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a b s t r a c t

We investigate how locomotory behavior is generated in the brain focusing on the paradigmatic connec-
tome of nematode Caenorhabditis elegans (C. elegans) and on neuronal and muscular activity patterns that
control forward locomotion. We map the neuronal network of the worm as a multilayer network that
takes into account various neurotransmitters and neuropeptides. Using logistic regression analysis, we
predict the neurons of the locomotory subnetwork. Combining Hindmarsh-Rose equations for neuronal
activity with a leaky integrator model for muscular activity, we study the dynamics within this subnet-
work and predict the forward locomotion of the worm using a harmonic wave model. The application of
time-delayed feedback control reveals synchronization patterns that contribute to a coordinated locomo-
tion of C. elegans. Analyzing the synchronicity when the activity of certain neurons is silenced informs us
about their significance for a coordinated locomotory behavior. Since the information processing is the
same in humans and C. elegans, the study of the locomotory circuitry provides new insights for under-
standing how the brain generates motion behavior.

� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The human brain is a complex neuronal network with hundreds
of billions of neurons arranged in a multitude of interconnected
circuits. A major goal of neuroscience research is to understand
how mental processes and behavior are controlled by the brain
[30, Chapter 1]. In order to understand how behavior is generated,
it is essential to understand the structure and the function of the
individual circuits, along with the underlying patterns of neuronal
activity [10,13]. Therefore, it is necessary to identify the neurons
and their connections within each circuit. In view of the complex-
ity of the brain, simpler models need to be considered.

The nematode C. elegans is an important animal model for
almost all areas of experimental biology. The tiny creature provides
a complete description of a development lineage, a nervous
system, and a genome [26]. Although the genome of the worm is
very simple, it has remarkable similarities to the human genome
[44]. The neurons of C. elegans and humans are almost identical
[36]. The nerve ring located at the head region of the worm is an
equivalent counterpart to the human central nervous system
[15]. Compared to the complexity of the brain, the nervous system
of the adult C. elegans hermaphrodite can be treated more easily
since it consists of only 302 neurons fixed. It serves as a prototype
for investigations of neuronal networks because all synaptic con-
nections between the neurons have been completely mapped by
electron microscopy with reasonable accuracy at the cellular level
[1,5,13,16,78,80].

Locomotion is the most important behavior of C. elegans and is
made possible through 95 body wall muscles [2]. For example, the
worm must be able to move in order to search for food, con-
specifics, or improved conditions [26] but also to react to certain
environmental influences, such as a gentle body touch. The C. ele-
gans nervous system includes three main types of neurons: sen-
sory neurons, interneurons, and motor neurons. In case of a body
touch, information processing starts with sensory neurons that
transmit information to interneurons. The latter in turn stimulate
motor neurons that stimulate muscle cells so that the worm reacts

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.11.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neucom.2020.11.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.maertens@gmx.net
mailto:schoell@physik.tu-berlin.de
mailto:schoell@physik.tu-berlin.de
mailto:jorge.ruiz@bccn-berlin.de
mailto:philipp.hoevel@ucc.ie
http://www.itp.tu-berlin.de/schoell
http://publish.ucc.ie/researchprofiles/D019/philipphoevel
http://publish.ucc.ie/researchprofiles/D019/philipphoevel
https://doi.org/10.1016/j.neucom.2020.11.015
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


T. Maertens, E. Schöll, J. Ruiz et al. Neurocomputing 427 (2021) 238–261
with locomotion [19, Section II]. In general, information processing
of external influences in humans does not function differently even
if the human nervous system is much more elaborate. For example,
humans can also perceive touches via receptors in their skin [54]
and react to them with movements of corresponding body parts.
Therefore, studying the locomotory subnetwork of C. elegans could
provide new insights for understanding how the brain generates
motion behavior.

In this study, we map the somatic nervous system of C. ele-
gans as a multilayer network including neurons and body wall
muscles. For a better understanding of the properties and pro-
cesses within the network, the underlying neurotransmitters and
neuropeptides in chemical synapses are taken into account. These
represent different modes of interactions between the nodes and
define the multilayer network [5]. This makes it possible to apply
logistic regression models to the network in order to identify the
locomotory subnetwork that comprises all neurons involved in
locomotion behavior (cf. Section 2). Subsequently, we focus the
patterns of neuronal and muscular activity for a circuit of the loco-
motory subnetwork that initiates forward and backward locomo-
tion in response to a touch stimulus on the head or tail. In order
to describe the locomotion of the worm, we implement a harmonic
wave model which is based on muscular activity. The peculiarity of
our model is that the body posture of C. elegans can be predicted by
the activity of each muscle pair consisting of a dorsal and a ventral
muscle (cf. Section 3). This allows us to identify synchronization
patterns that contribute to a coordinated locomotion behavior of
C. elegans using time-delayed feedback control and to perform syn-
chronization analyses from which conclusions can be drawn about
the significance of neurons within the locomotory circuitry (cf.
Section 4).
2. Multilayer network analysis

In this section, we introduce a multilayer network of C. ele-
gans and based on this we predict the locomotory subnetwork
using logistic regression.

2.1. Construction of the multilayer network

In order to create the network, we make use of several datasets
(see Table 1). For the neurons, the information of class affiliation
and neuron type is taken into account (ID 1). Neuronal connectivity
describes how neurons are connected to each other, either through
chemical synapses or gap junctions (ID 2). The neurons in the net-
work are extended by 95 body wall muscle cells as these are essen-
tial for analysis of locomotion. Motor neurons act on muscle cells
through neuromuscular junctions (ID 3). To better understand
the interactions of chemical synapses, they are separated into var-
ious neurotransmitters and neuropeptides. This requires transmit-
ter and receptor information for the individual neurons and
information about which transmitters and receptors couple
Table 1
Datasets with network specific information. The neuron and connectivity data (ID 1 –
ID 3) can be found on WormAtlas [82]. The transmitter and receptor data (ID 4) are
partly provided by [5] and have been supplemented by own work.

ID Dataset Content

1 Neurons Name, class, and neuron type
2 Neuronal Synapse type with number of synapses

connectivity between presynaptic and postsynaptic partners
3 Neuromuscular Number of synapses between neurons and

connectivity body wall muscle cells
4 Transmitters Neurotransmitter, neuropeptide, and

and receptors neuroreceptor information for the neurons
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together (ID 4). By considering different neurotransmitters and
neuropeptides, the network receives many extra layers that pro-
vide a deeper knowledge of the C. elegans connectome and biolog-
ical neuronal networks in general.

The mapped network consists of 279 neurons and 95 muscle
cells (Fig. 1a). The neurons can be categorized as sensory neurons,
interneurons, and motor neuron. Although the neurons can be
multifunctional, only one type is highlighted in the figure (see also
Table A.2). In total, there are 3;538 distinct directed connections
between the nodes formed by electrical, chemical, and neuromus-
cular synapses (see also Table A.1). Note that the number of
synapses is recorded for all connections in the network but is not
taken into account here. In order to assign the number of synapses
between neuron pairs with multiple neurotransmitters and neu-
ropeptides, we assume that these are co-released [20].

Since the chemical links are represented by corresponding
transmitter types, the multilayer network is defined by all these
modes of interactions which are depicted in Fig. 1b-h: Acetyl-
choline (ACh), glutamate (Glu), gamma-aminobutyric acid (GABA),
monoamine (MA), peptide, electrical, and neuromuscular connec-
tions, respectively. ACh covers 33:4% of the 3;538 connections in
the network and forms the largest layer. It is widely spread among
all neurons and does not prefer a specific neuron type. Glu uses
20:5% of the connections. In comparison with the ACh layer, signif-
icantly fewer motor neurons are involved. GABA represents the
smallest network layer and is released on 3:8% of the connections.
Most of them are established by interneurons and motor neurons.
Thereafter, the MA transmitters follow with 5:8%. These connec-
tions are independent of the neuron type, but most of the motor
neurons are predominantly postsynaptic. In the group of MAs,
dopamine accounts for about two thirds (cf. Fig. A.1b). The peptide
layer utilizes 11:8% of the connections in the network, which pri-
marily exist between interneurons and sensory neurons. About
31% of the peptides are peptide transmitters and about 69% are
cotransmitters (cf. Fig. A.1c, and d). Electrical transmission
accounts for 29:1% of the connections and is therefore the second
largest layer after ACh. 15:5% of the connections employ neuro-
muscular junctions, which connect motor neurons and body wall
muscles. Background information on the different layers is sum-
marized in Appendix B, and the data preparation process is
detailed in Appendix A.

The transmitters utilized in the network allow for logistic
regression analysis to predict the neurons involved in locomotion
behavior, as detailed in the following.
2.2. Logistic regression analysis

Binary model – Logistic regression is a classification algorithm
which can be used to predict a binary response variable Yi 2 0;1f g
based on a set of independent explanatory variables x1; . . . ; xm.
Since the expectation value of the response variable E Yið Þ lies in
the interval 0;1½ �, the binary model applies the sigmoid function
as response function

ri zi cð Þð Þ ¼ 1
1þ e�zi cð Þ ; i ¼ 1;2; . . . ;n; ð1Þ

where i is the observation index, zi cð Þ ¼ c0 þ c1x1i þ c2x2i þ . . .þ
cmxmi is the linear combination of m explanatory variables
x1i; x2i; . . . ; xmi with mþ 1 parameters c ¼ c0; c1; c2; . . . ; cmð Þ. The
outcome for observation i can be interpreted as the probability
that the response variable Yi is equal to one,
ri zi cð Þð Þ ¼ E Yið Þ ¼ P Yi ¼ 1ð Þ. The goal of logistic regression analy-
sis is to find parameters that best fit empirical observed data in
Eq. (1). This can be achieved using the maximum likelihood esti-
mation [59, Chapter 4].



Fig. 1. The C. elegans multilayer network. Nodes (illustrated as circles) represent 80 sensory neurons (yellow), 76 interneurons (green), 123 motor neurons (red), and 95 body
wall muscles (magenta). A larger node size indicates a higher total node degree. In total, 3;538 distinct directed connections exist between the nodes. The different
connection types are illustrated as colored arrows. Panel (a) is an overlay of all other panels (b)-(h). The placement algorithm for the neurons is FORCE ATLAS available in the
program GEPHI.
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Fig. 2. The C. elegans information flow from touch sensory neurons to muscle cells.
The information flows along the shortest paths from the sensory neurons (ALML,
ALMR, AVM, PLML, PLMR) to specific interneurons for processing and then to
specific motor neurons to complete an action. The latter can be directly connected
to the muscle cells, or they can previously activate a second layer of motor neurons.
The color code is as in Fi.g. 1.

Table 2
Logistic regression datasets. The datasets represent the shortest paths between (a) the
touch sensory neurons (ALML, ALMR, AVM, PLML, PLMR) and (b) all sensory neurons
and the body wall muscles where the second neuron is an interneuron and the third
and fourth (if existing) are both motor neurons. Logistic regression models are
developed on (a) and tested on (b).

Shortest path Number of observations

length for Yi = 1 for Yi = 0 in total

(a) Touch sensory neurons
3 1,691 540 2,231
4 6,759 3,441 10,200

Total 8,450 3,981 12,431

(b) All sensory neurons
3 14,784 13,439 28,223
4 58,128 70,537 128,665

Total 72,912 83,976 156,888
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Discriminative power – The discriminative power P measures
the ability of a logistic regression model or potential explanatory
variables to distinguish correctly between realizations (0 or 1) of
the response variable yi. We define the power as

P ¼ 1
NY¼1NY¼0

PNY¼1

l¼1

PNY¼0

m¼1
W xl;Y¼1; xm;Y¼0
� �

;

W xl;Y¼1; xm;Y¼0
� � ¼

1; if xl;Y¼1 > xm;Y¼0

0; if xl;Y¼1 ¼ xm;Y¼0

�1; if xl;Y¼1 < xm;Y¼0

8><
>:

; ð2Þ

where xl;Y¼1 and xm;Y¼0 are realizations of the empirical distributions
XY¼1 and XY¼0 with numbers of observations NY¼1 and NY¼0.

The power can be derived from the receiver operating charac-
teristic (ROC) and the cumulative accuracy profile (CAP). Both
ROC and CAP are important concepts to visualize the discrimina-
tive power or separation ability of a model. The information con-
tained in a ROC or CAP curve can be aggregated into a single
number, the area under the ROC curve (AUROC) or the accuracy
ratio (AR). The AR can be interpreted as a simplified representation
of AUROC since AR ¼ 2 � AUROC� 1 and is also known as Gini coef-
ficient or power statistics. Note that the Mann–Whitney statistics
can be introduced as a quantity equivalent to AUROC [21,
Chapter 13], which allows us to calculate the discriminative power
as introduced in Eq. (2). From a statistical point of view, the power
P can be interpreted as the probability to uncover a difference
when there really is one. The advantage of defining the power
using the Mann-Whitney statistics is that 95% confidence intervals
can be calculated which better account for the uncertainty associ-
ated with small sample sizes (see Appendix C for more details
about logistic regression and discriminative power).

2.3. Data basis for logistic regression

Next, we introduce the data basis to which we apply the logistic
regression tools in order to predict the neurons of the locomotory
subnetwork. In compiling the data, it must be ensured that these
are related to the locomotion behavior of the worm. We achieve
this by considering the shortest paths between sensory neurons
and muscle cells. In the development of regression models, we
restrict ourselves to 5 sensory neurons through which C. ele-
gans perceives gentle touches on the head and tail. The worm
reacts on this by moving forward or backward. The shortest paths
are illustrated in Fig. 2. In general, the transfer of information in the
network begins with sensory neurons and proceeds via interneu-
rons to motor neurons. The latter in turn can activate muscle cells.
The particularity of C. elegans is that the stimulation and relaxation
of muscle cells is effected by two types of motor neurons: excita-
tory and inhibitory. Moreover, the inhibitory cells are generally
activated by excitatory cells which are included in the shortest
paths. However, Fig. 2 has only an illustrative purpose and is
not complete. Many of the motor neurons in the third group
would also appear in the fourth group because the motor neurons
themselves are interconnected. All locomotion-relevant interneu-
rons and motor neurons are contained in the shortest paths.

