
Robot Tour Planning with High
Determination Costs

Routing under Uncertainty

vorgelegt von
Dipl. Math. Dipl. Inf. Wolfgang A. Welz

geboren in Tübingen

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Prof. Dr. Dietmar Hömberg
Berichter: Prof. Dr. Martin Skutella

Prof. Dr. Jörg Rambau

Tag der wissenschaftlichen Aussprache: 25. September 2014

Berlin 2014

Acknowledgements

This thesis is the outcome of some very exciting and valuable years working at the COGA
group at Technische Universität Berlin. So in particular, I want to thank my supervisor
Martin Skutella. He not only provided me with crucial suggestions and guidance, but
also always had “open doors” for questions as well as everything else and gave strong
support. Equally, I am grateful to Jörg Rambau for instantly agreeing to co-referee this
thesis.

Another important requirement was the Matheon as the host of the project and its
founding as a DFG research center: Many results of this thesis are fruits of the Matheon
Project C30 “Automatic Reconfiguration of Robotic Welding Cells”. In this context,
I would like to extend my gratitude to the colleagues involved in this project, Dietmar
Hömberg, René Henrion and Chantal Landry, for many hours of collaboration and co-
authorship. The company Rücker GmbH provided us with helpful insights about virtual
commissioning and real-world welding cells.
I am also indebted to Thomas Erlebach and Michael Hoffmann for a short but great re-
search visit in Leicester and for the time spent together on uncertainty problems.

Already prior to this thesis I had many fruitful discussions with Cornelius Schwarz –
partially in Berlin, partially in Bayreuth – about robot optimization in the automotive
industry. My fellow group members at COGA, Ashwin Arulselvan, Torsten Gellert and
Julie Meißner, spent their free time proof reading different parts of this thesis and giving
helpful advice – Thank you!
Furthermore, I have to mention Stefan Maak for helping with implementations as a
student assistant in our project.
My office mate Ralf Hoffmann was available at all times for technical discussions and he
was also always willing to solve any computer-related problem. Moreover, I wish to thank
Dorothea Kiefer for her constant organizational and administrative support, which was
very helpful for a smooth progress of my PhD.

And last, but surely not least, I am thankful to my friends and family for their support
and their never-ending interest in my work, which has always been a great motivation.

Berlin, July 2014 Wolfgang A. Welz

III

Nomenclature

⊂ proper subset
⊆ subset or equal
(x, y) open interval
(x, y] left-open interval
[x, y] closed interval
infS infimum of a set S

supS supremum of a set S

head(a) head of arc a

tail(a) tail of arc a

δ+(v) set of arcs leaving node v

δ−(v) set of arcs entering node v

δ+(U) set of arcs with a head in U and a tail not in U

TSP traveling salesman problem
5 vector inequality, i.e. x 5 y if xi ≤ yi ∀i ∈ {1, . . . , n}
mod modulo operator, i.e. amodn is the remainder of the division of a by n

AND bitwise AND of a binary number
� logical left shift of a binary number
2S powerset of set S

S complement of set S

OPT cardinality of the optimal update strategy (see Def. 5.1.5)
d·e ceil function, dye is the smallest integer not less than x

MST minimum spanning tree
P(A) probability of event A

E[X] expected value of random variable X

Q≥0 nonnegative rational numbers
N≥0 natural numbers (including 0)

V

Table of Contents

List of Algorithms IX

1 Introduction 1
1.1 Preliminaries . 4

1.1.1 Graphs . 4
1.1.2 Shortest Paths . 6

I Practice 9

2 Integrated Approach for the Welding Cell Problem 11
2.1 Problem Classification . 12
2.2 The Discrete WCP . 15

2.2.1 Related Routing Problems . 17
2.2.2 Solving the Discrete WCP . 20

2.3 Collision-Aware Preprocessing . 23
2.3.1 Fixed Jobs . 25

2.4 Trajectory Planning and Collision Detection 28
2.5 Path Computations for the WCP . 30

2.5.1 Calculating Initial Distances . 30
2.5.2 Computation of Via Points . 33

3 Pricing – Shortest Path Problem with Forced Time Windows 39
3.1 Classification of the Pricing Problem . 40
3.2 Solving the ESPPFTW . 45
3.3 Dealing with Gridlocks . 50
3.4 Implementing the Pricing Problem . 54

3.4.1 Time Window Data Structures . 58
3.4.2 Preprocessing for the ESPPFTW 60

3.5 Computational Results . 61

VII

Table of Contents

4 Combining Discrete Optimization with Nonlinear Optimization 65
4.1 Combination Algorithm . 65
4.2 Resolving the Discrete WCP . 68
4.3 The 2D-Demonstrator . 70

II Theory 75

5 Aspects of Uncertainty in Optimization Problems 77
5.1 Preliminaries . 79
5.2 Uncertainty Problems with Interval Data 82

5.2.1 Shortest Paths . 83
5.2.2 Minimum Spanning Tree . 91
5.2.3 Traveling Salesman Problem . 99

5.3 Probabilistic Uncertainty . 102
5.4 Uncertainty in Metric Space . 111
5.5 Overview . 117

6 Subway Challenge 119
6.1 Basic Model . 121
6.2 Segment Problem . 122

6.2.1 ILP Formulation . 123
6.2.2 Implementation Details . 126

6.3 Station Problem . 127
6.3.1 TSP transformation . 129
6.3.2 Subtour ILP Formulation . 129
6.3.3 Flow-based ILP Formulation . 134

6.4 Preprocessing . 137
6.5 Computational Results . 137

7 Conclusion 141

Bibliography XI

A Computational Results Chapter 3 XIX
A.1 Time Window Data Structures . XIX
A.2 Time Window Preprocessing . XXIV

VIII

List of Algorithms

1 Dijkstra’s algorithm . 6

2 Solving TSP with bounded enumeration . 28

3 Generalized label setting algorithm . 46
4 Label setting algorithm for the SPPSTW 47
5 Solving the ESPPSTW with decremental state-space relaxation 50
6 Solving the SPPSTW by eliminating gridlocks 54
7 Extension step for the SPPSTW . 58

8 Integrated algorithm for the WCP . 66
9 Optimizing a linear problem with estimated distances 67

10 Trivial algorithm for an uncertainty problem with interval data 81
11 Approximate edge-uncertainty-spp with restricted intervals 85
12 Approximate edge-uncertainty-spp with restricted intervals 90
13 The general witness algorithm . 91
14 Update competitive algorithm for edge-uncertainty-mst 94
15 Approximation MST-Algorithm . 105
16 Approximation MST-Algorithm . 107

17 Finding an Euler tour . 127
18 Separation of the station problem using global min-cut 134

IX

Chapter 1

Introduction

Industrial production of the future will be characterized by the strong individualization
of products under the conditions of highly flexible production leading to an increasing
importance of computerization and robotic automation [32]. This development is also
referred to as the fourth industrial revolution (the German Federal Ministry of Education
and Research called this “Industry 4.0”). Characteristics are the intelligent factory and
fully computerized robotic assembly lines. This process is important for all areas of mass
production and in particular the automotive industry, as especially in this sector cost
reduction and productivity improvement will play a vital role to stay ahead of the newly
industrialized countries.

In this thesis we consider one particular problem as it occurs in car manufacturing: The
optimization of welding cells. Welding cells are essential elements in many production
systems of the automotive industry. In these cells, several robots perform spot welding
tasks on the same component. The tours of the robots need to be planned in such a way
that within the given cycle time of the production line the robots can process all the weld
points and return to their starting position. During all these operations, the robot arms
must not collide with each other or the component. Given the data of the workpiece, the
task is to find a feasible sequence of weld points as well as the trajectory planning for all
the robots. Such a problem is called the Welding Cell Problem (WCP).

As for many real-world problems, it is hard to represent this problem in its entirety by
one “scientific” field of research alone. The WCP, on the one hand, has similarities to
the famous Traveling Salesman Problem, as it is necessary to determine the best order
in which the welding tasks should be processed. On the other hand, it also contains
traditional elements of Robot Motion Planning, which have been analyzed in robotics for
many years.

The key, however, to efficiently handle this problem is by combining both aspects – the
continuous motion planning as well as the combinatorial tour and sequence planning –

1

Chapter 1 Introduction

as this leads to far superior and more concise results than a separation of the WCP into
its two scientific parts.

This research has also been the key part of the DFG Research Center Matheon project
called “Automatic Reconfiguration of Robotic Welding Cells”. We describe some of the
results that have been found in this context especially for the integration of those two
parts.

Combinations of continuous and combinatorial optimization have rarely been analyzed
so far. One of the very few results is by Andrews and Sethian [2], in which the authors
consider the so-called Continuous Traveling Salesmen Problem. Here, the actual shortest
path between two cities is unknown, but it can be derived from an underlying known
metric, which determines the cost of moving through each point of the given domain. The
authors propose an approach where the optimal paths between pairs of cities are created
“on the fly” as needed. However, the proposed solution method differs greatly from ours,
as their method focuses on reusing information from previous distance computations to
speed up future calculations.

Also, the isolated planning of given sequences has been well studied: For example in
the recent paper by Spensieri et al. [81] where welding cells are optimized under the
assumption that the robot trajectories are predefined and can only be rescheduled to
avoid collisions between different robots. The problem then corresponds to a variation of
Job Shop Scheduling; this aspect is also considered in Rambau and Schwarz [70].

How to read this thesis

The thesis consists of two main parts, both covering different aspects – theoretical and
practical – of the WCP and of related problems. The Parts I and II are largely self-
contained and can be read separately, although this is not recommended. The description
of practical aspects as well as solution approaches for the real-world welding cell problem
in the first part are complemented with theoretical results for the underlying uncertainty
structure and related routing problems in the second part.

This chapter serves as an introduction and gives a short overview about the preliminary
definitions and notions used in this thesis.

In Chapter 2, Integrated Approach for the Welding Cell Problem, we introduce
our model for the welding cell problem as a combination of discrete and continuous
optimization. It consists of two mayor subproblems. The first one, the discrete WCP,
was first introduced in Welz [85]. Its solution approach as it is described in this chapter
has also been published in Skutella and Welz [78].

2

The other key component is the generation of optimal trajectories between two points.
We shortly introduce how this optimal control problem can be solved and explain in
more detail how initial trajectories can be produced using methods from combinatorial
optimization. The concepts of the efficient trajectory computation and initialization as
well as the actual integrated algorithm (also described in Chapter 4) will also be published
in the prospective journal paper by Landry, Welz, and Gerdts [60].

In Chapter 3, Pricing – Shortest Path Problem with Forced Time Windows, we
take a separate look at the shortest path problem as it arises as a special subproblem
for the discrete WCP. At first glance, this problem might seem as a typical shortest path
problem with resource constraints, as they occur in many routing problems. However,
there are fundamental differences as conflict times can only be avoided by reducing the
motion velocity along certain trajectories, which might then lead to new infeasibilities
along these trajectories.
We propose a graph transformation that implicitly handles these situations by introducing
additional arcs. The resulting problem can then be solved within the existing resource
constraint shortest path framework at the cost of a potentially much larger graph.
On the practical side, we develop a fast algorithm that can also cope with these difficulties.
We evaluate its performance using several highly efficient data structures for storing and
detecting the next conflict time.

Chapter 4, Combining Discrete Optimization with Nonlinear Optimization, is
used to describe our main result of the first part, the design and implementation of an
algorithm that efficiently relies on the interplay of both parts as described in Chapter 2.
This combined algorithm is then tested on two-dimensional WCP instances, as they are
easier to visualize. These instances are also used to evaluate the number of updates this
approach requires. The combination algorithm is also part of Skutella and Welz [79].

In Chapter 5, Aspects of Uncertainty in Optimization Problems, we analyze the
WCP in the context of edge uncertainty problems as proposed by Erlebach et al. [29].
Since this concept of uncertainty has as yet only been thoroughly analyzed for the mini-
mum spanning tree problem, we expand this concept for a shortest path problem and the
traveling salesman problem, as they are both key components of the WCP. We also extend
the model to incorporate a certain probabilistic uncertainty. Our main result in this chap-
ter is the existence of an algorithm in this setting that calculates a (2+ δ)-approximation
for the TSP with only O(n) edge updates in expectation. This result relies on an al-
gorithm for the MST that is similar to the one proposed in [29]. The solution process,
however, does not require any restarts and can also be easily applied for an approximate
version of the MST.
Some of the results in this chapter are based on joint work together with Thomas Er-
lebach and Michael Hoffmann (both University of Leicester).

3

Chapter 1 Introduction

In Chapter 6, Subway Challenge, we study a problem which is known from the Guinness
World Records as the “Fastest time to travel to all New York City Subway stations”1.
Although this problem is related to other well-known routing problems, such as the
rural postman problem or the generalized traveling salesman problem, this variation
has rarely been considered in the context of combinatorial optimization. By applying
concepts that were originally developed as subproblems for the discrete WCP, we present
a branch-and-cut algorithm that finds the optimal solution for this Subway Challenge
of Berlin in less than a second. This approach relies on the special structure of the
underlying transportation network and therefore differs from branch-and-cut approaches
used for the other mentioned routing problems.

1.1 Preliminaries

In this section we introduce some of the basic terms and concepts that are used as
foundation in all parts of the thesis. Nevertheless, we still assume a basic knowledge of
combinatorial optimization and algorithms for reading this thesis.
A broader and more detailed introduction to all the topics discussed in the following can
for example be found in Schrijver [75] or Korte and Vygen [58]. We also recommend
Cormen et al. [17] for implementation details on basic algorithms and data structures.

A short tabular overview of the used notation can also be found in the Nomenclature
in the very beginning of this thesis on page V.

1.1.1 Graphs

Graphs represent one of the most important structures in combinatorial optimization.
Although they are fairly basic, they can still be used to model countless real-world phe-
nomenons. For the most part, the problems discussed in this thesis are based on graphs.
Although graphs play a vital role in almost all of the introductory literature on combi-
natorial optimization, their actual definitions sometimes vary slightly. We give a short
overview of the notion of graphs and paths that is used throughout this thesis.

Undirected Graphs: An undirected graph is a pair G = (V,E), where V and E are both
finite sets. The elements of V are called nodes and the elements of E are the edges. Each
edge e ∈ E is an unordered set {u, v} of two nodes u, v ∈ V . An edge e = {u, v} is a
loop, if u = v holds. For an edge e = {u, v} ∈ E, the nodes u and v are called end points

1www.guinnessworldrecords.com

4

www.guinnessworldrecords.com

1.1 Preliminaries

of e. We define δG(v) as the set of edges of the undirected graph G = (V,E) that have
the node v as an endpoint.

Directed Graphs: Very similar to the previously defined undirected graph, a directed
graph G = (V,A) consists of a finite set of vertices V and a finite set of arcs A, where
each arc a ∈ A is an ordered pair (u, v) of vertices with u, v ∈ V . The elements of V are
also sometimes called nodes. For an arc a = (u, v) ∈ A, the vertices u and v are called
the ends of a, and u is called the tail of a, while v is the head. An arc a = (u, v) ∈ A is
a loop, if its head and tail are identical, i.e. u = v. A directed graph G = (V,A) where
A corresponds to a multiset of arcs, in which arcs are allowed to appear more than once
once, is called a directed multigraph. In this case, two arcs a, b ∈ A are called parallel, if
tail(a) = tail(b) and head(a) = head(b).
An arc a = (u, v) ∈ A is said to connect the nodes u and v. We further say that a = (u, v)
leaves u and enters v. A directed graph is called complete, if each pair of graph vertices
is connected by an arc.
The set denoted by δ+G(v) contains all the arcs of G leaving one of its nodes v. Analogously,
the set δ−G(v) contains all the arcs entering node v in G. The set δ+G(v) is also sometimes
referred to as the outgoing arcs of v, while δ−G(v) represents the incoming arcs.

Paths and Tours: Let G = (V,A) be a directed graph. A sequence P = (a1, . . . , ak)
with ai = (vi, vi+1) ∈ A is a path in G. A path is called s-t path, if v1 = s and vk+1 = t.
We then also say that the path starts in s and ends in t. The path P is called tour, if
v1 = vk+1. A tour is a cycle, if the arcs (a1, . . . , ak) are pairwise distinct. A path or tour
is called elementary, if all the nodes v1, . . . , vk+1 (and thus also the arcs a1, . . . , ak) are
pairwise distinct.
Every path induces a subgraph G′ = (V ′, A′) of G with V ′ = {v1, . . . , vk+1} and A′ =
{a1, . . . , ak}. A path P is also sometimes identified by its corresponding subgraph, which,
for example allows us to write v ∈ P , if v is a node in the induced subgraph.
For an undirected graph G = (V,E), we define an s-t path P as a sequence of edges
(e1, . . . , ek) with ei = {vi, vi+1} ∈ E. This allows us to analogously define (elementary)
tours and cycles for undirected graphs as well.

Cuts: Let G = (V,A) be a directed graph and let U ⊆ V be a subset of nodes. We
define:

δ+G(U) := {a = (u, v) ∈ A : u ∈ U and v ∈ V \ U}
δ−G(U) := {a = (u, v) ∈ A : u ∈ V \ U and v ∈ U} .

5

Chapter 1 Introduction

The cut induced by U is a subset B of A, with B = δ+G(U) ∪ δ−G(U).

Trees: An undirected graph G = (V, T) is called forest, if it does not contain any cycles.
Is the graph also connected, i.e. there is an u-v path for all u, v ∈ V , it is called a tree. A
tree G = (V, T) can also be identified by its set of edges T alone, as the nodes in V can
be easily induced from T .
We call a tree G = (V, T) spanning tree of the undirected graph G′ = (V ′, E′), if V = V ′.

1.1.2 Shortest Paths

After we defined the basic concepts of graphs on the previous pages, we now briefly
introduce shortest paths and how they can be calculated. Shortest path problems are
one of the main themes of this thesis, as they arise as an important subproblem of the
WCP. Chapter 3 is even entirely dedicated to a special variation, the Shortest Path
Problem with Resource Constraints.

Shortest Path Problem: Let G = (V,A) be a directed graph with cost ca ≥ 0 for each
arc a ∈ A, let s, t ∈ V . The task is to find an s-t path P in G, such that

∑
a∈P ca ≤∑

a∈P ′ ca for all possible s-t paths P ′.

Algorithm 1: Dijkstra’s algorithm
Input: a directed graph G = (V,A) with arc costs ca ≥ 0 and a source node s
Output: shortest distances from s to all nodes v ∈ V

1 foreach vertex v ∈ V do
2 dv ←∞;
3 ds ← 0;
4 Q← V ;
5 while Q 6= ∅ do
6 choose node u ∈ Q with lowest distance du;
7 Q← Q \ {u};
8 foreach arc a = (u, v) ∈ δ+(u) do
9 if dv > du + ca then

10 dv ← du + ca;

11 return d;

6

1.1 Preliminaries

Dijkstra’s Algorithm: The shortest path problem where each arc has a nonnegative cost
can be solved by using the famous Dijkstra’s Algorithm as it is described in Algorithm 1. It
represents one of the most simple variations of a label-based algorithm for shortest paths
as it is formally introduced in Chapter 3. The algorithm manages tentative distances
for every node, starting with zero for node s itself. In every iteration a node, for which
the optimal distance is already known, is selected and the tentative distances to all its
neighbors are updated. After all nodes of V have been processed, the shortest distance
from s to all nodes has been calculated.
A more detailed description, especially on favorable data structures, and the proof of
correctness can for example be found in Cormen et al. [17].

7

Part I

Practice

9

Chapter 2

Integrated Approach for the Welding Cell
Problem

It is the goal of the WCP to find optimal tours for the robots such that all the given
weld points on the component can be processed in the provided cycle time. The robot
arms are equipped with different welding tongs and can only process specific weld points.
During all these operations the robot arms must not collide with each other and safety
clearances have to be kept.

The WCP consists of two major components:
• Finding the optimal assignment of weld points to the robots and their sequence.
• Finding the optimal trajectory between two weld points that does not collide with

the component.
However, especially the second part corresponds to hard, computational very expensive
problems and both parts heavily depend on each other. For example, the sequencing and
assignment both depend on the distances between all reachable weld points.

In this chapter we will discuss the components of an approach that efficiently combines
these two parts. This concept does not rely on any precomputed trajectories, as it
iteratively identifies a subset of “promising” trajectories that only need to be considered.
Further, during each iteration as much information as possible is also reused from the
computations in the last iteration, which considerably reduces the computational effort
for each new iteration.

In Section 2.1 we first classify the integrated WCP and its components, before a detailed
explanation of a solution approach for its first component (assignment and sequencing) is
given in Sections 2.2 and 2.3. In the next section the trajectory calculation is explained.
The actual calculation as an optimal control problem is only described by means of a brief
example. The trajectory calculations, however, rely on the combinatorial subproblem of
finding “good” initial solutions. Algorithms for this class of problems are explained in
Section 2.5.

11

Chapter 2 Integrated Approach for the Welding Cell Problem

Figure 2.1: Sketch of the WCP where robots are represented as vehicles

2.1 Problem Classification

For the Welding Cell Problem we are given a representationW of the workpiece containing
certain weld points J . Further, a set of robots R is given. For the robots to start their
actual welding process, a certain joint configuration needs to be reached. Furthermore,
it is, due to technical limitations, not possible for each robot to reach all the weld points.
Therefore, some points are exclusive for a certain subset of robots.
The task is to plan trajectories for each of the robots so that in the end all weld points
are processed while the makespan of all trajectories must be below the given cycle time
of the production process.

The Welding Cell Problem consists of the following four key components:

Assignment: It needs to be decided which weld point is processed by which robot.
There are some constraints that limit the possible assignments, but as in general
the jobs are not fixed to one robot, the assignment step is not trivial.

Sequencing: When the jobs are assigned to the robots, it is necessary to plan the order
in which they are processed before the robot returns to its starting position.

Trajectory calculation: For each sequence of weld points, trajectories for that robot
need to be found. Hereby, the robot should reach all the weld points as fast as
possible without colliding with the workpiece. The trajectories then correspond to
the actual paths the robot takes to get from one of its jobs to the next.

12

2.1 Problem Classification

Detecting and avoiding robot collisions: During all this operations the robots must
not collide with each other and safety clearances have to be kept.

This list already indicates that none of its points can be considered separately. Each
component depends on information from other parts. It is for example not possible to
find a feasible sequence or assignment without the knowledge of distances between the
weld points.
Even further, the different components also require completely different solution ap-
proaches: The sequencing and assigning relates to well-known combinatorial optimization
problems such as vehicle routing and scheduling problems. The collision-free trajectory
planning corresponds to a continuous optimal control problem.
This idea as well as the connections between the different components are visualized in
Figure 2.2.

Sequencing

Assignment

Discrete
Optimization

Trajectories

Robot Collisions

Continuous
Optimization

Figure 2.2: Sketch of WCP components and dependencies

So, how can the WCP still be solved in one integrated solution approach?
One approach is to first compute the trajectories for all possible job pairs. As the weld
points can only be accessed in one particular way, it is then possible to just string these
short trajectories together to get a valid long trajectory for a sequence of weld points.
Unfortunately, this approach has two major drawbacks:

1. The collisions between two robots still depend on the actual times these trajectories
are used, i.e. the sequencing.

2. The trajectory calculations are computationally expensive. It is therefore just not
possible to calculate all |J |2 trajectories within reasonable time.

The first drawback can be resolved by using a slightly more conservative definition of
collisions for the discrete approach: Two trajectories do not collide in the discrete setting,
if and only if the trajectories do not collide for any combination of start times in the

13

Chapter 2 Integrated Approach for the Welding Cell Problem

continuous setting. Using this approach we might exclude some feasible solutions, but
at least we can assure that all solutions that respect these collision constraints are still
feasible for the continuous and exact collision calculations.

The second point, however, cannot be avoided, as distance information between all points
is essential for any sequencing algorithm. The only way to effectively speed up the calcu-
lations of all trajectories is to parallelize their computations so that as many trajectories
as possible are calculated at the same time on different nodes of a computer cluster. But
this approach then requires a vast amount of computational power that is usually not
available.

Our proposed approach addresses both points more efficiently and more elegantly: It can
be best explained using two subproblems, one for the discrete part and the other one for
the continuous optimization.

1. In the beginning only the coordinates of the weld points as well as the starting
positions are known. These coordinates can be used to derive some very easy
initial estimates, such as the Euclidean distances, on the length of the trajectories.

2. This information is then given to the discrete WCP that now calculates a feasible
assignment and scheduling based on the information known so far.

3. The resulting tour is then fed into the continuous WCP returning corresponding
trajectories and checking whether this solution is also feasible in the exact setting.

4. If this is not the case, we go back to point 2, but this time also the exact trajectories
(their lengths and collisions) found so far are taken into account.

These points, as presented here, are not meant as complete and precise solution approach
(such an algorithm is given in Section 4.1), but we can use them to formulate the require-
ments of the two key parts:

The Discrete WCP takes the distances and already determined conflicts as arguments
and then returns a feasible tour for each robot. Since it has no further knowledge of the
actual circumstances of the collisions, it has to find solutions where conflicting arc pairs
are never in use at the same time.
A solution approach for the discrete WCP under these prerequisites is presented in Sec-
tion 2.2.

The Continuous WCP takes a sequence of weld points for each robot and then cal-
culates the optimal trajectory to reach all points in that order as fast as possible. The
computation of such a trajectory that avoids obstacles and observes the dynamic laws as
well as the bounds on the acceleration is also called kinodynamic motion planning [22]. It
represents a continuous optimization problem that can be solved using optimal control of
ordinary differential equations. As this research problem exceeds the scope of this thesis,
we only give a short introductory example of this approach in Section 2.4. However, in

14

2.2 The Discrete WCP

kinodynamic planning the significance of a good initial trajectory is crucial to the over-
all performance [54]. Such an initial solution can be computed by solving a drastically
simplified optimal control problem under the assumption that a set of good via points is
available. Such points can be derived by discretizing the workspace and then performing
combinatorial shortest path computations; this is discussed in Section 2.5.2.

2.2 The Discrete WCP

The Discrete Welding Cell Problem is a subproblem of the general WCP, where distances
(not necessarily the final ones) between any pair of two weld points are given. Also, a set
of potential collisions is given. Since no further properties of the trajectory or collisions
is known, the discrete WCP has to assure that potentially colliding arcs are never used at
the same time. Although this leads to a more conservative definition of collisions, feasible
and collision-free tours can be guaranteed.
This collision definition is very similar to the concept of collision zones, which is commonly
used in robotics: For every pair of trajectories it is checked whether the sweeping volumes,
i.e. the volumes that a robot sweeps through when moving along the path, of the robots
intersect. These collision zones are then regarded as mutually exclusive, see for example
Flordal et al. [36] or Spensieri et al. [81].
With this information it is now possible to define the discrete WCP:
The discrete variation of the WCP has been introduced in Welz [85]. The following
problem definition is essentially identical to the welding cell problem as described in [85],
but a slightly different notation has been used to keep the notation consistent throughout
this thesis.

The input data of the WCP consists of a set R of robots, a set J of jobs, each job j ∈ J
has a working set Wj ⊆ R containing the robots that can process the job j, a set of
collisions C, distance information D and a time limit T limit. Each robot r ∈ R has a
starting position sr where its tour has to start and end. Each job j ∈ J consists of a
weld point that has to be processed by a robot in Wj . The distances are denoted by D,
i.e. the time robot r needs to get from position u to position v is given by Dr(u, v) ≥ 0.
As the welding times are not explicitly given, we assume that they are included in the
distance information, i.e. Dr(p, j) for j ∈ J and r ∈ Wj corresponds to the travel time
from position p to j plus the processing time of job j for robot r.
For simplicity we can also interpret the input as a complete directed graph G = (V,A),
where V = {sr : r ∈ R} ∪ J . This graph is identical for all robots r ∈ R, only the arc
times denoted by τ ra differ. If a node j cannot be visited by r, because it corresponds to
the start position of a different robot or because r 6∈Wj , the times τ ra of all incoming and
outgoing arcs a of j are set to a value larger than the time limit T limit.

15

Chapter 2 Integrated Approach for the Welding Cell Problem

An element (r1, a1, r2, a2) ∈ C with r1, r2 ∈ R and a1, a2 ∈ A of the collision set C
corresponds to a potential collision between to moving robots. We say two arcs a1 and
a2 of an element in C collide, if they are in use at the same time by the corresponding
robots: Let I1 be the interval for which a1 is used and I2 the corresponding interval for
arc a2. The arcs a1 and a2 collide, if and only if I1 and I2 overlap.

The task is to find for each robot r ∈ R an elementary tour T̄ r = (a1, . . . , anr), starting
and ending in the depot sr, and a schedule Īr that assigns each arc a = (u, v) ∈ T̄ r a
left-closed time interval Īra , where min Īra corresponds to the departure time in u. The
tuple (T̄ r, Īr)r∈R must have the following properties:

• Each job j ∈ J is visited only in exactly one tour T̄ r, i.e. j is the head of exactly
one arc a ∈ T̄ r.

• A job j ∈ J can only be contained in a tour T̄ r for a robot with r ∈Wj .
• For each robot r ∈ R the schedule Īr must be feasible for the tour T̄ r, i.e. for

all a ∈ T̄ r the length of Īra must be at least τ ra and sup(Īra) must be equal to the
departure time of the succeeding arc.

• All robot moves are collision-free with respect to their schedule.
• The time limit is kept, i.e. for each r ∈ R we have sup(Īranr) ≤ T limit.

To further illustrate this definition, we give a simple example of scheduled tours as solu-
tions for the discrete WCP:

Example 2.2.1 Scheduled Tours: Consider the following solution for a WCP instance
with two robots r1 and r2. The tours T̄ r1 and T̄ r2 are given as follows:

r1 r2

A feasible schedule for these tours is for example given by:

Īr1 = {[0, 4), [4, 6), [6, 7)}
Īr2 = {[0, 2), [2, 4), [4, 6), [6, 10)} .

Here, the second arc of robot r2 and the first arc of robot r1 are in use at the same time.
By setting Īr2 = {[0, 6), [6, 8), [8, 10), [10, 14)} we get a feasible schedule where the second
arc of robot r2 is used after the the second arc of robot r1; the robot r2 now “waits”
longer on its first arc.

16

2.2 The Discrete WCP

In this model waiting is only possible on the arcs, meaning that for two successive arcs a1
and a2 in a tour sup(Īa1) = min(Īa2) must hold, but the length of Īa1 can be arbitrarily
longer than τa1 . So, instead of waiting in a certain position, the robot has to use its
last arc for a longer period of time. It is however possible to start a tour later and thus
effectively leave the start position sr later. By definition, this is always possible as there
cannot be any collisions for the start nodes.
This design decision allows us to restrict to collisions between arcs only. A slightly more
flexible option would be to also allow waiting in the nodes together with an additional
collision set referring to collisions between nodes and arcs. However, as this collision
definition complicates the analysis without providing any further theoretical insights, we
restrict to arc collisions only.

Remark: In the given model, collisions can be either avoided by rescheduling, i.e. in-
troducing waiting times so that the conflict resolves, or by rerouting or reassigning the
jobs. Therefore, the problem corresponds to a combination of a routing and a scheduling
problem.

A different possibility for avoiding conflicts is to take “detours” over other nodes that are
also visited at a later point in time by either the same tour or by completely different
tours. However, if a node is visited more than once, also its processing time is added
up multiple times, as it is part of the arc cost. This could in some sense be avoided by
introducing additional “Steiner nodes”. Those nodes can be visited, for example, in order
to avoid collision, but they do not correspond to actual jobs and thus do not need to be
visited and have no processing time. As the first option leads to inconsistent solutions
and the addition of Steiner nodes makes the problem harder to solve, we restrict the
solution to elementary tours.

2.2.1 Related Routing Problems

One of the best-known routing problems, that is also closely related to the discrete WCP,
is the Vehicle Routing Problem (VRP).
The basic version of the VRP can be defined as follows: Let S be a set of vehicles or
servers and let G = (V,A) be a directed graph with arc costs ca ≥ 0. Each vehicle s ∈ S
has a dedicated depot ds ∈ V , the remaining nodes V C = V \ {ds : s ∈ S} represent the
customers. The task is to find for each vehicle s ∈ S a tour T̄ s = (ds, v2, . . . , vns−1, d

s)
such that the tours T̄ s are a partition of V and the cost

∑
s∈S

∑
a∈T̄ s ca is minimized.

To represent the WCP as closely as possible in the VRP setting, the robots can be
considered as vehicles. This concept has also been sketched in Figure 2.1 on page 12. So
far, the only objective of the VRP is to minimize the overall cost and the concept of an
upper limit for the tours, such as a maximal cycle time T limit in the WCP, is not given.

17

Chapter 2 Integrated Approach for the Welding Cell Problem

This idea is considered for the so-called Capacitated Vehicle Routing Problem (CVRP).
Here, every customer v ∈ V C has a specific demand dv ≥ 0, while every vehicle only has
a capacity of D.

Furthermore, for the WCP an explicit schedule is required to resolve possible conflicts.
Scheduling in the context of vehicle routing problems is usually related to time win-
dows or other resources that are consumed along the tour of a vehicle. The Capacitated
Vehicle Routing Problem with Time Windows (CVRPTW) is a CVRP where every cus-
tomer v ∈ V C also has a certain time interval [xv, yv] in which it must be visited. This
problem was first introduced in Desrosiers et al. [21].
In Chapter 3 we discuss the concept of resource constraints in the context of shortest
paths. This concept can also be used to generalize time windows, capacity constraints
and other tour-structural constraints, such as elementary tours, for the VRP. However,
the big difference between the discrete WCP and all the other resource constraints men-
tioned so far is that collisions lead to global renewable resources, while the other resources
are only local for one vehicle.

Combinatorial problems where routing is combined with global scheduling constraints
between multiple servers have not been discussed often. Some of the very few examples are
the results in Gawrilow et al. [39], where conflict- and deadlock-free routes of automated
guided vehicles through a given network have to be calculated.
Another example is the work by Gellert and König [40]. Here, a system of rail-mounted
cranes is considered for which a set of transportation requests needs to be performed.
The task is to minimize the total makespan, while one-dimensional collisions are avoided.
The third problem, which is actually very similar to the WCP, is the Laser Sharing
Problem (LSP). Its first version including collision avoidance was introduced in Rambau
and Schwarz [69] and then further extended in [76] and [70].

The Laser Sharing Problem

The basic situation of the laser sharing problem is similar to the situation for the WCP
as they are both motivated by car body manufacturing: In a welding cell where certain
welding tasks have to be performed by laser welding robots, the goal is to find a way to
dispatch the robots so that the expensive laser sources can be shared among them and
the cycle time is minimized.

An instance of the LSP, as defined in Schwarz [76], consists of a set of robots R, a set J
of jobs and a set L of laser sources. Each job j ∈ J , however, corresponds to a welding arc
and therefore has two job positions ja and jb. It can be processed either in both directions
or in one fixed direction. The LSP has a set of line-line collisions defined identical as for

18

2.2 The Discrete WCP

the discrete WCP, but further also line-point collisions Clp that express collisions between
a robot residing in a certain position while another robot is moving.
The task in the LSP is to compute a scheduled dispatch D̄ = (T̄ , Ī, ¯̀)r∈R. Thus, just
as in the WCP each robot r ∈ R gets assigned a tour and a schedule, but further also
a function that assigns a laser source ¯̀r(j) ∈ L to each job j in a tour. The scheduled
dispatch should further minimize the makespan.

