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Abstract

The road environments of the future smart cities will be more digitized and connected.

Many entities and applications within this highly digitized urban environment are to

communicate with one another, in order to realize intelligent decision-making processes.

The fact that most of the smart city applications and devices are connected that pro-

visions uninterrupted communication bit-pipes places Information and Communication

Technologies (ICT) and network service providers in a very important position. Hence,

many decision instances, which to-date did not need to take the ICT into account, now

strongly depend on the availability of communication services.

In the face of recent technological developments, it becomes evident that autonomous

and connected vehicles will be an integral part of this smart city ecosystem and Coop-

erative Intelligent Transport Systems (C-ITS). When widely adopted and operated as

an on-demand mobility service, the envisioned fully autonomous and connected vehi-

cles will bring benefits such as increased road safety, transport efficiency, and passenger

comfort. Like many other smart city services, the seamless operation of automated and

connected driving applications, i.e., vehicle platooning, advanced driving, extended sen-

sors, and remote driving, will require reliable and uninterrupted connectivity. One way

to realize this would be to capture the interrelation between the route planning com-

ponent of autonomous and connected vehicles and the network management system of

communication service providers.

The planning and control instances deployed at both ends of this interrelation would

mutually benefit each other. By using the advantage of the hierarchical and deterministic

route and motion planning mechanism of autonomous vehicles, the network resources

can be proactively allocated along the vehicles’ planned trajectories. This preemptively

initiated resource allocation process based on the programmatically determined routes of

autonomous and connected vehicles would definitely contribute to achieving connectivity

with the required level of Quality of Service (QoS). Complementing the trajectory-based

network management mechanism, the autonomous vehicles’ route planning component

can take into account the communication network status information. In this way, the

routes of vehicles are to be optimized and adjusted by considering both traffic-related
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and communication network-related conditions, which is addressed in this work. The

network-aware route planning mechanism would enable vehicles to travel along roads

with better network availability and higher signal strength.

In this direction, we design and implement a modular framework that allows users

to model an urban scenario comprising the C-ITS elements such as autonomous and

connected vehicles, wireless access points, dynamic data storage entity. By means of the

established simulation environment, (near) real-time traffic and network status infor-

mation can be collected from the modeled road environment. Using this dynamic data

collected from the urban scenario, a group of vehicle instances representing autonomous

and connected vehicles are rerouted based on the Multi-Objective Evolutionary Algo-

rithm (MOEA) approach.

The developed modular framework enables to import and remove different objectives

and constraints easily to/from the route optimization problem model. In this way, dif-

ferent route optimization problem instances can be defined and solved depending on the

modeled scenario. The problem objectives include conventional metrics such as traveled

distance, travel time, and congestion level on the roads. Additionally, communication

network quality information can be incorporated into the optimization problem model as

an unconventional metric. An adjustable mix of different objectives and constraints can

be considered in the dynamic route planning process. A dynamic data storage entity,

representing the Local Dynamic Map (LDM) component of the C-ITS, is implemented

and extended with Network Context (NC) object. The provided network data layer

enables the maintenance of (near) real-time network status information on the road

environment. In this manner, the network conditions are taken into account by the

route planning methodology, which is highly critical for the seamless operation of many

automated vehicle applications such as vehicle platooning, advanced driving, extended

sensors, and remote driving. A mechanism to calculate the projected congestion contri-

bution on each road segment is implemented, which reflects the future congestion levels

on the roads. Considering this additional metric as an objective or constraint would

contribute to achieving global traffic optimization rather than routing the vehicles in a

greedy way. The Multi-Objective Evolutionary Algorithms (MOEAs) used to reroute

the vehicles, such as NSGA-2 and NSGA-3, efficiently generate a set of optimal and

trade-off solutions for the vehicles.
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Zusammenfassung

Die Straßenumgebungen der Smart Cities der Zukunft werden stärker digitalisiert und

vernetzt. Viele Entitäten und Anwendungen innerhalb dieser hochdigitalisierten urba-

nen Umgebung sollen miteinander kommunizieren, um intelligente Entscheidungsprozes-

se zu realisieren. Die Tatsache, dass die meisten Smart-City-Anwendungen und -Geräte

verbunden sind, die ununterbrochene Kommunikationsbitpipes bereitstellen, verschafft

Informations- und Kommunikationstechnologien (IKT) und Netzwerkdienstanbietern ei-

ne sehr wichtige Position. Daher hängen viele Entscheidungsinstanzen, die bisher die

IKT nicht berücksichtigen mussten, stark von der Verfügbarkeit von Kommunikations-

diensten ab.

Angesichts der jüngsten technologischen Entwicklungen wird deutlich, dass autonome

und vernetzte Fahrzeuge ein integraler Bestandteil dieses Smart-City-Ökosystems und

kooperativer intelligenter Verkehrssysteme (C-ITS) sein werden. Wenn die geplanten

vollständig autonomen und vernetzten Fahrzeuge weit verbreitet und als On-Demand-

Mobilitätsdienst eingeführt und betrieben werden, werden sie Vorteile wie erhöhte Ver-

kehrssicherheit, Transporteffizienz und Fahrgastkomfort bringen. Wie viele andere Smart-

City-Dienste erfordert der nahtlose Betrieb von automatisierten und vernetzten Fahran-

wendungen, d. h. Fahrzeug-Platooning, Advanced Driving, Extended Sensors und Remo-

te Driving, eine zuverlässige und unterbrechungsfreie Konnektivität. Eine Möglich- keit,

dies zu realisieren, besteht darin, die Wechselbeziehung zwischen der Routenplanungs-

komponente autonomer und vernetzter Fahrzeuge und dem Netzmanagementsystem von

Kommunikationsdienstanbietern zu erfassen.

Die an beiden Enden dieses Zusammenhangs eingesetzten Planungs- und Steuerungs-

instanzen würden sich gegenseitig nützen. Durch die Nutzung des Vorteils des hierarchi-

schen und deterministischen Routen- und Bewegungsplanungsmechanismus autonomer

Fahrzeuge können die Netzwerkressourcen proaktiv entlang der geplanten Trajektorien

der Fahrzeuge zugewiesen werden. Dieser präventiv initiierte Ressourcenzuweisungspro-

zess basierend auf den programmatisch bestimmten Routen autonomer und vernetzter

Fahrzeuge würde definitiv dazu beitragen, eine Konnektivität mit der erforderlichen

Dienstgüte (QoS) zu erreichen. Ergänzend zu dem trajektorienbasierten Netzwerkver-
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waltungsmechanismus kann die Routenplanungskomponente der autonomen Fahrzeuge

die Statusinformationen des Kommunikationsnetzwerks berücksichtigen. Auf diese Weise

sollen die Fahrwege von Fahrzeugen unter Berücksichtigung sowohl verkehrstechnischer

als auch kommunikationsnetzbezogener Gegebenheiten optimiert und angepasst werden,

was in dieser Arbeit behandelt wird. Der netzwerkfähige Routenplanungsmechanismus

würde es Fahrzeugen ermöglichen, auf Straßen mit besserer Netzwerkverfügbarkeit und

höherer Signalstärke zu fahren.

In dieser Richtung konzipiere und implementiere ich ein modulares Framework, das

es Nutzern ermöglicht, ein urbanes Szenario bestehend aus den C-ITS-Elementen wie

autonome und vernetzte Fahrzeuge, drahtlose Zugangspunkte, dynamische Datenspei-

cher usw. zu modellieren. Mittels der etablierten Simulationsumgebung können (fast)

Echtzeit-Verkehrs- und Netzwerkstatusinformationen aus der modellierten Straßenum-

gebung gesammelt werden. Unter Verwendung dieser dynamischen Daten, die aus dem

urbanen Szenario gesammelt wurden, wird eine Gruppe von Fahrzeuginstanzen, die au-

tonome und vernetzte Fahrzeuge repräsentieren, basierend auf dem Ansatz des Multi-

Objective Evolutionary Algorithm (MOEA) umgeleitet.

Das entwickelte modulare Framework ermöglicht das einfache Importieren und Ent-

fernen verschiedener Zielsetzungen und Einschränkungen in das/aus dem Routenopti-

mierungsproblemmodell. Auf diese Weise können je nach modelliertem Szenario unter-

schiedliche Problemfälle der Routenoptimierung definiert und gelöst werden. Zu den

Problemzielen gehören konventionelle Metriken wie zurückgelegte Distanz, Reisezeit und

Staupegel auf den Straßen. Zusätzlich können Informationen zur Netzwerkqualität als

unkonventionelle Metrik in das Optimierungsproblemmodell aufgenommen werden. Bei

der dynamischen Routenplanung kann ein einstellbarer Mix aus unterschiedlichen Zielen

und Randbedingungen berücksichtigt werden. Eine dynamische Datenspeichereinheit,

die die Local Dynamic Map (LDM)-Komponente des C-ITS darstellt, wird implemen-

tiert und mit einem Network Context (NC)-Objekt erweitert. Die bereitgestellte Netz-

werkdatenschicht ermöglicht die Pflege von (fast) Echtzeit-Netzwerkstatusinformationen

über die Straßenumgebung. Auf diese Weise werden die Netzwerkbedingungen durch die

Routenplanungsmethodik berücksichtigt, die für den reibungslosen Betrieb vieler auto-

matisierter Fahrzeuganwendungen wie Fahrzeug-Platooning, Advanced Driving, Exten-

ded Sensors und Remote Driving sehr wichtig ist. Es wird ein Mechanismus zur Be-

rechnung des projizierten Staubeitrags auf jedem Straßenabschnitt implementiert, der

die zukünftigen Staupegel auf den Straßen widerspiegelt. Die Berücksichtigung dieser

zusätzlichen Metrik als Ziel oder Einschränkung würde dazu beitragen, eine globale Ver-

kehrsoptimierung zu erreichen, anstatt die Fahrzeuge auf gierige Weise zu routen. Die
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Multi-Objective Evolutionary Algorithms (MOEAs), die verwendet werden, um die Fahr-

zeuge umzuleiten, wie NSGA-2 und NSGA-3, erzeugen effizient eine Reihe von optimalen

und Kompromisslösungen für die Fahrzeuge.
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1 Introduction

1.1 Motivation and Objectives

Autonomous driving is an emerging paradigm, which will transform the way we move

and reshape our mobility ecosystem. Throughout the recent years, there has been a

significant, joint effort from both industry and academy to reach different levels of au-

tonomy for the envisioned intelligent vehicles of the future. When this revolution is fully

realized, people will completely be relieved from all the driving tasks, and the intelli-

gent vehicle platform will autonomously drive itself in every road, traffic, and weather

condition. This paradigm shift is believed to bring various benefits, including improved

road safety, traffic efficiency, reduced emission, and increased comfort for the passen-

gers. Additionally, autonomous driving would have societal and economic impacts in

a positive manner. It would provide an opportunity for elderly or disabled people to

safely transport in their cities which would contribute to attaining an inclusive society.

People would be freed from the stress of driving and be more productive during their

travel time. Moreover, new employment opportunities can be created with the changing

business models of the automotive sector.