The shortest paths are classified as paths going completely
through the locomotory subnetwork and others. This is done first
on the level of the neurons (results are taken from [83] and
depicted in Fig. 6) and then on the level of the shortest paths:

LSp ¼

1; if neuron p belongs to one of the classes AVD 2ð Þ;
AVA 2ð Þ;PVC 2ð Þ;AVB 2ð Þ;VA 12ð Þ;DA 9ð Þ;AS 11ð Þ;

VB 11ð Þ;DB 7ð Þ;DD 6ð Þ;VD 13ð Þ; or PDB 1ð Þ
0; otherwise

8>>><
>>>:

;

yi ¼
1; if the shortest path spi between sensory neuron and

muscle cell only involves neurons with LSp ¼ 1
0; otherwise

8><
>: :
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The variable LSp contains the information of being part of the
locomotory subnetwork for the neurons neuronp with index
p ¼ 1;2; . . . ;279, and yi holds the same information for the shortest
paths spi with index i ¼ 1;2; . . . ;n. While LSp plays a role in finding
key factors for a logistic regression model in the univariate factor
analysis, yi is used in the multivariate optimization where factors
are combined and parameters are fitted. The numbers of the short-
est paths are presented in Table 2. Logistic regression models are
developed on the dataset with 5 touch sensory neurons. In total,
there are 12;431 pathways of which 8;450 pass through the loco-
motory subnetwork. The validation of the developed models is
based on the dataset that includes all sensory neurons. In this case,
72;912 of a total of 156;888 pathways exploit the locomotory
subnetwork.
2.4. Model development

After the data basis has been set up, the next step is to search
for factors that have a high explanatory contribution regarding
the locomotory subnetwork.

Univariate power analysis – Since the question of connectivity
is of central importance in a network, we calculate the power val-
ues (2) for different degree distributions regarding the different
neuron types in the shortest paths (see exemplary Fig. 2). There
are a total of 20 interneurons, 8 of them belong to the locomotory
subnetwork LSp ¼ 1, and 12 do not LSp ¼ 0. To analyze the power of
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these 20 neurons, the in- and outdegree within the multilayer net-
work (Fig. 1) must be determined first. In Fig. 3a, the power P is
visualized for different transmitter types. For the peptides, it is also
relevant whether they are released as classical transmitters or as
cotransmitters (cf. Fig. A.1d). In the lower part of the figure, the
highest observed values among the 8 neurons of the locomotory
subnetwork LSp ¼ 1 are also given for better understanding.

The indegree of the interneurons yields many factors with
extremely good power. The values for ACh, Glu, electrical transmis-
sion, and peptide cotransmission are greater or equal to 75% sug-
gesting that most neurons of the locomotory subnetwork LSp ¼ 1
can be distinguished from other neurons LSp ¼ 0. The positive
power values indicate that most neurons of the locomotory sub-
network should have higher indegree values than other neurons.
Glu has the best power with 95:8%, whereby the highest observed
indegree among the neurons of the locomotory subnetwork is 24.
The indegree of the electrical connections is also an excellent factor
to separate the neurons. The power value of 75% also signifies that
there is a difference between the neurons, but this time, the uncer-
tainty is a little higher which is shown by the broader confidence
interval. On the other side, the power values of GABA, MA, and pep-
tide transmission are not unsatisfactory. From a probabilistic point
of view, however, it is very uncertain to state a difference. The con-
fidence intervals indicate that the true power value could be lower
than 5%, which means that the null hypothesis ”There is no differ-
ence” should not be rejected (on a significance level of 5%). The
reason for this uncertainty is the low sample size of 20 neurons.
Note that it is sufficient to postulate a difference as long as power
values are greater than 60%.

In addition, the indegree values of the interneurons can be com-
bined for different transmission types. The summation of the val-
ues for ACh, Glu, electrical transmission, and peptide
cotransmission lead to a power of 100% meaning that the neurons
of the locomotory subnetwork can be perfectly separated from
other neurons. The locomotory interneurons are generally charac-
terized by a high outdegree since they convey signals from various
sensory neurons to a large number of motor neurons. On the other
hand, locomotion is the most important behavior of C. elegans. The
worms must be able to respond to environmental changes by
adapting their locomotion behavior. Therefore, the interneurons
of the locomotory subnetwork have also a high indegree due to dif-
ferent sensory inputs that include many different transmitters.
This is already indicated in Fig. 1. The desired 8 interneurons have
the highest total degree among all neurons. The outdegree power
values of the interneurons are presented in Fig. C.3.

Next, we consider the first layer of motor neurons (excitatory)
in the shortest paths (see exemplary Fig. 2). It is assumed that
the 8 interneurons of the locomotory subnetwork are known, and
only those motor neurons are selected that are postsynaptic to
them. This limits the number of motor neurons to 62 of which
54 belong to the locomotory subnetwork. The power values are
depicted in Fig. 3b. There are two factors with negative power val-
ues lower than �70%, Glu and peptide transmission. In this case,
Fig. 3. Indegree p
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the minus sign indicates that the motor neurons of the locomotory
subnetwork LSp ¼ 1 have more lower indegree values than other
neurons LSp ¼ 0. The indegree for peptide transmission has the
best power value with absolute 87:5%. The motor neurons of the
locomotory subnetwork can be distinguished frommost other neu-
rons because they do not have peptide transmitters. Note that the
power cannot be further increased by simple combination of fac-
tors. All tested combinations result in a lower absolute power than
for the peptide transmitters. For example, the combination with
Glu decreases the power to absolute 80:3%. The outdegree power
values can be seen in Fig. C.4a.

Apart from connectivity, it can also be sufficient to consider
only the existence of specific transmitters for the neurons. In this
case, no degree distributions need to be calculated, and a better
qualitative understanding of the neurons in the network can even-
tually be gained (see Fig. C.4b and Appendix C.3). The in- and out-
degree power values of the second layer of motor neurons
(inhibitory) are provided in Fig. C.5. The results are comparable
with those of the excitatory motor neurons, but they do not con-
tribute to the multivariate optimization, which we will investigate
next.

Multivariate optimization – In the multivariate analysis, the
factors discussed in the previous section are combined using logis-
tic regression (1) to further increase their power (2). The basis are
the shortest paths between touch sensory neurons and muscle
cells (cf. Table 2a), which include all locomotion-relevant interneu-
rons and motor neurons. For predicting the locomotory subnet-
work, we have shortlisted three models. The factors and
parameters used including the resulting negative twofold log-
likelihood are provided in Table 3.

All models require only two factors. Models 1 and 3 consider
the combined in- and outdegree of the interneurons as the first fac-
tor. The best factor from the indegree analysis is summed up with
the best factor from the outdegree analysis (for details see Figs. 3a,
C.3). The inclusion of the outdegree is not absolutely necessary
because the indegree power in the univariate analysis is already
100%, but it makes the prediction of the logistic regression models
a little more robust. On the other hand, Model 2 considers only the
indegree of the interneurons as the first factor. Models 1 and 2 uti-
lize as the second factor the peptide transmitter indegree of the
first layer motor neurons. Model 3 takes into account a qualitative
factor that aims only for the existence of certain transmitters and
peptides. First, the existence of the ACh transmitter is binary coded
(1 or 0). Then, the same is done for NLP and PDF peptides, which
are subtracted from it (for details see Fig. C.4b). The peptide trans-
mitter indegree is the only factor with a negative coefficient
because motor neurons of the locomotory subnetwork do not have
such connections, which is indicated by negative power values in
the univariate analysis. For the other factors applies that the neu-
rons of the locomotory subnetwork can be recognized by having
more higher values than other neurons. The negative twofold
log-likelihood indicates that Model 1 should have the highest
power followed by Model 2 and Model 3.
ower values.



Table 3
Logistic regression models to predict neurons involved in locomotion behavior of C. elegans. The table provides the estimated coefficients for the explanatory variables, the
estimated constant, and the resulting negative twofold log-likelihood for the regression models. The latter is given by the statistical program SPSS. Under the null hypothesis ”The
model has a perfect fit”, the fit is the better the lower its value. ”Best 4 summed” includes the indegree for ACh, Glu, electrical transmission, and peptide cotransmission.

Interneuron First layer motor neuron

Model Indegree Outdegree Indegree Quality factor Constant �2�Log- Likelihood
(Best 4 summed) (ACh + electrical) (Peptide transm.) (ACh - NLP - PDF)

1 0.164 �25.3 �10.3 3,478.8
2 0.212 �25.1 �6.5 3,714.9
3 0.157 9.7 �19.5 3,908.7

Fig. 4. Individual power values for the chosen regression factors on the develop-
ment dataset.

Fig. 5. Power values of the logistic regression models.

Fig. 6. The C. elegans main motor program for forward and backward locomotion (lo
backward locomotion by primarily activating the first layer motor neurons. These stimul
layer motor neurons, the DD and VD neurons, which relax muscle contraction via the tran
class.
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Considering the shortest paths, the power values of the selected
factors are compared in Fig. 4. The interneuron indegree only
achieves a power value of 76:5% meaning that the information
concerning the interneurons is no longer unique. For example,
many paths can lead through a particular interneuron of the loco-
motory subnetwork, but in dependence of the postsynaptic motor
neurons, each path is classified as path through the locomotory
subnetwork yi ¼ 1 or not yi ¼ 0. Therefore, the same interneuron
can be part of both, which makes the information redundant. For
this reason, the power cannot be 100% as it is the case in the uni-
variate analysis where a distinct group of neurons is considered.
The idea behind this procedure is as follows: If the neurons of
the distinct groups can be separated by certain factors, then these
factors should also be able to distinguish the shortest paths in com-
bination. The other factors in Fig. 4 have a lower power than the
interneuron idegree, but their separation ability is still more than
acceptable. The quality factor of the first layer motor neurons has
the lowest value with P ¼ 48:5%.

Finally, Fig. 5 illustrates the resulting power for the fitted
regression models on the development (left) and the validation
dataset (right). The models show power values between 96% and
97% for the touch sensory neurons. If the models are applied on
the shortest paths with all sensory neurons, slightly better values
between 98% and 99% are obtained. Note that there are 90 neu-
rons with sensory function (instead of 5), and 93 interneurons
are postsynaptic to them (instead of 20), but only 8 belong to the
locomotory subnetwork LSp ¼ 1 as assumed. The interneurons in
comotory circuitry). The command interneurons (green) initiate the forward and
ate muscle contraction via the transmitter ACh. In addition, they activate the second
smitter GABA. The numbers in brackets indicate the number of neurons per neuron
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turn are presynaptic to 106 motor neurons (instead of 62) where
54 belong to the locomotory subnetwork. Using the classification
scheme in Appendix C.2, the achieved power values are outstand-
ing. They indicate that the shortest paths can be well separated by
the logistic regression models. One interesting question is what
predictions can be made on this basis, which we will investigate
more closely.

It remains to be mentioned that none of the regression models
employs factors for the second layer motor neurons. The reason is
that the power on the development dataset could not be signifi-
cantly increased by using these factors, which is probably due to
high correlation effects between the first layer and second layer
motor neurons. The positive aspect is that the wanted inhibitory
motor neurons in the second layer are almost all only postsynaptic
to the wanted excitatory motor neurons in the first layer. There-
fore, it is sufficient to predict the interneurons and the excitatory
motor neurons. However, the power can be slightly increased by
taking more factors into account, but the power gain does not jus-
tify such complications.

2.5. Predicting the locomotory subnetwork

In this section, the performance of Models 1 and 2 is examined
in more detail.

Prediction accuracy with touch sensory neurons – The output
of the logistic regression models on the shortest paths is classified
by the threshold 0:5. Values greater than or equal to the threshold
indicate paths through the locomotory subnetwork, and values
smaller than the threshold indicate other paths. In practice, the
threshold should be adjusted so that the predicted proportion of
paths through the locomotory subnetwork corresponds to the
actual observed proportion. Since Models 1 and 2 have an out-
standing discriminative power and the proportion of yi ¼ 1
changes therefore only marginally when predicting the develop-
ment dataset (cf. Table 2a), this is not necessary. Table 4 provides
the performance of the models for the touch sensory neurons. The
results for all sensory neurons can be found in Table C.6.

The prediction of Model 1 is very close to a perfect result. In
total, the model correctly predicts 99:2% of all shortest paths,
and none of the paths through the locomotory subnetwork yi ¼ 1
are misclassified. On the other hand, some paths that do not com-
pletely pass through the locomotory subnetwork yi ¼ 0 are incor-
rectly classified as paths through the locomotory subnetwork.
However, the proportion of incorrectly classified paths is only
2:6%. The prediction accuracy of Model 2 is slightly lower with a
total performance of 96:9% because there is a larger misclassifica-
tion of paths of 9:7% that do not belong to the locomotory subnet-
work. The reason for this is that Model 2 does not take into account
the outdegree of the interneurons. Nevertheless, both models deli-
ver an excellent performance suggesting that they should be
appropriate for use on the larger dataset with all sensory neurons
(cf. Table 2b).

Model predictions with all sensory neurons – We now con-
sider the shortest paths that are classified as paths through the
locomotory subnetwork by Models 1 and 2 with threshold 0:5
and analyze the underlying neurons. Both model predictions
Table 4
Model performance on the development dataset (touch sensory neurons).

Locomotory subnetwork Prediction Model 1

correct incorrect co

yes 8,450 0
no 3,876 105

Total 12,326 105
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include all neurons of the locomotory subnetwork LSp ¼ 1. Besides,
Model 1 (2) predicts 8 (29) further neurons, which are presented in
Table C.7. Note that for all of these neurons except for three it can
be assumed on the basis of literature research and connectivity
analysis that they are involved in locomotion behavior of C. ele-
gans (cf. Section C.4). For example, the SMD and RMD motor neu-
rons are connected with muscle cells in the head and neck and
contribute to multiple navigation behaviors. Therefore, the loco-
motory subnetwork can be divided into different circuits. While
the starting neurons LSp ¼ 1 belong to a circuit that mainly initi-
ates forward and backward locomotion (main motor program) of
C. elegans [19, Section I], the SMD and RMD neurons can be
assigned to a circuit for navigation [28]. Model 2 is capable of cap-
turing both circuits since its first factor is little less strict. Without
considering the outdegree, a few more interneurons are allowed
that are presynaptic to additional potential motor neurons. Alto-
gether, the results can be regarded as a success since in the end
we obtain more neurons involved in locomotion behavior than
originally assumed. However, in order to make a more precise
statement regarding the power or performance, a reparametriza-
tion of the regression models including the classification threshold
should be done.

