to coupled systems, allowing for exciton-plasmon
hybridization [157–161]. Exploring various coupling regimes of electromagnetic modes
to quantum emitters has provided unprecedented control over quantum states [113, 129,
162].

The research presented in this thesis lies at the intersection of the two vibrant research
areas we just introduced: 2D materials and plasmonics. Our primary focus is on the
theoretical understanding of light-matter interactions and carrier dynamics within these
structures. In particular, we aim to explore the potential synergy of combining these
two materials to tailor their distinct properties. In addition, we seek to extend exist-
ing microscopic theories for metal structures to enable a deeper understanding of their
microscopic dynamics.

Structure and Scope of This Thesis

The thesis begins with a brief introduction of the fundamental concepts and material
properties, as well as their theoretical treatment in Ch. 2.
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1. Introduction

The main part, which presents our results, is divided into four separate chapters,
Chs. 3-6. The common theoretical framework used to describe the microscopic dynamics
is the Heisenberg equations of motion, which are applied in various scenarios. Each
chapter briefly introduces the specific context relevant to the situation being studied and
concludes with perspectives for further exploration. The overall conceptual idea is to
explore theoretical techniques that have been successfully applied in the semiconductor
community and apply them to metals to gain a deeper understanding of their dynamics
from a microscopic, momentum-resolved perspective.

In Ch. 3, we stay in the realm of semiconductors and study a system consisting of
a TMDC monolayer and a metal nanoparticle. In this system, we treat the TMDC in
the framework of the semiconductor Bloch equations and derive an equation of motion
for the excitons under the influence of the metal nanoparticle. The resulting eigenvalue
equation analytically captures the interaction of excitons and metal nanoparticles and is
discussed in detail, providing interpretations of the associated eigenstates. In addition,
the equation is used to explore different coupling regimes and to obtain macroscopic
variables that could be measured experimentally.

In Ch. 4, we change the material system and apply the second quantization framework
to the electron dynamics in metals. For comparison with the hydrodynamic description
at the macroscopic level, we derive a spatio-temporal description using the Wigner phase
space representation. From this, fundamental dynamical equations are derived, which
will be employed throughout the thesis. These equations are used to study two situa-
tions explicitly, namely the inclusion of geometry in the microscopic equations, and the
description of interband processes using a two-band model.

In Ch. 5, we use this microscopic framework to study the possibility of active tuning
of the localized surface plasmon resonance using strong THz pulses, inspired by prelimi-
nary experimental results. This is done using two different approaches: The first one is
a fully numerical solver that combines a self-written three-dimensional finite-difference
time-domain solver with a three-dimensional momentum-resolved microscopic Boltzmann
scattering solver using the equations developed in Ch. 4. At the time of writing, this
project remains a work in progress, but promises valuable insights into the complex
dynamics in nanostructures. In a second approach, the same experimental situation is
modeled fully analytically by treating the THz field non-perturbatively as a distortion
of the electronic ground state. The effect of the THz field on the optical response of the
nanoparticle is discussed qualitatively.

In Ch. 6, we once again use the microscopic framework and extend it to include coher-
ent phonons, which are the observable of interest in this chapter, as we study transient
nanoparticle oscillations after optical excitation. This allows to include a direct inter-
action channel of excited electrons and coherent phonons in the theoretical description,
allowing to investigate the opportunity of a more immediate oscillation onset. We com-
pare our microscopic framework with previous models based on thermal expansion and
recent experimental results that were able to observe the onset process of these oscilla-
tions. This comparison underscores the need for an additional, more direct interaction
contribution.

The final chapter, Ch. 7, summarizes the main concepts and findings of this thesis and
presents perspectives for future research.
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2. Theoretical Framework

“When I started to think about it, I felt that the main problem was to explain
how the electrons could sneak by all the ions in a metal. . . . I found to my delight
that the wave differed from a plane wave of free electron only by a periodic mod-
ulation. This was so simple that I didn’t think it could be much of a discovery,
but when I showed it to Heisenberg, he said right away, ‘That’s it.’.”

– Felix Bloch

We must be clear that when it comes to atoms, language can be used only as in poetry.
In this chapter, we aim to provide a concise yet comprehensive overview of the cur-
rent theoretical descriptions relevant to this thesis. Our objective is to contextualize
our research by introducing the material systems we will investigate and the approaches
commonly employed in their treatment. This foundation will be essential for understand-
ing the subsequent chapters of this thesis, where we will present our contributions and
findings.

We begin in Sec. 2.1 with a brief introduction to the second quantization framework
that will be used throughout this thesis to describe microscopic carrier dynamics, in
particular electrons and excitons. Moving forward, in Sec. 2.2 we introduce transition
metal dichalcogenides, one of the material platforms we will investigate in this thesis.

In Sec. 2.3, we begin to introduce metals, which are the second material platform in this
thesis, and how they are currently described in the literature for bulk systems within the
framework of classical electrodynamics. Additionally, we discuss how geometrical effects
are described in metal nanostructures in Sec. 2.4.

2.1. Second Quantization

In quantum mechanics, the dynamics of a system are generally governed by the Schrödinger
equation

iℏ∂tΨ(r, t) = H Ψ(r, t), (2.1)

postulated by Erwin Schrödinger in 1926 [163]. The equation describes the time evo-
lution of a wave function describing a quantum-mechanical state. Quantities that can
be accessed experimentally are named observables and appear as expectation values of
Hermitian operators in the formalism of quantum mechanics. It often proves useful to
switch to a picture that addresses the time evolution through time-dependent operators.
This is done using the Heisenberg equation [164]

iℏ
∂

∂t
O(t) =

[︂
O(t), Ĥ(t)

]︂
−
, (2.2)

5



2. Theoretical Framework

that is equivalent to the Schrödinger equation. It will be the equation used to describe
the microscopic dynamics in this thesis.

For many-body systems made up from numerous particles, we will employ the formal-
ism of second quantization. In the following, we will discuss this formalism for fermionic
systems, as we are mostly interested in the dynamics of electrons. However, an analo-
gous formulation is available for bosons [165–167]. Compared to the first quantization
approach, the formalism of second quantization changes from explicit N-particle wave
functions to an occupation number representation. The main advantage of this method
is that the indistinguishability of identical quantum particles is naturally contained in
the formalism. Thus, an N-particle quantization would require an (anti-)symmetrization
over all constituents. Hence, a description using the occupation number representation
comes in more naturally.

We start by defining the Fock space as a direct sum of individual Hilbert spaces of
fixed particle number N,

HFock ≡ H0 ⊕H1 ⊕H2... . (2.3)

A state in the Fock space is then given by

|n1, n2, n3, ...⟩ , (2.4)

where nj gives the occupation number of state j. Those states can be created from the
vacuum using creation operators a†i . For fermions, an arbitrary state can be expressed
as

|n1, n2, n3, ...⟩ = (a†1)
n1(a†2)

n2(a†3)
n3 ... |vac⟩ , (2.5)

where |vac⟩ is the unoccupied vacuum state. The operator a†j creates a particle in
the state nj . There are also annihilation operators aj that annihilate particles in the
respective state. To preserve the fundamental fermionic antisymmetry upon particle
exchange, we require the fermions to anticommute,[︂

ai, a
†
j

]︂
+
≡ aia

†
j + a†jai = δij ,

[︂
a
(†)
i , a

(†)
j

]︂
+
= 0. (2.6)

In order to perform our calculations in second quantization, it is crucial to find a way to
include operator quantities in the second quantization formalism. This can be achieved
by canonical transformation. For one-particle operators, this can generally be done by

Ô
(1)
1 (r, t) → Ô

(2)
1 =

∫︂
d3r Ψ†(r, t) Ô

(1)
1 Ψ(r, t), (2.7)

where Ψ(r, t) are the field operators which also obey anticommutation relations[︂
Ψ(r, t),Ψ†(r′, t)

]︂
+
= δ(r− r′),

[︂
Ψ(†)(r, t),Ψ(†)(r′, t)

]︂
+
= 0. (2.8)

At this stage, one can perform a mode expansion and expand the field operators into
a complete set of spatial modes, denoted by

Ψ†(r, t) =
∑︂
kλ

ϕ∗kλ(r) a
†
kλ(t) and Ψ(r, t) =

∑︂
kλ

ϕkλ(r) akλ(t). (2.9)
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2.1. Second Quantization

Here, we adopt the typical notation used in solid-state physics, which employs the
momentum k and band λ as quantum numbers. From this, it is straightforward to
identify the definition of one-particle operators in second quantization [167],

Ô
(2)
1 =

∑︂
kk′λλ′

(︃∫︂
d3r ϕ∗kλ(r) Ô

(1)
1 ϕk′λ′(r)

)︃
a†kλ(t) ak′λ′(t). (2.10)

This can also be written using the Dirac notation,

Ô
(2)
1 =

∑︂
kk′λλ′

Oλλ′
kk′a

†
kλak′λ′ , Oλλ′

kk′ =
⟨︁
kλ
⃓⃓
Ô

(1)
1 (r)

⃓⃓
k′λ′

⟩︁
. (2.11)

In a similar derivation, one can find the same for two-particle operators [167],

Ô(2)
2 =

∑︂
k1k2k3k4
λ1λ2λ3λ4

Oλ1λ2λ3λ4
k1k2k3k4

a†k1λ1
a†k2λ2

ak3λ3ak4λ4 , (2.12)

Oλ1λ2λ3λ4
k1k2k3k4

= ⟨k1λ1,k2λ2|Ô
(1)
2 (r, r′)|k3λ3,k4λ4⟩ . (2.13)

At this stage, one usually uses the periodicity of the lattice to employ the Bloch
theorem. It states that for periodic potentials, solutions of the stationary Schrödinger
equation are of the form [168]

ϕkλ(r) =
1√
V
eik·rukλ(r). (2.14)

The functions ukλ(r) also carry the lattice periodicity ukλ(r) = ukλ(r+R). This ef-
fectively allows reducing the theoretical description to the first Brillouin zone. Dynamical
equations for any observables of choice, O, are obtained via the Heisenberg equation of
motion framework, here denoted via the Ehrenfest theorem [169],

iℏ∂t ⟨O(t)⟩ =
⟨︁
[O(t), H]−

⟩︁
. (2.15)

For the scope of this thesis, we will be interested in the dynamical evolution of operators
of the general form

σλλ
′

kk′ ≡
⟨︂
a†kλak′λ′

⟩︂
=
⟨︂
λ†kλ

′
k′

⟩︂
. (2.16)

This operator creates an electron with momentum k in band λ while annihilating one
with momentum k′ in band λ′. Here, we mostly restrict to a two-band model. As we will
see throughout this thesis, these observables will be used to describe band occupations
fλk ≡ σλλk,k, intraband transitions fλk−q,k ≡ σλλk−q,k, and interband polarizations pk ≡ σvck,k,
with v for valence and c for conduction band. In the second equality in Eq. (2.16), we
used the abbreviated notation that we will use for fermionic particles in this thesis, where
we absorb the band index into the annihilation (creation) operator λk(†) itself. From this,
it is possible to derive the usual semiconductor Bloch equations for the band occupations
and interband polarizations [170–174].
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2.1.1. Cluster Expansion

If one calculates the dynamical equations for a two-operator quantity σλλ′
kk′ , cf. Eq. (2.12),

while including a two-particle Hamiltonian, it becomes apparent that the equation of
motion does not close, but couples to four-operator expectation values describing corre-
lations between electrons. An example of this kind of interaction will be found later by
the Coulomb interaction or the electron-phonon coupling. This can be solved in principle
by deriving an equation for the four-operator quantity, which couples to a six-operator
quantity, which couples to eight-operator quantities, and so on. This is what is usually
called a hierarchy problem and is often encountered in many-body physics. To obtain
a solution, the hierarchy must be truncated at some level. In the context of this work,
we use a correlation expansion based on the idea that correlations, i.e., higher-order ex-
pectation values, are of decreasing importance as the number of involved charge carriers
increases [175].

To address the hierarchy problem, we use a cluster expansion method [171]. In this
approach, the expectation value is approximated by “a functional structure” [171] that
includes all clusters up to a certain predetermined level, while excluding all remaining
clusters of higher rank. In particular, this allows for systematic improvements in the ac-
curacy of the approximations by progressively including more clusters. Since the explicit
formulas for bosons and fermions are different, we use the generic prescription outlined in
Ref. [171]. We begin with the trivial case of the singlet state, which corresponds directly
to the singlet itself,

⟨1⟩ = ⟨1⟩S . (2.17)

The first real correlation is found for the doublet

⟨2⟩ = ⟨2⟩S + ⟨2⟩c . (2.18)

In this approach, the first term represents the factorization into singlet states, while
the second term accounts for the correlations within the doublet state. The factorization
into singlet states while neglecting correlations at this level for fermions is commonly
known as the Hartree-Fock approximation. This formulation can be extended to N-
particle situations, but for the purpose of this introduction we limit ourselves to this
level of approximation. For a more complete understanding, readers are encouraged to
refer to the detailed discussion in Ref. [171].

2.1.2. Formal Integration and Markov Approximation

When incorporating contributions from correlated quantities in Eq. (2.18), as successfully
done in our group [176–180], one usually derives a dynamical equation for these correlated
quantities using the Heisenberg equation of motion. This results in an equation that is
formally equivalent to,

ẏ(t) + iE(t)y(t) = Q(t) (2.19)

which is an inhomogeneous first-order ordinary differential equation in time. According
to Ref. [181], equations of this form can be solved using the integrating factor,

µ = exp

{︃
i

∫︂ t

t0

E(t′) dt′
}︃
, (2.20)
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2.2. Atomically Thin Semiconductors

which allows obtaining the general solution,

y(t) = y(t0) + exp

{︃
−i
∫︂ t

t0

E(t′) dt′
}︃∫︂ t

t0

Q(t′) exp

{︄
i

∫︂ t′

t0

E(t′′) dt′′

}︄
. (2.21)

For our specific use cases, the function E(t) is usually a band structure contribution
and, therefore, time-independent. Utilizing this fact and making the additional assump-
tion that y(t→ −∞) = 0, the general solution can be simplified to

y(t) =

∫︂ t

−∞
Q(t′) exp

{︁
−iE(t− t′)

}︁
dt′, (2.22)

or, after performing the coordinate transformation s = t− t′,

y(t) =

∫︂ ∞

0
Q(t− s) exp{−iEs} ds. (2.23)

From this, one usually performs the Markov approximation, which can be expressed
as Q(t − s) ≈ Q̃(t)e−i∆Es. This effectively assumes that Q̃(t) varies slowly relative
to the fast optical oscillation in the exponent, which is reasonable since the oscillatory
contribution has already been separated.

Therefore, this effectively means that the remaining memory kernel t′ of the quantity
Q̃(t) can be neglected, since Q̃(t) varies much slower compared to the optical frequency.
This results in

y(t) = Q̃(t)

∫︂ ∞

0
exp{−i(E +∆E)s}ds = −iQ̃(t)ζ(−E −∆E), (2.24)

where we use the definition of the Heitler Zeta function [182, 183],

ζ(x) = −i
∫︂ ∞

0
exp{ixt} = P

(︃
1

x

)︃
− iπδ(x). (2.25)

Using this result and the definition of the ζ-function in the equations of motion, it will
usually be found that the correlation contributions account for dephasing effects via the
δ-function part, and renormalization of the mean-field effects via the principal-value part.
This will be used to evaluate the impact of correlation originating from electron-phonon
and electron-electron interactions in Sec. 4.3.

2.2. Atomically Thin Semiconductors

Transition metal dichalcogenides (MX2) are compounds composed of one transition metal
atom (M) and two chalcogenide atoms (X) arranged in a trigonal prism crystal structure.
The crystal structure consists of six chalcogenide atoms surrounding a transition metal
atom, all with equal bond lengths. This arrangement is shown in Figure 2.1a. In a
monolayer of MX2, these single prisms are stacked to form a hexagonal lattice with
alternating transition metal and chalcogenide atoms, as shown in Fig. 2.1b.

The hexagonal lattice reveals strong covalent bonds within the monolayer. Multiple
layers can stack on top of each other via weaker van der Waals forces in a variety of ways;
the interested reader is referred to Refs. [184, 185]. For a mathematical description, we

9



2. Theoretical Framework

(a) 3D Lattice structure (b) 2D Lattice structure of TMDC in top view

Figure 2.1.: The Crystal Structure of TMDC Monolayers. (a) shows the trigonal
prism structure of TMDCs. (b) shows the hexagonal lattice structure of 2D TMDCs.
The lattice constant a0 is the distance of two similar atoms.

begin by defining the lattice vectors that connect adjacent unit cell centers and are
needed to describe the translational invariance of the crystal. Using the lattice constant
a0, cf. Fig. 2.1, the lattice vectors are given by

r1 =
a0
2

(︂√
3 ex + ey

)︂
, (2.26a)

r2 =
a0
2

(︂√
3 ex − ey

)︂
. (2.26b)

 

Figure 2.2.: First TMDC Brillouin
Zone. Brillouin zone in reciprocal
space with the high symmetry points Γ,
M , and K/K ′.

Typical values for the lattice constant a0 are
around 0.3 nm [186]. Compared to other two-
dimensional materials, e.g., graphene, the inver-
sion symmetry in TMDC monolayers is broken as a
result of the three-atomic basis, cf. Fig. 2.1. How-
ever, the lattice structure remains symmetric un-
der discrete rotations by multiples of 2π/3 , and
discrete translations within the x-y plane.

Most of our calculations will be performed in re-
ciprocal space, which provides a convenient frame-
work due to the periodicity of crystal structures.
A comprehensive introduction to reciprocal space
can be found in Ref. [166]. In the reciprocal lat-
tice, the lattice vectors are defined using the gen-
eral form:

gi · rj = 2π δij .

In combination with the vectors in Eq. (2.26), the
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2.2. Atomically Thin Semiconductors

condition for the reciprocal lattice vectors can be expressed in the following way

g1 =
2π

a0

(︃
1√
3
ex + ey

)︃
,

g2 =
2π

a0

(︃
1√
3
ex − ey

)︃
.

In the hexagonal reciprocal space defined by these basis vectors, a set of high symmetry
points can be identified, as shown in Fig. 2.2. The Γ point, located at the center of the
Brillouin zone, remains invariant under any rotation [187]. Due to the broken inversion
symmetry caused by the alternating transition metal and chalcogenide atoms in the unit
cell of the TMDCs, there are two distinct K points, called K and K ′ points, respectively.
TheseK andK ′ points are located at alternating vertices in the Brillouin zone [168]. This
phenomenon gives rise to several intriguing physical effects, such as circular dichroism
and spin-valley locking. In addition, the M points are located at the centers of the edges.

In the monolayer limit, the band structure of TMDCs can be obtained by ab initio
calculations using density functional theory [188]. Fig. 2.3 shows a typical band structure
of TMDCs for the case of MoS2.

ASHWIN RAMASUBRAMANIAM PHYSICAL REVIEW B 86, 115409 (2012)

FIG. 1. (Color online) (a) Schematic of 2Hb polytype of anMX2

monolayer (M = metal; X = chalcogen). The unit cell is enclosed
by solid lines. (b) Typical band structure for anMX2 monolayer. The
valence-bandmaximum is split due to spin-orbit coupling. Transitions
between v2 and the conduction-band minimum at K lead to A-type
excitons in the absorption spectrum, while transitions between v1 and
the conduction-band minimum at K lead to B-type excitons.

pairs to obtain optical absorption spectra within the Tamm-
Dancoff approximation23 for the monolayer samples. Addi-
tional details are provided in the Appendix at the end of
this paper. A remark on the intermediate HSE step is in
order here: while this step is not essential (i.e., PBE wave
functions and eigenvalues can be directly used as inputs for
the GW calculation), the computed PL spectrum for MoS2
was found to be in better agreement with experiments upon
inclusion of this step. This is likely because incorporation
of a fraction of exact exchange within the HSE functional
reduces self-interaction errors, leading to a better description
of electronic wave functions.32 Indeed, the HSE functional has
been shown to systematically approximate the optical gap in
several instances.33 At any rate, based on the success of this
strategy for reproducing the experimental absorption spectrum

for MoS2, the same procedure is systematically employed for
all LTMDs studied here.

We begin by discussing the case of monolayer MoS2,
which has been well characterized experimentally,9,11,19 thus
providing a benchmark for computational studies. All LTMDs
considered here commonly crystallize in the 2Hb polytype.
The corresponding unit cell for a monolayer is displayed in
Fig. 1(a); the relevant structural parameters, which are all in
excellent agreement with previous studies,21,34 are listed in
Table I. As noted before, the valence-band edge is split due to
spin-orbit coupling, the splitting being largest at the K point
of the Brillouin zone [Figs. 1(b) and 3]. The conduction-band
minimum, which is also at K , is doubly degenerate. Optical
transitions between the split valence band and the conduction
band give rise to two distinct low-energy peaks in the
absorption spectrum, commonly referred to as the A and B
excitons.35 At the PBE level, the valence band undergoes
a spin-orbit splitting of 146 meV, which is in excellent
agreement with previous calculations.20,21 The spin-orbit
splitting is sensitive to the level of theory employed, following
the trend!PBE

SO < !
G0W0
SO < !HSE

SO . Band gaps for various levels
of theory are also reported in Table I along with experimental
PL gaps. The measured optical gap of 1.8–1.9 eV for MoS2 is
clearly underestimated by the PBE calculations (1.6 eV). The
G0W0 quasiparticle gap on the other hand is nearly 1 eV in
excess of the measured optical gap. Interestingly, the HSE gap
is about 0.15–0.2 eV in excess of the optical gap, as also noted
in previouswork,36 pointing to the aforementioned tendency of
theHSE functional to approximate the optical gap in general.33

We also note, parenthetically, that the G0W0 gap is direct at
K , in agreement with the self-consistent GW calculations of
Ref. 20.

To enable more direct comparison with experiments, we
consider next the absorption spectrum of monolayer MoS2.
Figure 2 displays the imaginary part of the frequency-
dependent transverse dielectric constant, ε⊥

2 (ω), in the long-
wavelength limit q → 0, which corresponds to interaction
with an electromagnetic wave polarized in the plane of the
monolayer. Computational results for ε⊥

2 (ω) are displayed
for HSE and G0W0 calculations (both in the random-phase
approximation) as well as for BSE calculations in the Tamm-
Dancoff approximation. For comparison, the experimental
absorption spectrum from Ref. 9 is also reproduced in Fig. 2.
From these data, we see that the G0W0 absorption onset is

TABLE I. Structural parameters, valence-band spin-orbit splitting (!SO ) atK , and direct electronic band gaps (Eg) atK for various LTMD
monolayers. (See Fig. 1 for schematic definitions of the tabulated parameters.)

Structural parameters (Å) !SO (meV) Eg (eV)

a dMX PBE HSE G0W0 PBE HSE G0W0 Expt. (PL)

MoS2 3.18 1.56 146 193 164 1.60 2.05 2.82 1.88,a 1.85b

MoSe2 3.32 1.67 183 261 212 1.35 1.75 2.41
MoTe2 3.55 1.81 216 344 266 0.95 1.30 1.77
WS2 3.19 1.57 425 521 456 1.56 1.87 2.88
WSe2 3.32 1.68 461 586 501 1.19 1.68 2.42c

aReference 9; absorption measurement.
bReference 11; PL measurement.
cThis direct gap at K is not the lowest quasiparticle gap at the G0W0 level; the actual gap is 2.34 eV and is indirect, as seen from Fig. 3. At the
PBE and HSE level though, the gap is direct at K .

115409-2

Figure 2.3.: MoS2 Band Structure. The band structure of monolayer MoS2 exhibits
a significant spin-splitting of the valence and conduction bands at the K/K ′ points,
attributed to strong spin-orbit coupling. This spin-splitting is evident in the absorption
spectrum. Reprinted figure with permission from Ref. [188]. Copyright (2012) by the
American Physical Society.

Even if the exact form of the band structure is specific to MoS2, we will use it to explain
features that are common among all TMDC monolayers. The characteristic feature of
TMDCs that has sparked a surge in scientific interest in these materials over the past
decade is that they exhibit a direct band gap in the monolayer limit [8], which results in a
significant photoluminescence enhancement of TMDC layers compared to the multilayer
case. Due to their shape, the band gap extrema are often referred to as valleys and
approximated to be parabolic around the respective K/K ′ point. This will be done once
we start our analytical calculations in Sec. 3.1.1. In addition to the direct band gap, the
optical transitions are valley selective as σ+- or σ−-polarized light can only induce optical
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2. Theoretical Framework

transitions at the K or K ′ valley respectively [10], a fact that results from the band gap
being located at the vertices rather than the center of the Brillouin zone. As can be seen
in Fig. 2.3, the valence band is split in two at the K/K ′ points. This split is due to strong
spin-orbit coupling in the TMDC layer, originating from d orbitals [11] that constitute
the band structure close to the K/K ′ points. As the valence and conduction band are
made up by different d-orbitals, the spin-splitting effect is much weaker but exists in the
conduction band as well [12, 189]. The splitting in the valence band typically reaches
several hundred meV, while in the conduction band, it reaches multiple tens of meV [12].

Following the absorption of a photon in the TMDC, an electron is promoted to the
conduction band, leaving behind a hole in the valence band. Those charges interact via
attractive Coulomb interaction and form a bound electron-hole pair, a so-called exciton.
Due to their two-dimensional nature, the field lines can effectively propagate outside the
material, resulting in a net reduction of the dielectric screening, which leads to large
exciton binding energies on the order of 0.5meV [17, 190, 191]. Due to their substantial
oscillator strength, TMDCs can achieve absorption rates of up to 10 % in the visible
regime [8, 9], which is even more remarkable considering their two-dimensional nature."

1.8 1.9 2.0 2.1 2.2
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Figure 2.4.: Exciton Formation Below the Free-Particle Band Gap. The figure
illustrates exciton formation below the free-particle band gap, showing a strong 1s peak
along with weaker higher-order excitonic resonances. Accordingly, the optical band gap
is decreased to the energy level of the 1s exciton resonance. Above the free-particle
band gap, the spectrum appears continuous. For the calculated spectrum, values for
MoSe2 are used. The figure is inspired by Ref. [18].

As can be seen in Fig. 2.4, the optical spectra of TMDC monolayers reveal strong and
spectrally well separated excitonic resonances, making them an ideal candidate to study
excitonic effects. In general, there are two types of excitons, Wannier-Mott excitons and
Frenkel excitons, depending on the exciton Bohr radius. In TMDC monolayers, their
Bohr radius is on the order of a few nanometers to several lattice periods [18], which
corresponds to the intermediate range. Strictly speaking, an intermediate description
would need to be considered. However, experimental observations have indicated that a
Wannier-Mott description is sufficient to explain results quantitatively [18].
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2.3. Electrodynamics of Metals

2.3. Electrodynamics of Metals

In most cases, the interaction of metals with electromagnetic fields can be understood in
terms of classical electrodynamics. The theoretical description is therefore firmly rooted
in the well-known Maxwell equations [192, 193],

∇ ·D(r, t) = ρ(r, t), (2.27a)
∇ ·B(r, t) = 0, (2.27b)
∇×E(r, t) = −∂tB(r, t), (2.27c)
∇×H(r, t) = j(r, t) + ∂tD(r, t). (2.27d)

Here, D is the electric displacement, ρ the free electric charge density, B the magnetic
flux density or magnetic induction, often also ambiguously refereed to as the magnetic
field, the electric field E and the magnetic field H and the electric current density j
of free charges. These essential equations are widely utilized in various numerical im-
plementations [194], such as finite-element methods [132] (e.g., COMSOL [195]), the
finite-difference time-domain method [131] (e.g., ANSYS Lumerical [196]), surface inte-
gral methods, namely the SIE method [197] or the boundary element method (BEM)
[133], the discontinuous Galerkin time domain (DGTD) method [198, 199], or volume
integral methods [200].

For the case of non-magnetic, homogeneous, linear media that will be important
throughout this thesis, these equations are linked through [201]

D(r, t) = ε0

∫︂ ∫︂
ε(r, r′, t− t′)E(r′, t′) d3r′ dt′, (2.28a)

B(r, t) = µ0H(r, t), (2.28b)

P(r, t) = ε0

∫︂ ∫︂
χ(r, r′, t− t′)E(r′, t′) d3r′ dt′, (2.28c)

with the vacuum permittivity, ε0, the vacuum permeability µ0 and the relative permit-
tivity ε(r, r′, t− t′) which is 1 for vacuum. Here, we chose the formulation in terms of the
polarization, as this will be the predominant observable throughout this thesis. However,
in agreement with the Maxwell’s equations, one could also reformulate these equations
in terms of the electric current density j(r, t) using the conductivity σ(r, r′, t− t′) [202],

j(r, t) =

∫︂ ∫︂
σ(r, r′, t− t′)E(r′, t′)d3r′dt′. (2.29)

As the current density is the time derivative of the polarization ∂tP = j(r, t), one can
generally connect conductivity, permittivity, and susceptibility via

χ(r, r′;ω) =
iσ(r, r′;ω)

ωε0
, ε(r, r′;ω) = ε∞(r, r′) +

iσ(r, r′;ω)

ωε0
. (2.30)

The convolution in Eqs. (2.28) can be expressed as a product in Fourier space that
reads

DQ(ω) = ε0 εQ(ω)EQ(ω), (2.31a)
BQ(ω) = µ0HQ(ω), (2.31b)
PQ(ω) = χQ(ω)EQ(ω). (2.31c)
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2. Theoretical Framework

In these equations, the material properties are encoded in terms of conductivity, per-
mittivity, or susceptibility, which can be used interchangeably, as shown in Eq. (2.30).

Most commonly, these equations use phenomenological material models to describe the
response of the system qualitatively and quantitatively. For metals, there is a large zoo
of material models due to the lack of characteristic high-symmetry points in their band
structure that can be easily approximated (unlike direct band gap semiconductors). In
order to improve these phenomenological models, all these equations should be further
advanced to the microscopic level, which will be the central focus in Ch. 4).

In the following subsections, we provide an overview of the material systems considered
in this work and their respective descriptions in the existing literature. We focus on a
description in terms of permittivity.

2.3.1. Local Response Approximation - Drude Model

A very useful approximation to handle the convolution in Eq. (2.28) is the Local Response
Approximation (LRA), which can be expressed as follows

ε(r, r′;ω) = ε(r;ω) δ(r− r′). (2.32)

This way, the optical response of the system it fully described locally using a per-
mittivity function that depends entirely on the location and disregards effects of the
surroundings, i.e., nonlocal effects. This is a strong approximation, but at the same has
been a very successful theory to describe experimental observations over the years.

This approach is commonly combined with the piecewise-constant approximation (PCA),
where a constant, spatially invariant, and frequency-dependent permittivity is assumed
for each region [51, 203],

ε(r;ω) ≈
{︄

ε(ω) , r ∈ material
1 , r ∈ surrounding

. (2.33)

The formulation presented above is advantageous as it allows for a clear separation of
bulk material properties from geometrical effects, enabling the treatment of these aspects
on different levels. This separation is especially useful for numerical implementations.
Typically, the first step is to derive the permittivity ε(ω), which characterizes the optical
response of the bulk material. Then the geometrical information is added in a separate
step.

This separation is particularly useful for numerical implementations as this usually
works by first deriving the permittivity ε(ω), which characterizes the optical response of
the bulk material, and then separately adding geometrical information in a second step.

In the following sections, we will discuss typical models used to describe the bulk
properties of metals. We will focus mainly on the optical to infrared frequency range,
as this is the spectral range relevant to the scope of this work. Within this range, the
Drude model [119] is one of the most commonly used models. This phenomenological
model, historically the first to explain Ohm’s law [119], can effectively capture the optical
response of metal systems in the region where intraband effects dominate and interband
effects can be neglected. The inclusion of interband transitions is discussed in Sec. 2.3.6.
It is important to note that the derivation of an analytical response for a material system
is always limited to the spectral region for which the model is applicable.
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2.3. Electrodynamics of Metals

Figure 2.5.: Conceptual Idea of
Drude Theory. This illustration
shows the core concept of Drude the-
ory. When exposed to an external elec-
tric field, electrons are accelerated by
the field while scattering with the ions.

An intuitive derivation of the Drude model can
be obtained from a simple picture [51], where an
electron gas of free electrons moves against a fixed
background of ion nuclei. This model is valid for
many metals over a wide spectral range, particu-
larly in the infrared to optical range that we are
interested in. The equation of motion is given by

m∂tv +mγv = −eE. (2.34)

Here, we consider the velocity v of electrons with
mass m and charge −e under the influence of an
electric field E, as they move in front of a back-
ground of ions. The velocity is damped due to
electron-ion collisions with a rate of γ. From this,
we define the electric current density that reads

j = −nev, (2.35)

where n is the electron density. From this and using Eq. (2.30), we can find prescrip-
tions for the permittivity ε(ω) and the plasma frequency ωp,

ε(ω) = ε∞ −
ω2
p

ω(ω + iγ)
, ω2

p =
ne2

ε0m
, (2.36)

where n is the electron density, e is the elementary charge, ε0 is the vacuum permit-
tivity, and m is the electron mass. Incorporating the effects of filled d bands that cause a
highly polarized environment in noble metals and core-level electrons not accounted for
in the model given by Eq. (2.34), we can modify the asymptotic permittivity by adding
a residual polarization, resulting in the following expression

ε(ω) = ε∞ −
ω2
p

ω(ω + iγ)
. (2.37)

The parameter γ represents the electron dephasing rate and ε∞ is the asymptotic value
for high-frequencies of the permittivity [51, 204].

2.3.2. Microscopic Material Models

These equations, derived at the macroscopic level, can also be obtained at the microscopic
level, allowing the inclusion of electron-electron interactions. This is achieved through
the use of the Heisenberg equation of motion framework, as discussed in Sec. 2.1. By
including the free Hamiltonian and the Coulomb interaction, treated within the Hartree-
Fock approximation, it is straightforward to derive the dynamical equation for intraband
transitions. Here, we follow Refs. [165, 167],

ℏωfk−q,k =
[︁
ϵ̃k − ϵ̃k−q

]︁
fk−q,k − Vq(fk,k − fk−q,k−q)

∑︂
K

fK−q,K. (2.38)
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In this derivation, we deliberately neglect the spin quantum number, and the equation
is linearized to include occupations and transitions only up to linear order. In addition,
some mean-field contributions at the Hartree-Fock level are already incorporated in a
renormalized dispersion ϵ̃k = ϵk+ δϵk, where δϵk = −∑︁q Vqfk−q,k−q. By summing over
k, we obtain an implicit equation to determine the eigenfrequencies of the electron gas,

Fq(ω) ≡
∑︂
k

Vq
fk−q,k−q − fk,k
ℏω + ϵ̃k−q − ϵ̃k

= 1. (2.39)

The equation derived above has several simple poles at electron-hole excitation energies
ϵ̃k−q − ϵ̃k. Between these poles, the implicit equation is fulfilled at least once, as shown
in Fig. 2.6.
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Figure 2.6.: Visualization of the Implicit Equation for the Plasma Frequency.
This graph shows the function Fq(ω), revealing two characteristic parts. At low fre-
quencies, multiple poles are observed, indicating electron-hole excitations. Conversely,
at high energies, a slowly decaying branch proportional to ω−1 appears. This branch
corresponds to the collective excitation of the electron gas.

This excitation creates the continuum of excited electron-hole states, which is difficult
to visualize graphically. In addition to this continuum, an additional mode is found,
which corresponds to a collective excitation of the electron gas. This generalizes the
conceptual idea of the Drude model to include electron-hole excitations through Coulomb
interaction. In the regime of the collective mode, ℏω ≫ ϵk+q − ϵk ≈ ℏ2

m (k · q + q2/2).
From this, the plasma frequency can be derived easily,

1 =
Vq

(ℏω)2
∑︂
k

fk,k
2ℏ2

m
(k · q+ q2/2) =

e2

mε0V ω2

∑︂
k

fk,k → ω2
p ≡ ne2

mε0
(2.40)

From this description, it is possible to derive the first dispersive correction ∝ q2 to the
plasma frequency. Interested readers are referred to Refs. [165, 167] for further details
on this topic.

Furthermore, in the same spirit, an equation for the dielectric function can be derived
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as the effective screening of the Coulomb potential,

εq(ω) = 1− Vq
∑︂
k

fk+q,k+q − fk,k
ϵk+q − ϵk − ℏω

. (2.41)

This equation is commonly known as the Lindhard equation for the dielectric constant
of the electron gas.

On a final note, it is also possible to define bosonic annihilation (creation) operators
for the plasmons themselves by distinguishing between the long and short range Coulomb
interactions. An excellent introduction can be found in Ref. [205].

2.3.3. Thermalization in Metals and Semiconductors

When an optical pulse interacts with a material, the optical pulse primarily interacts with
the electrons, which thermalize on the short timescale of electron-electron interaction and
then dissipate their energy to the lattice through electron-phonon interaction. Depending
on the timescales of pulse length and electron-phonon coupling, the electron and lattice
remain in equilibrium and can intuitively be described by a single equation. However,
when this timescale becomes short compared to the electron-phonon coupling, the two
have to be distinguished for a sensible theoretical description. For this purpose, the
two-temperature model has been very successfully introduced, which reads as follows
[206–208]

Ce(Te)∂tTe = −G(Te − Tℓ) + Pabs(r, t), (2.42a)
Cℓ∂tTℓ = G(Te − Tℓ). (2.42b)

Here, Ce and Cℓ represent the electron and lattice heat capacity, while Te and Tℓ are
the electron and lattice temperatures, respectively. The model also includes the electron-
phonon coupling G and the general heat source Pabs. This model has proven extremely
successful in various experimental situations, with the first values for femtosecond exci-
tation recorded in Refs. [209, 210]. Spatial derivates incorporating diffusion have been
neglected at this stage, but will be reintroduced later.

This temperature-based description inherently neglects nonthermal contributions that
become significant during electron thermalization on a femtosecond timescale [211]. To
incorporate these nonthermal processes, the theoretical model has been extended to what
is known as the three-temperature model (3TM) [212, 213],

∂tN = −aN − bN + Pabs(r, t), (2.43a)
Ce∂tTe = −∇ · (−κe∇Te)−G(Te − Tℓ) + aN, (2.43b)

Cℓ∂tTℓ = κℓ∇2Tℓ +G(Te − Tℓ) + bN. (2.43c)

In this model, N represents the energy stored in the nonthermalized part of the electron
distribution, while κe and κℓ are the thermal conductivities. The first experiments to
verify this model were conducted in Refs. [211, 213, 213, 214]. According to Ref. [212], a
is the electron gas heating rate, and b is the electron-phonon coupling rate. In Eq. (2.43),
Te, Tℓ and N depend on space and time, but in most cases their spatial dependence is
not needed and is therefore omitted in the description for clarity. Recently, researchers
have explored the spatial dependence, leading to the rediscovery of the inhomogeneous
three-temperature model (I3TM) [215–219].
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The obtained results demonstrate good agreement with a more sophisticated model
[220, 221], which relies on numerical solutions of the Boltzmann equation [222, 223], some-
times referred to as the Bloch-Boltzmann-Peierls formula [222]. This comprehensive ap-
proach has been highly successful in describing the complex dynamics of semiconductors
[173, 224–228] and metals [220, 229–232], overcoming the limitations of temperature-
based models.

In the context of metals, the equations are often formulated in terms of energy [224,
231, 233–235], significantly reducing the dimensionality of the problem while assuming
isotropy and homogeneity for physical simplicity. Detailed calculations can be found in
Refs. [236, 237].

In contrast, these descriptions in their full momentum dependent complexity have
proven to be highly effective to model the dynamics in graphene and carbon nanotubes
[174, 238–242], as well as transition metal dichalcogenides [19, 176, 180, 243], where
they allow for the inclusion of non-isotropic situations and electron-electron interactions
[244, 245].

As an illustrative example, Fig. 2.7 depicts the thermalization process of a classical
Boltzmann scattering equation, revealing the prominent non-thermal distribution that
arises in the system.
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Figure 2.7.: Example for a Classical Boltzmann Scattering Process. Depic-
tion of the thermalization dynamics of the classical Boltzmann equation for monolayer
MoSe2 at a lattice temperature of T = 100 K. (a) depicts the excitation of the Q = 0
mode and (b) the excitation of a higher mode. In both figures, the action of acoustic
and optical phonons can clearly be distinguished. Data courtesy of Manuel Katzer.

2.3.4. Nonlocal Hydrodynamic Model

At the microscopic level, the perturbation at a spatial point r immediately affects its
surroundings. By construction, any mesoscopic, purely local theory such as the Drude
model falls short of incorporating these effects.

One approach to improve this local, mesoscopic theory is to include nonlocal hy-
drodynamic effects in the description of the electrons at the mesoscopic level. This
effectively describes the collective behavior of electrons in a system when they exhibit
hydrodynamic-like flow properties. In this limit, the electrons can be described by macro-
scopic quantities such as density and velocity, similar to a fluid. In the hydrodynamic
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limit, the electron system is governed by the hydrodynamic equations, such as the con-
tinuity equation and an Euler equation that captures the conservation of charge and
momentum, respectively [246–252]. The hydrodynamic equation of motion that we will
use can then be given by

m∂tv +m(v · ∇)v = −mγv − eE−∇
[︃
δG[n]

δn

]︃
,

which now includes the full substantial derivative on the left-hand side and a gradient
of the energy functional G[n] which describes the kinetic, exchange and correlation energy
of the system and effectively incorporates quantum corrections into the description. In
its simplest formulation, this can be approximated by the Thomas-Fermi functional [202],
which allows a formulation in terms of the internal pressure in the system [145, 253]. In a
later section, we will also present an approach to derive this equation from a microscopic
Boltzmann transport equation by an appropriate momentum expansion [254]. In the
usual quantum hydrodynamics literature [145, 250–253, 255–257], this equation is then
linearized with the assumption [249, 250]

∇
[︃
δG[n]

δn

]︃
≈ mβ2

n0
∇n1, (2.44)

where β is a constant usually identified as β2 = 3
5v

2
F in the high-frequency limit [145],

derived via the adiabatic constant in the equation of state for a Fermi gas [246, 258].
The parameter β is usually understood as the speed of sound in the considered material.
With this, we obtain an equation for the polarization,

β2

ω2 + iγω
∇(∇ ·P1) +P1 = −

ε0ω
2
p

ω2 + iγω
E. (2.45)

This hydrodynamic Drude model constitutes an extension of the standard local Drude
model, Eq. (2.34), and contains a correction resulting from the inclusion of nonlocal
effects, expressed in terms of spatial gradients. From Eq. (2.45), one can typically ob-
tain the permittivity, εQ(ω), by distinguishing between the longitudinal and transverse
components [147, 250, 253, 259] in Fourier space [140, 146, 260–263],

εLQ(ω) = ε∞ −
ω2
p

ω2 + iγω − β2|Q|2
. (2.46)

This means that the electron pressure contribution affects the Q modes in a gener-
alized nonlocal optical response (GNOR) theory [151] that affects only the longitudinal
component while leaving the transverse component invariant. The inclusion of these
terms becomes apparent for small particles with large surface-to-volume ratios, where a
blue shift of the nanoparticle resonance can be observed [264]. This approach is also ap-
plicable to highly doped semiconductors [265] and finds applications in higher harmonic
generation [152, 263].

2.3.5. Surface Response Formalism

In contrast to the previous section, where nonlocality was incorporated as an additional
term in the differential equation, cf. Eq. (2.45), this section presents the surface response
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formalism. This formalism incorporates (quantum) corrections to the local response
approximation (LRA) solely via the boundary conditions, while leaving the differential
equations unchanged [252]. As demonstrated in Ref. [155], this formulation effectively
represents nonlocal and quantum corrections as an infinitely thin dipole layer surrounding
the structure and has been shown to agree well with calculations in time-dependent
density functional theory (TDDFT). Ref. [154] establishes that these boundary conditions
are given by

D+
⊥ −D−

⊥ = d∥∇ · (D+
∥ −D−

∥ ), (2.47a)

B+
⊥ −B−

⊥ = 0, (2.47b)
E+

∥ −E−
∥ = −d⊥∇∥(E

+
⊥ − E−

⊥), (2.47c)

H+
∥ −H−

∥ = iωd∥(D
+
∥ −D−

∥ )× n̂. (2.47d)

Here, d⊥ and d∥ represent the Feibelman d-parameters [136, 153, 266], which are
defined as [153, 252]

d⊥(ω) =

∫︁
dxxρind(x)∫︁
dx ρind(x)

, (2.48a)

d∥(ω) =

∫︁
dxx ∂xJ

ind
y (x, ω)∫︁

dx ∂xJ ind
y (x, ω)

. (2.48b)

It is important to note that we adopt the description provided in Ref. [156], which
clearly distinguishes between the equilibrium charge density ρ0 and the induced charge
density ρind that the system exhibits in response to an external perturbation. This
distinction is made to avoid confusion with the description used in later parts of this
thesis, where we will refer to ρind as ρ1. The quantities denoted by d∥ and d⊥ correspond,
respectively, to the effective mesoscopic surface charge density and its first moment. The
latter can also be interpreted as the center position of the induced charge density with
respect to the jellium edge [202].

These parameters capture the dynamics at the surface region characterized by electron
gas inhomogeneities, while classical (local) response functions describe the bulk behavior.
The formulation based on the Feibelman d-parameters exhibits considerable strength, en-
abling the incorporation of nonlocality, electronic spill-out (or equivalently “spill-in”), and
surface-enabled Landau damping effects [202, 252]. As such, this formulation overcomes
the limitations of local theories highlighted by Feibelman [153], in particular disconti-
nuity and locality. Notably, this framework has recently been applied successfully to
describe various experimental and TDDFT scenarios [262, 267–269]. For a more detailed
introduction, the interested reader may be referred to Refs. [156, 252]

2.3.6. Interband Transitions

So far, the description has been limited to including intraband transitions via the Drude
model [119], which provides a good approximation of material properties over a certain
spectral range. However, for noble metals (Au, Ag, Cu) it becomes necessary to include
interband transitions in the description when studying the high-energy side of the visible
spectrum [270]. The specific energy at which interband transitions become significant
varies with the material. According to Ref. [271], interband transitions become important
above ≳ 2.1 eV for copper, ≳ 2.47 eV for gold, and ≳ 3.8 eV for silver.
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For energies below these values, a description based purely on the Drude model is suf-
ficient to represent the macroscopic permittivity of the material, as shown by comparison
with experimental data from Refs. [272, 273]. Therefore, the Drude model provides a
reliable approximation for describing the optical properties of noble metals in the lower
energy regime. However, as interband transitions become relevant in the visible regime,
which is the focus of this work, it becomes essential to account for them in order to
obtain accurate material descriptions.

As permittivities are additive, we may add contributions from interband transitions
modeled as Lorentzian oscillators. Mostly, these interband transitions are modeled as
Lorentzian oscillators, leading to the full permittivity,

ε(ω) = ε∞ −
ω2
p

ω(ω + iγ)
−

N∑︂
i=1

fiω
2
i

ω2 − ω2
i + iγiω

, (2.49)

where ωi is the resonance frequency, fi is the oscillator strength, and γi is the damp-
ing of the ith Lorentz oscillator. The parameter N denotes the number of interband
transitions incorporated into the model. Depending on the material system and the de-
sired level of accuracy, it may be necessary to include one or more interband transitions.
Several authors in the literature have used different numbers of incorporated interband
transitions, ranging from only one to up to eight [274–280]. The choice of the number of
interband transitions is determined by numerical simplicity and the desired accuracy of
the model.

Another analytical model proposed by Ref. [277, 281] utilizes a critical point transition
model, cf. [276], which includes two interband transitions,

εAu(ω) = ε∞ −
ω2
p

ω(ω + iγ)
+
∑︂
i=1,2

Aiωi

[︃
eiϕi

ωi − ω − iγi
+

e−iϕi

ωi + ω + iγi

]︃
. (2.50)

Here Ai represents the amplitudes, ωi the resonance frequencies, and γi the damping
rates, as already described in Eq. (2.49). This approach allows the description of asym-
metric line shapes of the interband resonances and provides a better description of the
experimental results compared to other publications, considering the number of fitting
parameters.

However, it is essential to emphasize that all the models presented are essentially
phenomenological fit models, and their parameters are adjusted to match the available
experimental data from Ref. [272]. As a result, these models provide limited direct physi-
cal information, since no actual physical meaning is conveyed through the fit parameters.
The fitting parameters for the critical point transition model for gold can be found in
Tab. A.1.

2.4. Plasmonics - Geometrical Effects

In the previous section, we presented a comprehensive analysis of the plasmonic response
of bulk materials, i.e., the system was assumed to be translationally invariant. There,
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Figure 2.8.: Gold Permittivity. Comparison of the Johnson and Christy data [272]
for the permittivity of gold in the optical regime with analytical fits obtained using
the Drude model (fit parameters from Ref. [274]), and the critical point model from
Ref. [277].

the behavior of the material was characterized by the plasma frequency ωp in the Drude
model. Now, in this section, we consider the effect of geometry and explore the two
fundamental excitations in plasmonics - localized surface plasmons (LSPs) and surface
plasmon polaritons (SPPs).

The first of these excitations, SPPs, are propagating and dispersive electromagnetic
waves coupled to the electron plasma of a conductor at a dielectric interface. In contrast,
LSPs are non-propagating excitations of the conduction electrons in metallic nanostruc-
tures. Here, the spatial confinement imposed by the surface of the nanoparticle exerts an
effective restoring force on the driven electrons, resulting in a resonance phenomenon that
leads to significant field enhancement both inside the nanoparticle and in the near-field
zone outside it.

2.4.1. Localized Surface Plasmons (LSP)

The first geometry resonance we will consider are localized surface plasmons, also known
as localized plasmons or simply plasmons in our context. These resonances arise nat-
urally in the scattering of small conductive nanoparticles when exposed to oscillating
electromagnetic fields. Their optical response is well characterized using Mie scatter-
ing [1, 201, 270, 282], but more sophisticated approaches using quasinormal modes also
describe these plasmonic resonators well [126–128].

The remarkable advantage of LSPs lies in their ability to generate tremendous near-field
field enhancements outside the particle, opening up promising technological applications.
By controlling the size and shape of nanoparticles, the localized surface plasmon reso-
nance can be finely tuned, allowing the design of novel materials with unique optical
properties. This versatility leads to a wide range of applications [71, 144, 283], including
nanoscale optical [284], biosensors [87], energy harvesting [67, 285–287], and even cancer
treatment through photothermal therapy [288–290].

Another advantage of LSPs is their ability to be directly excited from the far field,
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2.4. Plasmonics - Geometrical Effects

which distinguishes them from propagating SPPs, which cannot be easily excited from
the far field.

2.4.2. Mie Scattering

In his pioneering work in 1908 [1], Gustav Mie formulated the solution to Maxwell’s
equations for the scattering of an electromagnetic wave by a sphere. This seminal work,
aimed at describing colloidal gold solutions, laid the foundation for understanding how
electromagnetic radiation interacts with particles, now known as Mie scattering or Mie
theory.

Mie theory involves a complex mathematical treatment that allows the calculation of
different scattering coefficients for arbitrarily complex modes. In our context, we will
limit the discussion to a sphere much smaller than the wavelength of the incident light.
However, we will also discuss how this treatment can be extended to more complex
objects.

Assuming that the scattered field in the far field approaches a transverse radial wave,
the relation between the incident electric field Einc and the scattered electric field Escat

is usually expressed in terms of the amplitude scattering matrix,(︃
Escat

∥
Escat

⊥

)︃
=
eik(r−z)

−ikr

(︃
S2 S3
S4 S1

)︃
·
(︃
Einc

∥
Einc

⊥

)︃
. (2.51)

This treatment is typically extended and formulated in terms of the Stokes parameters
Is, Qs, Us, and Vs. However, in this discussion we will not go into the details and instead
refer the interested reader to Refs. [201, 270].

This extended treatment makes it possible to derive the extinction, absorption, and
scattering cross sections using the Poynting vector for arbitrary geometries. For the
specific case of a sphere, the symmetry of the problem allows us to expand the solutions
of the scalar wave equation in terms of spherical harmonics and spherical Bessel functions
[1, 270]. Under the use of the boundary conditions that the tangential components are
continuous,

(Einc +Escat −Ein)× er = 0, (Hinc +Hscat −Hin)× er = 0, (2.52)

one can accurately analyze the scattering, absorption, and extinction phenomena of
the incident electromagnetic wave interacting with the spherical particle. To achieve
this, one usually derives equations for the expansion coefficients of the individual field
components, cf. Ref. [201, 270, 282, 291–294]. These equations allow the inclusion of
higher multipole orders, but for our purposes we will limit ourselves to the dipolar case.

For this order, the induced dipole moment p in response to the external electric field
E can be expressed in terms of the polarizability α of the object. For the isotropic case,
the polarizability is a scalar quantity and the equation simply reads

p = α(ω) ·E. (2.53)

In a general treatment using Mie scattering, the expansion coefficients can be related to
the polarizability of the sphere. The polarizability α is given by the formula α = 3

2k3
tE1 ,

where tEℓ is determined as follows

tEℓ =
−jℓ(ρ0)αE

ℓ + [ρ0jℓ(ρ0)]
′βEℓ

h
(+)
ℓ (ρ0)αE

ℓ − [ρ0h
(+)
ℓ (ρ0)]′βEℓ

. (2.54)
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In this equation, we used the definitions αE
ℓ = ε0[ρ1jℓ(ρ1)]

′, βEℓ = ε1jℓ(ρ1), and
ρℓ = kja with jℓ being the spherical Bessel functions and h

(+)
ℓ representing the Han-

kel functions of the first kind. The prime notation denotes a derivative with respect to
the argument, and kj = k

√
εjµj . For our purposes of a non-magnetic material, we will

always assume µj = 1.
From a series expansion of the spherical Bessel functions for the case of a sphere with

a small size compared to the wavelength, ρℓ ≪ 1, we can obtain a simplified result for
the polarizability

α(ω) = 4πε0εoutr
3 ε(ω)− εout

ε(ω) + 2εout
. (2.55)

The fraction in this expression is commonly referred to as the Clausius-Mosotti factor,
which also arises from the problem of a sphere embedded in a uniform static electric
field [201, 270]. In the equation, ε(ω) is the permittivity of the sphere, εout is the
surrounding permittivity, and r is the radius of the sphere. Because of this similarity,
this approximation is often referred to as the quasi-static approximation. This simplified
expression provides a useful and practical way of describing the polarizability of a small
sphere and gives qualitatively good results for spheres much smaller than the wavelength
without the need for complex calculations involving full Mie scattering theory.

The spectral position of the localized surface plasmon resonance is typically obtained
using the Fröhlich condition Re[ε(ω)] + 2εout = 0 [51, 201, 252, 279]. This condition
allows us to find the roots of the denominator, which correspond to the singularities of
the polarizability. As a result, we obtain what is commonly referred to as the plasmon
frequency

ωLSP =
ωp√

ε∞ + 2εout
, (2.56)

from which we can straightforwardly calculate the resonance position. The polariz-
ability in Eq. (2.55) generalizes to spheroids as well [201, 270, 295]. In this context, we
present the specific expressions for an oblate spheroid that we will use in Ch. 3, where
the x and y semi-axes are equal, and the z semi-axis is shorter, as depicted in Fig. 2.9(a).
Here, the polarizability becomes a diagonal tensor denoted by α(ω), with its diagonal
components given by [270, 295]

αi(ω) = 4πε0εout
rxryrz

3

εAu(ω)− εout

LiεAu(ω) + εout(1− Li)
. (2.57)

This expression is what we will refer to as Mie-Gans theory [1, 295]. The aspect
ratio and such the lengths of the spheroid’s semi-axes, ri, determine the strength of
the individual components via the depolarization factors Li, which change the optical
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response via the respective semi-axes [270, 281],

Lx = Ly =
1

2e20

(︄√︁
1− e20
e0

arcsin(e0)− (1− e20)

)︄
, (2.58a)

and Lz =
1

e20

(︄
1−

√︁
1− e20
e0

arcsin(e0)

)︄
. (2.58b)

For the oblate spheroid, the x and y component coincide due to symmetry. The
eccentricity e0 is defined to be

e0 = 1− r2z
r2xy

. (2.59)

Tuning the aspect ratio of the nanoparticle, the resonance of the localized plasmon can
be tuned over a wide spectral range as we illustrate in Fig. 2.9(b).
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Figure 2.9.: Resonance Behavior of Gold Spheroid under Changing Aspect
Ratio. (a) depicts the semi-axes of an oblate spheroid. (b) illustrates the imaginary
part of the x and z components of a spheroid, varying the aspect ratio from 1 (sphere)
to 2 : 1, 3 : 1, and 4 : 1. As the aspect ratio increases, a significant redshift of the αx

resonance is observed, while a blue shift is noticeable in the αz resonance.

2.4.3. Nonlocal Mie Theory

In the Drude model, one usually assumes locality and hard wall boundary conditions
for the electrons within the nanoparticle, i.e., no spill-out beyond its surface. However,
by relaxing this assumption and considering nonlocal effects through the hydrodynamic
equation, Eq. (2.45), it has been shown in Ref. [264] that the concentration of excited
electrons is no longer confined to the nanoparticle surface. Instead, it extends into the
nanoparticle, effectively smoothing the electron distribution.

As a consequence of these nonlocal effects, an update of the polarizability described in
Eq. (2.55) is necessary,

α(ω) = 4πε0εoutr
3 ε(ω)− εout(1 + δNL)

ε(ω) + 2εout(1 + δNL)
, (2.60)
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where

δNL =
ε(ω)− ε∞

ε∞

j1(kNLr)

kNLrj
′
1(kNLr)

, k2NL =
ω2 + iγω − ω2

p/ε∞

β2
. (2.61)

In this context, kNL is the nonlocal longitudinal wave vector, while β2 = 3
5v

2
F , as

discussed in Sec. 2.3.4. In the limit where β → 0, the term δ → 0 also vanishes.
Accordingly, we approach the local theory as expected. In Fig. 2.10, in analogy to
Ref. [264], we plot the normalized extinction cross section,

σext(ω) =
1

πr2

[︃
1

6π

(︂ω
c

)︂4⃓⃓
ε−1
0 αNL(ω)

⃓⃓2
+
ω

c
Im[ε−1

0 αNL(ω)]

]︃
(2.62)

In Fig. 2.10 we can observe that for small particle radii the resonance position is sig-
nificantly blueshifted. As the particle radii increase, the resonance gradually approaches
the value obtained from local Mie theory, ωLSP → ωp√

3
. From this observation, we can

conclude that hydrodynamics play a crucial role for metal nanoparticles, in particular
those with large surface-to-volume ratios. As the surface area becomes dominant rela-
tive to the volume, the impact of hydrodynamic effects becomes increasingly important,
leading to significant deviations from local Mie theory predictions.
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Figure 2.10.: Extinction Cross Section from Nonlocal Polarizability. The figure
presents the extinction cross section, calculated using Eq. (2.62), so that the extinction
cross section is unitless to compare different radii. (a) The prominent golden line refers
to the localized surface plasmon (LSP) resonance and shows a significant shift of the
resonance position. At higher energies, one additionally observes peaks resulting from
the spherical Bessel function in Eq. (2.61). (b) We show the extinction cross section
for individual particle radii.

2.4.4. Self-Consistent Electric Field Approach

In order to treat the self-consistent electric field Etot inside the sphere, we use Mie
theory to incorporate the geometric boundary conditions resulting from the dielectric
environment. We distinguish between the externally applied field Eext, the background
polarization of the sphere P∞ and the Drude polarization Pd of the conduction electrons
inside the sphere. In the following, we denote the dielectric constants of the inner and
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outer environment of the MNP by ε∞ and εout. The self-consistent field within the
nanoparticle then reads [296]

Etot = Eext −
1

3ε0εout
P∞ − 1

3ε0εout
Pd. (2.63)

The background polarization density P∞ is given by the total electric field in the sphere
multiplied with the effective background susceptibility χ̃∞ = χ∞ − χout = ε∞ − εout.
χ̃∞ contains the correction of the susceptibility ε∞ inside the sphere compared to the
surrounding εout,

P∞ = ε0χ̃∞Etot. (2.64)

With this, the total field can be written as

Etot =
3εout

ε∞ + 2εout

[︃
Eext −

1

3ε0εout
Pd

]︃
. (2.65)

The relation between Drude polarization density Pd and the self-consistent electric
field Etot is classically derived in Drude theory, cf. Eq. (2.36), and is given by

Pd = −
ε0 ω

2
p

ω2 + iγvω
Etot, (2.66)

with the plasma frequency ωp =
√︁
ne2/mε0 . Inserting this definition in Eq. (2.65),

an oscillator equation for the Drude polarization density in frequency space depending
on the external electric field Eext is obtained,

(ω2 + iγvω − ω2
LSP)Pd = −3ε0εoutω

2
LSPEext, (2.67)

where we have identified the plasmon frequency,

ωLSP =
ωp√

ε∞ + 2εout
, (2.68)

and the fact that the external electric field is renormalized Eext → 3εout
ε∞+2εout

Eext.
Eq. (2.67) shows that the geometry of our structure renormalizes the resonance frequency
of our system to the plasmon frequency ωLSP. As we have shown previously, this is usually
derived from the resonance of the polarizability, α(ω), in terms of the Fröhlich condition:
Re[ε(ω)] + 2εout = 0 [51, 201, 252, 279].