We will now discuss the similarities to the discrete WCP and explain under which cir-
cumstances it is possible to model and solve the LSP as an instance of the discrete WCP.
There are several differences between the two problems. The first one is that for the LSP
waiting in certain positions is possible while on the other hand, it is not allowed to vary
the velocity between two positions to resolve conflicts.
However, every scheduled tour (T̄ , Ī) for the WCP that respects the line-line collisions
can also be interpreted as feasible tour and schedule for the LSP: Arc usages longer than
τa are hereby interpreted as waiting in the head of a for the LSP. Since line-point colli-
sions Clp of the LSP induce line-line collisions for all corresponding incoming and outgoing
arcs, this solution also respects the line-point collisions of the LSP.
However, as our collision definition is a little more conservative, we might loose some cy-
cle time in this process.

For the case where the direction in which a job needs to processed is fixed (we assume
in the following that ja has to be visited before jb) it is possible to represent the welding
arcs in the WCP: As preemption is not allowed for the LSP, we only have the possibility
to leave ja via jb. By interpreting ja as well as jb as own jobs with processing times of
zero and assigning only one valid outgoing arc to ja. It is therefore possible to directly
integrate these welding arcs into the WCP.

The key difference between those two problems is the existence of laser sources. They
can only be modeled as part of the WCP, if either |L| = 1 or |L| ≥ |R|. If a laser source
is available for each robot, the entire scheduling of the lasers can be omitted, as it can
never reduce the solution quality to use distinct laser sources for each robot. If exactly
one laser source exists its distribution can be model by additional line-line collisions so
that it is not possible to process two different jobs at the same time.
Finally, one can calculate the optimal makespan by performing a binary search over all
possible cycle times.

The discrete Welding Cell Problem as well as the Laser Sharing Problem are related
problems both combining routing and scheduling in similar ways. However, they focus
on different aspects of robot optimization: While the focus of the LSP is on the sharing
of laser sources, the discrete WCP has been designed as a subproblem of the integrated
WCP.

19

Chapter 2 Integrated Approach for the Welding Cell Problem

2.2.2 Solving the Discrete WCP

The discrete WCP itself, as described in Section 2.2, can also be modeled as an extended
Set Partitioning Problem and formulated as an integer linear program with additional
constraints for the collision avoidance. For this representation we first assume that all
time values are discretized: The travel times for all arcs a ∈ A should therefore be in
{1, . . . , L}, where L is a natural number representing the time limit. Such a discretization
of the continuous distances and times can be obtained easily. This can be performed
with arbitrary precision, but the more resulting time steps we introduce, the bigger
the problem will get. Now, the discrete WCP can be modeled as the following constraint
integer program:

min
∑
T∈Ω

cTxT (MP)

s.t.
∑
T∈Ω

δvT xT = 1 ∀v ∈ V (2.1a)

x is collision-free (2.1b)
xT ∈ {0, 1} ∀T ∈ Ω (2.1c)

The set Ω contains all feasible scheduled tours (T̄ r, Īr) for all the robots r ∈ R. The
coefficient δvT specifies, whether node v is visited by the scheduled tour T or not:
For T = (T̄ r, Īr), we have

δvT =

{
1 if v ∈ T̄ r,
0 otherwise.

The binary variables xT denote whether this particular scheduled tour is used or not.
The set partitioning constraints (2.1a) guarantee that every node is visited exactly once
and since sr is also contained in V , exactly one tour will be assigned to each robot r ∈ R.
All other problem constraints are implicitly given by Ω, as it, by definition, only contains
elementary tours with feasible schedules that are within the given time limit.

The MP finds tours so that the total sum of their costs cT gets minimized. This cost was
not present in our original definition of the discrete WCP and these tour costs can be
interpreted in the following ways:

• By setting the costs cT to zero for all T ∈ Ω we convert the program MP into a pure
feasibility problem, which exactly represents the problem defined in Section 2.2.

• From a computational point of view it is usually favorable to assign some costs
that help to guide the solution process into the right direction. For example, one

20

2.2 The Discrete WCP

could set the tour costs cT in relation to the actual length of the tour with respect
to the given distance information Dr or even combine this with some penalties for
arcs that occur in many elements of the collision set C. In both cases the solution
process can be stopped after the first feasible solution has been found.

• As a third option, this model can be used to find a minimum cost solution under
the given constraints. This makes it for example possible, to find a feasible solution
that minimizes the energy consumption without loosing anything from the given
time limit.

In any case, the program MP contains a huge number of variables: Already the num-
ber of possible elementary tours in the underlying graph G is exponential in the number
of nodes |V |. In fact, as the WCP combines routing with scheduling, this number even
grows since there is in general a big possible number of feasible schedules for one partic-
ular tour. Therefore, our solution procedure is based on a column generation approach.
An introduction about this technique can be found, e.g., in Desrosiers and Lübbecke [20].
We consider as the restricted master problem the continuous relaxation of the MP model
where the constraints (2.1b) and (2.1c) have been replaced by xT ≥ 0. The tour variables
only correspond to a subset Ω′ ⊆ Ω of tours. Now, we iteratively solve the restricted mas-
ter problem and search for new columns having negative reduced cost that is computed
using the optimal dual solution.
Let the dual variables corresponding to the constraints (2.1a) be πv. We determine
whether a scheduled tour in Ω \ Ω′ could improve the fractional solution by solving the
following associated pricing problem:

c̄∗ = min
T∈Ω

{
cT −

∑
v∈V

(δvTπv)

}
. (2.2)

If c̄∗ is negative, the current solution is not optimal for the restricted master problem
and the column corresponding to the optimal solution for the subproblem (2.2) should
be added. The new restricted master problem is re-solved and the process is iterated
as long as the pricing problem has negative solutions. As the set Ω is finite after the
discretization, this process will eventually terminate and an optimal solution for the
master problem is returned.
The pricing problem corresponds to the combinatorial optimization problem of finding
the shortest tour T ∗ with respect to the arc costs ca and node prices of πv. Tour T ∗ must
be a valid tour for robot r ∈ R, which means that it must visit the starting position sr

and that no vertex is visited more than once. Additionally, the traversal time of the tour
must be bounded by L.
As the dual variables πv correspond to equality constraints in the primal problem, they

21

Chapter 2 Integrated Approach for the Welding Cell Problem

can be positive and it is therefore possible that in the graph corresponding to the pricing
problem negative cost cycles exist.

We notice that the restricted master problem may be infeasible during the loop mentioned
above, either in the beginning when no columns have been generated yet or due to
branching constraints, which are introduced later. In this case, we can use Farkas’ Lemma
to add variables that gradually restore the feasibility or detect that there is no such
variable and the current master is infeasible. This method has been called Farkas Pricing
and is very similar to the pricing problem. It can be solved by the same problem for
which simply a zero cost function is used and the dual solution values are replaced by
the farkas multipliers.

So far, we have just solved the fractional relaxation of MP and the constraints (2.1b)
and (2.1c) are in general not satisfied. These constraints then need to be enforced in a
branch-and-bound framework.

Integrality Constraints

Let us assume the optimal solution returned for the restricted master problem is frac-
tional. We then choose a tour with fractional value and on this tour we select an arc
whose value, i.e. the sum of the values of all tours using this arc, is less than one and
therefore fractional. Since the start positions sr cannot be visited by any other robot
than r and due to the equality constraints for the nodes, such an arc always exists. We
then branch on this selected arc a:
For the first branch, we force arc a = (u, v) to be in the tour of one robot. This can be
done by simply removing all other arcs leaving the node u and all other arcs entering v.
As the node v always needs to be visited due to the constraints (2.1a), the only possibil-
ity now is to use the arc a, which enforces a value of one along this arc.
For the second subproblem we remove arc a in all graphs of the corresponding sub-tree.

If the values of all arcs are either zero or one, this induces binary values for all tour
variables and the constraints (2.1c) are fulfilled. All these branching decisions can be
modeled by changes in the problem graph of the corresponding pricing problem, while
the problem itself stays unchanged as no explicit constraints are added.

Remark: This branching rule relies on the fact that every node needs to be visited
and that it is therefore possible to force an arc by removing all other incoming arcs.
To get around this requirement, one could follow the so-called path-splitting branching
rule used for multi-commodity flow in Barnhart et al. [6]. In this rule two branches are
created for the point where two fractional tours differ. They accordingly partition the
set of edges adjacent from this node into two subsets E1 and E2. The arcs of each set

22

2.3 Collision-Aware Preprocessing

are then forbidden in one branch. Now, the integrality can be enforced without the need
of forced arcs.

Avoiding Collisions

Also the constraints (2.1b) can be handled with branch-and-bound. Assume we are using
the two incompatible arcs a1 and a2 simultaneously in the time interval [ta, te]. We then
select one time step tb ∈ [ta, te] and branch on this time step. For time step tb, there are
three compatible possibilities for the arcs a1 and a2:
(a) a1 is used and a2 is not
(b) a2 is used and a1 is not
(c) neither a1 nor a2 are used
So we create three subproblems where in each one of them one of these possibilities is
ensured by forcing or forbidding the corresponding arcs in time step tb. We say an
arc a is forced in time step tb, if the arc must be used during tb. It does not matter
whether a is used in other time steps or not. This branching scheme is valid because
every collision-free integer solution always fits into one of the branches and, therefore,
no solution is lost. Moreover, the branching scheme will find the optimal collision-free
integer solution in finitely many steps since there are only finitely many possible time
steps to branch on and only finitely many arcs.

To prevent the generation of duplicate tours and to ensure the optimality of the pricing
problem, these constraints must also be imposed for the pricing. This then leads to the
problem of finding the shortest elementary tour with additional multiple forbidden time
windows on the arcs and some time intervals for which a certain arc must be visited. The
pricing problem is in general NP-hard and can be interpreted as a special variation of a
Shortest Path Problem with Resource Constraints. As the pricing itself presents a very
interesting and new combinatorial optimization problem it is discussed in more detail in
Chapter 3.

This branch-and-price approach has been implemented using the modular constraint in-
teger programming solver SCIP [1] developed at the Konrad-Zuse-Zentrum in Berlin.

2.3 Collision-Aware Preprocessing

In the described solution approach collisions are resolved via branching alone. They do
not have an impact on the LP bound used in the branch-and-price process. To improve
this behavior we developed a preprocessing step that takes collisions into account. This
step eliminates arcs which can never occur in any feasible solution as they introduce so

23

Chapter 2 Integrated Approach for the Welding Cell Problem

many collisions that resolving these collisions via waiting would lead to tours longer than
T limit.
Hereby, we check for each arc a ∈ A and robot r1 ∈ R whether feasible solutions exist in
which robot r1 is using a and all other nodes n ∈ V can still be visited. If this is not the
case, then we know that arc a will never be used by robot r1.
We will hereby use the fact that conflicting arcs cannot be used at the same time to
derive lower bounds on the tour length for this particular situation.

In the following we say that a pair of a robot and an arc (r1, a) ∈ R × A is in conflict
with (r2, n) ∈ R× V , if for all incoming and outgoing arcs a′ ∈ δ+(n) ∪ δ−(n) the arcs a
and a′ are in conflict, i.e. (r1, a, r2, a′) ∈ C. This definition can also be extended to say
that two nodes u and v are in conflict, if all the incoming and outgoing arcs of u are in
conflict with v.

Let now (r1, ā) and (r2, n̄) be such a conflict. It is clear that node n̄ must either be visited
before or after arc ā. This observation can be used to derive a lower bound on the end
time of any solution where robot r1 uses ā and robot r2 visits n̄.
We will also need the shortest distance dr(v, v′) between any two positions v and v′ of
robot r. The resulting distances dr(v, v′) can be obtained by solving an all-pairs shortest
paths problem for each robot r ∈ R. Therefore, the distances dr are always metric for a
particular robot r.

Let us first consider the case where the arc ā = (u, v) is visited before node n̄. The
situation arising for this case is also depicted in Figure 2.3:
The earliest time at which node n̄ can be visited is after r1 reaches v. This time must
be at least as large as dr1(sr1 , u) + Dr1(u, v). After node n̄ has been reached, a time of
at least dr2(n̄, sr2) is required to finish the tour of robot r2. Together, this leads to the
conclusion that in this case the end time tend of the scheduled tour for robot r2 must be
at least

tend ≥ dr1(sr1 , u) +Dr1(u, v) + dr2(n̄, sr2) . (2.3)

We can now further improve this bound using the following observation:
It is in general not possible to visit node n̄ right after ā. Robot r1 needs to be on an arc
that is not in conflict with n̄ before r2 can visit n̄ and the robot r2 can only start using
an arc leading to n̄ when r1 is done with ā. This means that robot r1 must first reach a
node which is not in conflict with n̄ and r2 must start from a node not in conflict with ā.
Therefore, the shortest distance to such a node can be added to (2.3):
The shortest distance from node v to such a node that is not in conflict with n̄ is denoted
by d+v :

d+v = min
{
dr1(v, v′) : v′ ∈ V, (r1, v

′) and (r2, n̄) are not in conflict
}
.

24

2.3 Collision-Aware Preprocessing

Analogously, we have d−n̄ as the shortest distance from a safe node to n̄:

d−n̄ = min
{
dr2(v′, n̄) : v′ ∈ V, (r1, ā) and (r2, v

′) are not in conflict
}
.

This can now be combined to get a better bound on the end time:

tend ≥ dr1(sr1 , u) +Dr1(u, v) + max
{
d+v , d

−
n̄

}
+ dr2(n̄, sr2) . (2.4)

The situation used to derive (2.4) is visualized in Figure 2.3.

An analogous bound can also be calculated for the situation where n̄ is visited before ā.
By then taking the minimum of those two bounds we get a lower bound on the makespan
of any solution, where r1 uses ā and r2 uses n̄.

collision zone

u

v

n̄

sr1

sr2

d+v

d−n̄

Figure 2.3: Conflicting arc-node pair

Now, for all the conflicting pairs (r1, a) ∈ R × A and (r2, n) ∈ R × V with r1 6= r2 we
calculate the bounds corresponding to the inequality (2.4). If for one combination the
corresponding end time is greater than the time limit T limit, we know that there will
never be a feasible solution in which r1 uses a and r2 visits n. And further, if there exists
a pair (r1, a) and a node n such that n cannot be visited by any robot in Wn, we know
that arc a can never be used for robot r1 and it can thus be removed.

2.3.1 Fixed Jobs

The same idea can be extended if there are jobs j in the discrete WCP instance that can
only be visited by a single robot, i.e. |Wj | = 1. The corresponding nodes are called fixed
nodes.

25

Chapter 2 Integrated Approach for the Welding Cell Problem

The general idea is exactly the same as in the last section: We again try to give a bound
on the makespan of the solution where robot r1 uses ā and r2 uses n̄, but this time we
also take fixed nodes into account:

Consider the same situation as in Figure 2.3, but now there are also fixed nodes F of r2,
i.e. for each j ∈ F we have Wj = {r2}, that are in conflict with ā. None of the nodes
in F ∪ n̄ can be visited while robot r1 is on the arc ā. It is therefore only possible for
robot r2 to visit a subset F ′ ⊂ F of nodes before we have to leave the collision zone and
then (after ā is done) enter the collision zone again to finish the remaining nodes in F .
This “switching” to arc ā however costs additional time, as robot r1 has to reach a node
that is not in conflict with the next node of r2 before that robot can visit its next node.
By using the same notation as for (2.4), we have that the switching time from arc ā to a
node f ∈ F is at least

ts(ā, f) := max{d+v , d−f } .

Now, the lower bound for the makespan consist of the shortest possible time frame to
visit a subset F ′ ⊂ F in any order, then ā and then F \ F . Even for a small set F the
number of all possibilities grows too quickly to be able to solve this via “brute force”
enumerations. Instead, we convert this into a well-studied combinatorial optimization
problem which can be solved quickly for these smaller sizes – the Traveling Salesman
Problem. A general overview of the TSP and its solution methods can be found in
Applegate et al. [4], Gutin and Punnen [48].

Hereby, we build the following directed graph G′ = (V ′, A′), with V ′ = {s0} ∪ {u, v} ∪F ,
where s0 is a dummy start node. We now choose the costs of the arcs in such a way
that the cost of each Hamiltonian cycle corresponds to the time of the particular order
in which the nodes in F and the arc ā is visited:

• The arcs a′ ∈ F × F get the original distance of r2 between those two nodes.
• The arcs a′ ∈ F × {u} correspond to a switch from f to ā and, thus, gets a cost of

ts(ā, f).
• The arcs a′ ∈ {v} × F correspond to a switch from ā to f .
• For all f ∈ F the arcs (f, s0) get a cost of dr2(f, sr2), while the arcs (s0, f) get

dr2(sr2 , f).
• Lastly, (v, s0) has a cost of dr1(v, sr1) and (s0, u) gets the cost dr1(sr1 , u).

All the arcs not mentioned in this list get a cost higher than T limit and will therefore
not be part of any feasible Hamiltonian cycle. The graph G′ together with the cost
corresponds to an asymmetric TSP instance where the optimal solution corresponds to a
lower bound on the makespan of any solution where r1 uses ā and r2 uses n̄. An example
of the resulting graph G′ is also shown in Figure 2.4.

Remark: If there are no fixed nodes then the graph G′ only consists of four nodes
s0, u, v, n̄ and there are only two different Hamiltonian cycles: One where n̄ is visited

26

2.3 Collision-Aware Preprocessing

collision zone

u

v

n̄

f

s0

dr1(sr1 , u)

ts(ā, n̄)

dr2(n̄, f)

dr2(n̄, sr2)

Figure 2.4: Conflicting arc-node pair with a fixed job and the resulting TSP graph G′

before u and the other one where n̄ is visited after v. This is then corresponds to exactly
the same situation as in Figure 2.3 and the TSP based preprocessing approach can also
correct for situations where there are no forced arcs.

During the execution of the preprocessing rule, one TSP instance for all the conflicting
pairs (r1, a) ∈ R×A and (r2, n) ∈ R×V with r1 6= r2 needs to be solved. Although each
instances only consists of very few nodes (even for WCP instances with many conflicting
arcs, the number is typically less than 15) many different instances need to be solved,
which can still be very time consuming. We note, however, that for fixed r1, r2, a the
distances between identical nodes do not change. We can therefore construct a graph G′′

that contains all the nodes and then hide the nodes which are not in F . This approach
has the advantage that information from other calculations can be reused. The TSP
instances are hereby solved as integer linear programs with subtour elimination. (The
details of such an ILP based implementation are provided for a slightly different context
in Section 6.2.1. However, the IP used for the reprocessing is identical to ATSP-IP in
that section.)
For each fixed r1, r2, a one new ILP is created. Then, for every node n, visiting of all
nodes will be forbidden that are not in G′ by setting the corresponding degree constraints
to zero. As our implementation only generates inequalities that are valid no matter which
nodes are forbidden, they can be reused and they are thus kept for the next n. This idea
considerably reduces the number of new separation steps.

Remark: For WCP instances that do not contain that many conflicts, the TSP in-
stances will be very small and they only contain less than 6 nodes. In this case even the
warm-started ILP approach is an “overkill”, as creating and solving the underlying LPs
for the bounds introduces unnecessary overhead. Therefore, for such small instances we

27

Chapter 2 Integrated Approach for the Welding Cell Problem

use a very simple from of bounded enumeration in which closest neighbors are preferred
(Algorithm 2).

Algorithm 2: Solving TSP with bounded enumeration
Input: a directed graph G = (V,A) with arc cost
Output: a shortest Hamiltonian Cycle

1 foreach node v ∈ V do
2 sort all outgoing arcs of v in ascending order based on their cost;
3 T best ← null;
4 recursion({s});
5 return T best;
1 Function recursion(T)
2 if cost of T is lower than the cost of current best tour T best then
3 if T is Hamiltonian Cycle of G then
4 T best ← T ;
5 else
6 u← last node in T ;
7 foreach outgoing arc a = (u, v) ∈ δ+(u) do
8 if v is not contained in T then
9 recursion(T ∪ {v});

2.4 Trajectory Planning and Collision Detection

The optimal trajectory planning for the welding cell problem can be solved as a nonlinear
optimization problem. The approaches and algorithms used in this context have been
developed by Gerdts, Henrion, Hömberg, and Landry [42].
As these methods belong to a different field of research, explaining them in full detail
would exceed the scope of this thesis. Instead, we use this section to give a very brief
introduction about how the trajectories can be calculated.

To keep the situation as simple as possible, we only consider the very small case with a
two dimensional robot composed of exactly one convex polygon. We are then interested in
finding the fastest trajectory from the initial position qI ∈ R2 to the goal position qG ∈ R2

that does not collide with the obstacle represented by another convex polygon P .

28

2.4 Trajectory Planning and Collision Detection

To describe the motion from qI to qG, we need to define the following variables:
Let r, v and a denote the position, velocity and acceleration, respectively, of the robot in
the two dimensional space. Further, let tG be the travel time between the two positions.
The motion of the robot for t ∈ [0, tG] can then be described by the following dynamic
laws:

r′(t) = v(t) and v′(t) = a(t) . (2.5)

A trajectory is collision-free, if the robot represented by

R(t) =
{

x ∈ R2 : A(t)x ≤ b(t)
}

does not intersect with the obstacle described by the polygon

P =
{

x ∈ R2 : Cx ≤ d
}
.

For fixed time t the robot R(t) does not collide with P , if and only if the following linear
system does not have a solution:(

A(t)
C

)
x ≤

(
b(t)

d

)
.

By applying Farka’s lemma (see e.g. Bertsimas and Tsitsiklis [9]) we get that R(t) and
P do not intersect, if and only if there exists a vector w ≥ 0 such that(

A(t)
C

)T

w = 0 and
(

b(t)
d

)T

w < 0. (2.6)

This gives us a nice algebraic representation of collisions, which can then be used as
constraints in the actual optimization problem.

The fastest trajectory of the robot is the solution of an Optimal Control Problem (OCP)
where the system of ordinary differential equations is given by (2.5). The collision avoid-
ance is guaranteed as soon as the vector w of (2.6) is found for each time t. However, for
the actual OCP the strict inequality in (2.6) needs to be sharpened to include a safety
margin ε > 0 and boundary conditions need to be added.
To solve the OCP numerically, the package OCPID-DAE11 developed by M. Gerdts is
used. A good overview of optimal control problems with ordinary differential equations
can be found for example in Gerdts [41].

1See www.optimal-control.de

29

www.optimal-control.de

Chapter 2 Integrated Approach for the Welding Cell Problem

Using the same idea, this approach can also be extended to work for more than one
obstacle and three dimensional robots, their position being represented by the vector of
joint angles. However, the resulting optimization problem contains a lot of constraints.
Details on the full problem as well as the introduced methods to reduce the number of
variables and constraints can be found in Landry et al. [59].

One crucial aspect for the performance of the optimization algorithm is the quality of
the initial trajectory used to start the optimization process. Our method combines dis-
crete and continuous optimization concepts. First, a shortest path algorithm is used to
determine a list of via points. Then, a much smaller optimal control problem is used to
determine the fastest trajectory that passes through the vicinity of the via points. This
trajectory is then used as the initial solution.
As this first OCP does not take collisions into account, it is essential that the via points
lead to close to optimal, collision-free trajectories. The combinatorial techniques used to
find such good via points are discussed in the next section.

To check resulting scheduled tours for their feasibility, the algorithm as described in
Schwarzer et al. [77] has been used to detect a collision between robots moving along
specified trajectories.

2.5 Path Computations for the WCP

In this section, we discuss two aspects of the continuous WCP – the distance initializa-
tion as well as the computation of via points for the kinodynamic motion planning.
Both approaches rely on robot path-planning, which is one of the key problems in robotics:
Path-planning involves searching a collision-free path in the workspace between two given
positions qI and qG. Several techniques exist such as graph search algorithms, cell de-
composition, potential field methods, probabilistic roadmaps or rapid exploring random
trees. See for example LaValle [63] or Goerzen et al. [43] for an exhaustive review.

2.5.1 Calculating Initial Distances

The first step that needs to be performed for the integrated approach is the initialization
of the travel times: As the initial heuristic distance computations need to be performed
for all possible point pairs, it is essential that these can be calculated very efficiently.
There are several ways to achieve this:

30

2.5 Path Computations for the WCP

Position Distances

The easiest way is to completely ignore the workpiece and just calculate the distance be-
tween the two points qI and qG. The corresponding travel time τ r(qI ,qG) of robot r can
then be calculated by applying the maximal acceleration and deceleration of that robot.
The acceleration might of course vary for different joints and directions so that the cor-
responding norms for the distance computation should be selected. These times are very
easy to compute, obviously even for instances with very complex geometry, but as they
do not take any special structure of the component into account they do not represent
the actual differences very well.

Shortest-Path Roadmaps

One efficient approach that relies on the obstacles Cobs to be composed of convex polygons
is the shortest-path roadmap (see e.g. LaValle [63, Section 6.2]). Here, a roadmap R is
constructed that consists of all the vertices of the polygons. If a bitangent line can be
drawn through a pair of vertices, then a corresponding edge is made in R. A bitangent
line is a line that is incident to two vertices and does not traverse the interior of Cobs. This
completes the roadmap R. To now find a solution to a query of qI and qG, the roadmap R
is first extended by connecting qI and qG to all roadmap vertices that are visible, i.e. where
the direct line does not intersect with Cobs. The minimum collision-free distance from
qI to qG can now be found using a simple shortest path computation on the extended
roadmap, where each edge is given a cost that corresponds to its path length.
Again, this distance needs to be converted into the corresponding travel time. In order
to guarantee that the derived travel times represent a lower bound on the actual trajectory
lengths, we again have to assume that the returned paths are always traversed with
maximum acceleration.
The shortest-path roadmap approach is also shown in Figure 2.5.

qI

qG

(a) Obstacle

qI

qG

(b) Extended roadmap R

Figure 2.5: The shortest path in the extended roadmap is the shortest collision-free
path between qI and qG.

It is in principle possible to extend this approach for three dimensions, but in 3D the
queries are usually given in joint space, i.e. the space defined by all the vectors that

31

Chapter 2 Integrated Approach for the Welding Cell Problem

describe the displacement of each joint, while the obstacles are usually given in Cartesian
space. Given the joint angels, it is easy to calculate the position of the end-effector
in Cartesian space. But the other direction, the so-called inverse kinematics is more
complicated to calculate and usually more than one possible joint configuration for one
position of the end-effector exists.

The idea of calculating the distances in joint space can be generalized to the concept of
configuration space: Motions of robots are represented as a path in configuration space,
which is the set of all possible configurations for a particular robot.

• If the robot has a two-dimensional shape, each pose of the robot can be represented
as a translation combined with a rotation. This leads to a three-dimensional con-
figuration space for a two-dimensional workspace.

• For a three-dimensional robot arm each pose can be described with the angle of
each of the k joints. In this case the configuration space is equal to the joint space
and is also k-dimensional.

This leads to the following general approach using configuration space:

Grid-Based Search

Grid-based approaches cover the configuration space by a regular grid. Each point of the
grid G then corresponds to one configuration of the robot. Since the obstacles are usually
given in Cartesian space, they have to be converted into configuration space first:
Grid points are removed from G, if the respective configurations lead to a collision or to
a violation of safety margins. Adjacent grid points are then connected in G, which then
leads to the so-called grid graph. Hereby, it is crucial that the discretization is chosen in
such a way that the grid is fine enough so that every connection in G indeed represents
a feasible collision-free motion of the robot. Unfortunately, the number of points on the
grid grows exponentially in the number of dimensions of the configuration space. To
create valid courser grids, not only the nodes need to be checked for collisions but also
the entire motion of the robot between two nodes.
A trajectory between the two grid nodes qI and qG can now be found by a shortest path
computation in the grid G. Although the initial creation of the grid might be very time
consuming, the advantage of this very flexible approach is that after this initial step, the
actual path computation are fairly easy and can be calculated rather fast. The length
of the shortest path corresponds to the Manhattan distance between qI and qG in the
configuration space. This distance again needs to be transformed into the travel time
using the maximal possible acceleration in that direction.

Grid-based search offers an easy but also very flexible approach to find short and collision
free paths. Other techniques commonly used in robot motion planning are triangulation

32

2.5 Path Computations for the WCP

or different forms of cell decomposition. By using a triangulation of the free configuration
space it is possible to obtain a roadmap for the shortest path computation that contains
considerably fewer edges and vertices than the grid and does not depend on the discretiza-
tion. The main difficulty using such approaches is to convert the workspace obstacles
into forbidden areas of the configuration space. And even when an appropriate cell de-
composition of the configuration spaces is at hand, it does not necessarily provide safe
paths, if we are interested in paths that also maximize clearance or deal with addition
objectives as presented in the next section.

2.5.2 Computation of Via Points

The path planning approach as presented in Section 2.4 relies on local-search and thus
requires good initial trajectories that are derived from certain via points. In our approach,
these points are calculated based on the shortest path in the grid graph G, created as
described in the last section. Such a path can be represented by its start point qI , its end
point qG and its turning points, i.e. nodes whose position in joint space is not collinear
with the position of its predecessor and its successor. The turning points of the resulting
path are then used as the via points. These via points should ideally lead to collision-free
and “smooth” trajectories. Therefore, we are looking for a path that is not necessary the
shortest. In addition, the path must have a small number of turns. If many changes of
direction occur (Figure 2.7a illustrates such a case), then the second step will be more
complicated and could misbehave (see Landry et al. [60]). To find such a path, we use
an adaptation of classical roadmap methods such as Dijkstra’s algorithm. To this end,
the workspace is covered by a regular grid. Here, grid nodes only exist, if they do not
correspond to a coordinate lying on an obstacle.
For simplicity, we only allow horizontal and vertical movements and the distance between
two grid points is set to the constant δ. Since many turns may pose a problem, one
solution is to calculate the shortest qI -qG path with the least amount of turns. This is a
concept which is a common approach in many path planning problems, see for example
Bohlin [11] or Maheshwari et al. [65]. This can be modeled by using a large enough turn
cost M to penalize paths containing turns.

Unfortunately, even if M is chosen larger than the number of nodes in the grid, it is not
sufficient to modify Dijkstra’s algorithm to just add the corresponding turn cost in the
extension step: Dijkstra’s algorithm only keeps the shortest distance corresponding to one
subpath per node. In the turn cost setting, however, there might be different subpaths and
each leading to different turn costs depending on the next arc. Therefore, the optimality
would no longer be guaranteed.

33

Chapter 2 Integrated Approach for the Welding Cell Problem

(a) Grid graph (b) Node expansion (c) Pseudo dual graph

Figure 2.6: Transformations for handling turn costs

The easiest way to deal with such turn minimal paths is a node expansion: One original
grid node is split up into four nodes, one for every possible direction. These nodes are
then connected in such a way, that edges corresponding to turns have cost M and the
other edges have cost 0. This blows up the size of graph by a factor of four, but Dijkstra’s
algorithm can still be used on this extended graph.

Another way of representing turn costs is by a so-called pseudo-dual graph G′ (see e.g.
Winter [87]). In such a graph the edges of the original primal graph correspond to the
nodes in G′. The arcs connecting two nodes in G′ now correspond to the turns in the
original graph. We can now give the respective turn-costs for these arcs. Then, an
unmodified Dijkstra’s algorithm on G′ can be used to find the shortest path with turn
costs. The turn cost transformations for a grid graph are sketched in Figure 2.6.

Figure 2.7b shows the result of such a turn-minimal computation for a very simple two
dimensional example with one obstacle.

qI

qG

(a)

qI

qG

(b)

Figure 2.7: (a) One possible path from qI to qG that uses the least amount of edges in
the grid. (b) This path uses the same amount of edges, i.e. has the same length, as the
path in (a), but contains only two turns

By definition, all paths on the grid are feasible. All nodes that could possibly conflict

34

2.5 Path Computations for the WCP

with any obstacle are not included in the graph. So far, we only performed shortest path
computations. Due to the nature of such paths, trajectories are often favored which pass
by an obstacle as close as possible. However, these parts of the path make it harder
for the exact trajectory computation. In some situations it would be much better to
take a path that is slightly longer, but on the other hand keeps a larger distance to the
obstacles. This can be achieved by adding specific costs to the nodes. These costs should
depend on the distance of a node to its nearest obstacle and should drastically decrease
with increasing obstacle distance.

However, in this context it makes no longer sense to find the shortest path with least
turns. We want to explicitly allow some additional turns, if that helps to avoid close
obstacles. Thus, we introduce the concept of turn costs to penalize paths with a higher
amount of turns without forbidding them explicitly.

The shortest path problem with turn costs can be solved using the presented graph
modifications and Dijkstra’s algorithm. Turn costs together with the distance depended
node penalties now give us good options to alter the resulting path in such a way that it
is balanced and will most probably also lead to a good starting solution.

qI

qG

(a)

qI

q1
q2

qG

(b)

Figure 2.8: (a) Path that avoids close obstacles without taking to many turns. How-
ever, his path is slightly longer than the length of the shortest path in Figure 2.7b
Smoothened version of the path in (a)

So far, the resulting path only contains right angles, which is also not very well suited
for future trajectory calculations. It is necessary to smoothen the path even further.
One approach, that showed significant improvements in practical experiments, is the
following: Starting in qI we move along the so far calculated path and check for each
node vi on this path, whether the direct motion from the point corresponding to qI to
the point corresponding to vi collides with the obstacles. When a node vi was reached
where such a collision occurs, we remove all turning points between qI and vi and replace
them with vi−1. We then continue along the original path further until we find a node

35

Chapter 2 Integrated Approach for the Welding Cell Problem

vj where the motion form vi−1 to vj is not feasible. In this case we again remove all the
turning points between vi−1 and vj by replacing them with vj−1. See Figure 2.8b for an
example of such a smoothened path. The inner nodes of the smoothened path are the
via points that will then be used in the next sub-section.

Applying this smoothening process we do no longer explicitly avoid trajectories which
are too close to the obstacles. However, by using the nodes of a shortest path that takes
this distance into account, we assure that at least the start and end nodes of the line
segments are farther away. This fact leads to sufficiently good trajectories

To speed up the path computation process the grid is created dynamically: The node
obstacle penalties are only calculated when the specific node is visited for the first time
in the shortest path calculation. There is also no need to generate and store the edges in
advance, since they are implicitly given by the node coordinates.

The idea presented in this section represents an heuristic approach that leads to good
initial trajectories. All of its aspects, such as turn cost, obstacle clearance and smoothen-
ing, are very reasonable as they represent properties of a good initial solution.

0

0.2

0.4

0.6

0.8

1

shortest path turn minimal penalties smoothened

avg. length
time

Figure 2.9: Comparison of initial trajectories

To further justify these aspects we give in Figure 2.9 a short overview how these steps
improve the solution quality and computation speed of the trajectory computations.
Here, the trajectories between all possible pairs of positions in the first small instance 4.1
on page 72 have been calculated. In Figure 2.9 the average length of the trajectories as

36

2.5 Path Computations for the WCP

well as the total computation time are visualized. They have been normalized so that
the largest values correspond to a value of one in this diagram. Even for this small and
simple instance we can see, that the approach combining turn costs, obstacle penalties
and smoothening leads to the best solutions in the shortest amount of time.

37

Chapter 3

Pricing – Shortest Path Problem with
Forced Time Windows

Column generation is a state-of-the-art method for optimally solving most vehicle routing
and crew scheduling problems. Their master problem usually consists of a generalized set
covering formulation where the generated variables consist of routes, schedules or combi-
nations of both. In these cases the subproblem corresponds to a Shortest Path Problem
with Resource Constraints (SPPRC). The SPPRC provides a very general framework
for finding a shortest path that satisfies certain constraints with respect to resource con-
sumption and path-structural constraints. In this context a resource is a quantity that
is consumed along a path, while the resource constraints limit the feasible values of this
resource throughout the path. Typical examples of resources include time, cost or load.
Although the exact structure of the subproblem greatly varies for different applications,
the concept of SPPRC is designed with the intention in mind to provide a basis for as
many of these subproblems as possible. However, this generality comes at the price of
the lack of a precise algorithm that can be used to solve the problem. Some techniques,
such as the label setting and label correcting algorithms, can be used as a framework,
but then still require a fair amount of adaption for the individual problem. A great
overview of the general concept of resource constrained shortest paths and their solution
approaches can be found in Irnich and Desaulniers [53].