After predicting the neurons of the locomotory subnetwork
using logistic regression, the next step is to examine their underly-
ing dynamics.
3. Simulation of dynamics

In this section, we investigate the patterns of neuromuscular
activity that occur in response to a touch stimulus on the tail. Since
C. elegans can only react with forward locomotion, we restrict our-
selves to the main motor program that initiates forward and back-
ward locomotion to certain stimuli. Therefore, the results by [83]
(LSp ¼ 1) including the 5 touch sensory neurons serve as neuronal
basis.
3.1. Locomotory circuitry

Fig. 6 depicts the utilized circuit for forward and backward loco-
motion. The neurons are summarized in classes, such as AS and
PDB, and components of classes, such as the forward locomotion
component of interneurons. The neuron classes including their
neuron members have been defined by White et al. [80]. Most neu-
ron classes in C. elegans are composed of a pair of two bilaterally
symmetric neurons, which can be observed across the L/R axis. This
also applies to the interneurons. For example, the neuron AVBL
(AVBR) is located on the left (right) side of the worm. The motor
neurons are distributed along the midline of the worm. The first
letter indicates connections to either dorsal or ventral muscle cells.
The second letter gives the type of the neurons (A-, B-, and D-type
neurons). The exception are the AS neurons, which are connected
to dorsal muscle cells. The motor neuron classes contain an asym-
metry in neuron numbers. The neurons are numbered from head to
tail. For example, AS11 lies in the tail of the worm.
Prediction Model 2

rrect in % correct incorrect correct in %

100.0 8,450 0 100.0
97.4 3,594 387 90.3
99.2 12,044 387 96.9
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If the worm experiences a gentle touch on its tail, the sensory
neurons PLML, PLMR will register this and provide input to the for-
ward interneurons PVC via Glu and electrical transmission but also
to the backward interneurons AVD and AVA only via Glu. The for-
ward component primarily activates the B-type motor neurons VB
and DB via ACh and electrical transmission. Subsequently, the VB
(DB) neurons stimulate ventral (dorsal) muscle cells via ACh and,
at the same time, the second layer motor neurons DD (VD) via
ACh and electrical transmission, which are connected to muscle
cells on the opposite side. The D-type motor neurons DD (VD) have
an inhibitory effect and relax muscle cells via GABA so that the
simultaneous contraction of ventral and dorsal muscles is pre-
vented. Therefore, these neurons enable the coordination of the
movement of the worm. The explanation for the backward locomo-
tion is analog [19, Section I]. The AS neurons are not included in
many models and studies of locomotion of C. elegans. These are
only connected to dorsal muscle cells and therefore support the
DA and DB neurons to cause dorsal muscle contraction. The PDB
neuron probably causes a ventral bias when performing large
wavelength body bends that occur during turning [83]. It was
included for the sake of completeness but should not play a deci-
sive role for the initiation of forward locomotion. Furthermore,
some peptides acting as ACh cotransmitters can be identified in
Fig. 6. These are neglected in the following. Note that the layered
structure shown in the figure is also in good agreement with a
community analysis of dynamical correlations [58].

During locomotion, the worms generate rhythmic body undula-
tions. This raises the important question of how these are related
to neuromuscular dynamics.
3.2. Modeling neuromuscular activity

The neuron dynamics can be described in terms of the three-
dimensional Hindmarsh-Rose system [35]

_pi tð Þ ¼ qi tð Þ � api tð Þ3 þ bpi tð Þ2 � ni tð Þ þ Iext;i � gGlu pi tð Þ � Vexcð Þ

�
XN
k¼1

CGlu;kiS pk tð Þð Þ � gACh pi tð Þ � Vexcð Þ
XN
k¼1

CACh;kiS pk tð Þð Þ

� gGABA pi tð Þ � V inhð Þ
XN
k¼1

CGABA;kiS pk tð Þð Þ þ gel

XN
k¼1

Likpk tð Þ; ðdÞ
_qi tð Þ ¼ c � dpi tð Þ2 � qi tð Þ; ðeÞ
_ni tð Þ ¼ r s pi tð Þ � p0ð Þ � ni tð Þ½ �; ðfÞ

where pi tð Þ; i ¼ 1; . . . ;N, denotes the membrane potential of the i-th
neuron at time t; qi tð Þ represents the fast current, either Naþ or Kþ,
and ni tð Þ the slow current, for example, Ca2þ. The parameter r is the
time scale separation between fast and slow variables.

The N � N coupling matrices CGlu;CACh, and CGABA contain as
weights the number of chemical synapses between pairs of neu-
rons for the transmitters Glu, ACh, and GABA, respectively. Since
the chemical coupling is nonlinear, the membrane potential pk tð Þ
is transformed by the sigmoid function
S pð Þ ¼ 1= 1þ exp �k p� hð Þð Þ½ �, which acts as a continuous mecha-
nism for the activation and deactivation of chemical synapses.
The reversal potentials for excitatory and inhibitory chemical
synapses are denoted by Vexc and V inh, respectively.

The connectivity of the electrical synapses is described in terms
of the Laplacian matrix L ¼ D� Gwhere the coupling matrix D and
the diagonal degree matrix G comprise as weights the number of
electrical synapses between each neuron pair and the total number
of electrical synapses per neuron, respectively. Since the electrical
coupling is linear, the membrane potential pk tð Þ must not be
transformed.
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Throughout this paper, the system parameters are set
as follows: a ¼ 1; b ¼ 3; c ¼ 1; d ¼ 5; r ¼ 0:005; s ¼ 4; p0 ¼ �1:6;V
exc ¼ 2;V inh ¼ �1:5; Iext;i ¼ 9 for the neurons PLML/R else
0; k ¼ 10, and h ¼ �0:25. For the coupling strengths, we use the
values: gel ¼ 0:20; gGlu ¼ 0:10; gACh ¼ 0:10, and gGABA ¼ 0:15.

Note that the Hindmarsh-Rose model is based on the global
behavior of the neuron and does not aim to model in detail the
microscopic biochemical processes. Therefore, it is simpler than
Hodgkin–Huxley [37] or Morris-Lecar [51] models which attempt
to reproduce the electrophysiological process of biological neurons
[72] based on conductance models with many governing equations
and coefficients. Instead, the Hindmarsh-Rose model uses dimen-
sionless variables (and parameters) and must be scaled to become
biologically applicable, but it describes well the neuronal behavior
observed in experimental biology. The sigmoid function S pð Þ can be
parametrized differently for each transmitter type. For the sake of
simplicity, we adopt the parameters k and h for all types. The inhi-
bitory effect of the transmitter GABA is achieved by the parameter
Vinh ¼ �1:5, which takes into account that inhibitory synapses can
also be excitatory. More important is to find a parametrization for
the coupling strengths. Electrical synapses have properties that are
different from chemical ones. For instance, they conduct nerve
impulses extraordinarily fast (almost instantaneous). Communica-
tion between neurons is possible without delay, which is not typ-
ical for chemical synapses. Therefore, electrical synapses are most
frequently observed in neuronal circuits that require the fastest
possible response [38]. In terms of the neuronal dynamics, shorter
signal propagation times imply stronger couplings. Consequently,
we set the electrical coupling as the strongest. The explanation
for the chemical coupling strengths is based on the locomotory cir-
cuitry (Fig. 6). The inhibitory transmitter GABA is employed by the
DD and VD neurons. In contrast to the excitatory motor neurons,
they activate muscle cells on the opposite side in order to prevent
simultaneous contraction of dorsal and ventral muscles. For com-
pensating the longer signaling pathways, the coupling of GABA is
assumed to be slightly stronger than ACh.

The muscle dynamics is based on the neuronal activity and can
be modeled as leaky integrators [7,41]

_Al tð Þ ¼ 1
g

XN
s¼1

gAChEACh;slps tð Þ � gGABAEGABA;slps tð Þ� �� Al tð Þ þ const

" #

ð4Þ
with a characteristic time scale of g ¼ 100 ms, which roughly agrees
with response times of obliquely striated muscles [49]. The activa-
tion state of the muscle cells at time t is represented by the dimen-
sionless variable Al tð Þ; l ¼ 1; . . . ;M, where M denotes the number of
muscle cells. The N �M coupling matrices EACh and EGABA contain as
weights the number of neuromuscular synapses between neurons
and muscle cells for the transmitters ACh and GABA, respectively.
The coupling strengths gACh and gGABA are as specified above. The
cosmetic parameter const ¼ 1 ensures that the muscle activation
is more positive than negative.

Note that also electrical synapses exist between body wall mus-
cles. However, the electrical coupling between muscles is assumed
to be too weak and can therefore be neglected [8].

3.3. Modeling forward locomotion

The thrust for the forward locomotion of C. elegans is provided
by 95 body wall muscles located in 4 quadrants along the midline
[2]. For simplicity, we limit our mathematical description to the
dorsal and ventral quadrant on the right-hand side and assume
that the muscles are arranged in rows and numbered 1;2; . . . ;24
from head to tail, with each dorsal muscle having a ventral partner.
This takes into account that the worm crawls on its side and gen-



Fig. 7. Schematic diagram of coordinates. At time t ¼ 0, the muscle pairs
m ¼ 1; . . . ;24 lie along the x-axis. The worm moves forward in negative x-direction.
The harmonic wave f m xð Þ; x 2 1;24½ � [cf. Eq. (5)], corresponds to the elongation of
the worm in y-direction depending on the position x of the m-th muscle pair. Note
that at time t ¼ 0, the function f m has either a minimum or a maximum at position
x ¼ m, as exemplified for f 11, which is adjusted by the phase offset /m (cf.
Table D.10).

Fig. 8. Neuronal activity patterns. Two types of activity patterns can be identified
among the neurons of the locomotory circuitry: (a) isopotentials and (b) local
oscillations.
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erates sinusoidal undulations. Then, the locomotion of the worm
can be described as harmonic wave. Since the undulations spread
from the head to posterior, we model the elongation (orthogonal
to the direction of motion) of each muscle pair m ¼ 1;2; . . . ;24
consisting of a dorsal and a ventral muscle as harmonic wave

f m x;Dtrm ; tð Þ ¼ B sin c x;Dtrm ; tð Þ½ �
¼ B sin 2p

k x� �x Dtrmð Þt þ /m

�
þ PrmP1

sm¼1

�x Dtsmð Þ � �x Dtsm�1ð Þ½ �tsm
� ð5Þ

where x is the position of them-th muscle pair, t is the time, B is the
amplitude, k the wavelength, x the mean angular frequency
between extreme body bends, /m the phase offset, and Dx the
change of the mean angular frequency. The coordinates are chosen
such that x 2 1;24½ � for each harmonic wave f m xð Þ based on the m-
th muscle pair indicating the body curvature of the worm at time t
(see Fig. 7). The index rm ¼ 0;1;2; . . . ;Nm refers to extreme values in

the time series of subtracted muscle activity Aventral
m tð Þ � Adorsal

m tð Þ (cf.
Fig. 10).

The first term 2px=k in the sine function defines the position of
the harmonic wave f m at time t ¼ 0 without phase shift. The wave-
length is estimated to be k ¼ 18 and corresponds to 75% of the
length of the worm. The second term describes the propagation
of the harmonic wave in positive x-direction so that the worm
moves forward in negative x-direction. The mean angular fre-
quency results from the temporal difference between two subse-
quent minimum and maximum values rm and rm þ 1 (or vice
versa) leading to x Dtrmð Þ ¼ p=Dtrm with Dtrm ¼ trmþ1 � trm and
trm 6 t < trmþ1. The third term represents the initial phase /m,
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which is calculated on the basis of linear functions (see
Table D.10). With every subsequent extreme value, phase jumps
occur because the mean angular frequency changes. These jumps
are compensated by the fourth term. The corresponding change
of the mean angular frequency x Dtsmð Þ �x Dtsm�1ð Þ multiplied by
time tsm results in the required phase correction, which is cumula-
tive as expressed by the summation. Finally, the amplitude of the
harmonic waves is set to B ¼ 1. The forward locomotion of the
worm is described by the body wave which results as an average
value over all harmonic waves f m xð Þ; x 2 1;24½ �, based on the m-
th muscle pair.

3.4. Simulation results

In order to integrate the dynamical Eqs. (3) and (4), the statisti-
cal software R is utilized. The simulation time is 25 time units with
timesteps of 0:005. The wave model (5) is applied as a downstream
process on the simulated time series for muscular activity with
timesteps of 0:05.

Neuronal activity – Many neurons in C. elegans, especially
those involved in locomotion, do not fire classic action potentials
[79]. This, however, does not exclude signal processing in C. ele-
gans [27]. Therefore, the time series represent the behavior of the
membrane potential below action potential threshold, and there
is a huge operating range where different patterns (regenerative
events) can occur [47].

The neurons of the locomotory circuitry are essentially either
isopotentials or local oscillators (see Fig. 8). The neurons PVCR
and AVBR are representative for the most interneurons and show
a rather constant activity (very small oscillations) after considering
a transient time of about 5 time units. Ablation experiments
proved that these are active and non-oscillating during forward
locomotion [26].

The neurons DB06, VB06, VB07, and AS08 are representative for
most first layer motor neurons (cf. Fig. 6) and exhibit harmonic
oscillations with non-constant amplitude over time. The latter is
not subject of this study. Comparing different neurons within a
class, their oscillations appear to be slightly shifted to each other.
In this context, the neurons DB06, VB06, and VB07 are shown in
Fig. 8b because they reproduce the experimentally observed activ-
ity of comparable neurons [24, Fig. 5]. The simulated membrane
potential of DB06 is in anti-phase to those of VB06 and VB07,
whereas the membrane potential of VB07 precedes that of VB06.
Moreover, the motor neurons function as local oscillators to gener-
ate alternating bends of the C. elegans body. The intrinsic oscilla-
tions are amplified by the isopotential activity of the
interneurons (Fig. 8a) in order to drive forward and backward
movements [79]. The same must apply to the AS neurons because
they exhibit a similar oscillatory behavior, as indicated by AS08 in
Fig. 8b.