2.4.5. Surface Plasmon Polaritons (SPPs)

In this section, we introduce the second fundamental excitation of plasmonics - surface
plasmon polaritons (SPPs). SPPs are propagating, dispersive electromagnetic waves
coupled to the electron plasma of a conductor at a dielectric interface. These modes are
confined at the surface below the optical wavelength and can travel along it.The variety
of ways to manipulate SPPs makes them interesting for technological applications such
as biomedical sensors [87] and quantum information processing schemes [297].

SPPs can be sustained in thin films and at interfaces between materials with permit-
tivities of opposite sign [33, 66, 134, 135, 297]. In this section, we will focus on SPPs at
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dielectric-metal interfaces. These SPPs are generally described by an ansatz for the elec-
tric and magnetic fields, which, for an interface at z = 0, with surrounding non-magnetic
media of permittivity ε1 and ε2, can be written as [135]

E(r, t) = (Exx̂+ Ez ẑ) e
−κ|z|ei(qx−ωt), (2.69a)

B(r, t) = Byŷe
−κ|z|ei(qx−ωt). (2.69b)

This corresponds to a transverse magnetic (TM) solution. In the above, κ represents
the confinement factor, determining the rate at which the field decays in the z direction.

Under the usual assumption of a nonmagnetic, linear medium, together with Maxwell’s
equations and the boundary conditions in Eq. (2.52) for the continuity of the tangential
components, we obtain the typical condition for the existence of SPPs,

ε1
κ1

+
ε2
κ2

= 0. (2.70)

As can be seen from Eq. (2.70), solutions for real κ exist only if the signs of the
permittivities are reversed. For this reason, SPPs are typically confined to dielectric-
metal interfaces, where the permittivities have opposite signs. A similar derivation can be
done for a transverse electric (TE) mode ansatz, but the boundary conditions, Eq. (2.52),
impose that the electric field must vanish, so TE modes cannot exist in this type of
system.
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Figure 2.11.: Dispersion Relation of Surface Plasmon Polaritons (SPPs) at
an Air-Metal Interface. The figure displays the dispersion relation, obtained from
Eq. (2.70), for two cases: one with damping (γ/ωp = 0.1) and one without damping.
In the undamped case, distinct upper and lower branches are observed, connected by
a region where no modes can exist. The upper branch corresponds to radiative modes,
while the lower branch represents SPPs confined to the interface.

Using a Drude model for the metal and ε1 = 1 for the case of air, we can plot the
dispersion relation for SPPs in Fig. 2.11. For frequencies, ω < ωp, the SPP mode is
observed and there is a maximum allowed value of q for this mode. On the other hand,
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for frequencies ω > ωp the confinement factor κ becomes complex, indicating that the
field begins to propagate through the bulk material in the z direction and is no longer
confined at the surface.
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3. Plasmon-Induced Exciton Localization
and Hybridization in 2D Materials

In recent years, there has been significant interest in combining systems that support
excitonic and plasmonic resonances into hybrid structures. These hybrid systems aim
to take advantage of the unique properties of both excitonic and plasmonic materials,
allowing for the design of novel material systems with tailored properties.

By combining excitonic and plasmonic materials in hybrid systems, the complementary
properties of both types of materials can be harnessed. For example, the strong light
absorption of excitonic materials can be enhanced by coupling them with plasmonic
nanostructures [27, 298–300]. In these structures, various coupling regimes have been
extensively studied, encompassing the weak coupling limit, the strong coupling regime,
and even extending to the ultra-strong (g > 0.1, ω) and deep-strong coupling regime
(g > ω) [109, 116, 301–308]. In the ultra-strong and deep-strong coupling regimes, the
light-matter interaction can no longer be treated perturbatively.

In the strong coupling regime, there has been much interest in creating joint states
of excitonic and plasmonic excitations, known as plexcitonic states [111, 157, 160, 161,
298, 309–311]; these hybrid states can be observed in strongly interacting systems that
support both excitons and plasmons. Most works have focused on systems where an
excitonic system is located inside a (plasmonic) cavity to take advantage of the local
field enhancement [116, 312–314]. For example, the group of Jeremy Baumberg has
utilized their picocavities/particle-on-mirror systems to achieve strong exciton-plasmon
interaction [108, 143, 306, 314–316], and the group of Bert Hecht mostly used their
plasmonic nanoresonator [116, 117], where excitons couple to the quadrupole mode of
the resonator.

In addition to the previous systems, the past few years have witnessed a significant
surge in interest towards a variety of systems, in particular, systems consisting of indi-
vidual nanoparticles interacting with excitonic systems, which were shown to reach the
strong coupling regime without requiring a typical dipole-cavity interaction commonly
used in cavity-QED [157, 160, 161, 309]: In particular, experiments revealed impressive
Rabi splittings on the order of 100meV [317–319] for systems consisting of nanorods
[320], resonators [314, 321], nanodisks [318, 322], bipyramids [319] and nanocubes [317].

On the theoretical side, these interacting systems are mostly treated using a classical
coupled mode theory with the interaction strength as fitting parameter [110, 318, 323].
However, there have been two recent studies that investigate the strong coupling of
a metal nanorod with a TMDC monolayer [111, 324] based on a quasinormal mode
analysis and quantum reaction coordinate approach, respectively, which reproduce the
experimentally observed spectral splittings [318, 319, 325]. However, the modifications
of the excitonic properties are so far not well investigated.

In this part of the thesis, we consider a hybrid nanostructure consisting of a spheroidal
gold nanoparticle (AuNP) and a monolayer of transition metal dichalcogenides (TMDC),
as illustrated in Fig. 3.1. To model this system quantitatively, both the TMDC and the
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Figure 3.1.: (a) Coupled Nanostructure. The system consists of a gold nanoparticle
(AuNP) positioned at zpl and a two-dimensional TMDC monolayer at zex. The half
spaces above and below the interface at z = 0 have constant background permittivity
values ε1 and ε2, respectively. The eccentricity of the AuNP can be adjusted, influencing
the interaction strength. (b) Absorption spectra of constituents. The figure
displays the absorption spectrum of a MoSe2 monolayer (blue), calculated using the
microscopic approach presented in this chapter, and the polarizability of a spheroidal
AuNP (gold) individually, calculated using the permittivity function from Ref. [277]
and Mie theory [1, 295].

AuNP are encapsulated in two different media with homogeneous and isotropic permit-
tivities ε1 and ε2, respectively. In contrast to previous works, we treat the entire system
using a semi-classical microscopic model based on the framework of Maxwell-Heisenberg
equations of motion. We analytically identify an eigenvalue equation in the compos-
ite system, which describes the center-of-mass motion of the excitons in the potential
induced by the plasmonic excitation. Our derived eigenvalue equation can be used to
drastically reduce the numerical complexity of the problem, and offers new physical in-
sight into the character of the hybridization. As an example, it allows us to connect to
the strong coupling limit with the occurrence of bound exciton states induced by the
AuNP.

This chapter is organized as follows: we start with a description of the quantum
mechanical description of the carrier dynamics within monolayers of transition metal
dichalcogenides. We work in the framework of second quantization (cf. Sec. 2.1) to
understand the microscopic dynamics, in particular focusing on the excitonic dynamics as
they are very prominent and for our range of interest sufficient to describe the dynamics
within the monolayer and its optical response. Hence, we start out in Sec. 3.1 and
motivate the Hamiltonian used for our system. This is succeeded by a discussion of
the macroscopic polarization, which we use as an observable in Sec. 3.2 and allows us to
define the macroscopic quantity, the interband polarization, for which we use Heisenberg’s
equation of motion to derive the full Bloch equation in an excitonic basis in Sec. 3.3.

After having introduced the excitonic subsystems, we start Sec. 3.4 with an introduc-
tion to the second subsystem — the localized plasmons - by discussing Mie-Gans theory
for the AuNP in Sec. 3.4.1. We proceed with introducing a Green’s function solution
of Maxwell’s equations in Sec. 3.4.3 that is used to couple the constituents and find
equations that describe the dynamics of the coupled system. In Sec. 3.5, we discuss the
occurring eigenvalue equation that characterizes the interaction within the nanoparticle
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3.1. Hamiltonian

and analyze the corresponding eigenvalues and eigenvectors. In Sec. 3.6, we then study
the implications of the interaction and the arising eigenstates on the macroscopic polar-
ization within the TMDC monolayer. Section 3.7 computes the electric near-field around
the nanostructures and finds a peak splitting of the excitonic and plasmonic modes that
for artificially detuned exciton resonance is shown to result in an avoided crossing behav-
ior of the two resonances. Finally, in Sec. 3.9, we provide our conclusions and discuss the
utility of our analytical plexcitonic approach to describe the interaction in nanostruc-
tures and their implications on localization and strong coupling and provide two possible
extensions/applications of the theory that we developed.

3.1. Hamiltonian

To describe the dynamics of excitons in the given geometry, we will employ the framework
of Maxwell-Heisenberg equations of motion, based on a second quantization Hamiltonian
consisting of three contributions,

H = H0 +HrE +HC . (3.1)

The individual contributions consist of the free Hamiltonian, denoted as H0, the
carrier-light coupling represented by HrE in the r · E coupling scheme, and the carrier-
carrier coupling mediated via Coulomb interaction, denoted as HC . As the microscopic
specifics of dephasing processes are not essential for the investigated effects, they will be
introduced at the level of the equation of motions through an effective relaxation time
approximation [171] to account for non-radiative scattering processes. In the following
subsections, we will individually describe the terms of the Hamiltonian.

3.1.1. Free TMDC Hamiltonian

In the second quantization scheme discussed in Sec. 2.1, the free Hamiltonian char-
acterizes the band structure of the system, representing the energy landscape on which
carriers can move. In general, it is given by

H0 =
∑︂
k∥λ

ϵλk∥λ
†
k∥
λk∥ . (3.2)

Throughout this chapter, we use an abbreviated notation, since all our operators are
fermionic. The standard creation and annihilation operators, a† and a, are replaced by λ†

and λ. Here, λ can be seen as a compound index comprising the band and spin quantum
numbers, with ϵλk∥

representing the dispersion of the respective band. The second index,
k∥, denotes the in-plane carrier momentum. The full band structure, as shown in Figure
2.3, exhibits a minimum (maximum) at the K/K ′ points for the conduction (valence)
band. This allows us to approximate the dispersion as parabolic around the K/K ′ points,
which we will utilize throughout this thesis. As mentioned in Sec. 2.2, the approximation
shown in Fig. 3.2 reveals a slight spin-splitting of the band structure in both valleys due
to spin-orbit coupling [326]. Consequently, an effective eight-band model well-describes
the dynamics [11, 189, 327]. A plot of this approximation, which is referred to as the
effective eight band model, can be found in Fig. 3.2. Since the spin-splitting of the

33



3. Plasmon-Induced Exciton Localization and Hybridization in 2D Materials

valence band is approximately one order of magnitude larger than that of the conduction
band [188, 328, 329], it is in most cases reasonable to consider the conduction band as
spin-degenerate. Interestingly, the order of the bands is reversed in terms of spin between
K and K ′ valley [330, 331].
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Figure 3.2.: Effective Parabolic Eight Band Model for the TMDC Band Struc-
ture. Due to spin-orbit coupling, valence and conduction band are spin-split, resulting
in eight different bands. The band gap EG corresponds to the energy difference of
bands with the same spin. Optical transitions at the K/K ′ points can only be excited
by σ+/σ− polarized light (circular dichroism) which makes them interesting for device
applications [330, 331].

3.1.2. Carrier-Light Interaction

In the field of nano-optics, our focus lies in studying how electromagnetic radiation in-
teracts with various materials at the nanoscale. Since the dimensions of these materials
are small, a quantum description of the material properties becomes necessary. Simi-
larly, the electromagnetic radiation itself can be described using a quantum theory [172].
However, in many instances, classical field theory, which is based on Maxwell’s equations,
proves sufficient in explaining the observed effects. Therefore, we will operate within the
framework of a semi-classical theory in the following, which combines a classical repre-
sentation for the electromagnetic radiation fields with a quantum theory for matter based
on a second quantization approach [170, 332].

In this semi-classical description of light-matter interaction, two equivalent formalisms
are commonly employed [333]. These formalisms, known as p ·A and r ·E coupling, differ
in terms of which field quantity is coupled to which matter quantity. These formalisms
have been used in our group mostly interchangeably over the years [28, 29, 180, 243, 245,
334–336]. In this thesis, we adopt the r · E coupling formalism, where the position r
is coupled to the electric field E through the Hamiltonian, which can be derived using
various methods. The interested reader shall be referred to Refs. [333, 337] for a derivation
based on the Power-Zienau-Wooley transformation framework. For our purposes, we
adopt the final definition of the carrier-light Hamiltonian in r ·E coupling, given by
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3.1. Hamiltonian

ĤrE = − 1

A

∑︂
k∥,Q∥

λ

dλλ̄
k∥,k∥−Q∥ ·EQ∥(zex) λ

†
k∥
λ̄k∥−Q∥ , (3.3)

where we defined the dipole matrix element dλλ̄
k∥,k∥−Q∥

as the expectation value of the
position operator

dλλ̄
k∥,k∥−Q∥ = − e

Ω

∫︂
Ω
d2r∥ u

∗
λk∥(r) ruλ̄k∥−Q∥(r). (3.4)

1

Figure 3.3.: Illustration of Coulomb-
Mediated Electron-Electron Scat-
tering Process. Schematic illustra-
tion of the momentum transfer process
between two carriers with initial mo-
menta k and k′, exchanging momentum
q through Coulomb interaction.

Here, e is the elementary charge, uλk∥(r) are
the lattice periodic functions in the Bloch expan-
sion, and EQ∥(zex) =

∫︁
d2Q∥e

−iQ∥·r∥E(r; ω) is the
Fourier component of the electric field with in-
plane wave vector Q∥ at the position of the TMDC
layer zex. Characteristically for TMDCs, their
interaction with light exhibits circular dichroism,
meaning that σ+/σ− light can only excite optical
transitions in the K/K ′ valley [10, 11]. Thus, we
find two possible optical transitions per valley that
obey spin-conservation. Due to the spin-splitting,
they differ in energy and will be labeled A exciton
for the transition of lower energy and B exciton for
the transition of higher energy, cf. Fig. 3.2. As-
suming that the matrix elements are known, this
prescription allows a straightforward description of
the light-matter interaction. Unfortunately, the
computation of the optical dipole matrix elements
requires the knowledge of the lattice periodic func-
tions, uλ̄k∥(r) which can be obtained from explicit solution of the Schrödinger equation
in density functional theory [11].

3.1.3. Carrier-Carrier Interaction

In this thesis, our focus is on the carrier-carrier coupling mediated through Coulomb
interaction, which plays a dominant role in TMDC monolayers and is responsible for
exciton formation. The Coulomb interaction is quantized using a two-particle operator,
given by

HC =
1

2

∑︂
k∥,k′

∥,q∥
λλ′

Vq∥λ
†
k∥+q∥

λ′†
k′
∥−q∥

λ′k′
∥
λk∥ , (3.5)

with the Coulomb matrix element Vq∥ which can be derived as the Fourier component of
the Coulomb interaction in the respective geometry, which we illustrate at the end of this
section. For details on the quantization process for two-particle quantities, please refer to
references [170, 171, 338]. This Hamiltonian describes an effective transfer of momentum
q∥ between two carriers with momenta k∥ and k′

∥. This momentum conserving process
is mediated via Coulomb interaction, as depicted in Fig. 3.3.
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3. Plasmon-Induced Exciton Localization and Hybridization in 2D Materials

Figure 3.4.: Schematic of the Four-Layer System. This figure illustrates the four-
layer configuration required to derive the Rytova potential for our geometry, cf. Fig. 3.1.
The dimensions of each layer are provided, with layer III representing the TMDC layer.

Rytova-Keldysh Potential

The carrier-carrier potential Vq∥ is given by the Coulomb interaction of the interacting
carriers. For the case of the effectively two-dimensional TMDC, this interaction is only
screened within the monolayer and can propagate more freely in the adjacent materials.
Thus, the Coulomb interaction in 2D materials is only weakly screened and results in
strong electron-hole interaction and formation of excitons, which explains the dominance
of excitonic effects in these materials. Accordingly, neither a pure 2D nor a 3D description
is appropriate, and hence we follow the approach taken by Rytova in Ref. [22] and
later by Keldysh in Ref. [23] to calculate the potential by considering a thin material
encapsulated in between two areas of constant permittivity. The potential can be viewed
as an effective 3D potential for large momenta and a 2D potential for small momenta,
with an interpolation between the two in the mid-range [339–341]. In our geometry,
which can be effectively represented as a four-layer system, cf. Fig. 3.1, we incorporate
an additional layer compared to the standard Rytova case to provide a more accurate
quantitative description of the optical response of the TMDC layer, which is strongly
influenced by the substrate. However, the qualitative characteristics described earlier
will remain unchanged. The potential for a system as depicted in Fig. 3.4 reads

Vq∥(z, z
′) = − e

2ε0εiq∥

{︃
e−q∥|z−z′| +

1

e2q∥d − δ34δ31
(3.6)

×
[︃
2δ31δ34 cosh q∥(z − z′) + eq∥d

(︂
δ34e

q∥(z+z′−d) + δ31e
−q∥(z+z′−d)

)︂]︃}︃
,

with the definitions

δ31 =
ε3 − ε2∆21

ε3 + ε2∆21
, ∆21 =

e2kR − δ21
e2kR + δ21

, δ21 =
ε2 − ε1
ε1 + ε2

, δ34 =
ε3 − ε4
ε3 + ε4

. (3.7)

Here, d is the thickness of the TMDC layer and R the thickness of the adjacent layer,
cf. Fig. 3.4. This potential resembles the typical Rytova-type potential, which we were
using multiple times throughout my PhD journey. In App. E.2, we generalize this ex-
pression to a system consisting of N layers, which might become useful to describe the
Coulomb potential in artificially designed heterostructures.
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3.2. Macroscopic TMDC Polarization

3.2. Macroscopic TMDC Polarization

Now that we have discussed the Hamiltonian of our system, the remaining question is
which observable we need to define to describe the excitonic dynamics within the TMDC
monolayer. Here, we start from a macroscopic, experimentally accessible perspective
and relate that to a microscopic quantity: The physical quantity which can be related
to experiments is the macroscopic polarization, P(r, t), from which one can derive the
material susceptibility χ(ω). In comparison with a general Hamiltonian [201, 333], we
can define the macroscopic polarization as the functional derivative of the Hamiltonian
density

H = −
∫︂

d3r P(r, t) ·E(r, t) and P(r, t) = −∇EH(r, t). (3.8)

We want to use this expression on the semi-classical light-matter Hamiltonian in
Eq. (3.5), which we Fourier transform and make three-dimensional utilizing a delta dis-
tribution so that it can be written as

H = −
∫︂

d3r

⎡⎢⎢⎣ 1

A

∑︂
k∥,Q∥

λ

δ(z − zex) e
−iQ∥·r∥ dλλ̄

k∥,k∥−Q∥ λ
†
k∥
λ̄k∥−Q∥

⎤⎥⎥⎦ ·E(r). (3.9)

The expression in parentheses corresponds to the Hamiltonian density, H(r, t) which
allows us to identify the macroscopic polarization operator after taking the quantum
mechanical expectation value,

P(r, t) = δ(z − zex)
1

A

∑︂
k∥,Q∥

λ

eiQ∥·r∥dλλ̄
k∥,k∥+Q∥

⟨︂
λ†k∥

λ̄k∥+Q∥

⟩︂
. (3.10)

After Fourier transformation of the in-plane momenta, we make use of the 2D character
of the TMDC, using a Delta distribution to express the 3D polarization through the 2D
polarization

PQ∥(z) = P2D
Q∥δ(z − zex). (3.11)

From the previous calculation, we find the straightforward expression for the 2D po-
larization

P2D
Q∥ ≡ 1

A

∑︂
k∥λ

dλλ̄
k∥,k∥+Q∥

⟨︂
λ†k∥

λ̄k∥+Q∥

⟩︂
. (3.12)

Here, we identify the microscopic interband polarization of the TMDC,

pk1,k2 ≡
⟨︂
v†k1

ck2

⟩︂
(3.13)

which we will be the microscopic observable of this chapter to describe the exciton
dynamics within the TMDC layer. Later, we will make use of Eq. (3.12) to derive an
expression for the microscopically based susceptibility of the system.

All in all, we have deduced the definition of the macroscopic polarization in terms
of the microscopic interband polarization, denoted as pk1k2 . For our purposes, we will
neglect the spin dependence, so that λ describes the band quantum number only.
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3.3. Semiconductor Bloch Equations

In this section, we derive the dynamical semiconductor Bloch equations [170, 173, 338] to
describe the exciton dynamics in our system, based on the previously stated Hamiltonian
in Eq. (3.1). The microscopic interband polarization pk1k2 , discussed in the previous
section, serves as the dynamical observable and can be connected to the macroscopic
material polarization. To account for the distinction between the K andK ′ valleys, which
was not considered in the previous section, the microscopic polarization will feature an
additional index ξ.

We begin in Sec. 3.3.1 by deriving the equations in the electron picture [171, 342].
Subsequently, n Sec. 3.3.2, we study the Wannier equation, which we use in Sec. 3.3.3 to
transform all equations into the excitonic picture [176, 243, 343] by projecting them onto
exciton wave functions, which serve as solutions of the Wannier equation [170, 344].

3.3.1. Electron Picture

We begin by deriving the Bloch equation in the electron picture, employing annihilation
(creation) operators for the valence band, v(†)k , and the conduction band, c(†)k . These
operators describe the microscopic interband polarization, as given in Eq. (3.13). To
characterize the dynamics of excitons in a monolayer of transition metal dichalcogenides,
we make a series of approximations that we discuss individually:

i) We adopt an effective four-band model, neglecting the spin in the system. Con-
sequently, each valley is represented by one valence band and one conduction band,
resulting in a total of four bands.

ii) During our calculations, we encounter densities associated with the occupation of
the conduction or valence band. As we are operating in the linear optical regime, we
assume these densities to be small.

iii) The two-particle interaction in the carrier-carrier Hamiltonian poses a hierarchy
problem, which we address by employing a Hartree-Fock approximation.

iv) We determine the band gap energy either from experimental data or ab initio
calculations. This choice allows us to absorb all the terms contributing to band gap
renormalization, e.g, some Coulomb terms on the Hartree-Fock level, into the band gap
energy.

v) We have neglected non-resonant counter-rotating contributions.

Combining all the individual contributions, the full semiconductor Bloch equation in
the electron picture for our problem reads

∂t pk∥
1,k

∥
2

= − i

ℏ

(︃
ϵc
k
∥
2

− ϵv
k
∥
1

)︃
p
k
∥
1,k

∥
2

+
i

ℏA
d
k
∥
2,k

∥
1

·E
k
∥
2−k

∥
1

(zex) (3.14)

+
i

ℏ
∑︂
q∥

Vq∥ pk∥
1+q∥,k

∥
2+q∥

+ ∂t pk∥
1,k

∥
2

⃓⃓⃓⃓
scat

.

The dynamics of the interband polarization, denoted as p
k
∥
1,k

∥
2

, are governed by four
key factors: Firstly, the oscillation of the interband polarization is captured by the first
term in Eq. (3.14), which depends on the energy difference between the conduction band
ϵc
k
∥
2

and the valence band ϵv
k
∥
1

. the contribution of the external electric field is represented
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by the second term, which acts as a driving force. Here we can define a Rabi frequency
Ω
k
∥
1k

∥
1

= d
k
∥
2,k

∥
1

·E
k
∥
2−k

∥
1

(zex)
/︂
ℏ . The third term accounts for the Coulomb coupling

contribution between individual carriers, summed over all possible exchange momenta
q∥. Lastly, we include a phenomenological scattering term as the fourth term, as the
specifics of scattering are not crucial to the effects we investigate.

Parabolic Band Structure

In the following, we will make use of the fact that the band structure of the monolayers of
transition metal dichalcogenides is parabolic around the K andK ′ points which dominate
their optical response in the optical range that we are interested in and mathematically
implement the eight-band model we discussed in Sec. 3.1. Accordingly, the reference
point of the momentum vector will be moved from the center of the Brillouin zone to
one of the high symmetry points K/K ′: k → Kξ +k in our analytical calculations. This
introduces the additional index ξ ∈ {1,−1} as the new valley index for the individual
K (1) or K ′ (−1) valley. This approximation has been demonstrated to be in excellent
agreement with the full band structure around these high symmetry points [11, 188, 243].
It provides a sufficient approximation for describing the dynamics in the optical range
that we are interested in. The band structure at the respective ξ can then be effectively
approximated as a parabola [171],

ϵcξk∥
≈ Eξ

G

2
+

ℏ2k∥
2

2me
, ϵvξk∥

≈ −E
ξ
G

2
−

ℏ2k∥
2

2mh
. (3.15)

Here, we have taken into account the influence of spin-orbit coupling, which leads to
distinct band gap energies Eξ

G at the respective valleys. me and mh are the electron or
hole mass. By distinguishing between the K and K ′ valleys, our chosen observable, the
interband polarization, acquires an additional valley index, cf. Eq. (3.13),

pξ
k
∥
1,k

∥
2

=

⟨︃
vξ†
k
∥
1

cξ
k
∥
2

⟩︃
. (3.16)

In this study, we consider polarizations describing interband coherences within the
same valley, assuming that ξ is the same in both valence and conduction band. This
assumption is reasonable since we are primarily interested in the linear optical response
of the system at this stage. Accordingly, we also obtain distinct Bloch equations at each
valley that we can generally express as

∂t p
ξ

k
∥
1,k

∥
2

= − i

ℏ

(︃
ϵcξ
k
∥
2

− ϵvξ
k
∥
1

)︃
pξ
k
∥
1,k

∥
2

+
i

ℏA
dξ

k
∥
2,k

∥
1

·E
k
∥
2−k

∥
1

(3.17)

+
i

ℏ
∑︂
q∥

Vq∥ p
ξ

k
∥
1+q∥,k

∥
2+q∥

+ ∂t p
ξ

k
∥
1,k

∥
2

⃓⃓⃓⃓
scat

.

In general, we reproduce the same equation obtained in Eq. (3.14) but include an
additional index. The circular dichroism will be included in the dipole matrix element.

Relative and Center-of-Mass Coordinates

As the dynamical equations for an electron-hole pair by construction resemble a two-body
problem, it feels natural to transform to a coordinate system of relative and center-of-
mass coordinates to distinguish the motion of the exciton as a new quasiparticle from its
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relative motion. This can be done using the transformation

Q∥ = k
∥
2 − k

∥
1, q∥ = αk

∥
1 + βk

∥
2, (3.18a)

k
∥
1 = q∥ − βQ∥, k

∥
2 = q∥ + αQ∥, (3.18b)

with α = me
me+mh

and β = mh
me+mh

which represent the relative masses. At this point,
we want to comment on the unintuitive form of the transformation, which one would
assume to feature the reversed sign of the k1 term in Eq. (3.18a). This results from our
implicit assumption that, v†k = hk as opposed to the usual, v†k = h−k which effectively
results in Q = qe + qh → qc − qv. In relative and center-of-mass coordinates, the Bloch
equation in Eq. (3.17) reads

iℏ∂tpξq∥Q∥
=

[︄
Eξ

G +
ℏ2q2

∥

2µ
+

ℏ2Q2
∥

2M

]︄
pξq∥Q∥

− 1

A
dξ∗
q∥+αQ∥,q∥−βQ∥

·EQ∥(zex) (3.19)

−
∑︂
k∥

Vk∥p
ξ
q∥−k∥,Q∥

+ ∂t p
ξ
q∥Q∥

⃓⃓⃓⃓
scat

.

Here, we have introduced the total mass, M = me + mh, and the reduced mass,
µ = memh

me+mh
, as commonly done in solutions of the two-body problem. The momentum

indices of the polarization were transformed in agreement with Eq. (3.18a).
At this stage, we reconsider the momentum dependence of the dipole moment. As

the light dispersion (light cone) is very steep compared to the material dispersion, we
assume that only vertical transitions are relevant for the optical matrix element so that
dξ
q∥+αQ∥,q∥−βQ∥

≈ dξ
q∥,q∥ ≡ dξ

q∥ . In addition, we expand the momentum dependent

dipole moment dξ
q∥ around the K/K ′ valley, keeping only the zeroth order in the ex-

pansion so that we can effectively approximate it with its value at the K/K ′ points
dξ
q∥ ≈ dξ

Kξ ≡ dξ. The dipole element can be obtained from numerical calculations using
density functional theory [11].

3.3.2. Wannier Equation

Since the dynamics in TMDCs are dominated by excitonic features in the optical regime,
we can expand to a good approximation the equations of motion in exciton wave func-
tions, φξν

q∥ , which are solutions of the Wannier equation describing the excitonic dynamics
in 2D materials [170]. It reads

[︄
Eξ

G +
ℏ2q∥

2

2µ

]︄
φξν
q∥ −

∑︂
k∥

Vk∥φ
ξν
q∥−k∥

= Eξνφξν
q∥ . (3.20)

This equation describes the relative motion of electron and hole, which make up an
exciton, similar to the situation in a two-body problem. The relative coordinate of the
exciton problem with mass µ evolves in the Coulomb potential Vk∥ . The ν index in
Eq. (3.20) is the quantum number of the excitonic state. This equation allows to disen-
tangle relative and center-of-mass motion in Eq. (3.19). This can be done by projecting
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3.3. Semiconductor Bloch Equations

the polarization, pξq∥Q∥
, on a complete set of eigenfunctions that solve the Wannier equa-

tion, which we will touch upon in Sec. 3.3.3. Before we do so, we take some time to study
the Wannier equation, Eq (3.20) in detail.

The solution of the Wannier equation is typically obtained straightforwardly in our
group through eigendecomposition, and more details regarding this approach can be
found in App. D.2. As obvious from Eq. (3.20), the characterizing feature for the Wannier
equation is the Coulomb potential, which will significantly affect the eigenvalues and
eigenfunctions. The traditional analytical description, as outlined in Refs. [22, 23], has
been commonly employed to study the case of a TMDC layer surrounded by a medium of
constant permittivity on both sides. This has been treated to great accuracy in Refs. [22,
23, 345–347] where a corrected version of the standard Rytova-Keldysh potential for the
three layer case has been used in our group. For the scope of this work, we generalized
this approach to an effective four layer system, described using the Coulomb potential in
Eq. (3.6). Qualitatively, the results are unchanged compared to the three layer case, with
slight quantitatively corrections to the binding energies and excitonic wave functions due
to changing screening effects.

3.3.3. Exciton Picture

In the full microscopic dynamical equation in Eq. (3.19), it is possible to identify the
Wannier equation, Eq. (3.20). This allows us to map the full dynamical equation on
exciton wave functions, φξν

q∥ , that are solutions of the Wannier equation to separate
relative and center-of-mass motion. This can be achieved using the expansion [344],

pξq∥Q∥
=
∑︂
ν

φξν
q∥p

ξν
Q∥
. (3.21)

Normally, the full Wannier equation reveals left- and right-handed solutions due to the
appearance of the valence and conduction band densities [171]. This makes it necessary
to distinguish left-handed and right-handed exciton wave functions [171]. However, as
we work in the weak excitation limit, meaning vanishing densities, left-handed and right-
handed solutions coincide so that we use exciton wave functions, φξν

q∥ , and their complex
conjugates in our calculations.

Expanding in the new basis and under the use of the Wannier equation, the entire
relative motion on the left-hand side of Eq. (3.19) can be absorbed in the eigenvalues
Eξν of the Wannier equation, so that only the inhomogeneous part in Eq. (3.19) depends
on q∥ which enables us to map on the excitonic wave functions φξν

q∥ by multiplying with
(φξν

q∥)
∗ from the left and summing over all relative momenta. Using the orthonormality

relation 1/A
∑︁

q∥
(φξλ

q∥)
∗φξν

q∥ = δλν , we find

ℏω pξνQ∥
=

[︄
Eξν +

ℏ2Q∥
2

2M
− iγν

]︄
pξνQ∥

(ω)− φ∗
ν(r∥ = 0)

∑︂
σ

(dξσ)∗Eσ
Q∥(zex; ω). (3.22)

Here, the sum over all relative momenta can be interpreted as a Fourier transform
of the relative coordinate of electron and hole r∥ to real space and used the identity
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3. Plasmon-Induced Exciton Localization and Hybridization in 2D Materials

∑︁
q∥
φξν
q∥ = φ∗

ξν(r∥ = 0). Here, φν(r∥) is the exciton wave function depending on the
relative coordinate of electron and hole r∥ and can be obtained by solution of the Wannier
equation in Eq. (3.20). The excitonic wave function is evaluated at r∥ = 0, which accounts
for the probability of finding electron and hole at the same position [348]. At this stage,
we introduce a couple of simplifying assumptions applicable for our case. We assume
the band gap to be equivalent for both valleys, such that the wave function and the
eigenvalues of the Wannier equation will not be valley-dependent and depend solely on
the excitonic quantum number ν. The circular dichroism of the TMDC is introduced via
dσξ = dσδσξ. The dephasing rates γν are added to account for phonon-induced dephasing
as calculated microscopically in Ref. [176] using a phenomenological effective relaxation
time approximation.

Thus, we have derived a Bloch equation in an excitonic picture that only contains the
center-of-mass momentum Q∥ of the exciton. The first term on the right-hand side of
the equation is the oscillation of interband polarization with the characteristic energy
that is composed of the excitonic energies Eν , consisting of the band gap energy and
the exciton binding energy, the parabolic momentum contribution and a dephasing γν

that we added phenomenologically to account for damping and excitonic dephasing. The
second term describes the excitation of the polarization by an external classical electric
field Eσ

Q∥
at the position of the TMDC.

TMDC Polarization - Exciton Picture

The expansion in exciton wave functions in Eq. (3.21) also has to be considered in the
definition of the macroscopic polarization that we discussed in Sec. 3.2. Here, we find

P2D
Q∥(ω) =

1

A

∑︂
ξν

∑︂
q∥

dξφξν
q∥p

ξν
Q∥

(ω) + c.c., (3.23)

Similar to the calculations for the microscopic polarization, we can also identify the
exciton wave function at r∥ = 0 in real space. This allows us to express the chiral
components of the macroscopic polarization as

P σ,2D
Q∥

(ω) =
∑︂
ξν

dξσφξν(r∥ = 0)pξνQ∥
(ω) + c.c., (3.24)

which gives the macroscopic polarization in terms of the dipole element dξσ, the wave
function for vanishing relative electron-hole coordinate φν(r∥ = 0), i.e., electron and hole
at the same position in real space, and the microscopic interband polarization pξνQ∥

. Thus,
we can deduce that only excitonic states contribute to the macroscopic polarization that
have a non-vanishing wave function at r∥ = 0. Many times, the exciton wave function and
the dipole moment are combined into an effective excitonic dipole moment [28]. At this
stage, the circular dichroism of the TMDC is introduced using the identity dξσ = dξδξσ.

Absorption Spectrum – Elliott Formula

From the previously defined macroscopic polarization, cf. Eq. (3.24), one can deduce the
absorption spectrum via the well-known Elliott formula [171]

χ(ω) =
1

ε0

∑︂
ξν

⃓⃓
dξ
⃓⃓2⃓⃓
φξν(r∥ = 0)

⃓⃓2
Eν − ℏω − iγ

, (3.25)
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3.4. Self-Consistent Maxwell-Bloch Approach

where the valley-specific and due to the circular dichroism also the σ+/σ−-specific
polarization can be obtained as the individual components of the ξ sum. This equation
contains the usual step-like absorption spectrum generally expected for two-dimensional
structures. However, due to the strong electron-hole interaction, the optical spectrum
is dominated by excitonic features below the band gap and the free particle band gap
is merely visible [18]. The spectral positions of the excitonic peaks are given by the
excitonic eigenenergies Eν . In Fig. 3.5, we exemplarily plot the imaginary part of the
susceptibility in Eq. (3.25) that is proportional to the TMDC absorption.
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Figure 3.5.: Calculated TMDC Absorption Spectra. TMDC absorption spectra,
calculated for the most used TMDCs using the microscopic approach presented in this
chapter.

This would be sufficient if we would just model the case of plane wave excitation
and translationally invariant systems without other sources. However, as we consider
additional sources and dynamical interactions of the TMDC excitons with external scat-
terers, more efforts will be taken in the following subsections to include other than just
the purely excitonic effects.

3.4. Self-Consistent Maxwell-Bloch Approach

Now that we have extensively introduced the excitonic description of the TMDC, we
need to start thinking about how to describe the optical response of the gold nanopar-
ticle (AuNP) and how to treat the interaction with it. Therefore, we extend the Bloch
approach, we have described previously, to self-consistently include Maxwell’s equations.
The plasmonic response of the metal nanoparticle will be described using Mie theory and
the electromagnetic field that mediates the interaction by Maxwell’s equations. This will
briefly be introduced in the subsequent two chapters.

In our approach, we use real space for the out-of-plane component (in the z direction)
and the Fourier transform for the in-plane components (in the x and y directions). In
addition, we transform the temporal dynamics into the frequency domain, which allows
us to work with one set of coordinates (Q∥, z; , ω). This transformation allows us to solve
the differential equations algebraically.
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3. Plasmon-Induced Exciton Localization and Hybridization in 2D Materials

3.4.1. Optical Response of Nanoparticle Plasmons

For the scope of this thesis, we use an oblate spheroid in a dipole approximation using
Mie-Gans theory [1, 295]. This condenses the light-matter interaction in response to the
external field E0

Q∥
for a spheroid in a diagonal polarizability tensor, α(ω), whose diagonal

components are given in Eq. (2.57). The gold permittivity εAu(ω) is analytically modeled
using the approach from Ref. [277], that incorporates two interband transitions in the
visible regime to accurately describe the experimental data found in Ref. [272]. Its
analytical expression is given in Eq. (2.50).

The choice of an oblate spheroid allows for enhanced interaction of AuNP and TMDC,
since it reduces the effective separation while keeping the volume and thus the polarizabil-
ity large. In Fig. 3.1b, the absolute value of the in-plane polarizability of the considered
spheroid is shown as an example. All used parameters can be found in Tab. A.2.
In this dipole approximation, the AuNP polarization can be written as

PAuNP
Q∥ (z; ω) =

α(ω)

(2π)2
·
∫︂

d2Q′
∥ e

−i(Q∥−Q′
∥)·r

pl
∥ EQ′

∥
(zpl) δ(z − zpl), (3.26)

which describes the polarization of a point dipole located at rpl = (rpl
∥ , zpl). The po-

larizability α(ω) incorporates the electric field generated by the AuNP. Thus, EQ′
∥
(zpl)

corresponds to the electric field at the position of the AuNP, excluding the field con-
tributed by itself. For simplicity reason, we will assume rpl

∥ = 0. Combing the two
polarizations given in Eqs. (3.48) and (3.26), the full polarization is given by

PQ∥(z; ω) = PTMDC
Q∥ (z; ω) +PAuNP

Q∥ (z; ω), (3.27)

which enters Maxwell’s equations to compute the electric field close to the nanostructure.

3.4.2. Green’s Function Approach to Electromagnetic Interaction

In our description, the interaction of TMDC and AuNP is mediated by the electric field,
as can be seen in Eqs. (3.32) and (3.26), which has to be determined self-consistently
from Maxwell’s equations. The starting point for the investigation is the wave equation(︃

∇2 − ε(z)

c2
∂2

∂t2

)︃
E(r, t) =

1

ε0c2
∂2

∂t2
P(r, t)− 1

ε(z)ε0
∇(∇ ·P(r, t)), (3.28)

for the polarization P(r, t) in a background medium with spatially piecewise-constant
permittivity ε(z), which is ε1 in the upper half plane and ε2 in the lower half plane.
A general solution of this equation can be provided via the Green’s function using the
coordinates (Q∥, z; ω) which we obtain by Fourier transformation according to E(r; ω) =

1
(2π)2

∫︁
d2Q∥e

iQ∥·r∥EQ∥(z; ω). Hence, the electric field can be expressed as

EQ∥(z; ω) =

∫︂
R
dz′GQ∥(z, z

′; ω) ·PQ∥(z
′; ω) +E0

Q∥(z; ω), (3.29)

with the dyadic Green’s function GQ∥(z, z
′; ω) and the external electric field E0

Q∥
(z; ω).

For Eq. (3.28), the dyadic Green’s function is given by
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3.4. Self-Consistent Maxwell-Bloch Approach

GQ∥(z, z
′; ω) =

[︃
− ω2

ε0c2
1 +

1

ε0ε(z)

(︃
Q∥ ⊗Q∥ iQ∥∂z′

iQT
∥ ∂z′ ∂2z′

)︃]︃
GQ∥(z, z

′; ω), (3.30)

where the symbol 1 denotes the three-dimensional identity matrix. The second matrix
has a 2 by 2 matrix as its first entry, and the resulting matrix is also three-dimensional.
Here, the scalar Green’s function GQ∥(z, z

′; ω) is defined as

GQ∥(z, z
′;ω) = − i

2kQ∥
e
ikQ∥ |z−z′|

, (3.31)

where kQ∥ ≡
√︂
ε(z)ω

2

c2
−Q2

∥. This can be obtained from complex contour integration,
details will be provided in App. D.1. Eqs. (3.30) and (3.31) allow one to calculate the self-
consistent electric field at the TMDC and the AuNP position which enters the dynamical
equation for the microscopic TMDC polarization pξνQ∥

(ω), cf. Eq. (3.32), and the AuNP
polarization, cf. Eq. (3.26).

3.4.3. Optical Response of the Coupled Nanostructure

To obtain a self-consistent set of solutions for our system, we need to combine all the
equations introduced thus far. In our analysis, we will specifically focus on the 1s reso-
nance of TMDC in the context of our interacting system. This is a good approximation
when the 1s resonance is spectrally clearly separated and the spectral range is limited to
the one dominated by the 1s resonance, as it is for our case. For clarity, we will omit the
index ν in our notation, use φ0 to represent the value of φ1s at the origin (r∥ = 0), and γ1s

to denote the corresponding damping coefficient for the 1s resonance. By incorporating
these variables and equations into our overall framework, we can derive a self-consistent
solution that captures the dynamics and behavior of the system accurately.

Restating Eq. (3.22) for didactic purposes, we describe the microscopic dynamics in
TMDC monolayers using the excitonic Bloch equations, cf. Refs. [179, 226, 243],(︃

E1s +
ℏ2Q∥

2

2M
− ℏω − iγ

)︃
pξQ∥

(ω) = φ∗
0 (d

ξ)∗ ·EQ∥(zex; ω). (3.32)

The left-hand side accounts for the oscillation of the microscopic 1s exciton polariza-
tion, pξQ∥

, with excitonic energy, E1s, where we use a valley index ξ = ±1 for the K/K ′

valley, respectively and the Fourier component of the center-of-mass motion Q∥. Fur-
thermore, the left-hand side accounts for the dispersion of excitons (second term) with
the exciton mass M . The dephasing rates γ were added to account for phonon-induced
dephasing as calculated microscopically in Ref. [176]. The TMDC excitons are driven
by the electric field EQ∥(zex; ω) via the electronic transition dipole moment dξ at the
respective valley [11] and the 1s exciton wave function at the origin φ0. The entire in-
teraction is now mediated via the electric field. In the hybrid structure, the total field
at the TMDC position EQ∥(zex) includes the external field E0

Q∥
, a contribution caused

by the AuNP-TMDC interaction as well as the inter- and intra-valley exchange coupling
within the monolayer [349].
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By inserting Eq. (3.29) into Eq. (3.32), we find the following equation of motion for
the microscopic TMDC polarization,[︃
E1s +

ℏ2Q2
∥

2M
− ℏω − iγ

]︃
pξQ∥

(ω) (3.33)

= φ∗
0 d

ξ∗ ·
[︃
E0

Q∥(zex; ω)+GQ∥(zex, zpl; ω) ·α(ω) ·E0(rpl; ω)

]︃
+|φ0|2dξ∗ ·

∑︂
ξ′

[︃
GQ∥(zex, zex; ω) · dξ′pξ

′
Q∥

(ω)

+GQ∥(zex, zpl; ω) ·
α(ω)

(2π)2
·
∫︂

d2Q′
∥ GQ′

∥
(zpl, zex; ω) · dξ′pξ

′

Q′
∥
(ω)

]︃
.

In Eq. (3.33), the coupling between TMDC excitons and the AuNP plasmon induced by
the electric field is given in terms of the Green’s functions, including the self-interaction
of the excitonic polarization. In Eq. (3.33), the first term on the right-hand side is the
interaction with the external electric field E0

Q∥
(zex) at the TMDC position zex. The

second term is the external electric field at the AuNP position, which is resonantly
enhanced by the AuNP and then coupled to the TMDC. In the second line, we see that
the electric field also mediates a dipole-dipole coupling between the excitons at the K/K ′

point, widely known as the inter- and intra-valley exchange coupling [350]. The final term
in the equation describes a self-interaction of the TMDC that is mediated by the AuNP,
as evidenced by the appearance of two Green’s functions. This term can be interpreted
as an effective exciton-exciton interaction.

In our particular setup, special care is required to include the dielectric interface at
z = 0, which arises due to the piecewise constant background permittivity. Since the
distance between the TMDC and the AuNP is only a few nanometers and the wavelengths
used are in the optical range, we have opted to utilize the quasi-static Green’s function,
provided in Eq. (3.35), which also incorporates the change in background permittivity.
This leads to the fact that the quasi-static Green’s function can only be defined piecewise.
Due to the interface, the Green’s function also contains additional mirror charge terms.
The Green’s function is derived following Ref. [351] and takes into account the individual
positions of the scatterers.
In the quasi-static limit, i.e., c→ ∞, the dyadic Green’s function can be expressed as

Gst
Q∥(z, z

′) =
1

ε0ε(z)

(︃
Q∥ ⊗Q∥ iQ∥∂z′

iQT
∥ ∂z′ ∂2z′

)︃
Gst

Q∥(z, z
′). (3.34)

Evaluating Eq. (3.33) with the quasi-static scalar Green’s function

Gst
Q∥(z, z

′) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2Q∥
e−Q∥|z−z′| − 1

2Q∥
ε1−ε2
ε1+ε2

e−Q∥|z+z′| , z, z′ > 0

− 1
Q∥

ε(z)
ε1+ε2

e−Q∥|z−z′| , sgn(z) ̸= sgn(z′)

− 1
2Q∥

e−Q∥|z−z′| − 1
2Q∥

ε2−ε1
ε1+ε2

e−Q∥|z+z′| , z, z′ < 0

, (3.35)

we obtain individual equations for the respective valley K/K ′. For a derivation of
the Green’s function, we refer to Ref. [351]. To investigate the effects resulting from the
coupling of TMDC and AuNP, we first diagonalize our system of equations by performing
a transformation with respect to the inter-valley exchange coupling,
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(︄
pUQ∥
pVQ∥

)︄
≡ 1√

2

(︃
−eiϕ e−iϕ

eiϕ e−iϕ

)︃
·
(︄
pKQ∥
pK

′
Q∥

)︄
. (3.36)

This is analogous to Ref. [349]. ϕ represents the angle coordinate in polar coordinates
corresponding to Q∥. The same matrix transformation is used to transform the circularly

polarized external electric field E0
Q∥

in Eq. (3.33) into its new basis
{︃
E0,U

Q∥
, E0,V

Q∥

}︃
. We

find two decoupled equations, Eqs. (3.37) and (3.38), for the new polarizations pUQ∥
(ω)

and pVQ∥
(ω),

[︃
E1s +

ℏ2Q2
∥

2M
− ℏω − iγ

]︃
pUQ∥(ω) = d∗φ∗

0 E
0,U
Q∥

(zex; ω). (3.37)

In Eq. (3.37), pUQ∥
is unaffected by the exchange coupling. The left-hand side of

Eq. (3.37) exhibits a free parabolic exciton dispersion that is consistent with previous
literature [349]. Accordingly, we will refer to Eq. (3.37) as the parabolic Bloch equation.
It’s worth noting that both the exchange coupling contributions and the coupling contri-
butions between TMDC and AuNP cancel each other out. This is due to the quasi-static
approach, which reduces the interaction to longitudinal components that appear under
the transformation in Eq. (3.36) only in the V component, cf. Ref. [349]. Hence, the
right-hand side only accounts for the excitation by the external electric field E0,U

Q∥
(zex; ω)

at the TMDC position and accordingly has the same form as the pristine TMDC case
without exchange and TMDC-AuNP coupling. In contrast, the equation for pVQ∥

(ω),
Eq. (3.38), reads

[︃
E1s +

ℏ2Q2
∥

2M
+XQ∥(zex)− ℏω − iγ

]︃
pVQ∥(ω) (3.38)

− 1

(2π)2

∫︂
d2Q′

∥ VQ∥Q′
∥
(zex, zpl; ω) p

V
Q′

∥
(ω)

= d∗φ∗
0

(︃
E0,V

Q∥
(zex; ω) + SQ∥(zpl, zex; ω)

)︃
.

Comparing to Eq. (3.37), where all interaction contributions cancel, we find three
additional terms. The first one is the intra- and inter-valley exchange term, which renor-
malizes the parabolic dispersion

XQ∥(zex) = −|φ0|2|d|2
Q2

∥

ε0ε2
Gst

Q∥(zex, zex). (3.39)
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As can be seen in Fig. 3.6, where we depict the further relevant momentum range from
(-1 to 1) nm−1, XQ∥(zex) changes the parabolic dispersion to a conical one depending
on the exchange coupling among the K/K ′ valleys, cf. Ref. [349]. Hence, we refer to
Eq. (3.38) as the conical Bloch equation. The other additional terms, VQ∥Q′

∥
(zex, zpl; ω)

and SQ∥(zpl, zex; ω), are given by

VQ∥Q′
∥
(zex, zpl; ω) = |φ0|2|d|2

Q2
∥

ε0ε2
Gst

Q∥(zex, zpl) (3.40a)

×
Q′

∥
2

ε0ε1
Gst

Q′
∥
(zpl, zex)

[︁
α∥(ω) cos

(︁
ϕ− ϕ′

)︁
+ αz(ω)

]︁
,

SQ∥(zex, zpl; ω) =
Q2

∥

ε0ε2
Gst

Q∥(zex, zpl)
[︁
α∥(ω)E

V
0 (rpl;ω)− iαz(ω)E

z
0(rpl;ω)

]︁
. (3.40b)

The first of the two terms, VQ∥Q′
∥
, describes the effects of the effective exciton-exciton

interaction mediated by the plasmonic nanoparticle. This has the form of coupling be-
tween induced dipoles, as apparent from the characteristic cosine dependence on the
relative angle ϕ − ϕ′. In the following, it is interpreted as an additional potential for
the center-of-mass motion of the excitons. Due to the symmetry of the system, we chose
α∥ = αx = αy. The term on the right-hand side, SQ∥(zpl), represents the excitation
caused by the external electric field. This excitation is initially scattered and enhanced
by the AuNP before coupling to the TMDC. The interaction mediated via the in-plane
and the z-axis of the AuNP, respectively, is qualitatively different, as can be seen from
the additional imaginary unit in front of the z-component.

In agreement with Ref. [349], we show in Fig. 3.6 that the exchange coupling in
Eq. (3.38) leads to the formation of a parabolic lower band and a conical upper band
in the excitonic dispersion. For this reason, we have chosen U and V as indices for the
parabolic and conical dispersion, respectively. We define their dispersion from

EU
Q∥ = E1s +

ℏ2Q2
∥

2M
, (3.41a)

EV
Q∥ = E1s +

ℏ2Q2
∥

2M
+XQ∥(zex). (3.41b)

Summarizing our analytical advances so far, we have found that our equations can be
diagonalized such that only one of the TMDC exciton components, Eq. (3.38), is affected
by the AuNP, while the other component, Eq. (3.37), is completely unchanged compared
to the purely excitonic case in Eq. (3.32).

3.5. Plexcitonic States

Similar to identifying the Wannier equation in the semiconductor Bloch equation (SBE)
[170, 173, 348] which captures the relative motion of electron and hole. In the conical
Bloch equation, In the conical Bloch equation, Eq. (3.38), we encounter an eigenvalue
equation that includes the complete excitonic center-of-mass motion with in-plane mo-
mentum Q∥. This equation captures both the changes in exciton dispersion caused by
exchange coupling and the interaction between the plasmon of AuNP and the excitons
of TMDC.
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Figure 3.6.: Excitonic Dispersion. The exchange coupling causes a split in the
dispersion, resulting in a parabolic dispersion for the non-interacting pUQ∥

, and a conical
dispersion for pVQ∥

, which experiences interaction with the gold nanoparticle. The
distinctive shape of the dispersion has also influenced its nomenclature.

[︄
ℏ2Q2

∥

2M
+XQ∥(zex)

]︄
ΨR,λ

Q∥
− 1

(2π)2

∫︂
d2Q′

∥ VQ∥Q′
∥
(zex, zpl; ω) Ψ

R,λ
Q′

∥
= EλΨR,λ

Q∥
, (3.42)

The nonlocal plasmon-induced potential VQ∥Q′
∥

determines the center-of-mass motion
Q∥ on the dispersion modified by the exchange coupling (left side in Eq. (3.42)). Although
the Wannier equation and the plexcitonic eigenvalue equation, Eq. (3.42), which we treat
as a Schrödinger equation, share formal similarities, they differ qualitatively because the
plasmon-induced potential VQ∥Q′

∥
is complex due to the complex-valued polarizability

α(ω), cf. Eq. (3.40a).
Accordingly, the eigenvalue equation, Eq. (3.42), becomes non-Hermitian which results

in complex-valued eigenvalues and requires distinguishing left and right eigenvectors ΨL,λ
Q′

∥

and ΨR,λ
Q′

∥
[352, 353] as will be done in Sec. 3.5.2. We will refer to these new eigenstates

as plexcitonic states, as they describe the hybridized plasmon-exciton states of plasmonic
and excitonic character.

In this section, we study the eigenvalue equation numerically and analyze the eigen-
values and eigenvectors in detail, which we will use in subsequent sections to define
macroscopic quantities. For this purpose, we choose an oblate spheroid as depicted in
Fig. 3.1. The explicit parameters can be found in Tab. A.2.

3.5.1. Plexcitonic Eigenvalues

The eigenvalue analysis of Eq. (3.42) by numerical eigendecomposition in analogy to
established methods for the Wannier equation [179, 327] reveals a finite number of eigen-
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3. Plasmon-Induced Exciton Localization and Hybridization in 2D Materials

values with negative real part representing bound states (discussion below). The eigen-
values with positive real part are distributed quasi-continuously along EU/V

Q∥
. Figure 3.6

shows the dispersion: EV
Q∥

is conical for the parameter range of interest, consistent with
recent work [349]. For increasing background permittivity ε2, the dispersion interpolates
between a cone and a parabola.

Through a parameter study of the background permittivities ε1 and ε2, the aspect
ratio of the ellipsoid rxy/rz , and the distance between AuNP and TMDC |zpl − zex|,
we observe up to three eigenvalues with negative real part up to 100 meV as well as
associated eigenvectors (discussion below). The imaginary contribution (broadening in
the spectrum) is on the same order of magnitude. These eigenvalues correspond to an
attractive interaction mediated by the plasmon-induced potential VQ∥Q′

∥
in Eq. (3.42)

that spatially localize excitons. We found that each of these eigenvalues originates from
the interaction with the plasmonic mode along one of the three Cartesian axes of the
nanoparticle. The frequency dependence of the binding energies is discussed in Fig. 3.8.
To illustrate these results, we calculate the excitonic density of states (DOS),

DOS(E) =
1

A

∑︂
λ

δ(E − Eλ), (3.43)

by evaluating the Dirac delta distribution, δ(E−Eλ), for the real part of the eigenvalues
only. To be able to plot the DOS, we approximate the delta distribution with Lorentzian
functions Lγℓ(E,E

λ), which introduces an artificial linewidth γℓ. Using γℓ = 1meV,
Fig. 3.7 shows that only the eigenvalues with negative real parts deviate from the quasi-
continuous spectrum. By switching the interaction with the external particle on and off
in our numerical implementation, we can compare the purely excitonic system to the
interacting plexcitonic one that includes the effective exciton-exciton interaction VQ∥Q′

∥
,

mediated via the plasmonic nanoparticle. For our choice of parameters (oblate spheroid),
cf. Tab. A.2, we find two interaction-induced peaks at negative energies that result in a
non-vanishing density of states at the respective eigenvalue energy. Due to the symmetry
of the spheroid, we find that the eigenvalues corresponding to the interaction via the in-
plane axes are degenerate and cause the peak at −39meV, while the peak at −8meV
originates from interaction via the out-of-plane AuNP axis. A detailed parameter study
for which parameters we obtain negative eigenvalues and localized eigenstates is provided
in Fig. 3.8.

Figure 3.7 displays the excitonic DOS for the conical excitonic dispersion without
interaction with the nanoparticle, represented by the blue line. The real and positive
eigenvalues are quasi-continuously distributed among the dispersion EV

Q∥
. In contrast

to strictly two-dimensional systems with parabolic dispersion, the DOS is not a step
function due to the presence of a linear term in the dispersion relation, cf. Eq. (3.41b),
that depends on the center-of-mass momentum Q∥.

For the plexcitonic case (red), a numerical analysis proves that all eigenvalues with
positive real part distribute on the conical dispersion and have negligible imaginary parts
(on the order of the numerical accuracy). However, the eigenvalues with negative real
part deviate significantly from the conical excitonic case, as seen in Fig. 3.7, and have
non-negligible imaginary parts. The imaginary parts of the eigenvalues originate from
the nature of the lossy plasmon resonance and Förster-type processes between TMDC
exciton and AuNP plasmon and introduce additional dephasing channels [28, 30].
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Figure 3.7.: Excitonic Density of States (DOS). Comparison of the excitonic den-
sity of states for the interacting plexcitonic and the purely excitonic system, where the
potential VQ∥Q′

∥
in Eq. (3.42) was set to zero artificially for a spheroid with rxy = 8nm

and rz = 4nm. The plexcitonic plot exhibits two additional peaks at negative en-
ergy, corresponding to the coupling via the in-plane component α∥ of the AuNP, with
a multiplicity of two, and the z component αz with a multiplicity of one. The peak
at ≈ −39meV corresponds to the in-plane coupling, while the one at ≈ −8meV is
caused the interaction via the z component. For the graphical representation, we used
γℓ =1 meV.

Based on our findings, we can conclude that the plasmon-mediated exciton-exciton
interaction leads to the formation of plexcitonic states, exhibiting negative real part of
the eigenvalue. We interpret this feature as the formation of bound states, where the real
part of the eigenvalue represents the binding energy. These states cause the deviation in
the density of states from the conical excitonic case in Fig. 3.7.

In the following analysis, we examine the plexcitonic eigenvalues that deviate from
the dispersion and become negative. This occurs when the TMDC exciton and AuNP
plasmon are in resonance. Here, we focus on the distribution of the lowest eigenvalues,
which we present in Fig. 3.8. Specifically, we explore two distinct distributions based on
the interaction through the in-plane polarizability axis α∥ of the nanoparticle and the
out-of-plane axis αz.

As anticipated, one can clearly distinguish the distributions of eigenvalues resulting
from in-plane and out-of-plane interaction, respectively. We observe spectral ranges
where negative eigenvalues are absent, either due to interaction via a single axis or in a
narrow spectral range for both axes. In the absence of negative eigenvalues, the individual
components are out of resonance, which prevents attractive interactions. However, when
the components are in resonance, we detect negative eigenvalues, which we interpret as
the binding energy of the exciton in the potential induced by the AuNP. Notably, at
certain spectral positions, these binding energies amount to several tens of meV.
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Figure 3.8.: Plexcitonic Eigenvalue Spectrum. The lowest eigenvalue of the plex-
citonic eigenvalue equation, cf. Eq. (3.42), highly depends on the choice of the spectral
position of the excitonic 1s resonance. Here, the lowest eigenvalue for interacting via
the in-plane/out-of-plane axis is given.