One very important requirement of autonomous driving is continuous and seamless

connectivity. To realize many autonomous driving applications and services, regard-

ing road safety, traffic efficiency, or infotainment, vehicles need to have uninterrupted

network connectivity with particular Quality of Service (QoS) levels. The autonomous

vehicles have to communicate with other vehicles, the surrounding roadside infrastruc-

ture, and remote cloud platforms efficiently and in real-time such that these applications

perform sufficiently well. For instance, the report of the 3rd Generation Partnership
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Project (3GPP) group presents the connectivity requirements regarding four categories

of vehicular applications: vehicle platooning, advanced driving, extended sensors, and

remote driving [1]. Based on this report, the performance requirements of the advanced

autonomous driving use cases, listed under these four categories, can include even 3ms of

maximum end-to-end latency, 1000Mbps data rate, or 99.999% reliability. These highly

stringent connectivity requirements inevitably reveal that the telecommunications in-

dustry will be a key stakeholder within the autonomous driving era. The specified QoS

requirements in regard to achieving full autonomy can be guaranteed by a tight integra-

tion and close cooperation between the autonomous vehicles and network management

entities of the communication service providers.

This interrelation can be captured by a possible feedback loop between the route

planning component that guides the autonomous vehicles and the Software Defined

Networking (SDN) controllers of the network operators, as depicted in Figure 1.1 [2].

According to this feedback loop, the interaction between the decision instances deployed

at both ends will mutually affect one another and contribute to meet the connectiv-

ity requirements of envisioned autonomous driving applications. When interface (1)

is considered, the planned trajectory of the autonomous vehicle is to be provided to

the network operators. Based on this information, the Software Defined Networking

(SDN) controllers are to proactively allocate network resources along the planned tra-

jectories of the autonomous vehicles. By means of enabling this preemptive resource

allocation, the required service quality levels would be achieved to ensure the safe oper-

ation of various autonomous driving functions. On the other hand, interface (2) allows

for network connectivity information to be incorporated into the route planning mech-

anism. In more concrete terms, the Local Dynamic Map (LDM) of the vehicles is to

be extended with a Network Context (NC) object, comprising both static and dynamic

context information regarding the available access technologies [2]. With the network

status information received, the route planning component is to calculate and adjust the

routes of the autonomous vehicles by considering the network-related parameters, i.e.,

available bandwidth, latency, jitter, and packet loss.
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Figure 1.1: Feedback loop between autonomous vehicle route planning platform and
communication network operator [2].

In this study, we mainly focus on the route planning aspect of this close cooperation

between autonomous vehicle’s decision-making mechanism and communication network

management system. We propose a network-aware route planning policy for the en-

visioned autonomous vehicles to ensure uninterrupted connectivity and guarantee en-

hanced QoS levels along their trajectories. The conventional vehicular route planning

approaches mostly rely on minimizing distance, travel time, or economic cost; however,

when the unique operation principles of the connected and automated vehicles are con-

cerned, these approaches might need to be revisited. In addition to these conventional

metrics, the next-generation route planning architectures have to be context-aware and

need to take other metrics into account while calculating optimum routes. When the

stringent connectivity requirements of the advanced autonomous vehicle applications

are examined, we believe that one of these additional metrics could be network quality

information.

In light of the above considerations, the main objective of this work is to design and

implement a modular framework that enables the collection of traffic and communication

network status information from the road environment, and reroute the subscribed vehi-

cles based on a multi-objective route planning mechanism. The developed and proposed
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framework allows users to model both synthetic and real-world road network models,

create background traffic, and instantiate a group of vehicles dynamically rerouted based

on the predefined multi-objective route optimization methodology. Additionally, wireless

access points such as roadside units can be deployed in the scenario which enables wireless

vehicular communication and collection of communication network status information.

A multi-layer data storage entity modeled and implemented, which keeps up-to-date data

regarding both traffic and communication network status based on the periodically col-

lected measurements from the road environment. Relying on this simulation framework,

a group of subscribed vehicles representing automated and connected vehicles is rerouted

by using the adapted Multi-Objective Evolutionary Algorithm (MOEA) approach.

1.2 Contributions

Firstly, we develop and present a modular framework, which enables us to incorpo-

rate different objectives or constraints into the route planning problem model of the

automated and connected vehicles. Based on the modular design, one can easily incor-

porate/remove any objective and constraint to/from the optimization problem model. In

addition to the conventional metrics/objectives of minimizing the total travel distance,

total travel time, total traffic congestion level on the route, we take the communication

network quality metric into account. By defining different groups of these objectives and

constraints, we have considered different instances of the vehicular route planning prob-

lem. The developed modular framework provides us the ability to have an adjustable

mix of those metrics in the objective function, depending on the scenario. The route

optimization problem instances are dynamically solved for a group of vehicles in the

scenario.

Secondly, a network-aware route planning policy is implemented and proposed in this

work, considering the highly demanding connectivity requirements of various automated

vehicle applications. In addition to conventional route planning metrics such as traveled

distance, travel time, or economic cost, we incorporate the network quality information

as an additional metric to our problem model. The Local Dynamic Map (LDM) data
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structure is extended with Network Context (NC) object which provides up-to-date

network status information regarding the wireless access technologies deployed in the

modeled road environment. By this way, the optimum routes are calculated by taking

into account the network quality information, i.e., signal coverage, network connectivity

level, measured signal power level, along the roads, which is critical for the safe operation

of automated and connected vehicles.

Thirdly, we include a metric, namely projected congestion contribution, into the route

planning model that can be used as another objective to be minimized or as another

constraint. After an optimum route is calculated for a vehicle upon its request, our model

assigns projected congestion contribution weights along the roads of the calculated route

specifically for this vehicle. The same assignment is done for every vehicle at the time

that they receive a route from the remote application server, and these assigned values are

continuously updated as the vehicles change to another edge. The projected congestion

contribution weight quantifies the level of congestion contribution that a vehicle would

produce on every road segment along its calculated route. In our model, the congestion

contribution weight assigned to a road segment decreases as the estimated time that

the vehicle enters into the road segment increases. In this way, the future congestion

levels on each road segment are considered when calculating an optimum route for every

vehicle, which leads to global traffic optimization.

Further, we have formulated the route planning of automated and connected vehicles

as a multi-objective optimization problem. A population-based metaheuristic technique

is adapted to solve the multi-objective route planning problem model in a dynamic

road network scenario. More specifically, state-of-the-art multi-objective evolutionary

algorithms, such as Non-Dominated Sorting Genetic Algorithm 2/3 (NSGA-2/3), are

adapted to our problem. It is observed and verified that the adapted NSGA-2/3 algo-

rithms efficiently generate a set of optimal and trade-off solutions for the vehicles that

send requests for an alternative route.

Finally, a comprehensive simulation setup is established which integrates two state-

of-the-art simulation tools for mobility and network: (i) Simulation of Urban Mobility
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(SUMO) and (ii) Objective Modular Network Testbed in C++ (OMNET++). The

Vehicles in Network Simulation (Veins) framework is used to integrate these simulation

tools and to enable two-way, online interaction between them. This way, a realistic traffic

simulation and vehicular network simulation are provided for any modeled scenario.

1.3 Thesis Organization

The rest of this thesis is organized under seven chapters as follows:

• Chapter 2 - In the first part of Chapter 2, we give background information regarding

Cooperative Intelligent Transport Systems (C-ITS), summarize standardization

activities to enable wireless vehicular communication by pointing out the QoS

requirements of Vehicle-to-Everything (V2X) based applications, and introduce

the Local Dynamic Map (LDM) concept as one of the main enablers of dynamic

route planning system of future urban scenarios. The second part of Chapter 2

gives an overview of automated and connected vehicles, by focusing on their route

planning mechanism.

• Chapter 3 - This chapter presents the relevant state-of-the-art approaches from the

literature in regard to vehicular route planning. We provide a detailed summary of

vehicular route planning techniques in the context of C-ITS. Among few research

studies concerning network-aware route planning, we select and summarize two of

them.

• Chapter 4 - We present the overall route planning framework and describe the

main components of the proposed urban road environment model in this chapter.

Additionally, the vehicular route planning problem is mathematically modeled as

a multi-objective optimization problem that is to be dynamically solved via a

population-based metaheuristic technique.

• Chapter 5 - We introduce and present our evolutionary computation approach to

solving the multi-objective vehicular route planning problem with constraints. At
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the beginning of this chapter, we present our results obtained after applying a ge-

netic algorithm to a single-objective route planning problem. In this preliminary

section, we examine how the genetic algorithm works for the single-objective op-

timization problem instance with different algorithm-specific configurations, i.e.,

population size, crossover type, mutation rate, selection type. The following sec-

tions present the multi-objective evolutionary algorithm approach. Further, it de-

tails one of the state-of-the-art methods in this context, namely NSGA-2, which is

adapted and applied to find optimum route solutions for the vehicles in a dynamic

road network scenario.

• Chapter 6 - This chapter is reserved for the implementation details of our proposed

modular framework, which enables us to import and remove different optimization

objectives or constraints for the dynamic vehicular route planning problem model.

First, we describe the integrated and bidirectionally coupled simulation framework

used in this study. The integrated simulation environment is enabled by cou-

pling the well-known mobility simulator, Simulation of Urban Mobility (SUMO),

and widely used network simulator, Objective Modular Network Testbed in C++

(OMNET++), by means of the Vehices in Network Simulation (Veins) framework.

After describing how this integrated simulation framework functions, we explain

how it is extended to enable dynamic, and multi-objective vehicular route planning

by considering both traffic and network-related metrics.

• Chapter 7 - The simulation test results, obtained through a set of simulations car-

ried out with different configurations, are presented. The abstract road network

models provided by the SUMO mobility simulator and a real-world model are

used for the simulation tests. It is aimed to observe if the applied multi-objective

route planning methodology can periodically provide optimum route solutions for

the vehicles, by considering dynamically changing traffic and communication net-

work metrics. Based on the simulation results, it is concluded that the adapted

multi-objective evolutionary algorithm efficiently finds out a set of optimum route
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solutions for the vehicles. The subscribed vehicles, vehicles that are periodically

requesting a new route alternative, are rerouted based on the calculated route by

the multi-objective route optimization algorithm. The optimal routes are calcu-

lated by taking into account the metrics such as distance, traffic congestion, and

communication network quality. The resulting simulation outcomes are presented

and evaluated for different problem instances and configurations.

• Chapter 8 - The final chapter concludes the thesis by summarizing what we have

achieved as a result of this study and proposes a few research directions for future

work.
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2 Background Information

This chapter gives background information on Cooperative Intelligent Transport Systems

(C-ITS) and the concept of Local Dynamic Map (LDM). Additionally, we overview the

hierarchical path planning mechanism of automated and connected vehicles. Further,

the operation of autonomous and shared mobility services is briefly introduced in the

context of the dynamic vehicular route planning problem.

2.1 Cooperative Intelligent Transport Systems (C-ITS)

This section introduces the Cooperative Intelligent Transport Systems (C-ITS) as the

main enabler of various automated and connected driving use cases, based on wireless

inter-vehicular communication. C-ITS refers to a system in which different constituents

of urban mobility, i.e., vehicles, roadside infrastructures, central traffic management

entities, personal devices, communicate and cooperate to improve road safety, traffic ef-

ficiency, and driving comfort. In this digitized and cooperative framework, the exchange

of road data among traffic participants paves the way to realizing a wide variety of ITS

services in higher standards.