The neurons DD04 and VD04 represent the behavior of all DD
and most VD neurons and show a very constant activity over time.
Within the classes DD and VD, the neurons are connected by many
electrical synapses, which could be a reason for this behavior
because they must be able to quickly transmit signals from excita-
tory motor neurons to opposite muscle cells in order to coordinate
locomotion. In other words, they contribute to an anti-phase acti-
vation of ventral and dorsal muscles, which is necessary for alter-
nating body bends (cf. Fig. 10b). Similar to the shifts of membrane
potential oscillations for excitatory motor neurons (Fig. 8b), differ-
ent levels of membrane potential can be detected within the
classes DD and VD or among interneurons (Fig. 8a).

A central pattern generator (CPG) is a component of a neuronal
network that is capable of generating rhythmic oscillations to drive
motor behaviors such as locomotion. Pattern generation may result



Fig. 9. Forward locomotion of C. elegans with time-delayed feedback control. The posture of C. elegans can be described as harmonic wave and results from ventral (red curve)
and dorsal (blue curve) muscle activity, which is simulated with Eqs. (3) and (6) [parameters of feedback control are provided in Tables D.8-D.9] and plotted over the muscle
index m. Based on this, the harmonic waves f m xð Þ; x 2 1;24½ �;m ¼ 5;7;8; � � � ;24, are calculated [cf. Eq. (5)] and averaged (black curve). Besides the averaged wave, 12
individual waves with index m ¼ 5;7;9� 14;16;17;19;20 are shown in green, orange, and yellowish color, which can be interpreted as its fluctuations. On top of the
diagrams, chosen mean angular frequencies for the harmonic wave model are given. In addition to the muscle activation, its temporal change is in.dicated by bars.

Fig. 10. Effect of time-delayed feedback control on muscular activity for two
muscle pairs. Panel (a) and (b) correspond to the uncontrolled [Eqs. (3) and (4)] and
controlled case [Eqs. (3) and (6) – additional parameters are provided in Tables D.8-
D.9]. The black and red curve refer to ventral and dorsal muscle activation. The
green curve is their difference, which indicates the body curvature at x ¼ m. Note
that the time series for the muscle pair m ¼ 13 do not reflect the actual muscle
activation but are shifted downwards from the original level.
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from interactions between neurons (network-based rhythmicity),
or through interactions among currents in individual neurons
(pacemaker oscillator neurons) [22,26]. The simulation results in
Fig. 8b prove that the main motor program of C. elegans is a neu-
ronal circuit with intrinsic oscillatory activities. Therefore, it fulfils
the prerequisites of a central pattern generator. Furthermore, we
conclude that the coupling of neurons within the circuit (Fig. 6)
is responsible for the oscillatory behavior. For this reason, the
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CPG is an intrinsic property of the multilayer network of C. ele-
gans which generates the sinus rhythm for locomotion by the
interaction of different neuron types.

Muscular activity – The neuronal harmonic oscillations gener-
ated in the locomotory circuitry are transferred to body wall mus-
cles for locomotion. For a coordinated locomotion of C. elegans, an
anti-phase muscular activity is required between dorsal and ven-
tral muscle cells. However, this is not the case for most muscle
pairs in our simulation. The harmonic waves (5) – adjusted on
the basis of muscular activity – diverge significantly. Later, we will
see how the problem can be solved to a large extent by using time-
delayed feedback control. However, we already take the results
into account below.

Fig. 9 captures the dynamics of the muscles at different times.
The dorsal (ventral) muscle activation A is represented by the dot-

ted blue (red) curve and its temporal change _A by the blue (red)
bars. Since the locomotory circuitry (Fig. 6) mainly covers the for-
ward and backward locomotion of C. elegans, some of the muscles
in the head and neck are missing. This concerns the dorsal and ven-
tral muscles 1� 4 and 6. For the latter, the mean activation of the
muscles 5 and 7 is calculated. Note that the displayed muscle acti-
vation A does not reflect the actual simulated values. For better vis-
ibility, the time series are first normalized to values between 0 and
2 in the time interval 8;20½ � and then smoothed with a simple sec-
ond order moving average in order to avoid a serrated appearance.
However, the modeling of forward locomotion is independent of
this and done beforehand. The black curve results from the average
over all 19 harmonic waves f m xð Þ; x 2 1;24½ �;m ¼ 5;7;8; � � � ;24,
calculated with Eq. (5) and constitutes the final posture of the



ig. 11. Synchronization of harmonic waves with time-delayed feedback control.
he elongation f m x ¼ mð Þ [cf. Eq. (5)] is plotted over time t at position x ¼ m for
ach muscle pair with index m ¼ 5;7;8; � � � ;24 in the absence [Eqs. (3) and (4)] and
resence [Eqs. (3) and (6) – additional parameters are provided in Tables D.8-D.9] of
ime-delayed feedback control in panels (a) and (b), respectively. Without feedback
ontrol, no pattern of locomotion can be detected. With feedback control, the
mplitude generated in the anterior body propagates almost linearly in time to
osterior muscles, which makes it a phase-shifted synchronization. The more
pparent the linear behavior, the better is the coordination of forward locomotion.
or the muscles in the tail, the waves spread rather constantly in time. This is due to
he fact that the same muscular connections are assumed for them [82].

T. Maertens, E. Schöll, J. Ruiz et al. Neurocomputing 427 (2021) 238–261
worm. In addition to the averaged body wave, 12 individual har-
monic waves are shown in the graphics in green, orange, and yel-
lowish color, which can be interpreted as its fluctuation. For some
of them, the mean angular frequencies are given at the top of the
diagrams indicating a coordinated locomotion if they are close
together. The body wave propagates to the right in time implying
that the worm moves forward to the left. Note that the simulated
ventral and dorsal muscle activation only partially corresponds
with the predicted body curvature of C. elegans. Possible reasons
are discussed in Section 5.2.

After studying the neuronal and muscular activity patterns that
drive forward locomotion, we investigate synchronization patterns
and significant neurons in the following that contribute to coordi-
nated movements of C. elegans.

4. Synchronicity of motion

Based on the simulations of muscular activity (4), the harmonic
waves (5) are not well synchronized. This corresponds to an unco-
ordinated locomotion of C. elegans. In order to enhance the syn-
chronicity of harmonic waves, we consider a feedback control
scheme. Subsequently, synchronicity is quantified over relevant
simulation time using the Kuramoto order parameter as intro-
duced in later Section 4.2. This parameter then forms the reference
for further simulations in which certain neurons of the locomotory
circuitry are silenced. As a consequence, conclusions can be drawn
about the importance of neurons for a coordinated locomotion
behavior.

4.1. Time-delayed feedback control

In Fig. 8b, neuronal oscillations are shifted to each other. This
implies the existence of different time delays between the motor
neurons. For this reason, these must also exist in muscular activity.
The neuronal oscillations should be transferred to muscle cells via
neuromuscular synapses in such a way that there is an anti-phase
activation between ventral and dorsal muscles. Only then, a
smooth and coordinated locomotion of C. elegans is possible. How-
ever, the neuromuscular connections are not perfect but partly
based on estimates. This concerns in particular the given numbers
of synapses [82]. Therefore, anti-phase behavior is not observed
and a coordinated locomotion of the worm is not given. However,
the coordination of locomotion can be improved with time-
delayed feedback control, which is a general powerful control
method in nonlinear systems [61,71,70]. Such delayed feedback
mechanisms are often present in neuronal systems due to intrinsic
propagation and processing delays.

For this purpose, the muscle dynamics is remodeled as
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where function H corresponds to the right side of Eq. (4). The sec-
ond term represents the control force that entails two new compo-
nents: (i) the time delay ss for the N neurons and (ii) the feedback
strength Kl for the M muscles. One peculiarity is that the control
itself is delayed. It takes place after the integration of the dynamical
system and is based on the comparison of synchronization between
different harmonic waves.

Without feedback control, the muscle activation A is simulated
with Eqs. (3) and (4). Based on the resulting time series, the har-
monic waves f m xð Þ; x 2 1;24½ �;m ¼ 5;7;8; � � � ;24, are fitted using
Eq. (5). The observation of harmonic waves over time shows that
less than one third propagates approximately synchronously over
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a longer time interval. These are the waves with the muscle index
m ¼ 5;9;17;20 which serve as a reference for the others. When
feedback control is applied, Eq. (4) is replaced by Eq. (6). The other
harmonic waves with index m ¼ 7;8;10� 16;18;19;21� 24 are
then gradually calibrated to the reference. For each harmonic wave
to be calibrated, all combinations of time delay and feedback
strength resulting from the intervals [0.25,5] and [0.25,3], respec-
tively, in steps of 0.25 are simulated. The feedback strength Kl is
initially activated for all muscle cells that are related to the corre-
sponding muscle index m of the considered harmonic wave, and
the time delay ss is activated for all motor neurons which connect
to these. Afterwards, the propagation of the time-delayed wave is
compared with the reference over time. Whether or not the syn-
chronization between them is suitable is assessed visually, but
optimally it should look as in Fig. 9. There, one can see that the
individual waves in green, orange, and yellowish color propagate
nearly synchronized to the right over time. However, the
parametrization is not straightforward because there are many
interdependencies between the neuromuscular connections. When
sufficient synchronicity is not observed, changes are made for time
delays ss or feedback strengths Kl with respect to the motor neu-
rons or muscle cells involved. For example, only motor neurons
are considered whose neuromuscular connections overlap as little
as possible with others. Likewise, only dorsal or ventral muscles
can be included. Changing the parameters of feedback control
causes the harmonic waves to propagate more or less syn-
chronously over time. Depending on the parametrization, the wave
to be calibrated may temporarily run ahead or behind the refer-
ence, or may overtake it. However, there is no precise rule for this,
but it varies from case to case. During the calibration process, it has
been found that the harmonic waves can be reasonably synchro-
nized within the time interval [8,20]. In total, 35 motor neurons
and 51 muscle cells are affected by the control force. The estimated
parameters are provided in Tables D.8–D.9.

Fig. 10 illustrates the effect of time-delayed feedback control on
the activation of muscles with index m ¼ 13 and m ¼ 19. The dor-
sal and ventral muscle activity exhibit most of the time a rather in-
phase behavior. By activating the control, the oscillations of the
dorsal and ventral muscles are more regular and almost in anti-
phase.

In addition, Fig. 11 visualizes the propagation of 19 harmonic
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waves in the absence and presence of feedback control. For each
muscle pair with index m ¼ 5;7;8; � � � ;24, the elongation
f m x ¼ mð Þ [cf. Eq. (5)] is plotted over time up to t ¼ 21 at position
x ¼ m. Without feedback control, no synchronization pattern can
be identified. With feedback control, the amplitude generated in
the anterior body indicated by yellow or dark blue color propagates
almost linearly in time to posterior muscles in the considered time
interval 8;20½ �. Since the anterior waves show a similar behavior
with a slight time lag, this is a phase-shifted synchronization. As
the coordinated locomotion behavior of C. elegans becomes more
probable, the more clearly the linearity can be seen in the synchro-
nization plot, resembling a travelling wave. This is not the case for
the muscles in the tail of the worm by design of the network.
Actual high-power electron microscopes are not able to cover the
neuromuscular connections in this region [16]. Therefore, the cor-
responding connections between motor neurons and muscle cells
in the connectivity data are estimated and identical for muscles
in the tail [82]. Fig. 9 illustrates this clearly. The temporal changes

of muscle activation _A indicated by bars display an almost identical
behavior for the posterior muscles.

4.2. Kuramoto order parameter

In order to measure the synchronization between harmonic
waves, we define the Kuramoto order parameter R as

R tð Þ ¼ 1
W

X
m¼5;7�24

exp ic x ¼ 0;Dtrm ; tð Þ½ �
�����

�����: ð7Þ
Fig. 12. Measuring synchronicity of harmonic waves during forward locomotion of
C. elegans. The black and blue curve correspond to the Kuramoto order parameter
given by Eq. (7) without [Eqs. (3) and (4)] and with feedback control [Eqs. (3) and
(6) – additional parameters are provided in Tables D.8-D.9]. The dotted lines mark
the average values in the time interval 8;20½ �.

Fig. 13. Most significant VB and DD motor neurons for synchronicity of harmonic wave
order parameter is 70:1%.
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The order parameter represents the phase coherence of W ¼ 19
waves. As explained earlier, the muscle pairs with index
m ¼ 1� 4;6 are not considered. The phase c x;Dtrm ; tð Þ is equal to
the argument of the sine function in Eq. (5). Since the phase differ-
ences between the harmonic waves are the same for each position
on the x-axis, the position is fixed and can be set to any desired
value. Here, we use x ¼ 0 without loss of generality. R ¼ 1 corre-
sponds to full in-phase synchronization and is denoted by 100%,
and R ¼ 0 corresponds to complete desynchronization.

Based on the simulations of the harmonic waves, the order
parameter (7) is calculated in time steps of 0:05 and considered
in the time interval 8;20½ �. The results are graphically displayed
in Fig. 12. The synchronicity of the 19 harmonic waves expressed
in the order parameter fluctuates over time around its average
value. With time-delayed feedback control, the time-averaged
order parameter is about 70:1%. This corresponds to an improve-
ment of 29:2% over the uncontrolled system. Even if the time-
averaged order parameter of 40:9% for the uncontrolled system
may indicate that there is some partial synchronization between
the harmonic waves, it is still at a level that does not facilitate a
coordinated forward locomotion of C. elegans (cf. Fig. 11). The
time-averaged order parameter of the controlled system serves
as reference for simulations where neuronal activity is silenced.