3.5.2. Plexcitonic Eigenvectors and Probability Density

In this subsection, we analyze the eigenvectors corresponding to the negative eigenvalues
presented in the previous section. In the usual excitonic picture, solutions of the Wan-
nier equation [176] describe the relative electron-hole motion and their wave functions
represent the probability amplitudes of their motion. Due to its non-Hermitian nature,
the physical interpretation of the plexcitonic eigenvalue equation is not straightforward.
It generates left and right eigenvectors ΨL,λ

Q∥
, ΨR,λ

Q∥
.

To address this issue, we follow the approach presented in Ref. [354] and define the
probability density,

ρλ(r∥) ≡ ΨL,λ(r∥)Ψ
R,λ(r∥), (3.44)

where we use thr normalization scheme⟨︂
ΨL,λ

Q∥

⃓⃓⃓
ΨR,µ

Q∥

⟩︂
= δλµ, (3.45)

for the left and right eigenvectors ΨL,λ
Q∥

, ΨR,λ
Q∥

with the scalar product defined as a 2D

momentum integral over Q∥. Our analysis reveals that the eigenvectors ΨL,λ
Q∥

and ΨR,λ
Q∥

,
respectively, belonging to the three negative eigenvalues (bound states), correspond to
the degeneracy of the spatial axes of the gold nanoparticle polarizability α(ω). They
accurately reflect the symmetry of the coupling axis, showing either an x- or y-orientation
or a radial symmetry for coupling via the out-of-plane component. We observe that
the eigenvectors corresponding to negative eigenvalues are localized near the origin and
thus represent bound states, while the eigenvectors corresponding to positive eigenvalues
are distributed throughout the momentum space and represent the discretization of the
considered Hilbert space. Therefore, the AuNP allows studying exciton localization near
the AuNP. To illustrate this, we discuss the real space probability density ρ(r∥), defined
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3.6. Exciton Localization

in Eq. (3.44). In Fig. 3.9, we plot the real part of the sum of the probability densities,
cf. Eq. (3.44), associated with the degenerate eigenvalue from the in-plane coupling,
resulting in a ring-shaped distribution around the origin. The x and y components
individually exhibit orientation along their respective axes.

Figure 3.9.: In-Plane Probability Density in Real Space. The eigenvalues corre-
sponding to in-plane interaction are degenerate, here we plot the superposition of the
two probability densities corresponding to this attractive in-plane interaction. (a) shows
the two-dimensional distribution, while (b) depicts the radial profile of the probability
density.

The ring-shaped feature is a result of the in-plane dipole-dipole interaction between
the spatially fixed dipole (plasmon) and the dipole that is free to move in a 2D plane
(exciton). In contrast to the probability density resulting from in-plane interaction, the
probability density for out-of-plane interaction, provided in Fig. 3.10, exhibits a Gaussian
distribution centered around the origin of the AuNP position. This outcome can also
be derived from the minimization of the dipole-dipole potential for dipoles that are
perpendicular to one other.

In summary, we find that the additional states in the density of states reveal negative
eigenenergies, cf. Fig. 3.7. These states are spatially confined near the gold nanoparticle,
indicating that they correspond to bound states. In Sec. 3.6 and 3.7, we will analyze the
implications of these states on macroscopic observables such as the macroscopic TMDC
polarization and the electric near-field in more detail.

In contrast to the probability density resulting from in-plane interaction, the probabil-
ity density for out-of-plane interaction exhibits a Gaussian distribution centered around
the origin of the AuNP position. This outcome can also be derived from the minimization
of the dipole-dipole potential for dipoles that are perpendicular to one other.

3.6. Exciton Localization

In this section, we analyze the impact of the external nanoparticle on the macroscopic
polarization within the TMDC layer, contributing to optical observables via Maxwell’s
equations. As a macroscopic observable, we use the absolute value of the TMDC polar-
ization in Eq. (3.12) that we map on the plexcitonic eigenstates defined by Eq. (3.42)
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3. Plasmon-Induced Exciton Localization and Hybridization in 2D Materials

Figure 3.10.: Out-of-Plane Probability Density in Real Space. Here, we plot
the probability corresponding to interaction via the out-of-plane axis of the AuNP.
(a) shows the two-dimensional distribution, while (b) depicts the radial profile of the
probability density.

using the plexcitonic expansion

pVQ∥(ω) =
∑︂
λ

ΨR,λ
Q∥

pλ(ω), (3.46)

with suitable expansion coefficients pλ. We expand Eq. (3.38) using the plexcitonic
expansion in Eq. (3.46), expressing it in terms of right eigenvectors ΨR,λ

Q∥
which form

a complete basis in momentum space. We then project this expanded equation onto
the corresponding left eigenvectors ΨL,λ

Q∥
and utilize the biorthonormality relation [see

Eq. (3.45)].
This approach yields a dynamical equation for the expansion coefficient pλ, which we

term the plexcitonic polarization equation,

pλ(ω) =
d∗φ∗

0

(2π)2

∫︂
d2Q′

∥

(︃
ΨL,λ

Q′
∥

)︃∗(︃
E0,V

Q′
∥
(zex) + SQ′

∥

)︃
E1s + Eλ − ℏω − iγ

. (3.47)

We observe that the plexcitonic polarization pλ can be excited by two external source
terms: the external field at the position of the TMDC, E0,V

Q′
∥
(zex), and the field scat-

tered by the AuNP, SQ′
∥
, as described in Eq. (3.40b). The latter carries a non-vanishing

in-plane momentum Q∥. To simplify the notation, we no longer explicitly mention the
dependencies of SQ′

∥
. Notably, the complex-valued plexcitonic eigenvalues Eλ renormal-

ize not only the resonance energy, as seen in the denominator, but also the dephasing
of the nanostructure, through their imaginary part which are negative and thus increase
the effective dephasing of the nanostructure.

By Fourier transformation of Eq. (3.12), we find that the macroscopic TMDC polar-
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ization, including all contributions from pUQ∥
(ω) and pVQ∥

(ω), can be written as

P±
TMDC(r; ω) = (3.48)

|d|2|φ0|2
2

1

(2π)2

∫︂
d2Q∥

{︄
eiQ∥·r∥

[︃
1

E1s +
ℏ2Q∥

2

2M − ℏω − iγ

(︃
1 −e−2iϕ

−e2iϕ 1

)︃
·E0,±

Q∥
(zex)

+
1

(2π)2

∫︂
d2Q′

∥
∑︂
λ

ΨR,λ
Q∥

(︃
ΨL,λ

Q′
∥

)︃∗

E1s + Eλ − ℏω − iγ

(︃
e−iϕeiϕ

′
e−iϕe−iϕ′

eiϕeiϕ
′

eiϕe−iϕ′

)︃
·E0,±

Q′
∥
(zex)

+
1

(2π)2

∫︂
d2Q′

∥
∑︂
λ

Q2
∥

ε0ε2

ΨR,λ
Q∥

(︃
ΨL,λ

Q′
∥

)︃∗
Gst

Q∥

E1s + Eλ − ℏω − iγ

(︃
e−iϕeiϕ

′
e−iϕe−iϕ′ −e−iϕ

eiϕeiϕ
′

eiϕe−iϕ′ −eiϕ
)︃

×

⎛⎝ α∥E
+
0 (rpl)

α∥E
−
0 (rpl)

i
√
2αzE

z
0(rpl)

⎞⎠]︃+ c.c.

}︄
.

In Eq. (3.48), we can identify three distinct contributions to the macroscopic TMDC
polarization. The first term corresponds to half the unperturbed response of the TMDC,
which is independent of any interaction with the AuNP. The second term captures the
interaction between the TMDC and the AuNP, as well as the TMDC self-interaction,
which is described by the plexcitonic eigenvalues Eλ and eigenvectors ΨL,λ

Q∥
and ΨR,λ

Q∥
.

The third term represents the external electric field scattered and enhanced by the AuNP
and subsequently transferred to the TMDC position, where it contributes to the TMDC
polarization. In the limit of vanishing AuNP, the third term vanishes and the second one
reproduces the second half of the unperturbed TMDC response.

Figure 3.11.: Full TMDC polarization in Real Space. In the figure, we see for σ+

excitation that full TMDC polarization localizes in a radially symmetric way below the
metal nanoparticle.

In Fig. 3.11, we plot the absolute value of the resulting macroscopic polarization of the
TMDC from Eq. (3.48) when excited by a σ+-polarized plane wave and find a radially
symmetric distribution of the polarization around the nanoparticle location. According
to Eq. (3.48), the spatial localization is mainly attributed to two key processes. The
first one is the dipole-dipole interaction between the TMDC exciton and the AuNP
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plasmon, leading to the localized plexcitonic states discussed in Sec. 3.5. The second
one is the locally enhanced electric field in the TMDC layer, which occurs due to the
scattering of the field by the AuNP. These processes can be observed in the individual
σ+/σ− components of the TMDC polarization excitation with a σ+ pulse and are given
in Fig. 3.12. The results are analogous for σ− excitation.

Figure 3.12.: Circular Components of Macroscopic TMDC Polarization in
Real Space. We plot σ+ polarization in (a) and σ− polarization in (b) for the case
of σ+ excitation. In (a), the σ+ contribution is centered around the origin, while in
(b), the σ− contribution forms a ring around the origin. The full polarization, shown
in Fig. 3.11, is obtained as the sum of both contributions.

Our analysis reveals two distinct shapes for the spatial distribution of the macroscopic
TMDC polarization. The absolute value of the σ+ polarization is Gaussian distributed
and centered around the origin. For the absolute value of the σ− polarization, a ring-
shaped feature is observed, similar to the probability density investigated in Sec. 3.5.2,
with vanishing polarization at the origin. These findings suggest that the selection rules
are modified in the electric near-field [355], enabling the excitation of oppositely polarized
light. Furthermore, we interpret our results as indicating that polarization of the same
direction is primarily induced by the external field that scatters off the AuNP, whereas
polarization of the opposite direction mostly originates from the dipole-dipole interaction
between the TMDC exciton and AuNP plasmon, reproducing the shape of the probability
density from Sec. 3.5.2.

This analysis reveals that proper selection of parameters, positioning a gold nanopar-
ticle on a TMDC monolayer, can induce the formation of plexcitonic states through
dipole-dipole interactions. The resulting polarization enhancement in the TMDC under-
neath the nanoparticle effectively localizes carriers near the AuNP.

3.7. Strong Coupling

This section focuses on the study of the electric field emitted by the nanostructure in
response to an external electric field. To calculate the electric field outside the nanos-
tructure, we use the Green’s method to solve the wave equation described in Eq. (3.28).
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We find for the electric field distribution surrounding the nanostructure,

EQ∥(z; ω) = Gst
Q∥(z, zex) ·P

TMDC
Q∥ (zex; ω) + Gst

Q∥(z, zpl) ·PAuNP
Q∥ (zpl; ω) +E0

Q∥(z; ω).

(3.49)

The TMDC polarization is defined in Eq. (3.48) and the gold polarization is defined as

PAuNP,±
Q∥

(zpl;ω) =
1

(2π)2
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∥
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(︁
eiϕ
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E−(rpl)
)︁]︃
.

The polarization of the system is composed of three contributions. The first one is
the dipole response of the AuNP, which is determined by its polarizability α and the
external electric field at the AuNP position EQ′

∥
(zpl). The second contribution arises

from the interaction of the external electric field with the TMDC layer, which is then
mediated to the AuNP. The third contribution arises from the effective self-interaction of
the plasmon, mediated via the TMDC layer. Importantly, our analysis in Sec. 3.4 relies on
the quasi-static approximation, which accurately describes the electric near-field where
Q∥ ̸= 0 is dominant. Therefore, our analysis is limited to the electric near-field, which
is well-captured by our approach. Note, that to accurately describe the electric far-field
and account for radiative processes, it would be necessary to include the Q∥ = 0 case in
the calculation. Numerical evaluation of the electric near-field from Eq. (3.49) yields an
optical near-field spectrum.

In Fig. 3.13, we plot the Fourier transformed (purely real space) absolute value of the
electric field intensity |E(r;ω)|2 for excitation by plane waves. In contrast to TMDC
excitation with a plane wave that only has a vanishing in-plane momentum, scatter-
ing off the AuNP generates electric field components in the near-field that possess a
non-vanishing center-of-mass momentum Q∥ ̸= 0. These components can interact with
momentum-dark excitonic states Q∥ ̸= 0 in the TMDC, illustrating that the observed
features result from dark excitons. The spectra in Fig. 3.13 show that the individual
non-interacting energy transitions of TMDC exciton and AuNP plasmon are designed
so that their respective resonances, excitonic and plasmonic, occur at the same spectral
location, cf. Tab. A.2, as depicted in the individual plasmon/exciton plots presented in
Fig. 3.1. However, for both systems in contact we observe spectral peak splitting, which
is a sign of strong coupling between the individual TMDC exciton and AuNP plasmon
oscillators [111, 324]. Since our description relies on the excitation of dark excitons in
the near-field, we attribute the occurrence of strong coupling to the spatial localization
of near-field excited dark excitons.

We also highlight that our numerical approach allows us to artificially tune the excitonic
resonance while keeping the plasmonic resonance fixed. Figure 3.14 shows the two peak
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Figure 3.13.: Peak Splitting For comparable excitonic and plasmonic resonance ener-
gies, the response of the joint system splits into two distinct peaks at lower and higher
energy compared to the shared resonance. The scattered electric field is detected at
x = 2nm, y = 0nm and z = −5 nm. The excitonic resonance energy is E1s = 1.93 eV,
other parameters for room temperature can be found in Tab. A.2. The plasmonic and
plexcitonic spectra are presented in the correct ratio, the excitonic spectrum is scaled
for display in the same plot.

positions with varying 1s excitonic resonance. Resonance energies far away from each
other have little influence on one another, while we observe a significant peak splitting
once the spectral separation of their peaks approaches their linewidths. Compared to the
uncoupled case, the interaction leads to a minimum value of the spectral splitting of the
observed spectral peaks, which we call effective Rabi splitting. This can be interpreted as
avoided crossing behavior and supports the finding that the system behaves in a strong
coupling regime.

In Fig. 3.14, we observed that our system reveals a Rabi splitting of several tens of
meV and thus clearly operates in the strong coupling regime. The Rabi splitting can be
tuned via various system parameters, which we analyze individually to understand their
impact on the effective Rabi splitting Ω in Fig. 3.15.

In our study, we observe a decrease in the Rabi splitting as the TMDC/AuNP spacing
increases, consistent with the findings in Ref. [111]. This decrease can be attributed
to the significant reduction in the interaction strength as the separation between the
materials increases.

Furthermore, we investigate the impact of increasing background permittivity ϵ1 in
the upper half-space on the Rabi splitting. We find that as the background permittivity
increases, the Rabi splitting decreases. This can be interpreted as the enhanced screening
effect resulting from the increased background permittivity, which weakens the overall
interaction.

Lastly, we consider the influence of particle radius on the Rabi splitting, which exhibits
a scaling behavior similar to the dependence of the plexcitonic eigenvalues Eλ on the ra-
dius. Increasing the radius leads to a cubic increase in volume, enhancing the interaction
strength. However, this is counteracted by the increase in effective separation, leading
to an exponential decrease in the interaction strength.
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Figure 3.14.: Avoided Crossing. Numerically tuning the excitonic resonance allows
investigating the peak splitting in the plexcitonic spectrum and shows the avoided
crossing behavior of the system, indicating a strong-coupling regime. The given spec-
trum displays the peak positions, cf. Fig. 3.13, over a wide exciton resonance range.
The inset illustrates the peak separation, with its lowest value being the Rabi splitting
that is approximately 110meV in this case. All parameters used in the numerical im-
plementation can be found in Tab. A.2.

3.8. Conclusions

We have presented a self-consistent theoretical approach for the near-field optical in-
teraction between a monolayer of TMDC and a gold nanoparticle. Starting from the
excitonic and plasmonic picture, we identified a novel eigenvalue equation that describes
the center-of-mass motion of the excitons in an effective potential that features hybridized
exciton-plasmon states. In this context, strong coupling is related to the excitation of
momentum-dark excitons and their spatial localization in the monolayer near the AuNP:
the density of states contains bound states below the excitonic 1s resonance. This in-
terpretation is supported by the plexcitonic probability density and its influence on the
spectral and spatial properties of the macroscopic TMDC polarization.

Our analysis strongly suggests that the strong localization near the external particle
leads to a strong coupling behavior visible in the electric near-field. Through a detailed
parameter study, we establish a connection between the existence of these common states
and an avoided crossing behavior in the spectral representation of the system. Our
findings provide evidence that metal nanoparticles can be used to effectively localize
excitons in two-dimensional TMDC layers.

3.9. Perspectives

For the scope of this thesis, our results of the developed model are limited to the obser-
vation of localized excitons close to the metal nanoparticle and strong coupling features
in the electrical near-field of the particle. However, the microscopic approach we de-
veloped here may be extended to other physical systems or effects. For example, in
Ref. [356], we extended the description to a system of a plasmonic crystal, meaning a
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Figure 3.15.: Parameter Dependencies of Rabi Splitting. The graphs display
the dependence of the Rabi splitting over a parameter range that results in strong
coupling. (a) illustrates that an increase in the separation of TMDC and AuNP results
in a decrease in the splitting. (b): For an increasing background permittivity ε1 in the
upper half space, the Rabi splitting decreases. (c): For an increasing AuNP radius rz,
the Rabi splitting reaches a maximum at ≈ 4 nm. This behavior qualitatively agrees
with the dependence of the lowest eigenvalue on the AuNP radius.

meta-crystal consisting of individual nanoparticles coupled to a TMDC monolayer which
allowed to compute also the far-field and effectively compare the coupling to bright and
dark excitons. Furthermore, as it theoretically resembles a similar physical system, the
model might also be used to describe SNOM experiments and the launch of propagating
exciton-polaritons which we will describe in Sec. 3.9.1. In addition, to further study
localization effects in that theoretical framework it might be useful to upgrade the de-
scription to a spatio-temporal description in the Wigner function framework, which we
will sketch in Sec. 3.9.2. Finally, a very exciting observation has been the prediction of
cross polarized light, e.g., σ+ → σ−. This is caused by the break-up of the selection rules
in the near-field, which is enhanced by the metal nanoparticle and allows for an effec-
tive inter-valley exchange. This effect should be observed as a reduction in the degree
of polarization. Further investigation of this phenomenon may shed more light on the
coupling mechanisms within the TMDC.

3.9.1. Propagating Surface Polaritons

As pointed out in Sec. 2.4.5, one of two main excitations discussed in plasmonics are
surface plasmon-polaritons (SPP) that form at metal-dielectric interfaces and can prop-
agate as evanescent wave along the interface. The existence of these SPPs is linked to
a sign change of the real part of the permittivity at the interface [51]. Experimental
excitation of these polaritons has been found to be challenging using far-field methods
alone. Instead, external couplers are typically required to generate in-plane momentum
for the excitation. Examples of such couplers include grating couplers, plasmonic metas-
tructures, and all-optical methods utilizing interference effects. These techniques enable
efficient excitation of the polaritons and facilitate their study in various experimental se-
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tups. This framework has been extended to 2D systems [134, 357], in particular graphene,
where travelling surface plasmon-polaritons have been observed experimentally [297] and
described theoretically [135].

Recently, there were also experimental evidence of propagating surface exciton-polari-
tons that were usually excited in SNOM experiments [33, 134, 297, 358–360] which are
linked to the negativity of the real part of the TMDC susceptibility. Models for these
systems were at most phenomenological [33].

Due to the schematic similarities of our approach to the standard SNOM setup [361,
362], our theory can potentially also be adapted to additionally consider the microscopic
degrees of freedom in a SNOM measurements, in particular the material dispersion,
and describe the excitation of in-plane propagating polaritons. Therefore, a comparison
with the classical theories in Refs. [33, 134, 297, 357–360] would allow describing these
materials effectively.

However, the problems are that the description would be limited to propagating surface
exciton-polaritons as for finite thickness, the material properties dramatically change and
3D or at least an effective 2D theory have to be employed for an appropriate description
of these systems.

3.9.2. Spatio-Temporal Description in Wigner Function Framework

The quantum mechanical probability density is given by

ρ(r, t) =
⃓⃓⃓
Ψ†(r, t)Ψ(r, t)

⃓⃓⃓
, (3.50)

where the individual wave functions Ψ(r, t) can be expressed as

Ψ(r, t) =
∑︂
k

eik·r√
V
ukλ(r)λk(t), Ψ†(r, t) =

∑︂
k

e−ik·r
√
V

u∗kλ(r)λ
†
k(t). (3.51)

Assuming that we focus on conduction band electrons only, we can make a connec-
tion between the electron density and excitonic operators Pk1,k2 using the unit operator
method, as presented in Refs. [179, 363]. This allows us express the electron density
similar to a three-carrier problem. In a first approximation, this can be given as

ρ(r, t) =
1

V

∑︂
qe,qh,∆q

ei∆q·rP †
qh,qe

(t)Pqh,qe+∆q(t). (3.52)

In excitonic coordinates this would read

ρ(r, t) =
1

V

∑︂
q,Q,∆q

∑︂
νν′

ei∆q·rφν,∗
q φν′

q+β∆qp
ν,†
Q pν

′
Q−∆q. (3.53)

This expression exhibits formal similarities with the spatio-temporal Wigner function
description, which we utilize in Sec. 4. This resemblance is not surprising, as recent
advances in studying localized phenomena in TMDCs, achieved through strain engineer-
ing or Moiré potentials, have been successfully described within the Wigner distribution
framework [43, 364–368]. Given the similarity of our approach, which aims to investigate
localization effects, it may prove advantageous to adopt a spatio-temporal framework.
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4. Spatio-Temporal Description of
Microscopic Scattering Equations

Plasmonic structures have been accurately characterized by classical electrodynamics,
as discussed in detail in Ch. 2. This has facilitated highly successful analytical descrip-
tions [1, 119, 295], leading to a profound understanding of their behavior and has played
a crucial role in the impressive success in numerically characterizing plasmonic struc-
tures, using techniques such as finite-difference time-domain simulations, finite-element
methods, and boundary element methods.

These initially local descriptions have been very successfully extended to include nonlo-
cal, hydrodynamic effects [145, 151, 253, 261]. More recently, this theoretical toolbox has
been extended by the rediscovery of the surface response formalism in terms of Feibelman
d-parameters, which effectively describes the optical response via its surface processes
[153, 155], yielding qualitatively good results that are compatible with results from ab
initio simulations [156, 252]. However, all of these approaches are inherently mesoscopic
and thus represent “a macroscopic approach to a microscopic problem” [253] that does
not provide access to the microscopic electron dynamics.

An initial approach to describe material properties has involved the use of a thermal-
ized excited electron gas through a two-temperature model (2TM) [206, 207, 212, 369,
370]. Based on this, a more advanced inhomogeneous three-temperature model (3TM)
[215, 216] has recently emerged, providing valuable insights into specific aspects of the
microscopic dynamics, particularly focusing on the spatial electron distribution. How-
ever, due to its temperature-based formulation, the 3TM approach is inherently limited
in its ability to explore non-equilibrium or non-thermal effects of the excited electron
gas.

Other approaches explicitly include the momentum degree of freedom of the electrons,
allowing a more detailed treatment of electron kinetics [220, 231, 371, 372]. The com-
plexity of the treatment of the electrons ranges from effective free electron models with
empirical parameters [229] to more sophisticated ab initio calculations [373, 374] or full
numerical simulations of the electric fields [375]. However, these dynamics are usually
formulated for translationally invariant systems under the additional assumption of the
Thomas-Fermi model, which does not allow the inclusion of nonlocal effects or interband
transitions. This was addressed by employing microscopic models for the treatment of
the nonlocal response, originally developed for correlated electron-hole gases in semicon-
ductors within the Heisenberg equations of motion formalism [376, 377]. As a result,
Boltzmann transport equations were derived, allowing the spatio-temporal treatment of
excited carriers in metals [378, 379]. However, as of now, these models are limited to de-
scribing dynamics in a single band and typically disregard potential momentum-related
anisotropies.

We conclude that although many aspects of plasmon generation, propagation, and
relaxation are discussed in the literature, a consistent theory for intra- and interband
many-body excitations and nonlocal effects is not currently available, although it would
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be very useful for experiments describing charge transfer, for example in catalysis, where
hot electrons and holes are becoming increasingly important.

Therefore, a central part of this work will be to extend current microscopic spatio-
temporal descriptions [376–380] by developing a comprehensive spatio-temporal, momentum-
resolved, multiband description for metals. This extension is essential to incorporate the
currently discussed nonlocal, hydrodynamic effects into the theory, while also accounting
for interband transitions.

In this chapter, we establish the framework that will serve as the basis for the rest
of this work. We begin by describing our fundamental Hamiltonian in Sec. 4.1, which
includes multiple interaction channels of the electronic and phononic systems, as well as
interactions of the electronic systems with the external electric field through intra- and
interband channels. In addition, we incorporate Coulomb effects, which provide valuable
insights into band gap renormalization and add geometrical information.

Next, we introduce the Wigner function framework in Sec. 4.2, which is used in Sec. 4.3
to derive spatio-temporal Bloch equations. To allow comparisons with the existing liter-
ature, we formulate a coarse-graining mechanism in Sec. 4.5, which explains how macro-
scopic quantities can be derived from our microscopic approach. This allows us to suc-
cessfully reproduce the classical Drude model and the hydrodynamic model.

Furthermore, in Sec. 4.6 we pioneer a novel approach by integrating geometrical fea-
tures into the microscopic equations instead of treating them as a later step. This method,
similar to Rytova-Keldysh type approaches [22, 23], incorporates geometric information
at the microscopic level.

As a final step in this chapter, in Sec. 4.7 we extend the description in terms of
Wigner functions to a two-band approach, which allows including interband polarization
in addition to intraband densities.

4.1. Hamiltonian

To describe our systems microscopically, using the method of second quantization as
discussed in Sec. 2.1, we introduce the Hamiltonian that contains the relevant physical
information of our system. We again employ a semi-classical description of the system,
in which material properties are treated quantum-mechanically while the (electric) field
quantities are treated using classical Maxwell theory. We assume that our system consists
of electrons and phonons, interacting with one another and the electric field so that our
Hamiltonian is given by

H = H0 +Hel-ph +Hlm +HC , (4.1a)

with the free Hamiltonian H0, the electron-phonon interaction Hel-ph, the light-matter
interaction Hlm, and the Coulomb-mediated electron-electron interaction HC . In the
following, we describe the terms individually. The free Hamiltonian H0 for the electronic
and phonon systems describing the respective electron and phonon dispersion reads

H0 =
∑︂
k

ϵλkλ
†
kλk +

∑︂
qα

ℏωα
qb

†
qαbqα, (4.1b)

with the electron annihilation (creation) operators λ(†)k , the electron dispersion ϵλk,
the phonon annihilation (creation) operators b(†)qα, and the phonon dispersion ℏωα

q . In the
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following, we will reserve k for electron momenta, q for phonon momenta, λ for electronic
bands, and α for the phonon branches. In general, both electrons and phonons should
contain multiple bands to adequately describe the system. In Fig. 4.1, we reproduce
the electronic band structure as well as the phonon dispersion for our model material,
gold. The electronic band structure can be derived using various methods in density
functional theory [381–383] while the phonon interaction can be obtained from simpler
methods [384–386].

Figure 4.1.: Electron and Phonon Band Structures of Gold. (a) Electronic band
structure of gold from DFT-PBE calculation, reprinted figure with permission from
Ref. [383]. Copyright (2012) by the American Physical Society. (b) Phonon band
structure, reprinted figure with permission from Ref. [384]. Copyright (1973) by the
American Physical Society.

In addition, we include an interaction of electrons and phonons in the system. This is
typically given by the electron-phonon Hamiltonian [168, 170, 387–389]

Hel-ph =
∑︂
kq

gλαq λ†k+qλk

(︂
bqα + b†α−q

)︂
, (4.1c)

where gλαq = gλα−q
∗, in order to be Hermitian. The interaction is usually assumed to

be mediated via deformation potential coupling [220, 229] and commonly expressed as
gλαq = i

√︁
ℏN/2Mωq q · eαqV λ

q ,[388] where M is the ion mass in the unit cell and N is
the ion number in the crystal [388], V λ

q is the Fourier transformed electron-ion potential
[168]. Here, due to the scalar product, eq · q, only longitudinal phonons interact with
electrons. Later, we will employ the strongly screened version of the electron-ion poten-
tial, cf. Sec. 6. In addition, we assume that the electron-phonon interaction can only
lead to intraband scattering processes, which is reasonable considering that the phonon
energies are generally small compared to the interband gaps, i.e., on the order of tens of
meV versus single-digit eVs.

In this work, the light-matter coupling is treated semi-classically. This means that all
expressions describing material quantities are treated quantum mechanically, while all
terms referring to field quantities are described classically via the electric field. Thus,
our full light-matter Hamiltonian in r ·E coupling [390] reads

Hlm =
ie

V

∑︂
k,K,λ

E−K ·∇K(λ†kλk+K)−
∑︂

k,K,λ ̸=λ′
dλλ′
k+K,k ·E−K(λ†kλ

′
k+K). (4.1d)
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It has two contributions: the first term describes the intraband part of the semiclas-
sical light-matter coupling [170, 391] with the Fourier component EK(t) of the exciting
electric field E(r, t) =

∑︁
K exp{iK · r}EK(t) with the elementary charge e. The second

term describes the corresponding interband electron-light coupling, similar to the term
introduced in Sec. 3.1.2, which describes interband transitions with the dipole moment
dλλ′
k+K,k. This dipole matrix element can be defined in agreement with Sec. 3.1.2 for the

three-dimensional case as

dλλ′
k1,k2

= − e

Ω

∫︂
Ω
d3r u∗λk1

(r) ruλ′k2(r). (4.1e)

In all considered cases, the momentum transfer of the light to material will be small
k ≫ K, so that we usually approximate dλλ′

k+K,k ≈ dλλ′
k,k ≡ dλλ′

k .
For the Coulomb interaction, we account for the carrier-carrier interaction using a

two-particle operator [165, 167] which can be given as a momentum transfer between two
particles,

HC =
1

2

∑︂
kk′q
λλ′

Vqλ
†
k+qλ

′†
k′−qλ

′
k′λk. (4.1f)

Here the states k and k′ exchange the momentum q via a Coulomb process. The
Coulomb matrix element contains the Fourier transformed Coulomb potential Vq =
e2/ε0Ω |q|2 for electrons and ions, where Ω is the crystal volume. We implicitly assume
that the Coulomb interaction does not allow interband transitions, since the momenta
exchanged are small, and that momentum conservation is fulfilled.

4.2. Wigner Function

In this section, our focus is primarily directed towards the spatial dependence of the
microscopic quantities we are investigating. To address this aspect, we introduce a new
observable called the Wigner function [254, 392, 393].

According to Wigner, in classical statistical mechanics, the Boltzmann distribution
provides the probability, denoted as P , of encountering a physical system with energy
ε and temperature β = 1/kB T , within a phase space volume xi to xi + dxi and pi
to pi + dpi. This probability for statistical equilibrium is represented by the Gibbs-
Boltzmann formula:

P (x1, . . . , xn; p1, . . . , pn)dx1 . . . dxndp1 . . . dpn = e−βεdx1 . . . dxndp1 . . . dpn, (4.2)

with momentum interval pi+dpi and position interval xi+dxi. The Wigner function,
first formulated in 1932 by E. Wigner [392], provides a quantum-statistically analogous
expression for the Boltzmann distribution

P (x1, ..., xn; p1, ..., pn) =

(︃
1

ℏπ

)︃n ∫︂ ∞

−∞
...

∫︂ ∞

−∞
dy1...dynψ

∗(x1 + y1, ..., xn + yn)

×ψ(x1 − y1, ..., xn − yn)e
2i(p1y1+...+pnyn)/ℏ, (4.3)

which gives the correct probabilities when integrated over x1 . . . xn or p1 . . . pn, respec-
tively. However, it cannot be interpreted as the simultaneous probability of position and
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momenta as it can take negative values and would in addition violate the Heisenberg
uncertainty principle. Consequently, the Wigner function resembles a classical phase-
space distribution in several ways: it is real-valued, normalized to one, and its marginal
distributions are true probability distributions in either momentum or position [171].

For now, we will focus on a derivation of the dynamics in a single band approximation,
so that we use electronic creation and annihilation operators, a†k and ak, without a band
index. In Sec. 4.7, we will extend this description to a multi-band theory.
We define the Wigner function as [171, 376]

fk(r, t) =
∑︂
q

eiq·r
⟨︂
a†k−q/2ak+q/2

⟩︂
(t), (4.4)

which contains the electronic creation and annihilation operators, a†k and ak. For
the two-body problem generally associated with the off-diagonal terms of the Wigner
function, the momentum q describes the relative momentum, while k describes the center-
of-mass motion.

4.3. Bloch Equations for Electronic Wigner Function

In this section, we derive the fundamental equations for the Wigner function fk(r, t)
that form the basis of the calculations we perform throughout this thesis. The spatio-
temporal nature of these equations will be important as we aim to study spatially varying
systems in this framework. On the microscopic level, we provide the Wigner function
for the dynamics in a single electronic band. Later in this section, we will expand this
description to a two band case so that we have Wigner functions describing the respective
band occupations (valence and conduction band) and a Wigner function describing the
spatio-temporal interband polarization. At the end of the section, we will discuss an
approach we developed to include geometrical effects via the Coulomb interaction already
at the microscopic level.

We start by deriving the equations of motion for the expectation values of the Wigner
function in momentum space,

⟨︂
a†k−q/2ak+q/2

⟩︂
, and later Fourier transform the respective

dynamical equations to the phase space description represented by the Wigner function.
The resulting equations are sometimes also called quantum Vlasov equations due to their
similarity to the classical Vlasov equations [394, 395].

Many of these calculations follow straightforward textbook knowledge for scattering
contributions that are well-known in the semiconductor community for spatially ho-
mogeneous systems like quantum wells or 2D materials [170, 173, 228, 376, 380, 396].
However, a Fourier transform from momentum space to real space is not straightfor-
ward, as it requires the use of the gradient expansion [376] and detailed knowledge of the
coupling elements. This will be presented in the following subsections. We start with
a derivation of the free electronic contribution in Sec. 4.3.1 under the parabolic band
approximation. In Sec. 4.3.2, we proceed to study the light-matter interaction, for now
only including intraband transitions. This is followed by an extensive treatment of the
Coulomb-mediated electron-electron interaction, where we derive additional potentials on
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the Hartree-Fock level and electron-electron scattering contribution from a second-order
correlation expansion. At last, we find electron-phonon scattering contributions medi-
ated via phonon-assisted intraband transitions in Sec. 4.3.4. All in all, this allows us to
provide a spatio-temporal equation in Wigner space to describe the electron dynamics in
metals.

4.3.1. Free Electronic Motion

To derive the undisturbed contribution for the Wigner function, we have to make a
parabolic approximation for the band structure, ϵk ≈ ℏ2k2

2m where m is the effective mass
of the individual electronic band. For metals, this is shown to be very close to the free
electron mass me, which we will assume in the following [389]. Once, we include multiple
bands in the description, we will also need to include a band gap in the description.
From the band gap, we also derive the electron velocity that reads vk = ℏk/m . This
approximation allows to Fourier transform the equations, as shown in App. F.1.1 so that
we find

∂tfk(r, t) = −vk · ∇rfk(r, t). (4.5)

Here, the temporal derivative of the Wigner function is coupled to its gradients, which
scale with their velocities. Accordingly, the free movement of electron on the band
structure can be seen as a standard drift equation.

4.3.2. Electron-Light Interaction

The calculation of the contributions of the light-matter Hamiltonian to the equations
of motion is straightforward, since the semi-classical light-matter coupling Hamiltonian
in Eq. (4.1d) has the same complexity as the free Hamiltonian in Eq. (4.1b). For now,
we will only consider intraband contributions, as they are responsible for the formation
of the plasmon resonance. Accordingly, we only consider the intraband Hamiltonian in
Eq. (4.1d), we obtain

∂tfk(r, t) = −vk · ∇rfk(r, t) +
e

ℏ
E(r, t) · ∇kfk(r, t). (4.6)

On the right-hand side, the first term is the contribution from the free Hamiltonian
and the second one is an optically induced excitation that generates transitions in the
momentum distribution of the electron distribution. The only assumption in its deriva-
tion is to assume that the momentum introduced by the optical field is small compared
to the material dispersion, K ≪ k. This dynamical equation, only including the free
motion and the optical source term, will be sufficient to derive the classical Drude model
in Sec. (4.5.1).
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4.3.3. Electron-Electron Interaction

This section is focused on the derivation of contributions to the equations of motion that
arise from Coulomb-mediated electron-electron interactions. For the scope of this thesis,
we will mostly focus on mean-field effects introduced by the Coulomb interaction. For
this purpose, we will start deriving equations of motion on the Hartree-Fock level and
study their effect on the equations of motion. In addition, we will also provide spatio-
temporal equations of motion for electron-electron scattering beyond Hartree-Fock. In
momentum space, we find from the Heisenberg equations of motion framework,

iℏ∂t
⟨︂
a†k1

ak2

⟩︂
=
∑︂
k,q

Vq

[︂⟨︂
a†k1

a†k+qakak2+q

⟩︂
−
⟨︂
a†k1−qa

†
k+qakak2

⟩︂]︂
. (4.7)

Here, we already employed the symmetry of the Coulomb potential Vq = V−q. This
Coulomb potential results in the usual hierarchy problem resulting from interaction with
multi-particle operators. We will approach this using a cluster expansion, cf. Sec. 2.1.1,
into singlet states and the doublet correlation [170, 171, 228],⟨︂
a†k1

a†k2
ak3ak4

⟩︂
=
⟨︂
a†k1

ak4

⟩︂⟨︂
a†k2

ak3

⟩︂
−
⟨︂
a†k1

ak3

⟩︂⟨︂
a†k2

ak4

⟩︂
+
⟨︂
a†k1

a†k2
ak3ak4

⟩︂c
. (4.8)

The first two terms on the right-hand side are the mean-field contributions that are
usually referred to as Hartree and Fock terms. The last term is the correlation contri-
bution, which describes corrections to the mean-field factorization. The latter are not
determined as easily, since one has to derive equations of motion for the correction terms
themselves. Hence, as mentioned, we will mostly limit us to the mean-field contributions.
For a general Wigner function in momentum space, we find

iℏ∂tfk1,k2 = (ϵk2 − ϵk1)fk1,k2 +
∑︂
k′q′

Vq′

[︃
fk′+q′,k′fk1,k2+q′ − fk1,k′fk′+q′,k2+q′

−fk′+q′,k′fk1−q′,k2 + fk1−q′,k′fk′+q′,k2

]︃
. (4.9)

This equation can be given in terms of an effective single-particle Hamiltonian with
renormalized eigenenergies as has been shown in Ref. [376]. After some straightforward
transformations, Eq. (4.9) can be given as

iℏ∂tfk1,k2 =
∑︂
k′

Ek2,k′fk1,k′ − Ek′,k1fk′,k2 , (4.10)

where we define the renormalized one-particle eigenenergy,

Ekk′ ≡ εkδkk′ +
∑︂
q′

[︁
Vk−k′fq′,q′−k′+k − Vq′fk′+q′,k+q′

]︁
. (4.11)

The obtained results, featuring renormalized eigenenergies with two momentum in-
dices, provide an intuitive understanding of the electron-electron interaction effects on
the Hartree-Fock level. The effective one-particle self-energy Ekk′ is the usual free elec-
tron dispersion ϵk renormalized by the electron-electron interaction at the mean field
level [376].
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Fourier Transformation of Equations of Motion

To obtain dynamical equations of the Wigner function in agreement with the previous
section, we Fourier transform Eq. (4.10) and obtain

∂tfk(r) = ∂t
∑︂
q

fk−q/2,k+q/2 = − i

ℏ
∑︂
q,k′

eiqr
(︁
Ek+q/2,k′fk−q/2,k′ − Ek′,k−q/2fk′,k+q/2

)︁
.

(4.12)

This Fourier transformation of a product in momentum space can be expressed in
terms of a convolution in real space. Employing the convolution theorem, we find

∂tfk(r) = − i

ℏV

∫︂
d3r′

∑︂
q,k′

eiqr
′
(︃
eik

′rEk+k′/2+q/2,k−k′/2+q/2

−e−ik′rEk−k′/2−q/2,k−q/2+k′/2

)︃
fk−k′/2(r− r′). (4.13)

Here we find that due to the formulation of the dynamical equations in the Wigner
phase space formulation, they are inherently nonlocal, which is evident in the space and
momentum convolutions. Therefore, we will perform a Taylor expansion in real and
momentum space, which we will call a gradient expansion [376, 380].

Gradient Expansion

Following the approach given in Ref. [376], the Wigner function of the form given in
Eq. 4.13 is Taylor-expanded in the convolution variables using the general expression

fk−k′/2(r− r′) =
∞∑︂

n,m=0

1

2mn!m!

(︃
−r′ · ∂

∂r

)︃n(︃
−k′ · ∂

∂k

)︃m

fk(r). (4.14)

From this, the full integro-differential equation, Eq. (4.13), can be transformed into a
set of differential equations of infinite order. For our purposes, we will limit ourselves
to the first Taylor order in real and momentum space. This approximation allows us to
write the Wigner function as follows

fk−k′/2(r− r′) ≈ fk(r)− r′ · ∇rfk(r)− k′ · ∇kfk(r)/2. (4.15)

In this approximation, the resulting dynamical equation including the first correction
resulting from nonlocality for the Wigner function can be expressed as

∂tfk(r) =
1

ℏ

[︃
−∂Ek(r)

∂k

∂fk(r)

∂r
+
∂Ek(r)
∂r

∂fk(r)

∂k

]︃
(4.16)

This equation couples the real and momentum space derivatives of the Wigner function
to the real and momentum space derivatives of the effective single-particle eigenenergy,
Ek(r). The real-space eigenenergy can be derived as the Fourier transform of Eq. (4.11)
according to the definition of the Wigner function,

Ek(r) =
∑︂
q

eiqrEk+q/2,k−q/2

= εk +
∑︂
qq′

eiqrVqfq′,q′+q −
∑︂
k′
Vk′−kfk′(r). (4.17)
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At this stage, we explicitly distinguish the Hartree and the Fock contribution and
introduce the Hartree potential, ΦH(r), and the Fock potential, ΦF

k(r),

ΦH(r) ≡ −1

e

∑︂
qq′

eiqrVqfq′,q′+q = − 1

eΩ

∫︂
d3r′ V (r− r′)

∑︂
k′
fk′(r′) , (4.18a)

ΦF
k(r) ≡ −1

e

∑︂
k′ ̸=k

Vk′−kfk′(r). (4.18b)

Here, V (r− r′) is the Coulomb potential in real space for the respective geometry. For
our purposes, this will mostly be the solution of Poisson’s equation for a spherical geom-
etry [201, 351], Ω denotes a normalization volume of the crystal. Using these definitions,
the effective single-particle eigenenergy in Wigner space can be expressed as

Ek(r) = εk − eΦH(r) + eΦF
k(r). (4.19)

Note that the Hartree potential, which is defined by the Coulomb potential, the Green’s
function for a point source, must satisfy the Poisson equation

∇2ΦH(r) = −ρ(r) = e

V

∑︂
k

fk(r). (4.20)

We will touch more on the latter equality in Sec. 4.5. Having obtained the definition
of the eigenenergy, we can now compute its derivatives,

∂Ek(r)
∂k

= ∇kεk + e∇kΦ
F
k(r) = ∇kεk −

∑︂
k′

(∇kVk′−k)fk′(r), (4.21a)

∂Ek(r)
∂r

= −e∇rΦ
H(r) + e∇rΦ

F
k(r) = −e∇rΦ

H(r)−
∑︂
k′
Vk′−k(∇rfk′(r)). (4.21b)

From this, in combination with the contributions of the electron-light interaction in
Sec. 4.3.2, we can derive the spatio-temporal equations of motion at the Hartree-Fock
level,

∂tfk(r, t) +∇rfk(r, t) ·
[︂
vk +

e

ℏ
∇kΦ

F
k(r)

]︂
=
e

ℏ
∇kfk(r, t) ·

[︁
E(r, t)−∇rΦ

H(r) +∇rΦ
F
k(r)

]︁
. (4.22)

In comparison to the case without electron-electron interaction, we observe the presence
of three additional terms: On the left-hand side of the equation, we consider the drift
of the electronic Wigner function with respect to the group velocity vk = ∇kεk/ℏ,
influenced by momentum gradients of the Fock potential ΦF

k (r). This phenomenon is
analogous to the well-known band gap renormalization resulting from the Fock term in
semiconductors. The difference lies in our consideration of the momentum difference
between two states within the same band, rather than the band gap.

On the right-hand side, we observe that the Hartree and Fock potentials contribute ad-
ditional terms through their spatial derivatives. These terms account for the acceleration
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4. Spatio-Temporal Description of Microscopic Scattering Equations

of electrons within these potentials and exhibit similarities to the acceleration induced
by the external optical driving field E(r, t). These similarities are to be expected, as the
Hartree and Fock potentials represent mean-field effects arising from Coulomb interaction
with the overall electron distribution.

Scattering Processes from Coulomb-Mediated Electron-Electron Interaction

So far, we have limited ourselves to including terms on the Hartree-Fock level, however, as
shown in Eq. (4.8), the cluster expansion also results in correlation contributions which
introduce additional effects that are mostly considered as particle number conserving
electron-electron scattering processes. We will study these contributions in more detail
in the following. This is done by considering the dynamical evolution of the correlated
quantity⟨︂

a†k1
a†k2

ak3ak4

⟩︂c
=
⟨︂
a†k1

a†k2
ak3ak4

⟩︂
−
⟨︂
a†k1

ak4

⟩︂⟨︂
a†k2

ak3

⟩︂
+
⟨︂
a†k1

ak3

⟩︂⟨︂
a†k2

ak4

⟩︂
.

(4.23)

To accomplish this, one needs to derive equations of motion for the two-particle oper-
ator expectation value on the right-hand side. In principle, the full Hamiltonian has to
be considered again to derive this equation. However, we focus on the more fundamental
contributions arising from the free-particle and carrier-carrier Hamiltonian and neglect
the influences of light-matter and electron-phonon interactions on the correlations [175],

∂t

⟨︂
a†k1

a†k2
ak3ak4

⟩︂
=
i

ℏ
(ϵk1 + ϵk2 − ϵk3 − ϵk4)

⟨︂
a†k1

a†k2
ak3ak4

⟩︂
+
2i

ℏ
∑︂
q.k

Vq

(︃⟨︂
a†k1+qa

†
k−qaka

†
k2
ak3ak4

⟩︂
−
⟨︂
a†k1+qa

†
k−qa

†
k2+qakak3ak4

⟩︂
+
⟨︂
a†k1

a†k2
ak3a

†
k+qak4+qak

⟩︂
−
⟨︂
a†k1

a†k2
a†k+qak3+qak4ak

⟩︂)︃
. (4.24)

We discover the usual hierarchy problem and now find six-operator expectation values.
To derive an equation for

⟨︂
a†k1

a†k2
ak3ak4

⟩︂c
, we need to combine this with dynamical equa-

tions for the the Hartree-Fock, resulting in additional four-operator expectation values.
This derivation is well documented [183] and hence, we will only sketch the derivation
in the following. Once the individual terms are brought to normal order, the appearing
higher-order contributions are expanded in two-operator expectation values using the
cluster expansion [171, 348]. The resulting equation, as an inhomogeneous first-order
ordinary differential equation, can be formally integrated according to Sec. 2.1.2. The
occurring integral can be solved using the Markov approximation [170, 228] that neglects
memory effects caused by wave functions overlap [397]. This is a good approximation
for systems with large damping effects, such as metals, which destroy memory. In a
last step, we Fourier transform the resulting equation to Wigner space under the use
of the gradient expansion as presented in Eq. (4.14). In zeroth order, we find for the
electron-electron scattering contributions in second-order correlation expansion,
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∂tfk(r, t)

⃓⃓⃓⃓
Coulomb,corr.

=
∑︂
q

[︁
W in

k+q,k(r, t)(1− fk(r, t))−Wout
k,k+q(r, t)fk(r, t)

]︁
.

The scattering terms depend on the occupation of the initial state of the scattering
event, i.e., in the case of in-scattering, on the electron occupation terms fk, and in the
case of out-scattering, on the hole occupation terms (1 − fk). In analogy to Refs. [19,
173, 376, 380, 396, 398], we define the electron-electron in- and out-scattering rates,

W in
k+q,k(r, t) =

2π

ℏ2
∑︂
k′

|Vq|2fk+q(r, t)fk′(r, t)×

×
(︁
1− fk′+q(r, t)

)︁
δ
(︁
εk+q + εk′ − εk′+q − εk

)︁
, (4.25)

Wout
k,k+q(r, t) =

2π

ℏ2
∑︂
k′

|Vq|2fk′+q(r, t)(1− fk′(r, t))×

× (1− fk+q(r, t))δ
(︁
εk+q + εk′ − εk′+q − εk

)︁
. (4.26)

Together with the mean-field contributions via the Hartree and Fock potentials, these
are all contributions resulting from the Coulomb-mediated electron-electron interaction.

4.3.4. Electron-Phonon Interaction

As electron-phonon interaction provides the dominant dephasing mechanism in met-
als [399, 400], we will derive microscopic electron-phonon scattering equations. In the
semiconductor community, these equations have allowed to numerically calculate the
linewidth of radiative and non-radiative processes [19, 176, 180, 243]. To derive the
electron-phonon scattering contributions, we follow a similar derivation as previously
for the electron-electron scattering processes. From the electron-phonon Hamiltonian in
Eq. (4.1c), we find

∂tfk(r)

⃓⃓⃓⃓
el-ph

= − i

ℏ
∑︂
q,q′

eiq·rgq′

[︃⟨︂
b†−q′a

†
k−q/2ak−q′+q/2

⟩︂
−
⟨︂
b†−q′a

†
k+q′−q/2ak+q/2

⟩︂
+
⟨︂
bq′a†k−q/2ak−q′+q/2

⟩︂
−
⟨︂
bq′a†k+q′−q/2ak+q/2

⟩︂]︃
.

(4.27)

Here, the Wigner function is coupled to three operator quantities, e.g.
⟨︂
b†q1a

†
k1
aq1

⟩︂
,

which represent phonon-assisted intraband transitions. Since we neglect coherent phonons
at this stage, i.e.

⟨︂
b
(†)
q

⟩︂
, the singlet factorization vanishes so that expectation values and

correlations become equivalent. These correlations are treated similarly to the electron-
electron correlations. By considering the contributions to the dynamics from the free
particle Hamiltonian and the electron-phonon Hamiltonian to be dominant, we derive
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equations of motion for the phonon assisted intraband transitions,

∂t

⟨︂
b†q1

a†k1
ak2

⟩︂
=
i

ℏ
(ℏωq1 + ϵk1 − ϵk2)

⟨︂
b†q1

a†k1
ak2

⟩︂
−
∑︂
q

igq
ℏ

[︂⟨︂
b†q1

bqa
†
k1
ak2−q

⟩︂
−
⟨︂
b†q1

bqa
†
k1+qak2

⟩︂]︂
+
igq1

ℏ

⟨︂
a†k1+k2

ak2

⟩︂
−
∑︂
k

gq1

ℏ

⟨︂
a†k1

a†k+q1
akak2

⟩︂
. (4.28)

Again we encounter the typical hierarchy problem. This time, we have electron and
phonon operators.To address this issue, we will employ a cluster expansion up to the
two-operator level. In the following, we will focus on phonon-assisted process and neglect
purely electronic Hartree-Fock contributions to the phonon-assisted transitions. Similar
to the treatment of electron-electron scattering, we will perform a formal integration
that enables us to find a solution under a Markov approximation. After another Fourier
transformation, involving a gradient expansion up to zeroth order, we can obtain an
expression for the phonon-induced damping of the Wigner function

∂tfk(r, t)

⃓⃓⃓⃓
el-ph

=
∑︂
q

[︁
Γin
k+q,k(r, t)(1− fk(r, t))− Γout

k,k+q(r, t)fk(r, t)
]︁
. (4.29)

The electron-phonon scattering terms also depend on the occupation of the initial
state of the scattering event, i.e., in the case of in-scattering, on the electron occupation
terms fk, and in the case of out-scattering, on the hole occupation terms (1− fk). The
electron–phonon scattering rates are given by [19, 376, 398, 401]

Γin
k+q,k(r, t) =

2π

ℏ2
∑︂
±

|gq|2fk+q(r, t)× (4.30a)

×
(︃
1

2
± 1

2
+ nq(r, t)

)︃
δ (ϵk − ϵk+q ± ℏωq) ,

Γout
k,k+q(r, t) =

2π

ℏ2
∑︂
±

|gq|2 ((1− fk+q(r, t))× (4.30b)

×
(︃
1

2
± 1

2
+ nq(r, t)

)︃
δ (ϵk − ϵk+q ∓ ℏωq) ,

With this, we have discussed all contributions to the equations of motion of the Wigner
function fk(r, t). Accordingly, the full equation that we will use throughout the remaining
part of this thesis reads,
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∂tfk(r, t) +∇rfk(r, t) ·
[︂
vk +

e

ℏ
∇kΦ

F
k(r)

]︂
= ∇kfk(r, t) ·

[︂ e
ℏ
(︁
E(r, t)− ∂rΦ

H(r) + ∂rΦ
F
k(r)

)︁]︂
+
∑︂
q

[︁
Γin
k+q,k(r, t)(1− fk(r, t))− Γout

k,k+q(r, t)fk(r, t)
]︁

+
∑︂
q

[︁
W in

k+q,k(r, t)(1− fk(r, t))−Wout
k,k+q(r, t)fk(r, t)

]︁
. (4.31)

The left-hand side considers the drift of the electronic Wigner function with group
velocity vk = ∇kεk under the effect of the Fock potential ΦF

k(r) that we provide in
Eq. (4.18b). The first term on the right-hand side accounts for the acceleration of elec-
trons in response to the external optical driving field E(r, t), with additional contributions
from the Hartree potential ΦH(r) and the Fock potentials ΦF

k(r). The terms in the last
two lines consider the electron-phonon as well as the electron-electron kinetic scattering
in the limit of the standard Boltzmann equations [19, 376, 398, 401]. This equation can
be found under different names in the literature, for example quantum Vlasov equation or
Boltzmann-Vlasov equation in analogy to momentum closure in hydrodynamic systems
[394, 395].

4.4. Phonon Scattering Equations

In metals, the electron-phonon interaction has been studied on a microscopic level in
Ref. [220, 371] and widely used within the literature nowadays [229, 231, 372]. For
most numerical implementations, an isotropic distribution in momentum space is used,
allowing for an effective treatment in terms of the energy in Debye approximation, i.e.,
under the assumption of a linear phonon dispersion. In many works, this treatment is
reduced even further under the assumption that the phonons can be described to be in
a thermal equilibrium, allowing to define a phonon temperature which is then modeled
using the two-temperature model, cf. [369, 402], or more recently in terms of the three
temperature model (3TM) [212, 216–218]. For the scope of this thesis, we aim towards a
fully microscopic spatio-temporal description of the electron-phonon scattering processes
in metals, allowing to capture the dynamical processes similar to the semiconductor
community, cf. Ref. [176]. To achieve this, we introduce a momentum- and space-resolved
phonon Wigner function for the phonon mode occupation nq(r), defined as follows

nq(r) =
∑︂
Q

eiQ·r
⟨︂
b†q−Q/2bq+Q/2

⟩︂
. (4.32)

This equation is formulated using the Wigner phase space representation. As we
assume vanishing coherent phonon modes, the phonon Wigner function describes the
incoherent phonon mode occupation. The incoherent phonon mode occupation can be
related to the temperature of the phonon subsystem.

In a similar derivation to the previous sections, we employ a second-order correlation
expansion, assuming dominant electron-phonon contributions and applying the Markov
approximation. This leads to a dynamical equation, given as:
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∂tnq(r, t) = −vq
ph · ∇r nq(r, t) + Γem

q (r, t) (1 + nq(r, t))− Γabs
q (r, t)nq(r, t) . (4.33)

The first term considers the drift of phonons with the group velocity vph
q = ∇qωq.

The last two terms describe the phonon thermalization processes via electron-phonon
scattering, where the first term accounts for the emission of phonons and the second term
for the absorption of phonons. The appearing rates for phonon emission or absorption
are given by [174, 245, 401]

Γem
q (r, t) =

2π

ℏ2
∑︂
k

|gq|2fk+q(r, t) (1− fk(r, t)) δ (ϵk − ϵk+q + ℏωq) , (4.34a)

Γabs
q (r, t) =

2π

ℏ2
∑︂
k

|gq|2fk(r, t) (1− fk+q(r, t)) δ (ϵk − ϵk+q − ℏωq) . (4.34b)

The emission and absorption processes depend on the occupation of the initial state
of the relevant electronic transition, represented by the electron occupation terms fk,
and the hole occupation terms (1 − fk). The Dirac δ distributions that appear in the
equations account for the conservation of energy and momentum in phonon emission and
absorption processes.

4.5. Derivation of Macroscopic Quantities from Microscopic
Equations

In this section, we examine the validity of our microscopic approach by investigating its
ability to reproduce certain macroscopic equations. By ensuring that our microscopic
model correctly captures the macroscopic behavior of the system, we can validate its re-
liability and applicability in describing the overall dynamics and interactions. To achieve
this, we employ a momentum expansion technique [254, 403, 404] on the Wigner function,
Eq. (4.4), with respect to the group velocity vk. By doing so, we effectively coarse-grain
the microscopic details, such as the occupation at different wave vectors of electrons k
and phonons q. This approach allows us to derive a mesoscopic description of the system,
characterized by the electron charge density ρ(r, t), electron current density j(r, t), and
Cauchy stress tensor P(r, t) that are defined as

ρ(r, t) =− e

V

∑︂
k

fk(r, t), (4.35a)

j(r, t) =− e

V

∑︂
k

vkfk(r, t), (4.35b)

P(r, t) =− e

V

∑︂
k

vk ⊗ vkfk(r, t). (4.35c)
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Intuitively, this can be seen from the fact that the marginal distributions of the Wigner
function are true probability distributions [171]. Occasionally, this methodology is re-
ferred to as hydrodynamic momentum expansion. However, to prevent any potential
confusion with the model commonly known as the hydrodynamic model [253, 261], we
will refer to it as the mesoscopic approach. In the upcoming subsections, we will delve
into the standard Drude limit and the hydrodynamic limit for further examination.

4.5.1. Microscopic Drude Model

In classical electrodynamics, the most fundamental description of metal structures is
based on the Drude model, which we introduced in Sec. 2.3.1. We now show how this
Drude limit can be obtained from our microscopic equations. To achieve this, we make
significant simplifications to Eq. (4.31) by neglecting Coulomb effects at the Hartree-Fock
level and combining scattering terms in a relaxation time approximation [171]. This leads
to the introduction of a damping term γ, and the simplified equation becomes

∂tfk(r, t) = −vk · ∇rfk(r, t) +
e

ℏ
E(r, t) · ∇kfk(r, t)− γ

(︁
fk(r, t)− f0k

)︁
. (4.36)

Accordingly, the Wigner function is driven by its own spatial gradients and the electric
field E(r, t), while its motion is damped by the phenomenological damping term γ, which
takes into account the joint action of all scattering terms.

To obtain an analytical solution for this Boltzmann equation, we linearize the equation
in terms of the electric field, i.e., we consider fk(r) = f0k + f1k(r) + O(E2), where f0k
represents the the spatially homogeneous equilibrium distribution and f1k(r) is the first-
order perturbation due to the applied electric field. For the first-order perturbation, we
find

∂tf
1
k(r) = −vk · ∇rf

1
k(r) +

e

ℏ
E(r) · ∇kf

0
k − γkf

1
k(r) . (4.37)

Since we consider spatially homogeneous systems when deriving the classical Drude
model, we can neglect spatial dependence, allowing us to Fourier transform Eq. (4.37) to
the frequency domain,

f1k =
e

ℏ(−iω + γ)
∇kf

0
k ·E. (4.38)

By utilizing Eq. (4.35b) and employing integration by parts, we obtain the expression
for the current density,

j(r, t) =
e2

mV (−iω + γ)

∑︂
k

f0k E. (4.39)

This expression allows us to identify the Drude conductivity σD(ω). However, in this
thesis, our main focus is on polarizations and permittivities, so we will instead identify
the current density j as the temporal derivative of the polarization P, leading to the
well-known equation,

P(ω) = ε0χD(ω)E(ω), χD(ω) = −
ω2
p

ω2 + iωγ
. (4.40)
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Here, χD(ω) represents the Drude susceptibility, with the usual definition of the plasma
frequency,

ωp =

√︄
e2n0
ε0m

, n0 =
1

V

∑︂
k

f0k. (4.41)

Herein, the momentum sum over the Wigner function represents the equilibrium value
of the conduction band electron density n0. Furthermore, ε0 is the vacuum permittivity,
m the free electron mass, and e the elementary charge. In Sec. 4.7.1, we will discuss how
to handle this quantity when multiple bands appear in the description.