Also the column generation approach for the discrete Welding Cell Problem described in
Chapter 2 is no exception here: For the underlying pricing problem it is required to find
shortest paths with respect to arc costs by also taking certain time related constraints
into account. One key component of the problem are the given time windows in which
certain arcs must be used exclusively, i.e. they are forced.
Since the correctness and performance of the pricing problem is a crucial aspect of the
entire column generation approach, we analyze the pricing problem in the context of the
SPPRC by providing efficient problem dependent approaches and implementations for
the pricing.

39

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

In this chapter we characterize and solve the pricing problem of the WCP in terms of an
SPPRC. In the first section we compare the problem with other well-known variations
of resource constrained shortest path problems. In particular, the differences to the
well-studied Shortest Path Problem with Time Windows (SPPTW) are discussed. To deal
with these difficulties, the Shortest Path Problem with Strict Time Windows (SPPSTW)
is introduced and a transformation of the pricing problem is given.
In Section 3.2 we present an algorithm for the SPPSTW based on dynamic programming.
This algorithm fundamentally differs from the approaches used for the SPPTW or other
similar problems due to its special time window requirements. By introducing the concept
of so-called gridlocks in Section 3.3, these differences can now be formalized and even
eliminated. In the next section some of the most relevant implementation aspects are
discussed before a summary of the computational results is given in Section 3.5.

3.1 Classification of the Pricing Problem

The pricing problem, which was introduced as the minimization problem (2.2) in Sec-
tion 2.2, is solved separately for each robot. Hereby, it consists of the following:
For a given directed graph we have arc costs together with node prices λv, corresponding
to the values of the dual variables, and integer travel times denoted by τa. For simplicity
we combine the costs and the prices into one arc cost c(u,v) by subtracting the price λv

of the target node v.
Further, due to branching constraints, some arcs are forced or forbidden for certain time
windows, while waiting is only allowed on the arcs and not in nodes. The actual pricing
problem consist of finding elementary scheduled tours that are feasible with respect to
the given time windows and have negative cost or show that no such tours exists.
Before we can formally define the combinatorial problem which represents the pricing
problem, we first have to clarify what exactly a scheduled path is. This definition ex-
tends the concept of scheduled tours, introduced in Section 2.2, by also including general
and not elementary paths.

Definition 3.1.1 (Scheduled path)
A scheduled path is a pair (P, I). Here, P = (a1, a2, . . . , ap) is a path in the underlying
graph and I is a schedule that assigns each of the arcs a ∈ P a left-closed interval
whose length is at least τa, i.e. Ii is the interval in which arc ai is used. Thus, min(Ii)
corresponds to the departure time in the tail of ai.
The intervals must further have the following properties:

1. They must not intersect
2. and there must not be any gap between two successive intervals, i.e. if ai and ai+1

are two successive arcs along the path and x is contained in Ii and y ∈ Ii+1, then

40

3.1 Classification of the Pricing Problem

every θ ∈ [x, y] must be either contained in Ii or in Ii+1.
If the path is elementary, the interval corresponding to arc a can also be denoted by Ia.

As there cannot be any gaps between the intervals, waiting in the nodes is not allowed.
Scheduled tours are a special case of scheduled paths, it is therefore possible to interpret
Example 2.2.1 on page 16 as an example for scheduled paths.
In the case of the discrete WCP the travel times are always integral and positive. Thus,
also the scheduled paths should only have integer intervals. We further assume that the
intervals are always represented as closed intervals [x, y] ⊂ N≥0 (as the ground set only
contains natural numbers, this is always possible). If an arc has the travel time τa ≥ 1,
then the length of the corresponding interval must be at least τa − 1.
Let (P, I) be a scheduled path, the lower bound of the first interval I1 is called start time
of the scheduled path (P, I), while the upper bound of the last interval Ip is called end
time.

We can now use this definition of scheduled paths to give the Elementary Shortest Path
Problem with Forced Time Windows (ESPPFTW), which represents the combinatorial
optimization problem corresponding to the pricing problem:

Definition 3.1.2 (ESPPFTW)
Let G = (V,A) be a directed graph with a source node s and a destination node t. Each
arc a ∈ A has a positive duration τa ∈ N≥1 corresponding to the travel time and a
cost ca ∈ Q. Further, each arc has a (possibly empty) forced time interval Fa and a set
of time windows Ta.
The goal is to compute a shortest elementary scheduled path (P, I) (w.r.t. the costs ca)
with the following properties:

• For every arc a ∈ P the corresponding interval Ia lies in one of the free time windows
given by Ta.

• Every arc a ∈ P is used at least during Fa, i.e. Fa ⊆ Ia holds.

The pricing problem now consists of solving an instance of the ESPPFTW, where F
and T encode the current branching decisions as well as the time limit T limit, to find the
minimum cost scheduled sr-sr path. If the cost of this path is negative, the corresponding
column is added to the problem.

The ESPPFTW is related to the well-studied Shortest Path Problem with Time Windows
(SPPTW). It was first introduced in Desrosiers et al. [21] and can be described as fol-
lows:
Let G = (V,A) be a directed graph with source node s and sink node t. Each node v ∈ V
has a time window [xv, yv] when the node v can be visited. Each arc a ∈ A has a positive
duration τa corresponding to the travel time and a cost ca.

41

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

The objective of the SPPTW is to find the minimum cost path between s and t while
respecting the time window condition in all the visited nodes, i.e. each node is visited
within the given time window. In this model waiting in the nodes is allowed, as the vis-
iting time at a node can be greater than the arrival time.
One of the best solution approaches for the SPTW (and also for more general shortest
path problems with resource constraints containing more than one restricted resource)
is the so-called Label Setting Algorithm (LSA), see Irnich and Desaulniers [53] and Du-
mitrescu and Boland [25].
There is also a variation of the shortest path problem with time windows called the el-
ementary SPPTW, where the task is to find elementary paths. This version was intro-
duced by Desrochers et al. [19] as a subproblem of the vehicle routing problem with time
windows and Dror [23] showed that in general, i.e. on graphs that contain negative cost
cycles, the elementary SPPTW is NP-hard in the strong sense.
Since the ESPPFTW (and thus the pricing problem) is a special case of the elementary
SPPTW, it must therefore also be NP-hard.

However in a sense, the ESPPFTW is more of an arc routing problem than the SPPTW,
as time windows and also the concept of waiting are only given for arcs: Gamache et al.
[37] suggested a variation of the SPPTW, where the arrival time in each node must al-
ways be identical to the visiting time. But even this variation does not quite cover our
problem, where waiting is allowed but only within the given time windows.
Gawrilow et al. [39] introduced a variation of the SPPTW, which is more closely related
to the ESPPFTW: They considered a problem called the Quickest Path Problem with
Time Windows (QPPTW), which is exactly based on time windows and waiting only on
the arcs, but they consider the cost of a path to be the sum of the transit times plus
the waiting times. This assumption then makes the problem considerably easier. For the
ESPPFTW the costs are explicitly given and also some of the arcs can be forced.
Nevertheless, their proposed algorithm can still be used as a basis for the following prob-
lem, which we call the Shortest Path Problem with Strict Time Windows (SPPSTW):
Definition 3.1.3 (Shortest path problem with strict time windows)
Let G = (V,A) be a directed graph with a source node s and a destination node t and let
Is be an interval of allowed start times in s. Each arc a ∈ A has a positive duration τa
corresponding to the travel time, a cost ca and a set of time windows Fa. The goal is
to compute a shortest scheduled path (with respect to the arc costs ca) that starts at a
time step contained in Is and respects the given time windows, i.e. for every arc a in the
path the corresponding interval Ia must lie in one of the free time windows given by Fa.

We always assume that each of the feasible time windows in Fa are large enough to
support the travel time of arc a. Smaller time windows will never be used and can thus
be discarded.

42

3.1 Classification of the Pricing Problem

The Figure 3.1 shows an example of such an SPPSTW instance. Here, all arcs have the
same travel time τa = 1 and their cost ca and time windows Fa (green) are given as
shown. All resulting feasible scheduled s-t paths in this instance are visualized by their
cost and end time.
In this instance, the only feasible scheduled path with minimum cost uses s-b-t and has
a cost of 1 and an end time of 4. The path s-a-b-t is not feasible, as the arc (b, t) can
only be used after the path (a, b) is already forbidden and, thus, no scheduled path along
these nodes exists that stays within the feasible time windows. There are two feasible
schedules for the path s-a-t, but this path has a cost of 3.

s t

a

b

1

2

-2

2

-1

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4
0

1

2

3

4

c

τ

τa = 1
Is = [0, 4] s-b-t

s-a-t

Figure 3.1: Example of an SPPSTW instance

In the presented definition of the SPPSTW only feasibility intervals are given. They
directly correspond to the time windows Ta as they occur in the ESPPFTW. Forcing of
arcs at certain time windows, however, is not explicitly possible. Fortunately, this can be
integrated:

Proposition 3.1.4 For any instance Iforced of the ESPFTW there exists an instance
Istrict of the elementary SPPSTW, such that

1. any feasible solution of Istrict corresponds to a solution of Iforced with the same cost
and

2. Iforced is infeasible if and only if Istrict is infeasible.

Proof:
Given an instance of the ESPPFTW we construct an SPPSTW instance, such that its
optimal elementary solution corresponds to an optimal solution of the original instance.
To do this, we have to represent the forced time intervals Fa of the ESPPFTW instance
as feasibility time windows Fa.
In the following we only show how a single forced interval can be incorporated. This

43

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

approach, however, can analogously be extended for more than one forced arc.
So, let Fā = [xā, yā] be the nonempty forced interval of arc ā. This can be modeled by
using the following time windows:

Is := [0, xā] (3.1a)
Fa := {W \ [0, yā] : W ∈ Ta} ∀a ∈ δ+(head(ā)) (3.1b)
Fa := {W \ [0, yā] : W ∈ Ta} ∀a ∈ δ−(t) \ {ā} (3.1c)

F(u,v) :=
{
W \ [xā, yā] : W ∈ T(u,v)

}
∀(u, v) ∈ A \ {ā}, v 6= t (3.1d)

Fā := {W \ [0, θ] : W ∈ Tā} , (3.1e)

where θ is the last forbidden time step in Tā with θ < xā.

To prove that this is correct, we show the two following facts:
1. Every elementary scheduled path (P, I) that respects the time windows T and where

the arc ā is in use during Iā ⊇ Fā does not violate any of the constraints (3.1a) -
(3.1e).

2. Every feasible solution of the SPPSTW with the transformed F and Is uses the arc
ā in the time interval [xā, yā].

1. Let (P, I) be such a feasible elementary scheduled path respecting the time windows.
We know from the fact that arc ā is in use during [xā, yā] that no other arc is used during
this time period (3.1d) and that the start time of (P, I) is at most xā, while the end time
is at least yā. Since also no node in P is visited more than once, the scheduled path (P, I)
also respects the intervals given in (3.1a) and (3.1c). Further, the arc ā is used exactly
once and it is therefore not possible that it is visited before θ (3.1e) and all outgoing arcs
can only be used after ā (3.1b).

2. Every scheduled path that respects the previously defined F and Is cannot not use
any arc a ∈ A\{ā} during [xā, yā]. So, the only two possibilities remaining where ā is not
used during [xā, yā] are that either s is left after yā or that t is reached before xā. The first
situation cannot occur as this would violate the give start times Is. If t is reached before
xā, this means that, due to (3.1c), the arc ā must be the last used arc in P . However,
in this case we know that between the end time of P and xā the arc ā is allowed, due
to (3.1e). Thus, by increasing the upper bound of Iā to yā we get a new scheduled tour
that has the same cost but now also respects the forced time interval Fā.

The proof of Proposition 3.1.4 also shows that an optimal solution of the constructed
elementary SPPSTW can be transformed into an optimal solution of the ESPPFTW
in O(1). It is therefore possible to solve the ESPPFTW by solving an instance of the
elementary SPPSTW.

44

3.2 Solving the ESPPFTW

Remark: Another approach for solving the ESPPFTW is to add an additional binary
resource for every forced arc. Initially all these resources are set to 1 and they are reduced
to 0 only when the corresponding forced arc a is visited within its given time interval Fa.
With these resources we assured that no path that has not yet visited the forced arc in
the right time interval dominates a path that has. In this approach (3.1a) and (3.1d)
are the only modifications needed. But since the addition of further resources makes the
extension step more complicated and the domination weaker, we use the approach as
described in Proposition 3.1.4 in our implementation.

3.2 Solving the ESPPFTW

In the last section we showed that the ESPPFTW can be solved as an elementary
SPPSTW. In this section we, therefore, focus on how the SPPSTW can be solved as
efficiently as possible.

Although the SPPSTW cannot be directly solved using the framework of the so-called
generalized Label Setting Algorithm (LSA) described in Irnich and Desaulniers [53], it
still offers a good foundation that we will later extend to incorporate the SPPSTW:
The generalized LSA can be used for many shortest path problems with resource con-
straints, it is described in Algorithm 3 and its basic idea is the following:
The algorithm uses a set of labels for each node. Each of these labels represents a path
from the source s to that respective node. It consists of a vector of values, that represent
the consumption of each of the resources along that particular path.
Starting with a trivial label representing the initial consumption in s (initialization step),
the algorithm processes each label by extending the corresponding path along all outgoing
arcs (extension step). The algorithm only stores efficient labels for every node, i.e. labels
that do not lead to feasible or optimal s-t-paths can be discarded (dominance step).
The algorithm terminates when all labels have been processed and then the labels in t
correspond to optimal s-t-paths.

By combining the algorithm for the QPPTW [39] with the generalized LSA as described
in Algorithm 3 we can now construct an algorithm for the SPPSTW:
A label L = (cL, IL) in the node vL consists of the cost value cL and a time interval IL.
Each label L represents a scheduled subpath from s to vL with the corresponding cost
of cL. The Interval IL = [xL, yL] represents the interval of possible start times for the
next arc leaving vL. We further assume that it is always possible to reconstruct the
corresponding path from a label L. The additional information for such a reconstruction
(e.g., predecessor label, previous arc) is not stated as explicit properties of L. In each
extension step we try to extend the current label L along the corresponding arc a for all

45

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

Algorithm 3: Generalized label setting algorithm
Input: an SPPRC instance
Output: shortest s-t paths respecting all resource constraints
// initialization step:

1 create initial label L0 in s;
2 U ← {(L0)};
3 Ps ← {(L0)};
4 foreach v ∈ V \ {s} do
5 Pv ← ∅;
6 while U 6= ∅ do
7 choose label L ∈ U ;
8 v ← the node of the label L;
9 U ← U \ {L};

// dominance step:
10 remove all dominated labels from Pv;

// extension step:
11 forall the arcs a ∈ δ+(v) do
12 Lnew ← the label L extended over the arc a;
13 if Lnew is feasible then
14 U ← U ∪ (Lnew);
15 add Lnew to the set Pw corresponding to its end node w;

16 if Pt 6= ∅ then
17 return paths corresponding to min-cost paths in Pt;
18 else
19 return ∅;

of the time windows on this arc. The resulting label Lnew has the cost of cL + ca and its
interval is chosen as large as possible.
The dominance is then defined as follows:
We say label L dominates another label L′ if and only if

vL = vL′ and cL ≤ cL′ and IL′ ⊆ IL . (3.2)

This leads to the algorithm described in Algorithm 4.

Such an algorithm is correct and can be used to solve the SPPSTW for arbitrary arc

46

3.2 Solving the ESPPFTW

Algorithm 4: Label setting algorithm for the SPPSTW
Input: data for the SPPSTW instance
Output: shortest s-t paths respecting the time windows

1 create initial label L0 = (0, Is) in s;
2 U ← {(L0)};
3 while U 6= ∅ do
4 choose label L = (cL, [xL, yL]) ∈ U in node vL;
5 U ← U \ {L};
6 foreach arcs a = (vL, w) ∈ δ+(vL) do
7 foreach time window Wa = [x, y] ∈ Fa do
8 if there is a θ ∈ [xL, yL] such that [θ, θ + τa − 1] ⊆Wa then
9 Inew ← [xL + τa,∞) ∩ [x+ τa, y + 1];

10 Lnew ← (cL + ca, Inew);
11 if there is no L′ ∈ U that dominates Lnew then
12 U ← U ∪ {Lnew};
13 remove all labels from U dominated by Lnew;

14 if there is a label in the node t then
15 return corresponding paths of min-cost labels in t;
16 return ∅;

costs.

Proposition 3.2.1 The Algorithm 4 together with the dominance rule (3.2) finds a path
with minimal cost for the SPPSTW.

Proof:
First, we note that in every extension step of a label the lower bound of its interval
of feasible starting times strictly increases. Therefore, since every time window in F is
finite, the algorithm will eventually terminate.
To show the correctness of the algorithm, we have to show

1. that labels representing all possible subpaths are generated and
2. that only labels are dominated which cannot lead to an optimal solution.

In line 8 of Algorithm 4 we check, if the label L can be extended along arc a in the fea-
sibility interval Wa. For the actual extension we have to calculate new values for the
label: The new starting time in the tail of a must be at least xL + τa, as we cannot
start before xL and traversing of a takes τa. But we cannot use the arc a longer than

47

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

Wa permits, which leads to the latest possible start time for the next arc of y+1. Thus,
Lnew contains the largest possible interval of start times resulting from Wa. Since this
step is repeated for all Wa ∈ Fa, all feasible extensions are generated. Therefore, Algo-
rithm 4 without the dominance step computes all feasible scheduled paths (represented
in a condensed version).

It remains to show that no optimal subpath (label) is dominated. This is true, as from
IL′ ⊆ IL it follows that IL′

new
⊆ ILnew holds. Also for the cost we have that cL ≤ cL′

leads to new labels with cLnew ≤ cL′
new

.

Remark: It is in general not sufficient, to just create one new label for the next feasible
time window in Fa:
Consider the situation as described in Figure 3.2a, where the feasible time intervals are
marked green. For this example we only need to consider the travel times and the time
intervals but not the costs of the arcs. The interval of start times is Is = [0, 4]. If
Algorithm 4 only creates the earliest feasible label in every extension step, then only
the label L in the intermediate node with the interval [1, 1] would be generated. This
label L, however, cannot be extended over the next arc. Thus, the algorithm would not
return a feasible solution, although this instance has a feasible s-t path as visualized in
blue in Figure 3.2b.
We call this situation, in which a feasible subpath/label cannot be extended along an arc,
although another label arriving later can, gridlock.
The problem of gridlocks is special for the SPPSTW as it can only occur, if also the
waiting is limited by time windows. Gridlocks, especially in the context of the pricing
problem, are further discussed in Section 3.3.

ca = 0
Is = [0, 4]

s n t
τ : 1 τ : 1

0

1

2

3

4

5

0

1

2

3

4

5

(a) SPPSTW instance

s n t
τ : 1 τ : 1

0

1

2

3

4

5

0

1

2

3

4

5

(b) Feasible scheduled path

Figure 3.2: Gridlock example

By combining Proposition 3.1.4 and Proposition 3.2.1 we are now able to solve the pricing
problem, if there are no negative costs cycles in G.
Unfortunately, due to the structure of the underlying LP negative costs and negative cost

48

3.2 Solving the ESPPFTW

cycle will occur. It is therefore necessary to modify our approach so that only elementary
paths are generated.

For the elementary shortest path problem Beasley and Christofides [7] proposed to add
an additional binary resource to every node. Visiting a node in a path increases the
corresponding resource by one and since it has an upper limit of one, nodes cannot
be visited more than once. This approach allows us to solve the elementary SPPSTW
(ESPPSTW) in the general setting of shortest paths with resource constraints, but it
also drastically weakens the dominance step, as now many more labels have to be kept
in every node.
To incorporate this in Algorithm 4, a label L = (cL, IL,RL) now also contains the vector
RL ∈ {0, 1}|V |, which contains a one for each of the nodes previously visited by L. Of
course, this vector RL must also be taken into account for the dominance:
A label L dominates a label L′, if and only if

vL = vL′ and cL ≤ cL′ and IL′ ⊆ IL and RL 5 RL′ .

As one can see, this drastically weakens the dominance step, since now not nearly as many
labels can be discarded. However, due to the time windows and the costs, some nodes
might never be visited more than once and introducing a resource for them is therefore not
necessary. One approach to dynamically detect which nodes might be critical and which
nodes are not, is the so-called decremental state-space relaxation (DSSR) as introduced
by Righini and Salani [73].

Instead of solving the ESPPSTW we only solve the Θ-ESPPSTW where Θ is a set of
nodes. The Θ-ESPPSTW is the problem of finding a (not necessary elementary) solution
to the SPPSTW, where every node in Θ is only visited at most once. (The nodes in the
set V \ Θ can still be visited more than once.) The Θ-ESPPSTW can be modeled by
adding the binary variables explained in the last paragraph only for the nodes v ∈ Θ.
The idea is described in Algorithm 5 and by starting with Θ being equal to the empty
set, we solve the Θ-ESPPSTW. If one of the paths that have minimal cost is elementary,
then we are done as this path also is an optimal solution to the ESPPSTW. If all min-cost
paths contain cycles, we have to to add some of the vertices visited more than once
to Θ and thereby tightening the relaxation provided by Θ-ESPPSTW. When Θ contains
the entire set of vertices, we solve the exact ESPPSTW and therefore Algorithm 5 will
terminate eventually. However, in most cases, it is sufficient to solve the Θ-ESPPSTW
for a Θ that contains considerably fewer nodes. Therefore, the DSSR approach is usually
much faster, than solving the ESPPSTW directly [12].

One important remaining question is what nodes should be chosen for the inclusion in
the set Θ. This is obviously an important question for the performance of the algorithm:

49

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

Algorithm 5: Solving the ESPPSTW with decremental state-space relaxation
Input: an ESPPSTW instance
Output: a set of resource feasible elementary paths with negative reduced costs,

∅ if no such path exists
1 Θ← ∅;
2 while true do
3 let P be the paths returned as solution of the Θ-ESPPSTW;
4 if P contains only paths that have a cycle then

// determine critical nodes
5 Θ← Θ ∪ MultipleVisits(P);
6 else
7 return elementary paths in P;

If we make Θ unnecessarily big, then the computation time in each iteration will increase.
If, on the other hand, only one vertex is added in every iteration, then this might lead
to many iterations which is also a negative factor for the overall running time. Several
possible strategies for MultipleVisits exist, the approach used in our implementation
is explained in Section 3.4.

The concept of DSSR can also easily combined with 2-cycle elimination:
Typically, when solving the SPPSTW there will be a lot of paths cycling between two
“good” vertices. Of course, it is possible to eliminate those cycles using the DSSR-
approach. But cycles of length two can be detected and avoided by a modified dom-
inance step. Larsen [62] showed a dominance rule that does not eliminate potentially
optimal paths, even if in the extension step 2-cycle are never generated. This, how-
ever, comes at the cost that now twice as many labels are necessary. Fortunately, this
approach is still faster then having more iterations in the DSSR.

3.3 Dealing with Gridlocks

As we saw in Figure 3.2a, situations exist in which a feasible label cannot be extended
along the next arc as this would introduce additional waiting times not allowed for the
given time windows. Those situations are prevented in Algorithm 4 by generating new
labels for all the time windows in Fa. In this section we present a different approach that
introduces additional dummy arcs to resolve gridlocks. To show that this approach is
correct, we first formally define gridlocks:

50

3.3 Dealing with Gridlocks

Definition 3.3.1 (Gridlock)
For a given SPPSTW instance a gridlock is a situation in which there exist two feasible
scheduled subpaths (P, I) and (P, I ′), both corresponding to the same path (but having
different intervals) with the following properties:

• (P, I ′) has a strictly higher end time than (P, I)
• and (P, I ′) can be extended along an adjacent arc a′ into a feasible s-t path, while

(P, I) cannot be extended along a′, i.e. it cannot wait on its previous arc long
enough.

It now follows that for SPPSTW instances without gridlocks no more than one label
needs to be generated in the extension step of Algorithm 4:

Lemma 3.3.2 In an SPPSTW instances where no gridlocks can occur, the Algorithm 4
can be modified to exit the extension step after one feasible label Lnew has been found and
remains correct.

Proof:
In a situation where the second label is needed, there exists a label L whose feasible
extension L1 along W 1

a cannot lead to an optimal s-t path, while the extension of L along
a later time window W 2

a on the same arc is part of an optimal solution. Let P be the
path corresponding to this optimal solution.
We know that there must be an arc a ∈ P that cannot be used by any extension of
label L1. Let a′ denote the first of these arcs. This means that we have a gridlock in a′,
since the extension of L1 arrives earlier but cannot be extended along a′.

Reducing the number of labels during the execution of an LSA is vital for its performance.
Therefore, analyzing the circumstances under which gridlocks occur and avoiding the
generation of labels, when they are not necessary will improve the performance of the
shortest path computation. Next, we give a very simple necessary condition to check
for the existence of gridlocks. This condition should be easy to verify, so that it can
be efficiently implemented, but it should still be as precise as possible, so that “false
positives” do not occur too often. Such a necessary condition is given in the following:

Proposition 3.3.3 For a gridlock to occur in an SPPSTW instance, it is necessary that
there are two adjacent arcs a = (u, v) and a′ = (v, w) with the following properties:

1. There exists a θ ∈ [x, y] with θ 6∈ Fa and θ 6∈ Fa′, where x is the earliest time at
which node v can be reached and y is the last time step at which arc a can be used,
i.e. x ∈ Fa.

2. There exists a feasible scheduled s-t path that uses both a and a′.

51

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

Proof:
A gridlock occurs for arc a, if there exists a scheduled subpath P that reaches node v
at time step θ1 and there also is a different scheduled subpath P ′ at time step θ2 > θ1
where path P ′ can be extended along a′ while P cannot. In order for that to be true, arc
a′ must be forbidden for time step θ1 and waiting on the arc a must not be allowed at
some point θ before a′ is allowed again and after θ1, i.e. at time step θ both arcs a and
a′ are forbidden. And since P ′ can be extended, θ < θ2 must hold.
As P as well as P ′ both use the arc a, we get x ≤ θ1 ≤ θ < θ2 ≤ y + 1.
By the definition of a gridlock there must also exist a feasible scheduled path that uses
arc a as well as a′.

This proposition also shows that for SPPSTW instances where Fa contains at most one
time window for each arc, not more than one extension along the same arc of a label
needs to be stored. This is not very surprising as the problem in this case corresponds
to a simple SPPTW, which can be solved by storing only the best possible start time in
the labels (see e.g., Desrosiers et al. [21]). If Algorithm 4 is performed on such instances
it will also never generate more than one label per extension step.

Remark: The Proposition 3.3.3 only states a very simple necessity, but this condition is
definitely not sufficient for the existence of a gridlock. Consider for example the situation
as described in the following picture:

u v w
τ : 1 τ : 1

0
1
2

3
4

5

0
1
2

3
4

5

Here, the situation as defined in Proposition 3.3.3 occurs, but still there is no gridlock.
Nevertheless, Proposition 3.3.3 gives us an easy to verify criterion to identify possible arc
pairs which could lead to gridlocks.

However, we also learn from Proposition 3.3.3 that a gridlock is a local problem, in the
sense that it can only occur if there are two critical adjacent arcs.
So what can be done to handle gridlocks without keeping the labels for each time window?
There are two possibilities:

1. Modify the dominance rule to the following:
A label L dominates a label L′ if and only if

a) vL = vL′ ,

52

3.3 Dealing with Gridlocks

b) cL ≤ cL′

c) and IL′ ⊆ IL if node v has two critical arcs as described in Proposition 3.3.3,
or inf(IL) ≤ inf(IL′) otherwise.

2. Resolve all possible gridlock situation by modifying the underlying graph

It is easy to see that the first option is indeed correct and only labels that do not lead
to better solutions are dominated. From a practical standpoint this is sufficient for the
implementation of an algorithm that (at the cost of more expensive dominance checks)
requires fewer labels than Algorithm 4. However, in the remainder of this section we
focus on the second option as it allows us to solve the SPPSTW in the framework of an
unmodified generalized LSA, very similar to the classical SPPTW:
After such pair of critical adjacent arcs a = (u, v) and a′ = (v, w) has been identified,
the situation can be resolved by creating a dummy arc d from u to w. This arc gets the
resource consumption of a plus a′ in all resources and Fd = Fa ∩ Fa′ . Figure 3.3 shows
how the gridlock arising in the example in Figure 3.2 can be avoided by introducing such
a dummy arc.

u v w
τ : 1 τ : 1

τ : 2

0
1
2

3
4

5

0
1
2

3
4

5

0
1
2

3
4

5

Figure 3.3: Dummy arc to resolve gridlocks

The dummy arc d basically represents using a and a′ successively, but prevents the
gridlock situation as it tracks the waiting back to node u. A scheduled path using the
arc d can be easily transformed into a path in the original graph, by using the arcs a and
a′ in the corresponding interval instead.
Unfortunately, it could be that this newly added dummy arc now introduces a new
gridlock situation in node u. Therefore, to remove all possible gridlocks one has to
iteratively add dummy arcs until the situation as described in Proposition 3.3.3 no longer
occurs for arc pairs without a dummy arc.

The number of arcs added in this approach could get very big. It is therefore not suited
for all SPPSTW instances. Let us, for example, consider the instances resulting from the
transformation of an ESPPFTW into an SPPSTW: For each forced arc in the original

53

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

instance, we get that all the other arcs are forbidden for that specific time window.
Therefore, all possible pairs of these arcs are critical and dummy arcs would be created.

Algorithm 6: Solving the SPPSTW by eliminating gridlocks
Input: an SPPFSW instance on the graph G = (V,A)
Output: shortest feasible scheduled path

1 d← the shortest distance from s to all nodes w.r.t. τa;
2 foreach a = (u, v) ∈ A do
3 θ ← last allowed time step in Fa;
4 foreach outgoing arc a′ = (v, w) ∈ A do
5 if ∃x ∈ [d(v), θ] with x 6∈ Fa and x 6∈ Fa′ and no dummy d = (u,w) then
6 create new arc d = (u,w) with the combined resources of a and a′;
7 restart the algorithm;

8 solve resulting problem with modified Algorithm 4;

In Algorithm 6 the SPPSTW is solved by first removing all gridlocks, so that the problem
then can be solved with a modification of Algorithm 4 that only generates the first feasible
label. In Algorithm 6 the shortest distance between s and v with respect to the travel
times τa is used as a lower bound for the earliest possible arriving time in v.

Remark: If there are no gridlocks, it is possible to solve the SPPSTW with labels
structured like L = (cL, tL), where tL corresponds to the earliest possible start time
in the node vL. In the extension step, we then have to check whether the label can be
extended along arc a and whether the hereby induced waiting times on the predecessor
arc are feasible. Now, this algorithm fits exactly in the framework of a generalized LSA
described in Algorithm 3.

Thus, by analyzing the concept of gridlocks we were able to further reduce the number
of labels in Algorithm 4 and by introducing dummy arcs, we manged to transform the
SPPSTW into a problem that can now be solved using the same label structure and the
same algorithm framework as for the regular SPPTW.

3.4 Implementing the Pricing Problem

As already indicated in the last section, we solve an instance of the shortest path prob-
lem with forced time windows defined in Definition 3.1.2 by transforming it into an
SPPSTW instance and then using the algorithm described in Algorithm 4. However, in

54

3.4 Implementing the Pricing Problem

our implementation a label L = (cL, `L, IL,RL, predL) consists of the cost cL, the length
of the path `L, i.e. the number of nodes, interval of feasible start times IL, the resource
vector RL for already visited nodes and the last used arc predL, which is used for the
2-cycle elimination. We further assume that the label L also contains some reference to
the node vL to which it belongs as well as its predecessor label. But as this information
does not correspond to some resource values, we did not explicitly include it as a prop-
erty of the label.
Following the outline of Algorithm 4, the first implementation aspect that needs to be
considered is how the next label L is chosen from the queue U :

The Priority Queue U

The label L that is picked in every iteration is selected with respect to the length `L of
the corresponding path, i.e. preferring shorter paths. If we always pick one of the labels
with shortest path length, the maximum length difference between any labels throughout
the algorithm will never be more than one. Therefore, such a priority queue can be
very efficiently implemented using a bucket-based priority queue. A bucket queue for
our problem is a circular array B of two linked lists. All possible path length are now
wrapped around the circular array in such a way that a label L with path length `L is
stored in B[`L mod 2]. This way all labels in one bucket always have the same length.
The only two operations that need to be supported by B are Insert and ExtractMin. As
the buckets are implemented using linked lists, Insert(B,L) takes constant time. A call
of ExtractMin looks at the first element of the list in B[mmod 2]. If this list is empty, m
is incremented and the other list is checked. The variable m will never be incremented
more than once per call.
In general, any value out of the cost, the length, or the feasible start times could have
been used for the sorting criterion of the priority. The cost, however, is the least favorable
parameter, as selecting labels with the smallest cost would prefer paths that use negative
cycles. Between the other two there is no real quality difference, but since a priority
queue for the start times would be much more complicated to implement, we used the
length in out implementation.

Since the underlying algorithm is a label setting algorithm, we have to make sure that no
label that has been extended gets dominated and thus deleted afterwards. This would
lead to a situation where the resulting path could no longer be easily reconstructed from
the last label. The following two facts guarantee that such a situation does not occur:

1. The length of a path is strictly increasing and since an upper bound on the length
is given, the algorithm will eventually terminate.

55

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

2. By extending labels with smaller length first, we assure that all the labels that
might dominate L ∈ U have already been created before L is extended.

Implementation of Dominance

In order to make the dominance step as efficient as possible, the labels for each vertex
are stored in two lists, while one of them is sorted. In the sorted list the labels are stored
with respect to a linear extension of ≺, where L1 ≺ L2 holds, if L1 is dominated by L2.
A newly generated label is first added to the unsorted list. Only if a label has been
extracted from U , we check all of the new labels in the corresponding node for dominance:
For each label L of the unsorted labels, we run through the sorted list until a correct
position for L has been found. Due to the property of the linear order it is now sufficient
to check, whether L is dominated by any of the labels prior to L. And, if this is not
the case, whether L dominates any of the labels after it. No other dominance checks are
necessary. If one of the new labels is dominated, it is not discarded right away but only
marked as “dominated”. Dominated labels are then finally discarded and deleted from
the memory when they are picked from U .

Determining Critical Nodes

Several different approaches exist how the critical nodes in the decremental state-space
relaxation (Algorithm 5) should be selected. The following approaches were also proposed
in Boland et al. [12]:

HMO Highest multiplicity node on the optimal path: From all feasible s-t paths one
with the lowest cost P is picked. Now, add one of the nodes to the critical set that
are visited most often in P . In every iteration of DSSR exactly one node is added
to the critical set.

HMO-All Highest multiplicity on the optimal path – all nodes: In contrast to HMO,
all the nodes with highest multiplicity on one min-cost path P are added.

MO-ALL Multiplicity greater than one on the optimal path – all nodes: This strategy
adds all nodes visited at least twice in the first feasible min-cost path.

All these augmentation strategies have been compared numerically in Boland et al. [12].
The authors described a clear degradation in the performance as the algorithm becomes
more aggressive and adds more nodes during the state space augmentation. Therefore,
the HMO strategy was adopted for our implementation.