4.3. Silencing of neuronal activity

The starting point is the nearly synchronous propagation of har-
monic waves in the presence of feedback control. If the activity of
neurons is silenced, the synchronicity of locomotion of C. elegans is
disturbed. This disturbance is considered in the time interval 8;20½ �
and can be quantified by the time-averaged order parameter
R tð Þh it . Note that the time interval 0;8½ � displays transient effects
and is therefore disregarded. The neurons that cause the strongest
decline of the time-averaged order parameter are the most signif-
icant. All neurons within relevant classes are successively silenced
individually, in combinations of two, and combinations of three.
Our silencing strategy is to hold the membrane potential at the
constant value zero throughout the simulation. For the different
selections, the top three results with the lowest time-averaged
order parameter � its standard deviation are considered.

Fig. 13 displays the results for the classes VB and DD. While
silenced activity of VB neurons reduces the order parameter most,
it causes the smallest changes for DD neurons. If neurons within
the VB class are silenced individually, VB11, VB06, and VB02 have
the strongest impact on the coordinated locomotion of C. elegans.
In combination with these, the neurons VB07-VB09 become also
relevant. The combined silencing of VB06, VB08, and VB11 leads
to a significant decrease of the order parameter by more than
10% compared to the individual silencing. Therefore, the locomo-
tion of the worm is highly uncoordinated. Within the DD class,
the individual silencing of DD05, DD04, and DD01 shows a small
to minor impact on the order parameter, which can only be mar-
ginally enhanced by the combined silencing of neurons. For exam-
s. Without silencing of neuronal activity, the reference value of the time-averaged



Table 5
Most significant motor neurons for a coordinated locomotion of C. elegans identified
by silencing the neuronal activity of singles, doubles, and triples (see Figs. 13 and
D.6–8).

Class Neurons

AS (11) AS01-AS03, AS05, AS06
DA (9) DA01-DA05, DA07
DB (7) DB01-DB04, DB06, DB07
DD (6) DD01, DD03-DD06
VA (12) VA04, VA08, VA10, VA12
VB (11) VB02, VB06-VB09, VB11
VD (13) VD02, VD09, VD10, VD12, VD13
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ple, silencing DD05 individually leads to an order parameter of
67:6%, but silencing DD05 together with DD01 and DD04 only
results in a reduction by 1:5%. Although the effect may seem very
weak, the individual silencing of neuronal activity regarding DD04
or DD05 is already sufficient to impair the C. elegans locomotion
[83]. In this case, the combined silencing of neuronal activity
hardly provides additional information. The results for the other
classes can be found in Figs. D.6-D.8. Table 5 summarizes the iden-
tified neurons in the top three single, double, and triple selection.
5. Discussion & conclusions

We have modeled the somatic nervous system of C. elegans as a
multilayer network whose nodes comprise both neurons and mus-
cle cells. The different layers are defined by different modes of
interactions between the nodes and include important neurotrans-
mitters and neuropeptides. This physiological approach allows for
a better understanding of the network. On the one hand, it enables
to conduct a logistic regression analysis in order to predict neurons
involved in locomotion behavior. On the other hand, it allows to
study the dynamics of complex circuits like the locomotory cir-
cuitry (Fig. 6), which initializes forward and backward locomotion
of C. elegans.
5.1. Regression models predict the locomotory subnetwork with
outstanding results

Logistic regression analysis can be operationalized in the multi-
layer network by considering the shortest paths between touch
sensory neurons and body wall muscles. The starting point is the
identification of key factors for the neurons in the shortest paths.
This is based on the measurements of the discriminative power.
Subsequently, logistic regression models can be built on them. As
a result, we have explored various models with only two factors
(cf. Table 3) that predict the shortest paths with high accuracy.
The power values of the models lie between 96% and 99% (cf.
Fig. 5) and indicate an outstanding separation ability. While the
best model correctly predicts 99:2% of all the shortest paths on
the development dataset, the second best model achieves about
96:9% (cf. Table 4). Both models correctly classify the shortest
paths that only consist of neurons involved in locomotion behav-
ior. A misclassification of less than 10% only occurs in pathways
that also involve other neurons. In contrast to the development
dataset, the shortest paths on the test dataset are not limited to
5 sensory neurons but consider all sensory neurons in the network.
Based on the test dataset, one model predicts 29 additional neu-
rons involved in locomotion behavior and therefore extends the
initial selection. For 26 of them, it can be confirmed by literature
research and connectivity analysis that these are indeed involved
in locomotion behavior (cf. Tables C.6-C.7). For this reason, the
models are well suited to predict the locomotory subnetwork.
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Moreover, the achieved results suggest that this method can also
be used to predict other subnetworks. Since different subnet-
works are characterized by their structure along with the under-
lying neuron and transmitter types, there is a good chance to
identify them using logistic regression. This applies in particular
to C. elegans since all neurons and their connectivity are known.
Even if the information about neurons and connectivity is incom-
plete, logistic regression analysis is not necessarily useless as long
as there is a tendency in the data. The procedure proposed in this
study can be applied to identify circuits in the brain that control
the movement of certain parts of the body since the information
processing is the same in humans and C. elegans. In general, it
could be very useful for studying larger biological neuronal net-
works than C. elegans. However, the application of this method
is limited by the fact that sufficient information about the neu-

rons must already be gathered. In conclusion, logistic regression
analysis can be seen as a reasonable complement to optogenetic
and ablation experiments.

5.2. Harmonic wave model describes forward locomotion

Concerning the dynamics, we have shown that the forward
locomotion of C. elegans can be described using a harmonic wave
model. The particularity of our model is that a harmonic wave is
adjusted for each muscle pair consisting of a ventral and a dorsal
muscle. This seems to be reasonable since the worms generate har-
monic oscillations that spread from the head to posterior. The aver-
age value over the harmonic waves then represents the body
curvature of C. elegans during locomotion.

Rhythmicity of locomotion is generated by neuronal oscilla-
tions – The neuronal basis is the locomotory circuitry (Fig. 6) in
which the rhythmicity of alternating body bends is generated in
order to drive forward locomotion. We have captured the main
dynamical behaviors using the Hindmarsh-Rose equations. Our
simulation results (cf. Fig. 8b) suggest that the sinus rhythm is
network-based and results from couplings within the locomotory
circuitry and interactions between different neuron types. There-
fore, the circuit can be referred to as a central pattern generator.
Since it initiates both forward and backward locomotion, oscilla-
tory behavior can be observed in all classes of the first layer motor
neurons. In the simulations, these oscillations are very robust
against input of touch sensory neurons. With respect to a touch
stimulus on the head or tail, only tiny phase shifts of them can
be observed. This raises the question whether these tiny changes
can already explain triggering forward and backward locomotion.
Importantly, the expected patterns of neuronal activity are cor-
rectly reflected by the Hindmarsh-Rose system although it is basi-
cally a model for describing action potential behavior. Since no
external current is applied to the neurons of the locomotory cir-
cuitry, the simulated dynamics shows pure coupling effects. Note
that a current is only considered for the sensory neurons PLML/R,
which perceive gentle touches on the tail. The set parameter value
causes a fast oscillatory behavior rather than spiking behavior.
However, this does not play a decisive role as they can only mar-
ginally influence the behavior of the other neurons due to the cho-
sen coupling strengths. A higher current was applied because it
had a slightly positive impact on the alignment of the harmonic
waves. As a potential outlook, it would be worthwhile to examine
the locomotory circuitry in more detail in order to understand
exactly how the coupling must be designed to generate rhythmic
oscillations. This could also play an important role in the brain.
For example, the brainstem contains centers that control the
rhythm for heartbeat and respiration. Since both are coupled
together, the heartbeat can synchronize with the respiratory
rhythm [55]. On the other side, there are neuromechanical models
in the literature that can realistically reproduce the forward loco-
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motion of C. elegans physical body [7,41]. However, these are based
on a simplified neuronal circuit disregarding the asymmetry in
neuron numbers. Together with other studies, those models sug-
gest that proprioception is closely associated with the generation
of body rhythms, but this does not exclude the coexistence with
central pattern generators [22,23,26]. Our findings support the lat-
ter. However, we cannot rule out that even smaller units of the
locomotory circuitry (Fig. 6) are capable of independent rhythm
generation. For example, the study by [23, Fig. 9] suggests a
multi-oscillator model for forward locomotion based on optoge-
netic and ablation experiments where two units of the first layer
motor neurons generate rhythmic alternating body bends of C. ele-
gans. Pre-motor interneurons activate or suppress this circuit. The
propagation of these bends along the body is achieved by stretch
receptor feedback. Since proprioceptive coupling mechanisms are
not included in our model, we use time-delayed feedback control
in order to coordinate the movements of the worm.

Anti-phase muscular activity is largely prevented – The gen-
erated neuronal harmonic oscillations are subsequently trans-
ferred to body wall muscles via neuromuscular synapses.
Regarding the muscular activity, many problems occur that pre-
vent a plausible description of locomotion behavior. The biggest
problem is that the simulated activation of opposite dorsal and
ventral muscles is usually not at a comparable level and does not
show an anti-phase behavior, as illustrated in Fig. 10b. In addition,
there is only little correlation between activities of the different
muscle pairs along the midline of the worm. One reason for this
is probably that the locomotory circuitry may still have missing
parts. Logistic regression analysis has revealed that 26 additional
neurons could be involved in locomotion behavior. This is espe-
cially true for the SMD and RMD motor neurons, which drive
dorsoventral undulations in the head and neck of C. elegans and
propagate them posteriorly through stretch-receptor feedback.
Therefore, proprioceptive mechanisms also contribute to the coor-
dination of locomotion [41]. Moreover, extrasynaptic neurotrans-
mission between head motor neurons may also play an
important role in ensuring optimal efficiency of forward locomo-
tion [73,43]. Apart from that, the SMD and RMD motor neurons
are involved in multiple navigation behaviors and can therefore
be assigned to a circuit for navigation [28]. We have excluded nav-
igation in our analyses because we wanted to examine first
whether rhythmicity is generated in locomotory circuitry. Never-
theless, it cannot be excluded that a smooth coordinated locomo-
tion of C. elegans at least depends on both circuits. The next step
would be to analyze the dynamics if they are coupled together.
Another important reason is that the neuromuscular connectivity
data is far from perfect. The neuron-to-muscle connections in the
tail of the worm are unknown, so the same connections are
assumed for the latter muscles. Furthermore, the underlying num-
ber of synapses is estimated as an average value for many connec-
tions [82]. However, this does not properly account for the
asymmetric structure of the motor neurons in the locomotory cir-
cuitry [77]. Besides, we have assumed that dorsal and ventral mus-
cles lie in a row so that each dorsal muscle faces a ventral muscle.
In fact, the muscle pairs behind the neck of the worm are not
directly opposite to each other but slightly staggered along the
main body axis [2]. As a consequence, the simulated muscle
dynamics does not seem plausible across all muscles. For this rea-
son, we have tried to improve the quality of the time series with
scaling and smoothing efforts for visualization (Fig. 9).

Time-delayed feedback control enhances synchronicity of
harmonic waves – In terms of the harmonic wave model on top
of muscular activity, the aforementioned factors prevent a syn-
chronous propagation of adjusted harmonic waves. In order to
enhance synchronicity, we make use of time-delayed feedback
control which is effective in the time interval 8;20½ �. The overall
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synchronicity can be quantified with the time-averaged Kuramoto
order parameter. As a result, we were able to increase the syn-
chronicity by 29:2% to 70:1% (cf. Fig. 12). Although the initial value
of 40:9% for the uncontrolled system may indicate some partial
synchronizations between the harmonic waves, these do not con-
tribute to a coordinated locomotion behavior of C. elegans. The
effect of time-delayed feedback control can clearly be seen in the
synchronization plots (Fig. 11). With the exception of muscle pairs
in the tail of the worm, all adjusted harmonic waves propagate
nearly synchronized but phase-shifted in time. This means that
undulations generated in the anterior body of C. elegans spread lin-
early in time towards the tail, which describes a coordinated for-
ward locomotion. Without feedback control, such a pattern
cannot be detected. Therefore, the harmonic wave model in combi-
nation with time-delayed feedback control solves many problems
faced by insufficient quality of connectivity data or considering
only parts of the locomotory subnetwork. The approach also seems
to be reasonable since the investigated neuronal activity supports
the existence of different time delays for motor neurons. However,
the downside of the model is that the parametrization in terms of
complex circuits can prove to be very difficult.

5.3. Silencing of neurons reveals significance for coordinated
locomotion behavior

Finally, the modeling of forward locomotion enables us to per-
form synchronicity analyses from which conclusions can be drawn
about the significance of neurons within the locomotory circuitry.
The synchronization of harmonic waves expressed in the time-
averaged order parameter can be determined for different simula-
tions where certain neurons are silenced. This in turn interferes
with the coordination of forward locomotion of C. elegans. The
stronger the disturbance, the more important are the silenced neu-
rons. In all motor neuron classes, we have silenced neurons indi-
vidually, in combinations of two, and combinations of three by
holding their membrane potential at the constant value zero
throughout the simulation. Note that this strategy still includes
coupling effects with other neurons, but it should not weaken
the relevance of the analysis. Since the neurons of the locomotory
circuitry are essentially isopotential with the ability to produce
regenerative responses [47], the constant value of zero may be
due to a very high membrane resistance. A similar effect could
be achieved using optogenetics where neuronal activity is manip-
ulated with light in order to study the impact on behavior [17,40].
For specifying the most significant neurons, we consider the top
three results for each selection and highlight all neurons included.
Drawing a hard line regarding the order parameter does not cap-
ture important neurons properly because the measure can take
on different levels within the different classes. In general, silenced
VB and VAmotor neurons have the strongest influence on the coor-
dination of locomotion. These generate oscillatory behavior for
ventral muscles. The DB and DA motor neurons are responsible
for dorsal muscles. Since they share this role with the AS motor
neurons, this may be one reason why the effect is slightly lower.
In comparison, silencing the activity of DD and VD motor neurons
leads to the smallest decrease of the order parameter, which
changes only marginally between the different selections of sin-
gles, doubles, and triples. This could be due to the fact that these
neurons generally exhibit a rather constant behavior (cf. Fig. 8a).
Nevertheless, the individual silencing of their neuronal activity
can already be sufficient to impair the locomotion of C. elegans
[83]. Moreover, we have examined the interneurons in the locomo-
tory circuitry in the same way. As a result, all interneuron classes
are important for a coordinated locomotion behavior. Beyond that,
similar statements can be made by applying network control prin-
ciples to the C. elegans connectivity data [83]. Since our investiga-



Table A.1
Data basis connectivity data. The somatic nervous system of C. elegans is modeled as a
directed network whose nodes represent neurons and body wall muscles connected
by chemical synapses, gap junctions, and neuromuscular junctions. The multilayer
network in Fig. 1 has a total of 3;538 distinct connections because chemical and
electrical connections overlap.