4.5.2. Microscopic Hydrodynamic Drude Model

In this section, we will revisit Eq. (4.36) without neglecting spatial derivatives, enabling us
to incorporate nonlocality in the description and investigate its impact on the macroscopic
polarization P. The main motivation for using the Wigner function approach was to
account for nonlocalities at the microscopic level. Here we show how these nonlocal effects
are transferred to the mesoscopic regime, leading to a rederivation of the hydrodynamic
equations of motion. Once we move to the mesoscopic level, the calculations closely
follow the current state of the literature as reported in Refs. [149, 151, 251–253, 259, 261,
264, 405].

As scattering terms conserve the local electronic density in the gradient approximation,
they vanish under the momentum sum. This results in a continuity equation for the
electron charge density ρ(r, t) and the electron current density j(r, t),

∂tρ(r, t) = −∇r · j(r, t), (4.42)

where the electric field contribution vanishes as a surface term due to the Gaussian
theorem. In order to make statements about the susceptibility of our system, we derive
equations of motion for the current density from Eq. (4.36) by multiplying the microscopic
dynamical equation (4.36) with the velocity and summing over all momenta. Using∑︁

k vk ⊗∇kfk(r, t) = − ℏ
mρ(r, t)1, we obtain

∂tj(r, t) = −∇r · P(r, t)−
e

m
E(r, t)ρ(r, t)− γj(r, t) . (4.43)

The first term on the right-hand side is the divergence of the second-order momen-
tum in the factorization procedure of the Wigner function, which is the Cauchy stress
tensor P(r, t), defined in Eq. (4.35c). In agreement with common calculations for the
hydrodynamic model [406], we now want to identify a pressure-like term, which is usu-
ally introduced via a gradient term of an energy-density functional associated with the
density-dependent total energy of the electron gas. It is this pressure-like term that in-
troduces the quantum mechanics of the electron system into the semi-classical equations
of motion, as we described in Sec. 2.3.4. Therefore, we closely study our stress tensor
term. Here, the pressure contributions can only arise from fluctuations of the veloc-
ity. Accordingly, we distinguish averages and fluctuations and decompose the velocity
vk = v + δvk in a momentum-independent mean-field contribution v and a correction
δvk. Accordingly, the Cauchy stress tensor in Eq. (4.35c) reveals two contributions,

P = − e

V
v ⊗ v

∑︂
k

fk − e

V

∑︂
k

δvk ⊗ δvkfk = v ⊗ vρ+ P̂ (4.44)
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the linear term vanishes from symmetry considerations. The first kinetic term is a
tensor product of the mean-field velocity with itself, the second one arises as a correction
to the second-order momenta of the Wigner function, which we identify as the pressure
contribution, P̂. This way, the velocity is promoted to a velocity field, v(r, t), which
allows us to factorize the macroscopic current density j(r, t) = ρ(r, t)v(r, t) into electron
density ρ(r, t) and velocity field v(r, t) of the electrons. Applying this decomposition to
the continuity equation, Eq. (4.42), and the Euler equation, Eq. (4.43) we obtain, after
some algebraic transformations, the final set of continuity equation and Euler equations

∂tρ(r, t) +∇ · (ρ(r, t)v(r, t)) = 0, (4.45a)

ρ(r, t)(∂t + v(r, t) · ∇)v(r, t) = −∇ · P̂(r, t)− e

m
E(r, t)ρ(r, t)− γρ(r, t)v(r, t). (4.45b)

In the following, we make the assumption that the non-equilibrium carrier distribution
induced by optical excitation is thermalized through orientational carrier relaxation via
electron-electron scattering [244, 245, 374]. On mesoscopic time scales, this thermal-
ization process is assumed to be fast, which allows us to establish a local equilibrium
description for the electrons. As a result, we can define a local equation of state for the
pressure contribution in Eq. (4.45b). To achieve this, we utilize the Thomas-Fermi model
[407, 408] and express the electron pressure as [246, 250, 251, 259, 405, 408, 408, 409]

P̂ =
e

m
1pFermi =

1

me2/3
κρ5/3(r, t)1, κ =

ℏ2

5m

(︁
3π2
)︁2/3

, (4.46)

where the proportionality is adapted from the typical Fermi gas constant [246, 258] to
our calculations in terms of the electron charge density. This equation can be solved using
well-documented methods, as seen in Refs. [149, 151, 251–253, 261, 264, 410]. Starting
from Eq. (4.5.2), we can apply a similar approach as in Sec. 4.5.1, perform an expansion
in orders of the electric field, and identify the polarization. For detailed derivations, we
refer to Ref. [411]. With this, we obtain the following equation for the polarization in
linear order,

β2

ω2 + iγω
∇(∇ ·P) +P = −

ε0ω
2
p

ω2 + iγω
E. (4.47)

This equation resembles the standard Drude model derived in Sec. 4.5.1 and includes
a correction resulting from the inclusion of nonlocal effects, expressed in terms of spatial

gradients. Here, we defined β2 ≡ 5κρ
2/3
0

3me2/3
= 3

5v
2
F with the Fermi velocity vF . The

parameter β is usually understood as the speed of sound in the considered material.
From Eq. (4.47), one can typically obtain the permittivity, εQ(ω), by distinguishing

between the longitudinal and transverse components [147, 250, 253, 259],

εLQ(ω) = ε∞ −
ω2
p

ω2 + iγω − β2|Q|2
, (4.48a)

εTQ(ω) = ε∞ −
ω2
p

ω2 + iγω
. (4.48b)
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This means that the electron pressure contribution affects the Q-modes in a generalized
nonlocal optical response (GNOR) theory [151], which influences only the longitudinal
component while leaving the transverse component invariant. The inclusion of these
terms becomes prominent for small particles with a large surface-to-volume ratio, where
a blue shift of the nanoparticle resonance can be observed [264]. In Sec. 5.5, we will
further extend this formalism to include a strong quasi-static THz pump field.

4.6. Geometrical Effects at the Microscopic Level: Hartree
Mean-Field Contribution

In general, the optical response of material systems is primarily determined by their
material properties. In plasmonic systems, however, the importance of geometry becomes
apparent in the derivation of the localized surface plasmon resonance (LSPR) and its
pronounced resonance scaling with aspect ratio discussed in Sec. 2.4.1. This property is
taken to its extreme in the lightning rod effect. The importance of geometrical effects also
contributes significantly to the success of the surface response formalism, as discussed in
Sec. 2.3.5.

In light of this, the aim of this section is to present an approach to incorporating
geometric information directly into the microscopic equations, thus enabling the study
of the optical response of metallic systems with diverse geometric shapes.

4.6.1. Coulomb Potential on the Microscopic Level

Previous approaches, as discussed in Sec. 2.4.1, generally followed a common procedure.
They initially established a geometry-independent material model for a bulk material,
and subsequently considered the geometrical effects on a macroscopic level by solving
Maxwell’s/Poisson’s equations and applying boundary conditions to the field compo-
nents defined by the specific geometry. Through this process, an effective polarizability
was derived as a solution within the framework of classical Maxwell’s theory, mostly up
to dipole order. Here, we follow a different approach and use a geometry-resolved solu-
tion for the Coulomb potential [201, 351]. This Coulomb potential is introduced on the
microscopic level in the microscopic scattering equation for the electronic Wigner distri-
bution, Eq. (4.31). Including Hartree-Fock contributions and neglecting the scattering
contributions, the full dynamical equation can be given as

∂tfk(r) =−
(︂
vk − 1

ℏ
∑︂
k′

(︁
∇kVk′−k

)︁
fk′(r)

)︂
· ∇rfk(r)

+
e

ℏ

[︃
Eext(r)−∇rΦ

H(r)− 1

e

∑︂
k′
Vk′−k∇rfk′(r)

]︃
· ∇kfk(r) , (4.49)

with the definition of the Hartree potential in Eq. (4.18a). The novelty of this approach
will now be to include potential geometrical effects on the level of the Coulomb interaction
as a solution to Poisson’s equation [376]. Therefore, we expand the Coulomb potential
in spherical harmonics as given in Refs. [201, 351], which is given for both r and r′ inside
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the nanoparticle as

1

|r− r′| =
∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

4π

2ℓ+ 1

[︃
1

ε∞
W 0

ℓ (r, r
′) +

(︂ 2ℓ+ 1

(ℓ+ 1)εout + ℓε∞
− 1

ε∞

)︂(rr′)ℓ
a2ℓ+1

]︃
×Yℓm(Ω)Y ∗

ℓm(Ω′) , (4.50)

where

W 0
ℓ (r, r

′) =
rℓ<

rℓ+1
>

, (4.51)

with r< = min(r, r′) and r> = max(r, r′). In this form, the respective modes can
be approximated in the multipole order of interest. For our purposes, we will restrict
ourselves to the dipole mode to compare to the classical dipole case, a generalization will
be demanding but straightforward. In the following, the Fock contributions in Eq. (4.49)
will be neglected as quantum corrections. However, these should also lead to nonlocal
corrections similar to the discussion in Sec. 4.5.2.

4.6.2. Hartree Mean-Field and Oscillator Equation

From Eq. (4.49), we proceed similarly to the derivations of the Drude model where we
used the mesoscopic definition of the current density in Eq. (4.35b) and linearize in order
of the electric field so that we obtain a second order ordinary differential equation for
the current density that reads

(∂2t + γ∂t)j
1(r, t) = ε0ω

2
p∂tE

tot(r, t). (4.52)

In this equation, the total field Etot(r, t) was defined to include the external field,
screened by the background contribution to the permittivity ε0, as well as the Hartree
contribution,

Etot(r, t) =
3εout

2εout + ε∞
Eext(r, t)−∇rΦ

H(r, t) . (4.53)

Here, the spherical boundary conditions are already included in the prefactor of the
external field, Eext, which is renormalized to include the background contributions related
to ε∞ via the Maxwell equations. Using this definition for the total electric field, the
equation for the current density becomes

(∂2t + γ∂t)j
1(r, t) = 3εoutε0ω

2
LSP∂tE

ext(r, t)− ε0ω
2
p∂t∇rΦ

H(r, t). (4.54)

Using the definition of the Hartree potential in Eq. (4.18a), the last term in Eq. (4.54)
can be reformulated as

∂t∇rΦ
H(r, t) =

1

e2

(︂
∇r ⊗

∫︂
dr′ (∇r′V (r− r′))

)︂
· j1(r, t), (4.55)

so that we find a partial integro-differential equation for the first-order current density,

(∂2t + γ∂t + ω2
p

ε0
e2

(︂
∇r ⊗

∫︂
dr′ (∇r′V (r− r′))

)︂
·)j1(r, t) = 3εoutε0ω

2
LSP∂tE

ext(r, t) .

(4.56)
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Figure 4.2.: Illustration of Hartree
Mean-Field. Illustration of the in-
teraction of a single electron with the
Hartree mean-field, illustrated as an
electron cloud.

From a simplified perspective, Eq.(4.56) re-
sembles the form of a damped harmonic oscilla-
tor equation, but it contains a complex tensorial
integro-differential expression at the position of the
oscillators’ eigenfrequency, which depends on the
Coulomb potential expanded in spherical harmon-
ics, as given in Eq.(4.50). By evaluating this ex-
pression using the geometry-adapted Coulomb po-
tential for a sphere up to dipole order, we obtain
the well-known equation

(∂2t + γ∂t + ω2
LSP)j

1(r, t) (4.57)

= 3εoutε0ω
2
LSP∂tE

ext(r, t),

where we define the plasmon frequency

ωLSP =
ωp√

ε∞ + 2εout
. (4.58)

Details of the analytical calculations are given in App. G. It is not surprising that this
result agrees with the results usually obtained from the Fröhlich condition Re{ε(ω)} =
−2εout for the localized surface plasmon resonance in quasistatic Mie theory, as similar
steps were taken, with the only difference in the order of the evaluation. Hence, this
approach reveals that it is possible to include the geometrical information already on
the level of the microscopic Wigner equation, similar to approaches using the Rytova-
Keldysh type approaches to model the Coulomb interaction in 2D materials [22, 23].
In perspective, this allows including the geometrical effects induced by the Coulomb
contributions already on the level of the dynamical equations and allows studying its
influence on the electron dynamics.

4.7. Interband Transitions in Metals: A Microscopic Optical
Response Model

Up to this point, we have focused on processes within the conduction band of the material
under consideration. This is because the widely considered plasmon resonance is a col-
lective excitation of conduction band electrons, cf. Sec. 2.3.2. However, as we elaborated
in Sec. 2.3.6, it becomes necessary to include interband transitions in the material model
above a certain energy to accurately model the optical response of metallic materials.
For our material of choice, gold, this already becomes important in the visible range at
approximately 2.4 eV.

To the best of our knowledge, the current description of interband contributions to the
optical response in metals relies on rather phenomenological models with a significant
number of fitting parameters [274–279] that do not take the microscopic structure of
these materials into consideration. These models solely use the Lorentzian character of
the interband transitions for fitting purposes to experimental data recorded in the late
20th century [272, 273]. In contrast to the semiconductor community, the derivation of
a microscopic material model for interband transitions in metals has been challenging
due to the non-symmetric band structure of metals [382, 383, 412]. Consequently, the
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derivation of a comprehensive and accurate interband model for metals has remained
elusive thus far and continues to be an ongoing endeavor [413].

In the forthcoming, inspired by the microscopic descriptions used in the semiconductor
community, we employ the microscopic framework that we have developed in the previous
section and describe our current approach towards a more sophisticated microscopic
model for the interband transitions in metal, using the example of gold.

4.7.1. Microscopic Dynamics

To comprehensively describe interband transitions within the microscopic framework, we
now extend our description to include multiple bands and transitions in between. For-
tunately, the Hamiltonian presented in Sec. 4.1 already allows for an arbitrary number
of electronic bands. Building upon the treatment of transition metal dichalcogenides
(TMDCs) in Sec. 3, we further expand this approach using the Wigner function method
introduced in Sec. 4.2 for two bands. Similar methodologies have been applied to semi-
conductors in Refs. [334, 376, 377, 379, 380, 401]. Recently, they have gained renewed
interest in the context of exciton diffusion [364, 365]. To provide a mathematical descrip-
tion, we define

pk(r, t) ≡
∑︂
q

eiq·r
⟨︂
v†k−q/2ck+q/2

⟩︂
, (4.59a)

f ck(r, t) ≡
∑︂
q

eiq·r
⟨︂
c†k−q/2ck+q/2

⟩︂
, (4.59b)

fvk(r, t) ≡
∑︂
q

eiq·r
⟨︂
v†k−q/2vk+q/2

⟩︂
. (4.59c)

Here, in analogy to Ch. 3, these equations use the electron picture to describe the
spatio-temporal electron density in the conduction and valence bands by f ck and fvk ,
respectively.

From these definitions, it is rather straightforward to derive the spatio-temporal equa-
tions of motions for these three quantities, which is done in analogy to Sec. 4.3 and
Sec. 3.3. Therefore, we assume a parabolic band structure for the individual bands that
are separated by an energy gap EG and assume that the photon momentum is small com-
pared to the electron momentum, k ≪ K which is a good approximation due to the steep
light dispersion compared to the electrons. With this, we obtain in a simplified model,
only including the free Hamiltonian and the full electron-light interaction Hamiltonian,
dynamical equations for the band occupations in agreement with Ref. [172],

∂tf
v
k(r, t) =− vv

k · ∇rf
v
k(r, t) +

e

ℏ
E(r, t) · ∇kf

v
k(r, t)

− 2

ℏ
E(r) · Im

{︁
dvc,∗

k pk(r, t)
}︁
+ ∂tf

v
k(r, t)

⃓⃓⃓⃓
scat

, (4.60a)

∂tf
c
k(r, t) =− vc

k · ∇rf
c
k(r, t) +

e

ℏ
E(r, t) · ∇kf

c
k(r, t)

+
2

ℏ
E(r) · Im

{︁
dvc,∗

k pk(r, t)
}︁
+ ∂tf

c
k(r, t)

⃓⃓⃓⃓
scat

, (4.60b)

and for the interband polarization,
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∂tpk(r, t) =i∆ωk pk(r, t)− vvc
k · ∇rpk(r, t) +

e

ℏ
E(r, t) · ∇kpk(r, t)

− i

ℏ
dvc

k · E(r, t)
[︁
f ck(r)− fvk(r)

]︁
+ ∂tpk(r, t)

⃓⃓⃓⃓
scat

. (4.61)

Here, we used the definition v
v(c)
k = ∇kϵk/ℏ and define the average band velocity

vvc
k = (vv

k + vc
k)/2 and the momentum-dependent energy difference between the valence

and the conduction band ∆ωk = (ϵck − ϵvk)/ℏ. In order to perform the Fourier transform
of the band gap contribution, we employed the usual parabolic band approximation. The
dipole matrix element, dvc

k , is defined in Eq. (4.1e).
These equations form the foundation of various phenomena considered throughout this

thesis and will be used in many instances in Chs. 5 and 6. Due to their spatio-temporal
formulation depending on momentum and real space gradients, their solution becomes
non-trivial and mostly only possible utilizing approximations.

4.7.2. Macroscopic Observables – Translationally Invariant Systems

For a first approach towards interband transitions in metals using this microscopic frame-
work, we study translationally invariant bulk systems such that spatial gradients and the
spatial dependence of the respective Wigner functions can be neglected. In addition, for
an analytical approach towards the optical spectra of these systems, we will expand the
equations in orders of the electric field,

pk = p1k + p2k +O(E3), (4.62a)

fk = f0k + f1k + f2k +O(E3). (4.62b)

With this, the microscopic equations in linear order become

f1,ck (Q, ω) =
e

ℏ
∇kf

0,c
k

−iω + ivc
k ·Q+ γk

·EQ(ω), (4.63a)

p1k(Q, ω) =
1

ℏ
dvc
k [f0,vk − f0,vk ]

∆ωk − ω + vvc
k ·Q− iγ′k

·EQ(ω). (4.63b)

Here, we have used an effective momentum-resolved relaxation time approximation
[171, 176] and introduced an intraband scattering rate γk and an interband scattering
rate γ′k for the scattering processes in Eq. (4.60) and (4.61).

Similar to the phenomenological material models [274, 277] and similar to the ap-
proaches using microscopic material models in Refs. [172, 334], we will consider the
macroscopic polarization to be the sum of a microscopic and a macroscopic contribution

P(r; ω) = Pinter(r; ω) +Pintra(r; ω). (4.64)

The individual components are given in agreement with previous definitions in Eq. (3.12)
and (4.35), where now provide general equations for the polarizations,

Pinter(r, t) =
1

V

∑︂
k

dvc
k pk(r, t) + c.c, (4.65a)

Pintra(r, t) = − ie

ωV

∑︂
kλ

vλ
k.f

λ
k (r, t). (4.65b)
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Assuming the velocity field to be the first momentum gradient of the band structure,
this approach can capture an arbitrary band structure. Using these definitions together
with the solution of the linearized microscopic equations of motions, we find for the
interband polarization,

Pinter
Q (ω) =

1

ℏV
∑︂
k

[f0,ck − f0,vk ] dvc,∗
k ⊗ dvc

k

∆ωk − ω + vvc
k ·Q− iγ′k

·EQ(ω) + c.c., (4.66)

and for the intraband polarization,

Pintra
Q (ω) = − e2

ℏV
∑︂
kλ

(∇kv
λ
k)f

0,λ
k

ω2 − iωvλ
k ·Q+ iγkω

·EQ(ω). (4.67)

The interband contribution resembles individual Lorentz oscillators that are placed
throughout the Brillouin zone, with an individual oscillator strength dvc,∗

k . This scenario
is equivalent to our findings in Ch. 3, where the dipole matrix element was approximated
with its value at the K and K ′ points. Depending on the material complexity, these
quantities can be derived in approximation, for example from tight-binding approaches
[327, 414] for graphene, and can generally be obtained from calculations in density func-
tional theory (DFT) [11, 381–383]. Having access to these quantities, would allow to
significantly reduce the number of fitting parameters necessary to describe the optical
response of metal nanostructures compared to current models [274, 277, 413]. Unfortu-
nately, simple approximations fail to describe the complex, asymmetric band structure of
gold quantitatively, so that we will, for the scope of this thesis, mostly limit ourselves to
a qualitative discussion of the derived model and fit experimental data using a simplified
model that we will derive from our complex momentum-resolved model in the following.

As we will be interested in a derivation of a pure material response, we will assume
plane wave excitation. From this, one can derive the Drude model for the intraband
contribution, as we have presented in Sec. 4.5.1. As we are lacking information about the
dipole matrix elements, we need to transform our description to a discrete version, incor-
porating a finite number of interband transitions in the form of Lorentzian oscillators,
similar to Sec. 2.3.6. This results in the simplified equation

P(ω) = ϵ0

⎛⎜⎝ −ω2
p

ω2 + iγω
+

1

ℏ

N∑︂
j

⃓⃓⃓
dvc
j

⃓⃓⃓2
(nc − nv)

∆ωj − ω − iγ′j

⎞⎟⎠E(ω). (4.68)

The first term describes the intraband motion of the electrons within the conduction
band, a definition of the plasma frequency ωp can be found in Sec. 4.5.1. As the valence
band is fully occupied at equilibrium, there are no available states that electrons could
scatter into, which is why we effectively neglect intraband contributions from the valence
band. The second term describes interband processes with a transition energy ℏ∆ωj , an
oscillator strength dvcj , and a line width γ′j . These parameters will be used in Fig. 4.3
to fit the experimental data from Ref. [272]. The occurring densities are the conduction
and valence band electron densities, nc and nv, respectively.

To model the microscopic response of our system, we include a background contribution
ε∞ in analogy to the usual macroscopic material models, so that the full permittivity
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Figure 4.3.: Microscopic Model Fitting to Johnson and Christy Data. We
perform a fitting analysis of the Johnson and Christy data (J & C) [272] using a
standard Drude model and our microscopic permittivity εtot(ω) from Eq. (4.69). The
plot in (a) displays the real part of the permittivity, ε1, while in (b), we present the
imaginary part, ε2.

becomes

εtot(ω) = ε∞ −
ω2
p

ω2 + iγω
+

1

ℏ

N∑︂
j

⃓⃓⃓
dvc
j

⃓⃓⃓2
(nc − nv)

∆ωj − ω − iγ′j
. (4.69)

In Fig. 4.3, we see that a qualitatively good agreement with the experiment is already
obtained by including a small number of interband transitions. These results are in
good agreement with Ref. [275], where a qualitatively equivalent model is derived from a
macroscopic perspective. However, due to the simplification we used in response to the
missing DFT data regarding the optical dipole matrix elements, these results do not yet
reveal the full strength of the microscopic approach as the number of fitting parameters
is still on the same order as in the current literature [275, 277, 413]. The knowledge of
these parameters would significantly improve the current description of the interplay of
interband and intraband excitations in metals.

At this stage, it is important to acknowledge that the current treatment of the optical
response is not yet fully self-consistent, since the electric field entering Eq. (4.68) still
includes the field generated by the material itself. While solving the self-consistency
problem has so far led to difficulties in accurately reproducing the characteristic Drude
shape, it is worth noting that the current approach has successfully reproduced the
macroscopic Drude model. It is important to note that the original derivation of the
Drude model does not take self-consistency into account. For future studies on extended
systems, a thorough investigation of this aspect will be crucial. To address these effects in
more detail for metal nanoparticles, we will use the self-consistent treatment introduced
in Sec. 2.4.4 in the following section.

4.7.3. Self-Consistent Optical Response of Metal Nanoparticles

When we want to describe the optical response of spatially extended systems, we have
to take their depolarization into account self-consistently. This has been elaborated for
the Drude model in Sec. 2.4.4 which we now extend to also include the interband terms
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derived in the previous section. We again distinguish between the external field Eext,
the background polarization of the sphere Pb, and the Drude polarization Pd, and now
add the interband polarization Pinter. The self-consistent total field Etot within the
nanoparticle then reads

Etot(ω) = Eext(ω)−
1

3ε0εout
Pb(ω)−

1

3ε0εout
Pd(ω)−

1

3ε0εout
Pinter(ω). (4.70)

Employing a similar treatment of the background field as in Sec. 2.4.4, we obtain an
extension of Eq. (2.65), which can be expressed as

Etot =
3εout

ε∞ + 2εout

[︃
Eext −

1

3ε0εout
(Pd +Pinter)

]︃
. (4.71)

By combining this with the definition of the total polarization in response to the total
field from Eq. (4.68), we can obtain a self-consistent solution for the optical response to
the external electric field,

Ptot = Pd +Pinter = ε0χtot(ω)Eext, (4.72a)

χtot = −3εout

ω2
LSP

ω2+iγω
− me

ℏe2
∑︁N

j

ω2
LSP|dvcj |2

ω−ωj+iγj

1− ω2
LSP

ω2+iγω
+ me

ℏe2
∑︁N

j

ω2
LSP|dvcj |2

ω−ωj+iγj

. (4.72b)

In the limit of vanishing interband contributions, dvcj → 0, this approach reproduces the
results obtained in Sec. 2.4.4 and 4.6. However, for non-vanishing dvcj , we not only obtain
terms from interband and intraband contributions individually but also mixing terms.
This is consistent with the usual Mie theory, where the contributions also mix via the
Clausius-Mosotti factor. In Fig. 4.4, we utilize the proportionality of α(ω) ∝ Im{χ(ω)}
[170, 171] to fit the experimental data we gratefully received from the group of Holger
Lange [4].

In Fig. 4.4, we demonstrate that the combination of our microscopic approach with
the self-consistent treatment of the total electric field can accurately describe the experi-
mentally observed absorption of small gold nanoparticles. The accuracy of our approach
strongly depends on the number of included interband transitions and related fitting pa-
rameters. However, it also highlights the potential of our approach when incorporating
momentum-resolved dipole matrix elements dvc

k obtained from ab initio calculations. By
including these dipole matrix elements, we can effectively reduce the number of fitting
parameters to only include the damping terms. This refinement may eventually lead to
a more precise and physically meaningful description of the optical response of metallic
nanoparticles.

4.8. Conclusions

In this chapter, we have presented a comprehensive microscopic approach to study the
electron and phonon dynamics in metals. In the Hamiltonian, we included the free elec-
tronic motion, light-matter interaction, Coulomb-mediated electron-electron interaction,
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Figure 4.4.: Fitting Total Susceptibility Function to UV-Vis Spectrum of
AuNP Solution. We conduct fitting analyses of the imaginary part of the suscep-
tibility, as expressed in Eq. (4.72b), to absorption spectra collected experimentally
from small gold nanoparticles (AuNPs) with an approximate diameter of 30 nm. These
AuNPs are dispersed in hexadecyltrimethylammonium chloride (CTAC) solution.

and electron-phonon interaction. The resulting dynamical equations for the Wigner func-
tion provided a detailed description of the electron and phonon behavior in metals, as
demonstrated in Sec. 4.3 and 4.4.

Through momentum expansion, we derived macroscopic equations for the electron
density and electron current density in both local and nonlocal formulations, as discussed
in Sec. 4.5. In the nonlocal regime, we successfully reproduce well-known hydrodynamical
equations, thus validating the effectiveness of our framework.

Additionally, we have already provided two significant applications of our approach.
In Sec. 4.6, we included geometrical effects through the Hartree mean-field. This allowed
us to accurately reproduce the localized surface plasmon resonance in a metal sphere.
Furthermore, we extended our approach to incorporate multi-band processes in Sec. 4.7,
leading to a set of dynamical equations for a two-band model. These were used to model
the optical response of gold structures and explicitly compared to experimental data for
bulk gold and gold nanoparticles in solution. Our approach captures the full optical
response in the optical regime.

The developed framework serves as a solid foundation for further investigations in sub-
sequent chapters of this thesis. It provides a powerful tool to study complex interactions
in metal systems and offers the potential for more accurate and physically meaningful
descriptions of their optical response. In particular, the combination of our microscopic
approach with ab initio calculations for dipole matrix elements promises to reduce the
number of fitting parameters and improve the precision of our results. We will discuss
this in more detail in the following section.

In conclusion, our framework work opens up exciting possibilities for studying various
plasmonic phenomena and for understanding the behavior of metals in different geometric
shapes and configurations.
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4.9. Perspectives

In this chapter, we have utilized a parabolic dispersion model to describe electron motion,
assuming free and undisturbed movement as suggested by the free electron model [258].
However, it is crucial to acknowledge that this model is an approximation that neglects
the actual band structure of the system.

The parabolic approximation performs well for intraband processes in metals, effec-
tively reproducing the characteristic plasmon peak observed in such systems. It also
yields reasonably accurate results for interband transitions in semiconductors of a wide
spectral range, in particular transition metal dichalcogenides with direct band gaps.
However, in the case of metals, that possess a significantly more complex band structure,
the parabolic approximation falls short in adequately describing interband transitions,
especially in three dimensions.

Building upon the concepts discussed thus far, a potential avenue for progress is the
integration of parameter-based dynamical calculations as presented in this chapter with
density functional theory, which has emerged as a successful approach for calculating the
electronic structure of atoms, molecules, and solids.

The proposed approach involves employing density functional theory to determine the
electronic background upon which carriers move. Subsequently, we would use the dynam-
ical Bloch equations to calculate their dynamics on this background. By incorporating
the band structure and calculated dipole matrix elements, the number of fitting param-
eters to reproduce the optical spectra would be reduced to only include the background
permittivity ε∞ and damping rates. In an additional step, the microscopic scattering
equations, describing electron-phonon scattering, we presented here could also be used
for numerical calculations of the damping rates, further reducing the number of free
parameters. It is important to note that this approach would be limited to the per-
turbative regime, where the back action of excitations on the band structure remains
negligible. Therefore, it must be confined to the low excitation regime. In addition,
careful consideration of interactions would be essential to avoid double counting.

In addition to its potential in accurately describing interband processes in metals, a
microscopic understanding of the intra- and interband dynamics using this microscopic
approach may also contribute to a more profound understanding of hot electron dynamics,
which is of great interest in plasmon-assisted processes in chemical synthesis.

Overall, the integration of density functional theory with parameter-based dynamical
calculations holds promise for improving our understanding of complex metal systems
and providing a more physically meaningful description of their optical response.
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5. Active Control of Plasmon
Resonance: THz Pump-Optical Probe
Signatures in Metal Nanoparticles

In the earlier chapters of this thesis, we extensively investigated plasmonic resonances
of nanostructures at both macroscopic and microscopic levels. We discussed that the
spectral position of the plasmon resonance is highly sensitive to the geometry of the
nanostructure, as we have for example seen when changing the nanoparticle aspect ratio
in Sec. 2.4.2. Furthermore, we have observed that the inclusion of hydrodynamic effects
can explain a substantial shift in the plasmon resonance for small particles, cf. Sec. 2.4.3.

In this section, we will investigate the option of using this sensitivity to changes on the
macroscopic and microscopic to actively tune the optical response of plasmonic nanos-
tructures. In recent years, this has opened the subfield Active plasmonics that exploits
the active control of surface plasmon resonance [101].

Figure 5.1.: Active Modulation
Mechanisms for Tuning Plasmon
Resonance. The mechanisms to tune
the plasmon resonance can be divided
into three categories: dielectric control,
distance control, and carrier control
[101]. Reprinted with permission from
Ref. [101] Copyright (2018) American
Chemical Society.

It is possible to divide active plasmonic struc-
tures into three categories according to the in-
volved modulation mechanisms to actively tune
the plasmon properties [101], as summarized in
Fig. 5.1: First, the plasmon is a surface effect.
Thus, changing the surface environment changes
the plasmon properties. The second tuning op-
tion is the nanostructure geometry. Plasmons of
proximal nanoparticles interact and form coupled
modes, which can be exploited to tune the plasmon
by modifying the interparticle distance. Third, as
the plasmon is built up from electron oscillations,
changing the amount of contributing electrons in
the conduction band changes the properties of the
plasmon.

Several experimental approaches have been de-
veloped to achieve plasmon tuning using one of
the three mechanisms shown in Fig. 5.1, aiming to
actively control and manipulate the optical prop-
erties of nanostructures: For example, changes in
the surrounding medium have been achieved by
chemical reactions, such as electrochemical doping
of polymer films surrounding the gold nanostruc-
tures [415]. Tuning by distance control has been achieved through active substrates,
for example by applying mechanical strain to the substrate [416], embedding plasmonic
nanoparticles in liquid crystal [417], or thermo-responsive polymers [418]. Another ap-
proach was to use acoustic waves to actively tune the geometry of the plasmonic surface
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[419]. The third way to change the number of electrons contributing to the plasmon
oscillation is achieved by electrochemical charging of gold nanoparticles [420]. Other
interesting approaches to actively tune the plasmon resonance include active control of
the incident light [421] or controlled melting of nanoparticles [422]. These approaches
may find application in high-speed devices, in particular plasmonic modulators, where
they have garnered interested due to the demand for high-speed modulators enabling
Tbit/s communication. Various general concepts for plasmonic modulators have been
introduced [84, 101, 423–426]. However, with most present methods, the achieved tuning
occurs on timescales ranging from milliseconds to microseconds, which is still too slow
and limits their practical applications. Interesting approach to combine optical and THz
radiation for ultrafast plasmon modulation were discussed in Refs. [100, 427, 428].

Inspired by these approaches, we explore an experimental scenario where a strong THz
electric field is used to perturb the electronic ground state of a metallic nanostructure.
In particular, we focus on how the THz pulse affects the spatial density and kinetic
distribution of the electrons, since these factors determine the plasmon frequency ωLSP
via the plasma frequency ωp, as discussed in our microscopic derivation in Sec. 4.5.1.
Consequently, changing the ground state electron distribution by the THz pulse leads
to changes in the optical response of the nanoparticle, allowing to tune the plasmon
resonance dynamically on the timescale of the THz pulse. The choice of using THz
fields is motivated by the experimental ability to generate strong electric fields with peak
intensities in the single-digit MV/cm range and durations of picoseconds.

This chapter addresses the situation described above by two different approaches. First,
we describe the numerical tool that we are currently developing, which combines the mi-
croscopic Boltzmann scattering equations for the electronic Wigner function, as described
in detail in Ch. 4, with a fully three-dimensional finite-difference time-domain solver. This
combination enables us to couple multidimensional, k-resolved electron scattering pro-
cesses to macroscopic solutions of Maxwell’s equations. As a result, the complete spatial
dynamics of an electric field interacting with a metallic object of arbitrary shape can be
studied, along with the electronic dynamics within these nanostructures. This approach
enables a complete non-perturbative treatment of the spatio-temporal, non-equilibrium,
nonlocal dynamics of electrons in metallic nanostructures. In addition, we have devel-
oped an analytical approach to study the influence of a non-perturbative THz field on
the plasmon resonance of a spherical nanoparticle. This approach offers the possibility
to analytically understand the physical processes that control the shift of the plasmon
resonance.

Therefore, this chapter is structured as follows: before diving into the theoretical de-
tails, we present the initial experimental results that motivated this study in Sec. 5.1.
In Sec. 5.2, we will describe the concept of our computational multiphysics approach
that we are currently developing to efficiently couple three-dimensional codes for solving
the macroscopic Maxwell equations with the microscopic Boltzmann scattering equa-
tions. We then provide the details of our implementation of our three-dimensional finite-
difference time-domain (3D FDTD) code in Sec. 5.3.1, before discussing the details of
the microscopic code in Sec. 5.4. In Sec. 5.5 we present the results of our analytical
non-perturbative approach.
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5.1. Experimental Motivation

This endeavor has primarily been motivated by the intriguing preliminary experimental
results obtained in the group of Holger Lange at Universität Hamburg. In their research,
they set up a THz-pump white-light-probe experiment to investigate the influence of
a strong THz pulse on the optical absorption spectra of a periodic array of chemically
synthesized plasmonic nanoparticles. Their experiment setup, conducted at CFEL, is
schematically illustrated in Fig. 5.2(a), and the preliminary experimental results are
depicted in Fig. 5.2(b).

Figure 5.2.: Experimental Setup and Preliminary Results. (a) Experimental
setup at CFEL illustrated schematically. (b) Gold nanoparticles array’s response to
white light absorption, with and without an overlapping THz pulse. The colors repre-
sent data from multiple experiment repetitions.

In the absence of a THz pulse, the absorption spectrum of the gold nanoparticle array
exhibits the typical plasmon response, consistent with the discussions presented in the
preceding sections. However, when the THz pulse is introduced, a notable blue-shift in the
plasmon absorption peak is observed. To gain further insights, time-dependent studies
are conducted to track the absorption change relative to the peak field of the THz pulse.
Fascinatingly, the resonance of the plasmon absorption spectrum experiences a blue-
shift during the peak of the THz pulse, allowing to observe the rise and recovery of this
absorption change as the THz pulse propagates. Moreover, by varying the pump-probe
delay, the onset and vanishing of the modulation are observed on picosecond timescales.
Comparable changes in the plasmon resonance shift have to the best of our knowledge
only been reported in response to variations in the geometrical dimensions of the system
under study.

Despite these intriguing experimental findings, the exact origins of the observed shift
remain unclear and necessitate a detailed theoretical treatment that accurately describes
the pump-probe setup under consideration. The upcoming sections will focus on the
theoretical description of this effect, aiming to shed light on the underlying mechanisms
that govern the plasmon tuning with THz pulses on picosecond timescales.
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5.2. Numerical Framework

To address the experimental situation theoretically, a self-consistent, space- and time-
resolved treatment of the Maxwell equations and material equations governing the inter-
action of the nanoparticle with THz and optical fields is essential. Given the strong THz
field, a treatment beyond the perturbative regime becomes necessary. In this context,
we propose a computational multiphysics approach, coupling three-dimensional codes to
solve the macroscopic Maxwell’s equations with our developed microscopic momentum-
resolved Boltzmann scattering equations, cf. Ch. 4.

Using the Wigner approach, we can describe the microscopic electron dynamics and
incorporate nonlocal effects, including both intra- and interband transitions. By numer-
ically solving the full microscopic Boltzmann scattering equations without any lineariza-
tion, we can accurately describe the strong THz fields in the nonlinear regime. This
approach will extend the work in Ref. [375], which couples a full solution of Maxwell’s
equations with microscopic energy-resolved scattering equations, to include a full 3D
momentum-resolution to account for interband processes and band structure effects.

Consequently, our approach unites state-of-the-art numerical methods for simulating
electromagnetic fields with a fully quantum mechanical nonlocal treatment of the many-
particle kinetics of the carriers within the nanoparticle. This enables us to investigate
the spatial dynamics of non-equilibrium processes in plasmonic nanostructures in the
proposed THz pump-optical probe scenario. Accessing the momentum-resolved elec-
tron distribution provides a direct path towards multidimensional modeling of electron
transport processes and allows studying the interplay of non-equilibrium thermal and
propagation dynamics. In addition, the theory will describe the nonlinear response of
the electrons/plasmons for plasmonic nanostructures of arbitrary shape to the THz pulse,
encompassing dephasing and relaxation processes, while also accommodating nonlocal,
multi-band processes eventually.

The conceptual idea of the numerical solver is depicted in Fig. 5.3 which follows the
idea in Ref. [375].

Figure 5.3.: Illustration of Coupled Kinetic Maxwell-Boltzmann Solver. We
present the conceptual idea of our multi-physical computational approach that com-
bines solution of three-dimensional macroscopic Maxwell’s equations with a three-
dimensional momentum-resolved microscopic Boltzmann scattering equation. The mi-
croscopic quantities are linked via a moment expansion of the electronic Wigner func-
tions. For simplicity, we only illustrate the single-band case.
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The proposed numerical scheme, as shown in Fig. 5.3, will iteratively solve Maxwell’s
equations in our geometry to compute the electric fields. These fields are then used as
source terms in the microscopic scattering equations. Subsequently, the microscopic elec-
tron distribution will be momentum-expanded, analogous to Sec. 4.5, to obtain macro-
scopic quantities, specifically the polarization P, which will in turn act as a source term
in the macroscopic Maxwell’s equations.

The iterative solution of both sets of equations facilitates the determination of electric
fields, allowing to calculate cross sections or transmission and reflection of the nanos-
tructure. In addition, this approach sheds light on the intricate microscopic electron
dynamics within the material. It is important to note that this complex, effectively
six-dimensional phase space solver is essential to incorporate the nonlinearity of the scat-
tering equations and to effectively handle the potentially complex interactions between
the THz and optical fields, especially when dealing with non-parallel polarizations or
different angles of incidence.

The ultimate goal of this work is to gain a profound understanding of the microscopic
dynamics in response to strong THz fields and their implications on the optical and THz
responses in the linear regime. These insights can be compared to experimental results
in the future and may allow exploring how these responses can be influenced by varying
the size and shape of the nanoparticles.

To achieve this goal, in Sec. 5.3 we will first discuss the numerical simulation of the
Maxwell equations using our self-developed finite-difference time-domain solver. Then, in
Sec. 5.4, we will introduce the nonlocal quantum mechanical treatment of the microscopic
dynamics. This lays a solid foundation for future investigations of the optical and THz
responses of plasmonic systems.

5.3. Finite-Difference Time-Domain Solver

The first component of our combined solver is a classical finite-difference time-domain
(FDTD) solver, enabling us to numerically solve Maxwell’s equations. For this work,
I have meticulously developed a 3D FDTD code in Python, which I will describe in
more detail in the following sections. With the continuous increase in computational
power, numerical investigations of intricate nanostructures have become indispensable.
These structures, including complex metastructures with applications in beam steering,
photonic crystals, active photonics, and quasi-normal mode studies, often exceed the an-
alytical description’s capacity. Consequently, the use of numerical methods, particularly
finite-difference time domain (FDTD), finite-element methods (FEM), and boundary
element method (BEM), has witnessed a remarkable surge with each possessing their
individual strengths for certain scenarios. Notably, FEM, with COMSOL as a prominent
commercial implementation, is the most powerful for time-periodic studies and is widely
used for nanoscale material analysis.

However, since our experimental scenario inherently involves non time-periodic as-
pects, as we seek to model the interaction of two different pulses in the system, finite-
difference time domain solutions are the natural and appropriate choice. This approach
offers several advantages, including widespread use in the photonics community, ease of
parallelization, broadband capabilities, and the ability to generate time-domain movies.
Therefore, in the upcoming sections, we will introduce the essential concepts behind
our FDTD implementation. As this explanation provides only a concise overview, read-
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ers keen on exploring further details can refer to two comprehensive introductions in
Refs. [131, 429].

We start to present our implementation of the fundamental Maxwell’s equations using
the Yee algorithm in Sec. 5.3.1. Next, we demonstrate how materials can be introduced
into the simulation through an auxiliary differential equation in Sec. 5.3.2. We then
introduce perfectly matched layers (PML) as boundary conditions and discuss the imple-
mentation of periodic boundary conditions in Sec. 5.3.3. The electric field is introduced
either through a point dipole source or a plane-wave source employing the total-field
scattered (TFSF) approach in Sec. 5.3.4. Lastly, in Sec. 5.3.5, we explore options for ob-
taining certain macroscopic observables from the simulation, such as the Purcell factor
and scattering and absorption cross sections.

Our numerical implementation will be made available via git at Ref. [430].

5.3.1. Full 3D FDTD Implementation

The basic idea of FDTD is quite simple and easy to explain: it simply and elegantly
takes Maxwell’s equations in their differential form and implements the partial differential
equation in a numerically efficient way. Accordingly, the governing equations are the curl
Maxwell equations, which we express in the form

∂D̃(r, t)

∂t
= c∇×H(r, t), (5.1a)

∂H(r, t)

∂t
= −c∇× Ẽ(r, t). (5.1b)

We adopted the definition from Ref. [429], which employs rescaled electric fields,
Ẽ(r, t), and D̃(r, t). These fields are related to the physical fields in SI units through the
following relations

Ẽ = ε0cE, D̃ = cD, P̃ = cP. (5.2)

In this definition, electric and magnetic fields have the same units, which can be
seen by the vacuum impedance to be one η0 = 1. This choice facilitates numerical
stability due to similar orders of magnitude in the computation. In addition, we assume
a non-magnetic material, so that material properties effectively enter only through the
permittivity function ε∗r(ω),

D̃(r, ω) = ε∗r(ω) · Ẽ(r, ω). (5.3)

The permittivity function incorporates essential system information regarding material
properties, including the frequency dependence and spatial characteristics of the system.
As discussed in Sec. 2.3.1, our implementation follows the widely used piecewise-constant
approximation in classical electrodynamics, which does not inherently account for hydro-
dynamic effects. However, the FDTD method, with its inclusion of spatial derivatives,
is well-suited for incorporating hydrodynamic effects in a formulation using spatial gra-
dients [253], they only pose additional challenges for an advanced parallelized numerical
implementation. Notably, a parallel FDTD implementation of the generalized nonlocal
optical response (GNOR) has been achieved in Ref. [151, 431]. Other numerical hy-
drodynamical implementations using different computational electromagnetic methods,
including the finite element method [432], the discontinuous Galerkin method [199, 433],
and the boundary element method [434], also complement this development.
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Yee Algorithm

Having stated the fundamental physical equations, it now becomes important how these
are numerically implemented. In FDTD, the widely used Yee algorithm [435], proposed
in 1966, proves to be remarkably robust. To solve electric and magnetic fields in space
and time, they are placed on a so-called Yee cell. This arranges the electric field E and
magnetic field components H in a leapfrog arrangement that places one electric field
component within four circulating magnetic field components and vice versa, creating
the beautiful picture of an intricate interlinking of Ampere’s and Faraday’s law in three-
dimensional space [131]. Intuitively, this can be visualized as staggered fields in space
and time, as shown in Fig. 5.4, where the staggered fields are typically placed half a
Yee cell apart from each other. Notably, this approach achieves second-order accuracy
while requiring the same number of function evaluations per step, in contrast to an Euler
algorithm.

Figure 5.4.: Illustration of a Yee Cell. 3D Staggering of electric and magnetic fields.
In addition to the spatial offset, thy are reciprocally staggered in time.

To illustrate the general procedure, we employ the full Maxwell curl equations from
Eq. (5.1), dividing them into individual components. This yields six scalar equations of
the form

∂Dx

∂t
= c

(︃
∂Hz

∂y
− ∂Hy

∂z

)︃
,

∂Hx

∂t
= c

(︃
∂Ey

∂z
− ∂Ez

∂y

)︃
. (5.4)

The other four equations can be obtained via circular permutation. In each of these
equations, the temporal derivatives depend on the spatial derivatives of two other field
quantities. By now employing, the Yee algorithm, cf. Fig. 5.4, we discretize space and
place all the field components on staggered grid positions. The indices (i, j, k) correspond
to the x, y, z direction, respectively. We illustrate this exemplarily for the x component
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of the electric field,
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The upper index n represents the position on the temporal grid, while the three argu-
ments in the parenthesis correspond to the usual Cartesian position coordinates. These
equations can be viewed as standard update equations, where the field at the updated
time n+ 1/2 depends on its value at a previous time step n− 1/2. Changes to the field
value are incorporated through the influence of the surrounding magnetic fields, which
are related via the curls in the Maxwell’s equations, particularly Faraday’s law in this
case. The quantity Sc denotes the Courant number, defined as

Sc =
c∆t

∆x
. (5.6)

This can be thought of the numerical increment, similar to the Euler algorithm. Im-
portantly for FDTD calculations, the choice of Sc also determines the ratio of the tem-
poral and the spatial resolution, meaning that a finer discretization in space inevitably
leads to smaller time steps. For stability of the numerical implementation, there are
natural bounds on Sc. A convergence condition is commonly derived from the Courant-
Friedrichs-Lewy condition, which is a necessary condition for the convergence when nu-
merically solving certain partial differential equations. Extensive testing and analysis of
the growth factor for varying Courant numbers has been conducted and can be found in
Ref. [131]. For a stable numerical implementation, the Courant stability bound typically
becomes

Sc <
1√
n
. (5.7)

Here, n is the dimensionality of the implementation. For our purposes, we have chosen
Sc = 0.5 to fulfill this criterion for one-, two-, and three-dimensional systems. This choice
allows us to transfer results from lower dimensions to the three-dimensional case.

5.3.2. Material Modeling

In the previous section, we described how the interplay of Maxwell’s curl equations is
numerically implemented using the Yee algorithm to integrate the fields over time. While
this is sufficient to describe wave propagation in an infinitely extended vacuum, free space
propagation is a rather trivial case that does not demand advanced numerical solutions,
at least at that level of the description. The primary advantage of numerical FDTD
implementation lies in describing complex geometries and their temporal dynamics. In
this section, we will introduce our chosen method for modeling material properties, which
involves employing an auxiliary differential equation to describe dispersive materials.
Additionally, we will demonstrate how we introduce the geometry into the simulation,
with particular emphasis on accurately treating the boundaries. For readers seeking
more in-depth information on these topics or other models, we recommend referring to
Refs. [131, 429].
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Piecewise-Constant Permittivity

As a first example, we consider a non-dispersive, piecewise constant material. This can
be visualized as a layered dielectric material with constant permittivity over the spectral
range of interest, effectively making it non-dispersive. Thus, the permittivity only varies
spatially but not spectrally. For simple layered cases, such problems can be addressed
using the transfer matrix method. However, once complex geometry is introduced, as
seen in photonic crystals, analytical solutions become demanding and may only be found
in approximation. In contrast, these situations can be easily implemented in FDTD. The
easiest way to approach this is through the constitutive equation,

D̃(r, t) = ε(r)Ẽ(r, t). (5.8)

As explained in Sec. 2.3.1, this approximation effectively treats interactions as local
and neglects the dispersive character of the material response, meaning that it does not
depend on frequency or time. For numerical implementation, this allows for a straight-
forward update prescription for the E(r, t) fields via

Ẽx(r, t) = ε−1
x (r) D̃x(r, t), Ẽy(r, t) = ε−1

y (r) D̃y(r, t), Ẽz(r, t) = ε−1
z (r) D̃z(r, t).

(5.9)

Here, ε−1
i represents the inverse permittivity. Notably, we distinguish the permittiv-

ity depending on the individual Cartesian coordinates, allowing for the description of
anisotropic media. However, this distinction is primarily introduced due to the arrange-
ment of fields in the Yee algorithm. As evident from Fig. 5.4, the electric fields are
staggered in space, which necessitates consideration of their locations with potentially
distinct effective permittivity. For bulk materials, this distinction may seem negligible.
However, once we introduce geometries with structure sizes not much larger than the Yee
cells and subsequently adopt a subgridding approach. This distinction becomes a vital
part of the implementation.

Object Creation

Using the piecewise-constant approximation in Eq. (5.8), we automatically create the
geometry of an object by varying the permittivity on a subset of the entire simulation
space. In the algorithm, this is accomplished by determining whether each individual
Yee cell surrounding each field component is inside or outside the material. As a result,
they are assigned either εin or εout. In this manner, the object’s geometry is explicitly
defined within the simulation.

While this description is exact for objects adequately described in Cartesian coordi-
nates, for other objects, such as spheres, the treatment of boundary cells that are only
partially inside the sphere becomes non-trivial. A black or white approach would cause
naturally smooth surfaces to become rough, leading to strong "staircasing” effects with
local field enhancements due to the so-called "lightning rod" effect.

To counteract this and numerically smooth the particle surface, we employ a subgrid-
ding approach for cells at the boundary. If the Yee cell centered around the considered
field quantity is only partially within the object, our implementation subdivides the cell
into f × f × f sub-cells and evaluates again if their individual centers are inside or out-
side the object. From this, we calculate a weighted average of the inside and outside
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permittivity using the formula

εeff =
nin εin + nout εout

f3
, (5.10)

where nin is the number of subcells inside the object and nout the ones outside of
it. This effectively covers the object’s surface with a layer of intermediate permittivity,
which can be chosen to significantly reduce staircasing compared to the rough black or
white approach. As per the previous section, these quantities also need to be staggered
in space to calculate the positional mismatch of the individual field components within
the Yee cell accurately. A similar procedure will be adopted for the prefactors in the
auxiliary differential equation.

Auxiliary Differential Equation (ADE)

So far, we have focused on non-dispersive systems, which describe materials with frequency-
independent properties. This approximation is often reasonable, depending on the spec-
tral range of interest. However, as extensively discussed throughout this work, we are
interested in dispersive system that reveal a frequency-dependent response. Typically,
these frequency-dependent materials are described in frequency space via their polariza-
tion,

P̃(ω) = χ(ω)Ẽ(ω). (5.11)

To incorporate this frequency-based description into the time-domain-based FDTD
method, the equations must be transferred to the time domain. Several approaches can
achieve this, as discussed in Refs. [131, 436]. Here, we have chosen the auxiliary differ-
ential equation (ADE) approach due to its conceptual simplicity. In this approach, the
susceptibility function is Fourier transformed to the time domain, where it is explicitly
evaluated as an auxiliary differential equation of the material. In this section, we intro-
duce this approach using the standard example of the Drude model, whose susceptibility
is typically given in frequency space as

χ(ω) = −
ω2
p

ω2 + iγω
. (5.12)

For the Drude model, all dispersive contributions are contained in the susceptibility,
while the frequency-independent background contribution to the permittivity, ε∞, as
described in Eq. (2.36), will be introduced as a constant permittivity on the level of
the piecewise-constant permittivity previously described in the section. In the time
domain, the model for the Drude susceptibility can be reformulated in terms of temporal
derivatives,

∂2t P̃+ γ∂tP̃ = ω2
pẼ. (5.13)

This equation is what we label as the auxiliary differential equation and will be the
equation we implement in addition to the FDTD update equations. Despite the staggered
Yee cell, its implementation becomes rather intuitive because the polarization represents
the electric response of the system and, as such, it will be placed at the same positions
within the Yee cell as the electric fields. This simplifies the description significantly
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because all equations are evaluated at the same Yee cell positions. This second-order
differential equation requires the polarization at three positions in time for discretization,
and it reads

P̃
n+1
i − 2P̃

n
i + P̃

n−1
i

∆t2
+ γ

P̃
n+1
i − P̃

n−1
i

2∆t
= ω2

pẼ
n
i . (5.14)

The index i accounts for all three Cartesian coordinates. For numerical implementa-
tion, this needs to be reformulated in terms of an update equation, similar to the FDTD
update equations in Eq. (5.5). After some algebraic work, this can be expressed schemat-
ically as the update equation for the auxiliary differential equation of the polarization,

P̃
n+1
i = D1P̃

n
i +D2P̃

n−1
i +D3Ẽ

n
i . (5.15)

Here, we defined the prefactors as

D1 =
4

2 + γ∆t
, D2 =

γ∆t− 2

2 + γ∆t
, D3 =

2ω2
p∆t

2

2 + γ∆t
. (5.16)

This equation needs to be implemented for each spatial component and updated indi-
vidually for all positions that are supposed to be contained in the considered object. For-
tunately, the coefficients remain constant over time, making the implementation rather
straightforward. Depending on the required accuracy and the temporal variation of the
considered electric fields, it might be necessary to also consider the electric field at multi-
ple time steps. However, for our considered temporal discretization with ∆t in the single
digit attosecond regime, the optical fields can be assumed to vary slowly, so that this
implementation suffices for our purposes.

Implementation of this model for a gold slab gives excellent agreement with analytical
predictions, as shown in Fig. 5.5. In Sec. 5.3.5, we show how these spectra can be obtained
from the simulation.

Certainly, more complicated material models, such as the Drude-Lorentz model or even
more advanced ones, can be included in the simulation. The numerical prescriptions for
these models follow in analogy to the one we provided for the Drude model. However, as
this topic will be covered in later sections, we refer the interested reader to Sec. 5.4 for
further details and discussions.

Summarizing the advances up to this point, we have provided the key concepts for the
standard update equations in FDTD implementation. A comprehensive overview is given
in Fig. 5.6, where the numerical implementation of the described procedure is illustrated.
We begin by using the auxiliary differential equation to calculate the polarization of the
sphere, and then we update the D field accordingly. Subsequently, we use the updated
D field and the polarization P to calculate the electric field E, which, in turn, is needed
to update the magnetic field H. This procedure is repeated until the physical process of
interest is over or until the field magnitudes no longer surpass a certain amplitude.

5.3.3. Boundary Conditions

Numerical solutions of Maxwell’s equations, as well as general numerical simulations, face
a significant limitation due to the constraints imposed by the finite computational space.
In nature, when light impinges on an object, it gets scattered and propagates away,
not returning unless specifically designed that way. Ideally, numerical models would
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Figure 5.5.: Benchmarking the 3D FDTD Code: Reflection and Transmission
Spectra. We perform an initial benchmark check of our full 3D FDTD code by com-
paring the reflection and transmission spectra to the analytical results for a 100 nm
thick slab of gold modeled using Drude theory.

also cover such an infinitely large computational domain or at least one large enough to
prevent outgoing waves from returning to the sample during the relevant time. However,
this approach is usually unfeasible due to its high computational cost.

As a consequence, one is left with a finite computational domain, leading to the emer-
gence of predominantly unphysical processes near the boundaries, primarily in the form
of arbitrary reflections. To address this issue, the implementation of appropriate bound-
ary conditions in the Finite-Difference Time-Domain (FDTD) method becomes crucial.
The goal is to effectively mimic fully absorbing boundary conditions (ABC) so that waves
leaving the physical volume of the computational domain do not return. This is usu-
ally achieved by separating the computational domain into a physical domain and an
unphysical one, where unphysical equations are solved in a way that mimics the desired
ABC. This establishes a computationally viable domain that exhibits physical behavior.
In this study, we present two widely used approaches: Perfectly Matched Layers (PML)
and Periodic Boundary Conditions (PBC). Additionally, prominent alternative boundary
conditions, such as metallic and Bloch boundary conditions, are also available. Interested
readers can find further details in Ref. [131].

Perfectly Matched Layers (PML)

As previously described, one of the challenges in FDTD simulations is the occurrence
of unphysical reflections at the boundary, which can significantly influence the physical
process within the simulation domain. A crucial aspect of the simulation is therefore
to find a method to exclude these reflections at the boundary and ideally implement
boundary conditions that perfectly absorb outgoing waves, preventing their return to
the computational domain. To address this issue, we introduce the perfectly matched
layer (PML) approach, developed by Ref. [437], which has become a widely used and
effective technique for suppressing reflections in FDTD simulations, allowing for more
accurate and reliable results when dealing with finite computational domains.
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5.3. Finite-Difference Time-Domain Solver

Figure 5.6.: FDTD Method – Standard Iteration. This figure illustrates the stan-
dard loop of the FDTD method. At each time step, the polarization is updated using
an auxiliary differential equation. Next, the Ampère-Maxwell law is applied to update
the D̃ fields. This allows to update the Ẽ fields that are utilized to update the H̃ fields.
The process repeats for subsequent time steps.

The conceptual idea behind PML is based on the principle that when a wave propagates
from medium A to medium B, the amount of reflection is determined by the intrinsic
impedances of the two media, as described by the equation

Γ =
ηB − ηA
ηA + ηB

, (5.17)

where Γ is the reflection coefficient and ηA/B are the characteristic impedances of media
A and B. It is evident that impedance-matched interfaces do not reflect electromagnetic
radiation. However, for any choice of physical, non-magnetic materials, the impedance
is defined as

η =

√︃
µ0
εrε0

, (5.18)

where εr is the relative permittivity of the material, which does not allow for perfect
impedance matching at interfaces, leading to the presence of reflections. Fortunately, we
are not limited to physical processes in the boundary layers; rather, our goal is to have
them mimic the correct physics within what we now define as the physical domain. To
accomplish this, we introduce the concept of perfectly matched layers (PML) – artificial,
unphysical regions added to the boundaries of the computational domain. These PMLs
are impedance-matched, which effectively eliminates reflections at the boundaries. In
addition, the PML is designed to efficiently absorb electromagnetic waves within these
layers. Even if waves are reflected at the boundary of the computational domain, they
are sufficiently attenuated within the PML to have a negligible effect on the physical do-
main. This approach creates a seamless transition between the physical and nonphysical
domains, effectively mimicking the behavior of perfectly absorbing boundary conditions.
As a result, reflections are prevented from reaching the physical domain, significantly im-
proving the accuracy and reliability of finite-difference time-domain (FDTD) simulations,
even with finite computational domains.

On a technical level, this is done by introducing fictitious permittivities and perme-
abilities, denoted as ε∗F and µ∗F in the PML domain, respectively. These parameters
are chosen to be impedance-matched and complex, introducing loss into the system.
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The purpose is to attenuate the outgoing waves before they reach the boundary of the
computational domain, where they are reflected.