56

3.4 Implementing the Pricing Problem

The strategy is combined with an early termination rule: After a certain threshold of
generated labels has been reached (50,000 for our tests), the min-cost label in t is evalu-
ated whether it is elementary or not. If it contains a cycle, the solution process for this
state-space relaxation can be stopped and the HMO strategy is applied for the path cor-
responding to this label. Although the min-cost label at that point might not correspond
to the optimal solution, it can still be used for the next state space augmentation. If the
threshold number is chosen large enough, it is very likely that, even after all the labels
have been processed, no elementary path with minimum costs would have been gener-
ated.

Extending the Labels

The extension step consists of the following: Given a label L and an arc a ∈ A over which
we extend, create a feasible label Lnew that corresponds to the path that is constructed
by appending a to the path of L and its respective resource consumption.
Calculating the new resource consumption for the cost, length and visited nodes and
checking for feasibility can be trivially done by adding the corresponding resource con-
sumption along arc a. However, we will take a closer look how the new intervals of start-
ing times can be computed. In Algorithm 4 we formally described the extension of the
time interval of label L along arc a by using [xL + τa,∞) ∩ [x + τa, y + 1] for the new
label, where xL is the lower bound of the interval of L and [x, y] is the considered time
window.
To implement this idea as efficiently as possible, Algorithm 7 is used. This algorithm uses
two functions NextForbidden and NextAllowed. Here, NextForbidden(a, x) returns the
earliest time θ ≥ x with θ 6∈ Fa and NextAllowed(a, x) returns the earliest time θ ≥ x
with θ ∈ Fa or ∞ if no such time window exists in Fa. As the travel times are assumed
to be always integer for the SPPSTW, these functions are well defined.

Since we assumed that there are no time windows in Fa that are smaller than the travel
time τa, Algorithm 7 is indeed sufficient to generate all label with the largest possible
time intervals:

Proposition 3.4.1 Let [xL, yL] be the start time interval of label L and let a be the arc
along which we extend. The intervals returned by Algorithm 7 cover all possible start
times of the next arc in tail(a) after xL + τa.

Proof:
Since Fa does not contain time windows having a smaller size than the time that is
needed to travel along arc a, NextStart returns the earliest time where a could be used
after label L. If this time is within the interval [xL, yL], then we will definitely have one

57

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

Algorithm 7: Extension step for the SPPSTW
Input: a label L with interval [xL, yL] and an outgoing arc a
Output: a list of feasible extensions of L over a

1 L ← ∅;
2 θ1 ← NextStart(a, xL);
3 while θ1 ≤ yL do
4 θ2 ← NextForbidden(a, θ1 + τa);
5 create new label L′ with interval [θ1 + τa, θ2];
6 L ← L ∪ L′;
7 θ1 ← NextAllowed(a, θ2);
8 return L;
1 Function NextStart(a, xL)
2 θ ← NextForbidden(a, xL);
3 if θ ≥ xL + τa then
4 return xL;
5 return NextAllowed(a, θ);

extension. By making the resulting interval as big as possible, we assure that all possible
start times for the current time window are included.
Starting in θ2 represents the last possible start time in v as it is the next forbidden time
step for arc a. Using arc a any longer than θ2 is thus not possible, which leads to a
latest start time for the next arc of exactly θ2. We will then iteratively create the largest
possible intervals for all future time windows.

As those functions are called for every label and each outgoing arc, it is very important
for the performance of the entire algorithm that those calls are as efficient as possible.
In this context, we developed three data structures that support the efficient execution
of NextForbidden and NextAllowed. We explain the data structures and their different
advantages and disadvantages in the next section. A computational evaluation is then
discussed as part of Section 3.5.

3.4.1 Time Window Data Structures

Algorithm 7 is used during the extension step of Algorithm 4 to calculate all possible
extensions of an label. NextForbidden and NextAllowed are the only two operations
that need to be supported for data structures representing multiple time windows in Fa.

58

3.4 Implementing the Pricing Problem

We further assume that the time is discretized and that the highest integer contained
in Fa of all the arcs a ∈ A is denoted by T limit. This allows us to store the information
(whether a certain time step is forbidden or not) for every possible point in time and
thereby making the possible data structures much more flexible:

List of Intervals: The feasibility time windows Fa for each arc are represented by a list
of pairs (x, y), where x and y correspond to the lower and upper bound of the intervals.
Here, NextAllowed has to loop through all the intervals, to check whether the given
argument is either contained in one of the intervals, or to find the next interval. The
function NextForbidden can be implemented analogously.
This can be improved, however, by storing the intervals in an array sorted by their lower
bound and then performing binary search. However, in both cases the running time of
NextAllowed as well as of NextForbidden depends on the number of intervals in Fa but
not on the discretization T limit.

Lookup Vector: This data structure consists of an array of T limit integers. A negative
value at a position θ means that the corresponding arc is forbidden for time step θ, while a
positive value means that it is allowed. Further, the absolute value of the element at posi-
tion θ corresponds to the next time step which is forbidden if we are currently allowed, or
the other way around. From a theoretical point of view it is therefore possible to identify
whether a time step is forbidden in O(1). Also, the return values of NextForbidden and
NextAllowed can directly be derived from the elements of the array in O(1). Unfortu-
nately, the size of the array depends on the discretization T limit. It is necessary to store
a full machine integer for every time step, which leads to a larger creation time. Due to
the larger size of the data structure, it is also not very “cache-friendly” and some of the
memory access operations will not be as fast, as the access pattern is hard to predict for
the CPU.

Bit Array: The third approach is in some sense a compromise between time and space
complexity. In this data structure each bit represents one time step. The bit is either set
to 1, if the corresponding time step is forbidden or set to 0, if it is not. Although the size
of the array still obviously depends on T limit, it is a much more compact representation
than the lookup vector. However, to find the next forbidden time step we have to traverse
the array until the next set bit is found. This leads to a running time of O(T) which is
much worse than for the previous two structures. Fortunately, most modern processor
architectures include instructions to identify the position of the least significant bit set in
a given unsigned machine word. For example in the Intel 386 and later architecture this
instruction is called bsf, see [52, Vol. 2A 3-80]. Finding the first set bit is not so different

59

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

from finding the next set bit. Using this instruction the function NextForbidden(a, x)
for can be implemented as

NextForbidden(a, x) = bsf(Fa AND (−1� (x− 1))) , (3.3)

where Fa is represented as a bit array, −1 is the word that has all bits set and �
performs a logical left shift in the direction of the most significant bit. All the bitwise
operations assure that the first x − 1 bits of Fa are set to zero before bsf is called.
Therefore, performing the first set bit operation now gives us the first set bit starting
from position x, i.e. NextForbidden.
Unfortunately, the function as presented in (3.3) only works, if T limit is not more than
the number of bits in a machine word. (The length of a machine word on the CPU we
used for the computational experiments is 64 bits.) If the bit array is larger than this
number, more than one word needs to be combined. However, even in this case it is never
necessary to call bsf more than once:

1. First, jump to the word containing the x-th element.
2. Then, check whether this word has a bit set after x by shifting right and then

comparing with zero.
3. If it has a set bit, perform the operation as described in (3.3), if not goto 2 and

consider the next word.
The entire function can therefore be implemented using only high performance binary op-
erations with very few memory accesses. The function NextAllowed can be implemented
analogously, as calling bsf on the negated word, gives the position of the first bit equal
to zero. Computational results comparing the different data structures can be found in
Section 3.5.

3.4.2 Preprocessing for the ESPPFTW

Although data preprocessing is often one of the first steps introduced to increase the
performance of a practical solution approach, preprocessing for the resource constrained
shortest path has not been discussed very often in the literature. Aneja et al. [3] tried
to reduce the number of arcs in the underlying graph by finding lower bounds on the
resource consumption on paths between s and all nodes v ∈ V as well as from each
node to the destination t. These bounds are then used to identify arcs which cannot be
used in a feasible s-t path without violating resource limits, as their current consumption
plus the bound exceeds the total limit. Such arcs will never be used and can be deleted
from the network. These bounds on the resource consumption can also be used in the
extension step to identify labels that will never lead to a feasible s-t path. The approach
of Aneja et al. can be extended by using Lagrangean relaxation to obtain lower and upper

60

3.5 Computational Results

bounds on the cost, this method is, e.g., used in Beasley and Christofides [7]. Grötschel
et al. [45] proposed an approach based on integer programming that is then solved using
Lagrangean relaxation techniques. Such a preprocessing method, however, is quite time
consuming as solving the Lagrangean relaxation is computationally rather expensive. It
therefore only pays of for larger networks.
In this section we focus on some simple preprocessing ideas for the ESPPFTW that can
be derived from forced arcs. They help to remove unnecessary arcs or they tighten the
time windows and the arcs, so that fewer labels will be generated:

Revisiting forced arcs: The first rule can be derived directly from (3.1e) that was used
in Proposition 3.1.4 to transform forced arcs into feasibility time windows. Each forced
arc a needs to be visited for its time interval Fa and is visited exactly once. This means
that if a is not allowed for some time step θ then it also cannot be visited in [0, θ] if
θ < inf(Fa) holds or [θ,∞) if θ > sup(Fa). Applying this to the time windows contained
in Ta helps to eliminate paths that contain the arc a more than once and thus lower the
number of iterations needed in the DSSR approach.

Nodes on forced arcs: If an arc a = (u, v) is forced for [x, y] in the elementary prob-
lem, this means that no other arc leaving u or entering v can be used at any point in
time. Tours that contain (u, v) and any of these arcs are not elementary. Therefore,
the corresponding arcs can be directly removed from the graph. Further, all incoming
arcs a ∈ δ−(u) can only be used before arc a and can thus be forbidden for [x,∞].

Two forced arcs: If the arc a1 = (u, v) is forced for [x1, y1] and there is also a different
forced arc a2 with Fa2 = [x2, y2] which is forced later, then the following rule can be
formulated:
Each outgoing arc b = (v, w) ∈ δ+(v) can also be forbidden, if y1+ τb+ d(w) ≥ x2, where
d(w) corresponds to the shortest distance (w.r.t. to the travel times) from w to the tail
of a2. The corresponding rule can also be formulated for all the incoming arcs of the
second forced arc a2.

3.5 Computational Results

The performance of the label setting algorithm used for the pricing problem has been
thoroughly tested isolated from the integer program and the column generation itself.
Three sets of test instances have been considered. The first two sets are derived from the

61

Chapter 3 Pricing – Shortest Path Problem with Forced Time Windows

well-known Solomon’s CVRPTW benchmark and they are essentially the same instances
that have been used by Feillet et al. [33] and Righini and Salani [73] for their experiments
on the elementary SPPRC:
Solomon’s benchmark instances are divided into three groups – clustered (“C”), random
(“R”) and random-clustered (“RC”) – according to the location of the customers. As all of
these instances have been originally designed for the Capacitated Vehicle Routing Problem
with Time Windows (CVRPTW), we first have to convert them into SPPSTW instances:
Hereby, we only consider the coordinates of the customers and their time windows; the
remaining data, such as vehicle capacities and customer demands, is ignored. This makes
the problems considerably harder, as more feasible paths and thus more labels exist.
To reduce the size of the instances, only the first 25 nodes of each instance have been
considered. This number matches the usual instance size when used as a pricing problem
for the discrete WCP. The distance between two nodes is set to be the euclidean distance
between the respective customers. The travel times are then derived from the distances
by always rounding up the nearest integer. The time windows on the nodes have been
converted into time windows on the arcs in the following way: Let a = (u, v) be an arc
and let [xu, yu] and [xv, yv] be the time windows for its nodes. We now set the feasible
time windows of arc a to be [xu, yv − 1]. For each instance, we generate the prizes λv by
randomly picking integers uniformly distributed in [0, . . . , 20]. The cost of an arc (u, v)
then corresponds to c(u,v) − λv. This data generation technique was devised by Feillet
et al. [33] to have a reasonable number of negative cycles for elementary shortest path
problems. Due to the special structure of the random instances, they rarely contain
negative cycles. Therefore, only the clustered and random-clustered instances have been
considered. Finally, the SPPSTW consists of finding the shortest elementary tour that
respects the time windows and starts and ends in the first node given in the instance.

The third benchmark set is taken directly from the subproblems occurring in the solution
process of the discrete WCP and they therefore represent ESPPFTW instances. This set
has been selected to represent the biggest and most difficult pricing problems that have to
be solved during the solution processes of the discrete WCP instances considered in [85].
In order to get comparable results of the performance of our LSA, we always calculate
an elementary path with minimum cost even for these instances.

All of the computations have been performed on an Intel Xeon E5-2630 CPU clocked at
2.6 GHz.

Time Windows

The following experiments correspond to the observations made in Section 3.4.1. Three
data structures have been introduced that are especially well suited for problems with

62

3.5 Computational Results

many disretized time windows. The data structures have been tested on the set derived
from the Solomon instances as well as the WCP set. Table 3.1 gives the average number
of forbidden time windows on each arc and the total computation time for each set of
instances. The complete test results for every single instance can be found in the appendix
in Section A.1.

set inst. intervals List (s) Lookup (s) BitArray (s)
SOL C 15 1.52 1928.3 1984.4 1860.3
SOL RC 16 1.53 234.6 225.9 230.1
WCP 51 0.76 1274.5 1253.1 1176.7
total 3437.5 3463.3 3267.1

Table 3.1: Summarized results for the data structures

The performance differences of the data structures are of course not nearly as large as
when only random NextAllowed or NextForbidden queries (and no actual shortest path
computation) are considered. In the context of the SPPSTW, the BitArray data structure
performs in total 6 % faster on the tested WCP instances.

Preprocessing for Forced Time Windows

Since the preprocessing strategies as described in Section 3.4.2 rely on forced arcs, these
approaches have only been tested on WCP instance that contain at least one forced
arc. In the following we compare the impact of the preprocessing on these instances
and compare it with the results without preprocessing. Here, only the modifications as
introduced in Proposition 3.1.4 are used.
The total run time for all the WCP shortest path instances with forced edges, as well as
the average number of DSSR iterations is given in Table 3.2. The detailed overview can
again be found in the appendix in Section A.2.

TW preprocessing no preprocessing
set inst iter time (s) iter time (s)
forced WCP 35 8.00 1135.4 9.31 3800.6

Table 3.2: Summarized results for the time window preprocessing

The preprocessing reduces the number of iterations considerably. This results in a speed-
up of more than a factor three.

63

Chapter 4

Combining Discrete Optimization with
Nonlinear Optimization

So far, we stated in Chapter 2 a solution approach for the discrete WCP and gave an
example how an optimal trajectory between two positions can be calculated. The actual
key algorithm, however, combining those two parts has only been shortly introduced to
motivate the two subproblems.
In this chapter we develop the idea from Section 2.1 further by presenting the concrete
algorithm that is capable of computing an optimal solution to the integrated WCP by
avoiding unnecessary trajectory calculations.

The integrated algorithm is formally introduced in Section 4.1, before the actual imple-
mentation is discussed in Section 4.2. The last section gives some information about the
software that has been developed in the context of this research project and visualizes
some two-dimensional instances and the solutions obtained.

4.1 Combination Algorithm

The basic idea behind the combination is the following: Instead of solving the exact WCP
with all trajectory and collision information, we only solve the relaxation WCP(D′, C′)
with different collisions and distances. For that, we first initialize the set of conflicting
trajectory pairs C′ to the empty set. The distances D′ are initialized with lower estimates
for all distances between two positions. Any solution to the so formulated WCP(D′, C′)
yields a lower bound on the optimal solution of the actual discrete problem WCP(D, C),
where D and C contain the exact and complete information. Furthermore, this solution
gives us a promising assignment and sequencing, which can then be used to calculate
the exact distances and collisions for the tours in that solution and thus, to refine the
relaxation. This idea leads to Algorithm 8.

65

Chapter 4 Combining Discrete Optimization with Nonlinear Optimization

Algorithm 8: Integrated algorithm for the WCP
Input: a WCP instance
Output: a feasible solution

1 initialize distances D′;
2 initialize conflict set C′ = ∅;
3 solve the WCP(D′, C′);
4 while feasible solution found do
5 foreach arc a in found tours do
6 if distance for a is estimated then
7 calculate exact trajectory for a;
8 in D′ replace length of a with exact value;

9 if solution with exact distances is still feasible then
10 check collisions for tours;
11 if collisions present then
12 add conflicting arc pair to C′;
13 else
14 return found solution;

15 resolve the WCP(D′, C′);
16 return ∅;

If the discrete WCP (with complete distance and collision information D and C) has a
feasible solution, then Algorithm 8 returns a solution. Due to the very conservative
collision handling in the discrete WCP, it might even be the case that the algorithm
finds a solution that is not feasible for the discrete WCP. But as only tours without exact
collisions are returned, this solution is still feasible with respect to the original WCP.

The correctness of Algorithm 8 can be shown with the following observation. The only
requirement is that the distances D are always underestimated, i.e. that calculating the
exact distances never decrease the distance information D.

Proposition 4.1.1 Let D be the exact distance information and let C bet the complete
collision set. Any feasible solution (T̄ , Ī) of the corresponding discrete WCP (D, C) is
also feasible in any iteration of Algorithm 8.

Proof:
Since the distances throughout the execution of Algorithm 8 will never be larger than
the exact distances in D, the solution (T̄ , Ī) is always a feasible scheduled tour for
WCP (D′,∅). However, it might very well be that the scheduled tour (T̄ , Ī) in the

66

4.1 Combination Algorithm

context of the WCP (D′,∅) has more and longer waiting times on the arcs than for the
exact D, as the differences in the travel times are compensated via waiting.
If the scheduled tour (T̄ , Ī) is feasible for the discrete WCP with complete collision in-
formation C, it will also be feasible for any subset C′ ⊆ C.

As the number of jobs and thus also the |C| is finite, the algorithm will eventually termi-
nate. However, usually only a small subset of the trajectories needs to be computed.

The computational expensive part, however, remains in line 7 of Algorithm 8, where the
initial distances are updated with the correct ones.
The approach used in Algorithm 8 to reduce the number of these updates can be gener-
alized for linear combinatorial optimization problems. Such a generalization is shown in
Algorithm 9 for the following problem:
Definition 4.1.2 (Linear combinatorial optimization problem)
A linear combinatorial optimization problem is a tuple (E,S, c) consisting of a finite
ground set E, a subset S ⊆ 2E of feasible solutions and a cost function c : E → R.
The task is to find a feasible solution S ∈ S such that c(S) :=

∑
e∈S c(e) is minimized.

Many classical combinatorial optimization problems, such as the shortest path problem,
minimum spanning trees or the TSP, correspond to linear combinatorial optimization
problems.

Algorithm 9: Optimizing a linear problem with estimated distances
Input: a linear combinatorial optimization problem P = (E,S, c)
Output: an optimal solution of P

1 initialize cost function c′ : E → R such that c′(e) ≤ c(e) for all e ∈ E;
2 S ← optimal solution of P with respect to the cost c′;
3 while solution found do
4 if solution S only consists of elements with c′(e) = c(e) then
5 return S;
6 else
7 foreach e ∈ S do
8 c′(e)← c(e);

9 resolve P with new c′;
10 return null;

It can be shown that Algorithm 9 indeed finds an optimal solution for the correct cost
function c as long as the costs never decrease during updates:

67

Chapter 4 Combining Discrete Optimization with Nonlinear Optimization

Proposition 4.1.3 The Algorithm 9 returns an optimal solution for the corresponding
linear combinatorial optimization problem or shows that no feasible solution exists.

Proof:
Let S be the solution returned by Algorithm 9 and let c′ corespond to the cost function in
the last iteration. As S contains only elements with the exact cost c, we have c′(S) = c(S).
Since S is an optimal solution with respect to c′, we get c′(S) ≤ c′(S′) for all S′ ∈ S.
And thus

c(S) = c′(S) ≤ c′(S′) ≤ c(S′)

holds for all S′ ∈ S, i.e. S is an optimal solution with respect to c.
If not solution is returned by Algorithm 9, then the original problem is also infeasible.

In general, both Algorithm 8 and 9 do not need to use all of the original distance in-
formation for their computation of the optimal solution. But the question remains, how
many updates do they need and how “good” is this?

The number of updates depends on the problem instance itself as well as the quality
of the estimated costs. It is therefore in general not possible to give a nontrivial upper
bound on the number of updates required.
A better evaluation criterion for the number of updates can be obtained by comparing
them with the lowest number possible in this situation, i.e. the minimal number of updates
that an algorithm knowing the exact information needs in this situation. Exactly these
considerations are taken into account for optimization problems under uncertainty.

As Part I of this thesis has been designed to explain the practical and implementa-
tion aspects of the Welding Cell Problem, we do not go more into detail about these
rather theoretical aspects of the problem. The corresponding concept of uncertainty is
instead discussed in full detail in Part II and in particular in Chapter 5. In that chapter
the foundations are developed which allow us to analyze and formulate algorithms with
guaranteed update efficiency. There, we analyze a problem closely related to the WCP
– the traveling salesman problem – as it corresponds to a WCP problem with only one
robot.

4.2 Resolving the Discrete WCP

After new and updated distances have been computed, the discrete WCP needs to be
solved again for the new sets D′ and C′.

68

4.2 Resolving the Discrete WCP

Fortunately, the chosen branch-and-price based approach is especially well suited for this
procedure. Explicit restarts are not necessary and the continuous part can be seamlessly
integrated in the discrete solution process.

solve sub-
problem by
generating

tours using D′

solution is
integral?branch on arcs no

solution has
collision in

C′?

branch on
collision

solution has
estimated
distance?

yes

yes

no

solution has
exact

collision?

no

calculate
exact distance
and update D′ yes

add conflicting
arc pair to C′ yes

feasible
solution
found!no

Figure 4.1: Flowchart of the integrated algorithm

If a new distance of arc a has been calculated, we first remove all variables from the
restricted master problem representing tours that contain the updated arc a. Now, the
corresponding value in D′ is updated so that the pricing algorithm generates new tours
with respect to the updated distance. If the tour is still feasible, it might be the case
that the same tour (but now containing the exact distance) is generated again. As all
other tours remain in the problem, this can be interpreted as a warm start of the discrete
WCP. An optimal solution to the relaxed master problem can therefore be determined

69

Chapter 4 Combining Discrete Optimization with Nonlinear Optimization

much faster than when the pricing is started from scratch.
When an integral solution containing only updated exact distances has been found, we
check these tours for exact collisions. If no such collisions exist the tours represent a
feasible solution for the integrated WCP. Otherwise, we add the collision to the set C′
and branch on that particular collision. A simplified flowchart of this approach is given
in Figure 4.1.

Due to the “power of column generation” these ideas can be integrated without any mod-
ifications of the code for the discrete WCP. Since SCIP is build as a solver for constraint
integer programs, the integrated parts can very conveniently be implemented as custom
constraint handlers. When the constraint handler is called to check the current solution
for feasibility, we call the programs of the continuous part and update the distances and
collision information accordingly. The priorities of the constraint handlers must be set in
such a way that they are called in the order as described in Figure 4.1.
Following this approach, not a single line of existing code needs to be changed!

4.3 The 2D-Demonstrator

In the context of this thesis, we implemented a program that integrates all the aspects
discussed in Part I. The program takes as input a WCP instance, containing information
about the workpiece W, the weld points J and the robots R, and calculates a collision
free solution within the given cycle time.
In the following we restrict to the two-dimensional WCP problem, where the obstacles
as well as the robots are polygons in the 2D plain. This has the great advantage that
the instances and solutions can be better visualized “on paper”. Furthermore, in 2D the
continuous problem, which is not the main focus of this thesis, is much easier and faster
to solve so that the actual impact of the integration and the discrete part becomes much
clearer.

The actual program relies on the following input:

• Obstacles can be represented as any set of convex polygons.

• The robots are also represented by convex polygons, that move through 2D space
by translation and rotation: Let therefore r,v and a, respectively, denote the posi-
tion, the velocity and acceleration of the center of gravity of the robot in Q2. Since
the robot can rotate, let θ denote the angle of ration of the robot and let µ be the
velocity of the angle of rotation.
The kinematic properties of each robot can be specified with the following param-
eters:

70

4.3 The 2D-Demonstrator

– a, a ∈ Q2 limit the acceleration a of the center of gravity of the robot in the
two-dimensional plane, i.e. a ≤ a(t) ≤ a for all t.

– µ, µ ∈ Q limit the velocity of the angle of rotation, i.e. µ ≤ µ(t) ≤ µ.

• Each job p ∈ Q2 is given as a point in the two-dimensional space. For a robot to
reach job p and start processing, the following must hold for the fixed time point t:

r(t) = p and v(t) = 0 and θ(t) = 0 .

Thus, the robots must completely stop at p and must also have a fixed rotation.
Then, the processing time of p can start. Further, a job can either be exclusive for
one particular robot or it can be equally processed by all robots.

• Also a cycle time T limit needs to be given.

Remark: The program only checks for a feasible solution and the first found feasible so-
lution is returned. This solution is not necessarily optimal with respect to the makespan.

Test Instances

In the following, we present some of the 2D-instances that have been solved using our
implementation. The trajectories visualized in the following only represent the trace of
the center of gravity. For clarity reasons, the rotation along the trajectories is not shown.
Also the actual timing of the robots is not presented explicitly, but it has been taken into
account for the calculations. All the weld points are assumed to have a processing time
of 0 s; if they are exclusive to one particular robot, they are drawn in that robots color.

For each robot r we have
−ar = ar =

(
Ar

Ar

)
and

−µ
r
= µr = Mr ,

where Ar and Mr differ for the robots and the instances and are explicitly given. A
higher acceleration Ar corresponds to a faster robot r ∈ R. We assume that for all the
distances the triangle inequality holds, but symmetricity is not assumed.
For each solution we give the number of arcs, i.e. the number of possible pairs of position
for all robots, and the number of exact trajectories that have been calculated. Further-
more, also the total computation time as well as the time that has been spent for the
continuous calculations is specified. For each robot we also give the length of its tour
including waiting times.
The process of our program is showcased for the five following examples:

71

Chapter 4 Combining Discrete Optimization with Nonlinear Optimization

robot Ar Mr tour length
2.0 π

10 24.76
1.0 π

10 24.85

cycle time: 25.5

arcs updates cont. time total time
50 13 19.9 s 21.0 s

Instance 4.1

robot Ar Mr tour length
2.0 π

10 27.15
1.0 π

10 23.16

cycle time: 27.5

arcs updates cont. time total time
98 33 28.2 s 33.0 s

Instance 4.2

72

4.3 The 2D-Demonstrator

robot Ar Mr tour length
2.0 π

10 22.04
1.0 π

10 13.58
0.5 π

10 18.26

cycle time: 23.5

#arcs #updates cont. time total time
168 34 27.1 s 29.5 s

Instance 4.3

robot Ar Mr tour length
1.0 π

10 26.59
1.0 π

10 26.28
1.0 π

10 25.95
0.5 π

10 26.52

cycle time: 26.7

arcs updates cont. time total time
788 62 56.9 s 66.0 s

Instance 4.4

73

Chapter 4 Combining Discrete Optimization with Nonlinear Optimization

robot Ar Mr tour length
1.0 π

10 32.69
1.0 π

10 31.10

cycle time: 34.0

arcs updates cont. time total time
220 45 38.9 s 844.7 s

Instance 4.5

All of these examples show that our integrated approach works and indeed helps to
drastically reduce the number of computed distances. As expected, the quality of the
estimated distances has a great influence on the number of required updates. The best
ratio is achieved for Instance 4.4. This instance has a very tight cycle time and contains
rather large distances. Thus, many tours can already be ruled out using the estimated
distances. However, even for the weaker instances the update ratio is always better than
three.

74

Part II

Theory

75

Chapter 5

Aspects of Uncertainty in Optimization
Problems

Many combinatorial optimization problems exist that can be used to represent and then
solve a variety of real-world applications such as routing, production scheduling or net-
work design. All those applications require input data that is derived from measurements
or observations of actual goods and processes. However, this data can often only be
estimated or may even vary from time to time. Therefore, it is crucial to model these
uncertainties in real-world phenomenons.

There are many possible ways to deal with such difficulties and the two most common
approaches are stochastic programming and robust optimization.
In stochastic programming it is assumed that a probability distribution, which describes
certain input parameters, is either known or can at least be estimated. For a detailed
description of stochastic programming see e.g., Birge and Louveaux [10]. The task in
robust optimization, on the other hand, is to find solutions that are feasible even if
uncertainties up to a certain extent occur. An overview of this topic can for example be
found in Ben-Tal et al. [8].

In this chapter we pursue a third approach. In our setting data is given within certain
uncertainty limits but an algorithm can obtain the exact value of an input parameter by
performing a so-called update operation.
We further assume that this operation is very expensive so that in this setting the number
of updates required is far more important than time or space requirements of the actual
algorithm.

There are a number of applications where this uncertainty setting is reasonable: One
example would be the Welding Cell Problem described in Part I of this thesis. Here,
the underlying combinatorial optimization problem relies on the exact trajectories that
can be computed in a computationally very expensive process, but certain bounds on the
trajectories are known or can easily be obtained.

77

Chapter 5 Aspects of Uncertainty in Optimization Problems

Another field of application contains problems where the agents, and thus the data, are
“in motion”, i.e. there are changes over time within certain limits. This can for example
occur in ad hoc wireless sensor networks (see e.g. Dargie and Poellabauer [18] or Sohraby
et al. [80] for an introduction about sensor networks), where multi-hop communications
takes place. Here, data should be routed along the shortest path (or along the minimum
spanning tree for broadcasts). The exact location can be determined, but this should be
avoided when possible due to required high energy consumption. This uncertainty aspect
in ad hoc networks has also been considered in Bruce et al. [14].

To evaluate the performance of an algorithm, we compare the number of updates required
with the optimal number of updates that an algorithm knowing the exact weights would
need. This is called update competitive ratio and in this context a constant update
competitive ratio is pursued.
This notion of complexity was first used in Kahan [55] where the author presented several
geometric uncertainty problems and gave strategies that lead to an optimal ratio. Bruce
et al. [14] discussed the problems of computing maximal points or the points on the convex
hull of a set of points in the stated uncertainty setting. The authors also introduced
the general concept of witness algorithms to tackle such uncertainty problems with a
provable update competitive ratio. Erlebach et al. [29] used this concept to compute
minimum spanning trees under uncertainty.
A different approach to assesses the quality of the selected updates was proposed in Feder
et al. [30, 31]. Here, the updates have different update costs and the goal is to minimize
the total update cost. Within this framework, Feder et al. considered the problem of
computing the median of n numbers within a given tolerance and a shortest s-t path
problem.

In Chapter 4 we described an integrated approach for the WCP that tries to minimize
the number of trajectory computations and still guarantees an optimal solution. In this
chapter we give the generalized theoretical foundation for this observation. Since the
WCP – even without uncertainty – is a very complex problem that also takes scheduling
aspects into account, we focus our observations on the classic traveling salesman problem.
The TSP is a special case of the WCP as it represents the situation where only one robot
exists.
In Section 5.1 we formally define the used uncertainty concept. In the next section we
then discuss the TSP and several related problems, namely the shortest path problem
and the minimum spanning tree problem, in this uncertainty setting. As the TSP and
many of the so far considered problems do not have a constant update competitive ratio,
we further extend the model over the following two sections to incorporate more aspects
to the special situation we have for the WCP. This includes metric data that is not too
far away from its given limits (with certain probability). This finally allows us to give an
algorithm for the TSP that only requires order of n updates in expectation.

78

5.1 Preliminaries

Finally, in Section 5.5 we give a tabular overview of the complexity of all the considered
optimization problems in the different uncertainty settings.

5.1 Preliminaries

The uncertainty model used in this chapter is based on interval data. This means that
the weight ce of each element e of the finite ground set of a combinatorial optimiza-
tion problem lies within a certain given interval Ie, but the exact weight is initially not
known.

Before we formally define the model, let us first look at an intuitive example:
Consider the shortest s-t path problem of the following graph, where the actual arc
weights are unknown. Only intervals are given for each arc, which define a lower and an
upper bound on the weights:

s

a

b

t

[1, 5]

[1, 2]

[4, 5]

[1, 1]

[2, 3]

The task is to find the shortest s-t path. We note that the graph contains exactly three
such paths:

1. Path s-a-t with a cost in [2, 6],
2. Path s-a-b-t with a cost in [7, 13],
3. Path s-b-t with a cost in [3, 5].

Thus, it is clear that the second path can never be a shortest path no matter what the
exact weights may be. However, to decide whether the first or the last path is actually
shorter we need to update some arcs. If an update of the arc (s, a) reveals an exact weight
of 1, we know after just one update that the path s-a-t is definitely the shortest.

For general combinatorial optimization problems this can formally be defined by using
the uncertainty model described in Erlebach et al. [29]:

Definition 5.1.1 (Uncertainty problem with interval data)
Each problem instance P is a triple (C, I, φ), where

• the configuration C is an ordered set of data C = {c1, . . . , cn}, with ci ∈ R,
• I is an ordered set of intervals I = {I1, . . . , In}, with ci ∈ Ii for all ci ∈ C,
• and a function φ such that φ(C) is the set of solutions for P .

79

Chapter 5 Aspects of Uncertainty in Optimization Problems

As the function φ returns the solutions for a given configuration C, it does not depend
on the uncertainty intervals. It is thus the same for all instances of a problem and can
therefore be used to represent the problem itself. For an instance P the goal then is to
find an element of φ(C).

The intervals Ii are called uncertainty intervals or uncertainty areas and we further say
that an uncertainty interval is trivial, if it consists of a single element. An ordered set of
data {w1, . . . , wn} (not necessarily the actual configuration) is called a realization of I,
if wi ∈ Ii holds for all its elements.
In the following chapter we only consider uncertainty problems that are based on opti-
mization problems on graphs, i.e. given the graph G = (V,A) the configuration C con-
sists of G and its actual arc weights. However, the ordered set of intervals specifies the
graph G exactly, i.e. complete knowledge of the graph can be assumed:

Example 5.1.2 Shortest path problem with interval data: In the corresponding
version of the shortest path problem the configuration C consists of the given directed
graph G = (V,A) and a value ca for all arcs a ∈ A that represents the actual weight of
that arc a. The set I now contains an arbitrary interval Ia for each arc such that ca ∈ Ia.
Then φ(C) is the set of all shortest s-t paths in G, where a path is represented by an
ordered set of arcs.

Given such an uncertainty problem with interval data we are interested in an algorithm
that computes an element of φ(C). At the beginning only the interval set I and not the
set C is known to the algorithm. However, in contrast to other uncertainty models, we
are not trying to find a “good” solution with respect to the uncertainty intervals, but
our goal is to calculate an optimal solution for the underlying configuration. Therefore,
there must exist the possibility for the algorithm to gain additional information, namely
to obtain some of the exact values ci. This process is called update:

Definition 5.1.3 (Update)
Let P = (C, I, φ) be an instance of an uncertainty problem with interval data. For the
given set of uncertainty intervals I = {I1, . . . , In} an update of interval Ii reveals the
corresponding exact value ci, i.e. after the update the new set of uncertainty intervals is
{I1, . . . , Ii−1, [ci, ci], Ii+1, . . . , In}.

A trivial algorithm that solves any instance P = (C, I, φ) of an uncertainty problem
with interval data is described in Algorithm 10. It consists of a loop updating all arcs
with nontrivial uncertainty intervals. After the loop the set of uncertainty intervals
corresponds to the exact configuration C and (assuming that φ(C) is computable) it is
therefore possible to find an element of φ(C).