To exploit the benefits of C-ITS, it is a key requirement to standardize communi-

cation architecture and provide interoperability among different digitized components

on the road environment. The standardization bodies European Telecommunications

Standards Institute (ETSI) [3], European Committee for Standardization (CEN) [4],

Internet Engineering Task Force (IETF) [5], International Organization for Standard-

ization (ISO) [6] have contributed to standardize different communication aspects of the

C-ITS framework in close collaboration with the CAR 2 CAR Communication Consor-
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Figure 2.1: C-ITS Protocol Stack [9].

tium (C2C-CC) [7], as detailed in the articles [8, 9]. The results obtained from major

European projects employing C-ITS architectures, i.e., SAFESPOT [10], Co-operative

Vehicle-Infrastructure Systems (CVIS) [11] and DRIVE C2X [12], have also contributed

to this standardization. In the following we detail the C-ITS standards determined by

the ETSI organization. This section focuses on the ITS-G5 station specified by the

ETSI group, and for its U.S counterpart of Wireless Access in Vehicular Environments

(WAVE) standardized by IEEE, readers can be referred to [13]. Additionally, in the next

sub-section we will outline the standardization of cellular V2X (C-V2X) communication,

mainly carried out by the 3rd Generation Partnership Project (3GPP) group.

2.1.1 ETSI C-ITS Standardization

C-ITS communication standards are presented in ETSI EN 302 665 [14] and ISO 21217

[15]. The ITS station reference architecture is described in [14]. This commonly accepted

communication architecture can be deployed on different types of C-ITS sub-systems:

vehicle ITS sub-system, roadside ITS sub-system, personal ITS sub-system, and central

ITS sub-system. All of these four ITS sub-systems are to contain an ITS station and

the functional components of these stations are detailed in the ETSI report [14].
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ETSI C-ITS Communication Architecture / Protocol Stack

The C-ITS protocol stack for vehicle and roadside ITS stations is depicted in Figure 2.1,

with four C-ITS layers: access layer, networking and transport layer, facilities layer

and application layer [9]. The access layer of the C-ITS protocol stack comprises the

physical layer and data link layer of the Open Systems Interconnection model (OSI

model). There are different communication interfaces available in the access layer, i.e.,

ITS-G5, WiFi, GPS, BlueTooth, 2G/3G/.. and Ethernet [14]. We will focus on the ITS-

G5 communication technology, which is based on the IEEE 802.11p and forms a basis

for various vehicular applications. As indicated in the ETSI EN 302 571 Release, three

ITS frequency bands are reserved at 5GHz band for ITS-G5 (see Figure 2.2): ITS-G5B

(5.855 GHz to 5.875 GHz), ITS-G5A (5.875 GHz to 5.905 GHz) and ITS-G5D (5.905

GHz to 5.925 GHz) [16]. The ITS-G5B band spans 20MHz with two service channels of

10 MHz dedicated to non-safety C-ITS applications [9]. The ITS-G5A spans a 30 MHz

band with one control channel and two service channels of 10 MHz [9]. The control

channel (5.895 GHz to 5. 905 GHz) is reserved as the primary safety channel [9]. The

ITS-G5D band, spanning 20 MHz with two service channels, is reserved for future C-ITS

systems [9]. As specified in the related ETSI report [16], the maximum power spectral

density is to be 23 dBm/MHz. The dedicated access technology for the time-critical,

safety-related applications is based on IEEE 802.11p for the access layer of the C-ITS

architecture [8] [17]. ITS-G5 stations use a basic ad hoc mode, namely Outside the

Context of a BSS (OCB), where BSS refers to Basic Service Set in the IEEE 802.11

wireless networks [9]. The OCB ad hoc mode avoids the management procedures, i.e.,

channel scanning, authentication, association, and allows for a direct and immediate

message transmission without time-consuming delays [9]. A Decentralized Congestion

Control (DCC) mechanism is used in the 5GHz range to avoid channel congestion during

the vehicular ad hoc communication [16] [18] [19]. The carrier sense multiple access with

collision avoidance (CSMA/CA) scheme is used by the C-ITS stations as in the IEEE

802.11p standard [20] [21].

The networking and transport layer of the C-ITS communication architecture, rep-
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resenting the OSI model’s third and fourth layers, is responsible for transferring data

between source and destination ITS stations by utilizing the capabilities provided by

the underlying access layer [8]. The GeoNetworking protocol, executed in the GeoAdhoc

router, enables the delivery of packets in an ad hoc network based on geographical ad-

dressing, which supports both point-to-point and point-to-multipoint transmission [22].

By means of the addressing capabilities, it is possible to send a packet to an individual C-

ITS station by specifying its geographical position (GeoUnicast) or distribute a message

inside a geographical area of a specific geographical shape, i.e., circular area, rectangular

area, elliptical area (GeoBroadcast/GeoAnycast) [9] [23]. Additionally, it is possible to

transmit packets to all nodes in one-hop or n-hop neighborhoods without using geograph-

ical addressing, referred to as single-hop broadcast and topologically-scoped broadcast

[9] [24]. There are three forwarding algorithms specified in the ETSI EN 302 636-4-1

document [22]: i) simple GeoBroadcast forwarding algorithm, ii) area contention-based

forwarding algorithm, and iii) area advanced forwarding algorithm. The Basic Transport

Protocol (BTP), residing between the GeoNetworking protocol and facilities layer, pro-

vides an end-to-end and connection-less communication service in the vehicular ad hoc

networks [25]. It also takes a role in multiplexing and demultiplexing the messages at

the ITS facilities layer [25]. In addition to the GeNetworking protocol, Internet Protocol

Version 6 (IPv6) is also employed by the C-ITS stations over cellular networks depending

on the application [26].

The facilities layer, located between the networking and transport layer and appli-

cations layer, stands for the fifth, sixth, and seventh layers of the OSI model [14]. It
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supports the application development by providing standardized access to data, infor-

mation and common functionalities [8]. In the facilities layer, the two C-ITS message

types, cooperative awareness message (CAM) and decentralized environmental notifica-

tion message (DENM), are standardized in ETSI EN 302 637-2 [27] and ETSI EN 302

637-3 [28] respectively [29]. The CAM messages are periodically sent to the neighboring

nodes, which include status information such as position, vehicle speed, destination, and

acceleration. As indicated in [28], all the ITS stations are enabled to generate, send or

receive CAM messages when they participate in the IEEE 802.11p ad hoc network. The

C-ITS stations receiving the CAM messages are to be aware of the positions, movement,

and sensor information of the neighboring nodes [28]. The DENM messages are sent

in the case that a specific safety-critical event or a specific traffic event is detected in

the driving environment. The C-ITS stations receiving the DENM messages are notified

about the event and the necessary actions are taken to avoid any possible hazardous

situation. As described in [28], upon detection of any hazardous traffic event, the cor-

responding C-ITS station detecting the event starts broadcasting DENM messages to

the C-ITS stations inside the relevant geographical area. The transmission of DENM

messages continues with a certain frequency until the detected event does not exist any-

more [28]. The broadcast of DENM messages is terminated automatically either when

the event disappears after a predefined expiry time passes, or the broadcasting C-ITS

station sends a specific DENM message indicating that the event disappeared [28]. The

message formats for CAM and DENM are detailed in ETSI reports EN 302 637-2 v1.3.1

[30] and EN 302 637-3 v1.2.1 [31] respectively based on the common data dictionary

presented in ETSI TS 102 894-2 v1.3.1 [32]. Finally, it is worth noting that Local Dy-

namic Map (LDM) is a core functional component of the facilities layer in regard to

information support. LDM allows to fuse data from different sources, keep the collected

information up to date and build the local data model of the local road environment

[33], which will be further detailed in the next section.

The highest layer of the C-ITS protocol stack, namely applications layer, mainly de-

fines three classes of ITS applications: road safety, traffic efficiency, and other appli-
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cations, which are introduced as Basic Set of Applications (BSA) in the ETSI TR 102

638 v1.1.1 report [33]. The catalog of ITS applications and corresponding use cases

are listed in the report for each of the three categories. In the ETSI report, when the

requirements of the V2X based applications are examined, the minimum frequency of

the periodic messages is mostly stated as 10Hz, and the maximum tolerable latency is

given as 100ms. The security layer is in charge of avoiding possible attacks on the C-ITS

systems such as ‘extraction/modification of secret material, tampering with the vehicle’s

ITS station, network jamming, alteration attack, fake message injection, Sybil attack and

privacy attack [8]’. As indicated in the ETSI EN 302 665 report, the functional blocks of

the security layer include firewall and intrusion management, authentication, authoriza-

tion and profile management, identity, crypto key and certificate management, common

security information base (SIB), and hardware security modules (HSM) [14]. Lastly,

the management layer of the C-ITS reference architecture allies applications, manages

networks, security functions, and dynamic interface selection, which is described in [8].

The main tasks of the management layer are grouped into four functional blocks as

detailed in the ETSI EN 302 665 document [14]: regulatory management, cross-layer

management, station management, and application management.

2.1.2 3GPP Cellular Vehicle-to-Everything (C-V2X) Communication

Standardization

In this section, we summarize the cellular-based vehicular communications standards and

the supported applications. The cellular V2X communication technology is the other

key enabler for vehicular applications together with the Dedicated Short Range Commu-

nication (DSRC) and ITS-G5. The standardization activities regarding C-V2X commu-

nication is mainly lead by the 3rd Generation Partnership Project (3GPP) organization

that unites various standardization organizations (ARIB, ATIS, CCSA, ETSI, TSDSI,

TTA, TTC) to produce specifications and technical reports regarding cellular communi-

cation systems, including Cellular Vehicle-to-Everything (C-V2X) communication [34].

The global and cross-industry organization, 5G Automotive Association (5GAA) [35],
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supports the standardization efforts of the 3GPP within this context. 5GAA incorpo-

rates various companies from automotive (AUDI AG, BMW AG, BMW Group, Daimler

AG) and telecommunications (Ericsson, Huawei, Intel, Nokia, Qualcomm) industries to

develop solutions for future connected mobility [35].

3GPP V2X Application Support: V2V, V2P, V2I and V2N

3GPP defines four types of communication support for the V2X applications: Vehicle-to-

Vehicle (V2V), Vehicle-to-Pedestrian (V2P), Vehicle-to-Infrastructure (V2I), and Vehicle-

to-Network (V2N) [36] [37] [38] (see Figure 2.3). As indicated in the 3GPP TS 22.185

(Release 15) [36], these entities (vehicles, roadside infrastructures, pedestrians, applica-

tion server) can employ co-operative awareness to make more intelligent services possible,

i.e., autonomous driving, vehicle warning, traffic management [37]. The V2V-based ap-

plications support UEs in proximity to exchange messages including V2V application

information (e.g., location, vehicle attributes, and traffic information) [36]. 3GPP stan-

dard 3GPP TS 22.185 indicates that UEs involving in the V2V based applications need to

have subscriptions and authorization from the network operator. The message transmis-

sion in the V2V based applications is mostly in the form of broadcasting [36] [37]. This
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message transmission in the 3GPP V2V applications can be either directly between UEs;

or in the case that UEs are not within their communication range, the messages can be

transmitted between UEs through infrastructures, i.e., RSUs, application servers [36]. In

V2I communication-based applications, UEs supporting V2I applications transmit mes-

sages (including V2I application information) to RSUs or local application servers [36].