In the frequency domain, the Maxwell curl equations for the PML region, Eqs. (5.1),
take the following form for the z component

−iωD̃zε
∗
Fz(x)ε

∗
Fz(y)ε

∗
Fz(z) = c

(︃
∂Hy

∂x
− ∂Hx

∂y

)︃
, (5.19a)

−iωHzµ
∗
Fz(x)µ

∗
Fz(y)µ

∗
Fz(z) = c

(︄
∂Ẽx

∂y
− ∂Ẽy

∂x

)︄
. (5.19b)

The other components can be obtained by circular permutation. In the notation, the
index of the permittivity or permeability refers to the field component to be attenuated,
while the dependence refers to the direction of propagation. In the following, we will
examine how these functions can be modeled to introduce the desired effect. It has been
shown in Ref. [438] that two requirements must be met: The first, of course, is to match
impedances to avoid reflections. Assuming that the objects in the physical domain are
embedded in a vacuum, this condition becomes

η0 = ηm =

√︄
µ∗Fx(x)

ε∗Fx(x)
= 1. (5.20)

The last equivalence is due to our choice of rescaled units. The second, as shown in
Ref. [438], is that in the direction perpendicular to the boundary, the fictitious quantities
must be the inverse of those in the other directions. Assuming the boundary to be
perpendicular to the x direction, this would mean

ε∗Fy = ε∗Fz =
1

ε∗Fx

, (5.21a)

µ∗Fy = µ∗Fz =
1

µ∗Fx

. (5.21b)

To introduce the attenuation effects discussed earlier, we will assume that each of these
quantities is a complex quantity of the form

ε∗Fm = εFm +
σDm

iωε0
, µ∗Fm = µFm +

σDm

iωµ0
, (5.22a)

for m ∈ {x, y, z}. In Ref. [439] it was shown that the criterion in Eq. (5.21) can be
satisfied assuming for all m,

εFm = µFm = 1, (5.23a)
σDm

ε0
=
σDm

µ0
=
σD
ε0
. (5.23b)

Using these definitions in Eq. (5.19), the fictitious permittivities and permeabilities
can be given explicitly. As an example, we provide the equation for the D̃z component,
which can be written as

−iω
(︃
1 +

σD(x)

iωε0

)︃(︃
1 +

σD(y)

iωε0

)︃(︃
1 +

σD(z)

iωε0

)︃−1

Dz = c

(︃
∂Hy

∂x
− ∂Hx

∂y

)︃
. (5.24)
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All other components follow analogously and are given in App. H. This equation can
be rewritten as

−iω
(︃
1 +

σD(x)

iωε0

)︃(︃
1 +

σD(y)

iωε0

)︃
Dz =

c

∆x

(︃
CH
yx +

σD(z)

ε0
IDz

)︃
, (5.25)

where we have defined the following quantities

CH
yx ≡ ∆Hy −∆Hx, IDz ≡

1

iω
CH
yx. (5.26)

In FDTD, we are used to time derivatives, as can be seen on the left side of Eq. (5.25),
where the Fourier transform of −iω → ∂t introduces a first-order time derivative. How-
ever, in the quantity IDz we observe a division by the frequency, which will lead to an
integration in time in the numerical implementation.

Numerical Implementation In order to illustrate how this PML formalism is introduced
numerically, we restrict ourselves for illustration purposes to a case with only one of the
contributions on the left-hand side of Eq. (5.25). At the end of this section, we will touch
upon the generalization of this approach. Using this reduced version of Eq. (5.25) and
applying the Yee algorithm according to Fig. 5.4, the update equation for the electric
field can be formulated as

Dn+1/2
z

(︃
i, j, k +

1

2

)︃
=
1− σD(i)

∆t
2ε0

1 + σD(i)
∆t
2ε0

Dn−1/2
z

(︃
i, j, k +

1

2

)︃
(5.27)

+
1

1 + σD(i)
∆t
2ε0

[︃
CH
yx(i, j, k +

1

2
)/2 +

σD
(︁
k + 1

2

)︁
∆t

2ε0
In+1/2
Dz

(︃
i, j, k +

1

2

)︃]︃
.

Here, we used Sc = 0.5. The curl CH
yx in its FDTD discretization reads, cf. Fig. 5.4,

CH,n
yx (i, j, k + 1/2) =Hn

y (i+ 1/2, j, k + 1/2)−Hn
y (i− 1/2, j, k + 1/2)

−Hn
x (i, j + 1/2, k + 1/2) +Hn

x (i, j − 1/2, k + 1/2). (5.28)

The integral IDz incorporates a time integration scheme that is formulated recursively,
enabling it to update itself at each time step and effectively reducing memory require-
ments. This can be expressed as

In+1/2
Dz (i, j, k + 1/2) = In−1/2

Dz (i, j, k + 1/2) + CH,n
yx (i, j, k + 1/2). (5.29)

For the numerical implementation, we will follow the notation introduced in Ref. [439]
that identifies abbreviations in Eq. (5.28) which will later be used to implement the PML.
Using these, Eq. (5.28) can be given as

Dn+1/2
z (i, j, k + 1/2) =gi3(i)D

n−1/2
z (i, j, k + 1/2)

+ gi2(i)
[︁
CH
yx(i, j, k + 1/2) + gk1(k)IDz(i, j, k + 1/2)

]︁
, (5.30)

where we defined the prefactors

gi2(i) =
1

1 + σD(i)
∆t
2ε0

, gi3(i) =
1− σD(i)

∆t
2ε0

1 + σD(i)
∆t
2ε0

, gk1(k) =
σD(k)∆t

2ε0
. (5.31)
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The placement of PML layers is crucial for effectively attenuating the electric and
magnetic fields before they reach the boundary. The fundamental idea is to divide the
PML into multiple layers, and from layer to layer, the attenuation term σD gradually
increases. This gradual increase in attenuation ensures that the fields are effectively
damped, ideally before they reach the boundary.

Typically, a number of eight to twelve PML layers are used, depending on the specific
simulation requirements. The goal is to design the PML layers in a way that the coef-
ficients gi3 and gi2 in Eq. (5.30) decrease slowly, while gk1 increases gradually, starting
from the boundary.

To achieve the required PML behavior, it was shown in Ref. [439] that it is not necessary
to directly vary conductivities. Instead, an auxiliary parameter can be introduced,

Γ(i) = 0.333

(︃
i

ℓPML

)︃3

, i = 1, 2, . . . , ℓPML, (5.32)

where ℓPML is the number of PML layers. The parameter Γ(i) is empirically identified
with Γ(i) = σD(i)∆t

2ε0
. Using this auxiliary parameter, all the prefactors in Eq. (5.30) can

be expressed in terms of Γ(i),

gk1(k) = Γ(k), gi2(i) =
1

1 + Γ(i)
, gi3(i) =

1− Γ(i)

1 + Γ(i)
. (5.33)

Since the PML is not a physical material, but an artificial layer introduced to mimic
absorbing boundary conditions, its design and parameters are determined through nu-
merical experimentation and optimization and as such derived purely empirically. The
factors 0.333 and the cubic variation in the auxiliary parameter were found to be the
most effective, as reported in Ref. [429].

The quantity in parentheses in Eq. (5.32) ranges between 0 and 1, leading to the
following ranges for the other quantities

gk1(k) from 0 to 0.333, (5.34a)
gi2(i) from 1 to 0.75, (5.34b)
gi3(i) from 1 to 0.5. (5.34c)

These parameters are used for the numerical implementation. The remaining ones for
a full 3D case are given in App. H.

Periodic Boundary Conditions

Periodic boundary conditions (PBCs) offer a powerful approach to simulate periodic
structures, where components of the system exhibit discrete or continuous translational
symmetry. For these systems, implementing PBCs can lead to a significant reduction in
computational cost while still including supercell effects, where the individual object in
the periodic structure effectively interacts with itself, yielding valuable insights into the
behavior of the system.

For a numerical implementation, the choice of boundary conditions depends on the
specific scenario of interest. The relevant case for us is modeling a plane wave impinging
on a periodic structure. Here, periodic boundary conditions are applied in the directions
perpendicular to the propagation direction of the incoming light. This is complemented
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by a perfectly matched layer (PML) approach, as discussed in the previous section, in
the direction of wave propagation to prevent unphysical reflections.

Implementing periodic boundary conditions is relatively straightforward; it only re-
quires identifying all field components in the first and last cells such that

Ei[n] = Ei[0], Hi[n] = Hi[0]. (5.35)

This condition ensures that the fields can propagate freely across the periodic bound-
aries. A notable advantage of PBCs is that they allow for a more compact computational
domain or an extended physical domain, as no PML layers are required along the iden-
tified periodic boundaries.

By using periodic boundary conditions, we can efficiently simulate periodic systems
such as plasmonic supercrystals, allowing the calculation of absorption, transmission,
and reflection spectra for infinitely extended structures. To ensure the versatility of our
numerical implementation, the user can interchangeably use either the implementation
of the full PML or the PBCs, allowing the calculation of scattering and absorption cross-
sections or transmission and reflection spectra, depending on the specific case of interest.

5.3.4. Excitation Mechanisms

In the preceding section, we discussed the propagation of electromagnetic waves within
our designated numerical domain. However, we have yet to address the methods and
types of waves that can be introduced in our simulation. This section will focus on
this aspect. Depending on the desired observable in our numerical implementation,
we can employ various excitation mechanisms. In our code, we have implemented two
fundamental mechanisms: a soft dipole source and the total-field scattered-field (TFSF)
method, which allows for the simulation of a plane wave traveling along one Cartesian
axis with polarization perpendicular to it.
In both cases, we utilize a Gaussian pulse

Epulse(t) = E0 exp

{︃
−(t− t0)

2

σ2

}︃
cos(ωLSPt), (5.36)

as the pulse profile with the pulse amplitude E0, the pulse width σ, the temporal offset
t0 and the center frequency ωLSP of the pulse.

In fully analytical calculations, especially when using the rotating wave approximation
and moving to a rotating frame, the optical frequency and the actual pulse shape are
generally not considered. However, in numerical simulations, including the oscillation
frequency becomes crucial for obtaining the spectral response from a time-domain method
like FDTD.

One of the key advantages of FDTD as a time-domain method is its ability to inher-
ently probe the optical response of the system across a wide spectral range in a single
simulation. This is a result of the pulses being Fourier-limited, which means that a
short pulse in time corresponds to a wide pulse in the frequency domain, as illustrated
in Fig. 5.7. This inherent property makes FDTD advantageous compared to frequency-
based models, where separate calculations are required for each frequency. The shorter
the pulse, the wider the spectral range that can be probed in a single simulation.

To ensure the validity of the obtained results, it is essential to ensure that the pulse
bandwidth covers the entire spectral range of interest. In the subsequent sections, we will
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describe how to implement the point source and the total-field scattered field (TFSF)
approach, which are essential components for simulating electromagnetic interactions in
FDTD simulations.

Figure 5.7.: Fourier Decomposition of an Optical Pulse. An optical pulse can be
represented as a superposition of multiple waves, each having a different frequency. The
combination of these waves generates the typical pulse shape. In this plot, we depict
multiple sine waves (in blue) and their normalized sum (in red), which illustrates how
they collectively form an optical pulse.

Point Dipole Source

Incorporating a point dipole source into the FDTD calculation can be achieved through
a straightforward process. Two types of dipole sources are generally distinguished: soft
and hard dipole sources. For this thesis, we focus on implementing the soft point dipole
source.

In the case of the soft point dipole source, during each iteration when updating the
electric field, the value of the pulse is simply added to the electric field at the source
position

E(rs, t) += Epulse(t). (5.37)

This approach allows us to derive essential quantities such as the one- or two-point
Green’s functions, which are directly related to the local density of states (LDOS) and
the Purcell factor. These derived quantities play a significant role in understanding the
electromagnetic properties of individual systems. More details on these quantities and
their applications will be discussed in Sec. 5.3.5.

Plane Wave Source – Total-Field Scattered-Field (TFSF) Approach

One highly successful approach to model plane waves in FDTD is the total-field scattered-
field (TFSF) approach [131, 429], which we have implemented in our numerical code. In
this framework, the physical domain is subdivided into two regions: the total field and
the scattered field regions, as depicted in Fig. 5.8. The main purpose of this division is
to minimize the load of the incident wave on the perfectly matched layers (PMLs). By
reducing the interaction of the incident wave with the PML, we can effectively reduce
the amount of reflected fields entering the physical domain, thus minimizing potential
errors.

The conceptual idea behind the TFSF approach is to exploit the linearity of the electric
field,

Etotal = Einc +Escat. (5.38)
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where Etotal represents the total electric field, Einc is the incident field, and Escat

denotes the scattered field. This is to be achieved by assuming that in the total field
region the total field is stored in memory and in the scattered field region only the
scattered field is stored. According to Eq. (5.38) this requires additional knowledge
about the incident field Einc. However, since this is only a plane wave, it can be stored
as an auxiliary one-dimensional array called the incident array. The propagation of the
incident wave, as an effectively one-dimensional problem, can be easily modeled using a
one-dimensional FDTD solver. Once this is done, it is only necessary to select a source
position and add the field contribution at that point, which is then propagated in the
three-dimensional FDTD simulation.

In the simulation, we effectively introduce the plane wave at a specific point, or more
accurately, at a two-dimensional surface from which the wave propagates and interacts
with the object under study. As the wave reaches the boundary of the total-field region,
the contribution from the incident wave is removed, allowing only the fraction that is
being scattered off the particle to continue propagating towards the PML. This strategic
approach leads to a significant reduction in the field amplitude at the PML, effectively
minimizing the amount of reflected light. Moreover, this technique allows us to focus
solely on monitoring the light that is scattered by the object, which is typically the
primary interest in many simulations.

Figure 5.8.: 2D Illustration of the Total-Field Scattered-Field (TFSF)
Method. The cut in the y− z direction displays Hx, Ey, and Ez components. At the
boundary, the fields within each region depend on the fields in the other region due to
the Yee algorithm. Ensuring consistency with the TFSF formulation, this dependency
must be carefully considered in the numerical implementation.

The total-field and scattered-field regions are connected through a non-physical bound-
ary, acting as the source for the plane wave. As depicted in Fig. 5.8, every point within
the computational domain is assigned to either the total-field or scattered-field region,
with no point lying directly on the boundary. In the Yee algorithm, each field component
is updated using the values of four adjacent fields surrounding it. While at spatial posi-
tions far away from the boundary, all of these fields will be in the same region. However,
closer to the boundary, some care must be taken to maintain consistency with the clear
separation of the total field and scattered field.
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To illustrate this point, let’s consider an update equation
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Here, we see that the update equation for a point in the scattered field uses points
from both the scattered and total field regions to calculate the spatial derivatives. This
must be corrected to ensure that only alike quantities are used.

To address this, we can make use of Eq. (5.38). Since the scattered field should only
depend on scattered field quantities, we subtract the incident field contribution from the
total field on the inside of the boundary to effectively obtain a scattered field contribution,
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Fortunately, there is no need to change the entire FDTD update loop. We can utilize
the linearity of the fields again, cf. Eq. (5.38), and leave the main FDTD loop unchanged,
making corrections in a subsequent loop,
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. (5.41)

This process is repeated for the upper and lower boundaries, and similar corrections
are performed for the other two coordinates perpendicular to the boundary. Due to
the staggering, there are six faces of constant x, y, or z that have to be considered
and corrected, depending on the direction of propagation for the plane wave or for an
arbitrary TFSF setup. The collected update equations for a plane wave traveling in the
y-direction with Ez and Hx components are given in App. H.

5.3.5. Observables – Post-Processing

To obtain information about the system from an FDTD calculation, monitors are typi-
cally placed at positions of interest to record and Fourier transform the monitored fields,
since it is usually the frequency response that one is interested in. For an efficient FDTD
implementation, one has the of option of two monitor types: discrete Fourier transform
(DFT) monitors, which record all places throughout space but only at one specific fre-
quency, and point monitors, which record a single position but at all frequencies. While
it is theoretically possible to have a monitor throughout space that records all frequen-
cies, such an approach would consume an enormous amount of storage and significantly
increase computational time, rendering it infeasible, as we will discuss further.

In our numerical implementation, we focus on three main observables: the Purcell
factor, the scattering cross section, and the absorption cross-sections. The Purcell factor
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is calculated using a point dipole source, cf. Sec. 5.3.4, and a point monitor. On the other
hand, for the cross-sections, we utilize the TFSF approach, cf. Ref. 5.3.4, in combination
with a set of DFT monitors. Detailed explanations will be provided in the following
sections.

Point Monitors and Green’s Functions

The implementation of a point monitor is fairly straightforward, as it simply involves
recording the fields at certain positions of interest over time. Upon completion of the
FDTD loop, as shown in Fig. 5.12, a Fast Fourier Transform (FFT) is used in the post-
processing phase to identify the dominant frequencies within the system. In combination
with the point sources, these point monitors allow the calculation of the Green’s function
for two points in space:

In general, the two-point Green’s function connects the electric field at position ra
with the polarization at position rb,

Einh
i (ra, ω) = Gij(ra, rb, ω)Pj(rb, ω). (5.42)

This Green’s function can be calculated numerically by recording the electric field at
one position in space that is generated by a point dipole source at a second position.
Choosing the same position, we can naturally obtain the one-point Green’s function.
This allows for an initial benchmark, as the 3D free space one-point Green’s function can
also be given analytically as [440]

Im[Gii(r0, r0, ω)] =
nbω

3

6πc3
, (5.43)

with the refractive index of the background nb. This is an excellent benchmark, in
particular of the PML as for free space without any objects, potential reflects from
the boundary become very prominent in the simulation. In Fig. 5.9(a), we provide the
comparison of the simulation result and the analytical result and find excellent agreement
with the analytical value. The z direction was chosen without loss of generality. Once
we introduce objects to the computational domain, this Green’s function will change
substantially, as we discuss in the following.

Local Density of States (LDOS) and Purcell factor

From the Green’s function, we can derive the Purcell factor (or normalized projected
local density of states [441]) as the imaginary part of the Green’s function renormalized
by the free space Green’s function,

PFi(r;ω) =
Im{Gii(r, r;ω)}
Im{Gvac

ii (r, r;ω)} . (5.44)

While the LDOS is equivalent to the power radiated by a unit dipole, the Purcell factor
gives a measure of the enhanced spontaneous emission at the position under considera-
tion. To numerically calculate the Purcell factor, we compute the one-point Green’s func-
tion near an object of interest. The presence of the object influences the one-point Green
function in the way that the comparison to the vacuum Green’s function, cf. Eq. (5.44),
allows deriving the Purcell factor.
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This illustrates one of the great advantages of FDTD, which intrinsically captures
radiative processes, compared to other methods, e.g., Maxwell-Bloch equations, where
great care has to be taken to introduce radiative correctly and self-consistently [442].

As an example calculation for the Purcell factor calculations, we provide the Purcell
factor in Fig. 5.9(b) for a dipole source close to the surface of a gold nanoparticle of
100 nm radius for varying distances.
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Figure 5.9.: Results for One-Point Green’s Function Calculation. (a) A compar-
ison of the simulated free space Green’s function with the analytical solution exhibits
excellent agreement between simulation and theory. (b) Simulation of the Purcell factor
for varying distances of the source from the surface of a gold nanoparticle with 100 nm
radius. We observe changes in the ratio between the dipole mode and higher-order
modes depending on the distance from the nanoparticle.

In agreement with Ref. [441], we find that there exist multiple peaks that are associated
with the localized plasmon dipole resonance and higher-order plasmon resonances. For
short separations, the higher-order plasmon peaks dominate the spectrum, but they
rapidly decay with the increasing distance so that the dipole mode becomes the dominant
mode as expected for spherical nanoparticles under linearly polarization excitation. This
method can be used to study the optical response of the nanoparticle, in particular when
we want to study the changes induced by the non-perturbative THz pump.

Scattering and Absorption Cross Sections

The second observables of interest are the cross sections, here the scattering and absorp-
tion cross sections, σscat and σabs, from which one can also derive the extinction cross
section σext. For example, the definition of the scattering cross section is

σscat =
Wscat

Iinc
, (5.45)

with the scattered energy flux Wscat and the incident field intensity Iinc. As their
names indicate, the cross sections have units of area because the scattered energy flux
Wscat describes the flow of energy per time and has units of Js−1 and the incident field
intensity describes the energy flux per unit area and has units of Jm−2s−1. The general
formula for the scattered energy flux is

Wscat =

∫︂
A
⟨Sscat⟩ · dA, (5.46)
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5.3. Finite-Difference Time-Domain Solver

where the surface element dA is chosen to point outwards. Here we define the time-
averaged Poynting vectors, since we are interested in the time-averaged energy flux,

⟨S⟩ = 1

T

∫︂ T

0
S(t) =

1

2
Re[Em ×H∗

m], (5.47)

where the m index in the fields indicates the fields in the frequency domain. The field
intensity is calculated similarly as the absolute value of the Fourier transformed Poynting
vector of the incident field at that frequency. This can be given as

Iinc = ⟨Sinc⟩ . (5.48)

To determine the placement of the monitors in the physical domain of our simulation,
we use the total field-scattered field (TFSF) approach, as discussed in Sec. 5.3.4 and
visualized in Fig. 5.10. Within this subdivided space, the absorption monitor is placed in
the total field region, while the scattering monitor is placed in the scattered field region.

Figure 5.10.: Computational Domain and Field Monitors for the FDTD Sim-
ulation. The entire computational domain can be subdivided into the physical domain
and the Perfectly Matched Layer (PML) boundary that surrounds the physical domain.
The physical domain contains the object of interest, in this case a gold nanoparticle,
and is divided into the total field domain (red) and the scattered field domain (white).
For analysis, a scattered field monitor (solid black line) is placed within the scattered
field region, while an absorption monitor (dashed black line) is placed within the total
field region.

Our implementation uses six 2D monitors for each cross section monitor, two monitors
per spatial direction. These monitors record the component of the Poynting vector
perpendicular to them. Consequently, we can measure the energy flow through these
monitors, which allows us to quantify the amount of energy absorbed or scattered by the
nanoparticle.

In Fig. 5.11 we display the simulated scattering and absorption cross sections for par-
ticles with a radius of 50 nm excited by a plane wave. To benchmark our simulation, we
compare the results of our custom FDTD code with those of the miepython implemen-
tation [443].
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Figure 5.11.: Benchmark of Scattering Cross Section Using FDTD Calcula-
tion. The figure presents a benchmark comparison of the scattering cross section
calculated from the FDTD method. The FDTD code is benchmarked against the
MiePython scattering code for both the Johnson and Christy data and the same Drude
model implemented in the code.

The agreement shown in Fig. 5.11 between our FDTD simulation and the miepython
implementation is promising. The slight oscillations in the absorption cross section can
be attributed to time integration constraints, but overall the agreement is striking given
the complexity of our custom written FDTD code.

As we further develop and refine the microscopic code, these cross section calculations
will provide a good benchmark to quantitatively compare the microscopic and macro-
scopic material models. This comparison will help us to analyze the validity and accuracy
of our microscopic description, which will be introduced in Sec. 5.4.

Discrete Fourier Transformation (DFT)

In our simulations, the implementation of 2D monitors requires careful consideration, as
an approach analogous to point monitors would lead to massive memory requirements
and a significant increase in computational time, as continuous storage of field values
would be required. To overcome this, we use a discrete Fourier transform, sometimes
referred to as a running Fourier transform, which is integrated into the time loop as
follows

Ẽ(r; , ωj) =
∑︂
k

∆teiωjtkẼ(r, tk). (5.49)

To implement this technique, a predetermined set of frequencies is selected, and for
each frequency, the above equation is used to update the monitor at each spatial position
and frequency. The advantage of this approach is that once the time loop is complete,
the monitors are already evaluated. However, it is important to note that depending
on the number of frequencies of interest, the computation time is significantly affected.
This effect is already noticeable for two-dimensional monitors and becomes even more
pronounced for three-dimensional DFT monitors. Careful consideration of the number of
frequencies is essential to find a balance between computational efficiency and obtaining
accurate results.
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In combination with the periodic boundary conditions presented in Sec. 5.3.4, we have
also implemented transmission and reflection monitors for plane wave excitation. This is
realized using two 2D DFT monitors, one being placed in front of the object and another
behind the object in the scattered field region.

5.3.6. Work Flow

Calculate polarization
 auxiliary differential equation

Update E field 
using
- updated D fields
- updated polarization
- optical pulse
- background permittivity

FDTD loop

Object creation 
 - define object
 - set boundary cond.
 - introduce inc. field
 - place monitors

Post-processing

Update Monitors

Update D fields
from H fields

Update H fields
from E fields

Figure 5.12.: Standard FDTD Itera-
tion.

To summarize our numerical FDTD implemen-
tation, we have successfully introduced all the
necessary components for a comprehensive three-
dimensional solution of Maxwell’s equations. We
have optimized the code for speed, utilized just-
in-time compilation (jit) techniques, and are plan-
ning to incorporate full parallelization to further
enhance computational efficiency.

The typical workflow for setting up a simula-
tion involves defining the object of interest, which
in our case is usually a sphere, but we have also
considered effectively two-dimensional materials.
Once the object is defined, appropriate bound-
ary conditions are introduced, often employing full
perfectly matched layers or periodic boundary con-
ditions. Additionally, we have implemented op-
tions to include a field source, such as a point
source or a plane wave, using the TFSF approach.
The final step is to position monitors strategically
to capture the fields of interest.

Once these initial steps are completed, the stan-
dard FDTD iteration begins. The simulation can
start at any point in this loop, as it is crucial to
ensure the approach’s validity by slowly introduc-
ing interactions from an equilibrium situation. We
chose to initiate the calculation of the polarization
using an auxiliary differential equation. After up-
dating the equations for the D field, we update the
electric field, which, in turn, is used to update the H fields. Following each iteration, the
individual monitors are updated, whether they are point monitors or DFT monitors.

Upon completion of the iteration, the obtained data is post-processed to extract rele-
vant information, such as the Purcell factor from the recorded fields via Fourier transform
or the cross sections from the evaluation of electric fields detected at the DFT monitors.

5.4. Coupled Kinetic Maxwell-Boltzmann Engine

As we have described in Sec. 5.2 and illustrated in Fig. 5.3, we aim to derive a self-
consistent scheme to numerically solve the microscopic electron dynamics and the macro-
scopic Maxwell equations, which we treat using a self-written finite-difference time-
domain implementation that we will introduce in Sec. 5.3.1 to model the optical response
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of the plasmonic nanoparticle in the described THz pump-optical probe setup. For the
microscopic dynamics we start with a reduced version of the Boltzmann scattering equa-
tion for the electron and phonon Wigner functions, cf. Eqs. (4.31) and (4.33),

∂tfk(r, t) =− vk · ∇rfk(r, t)

+∇kfk(r, t) ·
[︂ e
ℏ
(︁
Eopt(r, t) +ETHz(r, t)

)︁]︂
+
∑︂
q

[︁
Γin
k+q,k(r, t)(1− fk(r, t))− Γout

k,k+q(r, t)fk(r, t)
]︁
, (5.50a)

∂tnq(r, t) =− vq
ph · ∇r nq(r, t)

+ Γem
q (r, t) (1 + nq(r, t))− Γabs

q (r, t)nq(r, t) , (5.50b)

in a single-band Wigner function approach that includes the intraband light-matter in-
teraction and electron-phonon scattering. The scattering matrices are given in Eqs. (4.30)
and (4.34). Here, the exciting electric field has been subdivided into one contribution
from the optical field and one from the THz field. These equations have in our group
successfully be implemented for 2D semiconductors and allowed for a derivation of the
exciton linewidth [21, 176] or to study the competition between bosonic and fermionic
behavior [178].

For the scope of this project, we have begun implementing Eqs. (5.50) to study
nanospheres in three dimensions. Preliminary results from this implementation are shown
in Fig. 5.13.

In this initial approach, we focus on solving the three-dimensional electronic dynamics
described by Eq. (5.50a) while treating the phonon system as a bath. The electron-
phonon interaction is implemented in analogy to Ref. [339], while the electron-light in-
teraction is implemented using a finite element method. This means that we model the
phonon contribution using a Bose-Einstein distribution at constant temperature. This
model can be regarded as exact for low excitation powers that results in only minor
changes in the lattice temperature and thus minor change in the Bose-Einstein distribu-
tion. In order to allow for an accurate treatment of the dynamics of the electron-phonon
system for higher excitation powers, the current treatment will be extended to also feature
the phonon dynamics according to Eqs. (4.33).

As shown in Fig. 5.13, we find in agreement with Ref. [375] that upon excitation, the
electron contribution is brought out of equilibrium and returns to it on a picosecond
timescale. For the electron-phonon interaction, we have adapted the parameters from
Ref. [229]. For all scenarios already implemented, the electron distribution remains close
to a thermal Fermi distribution.

As in initial benchmark, we have performed comparisons to the two-temperature
model, cf. Sec. 2.3.3 and the standard parameters for the Drude model, cf. Sec. 2.3.1.
Here, we currently find that the electron-phonon interaction is overestimated compared
to the Drude parameters at room temperature, by about half an order of magnitude, but
qualitatively reproduces the known results. The implementation of these equations was
done by Jonas Grumm as part of his master thesis, more details can be found in Ref. [411].
The current version of the numerical implementation of the microscopic equations can
be found at Ref. [444].

The results of the dynamical microscopic equations are transferred to the macroscopic
level by the momentum expansion in Eq. (4.35). These quantities replace the auxiliary

116



5.5. Analytical Non-Perturbative Approach

Figure 5.13.: Time Evolution of the Electron Distribution after Optical Exci-
tation. Time evolution of the electron distribution after excitation with a 200 fs pulse
with 5µJ cm−2.

differential equation in a three-dimensional finite-difference time-domain (3DFDTD) im-
plementation, as described in Sec. 5.3.2. This leads to feedback between the electrons and
the macroscopic fields, requiring an iterative solution of macroscopic Maxwell’s equations
and the microscopic Boltzmann transport equation, as shown in Fig. 5.3.

This combined approach effectively integrates a full solution of Maxwell’s equations
with a microscopic momentum-resolved study of electronic dynamics, including material
dispersion and hydrodynamic effects. The solver operates in a six-dimensional space for
material and field properties, making it an extension of the four-dimensional approach in
Ref. [375], which assumed an isotropic momentum distribution in the electronic system
(random-k approximation). Our goal is to improve this by considering the full anisotropic
Wigner function representation.

Due to the complexity of this joint project, which involves a six-dimensional imple-
mentation based on the Wigner function phase space, it is still ongoing and does not
yet provide quantitative results. The project is continuously being developed, and an
updated version is available on git at Ref. [430].

5.5. Analytical Non-Perturbative Approach

In order to gain a more physical understanding of the processes involved in the THz
pump – optical probe scenario, we develop in this section an analytical approach to
study the situation that we have described fully numerically using the coupled kinetic
Maxwell-Boltzmann engine in previous sections. Therefore, we will start again with
the framework of spatio-temporal Boltzmann scattering equations that we developed in
Ch. 4. Here we distinguish the THz field and the optical field and perform a momentum
expansion similar to the purely hydrodynamic case in Sec. 2.3.4. The THz field is treated
non-perturbatively so that it affects the electronic ground state, while the optical field
is treated perturbatively as usual. This leads to updated effective equations for the
permittivity in Sec. 5.5.1. Then the geometry of the system is introduced via boundary
conditions similar to the standard quasi-static Mie solution in a sphere, cf. [201, 270],
adapted to the hydrodynamical case, similar to Ref. [264], with the inclusion of the
additional THz field in Sec. 5.3.3. This leads to a modified expression for the polarizability
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of a metal nanoparticle in the dipole approximation, which we evaluate for experimentally
feasible THz field strengths.

5.5.1. Hydrodynamic Equations

We start out with the microscopic equations we also derived in Sec. 4 for the microscopic
Wigner function. We include the THz field as an additional field that contributes on
the intraband level in the microscopic equations, accordingly, the microscopic Wigner
functions reads

∂tfk(r, t) + vk · ∇rfk(r, t) = (5.51)
e

ℏ

[︂
Eopt(r, t) +ETHz(r, t)

]︂
· ∇kfk(r, t) + ∂tfk(r, t)

⃓⃓⃓⃓
scat

.

From this, we use the same momentum expansion technique from Eqs. (4.35) in order
to obtain mesoscopic equations in terms of the electron density ρ(r, t) and the current
density j(r, t). From this, we factorize the current density j = ρv to obtain equations in
terms of the electron density and the mean electron velocity v(r, t). We find the same
continuity equation as in Eq. (4.45a) and a modified Euler equation, cf. Eq. (4.45b), that
reads

ρ(r, t)(∂t + v(r, t) · ∇)v(r, t) =− κ

me2/3
∇ρ5/3(r, t)− γρ(r, t)v(r, t)

− e

m
ρ(r, t)

[︁
Eopt(r, t) +ETHz(r, t)

]︁
, (5.52)

where we remind the reader of the definition κ = ℏ2
5m(3π2)2/3. From here, we proceed

in analogy to the expansion in orders of the electric field that we performed in Sec. 4.5.
At this stage, it is crucial to treat the additional THz field appropriately to the situation
under consideration: In our assumption, we assume a strong but temporally slow THz
field that can no longer be seen as a perturbation to the ground state but actually
effectively renormalizes the ground state of the system. Keeping this in mind, we assume
that the THz field is zeroth order in the perturbation and the optical field first order,
which we will express via

ETHz(r, t) = ETHz
0 , Eopt(r, t) = ϵEopt

1 (r, t). (5.53)

Here, ϵ describes is used as the expansion coefficient to expand in the individual orders.
Accordingly, we find for the electron density and the electron velocity:

ρ(r, t) = ρ0(t) + ϵρ1(r, t) + ϵ2ρ2(r, t) +O(ϵ3), (5.54a)

v(r, t) = v0(t) + ϵv1(r, t) + ϵ2v2(r, t) +O(ϵ3), (5.54b)

which implicitly means for the density contribution resulting from the pressure contri-
bution

ρ5/3(r, t) = ρ
5/3
0 (t) + ϵ

5

3
ρ
2/3
0 ρ1(r, t) + ϵ2

5

9
ρ
−1/3
0 ρ21(r, t) + ϵ2

5

3
ρ
2/3
0 ρ2(r, t) +O(ϵ3). (5.55)

Here, we made use of the fact that the THz wave length is on the order of micrometers
and effectively neglect its spatial dependence. In classical quasi-static Mie theory, the
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optical field is also assumed to be spatially constant within the material. However, to
describe nonlocal hydrodynamic response of the electronic system in the optical regime,
we allow for a spatial dependence in the optical field. As pointed out previously, the
ground states ρ0 and v0 are renormalized by the THz field and can no longer be assumed
to be in equilibrium. In the following, we will assume that the two are spatially homo-
geneous, implying that the response with respect to the THz field is modeled using a
Drude model rather than a full hydrodynamic model. Here, we make the assumption
that the local response of the metal nanoparticle in response to the THz field is neglected
due to its high field strength. This assumption is partly motivated by the fact that we
are interested in the plasmonic response in the optical domain, which is clearly separate
from the THz domain. Besides, it simplifies our analytical treatment substantially, as
it avoids an additional self-consistency problem. Therefore, this assumption should be
considered as a first approach to simplify the problem, and its validity requires further
investigation in future studies. With this, we obtain a differential equation for the zeroth
order electron velocity,

ρ0∂tv0 = − e

m
ETHz − γTHzv0ρ0, (5.56)

that results, as previously stated, in a Drude model for the zeroth order polarization
in response to the THz excitation,

P0 =
ρ0v0

iω
= −

ε0ω
2
p

ω2 + iωγTHz
ETHz. (5.57)

Here, it is apparent that the zeroth order electron velocity will be with the frequency of
the THz field so that we will later replace ω → ωTHz. The damping term we find in this
equation will be obtained from fits to experimental data in the THz regime, cf. Ref. [445].
Introducing the obtained equation for the zeroth order velocity into the first-order Euler
equation, yields

ρ0∂tv1 + ρ0(v0 · ∇)v1ρ1∂tv0 = −β2∇ρ1 −
e

m

[︁
ETHzρ1 +Eoptρ0

]︁
− γ[ρ0v1 − ρ1v0],

(5.58)

where we again define β2 ≡ 5κρ
2/3
0

3me2/3
and obtain additional terms in the first-order Euler

equation, compared to Sec. 4.5.2, namely a direct THz field contribution and one that
couples through the first-order electron velocity. From the continuity equation that now
also includes a zeroth order electron velocity, we can again identify the first-order electron
velocity to be linked to the first order polarization via

v1 =
1

ρ0
(∂tP1 + v0(∇ ·P1)). (5.59)

Including these additional correction terms, we find that we first order polarization P1

can be linked to the electric field via

β̃
2

ω2 + iγω

[︁
∇(∇ ·P) + ν(ω)ETHz∇ ·P

]︁
+P = −

ε0ω
2
p

ω2 + iγω
Eopt. (5.60)

Compared to the purely hydrodynamic case in Eq. (4.47), we obtain additional terms
resulting from the inclusion of the THz field: the electron velocity is renormalized β →
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β̃, and we find an additional correction term that scales with the divergence of the
polarization. Here, we defined

β̃
2 ≡ β2 − |v0|2, ν(ω) ≡ e

mβ̃
2

(︃
1 + 2

ω

ωTHz + iγTHz

)︃
. (5.61)

Thus, the THz field acts on gradients in the electron density and must be treated
similarly to the internal pressure of the electron gas. Here, ω is the optical frequency.
The effect of the additional THz field is the renormalization of the electron velocity β̃
and the introduction of the term that scales linearly with the wave number Q. The
corresponding modes for Q have to be determined once a geometry is included, which we
will do in the next section, where we consider a nonlocal Mie theory. In agreement with
Sec. 4.5.2, the relation between P and Eopt for parallel polarization can be expressed in
terms of the permittivity

εLTHz(ω) = ε∞ −
ω2
p

ω + iωγ − β2̃Q2 + iβ̃ν(ω)ETHz ·Q
, (5.62a)

εTTHz(ω) = ε∞ −
ω2
p

ω2 + iγω
. (5.62b)

Consistent with the existing literature, our findings indicate that both the hydrody-
namic contributions and the THz modulation only affect the longitudinal component,
leaving the transverse component unchanged. This observation aligns with the results
obtained in the purely hydrodynamic case [147, 253] and leads to the hypothesis that the
THz field can be regarded as an effective renormalization of the electron pressure.

5.5.2. THz Field in Nonlocal Mie Theory

Having defined the effective permittivity for the THz-pumped case, we proceed and derive
the effective polarizability of small metal nanoparticle, similar to the derivation for the
standard approach in local response approximation, cf. Ref. [270], and nonlocal theory,
cf. Ref. [264]. This is done by solving an effective nonlocal Mie theory, that is extended
to include the previously derived THz contributions. We start out with the equations for
the optical electric field Eopt and the THz field ETHz,

∇ ·Eopt =
ρ

ε0ε∞
, ∇×Eopt = 0, (5.63a)

∇ ·ETHz = 0, ∇×ETHz = 0. (5.63b)

As already mentioned in Sec. 5.5.1, the effects of the THz field will be introduced as
a modification of the electronic ground state using a classical Drude theory. In doing
so, we effectively disregard the self-interaction of the THz field with itself and include
these effects on a different level. This allows us to neglect source terms in Eq. 5.63b to
avoid self-consistency issues. We justify this approximation based on two main reasons.
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Firstly, our primary focus lies in studying the far- and near-field behavior of the optical
field. Secondly, we can assume that the THz field is much stronger than any material
contributions induced by the THz field in the optical region. For an exact solution,
one would have to set ∆ϕTHz(ETHz) = − ρ(ETHz)

/︁
ε0ε∞ and solve an additional self-

consistency problem. For a solution including the geometry, these governing equations
for the electric field will be combined with the material equations, Eqs. (5.60) and (5.62).

Scalar Potentials

At this stage, in order to express the field quantities in terms of their gradients, one
usually introduces scalar potentials in the hydrodynamic approach. We will proceed
analogously after introducing an additional assumption necessary for our case: From
Eq. (5.60) one can express the polarization in terms of a scalar potential if all fields are
aligned ETHz ∥ Eopt ∥ P. Otherwise, there would be vortices in the polarization field
and the necessary introduction of a vector potential would increase the complexity of
the problem. Since a parallel alignment of the fields is experimentally possible, and we
intuitively expect the considered effect to be largest when the fields are aligned in parallel,
we will proceed with this assumption throughout this study, leaving a generalization to
later studies. Accordingly, we introduce the optical scalar potential ϕopt, the THz scalar
potential ϕTHz, and the polarization scalar potential ψ, defined in accordance with the
standard hydrodynamic approach as

Eopt = −∇ϕopt, ETHz = −∇ϕTHz, P = −∇ψ. (5.64)

By inserting these into our field equations, Eq. (5.63), and the material equations,
Eq. (5.60), it can similarly to Ref. [264] be shown that the governing equations read[︁

∆− ν(ω)ETHz · ∇+ k2(ω)
]︁
ρ(r; ω) = 0, (5.65a)

∆ϕopt = − ρ

ε0ε∞
, (5.65b)

∆ϕTHz = 0, (5.65c)

∇ψ = − 1

ω2 + iγω

(︂
β2∇ρ+ ε0ω

2
p∇ϕopt − e

m
ETHzρ

)︂
. (5.65d)

We refer to the first of these equations, Eq. (5.65a), as the dispersive Helmholtz equa-
tion with the dispersion prefactor ν(ω) introduced in Eq. (5.61), and the nonlocal, THz-
pumped longitudinal wave vector k2(ω) =

(︁
ω2 + iγω − ω2

p

/︁
ε∞
)︁/︂
β̃
2
. The THz field in-

troduces an additional first derivative in the standard Helmholtz equation for the charge
density, cf. Ref. [264], and effectively breaks the spherical symmetry of the system. Ac-
cordingly, solutions are more complicated to obtain compared to the standard Helmholtz
equation, since functions solving the dispersive Helmholtz equation are no longer eigen-
functions of the Helmholtz operator (∆ + k2). Formally, they carry both the spherical
symmetry of the MNP and the axial symmetry of the THz field. For vanishing THz field,
Eq. (5.65a) approaches the standard Helmholtz equation without the dispersive term. In
addition to the dispersive Helmholtz equation, we find Poisson’s equation for the optical
scalar potential in full agreement with Ref. [264] and Laplace’s equation for the THz
scalar potential, mainly resulting from the assumption of vanishing back-action of the
charge densities on the THz field. In contrast to the common hydrodynamic model, the
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5. Active Control of Plasmon Resonance

scalar potential of the polarization field, ψ, cannot be calculated directly from the scalar
potential of the optical field and the density, instead it has to be calculated as a solu-
tion of Eq. (5.65d). In the following, we will provide the details of our approach to the
solution of Eqs. (5.65).

Solution of Differential Equations

We start a discussion of the dispersive Helmholtz equation, as the additional first-order
derivative hinders us from using the standard spherical symmetric solutions. On a qual-
itative level, the additional THz field superimposes an additional axial symmetry in the
direction of if field amplitude so that solutions are assumed to interpolate between spher-
ical harmonics and Bessel functions. Without loss of generality, we will orient the THz
field, and thus also the optical field, in the z direction, Eopt,THz = Eopt,THz

0 ez.
Due to the described symmetry induced by the external field, we solved the dispersive

Helmholtz equation using a product ansatz in cylindrical coordinates, which were mapped
back to spherical coordinates to allow incorporating the boundary conditions, defined on
a sphere. Details on the calculation can be found in Ref. [411]. Using this approach, we
obtain a solution of the dispersive Helmholtz equation that reads

ρin(r, θ, φ) = eνE
THzr cos(θ)

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

Aℓjℓ(kr)Y
m
ℓ (θ, φ), ρout = 0. (5.66)

This solution combines the spherical symmetry of the spherical harmonics Y m
ℓ and the

spherical Bessel functions jℓ(kr) with an additional distortion in the field direction in
terms of the exponential prefactor. Hence, it covers all the aspects and in the limit of
vanishing THz field reproduces the prescription given in Ref. [264]. We observe that the
additional prefactor affects the motion depending on r and θ, while leaving the azimuthal
motion, depending on φ unaltered. Here, we dropped the frequency dependencies of k
and ν for brevity. As we will impose hard-wall boundary conditions, the densities outside
the material vanish naturally.

For Laplace’s equation in spherical coordinates, we make a standard ansatz using
spherical harmonics,

ϕTHz =

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

bℓr
ℓ Y m

ℓ (θ, φ). (5.67)

Here, we already introduced the assumption of a finite potential within the sphere so
that spatial dependencies with negative exponential vanish. The same ansatz can be
made for the homogeneous solution of the optical scalar potential equation. In addition
to the homogenous solution, we need to introduce a particular solution which can be
done via

ϕopt =
∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

[︄
Bℓr

ℓ +
Aℓjℓ(kr)e

ν(ω)ETHzr cos(θ)

ε0ε∞
(︁
k2 − ν(ω)2E2

THz
)︁ ]︄Y m

ℓ (θ, φ). (5.68)

A similar set of equations has been derived in Ref. [264] for the nonlocal case. These
equations may now be used to derive an equation for the polarization scalar potential.
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5.5. Analytical Non-Perturbative Approach

Solution of Scalar Potentials Equation with Boundary Conditions

Now it is time to introduce the spherical boundary conditions that are usually assumed to
derive the polarizability of a sphere. For particles that are small compared to the wave
length, this is usually via the quasi-static approximation, which allows employing the
solution of a sphere in a static electric field [201, 270, 279]. Since no coupling to charge
carrier densities occurs, the solution of the Laplace equation for the THz field is identical
to the solution determined in classical local Mie theory. For the optical potential we
proceed as done for the hydrodynamic model because Eq. (5.68) shares formal similarity
with Eq. (8b) in Ref. [264]. We begin with the usual boundary condition that the fields
at infinity are the applied fields only

lim
r→∞

ϕTHz = −ETHzr cos(θ), lim
r→∞

ϕopt = −Eoptr cos(θ). (5.69)

In addition, we use the standard boundary conditions at interfaces that result from
Maxwell’s equations and require a continuous E field parallel to the surface and contin-
uous D field perpendicular to the boundary. In terms of the potentials, this is written
as

ε∞∂rϕ
opt,THz
in |r=a = εout∂rϕ

opt,THz
out |r=a, (5.70a)

∂θϕ
opt,THz
in |r=a = ∂θϕ

opt,THz
out |r=a. (5.70b)

Due to the hydrodynamic character of the theory, which allows for longitudinal waves,
we need to introduce an additional boundary condition, complementing the Maxwell
boundary conditions. These can be derived unambiguously when explicitly neglecting
electron spill-out in comparison with, e.g., Sec. 2.3.5. From this, one can find from the
hydrodynamic equations, namely the continuity of the normal component of the electron
current density j and thus in our formulation also of the polarization P that we formulate
for our potential as [264, 446]

∂rψin|r=a = 0. (5.71)

Having defined the boundary condition, we proceed to find expressions for the expan-
sion coefficients, which in the standard approach [51, 264] allow introducing the polariz-
ability of the sphere. In the derivation, some extra care is required in comparison with
the standard spherical case, where the dipole order can be directly deduced from the
order of the spherical harmonics. In comparison, due to the distortion resulting from the
applied THz field, an expansion in cosine contributions becomes necessary to identify
the dipole order. In doing so, we are able to recover an expression, similar to the one in
nonlocal Mie theory, cf. Ref. [264] that can be given as

αTHz(ω,ETHz) = 4πε0εouta
3 ε∞ − εout(1 + ∆(ω,ETHz))

ε∞ + 2εout(1 + ∆(ω,ETHz))
. (5.72)

The only difference at this stage is that the additional THz field does not allow us
to reproduce the version in terms of a rescaled background permittivity. However, for
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5. Active Control of Plasmon Resonance

vanishing THz field, we are able to recover the usual Clausius-Mosotti factor in the
polarizability. For our case, the Delta factor with its full dependencies can be given as

∆(ω,ETHz) =
ω2
p

ε0β̃
2

1− j1(ka)
kaj′1(ka)

k2 − ν2(ω)E2
THz

. (5.73)

Here, the prime denotes the derivative with respect to the full argument. Furthermore,
the reader may be reminded of the definitions of

β̃
2
= β2 +

e2

m2

E2
THz

ω2
THz − γ2THz + iγTHzωTHz

, (5.74a)

ν(ω) =
e

mβ̃

[︃
1 +

2ω

ωTHz + iγTHz

]︃
, (5.74b)

k2(ω) =
ω2 + iωγ − ω2

p/ε∞

β̃
2 , (5.74c)

that we collect and restate at this stage to show the complexity of the dependencies,
making it hard to analytically study the impact of an increased THz field. Therefore,
in the following, we study the effect of a changing THz field on the plasmon resonance
which we provide in Fig. 5.14.
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Figure 5.14.: Polarizability of the Metal Nanoparticle under the Action of
the Non-Perturbative THz Field. This figure illustrates the impact of the non-
perturbative THz field on the polarizability of a metal nanoparticle with 10 nm radius.
For illustration purposes, we show discrete values of the THz peak field strength in
panel (a) and continuous values in panel (b), as governed by Eq. (5.72).

Evaluating Eq. (5.72), we find that the additional THz pulse affects the resonance
position of the gold nanoparticle and observe that it causes a blue shift of the resonance
position. In addition, we observe a significant quenching of the resonance with increasing
pulse strength. The spectra also show a slight dependence on the particle radius due to
the behavior of the Bessel functions, similar to findings in Refs. [147, 264]. However, we
won’t discuss this aspect in detail here, and instead refer interested readers to Ref.[411]
for further information.
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As can be seen from Eq. (5.74), the ratio of ωTHz and γTHz has a significant influence
on the changes observed in β̃,. Here, we focus on the physically meaningful case where
ωTHz > γTHz. According to Eqs. (5.74), this condition results in an increase in β̃, leading
to an enhanced blue shift compared to the pure hydrodynamic case.

Our findings are in good agreement with experimental data recorded by the group of
Holger Lange, as presented in Sec. 5.1. To achieve shifts of a similar magnitude to those
observed in the experiment, we predict that THz peak field strengths of approximately
0.75MV/cm are required. As updated experimental data become available, we intend to
validate our theory by comparing our calculations with them, with a special focus on the
temperature dependence of the resonance shift, which according to Eq. (5.72) should be
significantly influenced by γTHz.

To investigate the effect of the additional THz field, similar to the changes in radius, we
make a plot similar to Fig.2.10 for the extinction cross section calculated using Eq.(2.62).
As expected from the absorption results, we observe a blue shift in the resonance posi-
tion and the same signatures from the spherical Bessel functions as shown in Fig. 2.10.
Interestingly, the blue shift remains unaffected as the particle radius increases, and these
signatures gradually diminish.

To comprehend the physical mechanisms responsible for the observed blue shift, we
revisit Eqs. (5.72) and (5.74). The two effects present are the effective renormalization of
the effective electron velocity, β̃ and the additional static polarization of the nanoparticle.
The renormalization can be interpreted as an effective increase in the internal pressure of
the electron gas induced by the THz field. Consequently, the strong THz field enhances
the hydrodynamic character by increasing the internal pressure. The second contribution
to the shift is the additional polarization, which disturbs the equilibrium of the electronic
configuration. Since the shift is largely independent of size, and one would expect the
pressure renormalization to show some size dependence, this effect is likely to be more
dominant, at least for larger particles.

However, it is crucial to acknowledge that the approach presented in this study con-
stitutes a preliminary, first-order approximation for the effects induced by external THz
fields. While our findings align well with experimental observations, it is important to
recognize that further refinements are essential. For instance, the inclusion of additional
factors, such as the spatial dependence of the ground state electron density, and the
performance of comprehensive studies that directly compare our theoretical predictions
with experimental results are necessary.

5.6. Conclusions

In conclusion, this chapter has explored the potential of actively tuning the optical re-
sponse of metal nanoparticles using a strong THz field, based on the theoretical frame-
work developed in Ch. 4. The motivation for this study originated from experimental
results suggesting significant resonance shifts using this method.

We have developed two distinct approaches to theoretically address this scenario. The
first approach employs a fully numerical method that combines microscopic Boltzmann
scattering equations for the electronic Wigner function, as described in detail in Ch. 4,
with a three-dimensional finite-difference time-domain solver. Upon completion of the
implementation, this combination will allow to couple multidimensional, momentum-
resolved electron scattering processes with macroscopic solutions of Maxwell’s equations.
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5. Active Control of Plasmon Resonance

Figure 5.15.: Impact of Non-Perturbative THz Field on Extinction Cross Sec-
tion. The figure demonstrates the effect of a non-perturbative THz field on the reso-
nance of a nanoparticle with a radius of 5 nm. We observe a qualitatively similar result
to the standard hydrodynamic model, cf. Fig. 2.10, with a blue shifting main resonance
and additional resonances at higher energies. The extinction cross section is unitless,
cf. Ref. 2.62.

As a result, our approach will enable a spatio-temporal treatment of microscopic dynam-
ics, encompassing non-equilibrium, non-perturbative, and nonlocal phenomena. It will be
applicable to arbitrary geometries and incorporate both intra- and interband transitions.
This multiphysics approach builds upon existing work [375] but will additionally facilitate
the inclusion of interband transitions and provide deeper insights into the microscopic
dynamics of the nanoparticle.

Additionally, we have developed an analytical approach to study the influence of an
additional non-perturbative THz field on the plasmon resonance of a spherical nanoparti-
cle. This analytical method allows for a thorough understanding of the physical processes
governing the factors contributing to the plasmon resonance shift. Our results reveal that
the additional THz pulse effectively renormalizes the electronic ground state of the sys-
tem by pressure renormalization of the electron gas inside the nanoparticle and, on the
optical timescale, polarizes the nanoparticle quasi-statically. The combined effect of the
two leads to a blue shift of the plasmon resonance. Importantly, these theoretical results
show good agreement with preliminary experimental findings, suggesting that the THz
pump optical-probe technique holds promise for actively tuning the plasmon resonance
on picosecond timescales.

The combination of our numerical and analytical approaches establishes a robust foun-
dation for further exploration of active tuning in plasmonic structures.

5.7. Perspectives

Once the numerical framework is sufficiently advanced, it will enable a comprehensive
spatio-temporal treatment of microscopic, non-equilibrium, non-perturbative and nonlo-
cal dynamics for arbitrary geometries, including intra- and interband transitions. This

126



5.7. Perspectives

will pave the way for a wide-ranging study of plasmonic devices, especially when com-
bined with a DFT-based band structure to accurately describe interband transitions,
as we have envisioned in Ch. 4. Such capabilities will allow the simultaneous study of
microscopic dynamics and electric field evolution, facilitating the exploration of non-
perturbative scenarios, as demonstrated in this chapter using strong THz fields. This
may lead to new insights into light-induced active plasmonic effects.

Another intriguing possibility is to explore active plasmonics through different pump-
probe scenarios in the optical regime, corresponding to the third tuning option shown in
Fig. 5.1. This can be achieved by performing all-optical pump-probe experiments using
the two-band framework developed in Ch. 4. By pumping the interband transitions
of gold, the conduction band electron density can be tuned on the timescale of the
interband lifetime, which is on the order of several picoseconds. An increased electron
density would directly affect the resonance position of the nanoparticles, as seen from
the definition of the plasma frequency, ωp =

√︂
ne2

mε0
, possibly leading to a blue shift of

the plasmon resonance. Such experiments would provide a theoretically straightforward
approach to actively tune the localized surface plasmon resonance of metal nanoparticles.
However, it remains an open question whether the required field strengths are achievable
and whether other processes, such as induced changes in the background permittivity
ε∞, could compensate for the expected effect.

Furthermore, the analytical framework essentially predicts an additional polarization
that manifests primarily at the surface of the nanoparticle. To characterize this additional
polarization induced by the THz field, it may be beneficial to employ the surface response
formalism described in Sec. 2.3.5. The projected dipole method [155] could then be used
to study changes in the optical response of the nanoparticle induced by this additional
polarization.
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6. Radial Oscillations of Metal
Nanoparticles

In the late 19th century, one focus of theoretical physics was the study of vibrations
in elastic spheres, with Sir Horace Lamb providing the initial fundamental solutions
that revealed the existence of tangential modes alongside simple breathing modes [447].
Over a century later, the observation of breathing modes in metal nanoparticles (MNPs)
following optical excitation of localized surface plasmons confirmed Lamb’s calculations
[71, 448–452]. These experiments demonstrated a precise match between the measured
oscillation frequency and the theoretically predicted frequency [451].

However, despite these advances, the exact driving source responsible for these size
oscillations has remained elusive due to experimental challenges in accessing their early
onset, similar to the detection of coherent optical phonon modes in semiconductors where
a distinction between impulsive stimulated Raman scattering (ISRS) and displacive ex-
citation of coherent phonons (DECP) is non-trivial [453].

Traditionally, it has been assumed that the optically heated electron gas transfers
its energy to the phonons in the nanoparticle, resulting in rapid expansion and serv-
ing as the dominant driving source for the size oscillations [448, 454, 455] following
the plasmon decay. Currently, there is some discussion surrounding the details of this
plasmon decay [71, 454–457]. It is now widely accepted that highly energetic “hot” elec-
trons are generated, which are of significant interest for various applications, particularly
in plasmon-enabled synthesis. These non-equilibrium carriers undergo thermalization
through electron-electron scattering and subsequently couple to lattice phonons. The
excess energy is eventually dissipated by the excited lattice into the surrounding envi-
ronment [71, 454–457].

Recent advancements in experimental techniques, in particular femtosecond X-ray
sources, have provided an opportunity for more precise investigation of the temporal
onset of nanoparticle oscillations unaffected from electron temperature effects, down to
femtosecond timescales [458–463]. These experiments have revealed that the radial os-
cillations begin before the expected timescales of lattice heating, suggesting that the
conventional sequence of events (absorption, heating, oscillation) may not dominate in
the early stages after excitation and leaving the actual driving source of the oscillations
unidentified. Details on the experimental technique will be given in Sec. 6.1

Our objective in this study is to employ a microscopic framework that encompasses
electron-phonon interaction and phonon-phonon interaction, enabling us to derive a com-
prehensive model to describe the onset of radial oscillations in MNPs. This approach
draws inspiration from research conducted in the semiconductor community [380, 464–
471].

One notable advantage of our approach compared to the existing classical model is
its ability to distinguish coherent and incoherent phonon modes. The coherent phonon
modes correspond to the radial vibrations of the macroscopic MNP, while the incoherent
modes can be attributed to lattice temperature and, therefore, only contribute on the
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Figure 6.1.: Schematic Illustration of the Relaxation Dynamics in Plasmonic
Nanoparticles. The optical pump causes a polarization of the electrons in the
nanoparticle, which is accompanied by a density gradient. The blue path illustrates the
thermal-driving mechanism of the breathing oscillations currently discussed in the lit-
erature: After Coulomb-driven orientation relaxation, electron-phonon scattering con-
verts energy from the electrons to the lattice, which leads to an expansion of the
particle. This initiates breathing oscillations. The red path demonstrates the coupling
mechanism described in this study, where electron density gradients directly couple to
the coherent phonon mode, initiating breathing oscillations impulsively.

thermal timescales of the electron-phonon system. By formulating our description in
terms of a Hamiltonian, we achieve a consistent treatment of carrier-phonon coupling
between all phonon modes and electrons.

Consequently, this formulation allows for a direct coupling between electrons and the
breathing oscillation, which was not possible in the classical framework [448, 472], where
oscillation onset is always mediated through a thermal process, as illustrated in Fig. 6.1.
Some publications [448, 451, 473, 474] introduce a hot electron pressure term using the
electronic Grüneisen parameter to match the experimentally observed oscillation phase.
This additional term, derived from phenomenology, enables a more direct interaction be-
tween the hot electron system and the vibrational mode due to the rapid temperature rise
of the electronic subsystem, initiating the onset of oscillation earlier than the interaction
solely mediated by thermal phonons.

We obtain the spatially resolved direct electron-phonon coupling in nanoparticles by
considering the dynamics of the Wigner distributions of electrons and phonons, which in-
cludes the coherent and incoherent processes following the optical excitation. Specifically,
we employ the framework of Heisenberg equations of motion for the Wigner distributions
to describe these dynamics in detail. To reduce complexity, we explore the hydrodynamic
limit of these equations by coarse-graining to mesoscopic observables. This procedure
allows us to retain coherent variables such as the optical field and coherent phonons,
which interact with the macroscopic motion of charge density, current density, and tem-
perature dynamics. By projecting our equations of motion onto the fundamental Lamb
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modes [447, 475] of the elastic sphere under consideration, which are the fundamental vi-
brational eigenmodes, we can effectively perform an eigenmode expansion and explicitly
calculate the electron and phonon dynamics following optical excitation.