80

5.1 Preliminaries

Algorithm 10: Trivial algorithm for an uncertainty problem with interval data
Input: instance P = (C, I, φ)
Output: a solution of P

1 foreach nontrivial Ii ∈ I do
2 update Ii;
3 return an element of φ(C);

Note that our primary goal is to minimize the number of updates necessary to calculate
a solution. In this context we do not consider the running time or space requirement of
an algorithm. The quality of an algorithm is only determined by the number of updates,
i.e. by comparing it to the minimum number of updates for that specific uncertainty
problem:

Definition 5.1.4 (Update strategy)
Let P = (C, I, φ) be an instance of an uncertainty problem with interval data. We say
that the set S(P) ⊆ I is an update strategy S(P), if updating the intervals of S(P) leads
to a new problem instance P ′ = (C, I ′, φ) where φ(C) contains a solution S that can be
verified using I ′, i.e. S is a solution for all possible realizations of I ′.

The update strategy of a problem instance that contains the fewest elements is called
optimal update strategy:

Definition 5.1.5 (Optimal update strategy)
Let P = (C, I, φ) be an instance of an uncertainty problem with interval data. We say
that an update strategy SOPT (P) is an optimal update strategy for P , if |SOPT (P)| is
the smallest number of updates required to verify an element of φ(C).
The number of updates |SOPT (P)| is denoted by OPT .

Now, we can use OPT to evaluate the quality of an algorithm:

Definition 5.1.6 (k-update competitive algorithm)
We say that an algorithm A is k-update competitive for a given uncertainty problem φ,
if for every problem instance P of φ the algorithm needs at most k · OPT + c updates,
where c is a constant.
In this context k is also called the update competitive ratio.

Definition 5.1.7 (k-update competitive problem)
We say that an uncertainty problem with interval data φ is k-update competitive, if there
exists a deterministic algorithm for φ that is k-update competitive.

81

Chapter 5 Aspects of Uncertainty in Optimization Problems

A problem is called update competitive, if it has a constant update competitive ratio.
Remark: Note that the optimal update strategy is defined per problem instance, while
an update competitive algorithm needs to work for all possible problem instances. In this
sense OPT is somehow the perfect adversary.

After all the basic concepts have been introduced, we can now take a closer look at several
combinatorial optimization problems in the context of uncertainty with interval data.

5.2 Uncertainty Problems with Interval Data

In this section we use the uncertainty model that we defined in the last section.
Remark: We also assume throughout the entire chapter that all the intervals are either
trivial or open, as this gives us a much stronger foundation for deterministic algorithms.
Erlebach et al. [29] showed for example that in their context update competitivity results
can only be achieved, if the intervals are not closed (and not half-open). The general idea
behind this assumption is that for many equivalent and indistinguishable closed intervals
revealing one at its lower bound is sufficient to rule out the others without any additional
updates. Any deterministic algorithm, on the other hand, has to update all of them in
the worst case if all revealed weights but the last are strictly larger than the common
lower bound. This idea is visualized in the following example with m parallel arcs, all
having the same closed interval [2, 4]:

s t
...

[2, 4]

If the lowest exact weight is 2, the perfect algorithm only needs to update any arc with
this weight. However, all of these arcs are indistinguishable for deterministic algorithms.
Thus, for any deterministic algorithm there exists an instances where it needs m − 1
updates to find the one arc with weight 2.
A possible way to avoid this problem has been proposed by Gupta et al. [47]. They
introduce the notion of a lexicographically smallest solution. Here, any algorithm must
not only find an optimal solution but the lexicographically smallest optimal solution
(if multiple solutions exist). However, as this introduces an artificial ordering on the
input data, which is normally not present in the considered combinatorial optimization
problems, we do not follow this approach and restrict ourselves to open intervals instead.

82

5.2 Uncertainty Problems with Interval Data

5.2.1 Shortest Paths

The first problem we analyze is the Shortest Path Problem (SPP), as it is one of the
most simple optimization problem on graphs and it still helps us understand the specific
difficulties of uncertainty problems with interval data. In Section 5.1 we already used the
shortest path problem to motivate our uncertainty framework.
We can now formally introduce the edge-uncertainty-spp:
Configuration: a directed graph G = (V,A)

a weight wa ≥ 0 for every arc a ∈ A
a start node s and a target node t

Intervals: an open or trivial interval Ia for every arc a ∈ A
Goal: a path P from s to t that minimizes the sum

∑
a∈P ca

Unfortunately, it is easy to see that the edge-uncertainty-spp does not have a constant
update competitive ratio.

Example 5.2.1 The EDGE-UNCERTAINTY-SPP is not update competitive:

s . . . t

1

(0, 2) (0, 2) (0, 2) (0, 2)

One of the successive arcs has weight 1.5 and the others have weight ε small enough. Now,
in the optimal update strategy for that instance it is sufficient to just update the arc with
weight 1.5. After that, the path P = (s, t) is obviously the shortest. Any deterministic
algorithm, however, cannot distinguish between the edges with uncertainty interval (0, 2).
Thus, it has to query n−1 edges before finding the edge with weight 1.5 in the worst case.

Since the regular problem is not update competitive, we look at the approximate edge-
uncertainty-spp next:
Configuration: a directed graph G = (V,A)

a weight wa ≥ 0 for every arc a ∈ A
a start node s and a target node t

Intervals: an open or trivial interval Ia for every arc a ∈ A
Goal: a path P from s to t whose cost

∑
a∈P ca is at most (1 + δ)

times the cost of an optimal s-t path, where δ > 0 is given

Just as approximation algorithms in the regular, not uncertain setting, are considered
as they improve the running time at the cost of solution quality, their purpose in the

83

Chapter 5 Aspects of Uncertainty in Optimization Problems

uncertainty setting is to reduce the number of updates at the cost of solution quality.
Therefore, to asses an algorithm A for the approximate edge-uncertainty-spp, we
compare the number of updates required by A with OPTexact of the corresponding exact
problem, i.e. edge-uncertainty-spp.
Example 5.2.2 The approximate EDGE-UNCERTAINTY-SPP is not update
competitive when compared to OPTexact:
As a counterexample we use the graph from Example 5.2.1 with the same uncertainty
intervals and exact weights. Let n be the number of nodes in this graph and let ε < 1

2n .
We have OPTexact = 1, but even after n− 2 updates of arcs with nontrivial uncertainty
interval, the uncertain s-t path could still have an actual cost of less than 1

2 or more
than 2. Thus, for δ < 1 any deterministic algorithm still needs n − 1 updates to find a
(1 + δ)-approximation in the worst case.

The last example shows that even the approximate version of the shortest path problem
cannot have an update competitive algorithm. In order to obtain such an algorithm for
the SPP, we have to restrict the problem even further.
This leads to the approximate edge-uncertainty-spp with restricted intervals:
Configuration: a directed graph G = (V,A)

a weight ca for every arc a ∈ A
a start node s and a target node t

Intervals: each arc a ∈ A either has a trivial interval or an open inter-
val Ia where the upper bound of Ia is at most twice the lower
bound

Goal: a path P from s to t whose cost
∑

a∈P ca is at most (1 + δ)
times the cost of an optimal s-t path, where δ > 0 is given

Under these restrictions it is now finally possible to given an update competitive algo-
rithm. First, we consider the case where the set P of all possible s-t paths only consists
of two elements:
Theorem 5.2.3 Let P be the set of all paths for an instance of the approximate edge-
uncertainty-spp with restricted intervals. If |P| = 2, then the problem is

(
2
δ + 2

)
-update

competitive, when compared to OPTexact.

To prove this theorem we will first state Algorithm 11 before showing that this algorithm
(and thereby the problem itself) is update competitive.
As a first step, we define an easy criterion that can be used by Algorithm 11 to verify
that a solution is indeed a (1 + δ)-approximation:

In the following, let PU for any path P ∈ P denote the upper bound of this path, i.e. the
sum of all upper bounds on all its arcs a ∈ P and let PL denote its lower bound.

84

5.2 Uncertainty Problems with Interval Data

Proposition 5.2.4 A path P ′ ∈ P is a verifiable solution to the approximate edge-
uncertainty-spp, if and only if P ′

U ≤ (1 + δ) · P ′′
L holds for all other paths P ′′ ∈ P.

Proof:
If P ′

U ≤ (1 + δ) · P ′′
L holds for all P ′′ ∈ P \ {P}, then we know that for any possible

realization P ′ is a (1 + δ)-approximation.
If the path P ′ is a verifiable solution, it is a solution for all possible realization and
therefore P ′

U ≤ (1 + δ) · P ′′
L holds for all other paths P ′′ ∈ P.

By using Proposition 5.2.4 as a stopping criterion we can now formulate an algorithm
for the edge-uncertainty-spp with restricted intervals. The resulting Algorithm 11 is
obviously correct, as it updates nontrivial intervals until a (1 + δ)-approximation can be
verified.

Algorithm 11: Approximate edge-uncertainty-spp with restricted intervals
Input: an instance of the approximate edge-uncertainty-spp with restricted

intervals and |P| = 2
Output: an s-t path

1 while there is no path P with PU ≤ (1 + δ) · P ′
L for the other path P ′ do

2 I ← interval with the largest width out of
⋃

P∈P P ;
3 update I;
4 return approximating path;

To provide a better structure for the prove of Theorem 5.2.3 we provide one additional
lemma:
Given k elements with weights, we take largest-weight elements into a set S until the
total weight of the elements in S is at least an α-fraction of the weight of all elements.
Lemma 5.2.5 gives us a bound on the weight of the smallest element in S.

Lemma 5.2.5 Given a set E of k elements with weights we ∈ R for all e ∈ E and a
constant α ∈ (0, 1), let W =

∑
e∈E we denote the sum of all these weights and let S ⊆ E

be a subset with smallest cardinality for which mine∈S we ≥ we′ holds for all e′ ∈ E \ S
and

∑
e∈S we ≥ αW .

It now holds that we ≥ (1−α)W
k for all e ∈ S.

Proof:
Assume that k > 1. If k = 1 holds, the claim is trivially true.
The worst-case situation, i.e. the situation that results in the smallest mine∈S we, occurs
when there is exactly one element with weight αW − ε and k − 1 elements of the same

85

Chapter 5 Aspects of Uncertainty in Optimization Problems

small weight of ε′ := W−(αW−ε)
k−1 . In this case S contains exactly two elements, one with

the weight αW − ε and the other one with weight ε′. Therefore, we have

min
e∈S

we ≥
W − (αW − ε)

k − 1
=

(1− α)W + ε

k − 1
>

(1− α)W

k
.

In all other situations the weight of the smallest element in S will only increase.

Proof of Theorem 5.2.3 We prove that Algorithm 11 is (2δ + 2)-update competitive
when compared with OPTexact.
We can assume without loss of generality that there are no nontrivial arcs that lie on
both paths. In this case, the weight of such arcs would just be an offset to both paths
and as such never updated for OPTexact. Hence, by setting them to their respective lower
bound we can assure that any update strategy that proves a cost within a factor of (1+δ)
for this situation is also true for any weight on these arcs.

Let in the following the two paths P ′, P ′′ of P be ordered in such a way that P ′
L ≤ P ′′

L.
The proof consists of two cases, distinguishing whether P ′ or P ′′ is the actual shortest
path. In both cases the basic idea of the proof is the following: To verify that a path is
the shortest, any optimal update strategy has to raise (or lower) the bounds of the paths
so that the bounds no longer overlap. This can be achieved by updating the intervals
that will lead to the largest progress in the desired direction. Lemma 5.2.5 gives us
a bound on the smallest progress made to cover only a certain fraction of the overall
progress. By updating all intervals whose width is at least as large as this bound we can
therefore assure that this fraction is reached.

Case I: The optimal update strategy reveals that P ′ is the shortest path. The situation
for this proof is sketched in the following graphic:

x
P ′:

P ′
L P ′

U

yP ′′:
P ′′
L P ′′

U

W

In this case the optimal update strategy has to cover at least W = P ′
U − P ′′

L by either
raising the lower bound of P ′′ or by lowering the upper bound of P ′. Let us assume that
this requires exactly k updates.
For a (1+ δ)-approximation only a smaller part needs to be covered: Here, it is sufficient

86

5.2 Uncertainty Problems with Interval Data

to move the upper bound of P ′ down to x and the lower bound of P ′′ up to y, where
x = (1 + δ)y is satisfied. Thus, only W − (x − y) needs to be covered. This distance is
maximized when y is as close as possible to P ′′

L. Therefore, the algorithm needs to cover
at least W − (1 + δ)P ′′

L + P ′′
L = P ′

U − P ′′
L(1 + δ), which is denoted by A.

We already know that the optimal update strategy consists of k updates, it selects the k
intervals where an update leads to the largest possible progress in the desired direction.
By applying Lemma 5.2.5, where the elements in E correspond to the k intervals updated,
their weights being the respective progress and α = A

W , we now get that it is possible to
improve the bounds by A = αW with intervals whose progress is at least (1−α)W

k .
As the progress cannot be larger than the actual width of the interval, it must be possible
to cover A only with intervals of width greater than (1−α)W

k . Since

(1− α)W

k
=

W −A

k
=

P ′′
L · δ
k

holds, updating all intervals with width of at least P ′′
L ·δ
k guarantees a progress of at least A.

Next, we bound the number of such intervals using the fact that PU ≤ 2 · PL:

(P ′
U − P ′

L)
P ′′
L ·δ
k

+
(P ′′

U + P ′′
L)

P ′′
L ·δ
k

≤
P ′
L

P ′′
L ·δ
k

+
P ′′
L

P ′′
L ·δ
k

≤
2 · P ′′

L
P ′′
L ·δ
k

=
2k

δ

Therefore, the algorithm terminates after at most 2k
δ updates and only needs a factor

of 2
δ more updates than OPT .

Case II: The optimal update strategy reveals that P ′′ is the shortest path.

x
P ′:

P ′
L P ′

U

yP ′′:
P ′′
L P ′′

U

W

This case is similar to the last situation, but here the optimal update strategy has to
cover at least W ′ = P ′′

U − P ′
L. Let us assume that this requires exactly k′ updates.

For a (1 + δ)-approximation we have to raise the lower bound of P ′ to x and lower the
upper bound of P ′′ to y, where y = (1+δ)x holds. Thus, a distance of W ′− (y−x) needs
to be covered. In the worst-case, i.e. when W ′ is maximized, the value x is as small as

87

Chapter 5 Aspects of Uncertainty in Optimization Problems

possible. Thus, W ′ is maximized when y is as close as possible to P ′′
L and the algorithm

has to raise P ′
L up to P ′′

L
1+δ . The total distance it has to cover is called A′. It now holds

that A′ = W ′ − (y − x) = W ′ −
(
P ′′
L −

P ′′
L

1+δ

)
.

We apply Lemma 5.2.5 with α = A′

W ′ . Thus, the smallest progress made by the optimal
update strategy that is sufficient to cover A′ is at least

(1− α)W ′

k′
=

W ′ −A′

k′
=

P ′′
L −

P ′′
L

1+δ

k′
=

P ′′
L

(
δ

1+δ

)
k′

.

For the maximum number of such intervals we have

2 · P ′′
L

P ′′
L

(
δ

1+δ

)
k′

=
2k(1 + δ)

δ
.

Hence, the algorithm requires at most a factor of (2δ + 2) more updates than OPT .

To evaluate the quality of the update competitive ratio of (2δ + 2), we will now give a
lower bound on this ratio:

Theorem 5.2.6 There are instances of the approximate edge-uncertainty-spp with
restricted intervals and two paths where any deterministic algorithm not knowing the exact
weights has a competitive ratio arbitrarily close to (1

2δ−1) when compared with OPTexact.

Proof:
Consider the following situation, where we have two paths with the following bounds:

P ′
L P ′

U

P ′
U

1+δ
− ε P ′

U − P ′
L +

P ′
U

1+δ
− ε

Assume there are k intervals in each path all with the length of a+ε and the exact weights
being ε away from either their lower or their upper bound. Thus, updating any interval
will contribute a in the corresponding direction. For any interval with an arrow pointing
right, the exact weight is ε away from upper bound, and for any interval pointing left it
is ε away from the lower bound.

88

5.2 Uncertainty Problems with Interval Data

Let there be exactly d(P ′
U −

P ′
U

1+δ + ε)/ae intervals in P ′ where updating lowers the upper
bound of P ′ and exactly d(P ′

U −
P ′
U

1+δ + ε)/ae intervals in P ′′ that raise the lower bound.

An optimal update strategy will update exactly d(P ′
U −

P ′
U

1+δ +ε)/ae of those intervals and
thus having P ′

U ≤ P ′′
L, which proves that P ′ is the shortest path.

For ε small enough updating any one interval out of the optimal update strategy will
lead to a situation in which P ′ is a (1 + δ)-approximation. As the intervals on one
path are identical, the best option is to pick a path first and then only update intervals
on this path. In this case there are instances where any deterministic algorithm has to
cover a little more than P ′

U
1+δ −P ′

L before finding a interval that contributes to the desired
direction.
If we now let k → ∞ and ε → 0, we can ignore the rounding for the optimal update
strategy as well as for our algorithm and get the following factor:

P ′
U

1+δ − P ′
L

P ′
U −

P ′
U

1+δ

=

2p′L
1+δ − P ′

L

2p′L −
2p′L
1+δ

=
2

1+δ − 1

2− 2
1+δ

=
2− (1 + δ)

2(1 + δ)− 2
=

1 + 2δ

1− 2δ
=

1

2δ
− 1

The result from the last Theorem 5.2.6 shows that the update competitive ratio of the
approximate edge-uncertainty-spp with restricted intervals and two paths has to de-
pend on 1

δ . It also shows that for small δ the update competitive ratio of Algorithm 11
is roughly a factor of 4 higher than the best possible ratio.

Constant number of paths

Next, we consider the case where there are more than two but still constantly many paths
in P. To obtain an algorithm for this variation, it is sufficient to modify Algorithm 11
in such a way that the largest width interval in each path is updated. The correctness
of the resulting Algorithm 12 also shows that the approximate edge-uncertainty-spp
with restricted intervals and a constant number of paths is update competitive.

Theorem 5.2.7 Let P be the set of all paths for an instance of the approximate edge-
uncertainty-spp with restricted intervals. If |P| = ` constant and there are no shared
arcs between paths, then Algorithm 12 is `

(
2
δ + 2

)
-update competitive, when compared to

OPTexact.

89

Chapter 5 Aspects of Uncertainty in Optimization Problems

Algorithm 12: Approximate edge-uncertainty-spp with restricted intervals
Input: an instance of the approximate edge-uncertainty-spp with restricted

intervals with |P| = k constant
Output: an s-t path

1 while there is no path P with PU ≤ (1 + δ) · P ′
L for all P ′ ∈ P \ {P} do

2 foreach P ∈ P do
3 I ← interval with the largest width in P ;
4 update I;

5 return approximating path;

Proof:
Let P ∗ be the shortest path. Since we always update one interval in each path, we will
always update P ∗ and the path with smallest lower bound P ′. Thus, the same analysis
as for the two-path case holds and we will terminate after at most k ·

(
2
δ + 2

)
iterations.

As ` updates are performed in each iteration, this leads to an update competitive ratio
of `

(
2
δ + 2

)
.

Remark: Unfortunately, the approach of always picking the largest width interval does
not work for a graph with an arbitrary number of paths. This is true even when we
modify Algorithm 12 so that in each iteration only one largest width interval in

⋃
P∈P P

is updated. Consider the following situation:

P ′

P ′′

...

Again, the red arrows indicate the direction of the progress, that an update of that
particular interval would make.
In this case, the algorithm that in each iteration updates the largest width interval,
would only update an interval in P ′ if all the other paths are completely updated. An
optimal update strategy of the exact problem, on the other hand, only updates P ′′ and
one interval out of P ′ to show that P ′′ is the shortest path, i.e. OPTexact = 3.
Since the number of paths is not bounded, the competitive ratio of the algorithm can be
arbitrarily bad.

90

5.2 Uncertainty Problems with Interval Data

5.2.2 Minimum Spanning Tree

In the last section we discussed shortest path problems in the context of edge uncertainty.
Now, we consider the minimum spanning tree problem in the same uncertainty setting.

As it turns out, the MST is a problem which is very well suited for this notion of un-
certainty. Erlebach et al. [29] gave a 2-update competitive algorithm for the edge-
uncertainty-mst problem and showed that this is the best ratio that can be achieved
by any deterministic algorithm.

The edge-uncertainty-mst problem can be defined as follows:
Configuration: an connected undirected graph G = (V,E)

a weight we ≥ 0 for every edge e ∈ E
Intervals: an open or trivial interval Ie for every edge e ∈ E
Goal: a spanning tree T with weight less than or equal to the weight

of every other spanning tree

Here, for each edge e ∈ E the value Le denotes the lower bound of Ie, i.e. inf(Ie), and Ue

denotes the corresponding upper bound, i.e. sup(Ie).

We now present a 2-update competitive algorithm, that is very similar to the algorithm
u-red described in Erlebach et al. [29] and uses the concept of witness sets as first
introduced by Bruce et al. [14]. A witness set for an uncertainty problem with interval
data is defined in the following way:

Definition 5.2.8 (Witness set)
The set W ⊆ I is called a witness set of (I, φ), if for every feasible configuration C, i.e.
a configuration with ci ∈ Ii, no element of φ(C) can be verified without updating an
element of W.

Algorithm 13: The general witness algorithm
Input: problem instance (C, I, φ)

1 while no element of φ(C) can be verified using I do
2 find a witness set W;
3 foreach interval I in W do
4 update I;

5 return element of φ(C) that can be verified using I;

The concept of witness sets can be used to formulate a generic algorithm for uncertainty
problems. This algorithm is called witness algorithm and is described in Algorithm 13. It

91

Chapter 5 Aspects of Uncertainty in Optimization Problems

can be used to show general update competitivity results: Any algorithm of this structure
that only uses witness sets with |W| ≤ k is k-update competitive.
This property of the witness algorithm was first shown in Bruce et al. [14] for a particular
uncertainty problem. In the following, we will extend this proof for our definition of
uncertainty problems with interval data:

Theorem 5.2.9 If there exists a constant k such that every witness set that gets updated
by Algorithm 13 is of size at most k, then this algorithm is k-update competitive.

Proof:
Assume that the general witness algorithm needs n iterations to find a solution. Let
W1, . . . ,Wn be the witness sets in the same order as found by the witness algorithm.
Let Ij for j ≤ n be the uncertainty intervals after updating W1, . . . ,Wj and let I0
denote the original set of uncertainty intervals I. Further, let Ri be the set of all possible
realizations of Ii.
Updating arcs corresponds to narrowing the respective interval. Therefore, updates never
introduce new realizations and so R0 ⊃ R1 ⊃ · · · ⊃ Rn holds. The set Wi in each
iteration i ≤ n is chosen in such a way that it represents a witness set of Ii−1 and
thus Wi is also a witness set of Ij for all j < i. As the witness sets Wi are disjoint, the
optimal update strategy has to contain at least n elements, i.e. OPT ≥ n. Since further
all witness sets are of size at most k, the witness algorithm updates at most k ·n intervals
and is therefore k-update competitive.

The algorithm for the edge-uncertainty-mst problem proposed in this section is such a
witness algorithm, but before we can formulate this algorithm a few additional definitions
for the edge-uncertainty-mst problem are necessary:

Definition 5.2.10 (Edge order)
Let (C, I, φ) be an instance of the edge-uncertainty-mst problem, where the under-
lying graph is denoted by G = (V,E).
We say that e ≺ f , if one of the following is true

1. Le < Lf ,
2. Le = Lf and Ue ≤ Uf .

We assume in the following that all the edges e1, . . . , em are ordered in such a way, that
we have e1 ≺ e2 ≺ · · · ≺ em, where edges with the same upper and lower weight limit are
ordered arbitrarily.

This order is also used when comparing paths:

92

5.2 Uncertainty Problems with Interval Data

A path P can be characterized by the following vector vP =
(
xP1 , . . . , x

P
m

)
, where

xPi =

{
1 if ei ∈ P ,
0 otherwise .

Definition 5.2.11 (Smallest path)
We say that path P is smaller than P ′ with respect to ≺, if and only if vP < vP ′ holds
with respect to the reverse lexicographic order.
A path P is said to be the smallest path, if there does not exist a path P ′ which is smaller
than P .

Definition 5.2.12 (Always maximal edge)
Let C be a cycle in the corresponding graph. We say the edge e ∈ C is an always maximal
edge in C, if Le ≥ Uf for all f ∈ C \ {e}.

In contrast to the algorithm u-red described in [29], our Algorithm 14 tries to identify
for each edge, whether this edge will be for sure part of an MST, not part of an MST or
whether it needs to be updated, since it is part of a witness set. This approach has the
advantage that it does not require any restarts.

In the following we show that Algorithm 14 is correct and 2-update competitive. Before
showing the update competitivity under the restriction to open or trivial intervals (Theo-
rem 5.2.18), we discuss some technical preliminaries about MSTs first. Then, we introduce
Lemma 5.2.15 to 5.2.17 that help to structure the actual proof of Theorem 5.2.18.

The first simple fact about MSTs, which we will need, is also known as the cycle property:

Proposition 5.2.13 Let G be a connected weighted graph and let C be a cycle in G. If
there exists an edge e ∈ C with weight larger than the weights of all other edges of C,
then e is not in any MST of G.

This can be extended to the following proposition:

Proposition 5.2.14 Let G be a connected weighted graph and let e be an edge in G. If
for any cycle C containing e there always exists an edge on C which has larger weight
than e, then e belongs to all MSTs of the graph.

Proof:
Without loss of generality we assume that the edge weights are distinct so that there is
only one unique minimum spanning tree in G. If the weights are not distinct, one can

93

Chapter 5 Aspects of Uncertainty in Optimization Problems

Algorithm 14: Update competitive algorithm for edge-uncertainty-mst
Input: an undirected graph G = (V,E) with uncertain interval data on the edges
Output: a minimum spanning tree

1 index all edges such that e1 ≺ e2 ≺ · · · ≺ em;
2 let Γ = (V,∅) be without any edges;
3 i← 1;
4 while i ≤ m do
5 if ei closes a cycle in Γ then
6 ei is not in the MST;
7 i← i+ 1;
8 else
9 let C be the best cycle, wrt ≺, containing ei;

10 if Uei > Le holds ∀e ∈ C \ {ei} then
11 if ∃f ∈ C with f 6= ei and Uf = maxe∈C Ue then
12 update ei and f ;
13 else
14 update ei;
15 reindex the edges;
16 else
17 add ei to Γ;
18 i← i+ 1;

19 return Γ

number the edges arbitrarily and then consider a lexicographic order of the pairs (edge
weight, edge number) instead of the weight alone.

Now, let us assume there is an MST T that does not contain the edge e = {u, v}.
We know that for every cycle C containing e the unique edge with maximum weight is
different from e. By applying the cycle property we therefore get that every possible
u-v path contains an edge that is not in T , i.e. u and v are not connected in T . This
contradicts the assumption that T is a spanning tree.

Using these propositions it is now easy to identify witness sets of size one:

Lemma 5.2.15 Let C be the smallest cycle w.r.t. ≺ containing edge f . If Uf > Ue holds
for all e ∈ C \ {f} and if we can further find an edge e ∈ C \ {f} with Le > Lf , then {f}
is a witness set.

94

5.2 Uncertainty Problems with Interval Data

Proof:
Since C is the smallest cycle, we know that for any cycle C ′ containing f there will always
exist an edge e′ ∈ C ′ with Le′ > Lf . It now follows directly from Proposition 5.2.14 that
there is a realization with wf < Le′ where f is part of the MST.
On the other hand, it follows from Proposition 5.2.13, that there also exists a realization
where wf is the largest edge in C and thus not part of any MST.
Hence, it cannot be decided whether the edge f is part of an optimal MST or not without
updating edge f .

The following lemma is technical and it is solely needed in the proof of Lemma 5.2.17:

Lemma 5.2.16 If the condition in line 10 of Algorithm 14 is reached and evaluates to
true, then C contains no always maximal edge and ei is nontrivial and not yet updated.

Proof:
We know, since ei did not close a cycle in Γ, that C must contain at least one edge e′ with
ei ≺ e′, which also means that we have Lei ≤ Le′ . Together with the fact that Uei > Le′

it now follows that Uei > Lei , i.e. ei is nontrivial.

As the condition in line 10 is true, only ei remains as a possible candidate for an always
maximal edge. This, however, cannot be the case since we have an edge e′ with ei ≺ e′

but Uei > Le′ .

Lemma 5.2.17 Assume that all uncertainty areas are open or trivial. The edges ei and
f as described in Algorithm 14 form a witness set in every iteration.

Proof:
This proof is very similar to the proof in [29]. The slight difference is due to the fact that
the set Γ in Algorithm 14 is constructed differently.

Assume the edge set {ei, f} is not a witness set. This means that we can update some
edges, but not f or ei, to obtain the uncertainty graph U ′ that has a provable MST T ′.
Let U ′

e and L′
e denote the upper and lower uncertainty limits of an edge e after all the

updates have been performed. It now holds:

U ′
ei = Uei , L

′
ei = Lei

U ′
f = Uf , L

′
f = Lf

U ′
e ≤ Ue, L

′
e ≥ Le for all other edges e .

We will bring this assumption to a contradiction proving the following claims: We show
that f is not in the MST T ′, that there exists a path P in U ′ connecting the two ends of
edge f without using the edges ei and f and that for all path edges p ∈ P we have p ≺ f

95

Chapter 5 Aspects of Uncertainty in Optimization Problems

with respect to the current iteration. The existence of such a path P means that the
cycle C could be modified in such a way that it still contains ei but instead of f only edges
that are ordered before f . This would lead to cycle C ′ 3 ei which is lexicographically
smaller than C. However, since C is the smallest cycle containing ei, these claims lead
to a contradiction to the assumption that ei and f are not a witness set.

We know from Lemma 5.2.16 that there is no always maximal edge in C. This means
that there exists a realization where the weight of f is greater than the weight of any
other edge in C. By Proposition 5.2.13 the edge f is not in any MST of that realization
and therefore not in T ′.

Let P be the unique path in T ′ connecting the ends of f . The path P does not contain
the edge f as f is not part of T ′ and we have U ′

p ≤ Lf for all p ∈ P . Since Uei > Lf , the
edge ei is also not in P .

By combining the fact that f is always nontrivial with the observation that U ′
p ≤ Lf for

all p ∈ P , we get
Lp ≤ L′

p ≤ U ′
p ≤ Lf < Uf

for all p ∈ P . Now, there are two cases: either p was nontrivial in the beginning, and
thus Lp < U ′

p, or p was trivial, i.e. Lp = L′
p = U ′

p = Up. Thus, we either have Lp < Lf or
Lp = Up ≤ Lf < Uf and therefore in both cases p ≺ f .
This means that there exits a cycle containing ei which is smaller than C. Since this
cannot be the case, we have a contradiction to our assumption.

By applying the last three lemmata we can now easily conclude the following result:

Theorem 5.2.18 Algorithm 14 is 2-update competitive.

Proof:
If ei and f exist, we know from Lemma 5.2.17 that they form a witness set of size two.

In line 14 we have the situation that ei is the unique element with maximum upper limit
in C and since ei did not close a cycle in Γ, there exists at least one other element e′ ∈ C
with Le′ > Lei . Lemma 5.2.15 states that in such cases ei forms a witness set of size one.

Due to Lemma 5.2.16 and the fact that after updating and reindexing the new index of
edge ei will again be at least i, the restarted algorithm would perform exactly the same
for all edges in positions 1 to i− 1. Thus, an explicit restart is not necessary.

It remains to show that Algorithm 14 is also correct:

Theorem 5.2.19 Algorithm 14 terminates and returns an MST of G.

96

5.2 Uncertainty Problems with Interval Data

Proof:
Again, without loss of generality we assume that the exact edge weights are distinct so
that there will only be one unique minimum spanning tree.

In the algorithm we only add an edge ei, if there exists another edge c ∈ C with Uei ≤ Lc,
where C is the best cycle containing ei. Since C is the smallest cycle w.r.t. ≺, we
know that for each cycle containing ei there always has to be an edge e′ whose lower
limit is at least the upper limit of e. We will now show using Proposition 5.2.14 that this
means that edge ei belongs to the MST for every realization. Here, two cases need to be
distinguished:

1. Uei = Lei = wei holds and we have wei ≤ Le′ . Due to the fact that the weights are
distinct we further have wei < we′ whether e′ was trivial or not.

2. Lei < wei < Uei ≤ Le′ holds and Proposition 5.2.14 can be applied for all realiza-
tions.

We omit an edge ei, if adding ei closes a cycle in Γ. Since Γ only consists of edges where
it is guaranteed, that they belong to the MST, the edge ei cannot be part of the MST.

The number of edges is finite and due to Lemma 5.2.16 an edge is considered at most
twice (once uncertain and once updated), the algorithm will eventually terminate and
the MST is returned.

Just as the algorithm proposed by Erlebach et al. [29], Algorithm 14 is 2-update com-
petitive. Its advantages over the former are discussed in Section 5.3 as it can be easily
extended to also work in the probabilistic setting introduced in that section.

Approximate MST

After the last few pages focused on the uncertain MST problem, we now analyze these
results in the context of our actual goal – the traveling salesman problem:
If the inputs are metric, an approximate TSP solution can be easily constructed from
an optimal MST solution (see e.g. Williamson and Shmoys [86, Theorem 2.12]). As the
edge-uncertainty-mst has a constant update competitive ratio, it seems reasonable
to use edge-uncertainty-mst as the basis of an update competitivity result for the
(approximate) TSP. In this case we have to compare the number of updates for the
MST problem with OPT of the corresponding TSP instance. Unfortunately, such a
comparison is much harder due to the structural differences between those two problems.
However, if there exists a general upper bound on the number of updates for any instance
of the edge-uncertainty-mst, this bound can directly be used to obtain such a bound
for corresponding TSP. Therefore, we will analyze next under which conditions such a
bound for the edge-uncertainty-mst exists:

97

Chapter 5 Aspects of Uncertainty in Optimization Problems

Lemma 5.2.20 There exist instances of the edge-uncertainty-mst problem where
OPT = Ω(n2) for any possible configuration.

Proof:
Consider the complete Graph G with the uncertainty area (0, 1) for all edges. For any
possible feasible configuration even the optimal algorithm needs to update all edges.

The edge-uncertainty-mst problem does not have a constant bound on the number
of updates and it is therefore not easily suited as the basis of an approximate TSP
algorithm as described in the last paragraph. Therefore, as a next step we will further
relax the problem such that an approximation of the MST is sufficient – the Approximate
edge-uncertainty-mst problem:
Configuration: an connected undirected graph G = (V,E)

a weight we ≥ 0 for every edge e ∈ E
Intervals: an open or trivial interval Ie for every edge e ∈ E
Goal: a spanning tree T whose weight is at most (1 + δ) times the

weight of an MST, where δ > 0 is given

For the analysis of the number of updates, we first consider the following example:

Example 5.2.21 The approximate EDGE-UNCERTAINTY-MST problem is
not update competitive:

A

B

The blue edges have a fixed known cost of 1. All edges between the sets A and B have the
open uncertainty interval (1,M). Only one edge e has weight 1 + ε while all the others
have weight M − ε, with ε < δ.

In this case the optimal update strategy only contains edge e, while any determinis-
tic algorithm not knowing the exact distances has to update all n

2 ·
n
2 edges to find a

(1 + δ)-approximation in the worst case.

The graph from Example 5.2.21 can also be used as a worst-case instance with respect
to the total number of updates required:

98

5.2 Uncertainty Problems with Interval Data

Corollary 5.2.22 There are approximate edge-uncertainty-mst instances where any
deterministic algorithm needs Ω(n2) updates to verify a solution.