Then, the RSU or the local application server retransmits the received V2I application

information to one or multiple UEs supporting V2I applications [36]. In this scenario,

there could be one locally relevant application server that serves a particular geographi-

cal area, or multiple application servers functioning for overlapping areas, concerning the

same or different V2I applications [36] [37]. Similar to V2V applications, messages (car-

rying V2P application information) are exchanged between vehicle UEs and pedestrian

UEs in the V2P applications [36] [37]. In this case, the UE supporting V2X application

in a vehicle can transmit a message to pedestrian UE to warn the vulnerable road user;

or a pedestrian UE supporting V2X application can send a message to warn vehicle [36]

[37]. As in the case of V2V application, the message transmission in V2P application

can be directly between vehicle UE and pedestrian UE or via infrastructure, RSU, appli-

cation server, etc [36]. The UEs involved in the 3GPP-based V2P applications are to be

subscribed to and have authorization from a network operator. As noted in the 3GPP

TS 22.185 report [36], the main difference between V2V and V2P applications is that

UEs supporting V2P applications usually have a lower battery capacity. Due to this

reason, the UEs supporting V2P applications might not be able to transmit messages in

the periodicity compared to UEs involved in the V2V applications [36]. In the case of

V2N applications, UEs supporting V2N applications communicate with the application

servers via Evolved Packet Switches (EPS) [36] [37].

C-V2X Communication Interfaces: LTE-Uu and PC5 Air Interface

3GPP defines two types of communications in the vehicular domain, namely LTE-Uu

and PC5. The cellular interface named LTE-Uu supports vehicle-to-infrastructure (V2I)

communication, while the PC5 interface supports vehicle-to-vehicle (V2V) communica-
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tions via direct LTE sidelink [39]. In the case of V2I communications by LTE-Uu, a

user equipment UE (vehicle UE) transmits its message to the eNodeB via uplink; and

then the same or another eNodeB is to transmit the received packet to UE far away

by using unicast downlink communication or enhanced Multimedia Broadcast Multicast

Service (eMBMS) [40]. The communication interface LTE-Uu provides data dissemina-

tion to a wide range by using the cellular core network [40]. A semi-persistent resource

management mechanism can be used for LTE-Uu, which is to be beneficial for V2X

applications by reducing the scheduling overhead [40]. The PC5 interface allows direct

communication between UEs without a requirement that every packet is to pass through

eNodeB [40]. There are two communication modes defined for the PC5 interface to en-

able advanced vehicular applications with low latency and high-reliability requirements,

namely mode 3 and mode 4 [39]. The PC5 mode 3 is available when the vehicles are in

the cellular coverage and the network resources are managed by the eNodeB [39]. In the

case of PC5 mode 4, vehicles reserve their resources autonomously and independently

from the cellular infrastructure [39] [40].

Enhancement of 3GPP Support for V2X Services (eV2X)

3GPP identifies four categories of enhanced V2X (eV2X) applications and use cases:

(i) Vehicle Platooning, (ii) Advanced Driving, (iii) Extended Sensors, and (iv) Remote

Driving [1] [37] [41]. These four types of enhanced V2X applications determined by the

3GPP standardization organization are overviewed in the 3GPP TR 22.886 (Release 15)

[41] and 3GPP TS 22.186 [1] reports, icluding their communication requirements.

In the platooning application, vehicles dynamically form a group and travel together

in a closely linked manner [1] [41]. The vehicles forming the platoon periodically receive

status information (e,g speed, heading, intentions such as braking, acceleration) from

the leading vehicle via wireless short-range V2V communication to maintain the feasible

distance between them [1] [41]. When the inter-vehicle distance is maintained at a feasi-

ble minimum, the platooning application has the benefit of improving traffic efficiency,

lowering fuel consumption, and reducing the number of drivers [41] [42]. The advanced
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driving application provides semi-automated or fully-automated driving, where a longer

inter-vehicle distance is presumed [41]. Vehicles and RSUs share their information col-

lected by their local sensors or nearby vehicles with other vehicles in proximity, which

allows a coordinated and synchronized driving [41]. The advanced driving application

enables improved road safety, traffic efficiency and collision avoidance [37] [41]. In the

extended sensors application, vehicles, roadside units, pedestrian UEs and application

servers exchange raw or processed data among themselves [41]. The extended sensors

application augments vehicles’ perception of the environment beyond the perception ob-

tained only by local sensors and enables more intelligent decision-making for vehicles [37]

[41]. Lastly, in the case of remote driving, a remote driver or a V2X application takes

control of a remote vehicle and remotely operates it [41]. The remote driving applica-

tion is useful for the passengers who are not able to drive by themselves, or for saving

vehicles located in dangerous situations [41]. The communication requirements of these

four types of enhanced V2X based applications are detailed in the 3GPP TS 22.186

(Release 15) technical specifications report [1]. The required payload, transmit rate

(message/sec), maximum end-to-end latency (ms), reliability (%), data rate (Mbps),

and the minimum communication range (m) are specified for different communication

scenarios for each category of application.

2.1.3 Local Dynamic Map (LDM)

The Local Dynamic Map (LDM) concept plays a central role in C-ITS and it forms

a basis for autonomous driving applications. Needless to say, the highly automated

and connected vehicles of the future have to precisely aware of their position and the

environment around them such that they can generate the optimum trajectory plan

in every traffic situation. In this sense, LDM is a key technology and enabler that

integrates 3D map data, sensory data, and other traffic information received via V2X

communication. By this way, LDM provides a (near) real-time, highly accurate, and

dynamic representation of the road environment. The self-driving, intelligent vehicles of

the future are to rely on this enhanced data integration concept to drive themselves safely
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and efficiently. As highlighted in [43] LDMs provide common and consistent situational

awareness for all the applications running as part of a cooperative ITS system, which

eventually brings two advantages: i) consistency due to the shared common information

model and ii) improved computational performance as the acquisition and fusion of

source data is performed only once.

As indicated in [2], LDM concept is standardized by both ETSI [44] and ISO [45] [46]

standardization organizations. Various static and dynamic traffic information, collected

by Cooperative Awareness Messages (CAMs) or Decentralized Environmental Notifi-

cation Messages (DENMs), are integrated into LDM structure [2] [47]. LDMs have a

layered and conceptual data structure. In each layer, different types of C-ITS data and

traffic information are maintained [48] [49] [50]. The first layer of LDM keeps permanent

static data, such as map data, road data, and intersections. The sources of this static

data are geographic information systems (GIS) and map providers [50]. The second

layer of LDM contains transient static data, i.e., road infrastructures, ITS stations, and

traffic signs. The third layer of LDM stands for transient dynamic data, including traffic

congestion level, weather condition, and traffic light signal phase. The fourth layer of

LDM keeps highly dynamic data regarding vehicles, pedestrians, etc.

2.2 Automated and Connected Vehicles

2.2.1 Hierarchical Decision Making Mechanism

The path planning of autonomous vehicles can be modeled as a hierarchical decision-

making mechanism. Each layer of this decision-making mechanism handles a different

level of planning task with different constraints. Inspired by [51], we categorize this

decision-making mechanism of the autonomous vehicles mainly under four levels of hi-

erarchy as depicted in Figure 2.4. From higher to lower levels, the decision-making

components of the autonomous vehicles might be named route planning, behavior plan-

ning, motion planning, and local feedback control. It can be stated here that the outputs

of higher-level planning components are given as input for the lower-level planning func-
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tions.

At the highest level of this decision-making mechanism, global route planning (or

mission planning) is utilized on a road network to calculate an optimal, high-level route

from the start location to a specified destination location. Based on the calculated route

in the route planning layer and by considering the rules of the road, the behavioral layer

determines the local and shorter-term driving tasks, i.e., lane change, takeover, stop at

the traffic lights, and turn right or left. The motion planning handles finding an optimal

path or trajectory to perform the determined driving behavior by considering the safety

and feasibility of the trajectory, estimated locations of the static and dynamic objects

around the vehicle, and passenger comfort. Finally, the lowest feedback control layer

sends appropriate commands to the actuators for the proper execution of the planned

trajectory and tracks the errors during the trajectory is executed by the vehicle. In this

study, we focus on the higher-level route planning part of this mechanism.

Local Feedback Control

Motion Planning

Behavior Planning

Route Planning ❖ Global route planning from start location to destination location on a road network.
❖ Outputs the optimal route comprised of a set of road segments and way points.

❖ Local driving behavior and task planning considering the rules of road and the 
environment. 

❖ Examples of planned driving behavior include lane change, overtaking, stop at the 
intersection, etc.

❖ Low-level path and trajectory planning considering safety, feasibility and 
passenger comfort. 

❖ Implementation of the planned trajectory by commanding the relevant actuators 
properly.

❖ Tracking of the errors occurred during the vehicle drives along the planned 
trajectory.

Figure 2.4: Hierarchical decision-making and planning mechanism of autonomous vehi-
cles.

2.2.2 Autonomous Mobility on Demand (AMoD)

The global trend towards highly connected, digitized, and information-everywhere world

paves a way to transformation in almost every era of human life. Being not an exception,
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mobility is one of the domains that has been significantly influenced in this concern.

Especially, people living in densely populated urban areas are looking for integrated,

multi-modal, and flexible mobility solutions rather than traditional ways of transport,

such as mass public transport or private car ownership. The behavior change in this

regard can be affiliated to the recently emerging and widely accepted Mobility-as-a-

Service (MaaS) concept.

The term MaaS refers to an on-demand, user-oriented and flexible mobility manage-

ment system that is able to integrate a wide range of transport modes in the form of

a door-to-door trip plan. Operated on a digital platform, the MaaS system suggests a

solution, which is tailored to commuters’ transport preferences. Based on the transport

needs of users, the platform plans a chain of heterogeneous mobility services, including

car-sharing, ride-hailing, public transport, taxi, etc., and provides a unified solution [52].

Additionally, the MaaS model eases other transport-related services, such as payment

and subscription, for the commuters [53].

Considering the recent technological advancements towards realizing fully autonomous

driving, autonomous vehicle fleets can be utilized as shared and on-demand mobility ser-

vices in our cities, which is referred to as the Autonomous Mobility on Demand (AMoD)

system. As indicated in [53], there are already attempts to adopt the autonomous

driving technology on a wider scale as a shared, on-demand mobility service provider,

i.e., nuTonomy start-up company tests its driverless taxis in Singapore [54], Uber, and

Lyft have plans and ongoing tests in the same direction [55]. When AMoD concept is

widely adopted, it can be presumed that there would be different operators utilizing their

group of autonomous vehicles. At this point, the fleet level control and management of

autonomous vehicles constitute another research dimension in this domain. In the fol-

lowing, we briefly introduce the system model of the autonomous and shared mobility

system, describe its operation principles and identify a set of objectives that need to be

considered in the context of autonomous vehicles’ dynamic routing problem.

Formally speaking, an autonomous vehicle fleet to serve the travel demand of the

passengers can be denoted as F = {vi, v2.., vM}, where F represents the fleet of vehicles

21



and each vehicle vi has a maximum passenger capacity of cv. The state of a vehicle Sv

can be represented as a tuple Sv = {pv, tv, Np, Stv}, where pv is the current position,

tv is time, Np is the number of passengers the vehicle is serving and Stv stands for the

status of the vehicle, i.e., serving, idle and mobile, parked. The requests R dynamically

sent by the passengers to the fleet operator can be represented as a tuple ri = {or, dr, tr},

where or is the origin node, dr is the destination node, tr is the time instant that request

is sent by the passenger [56]. The maximum waiting time of a passenger after requesting

a ride is denoted as Wmax
t . Similar to the model presented in [56], the latest pick-up

time of a passenger can be defined as Tpmax = tr +Wmax
t and the earliest possible time

a passenger can reach the destination can be defined as Td∗ = tr + ftt(or, dr), where ftt

is a function that finds the travel time from an origin to destination node.