The calculations yield two source terms for the lattice dynamics: The well-established
thermal driving term via the lattice temperature [448, 451, 473, 474], and a new driving
term arising from optically induced spatial gradients in the electron density. This latter
term is identified as a more dominant source of the radial breathing oscillations compared
to the time-delayed thermal heating process, primarily affecting the equilibrium position
of the oscillation.

The electron gradients can arise from both intraband and interband processes, and
we have focused on a pure single-band model in our investigation of silver [405], where
intraband processes are dominant over a broad spectral range [476]. Additionally, we have
studied interband contributions in a subsequent study for gold, where we compare our
theory to experiments [4]. In this chapter, we comprehensively discuss and qualitatively
compare both situations, addressing the dynamics of intraband and interband processes.

The dominance of the direct coupling between the displaced electrons and the lattice
can have important consequences for applications harnessing hot electrons [477–481] and
for the general understanding of nanoscale metal dynamics.

This chapter is organized as follows: We begin by briefly stating the current theoretical
descriptions of the oscillation onset in Sec. 6.2.1 before we introduce some fundamentals
like the distinction of coherent and incoherent phonons, Sec. 6.2.3, and the anharmonic
Hamiltonian used to describe thermal expansion, Sec. 6.2.4.

We then derive the microscopic equations for the phonons, Sec. 6.3, and the electrons,
Sec. 6.4 which are already coarse-grained to mesoscopic variables in these sections, lead-
ing to a closed set of coupled hydrodynamic equations. We employ a similar procedure
for the intraband case, Sec. 6.4.1, and the interband case, Sec. 6.4.2, which begins by
expansion up to second order in the excitation field and subsequent projection onto so-
lutions of the vibrational Lamb modes in Sec. 6.5. In Sec. 6.6, we provide the numerical
solutions for the coupled ordinary differential equations that arise, compare the quali-
tatively different source terms resulting from intraband and interband interaction and
compare to experimental results. Finally, we conclude with a comparison of the influence
of the individual driving terms on the nanoparticle oscillation in Sec. 6.7.

6.1. Experimental Motivation

This work has been inspired by experimental results that were obtained from our cowork-
ers in the group of Holger Lange, which we also jointly published in Ref. [4]. In the
experiment, the advance has been to use X-ray single particle imaging (SPI) instead
of transient absorption (TA) as done in previous experiments to measure the temporal
behavior of the oscillation.

Transient absorption (TA) experiments, as mentioned in Refs. [374, 456], rely on ob-
serving the temperature of the thermalized hot electron gas that is visible as a contrast in
the optical measurements. The breathing oscillations of plasmonic nanoparticles manifest
as periodic contrast modulations in the TA spectra [482–484]. However, TA experiments
do not allow for a precise determination of the temporal onset of the breathing oscilla-
tions due to the dominating contrast from the initial electron dynamics. As a result, the
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details of the oscillation were previously only extrapolated and as such only indirectly
deduced.

In the new experimental technique, called transient small-angle X-ray scattering in
a single-particle imaging scheme (tSAXS-SPI) [462, 485, 486], it becomes possible to
access the entire oscillation, including the portion right after the optical pulse as it does
not depend on the optical contrast dominated by electronic dynamics during the initial
stages. A sketch of the experimental setup is shown in Fig. 6.2.

 
Supplementary Figure 1 

Setup of a MHz TR-SFX experiment at the EuXFEL (modified from Wiedorn et al., 2018) 

X-ray pulses arrive in 1.13 MHz bursts which repeat every 100 ms. There are 176 X-ray pulses in the burst. The KB-mirror system focuses 
the X-ray beam to a 2 – 3 µm focal spot. The fs-laser delivers 376 kHz pulses (λ=420 nm, blue) synchronized to the X-ray pulses. The laser 
focus is 42 µm Ø in the X-ray interaction region (dotted circle). The microcrystals are mixed with fluorinated oil and injected by a GDVN. 
The jet produced by the GDVN, the laser beam as well as the X-ray pulses precisely intersect. The time-resolved diffraction patterns are 
collected by the AGIPD. Diffraction patterns with common time-delays were separated based on the pulse ID (see also Fig. 2b) and 
combined to datasets.  

Figure 6.2.: Transient Small-Angle X-ray Scattering in a Single-Particle Imag-
ing Scheme (tSAXS-SPI). This experimental technique is utilized to detect the
oscillation of gold nanoparticles (AuNPs). A beam of individual AuNPs is precisely
intersected with an optical laser pulse and an X-ray pulse. The laser pulse initiates the
oscillation of the nanoparticles, while the X-ray pulse can be temporally adjusted to
capture the nanoparticle’s diameter at a specific time after the optical pulse. Figure
reproduced from Ref. [486] with permission from Springer Nature.

The tSAXS-SPI technique combines multiple diffraction patterns from individual par-
ticles to create a diffraction volume, which is then inverted to reconstruct the nanoparticle
structure [462, 487]. A significant advantage of this technique is its ability to measure
single-particle images. This is achieved by generating a beam of individual AuNPs, which
are then accurately intersected with both the laser pulse and the X-ray pulse. This setup
allows for the nanoparticle to be pumped by the laser pulse and subsequently observed at
different time steps using the X-ray pulse. The single-particle imaging scheme not only
enables the correction of sample inhomogeneity but also maintains statistical robust-
ness through a serial measurement approach. By employing SPI data in a pump-probe
fashion, a dynamic “movie” of the nanoparticle’s behavior can be obtained.

The experimentally obtained data that motivated our numerical studies will be pre-
sented in Sec. 6.6.4.

6.2. Prerequisites

This final major section of this thesis builds upon the concepts developed in the preceding
sections, with particular emphasis on the utilization of the Wigner function approach,
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as discussed in Sec. 4 and 5. However, to accurately describe the oscillations of the
nanoparticle, further fundamental concepts are required, which are introduced in the
subsequent discussion.

6.2.1. Current Theoretical Description

Over the past two decades, numerous experiments have observed nanoparticle oscillation,
primarily in transient absorption [448–451, 458, 472, 474, 482, 488–490]. Some of these
studies have proposed theoretical models to describe the onset of oscillation, particularly
in Refs. [448, 451, 473, 474]. These descriptions share qualitative similarities, differing
only in whether the initial temperature rise of the electron system is simulated or assumed
to start from a specific initial electron temperature. However, as the rise in electron
temperature resulting from excitation with femtosecond pulses is quasi-instantaneous
on the timescale of the oscillation (picoseconds), all models can be considered quasi-
equivalent. A brief overview is provided in App. I.1. In this study, we adopt the model
proposed in Ref. [448], where changes in nanoparticle radius R are governed by the
inhomogeneous ordinary differential equation,

∂2R

∂t2
+

2

τd

∂R

∂t
+

(︃
2π

Ω

)︃2[︃
R−

{︁
R0 +

R0α

3
(Tℓ − T0)

}︁]︃
= 0. (6.1)

This equation resembles a typical damped harmonic oscillator equation where τd rep-
resents the damping of the oscillation and is typically used as a fitting parameter. Ω
denotes the period of oscillation, R0 is the equilibrium radius at equilibrium temperature
T0, Tℓ is the temperature of the crystal lattice, and α is the coefficient of thermal ex-
pansion. Accordingly, it is apparent that changes in temperature affect the equilibrium
position of the crystal lattice. Accordingly, for rapid changes of the lattice temperature,
it is anticipated that the system undergoes transient oscillations until a new equilib-
rium is reached. In Fig. 6.3a, we reproduce the experimental data and the theory found
in Ref. [448] which compares numerical solutions of Eq. (6.1) with data obtained from
transient absorption measurements.

As illustrated in Fig. 6.3a, the temporal behavior of the oscillation and the general
form are nicely reproduced. However, the author encounters a phase mismatch of the
experimental data and the theory in the oscillation. This phase mismatch is typically
attributed to the absence of contributions from hot electrons in Eq. (6.1), assuming that
the electronic heat capacity Ce is much smaller than the lattice heat capacity Cℓ, ex-
pressed as Ce ≪ Cℓ, which holds under equilibrium conditions.However, for ultrafast
experiments with femtosecond pulses, the electron temperature significantly exceeds the
lattice temperature, resulting in Ce ≈ Cℓ. This occurs because the electronic heat ca-
pacity scales approximately linearly with the temperature, while the lattice temperature
can be approximated as constant over the temperature range of interest. To address this,
the replacement

R0α

3
(Tℓ − T0) →

R0

3B

(︃
γCℓ(Tℓ − T0) +

2

3
Ce(Te) · (Te − T0)

)︃
(6.2)

was introduced. Here, γ represents the lattice Grüneisen parameter and B is the bulk
modulus. Including this term accounts for contributions from hot electrons and becomes
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Figure 6.3.: Comparison of Transient Absorption Data with Classical Theory.
The two plots compare experimental data with the theory developed in Ref. [448]. In
(a) Eq. (6.1) is solved while hot electron contributions are neglected, which results
in a phase mismatch of experiment and theory. In (b) hot electron contributions are
introduced into the theory. This results in matching phases of experiment and theory.
Both figures are reprinted from Ref. [448], with the permission of AIP Publishing.

relevant at early times when Te ≫ Tℓ. It effectively initiates oscillation earlier, shifting
the observed phase towards earlier times and leading to qualitative agreement with the
experimental data in Fig. 6.3. As mentioned earlier, similar approaches have also been
adopted in Refs. [451, 473, 474].

At this stage, the shortcomings of TA experiments become clearly visible, as the data
in the first picoseconds are dominated by the electronic response of the system and do
not allow observing the actual oscillation onset. We will discuss this in more detail when
we compare our theory with data from a new experimental method that we introduce in
Sec. 6.6.4.

Furthermore, we want to point out that the very phenomenological introduction of
hot electron contributions through Eq. (6.2) has motivated us to develop a theory on a
microscopic level to describe the onset of these radial oscillations.

6.2.2. Two-Temperature Model

As we introduced in Sec. 2.3.3, the thermal dynamics in the electron-lattice system
have been studied using the classical two-temperature model for the electron and lattice
temperatures, Te and Tℓ [206, 207, 220, 448, 488]. Here, we employ the two-temperature
model in the form,

Ce(Te)
∂Te
∂t

= −G(Te − Tℓ) +
W0√
πσ

exp
{︁
−t2/σ2

}︁
, (6.3a)

Cℓ
∂Tℓ
∂t

= G(Te − Tℓ)− (Tℓ − T0)/τs. (6.3b)

The thermal energy transfer between electrons and the lattice in this approach is
modeled using the coupling constant G, which is associated with quantum mechanical
electron-phonon coupling [220]. Experimental access to G has been demonstrated in
Refs. [210, 399, 400, 491].
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6.2. Prerequisites

The optical excitation is characterized by the absorbed energy W0, which can be deter-
mined from optical experiments by measuring absorbance, pump fluence of the incident
electric field, and the molar concentration of nanoparticles, which can be experimentally
obtained from optical density measurements. A conceptual sketch of the derivation is
presented in App. I.6 We assume well-established approximations for the heat capacities
within the temperature ranges considered. The electron heat capacity Ce(Te) is approxi-
mated to scale linearly with the electron temperature Te, denoted as Ce(Te) = ζ Te [168],
while the lattice heat capacity Cℓ is approximated as constant. The timescale τs for
energy transfer from the lattice to the surroundings is listed in Tab. A.3 and is typically
used as a fitting parameter to experimental results.

As discussed in Sec. 6.2.1, the temperature dynamics act as a source term for the
nanoparticle oscillation, effectively displacing the equilibrium position of the oscillation.
This process occurs when the electron and phonon systems are out of equilibrium, result-
ing in transient oscillations for rapid shifts in temperature. In Sec. 6.3, we illustrate how
these thermal expansion effects are introduced microscopically through an anharmonic
phonon-phonon Hamiltonian, Eq. 6.7.

6.2.3. Coherent and Incoherent Phonons

In the 90s, several experiments have revealed that ultrafast optical excitation of semi-
conductors causes oscillatory features in the temporal signal in reflection and trans-
mission [492–494]. As the frequency of these oscillations matches one of the optical
phonon modes, this was a strong indication that this phonon mode is coherently ex-
cited. Microscopic approaches towards these effects are derived in Refs. [464, 465] and
have been widely and very successfully applied throughout the semiconductor community
[453, 466, 469, 495, 496].

Coherent phonons are eigenstates of the annihilation operator, bq, leading to non-
vanishing expectation values of the annihilation (creation) operator b(†)q . We define the
microscopic coherent phonon operator,

sq ≡ 1

2

(︂
⟨bq⟩+

⟨︂
b†−q

⟩︂)︂
, (6.4)

which describes the coherent phonon with momentum q [464]. This is based on the
standard approach taken in many textbooks [165, 167, 168] to describe the lattice dis-
placement,

u(r, t) =
∑︂
q

√︄
ℏ

2MNωq
eqe

iq·r
(︂
⟨bq⟩+ ⟨b†−q⟩

)︂
. (6.5)

Here, M is the ion mass in the unit cell, N is the ion number in the crystal and eq is
the polarization vector of the phonon mode within the material.

For a later distinction of coherent and incoherent phonon dynamics, we define the
incoherent phonon distribution in analogy to Refs. [380, 464],

ñcq′(q) ≡ ⟨b†q′−qbq′⟩ − ⟨b†q′−q⟩
⟨︁
bq′
⟩︁
. (6.6)

This can be seen from the cluster expansion that we presented in Sec. 2.1.1 [171].
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6. Radial Oscillations of Metal Nanoparticles

6.2.4. Thermal Expansion

One of the effects, that we aim to describe microscopically, will be thermal expansion.
Accordingly, we will have to describe expansion effects in our microscopic theory. As
the formulation of second quantization is a generally harmonic theory which natively
does not include these effects, we will have to consider anharmonic corrections to the
harmonic phonon potential in order to describe thermal expansion. This is mostly done
by inclusion of a thermal expansion term that in its most general formulation can be
given by [205]

Hphph =
∑︂
qq′q′′
αα′α′′

hαα
′α′′

qq′q′′

(︂
bqα + b†−qα

)︂(︂
bq′α′ + b†−q′α′

)︂(︂
bq′′α′′ + b†−q′′α′′

)︂
. (6.7)

This three phonon process includes three phonon modes (α, α′, α′′) with momenta
q,q′,q′′. The matrix element fulfills the condition hαα

′α′′
qq′q′′ = δq+q′+q′′,0h

αα′α′′
qq′q′′ . As the

different combinations of annihilation (creation) operators indicate, this Hamiltonian
includes a variety of multi-phonon processes, one of the most conceptually prominent
being a phonon decay process where one phonon decays into two phonons while conserv-
ing momentum and energy. A detailed description of the matrix element can be found
in Ref. [205]. For the scope of this thesis, we limit ourselves to only including the lon-
gitudinal acoustic (LA) phonon branch, effectively dropping the branch index α in the
following.

6.3. Coherent Phonon Dynamics

The full Hamiltonian that we consider for this part of the project combines the Hamil-
tonian given in Eq. (4.1a) with the phonon-phonon Hamiltonian, so that the full Hamil-
tonian reads

H =
∑︂
kλ

ϵkλ
†
kλk +

∑︂
q

ℏωqb
†
qbq +

∑︂
kqλ

gλqλ
†
k+qλk

(︂
bq + b†−q

)︂
+

1

2

∑︂
kk′q
λλ′

Vqλ
†
k+qλ

′†
k′−qλ

′
k′λk

+
ie

V

∑︂
k,Kλ

E−K · ∇K(λ†kλk+K) +
∑︂
k,Kλ

dλλ̄
k+K,k ·E−K(λ†kλ̄k+K)

+
∑︂
qq′q′′
αα′α′′

hαα
′α′′

qq′q′′

(︂
bqα + b†−qα

)︂(︂
bq′α′ + b†−q′α′

)︂(︂
bq′′α′′ + b†−q′′α′′

)︂
. (6.8)

As mentioned earlier, the utilization of this Hamiltonian to construct a microscopic
approach offers a significant advantage over currently available phenomenological models.
In the classical model, illustrated in Fig. 6.4 with gray arrows, cf. Sec. 6.2.1, the inter-
action is solely mediated by incoherent (thermal) phonons, which are described in terms
of the lattice temperature Tℓ. However, this model does not include a direct interaction
between electrons and the lattice oscillation.

In contrast, our Hamiltonian approach encompasses the interaction of all electron and
phonon modes, as evidenced by the electron-phonon contribution with coupling strength
gλk. This enables us to incorporate a direct coupling between optically induced electron
density gradients and coherent phonon oscillations, depicted by red arrows in Figure 6.4.
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6.3. Coherent Phonon Dynamics

We anticipate that this direct interaction term introduces an additional source term to
the oscillator equation of the nanoparticle, potentially resulting in a more immediate
oscillation onset.

Figure 6.4.: Direct Coupling Mechanism from Microscopic Theory. Incident
light excites the electrons that self-interact via a collective plasmon response. In all
classical theories (blue arrows), the electrons couple to incoherent phonons, i.e., tem-
perature, which transiently drive the coherent oscillations due to the spatial restriction
(spherical particles). We study the possibility of a direct interaction of electrons and
coherent phonons (red arrows).

We derive an equation of motion for the phonon annihilation (creation) operators b(†)±q

by utilizing the Heisenberg equation of motion with the Hamiltonian (Eq. 6.8),

(iℏ∂t ∓ ℏω±q) b
(†)
±q =±

∑︂
kλ

gλ−qλ
†
k−qλk

± 3
∑︂
q′
h̃q,q′,q−q′

[︂
bq′ + b†−q′

]︂[︂
bq−q′ + b†−q+q′

]︂
, (6.9)

where the lower sign corresponds to creation and the upper sign to annihilation opera-
tors, respectively. In this expression, we have utilized momentum conservation, denoted
as h̃q,q′,q′′ = hq,q′,q′′δq+q′+q′′,0. The left-hand side includes the dispersion of the
phonons ωq. The right-hand side contains the sources of the phonon amplitudes. The
first term represents a momentum transfer from the electronic system to the phonons.
The second term originates from phonon-phonon interaction. In the next step, we apply
a time derivative to Eq. (6.9) which results in a second-order differential equation for the
coherent phonon amplitude sq, cf. Eq. (6.4),

(︁
∂2t + ω2

q

)︁
sq =− ωq

ℏ
∑︂
kλ

gλ−qf̃
λ
k(q)−

3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︁
2ñcq′(q) + δq,0

]︁
− 3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︂
4sq′sq−q′ +

⟨︁
bq′bq−q′

⟩︁c
+
⟨︂
b†−q′b

†
−q+q′

⟩︂c]︂
. (6.10)

On the right-hand side, we can identify two sources for the coherent phonon am-
plitude. The first term is the Fourier transform of the Wigner function of the elec-
trons f̃k(q) = ⟨λ†k−qλk⟩ [376]. The momentum- and real-space-dependent Wigner

distribution is accordingly given by fλk (r) =
∑︁

q e
iq·rf̃

λ
k(q). The second term consid-

ers driving of the coherent phonon amplitude from the incoherent phonon distribution
ñcq′(q) ≡ ⟨b†q′−qbq′⟩ − ⟨b†q′−q⟩

⟨︁
bq′
⟩︁

[380, 464].
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6. Radial Oscillations of Metal Nanoparticles

The final term in the first line represents a Kronecker symbol that arises from the com-
mutation of the phonon creation (annihilation) operators into normal order. This term
can be interpreted as a constant force acting on the oscillator, leading to a displacement
of its equilibrium position due to phonon-phonon interactions. Moving to the second
line, the first term corresponds to a self-interaction term that scales quadratically with
the amplitude of the coherent phonon sq.

Since the equations of motion are not closed, we derive an equation of motion for
the coherences in the last line of Eq.(6.10). This is accomplished following the approach
described in Sec. 2.1.1. By employing a second-order correlation expansion and a Markov
approximation, we find that they couple to phonon creation (annihilation) operators b(†)q .
Further details are provided in App. I.2.1. The contributions of the correlated quantities
resemble a dephasing of the coherent phonon mode, which can be written as(︁

∂2t + 2γq∂t + ω2
q

)︁
sq = −ωq

ℏ
∑︂
kλ

gλ−qf̃
λ
k(q)

− 3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︁
2ñcq′(q) + δq,0

]︁
. (6.11)

This equation is formally equivalent to a classical damped oscillator equation for ampli-
tudes sq. The left-hand side describes the oscillation of the coherent phonon amplitude
with damping rate γq resulting from phonon-phonon interaction, which we provide in
App. I.2.1, and the oscillator frequency ωq. In Eq. (6.11) and in the following, non-
linear terms in the coherent phonon amplitude sq are suppressed since weak excitation
is assumed.

From Eq. (6.11) for the coherent phonon amplitude, we obtain an equation of motion
for the lattice displacement using its definition in Eq. (6.5),

[︁
∂2t + 2γph∂t − c2LA∇2

r

]︁
u(r, t) =

1

2M
∇r

∑︂
kλ

V λ
0 f

λ
k (r, t) +

6h√
2MNℏ

r

ℓ

∑︂
q

1

ωq
ncq(r, t). (6.12)

At this stage, we assumed that the microscopic scattering term γq can be approximated
by a macroscopic, overall momentum-independent term γph. As the entire volume of the
sphere is large in comparison to the size of a unit cell, we regard the lattice vectors
Rn as continuous and replace them by the continuous space variable r, i.e., Rn → r.
Furthermore, we have assumed that the major momentum dependence of the matrix
element h̃qq′q′′ is contained in the dispersion ωq, such that it can be approximated as
h̃qq′q′′ ≈ h/

√
ωqωq′ωq′′ [205] with the momentum independent quantity h. In addition,

we made use of the symmetry ωq = ω−q of the dispersion relation. The left-hand side
accounts for the wave propagation of the phonon with the velocity of sound cLA and
the phonon-phonon interaction induced damping term γph [165]. The right-hand side
accounts for the sources of the coherent oscillations, where we identify two different
contributions. The first term accounts for the displacement of the lattice vectors via
spatial gradients of the electron density, as defined in Eq. (4.35). The second term
originates from the anharmonic phonon-phonon interaction, where we incorporated the
constant term in Eq. (6.11) as an offset of the oscillator position. Here, the parameter ℓ is
the binding length of the material. This parameter had to be included in the description
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6.3. Coherent Phonon Dynamics

to account for the nature of the thermal expansion in Eq. (6.12) as an extensive quantity
compared to the harmonic contribution of the electron-phonon interaction in the first
source term in Eq. (6.12).
In the oscillation Eq. (6.12), we find that the thermal expansion contribution can be
expressed in terms of the incoherent phonon distribution ncq(r),

6h√
2MNℏ

r

ℓ

∑︂
q

1

ωq
ncq(r) ≈

18h
√
N√

2Mℏ3
r

ω2
Dℓ
kBTℓ. (6.13)

Here, we assume the incoherent phonon distribution ncq(r) to be spatially homoge-
neous and to follow a Bose-Einstein distribution. The sum can be performed in Debye
approximation by replacing the sum over the first Brillouin zone by an integral over a
sphere with the radius, qD, which is defined such that the number of states is equivalent
to the number of atoms. Using the linear dispersion of the Debye approximation, the
Debye momentum qD can be replaced by the Debye frequency ωD [388]. We argue that
the temperature of the nanoparticle can be approximated as spatially homogeneous, as
the particle is small compared to the optical wavelength and the momentum-relaxation
process is fast compared to the pulse width in the hydrodynamic limit. As only devi-
ations from the equilibrium temperature drive the nanoparticle oscillation, we use the
the definition from the previous and absorb the equilibrium position into the equilibrium
position of the oscillator at equilibrium temperature T0. With this, the source term of
the oscillation scales with deviations from equilibrium ∆Tℓ(t) = Tℓ(t)− T0.

Accordingly, we find the oscillator equation for the absolute lattice diplacement, which
is given by

[︁
∂2t + 2γph∂t − c2LA∇2

r

]︁
u(r, t) =

∑︂
λ

βλ∇rρ
λ(r, t) + ξ∆Tℓ(t), (6.14)

with the definitions

βλ ≡ V λ
0 Ω

2Me
, ξ ≡ 18h

√
N√

2Mℏ3
r

ω2
Dℓ
kB. (6.15)

Here, we used the momentum expansion for the Wigner occupations of the type in
Eq. (4.35) and Refs. [254, 403, 404] to identify the electron density which for the band-
specific case reads

ρλ(r, t) ≡ e

Ω

∑︂
k

fλk (r, t), (6.16)

with the unit cell volume Ω. We find two driving terms with prefactors βλ and ξ that
characterize the macroscopic model and depend on the electron-phonon and phonon-
phonon interaction, respectively. The first represents the newly found displacement
source resulting from an optically induced gradient in the spatial electron distribution,
ρλ(r, t) and its behavior will be modeled in Sec. 6.4 using the spatio-temporal Wigner
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6. Radial Oscillations of Metal Nanoparticles

function approach that we developed in Sec. 4. The second term occurs via the tem-
perature difference as source and is found in agreement with previous thermal models,
cf. Refs. [448, 451, 473, 474, 488]. The electronic driving term β scales linearly with
the screened Coulomb potential, V λ

0 , and the thermal driving factor ξ is proportional to
the anharmonic phonon-phonon potential h, cf. Eq. 6.15. For the scope of this thesis,
the temperature changes are modeled using a two temperature model in agreement with
previous literature [448, 451, 473, 474, 488].

Thomas-Fermi Theory for Strong Screening

In deriving the oscillator equation in Sec. 6.3, we assumed that the electron-phonon
potential is strongly screened, which is a good approximation for most metals [165, 388].
This allows to use an effective electron-phonon coupling that is independent of the phonon
momentum q [168],

V λ
0 =

Zeff,λe2

ε0Ωk2s
, (6.17)

with an effective inverse screening length ks and an effective nuclear charge Zeff,λ.
For the intraband theory, the value for the 6s band [497] is used for Zeff,λ, since it is
the only band that is only partially filled in gold. For silver, one would use the value
for the 5s band instead. In the subsequent calculation, this inverse screening length is
approximated by the Thomas-Fermi wave vector kTF, which is given by

k2TF =
e2m

ε0ℏ2π2
(3π2n)1/3, (6.18)

with the electron density n. Combining this with the definition of the potential, one
can simplify the driving term β in Eq. (6.15) of the breathing oscillation due to electron
gradients to

βλ =
Zeff,λℏ2π2

2mMe

(︁
3π2n

)︁−1/3
, (6.19)

which depends entirely on the intrinsic quantities of electron density n, effective electron
mass m, and unit cell mass M for the case of strong screening.

6.4. Mesoscopic Electron Dynamics in the Hydrodynamic
Limit

As the electron Wigner function f̃
λ
k(q) acts as a driving term in the coherent phonon os-

cillation Eq. (6.11) through its occurrence in the definition of the electron density ρ(r, t),
this section will be devoted to studying the electron dynamics within our system under
the action of the Hamiltonian defined in Eq. (6.8). As discussed in detail in Sec. 2.3.6,
metals exhibit strong signatures of both interband and intraband processes, depending on
the spectral range of interest. Here, we introduce a theory that distinguishes between the
purely intraband plasmon response and the predominantly interband excitation process,
shedding light on their distinct pathways for exciting the coherent nanoparticle oscilla-
tion. By examining these qualitatively different excitation pathways, we can compare
them with experimental data to determine the dominant excitation mechanism.
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6.4. Mesoscopic Electron Dynamics in the Hydrodynamic Limit

6.4.1. Intraband Case

As a purely intraband effect, the plasmonic response can be described using the Wigner
approach in a single band, cf. Sec. 4.5, we consider in agreement with Sec. 4 the elec-
tronic Wigner function fk(r, t) for the full Hamiltonian in Eq. (6.8) within the gradient
expansion [240, 376] and obtain similar to Ref. [401],

∂tfk(r, t) +∇rfk(r, t)·
[︂
vk +

e

ℏ
∇kΦ

F
k (r)

]︂
= ∇kfk(r, t)·

[︄
e

ℏ
(︁
E(r, t)− ∂rΦ

H(r) + ∂rΦ
F
k (r)

)︁
+
i

ℏ
∑︂
q

gqe
iq·rq sq(t)

]︄
+
∑︂
q

[︁
Γin
k+q,k(r, t)(1− fk(r, t))− Γout

k,k+q(r, t)fk(r, t)
]︁

+
∑︂
q

[︁
W in

k+q,k(r, t)(1− fk(r, t))−Wout
k,k+q(r, t)fk(r, t)

]︁
. (6.20)

The left-hand side considers the drift of the electronic Wigner function with group ve-
locity vk = ∇kεk under the effect of the Fock potential ϕFk (r) that is given in Eq. (4.18b).
The first term on the right-hand side accounts for the acceleration of electrons in the ex-
ternal optical driving field, screened by background contributions, E(r, t) = 3εout

ε∞+2εout
Eext

under the additional Hartree ΦH(r) and Fock potentials ΦF
k (r), defined in Eqs. (4.18a)

and (4.18b), respectively. They result from the inclusion of the Coulomb contribution
in the Hamiltonian and are derived using the mean-field approximation and the gradient
approximation, as outlined in Sec. 4.6.1. The third term on the right-hand side describes
the acceleration of electrons due to interaction with coherent phonons sq(r, t). The Fock
contributions are included here for completeness, but will be neglected in the following,
since they represent quantum corrections to a semiclassical hydrodynamic model. These
corrections are small compared to the total field Ẽ, which is a combination of the external
field E and the Hartree corrections of the internal field −∂rΦH . The total field is given by
Ẽ ≡ 3εout

ε∞+2εout
Eext − ∂rΦ

H . The last two lines account for electron-phonon and electron-
electron scattering and are derived using a second-order Born-Markov approximation.
Details can be found in Sec. 4.3.4 and 4.3.3.

To derive an equation of motion for the electron density, we sum Eq. (6.20) over
momenta k in the spirit of the hydrodynamic approach in Sec. 4.5. As scattering terms
conserve the local electronic density in the gradient approximation, they vanish under
the momentum sum. This results in a continuity equation for the electron density ρ(r, t)
and the current density j(r, t),

∂tρ(r, t) +∇ · j(r, t) = 0. (6.21)

The appearing current density j(r, t) is defined in Eq. (4.35b). To obtain a closed set of
equations, we derive an equation of motion for the current density from Eq. (6.20) by mul-
tiplying the microscopic dynamical equation (6.20) with the velocity and summing over
all momenta. We find a generalized Euler equation that also includes coherent phonon
oscillations as source terms for the electron current density in the metal nanoparticle,

∂tj(r, t) = −γv(T, ρ)j(r, t)−∇ · P(r, t)

− ρ(r, t)

(︃
e

m
Ẽ(r, t)− V0N

m
∇⊗∇ · u(r, t)

)︃
. (6.22)
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The first term accounts for the decay of the macroscopic current density. Here, we have
introduced the decay constant γv(T, ρ) which has to be determined from the electron-
phonon scattering contribution to Eq. (6.20) as the effective relaxation time of the current
density [388]. It depends on the temperature as well as on the electron density itself.
For weak excitation as discussed here, only the temperature dependence is relevant.
The second term is the divergence of the second-order momentum in the factorization
procedure of the Wigner function, which is the Cauchy stress tensor P ≡ e

Ω

∑︁
q vq ⊗

vqfq(r, t) as defined in Sec. 4.5.2. The second line accounts for the acceleration of the
electrons in the total electric field Ẽ or via the lattice displacement field u, respectively.

In the next step, we decompose the velocity vq = v+δvq into a momentum-independent
mean-field contribution and a correction in agreement with Sec. 4.5.2 which yields two
contributions in terms of the mean-field velocity v and the pressure contribution P̂ ≡
e
Ω

∑︁
q δvq ⊗ δvqfq(r, t). This way, the velocity is promoted to a velocity field, v(r, t)

which allows factorizing the macroscopic current density j(r, t) = ρ(r, t)v(r, t) into elec-
tron density ρ(r, t) and velocity field v(r, t) of the electrons. Applying this decomposition
to the continuity and Euler equations and performing some algebraic transformations,
we obtain the final set of continuity equation,

∂tρ(r, t) +∇ · (ρ(r, t)v(r, t)) = 0, (6.23)

and Euler equations,[︃
∂t + v(r, t) · ∇

]︃
v(r, t) =− γv(T, ρ)v(r, t)−

∇ · P̂(r, t)
ρ(r, t)

− e

m
Ẽ(r, t) +

V0N

m
∇⊗∇ · u(r, t). (6.24)

The left-hand side in Eq. (6.24) accounts for the substantial derivative of the velocity
field. The first term on the right-hand side describes the decay of the velocity due to
interaction with the phonons. The second term accounts for the source of the velocity
in the presence of pressure. The pressure tensor will be expressed in terms of the scalar
pressure function p(r, t) by P̂(r, t) = e

mp(r, t)1 [498] in the following. The last line
in Eq. (6.24) considers the acceleration of the electrons caused by the self-consistent
near-field electric field Ẽ(r, t) and the lattice displacement u(r, t). In the remaining
calculation, this latter term will be neglected, since we assume a dominant acceleration
of the electrons by the electric field and the perturbation by u(r, t) to contribute only
in higher orders of the electric field Ẽ(r, t). This way, the set of continuity and Euler
equation, Eqs. 6.23 and 6.24, together with the oscillator equation, Eq. (6.14) forms a
system of differential equations that we aim to solve self-consistently.

To approach Eq. (6.24) analytically, it will be coarse-grained in time: As the optical
excitation leads to a non-equilibrium carrier distribution whose energy is thermalized by
electron-electron scattering between electrons on very short time scales compared to the
electron-phonon interaction [499]. On these short timescales, i.e., already during and
shortly after the pulse, the density gradient ∇kfk builds up. The fast thermalization
process allows us to find a local equilibrium description for the electrons on time scales
of the electron-phonon coupling, which means that we can define a local equation of
state with time-varying temperature T (t) determined by the electron-phonon interaction.
Therefore, similar as in Sec. 4.5.2, we assume an expression for the electron pressure in
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terms of the equation of state for fermions: The pressure for a free Fermi gas can be
given as [246, 251, 259]

p(r, t) =
κ

e5/3
ρ5/3(r, t), (6.25)

where the proportionality constant κ = ℏ2
5m

(︁
3π2
)︁2/3 is adapted from the typical Fermi

gas constant[246] to our calculations for the charge density.
In order to solve the nonlinear set of equations, Eqs. (6.23) and (6.24), and to use

the results to determine the coherent phonon field u(r, t) in Eq. (6.14), we expand the
respective quantities in orders of the electric field [259]

ρ(r, t) = ρ0 + ρ1(r, t) + ρ2(r, t) +O(E3), (6.26a)

v(r, t) = v0 + v1(r, t) + v2(r, t) +O(E3). (6.26b)

For better readability, the spatial and temporal dependencies of the observables are
suppressed from now on. The density dependence of the pressure term in Eq. (6.25) will
be approximated in the same way, which results in [259]

ρ5/3 ≈ ρ
5/3
0 +

5

3
ρ
2/3
0 ρ1 +

5

9
ρ
−1/3
0 ρ21 +

5

3
ρ
2/3
0 ρ2. (6.27)

Sorting in orders of the field, we find in zeroth order in the electric field, the standard
equations of constant equilibrium density ρ0 and vanishing equilibrium electron velocity
v0,

∂tρ0 = 0, (6.28a)
v0 = 0, (6.28b)

In first order, we find the first-order equation of motion for the electron density,

∂tρ1 + ρ0∇ · v1 = 0, (6.29)

which is analogous to the continuity equation, Eq. 6.23. The equation of motion for
the first-order velocity is given as

ρ0 (∂t + γv)v1 = − 5κ

3me2/3
ρ
2/3
0 ∇ρ1 −

e

m
ρ0Ẽ. (6.30)

Since the velocity scales linearly with the total electric field, it oscillates with the op-
tical frequency and is typically too fast to be detected directly. Hence, a description
in terms of first-order quantities is not sufficient and higher-order contributions have
to be considered. Before we derive the second order contributions, i.e., the electron
density oscillations, which determine the experimental signals, we introduce the geomet-
rical constraints that renormalize the electric field inside the metal nanoparticle. This
can be determined self-consistently and results in a resonance shift of the nanoparticle
onto the plasmon resonance ωLSP = ωp

/︁√
ε∞ + 2εout [170] with the plasma frequency

ωp =
(︁
ne2
/︁
mε0

)︁1/2, the permittivity of the surrounding medium εout and the dielec-
tric constant that accounts for the screening by bound charges εout inside the metal
nanoparticle as we have discussed in more detail in Sec. 4. We find from Eq. (6.30),

ρ0 (∂t + γv + iωLSP)v1 = − 5κ

3me2/3
ρ
2/3
0 ∇ρ1 − 3ε0εoutω

2
LSPE0, (6.31)
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6. Radial Oscillations of Metal Nanoparticles

where, in addition to the plasmon frequency ωLSP, the renormalized total electric field
Ẽ was expressed in terms of the screened externally applied field: Ẽ → 3εout/(ε∞ + 2εout) E0

which is equivalent to the equation we derived in Sec. 2.4.4. Accordingly, we apply the
notation Ẽ ≡ 3εout/(ε∞ + 2εout) E0, when deriving second order quantities in the fol-
lowing. The time evolution of the second-order electron density is given by

∂tρ2 + ρ0∇ · v2 = −∇ · (ρ1v1), (6.32)

and the equation of motion for the second-order velocity is

ρ0∂tv2 + γvρ0v2 +
5κ

3me2/3
ρ
2/3
0 ∇ρ2

=− ρ1∂tv1 − ρ0(v1 · ∇)v1 −
5κ

9me2/3
ρ
−1/3
0 ∇ρ21 +

e

m
ρ1Ẽ− γvρ1v1. (6.33)

In the following, we assume the carrier frequency ωopt of the total electric field Ẽ to
be in resonance with the plasmon frequency ωLSP. To extract the signals relevant for the
optical detection that are proportional to the cycle-averaged intensity, we separate the
slowly varying components Ẽ

±
(r, t) from the fast oscillation by

Ẽ(r, t) =
1

2

[︂
Ẽ

+
(r, t)eiωoptt + Ẽ

−
(r, t)e−iωoptt

]︂
, (6.34a)

ρ1(r, t) =
1

2

[︁
ρ̃+1 (r, t)e

iωoptt + ρ1̃
−(r, t)e−iωoptt

]︁
, (6.34b)

v1(r, t) =
1

2

[︁
ṽ+
1 (r, t)e

iωoptt + ṽ−
1 (r, t)e

−iωoptt
]︁
. (6.34c)

This allows to move to a rotating frame and separate the slowly varying quantities in
Eq. (6.33). We obtain[︃

∂t −
5

3

κ

γv

ρ
2/3
0

me2/3
∇2

]︃
ρ̃2

=
1

2
∇ ·
{︃
ρ0
γv

[︁
(ṽ+

1 · ∇)ṽ−
1 + (ṽ−

1 · ∇)ṽ+
1

]︁
− e

mγv

(︂
ρ̃+1 Ẽ

−
+ ρ̃−1 Ẽ

+
)︂

+
1

γv
ρ̃+1 (∂t − iωopt)ṽ

−
1 +

1

γv
ρ̃−1 (∂t + iωopt)ṽ

+
1

+
10

9me2/3
κ

γv
ρ
−1/3
0

(︁
ρ̃+1 ∇ρ̃−1 + ρ̃−1 ∇ρ̃+1

)︁}︃
. (6.35)

We focus on the dominant driving contribution by making use of the relation γv ≪
ωLSP. With the additional assumption that left- and right-handed quantities are equiv-
alent in magnitude, i.e., Ẽ

+
= Ẽ

−
= Ê, we are left with

[︁
∂t −D∇2

]︁
ρ̃2 =K∇ ·

[︂
(Ê · ∇)Ê

]︂
. (6.36)

Hence, we have identified a diffusion equation for the second-order electron density
distribution that is driven by spatial gradients of the electric field intensity similar to the
ponderomotive force. The prefactors are defined as
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6.4. Mesoscopic Electron Dynamics in the Hydrodynamic Limit

D =
5κρ

2/3
0

3γv
, K =

e2ρ0
γ3vm

2
. (6.37)

Here, we interpret D as the diffusion constant and K as the coupling constant of the
electric field to the second-order electron density.

6.4.2. Interband Case

In comparison to the previous section, we will be concerned with the excitation pathway
via interband transitions in this section. In gold, the interband transitions occur between
the initially occupied 5d and the initially only partially occupied 6s band [500] that are
below (above) the Fermi level, respectively. For simplicity of the notation, we will label
them as v for valence and c for conduction band. The equation of motion for the phonon
mode amplitude sq(t) from Eq. (6.11) reads(︁

∂2t + 2γq∂t + ω2
q

)︁
sq(t) = −ωq

ℏ
∑︂
k

(︁
gc−q − gv−q

)︁
f̃
c
k(q, t)

−3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︁
2ñcq′(q) + δq,0

]︁
. (6.38)

This equation describes the dynamics of a classical damped oscillator equation with
mode index q. The left-hand side is equivalent to Eq. (6.11) and describes the oscilla-
tion of the coherent phonon amplitude sq with a damping rate γq [448] resulting from
phonon-phonon interactions [405], that we again treat as a constant. On the right-hand
side, we identify similar sources to the intraband case: the first term is determined by
the dynamics of the Fourier transform of the Wigner function for the band occupa-
tions, f̃

λ
k(q) = ⟨λ†k−qλk⟩. For the two-band model, the temporal evolutions of f̃

c
k(q, t)

and f̃
v
k(q, t) are complementary, so the source term of the oscillation that we found in

Eq. (6.11) can be expressed by one of them. The prefactor scales with the difference
(gc−q − gv−q) of the electron-phonon coupling element of conduction and valence band.
The second source of the coherent phonon amplitude results from thermal effects of the
change of the incoherent phonon mode occupation caused by heat transfer from the
electronic system. This will be treated in the same way as for the intraband case.

As the Wigner occupations fλk (r) act as sources of the coherent phonon amplitude
Eq. (6.38), we also derive an equation of motion for a two band model within the gradient
expansion [376] and obtain

∂tf
v
k(r) = −vv

k · ∇rf
v
k(r)− 2 Im

{︃
dvc ·E(r, t)

ℏ
pk(r)

}︃
− 1

τ

(︂
fvk(r)− fv,0k (r)

)︂
, (6.39a)

∂tf
c
k(r) = −vc

k · ∇rf
c
k(r) + 2 Im

{︃
dvc ·E(r, t)

ℏ
pk(r)

}︃
− 1

τ

(︂
f ck(r)− f c,0k (r)

)︂
, (6.39b)

∂tpk(r) =

[︃
− i

ℏ
(ϵck − ϵvk)− γ − vvc

k · ∇r

]︃
pk(r) + i

dcv ·E(r, t)

h
[fvk(r)− f ck(r)] , (6.39c)

where we remind the reader of the definition of the interband polarization pk(r, t) =∑︁
q e

iq·r ⟨v†k−qck⟩ (t) from Eq. (4.59a). In Eqs. (6.39a) and (6.39b), we identify the
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6. Radial Oscillations of Metal Nanoparticles

group velocity vλ
k = ∇kϵ

λ
k/ℏ for the band λ ∈ {v, c} that considers the drift of the

electronic Wigner occupation, which we combined into the average group velocity vvc
k =

(vv
k + vc

k)/2 . The term on the right-hand side in Eqs. (6.39a) and (6.39b) accounts for
the optical source via the full electric field E(r, t) that includes the external field as well
as polarization contributions. In Eq. (6.39c), the interband polarization oscillates with
the band gap (ϵck − ϵvk) and is also driven by the external optical driving field E(r, t). γ
is the electron-electron scattering induced damping term of the order of few femtosec-
onds [277] for the interband transition and was added phenomenologically. The decay
of the excited electron density ρc2 is included by an overall relaxation rate τ that, we
assume, can be approximated via the electron-phonon coupling time: τ ≈ τel−ph ≈ 3 ps
[210, 235, 399, 400, 491].

In the following we proceed similarly to the intraband case and expand the individual
Wigner functions in orders of the electric field fλk (r, t) = f0,λk (r)+ f1,λk (r, t)+ f2,λk (r, t)+
O(E3) and pk(r, t) = p1k(r, t) + p2k(r, t) + O(E3), cf. Eqs. (6.26), enter a rotating frame
E(r, t) = Ẽ

+
eiωoptt+ Ẽ

−
e−iωoptt and pk(r, t) = p̃k(r, t)e

−iωoptt, cf. Eq. (6.34) and apply a
rotating wave approximation. Assuming a fast dephasing γ, we solve the equation for the
interband coherence adiabatically and also neglect the transport terms in Eqs. (6.39), as
they are also small compared to the individual time dynamics. Since the spatial gradients
needed to evaluate the displacement Eq. (6.14) are mainly determined by the dielectric,
off-resonant contribution, we replace the full self-consistent field by the field Ê formed by
the dielectric background. In addition, a radiation self energy correction will be absorbed
in the frequency ωk ≡ (ϵck − ϵvk) ℏ → ωk̃ and the dephasing γ → γ̃. Thus, the governing
equations for the band occupations read

∂tf
c,2
k (r, t) =

⃓⃓⃓⃓
⃓dvc · Ê(r, t)

ℏ

⃓⃓⃓⃓
⃓
2

2γ̃

γ̃2 + (ω̃k − ωopt)
2

[︂
fv,0k (r)− f c,0k (r)

]︂
− 1

τ
f c,2k (r), (6.40a)

∂tf
v,2
k (r, t) = −

⃓⃓⃓⃓
⃓dvc · Ê(r, t)

ℏ

⃓⃓⃓⃓
⃓
2

2γ̃

γ̃2 + (ω̃k − ωopt)
2

[︂
fv,0k (r)− f c,0k (r)

]︂
− 1

τ
fv,2k (r). (6.40b)

In the following, we apply a coarse-graining procedure using the macroscopic definition
of the lattice displacement, Eq. (6.5) and a momentum expansion for the Wigner occu-
pations of the type in Eq. (4.35) [254, 403, 404]. This allows to identify the contribution
of the interband transitions in Eqs. (6.40) via the macroscopic interband susceptibility

χinter(ω) = − |d|2
ℏϵ0Ω

∑︂
k

fv,0k (r)− f c,0k (r)

ω − ω̃k + iγ̃
, (6.41)

with the unit cell volume Ω. This allows to identify macroscopic equations for the
carrier densities,

∂tρ
v
2(r, t) = −2eϵ0

ℏ

⃓⃓⃓
Ê(r, t)

⃓⃓⃓2
Im
{︁
χinter(ωopt)

}︁
− 1

τ
ρv2(r, t), (6.42a)

∂tρ
c
2(r, t) =

2eϵ0
ℏ

⃓⃓⃓
Ê(r, t)

⃓⃓⃓2
Im
{︁
χinter(ωopt)

}︁
− 1

τ
ρc2(r, t). (6.42b)
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These equations describe the occupation dynamics for the individual bands, with a
source term that creates or annihilates density in the respective band due to the presence
of an external field Ẽ0(r, t).

6.4.3. Qualitative Comparison

After obtaining the coupled set of oscillator equations, as given by Eq. (6.14), and the elec-
tron equations for both the intraband case, Eq. (6.36), and the interband case, Eq. (6.42),
we can now discuss the implications of our findings in comparison to previous models
and the qualitative differences in the driving terms.

Our set of equations represents a generalization of previous models, such as those
described in [448, 451, 473, 474]. Notably, our model introduces a novel source term
that contributes to the initiation of vibrational breathing modes. This term arises from
optically induced gradients in the electron density, ρ(r, t), and exhibits a quadratic scaling
with the electric field, suggesting that it should be thought similarly to the ponderomotive
force. In addition to the previously known thermal expansion, which is influenced by
changes in lattice temperature, ∆Tℓ(t), this new driving term enhances the understanding
of the oscillation onset. We highlight that our microscopic approach provides a reliable
reproduction of the thermal driving term, thus establishing a microscopic foundation for
the previous understanding.

We anticipate qualitative differences between the two driving terms in their contri-
butions to the oscillation onset. The intraband terms represent excitations within the
same electronic band, which, according to existing literature, are assumed to have short
lifetimes due to fast scattering processes. Conversely, the interband process involves the
promotion of carriers between two electronic bands, resulting in significantly longer life-
times for the electronic densities to persist. These distinct temporal behaviors will be
further discussed and evaluated individually in Sec. 6.6.

6.5. Vibrational Eigenmodes - Lamb Modes

To approach the coupled set of partial differential equations for the lattice displacement
u(r, t) and the second order electron density ρ(r, t) (for the intraband and the interband
case respectively), we expand the equations into vibrational eigenmodes of the MNP,
which describe the spatial properties of the spheres. These free oscillations of a sphere
were first described in Ref. [447] solving for the modes of the vibrational equation for the
continuum field u(r, t),

(λ+ µ)∇(∇ · u) + µ∇2u = ρ∂2t u, (6.43)

where µ and λ are the Lamé constants that are related to the elasticity tensor [447,
475]. The equation can be solved using three so-called Helmholtz potentials that satisfy
Helmholtz equations, a full discussion can be found in App. I.5. In our initial approach,
we focus on the Helmholtz potential ϕnlm(r), which predominantly describes radial mo-
tion, aligning with the observations of most experiments [4, 450, 476, 501, 502]. This
allows us to express the displacement u(r) as a gradient,

unℓm(r) = ∇ϕnℓm(r), (6.44a)
with ϕnℓm(r) = jℓ(knr)P

m
ℓ (cos θ) exp{imφ}. (6.44b)

147



6. Radial Oscillations of Metal Nanoparticles

The radial dependence is given by the spherical Bessel functions jℓ(knr), where kn are
the radial wave numbers that are determined by the boundary condition. Implement-
ing stress-free boundary conditions, kn is the nth solution of the boundary conditions,
Eq. 6.45, that is given in terms of the unitless frequency η [447, 448],

η cot η = 1− η2

4δ2
. (6.45)

Here, δ is the ratio of transverse and longitudinal speed of sound cTA/cLA. The fre-
quency ω is connected to the unitless frequency η by the relation ωn = cLA ηn/R where
R is the radius of the sphere. To discuss purely radial modes as observed in experiment,
we focus on the ℓ = 0 case. Introducing units similar to Eq. (6.5) in the homogeneous
equation (6.43), we find

ϕn(r) =

(︃
ℏ

2Mωn

)︃ 1
2 1

kn
j0(knr), (6.46a)

un(r) =

(︃
ℏ

2Mωn

)︃ 1
2 1

kn
∂r(j0(knr))er. (6.46b)

Since the wave numbers kn arise from the stress-free boundary conditions imposed by
Eq. (6.45), the spherical Bessel functions are not orthogonal, making a standard mapping
to the fundamental modes infeasible. Thus, to approach the complex system of partial
differential equations, we expand the displacement u(r, t), and the Helmholtz potential
ϕ(r, t) in terms of the fundamental modes u0(r) and ϕ0(r) of the system related to the
first root of the boundary equation, Eq. (6.45),

ρ(r, t) = ρ(t)ϕ0(r), (6.47a)
u(r, t) = u(t)u0(r). (6.47b)

This expansion effectively assumes that only the fundamental mode of the system is
excited. This is in good agreement with experimental observations [4, 448, 449, 451, 473,
474], where the period of the oscillation is well reproduced from the unitless frequency.
In the following, we will use the definitions of the overlap functions,

A0 ≡
∫︂

u∗
0(r) · u0(r) d

3r, B0 ≡
∫︂
ϕ∗0(r)ϕ0(r) d

3r. (6.48)

Mapping the oscillator on the fundamental modes, u0(r) and ϕ0(r), allows discovering
a dynamical equation for its expansion coefficient u(t),[︁

∂2t + 2γph∂t + ω2
LSP
]︁
u(t) = βρ(t) + ξ∆T (t), (6.49)

with the definition of the scalar thermal overlap,

ξ =
1

A0

∫︂
u∗
0 · ξ d3r. (6.50)

In doing so, we have simplified the complex dynamics of our system to the dynamics
of its fundamental mode, resulting in a basic system of coupled first-order differential
equations. The dynamics of the density expansion coefficient, along with their electric
field overlaps, will be examined separately in the subsequent subsections.
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6.5.1. Thermal Expansion

Since the contribution of the anharmonic potential to the Hamiltonian, Eq. 6.7, describes
the macroscopic process of thermal expansion, we will approximate the corresponding
prefactor in Eq. (6.50) by the classical linear expansion coefficient αcl. This allows to
compare our oscillator equation with the classical description [448, 488]. In our notation,
the linear expansion coefficient is given by

ur(R, t)

|R| = αcl∆T, (6.51)

with the fraction of the radial projection of the lattice displacement u(R, t) = ur(R, t)er
to the total particle radius |R|, where R is chosen to be on the surface of the nanopar-
ticle. Our calculated quantity u(R, t) is a measure of the absolute radial displacement
at a certain lattice position. Comparison of the thermal driving term in Eq. (6.49) with
the classical equivalent in Eq. (6.51) reveals that by expanding in the fundamental Lamb
mode u(r, t) = u0(r)u(t), we find

u(t) =
αclR∆T (t)

A0

∫︂
d3r u∗r(r), (6.52)

so that the coupling constant, describing the interaction with temperature changes in
Eq. (6.49) can be approximated using the linear expansion coefficient αcl as

ξ ≡ αcl
ω2

LSPR
∫︁
d3r u∗r(r)

A0
. (6.53)

This calculation leads to a similar thermal drive term as given in the oscillation equa-
tion in Refs. [448, 451, 473, 474]. Therefore, it is expected that the models agree for
purely thermal drive and lead to a similar oscillation behavior.

6.5.2. Electric Field Overlap

After presenting the expansion of the oscillator equation, which resulted in the scalar
equation, Eq. (6.49), we now extend this expansion, Eq. (6.47), to the electronic equa-
tions. This will be done for the intra- and interband cases, cf. Eqs. (6.36) and (6.42)
that will be treated separately in the subsequent sections.

To a good approximation, we will use the local Mie theory, cf. Sec. 2.4.1, to describe
the electric field inside and outside the nanoparticle. The nanoparticle is much smaller
in size compared to the wavelength of the incident light, making a quasistatic approxi-
mation applicable. Moreover, the nanoparticle is large enough that nonlocal effects can
be neglected. We can then use a Heaviside Theta function Θ(r) to combine the standard
Mie field terms [1, 201] into a single expression:

E(r) = Θ(r −R)Eout +Θ(R− r)Ein, (6.54)

where the individual contributions inside and outside the nanoparticle can be expressed
using the individual definitions [1, 201, 270],

Ein =
3εout

ε(ω) + 2εout
E0, (6.55a)

Eout = E0 +
3n(n · p)− p

4πε0εoutr3
. (6.55b)
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This is illustrated in Fig. 6.5. The dipole moment p is given by p = α(ω)E, where
α(ω) is the polarizability of the MNP that we defined in Eq. (2.55). Here, we will use
in a standard Drude model in first approximation, cf. Sec. 2.4.1. where the frequency-
dependent material permittivity is given by the Drude model.
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Figure 6.5.: Electric Field of a Spherical Metal Nanoparticle. For a z-aligned
incident electric field, the resulting z component is illustrated on the left for the xy-
plane. To the right, we see the x component illustrated for the xz-plane.

Intraband Case

Using the expansion for the intraband electron density from Eq. (6.36), we find

∂tρ(t) +D
ω2

LSP
c21

ρ(t) = −K

B0

∫︂
u∗
0(r) ·

[︂
(Ê · ∇)Ê

]︂
d3r. (6.56)

The overlap integral is taken over the volume of the nanosphere and can be evaluated
using the definition of the electric field in Mie theory, cf. Eq. (6.54),∫︂
u∗
0(r) ·

[︂
(Ê(r, t) · ∇)Ê(r, t)

]︂
d3r (6.57)

=
4π

3

(︃
ℏ

2mωLSP

)︃1/2

Ê
2
[︃
∂rj0(k0R)

k0

(︃
(1− b2)R2 +

4α(ωopt)k̃

R
+

4α2(ωopt)k̃
2

R4

)︃]︃
e−2t2/σ2

,

with the definitions k̃ = 1/4πε0εout and b = 3ε∞/(ε(ωopt) + εout) . This provides the
driving term for the electron gradient in the metal nanoparticle. As Fig. 6.5 indicates,
the main source of the electron density gradients that in turn drive the nanoparticle
oscillation, originates from the boundary, where the electric field gradients are largest.

Interband case

In analogy to the intraband case, using the projection in Eq. (6.42), we derive a first-
order differential equation in time for the second-order electron density in the conduction
band,

∂tρ
c
2(t) =

2eϵ0
ℏA0

Im
{︁
χinter(ωopt)

}︁∫︂
Vs

d3r u∗
0(r) · ∇

⃓⃓⃓
Ê(r, t)

⃓⃓⃓2
− 1

τ
ρc2(t). (6.58)
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6.6. Numerical Results

This equation can be numerically integrated after the overlap integral has been evalu-
ated. Performing the integration over the volume of the nanosphere, the integral in the
driving term can be calculated to be∫︂

u∗
0(r) · ∇

⃓⃓⃓
Ê(r, t)

⃓⃓⃓2
d3r (6.59)

=

(︃
ℏ

8mωLSP

)︃ 1
2 1

k0
∂r(j0(k0R))

[︃(︃
1 +

3εout

ε(ωopt) + 2εout

)︃2

+ 2

(︃
α(ωopt)

4πε0εoutR3

)︃2]︃
Ê

2
e−2t2/σ2

.

Here, ε(ω) is the intraband response of the Drude system within the nanoparticle that
is not incorporated in the interband susceptibility χinter(ω).

6.6. Numerical Results

Now that we have projected our full dynamics on the fundamental mode of the system,
we can numerically evaluate the coupled system of first order differential equations, which
we will do using numerical integration using the Runge-Kutta method. In this section,
we will start investigating the temporal dynamics of the spatial mode coefficient of the
electron density and compare the intraband and interband case. Using these, we analyze
their impact on the nanoparticle oscillation driven by an external electric field, also
comparing the two cases. Lastly, the results will be compared to the experimental results
that were obtained in collaboration with the group of Holger Lange in Hamburg and
published in Ref. [4].

6.6.1. Temporal Density Behavior

Based on the preceding sections, we have identified two competing mechanisms within
the nanostructure that give rise to electron density gradients, which in turn drive the
onset of oscillations. In this section, we analyze their respective temporal behaviors after
mapping them onto the Lamb potential discussed in Sec. 6.5. The results are presented
in Fig. 6.6.
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Figure 6.6.: Temporal Behavior of the Electron Density. The figure illustrates the
temporal evolution of the expansion coefficient of the electron density (blue), as given
by Eqs. (6.56) and (6.58), following optical excitation (blue). Panel (a) corresponds to
the intraband case, while panel (b) represents the interband case.
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6. Radial Oscillations of Metal Nanoparticles

Observing the figures, we note that the temporal behaviors are qualitatively distinct.
In the case of intraband processes, cf. Fig. 6.6(a), the optical density follows the optical
excitation and replicates the same shape as the optical pump profile. This is primarily due
to the fast relaxation time associated with intraband processes in metals, characterized by
a typical damping coefficient γ ≈ 100meV, corresponding to a lifetime of approximately
10 fs. As a result, this relaxation process is significantly shorter than the pulse width,
leading to a reproduction of the shape of the electrical field envelope.

In contrast, occupations in other bands naturally possess much longer lifetimes com-
pared to scattering processes within the same band. For metals, these processes have
lifetimes on the order of a few picoseconds [399, 400, 491], which is considerably longer
than the pulse width. Consequently, we observe a longer lifetime in Fig. 6.6(b).

Given that the temporal behavior of these electron density mechanisms directly in-
fluences the driving terms in the oscillator equation, it is evident that they will lead to
different onset behaviors of the oscillations. In a simplified model, the intraband process
can be envisioned as a Delta-like source, while the interband process resembles a step
function. According to Landau’s theory, this should result in an oscillation onset char-
acterized by sin(ωt) and (1− cos(ωt)), respectively. The numerical results are presented
in the subsequent section.

6.6.2. Oscillation Onset

We now turn to an investigation of the nanoparticle oscillation onset driven by the two
different contributions in the electron density upon optical excitation. In Fig. 6.8, we
provide the individual oscillation behaviors of the radial projection of the relative lattice
displacement, ur(R, t)/R. Here, ur is the projection of the oscillation vector on the radial
unit vector, ur = e∗r · u, which sufficiently characterizes the oscillation amplitude as a
radial oscillation.

Looking at the onset of the oscillation in Fig. 6.7, we note that both driving terms
indeed yield qualitatively quite distinct results. Here, we study the oscillation onset
under the action of the electron density contribution term alone to understand their
qualitative differences. We observe an immediate increase in the lattice displacement
within the first 5 ps, the resulting oscillation behaves sinusoidal and can be described as
a damped sin(ωLSPt) that starts right with the optical pulse. The immediate onset is
mainly caused by the pulse being short compared to the period of the oscillation onset
and accordingly, onsets the oscillation like a delta pulse, as we have seen the electron
density behaves similarly in time, we obtain an effective delta source to the oscillation.