Connection Number of Number of
type connections synapses

chemical 2,194 6,394
electrical 1,028 1,774
muscular 548 1,791

Total 3,770 9,959
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tions are not only based on neuronal and muscular connectivity
but also include the underlying dynamics of neurons and muscle
cells, our findings should provide a good indication of significant
neurons in the locomotory circuitry (cf. Figs. 13 and D. 6–8). How-
ever, it must be pointed out that these are reserved for the imple-
mented parametrizations of the utilized models. The better the
harmonic waves can be synchronized in advance, the more mean-
ingful such results will be.

5.4. Conclusions

In summary, we have shown how a specific circuit of locomo-
tion can be identified in the multilayer network of C. elegans using
logistic regression. Furthermore, we have introduced various
dynamical models and physical methods in order to understand
the underlying patterns of neuronal and muscular activity during
forward locomotion. This provides a good basis for explaining fur-
ther circuits and understanding how these can be coupled with
each other.
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Table A.2
Neuron functions in C. elegans. The somatic nervous system contains 282 neurons in
total, which are classified into sensory neurons, interneurons, and motor neurons.

Neurons that function as Number also function as Number

Sensory neurons 82 - 73
Interneurons 3

Motor neurons 6

Interneurons 89 - 78
Motor neurons 7

Sensory neurons 4

Motor neurons 111 - 83
Interneurons 24

Sensory neurons 4
Total 282
Appendix A. Data description and data preparation

A.1. Neuronal and muscular connectivity

Neuronal connectivity – The nervous system of the adult C. ele-
gans hermaphrodite contains 302 neurons and can be divided into
two nearly completely isolated systems: a large somatic nervous
system (282 neurons) and a small pharyngeal nervous system
(20 neurons). The wiring diagram of the somatic nervous system
can be found on WormAtlas [82] and was provided by [78].

In the dataset, the numbers of electrical and chemical synapses
are specified for each neuron pair. The electrical connections are
labeled ”EJ”. For chemical synapses, the type of synapse must be
taken into account:

� Monoadic: Send (‘‘S”) – Neuron 1 is presynaptic to Neuron 2.
� Polyadic: Send poly (‘‘Sp”) – Neuron 1 is presynaptic to more
than one postsynaptic partner. Neuron 2 is just one of these
postsynaptic neurons.

Nearly two thirds of the synapses are polyadic, but not all
polyadic synapses have been faithfully marked as such. In this
study, the type of synapse is not of interest. To get rid of the
synapse type, the number of synapses must be aggregated
(summed) over identical neuron pairs in the selection ‘‘Send” plus
‘‘Send poly”. In total, the wiring diagram consists of 2;194 unidi-
rectional chemical connections and 514 bidirectional electrical
connections. Since the nervous system is modeled as a directed
network, the number of electrical connections doubles to 1;028.
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The numbers of chemical and electrical synapses (gap junctions)
are 6;394 and 1;774 in total (cf. Table A.1). Note that the connec-
tions are made by 279 neurons. The neurons CANL, CANR, and
VC06 are excluded since they do not have connections with other
neurons.

Neuromuscular connectivity – If the worm is cut from above
(dorsally) along the midline and splayed out laterally, four muscle
quadrants can be identified. From left to right, these are the quad-
rants: dorsal left, ventral left, ventral right, and dorsal right. Each
quadrant contains 24 muscle cells with the exception of the ventral
left quadrant which contains 23 cells. This results in a total of 95
muscle cells. Within each quadrant, the muscles lie in double rows
and are numbered from head to tail. The first 16 muscles across the
four quadrants belong to the head, the next 16 to the neck, and the
rest of them to the body. While the muscles lie side by side in the
head, they are slightly staggered along the main body axis in the
remaining regions ([2], [50, Section III]). Neuron-to-muscle con-
nections are also available on WormAtlas [82] and based on the
works of [18,78,80]. It is assumed that body wall muscles are acti-
vated by motor neurons. In total, 552 motor neurons make connec-
tions to body wall muscles. The connections of the neurons CEPVL,
CEPVR, ADEL, and AVKR are not considered because they do not
function as motor neurons. The total number of neuromuscular
synapses is 1;791 (cf. Table A.1). Note that a large proportion of
neuromuscular synapses is based on average values and that the
neuron-to-muscle connections in the tail of the worm are only esti-
mated [82].

A.2. Neuron functions

In C. elegans, three main types of neurons can be distinguished:
sensory neurons, interneurons, and motor neurons. This informa-
tion can be extracted from [53]. Note that it is also available on
WormAtlas [82] but must be looked up individually. In general,
neurons can have multiple functions and combine the properties
of all three main types. The dataset contains up to two functions
whereby the first specified function is assumed to be the main
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function. There are a total of 82 sensory neurons, 89 interneurons,
and 111motor neurons in the somatic nervous system of C. elegans.
Six of the sensory neurons and seven of the interneurons also oper-
ate as motor neurons resulting in a total of 124 neurons with the
function of a motor neuron (cf. Table A.2). We changed the function
of the neurons PVDL and PVDR from interneuron to sensory neu-
ron. For the neurons RIML and RIMR, the function as interneuron
is additionally assigned to the function as motor neuron [82].

A.3. Neurotransmitter and neuroreceptor data

By considering actual transmitter and receptor data collected
for the individual neurons, the chemical layer in the network can
be divided into several sublayers. Besides the classical transmitters
acetylcholine (ACh), glutamate (Glu), and gamma-aminobutyric
acid (GABA), we consider different monoamine transmitters (MA)
and neuropeptides. Table A.3 provides all transmitters and recep-
tors utilized in this study.

The data for the MAs can be found by Bentley et al. [5]. Hypo-
thetical dopamine receptors, such as dop-5 and dop-6, are also
taken into account to increase the number of connections in the
network. In total, there are 20 neurons with MA transmitters and
232 neurons with MA receptors in network. The data for the clas-
Table A.3
Neurotransmitter and neuroreceptor data. For each transmitter type, the corresponding re

Class Family Type

Dopamine

Mono- Octopamine
amines Serotonin

Tyramine

Transmitters Acetyl-
choline

Classical
transmitters gamma-

Amino-
butyric acid

Glutamate

flp-1
flp-4
flp-5
flp-10
flp-13

FLPs� flp-15
flp-17
flp-18

Peptides
flp-21

flp-24
NLPs� nlp-1

nlp-12
NTCs� ntc-1
PDFs� pdf-1

pdf-2

* FLP – FMRFamide-like peptide.
NLP – Neuropeptide-like protein.
NTC – Nematocin (Oxytocin/Vasopressin-related peptide).
PDF – Pigment-dispersing factor.
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sical transmitters ACh, Glu, and GABA have been collected by our-
selves. There are a total of 218 neurons with classical transmitters
and 210 neurons with matching receptors. Another important class
of neurochemicals are neuropeptides, which are also provided by
[5]. In total, there are 164 neurons with neuropeptides and 185
neurons with corresponding receptors. In this study, we use the
transmitter and receptor data including the subset of peptides to
map the chemical connections with respect to the underlying
transmitter types.

Note that for MAs and neuropeptides large extrasynaptic sig-
nalling networks exist in C. elegans. Extrasynaptic connections
are generated by the diffusion of neurotransmitters and neuropep-
tides to adjacent (extracellular) synapses. Such connections occur
mainly outside the synaptic connectome and are referred to as
wireless connections. It is well established that they play an impor-
tant role in brain function [5]. The inclusion of extrasynaptic neu-
rotransmission would add many more layers to the network,
which is not done.

A.4. Mapping of chemical connections

Only 1;529 connections (about 70%) of the 2;194 chemical con-
nections can be covered with the utilized transmitter and receptor
ceptors are specified.

Matching receptors Source

dop-1, dop-2, dop-3,
dop-4, dop-5, dop-6,
lgc-53
octr-1, ser-3, ser-6 Bentley et al.
mod-1, ser-1, ser-4, (2016)
ser-5, ser-7
lgc-55, ser-2, tyra-2,
tyra-3
acc-1, acc-2, acc-4,
acr-12, acr-14, acr-15,
acr-16, acr-18, acr-2,
acr-23, acr-5, deg-3,
des-2, gar-1, gar-2,
gar-3, lev-8, lgc-12,
lgc-27, lgc-46, unc-29,
unc-63 Jorge Ruiz
exp-1, gab-1, gbb-1, (2017)
ggr-1, ggr-2, lgc-35,
lgc-37, lgc-38
avr-15, glc-3, glr-1,
glr-2, glr-3, glr-4,
glr-5, glr-6, glr-8,
mgl-1, mgl-3, nmr-1,
nmr-2
npr-11, npr-4
npr-4
npr-11
egl-6
frpr-4
npr-3
egl-6
npr-1, npr-11, npr-4,
npr-5 Bentley et al.
npr-1, npr-11, npr-2, (2016)
npr-5
npr-17
npr-11
ckr-2
ntr-1
pdfr-1
pdfr-1



Table A.4
Estimated transmitters for chemical connections.

Neuron Predicted Neuron Predicted
class transmitters class transmitters

AVH (2) ACh, flp-21, flp-24, PVM (1) dopamine, GABA, Glu
Glu, ntc-1 PVW (2) Glu, ntc-1, serotonin

AVJ (2) ACh, Glu RID (1) ACh
AWA (2) dopamine, flp-21, Glu, RIP (2) ACh

tyramine

Table A.5
Estimated transmitter receptors for chemical connections.

Neuron Predicted receptors Neuron Predicted receptors
class (unspecified) for class (unspecified) for

ADA (2) Ach, Glu, octopamine, OLL (2) Ach, GABA, Glu
pdf-1 OLQ (4) dopamine

ADE (2) Glu, nlp-1 PDA (1) Ach
ADF (2) ACh PDB (1) ACh
ADL (2) Ach, dopamine PDE (2) Ach, flp-1, GABA, Glu
AFD (2) Ach, Glu PHC (2) GABA, Glu
AIA (2) Ach PLN (2) ACh
AIB (2) Ach, flp-21, pdf-1 PVC (2) GABA
AIM (2) Ach, Glu, pdf-1 PVM (1) dopamine, flp-1
AIN (2) Glu PVN (2) ACh, flp-10, GABA,
AIZ (2) Glu Glu
ALA (1) dopamine, Glu PVP (2) Ach, GABA, Glu
ALN (2) Glu, pdf-1 PVR (1) ACh, dopamine, Glu
AQR (1) ACh PVT (1) Glu
AS (11) Glu PVW (2) ACh, GABA
ASE (2) Ach RIB (2) flp-21, GABA
ASG (2) Ach, Glu RIC (2) Ach
ASH (2) Ach RID (1) Glu, pdf-1
ASJ (2) ACh, GABA, Glu RIF (2) Ach
ASK (2) Ach, GABA, Glu RIG (2) dopamine, pdf-1
AUA (2) Ach RIH (1) Glu, pdf-1
AVA (2) dopamine, nlp-1, RIM (2) flp-1, GABA,
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data. For the remaining 665 connections (about 30%), either the
information about the transmitter or the receptor is missing, or
the transmitters and receptors are not compatible. To have a more
complete view of the network of C. elegans, the missing transmitter
types are estimated for these connections. Furthermore, it is
assumed that the estimated transmitters are valid for all neurons
of the same class [82].

If the transmitter information for one neuron is missing, the
least common set of transmitters is searched for all postsynaptic
receptors in order to establish at least one connection with all
unassigned postsynaptic neurons. If several options remain after-
wards, not all transmitter types are assigned but preferred ones
are chosen. Sometimes a decision can be made with the help of
WormAtlas [82] by studying the transmitter and receptor informa-
tion for the individual neurons. If still no result can be found, the
transmitter with the highest probability of occurrence is utilized
(compare exemplary with Fig. A.1). Two examples are given below:

� Example 1: Neuron A has no transmitter information, neuron X
has the ACh receptor acc-1 as well as the Glu receptor glr-1, neu-
ron Y has the dopamine receptor dop-1, and neuron Z has the
ACh receptor acc-2. The least common set of transmitters for
connecting with the neurons X, Y and Z is given by ACh and
dopamine, which are assigned to Neuron A.

� Example 2: If neuron Z from the first example has also a Glu
receptor like glr-2, no unique decision can be made about
the transmitters ACh and Glu. If no solution can be found with
the help of WormAtlas, frequency distributions are considered.
In this case, the transmitter ACh has the higher probability of
occurrence and is assigned to Neuron A along with dopamine.

The same procedure is used when the receptor information is
missing for specific neurons. This time, the least common set of
transmitters among all presynaptic neurons is desired. For the
underlying transmitters, no specific receptors can be determined.
It can only be indicated that for certain transmitters there must
be at least one matching receptor.