The control and management mechanism of an AMoD fleet has to handle thousands of

requests, originating from different regions of the city. The requests have to be assigned

to the available vehicles of the mobility service provider, and the vehicles with assigned

routes have to be guided to their destinations efficiently. The routing algorithm of the

vehicles has to consider multiple criteria, such as traveled distance, travel time, environ-

mental impacts, and safety. In this work, we incorporate the network quality information

into the route planning scheme, which would be critical for various applications utilized

by autonomous and connected vehicles. While assigning the trip requests to vehicles, the

predicted future demand can also be incorporated into the decision-making mechanism

as highlighted in [56]. As another important point in addition to request-to-trip assign-

ment and dynamic routing of on-duty vehicles, the idle vehicles have to be re-routed

to the regions of the city where higher mobility demand is expected in the near future,

which is referred to as rebalancing [57] in the literature.
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3 State-of-the-Art: Literature Review on

Vehicular Route Planning Approaches

The following sections present a set of recent and prominent approaches for the vehicular

route planning problem. We classify the relevant works in the literature under two

categories: (i) V2X-based Vehicular Route Planning Approaches in the Context of C-

ITS and (ii) Network-aware Route Planning Approaches.

3.1 V2X-based Vehicular Route Planning Approaches in the

Context of C-ITS

In [58] authors present and evaluate three proactive re-routing strategies, namely Dy-

namic Shortest Path (DSP), Random k Shortest Paths (RkSP), and Entropy Balanced

k Shortest Paths (EbkSP), to alleviate the effects of congestion. As detailed in the arti-

cle, the DSP algorithm is a classical route planning algorithm that considers the lowest

travel time. RkSP assigns each vehicle to one of the randomly computed k paths. EbkSP,

which authors propose, performs more intelligent path selection by considering the ef-

fects of the path selection on the future traffic density. The system model collects data

from vehicles and also from the road-side sensors when possible. Based on the collected

data, the congestion level in the directed and weighted road network is periodically eval-

uated. In the case that a sign of congestion is observed on certain road segments, the

system provides individually-tailored re-routing guidance to vehicles that are likely to

pass through the congestion. As a result of extensive simulation studies carried out by

SUMO [59] and TraCI [60], authors point out that although all strategies significantly
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improve the travel time, the proposed EbkSP strategy provides the most promising re-

sults. It is pointed out by the authors that EbkSP balances best the trade-offs between

low average travel time and low overhead along with several parameters.

In [61] authors present a predictive traffic management scheme based on an IEEE

802.11p based V2I communication. The proposed model implements a two-layer con-

trol system. In the first layer, vehicles equipped by OBUs send data packets to RSUs,

comprising information such as position, speed, and intended destination. In the sec-

ond control layer, a central control unit aggregates data from the RSUs using WAN

infrastructure, predicts the future congestion states by using a linear prediction model,

and adaptively re-routes the vehicles to avoid congestion. Based on the simulation re-

sults, the authors indicate that their prediction-based model provides improvements in

the road traffic conditions by reducing the total journey time and waiting time of the

vehicles.

Likewise, authors in [62] propose an integrated route guidance model, based on short-

term traffic flow prediction. In the proposed framework, the infrastructure (RSUs)

acquires the position of all vehicles in their communication range, generates traffic flow

information based on this collected data, and sends the obtained records to the traffic

information center via the wireless communication system. The traffic information center

updates the traffic database and resends the updated traffic data to the RSUs on regular

basis. Vehicles then acquire this traffic database from the RSUs onto their own on-

board computers. Based on this data, each vehicle unit forecasts short-term traffic flow

by using Kalman Filter. Thereafter, based on the prediction results, a hierarchical and

regional Dijkstra algorithm is adopted to periodically re-plan the current optimal route

for the vehicles.

Authors in [63] address the congestion problem in large cities and propose a re-routing

mechanism based on vehicle-to-roadside unit communication. In the proposed scheme

vehicles periodically send a message, including their position, speed, route, and destina-

tion, to the nearest RSU by means of a single hop long-range communication process,

such as LTE or 4G. Based on this collected data, the RSU computes the average speed
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and the total number of vehicles at each edge within its coverage. Then, the RSU updates

the edges’ weights that are modeled as inversely proportional to the traffic condition in

the road. Authors make use of the k-Nearest Neighbor algorithm (KNN) to classify

congestion levels on roads; defined as slight, moderate, and severe congestion. For each

congested road, an area of interest (AoI) is defined. Thereafter, if the RSU detects a

vehicle is inside the AoI of the congested road, it calculates k alternative roads for this

vehicle to avoid the congested road. Based on the simulation results, it is claimed by the

authors that their algorithm re-routes vehicles appropriately by performing load balance

among the alternative paths.

A self-adaptive interactive navigation tool (SAINT) is proposed in [64] that relies on

the interaction between vehicles and vehicular cloud. In the proposed system, vehicles

with the navigation system communicate with RSU or eNodeB to access the cloud,

namely Traffic Control Center (TCC). Vehicles periodically report their trajectories and

navigation experiences to the cloud. By using the reported vehicle trajectories, TCC

estimates the near-future congestion level of each road segment. In the case that a new

vehicle requests its navigation path, the TCC provides a globally optimal navigation path

that bypasses highly congested, bottleneck road segments. Authors claim that SAINT

outperforms the legacy navigation scheme based on Dijkstra’s algorithm by using real-

time road traffic snapshots. Based on simulations carried out on a road network from

Manhattan, NY, it is noted that SAINT can reduce the travel time during rush hours

by 19%.

In this regard, authors in [65] propose a gossiping method for information propagation

in a wireless vehicular network environment to alleviate the congestion. In the proposed

model, mobile vehicle agents in close proximity (agents passing one another or agents

located at the same edge) communicate with each other via V2V communication and

exchange traffic information regarding the road condition. The gossip network model,

based on a real road map, is modeled as a non-cooperative game, meaning that each

vehicle agent aims at minimizing its own journey length without trying to optimize

overall network performance. Based on the simulation runs performed on a hybrid
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microsimulation tool, it is concluded that the gossiping model is efficient even when a

relatively low percentage of the agents are able to gossip. However, it is observed by

the simulation results that when gossiping agent percentage exceeds a certain limit, the

average journey length starts decreasing. Authors explain this as a ping-pong effect such

that when the percentage of gossiping vehicle agents increases, most of the gossip agents

change their way to the same more available roads, which eventually blocks these roads.

Furthermore, it is claimed that the proposed gossiping model is found to be more efficient

compared to two (offline and online) centralized information dissemination models.

Likewise, authors in [66] state the beneficial sides of using an infrastructure-free V2X

communication among vehicles to avoid congestion on road networks when compared

to the conventional systems mentioned in the article. In the proposed model, the V2X-

enabled vehicles transmit the average speed of every passed edge to the neighboring

vehicles in their vicinity. The vehicles receiving the speed information recalculates the

edge weights (edge trip time) for the corresponding road segments. Subsequently, the

updated edge weights are used by each vehicle to recalculate the most optimal travel

route based on a conventional shortest path algorithm. In the case, that newly calculated

routes are found to be shorter in travel time, the new rote is followed by the vehicle. As

a result of simulations performed with the incremented V2X penetration rate (percent-

age of V2X-equipped vehicles in the scenario), it is found out by the authors that the

proposed decentralized V2X communication method provides a considerable travel time

reduction for both regular and V2X-enabled vehicles.

In the same direction, authors in [67] propose a dynamic route guidance system re-

lying on V2V communication. The proposed system comprises two main parts, namely

guidance and detour. The guidance part enables vehicles to gather real-time traffic in-

formation by means of V2V links and multi-hop relaying to find out potential better

routes that will take less travel time than the shortest path. Authors make use of a de-

tour algorithm in order to bypass void areas containing empty roads during the guiding

process.

Inspired by ant behavior, authors in [68] propose an anticipatory vehicle routing strat-
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egy using delegate MAS. In this decentralized approach, the proposed MAS model con-

sists of three main entities: 1) vehicle agent; 2) infrastructure agent; and 3) virtual

environment. The vehicle and infrastructure agents are responsible for coordinating

traffic whereas the virtual environment corresponds to software representation of the en-

vironment. Rather than directly communicating, the vehicle and infrastructure agents

send out lightweight agents, referred to as ants, that somewhat mimic the ants’ behav-

ior. Vehicle agents employ two types of ants, namely exploration ants, and intention

ants. The former explores the feasible routes in the virtual environment of a city and

returns estimated route durations. When a vehicle agent selects one of the explored

routes, it makes this information available for other vehicles by means of the intention

ants. The intention ants also provide this information to infrastructure agents such that

infrastructure agents predict the future traffic loads and provide the estimated future

traffic state back to vehicle agents. As a result of the simulations, authors conclude that

their proposed anticipatory routing strategy, using forecast data, allows drivers to avoid

congestion and prevent them from forming congestion. Additionally, it is noted that the

proposed model helps drivers reach their destination 35% faster.

Authors in [69] propose a dynamic route guidance scheme to mitigate road congestion

by utilizing only V2V communication. In the proposed system model, vehicles on the

same road segment are organized as a cluster. A temporarily selected cluster-head vehicle

collects real-time traffic information (speed, fuel consumption, vehicle density, incidents,

etc.) from the cluster members, generates a message for the real-time traffic information

in its segment, and shares this information with the cluster-head vehicles of other road

segments. The cluster-head vehicle, receiving the message, broadcasts the message to

the vehicles in its cluster. When a vehicle receives the message, the proposed scheme

adopts the trust probability (TP) to determine whether the current guided route of the

vehicle remains to be optimal one or not, by considering three metrics: travel time,

vehicle density, and fuel consumption. Relying on the trust probability, it dynamically

determines the optimal route during the travel and assists the vehicle by considering

drivers’ individual preferences. As a result of simulation analysis, authors claim that
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their infrastructure-free route guidance scheme achieves better traffic efficiency in terms

of time efficiency, balance efficiency, and fuel efficiency, in comparison with existing

schemes.

Authors in [70] design and evaluate a decentralized system where vehicles crowd-

sourced traffic information in an ad hoc manner and are dynamically rerouted to mini-

mize the trip times. The proposed system architecture consists of three main modules: i)

traffic sensing module ii) dissemination module iii) traffic estimation and dynamic rout-

ing module. In the traffic sensing module, traffic sample data is generated by vehicles

when they exit a road segment. The dissemination module makes use of a utility func-

tion to prioritize and broadcast a subset of information by considering the bandwidth

restrictions. Then, in the third module, the current traffic conditions are estimated and

vehicles are dynamically rerouted by means of a modified Dijkstra algorithm. To set up

the evaluation platform, authors integrate QualNet as a communications network sim-

ulator and MobiDense as a mobility simulator. Based on the simulation studies carried

out on a road network in downtown Portland, OR, it is concluded that the proposed

decentralized rerouting scheme can significantly reduce traffic congestion in a realistic

scenario.