In contrast, the oscillation induced by interband transitions exhibits a qualitatively
distinct temporal behavior compared to the intraband case. In this scenario, the os-
cillation onset is smoother and occurs later in time. This behavior can be attributed
to the qualitative difference in the driving term, as depicted in Figure 6.6. The driving
term associated with interband transitions persists for a longer duration compared to the
optical pulse width. As a result, it can more likely be viewed as a step function driving
the temporal behavior, in contrast to the instantaneous Delta-like term present in the
intraband case.

152



6.6. Numerical Results
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Figure 6.7.: Electron Density Gradient Contributions to Onset of Radial
Breathing Oscillations. The figure presents the first picoseconds of the numerically
determined relative lattice displacement at the surface of the nanoparticle, representing
the relative change in nanoparticle size. Both figures study the isolated effect of the
electron density gradients, disregarding thermal contributions. Panel (a) illustrates the
onset of the intraband electron density contribution to the oscillation, while panel (b)
displays the values for the dominant interband contributions to the oscillation.

6.6.3. Comparison to Current Theory

Until now, our analysis has focused solely on the pure contributions of the additional
driving terms to study their respective temporal behavior. Now, we turn to the solution
of the full oscillator equation and include both the electron density gradients and the
classical thermal expansion source in the evaluation. The thermal expansion term is
essential for accounting for the shift in the equilibrium position resulting from heating.
However, we have not yet included this term, as evident from the fact that the oscillation
is centered around zero once the electron density gradient contribution has dissipated.

By including the thermal terms, we can properly capture the combined effects of the
driving forces and thermal expansion, allowing us to accurately describe the complete
temporal behavior of the system.

In Fig. 6.8, we present a comparison of the oscillation onset resulting from the intra- and
interband contributions, including the thermal driving term. Each figure also examines
the individual contributions from purely thermal and direct interaction.

We observe in Fig. 6.8(a) the oscillation onset for resonant driving of the intraband
plasmon resonance. We observe that the oscillation starts right with the optical pulse.
For this case, the electronic source term leads to an immediate increase in the lattice
displacement within the first 5 ps. Over the same period, the thermally driven part
hardly changes its magnitude and needs more time to start the oscillation, so that with
purely thermal interaction the first oscillation maximum is reached only after about 7 ps.
The combined effect of both driving terms leads to an ultrafast oscillation onset directly
with the optical excitation and a shift of the equilibrium position of the oscillation with
increasing lattice temperature. We observe that the electron density contribution by
far exceeds the thermal contribution in magnitude so that it dominates the oscillation
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Figure 6.8.: Onset of Radial Breathing Mode Oscillations. The figure illustrates
the first picoseconds of the numerically determined relative lattice displacement at the
surface of the nanoparticle, which corresponds to the relative change in nanoparticle
size. Panel (a) illustrates the onset for the intraband electron density, while panel (b)
shows the values for dominant interband contributions to the oscillation.

onset in the combined onset. This causes the oscillation to also become negative, as the
amplitude is larger than the change in equilibrium position.

Qualitatively, similar conclusions can be drawn from the interband case, illustrated in
Fig. 6.8. However, its onset is not as immediate as for the intraband case, which leads
to a phase shift of approximately π/2 in between the two. In addition, the absolute
magnitude of the oscillation is smaller compared to the purely thermal case. As there is
no band-specific electron-phonon coupling constant in the literature, we had to approxi-
mate the difference of valence and conduction band coupling constant in Eq. (6.38). We
used this as a fitting parameter to the experimental data that we will present later in
Sec. 6.6.4 and estimate as 8 % of the individual valence band electron-phonon coupling
elements. This is on the same order of magnitude as the estimations in [373] which are
based on DOS averaged ab initio calculations. From this, we find electron density and
thermal contribution to be similar in magnitude so that the effective oscillation onset
begins on timescales between the two contributions. Having distinguished the individual
contributions to the oscillation, we still have to compare to the current classical model
[448, 451, 473, 474]. As discussed previously, these models are reproduced from our ap-
proach when only including the thermal source in the oscillator equation. Accordingly,
the classical model coincides with the golden curves in Fig. 6.8. Accordingly, our model
for the thermal source reproduces the temporal behavior observed in the classical model
when the hot electron pressure contribution is not included.

In order to discuss the onset behavior of the individual models, we show the full oscil-
lation onset from the full intraband, the full interband and the purely thermal/classical
model in Fig. 6.9. We observe that the respective curves are shifted by approximately
π/2, where the onset from the thermal contribution slightly depends on the excitation
power and shifts to earlier times, and smaller magnitudes for lower excitation powers.
The values used for the numerical implementation can be found in Tab. A.3. Apart from
the phase, a qualitative difference is that the ratio of electron density gradient to ther-
mal contribution is much more on the electron density side for the intraband case, which
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Figure 6.9.: Phase Shift: Oscillation Onset Depending on the Coupling Model.
The onset behavior of the three models at hand is compared. Following the optical
pulse (gray), the oscillation starts with different phases, depending on the interaction
model. The most direct onset is caused by the intraband source (blue), followed by the
interband source (red), and the purely thermal source (gold).

results in its value also becoming negative. At this stage, it would also be interesting to
not only compare the oscillation onset for interband transitions with experimental data
but also the one where the intraband plasmon is driven in resonance to see how strong
this effect actually is.

6.6.4. Comparison to Experimental Results

In the following, we compare the results of our theory to experimental data that was
recorded by our collaborators in Hamburg, which we also jointly published in Ref. [4].
In Sec. 6.1, we presented details of the experimental advance described in Ref. [4].

In Fig. 6.10, the experimental results from tSAXS-SPI and TA measurements are plot-
ted and compared with the theoretical predictions we obtained previously, in particular,
we show the relative lattice displacement ur(R, t)/R for the individual influence of both,
the electronic density gradient and the thermal contribution and for the combined effect
of both, where ur is the projection of the oscillation vector on the radial unit vector
ur = e∗r · u which we have given in percent.

This comparison impressively demonstrates the advancements and capabilities of the
tSAXS-SPI technique in capturing the complete oscillation dynamics, including the initial
picosecond regime, which was previously inaccessible with TA experiments which can in
this case only detect the second oscillation hump. In the experiment, an immediate
increase in the lattice displacement by up to 0.5% within the first 5 ps after the optical
excitation pulse is observed and thus earlier than the excitation described using a purely
thermal model (golden curve) which hardly changes its magnitude during the same time.
A purely thermal source term needs more time to start the oscillation, so that with
purely thermal interaction, the first oscillation maximum is reached only after about 7 ps.
Hence, the oscillation onset occurs in the kinetic limit of the electron gas excitation, as
we illustrated earlier in Fig. 6.1.
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Figure 6.10.: Experiment-Theory Comparison for Oscillation Onset. Compari-
son of the temporal dynamics of the oscillation detected in the tSAXS-SPI and the TA
measurement compared with the theoretical results for an oscillation onset caused by
the thermal source, the interband electron density gradients and the combined action
of the two previous. The TA data was scaled to match the data.

This oscillation onset is well captured by the additional driving term originating from
spatial gradients in the electron density, which we have introduced in this chapter of
the thesis. The combined effect of both driving terms leads to an ultrafast oscillation
onset directly with the optical excitation and a shift of the equilibrium position of the
oscillation with increasing lattice temperature. Accordingly, spatial electron gradients
are identified as the dominating origin of the optically induced nanoparticle oscillations,
since it can explain the onset of the oscillation. The thermal source acts via the lattice
temperature change and causes an additional thermal expansion of the lattice, whose
mayor impact is the shift of the equilibrium particle radius after the electron density has
relaxed to its equilibrium position.

At this stage, we concluded that the effect observed in the experiment is caused by the
interband coupling term as, firstly, it matches the phase of the onset of the oscillation
and, secondly, coincides with the excitation wave length in the experiment which was
λ = 400 nm and thus in the interband regime of gold.

6.7. Conclusions and Perspectives

In conclusion, our study has revealed important insights into the microscopic description
of electron-phonon coupling in metal nanoparticles (MNPs) and its role in initiating
radial oscillations. We have demonstrated that a direct interaction between optically
induced spatial electron gradients and coherent phonons plays a crucial role in driving the
oscillatory behavior of MNPs. This interaction term, beyond the thermal contributions,
is incorporated into the oscillator equation for the lattice displacement and leads to an
immediate onset of nanoparticle oscillation when subjected to optical excitation with
sufficiently short pulse widths.
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6.7. Conclusions and Perspectives

Our numerical evaluations have shown that the direct coupling between electrons and
coherent phonons is the dominant source for the onset of radial oscillations on short time
scales. In contrast, the thermal contribution primarily shifts the equilibrium position
of the oscillation and cannot explain the immediate onset observed for short pulses.
Additionally, we find that the indirect interaction via incoherent phonons does not play
a dominant role in the early stages of the oscillation.

Furthermore, our experimental data obtained through time-resolved structural imaging
of the breathing mode onset in gold nanoparticles (AuNPs) using single-particle imaging
has provided strong confirmation of the requirement for two excitation sources for the
breathing oscillations. This direct experimental evidence supports our theoretical frame-
work and resolves previous uncertainties that were indicated indirectly through phase
discrepancies. The combined analysis of time-resolved structural and optical data neces-
sitated the inclusion of direct interactions between the electronic system and coherent
phonons, which emerged as the dominant source term on short time scales, in addition
to the thermal driving terms.

Our comprehensive theoretical model not only quantitatively explains all the experi-
mental findings but also provides valuable insights into the plasmon-lattice interaction
phenomenon. Moreover, the simultaneous coupling of the initial electron and lattice dy-
namics, arising from the immediate coupling of optically induced electron-density gradi-
ents and the breathing oscillation, has the potential for significant implications in energy
transformations involving plasmonic hot carriers.

Overall, our study highlights the importance of considering direct electron-phonon
interactions in understanding the initiation of radial oscillations in metal nanoparticles,
paving the way for further exploration of plasmon-lattice interactions and their broader
applications.
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7. Conclusions and Perspectives

In summary, this work has led to the development of a comprehensive microscopic frame-
work that describes spatio-temporal, momentum-resolved electron dynamics in Wigner
phase space that is applicable to metal nanostructures. Various situations have been suc-
cessfully investigated on a microscopic level, reproducing relevant macroscopic material
models. Additionally, the current description of TMDC excitons has been extended to
include hybrid metal-semiconductor nanostructures.

First, we derived momentum-resolved equations for exciton motion under the inter-
action with a single metal nanoparticle. This allowed us to identify a novel eigenvalue
equation describing the center-of-mass motion of excitons in a plasmon-induced poten-
tial characterized by hybridized exciton-plasmon states. Our studies have shown that the
existence of these hybridized states indicates strong coupling between plasmons and exci-
tons, with excitons being spatially localized in the monolayer near the metal nanoparticle.
The strong coupling occurred between the localized surface plasmon in the nanoparticle
and momentum-dark excitons in the TMDC layer, observable in the electric near-field.
Our findings suggest that metal nanoparticles can effectively localize excitons in two-
dimensional TMDC layers, opening up potential applications in single-photon sources
and making a microscopic description of surface plasmon polariton propagation possible.

The key achievement of this work is the successful development of a comprehensive
microscopic approach for studying spatio-temporal, momentum-resolved electron and
phonon dynamics in metals. This approach not only reproduces macroscopic equations
in both local and nonlocal formulations, but also accurately incorporates geometrical
effects and multi-band processes, allowing for a description of interband transitions based
on microscopic parameters. Consequently, this framework lays a solid foundation for
exploring complex interactions in metal systems and offers the potential for physically
more meaningful insights compared to macroscopic fit models. By integrating ab initio
calculations for dipole matrix elements, a substantial reduction in the number of fitting
parameters is expected, significantly enhancing the model’s accuracy and applicability.

The developed microscopic approach was used to investigate the potential of actively
tuning the optical response of metal nanoparticles using strong THz fields. For this pur-
pose, a fully numerical method combining the three-dimensional momentum-resolved mi-
croscopic Boltzmann scattering equations for the electronic Wigner function with a three-
dimensional finite-difference time-domain solver was developed. This approach allows for
a spatio-temporal treatment of microscopic dynamics, encompassing non-equilibrium,
non-perturbative, and nonlocal phenomena, including interband transitions.

To study the influence of a strong THz field on the plasmon resonance of a spheri-
cal nanoparticle in more detail, we additionally derived an analytically model, treating
the THz field non-perturbatively. This approach reveals that the additional THz pulse
effectively renormalizes the electronic ground state of the system through pressure renor-
malization of the electron gas within the nanoparticle, leading to a blue shift of the
plasmon resonance.
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7. Conclusions and Perspectives

Finally, the framework was applied to study the onset of radial oscillations in spheri-
cal nanoparticles. The study highlighted the importance of considering direct electron-
phonon interactions in understanding the onset of radial oscillations in metal nanopar-
ticles. Spatial electron density gradients were identified as the dominant driving source
for the onset of radial oscillations on short time scales beyond thermal contributions,
explaining recent experimental results from our experimental collaborators.

Overall, the developed theory enables a microscopic treatment of electron dynamics
in metals, allowing for the incorporation of interband transitions and intricate band
structures in the theoretical description. This approach promises to capture ultrafast
nonlinear, non-equilibrium, non-isotropic electron dynamics in metals and offers the ex-
citing possibility of shedding light on fundamental processes in metal nanostructures from
a microscopic perspective.
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A. Parameters

The individual permittivity models are the Drude model εD(ω), the Drude-Lorentz model
εDL(ω) , and the critical point model εCP(ω),

εD(ω) = ε∞ −
ω2
p

ω(ω + iγ)
, (A.1a)

εDL(ω) = ε∞ −
ω2
p

ω(ω + iγ)
+

∆ϵΩ2
L

Ω2
L − ω2 − iγiω

, (A.1b)

εCP(ω) = ε∞ −
ω2
p

ω(ω + iγ)
+
∑︂
i=1,2

Aiωi

[︃
eiϕi

ωi − ω − iγi
+

e−iϕi

ωi + ω + iγi

]︃
. (A.1c)

Table A.1.: Material parameters for gold permittivity

Parameter Value Unit Reference
Drude Model from Ref. [274]
ϵ∞ 9.0685 [274]
ℏωp 8.91236 eV [274]
ℏγp 0.07593 eV [274]
Drude-Lorentz Model from Ref. [274]
ϵ∞ 5.9673 [274]
ℏωp 8.74115 eV [274]
ℏγp 0.06584 eV [274]
ℏΩL 2.68847 eV [274]
ℏΓL 0.43367 eV [274]
ℏ∆ϵ 1.09 eV [274]
Critical Point Model from Ref. [277]
ϵ∞ 1.53 [277]
ℏωp 8.55063 eV [277]
ℏγp 0.072932 eV [277]
A1 0.94 [277]
φ1 −π/4 [277]
ℏω1 2.64923 eV [277]
ℏγ1 0.53906 eV [277]
A2 1.36 [277]
φ2 −π/4 [277]
ℏω2 3.74575 eV [277]
ℏγ2 1.31898 eV [277]
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Appendix A. Parameters

Table A.2.: Material parameters for TMDC and geometry used in the numerical imple-
mentation for the hybrid structure

Parameter Value Unit Reference
d 0.27 eC nm [11]
MMoSe2 6.2535 fs2 eV nm−2 [13]
ℏγ (300 K) 0.0269 eV b

φ0 0.51 nm−1 a

rxy 8 nm
rz 4 nm
zex −1 nm
zpl 5 nm
ε1 4.5
ε2 1

a Calculated from Rytova approach for 4 layer system similar to Ref. [22]
b Calculated by exploiting the method from Ref. [176]

Table A.3.: Material parameters for gold, used in the numerical implementation of
radial oscillations

Parameter Value Unit Reference
m 5.6856800 fs2eV/nm2

M 196.966569× 10439.60413 fs2eV/nm2 [503]
cLA 3.24× 10−3 nm fs−1 [504, 505]
cTA 1.2× 10−3 nm fs−1 [504, 505]
γel 0.14099 fs−1 [111, 273]
γph 4× 10−5 fs−1 a

Zeff 10.938 [497]
αcl 14.2× 10−6 K−1 [504]
G 3.1× 1011 W K−1 mol−1 [472]
Cl 25.4 J K−1 mol−1 [504]
ζ 6.74× 10−4 J K−2 mol−1 [389]
τs 4× 105 fs a

aObtained from fits to data done in Ref. [448]

Table A.4.: Universal constants in semiconductor units.
e 1 eC m0 5.6856800 fs2 eV/nm2

c 299.792458 nm fs−1 mP 10439.60413 fs2 eV nm−2

ℏ 0.658212196 eVfs kB 8.61745×10−5eV K−1

ε0 5.526308×10−2 eC2 eV−1 nm−1 π 3.14159265359
µ0 2.013384742×10−4 eV fs2eC−2 nm−1
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B. Fourier Transformation

The spatial Fourier transformations used in this work are

A(r, t) =
1

(2π)3

∫︂
d3qeiq·rA(q, t), (B.1a)

A(q, t) =

∫︂
d3re−iq·rA(r, t). (B.1b)

The Fourier transform in time and frequency is given by

A(t) =
1

2π

∫︂
dω e−iωtA(ω), (B.2a)

A(ω) =

∫︂
dt eiωtA(ω). (B.2b)
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C. Light-Matter Interaction Hamiltonian
in r-E coupling

In nano-optics, we are interested in the interaction of electromagnetic radiation with
different materials on the nanoscale. The dimensions of the considered materials are
small and require is a quantum description. The radiation could be described using a
quantum theory too. Often, it turns out that the use of the wave picture is sufficient
to describe the observed effects. This allows to describe optical radiation using classical
field theory based on Maxwell’s equation. Throughout this thesis, we will work in this
framework of semi-classical theory that employs a classical picture for the radiation fields
and a quantum theory of matter [332].

Generally, there are two equivalent formalisms that are used to describe the semi-
classical light-matter interaction [333]. The options of pA and rE coupling differ in the
fact which field quantity couples to which matter quantity. We decide to use the rE
Hamiltonian that couples the position r to the electric field E. The Hamiltonian in rE
coupling can be derived using various methods. The interested reader may be referred
to the great derivation in Ref. [333].

Both approaches yield a similar definition of the second quantization Hamiltonian,
only differing in the matrix element. In first quantization, the rE Hamiltonian reads

H(1) = −q r ·E(r, t), (C.1)

which quantifies the classical dipole energy in an external field. Applying the quanti-
zation formalism for one particle quantities presented in Sec. 2.1, we obtain

Ĥ
(2)

= −q
∑︂
λλ′
kk′

∫︂
d2r∥ ϕ

∗
kλ(r) r ·E(r)ϕk′λ′(r) λ†kλ

′
k′ , (C.2)

where we once again made use of the abbreviated notation for annihilation and creation
operators. Expanding the wave function in lattice periodic Bloch functions

ϕkλ(r) =
1√
V
eik·ruλk(r), (C.3)

with V being the volume used to ensure normalization, yields

Ĥ
(2)

= − q

V

∑︂
λλ′
kk′

∫︂
d2r∥ e

−i(k−k′)·r u∗λk(r) r ·E(r)uλ′k′(r) λ†kλ
′
k′ . (C.4)

We can express the electric field in terms of its Fourier transform for the in-plane
component

Ĥ
(2)

= − q

V 2

∑︂
λλ′
kk′

∫︂
d2r∥ e

−i(k−k′)·r u∗λk(r) r ·
∑︂
Q

eiQ·rEQ uλ′k′(r) λ†kλ
′
k′ , (C.5)
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Appendix C. Light-Matter Interaction Hamiltonian in r-E coupling

and replace r → Rn + r and the overall integral by a sum over individual integrals in
the unit cells, which allows us to make use of the periodicity of the Bloch functions

Ĥ
(2)

=− q

V 2

∑︂
λλ′
kk′
Q

∑︂
Rn

∥

e−i(k−k′−Q)·Rn×

×
∫︂

UC
d2r∥ e

−i(k−k′−Q)r u∗λk(r) (r+Rn) ·EQ uλ′k′(r) λ†kλ
′
k′ . (C.6)

C.1. Interband Light-Matter Interaction

If we restrict our calculations to interband transitions λ′ = λ̄, with λ̄ being the opposite
of λ, we can evaluate the λ′ sum and neglect the Rn

∥ contribution to the integral due to
the orthogonality of the Bloch functions. In addition, we will approximate the electric
field to be constant throughout the unit cell in z direction.

Ĥ
(2)

= − q

A2

∑︂
kk′
λQ

Nδk−k′−Q,0⏟ ⏞⏞ ⏟∑︂
Rn

e−i(k−k′−Q)·Rn × (C.7)

×
∫︂

UC
d2r∥ e

−i(k−k′−Q)r u∗λk(r) r ·E(Q, z0)uλ̄k′(r) λ
†
kλ̄k′ (C.8)

We chose to restrict to the first Brillouin zone such that the Kronecker delta equates
the momentum to zero. Evaluating it yields

Ĥ
(2)

= − q

V

N

V⏞⏟⏟⏞
≡ 1

Ω

∑︂
kQ
λ

∫︂
UC

d2r∥ u
∗
λk(r) r ·E(Q, z0)uλ̄k−Q(r) λ†kλ̄k−Q. (C.9)

Here, Ω is the volume of the first Brillouin zone. As our final definition of the carrier-
light Hamiltonian in rE coupling, we find

Ĥ
(2)

= − 1

V

∑︂
k,Q
λ

dλλ̄
k,k−Q ·E(Q, z0) λ

†
kλ̄k−Q, (C.10)

where we defined a dipole element in analogy to the classical case as

dλλ̄
k,k−Q =

1

Ω

∫︂
UC

d2r∥ u
∗
λk(r) q ruλ̄k−Q(r). (C.11)

C.2. Intraband Light-Matter Interaction

Restricting to the same band from Eq. (C.6), we find

Ĥ
(2)

= − q

V 2

∑︂
kk′
Qλ

∑︂
Rn

∫︂
UC

d2r∥ e
−i(k−k′−Q)(r+Rn) u∗λk(r) (r+Rn) ·EQ uλk′(r) λ†kλk′ .

(C.12)

166



C.2. Intraband Light-Matter Interaction

Here, now use the identity

rei(k−k′)·r = −i∇ke
i(k−k′)·r, (C.13)

and obtain

Ĥ
(2)

= − q

V 2

∑︂
kk′
Qλ

∑︂
Rn

∫︂
UC

d2r∥ u
∗
λk(r)

(︂
−i∇k′e−i(k−k′−Q)(r+Rn)

)︂
·EQ uλk′(r) λ†kλk′ .

(C.14)

From this, we obtain from integration by parts, where the surface contributions are
assumed to vanish an expression that reads

Ĥ
(2)

=− iq

V 2

∑︂
kk′
λ

∑︂
Rn

E(Rn)e
−i(k−k′)·Rn

)×

×
∫︂

UC
d2r∥ u

∗
λk(r)

(︂
(∇k′uλk′(r)) λ†kλk′ + uλk′(r) λ†k∇k′λk′

)︂
. (C.15)

The first term can be identified with a pure interband term and such vanishes for this
description, an insightful discussion can be found in Ref. [506]. Hence, after using the
orthonormality of the Bloch factors, we find for the intraband Hamiltonian

Ĥ
(2)

= − iq
V

∑︂
kQλ

EQuλk(r) λ
†
k∇kλk+Q. (C.16)
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D. Exciton-Plasmon Hybridization

D.1. Complex Contour Integration

In the following, we provide our solution of the wave equation:(︃
∇2 − ε(z)

c2
∂2

∂t2

)︃
E(r, t) =

1

ε0c2
∂2

∂t2
P(r, t)− 1

ε(z)ε0
∇(∇ ·P(r, t)), (D.1)

which we will solve using the Green’s method. Considering the right-hand side of
Eq. (D.1) as inhomogeneity, the wave equation can be written as(︃

∇2 − ε

c2
∂2

∂t2

)︃
E(r, t) = S(r, t), (D.2)

The equation that defines the Green’s function is given by(︃
∇2 − ε

c2
∂2

∂t2

)︃
G(r− r′, t− t′) = δ(r− r′)δ(t− t′). (D.3)

To find the Green’s function, we consider Eq. (D.2) and use Fourier transform to find
an expression for the wave equation in momentum and frequency space as

EQ(ω) =
1

ε ω2

c2
−Q2

SQ(ω). (D.4)

From this equation, it is straightforward to identify the Green’s function in Fourier
space because the convolution of Green’s function and inhomogeneity in real space turns
into a product in Fourier space. We find for the Green’s function

GQ(ω) =

(︃
ε ω2

c2
−Q2

)︃−1

. (D.5)

From this, it is easy to provide a solution for the electric field solely depending on
momentum and frequency

EQ(ω) =

(︃
ε ω2

c2
−Q2

)︃−1(︃
− ω2

ε0c2
PQ(ω) +

1

εε0
Q(Q ·PQ(ω))

)︃
. (D.6)

However, we want to employ the inherent cylindrical symmetry of our system to find
the electric field and its dependencies on Q∥ which governs the in-plane dynamics of the
excitons while being located at the spatial position of the TMDC. Thus, we need the
electric field

EQ∥(z) =

∫︂
dz′ GQ∥(z − z′; ω)SQ∥(z

′). (D.7)
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Appendix D. Exciton-Plasmon Hybridization

which is given by a one dimensional convolution of Green’s function and inhomogeneity.
Transforming the inhomogeneity can be done by a straightforward convolution, and thus
we are left with finding the Green’s function with these dependencies. This can be done
by an inverse Fourier transform of the Green’s function in Eq. (D.5)

GQ∥(z − z′, ω) =
1

2π

∫︂
dQz e

iQz(z−z′) 1
ε ω2

c2
−Q2

∥ −Q2
z

. (D.8)

Abbreviating kQ∥ =
√︂

ε ω2

c2
−Q2

∥, this equation can be simplified to

GQ∥(z − z′, ω) = − 1

2π

∫︂
dQze

iQz(z−z′) 1

(Qz + kQ∥)(Qz − kQ∥)
. (D.9)

The exponential factor vanishes for either Qz → ±i∞. This allows to add a semicircle
at either ±i∞ to the integration path, as it does not contribute. Hence, the integral
along the real axis can be replaced by a complex integral along a closed contour γ. This
contour integral can then be solved by using the residue theorem∮︂

γ
f(z) = 2πi

∑︂
ak

Res[f, ak], (D.10)

that equates the contour integral to the sum of all residues. For didactic reasons, we
assume z−z′ > 0 in the following. However, the case for z−z′ < 0 works analogously. As
illustrated in Fig. D.1, there are several distinct options for the choice of contour. Along
the real axis we need to move the contour either above or below the singularities as the
integrand diverges right at the singularity. For the general case, we could also assume to
skip both singularities, either below or above. This is mostly done for temporal integrals
that need to obey causality and lead to retarded or advanced Green’s functions. However,
as we perform a spatial integral, we are interested in symmetric solutions. Thus, we need
to make sure to include at least one singularity in the contour, irrespective of the half
plane that is chosen for the closure of the contour. This leaves us with the three options
given in Fig. D.1, each of which only includes one singularity.

Re

Im

k-k

(a) εω2

c2
> Q2

∥ → kQ∥ ∈ R

Re

Im

k-k

(b) εω2

c2
> Q2

∥ → kQ∥ ∈ R

Re

Im

k

-k

(c) εω2

c2
< Q2

∥ → kQ∥ ∈ iR

Figure D.1.: Contour Integral: Different Contour Closures. The figure illus-
trates the contour integral, showcasing various options for closing the contour based on
different starting conditions.

The contours from Fig. D.1a/D.1b only differ in the singularity that is included. The
Green’s functions obtained from the individual calculations differ by an overall sign and
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D.2. Numerical Solution of the Plexcitonic Equation

the sign of the exponent. Thus, the respective solutions either correspond to exponential
damping or amplification (or ingoing or outgoing waves). We choose the physical solution
that is damped for large Q∥ and find the Green’s function

GQ∥(z − z′; ω) = − i

2kQ∥
e
ikQ∥ |z−z′|

. (D.11)

This will be used in the main text to find a solution for our specific geometry. For the
geometry in Ch. 2, one can find

Gst
Q∥(z, z

′) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2Q∥
e−Q∥|z−z′| − 1

2Q∥
ε1−ε2
ε1+ε2

e−Q∥|z+z′| , z, z′ > 0

− 1
Q∥

ε(z)
ε1+ε2

e−Q∥|z−z′| , sgn(z) ̸= sgn(z′)

− 1
2Q∥

e−Q∥|z−z′| − 1
2Q∥

ε2−ε1
ε1+ε2

e−Q∥|z+z′| , z, z′ < 0,

(D.12)

D.2. Numerical Solution of the Plexcitonic Equation

In Ch. 3, we solve the Wannier equation as well as the plexcitonic eigenvalue equation by
numerical eigendecomposition. A great instruction on the numerical implementation of
the Wannier equation can be found in Ref. [507]. Here, we employ the same formalism
and apply it to the plexcitonic eigenvalue equation, Eq. (3.42),[︄

ℏ2Q2
∥

2M
+XQ∥(zex)

]︄
ΨR,λ

Q∥
− 1

(2π)2

∫︂
d2Q′

∥ VQ∥Q′
∥
(zex, zpl; ω) Ψ

R,λ
Q′

∥
= EλΨR,λ

Q∥
, (D.13)

To solve this using numerical eigendecomposition, we discretize the integral to express
it as a matrix product. With this, the first two terms provide contributions to the
diagonal elements only, while the integral gives diagonal and off-diagonal contributions.
The sum is performed over all momenta, including the two degrees of freedom Q∥ and
φ′. Hence, the plexcitonic eigenvalue equation is approximated as

⎛⎜⎜⎝
B

0,0
B

0,dQ∥
...

B
dQ∥,0

B
dQ∥,dQ∥

...

...
...

. . .

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψR,λ
0,0

ψR,λ
0,dφ
...

ψR,λ
dQ∥,0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Eλ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψR,λ
0,0

ψR,λ
0,dφ
...

ψR,λ
dQ∥,0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (D.14)

with

B
Q∥,Q′

∥
=

⎛⎜⎜⎜⎝
W 0,0

Q∥,Q′
∥

W 0,dφ
Q∥,Q′

∥
...

W dφ,0
Q∥,Q′

∥
W dφ,dφ

Q∥,Q′
∥

...

...
...

. . .

⎞⎟⎟⎟⎠ , (D.15)

and

Wφ,φ′

Q∥,Q′
∥
= δQ∥,Q′

∥

[︃ℏ2Q2
∥

2M
+XQ∥(zex)

]︃
− dQ′

∥Q
′
∥dφ

′VQ∥,φ,Q′
∥,φ

′(zex, zpl; ω). (D.16)

The prefactors of the second term originate from careful consideration of the Jacobian
determinant in polar coordinates.
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E. Screened Coulomb Potential in
Multilayer Systems

In multiple projects throughout my PhD thesis, we needed to calculate the Coulomb
potential as a solution for of Poisson’s equation for layered systems of arbitrary number
of layers and varying thicknesses. In particular, for hybrid systems, consisting either of
TMDC heterostructures or hybrid inorganic-organic system, the computation of 5 layers
was crucial. For the AuNP on TMDC project, we presented in Chap. 3, a four layer
system was employed. Here, we will start describing a 5 layer system and later show how
we can generalize this to a system containing N layers of thickness di.

E.1. Coulomb Potential for 5-Layer System

Assuming a system as illustrated in Fig. E.1, we have to solve the Poisson equation [22]
which read in the individual layers,

∂2V 1
k (z, z

′)

∂z2
− k2V 1

k (z, z
′) = 0, (E.1a)

∂2V 2
k (z, z

′)

∂z2
− k2V 2

k (z, z
′) = 0, (E.1b)

∂2V 3
k (z, z

′)

∂z2
− k2V 3

k (z, z
′) = 0, (E.1c)

∂2V 4
k (z, z

′)

∂z2
− k2V 4

k (z, z
′) = − q

ε0ϵ4
δ(z − z′), (E.1d)

∂2V 5
k (z, z

′)

∂z2
− k2V 5

k (z, z
′) = 0, (E.1e)

and match the boundary conditions specified at the respective z position,

z = −R− L1 : V 1
k = V 2

k and ϵ1
∂V 1

k

∂z
= ϵ2

∂V 2
k

∂z
, (E.2a)

z = −R : V 2
k = V 3

k and ϵ2
∂V 2

k

∂z
= ϵ3

∂V 3
k

∂z
, (E.2b)

z = 0 : V 3
k = V 4

k and ϵ3
∂V 3

k

∂z
= ϵ4

∂V 4
k

∂z
, (E.2c)

z = L2 : V 4
k = V 5

k and ϵ4
∂V 4

k

∂z
= ϵ5

∂V 5
k

∂z
. (E.2d)
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0 dIV-dIII

I III IV V

z

II

-dII-dIII

Figure E.1.: Geometry Illustration of the 5-Layer System. The figure depicts the
dimensional geometry of the 5-layer system, where each section has a width di. Our
particular interest lies in the Coulomb potential within the fourth layer.

The Poisson equations in Eqs. (E.1) are solved using the Ansatz

V 1
k = a1e

k(z−z′), (E.3a)

V 2
k = b1e

k(z−z′) + b2e
−k(z−z′), (E.3b)

V 3
k = c1e

k(z−z′) + c2e
−k(z−z′), (E.3c)

V 4
k =

q

2ε0ϵ4k

(︂
e−k|z−z′| + d1e

k(z−z′) + d2e
−k(z−z′)

)︂
, (E.3d)

V 5
k = f2e

−k(z−z′). (E.3e)

From this, we find for the 5 layer case

V 4
k =

q

2ε0ε4k

{︃
e−k|z−z′| +

1

e2kd − δ45δ41
(E.4)

×
[︃
2δ41δ45 cosh k(z − z′) + ekd

(︂
δ45e

k(z+z′−d) + δ41e
−k(z+z′−d)

)︂]︃}︃

where we define,

δ41 =
ε4 − ε3∆31

ε4 + ε3∆31
, ∆31 =

e2kd3 − δ31
e2kd3 + δ31

, (E.5a)

δ31 =
ε3 − ε2∆21

ε3 + ε2∆21
, ∆21 =

e2kd2 − δ21
e2kd2 + δ21

, (E.5b)

δ21 =
ε2 − ε1
ε1 + ε2

, δ45 =
ε4 − ε5
ε4 + ε5

. (E.5c)

E.2. Extension to N-layer System

Closer inspection of Eqs. (E.4) and (E.5) reveals that there exists a straightforward
approach to generalize Eq. (E.4) for a system consisting of N layers of thickness di as
depicted in Fig. E.2.
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E.2. Extension to N-layer System

0 di-di-1

I i-1 i

z

...

-dII-..-di-1

i+1 ... N

di+di+1 di+..+dN-1

Figure E.2.: Sketch of N-Layer System. The figure illustrates the generalization to
an N-layer system, where each section has a width di. Our specific focus centers on the
Coulomb potential within the ith layer.

Assuming the charge to be in the ith layer, we can derive an expression for the potential
in the ith layer that reads

V i
k =

q

2ε0εik

{︃
e−k|z−z′| +

1

e2kdi − δinδi1
(E.6)

×
[︃
2δi1δin cosh k(z − z′) + ekdi

(︂
δine

k(z+z′−di) + δi1e
−k(z+z′−di)

)︂]︃}︃
where we find a recursive formula to express the appearing δ-relations,

δi1 =
εi − εi−1∆i−1,1

εi + εi−1∆i−11
, ∆i1 =

e2kdi − δi1
e2kdi + δi1

, (E.7a)

δin =
εi − εi+1∆i+1,N

εi + εi+1∆i+1N
∆in =

e2kdi − δin
e2kdi + δin

, (E.7b)

δ21 =
ε2 − ε1
ε1 + ε2

, δN−1,N =
εN−1 − εN
εN−1 + εN

. (E.7c)

The terms in Eq. (E.7c) end the recursive description. In the limit of N → 3 with
ε1 = 1 = ε3, ε2 = ε, and di = d, the formula for the potential reproduces the typical
Rytova potential given in Ref. [22],

Vk =
q

2ε0εk

[︃
e−k|z−z′| +

2δ

e2kd − δ2

{︃
δ cosh k(z − z′) + ekd cosh k(z + z′ − d)

}︃]︃
(E.8)
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F. Microscopic Spatio-Temporal
Electron Description

Here, we provide details on the derivation of dynamical equations in the spatio-temporal
framework. We start with the equations for the single bands before we continue using
the definition for multiple bands.

F.1. Microscopic Dynamics in Single-Band Description

In the following subsection, we provide some detail on how we calculate the the micro-
scopic scattering equations for the electronic Wigner function,

fk(r, t) =
∑︂
q

eiq·r
⟨︂
a†k−q/2ak+q/2

⟩︂
(t), (F.1)

We include the free electron contribution, electron-light, electron-phonon and Coulomb-
mediated electron-electron interaction.

F.1.1. Free Electronic Motion

For the undisturbed contribution, it becomes straightforward to derive the equations of
motion. As we know from most semiconductor equations, we find for

∂tfk(r) =
∑︂
q

eiq·r∂t

⟨︂
a†
k−q

2
ak+q

2

⟩︂
(F.2)

= − i

ℏ
∑︂
q

eiq·r

⟨︄[︄
a†
k−q

2
ak+q

2
,
∑︂
k

ϵka
†
kak

]︄
−

⟩︄
(F.3)

=
i

ℏ
∑︂
q

eiq·r
(︂
ϵk−q

2
− ϵk+q

2

)︂⟨︂
a†
k−q

2
ak+q

2

⟩︂
(F.4)

At this stage, we can now use two methods to approach this problem. One can either
use the parabolic approximation for the dispersion and effectively find

∂tfk(r, t) = −i
∑︂
q

vk · qeiq·r
⟨︂
a†
k−q

2
ak+q

2

⟩︂
(F.5)

= −
∑︂
q

vk∇re
iq·r
⟨︂
a†
k−q

2
ak+q

2

⟩︂
(F.6)

= −vk · ∇rfk(r, t) (F.7)

where we use vk = ∇kϵk/ℏ = ℏk/m for the electron group velocity. The other one is the
use of the convolution theorem, followed by a gradient expansion. The latter will not be
discussed in detail here.
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F.1.2. Electron-Light Interaction

For a single-band model, we only consider intraband transitions in the Hamiltonian in
Eq. (4.1d)

∂tfk(r, t) = − i

ℏ
∑︂
q

eiq·r

⟨︄⎡⎣a†
k−q

2
ak+q

2
,
ie

V

∑︂
k,K,λ

E−K ·∇K(λ†kλk+K)

⎤⎦
−

⟩︄
(F.8)

=
ie

V

∑︂
qK

eiq·rE−K · ∇K

(︂
fk−q

2
,k+q

2
+K − fk−q

2
−K,k+q

2

)︂
(F.9)

=
ie

V

∑︂
qK

eiq·rE−K · ∇k

(︂
fk−q

2
,k+q

2
+K + fk−q

2
−K,k+q

2

)︂
(F.10)

=
ie

V

∑︂
qK

eiq·re−iK·rE−K · ∇k

(︃
fk−q

2
+K

2
,k+q

2
+K

2
+ fk−q

2
−K

2
,k−K

2
+q

2

)︃
(F.11)

In the last line, the underlines refer to the component of the Wigner function that
the derivative acts upon. At this stage, it is usually assumed that the momentum of
the light is much smaller compared to the electron momentum, k ≪ K, which is a good
assumption due to the comparatively steep light dispersion. Thus, we find:

∂tfk(r, t) = ie
1

V

∑︂
K

E−Ke
−iK·r

⏞ ⏟⏟ ⏞
=E(r)

·
∑︂
q

eiq·r∇kfk−q
2
,k+q

2
(F.12)

= ieE(r, t) · ∇kfk(r, t). (F.13)

This will be the general formula that we employ to describe intraband transitions.

F.1.3. Electron-Phonon Interaction

As electron-phonon interaction provides the dominant dephasing mechanism in met-
als [399, 400], we will derive microscopic electron-phonon scattering equations. In the
semiconductor community, these equations have allowed to numerically calculate the
linewidth of radiative and non-radiative processes [19, 176, 180, 243]. To derive the
electron-phonon scattering contributions, we follow a similar derivation as previously for
the electron-electron scattering processes.
From the electron-phonon Hamiltonian in Eq. (4.1c), we find

∂tfk(r)

⃓⃓⃓⃓
el-ph

= − i

ℏ
∑︂
q,q′

eiq·rgq′

[︃⟨︂
b†−q′a

†
k−q/2ak−q′+q/2

⟩︂
−
⟨︂
b†−q′a

†
k+q′−q/2ak+q/2

⟩︂
+
⟨︂
bq′a†k−q/2ak−q′+q/2

⟩︂
−
⟨︂
bq′a†k+q′−q/2ak+q/2

⟩︂]︃
.

(F.14)

Here, the Wigner function is coupled to three operator quantities, namely
⟨︂
b†q1a

†
k1
aq1

⟩︂
,

which represent phonon-assisted intraband transitions. Since we neglect coherent phonons
at this stage, i.e.

⟨︂
b
(†)
q

⟩︂
, the singlet factorization vanishes and the expectation values
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F.1. Microscopic Dynamics in Single-Band Description

become correlations. These correlations are treated similarly to the electron-electron
correlations. By considering the contributions to the dynamics from the free particle
Hamiltonian and the electron-phonon Hamiltonian to be dominant, we derive equations
of motion for the phonon assisted intraband transitions,

∂t

⟨︂
b†q1

a†k1
ak2

⟩︂
=− i

ℏ
(ϵk2 − ϵk1 − ℏωq1)

⟨︂
b†q1

a†k1
ak2

⟩︂
− i

ℏ
∑︂
q

(︂⟨︂
b†q1

bqa
†
k1
ak2−q

⟩︂
−
⟨︂
b†q1

bqa
†
k1+qak2

⟩︂)︂
+
i

ℏ
gq1

⟨︂
a†k1+q1

ak2

⟩︂
− i

ℏ
∑︂
k

gq1

⟨︂
a†k1

a†k+q1
akak

⟩︂
. (F.15)

Now, we transform to the rotating frame,

bq = b̃qe
−iωqt, ak = ãke

−iϵkt/ℏ, (F.16)

where the transformation for the creation operators is obtained via complex conju-
gation. From this, we can use the formal integration technique, including the Markov
approximation from Sec. 2.1.2 and obtain⟨︂

b†q1
a†k1

ak2

⟩︂
(t) =

iπ

ℏ
∑︂
q

gq

[︃⟨︂
b†q1

bqa
†
k1
ak2−q

⟩︂
δ(ϵk2 − ϵk2−q − ℏωq)

−
⟨︂
b†q1

bqa
†
k1+qak2

⟩︂
δ(ϵk1+q − ϵk1 − ℏωq)

]︃
− iπ

ℏ
gq1

⟨︂
a†k1+q1

ak2

⟩︂
δ(ϵk1+q1 − ϵk1 − ℏωq1)

+
iπ

ℏ
gq1

∑︂
k

⟨︂
a†k1

a†k+q1
akak2

⟩︂
δ(ϵk+q1 − ϵk − ℏωq1). (F.17)

We immediately rediscover the typical Hierarchy problem. To truncate the hierarchy,
we make use of the cluster expansion [171] and truncate at the two-operator (one-particle)
level, while neglecting coherent phonons. Following the usual second-order Born-Markov
approximation, we find⟨︂

b†q1
a†k1

ak2

⟩︂
(t) =

iπ

ℏ
∑︂
q

gq

⟨︂
b†q1

bq

⟩︂[︃⟨︂
a†k1

ak2−q

⟩︂
δ(ϵk2 − ϵk2−q − ℏωq) (F.18)

−
⟨︂
a†k1+qak2

⟩︂
δ(ϵk1+q − ϵk1 − ℏωq)

]︃
− iπ

ℏ
gq1

⟨︂
a†k1+q1

ak2

⟩︂
δ(ϵk1+q1 − ϵk1 − ℏωq1)

+
iπ

ℏ
gq1

∑︂
k

[︂⟨︂
a†k1

ak2

⟩︂⟨︂
a†k+q1

ak

⟩︂
−
⟨︂
a†k1

ak

⟩︂⟨︂
a†k+q1

ak2

⟩︂]︂
× δ(ϵk+q1 − ϵk − ℏωq1).

The equations of motion of the other three-operator expectation values in Eq. (F.14)
yields similar equations. After a Fourier transform and a gradient expansion, we find for
the influence of the phonons of on the dynamics of the electronic Wigner function

∂tfk(r, t)

⃓⃓⃓⃓
el-ph

=
∑︂
q

[︁
Γin
k+q,k(r, t)(1− fk(r, t))− Γout

k,k+q(r, t)fk(r, t)
]︁
. (F.19)
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The electron-phonon scattering terms also depend on the occupation of the initial
state of the scattering event, i.e., in the case of in-scattering, on the electron occupation
terms fk, and in the case of out-scattering, on the hole occupation terms (1− fk). The
electron–phonon scattering rates are given by [19, 376, 398, 401]

Γin
k+q,k(r, t) =

2π

ℏ2
∑︂
±

|gq|2fk+q(r, t)× (F.20a)

×
(︃
1

2
± 1

2
+ nq(r, t)

)︃
δ (ϵk − ϵk+q ± ℏωq) ,

Γout
k,k+q(r, t) =

2π

ℏ2
∑︂
±

|gq|2 ((1− fk+q(r, t))× (F.20b)

×
(︃
1

2
± 1

2
+ nq(r, t)

)︃
δ (ϵk − ϵk+q ∓ ℏωq) .

In the limit q = 0, this spatio-temporal Boltzmann equation reproduces the well-known
Boltzmann equations for electronic densities.
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G. Hartree Mean-Field on Microscopic
Level

The calculations, we present in the following, were performed by Jonas Grumm as part
of our joint research. I only reproduce them here to enable an understanding of Sec. 4.6
as these calculations can not yet be found elsewhere.

As we have shown in Sec. 4.6, the linearized equation of motion of the current density
can be brought in the form

(∂2t + γ∂t)j
1(r, t) = 3εoutε0ω

2
0Ėext(r, t)− ε0ω

2
p∇rϕ̇

H
(r, t) (G.1)

with the definition of the Hartree potential

ϕH(r, t) = − 1

eV

∫︂
dr′ V (r− r′)

∑︂
k′
fk′(r′, t) . (G.2)

As required in Eq. (G.1), the time derivative of the spatial gradient of the Hartree
potential can be given by

∇rϕ̇
H
(r, t) = − 1

eV
∇r

∫︂
dr′ V (r− r′)

∑︂
k′
ḟk′(r′, t) . (G.3)

To find a solution of this equation, we substitute the free equation of motion for the
first derivative of the electronic Wigner function. With this, we obtain

∇rϕ̇
H
(r, t) =

1

eV
∇r

∫︂
dr′ V (r− r′)

∑︂
k′

v′
k · ∇r′fk′(r′, t)

= − 1

eV
∇r ⊗

∫︂
dr′ (∇r′V (r− r′))

∑︂
k′

v′
kfk′(r′, t)

=
1

e2
∇r ⊗

∫︂
dr′ (∇r′V (r− r′))j(r′, t)

=
1

e2

(︂
∇r ⊗

∫︂
dr′ (∇r′V (r− r′))

)︂
· j1(r, t) (G.4)

The 0th order of j vanishes for reasons of symmetry.

G.1. Hartree Mean-Field with Spherical Boundary
Conditions

To evaluate the impact of Hartree potential on the equation of motion, we explicitly eval-
uate the term in parentheses in Eq. (G.4). Therefore, we employ the Coulomb potential
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in a sphere [351],

V (r, r′) =
e2

4πε0

∞∑︂
ℓ=0

ℓ∑︂
m=−ℓ

4π

2ℓ+ 1

[︂ 1

ε∞

rℓ<

rℓ+1
>

+
(︂ 2ℓ+ 1

lε∞ + (ℓ+ 1)εout
− 1

ε∞

)︂(rr′)ℓ
a2ℓ+1

]︂
×Yℓm(Ω)Y ∗

ℓm(Ω′) , (G.5)

where

W 0
ℓ (r, r

′) =
rℓ<

rℓ+1
>

, (G.6)

with r< = min(r, r′) and r> = max(r, r′) and the radius of the sphere a. We begin to

evaluate the monopole order with ℓ = 0. In this order, the spherical harmonic Y00 =
√︂

1
4π

is constant and the potential is given by

V (r, r′) =
e2

4πε0

[︂ 1

ε∞

1

r>
+
(︂ 1

εout
− 1

ε∞

)︂1
a

]︂
. (G.7)

From this, one can find that the monopole contribution to the integro-differential expres-
sion vanishes,

∇r ⊗
∫︂

dr′ (∇r′V (r, r′))|ℓ=0 = 0, (G.8)

for both cases r> = r and r> = r′. In dipole order ℓ = 1, the expression can be written a

e2

4πε0
∇r ⊗

∫︂
dr′ (∇r′

1∑︂
m=−1

4π

3

[︂ 1

ε∞

r<
r2>

+
(︂ 3

2εout + ε∞
− 1

ε∞

)︂rr′
a3

]︂
Y1m(Ω)Y ∗

1m(Ω′)) .

(G.9)

For the subsequent calculation, we need to distinguish between two cases: (i) r′ < r
and (ii) r′ > r. We set the integral limits for the radial contribution accordingly, i.e.,
r′ ∈ [0, r] for case (i) and r′ ∈ [r, a] for case (ii). We use the abbreviation

3

2εout + ε∞
− 1

ε∞
=

2

ε∞

ε∞ − εout

ε∞ + 2εout
=

2

ε∞
ε̃ . (G.10)

ℓ = 1, m = 0

In this case, the spherical harmonics can be evaluated to be

Y1,0(θ, φ) =

√︃
3

4π
cos(θ) . (G.11)

(i): r′ < r
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G.1. Hartree Mean-Field with Spherical Boundary Conditions

We start by calculating the gradient in spherical coordinates,

∇r′
e2

4πε0ε∞

(︂ r′
r2

+ 2ε̃
rr′

a3

)︂
cos(θ) cos

(︁
θ′
)︁

=
e2

4πε0ε∞
cos(θ)

(︁
er′∂r′ +

1

r′
eθ′∂θ′ +

1

r′ sin(θ′)
eφ′∂φ′

)︁
cos
(︁
θ′
)︁(︂ r′
r2

+ 2ε̃
rr′

a3

)︂
=

e2

4πε0ε∞
cos(θ)

[︂
cos
(︁
θ′
)︁
er′ − sin

(︁
θ′
)︁
eθ′
]︂(︂ 1

r2
+ 2ε̃

r

a3

)︂
=

e2

4πε0ε∞
cos(θ)

(︂ 1

r2
+ 2ε̃

r

a3

)︂
ez . (G.12)

The next step is the calculation of the integral over the sphere,∫︂
dr′

e2

4πε0ε∞
cos(θ)

(︂ 1

r2
+ 2ε̃

r

a3

)︂
ez

=
e2

4πε0ε∞
cos(θ)

(︂ 1

r2
+ 2ε̃

r

a3

)︂
ez

∫︂ r

0
dr′r′2

∫︂ π

0
dθ′ sin

(︁
θ′
)︁ ∫︂ 2π

0
dφ′

=
e2

4πε0ε∞
cos(θ)

(︂ 1

r2
+ 2ε̃

r

a3

)︂
ez

4πr3

3

=
e2

3ε0ε∞
cos(θ)

(︂
r + 2ε̃

r4

a3

)︂
ez . (G.13)

Finally, the gradient over r as a dyadic product reads

∇r ⊗
e2

3ε0ε∞
cos(θ)

(︂
r + 2ε̃

r4

a3

)︂
ez

=
e2

3ε0ε∞

(︁
er∂r +

1

r
eθ∂θ +

1

r sin(θ)
eφ∂φ

)︁
⊗ ez cos(θ)

(︂
r + 2ε̃

r4

a3

)︂

=
e2

3ε0ε∞

⎛⎜⎝
(︁
sin(θ) cos(θ)(1 + 8ε̃ r

3

a3
)− sin(θ) cos(θ)(1 + 2ε̃ r

3

a3
)
)︁
cos(φ)(︁

sin(θ) cos(θ)(1 + 8ε̃ r
3

a3
)− sin(θ) cos(θ)(1 + 2ε̃ r

3

a3
)
)︁
sin(φ)

cos2(θ)(1 + 8ε̃ r
3

a3
) + sin2(θ)(1 + 2ε̃ r

3

a3
)

⎞⎟⎠⊗ ez

=
e2

3ε0ε∞

⎛⎜⎝0 0 6ε̃ r
3

a3
sin(θ) cos(θ) cos(φ)

0 0 6ε̃ r
3

a3
sin(θ) cos(θ) sin(φ)

0 0 1 + 2ε̃ r
3

a3
+ 6ε̃ r

3

a3
cos2(θ)

⎞⎟⎠ (G.14)

(ii): r′ > r
In this case, the same steps have to be taken as before, we start by differentiating,

∇r′
e2

4πε0ε∞

(︂ r

r′2
+ 2ε̃

rr′

a3

)︂
cos(θ) cos

(︁
θ′
)︁

=
e2

4πε0ε∞

(︁
er′∂r′ +

1

r′
eθ′∂θ′ +

1

r′ sin(θ′)
eφ′∂φ′

)︁(︂ r

r′2
+ 2ε̃

rr′

a3

)︂
cos(θ) cos

(︁
θ′
)︁

=
e2

4πε0ε∞
cos(θ)

[︂(︂
2ε̃

r

a3
+

r

r′3

)︂
ez − 3

r

r′3
cos
(︁
θ′
)︁
er′
]︂
, (G.15)
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which is again followed by an integration,∫︂
dr′

e2

4πε0ε∞
cos(θ)

[︂(︂
2ε̃

r

a3
+

r

r′3

)︂
ez − 3

r

r′3
cos
(︁
θ′
)︁
er′
]︂

=
e2

4πε0ε∞
cos(θ)

∫︂ a

r
dr′r′2

∫︂ π

0
dθ′ sin

(︁
θ′
)︁ ∫︂ 2π

0
dφ′
[︂(︂

2ε̃
r

a3
+

r

r′3

)︂
ez − 3

r

r′3
cos
(︁
θ′
)︁
er′
]︂

=
e2

4πε0ε∞
cos(θ)

[︃(︂8π
3
ε̃
r(a3 − r3)

a3
+ 4πr

∫︂ a

r
dr′

1

r′

)︂
ez

− 3r

∫︂ a

r
dr′

1

r′

∫︂ π

0
dθ′ sin

(︁
θ′
)︁
cos
(︁
θ′
)︁ ∫︂ 2π

0
dφ′er′

]︂
(G.16)

Here, we use ∫︂ a

r
dr′

1

r′
= log(a)− log(r) =

1

3
log

(︃
a3

r3

)︃
. (G.17)

Further with the full integral:

=
e2

4πε0ε∞
cos(θ)

[︂8π
3
ε̃(r − r4

a3
)ez +

4π

3
r log

(︃
a3

r3

)︃
ez −

4π

3
r log

(︃
a3

r3

)︃
ez

]︂
=

2e2

3ε0ε∞
cos(θ)ε̃(r − r4

a3
)ez (G.18)

Gradient over r as dyadic product:

∇r ⊗
2e2

3ε0ε∞
cos(θ)ε̃(r − r4

a3
)ez

=
2e2

3ε0ε∞

(︁
er∂r +

1

r
eθ∂θ +

1

r sin(θ)
eφ∂φ

)︁
⊗ ez cos(θ)ε̃(r −

r4

a3
)

=
2e2

3ε0ε∞
ε̃

⎛⎜⎝
(︁
sin(θ) cos(θ)(1− 4 r3

a3
)− sin(θ) cos(θ)(1− r3

a3
)
)︁
cos(φ)(︁

sin(θ) cos(θ)(1− 4 r3

a3
)− sin(θ) cos(θ)(1− r3

a3
)
)︁
sin(φ)

cos2(θ)(1− 4 r3

a3
) + sin2(θ)(1− r3

a3
)

⎞⎟⎠⊗ ez

=
2e2

3ε0ε∞
ε̃

⎛⎜⎝0 0 −6 r3

a3
sin(θ) cos(θ) cos(φ)

0 0 −6 r3

a3
sin(θ) cos(θ) sin(φ)

0 0 2− 2 r3

a3
− 6 r3

a3
cos2(θ)

⎞⎟⎠ (G.19)

Finally, we can add our result from (i) and (ii) and obtain

∇r ⊗
∫︂

dr′ (∇r′V (r, r′))|ℓ=1,m=0 = (i) + (ii)

=
e2

3ε0ε∞

⎡⎢⎣ε̃
⎛⎜⎝0 0 6 r3

a3
sin(θ) cos(θ) cos(φ)− 6 r3

a3
sin(θ) cos(θ) cos(φ)

0 0 6 r3

a3
) sin(θ) cos(θ) sin(φ)− 6 r3

a3
sin(θ) cos(θ) sin(φ)

0 0 2 + 2 r3

a3
− 2 r3

a3
+ 6 r3

a3
cos2(θ)− 6 r3

a3
cos2(θ)

⎞⎟⎠+

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠
⎤⎥⎦

=
e2

3ε0ε∞
(2ε̃+ 1)

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ =
e2

ε0

1

2εout + ε∞

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ . (G.20)

To no surprise, we find that the factor 1
2εout+ε∞

agrees with the one in the macroscopic
approach. In the following, we will investigate the other dipole contributions m = ±1
and discover the remaining diagonal components.
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ℓ = 1, m ± 1

The spherical harmonics is given by

Y1,±1(θ, φ) = ∓
√︃

3

8π
sin(θ)e±iφ . (G.21)

We again distinguish the individual cases:
(i): r′ < r

We start by calculating the gradient in spherical coordinates,

∇r′
e2

8πε0ε∞

(︂ r′
r2

+ 2ε̃
rr′

a3

)︂
sin(θ) sin

(︁
θ′
)︁
e±iφe∓iφ′

=
e2

8πε0ε∞
sin(θ)e±iφ

(︁
er′∂r′ +

1

r′
eθ′∂θ′ +

1

r′ sin(θ′)
eφ′∂φ′

)︁
sin
(︁
θ′
)︁
e∓iφ′

(︂ r′
r2

+ 2ε̃
rr′

a3

)︂
=

e2

8πε0ε∞
sin(θ)e±iφ

[︂
sin
(︁
θ′
)︁
er′ + cos

(︁
θ′
)︁
eθ′ ∓ ieφ′

]︂(︂ 1

r2
+ 2ε̃

r

a3

)︂
e∓iφ′

=
e2

8πε0ε∞
sin(θ)e±iφ

(︂ 1

r2
+ 2ε̃

r

a3

)︂⎛⎝ cos(φ′)± i sin(φ′)
sin(φ′)∓ i cos(φ′)

0

⎞⎠ e∓iφ′

=
e2

8πε0ε∞
sin(θ)e±iφ

(︂ 1

r2
+ 2ε̃

r

a3

)︂⎛⎝ 1
∓i
0

⎞⎠ . (G.22)

The next step is the calculation of the integral over the sphere,

∫︂
dr′

e2

8πε0ε∞
sin(θ)e±iφ

(︂ 1

r2
+ 2ε̃

r

a3

)︂⎛⎝ 1
∓i
0

⎞⎠
=

e2

8πε0ε∞
sin(θ)e±iφ

(︂ 1

r2
+ 2ε̃

r

a3

)︂⎛⎝ 1
∓i
0

⎞⎠∫︂ r

0
dr′r′2

∫︂ π

0
dθ′ sin

(︁
θ′
)︁ ∫︂ 2π

0
dφ′

=
e2

6ε0ε∞
sin(θ)e±iφ

(︂
r + 2ε̃

r4

a3

)︂⎛⎝ 1
∓i
0

⎞⎠ . (G.23)

Finally, the gradient over r as dyadic product

∇r ⊗
e2

6ε0ε∞
sin(θ)e±iφ

(︂
r + 2ε̃

r4

a3

)︂⎛⎝ 1
∓i
0

⎞⎠
=

e2

6ε0ε∞
e±iφ

⎛⎜⎝
(︁
sin2(θ)(1 + 8ε̃ r

3

a3
) + cos2(θ)(1 + 2ε̃ r

3

a3
)
)︁
cos(φ)∓ i sin(φ)(1 + 2ε̃ r

3

a3
)(︁

sin2(θ)(1 + 8ε̃ r
3

a3
) + cos2(θ)(1 + 2ε̃ r

3

a3
)
)︁
sin(φ)± i cos(φ)(1 + 2ε̃ r

3

a3
)

cos(θ) sin(θ)(1 + 8ε̃ r
3

a3
)− sin(θ) cos(θ)(1 + 2ε̃ r

3

a3
)

⎞⎟⎠⊗

⎛⎝ 1
∓i
0

⎞⎠
=

e2

ε0ε∞
ε̃
r3

a3
sin(θ)e±iφ

(︁
er ∓ier 0

)︁
+

e2

6ε0ε∞
(1 + 2ε̃

r3

a3
)

⎛⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞⎠ (G.24)
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(ii): r′ > r
Now we have to do the same calculation for case (ii).