Finally, the last approach is also applied in the case that the
information for transmitters and receptors does not correspond.
In general, neurons have significantly fewer transmitters than
receptors. In Table A.3, it can be seen that there is a huge variety
for the latter. In a number of neurons, many receptors do not play
a role in the formation of synaptic connections since they can
only couple with transmitters that are not released. However,
Fig. A.1. Frequency distributions for the chemical connections. (a) Relative
frequency of different neurochemicals on a total of 2;194 chemical connections
(overlap is 21:8%). (b) Relative frequency of the monoamine transmitters on a
total of 205 monoamine connections (overlap is 3:4%). (c) Relative frequency of
the peptide families on a total of 418 peptide connections (overlap is 8:9%). (d)
Relative frequency of neurotransmission in general.
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these could be important for extrasynaptic connections, but this
is not considered. In the case of synaptic transmission, it is more
likely that the existence of receptors for specific transmitters can
be indicated than vice versa. Therefore, transmitters are considered
and receptors are assigned. Our approach for estimating transmit-
ter types for chemical connections does not claim to be the best
solution, but it can be carried out without much effort, and the
results are plausible. The findings are provided in Tables A.4 and
A.5.
octopamine octopamine
AVB (2) flp-1 RIP (2) ACh, dopamine, Glu
AVD (2) Ach RIR (1) Ach, pdf-1
AVE (2) dopamine, flp-1, GABA RIS (1) ACh
AVF (2) GABA, Glu RIV (2) ACh, dopamine, Glu,
AVG (1) GABA octopamine
AVH (2) Ach, nlp-1 RMD (6) flp-1, GABA, pdf-1
AVJ (2) ACh, dopamine, GABA, RMF (2) ACh, flp-1, Glu,

nlp-1, pdf-1 octopamine, pdf-1
AVK (2) ACh, dopamine, GABA, RMG (2) Ach

octopamine, pdf-1 RMH (2) Ach, dopamine, Glu,
AVL (1) Ach, GABA, Glu, pdf-1 pdf-1
AVM (1) flp-1 SAA (4) dopamine, flp-1, nlp-1
AWA (2) Ach, Glu SAB (3) Ach, GABA
AWB (2) ACh SDQ (2) Glu
AWC (2) Ach, flp-21 SIA (4) flp-1, Glu
BAG (2) Ach SIB (4) pdf-1
BDU (2) ACh SMB (4) dopamine, flp-1, Glu,
CEP (4) GABA, Glu, pdf-1 octopamine, pdf-1
DA (9) Glu SMD (4) flp-1, octopamine
DD (6) Glu URA (4) Ach, nlp-1
DVA (1) flp-1 URB (2) Ach, dopamine
DVC (1) GABA, pdf-1 URX (2) Glu
IL1 (6) dopamine, Glu URY (4) ACh, GABA
IL2 (6) Glu VA (12) Glu
LUA (2) Ach VD (13) GABA, Glu
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Using the estimated transmitters and receptors, all chemical
connections in the network are mapped with at least one type of
transmitter. The result is illustrated in Fig. A.1. The chemical layer
consists of 2;194 neuron connections. About 52% of the connec-
tions are covered by the transmitter ACh, which represents the lar-
gest sublayer. Then follows Glu with about 33% and the group of
the MAs with almost 10% (cf. Fig. A.1a). In the group of the MAs,
the dopamine transmitter has the largest proportion with about
67% (cf. Fig. A.1b). The dopamine sublayer is slightly larger than
the GABA sublayer, which occupies about 6% of the chemical con-
nections. Although the peptides have a larger proportion at around
21%, only about 31% of them act as peptide transmitters (cf.
Fig. A.1d). The sublayer of peptide transmitters is comparable to
the sublayer of GABA. The remaining 69% of the peptides are
cotransmitters which always occur together with neurotransmit-
ters. Among all pepdites, the FLP and PDF family are the most fre-
quently encountered with about 56% and 41% (cf. Fig. A.1c).
Appendix B. Functions of layers in the network

This appendix provides details on the different layers depicted
in Fig. 1b-h that give rise to the overall network shown in Fig. 1a.

Acetylcholine layer – ACh covers 33:4% of the 3;538 connec-
tions in the network and forms the largest layer. It is widely spread
among all neurons and does not prefer a specific neuron type. In
humans, ACh acts at skeletal neuromuscular junctions, at neuro-
muscular junctions between the vagus nerve and cardiac muscle
fibers, and at a variety of locations within the central nervous sys-
tem. While the function of ACh at neuromuscular junctions is well
known, its role in the central nervous system is not well under-
stood [60, Chapter 6]. In C. elegans, ACh is involved in many behav-
iors like locomotion [81,32], egg-laying [4], feeding [62], and
defecation [76].

Glutamate layer – Glu uses 20:5% of the connections in the net-
work and is therefore the third largest layer. In comparison with
the ACh layer, significantly fewer motor neurons are involved. In
the human brain, Glu is the most important transmitter for normal
brain function. It is estimated that more than half of all brain
synapses release this substance [60]. In C. elegans, it contributes
to foraging behavior [34], long-term memory [65], and sponta-
neous switches from forward to backward movement referred to
as reversals [85,9].

gamma-Aminobutyric acid layer – GABA represents the small-
est layer in the network and is released on 3:8% of the connections.
Most of them are established by interneurons and motor neurons.
About one third of the synapses in the brain use GABA as their neu-
rotransmitter, which is most frequently found in interneurons of
local circuits. In contrast to ACh and Glu, GABA has an inhibitory
effect [60, Chapter 6]. In C. elegans, it can also act as excitatory
transmitter which depends on the neuroreceptor. As an inhibitory
transmitter, GABA regulates the head movements while foraging
[80] or relaxes muscle cells during locomotion [48].

Monoamine layer – MA transmitters have a proportion of 5:8%
of the network connections. These are independent of the neuron
type, but most of the motor neurons are predominantly postsynap-
tic. In the group of MAs, dopamine accounts for about two thirds
(cf. Fig. A.1b). In humans, MAs regulate many brain functions and
are also present in the peripheral nervous system. They are entan-
gled in a wide range of behaviors that range from central homeo-
static functions to cognitive phenomena, such as attention. The
transmitters play an important role in the brain because defects
in the MA function can lead to psychiatric disorders. The dopamine
transmitter, for instance, is necessary for the coordination of body
movements. A degeneration of particular dopaminergic neurons
can lead to characteristic motor dysfunction as it is the case with
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parkinson’s disease [60, Chapter 6]. In C. elegans, the MAs affect a
variety of behaviors including egg-laying, pharyngeal pumping,
locomotion, and learning. A good overview is given by [12]. The
dopamine transmitter, for example, is responsible for the modula-
tion of locomotion behavior and for learning. The modulation of
locomotion behavior enables the worms to react on environmen-
tal changes [68] and to search efficiently for new food sources
[34]. Learning allows the worms to change their behavior based
on previous experience. For example, the animals react to a
non-localized mechanical stimulus such as plate tapping by either
moving backwards or increasing their forward locomotion rate.
Repeated tapping on the plate causes the worms to become
habituated to the stimulus, and they exhibit a reduced frequency
of reversals [66].

Peptide layer – Peptides are utilized in 11:8% of the network
connections, which are primarily established by interneurons and
sensory neurons. Most of the peptides originate from the FLP and
PDF family. About 31% of the peptides are peptide transmitters
and about 69% are cotransmitters (cf. Fig. A.1c and d). The number
of peptides in humans is estimated to be over 1;000, over 100 have
already been identified. Peptide transmission is involved in the
perception of pain, modulation of emotions, and regulation of com-
plex reactions to stress. Peptide cotransmission enhances or damp-
ens synaptic activity and can influence many functions such as
food intake, metabolism, social behavior, learning, and memory
([67], [60, Chapter 6]). In C. elegans, peptides affect many behaviors
including locomotion, dauer formation, egg-laying, sleep, learning,
social behavior, mechano-, and chemosensation. Numerous pep-
tides of the FLP family are involved in feeding behavior [45]. On
the other side, peptides can fulfill a unique functions as nlp-22 is
a regulator of C. elegans sleep-like state (lethargus) during a larval
transition stage [52]. For this reason, neuropeptides should be con-
sidered as the third layer of information flow in neuronal commu-
nication next to chemical and electrical transmission. This study
only uses a small subset of peptides found in C. elegans, and many
of their functions are still unknown. The actual number of neu-
ropeptides in the worm exceeds 300 [64,14]. Like monoamines,
neuropeptides have a small wired network but a large wireless
network [5]. This raises the opportunity that neuropeptides could
be involved in all C. elegans behaviors.

Electrical layer – Electrical transmission accounts for 29:1% of
the network connections and is therefore the second largest layer
behind ACh. Electrical synapses are found in all nervous systems.
They enable a direct, passive flow of electrical current from one
neuron to another. In contrast to chemical synapses, the current
can flow in both directions (bidirectional) and the transmission is
extraordinarily fast (virtually instantaneous). Communication is
possible without delay, which is not typical for chemical synapses.
For this reason, they are found in places where quick actions are
necessary and have the general purpose of coordinating and syn-
chronizing network activity among neuron groups. For example,
certain neurons in the brainstem are synchronized by electrical
synapses to produce rhythmic breathing. The same applies to pop-
ulations of interneurons in the cerebral cortex, thalamus, and cere-
bellum [60, Chapter 5]. In C. elegans, electrical transmission plays
an important role in locomotion behavior and development
[31,74].

Neuromuscular layer – Neuromuscular junctions are compara-
ble with chemical synapses and have a proportion of 15:5% of the
network connections. They are made from motor neurons to body
wall muscles. In C. elegans, the transmitters ACh and GABA can be
assigned to it. While ACh stimulates muscle contraction, GABA
relaxes muscles cells [63,42]. In humans, it is well known that
ACh is released by spinal motor neurons and results in contraction
of skeletal muscles [60, Chapter 5].



Fig. C.2. Logistic regression model and example distributions with corresponding
discriminative power. (a) Binary logistic regression. The logistic function ri is
illustrated as blue line. Realizations of the response variable yi are displayed as red
circles. (b)-(d) Example distributions of an explanatory variable with corresponding
discriminative power. The empirical distribution XY¼1 (XY¼0) is indicated by red
(grey) bars.
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Appendix C. Logistic regression analysis

Logistic regression analysis is a statistical procedure used for
classification problems. An application-oriented introduction to
the methods of logistic regression can be found in [59, Chapter
4]. In this study, we introduce the binary model.

C.1. Binary logistic regression model

The binary model considers a response variable (random num-
ber) which is denoted as Y and accepts the two values 0 and 1. The
expectation value E Yð Þ lies in the interval 0;1½ �. By applying a
response function

F zð Þ; z 2 R;with values in the interval 0;1½ �;
the linear combination z ¼ c0 þ c1x1 þ c2x2 þ . . .þ cmxm of m
explanatory variables x1; x2; . . . ; xm is restricted to the same interval
whereby c0 is a constant and c1; c2; . . . ; cm represent coefficients.
This results in the following estimate

E Yð Þ ¼ P Y ¼ 1ð Þ ¼ F zð Þ:
The binary model possesses as response function the logistic

function (also known as sigmoid function)

F tð Þ ¼ 1
1þ exp �tð Þ ; t 2 R: ðC:1Þ

This function has a nonlinear s-shaped curve that asymptoti-
cally approaches the values 0 and 1 from above and below, and
its values can be interpreted as the probability that the response
variable equals one.

For the observation i, the values of the response variable Y (0 or
1) and the explanatory variables x1; x2; . . . ; xm can be specified:

Yi; x1i; x2i; . . . ; xmi; i ¼ 1;2; . . . ; n:

The linear regression term for observation i is

zi ¼ c0 þ c1x1i þ c2x2i þ . . .þ cmxmi; i ¼ 1;2; . . . ;n:

The random variables Y1;Y2; . . . ;Yn are assumed to be indepen-
dent. The mþ 1 dimensional vector of the unknown parameters is

designated as c ¼ c0; c1; c2; . . . ; cm½ �T . The probability for the occur-
rence of Yi ¼ 1 is abbreviated with

ri cð Þ ¼ P Yi ¼ 1ð Þ:
Then, according to the above estimate, the binary logistic

regression model reads as [59, Chapter 4]

ri cð Þ ¼ F zi cð Þð Þ ¼ 1
1þ exp �zi cð Þð Þ ; i ¼ 1;2; . . . ;n: ðC:2Þ

Since logistic regression predicts probabilities and not just
classes, the unknown parameters cj can be estimated using the
maximum likelihood method. This method maximizes the proba-
bility of the parameters for the given data. The response probabil-
ity pi depending on realizations (0 or 1) of the response variable yi
satisfies

pi yið Þ ¼
1

1þexp �zi cð Þð Þ ; if yi ¼ 1

1� 1
1þexp �zi cð Þð Þ ; if yi ¼ 0

(
;

which can be summarized as

pi yið Þ ¼ 1
1þ exp �zi cð Þð Þ

� �yi

1� 1
1þ exp �zi cð Þð Þ

� �1�yi

:

For all i observations together, the probability theorem for inde-
pendent events can be used to construct the likelihood function
which needs to be maximized:
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L cð Þ ¼ Qn
i¼1

1
1þexp �zi cð Þð Þ

	 
yi � 1� 1
1þexp �zi cð Þð Þ

	 
1�yi ¼! max :

Taking the natural logarithm yields the log-likelihood function

L cð Þ ¼ Pn
i¼1

yi ln 1
1þexp �zi cð Þð Þ

	 
h i
þ 1� yið Þ ln 1� 1

1þexp �zi cð Þð Þ

	 
h i
;

ðC:3Þ

which has identical extreme values but is easier to calculate. In
many program packages, the maximization is performed by the
Newton–Raphson algorithm where the zero point is approximated
by iteration [75, Section 3.3].

To evaluate the fitted model, the log-likelihood is often multi-
plied by �2. The negative twofold log-likelihood is approximately
v2 - distributed with n� mþ 1ð Þ � 1 degrees of freedom where n
is the number of observations and mþ 1 the number of parame-
ters. The expression�2L is denoted as deviance and is comparable
to the residual sum of squares of the linear regression. With a per-
fect fit, the deviance is zero. Under the null hypothesis ”The model
has a perfect fit”, the fit is the better the lower the value �2L [75,
Section 3.5]. With the fitted model, the values 0 or 1 can be
assigned to the response variable Y in dependence on a threshold
value. The binary logistic regression model is depicted in Fig. C.2a.

The requirement for creating a logistic regression model is that
the explanatory variables should not be highly correlated with
each other because this can cause estimation problems [6].

C.2. Power analysis to identify key factors

The quality of a regression model is determined by its ability to
distinguish correctly between realizations (0 or 1) of the response
variable yi. To figure out which explanatory variables xk have a high
explanatory contribution to the model (C.2), the power P is intro-
duced. This measure lies in the interval �1;1½ � and can be defined
as

P ¼ 1
NY¼1NY¼0

PNY¼1

l¼1

PNY¼0

m¼1
S xl;Y¼1; xm;Y¼0
� �

;

S xl;Y¼1; xm;Y¼0
� � ¼

1; if xl;Y¼1 > xm;Y¼0

0; if xl;Y¼1 ¼ xm;Y¼0

�1; if xl;Y¼1 < xm;Y¼0

8><
>: ;

ðC:4Þ

where xl;Y¼1 and xm;Y¼0 are realizations of the empirical distributions
XY¼1 and XY¼0 with numbers of observations NY¼1 and NY¼0.