Authors in [71] propose a real-time global path planning algorithm based on a hybrid-

ITS system that makes use of both VANET and cellular communication. Unlike individ-

ual path planning approaches, authors consider the problem from a global perspective

as well as meeting drivers’ preferences. In the proposed architecture, real-time traffic

information is collected by utilizing a hybrid network to avoid congestion in an urban

environment. Authors highlight that the proposed global path-planning algorithm not

only improves the network traffic but also reduces the average vehicle travel cost by

means of Lyapunov optimization.

Brennand et al. [72] present an ITS, in which RSUs are distributed throughout the city

to detect and control congestions in their area of coverage. In the proposed system, RSUs

are homogenously distributed based on the dimensions of the map and the maximum

operating range of the RSUs. Vehicles create a message, including position, speed,
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current path, and time they took to move through each road in their path, and send

this information to the nearest RSU via single-hop communication, i.e., LTE or 3G.

After receiving real-time information from the vehicles, each RSU builds a road graph

model representing the region covered by their communication range. The roads on

the graph are assigned a weight, inversely proportional to the vehicles’ average speed

traversing on them, and the congested roads are determined. After the creation of

the weighted graph, each RSU re-routes the vehicles in their coverage area based on k

shortest paths algorithm by using the Boltzman probability distribution. Authors claim

that selecting a path from k shortest path alternatives contributed to load balancing.

The simulations are carried out on a real and city-wide scenario by using the Veins

framework, which integrates SUMO and OMNET++. It is found out that proposed

distributed architecture can provide a 23% reduction in travel time, 9% reduction in fuel

consumption, and 10% reduction in CO2 emission.

In [73], authors introduce SCORPION (System with COoperative Routing to imProve

traffIc cONdition) as an ITS-based cooperative routing application. The proposed sys-

tem consists of three main procedures: i) road network and communication model; ii)

traffic condition classification; iii) cooperative routing. The road network is modeled as

a directed and weighted graph that covers at least one RSU. The vehicles in the scenario

periodically send their current position, speed, route, and destination information to the

nearest RSU through a single-hop LTE or 4G communication link. Upon receiving new

data from the vehicles, RSU computes the total number of vehicles and average speed

for each road. Based on this computation, RSU updates the weight of each road, which

is inversely proportional to the traffic condition on the road. In the next procedure,

the traffic congestion on the roads is classified by employing the k-Nearest Neighbor

(k-NN) algorithm trained by a synthetic dataset. Authors claim that k-NN is a simple

technique, enables cooperative routing and avoids creating new congestions. In the co-

operative rerouting part, global optimal routes are calculated for the vehicles that are

potentially pass through the determined congested roads. A real road network is used

to simulate the proposed model using the SUMO tool with TraCI. Authors compare the
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SCORPION system with original traffic mobility trace (OVMT) without re-routing em-

ployed, and three other solutions from literature: DSP, RkSP and the solution proposed

by Brennand et al. [72]. The cooperative re-routing procedure of SCORPION leads to

a 17% reduction in average travel time and a 61% reduction in average stopping time.

However, it also results in a 47% increase in the total traveled distance compared to the

case without re-routing employed.

Authors of [74] propose DIVERT (A Distributed Vehicular Re-Routing System for

Congestion Avoidance) that implements a hybrid architecture to avoid traffic congestion

in urban scenarios. In the DIVERT system, vehicles communicate with the server to

report traffic density data and receive global traffic data over cellular communication. By

using VANETs, vehicles cooperate with the neighboring vehicles to determine local traffic

density data, disseminate the traffic information received from the server and calculate

alternative routes by considering the surrounding vehicles’ future paths. Additionally, in

the reporting of traffic density data to the server, a privacy-aware reporting mechanism

is proposed to protect users’ identities and origin-destination (OD) pairs. The simulation

studies are conducted in two medium-size realistic road network scenarios by using the

Veins framework. It is claimed that by offloading the route computation to vehicles,

DIVERT reduces the network load on the server by 95% and achieves better scalability.

Authors note that DIVERT is able to reduce the privacy leakage by up to 92% in the

case when both distributed re-routing strategies, distributed Entropy-Based k Shortest

Paths (dEBkSP) and distributed A* with Repulsion (dAR*), are employed.

Likewise, relying on a VANET environment, De Souza et al. [75] present a distributed

and pro-active Traffic Management System, namely ICARUS (Improvement of traffic

Condition through an Alerting and Re-routing System), to alleviate the traffic conges-

tion problem in the urban areas. Upon receiving a traffic event (i.e., congestion detection,

accident notification, and congestion prediction), the proposed system is utilized under

two main phases: Information Dissemination and Re-routing. In the information dis-

semination phase, vehicles receiving a traffic event create an alert message including the

set of roads that are likely to be affected by the traffic event. The alert message, char-
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acterizing a congested area, is then disseminated to warn the vehicles within an Area of

Interest (AoI) by using a vehicle-to-vehicle communication protocol. Authors define an

area, namely sweet spot, such that only the vehicles inside this area continue performing

data dissemination. According to the authors, the concept of sweet spot mitigates the

broadcast storm problem and maximizes the coverage. Additionally, a desynchroniza-

tion mechanism is implemented to minimize the number of packet collisions, such that

if data transmission is scheduled at a time when the control channel (CCH) is active, an

extra delay is added to swap the transmission to service channel (SCH). The re-routing

phase of the ICARUS employs three different routing algorithms, which are Dijkstra, A*

and Probabilistic k-Shortest Path, to compute alternative routes for the vehicles that

will pass through the congested road section.

The Veins simulation framework, integrating Simulation of Urban Mobility (SUMO)

and the Network Simulator OMNET++, is used to test the proposed VANET based re-

routing scheme in a realistic road scenario. Regarding data dissemination, the proposed

broadcast suppression mechanism is found to be effective in bandwidth usage. Authors

further claim that their desynchronization mechanism resulted in the lowest number of

packet collisions for all selected traffic densities, compared to other data dissemination

protocols, i.e., Flooding. After the analysis of data dissemination, authors compare the

routing performance of the ICARUS with three approaches from the literature (DSP,

RkSP, and With routing) by simulating two congested scenarios caused by a high density

of vehicles and a traffic accident respectively. Based on the simulation results, it is

concluded that ICARUS is more efficient in pro-actively avoiding traffic congestion,

reducing travel time, congestion time, fuel consumption, CO emissions, and maximizing

the average speed of the vehicles in urban areas.

Zhang et al. [76] propose a fully distributed and infrastructure-less congestion avoid-

ance system using VANETs, namely DIFTOS (Distributed Infrastructure-Free Traffic

Optimization System). According to authors’ claim, their work is the first completely

infrastructure-free system aiming at avoiding congestion. The proposed system is mod-

eled as a hierarchy of servers, such that vehicles located in the busy intersections act
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as a server, called a virtual vehicular server (VVS). In every busy intersection area,

vehicles collaboratively elect a vehicle to take the role of VVS based on a broadcast

suppression scheme. The selected server vehicles keep the Road Reservations Matrix

(RRM) containing the edge weights of the road network within the corresponding cov-

erage. DOFTIS computes the link travel delay parameter for every road segment based

on the flow speed. Additionally, a weight is assigned to every road segment based on

the number of reserved positions on the road segment. The shortest path is found for

each vehicle to their destination point based on the link travel delay values with a weight

constraint. The simulation studies are performed on a real map representing a part of

a real city y using the Veins framework, integrating SUMO and OMNET++. Authors

note that DIFTOS is proven to be robust and scalable under varying traffic conditions.

In [77] authors propose a route suggestion protocol based on congestion awareness and

travel time prediction. The system architecture composes vehicles equipped with IEEE

802.11p transceiver, vehicles without a wireless interface (non-equipped vehicles), RSUs

deployed at intersections, and a central server unit. The proposed protocol utilizes two

main procedures: traffic intensity monitoring and route suggestion. In the first phase,

after receiving a route request message from vehicles, RSUs calculate congestion index

(CI) for road segments as the ratio of an actual number of vehicles to a permissible num-

ber of vehicles. Authors consider both equipped and non-equipped vehicles to determine

an actual number of vehicles on the road segments, which increases the accuracy of con-

gestion index calculations. The route suggestion module calculates optimized routes for

the vehicles, considering congestion and travel time prediction. When calculating travel

times, the distraction factor is taken into account. To test the proposed protocol, authors

use the Veins framework that combines SUMO and OMNET++. Based on the simula-

tion studies carried out on an urban scenario, it is concluded that the proposed route

suggestion protocol outperforms the existing approaches considering different metrics

such as packet delivery ratio, throughput, travel time, and end-to-end delay.

An eco-friendly routing algorithm is presented in [78] based on VANETs with the aim

of reducing both travel times and greenhouse gas emissions along the vehicles’ routes.
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The main components of the EcoTrec architecture are defined as a vehicle model, a

road model and a traffic model. The vehicle model holds the important characteristics

of each vehicle by using regularly provided inputs from the GPS sensors, speedometer,

and accelerometer. The speed and position of each vehicle, determined by using the

collected input data, are sent to the traffic model of other vehicles as VANET mes-

sages by relying on GeoRouting (GRP) protocol. The road model, stored in the central

server, allows vehicles to query or update road-related information via RSUs using IEEE

802.11p. The traffic model component includes the overall traffic condition information

of the road network based on average speed data. When vehicles receive updated road

information, their optimum route is updated by the EcoTrec routing algorithm. The

simulation studies are conducted on two real city networks by using the iTETRIS simu-

lator that connects SUMO and NS3. Based on the simulation analysis carried out with

varied scenarios, it is concluded that EcoTrec showed promising performance in terms

of emissions and the percentage of vehicles that reached their destination.

In [79], authors introduce itsSAFE (Intelligent Transport Systems for improving SAfety

and traFfic Efficiency) that provides optimum routes to vehicles with two objectives: i)

minimizing traffic congestion and ii) minimizing unsafety level. The proposed scheme is

modeled as an ITS system which comprises three main layers: i) traffic layer, ii) safety

layer, and iii) processing layer. In the traffic layer, real-time traffic data is collected by

using V2V and V2I communications in VANETs to have an accurate knowledge about

traffic conditions on the road network. Relying on an official criminal database that

includes information of crime events over the city, the safety layer assigns an unsafety

level to each road. By exploiting data provided by traffic and safety layers, the pro-

cessing layer detects bottlenecks and dangerous areas. With this information, itsSAFE

periodically computes alternative routes with the highest traffic efficiency and with an

unsafety level not greater than an acceptable threshold. The route planning modeled

as Resource Constrained Shortest Path Problem (RCSP) and solutions are obtained by

using a dynamic programming approach with a maximum tolerable unsafety level. The

simulations are carried out by modeling a real road scenario in the SUMO framework.
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Analyzing the simulation results, authors conclude that itsSAFE computes safe routes

by providing a 55% improvement in overall traffic efficiency.