In this context it does not make much sense to compare the updates required for the
approximate edge-uncertainty-mst problem with OPTexact: Algorithm 14 for the
exact edge-uncertainty-mst problem is update competitive and returns an optimal
solution which is obviously also a (1 + δ)-approximation.
However, we will revisit this idea in Section 5.3 within a slightly different uncertainty
setting.

Although the exact MST can be efficiently tackled in the uncertainty model, it still does
not provide us with a framework that can be easily extended for the TSP. It is therefore
necessary to also thoroughly analyze the traveling salesman problem itself.

5.2.3 Traveling Salesman Problem

The final problem we consider in this context is the Traveling Salesman Problem (TSP).
This leads to the following edge-uncertainty-tsp:
Configuration: a connected undirected graph G = (V,E)

a weight we ≥ 0 for every edge e ∈ E
Intervals: an open or trivial interval Ie for every edge e ∈ E
Goal: a tour T visiting every node exactly once whose cost

∑
e∈T we

is less than or equal to the cost of every other tour that visits
all the nodes

We first look at an example that shows that for the edge-uncertainty-tsp an update
competitive algorithm cannot exist.

Example 5.2.23 The EDGE-UNCERTAINTY-TSP is not update competitive:

0 0
1 + 2

n
(1, 4)

0

99

Chapter 5 Aspects of Uncertainty in Optimization Problems

The black edges have a fixed weight of 0. The red edges have uncertainty intervals of
(1, 4) while all the blue edges have a fixed weight of 1 + 2

n . Exactly one red edge e has
weight 3 and all the others have weight 1 + ε. This graph has exactly three Hamiltonian
Cycles:

1. The blue cycle using all the blue edges and then using the long black loop
2. The red cycle using all the red edges and the loop
3. The cycle that uses all blue and red edges but not the loop

Since the loop has a length of 0 and the colored edges have positive weight, the length of
the third cycle will always be longer than the length of the first two cycles. Thus, we only
need to compare the length of the red and the blue cycle. The blue cycle has a fixed length
of `BLUE = n

2 +1. For an optimal update strategy it is sufficient to only update edge e, as
this shows that the cycle using only the blue edges is the shortest: `BLUE < n

2+2 < `RED.
By choosing ε < 1

n we assure that even after updating any number of non-expensive edges
the red cycle could still be the shortest.

Furthermore, it is impossible to give a nontrivial upper bound on the number of updates
required:

Theorem 5.2.24 There are instances of the edge-uncertainty-tsp where OPT =
Ω(n2) for all possible configurations.

Proof:
Let Kn be the complete undirected graph with n ≥ 5. All the uncertainty intervals are
(1, 2) and have arbitrary weights. Let one optimal solution be denoted by

C := (v1, v2, . . . , vi−1, vi, vi+1, . . . , vj−1, vj , vj+1, . . . , vn−1, vn)

To prove that C actually is a shortest cycle, any optimal update strategy has to rule out
all other possibly shorter Hamiltonian cycles, i.e. it has to show that UC ≤ LC′ holds for
all other Hamiltonian cycles C ′. Since each uncertainty area is an open interval, this is
only possible by raising the lower bound LC′ on all other cycles. Next, we consider the
following cycles:

(v1, v2, . . . , vi−1, vj , vj+1, . . . , vn−1, vn, vi, vi+1, . . . , vj−1) ∀2 < i < j < n

All of these cycles differ from C in exactly three edges, namely (vi−1, vj), (vn, vi) and
(vj−1, v1) and these edges are different for every possible i, j with 2 < i < j < n. So,
to raise the lower bounds the optimal strategy needs to update at least one of the three
edges. Since there are exactly

(
n−3
2

)
possible ways of choosing i and j, at least

(
n−3
2

)
updates will be required.

100

5.2 Uncertainty Problems with Interval Data

Very similar to the uncertainty problems we discussed so far, we will now take a closer
look at the approximated version, i.e. the approximate edge-uncertainty-tsp:
Configuration: a connected undirected graph G = (V,E)

a weight we ≥ 0 for every edge e ∈ E
Intervals: an open or trivial interval Ie for every edge e ∈ E
Goal: a tour T visiting every node exactly once whose cost is within

a factor of (1 + δ) of the cost of a shortest tour that visits all
the nodes

Unfortunately, even the approximate version of the edge-uncertainty-tsp does not
have a usable upper bound on the number of updates. To show this, we give an instance
where any deterministic algorithm has to update order of n2 edges in the worst case,
while OPT = n.

Example 5.2.25 The approximate EDGE-UNCERTAINTY-TSP is not up-
date competitive:

All edges have uncertainty intervals of (1,M), where the blue edges have a weight of
1 + ε, while the black edges are close to M . For ε small enough it is clear that the
tour consisting of only the blue edges is a (1 + δ)-approximation. Therefore, the optimal
update strategy only needs to update n edges, while an deterministic algorithm needs to
update all

(
n
2

)
edges in the worst case. This leads to an update competitive ratio of Ω(n2)

n .

Corollary 5.2.26 There are instances of the approximate edge-uncertainty-tsp,
where any deterministic algorithm in the worst case needs Ω(n2) updates to verify a
solution.

As we already mentioned in the last section, that it is a very natural idea to find an
approximation for the TSP on the basis of an MST computation. We also showed that due
to the fact that no upper bound on the number of updates exits, it would be very difficult
to analyze the update competitive ratio. But the actual situation is even worse, as there
are instances where the edge-uncertainty-mst is much harder than the approximate
edge-uncertainty-tsp in terms of updates:

101

Chapter 5 Aspects of Uncertainty in Optimization Problems

Example 5.2.27 The EDGE-UNCERTAINTY-MST can require more updates
than the approximate EDGE-UNCERTAINTY-TSP:

The blue edges have a weight of 2 and all other edges have an uncertainty interval of
(1,M). The graph contains exactly one Hamiltonian cycle. For it the weight of all edges
is known and no updates are necessary. Any MST algorithm, on the other hand, would
need to update all Ω(n2) black edges, as connecting two nodes using any black edge could
be cheaper than a blue edge.

This results makes it clear that the uncertainty framework introduced in this section is not
sufficient to provide an update competitive algorithm for the TSP, as in this framework
the “perfect adversary” OPT is used to evaluate the number of updates.
In the next section we slightly weaken this criterion: By introducing probabilities on
the edges it allows us to talk about the expected number of updates. Now, the overall
performance of an algorithm no longer depends that much on one certain worst-case
instance.

5.3 Probabilistic Uncertainty

The observations in the last section showed that for every problem but the MST and
some very restricted shortest path problems we have no update competitivity and no
upper bound on the number of updates. In this section we therefore introduce a certain
notion of probability into our uncertainty. This leads to a slightly less general model, but
it still is a realistic version especially in the context of the WCP. It allows us to make
stronger observations about the number of required updates.

Definition 5.3.1 (Uncertainty problem with constant probability)
Each instance P of an uncertainty problem with constant probability for a given δ > 0
is a tuple (X, I, pδ, φ), where

102

5.3 Probabilistic Uncertainty

• I is an ordered set of intervals I = {I1, . . . , In}, with Ii ⊂ R for all Ii ∈ I,
• X is an ordered set of independent random variables X = {X1, . . . , Xn} with Xi

being a random variable with values in Ii and P(Xi ≤ inf(Ii) · (1 + δ)) ≥ pδ,
• and φ(X) is the set of solutions for P .

The pair (pδ, φ) is the same for all instances of a problem and can therefore be used
as a representation of the problem. The function φ is identical to the function of the
corresponding uncertainty problem with interval data.

For this setting we change the definition of updates slightly:

Definition 5.3.2 (Update)
Let P = (X, I, pδ, φ) be an instance of an uncertainty problem with constant probability
for a given δ > 0. For the set of uncertainty intervals I = {I1, . . . , In}, an update of
interval Ii, reveals the corresponding realization xi of the random variable Xi, i.e. after
the update the new set of uncertainty intervals is {I1, . . . , Ii−1, [xi, xi], Ii+1, . . . , In}.

The goal now is to find an algorithm that is able to verify an element of φ(X) by using a
certain number of updates. To assess the quality of such an algorithm for an uncertainty
problem with constant probability, we use the following four classifications. All of them
only take the number of updates into account, as in the last section, running times are
not considered.

Definition 5.3.3 (Expected number of updates)
Let P be an instance of an uncertainty problem with constant probability. Further, let
the random variable YA represent the number of updates required by algorithm A to
verify an element of φ(X). Now, E[YA] corresponds to the expected number of updates
for YA.

Definition 5.3.4 (Worst-case number of updates)
Let P be an instance of an uncertainty problem with constant probability. The number of
updates required by algorithmA in the worst case corresponds to the maximum number of
updates required for any instance of the corresponding uncertainty problem with interval
data.

Definition 5.3.5 (Expected update competitive ratio)
Let P be an instance of an uncertainty problem with constant probability. Further, let
the random variable YA represent the number of updates required by algorithm A to
verify an element of φ(X), while YOPT represents the number of updates needed by an
algorithm that knows every realization in advance. Now, E

[
YA

YOPT

]
corresponds to the

expected update competitive ratio of A.

103

Chapter 5 Aspects of Uncertainty in Optimization Problems

Definition 5.3.6 (Worst-case update competitive ratio)
Let P be an instance of an uncertainty problem with constant probability. Here, the
worst-case update competitive ratio of algorithm A is equal to the highest update com-
petitive ratio of algorithm A for any instance of the corresponding uncertainty problem
with interval data.

As uncertainty problems with constant probability are closely related to their correspond-
ing uncertainty problem with interval data, it is easy to see the following facts:

• Any correct algorithm A for an uncertainty problem with interval data can also
be used as an algorithm for the corresponding uncertainty problem with constant
probability.

• Any update competitivity result of A carries over as a worst-case result in this
model.

MST

The first problem we revisit is the edge-uncertainty-mst. For the exact case we
know that edge-uncertainty-mst with constant probability is worst-case 2-update
competitive (Theorem 5.2.18) and that there are instances where the number of updates
is always Ω(n2) (Lemma 5.2.20). Due to the fact that the problem is worst-case update
competitive we also know that it is update competitive in expectation.

Next, we take a look at the approximate edge-uncertainty-mst problem. We already
know that the problem is not worst-case update competitive (Example 5.2.21) and re-
quires Ω(n2) updates in the worst-case (Corollary 5.2.22). However, the probabilistic
setting now allows us to show some results on the expected number of updates.
For this purpose, we use a new algorithm as described in Algorithm 15. It is essentially
very similar to Kruskal’s algorithm (see for example Cormen et al. [17, Chapter 23]), but
only edges whose exact weights are close enough to their lower bounds are added.

Theorem 5.3.7 The Algorithm 15 terminates and returns a spanning tree whose cost is
within a factor of (1 + δ) of the cost of an MST of G = (V,E).
Proof:
Let us consider the following modified edge weights w′

e for each edge e ∈ E:

w′
e :=

{
Le if we ≤ Le · (1 + δ),
we otherwise.

By adding a small enough ε it is still possible to maintain open intervals. But in order
to avoid handling unnecessary ε, they have been omitted in the following.

104

5.3 Probabilistic Uncertainty

Algorithm 15: Approximation MST-Algorithm
Input: an undirected graph G = (V,E) with uncertain interval data on the edges
Output: a spanning tree in G

1 sort all edges such that e1 ≺ e2 ≺ · · · ≺ em;
2 let Γ = (V,∅) be without any edges;
3 i← 1;
4 while i ≤ m do
5 if ei closes a cycle in Γ then
6 ei is not in the MST;
7 i← i+ 1;
8 else
9 update ei;

10 if wei ≤ Lei · (1 + δ) then
11 add ei to Γ;
12 i← i+ 1;
13 else
14 reindex remaining edges;

15 return Γ

We note that, when the weights are modified to w′ and all other input data stays the
same, Algorithm 15 returns an MST with respect to w′: For w′ the algorithm only adds
edges whose weight is at their lower bound and the edges added are exactly the same edges
that Kurskal’s algorithm would add for the regular MST problem with weights w′. The
set of edges returned by Algorithm 15 is an MST with respect to w′ and thus definitely
a spanning tree of G. The weights w′ have further been constructed in such a way that
Algorithm 15 returns the same tree T no matter whether the input has the weights w or
the weights w′.
It remains to show that T is also a (1 + δ)-approximation of the MST M (w.r.t. w). As
the weights w′ only decrease the weights, we know that

∑
e∈T w′

e ≤
∑

e∈M we holds. This
leads to the following conclusion∑

e∈T
we ≤ (1 + δ)

∑
e∈T

w′
e ≤ (1 + δ)

∑
e∈M

we ,

which proves our claim.

Algorithm 15 finally allows us to formulate an upper bound on the number of updates

105

Chapter 5 Aspects of Uncertainty in Optimization Problems

for the MST problem under uncertainty:

Theorem 5.3.8 In expectation Algorithm 15 finds a (1+δ)-approximation with no more
than O(n) updates.

Proof:
Let Yk be the random variable which denotes the number of iterations that the algorithm
needs to find the k-th edge of the MST. If the algorithm picks an edge with trivial or
already update uncertainty area we have Ue = we = Le and P(we ≤ Le · (1+δ)) = 1 ≥ pδ.
If we assume that the algorithm always picks a not yet updated edge, we have

E[Yk] ≤
∞∑
i=1

i · (1− pδ)
i−1pδ =

1

pδ
.

Since all Yk are independent under these assumptions, we have that the algorithm needs
at most n−1

pδ
updates in expectation. If the algorithm happens to pick an already updated

edge, this edge is definitely part of the returned tree and no further iterations are necessary
for the k-th edge. Hence, the number of updates will only decrease.

Although Theorem 5.3.8 guarantees a linear number of updates in expectation, the update
competitive ratio, when compared with OPTexact for the exact MST problem, can still
be arbitrarily bad. Consider the following instance:

M

(1, 2)

This cycle graph has exactly one edge with large weight M , while all the other edges
have the uncertainty interval (1, 2). For M large enough, the MST always consist of all
edges but the edge with weight M and we have OPT = 0. Algorithm 15 on the other
hand updates all n− 1 smaller edges before adding them.

In the following we will therefore combine Algorithm 15 with the update competitivity
result from the last section. The resulting Algorithm 16 uses the same criteria as Algo-
rithm 14 to identify whether an edge is in a witness set or not. But if an updated edge
has a reveled weight close enough to the lower bound, it can directly be added to Γ.
As the 2-update competitivity follows directly from Theorem 5.2.18, we first show the
correctness of the algorithm.

106

5.3 Probabilistic Uncertainty

Algorithm 16: Approximation MST-Algorithm
Input: an undirected graph G = (V,E) with uncertain interval data on the edges
Output: a minimum spanning tree in G

1 sort all edges such that e1 ≺ e2 ≺ · · · ≺ em;
2 let Γ = (V,∅) be without any edges;
3 i← 1;
4 while i ≤ m do
5 if ei closes a cycle in Γ then
6 ei is not in the MST;
7 i← i+ 1;
8 else
9 let C be the best cycle, wrt ≺, containing ei;

10 if Uei > Le holds ∀e ∈ C \ {ei} then
11 let f ∈ C such that Uf = maxe∈C Ue;
12 update ei and f ;
13 if wei ≤ Lei · (1 + δ) then
14 add ei to Γ;
15 i← i+ 1;
16 else
17 reindex remaining edges;

18 else
19 add ei to Γ;
20 i← i+ 1;

21 return Γ

Theorem 5.3.9 Given an undirected uncertainty graph G, the Algorithm 16 terminates
and returns a spanning tree whose cost is within a factor of (1+ δ) of the cost of an MST
of G.

Proof:
The proof is very similar to the one of Theorem 5.3.7. We first consider the same modi-
fication w′ of the edge weights:

w′
e :=

{
Le if we ≤ Le · (1 + δ),
we otherwise.

We assume without loss of generality that the weights w′
e are distinct for every edge e ∈ E.

107

Chapter 5 Aspects of Uncertainty in Optimization Problems

We now have to show that Algorithm 16 returns an MST for the modified weights and that
it returns the same set of edges for the unmodified weights. After that we can apply the
same argumentation as in the proof of Theorem 5.3.7 to show that the algorithm finds a
(1 + δ)-approximation.

The algorithm adds an edge e, if its weight w′
e is at its lower bound (and does not close a

cycle) or if Ue ≤ maxe′∈C\{e} Le′ holds for all cycles C containing e. Due to the correctness
of Kruskal’s algorithm the first condition always adds edges which are in the MST for
the edge weights w′. For the second condition we have the same situation as in the proof
of Theorem 5.2.19 and by using the same argumentation, edge e must be in the MST for
the weights w′.

It is easy to see that Algorithm 16 returns the same spanning tree T whether the exact
weights are w or w′. Therefore, we can compare the weight of T with the weight of the
MST M with respect to w:∑

e∈T
we ≤ (1 + δ)

∑
e∈T

w′
e ≤ (1 + δ)

∑
e∈M

we .

Corollary 5.3.10 For any δ > 0 Algorithm 16 will never need more than twice as many
updates as OPTexact needs to solve the exact MST problem.

Proof:
Algorithm 16 never requires more updates than Algorithm 14, since it uses the same crite-
rion to identify edges that need to be update. As Algorithm 14 is a 2-update competitive
algorithm for the edge-uncertainty-mst, the claim holds.

Remark: Unfortunately, Algorithm 16 is not update competitive:

(1, 1 + 2δ) 1

(1,M)

(1, 1 + 2δ)1

(1,M)

0

In this example the spanning tree containing only the blue edges has cost less than
4 · (1 + δ), while any spanning tree will cost at least 4.
Algorithm 16, on the other hand, updates at least one of the edges with interval (1, 1+2δ).

This complication can be avoided by adding a preprocessing step to the algorithm in
which it checks whether any updates are necessary or not.
As in the uncertainty setting, we are not concerned about running times, this can be

108

5.3 Probabilistic Uncertainty

achieved by enumerating all spanning trees and then comparing their bounds. If OPT = 0
holds, there must be a spanning tree whose upper bound is not more than (1 + δ) times
the lower bound of all other trees.
After the addition of such a step, the resulting algorithm is O(n)-update competitive in
expectation.

Using Algorithm 16 we showed that in this setting the approximate edge-uncertainty-
mst problem in expectation only needs a linear number updates and it is alsoO(n)-update
competitive in expectation. This gives us the foundation we need to find and update
competitive algorithm for the approximate TSP.

TSP

The last problem we consider in the probabilistic setting is the edge-uncertainty-tsp.
We already know that there are instances of the edge-uncertainty-tsp with constant
probability where the number of updates is Ω(n2) (Theorem 5.2.24) and that the problem
has a worst-case update competitive ratio of Ω(n) (Example 5.2.23).

For the approximate edge-uncertainty-tsp with constant probability we have that
it is not worst-case update competitive (Example 5.2.25) and also Ω(n2) updates are
required in the worst-case (Corollary 5.2.26).

The graph used in Example 5.2.23 to show that the TSP is not update competitive only
contains one edge with large weight, while all the other edge weights are very close to
their respective lower bounds. This fact can be used to derive results on the expected
update competitive ratio:

Lemma 5.3.11 In expectation the edge-uncertainty-mst with constant probability
has an update competitive ratio which is at least arbitrarily close to 1

1−pδ
.

Proof:
In Example 5.2.23 we constructed an instance for the general edge-uncertainty-mst
where the algorithm needs to find one edge with large weight, while the other edges are
arbitrarily close to their lower bound. We can now convert this instance into an instance
with constant probability:
The red edges have weight 1+ε with a probability of pδ and a weight of 3 with a probability
of 1− pδ. To find a verifiable solution, any algorithm, either has to update all the n

2 red
edges or reveal an edge weight of 3. As all the red edges are indistinguishable for any
algorithm A not knowing the exact weights, it has to update edges until an edge with
high weight is found. On the other hand, if there exists at least one edge with weight 3,

109

Chapter 5 Aspects of Uncertainty in Optimization Problems

we have OPT = 1; if there is no such edge exists, we have OPT = n
2 .

Let the random variable YA represent the number of updates required by algorithm A
and let YOPT be the random variable for the number of updates of an algorithm knowing
the weights. For the expected update competitive ratio we have

E
[

YA
YOPT

]
= E [YA] · E

[
1

YOPT

]
.

Since
E
[

1

YOPT

]
= 1 ·

(
1− p

n
2
δ

)
+

2

n
· p

n
2
δ

converges against 1, while E [YA] goes to 1
1−pδ

, we also get that the expected update

competitive ratio E
[

YA
YOPT

]
converges (from below) against 1

1−pδ
for n→∞.

However, there might be instances where the update competitive ratio is worse than this.

This uncertainty setting with constant probability is related to the well-known field of
random graphs. Here, certain properties of graphs based on different random models are
analyzed. An overview of the theory behind such graphs can for example be found in
Bollobás [13].

In the following we analyze the approximate edge-uncertainty-mst with constant
probability in the context of graphs where an edge only exist with a certain probability.
To connect an uncertainty problem with constant probability with random graphs, we
assume that an edge only exists if it is within a factor of (1 + δ) of its lower bound:

Theorem 5.3.12 Let G be the complete undirected graph with n nodes. Let the intervals
on all arcs be [L,∞] and for every edge e let its random variable Xe have P(Xe = L) = p
and P(Xe =∞) = 1− p.
Then there exists an algorithm which either finds a Hamiltonian path with finite cost
between two specified vertices of G, or shows that no such path exists. The algorithm runs
in expected time cn

p and uses storage cn, where c is an constant.

Proof:
Thomason [84] shows the existence of an algorithm that finds a Hamiltonian path in
O(np) in expectation on random graphs where an edge exists with the probability p.

Corollary 5.3.13 Considering the following uncertainty problem with constant probabil-
ity:

110

5.4 Uncertainty in Metric Space

Configuration: the complete undirected graph G = (V,E) with n nodes,
a random variable Xe for every edge e ∈ E that fulfills the
conditions for an uncertainty problem with constant probability

Intervals: open or trivial intervals with identical lower bounds, i.e. L =
inf(Ie) for all the edges e ∈ E

Goal: a Hamiltonian cycle whose cost is within a factor of (1+ δ) of
the weight of a shortest Hamiltonian cycle

There exists an algorithm which finds a Hamiltonian cycle only containing edges which
are at most a factor of (1 + δ) away from their lower bound or shows that no such cycle
exists. It updates O(n) edges in expectation.
If the algorithm succeeds, the resulting Hamiltonian cycle is a (1 + δ)-approximation.

Proof:
The algorithm from Theorem 5.3.12 can be used to find such a Hamiltonian cycle. Since
the algorithm has an expected linear running time, this results in O(n) updates, even if
the algorithm requires constantly many update in every step.

Since in our case we have an edge probability that does not depend on n, the following
holds for the uncertainty problem described in Corollary 5.3.13 according to Komlós and
Szemerédi [57]:

lim
n→∞

P(G has a Hamiltonian cycle that only uses cheap edges) = 1 .

These findings suggest that there might be special cases of the approximate edge-
uncertainty-tsp with constant probability that can be solved performing O(n) up-
dates in expectation. Such an algorithm is introduced in the next section.

5.4 Uncertainty in Metric Space

By introducing the probability model we could give an algorithm that is able to find a
(1 + δ)-approximation of the optimal MST with order of n updates in expectation. This
is an important prerequisite to our goal of being able to approximate the TSP under
uncertainty.

It is known for approximation algorithms for the TSP in the regular setting, i.e. without
uncertainty, that for any α > 1 there does not exist an α-approximation algorithm for
the TSP on n cities, if we assume that P 6= NP (see e.g. Williamson and Shmoys [86,
Theorem 2.9]). It is therefore necessary to restrict the input to metric instances in order

111

Chapter 5 Aspects of Uncertainty in Optimization Problems

to obtain approximation results. To make use of these results in our uncertainty setting,
we also have to apply this restriction to the corresponding uncertainty problems with
constant probability.
Hence, we only consider uncertainty problems with interval data on undirected metric
graphs, i.e. weighted complete graphs G = (V,E) where for each triple i, j, k ∈ V

w{i,k} ≤ w{i,j} + w{j,k}

holds. This restriction can easily be added to problems with interval data, but it gets
a little more complicated for uncertainty problems with constant probability. Here, the
main difficulty consists in the fact that due to the required metric structure the random
variables are no longer independent. This leads to the following problem definition:

Definition 5.4.1 (Metric uncertainty problem with constant probability)
Each problem instance P for a given δ > 0 is a tuple (G, I, pδ, φ), with

• G = (V,E) being a complete undirected graph,
• I = {I1, . . . , Im} being an ordered set of intervals, one for each edge e ∈ E, such

that for each Ii and all wi ∈ Ii the set I1×· · ·×Ii−1×{wi}×Ii+1×· · ·×Im contains
an element which corresponds to metric edge weights on G,

• pδ ∈ [0, 1],
• and φ(W) being a function that for every ordered set of weights W = {w1, . . . , wm}

returns the set of solutions.
The goal is to find a solution that is contained in φ(W) for each possible set of edge
weights W = {w1, . . . , wm} such that W is metric and we ∈ Ie for all edges e ∈ E. The
pair (pδ, φ) is the same for all instances of a problem and thus represents the problem
itself.

In the metric setting the definition of updates differs from the definition in the general
uncertainty setting. In addition to revealing an edge weight, we also have to adapt the
other edge uncertainty intervals accordingly in order to assure that for a certain interval Ie
their does not exist a realization we which violates the triangle inequalities. In particular,
this assures that the probability P(we ≤ inf(Ie)(1 + δ)) can always be positive.

Definition 5.4.2 (Update)
Let P = (G, I, pδ, φ) be an instance of a metric uncertainty problem with constant
probability for a given δ. An update of an edge interval Ie transforms P into a new
feasible instance P ′ of the same problem where the weight of edge e is “revealed”. More
formally, this means an update of Ie leads to P ′ = (G, I ′, pδ, φ). Here, the interval I ′e is
set to [we, we], for we chosen from Ie at random with respect to P(we ≤ inf(Ie)(1+δ)) ≥ pδ.
For all other edges f ∈ E \ {e} the interval I ′f ⊆ If is defined in such a way that
I ′ = {I ′1, . . . , I ′m} is a feasible set of intervals for the given graph G.

112

5.4 Uncertainty in Metric Space

The criteria which we use to measure the quality of a given algorithm for a certain problem
are the same as in the last section, namely expected/worst-case number of updates and
expected/worst-case competitive ratio.

Remark: Since metric uncertainty problems with constant probability are in some sense
a special case of the uncertainty models introduced in the previous section, any correct
algorithm for those models can also be applied in this setting. However, the update
competitive ratio might change, because in the metric setting updates are more “powerful”
as they reveal information not only about the updated arc.
Also the worst-case results on the number of updates can change, as the worst case might
no longer be feasible in the metric setting.

In the next paragraphs we therefore revisit the problems introduced in Section 5.2 in the
metric context and show that in this setting they are not considerably easier to solve in
terms of updates. Although the knowledge of an underlying metric graph might seem to
provide additional structure, a problem can even get substantially harder in the metric
setting:

Example 5.4.3 The metric EDGE-UNCERTAINTY-MST problem with con-
stant probability is not worst-case update competitive:

(1, 5)

1 1

This complete undirected graph contains two complete subgraphs each having n
2 nodes

and blue edges. Each of these subgraphs has exactly one black node while the other nodes
are white. The blue edges have a fixed weight of 1, all the other edges have an uncertainty
interval of (1, 5).
The actual weight we for each edge e ∈ E depends on its end points:

w{u,v} =

4 if u and v are black,
3 if either u or v is black,
2 otherwise.

113

Chapter 5 Aspects of Uncertainty in Optimization Problems

The weights of the graph are metric and there exist exactly (n2 − 1) · (n2 − 1) edges with
weight 2. Updating an edge has an influence on the bounds of other edges:

• When the edge with weight 4 is updated, all edges connecting a black and a white
node now get uncertainty intervals of [3, 5) and all edges connecting two white nodes
get the interval [2, 4].

• When an edge with weight 3 is revealed, only the uncertainty intervals of the adja-
cent edges changes and they become [2, 4].

• When an edge with weight 2 is revealed, all adjacent edges get uncertainty intervals
of (1, 3], the other edges get (1, 4].

The closed upper and lower bounds of the new uncertainty intervals can be interpreted
as a result of the triangle inequalities and thus do not contradict our general assumption
of open uncertainty intervals.
The optimal update strategy consists of the edge with weight 4 and any edge with weight 2
as this leads to a situation where all other edges implicitly need to have a weight greater
than 2. Since furthermore updating any single edge does not lead to an instance where
a solution can be verified, we have OPT = 2.
For any deterministic algorithm there is an instance in which the first n

2 − 1 updates
always reveal weights of 2. As these updates do not change any lower bounds of other
edges, the algorithms needs to update at least n

2 edges in the worst case.

The bound on the number of updates, however, stays the same in the metric case:
Lemma 5.4.4 There are instances of the metric edge-uncertainty-mst problem with
constant probability where OPT = Ω(n2) holds for any possible configuration.
Proof:
Consider the complete graph G with uncertainty interval (1, 2) for every edge. The
optimal algorithm needs to update all edges, since the information that can be derived
from the triangle inequality does not strengthen any bound.

Example 5.2.21 (which was used to show that the approximate edge-uncertainty-mst
problem with constant probability is not worst-case update competitive) is not metric
and can therefore not be used in this setting. However, the main result for this problem
– the expected update competitive – still holds.
Corollary 5.4.5 The approximate metric edge-uncertainty-mst problem with con-
stant probability has an expected update competitive ratio of O(n) and there exists an
deterministic algorithm that only needs O(n) updates in expectation.
Proof:
Algorithm 16 can also be used in this setting and the number of required updates will
only decrease. Therefore, the algorithm, together with the preprocessing step to check
whether any updates are necessary, still is O(n) update competitive.

114

5.4 Uncertainty in Metric Space

Again, the TSP is considered next. The example that we used in the last section to show
that it is not worst-case update competitive relies on the existence of nonmetric weights.
Therefore, we have to find new examples to show this property in the metric setting:

Example 5.4.6 The metric EDGE-UNCERTAINTY-TSP with constant prob-
ability is not worst-case update competitive:
We use exactly the same graph with the same weights and uncertainty intervals as in the
last Example 5.4.3. For this graph we know that after the edge with weight 4 has been
updated, all edges connecting the two blue subgraphs have an actual weight of at least 2.
Therefore, it is now sufficient to reveal this edge and two further edges with weight 2.
This gives us a Hamiltonian cycle with the shortest possible length of 2 ·

(
n
2 − 1

)
+ 2 · 2

and we have OPT = 3.
Any deterministic algorithm, on the other hand, has to update at least n

2 edges in the
worst case to find an edge whose weight is not 2.

The requirement that the graph must be metric does not considerably improve the update
competitive ratio. Moreover, there are metric instances where even an algorithm knowing
the exact weights has to perform order of n2 updates:

Corollary 5.4.7 There are instances for the metric edge-uncertainty-tsp with con-
stant probability where an optimal update strategy contains Ω(n2) updates for all possible
configurations.

Proof:
The instance used in the proof of Theorem 5.2.24 is a complete graph only containing
uncertainty intervals of (1, 2), i.e. no additional information can be derived from the
triangle inequalities for any update and the argumentation stays the same.

Thus, even in the metric setting there does not exist a nontrivial bound on the number
of updates required to solve the exact TSP and focusing on the approximate metric
edge-uncertainty-mst is reasonable:
In the metric setting we can finally use the previous results on MST problems to formulate
an update competitive algorithm for the approximate metric TSP:

Theorem 5.4.8 For the edge-uncertainty-tsp with constant probability we can find
a (2 + δ)-approximation with no more than O(n) updates in expectation.

Proof:
According to Corollary 5.4.5 we can find a spanning tree T with only O(n) updates in
expectation, whose cost is within a (1 + δ

2) factor of the cost coptMST of an optimal MST.
We now replace each edge of T with two copies of itself. The resulting graph has a

115

Chapter 5 Aspects of Uncertainty in Optimization Problems

cost of at most 2 · (1 + δ
2) · c

opt
MST . This Eulerian graph can now be transformed into a

Hamiltonian cycle H by only decreasing its cost. Since the cost of an optimal TSP tour
is not larger than the cost of any Hamiltonian cycle, it follows that this cycle has a cost
of cH ≤ (2 + δ) · coptMST ≤ (2 + δ) · coptTSP .
Since the graph is metric, the transformation of the MST into the Hamiltonian cycle H
can be performed without any additional updates.

Theorem 5.4.8 shows that for the metric setting there exists an algorithm that calculates
a (2 + δ)-approximation with O(n) updates in expectation. By adding a preprocessing
step that checks whether for the given instance OPT ≥ 1 holds (e.g. by enumerating all
Hamiltonian cycles and then comparing their bounds), this approach gives us an expected
update competitive ratio of O(n). This competitive ratio is best possible, if we assume
that not only the edges but also their weights of an optimal solution need to be returned
by the algorithm. This would be the case, if the algorithm is used as part of the WCP,
where the calculated tours also need to be scheduled afterwards.

116

5.5
O

verview
5.5 Overview

The following table summarizes the results of this chapter:
The first line of every cell denotes the competitive ratio, e.g., 1-Ω(n)-competitive means that OPT = 1, while for
any deterministic algorithm there are instances for which Ω(n) updates are needed.
In the models with probability WC indicates worst-case competitive ratio and E indicates results in expectation.

The last line gives an upper bound on the number of updates that an algorithm needs for any instance, i.e. there
are instances where any algorithm not knowing the exact weights is guaranteed to need that many updates.

model
problem uncertainty probability metric
exact MST 1-2-competitive WC 1-2-competitive WC 2-Ω(n)-competitive

#updates Ω(n2) #updates Ω(n2) #updates Ω(n2)
Theorem 5.2.18, Lemma 5.2.20 Theorem 5.3.8, Lemma 5.2.20 Example 5.4.3, Lemma 5.4.4

approx MST 1-Ω(n2)-competitive E 1-O(n)-competitive E 1-O(n)-competitive
WC 1-Ω(n2)-competitive

#updates Ω(n2) E #updates O(n) E #updates O(n)
Example 5.2.21, Corollary 5.2.22 Theorem 5.3.8 Corollary 5.4.5

exact TSP 1-Ω(n)-competitive WC 1-Ω(n)-competitive WC 3-Ω(n)-competitive
E ≥ 1- 1

1−pδ
-competitive

#updates Ω(n2) #updates Ω(n2) #updates Ω(n2)
Example 5.2.23, Theorem 5.2.24 Lemma 5.3.11, Theorem 5.2.24 Example 5.4.6, Corollary 5.4.7

approx TSP n-Ω(n2)-competitive WC n-Ω(n2)-competitive (2 + δ)-approximation in E #updates O(n)
#updates Ω(n2) #updates Ω(n2)
Example 5.2.25, Corollary 5.2.26 Example 5.2.25, Corollary 5.3.13 Theorem 5.4.8

117

Chapter 6

Subway Challenge

Guinness World Records is probably the world’s most famous reference book for curious
and impressive world records for human achievement. It lists the following record:

Fastest time to travel to all New York City Subway stations
The fastest time to travel the entire New York City Subway is 22 hr 26 min
02 sec and was achieved by Andi James, Steve Wilson, Peter Smyth, Martin
Hazel, Glen Bryant and Adham Fisher (all UK) between 18 and 19 November
2013 (Guinness World Records [46]).

This world record shows:
Visiting all subway stations of a metropolitan area in the shortest time possible is some-
thing so extraordinary that it deserves “mankind’s” recognition and an impressive world
record certificate by Guinness World Records. Although its practical relevance and ap-
plication might not be obvious at first, it still is an interesting optimization problem. At
second glance, however, it becomes obvious that for different variations of this challenge
many well-known routing problems can be applied.