Fig. C.3. Outdegree power values for the interneurons.
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The power can be derived from the receiver operating charac-
teristic (ROC) and the cumulative accuracy profile (CAP). Both
ROC and CAP are important concepts to visualize the discrimina-
tive power (separation ability) of a model. They are applied in
many scientific disciplines, for instance, in biology, information
technology, and engineering sciences. The concepts convey the
same message but present it in different ways. The information
contained in a ROC or CAP curve can be aggregated into a single
number, the area under the ROC curve (AUROC) or the accuracy
ratio (AR). The AR can be interpreted as a simplified representation
of AUROC since

AR ¼ 2 � AUROC � 1 ðC:5Þ
and is also known as Gini coefficient or power statistics. Since the
Mann–Whitney statistics can be introduced as an equivalent to
the area under the ROC curve [21, Chapter 13], we obtain the power
in (C.4) using (C.5). Eq. (C.4) indicates that P can be expressed in
terms of probabilities

E Pð Þ ¼ P XY¼1 > XY¼0ð Þ � P XY¼1 < XY¼0ð Þ; ðC:6Þ
which allows for an intuitive interpretation.

If all observed values of the distribution XY¼1 are larger than
those of the distribution XY¼0, the power P is equal to 100%. The
realizations (0 or 1) of the response variable yi can be perfectly sep-
arated (cf. Fig. C.2b). The same applies if both distributions switch
the sides so that the power is now �100%. If both distributions
overlap completely, the power is zero, and the values of the
response variable cannot be separated with logistic regression
(cf. Fig. C.2c). As a third example, a case is shown where the distri-
butions overlap slightly resulting in a power of �66%. The minus
sign indicates that the distribution XY¼1 has more observations
with lower values than the distribution XY¼0. The absolute power
value of 66% indicates an excellent regression model (cf. Fig. C.2d).

The power of a logistic regression model can be classified as fol-
lows [39, Section 5.2.4]:

� If P ¼ 0%, the model cannot separate between observed values
(0 or 1) of the response variable yi (predicted probabilities are
pure random, like a coin flip).

� If 0% 	 Pj j < 40%, the model is considered to have a poor sepa-
ration ability.

� If 40% 	 Pj j < 60%, the model is considered to have an accept-
able separation ability.

� If 60% 	 Pj j < 80%, the model is considered to have an excellent
separation ability.

� If Pj j P 80%, the model is considered to have an outstanding
separation ability.

It should be noted that in practice it is extremely unusual to
observe absolute power values greater than 80%. Since the power
Pmeasures the discriminative power of potential explanatory vari-
ables, it is well suited to identify key factors for the regression
model. In this case, it is extremely unusual to observe absolute
power values greater than 40%. At the lower end, factors with
jPj > 5% (on a significance level of 5%) can also be important for
the regression model. Those factors can significantly increase the
power of the regression model in combination with other uncorre-
lated factors. Please note that factors with a negative power value
do not restrict the application of logistic regression. For the regres-
sion model, they simply mean negative coefficients. However, it
should be checked whether a negative relationship to the values
of the response variable is plausible.

From a statistical point of view, the power P can be interpreted
as the probability to uncover a difference when there really is one.
On a significance level of 5%, a power value of Pj j > 5% indicates
that the null hypothesis ”There is no difference” must be rejected.
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To get a feeling for the accuracy of the calculated power (C.4), it is
typical to specify a confidence interval. An efficient method to
compute the 95% confidence intervals based on the Mann–Whit-
ney statistic is provided by [21, Chapter 13]. This method becomes
increasingly important for small sample sizes with a relatively
small number of observations for yi ¼ 1 or yi ¼ 0. The uncertainty
is considered more appropriately by significantly broader confi-
dence intervals compared with other program packages.
C.3. Complementary univariate power analyses for developing logistic
regression models

Interneuron connectivity – The results for considering the out-
degree of the interneurons are depicted in Fig. C.3. For electrical
connections, the power value of 75% is the same as in the indegree
analysis (Fig. 3a) since they are bidirectional. Only ACh exhibits a
higher power with 83:3%. The combined oudegree of both trans-
mission types increases the power by 11:5% to 94:8%, which is
not far from a perfect model. For the other transmission types,
no statement can be made due to low values or high uncertainty
of the power.

First layer motor neuron connectivity – The outdegrees of the
first layer motor neurons reveal one factor with excellent power of
�75%. The motor neurons of the locomotory subnetwork LSp ¼ 1
have no outgoing connections with peptide cotransmission. In
combination with GABA transmission, the power can be increased
to absolut 79:9% (see Fig. C.4a).

Qualitative view on the first layer motor neurons – Instead of
focusing on the connectivity of neurons in the network, it is also
possible to target just the presence of specific transmitters. For
example, the presence of certain transmitters among neurons can
be binary coded. In the simplest case, 1 stands for yes and 0 for
nNo. This is done for ACh along with peptides of the families NLP
and PDF. The results are plotted in Fig. C.4b. The factor ”PDF pep-
tide or not” has already a good single power of �62:5%. The neu-
rons of the locomotory subnetwork do not have PDF peptides,
which can be seen in the distribution. The same is true for NLP pep-
tides. If NLPs and PDFs are subtracted from ACh, the overlap of neu-
rons of the locomotory subnetwork LSp ¼ 1 and other neurons
LSp ¼ 0 can be minimized resulting in a power of 81:9%. This
power value lies between the absolute values of the respective best
factor from the indegree and outdegree analysis with 87:5% and
79:9% (see Figs. 3b and C.4a). Note that no qualitative considera-
tion has been made for the interneurons since they can be perfectly
distinguished by their connectivity. However, this could also work
fine for them.

Second layer motor neuron connectivity – Last, the second
layer motor neurons are investigated (see exemplary Fig. 3b). It
is assumed that the interneurons and the first layer motor neurons
of the locomotory subnetwork are known. Only the motor neurons
are considered that are postsynaptic to these of the first layer. In
total, there are 66 motor neurons of which 60 belong to the loco-
motory subnetwork. New in this group are the motor neurons of
the classes DD and VD with the exception of DD01, VD03, VD10,



Fig. C.4. Power values for the first layer motor neurons.

Fig. C.5. Power values for the second layer motor neurons.
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and VD13. In addition, many motor neurons of the first layer are
also present here. Note that this is not visible in Fig. 2 since it is
only for illustrative purposes. For example, motor neurons of the
class VB are all directly connected to muscles, but they have also
postsynaptic partners in their class. The postsynaptic partners
occur therefore also in the second layer of motor neurons in the
shortest paths. Fig. C.5 illustrates the resulting power values for
(a) indegree and (b) outdegree distributions. For the indegree, most
of the second layer motor neurons can be excellently separated
because they do not have incoming connections with peptide
transmitters. In this case, the absolute power value of 66:7% is
20:8% lower than that for the first layer motor neurons (see
Fig. 3b). On the other hand, Glu is the best factor for logistic regres-
sion with �69:4% power. If both factors are combined, the power
rises to absolute 75:6%. For the outdegree, no clear conclusion
can be drawn at first glance for the individual factors due to high
uncertainties. If the outdegree of ACh and Glu is combined, a power
of �82:5% can be achieved indicating an outstanding separation
ability.
C.4. Complementary information for predicting the locomotory
subnetwork

Prediction accuracy with all sensory neurons – The prediction
accuracy of the logistic regression models on the test dataset with
all sensory neurons is detailed in Table C.6. In total, Model 1 (2)
predicts 99:2% (90:1%) of the shortest path correctly, and none
of the paths through the locomotory subnetwork yi ¼ 1 are mis-
classified. For paths that do not completely pass through the loco-
motory subnetwork yi ¼ 0, there is a misclassification of 1:5%
Table C.6
Model performance on the test dataset (all sensory neurons).

Locomotory subnetwork Prediction Model 1

correct incorrect co

yes 72,912 0
no 82,730 1,246

Total 155,642 1,246
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(18:5%). The latter value is significantly higher because Model 2
does not take into account the outdegree of the interneurons. How-
ever, this is not a problem but an interesting finding because it pre-
dicts additional neurons for the locomotory subnetwork.

New findings based on model predictions with all sensory
neurons – Using the predicted shortest paths yi ¼ 1, Model 1 (2)
indicates 8 (29) further neurons for the locomotory subnetwork,
which are listed in Table C.7. For all of these neurons except AVL,
RMFL, and V03, it can be assumed on the basis of literature
research and connectivity analysis that they affect the locomotion
behavior of C. elegans, which is discussed in the following.

The interneurons are considered first. The neuron class AVE
together with the classes AVA and AVD initiate the backward loco-
motion of C. elegans ([19, Section I], [84]). The neuron class AIB
plays a role in turns. The classes AIB and AIZ promote turns
whereas the classes AIY and AIA inhibit turns [25]. The RIG neurons
are involved in reversal behavior, and they are likely responsible
for increased reversal rates [11]. The AVJ and AVF neurons are sug-
gested to function generally as modulators of the command
interneurons that promote forward movement. Therefore, they
are involved in the coordination of locomotion. Especially in peri-
ods of active egg-laying, they coordinate egg-laying and locomo-
tion [33,69].

Next, the motor neurons are considered. The AVL neuron is
involved in the defecation. It controls together with the interneu-
ron DVB the expulsion muscle contraction in the defecation motor
program [3, Section III]. Since this neuron has no apparent influ-
ence on the locomotion behavior of the worm, it is not considered
to be part of the locomotory subnetwork. The function of the PDA
neuron is currently unknown, but it could be a counterpart to the
Prediction Model 2

rrect in % correct incorrect correct in %

100.0 72,912 0 100.0
98.5 68,407 15,569 81.5
99.2 141,319 15,569 90.1



Table C.7
Additional predicted neurons for the locomotory subnetwork of C. elegans. The assignment of the neuron type is arbitrary. The neurons are indicated as motor neurons if there are
direct connections to muscle cells. Many of the listed neurons are multifunctional. The involvement of the neurons AVL, RMFL, and V03 in locomotion behavior is either unknown
or cannot clearly be indicated.

Neuron Type Model 2 additionally predicts Same for Suggested

neuron class which neurons Model 1 function

Interneuron AVE (2) - Drive backward
movement

AIB (2) - Promoting turns
RIG (1/2) RIGL - Involved in

reversal behavior
AVJ (1/2) AVJL - Coordination

of movement

Motor neuron AVF (2) - Coordination
of movement

AVL (1) yes - Involved in
defecation process

PDA (1) yes - Promoting turns
RID (1) yes - Maintain forward

movement
PVN (1/2) PVNR yes - Coordination

of movement
RIM (1/2) RIML yes - Maintain backward

movement
RIV (2) - Promoting turns
RMD (6) - Promoting turns
RME (2/4) RMEL, RMEV - Promoting turns
RMF (1/2) RMFL yes
SMD (4) only SMDVR - Promoting turns
VC (1/6) VC03 yes - Inhibition of

egg-laying
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PDB neuron. The latter generally ensures that ventral turns are pre-
ferred by the worm [83]. The PDA neuron is connected to the dorsal
muscle MDL21, which lies opposite to the muscles connected with
the PDB neuron. The PDB is not only connected with one but with
two ventral muscles. This could be the reason why ventral turns
are preferred. The RID neuron modulates the motor state of C. ele-
gans to maintain forward locomotion [46]. The function of the PVN
neurons in the locomotion of the worm is currently not investi-
gated. These are presynaptic to command interneurons of the
classes AVA, AVB, AVD, AVE, PVC, and to coordinating neurons of
the classes AVJ and AVF, as well as to some motor neurons of the
classes VD and DD. Therefore, they could contribute to the coordi-
nation of the locomotion. For the neurons of the DD and VD class, it
is well established that they coordinate forward and backward
movements [19, Section I]. The RIM neurons play a role in the back-
ward locomotion. For example, photostimulation of RIM causes the
worm to reverse [29]. As a reaction to an anterior touch, head
movements are suppressed and the backward movement is main-
tained [57]. On the other hand, RIM is suggested to inhibit the ini-
tiation of reversals during locomotion [56]. The RIV neurons are
involved in the local foraging behavior consisting of reversals and
deep omega-shaped turns. The ablation of the neurons reduces
the frequency of omega turns [28]. The neurons of the classes
RME, SMD, and RMD are connected with head and neck muscles.
The SMD and RMD motor neurons drive dorsoventral undulations
[41] and are needed for multiple navigation behaviors [28], such as
the local foraging behavior. The RME neurons are linked with the
head bending amplitude during forward locomotion. The undula-
tory activity of RME is regulated by SMD neurons via extrasynaptic
neurotransmission, which ensures optimal efficiency of forward
locomotion [73]. The extrasynaptic neuromodulation between
RIM and RME neurons allows deep head bending during omega
turns and plays a role in the escape behavior of C. elegans [43].
Regarding the RMF neurons, no conclusions can be drawn without
a detailed analysis. Therefore, RMFL is not counted to the locomo-
tory subnetwork. The role of the VC motor neurons in locomotion
is also unclear. VC04 and VC05 innervate the vulva muscles and are
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involved in egg-laying [26]. The first three VC neurons innervate
motor neurons of the VD and DD class and could therefore con-
tribute to the coordination of locomotion. This is not contradictory
to the fact that the release of acetylcholine from these VC neurons
inhibits egg-laying behavior. The neuron VC06 has no connections.
It is hard to say whether the neurons VC01-VC03 are part of the
locomotory subnetwork or belong to the egg-laying program.
Therefore, VC03 is not counted.

In summary, it can be assumed that probably 26 of the neurons
in Table C.7 are involved in locomotion behavior of C. elegans ex-
cept AVL, RMFL, and V03. Model 1 only predicts 5 of them because
it only allows little margin regarding the interneurons. Model 1
includes the indegree and outdegree of the interneurons and
Model 2 only the indegree.

Appendix D. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.neucom.2020.11.
015.
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