De Souza et al. [80] propose a non-deterministic multi-objective re-routing system,

namely Safe and Sound (SNS), to optimize vehicles’ routes in terms of both traffic ef-

ficiency and safety. In the proposed hybrid architecture, vehicles communicate with

RSUs, 5G base stations, edge servers, and the remote cloud via cellular communication

and vehicular networking. Authors partition the road network into equally sized sub-

regions, in which a vehicle is chosen considering the number of vehicles in the vicinity

to report the local traffic information. The traffic information is reported by the chosen

vehicles to the server only if the traffic density is found to be higher than a threshold

value. With these two requirements of the data reporting phase, it is aimed to reduce the

number of transmissions and avoid network overhead. Upon receiving the traffic reports

from the vehicles, the server determines the free-flow roads and estimates the traffic

condition of other roads relying on the Greenshield model. Authors employ Recurrent

Neural Network (RNN) as a deep learning technique to predict criminal densities and

learn the safety risk dynamics of each neighborhood in advance. Vehicles then coopera-

tively compute their routes based on the Pareto set, which refers to a set of alternative

routes optimizing both traffic efficiency and safety. Authors propose a rank-based ap-

proach for the cooperative re-routing in order to minimize the broadcast storm problem.

By performing simulation studies on a real city network using the Veins framework, it

is concluded that SNS provides improvements in terms of scalability, time complexity,

and safety. It is noted that SNS provides a 30% reduction in the average safety risk for

drivers by considering their preferences without degrading traffic efficiency.

3.2 Network-aware Route Planning Approaches

Among few research works we have found in the literature in this category, authors

in [81] present a network-aware route planning approach by using a grid road network

equipped with heterogeneous network access technologies such as WiFi, Bluetooth, and

HiperLan. A smart vehicle passing through the defined geographic area is allowed to
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set communication with these three types of access technologies installed in the middle

of the road edges. The network-related cost assigned to each edge is defined in terms

of the communication range and throughput of the technology deployed. By utilizing

Dijkstra’s algorithm on the built graph, a suitable route is found to provide always best

connected service for the vehicles. Another connectivity-aware route planning tool is

proposed in [82] using crowdsourced data from OpenStreetMap and OpenSignal. The

road map data from OpenStreetMap is combined with a grid of boxes including signal

strength data provided by OpenSignal. In the built graph, the portions of edges are

assigned variable signal strength data. After constructing the graph, authors perform

three types of route planning methods based on Dijkstra’s shortest path algorithm.

These routing methods are the classical shortest path, threshold-based route planning,

and bounded degradation route planning. The threshold-based route planning method

finds paths such that signal strength never drops below a certain threshold. In the

bounded degradation route planning, paths are found that the time of experiencing

weak signal is kept below an acceptable threshold value. Simulations are carried out on

a medium-sized real map and the three routing methods are evaluated using the metrics

of average RSSI, minimum RSSI, and path efficiency. In the end, it is noted that the

proposed connectivity-aware routing tool provides considerable improvement in signal

strength with a slight increase in physical path length.

When the presented approaches above are considered, there are few studies in the

literature taking the communication network status information in the route planning

mechanism. Moreover, we have not noticed a research study using the multi-objective

evolutionary algorithms, i.e., NSGA-2, NSGA-3, for the dynamic routing of vehicles in

the context of C-ITS. Thus, with the aim of addressing this research gap, in this work,

we propose a modular framework that enables the collection of (near) real-time traffic

and network status information from the road environment, and dynamically compute

optimum routes for the vehicles, using the multi-objective evolutionary algorithm ap-

proach.
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4 Overall Framework, Urban Scenario

Model and Problem Formulation

This chapter outlines the system architecture and describes the main components of the

overall framework. Additionally, the urban scenario model is described with its main

constituents such as road network model, automated and connected vehicles, roadside

units (RSUs), cellular base stations (BSs), and remote application server. In addition to

describing the functionalities of the system components and the interaction among them

via a vehicular network, the traffic-related and network-related data collection methods

will be explained. The methodologies to estimate edge weights, corresponding to traffic

condition and network quality, are described. We then formulate the vehicular re-routing

process as a multi-objective optimization problem, which needs to be dynamically solved

for each route requesting vehicle; and by considering both traffic-related and network-

related metrics.

4.1 System Architecture and Overall Framework

The system architecture and the overall multi-objective route planning framework are

presented in Figure 4.1. As a first step, the road network model and the correspond-

ing road network graph are to be generated. One way to generate a SUMO-compatible

road network model is to extract real-world map data. The real-world map data can be

extracted from the OpenStreetMap [83], which provides data of roads, railways, rivers,

etc., from all around the world. The map data from OpenStreetMap can be downloaded

as an .osm file which can further be processed. If the manually selected area exceeds
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the download limit, then the map data can not be downloaded directly from the Open-

StreetMap. To download the map data of larger areas, the methodology identified in this

study is to use the free geodata in the Geofabrik servers [84]. Geofabrik is specialized

in OpenStreetMap services and provides current geodata of many regions (continents,

countries, cities) of the world in various formats [84]. For instance, OpenStreetMap

raw data can be downloaded from the public Geofabrik servers as a .osm.pbf file, which

requires less memory [84]. The raw OpenStreetMap data files can then be processed by

using various tools such as Osmium, PyOsmium, OSM4J, Osmconvert. In this work,

the berlin-latest.osm.pbf raw data file is downloaded from the Geofabrik server [84] and

the Osmconvert [85] tool is used to convert and process the raw OpenStreetMap data

of Berlin. By providing the geographical borders (geocoordinates of southwestern and

northeastern corners) and the berlin-latest.osm.pbf file as input, the .osm file represent-

ing a rectangular region can be obtained by using the Osmconvert tool.

A SUMO-compatible road network model can be generated from an .osm file by us-

ing the netconvert tool of SUMO [59]. Being a command line application, netconvert

tool takes an existing .osm map data file as input and outputs a SUMO road network

file in .net.xml file format. The road network data is encoded in .xml files in SUMO,

which contains information regarding edges, lanes belonging to edges, traffic light logics,

junctions, connections, etc. [59]. As noted in the documentation of SUMO [59], the

OpenStreetMap data in .osm not only contains road data but also additional polygons

such as buildings and rivers. This polygon data can be imported by using the poly-

convert tool of SUMO and can then be visualized on sumo-gui [59]. Other than using

real-world map data, the netgenerate tool of SUMO enables to generate abstract road

network models, i.e., grid-like networks, spider-like networks, and random networks [59].

By this way, SUMO-compatible road network files can directly be generated in .net.xml

format. The SUMO road networks can be imported to the visual network editor tool

called netedit and can further be modified [59]. In this study, we have used the netedit

tool to remove unconnected and isolated nodes and edges from the road network file, add

traffic lights to some of the junctions, and modify the connections between lanes at some
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Figure 4.1: Depiction of the overall multi-objective route planning framework.
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of the junctions. The netcheck.py tool of SUMO is used to check if the road network is

fully connected or not [59]. In other words, netcheck.py allows to check if there is a valid

route from every node to every other node in the road network [59]. The simulations

and dynamic route optimization is run after it is ensured that the corresponding SUMO

road network model is % 100 connected by using the netcheck.py tool.

Once a SUMO-compatible road network model is created, random trips are generated

by using the randomTrips.py tool of SUMO [59]. The randomTrips.py tool takes the

SUMO road network as input and generates random trips by randomly chosing source

and destination edge pairs [59]. The randomly generated route set is saved in an XML

file with a default name of trips.trips.xml [59]. While using the randomTrips.py tool, the

start and end time can be specified for the trips and then random trips are evenly dis-

tributed between the specified time interval [59]. When employing the randomTrips.py

tool for a road network, user is allowed to set different features for the generated set of

random trips. For instance, as detailed in the SUMO documentation [59], the minimum

straight-line distance between the source edge and the destination edge, the probability

that source and destination edge are selected from the fringe of the network, arrival rate

of the vehicles, departure attributes of the vehicles (depart lane, depart speed, depart

position) can be specified when generating the random trips. After random trips are

generated, the next step is to generate routes for the trips, which is realized by using

the duarouter application of SUMO. The duarouter tool takes the road network and

the random trips as input and computes routes by using a shortest-path algorithm, i.e.,

Dijkstra, A* [59]. The resulting routes are saved in an XML file with .rou.xml extension

and are assigned as the initial routes of the vehicles involved in the scenario. Among

the generated routes, each of which belongs to an individual vehicle, the ones that will

be followed by routable vehicles (the vehicles that use dynamic route optimization) are

specified in the .rou.xml file.

In addition to initializing the SUMO road network and the road traffic, the communi-

cation network simulation model is to be set and configured as well. First, the Network

Description File (NED) can be edited in the editor area of the OMNET++ IDE by using
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either Design mode or Source mode of the NED Editor [86]. In the Design mode, the

simulated network can be graphically modeled using the Palette on the rght, whereas

in the Source mode, the network source code is edited as text. By means of NED file,

user describes the network, as a self-contained simulation model, which is made up of

assembled simle modules and compound moduels [86]. The modules of the network

model, i.e., RSU module, car module, are defined by NED editor. The network interface

card of both RSU and car modules is specified as IEEE 802.11p for this study. As in-

dicated in the OMNET++ documentation [86], when the simulation program is started

the NED file is read at first, and then the configuration file omnetpp.ini is called. In

the omnetpp.ini configuration file, the NED file, representing the network model to be

simulated, is specified. The settings about the simulation, RSUs (i.e., location of the

RSUs), network interface cards (i.e., IEEE 802.22p specific parameters), playground size

are specified in the omnetpp.ini configuration file. This completes the communication

network related settings before starting the simulation program.

A dynamic data storage entity, representing a Local Dynamic Map (LDM), is modeled

as part of the remote application server component of the developed framework. By using

the sumolib tool of SUMO, which contains a set of python modules to parse SUMO

networks, an adjacency matrix model representing the road network is generated. The

adjacency matrix, or the finite weighted graph model, is first instantiated based on

the edge distances read from the SUMO road network file, and then, the generated

weighted graph model is replicated for other objectives, i.e., travel time and congestion.

A mechanism is implemented to update the entries of the matrices and retrieve the values

from each data layer. Throughout the simulation run, the data layers are updated by

the road traffic and communication network-related measuremensts.

To solve the dynamic route planning problem for the routable vehicles, we have in-

tegrated the Python-based optimization framework, namely Pymoo (Multi-Objective

Optimization in Python) [87]. The modular structure of the Pymoo framework allows

us to model many state-of-the-art optimization algorithms to solve any constrained,

complex optimization problems. As the main external interface, Pymoo provides the
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minimize function to solve the optimization problems. The minimize function of Py-

moo takes arguments such as problem object that includes the optimization problem to

be solved, algorithm object that stands for the optimization algorithm as the problem

solver, and termination criterion object used to stop the algorithm [87]. Additionally,

parameters to enable random seed, print out the outputs throughout the optimization

process, save a snapshot of the algorithm at each iteration, and return the least infeasible

solutions in the case that algorithm can not find a feasible solution, can be specified by

the minimize function. By means of Pymoo, the optimization problem can be defined as

a class by specifying a set of metadata including number of variables, number of objec-

tives, number of constraints, lower and upper boundaries of the design space variables.

These parameters are defined in the constructor method of the problem class and the

evaluate method of the problem class is used to evaluate each of the generated solution

alternative based on the defined objective functions and constraints. After defining the

problem model, the algorithm as a problem solver is to be specified and customized. In

this study, the aim was to handle the multi-objective route optimization problem for

vehicles. Thus, we have mainly customized the multi-objective evolutionary algorithms

such as Non-dominated Sorting Genetic Algorithm-2/3 (NSGA-2/3) to find out a set of

optimal route solutions.