The Subway Challenge or Rapid Transit Challenge is a challenge in which the participants
have to traverse an entire subway system in the shortest time possible. However, there
are several possible interpretations on how a subway network should be traversed.

In the following chapter we will always represent this problem by a graph. The time
needed to go from one part of the network to another is modeled as arc weights. Therefore,
only the average traveling or changing time for this particular situation is taken into
account and not the actual subway schedule. Fortunately, the results showed that due
to the size of such subway systems the average waiting times come very close to these
expected times.

A variety of routing problems related to the subway challenge exist: First, there is the
whole class of Arc Routing Problems (ARPs). In contrast to “regular” routing problems,

119

Chapter 6 Subway Challenge

arc routing problems focus more on the properties of the used arcs and the route as a
whole.

Probably, the two most central arc routing problems are (including their variants):
• Chinese Postman Problem (CPP), where one has to find the shortest tour visiting

all arcs of a graph,
• Rural Postman Problem (RPP), a generalization of the CPP, where only a subset

of arcs needs to be visited.
Variants of ARPs arise naturally in many practical applications such as mail delivery,
garbage collection, milk delivery, network maintenance or road de-icing (e.g., Eiselt et al.
[27, 28], Eglese [26] or Dror [24]). Unfortunately, most of these applications cannot
be modeled as pure CPP or RPP instances as various additional problem dependent
characteristics are involved (see e.g., Kim et al. [56]).

Also, closely related to the Subway Challenge is the Traveling Salesman Problem (TSP)
and in particular the Generalized Traveling Salesman Problem (GTSP), in which the
nodes are partitioned into clusters and the problem is to find the shortest tour visit-
ing every cluster exactly once. This problem was introduced by Henry-Labordere [49]
and Srivastava et al. [82] and the authors presented a simple dynamic programming for-
mulation for it. The GTSP is a useful model for many practical problems, e.g., network
location, or post-box collecting, and can be used to transform certain arc routing prob-
lems into node routing problems. For an overview see e.g. Laporte et al. [61].

In this chapter we discuss a model for the Subway Challenge, that takes traveling and
changing/waiting times into account. Based on this model we will then formulate two
basic problem types: In the first problem the rider is required to cover all lines, i.e.
traverse every distinct segment in any direction. For the second – which models the
world record challenge – every station complex needs to be visited.
These two variants also correspond to the classes defined by the Amateur New York
Subway Riding Committee [74] created by Peter Samson in 1966. These rules were the
foundation for the many world record attempts in the following years. Peter Samson also
introduced a third class. Its only difference is the definition of a station in contrast to a
station complex. From a mathematical point of view, however, this can be modeled as
the same problem.

In the first section we formally introduce the two different problems. In the next sections
we will present different solution approaches for the special structure induced by the
subway challenge. Finally, all of these approaches are tested and evaluated on the subway
network of Berlin and the results are given in the last section.

120

6.1 Basic Model

6.1 Basic Model

Since the underlying graph corresponds to a transportation network, we have the following
structure:

• A set of stations S.
• A set of subway lines L, where each line L ∈ L is an ordered set of stations. We

assume that each line is operated in both directions and that each line consists of
at least two stations.

Now, this problem can be modeled as a directed graph G = (V,A) with the following prop-
erties: For every line L ∈ L and all stations s ∈ L we always have a forward node ~vs,L ∈ V
and a backward node ~vs,L ∈ V . We further define Vs :=

⋃
L∈L:s∈L{~vs,L, ~vs,L} to be the

set of all nodes belonging to the station s ∈ S.
Next, we add the arcs corresponding to the segments used by a subway line between two
stations. For all s ∈ L we have the arc (~vs,L, ~vs′,L), if s has the successor s′ in L. Analo-
gously, we also add the arc (~vs,L, ~vs′′,L) for s′′ being the predecessor of s. This set of arcs
that only connects nodes of the same line and direction is denoted by R and its elements
are called segment arcs.
Furthermore, we add the arc (u, v) for every possible pair of nodes in each Vs. These arcs
correspond to line or direction changes and they are called changing arcs.

Every arc a ∈ A has a weight ta > 0. If a is contained in R, this represents the travel
time and if a /∈ R holds, the value ta corresponds to the time needed for changing in this
particular station. The resulting graph is called subway graph of L and S.

A
B

C

DE

F

Red Line
Blue Line

(a) Subway map with two lines

~A

~A

~B

~B

~C

~C

~D

~D

~E

~E

~C

~C

~F

~F

(b) Corresponding subway graph

Figure 6.1: Example for the construction of a subway graph

121

Chapter 6 Subway Challenge

An example of such a subway graph for a very small instance can be found in Figure 6.1,
where we have two lines and one changing station.

Using this setting, we will now consider the following two problems:

Definition 6.1.1 (Segment problem)
Let G = (V,A) be a subway graph with positive arc weights ta ∈ Q. The segment problem
is to find the cheapest (not necessarily elementary) tour T containing each arc a ∈ R at
least once.

Definition 6.1.2 (Station problem)
Let G = (V,A) be a subway graph with positive arc weights ta ∈ Q. The station problem
is to find the cheapest tour T so that for every station s ∈ S at least one node in Vs is
contained in T .

In the next two sections we will take a closer look at those two problems and present
efficient solution approaches for all of them.

6.2 Segment Problem

The segment problem corresponds to the following situation: Given a subway transporta-
tion network, every segment between two stations, i.e. every line and every direction,
needs to be visited at least once. Changing between two different lines and between
different directions of the same line takes a certain amount of changing time. The goal
is to minimize the total time needed for such a tour.

This problem is a special case of the Directed Rural Postman Problem (DRPP). The
DRPP is NP-hard [64] and so is the segment problem.

Theorem 6.2.1 The segment problem is NP-hard.

Proof:
The decision problem corresponding to the asymmetric TSP is NP-complete, e.g. Schri-
jver [75, Theorem 58.1]. We will now reduce the ATSP to our segment problem.
Let the directed graph G = (V,A) and cost function c : A → Q≥0 be the input for the
ATSP, we now construct the subway graph G′ that has |V | + 1 stations and |V | lines,
one for each v ∈ V . Each line consists of exactly two stations, one that is exclusive for
this line and one station h that is shared among all lines. For every arc (u, v) ∈ A we
assign the arc in G′ that connects the line corresponding to u with the line corresponding
to v a weight of c(u,v). All other arcs in G′ that connect nodes of h get a weight higher
than the limit L of the ATSP instance. The remaining arcs, i.e. the changing arcs in

122

6.2 Segment Problem

the stations s ∈ S \ {h}, each get a weight of 1. Those arcs will always be included
in any feasible solution of the segment problem. This transformation can be performed
in polynomial time and we know that, if the segment problem corresponding to G′ has
a solution with value less than 3 · |V | + L, this gives us a solution to the initial ATSP
instance with value less than L.

4 3

1 2

h

1 2

34

Figure 6.2: Example for the reduction of the ATSP to the segment problem. The
segment arcs are given in blue and arcs with large weight are not shown.

We will now present an integer programming formulation that uses dynamic constraint
generation and subtour elimination to efficiently solve the segment problem.

6.2.1 ILP Formulation

The segment problem is closely related to the asymmetric TSP. But there are two major
differences: There is a certain subset of arcs that needs to be visited and it is in gen-
eral allowed that some nodes (and arcs) are visited more than once. To accommodate to
these differences we will use a very flexible IP method. Our approach is roughly based
on a method proposed by Fischetti et al. [35], where the authors present an IP formu-
lation which is used to solve real-world ATSP problems. An overview of different inter
programming formulations for the TSP can also be found in Orman and Williams [67].

123

Chapter 6 Subway Challenge

The following IP-formulation corresponds to such a standard model for the ATSP:

min
∑
a∈A

caxa (ATSP-IP)

s.t.
∑

a∈δ+(v)

xa = 1 ∀v ∈ V (6.1a)

∑
a∈δ−(v)

xa = 1 ∀v ∈ V (6.1b)

∑
(u,v)∈A
u∈C,v∈C

x(u,v) ≤ |C| − 1 ∀C ⊂ V,C 6= ∅ (6.1c)

xa ∈ N≥0 ∀a ∈ A

In ATSP-IP we have 2|V | − 2 subtour elimination constraints (6.1c). Since this number
gets huge even for a small set of nodes, we have to generate and add those constraints
dynamically. This step is called separation: Let x∗ be an optimal solution to the linear
relaxation of ATSP-IP without the constraints (6.1c). Now we have to check whether x∗

violates any of the constraints. If this is the case, this particular constraint is added to
the problem and the optimization process is started again. Once no violated constraint
can be found the solution is feasible.
The separation problem induced by (6.1c) can be solved as a minimal cut problem:

Lemma 6.2.2 Let x ∈ QA
≥0 be a solution that satisfies the constraints (6.1a) and (6.1b),

then
∑

(u,v)∈A
u∈C,v∈C

x(u,v) ≤ |C| − 1 holds for a valid subset C, if and only if it satisfies∑
a∈δ+(C) xa ≥ 1.

Proof:
We have

|C| =
∑

(u,v)∈A
u∈C

xa =
∑

(u,v)∈A
u∈C,v∈C

x(u,v) +
∑

a∈δ+(C)

xa .

By applying this for (6.1c), we get∑
(u,v)∈A
u∈C,v∈C

x(u,v) ≤
∑

(u,v)∈A
u∈C,v∈C

x(u,v) +
∑

a∈δ+(C)

xa − 1

and thus ∑
a∈δ+(C)

xa ≥ 1 . (6.2)

124

6.2 Segment Problem

Since all the steps are equivalent transformations, the other direction can be shown
analogously.

Fortunately, it is possible to separate these inequalities in polynomial time using multiple
max-flow computations (see e.g. Applegate et al. [5], Hong [51]).

We will now use ATSP-IP as a basis to formulate a model for our segment problem:

min
∑
a∈A

taxa (Segment-IP)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v ∈ V (6.3a)

∑
a∈δ+(C)

xa +
∑

a∈δ−(C)

xa ≥ 2 ∀C ⊂ V,C 6= ∅ (6.3b)

xa ≥ 1 ∀a ∈ R (6.3c)
xa ∈ N≥0 ∀a ∈ A

We first have to add the very simple constraints (6.3c) to ensure that all segment
arcs a ∈ R are visited. As for the segment problem some nodes can be visited more than
once, we need constraints (6.3a) to enforce that the indegree of each node equals the out-
degree. Due to the degree constraints we further have that

∑
a∈δ+(C) xa =

∑
a∈δ−(C) xa

and thus the constraints (6.3b) are equivalent to (6.2).

After Segment-IP has been solved we still need to convert the resulting variable assign-
ment into a tour. This can be done using the following graph:

Definition 6.2.3 (Solution graph)
Let x̂ ∈ NA

≥0 be a feasible integral solution of Segment-IP corresponding to the subway
graph G = (V,A). We construct the directed multigraph Gx̂ = (V ′, A′), where V ′ = V
and for each a ∈ A with x̂a ≥ 1 the set A′ contains x̂a-many copies of that arc. The
graph Gx̂ is also called solution graph of G.

Such a solution graph has the following properties:

Lemma 6.2.4 For any feasible integral solution x̂ of Segment-IP, the resulting solution
graph Gx̂ is
(a) Eulerian,
(b) connected,
(c) and contains every required arc.

125

Chapter 6 Subway Challenge

Proof:
(a) A directed graph is Eulerian, if every vertex has equal indegree and outdegree [58,

Chapter 2.4]. As the constraints (6.3a) enforce exactly this property, the graph Gx̂

will definitely be Eulerian.
(b) Since in any subway graph every node v has exactly one outgoing or incoming segment

arc, every node of the solution graph Gx̂ is the head or tail of at least one arc.
Analogously to ATSP-IP, the constraints (6.3b) eliminate all subtours. Hence, the
graph Gx̂ is connected.

(c) follows directly from the constraints (6.3c).

Therefore, every Euler tour of Gx̂ corresponds to a feasible solution to the segment
problem. All Euler tours in Gx̂ have the same cost, which is equal to the value of the
objective function in Segment-IP. These observations can now be combined to show the
correctness of the given IP model.

Theorem 6.2.5 The model described as Segment-IP is a correct formulation for the
segment problem on directed subway graphs.

Proof:
It only remains to show, that any feasible tour T of the segment problem also corresponds
to a feasible integer solution to Segment-IP: Let x ∈ NA

≥0 be the variable assignment
where xa is set to be the number of times arc a has been visited in T or zero if a is not
in T . The assignment x is integral and fulfills all the constraints in Segment-IP.

Remark: Since the station problem is a special case of the directed rural postman prob-
lem, any algorithm for the DRPP can also be used to solve the station problem. E.g.
Christofides et al. [15] described a branch-and-bound algorithm using Lagrangean Relax-
ation for the DRPP.

6.2.2 Implementation Details

To efficiently solve the separation problem we first transform the directed subway graph G
into an undirected graph Gsep. Let x∗ be the current fractional solution to Segment-IP, we
set the capacities in Gsep to c{u,v} = x∗(u,v)+x∗(v,u). Using this, we have that the value of a
cut C in Gsep is exactly

∑
a∈δ+(C) x

∗
a+

∑
a∈δ−(C) x

∗
a with respect to the original graph G.

Therefore, the most violated constraint of type (6.3b) can be identified by finding a global
minimum cut C in Gsep, i.e. a subset of nodes C ⊂ V,C 6= ∅ such that

∑
e∈δ(C) ce is

minimized.

126

6.3 Station Problem

There are several ways to find a global minimum cut: The easiest is to compute a min-
imum s-t cut for all choices of s, t ∈ V using the max-flow min-cut theorem. Thus, the
separation can be performed in polynomial time.

Remark: Since the constraints of the LP relaxation of Segment-IP can be separated in
polynomial time, the entire LP relaxation can be solved in polynomial time. This is
due to the fact that optimization is equivalent to separation, a fundamental result by
Grötschel, Lovász, and Schrijver [44]. However, as for the segment problem we solve an
integer program, this does not contradict Theorem 6.2.1.

For our implementation we use the algorithm of Stoer-Wagner [83] for the global min-cut
computation, which performs in O(n3).

After an optimal solution x̂ has been found, we construct Gx̂. Any Euler tour in Gx̂

corresponds to an optimal solution of the segment problem. To find such an Euler tour
we use Algorithm 17, which was first described by Hierholzer [50] in 1873. The algorithm
runs in linear time.

Algorithm 17: Finding an Euler tour
Input: a directed Eulerian graph G = (V,A)
Output: an Euler tour in G

1 Algorithm EulerCircuit()
2 E ← ∅;
3 u← any node in the graph G;
4 FindCircuit(u,E);
5 return E;

1 Procedure FindCircuit(u,E)
2 foreach outgoing arc (u, v) do
3 remove (u, v) from G;
4 FindCircuit(v,E);
5 E ← E ∪ {u};

6.3 Station Problem

The station problem corresponds to the following situation: Given a subway transporta-
tion network every station complex needs to be visited at least once. However, in this

127

Chapter 6 Subway Challenge

problem it does not matter which line and direction is used when the station is visited.
Changing between two different lines and between different directions of the same line
takes a certain amount of changing time. The goal is to minimize the total time needed
for such a tour.

This problem is strongly related to the asymmetric generalized TSP (see e.g. Noon and
Bean [66]) and is also NP-hard.

Theorem 6.3.1 The station problem is NP-hard.

Proof:
We reduce the NP-complete metric TSP (Schrijver [75]) to the station problem:
Let the undirected complete graph G = (V,E) and cost function c : E → Q≥0 be the
input for the TSP, we now construct the subway graph G′, that has |E| lines and |V |
stations, one for each v ∈ V . For every edge {u, v} ∈ E we have a line consisting of exactly
two stations, one corresponding to u and the other one corresponding to v. For this line
we set the travel time to c{u,v} in both directions. All changing arcs in G′ get a changing
time of 1. We note that, since the length function satisfies the triangle inequality, any
optimal solution of G′ will be an elementary tour, containing no node more than once
and changing exactly once in every station.
This transformation can be performed in polynomial time and if the station problem
corresponding to G′ has a solution with value less than |V |+ L, it gives us a solution to
the initial TSP instance with value less than L.

1 2

3 4

1

3

2

4

Figure 6.3: Example for the reduction of the metric TSP to the station problem.
Changing arcs are not shown.

We will now introduce three formulations for the station problem: The first formula-
tion transforms the problem into a regular symmetric TSP instance, which can then be

128

6.3 Station Problem

solved using a generic solver like Concorde [4]. The other two are integer programming
formulations, one with exponentially many subtour elimination constraints, which need
to be separated, and the last one is a flow-based formulation with polynomially many
constraints.

6.3.1 TSP transformation

A station problem is very similar to the generalized traveling salesman problem where the
stations correspond to clusters. The crucial difference between those two problems is that
in the GTSP every cluster needs to be visited exactly once. Due to the special structure
of a subway graph this is not the case for stations in the station problem. Changing in
a station requires us to visit at least two nodes in that station and thus two nodes of a
cluster are visited.

Nevertheless, Gamrath [38] explained how it is possible to transform the station problem
into an equivalent GTSP instance. The main idea is to construct a directed graph G′

with the same set of stations and nodes and then add an arc (u, v) for every pair of
nodes u, v ∈ V with a weight that corresponds to the length of the shortest u-v path in
the original subway graph G. After that, the arcs that stay in one cluster are removed
from G′. Line changes in G′ are now implicitly given in the newly introduced arcs and
every cluster needs to be visited exactly once. Next, we can apply the transformation
described in Noon and Bean [66] to solve the GTSP instance as an ATSP. By applying
this transformation the number of nodes stays the same, but the cluster arcs will get a
very large weight, weakening the bounds derived from the LP-relaxation.

The resulting ATSP can either be solved directly or transformed into a symmetric TSP
first and then solved by Concorde. Computational results of this approach can also be
found in [38].

6.3.2 Subtour ILP Formulation

In this section we present an integer programming formulation that operates directly on
the subway graph and does not require any transformation.

The station problem corresponds to a variation of the GTSP, where every cluster can
be visited more than once and the underlying graph corresponds to a subway graph.
Fischetti et al. [34] studied the symmetric generalized traveling salesman problem, where
each cluster needs to be visited at least once, and described a branch-and-cut algorithm
that can solve instances involving up to 400 nodes. Our approach is similar but focuses
on the special structure of the subway graph.

129

Chapter 6 Subway Challenge

We will give the formulation first and then discuss under which assumptions this model
is correct:

min
∑
a∈A

taxa (Station-IP)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v ∈ V (6.4a)

∑
a∈δ+(Vs)

xa ≥ 1 ∀s ∈ S (6.4b)

∑
a∈δ+(C)

xa +
∑

a∈δ−(C)

xa ≥ 2 ∀C ⊂ V,C and C contain a station (6.4c)

xa ∈ N≥0 ∀a ∈ A

The formulation is somehow similar to the Segment-IP: The first sets of constraints assure
that the solution only consists of a collection of subtours and due to constraints (6.4b)
every station is visited at least once by some subtour. The constraints (6.4c) are also
valid, since they make sure that every station is connected to all the other stations.

Let x̂ ∈ NA
≥0 be a feasible integral solution for Station-IP. We say a set of tours corre-

sponds to the solution x̂, if it contains exactly one Euler tour for each of the connected
components of Gx̂ introduced in Definition 6.2.3. Such tours always exist, since the out-
degree of all nodes equals the indegree.

Remark: There are several different possibilities for an Euler tour of one component,
but they always have the same costs and use the same arcs. Therefore, they are all in
some sense equivalent.

Unfortunately, the constraints (6.4c) in Station-IP are in general not sufficient. Figure 6.4
shows such an example: The optimal solution of Station-IP uses all three lines in both
directions but never changes to different lines. Therefore, we have to make the additional
assumption, that there is a line L which has a terminal station that is not visited by any
other line.

Remark: For the general case the approach described by Fischetti et al. [34] can be
used. Here, the authors show that for the symmetric case the following inequalities are
sufficient to eliminate all the subtours:∑

e∈δ(C)

xe ≥ 2 · (yi + yj − 1) ∀C ⊂ V,C 6= ∅,∀i ∈ C, j ∈ C , (6.5)

130

6.3 Station Problem

M M

M

Figure 6.4: Example of the station problem without exclusive stations

where yv is the binary variable indicating whether node v ∈ V is visited. It is easy to see
that the constraints (6.4c) of Station-IP are contained in (6.5): Every station needs to be
visited and the set C as well as C in (6.4c) always contain at least on complete station.
Thus, there will always be an i ∈ C and a j ∈ C such that both yi and yj are one and
the inequality corresponds to the constraint in (6.4c).

Theorem 6.3.2 The model described as Station-IP is a correct formulation for an in-
stance of the station problem, if there is at least one terminal station t ∈ S that is not a
changing station, i.e. t is only contained in one line.

To prove this we first show that the existence of such a terminal station t guarantees that
in any solution there always exists a station that is only visited by a single tour. This
observation is then sufficient to show the theorem.

Lemma 6.3.3 If there is at least one terminal station t ∈ S that is not a changing
station, then for any feasible solution x̂ of Station-IP there exist tours corresponding to
x̂ such that the station t is only visited by a single tour.

Proof:
Let in the following L denote the only line that contains t. The station t needs to be
visited, i.e.

∑
a∈δ+(Vt)

x̂a ≥ 1 holds. Since Vt only consists of of the nodes ~vt,L and ~vt,L,
the arc (~vt,L, ~vt,L) connecting these nodes must have an x̂-value of at least one. Hence,
all the nodes of Vt are in the same component of Gx̂ and belong to the same tour.

Remark: It also follows from the proof of Lemma 6.3.3 that the constraints (6.4c) are
not required for the observation to be true. Thus, it also holds for an optimal solution
to Station-IP containing only an arbitrary subset of the constraints (6.4c).

131

Chapter 6 Subway Challenge

This fact can now be used to proof the theorem. But first, we state the following technical
lemma, which is solely used in the proof of Theorem 6.3.2:

Lemma 6.3.4 If for any feasible solution x̂ of Station-IP the solution graph Gx̂ has one
station s ∈ S that lies in only one of its components, then x̂ corresponds to a single tour
visiting all stations.

Proof:
Let us assume this is not the case and we always have multiple subtours. Let us denote
the tour that visits s by T . The tour T does not visit all stations in G. If this was the
case, then the graph Gx̂ would consist of exactly one component and it would thus be
possible to represent the solution x̂ by one single tour. Therefore, we also have a sta-
tion s′ that is not visited by T .
By taking the graph G with capacities of x̂a for all a ∈ A and by further introducing a
super source node for the cluster s and a super sink for s′, let now C denote the mini-
mum s-s′ cut between those two super nodes. Since s and s′ are only visited by different
subtours, the capacity of C will be zero and therefore violate one of the constraints (6.4c).
This contradicts the assumption that x̂ is a feasible solution for Segment-IP.

Using this, we can finally show the theorem:

Proof of Theorem 6.3.2: We have to show the three following facts: 1. Let T be a tour
that visits all stations, then there exists a feasible solution to Station-IP that represents
the tour T . 2. Any optimal solution of Station-IP corresponds to a feasible tour for the
station problem. 3. The objective value of Station-IP corresponds to the time needed for
that particular tour.

1. Finding the variable assignment can be trivially achieved by setting xa to the num-
ber of times arc a ∈ A appears in T or setting it to zero if a 6∈ T . Since T is a
single tour visiting all stations we have that every station is connected to any other
station via at least two arcs and, thus, the constraints (6.4c) are always fulfilled.
Also all the other constraints are valid for this solution.

2. According to Lemma 6.3.3, there exists a station s ∈ S that is only visited by
single tour. Now, Lemma 6.3.4 can be applied to conclude that such a solutions
corresponds to one tour visiting all stations.

3. Since in the objective function we sum up the times (traveling or changing) needed
for every edge that is used, this corresponds to the time needed for a tour.

Although Station-IP is not valid for general subway graphs (e.g. Figure 6.4), the re-
striction is very reasonable for real-world subway networks. For example, the subway
networks of Tokyo, New York City, London, and Berlin all have such a terminal station.

132

6.3 Station Problem

The most realistic issue that might occur, are so-called “express lines”, i.e. lines that only
visit a subset of stations of other lines. If every regular line also has an express version,
this formulation could not be applied, unless some of the express lines are removed from
subway graph.

Implementation Details

The number of constraints for the Station-IP is exponential. The constraints (6.4c) should
therefore be separated. Following the proof of Lemma 6.3.4 this can be achieved in the
following way:

• Given an integer solution x̂, build the corresponding graph Gx̂ and compute its
connected components.

• Identify a station s that only lies in one component of Gx̂.
• If there exists another station s′ that has none of its nodes in that component, find

the minimum cut C that contains s entirely but no node of s′ using a super source
and super sink and a max-flow algorithm. This cut will have a capacity of less than
two.

• Create the constraint corresponding to C and reoptimize.
The first step can be performed in O(|V |+ |A|), after that the cut can be computed using
generic push-relabel max-flow computations in O(|V |3). However, for the implementation
of this formulation we use an approach that comes closer to the separation of the segment
problem so that more of the code base can be reused.

Our separation approach again relies on minimum global cut computations:
For an integer solution x̂, we first construct the undirected graph G′ with capacities equal
to the sum of the x̂ value of the corresponding arcs. Then, in order to avoid generating
cuts containing only unvisited nodes, these unvisited nodes are connected to one visited
node of their station. A global min-cut computation on G′ results to a set of nodes C that
violates a constraint in (6.4c). This approach is also formally described in Algorithm 18.

Lemma 6.3.5 Let x̂ ∈ QA
≥0 be a solution that satisfies the constraints (6.4a) and (6.4b),

then x̂ violates (6.4c) for a subset C, if C is returned by Algorithm 18 and it satisfies all
the constraints (6.4c), if Algorithm 18 returns the empty set.

Proof:
We consider the case where Algorithm 18 returns a cut C first: Since unused nodes of
any station have been connected (with capacity two) to one visited node of that station,
we know that the set C as well as C each contain at least one complete station. As this
cut C also has a capacity of less then two, the constraint in (6.4c) corresponding to that
subset C is violated.

133

Chapter 6 Subway Challenge

Algorithm 18: Separation of the station problem using global min-cut
Input: a subway graph G = (V,A) and a solution x̂
Output: a violated cut C

1 construct the directed graph G′ = (V,E) of G;
2 foreach {u, v} ∈ E do
3 c{u,v} ← x̂(u,v) + x̂(v,u);
4 foreach station s ∈ S do
5 find a node vs ∈ Vs that has an arc (vs, u) in G with u 6∈ Vs and x̂(vs,u) > 0;
6 foreach node v ∈ V do
7 if v has no outgoing arc in G with x̂a > 0 then
8 c{v,vs} ← 2, where s is the station of v;

9 C ← global minimum cut in G′ with capacities c;
10 if neither C nor C is empty and c(C) < 2 then
11 return C;
12 else
13 return ∅;

If Algorithm 18 returns the empty set, this means that all stations are connected and
thus none of the constraints (6.4c) can be violated.

Therefore, the separation approach described in Algorithm 18 is correct and can be used
to dynamically generate subtour constraints until an optimal solution of Station-IP has
been found.

6.3.3 Flow-based ILP Formulation

In this section we present a polynomial size formulation for the station problem. The
advantage of such a formulation is that it can be solved using state-of-the-art IP solvers
without any problem specific implementations. Here, the subtour constraints are replaced
by a flow based concept. Similar approaches have already been applied for a variety of
other combinatorial problems, e.g., for the Steiner Tree Problem [68], the TSP [16] or
for a distance constrained Vehicle Routing Problem [72]. In Reuther [72] the author also
uses a flow base approach to solve many of the instances of the TSPLIB [71], where this
approach leads to very good LP-bounds.

134

6.3 Station Problem

As a prerequisite we have to identify a node d that needs to be visited in any feasible
solution. For a clearer notation, we now define the set N := V \ {d} and the set S′ :=
{s ∈ S : d /∈ Vs}. If the subway graph contains a terminal station t that is not a changing
station, we can choose any node of Vt for d. If no such node exists, one has to formulate
and solve the IP for any node of a fixed station.

The idea of the flow-based model is the following:
For every node v ∈ N we find a flow fv,d from v to d. Since every station s ∈ S needs
to be visited at least once, the combined outflow out of Vs needs to be at least 1 and
as flows the fv,d have to satisfy the flow conservation. A feasible tour must now visit at
least all the arcs that carry flow. This can be formulated in the following mixed integer
program:

min
∑
a∈A

taxa (FIP)

s.t.
∑

a∈δ+(u)

fv,d
a −

∑
a∈δ−(u)

fv,d
a = 0 ∀v ∈ N, u ∈ N \ {v} (6.6a)

∑
v∈Vs

∑
a∈δ+(Vs)

fv,d
a −

∑
v∈Vs

∑
a∈δ−(Vs)

fv,d
a ≥ 1 ∀s ∈ S′ (6.6b)

xa ≥ fv,d
a ∀v ∈ N, a ∈ A (6.6c)∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = 0 ∀v ∈ V

∑
a∈δ+(Vs)

xa ≥ 1 ∀s ∈ S

xa ∈ N≥0 ∀a ∈ A

fv,d
a ∈ Q≥0 ∀a ∈ A, v ∈ N

FIP has O(|V |3) variables and O(|V |3) constraints.
The first constraints (6.6a) and (6.6b) ensure that the outflows are indeed flows and
behave as stated before. The constraints (6.6c) link the flow with the actual arc variables
and the remaining constraints are then exactly the same as in Station-IP.

This model implicitly contains all subtour constraints used in Station-IP:

Lemma 6.3.6 The LP-Relaxation of FIP implies the subtour elimination constraints∑
a∈δ+(C)

xa ≥ 1

135

Chapter 6 Subway Challenge

for every cut C ⊂ V , where C and C each contain at least one complete station.

Proof:
Assume that (x, f) with x ∈ NA

≥0 and f ∈ QA×N
≥0 is a feasible solution of the LP-relaxation

of FIP, but ∑
a∈δ+(C)

xa < 1

holds for a feasible cut C ⊂ V , where C as well as the complement C contain at least
one complete station.
Without loss of generality, let d ∈ C. As C contains at least one complete station s, we
have due to (6.6b) that f contains flow from nodes in Vs to d 6∈ C with combined value
of at least one. As the variables xa are at least as big as the individual flow values on a,
they also have to sum up to at least one along the cut. This contradicts the assumption.

Theorem 6.3.7 The model described as FIP is a correct formulation for the station
problem on directed subway graphs.

Proof:
To show: 1. Let T be a tour that visits all stations, then there exists a feasible solution
to FIP that represents T . 2. Any optimal solution of FIP corresponds to a feasible tour
for the station problem. 3. The objective value of FIP corresponds to the time needed
for that particular tour.

1. Finding the variable assignment can be trivially achieved by setting xa to the num-
ber of times arc a ∈ A appears in T or setting it to zero if a 6∈ T . For every node
v ∈ N we set the corresponding fv,d so that it matches the tour T with a flow of
one. Since T visits every station, (6.6b) is also satisfied.

2. According to Lemma 6.3.6, FIP implicitly contains all the constraints (6.4c). All
the other constraints of Station-IP are explicitly included and since Station-IP is a
correct formulation, so is FIP.

3. The objective function is exactly the same as in Station-IP.

Although FIP is a correct formulation and can thus be used to solve the station problem,
its LP relaxation does not lead to nearly as good bounds as the flow based approach for
the TSP described by Reuther [72]. For the station problem the constraints for the flow
always involve sums over many nodes and arcs, while for the TSP a flow to and from
a node nicely corresponds to the resulting tour. Thus, this approach takes considerably
longer (many hours for the subway network used in our experiments in Section 6.5) to
solve than Station-IP with dynamic subtour elimination.

136

6.4 Preprocessing

6.4 Preprocessing

The subway graph constructed in Section 6.1 contains many arcs and nodes that are
never used or redundant, therefore a preprocessing step to remove those arcs is favorable.
We will first consider the arcs that represent changes from one direction of the line L to
the other direction:

Lemma 6.4.1 In any optimal solution to the segment problem or the station problem a
change of direction will never occur

• between the first station of a line and the first changing station
• or between the last changing station and the terminal.

Proof:
In both problems the last station in every direction needs to be visited. The only way
to get there from a different line is via the closest changing station. Any change of
direction between those two stations, therefore, means that the solution contains a cycle
on which every node is visited more than once. Removing this cycle would thus improve
the solution.

A changing arc a will only be used, if tail(a) has a incoming segment arc and head(a)
has an outgoing segment arc. Thus, all changing arcs not fulfilling this criterion can be
removed as well.

6.5 Computational Results

The computational experiments have been performed for the subway network of Berlin1

– the largest subway system in Germany. It has a total of 170 stations, of which 19 are
changing stations, and it consists of 9 lines. As the line U55 is currently not connected
to any other subway lines, its three stations have been omitted.

After preprocessing this results in an graph with 286 nodes and 666 arcs. The travel
times in the graph correspond to the original times of the subway network (as given
on www.bvg.de). The time required for changing into a new line or for changing the
direction of one line has been set identically on all changing arcs and has been varied
to test different scenarios. All the instances have been solved using CPLEX 12.04 on an
Intel Xeon E5-2630 CPU clocked at 2.6 GHz using only one thread.
The results of the integer programming models with dynamic constraint generation can
be found in the tables 6.1 and 6.2. The first line corresponds to a realistic changing time

1Berliner Verkehrsbetriebe (BVG) www.bvg.de

137

www.bvg.de
www.bvg.de

Chapter 6 Subway Challenge

of 5 minutes which comes very close to the actual time needed on average. For the second
instance, the changing times are set to a large value, so that the number of changes gets
minimized. Similar, in the last line the changing times are set to ε which minimizes the
actual time spend riding in trains.

changing time tour length riding time changes computation
5 min 595 min 460 min 27 203 ms

1000 min 23,494 min 494 min 23 70 ms
0.001 min 440 min 440 min 41 53,885 ms

Table 6.1: Results for the station problem of the Berlin subway network

changing time tour length riding time changes computation
5 min 708 min 578 min 26 2405 ms

1000 min 24,614 min 614 min 24 47 ms
0.001 min 574 min 574 min 28 33 ms

Table 6.2: Results for the segment problem of the Berlin subway network

The optimal tours for the realistic changing times (5 min) are shown on pages 139 and
140. The segments used in each of these tours have also been visualized using map data
provided by the OpenStreetMap project. Segments used once are shown in blue, while
segments used multiple times are red.
These results show, that with the given approaches it is possible to solve Subway Chal-
lenge problems for real-world networks in a matter of seconds. The rapid transit chal-
lenge for Berlin, where every station complex needs to “touched” at least once, can be
performed in about 595 min. If the goal is the minimization of the changes – either be-
tween directions or between different lines – a value of 23 changes can be achieved. If
only the time spend on a moving train is considered, 440 min are required.