∇r′
e2

8πε0ε∞

(︂ r

r′2
+ 2ε̃

rr′

a3

)︂
sin(θ) sin

(︁
θ′
)︁
e±iφe∓iφ′

=
e2

8πε0ε∞
sin(θ)e±iφ

(︁
er′∂r′ +

1

r′
eθ′∂θ′ +

1

r′ sin(θ′)
eφ′∂φ′

)︁(︂ r

r′2
+ 2ε̃

rr′

a3

)︂
sin
(︁
θ′
)︁
e∓iφ′

=
e2

8πε0ε∞
sin(θ)e±iφ

[︂
− 3

r sin(θ′)

r′3
e∓iφ′

er′ +
(︁ r
r′3

+ 2ε̃
r

a3
)︁⎛⎝ 1

∓i
0

⎞⎠]︂ (G.25)

Integrate:

∫︂
dr′

e2

8πε0ε∞
sin(θ)e±iφ

[︂
− 3

r sin(θ′)

r′3
e∓iφ′

er′ +
(︁ r
r′3

+ 2ε̃
r

a3
)︁⎛⎝ 1

∓i
0

⎞⎠]︂
=

e2

8πε0ε∞
sin(θ)e±iφ

[︂
− 3r

∫︂ a

r
dr′

1

r′

∫︂ π

0
dθ′ sin2(θ′)

∫︂ 2π

0
dφ′e∓iφ′

er′

+
(︁
4πr

∫︂ a

r
dr′

1

r′
+

8π

3
ε̃
r

a3
(a3 − r3)

)︁⎛⎝ 1
∓i
0

⎞⎠]︂

=
e2

8πε0ε∞
sin(θ)e±iφ

[︂
− r log

(︃
a3

r3

)︃∫︂ π

0
dθ′ sin3(θ′)⏞ ⏟⏟ ⏞

= 4
3

⎛⎝ π
∓iπ
0

⎞⎠+
4π

3
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(︃
a3

r3

)︃⎛⎝ 1
∓i
0

⎞⎠

+
8π

3
ε̃
(︂
r − r4

a3

)︂⎛⎝ 1
∓i
0

⎞⎠]︂

=
e2

3ε0ε∞
ε̃ sin(θ)e±iφ

(︂
r − r4

a3

)︂⎛⎝ 1
∓i
0

⎞⎠ (G.26)

Gradient over r as dyadic product:

∇r ⊗
e2

3ε0ε∞
ε̃ sin(θ)e±iφ

(︂
r − r4

a3

)︂⎛⎝ 1
∓i
0

⎞⎠
=

e2

3ε0ε∞
ε̃
(︁
er∂r +

1

r
eθ∂θ +

1

r sin(θ)
eφ∂φ

)︁
⊗

⎛⎝ 1
∓i
0

⎞⎠ sin(θ)e±iφ(r − r4

a3
)

=
e2

3ε0ε∞
ε̃e±iφ

[︂
(1− r3

a3
)e∓iφ

⎛⎝ 1
±i
0

⎞⎠− 3
r3

a3
sin(θ)er

]︂
⊗

⎛⎝ 1
∓i
0

⎞⎠
=

e2

ε0ε∞
ε̃
r3

a3
sin(θ)e±iφ

(︁
er ∓ier 0

)︁
+

e2

3ε0ε∞
ε̃(1− r3

a3
)

⎛⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞⎠ (G.27)
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G.2. Implication on Equations of Motion

Finally we can add our result from (i) and (ii) and get

∇r ⊗
∫︂

dr′ (∇r′V (r, r′))|l=1,m=±1 = (i) + (ii)

=
(︁
er ∓ier 0

)︁ e2

ε0ε∞
ε̃
r3

a3
sin(θ)e±iφ(1− 1)

+

⎛⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞⎠ e2

3ε0ε∞

(︂
ε̃(1− r3

a3
) +

1

2
(1 + 2ε̃

r3

a3
)
)︂

=
1

2

e2

3ε0ε∞
(1 + 2ε̃)

⎛⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞⎠ =
1

2

e2

ε0

1

2εout + ε∞

⎛⎝ 1 ∓i 0
±i 1 0
0 0 0

⎞⎠ . (G.28)

Now we can add all contributions of dipole and monopole order and obtain

∇r ⊗
∫︂
dr′ (∇r′V (r, r′))|ℓ=0;ℓ=1

=
e2

4πε0

1∑︂
ℓ=0

ℓ∑︂
m=−ℓ

4π

2ℓ+ 1
∇r ⊗

∫︂
dr′ ∇r′

[︂ 1

ε∞
W 0

ℓ (r, r
′)

+
(︂ 2ℓ+ 1

ℓε∞ + (ℓ+ 1)εout
− 1

ε∞

)︂(rr′)ℓ
a2ℓ+1

]︂
Yℓm(Ω)Y ∗

ℓm(Ω′)

= 0 +
e2

ε0

1

2εout + ε∞

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠+
1

2

e2

ε0

1

ε∞ + 2εout

⎛⎝ 1 +i 0
−i 1 0
0 0 0

⎞⎠
+

1

2

e2

ε0

1

ε∞ + 2εout

⎛⎝ 1 −i 0
+i 1 0
0 0 0

⎞⎠
=
e2

ε0

1

ε∞ + 2εout

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ =
e2

ε0

1

ε∞ + 2εout
1 . (G.29)

G.2. Implication on Equations of Motion

From the previous calculation, we identified

(∂2t + γ∂t + ω2
p

ε0
e2

(︂
∇r ⊗

∫︂
dr′ (∇r′V (r− r′))

)︂
·)j1(r, t) = 3εoutε0ω

2
0Ėext(r, t) . (G.30)

Using the result from the evaluation of the integro-differential expression, we obtain

(∂2t + γ∂t +
ω2
p

2εout + ε∞
1·)j1(r, t) = 3εoutε0ω

2
0Ėext(r, t), (G.31)

(∂2t + γ∂t + ω2
0)j

1(r, t) = 3εoutε0ω
2
0Ėext(r, t) . (G.32)

This equation is the same that one would obtain from a description using our self-
consistent method from Sec. 2.4.4 or for example, the Fröhlich condition for the plasmon
resonance. To obtain this, we evaluated the Hartree potential, originating from Coulomb
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Appendix G. Hartree Mean-Field on Microscopic Level

interaction within the sphere in dipole approximation. Accordingly, we presented a way
how the geometrical resonance, usually obtained from macroscopic calculations, can be
introduced in the microscopic calculations.
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H. Finite-Difference Time-Domain
(FDTD) Method

H.1. Freely Propagating Maxwell’s equation

For free propagation, the Maxwell equations in components read

∂Dx

∂t
= c

(︃
∂Hz

∂y
− ∂Hy

∂z

)︃
,

∂Hx

∂t
= c

(︃
∂Ey

∂z
− ∂Ez

∂y

)︃
, (H.1)

∂Dy

∂t
= c

(︃
∂Hx

∂z
− ∂Hz

∂x

)︃
,

∂Hy

∂t
= c

(︃
∂Ez

∂x
− ∂Ex

∂z

)︃
, (H.2)

∂Dz

∂t
= c

(︃
∂Hy

∂x
− ∂Hx

∂y

)︃
,

∂Hz

∂t
= c

(︃
∂Ex

∂y
− ∂Ey

∂x

)︃
(H.3)

Mapping onto the Yee cells, these can be written as

Dn+1/2
x (i+

1

2
, j, k) = Dn−1/2

x (i+
1

2
, j, k) (H.4)

+0.5

[︃
Hn

z

(︃
i+

1

2
, j +

1

2
, k

)︃
−Hn

z

(︃
i+

1

2
, j − 1

2
, k

)︃
−Hn

y

(︃
i+

1

2
, j, k +

1

2

)︃
+Hn

y

(︃
i+

1

2
, j, k − 1

2

)︃]︃
Dn+1/2

y (i, j +
1

2
, k) = Dn−1/2

y (i, j +
1

2
, k) (H.5)

+0.5

[︃
Hn

x

(︃
i, j +

1

2
, k +

1

2

)︃
−Hn

x

(︃
i, j +

1

2
, k − 1

2

)︃
−Hn

z

(︃
i+

1

2
, j +

1

2
, k

)︃
+Hn

z

(︃
i− 1

2
, j +

1

2
, k

)︃]︃
Dn+1/2

z (i, j, k +
1

2
) = Dn−1/2

z (i, j, k +
1

2
) (H.6)

+0.5

[︃
Hn

y

(︃
i+

1

2
, j, k +

1

2

)︃
−Hn

y

(︃
i− 1

2
, j, k +

1

2

)︃
−Hn

x

(︃
i, j +

1

2
, k +

1

2

)︃
+Hn

x

(︃
i, j − 1

2
, k +

1

2

)︃]︃
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and

Hn+1
x (i, j +

1

2
, k +

1

2
) = Hn

x (i, j +
1

2
, k +

1

2
) (H.7)

+0.5

[︃
En+1/2

y

(︃
i, j +

1

2
, k + 1

)︃
− En+1/2

y

(︃
i, j +

1

2
, k
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−En+1/2

z

(︃
i, j + 1, k +
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2
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+ En+1/2
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1

2
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Hn+1

y (i+
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, j, k +
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2
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y (i+
1

2
, j, k +

1
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) (H.8)

+0.5
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En+1/2
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1

2

)︃
− En+1/2

z

(︃
i, j, k +

1

2
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−En+1/2

x

(︃
i+

1

2
, j, k + 1

)︃
+ En+1/2

x

(︃
i+

1

2
, j, k

)︃]︃
Hn+1

z (i+
1

2
, j +

1

2
, k) = Hn

z (i+
1

2
, j +
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2
, k) (H.9)

+0.5

[︃
En+1/2

x

(︃
i+

1

2
, j + 1, k

)︃
− En+1/2

x

(︃
i+

1

2
, j, k
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−En+1/2

y
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i+ 1, j +

1

2
, k

)︃
+ En+1/2

y

(︃
i, j +

1

2
, k

)︃]︃
which reads for the simple 3D case as

1 dx[i,j,k] += 0.5 * ( hz[i,j,k] - hz[i,j-1,k] - hy[i,j,k] + hy[i,j,k
-1] )

2 dy[i,j,k] += 0.5 * ( hx[i,j,k] - hx[i,j,k-1] - hz[i,j,k] + hz[i-1,j,k
] )

3 dz[i,j,k] += 0.5 * ( hy[i,j,k] - hy[i-1,j,k] - hx[i,j,k] + hx[i,j-1,k
] )

4 hx[i,j,k] += 0.5 * ( ey[i,j,k+1] - ey[i,j,k] - ez[i,j+1,k] + ez[i,j,k
] )

5 hy[i,j,k] += 0.5 * ( ez[i+1,j,k] - ez[i,j,k] - ex[i,j,k+1] + ex[i,j,k
] )

6 hz[i,j,k] += 0.5 * ( ex[i,j+1,k] - ex[i,j,k] - ey[i+1,j,k] + ey[i,j,k
] )

H.2. Perfectly Matched Layers

Including the PML description, we have to update the curl equation. These updated
equations are provided here

H.2.1. Analytical Expressions

The equations for the perfectly matched layers can be given as

curl_Hn = Hn
z

(︃
i+

1

2
, j +

1

2
, k

)︃
−Hn

z

(︃
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(H.10)
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2
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+Hn

y
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2
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2

)︃
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I
n+1/2
Dx
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curl_En+1/2 = En+1/2
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(H.27)

with the respective definition of the factors,

fi1(i) = xn(i), fj1(j) = xn(j), fk1(k) = xn(k), (H.28a)
gi1(i) = xn(i), gj1(j) = xn(j), gk1(k) = xn(k), (H.28b)

fi2(i) =
1

1 + xn(i)
, fj2(j) =

1

1 + xn(j)
, fk2(k) =

1

1 + xn(k)
, (H.28c)

gi2(i) =
1

1 + xn(i)
, gj2(j) =

1

1 + xn(j)
, gk2(k) =

1

1 + xn(k)
, (H.28d)

fi3(i) =
1− xn(i)
1 + xn(i)

, fj3(j) =
1− xn(j)
1 + xn(j)

, fk3(k) =
1− xn(k)
1 + xn(k)

, (H.28e)

gi3(i) =
1− xn(i)
1 + xn(i)

, gj3(j) =
1− xn(j)
1 + xn(j)

, gk3(k) =
1− xn(k)
1 + xn(k)

, (H.28f)

where

xn(i) = 0.33

(︃
i

npml

)︃1/3

(H.29)
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H.3. Update Equations for Perfectly Matched Layers

H.3.1. D-Fields

1 @numba.jit(nopython=True)
2 def calculate_dx_field(dims ,dx,h,idx ,pml):
3 for i in range(0,dims.x):
4 for j in range (1,dims.y):
5 for k in range (1,dims.z):
6 curlH = h.z[i,j,k] - h.z[i,j-1,k] - \
7 h.y[i,j,k] + h.y[i,j,k-1]
8 idx[i,j,k] = curlH + idx[i,j,k]
9 dx[i,j,k] = pml.gj3[j]*pml.gk3[k]*dx[i,j,k] +\

10 pml.gj2[j]*pml.gk2[k]*(0.5 * curlH + pml.gi1[
i]*idx[i,j,k])

11 return dx,idx
12

13 @numba.jit(nopython=True)
14 def calculate_dy_field(dims ,dy,h,idy ,pml):
15 for i in range(1,dims.x):
16 for j in range (0,dims.y):
17 for k in range (1,dims.z):
18 curlH = h.x[i,j,k] - h.x[i,j,k-1] - \
19 h.z[i,j,k] + h.z[i-1,j,k]
20 idy[i,j,k] = curlH + idy[i,j,k]
21 dy[i,j,k] = pml.gi3[i]*pml.gk3[k]*dy[i,j,k] +\
22 pml.gi2[i]*pml.gk2[k]*(0.5 * curlH + pml.gj1[

j]*idy[i,j,k])
23 return dy,idy
24

25 @numba.jit(nopython=True)
26 def calculate_dz_field(dims ,dz,h,idz ,pml):
27 for i in range(1,dims.x):
28 for j in range (1,dims.y):
29 for k in range (0,dims.z):
30 curlH = h.y[i,j,k] - h.y[i-1,j,k] - \
31 h.x[i,j,k] + h.x[i,j-1,k]
32 idz[i,j,k] = curlH + idz[i,j,k]
33 dz[i,j,k] = pml.gi3[i]*pml.gj3[j]*dz[i,j,k] +\
34 pml.gi2[i]*pml.gj2[j]*(0.5 * curlH + pml.gk1[

k]*idz[i,j,k])
35 return dz,idz

H.3.2. E-Fields

1 @numba.jit(nopython=True)
2 def calculate_e_fields(dims ,e,d,ga,p):
3 for i in range(0,dims.x):
4 for j in range (0,dims.y):
5 for k in range (0,dims.z):
6 e.x[i,j,k]=ga.x[i,j,k]*(d.x[i,j,k]-p.x[i,j,k])
7 e.y[i,j,k]=ga.y[i,j,k]*(d.y[i,j,k]-p.y[i,j,k])
8 e.z[i,j,k]=ga.z[i,j,k]*(d.z[i,j,k]-p.z[i,j,k])
9 return e
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H.3.3. H-Fields

1 @numba.jit(nopython=True)
2 def calculate_hx_field(dims ,hx,e,ihx ,pml):
3 for i in range(0,dims.x):
4 for j in range (0,dims.y-1):
5 for k in range (0,dims.z-1):
6 curlE = (e.y[i,j,k+1] - e.y[i,j,k] -\
7 e.z[i,j+1,k] + e.z[i,j,k])
8 ihx[i,j,k] = curlE + ihx[i,j,k]
9 hx[i,j,k] = pml.fj3[j]*pml.fk3[k]*hx[i,j,k] +\

10 pml.fj2[j]*pml.fk2[k]*(0.5 * curlE + pml.fi1[
i]* ihx[i,j,k])

11 return hx,ihx
12

13 @numba.jit(nopython=True)
14 def calculate_hy_field(dims ,hy,e,ihy ,pml):
15 for i in range(0,dims.x-1):
16 for j in range (0,dims.y):
17 for k in range (0,dims.z-1):
18 curlE = (e.z[i+1,j,k] - e.z[i,j,k] -\
19 e.x[i,j,k+1] + e.x[i,j,k])
20 ihy[i,j,k] = curlE + ihy[i,j,k]
21 hy[i,j,k] = pml.fi3[i]*pml.fk3[k]*hy[i,j,k] +\
22 pml.fi2[i]*pml.fk2[k]*(0.5 * curlE + pml.fj1[

j]* ihy[i,j,k])
23 return hy,ihy
24

25 @numba.jit(nopython=True)
26 def calculate_hz_field(dims ,hz,e,ihz ,pml):
27 for i in range(0,dims.x-1):
28 for j in range (0,dims.y-1):
29 for k in range (0,dims.z):
30 curlE = (e.x[i,j+1,k] - e.x[i,j,k] -\
31 e.y[i+1,j,k] + e.y[i,j,k])
32 ihz[i,j,k] = curlE + ihz[i,j,k]
33 hz[i,j,k] = pml.fi3[i]*pml.fj3[j]*hz[i,j,k] +\
34 pml.fi2[i]*pml.fj2[j]*(0.5 * curlE + pml.fk1[

k]* ihz[i,j,k])
35 return hz,ihz

H.4. Update Equations for Periodic Boundary conditions

H.4.1. D-Fields

1 def calculate_dx_field_PBC(dims ,dx,h,idx ,pml):
2 for i in range(0,dims.x):
3 for j in range (1,dims.y):
4 curlH = h.z[i,j,0] - h.z[i,j-1,0] - \
5 h.y[i,j,0] + h.y[i,j,-1]
6 idx[i,j,0] = curlH + idx[i,j,0]
7 dx[i,j,0] = pml.gj3[j]*pml.gk3 [0]*dx[i,j,0] +\
8 pml.gj2[j]*pml.gk2 [0]*(0.5 * curlH + pml.gi1[i]*

idx[i,j,0])
9 return dx,idx

10
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11 @numba.jit(nopython=True)
12 def calculate_dy_field_PBC(dims ,dy,h,idy ,pml):
13 for j in range (0,dims.y):
14 for i in range(1,dims.x):
15 curlH = h.x[i,j,0] - h.x[i,j,-1] - \
16 h.z[i,j,0] + h.z[i-1,j,0]
17 idy[i,j,0] = curlH + idy[i,j,0]
18 dy[i,j,0] = pml.gi3[i]*pml.gk3 [0]*dy[i,j,0] +\
19 pml.gi2[i]*pml.gk2 [0]*(0.5 * curlH + pml.gj1[

j]*idy[i,j,0])
20 for k in range (1,dims.z):
21 curlH = h.x[0,j,k] - h.x[0,j,k-1] - \
22 h.z[0,j,k] + h.z[-1,j,k]
23 idy[0,j,k] = curlH + idy[0,j,k]
24 dy[0,j,k] = pml.gi3 [0]* pml.gk3[k]*dy[0,j,k] +\
25 pml.gi2 [0]* pml.gk2[k]*(0.5 * curlH + pml.gj1[j]*

idy[0,j,k])
26 return dy,idy
27

28 @numba.jit(nopython=True)
29 def calculate_dz_field_PBC(dims ,dz,h,idz ,pml):
30 for j in range (1,dims.y):
31 for k in range (0,dims.z):
32 curlH = h.y[0,j,k] - h.y[-1,j,k] - \
33 h.x[0,j,k] + h.x[0,j-1,k]
34 idz[0,j,k] = curlH + idz[0,j,k]
35 dz[0,j,k] = pml.gi3 [0]* pml.gj3[j]*dz[0,j,k] +\
36 pml.gi2 [0]* pml.gj2[j]*(0.5 * curlH + pml.gk1[k]*

idz[0,j,k])
37 return dz,idz

H.4.2. H-Fields

1 @numba.jit(nopython=True)
2 def calculate_hx_field_PBC(dims ,hx,e,ihx ,pml):
3 for i in range(0,dims.x):
4 for j in range (0,dims.y-1):
5 curlE = (e.y[i,j,0] - e.y[i,j,dims.z-1] -\
6 e.z[i,j+1,dims.z-1] + e.z[i,j,dims.z-1])
7 ihx[i,j,dims.z-1] = curlE + ihx[i,j,dims.z-1]
8 hx[i,j,dims.z-1] = pml.fj3[j]*pml.fk3[dims.z-1]*hx[i,j,

dims.z-1] +\
9 pml.fj2[j]*pml.fk2[dims.z -1]*(0.5 * curlE

+ pml.fi1[i]* ihx[i,j,dims.z-1])
10 return hx,ihx
11 @numba.jit(nopython=True)
12 def calculate_hy_field_PBC(dims ,hy,e,ihy ,pml):
13 for j in range (0,dims.y):
14 for i in range(0,dims.x-1):
15 curlE = (e.z[i+1,j,dims.z-1] - e.z[i,j,dims.z-1] -\
16 e.x[i,j,0] + e.x[i,j,dims.z-1])
17 ihy[i,j,dims.z-1] = curlE + ihy[i,j,dims.z-1]
18 hy[i,j,dims.z-1] = pml.fi3[i]*pml.fk3[dims.z-1]*hy[i,j,dims.z

-1] +\
19 pml.fi2[i]*pml.fk2[dims.z -1]*(0.5 * curlE + pml.

fj1[j]* ihy[i,j,dims.z-1])
20 for k in range (0,dims.z-1):
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21 curlE = (e.z[0,j,k] - e.z[dims.x-1,j,k] -\
22 e.x[dims.x-1,j,k+1] + e.x[dims.x-1,j,k])
23 ihy[dims.x-1,j,k] = curlE + ihy[dims.x-1,j,k]
24 hy[dims.x-1,j,k] = pml.fi3[dims.x-1]* pml.fk3[k]*hy[dims.x-1,j

,k] +\
25 pml.fi2[dims.x-1]* pml.fk2[k]*(0.5 * curlE + pml.

fj1[j]* ihy[dims.x-1,j,k])
26 return hy,ihy
27 @numba.jit(nopython=True)
28 def calculate_hz_field_PBC(dims ,hz,e,ihz ,pml):
29 for j in range (0,dims.y-1):
30 for k in range (0,dims.z):
31 curlE = (e.x[dims.x-1,j+1,k] - e.x[dims.x-1,j,k] -\
32 e.y[0,j,k] + e.y[dims.x-1,j,k])
33 ihz[dims.x-1,j,k] = curlE + ihz[dims.x-1,j,k]
34 hz[dims.x-1,j,k] = pml.fi3[dims.x-1]* pml.fj3[j]*hz[dims.x-1,j

,k] +\
35 pml.fi2[dims.x-1]* pml.fj2[j]*(0.5 * curlE + pml.

fk1[k]* ihz[dims.x-1,j,k])
36 return hz,ihz

H.5. Total Field-Scattered Field (TFSF)

The collected update equations for a plane wave travelling in y direction with Ez and
Hx components are given by:

1 @numba.jit(nopython=True)
2 def calculate_dy_inc_TFSF(tfsf ,dy,hx_inc):
3 ’’’Corrects the Dy field for TFSF BC ’’’
4 for i in range(tfsf.x_min ,tfsf.x_max +1):
5 for j in range(tfsf.y_min ,tfsf.y_max):
6 dy[i,j,tfsf.z_min]= dy[i,j,tfsf.z_min ]-0.5* hx_inc[j]
7 dy[i,j,tfsf.z_max +1]= dy[i,j,tfsf.z_max +1]+0.5* hx_inc[j]
8 return dy
9

10

11 @numba.jit(nopython=True)
12 def calculate_dz_inc_TFSF(tfsf ,dz,hx_inc):
13 ’’’Corrects the Dz field for TFSF BC ’’’
14 for i in range(tfsf.x_min ,tfsf.x_max +1):
15 for k in range(tfsf.z_min ,tfsf.z_max +1):
16 dz[i,tfsf.y_min ,k]= dz[i,tfsf.y_min ,k]+0.5* hx_inc[tfsf.y_min

-1]
17 dz[i,tfsf.y_max ,k]= dz[i,tfsf.y_max ,k]-0.5* hx_inc[tfsf.y_max]
18 return dz
19

20 @numba.jit(nopython=True)
21 def calculate_hx_inc_TFSF(tfsf ,hx,ez_inc):
22 ’’’Corrects the Hx field for TFSF BC ’’’
23 for i in range(tfsf.x_min ,tfsf.x_max +1):
24 for k in range(tfsf.z_min ,tfsf.z_max +1):
25 hx[i,tfsf.y_min -1,k]= hx[i,tfsf.y_min -1,k]+0.5* ez_inc[tfsf.

y_min]
26 hx[i,tfsf.y_max ,k]= hx[i,tfsf.y_max ,k]-0.5* ez_inc[tfsf.y_max]
27 return hx
28

29 @numba.jit(nopython=True)
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30 def calculate_hy_inc_TFSF(tfsf ,hy,ez_inc):
31 ’’’Corrects the Hy field for TFSF BC ’’’
32 for j in range(tfsf.y_min ,tfsf.y_max +1):
33 for k in range(tfsf.z_min ,tfsf.z_max +1):
34 hy[tfsf.x_min -1,j,k]= hy[tfsf.x_min -1,j,k]-0.5* ez_inc[j]
35 hy[tfsf.x_max ,j,k]= hy[tfsf.x_max ,j,k]+0.5* ez_inc[j]
36 return hy

This changes of course for different directions of propagations. The TFSF region was
chosen such that the magnetic fields are just outside the region, while the electric fields
are just inside. The same thing will apply to polarization as an electric contribution.

H.6. Monitors

Here, we exemplarily provide the absorption monitor

1 @numba.jit(nopython=True)
2 def DFT_abs_update(e_abs_x_min ,e_abs_x_max ,h_abs_x_min ,h_abs_x_max ,
3 e_abs_y_min ,e_abs_y_max ,h_abs_y_min ,h_abs_y_max ,
4 e_abs_z_min ,e_abs_z_max ,h_abs_z_min ,h_abs_z_max ,
5 e,h,abs ,iwmax ,omegaDFT ,t):
6

7 for om in range (0,iwmax +1):
8 exponent = np.exp(-1j*omegaDFT[om]*t)
9 #xnormal

10 e_abs_x_min.y[om ,:,:] += exponent*e.y[abs.x_min ,:,:]
11 e_abs_x_min.z[om ,:,:] += exponent*e.z[abs.x_min ,:,:]
12 h_abs_x_min.y[om ,:,:] += exponent*h.y[abs.x_min ,:,:]
13 h_abs_x_min.z[om ,:,:] += exponent*h.z[abs.x_min ,:,:]
14

15 e_abs_x_max.y[om ,:,:] += exponent*e.y[abs.x_max ,:,:]
16 e_abs_x_max.z[om ,:,:] += exponent*e.z[abs.x_max ,:,:]
17 h_abs_x_max.y[om ,:,:] += exponent*h.y[abs.x_max ,:,:]
18 h_abs_x_max.z[om ,:,:] += exponent*h.z[abs.x_max ,:,:]
19

20 #ynormal
21 e_abs_y_min.x[om ,:,:] += exponent*e.x[:,abs.y_min ,:]
22 e_abs_y_min.z[om ,:,:] += exponent*e.z[:,abs.y_min ,:]
23 h_abs_y_min.x[om ,:,:] += exponent*h.x[:,abs.y_min ,:]
24 h_abs_y_min.z[om ,:,:] += exponent*h.z[:,abs.y_min ,:]
25

26 e_abs_y_max.x[om ,:,:] += exponent*e.x[:,abs.y_max ,:]
27 e_abs_y_max.z[om ,:,:] += exponent*e.z[:,abs.y_max ,:]
28 h_abs_y_max.x[om ,:,:] += exponent*h.x[:,abs.y_max ,:]
29 h_abs_y_max.z[om ,:,:] += exponent*h.z[:,abs.y_max ,:]
30

31 #znormal
32 e_abs_z_min.x[om ,:,:] += exponent*e.x[:,:,abs.z_min]
33 e_abs_z_min.y[om ,:,:] += exponent*e.y[:,:,abs.z_min]
34 h_abs_z_min.x[om ,:,:] += exponent*h.x[:,:,abs.z_min]
35 h_abs_z_min.y[om ,:,:] += exponent*h.y[:,:,abs.z_min]
36

37 e_abs_z_max.x[om ,:,:] += exponent*e.x[:,:,abs.z_max]
38 e_abs_z_max.y[om ,:,:] += exponent*e.y[:,:,abs.z_max]
39 h_abs_z_max.x[om ,:,:] += exponent*h.x[:,:,abs.z_max]
40 h_abs_z_max.y[om ,:,:] += exponent*h.y[:,:,abs.z_max]
41
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42 return e_abs_x_min ,e_abs_x_max ,h_abs_x_min ,h_abs_x_max ,\
43 e_abs_y_min ,e_abs_y_max ,h_abs_y_min ,h_abs_y_max ,\
44 e_abs_z_min ,e_abs_z_max ,h_abs_z_min ,h_abs_z_max
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I. Radial Oscillations

In this chapter of the appendix, we provide some additional detail regarding the calcu-
lation performed in the main part.

I.1. Phenomenological Models

Over the past two decades, numerous experiments have observed nanoparticle oscillation,
primarily in transient absorption [448–451, 458, 472, 474, 482, 488–490]. Some of these
studies have proposed theoretical models to describe the onset of oscillation, particularly
in Refs. [448, 451, 473, 474]. These descriptions share qualitative similarities, differing
only in whether the initial temperature rise of the electron system is simulated or assumed
to start from a specific initial electron temperature. However, as the rise in electron
temperature resulting from excitation with femtosecond pulses is quasi-instantaneous
on the timescale of the oscillation (picoseconds), all models can be considered quasi-
equivalent. Here, we present a brief overview of common models

Hartland Approach

In Ref. [448], the standard oscillator equation is provided as follows:

d2R

dt2
+

2

τd

dR

dt
+

(︃
2π

Ω

)︃2[︃
R−

{︁
R0 +

R0α

3
(Tl − 298)

}︁]︃
= 0 (I.1)

However, this only includes the action of the lattice and disregards hot electron effects.
To fix this, they include a hot electron pressure by writing,

α =
1

B

(︃
γCl +

2

3
Ce(Te)

)︃
(I.2)

with the bulk modules B, the (lattice) Grüneisen parameter γ and the electron heat
capacity. According to their finding, this shifts the oscillation onset to earlier times.

Perner Approach

In Ref. [473], the oscillator equation is formulated as

d2∆x

dt2
+ 2ρ

d∆x

dt
+ ω2

0∆x =
Aσ

m
, (I.3)

where the driving terms σ are defined as

σL,e = −γL,e
∫︂ TL,e

TR

CL,edTL,e. (I.4)
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Here, γL,e are the Grüneisen parameters and the CL,e’s are the heat capacities of the
lattice and the electrons, respectively. Assuming that the Cl is constant and Ce = ξTe
scales linearly, the expressions can be expressed as

σL = −γLCL(TL − TR), (I.5)

σe = −γe
∫︂ Te

TR

ξTedTe = −γeξ
2

(T 2
e − T 2

R). (I.6)

With this assumption, the full oscillator equation reads

d2∆x

dt2
+ 2ρ

d∆x

dt
+ ω2

0∆x = −A

m

(︃
γLCL(TL − TR) +

γeξ

2
(T 2

e − T 2
R)

)︃
(I.7)

where A is the surface area of the particle and m its mass.

Crut Approach

Compared to the previous approaches, the oscillator equation in Ref. [451] is given by

d2Aq

dt2
+ 2γq

dAq

dt
+ |ωq|2Aq = Fq(t). (I.8)

The driving term Fq(t) consists of an electronic and a lattice contribution,

F e
q (t) = ω2

qA
e
q0 exp{−t/τe−L}, (I.9)

FL
q (t) = ω2

qA
L
q0(1− exp{−t/τe−L}). (I.10)

Compared to the previous approaches, this definition assumed an instantaneous onset
of one of the driving terms and does not simulate the respective oscillation onset. As such,
it is only applicable for situations where the pulse is short compared to the oscillation
period.

Voisin Approach

In Ref. [474], the oscillator equation is modeled very similar to the previous approach,

d2x

dt2
+

2

τh

dx

dt
+ ω2

0x = FD + FI , (I.11)

where they label the direct (D) and indirect (I) driving terms which they provide to be:

FD = ω2
0x

D
0 exp{−t/τe−ph}, (I.12)

FI = ω2
0x

I
0(1− exp{−t/τe−ph}). (I.13)

Hence, this description is mathematically equivalent to the one in Ref. [451]. However,
a conceptual distinction is that they do not explicitly comment on the lattice or elec-
tron processes but mention that the direct process is happening on the timescale of the
electron-lattice interaction while the other one is a more indirect process.
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I.2. Microscopic Dynamics of Coherent Phonon Modes

In order to describe the dynamics of the radial oscillation process, we once again employ
the framework of Heisenberg equations of motion. This process yields the first order
equation for the phonon annihilation (creation) operators b(†)q ,

iℏ∂tbq = ℏωqbq +
∑︂
k

g−qa
†
k−qak + 3

∑︂
q′
h̃q,q′,q−q′

(︂
bq′ + b†−q′

)︂(︂
bq−q′ + b†−q+q′

)︂
(I.14)

iℏ∂tb†−q = −ℏω−qb
†
−q −

∑︂
k

g−qa
†
k−qak − 3

∑︂
q′
h̃q,q′,q−q′

(︂
bq′ + b†−q′

)︂(︂
bq−q′ + b†−q+q′

)︂
(I.15)

As the first order equations do not close, we derive dynamical equations in second-
order for the phonon annihilation (creation) operators b(†)q . This is done by substituting
the first order equation into itself. These equations can then be combined to derive an
equation for the coherent phonon mode operator sq,

(︁
∂2t + ω2

q

)︁
sq =− ωqg−q

ℏ
∑︂
k

f̃k(q)−
3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︁
2ñcq′(q) + δq,0

]︁
(I.16)

− 3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︂
4sq′sq−q′ +

⟨︁
bq′bq−q′

⟩︁c
+
⟨︂
b†−q′b

†
−q+q′

⟩︂c]︂

where f̃k(q) is the Fourier transformation of the Wigner function fk(r). In the deriva-
tion, we made the assumption of a symmetric phonon dispersion ωq = ω−q, which is valid
for the three acoustic phonon branches found in gold and should also hold for optical
phonons.

I.2.1. Coherent Phonon Damping

To evaluate the effect of the coherences in the last line in Eq. (I.16), we again follow the
approach presented in Sec. 2.1.1 and derive an equation of motion for them, performing
a formal integration and a Markov approximation to obtain a closed equation. In order
to do so, we use the phonon-phonon Hamiltonian in Eq. (6.7) in normal ordering,

Hphph =
∑︂
345

h345

(︂
b3b4b5 + b†−3b

†
−4b

†
−5

)︂
+h̃345 b

†
−3b4b5 + h̃345 b

†
−5b

†
−4b3 + h̃345

(︂
b3 + b†−3

)︂
δ4,−5 (I.17)

which is necessary to use the cluster expansion technique from Ref. [171]. For the
ease of reading, we changed the notation so that momenta are expressed in terms of
their indices. In Eq. (I.17), we used the definition h̃123 = h123 + h213 + h231, and will
use in the following, that phonon-phonon scattering is momentum conserving, h̃q,q′,q′′ =
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ĥq,q′,q′′δq+q′+q′′,0. Computing the commutators explicitly, we find

[︂
b†1b

†
2, Hphph

]︂
=

−
∑︂
i=1,2

∑︂
3,4

{︃
h̃ī34b

†
ib3b4 +

(︂
h̃3ī4 + h̃34ī

)︂
b†ib

†
−3b4 + h̃ī34 b

†
ib

†
−3b

†
−4

}︃

−
∑︂
3

{︃(︂
h̃312 + h̃321

)︂
b†−3 +

(︂
h̃132 + h̃123

)︂
b3 + h̃23−3b

†
1 + h̃13−3b

†
2

}︃
, (I.18)

and

[b1b2, Hphph] =

−
∑︂
i=1,2

∑︂
3,4

{︃
h̃−ī34b

†
−3b

†
−4bi +

(︂
h̃3−ī4 + h̃34−ī

)︂
b†−4bib3 + h̃−ī34 bib3b4

}︃

−
∑︂
3

{︃(︂
h̃3−1−2 + h̃3−2−1

)︂
b3 +

(︂
h̃−2−13 + h̃−23−1

)︂
b†−3 + h̃−23−3b

†
1 + h̃−13−3b

†
2

}︃
.

(I.19)

For the ease of notation, we incorporated the i sum, and used a similar definition as
in Ch. 3 that ī is always the complement to i. From these terms, which are already in
normal order, we can perform a cluster expansion, as given in Sec. 2.1.1 and in Ref. [171,
Eq. (15.43)],

∂t

⟨︂
b†1b

†
2

⟩︂
phph

= (I.20)

i

ℏ
∑︂
i=1,2

⟨︂
b†i

⟩︂[︄∑︂
3

h̃ī3−3 +
∑︂
4

[︂(︂
h̃3ī4 + h̃34ī

)︂⟨︂
b†−3b4

⟩︂
+ h̃ī34

(︂
⟨b3b4⟩+

⟨︂
b†−3b

†
−4

⟩︂)︂]︂]︄

+
∑︂
3

i

ℏ

⟨︂
b†−3

⟩︂⎡⎣(︂h̃312 + h̃321

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃3ī4 + h̃34ī

)︂⟨︂
b†ib4

⟩︂
+
(︂
h̃ī34 + h̃ī43

)︂⟨︂
b†ib

†
−4

⟩︂]︂⎤⎦
+
i

ℏ
∑︂
3

⟨b3⟩

⎡⎣(︂h̃132 + h̃123

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃ī34 + h̃ī43

)︂⟨︂
b†ib4

⟩︂
+
(︂
h̃4ī3 + h̃43ī

)︂⟨︂
b†ib

†
−4

⟩︂]︂⎤⎦
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and

∂t ⟨b1b2⟩phph = (I.21)

− i

ℏ
∑︂
i=1,2

⟨bi⟩
[︄∑︂

3

h̃−ī3−3 +
∑︂
4

[︂(︂
h̃3−ī4 + h̃34−ī

)︂⟨︂
b†−4b3

⟩︂
+ h̃−ī34

(︂
⟨b3b4⟩+

⟨︂
b†−3b

†
−4

⟩︂)︂]︂]︄

− i

ℏ
∑︂
3

⟨b3⟩
[︃(︂
h̃3−1−2 + h̃3−2−1

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃3−ī4 + h̃34−ī

)︂⟨︂
b†−4bi

⟩︂
+
(︂
h̃−ī34 + h̃−ī43

)︂
⟨bib4⟩

]︂]︃

− i

ℏ
∑︂
3

⟨︂
b†−3

⟩︂[︃(︂
h̃−2−13 + h̃−23−1

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃−ī34 + h̃−ī43

)︂⟨︂
b†−4bi

⟩︂
+
(︂
h̃4−ī3 + h̃43−ī

)︂
⟨bib4⟩

]︂]︃

To derive an equation of motion for the purely correlated quantities, one has to derive
an equation for the quantities⟨︂

b†1b
†
2

⟩︂c
=
⟨︂
b†1b

†
2

⟩︂
−
⟨︂
b†1

⟩︂⟨︂
b†2

⟩︂
, (I.22)

∂t

⟨︂
b†1b

†
2

⟩︂c
= ∂t

⟨︂
b†1b

†
2

⟩︂
−
[︂
∂t

⟨︂
b†1

⟩︂]︂⟨︂
b†2

⟩︂
−
⟨︂
b†1

⟩︂ [︂
∂t

⟨︂
b†2

⟩︂]︂
. (I.23)

From this definition, we find,

∂t

⟨︂
b†1b

†
2

⟩︂c
phph

= (I.24)

∑︂
3

i

ℏ

⟨︂
b†−3

⟩︂⎡⎣(︂h̃312 + h̃321

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃3ī4 + h̃34ī

)︂⟨︂
b†ib4

⟩︂
+
(︂
h̃ī34 + h̃ī43

)︂⟨︂
b†ib

†
−4

⟩︂]︂⎤⎦
+
i

ℏ
∑︂
3

⟨b3⟩

⎡⎣(︂h̃132 + h̃123

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃ī34 + h̃ī43

)︂⟨︂
b†ib4

⟩︂
+
(︂
h̃4ī3 + h̃43ī

)︂⟨︂
b†ib

†
−4

⟩︂]︂⎤⎦,
and

∂t ⟨b1b2⟩cphph = (I.25)

− i

ℏ
∑︂
3

⟨b3⟩
[︃(︂
h̃3−1−2 + h̃3−2−1

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃3−ī4 + h̃34−ī

)︂⟨︂
b†−4bi

⟩︂
+
(︂
h̃−ī34 + h̃−ī43

)︂
⟨bib4⟩

]︂]︃

− i

ℏ
∑︂
3

⟨︂
b†−3

⟩︂[︃(︂
h̃−2−13 + h̃−23−1

)︂
+
∑︂
i=1,2

∑︂
4

[︂(︂
h̃−ī34 + h̃−ī43

)︂⟨︂
b†−4bi

⟩︂
+
(︂
h̃4−ī3 + h̃43−ī

)︂
⟨bib4⟩

]︂]︃
.
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Formal Integration

This equation will be solved using via formal integration and Markov approximation,
cf. Sec. 2.1.1. Here, we assume that the scattering processes only occur with occupations,
which allows introducing an additional Delta function. Furthermore, we abbreviated
H123 = h̃123 + h̃132, using that the scattering process is momentum conserving so that
H123 = Ĥ123δ3,−1−2 and defined H1,2 which is the sum of all permutations of Ĥ1,2,−1−2.
From this, we find⟨︂

b†1b
†
2

⟩︂c
=
iπ

ℏ
H1,2

⟨︂
b†1+2

⟩︂[︃
1 +

⟨︂
b†1b1

⟩︂
+
⟨︂
b†2b2

⟩︂]︃
δ(ω1 + ω2 − ω1+2) (I.26)

⟨b1b2⟩c = − iπ
ℏ
H−1,−2 ⟨b1+2⟩

[︃
1 +

⟨︂
b†1b1

⟩︂
+
⟨︂
b†2b2

⟩︂]︃
δ(ω1 + ω2 − ω1+2) (I.27)

Using this identity in the equation of motion for the the coherent phonons, one finds
the equations

∂t ⟨bq⟩ =− iωq ⟨bq⟩ − γq ⟨bq⟩ −
ig−q

ℏ
∑︂
k

⟨︂
a†k−qak

⟩︂
− i

ℏ
∑︂
k

ĥ−q,k,q−k

(︂
2
⟨︂
b†−q+kbk

⟩︂c
+ δq,0

)︂
, (I.28)

∂t

⟨︂
b†−q

⟩︂
=iω−q

⟨︂
b†−q

⟩︂
− γ−q

⟨︂
b†−q

⟩︂
+
ig−q

ℏ
∑︂
k

⟨︂
a†k−qak

⟩︂
+
i

ℏ
∑︂
k

ĥ−q,k,q−k

(︂
2
⟨︂
b†−q+kbk

⟩︂c
+ δq,0

)︂
. (I.29)

At this stage, we introduce the microscopic damping rate of the coherent phonon ampli-
tude given by

γq ≡ 2π

ℏ2
∑︂
q′

⃓⃓⃓
ĥ−q,q′,q−q′

⃓⃓⃓2[︁
1 + ñcq′ + ñcq−q′

]︁
× δ(ωq′ − ωq−q′ − ωq), (I.30)

which results from phonon-phonon interaction. Here, we again want to point out that the
phonon terms are actual occupations, off-diagonal terms are neglected as higher-order
contributions. As the last term cancels once both terms are added (which is our case of
interest), we will not consider them from now on. In order to close this equation for the
coherent phonon operator, we take the second derivative of our oscillator equation and
find [︁

∂2t + γq∂t + ω2
q

]︁
⟨bq⟩ =+ iωqγq ⟨bq⟩ −

g−qωq

ℏ
∑︂
k

⟨︂
a†k−qak

⟩︂
− ωq

ℏ
∑︂
k

Hq,k

(︂
2
⟨︂
b†−q+kbk

⟩︂c
+ δq,0

)︂
, (I.31)

[︁
∂2t + γ−q∂t + ω2

−q

]︁ ⟨︂
b†−q

⟩︂
=− iω−qγ−q

⟨︂
b†−q

⟩︂
− g−qω−q

ℏ
∑︂
k

⟨︂
a†k−qak

⟩︂
− ω−q

ℏ
∑︂
k

ĥ−q,k,q−k

(︂
2
⟨︂
b†−q+kbk

⟩︂c
+ δq,0

)︂
. (I.32)
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Hence, we obtain a damped harmonic oscillator equation for the respective phonon
operator. The only issue arising at this stage is that we get an additional imaginary
contribution to our equation, which is the inherent result of the second derivative frame-
work. By combining the two equations, and neglection the arising difference term, we
find (︁

∂2t + 2γq∂t + ω2
q

)︁
sq = −ωq

ℏ
∑︂
kλ

gλ−qf̃
λ
k(q)

− 3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︁
2ñcq′(q) + δq,0

]︁
. (I.33)

which we will be the main oscillator equation, we use in the main part.

I.3. Momentum Closure of the Microscopic Equations

To promote the microscopic coherent phonon amplitude to a macroscopic level, we use
the standard textbook definition of the lattice displacement. For the single band case,
this reads

u(Rn) =
∑︂
kα

√︄
ℏ

2MNωα
k

eαqe
iq·Rn

(︂
b†−qα + bqα

)︂
=
∑︂
kα

√︄
2ℏ

MNωα
k

eαqe
iq·Rnsqα (I.34)

gqα = −i
√︄

ℏN
2Mωα(q)

[︁
eαq · q

]︁
Φq (I.35)

To find a closed solution, we will need to assume a vanishing k dependence of the
Fourier transformed Coulomb potential, which can be achieved by a Strong Screening
assumption. In doing so, the momentum dependence of the Coulomb potential is replaced
with the (Thomas-Fermi) screening length λ. Hence, the the strongly screened Coulomb
potential is given by

V0 =
e2

Ωε0λ2
. (I.36)

From this, we update the definition of the electron-phonon matrix element

gq = −i
√︂

ℏN/2Mωq [eq · q]V0. (I.37)

From this, we can use the microscopic oscillator equation in Eq. (6.11),(︁
∂2t + 2γq∂t + ω2

q

)︁
sq = −ωqg−q

ℏ
∑︂
k

f̃k(q)−
3ωq

ℏ
∑︂
q′
h̃q,q′,q−q′

[︁
2ñcq′(q) + δq,0

]︁
. (I.38)

and under neglection the momentum dependencies of the phonon-phonon matrix ele-
ment, h̃q,q′,q−q′ ≈ H, find

(︁
∂2t + 2γq∂t + ω2

q

)︁
sq =− i

√︃
ωqN

2Mℏ
[eq · q]V0

∑︂
k

f̃k(q)

− 3ωqH

ℏ
∑︂
q′

[︁
2ñcq′(q) + δq,0

]︁
. (I.39)
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Now, using the identity in Eq. (I.34),√︄
2ℏ

MNωq
eq
(︁
∂2t + 2γq∂t + ω2

q

)︁
sq =− iV0

M
eq[eq · q]

∑︂
k

f̃k(q)

− 3H

√︃
2ωq

MNℏ
eq
∑︂
q′

[︁
2ñcq′(q) + δq,0

]︁
. (I.40)

(︁
∂2t + 2γq∂t + ω2

q

)︁
uq =− iV0

M
eq[eq · q]

∑︂
k

f̃k(q)

− 3H

√︃
2ωq

MNℏ
eq
∑︂
q′

[︁
2ñcq′(q) + δq,0

]︁
. (I.41)

According to Ref. [205], the definition of H contains three unit vectors. As we change
the definition of the oscillation vector, we have to add the factor of −i in order to get a
real-valued quantity. Hence, we replace H = −iH̃:,

(︁
∂2t + 2γq∂t + ω2

q

)︁
uq = +

iV0
M

eq[eq · q]
∑︂
k

f̃k(q) + 3iH̃

√︃
2ωq

MNℏ
eq
∑︂
q′

[︁
2ñcq′(q) + δq,0

]︁
.

(I.42)(︁
∂2t + 2γq∂t + ω2

q

)︁
uq =

iV0
M

q
∑︂
k

f̃k(q)− 3H̃

√︃
2ωq

MNℏ
q

|q|
∑︂
q′

[︁
2ñcq′(q) + δq,0

]︁
. (I.43)

Using a Fourier transformation, and absorbing the constant on the right-hand side into
the equilibrium position of the oscillator equation, we find

(︁
∂2t + 2γq∂t + ω2

q

)︁
u(r) =

V0
M

∇r

∑︂
k

fk(r)− 6H̃

√︃
2ωq

MNℏ
er
∑︂
q′
ncq′(r). (I.44)

(︁
∂2t + 2γq∂t + ω2

q

)︁
u(r) =

V0Ω

eM
∇rρ(r)− 6H̃

√︃
2ωq

MNℏ
er
∑︂
q′
ncq′(r). (I.45)

Thus, our final microscopic equations at this stage are

(︁
∂2t + 2γq∂t + ω2

q

)︁
u(r) =

V0Ω

eM
∇rρ(r)− 6H̃

√︃
2ωq

MNℏ
er
∑︂
q′
ncq′(r). (I.46)

In summary, we find a second order differential equation in time and momentum space
that we employ in the main part of this thesis, with the only correction that we need
to incorporate the nature of thermal expansion as an extensive quantity. Details are
provided in the main part.

I.4. Microscopic Temperature Equation

This is to be seen as an approach to obtain an equation for the temperature, which
follows from energy conservation in hydrodynamics. We start with a simplified version
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of our Wigner equation (no phonons, only electric fields), it reads

∂tfk(r, t) + vk · ∇rfk(r, t) = E(r, t) · ∇kfk(r, t). (I.47)

We will assume that the velocity can be written as vk = v + δvk. We multiply the
equation with δvk ⊗ δvk and sum over the momentum. One obtains

∂t
e

V

∑︂
q

δvk ⊗ δvkfk +
e

V

∑︂
q

δvk ⊗ δvk(vk · ∇r)fk =
e

V

∑︂
q

δvk ⊗ δvkE · ∇qfk.

(I.48)

Employing integration by parts and that vk is not spatially dependent, one finds

∂t
e

V

∑︂
q

δvk ⊗ δvkfk =−∇r

[︄
e

V

∑︂
q

δvk ⊗ δvk ⊗ (v + δvk)fk

]︄
− e

V

∑︂
q

∇q(vk ⊗ vk)⊗Efk, (I.49)

From this, we are able to identify

∂tP = −∇r[P⊗ v +Q]− 2ℏ
m
ρv ⊗E, (I.50)

where we defined the pressure tensor P and the heat flux Q

P =
e

V

∑︂
q

δvk ⊗ δvkfk, (I.51)

Q =
e

V

∑︂
q

δvk ⊗ δvk ⊗ δvkfk. (I.52)

Using the replacement P = 3
2

ρ
mkBT , one finds

3

2
∂t
ρ

m
kBT = −∇r

[︃
3

2

ρ

m
kBT ⊗ v +Q

]︃
− 2ℏ
m
ρv ⊗E. (I.53)

Combining this with the continuity equation, and assuming isotropy to reduce the
complexity of the tensor product, one finds

3

2
ρ[∂t + v · ∇r]kBT = −m∇rQ− 2ℏ ρv ·E (I.54)

This equation effectively couples the temperature in the system with the heat flux,
based on a microscopic calculation. However, the future has to judge if this additional
equation yields reasonable results.

I.5. Lamb modes - Eigenmodes of a Traction-Free Sphere

In order to characterize in the eigenmodes of the oscillation and solve the spatial part of
the partial differential equation, we will assume that our analysis lacks the treatment of
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the bulk and shear modulo and hence needs to be extended to include those. Thus, we
assume that the spatial contribution to the oscillation satisfies the equation

(λ+ µ)∇(∇ · u) + µ∇2u = ρ∂2t u. (I.55)

An overview of the analytical solution of this equation can be found in Refs. [447, 475,
501]. In summary, solutions of this equation can be given as

u = L+M+N (I.56)

with

L = ∇ϕ (I.57a)
M = ∇× (wψe3) (I.57b)
N = ξ∇×∇× (wχe3) (I.57c)

The Helmholtz potentials can in our geometry, assuming a full sphere be written as

ϕ = jl(αr)P
m
l (cos θ) exp{i(mφ− ωt)} (I.58a)

ψ = jl(βr)P
m
l (cos θ) exp{i(mφ− ωt)} (I.58b)

χ = jl(βr)P
m
l (cos θ) exp{i(mφ− ωt)} (I.58c)

where jl(x) are the spherical Bessel functions and the wave numbers α and β differ
depending on the longitudinal/transverse speed of sound

α ≡ ω/c1 , β ≡ ω/c2 , (I.59)

The resulting modes are named Lamb modes, due to the first works by Horace Lamb
[447]. Due to symmetry considerations, we decided to focus on the first Helmholtz
potential and also reduced to the ℓ = 0 case, as we are interested in radial oscillations.
These will be rescaled in order to match our prescription and allowing to connect them
to the eigenmodes of our system. Using this simplification, the eigenmodes of our system
can be given as

ϕn(r) =

(︃
ℏ

2Mω

)︃ 1
2 1

kn
j0(knr), (I.60)

un(r) =

(︃
ℏ

2Mω

)︃ 1
2 1

kn
∂r(j0(knr))er. (I.61)

(I.62)

The prefactor was chosen to match the units of length for the lattice displacement
u(r). We will use these quantities to expand our vector and scalar-valued quantities in

ρ̃2(r, t) =
∑︂
n

ϕn(r)ρn(t), u(r, t) =
∑︂
n

un(r)un(t). (I.63)

From this, we also define the overlap integrals

An =

∫︂
d3ru∗

n(r) · un(r) =
ℏ

2Mω

4π

k2n

∫︂ R

0
r2(∂r(j0(knr)))

2dr, (I.64)

Bn =

∫︂
d3rϕ∗n(r)ϕn(r) =

ℏ
2Mω

4π

k2n

∫︂ R

0
r2(j0(knr))

2dr (I.65)
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I.5.1. Boundary Conditions

The remaining quantum number is related to the boundary condition that quantizes the
α and β. In the literature, they are usually related to the unitless frequencies

ξ = αa =
ωa

c1
=

2aπν

c1
, (I.66a)

η = βa =
ωa

c2
=

2aπν

c2
. (I.66b)

Here, c1 is the longitudinal speed of sound in the medium and c2 the transverse one.
For radial modes ℓ = 0, the stress-free boundary conditions are given by [449]

η cot η = 1− η2

4δ2
(I.67)

The original work on this can be found in Ref. [447] but more recent works have greatly
contributed to a more profound understanding of these eigenmodes [449, 450, 501, 502].

I.5.2. Overlap Integrals

Here, we present our calculation of the overlap integrals. In Mie theory, the electric field
is given by

Ein =
3εout

ε∞ + εout
Eext, Eout = Eext +

3n(n · p)− p

4πε0εoutr3
. (I.68)

From this, we use a Heaviside Theta function to place them in a single expression,

E(r) = Θ(r −R)Eout +Θ(R− r)Ein. (I.69)

This allows us to compute the integral expression by integration by parts. Under the
physical assumption that the material wave functions only exist within the sphere, the
integrals on the outside of the sphere should vanish and one only integrates over the
volume of the sphere.

When computing the overlap, we make use of the fact that the Lamb mode is the
gradient of the first Helmholtz potential, as we restricted ourselves to the purely radial
case,

∇ϕn = un(r) ≈
(︃

ℏ
2mω

)︃ 1
2 1

kn
∂r(j0(knr))er (I.70)

From this, we discuss the individual cases of interband and intraband excitation in the
following.

Intraband case

The equation for the densities reads

∂tρn(t) +D
ω2
n

c21
ρn(t) = − K

Bn

∫︂
u∗
n(r) ·

[︂
(Ẽ · ∇)Ẽ

]︂
d3r. (I.71)
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where we defined

D =
5

3

κ

γ
ρ
2/3
0 , K =

ρ0
γ3

(︂ e
m

)︂2
(I.72)

Performing the integral, we find

− K

Bn

∫︂
∇ϕn · (E · ∇)E

= −4π

3

(︃
ℏ

2mω

)︃1/2 K

Bn
E2

0

[︃
∂rjl(knR)

kn

(︄
(1− b2)R2 +

4αk̃

R
+

4α2k̃
2

R4

)︄]︃
, (I.73)

where we defined for simplicity

k = k̃/r3, k̃ =
1

4πε0εout
. (I.74)

Interband case

The equation that we obtain for the electric field overlap is given by

∂tρ
c
2(r, t) =

2eε0
ℏ

⃓⃓⃓
Ẽ0(r, t)

⃓⃓⃓2
Im
{︁
χinter(ωopt)

}︁
. (I.75)

We now decided to take the gradient of the density equation to expand it in the same
Lamb mode as before,

∂t∇ρc2(r, t) =
2eε0
ℏ

∇
⃓⃓⃓
Ẽ0(r, t)

⃓⃓⃓2
Im
{︁
χinter(ωopt)

}︁
. (I.76)

as we used u = ∇ϕ, this can be expanded in terms of the vector valued Lamb modes,

∂tρ
c
2(t) =

2eε0
ℏA

∫︂
d3r u∗

0(r) · ∇
⃓⃓⃓
Ẽ0(r, t)

⃓⃓⃓2
Im
{︁
χinter(ωopt)

}︁
. (I.77)

Making use of the field definition via the Theta functions, we can evaluate the integral
explicitly and find

∂tρ
c
2(t) =

8πeε0
ℏA

u∗0(R)

[︃(︃
1 +

3εout

εd + 2εout

)︃2

+ 2

(︃
α

4πε0εoutR3

)︃2]︃
×E2

0 Im
{︁
χinter(ωopt)

}︁
exp
{︁
−2t2/σ2

}︁
, (I.78)

where we assumed vacuum for the background and in the Drude permittivity, εd, we
use the parameters from the critical point model [277] so that all interband contributions
are contained in the susceptibility in the back while all Drude terms are used in these
parameters.

I.6. Pump Fluence

Our electric field is defined to be

E(t) = E0e
−2 ln(2)t2τ2 cos(ωt) (I.79)
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with the optical frequency, ω0 which is large compared to the pulse length. The pulse
length is defined as the full width at half maximum (FWHM) which means that it is
the time difference of the two points where the exponential function reaches 1/2 for the
intensity as we will check later on.
The intensity is defined as the time averaged electric field over one period

I(t) = cε0n
1

T0

∫︂ t+T0/2

t−T0/2

[︂
E0e

−2 ln 2t2/τ2 cos
(︁
ω0t

′)︁]︂2dt′ (I.80)

assuming that the envelope varies slowly compared to the optical oscillation, one finds

I(t) = cε0n
1

T0
|E0|2e−4 ln 2t2/τ2

∫︂ t+T0/2

t−T0/2
cos2(ω0t

′)dt′ =
cε0n

2
|E0|2e−4 ln 2t2/τ2 (I.81)

At this stage, it is easy to see that the intensity falls off to 1/2 as t reaches τ/2.
Evaluating the time integral, results in the absolute energy contained in one pulse (pump
fluence)

W =
cε0n

2
|E0|2

∫︂ ∞

−∞
e−4 ln 2t2/τ2dt =

cε0n

2

√︃
π

ln 2

τ

2
|E0|2, (I.82)

which allows transforming the electric field strength and the intensity into each other
according to

E0 =

√︄
4

cε0nτ

√︃
ln 2

π
W. (I.83)

At this stage, it feels important to check the units,

[W ] =
m

s

As

V m
s
V 2

m2
=
As

m2
V =

J

m2
. (I.84)

In addition, this allows to define an expression for the field intensity, depending on the
pump fluence

I(t) =
W

σ
e−t2/σ2

, (I.85)

where we defined σ = τ
/︂√

4 ln 2 as can be found Ref. [448].
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