138

6.5 Computational Results

Map data © OpenStreetMap contributors, CC-BY-SA

Start Line Destination Time (m)

Zoologischer Garten U9 Nauener Platz 11
Nauener Platz U9 Leopoldplatz 18
Leopoldplatz U6 Alt-Tegel 36
Alt-Tegel U6 Alt-Mariendorf 80
Alt-Mariendorf U6 Hallesches Tor 97
Hallesches Tor U1 Warschauer Straße 112
Warschauer Straße U1 Nollendorfplatz 133
Nollendorfplatz U4 Innsbrucker Platz 144
Innsbrucker Platz U4 Bayerischer Platz 151
Bayerischer Platz U7 Rudow 186
Rudow U7 Hermannplatz 209
Hermannplatz U8 Hermannstraße 218
Hermannstraße U8 Wittenau 259
Wittenau U8 Alexanderplatz 286
Alexanderplatz U5 Hönow 324
Hönow U5 Alexanderplatz 362
Alexanderplatz U2 Pankow 378
Pankow U2 Ruhleben 431
Ruhleben U2 Bismarckstraße 446
Bismarckstraße U7 Rathaus Spandau 469
Rathaus Spandau U7 Berliner Straße 499
Berliner Straße U9 Rathaus Steglitz 510
Rathaus Steglitz U9 Spichernstraße 524
Spichernstraße U3 Krumme Lanke 548
Krumme Lanke U3 Wittenbergplatz 575
Wittenbergplatz U1 Uhlandstraße 583
Uhlandstraße U1 Kurfürstendamm 589
Kurfürstendamm U9 Zoologischer Garten 595

Instance 6.1: Optimal solution for the station problem

139

http://www.openstreetmap.org/copyright

Chapter 6 Subway Challenge

Map data © OpenStreetMap contributors, CC-BY-SA

Start Line Destination Time (m)

Zoologischer Garten U9 Osloer Straße 12
Osloer Straße U8 Alexanderplatz 28
Alexanderplatz U2 Pankow 44
Pankow U2 Nollendorfplatz 78
Nollendorfplatz U4 Innsbrucker Platz 89
Innsbrucker Platz U4 Nollendorfplatz 100
Nollendorfplatz U3 Krumme Lanke 129
Krumme Lanke U3 Nollendorfplatz 158
Nollendorfplatz U1 Uhlandstraße 168
Uhlandstraße U1 Hallesches Tor 184
Hallesches Tor U6 Alt-Mariendorf 201
Alt-Mariendorf U6 Alt-Tegel 245
Alt-Tegel U6 Mehringdamm 278
Mehringdamm U7 Rathaus Spandau 317
Rathaus Spandau U7 Rudow 379
Rudow U7 Möckernbrücke 409
Möckernbrücke U1 Warschauer Straße 425
Warschauer Straße U1 Nollendorfplatz 446
Nollendorfplatz U2 Ruhleben 470
Ruhleben U2 Alexanderplatz 512
Alexanderplatz U5 Hönow 550
Hönow U5 Alexanderplatz 588
Alexanderplatz U8 Hermannstraße 607
Hermannstraße U8 Wittenau 648
Wittenau U8 Osloer Straße 664
Osloer Straße U9 Rathaus Steglitz 692
Rathaus Steglitz U9 Zoologischer Garten 708

Instance 6.2: Optimal solution for the segment problem

140

http://www.openstreetmap.org/copyright

Chapter 7

Conclusion

We proposed an exact approach for the welding cell problem that combines two classical
fields of mathematical optimization: discrete and continuous optimization. The continu-
ous part – the computation of optimal collision-free trajectories – is computationally much
more expensive than most of the aspects of the discrete optimization process and only es-
timated distance can be found efficiently. This aspect also incorporates uncertainty into
our problem, as the number of exact trajectory computations needs to minimized while
the optimality of our solution approach should still be maintained.

This thesis aims to build a bridge between the practical and theoretical aspects of the
welding cell problem with high determination cost. Although uncertainty in general is
an aspect that has been extensively discussed in many different facets, this particular
framework of uncertainty is still fairly new. Our main theoretical result explores some of
the most famous combinatorial optimization problems within this framework to combine
them into an algorithm that is guaranteed to find a (2 + δ)-approximation for the TSP
that only requires O(n) edge updates in expectation.

On the practical side it was our goal to provide an approach that can handle WCP
instances of practical relevant scales. For this we developed a program that efficiently
combines the continuous optimization routines into a branch-and-price framework. Due
to the power and flexibility of column generation, a seamless integration of optimal tra-
jectory control is possible so that no time-consuming restarts or regeneration of existing
variables are necessary. Aside from this combination, especially the computational per-
formance of the underlying combinatorial pricing problem has been discussed. We pro-
posed a label setting algorithm for this shortest path problem with forced time windows.
By introducing new data structures for the storage of discrete time windows and for the
efficient handling of queries, this algorithm performs fast enough for an efficient pricing
algorithm.

The results in the context of the WCP are completed by solution approaches for the
famous Rapid Transit Challenge, where the entire subway network of a metropolitan

141

Chapter 7 Conclusion

area needs to be traversed as fast as possible. Here, techniques that were originally
developed for a WCP preprocessing strategy can be used for a branch-and-cut approach
that computes the optimal tour for the Berlin subway challenge in less than a second.

We hope that this work helps to show the benefits of “interdisciplinary” projects, as most
real-word challenges cannot be solved by one scientific field of research alone.

142

Bibliography

[1] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Program-
ming Computation, 1:1–41, July 2009.

[2] J. Andrews and J. A. Sethian. Fast marching methods for the continuous traveling
salesman problem. Proceedings of the National Academy of Sciences, 104:1118–1123,
2007.

[3] Y. P. Aneja, V. Aggarwal, and K. P. Nair. Shortest chain subject to side constraints.
Networks, 13:295–302, 1983.

[4] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Concorde TSP solver, 2006.
URL http://www.math.uwaterloo.ca/tsp/concorde/.

[5] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Sales-
man Problem – A Computational Study (Princeton Series in Applied Mathematics).
Princeton University Press, 2007.

[6] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity flow problems. Operations Research, 48:
318–326, 2000.

[7] J. Beasley and N. Christofides. An algorithm for the resource constrained shortest
path problem. Networks, 19:379–394, 1989.

[8] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, 2009.

[9] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1st edition, 1997.

[10] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,
2011.

[11] R. Bohlin. Robot Path Planning. Chalmers University of Technology, 2002.

XI

http://www.math.uwaterloo.ca/tsp/concorde/

BIBLIOGRAPHY

[12] N. Boland, J. Dethridge, and I. Dumitrescu. Accelerated label setting algorithms
for the elementary resource constrained shortest path problem. Operations Research
Letters, 34:58–68, 2006.

[13] B. Bollobás. Random graphs. In Modern Graph Theory, volume 184 of Graduate
Texts in Mathematics, pages 215–252. Springer, 1998.

[14] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for
geometric computing with uncertainty. Theory of Computing Systems, 38:411–423,
2005.

[15] N. Christofides, V. Campos, A. Corberán, and E. Mota. An algorithm for the rural
postman problem on a directed graph. In G. Gallo and C. Sandi, editors, Netflow
at Pisa, volume 26 of Mathematical Programming Studies, pages 155–166. Springer,
1986.

[16] A. Claus. A new formulation for the travelling salesman problem. SIAM Journal on
Algebraic Discrete Methods, 5:21–25, 1984.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press Cambridge, third edition, 2009.

[18] W. Dargie and C. Poellabauer. Fundamentals of Wireless Sensor Networks – Theory
and Practice. John Wiley & Sons, 2010.

[19] M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations research, 40:342–354,
1992.

[20] J. Desrosiers and M. Lübbecke. A primer in column generation. In G. Desaulniers,
J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 1–32. Springer,
2005.

[21] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by column
generation. Networks, 14:545–565, 1984.

[22] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. Journal
of the ACM, 40:1048–1066, 1993.

[23] M. Dror. Note on the complexity of the shortest path models for column generation
in VRPTW. Operations Research, 42:977–978, 1994.

[24] M. Dror. Arc Routing – Theory, Solutions, and Applications. Springer, 2000.

XII

BIBLIOGRAPHY

[25] I. Dumitrescu and N. Boland. Improved preprocessing, labeling and scaling algo-
rithms for the weight-constrained shortest path problem. Networks, 42:135–153,
2003.

[26] R. W. Eglese. Routeing winter gritting vehicles. Discrete applied mathematics, 48:
231–244, 1994.

[27] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part I: The
chinese postman problem. Operations Research, 43:231–242, 1995.

[28] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The rural
postman problem. Operations Research, 43:399–414, 1995.

[29] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Computing
minimum spanning trees with uncertainty. In Proceedings of the 25th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS ’08), pages 277–288,
2008.

[30] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the
median with uncertainty. In Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing (STOC ’00), pages 602–607, 2000.

[31] T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing
shortest paths with uncertainty. Journal of Algorithms, 62:1–18, 2007.

[32] Federal Ministry of Education and Research (BMBF), Germany. Project of the
future: Industry 4.0, 2012. URL http://www.bmbf.de/en/19955.php.

[33] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen. An exact algorithm for the
elementary shortest path problem with resource constraints: Application to some
vehicle routing problems. Networks, 44:216–229, 2004.

[34] M. Fischetti, J. J. Salazar Gonzalez, and P. Toth. A branch-and-cut algorithm for
the symmetric generalized traveling salesman problem. Operations Research, 45:
378–394, 1997.

[35] M. Fischetti, A. Lodi, and P. Toth. Solving real-world ATSP instances by branch-
and-cut. In M. Jünger, G. Reinelt, and G. Rinaldi, editors, Combinatorial Opti-
mization – Eureka, You Shrink!, volume 2570 of Lecture Notes in Computer Science,
pages 64–77. Springer, 2003.

[36] H. Flordal, D. Spensieri, K. Akesson, and M. Fabian. Supervision of multiple in-
dustrial robots: optimal and collision free work cycles. In Proceedings of the 13th
annual IEEE International Conference on Control Applications (CCA ’04), pages
1404–1409, 2004.

XIII

http://www.bmbf.de/en/19955.php

BIBLIOGRAPHY

[37] M. Gamache, F. Soumis, D. Villeneuve, J. Desrosiers, and E. Gelinas. The prefer-
ential bidding system at Air Canada. Transportation Science, 32:246–255, 1998.

[38] G. Gamrath. Verallgemeinerung des Chinesischen Postbotenproblems. Bachelor
thesis, Technische Universität Berlin, 2013. In German.

[39] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel. Dynamic routing of auto-
mated guided vehicles in real-time. In Mathematics – Key Technology for the Future,
pages 165–177. Springer, 2008.

[40] T. J. Gellert and F. G. König. 1D vehicle scheduling with conflicts. In Proceedings
of the 13th Workshop on Algorithm Engineering and Experiments (ALENEX ’11),
pages 107–115, 2011.

[41] M. Gerdts. Optimal Control of ODEs and DAEs. Walter de Gruyter, 2012.

[42] M. Gerdts, R. Henrion, D. Hömberg, and C. Landry. Path planning and collision
avoidance for robots. Numerical Algebra, Control and Optimization, 2:437–463, 2012.

[43] C. Goerzen, Z. Kong, and B. Mettler. A survey of motion planning algorithms from
the perspective of autonomous UAV guidance. Journal of Intelligent and Robotic
Systems, 57:65–100, 2010.

[44] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1:169–197, 1981.

[45] M. Grötschel, R. Borndörfer, and A. Löbel. Duty scheduling in public transit. In
W. Jäger and H.-J. Krebs, editors, Mathematics – Key Technology for the Future,
pages 653–674. Springer, 2003.

[46] Guinness World Records. Fastest time to travel to all New York City Subway
stations, 2013. URL http://www.guinnessworldrecords.com/world-records/
travelling-new-york-city-subway-in-shortest-time-(underground). Ac-
cessed: 2014-12-13.

[47] M. Gupta, Y. Sabharwal, and S. Sen. A generalized query model for uncertain data,
2010. URL http://www.cse.iitd.ernet.in/~gmanoj/paper/uncertainity.pdf.

[48] G. Gutin and A. Punnen, editors. The Traveling Salesman Problem and Its Varia-
tions, volume 12 of Combinatorial Optimization. Springe, 2007.

[49] A. Henry-Labordere. The record balancing problem: A dynamic programming solu-
tion of a generalized traveling salesman problem. RIRO, B-2:43–49, 1969.

[50] C. Hierholzer. Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne
Unterbrechung zu umfahren. Mathematische Annalen, 6:30–32, 1873.

XIV

http://www.guinnessworldrecords.com/world-records/travelling-new-york-city-subway-in-shortest-time-(underground)
http://www.guinnessworldrecords.com/world-records/travelling-new-york-city-subway-in-shortest-time-(underground)
http://www.cse.iitd.ernet.in/~gmanoj/paper/uncertainity.pdf

BIBLIOGRAPHY

[51] S. Hong. A Linear Programming Approach for the Traveling Salesman Problem. PhD
thesis, Johns Hopkins University, 1972.

[52] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual, 2014. URL http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html.

[53] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, J. Desrosiers, and M. Solomon, editors, Column Generation, pages
33–65. Springer, 2005.

[54] D. W. Johnson and E. Gilbert. Minimum time robot path planning in the presence
of obstacles. In Proceedings of the 24th annual IEEE Conference on Decision and
Control (CDC ’85), pages 1748–1753, 1985.

[55] S. Kahan. A model for data in motion. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing (STOC ’91), pages 265–277, 1991.

[56] B.-I. Kim, S. Kim, and S. Sahoo. Waste collection vehicle routing problem with time
windows. Computers & Operations Research, 33:3624–3642, 2006.

[57] J. Komlós and E. Szemerédi. Limit distribution for the existence of Hamiltonian
cycles in a random graph. Discrete Mathematics, 43:55–63, 1983.

[58] B. Korte and J. Vygen. Combinatorial Optimization – Theory and Algorithms.
Springer, 2002.

[59] C. Landry, R. Henrion, D. Hömberg, M. Skutella, and W. A. Welz. Task assign-
ment, sequencing and path-planning in robotic welding cells. In Proceedings of the
18th International Conference on Methods and Models in Automation and Robotics
(MMAR ’13), pages 252–257, 2013.

[60] C. Landry, W. A. Welz, and M. Gerdts. A coupling of discrete and continuous
optimization to solve kinodynamic motion planning problems. Preprint 1900, WIAS,
Berlin, 2013.

[61] G. Laporte, A. Asef-Vaziri, and C. Sriskandarajah. Some applications of the gen-
eralized travelling salesman problem. Journal of the Operational Research Society,
pages 1461–1467, 1996.

[62] J. Larsen. Parallelization of the Vehicle Routing Problem with Time Windows. PhD
thesis, Technical University of Denmark, 1999.

[63] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

XV

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

BIBLIOGRAPHY

[64] J. K. Lenstra and A. Kan. Complexity of vehicle routing and scheduling problems.
Networks, 11:221–227, 1981.

[65] A. Maheshwari, J.-R. Sack, and H. N. Djidjev. Link distance problems. Handbook
of Computational Geometry, pages 519–558, 1999.

[66] C. E. Noon and J. C. Bean. An efficient transformation of the generalized traveling
salesman problem. Technical Report 89-36, The University of Michigan, 1989.

[67] A. Orman and H. Williams. A survey of different integer programming formulations
of the travelling salesman problem. In E. Kontoghiorghes and C. Gatu, editors, Op-
timisation, Econometric and Financial Analysis, volume 9 of Advances in Compu-
tational Management Science, pages 91–104. Springer, 2007.

[68] T. Polzin and S. Vahdati Daneshmand. A comparison of Steiner tree relaxations.
Discrete Applied Mathematics, 112:241–261, 2001.

[69] J. Rambau and C. Schwarz. How to avoid collisions in scheduling industrial robots.
Preprint, 2010.

[70] J. Rambau and C. Schwarz. Solving a vehicle routing problem with resource conflicts
and makespan objective with an application in car body manufacturing. Optimiza-
tion Methods and Software, 29:353–375, 2014.

[71] G. Reinelt. TSPLIB – A traveling salesman problem library. ORSA Journal of
Computing, 3:376–384, 1991.

[72] M. Reuther. Tourenplanung mit Längenbeschränkung. Diploma thesis, University
of Applied Sciences Mittweida, 2008. In German.

[73] G. Righini and M. Salani. New dynamic programming algorithms for the resource
constrained elementary shortest path problem. Networks, 51:155–170, 2008.

[74] P. R. Samson. The rise and fall of the amateur new york subway riding committee,
1980. URL http://www.gricer.com/anysrc/anysrc.html.

[75] A. Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, 2003.

[76] C. Schwarz. Integrated Routing & Scheduling. PhD thesis, University of Bayreuth,
2011.

[77] F. Schwarzer, M. Saha, and J.-C. Latombe. Adaptive dynamic collision checking for
single and multiple articulated robots in complex environments. IEEE Transactions
on Robotics, 21:338–353, 2005.

XVI

http://www.gricer.com/anysrc/anysrc.html

BIBLIOGRAPHY

[78] M. Skutella and W. A. Welz. Route planning for robot systems. In B. Hu,
K. Morasch, S. Pickl, and M. Siegle, editors, Operations Research Proceedings 2010,
pages 307–312. Springer, 2011.

[79] M. Skutella and W. A. Welz. Conflict-free dispatching of welding robots. Unpub-
lished extended abstract submitted to the 17th European Conference on Mathemat-
ics for Industry (ECMI ’12), 2012.

[80] K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks – Technology,
Protocols, and Applications. John Wiley & Sons, 2007.

[81] D. Spensieri, R. Bohlin, and J. S. Carlson. Coordination of robot paths for cycle
time minimization. In Proceedings of the 9th annual IEEE International Conference
on Automation Science and Engineering (CASE ’13), pages 522–527, 2013.

[82] S. Srivastava, S. Kumar, R. Garg, and P. Sen. Generalized traveling salesman prob-
lem through n sets of nodes. CORS Journal, 7:97–101, 1969.

[83] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM, 44:
585–591, 1997.

[84] A. Thomason. A simple linear expected time algorithm for finding a Hamilton path.
In B. Bollobás, editor, Proceedings of the Cambridge Combinatorial Conference in
Honour of Paul Erdös, volume 43 of Annals of Discrete Mathematics, pages 373–379.
Elsevier, 1989.

[85] W. A. Welz. Route planning for robot systems. Diploma thesis, Technische Univer-
sität Berlin, 2010.

[86] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

[87] S. Winter. Modeling costs of turns in route planning. GeoInformatica, 6:345–361,
2002.

XVII

Appendix A

Computational Results Chapter 3

In Chapter 3 we described and formalized the pricing problem of our column generation
approach for the discrete WCP. The overall performance of the underlying shortest path
problem with forced time windows depends on many factors that were evaluated in that
chapter. In the following we give the complete numerical results for all the tests performed
in Section 3.5.

A.1 Time Window Data Structures

First, we give the results of the tests concerning the different data structure of storing
and evaluating the discrete time windows. There is a table for each of the three data
structures. Each table contains the name of the corresponding instance, the number of
nodes and the number of arcs. Further, we give the computation time in seconds, the
number of iterations that were required for the DSSR and the value of the min-cost tour.
A value of ∞ indicates that the corresponding instance is infeasible.

instance nodes arcs time (s) it. solution

SOL_C101 25 600 0.0 1 11.40
SOL_C102 25 600 6.0 6 −39.15
SOL_C103 25 600 370.0 8 −39.28
SOL_C105 25 600 0.0 1 7.12
SOL_C106 25 600 0.0 1 11.40
SOL_C107 25 600 0.0 4 0.13
SOL_C108 25 600 6.4 7 −51.51
SOL_C201 25 600 0.0 2 14.32
SOL_C202 25 600 3.1 9 −15.51
SOL_C203 25 600 264.8 12 −15.51
SOL_C204 25 600 1,261.3 15 −19.10
SOL_C205 25 600 0.2 8 0.82
SOL_C206 25 600 1.8 11 0.82
SOL_C207 25 600 11.8 12 −1.75
SOL_C208 25 600 2.8 11 0.82
SOL_RC101 25 600 0.0 1 ∞

XIX

Appendix A Computational Results Chapter 3

instance nodes arcs time (s) it. solution

SOL_RC102 25 600 0.0 4 37.07
SOL_RC103 25 600 0.0 4 37.07
SOL_RC104 25 600 0.0 4 37.07
SOL_RC105 25 600 0.0 1 43.88
SOL_RC106 25 600 0.0 1 ∞
SOL_RC107 25 600 0.0 1 44.15
SOL_RC108 25 600 0.0 1 43.88
SOL_RC201 25 600 0.0 1 49.25
SOL_RC202 25 600 0.7 6 19.69
SOL_RC203 25 600 1.4 7 19.69
SOL_RC204 25 600 43.2 11 8.58
SOL_RC205 25 600 0.1 5 34.96
SOL_RC206 25 600 0.0 2 38.48
SOL_RC207 25 600 5.1 8 22.41
SOL_RC208 25 600 184.2 16 18.88
A_20_10 13 124 0.2 7 −130.73
A_20_124 15 211 0.1 7 −223.14
A_20_159 16 240 0.4 7 −269.99
A_20_200 15 211 0.3 6 −323.00
A_20_207 16 240 0.9 7 −335.83
A_20_30 13 122 0.3 9 −148.46
A_31_211 14 182 0.1 6 −178.13
A_31_265 21 420 0.9 8 −319.94
A_31_273 21 420 0.9 8 −335.57
A_31_277 21 420 0.7 7 −313.34
A_31_32 16 240 0.4 6 −58.61
A_31_36 16 240 0.2 6 −8.05
A_31_40 16 240 0.2 5 −65.94
A_31_44 16 240 0.4 8 −55.45
A_31_689 21 414 11.1 9 −247.68
A_31_69 21 420 23.7 11 −354.51
A_31_929 21 420 7.1 8 −509.14
A_31_989 21 420 3.3 8 −270.66
D_35_103 27 676 0.9 5 −180.88
D_35_115 27 676 9.6 7 −197.87
D_35_119 27 676 60.8 10 −172.68
D_35_121 22 401 1.1 8 −197.32
D_35_123 27 676 41.0 8 −243.45
D_35_127 27 676 44.5 9 −237.41
D_35_155 27 676 3.5 7 −202.62
D_35_181 22 462 8.4 7 −174.44
D_35_199 27 676 12.0 8 −260.55
D_35_205 22 441 30.8 10 −138.33
D_35_219 27 676 107.1 9 −254.06
D_35_231 27 676 2.4 7 −182.18
D_35_255 27 676 3.8 7 −144.26
D_35_299 27 676 77.1 8 −189.21
D_35_327 27 676 33.0 9 −318.26
D_35_331 27 676 46.8 9 −291.15
D_35_351 27 675 113.8 9 −247.01
D_35_363 27 676 0.6 5 −145.03
D_38_111 23 479 23.8 8 −394.44
D_38_115 23 479 99.5 9 −270.00
D_38_179 23 480 43.5 10 −257.62
D_38_212 26 650 1.2 7 −233.65

XX

A.1 Time Window Data Structures

instance nodes arcs time (s) it. solution

D_38_223 23 480 58.5 9 −364.48
D_38_279 23 479 5.8 8 −382.87
D_38_295 23 480 2.9 7 −216.03
D_38_299 23 480 152.5 10 −340.40
D_38_311 23 480 9.2 7 −278.71
D_38_315 23 479 39.7 8 −326.98
D_38_319 23 479 105.9 10 −734.61
D_38_360 26 650 16.0 7 −593.57
D_38_411 23 478 64.0 9 −258.15
D_38_417 24 552 1.7 7 −198.50
D_38_421 24 552 1.8 6 −235.70

Table A.1: List data structure

instance nodes arcs time (s) it. solution

SOL_C101 25 600 0.0 1 11.40
SOL_C102 25 600 5.7 6 −39.15
SOL_C103 25 600 322.3 8 −39.28
SOL_C105 25 600 0.0 1 7.12
SOL_C106 25 600 0.0 1 11.40
SOL_C107 25 600 0.0 4 0.13
SOL_C108 25 600 5.8 7 −51.51
SOL_C201 25 600 0.0 2 14.32
SOL_C202 25 600 2.8 9 −15.51
SOL_C203 25 600 320.6 12 −15.51
SOL_C204 25 600 1,312.7 15 −19.10
SOL_C205 25 600 0.2 8 0.82
SOL_C206 25 600 1.7 11 0.82
SOL_C207 25 600 10.1 12 −1.75
SOL_C208 25 600 2.4 11 0.82
SOL_RC101 25 600 0.0 1 ∞
SOL_RC102 25 600 0.0 4 37.07
SOL_RC103 25 600 0.0 4 37.07
SOL_RC104 25 600 0.0 4 37.07
SOL_RC105 25 600 0.0 1 43.88
SOL_RC106 25 600 0.0 1 ∞
SOL_RC107 25 600 0.0 1 44.15
SOL_RC108 25 600 0.0 1 43.88
SOL_RC201 25 600 0.0 1 49.25
SOL_RC202 25 600 0.7 6 19.69
SOL_RC203 25 600 1.4 7 19.69
SOL_RC204 25 600 42.3 11 8.58
SOL_RC205 25 600 0.1 5 34.96
SOL_RC206 25 600 0.0 2 38.48
SOL_RC207 25 600 5.1 8 22.41
SOL_RC208 25 600 176.2 16 18.88
A_20_10 13 124 0.2 7 −130.73
A_20_124 15 211 0.1 7 −223.14
A_20_159 16 240 0.4 7 −269.99
A_20_200 15 211 0.3 6 −323.00
A_20_207 16 240 0.9 7 −335.83
A_20_30 13 122 0.3 9 −148.46
A_31_211 14 182 0.1 6 −178.13

XXI

Appendix A Computational Results Chapter 3

instance nodes arcs time (s) it. solution

A_31_265 21 420 0.9 8 −319.94
A_31_273 21 420 0.9 8 −335.57
A_31_277 21 420 0.7 7 −313.34
A_31_32 16 240 0.4 6 −58.61
A_31_36 16 240 0.2 6 −8.05
A_31_40 16 240 0.2 5 −65.94
A_31_44 16 240 0.4 8 −55.45
A_31_689 21 414 11.1 9 −247.68
A_31_69 21 420 25.4 11 −354.51
A_31_929 21 420 7.5 8 −509.14
A_31_989 21 420 3.4 8 −270.66
D_35_103 27 676 1.0 5 −180.88
D_35_115 27 676 9.4 7 −197.87
D_35_119 27 676 69.9 10 −172.68
D_35_121 22 401 1.2 8 −197.32
D_35_123 27 676 44.5 8 −243.45
D_35_127 27 676 46.9 9 −237.41
D_35_155 27 676 3.4 7 −202.62
D_35_181 22 462 7.7 7 −174.44
D_35_199 27 676 13.3 8 −260.55
D_35_205 22 441 32.5 10 −138.33
D_35_219 27 676 121.5 9 −254.06
D_35_231 27 676 2.2 7 −182.18
D_35_255 27 676 3.6 7 −144.26
D_35_299 27 676 58.6 8 −189.21
D_35_327 27 676 27.3 9 −318.26
D_35_331 27 676 39.2 9 −291.15
D_35_351 27 675 92.3 9 −247.01
D_35_363 27 676 0.6 5 −145.03
D_38_111 23 479 20.7 8 −394.44
D_38_115 23 479 84.5 9 −270.00
D_38_179 23 480 38.9 10 −257.62
D_38_212 26 650 1.1 7 −233.65
D_38_223 23 480 70.5 9 −364.48
D_38_279 23 479 6.2 8 −382.87
D_38_295 23 480 3.0 7 −216.03
D_38_299 23 480 177.0 10 −340.40
D_38_311 23 480 10.0 7 −278.71
D_38_315 23 479 46.2 8 −326.98
D_38_319 23 479 89.1 10 −734.61
D_38_360 26 650 15.6 7 −593.57
D_38_411 23 478 58.7 9 −258.15
D_38_417 24 552 1.5 7 −198.50
D_38_421 24 552 1.5 6 −235.70

Table A.2: Lookup data structure

instance nodes arcs time (s) it. solution

SOL_C101 25 600 0.0 1 11.40
SOL_C102 25 600 5.6 6 −39.15
SOL_C103 25 600 323.7 8 −39.28
SOL_C105 25 600 0.0 1 7.12
SOL_C106 25 600 0.0 1 11.40

XXII

A.1 Time Window Data Structures

instance nodes arcs time (s) it. solution

SOL_C107 25 600 0.0 4 0.13
SOL_C108 25 600 5.6 7 −51.51
SOL_C201 25 600 0.0 2 14.32
SOL_C202 25 600 3.2 9 −15.51
SOL_C203 25 600 246.4 12 −15.51
SOL_C204 25 600 1,261.1 15 −19.10
SOL_C205 25 600 0.2 8 0.82
SOL_C206 25 600 1.8 11 0.82
SOL_C207 25 600 9.8 12 −1.75
SOL_C208 25 600 2.9 11 0.82
SOL_RC101 25 600 0.0 1 ∞
SOL_RC102 25 600 0.0 4 37.07
SOL_RC103 25 600 0.0 4 37.07
SOL_RC104 25 600 0.0 4 37.07
SOL_RC105 25 600 0.0 1 43.88
SOL_RC106 25 600 0.0 1 ∞
SOL_RC107 25 600 0.0 1 44.15
SOL_RC108 25 600 0.0 1 43.88
SOL_RC201 25 600 0.0 1 49.25
SOL_RC202 25 600 0.7 6 19.69
SOL_RC203 25 600 1.4 7 19.69
SOL_RC204 25 600 42.1 11 8.58
SOL_RC205 25 600 0.1 5 34.96
SOL_RC206 25 600 0.0 2 38.48
SOL_RC207 25 600 5.1 8 22.41
SOL_RC208 25 600 180.6 16 18.88
A_20_10 13 124 0.2 7 −130.73
A_20_124 15 211 0.1 7 −223.14
A_20_159 16 240 0.4 7 −269.99
A_20_200 15 211 0.3 6 −323.00
A_20_207 16 240 0.9 7 −335.83
A_20_30 13 122 0.3 9 −148.46
A_31_211 14 182 0.1 6 −178.13
A_31_265 21 420 0.9 8 −319.94
A_31_273 21 420 0.9 8 −335.57
A_31_277 21 420 0.7 7 −313.34
A_31_32 16 240 0.4 6 −58.61
A_31_36 16 240 0.2 6 −8.05
A_31_40 16 240 0.2 5 −65.94
A_31_44 16 240 0.4 8 −55.45
A_31_689 21 414 10.9 9 −247.68
A_31_69 21 420 23.4 11 −354.51
A_31_929 21 420 7.4 8 −509.14
A_31_989 21 420 3.4 8 −270.66
D_35_103 27 676 0.9 5 −180.88
D_35_115 27 676 10.0 7 −197.87
D_35_119 27 676 63.5 10 −172.68
D_35_121 22 401 1.2 8 −197.32
D_35_123 27 676 42.0 8 −243.45
D_35_127 27 676 42.9 9 −237.41
D_35_155 27 676 3.2 7 −202.62
D_35_181 22 462 7.2 7 −174.44
D_35_199 27 676 12.3 8 −260.55
D_35_205 22 441 31.6 10 −138.33
D_35_219 27 676 105.5 9 −254.06

XXIII

Appendix A Computational Results Chapter 3

instance nodes arcs time (s) it. solution

D_35_231 27 676 2.2 7 −182.18
D_35_255 27 676 3.7 7 −144.26
D_35_299 27 676 60.5 8 −189.21
D_35_327 27 676 28.9 9 −318.26
D_35_331 27 676 39.4 9 −291.15
D_35_351 27 675 89.7 9 −247.01
D_35_363 27 676 0.6 5 −145.03
D_38_111 23 479 20.9 8 −394.44
D_38_115 23 479 84.9 9 −270.00
D_38_179 23 480 40.4 10 −257.62
D_38_212 26 650 1.3 7 −233.65
D_38_223 23 480 60.4 9 −364.48
D_38_279 23 479 5.7 8 −382.87
D_38_295 23 480 3.0 7 −216.03
D_38_299 23 480 153.6 10 −340.40
D_38_311 23 480 9.3 7 −278.71
D_38_315 23 479 40.5 8 −326.98
D_38_319 23 479 86.6 10 −734.61
D_38_360 26 650 14.9 7 −593.57
D_38_411 23 478 55.2 9 −258.15
D_38_417 24 552 1.7 7 −198.50
D_38_421 24 552 1.7 6 −235.70

Table A.3: BitArray data structure

A.2 Time Window Preprocessing

The preprocessing of time windows, described in Section 3.4.2 relies on the existence of
forced arcs. Therefore, only the WCP instances containing at least one forced arc have
been considered.
In the following we give the results without preprocessing, as the preprocessed results
correspond to the outcomes described in Table A.3.

instance nodes edges time (s) it. solution

A_20_124 15 211 0.1 9 −223.14
A_20_159 16 240 0.7 8 −269.99
A_20_200 15 211 0.8 7 −323.00
A_20_207 16 240 2.7 8 −335.83
A_31_689 21 414 15.1 9 −247.68
A_31_929 21 420 14.0 9 −509.14
A_31_989 21 420 11.0 9 −270.66
D_35_103 27 676 5.2 7 −180.88
D_35_115 27 676 16.8 8 −197.87
D_35_119 27 676 86.7 11 −172.68
D_35_123 27 676 87.1 9 −243.45
D_35_127 27 676 72.1 10 −237.41
D_35_155 27 676 4.7 8 −202.62
D_35_199 27 676 19.0 9 −260.55

XXIV

A.2 Time Window Preprocessing

instance nodes edges time (s) it. solution

D_35_205 22 441 37.1 10 −138.33
D_35_219 27 676 268.1 10 −254.06
D_35_255 27 676 8.4 9 −144.26
D_35_299 27 676 105.0 8 −189.21
D_35_327 27 676 50.3 10 −318.26
D_35_331 27 676 61.3 10 −291.15
D_35_351 27 675 189.6 10 −247.01
D_35_363 27 676 0.6 5 −145.03
D_38_111 23 479 121.1 10 −394.44
D_38_115 23 479 499.6 11 −270.00
D_38_179 23 480 96.4 12 −257.62
D_38_223 23 480 94.7 10 −364.48
D_38_279 23 479 13.4 9 −382.87
D_38_295 23 480 19.6 10 −216.03
D_38_299 23 480 408.4 11 −340.40
D_38_311 23 480 34.5 9 −278.71
D_38_315 23 479 144.1 10 −326.98
D_38_319 23 479 968.5 13 −734.61
D_38_360 26 650 47.2 9 −593.57
D_38_411 23 478 292.6 11 −258.15
D_38_421 24 552 4.3 8 −235.70

Table A.4: Solving WCP instances without preprocessing

XXV

	Contents
	List of Algorithms
	Introduction
	Preliminaries
	Graphs
	Shortest Paths

	Practice
	Integrated Approach for the Welding Cell Problem
	Problem Classification
	The Discrete WCP
	Related Routing Problems
	Solving the Discrete WCP

	Collision-Aware Preprocessing
	Fixed Jobs

	Trajectory Planning and Collision Detection
	Path Computations for the WCP
	Calculating Initial Distances
	Computation of Via Points

	Pricing – Shortest Path Problem with Forced Time Windows
	Classification of the Pricing Problem
	Solving the ESPPFTW
	Dealing with Gridlocks
	Implementing the Pricing Problem
	Time Window Data Structures
	Preprocessing for the ESPPFTW

	Computational Results

	Combining Discrete Optimization with Nonlinear Optimization
	Combination Algorithm
	Resolving the Discrete WCP
	The 2D-Demonstrator

	Theory
	Aspects of Uncertainty in Optimization Problems
	Preliminaries
	Uncertainty Problems with Interval Data
	Shortest Paths
	Minimum Spanning Tree
	Traveling Salesman Problem

	Probabilistic Uncertainty
	Uncertainty in Metric Space
	Overview

	Subway Challenge
	Basic Model
	Segment Problem
	ILP Formulation
	Implementation Details

	Station Problem
	TSP transformation
	Subtour ILP Formulation
	Flow-based ILP Formulation

	Preprocessing
	Computational Results

	Conclusion
	Bibliography
	Appendix
	Computational Results Chapter 3
	Time Window Data Structures
	Time Window Preprocessing