When an optimal solution is selected among the final solution set provided by the

algorithm, the route representation of the solution is calculated based on the Priority-

based Encoding methodology. First, the route node indices are found, and then the

corresponding edge ids are determined. The SUMO-compatible route representation,

the most optimal route calculated for the requesting vehicle, is set to the vehicle by

using the mobility interfaces of the Veins framework, i.e., TraCI Command Interface.

Throughout the simulation run, the mobility interfaces provided by the Veins framework

are used to get the current traffic information from the vehicles in the scenario, which is

then sent to the server application to update the dynamic data layers. Each vehicle also

broadcasts its route information to the RSUs and vehicle nodes around. The broadcasted

network packets are defined using the cPacket class which extends the cMessage class of
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OMNET++. In this broadcasted message, the vehicle id, position and the current road

id of the sending vehicle are encapsulated by using the Route Message API. Likewise, by

means of the same API, the vehicle id and current road id of the sending vehicle, received

signal strength, and the id of the receiving RSU are sent to the server application to

make the required updates for the data layer corresponding to communication network.

Thus, when the broadcasted network packets are successfully received by the RSUs, the

dynamic data storage unit is updated accordingly with the extracted information.

At the lowest layer of the overall framework presented in this work, it is worth to

note that there exists mobility and network simulation tools (SUMO and OMNET++),

which are bidirectionally coupled via Veins framework. The microscopic mobility simu-

lator SUMO simulates the vehicle movements based on a car following model, i.e., Krauß

model. The network simulator OMNET++ handles the simulation of vehicular commu-

nication. Within this closed loop simulation setup, where online interaction is enabled,

mobility and network simulators exchange data at runtime. In the following sections,

we give an overview of the urban mobility scenario by introducing the C-ITS elements

and formulate the vehicular route optimization problem.

4.2 Urban Scenario Model

This section describes the urban scenario model which consists of automated and con-

nected vehicles, roadside units (RSUs) and/or base stations (BSs), and remote cloud

servers that run vehicular applications, as depicted in Figure 4.2. Additionally, we de-

tail the vehicular communication model that enables the wireless data exchange among

the system nodes and present the road network model. The presented urban scenario

model and the vehicular routing policy presented in this work are considered in the

context of Cooperative Intelligent Transportation Systems (C-ITS), where various road

elements (C-ITS stations) cooperate via different wireless access technologies, i.e., Ded-

icated Short Range Communication (DSRC), and 5G Cellular Communication. In the

system model, vehicles with on-board units (OBUs) are able to communicate with other

vehicles in proximity and with RSUs via vehicular networking. We further assume that
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Figure 4.2: Depiction of an urban scenario comprising C-ITS elements such as automated
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there could be direct cellular communication between vehicles and base stations. In

what follows next, we describe the main components that constitute the C-ITS model

and take part in the proposed network-aware dynamic vehicle re-routing scheme.

Automated and Connected Vehicles: The automated and connected vehicles re-routed

in our proposed system are to be equipped with a GPS-based navigation system, On-

Board Units (OBUs), and wireless interfaces for both IEEE 802.11p standard and 4G-

LTE/5G cellular communication. Likewise, vehicles comprising background traffic are

also connected such that they communicate with RSUs or base stations modeled in the

scenario via short-range or cellular communication mediums. All the vehicles in the

urban scenario communicate with the RSUs and other vehicles in proximity via DSRC

IEEE 802.11p-based short-range wireless communication technology, and with cellular

base stations (or eNodeBs) via 4G-LTE/5G cellular communication. Vehicles periodi-

cally collect and send local traffic information to the nearest RSU. This traffic-related

information includes vehicles’ current location, speed, targeted destination, their cur-

rently followed route to reach their destination, the average speed of the road segment

that they are moving on. These periodically sent traffic messages can be generated by

using the measurements collected by their sensors and devices such as GPS receivers,

and on-board diagnostics (OBD), or can be received from nearby vehicles via V2V com-

munication. The periodically generated and sent traffic information is to be embedded

in DSRC messages, standardized as Cooperative Awareness Message (CAM) or Basic

Safety Message (BSM).

Road Side Unit (RSU): The roadside units (RSUs), equipped with DSRC-based wire-

less communication devices, are the gateways installed near the road infrastructure that

communicates with the vehicles within their coverage via short-range wireless communi-

cation. RSUs can also be connected to each other via wired or wireless communication,

to the cellular base stations, and the remote application server. The wireless ad hoc net-

work established in the vehicular road environment is connected to the wired Internet

via RSUs. Vehicles passing through their communication range exchange data with the

RSUs via one-hop, short-range wireless communication. RSUs receive route requests and
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collect local traffic information from the vehicles including vehicles’ currently traveling

route. With the collected information from the vehicles, RSUs determine local traffic

conditions and congestion levels on the road segments associated with them. The route

requests received from the vehicles are to be sent to the remote application server. The

computed and recommended routes by the remote server can be delivered back to the

vehicles through RSUs.

Base Stations (BS) / eNodeB: The cellular base stations (BSs) deployed throughout

the city enable direct cellular communication between vehicles and the remote applica-

tion server via 4G-LTE/5G communication. When the vehicles are out of the communi-

cation range of the RSUs, they can send traffic information to the remote cloud through

base stations, or vehicles can receive traffic updates and route suggestions directly from

the server via downlink cellular communication by means of the base stations.

Remote Application Server: The remote application server maintains up-to-date infor-

mation about road traffic conditions and communication network quality of the overall

road network graph. By collecting traffic and communication network-related informa-

tion from all the connected vehicles through RSUs or BSs, the vehicular cloud node

builds up a global knowledge of the urban scenario. With the collected information,

it determines up-to-date values for the congestion level and network quality indicator

associated with each road segment in the considered road network. The highly con-

gested roads (bottlenecks) and the regions with low communication network quality are

determined. This global, dynamically changing, and multi-layer graph structure refers

to the Local Dynamic Map (LDM) concept introduced in Chapter 2. In addition to

the traffic-related and network-related weights assigned to the edges (road segments),

the application server maintains the current locations of the vehicles and the routes that

they are moving on. Based on the collected information, the application server computes

the globally optimum route solutions for the requesting vehicles. These route solutions

computed by the server node are sent back to the vehicles and the vehicles are re-routed

accordingly.

Road Network Model: The road network can be abstracted as a directed graph
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Table 4.1: Notation: Road Network & Weighted Directed Graph

G = (V,E) Directed graph representing the road network; Vertices V
represent the junctions and Edges E correspond to links
connecting them.

Rijd , R
ij
s , Eij Road, road segment and the edge connecting the junctions

(nodes) i and j.

Lij , Dij Physical length and distance of the road Rijd .
Wn
t Waiting time at node n.

Sijavg Average speed of the vehicles passing through road Rijd .

Sijmax Maximum speed limit of the road Rijd .

N ij
v Vehicle density on the road Rijd .

τ ij Traffic efficiency on the road Rijd .

T ijc Current traffic congestion index on the road Rijd .

pijc Projected congestion contribution on to the road Rijd caused
by only one vehicle vm.

P ijc Aggregated projected congestion contribution caused by all
the vehicles registered to the road Rijd .

φij Communication network quality index assigned on the road
Rijd .
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G = (V,E), where V represents the nodes and E ⊆ V xV represents the edges con-

necting the nodes. While nodes of the graph correspond to intersections of the real

road network, edges correspond to road segments connecting the intersections. The di-

rected road network graph G is to be connected, which implies that there always exists

a path connecting two nodes of the graph through other nodes. Each edge of the graph

has a static traveled distance weight Dij , and dynamically assigned weights of current

congestion level T ijc , aggregated projected congestion contribution level P ijc , and com-

munication network quality index Φij . It should be noted that the last three weights

associated with the edges are time-dependent and are to be updated based on the en-

vironmental changes, i.e., traffic and network status. Readers can refer to Table 4.1

for the notations regarding the road network model and the weighted directed graph

representing the road network.

4.2.1 Determination of the Edge Weights on the Road Network Graph

This section explains how the edge weights assigned on the road network graph are

determined. In this work, we have considered one static edge weight, which is the traveled

distance along the roads taken from the OpenStreetMap data source. As dynamic edge

weights, we consider the current traffic congestion, projected congestion contribution,

and network quality index. Below, we introduce these dynamic edge weight metrics and

describe how they are estimated throughout our simulation studies.

Estimation of Travel Time and Current Traffic Congestion on the Roads

The current traffic condition on the roads is estimated based on the periodically reported

traffic information by the vehicles. Each vehicle in the scenario periodically sends traffic

information to the server including vehicle ID, current road ID, current route, list of

the mean speeds on the road segments that corresponding vehicle follows, list of the

estimated travel times to traverse each road on the vehicle’s current route, and the

estimated remaining time to pass the current road. Based on the received information

from a vehicle, the server-side application computes estimated travel time or the current
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congestion levels on each road segment included in the current route of the corresponding

vehicle. The same procedure is performed for every vehicle in the urban scenario that

sends its periodic traffic information message.

To quantify the traffic condition on the roads, different congestion measures are defined

in the literature as summarized in [88] under the categories of speed, travel time, delay,

level of services, and congestion indices. In this study, we have implemented two methods

to measure the current congestion level on the roads. As a first measure, we rely on

Greenshield’s model [80], [89]. Greenshield’s model estimates the traffic condition on

the roads by using the relation between average vehicle speed and vehicle density. First,

the mean vehicle speed on a road is found by using Equation 4.1.

Sijavg = Sijmax [1− N ij
v

Lij

Lv + ψ
] (4.1)

where Sijmax is the maximum speed limit on the road Rijd that connects the nodes i and

j, N ij
v represents the current vehicle density on the road, Lij is the physical length of

the road, Lv is the average length of a vehicle, and ψ represents the minimum distance

gap between vehicles on the road. By using the estimated mean speed, the travel time

(or traffic efficiency) on the road Rijd can be determined by using Equation 4.2.

τ ij =
Lij

Sijavg
(4.2)

Further, we define the current traffic congestion index on the road Rijd by using Equa-

tion 4.3.

T ijc =
Sijmax − Sijavg

Sijmax
(4.3)

The other traffic congestion measure implemented in this work is the occupancy level

on the roads, which is obtained by the SUMO mobility simulator during the simulation.

Obviously, the total traffic efficiency on a route Rsd from current location s to destination

location d is found by τ sd =
∑

ij∈Rsd τ ij . Likewise, the total current congestion of a route

Rsd is given by T sdc =
∑

ij∈Rsd T
ij
c . One of the objectives considered in our optimization
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problem is to minimize the total current congestion T sdc level on the routes of the vehicles.

In order to normalize the routes’ current congestion levels in between [0, 1], we divide the

total route cost by the number of road segments (edges) of the route, and the objective

function regarding current congestion cost is defined in this way.

Estimation of Projected Traffic Congestion Contribution on the Roads

Inspired by [64], we have assigned an additional metric, namely projected congestion

contribution, on the edges. This metric refers to the estimated, near-future conges-

tion caused by each vehicle along their followed paths. More specifically, if a ve-

hicle vm is currently passing through edge E12 and is following the route R1N →

{E12, E23, · · · , E(N−1)N}, then the corresponding vehicle would not only contribute to

the current congestion level on its current edge E12, but also contribute to the near-

future congestion levels of upcoming edges E23, E34, · · · , E(N−1)N . Relying on this idea,

we define a projected congestion contribution metric pijc only estimated for the unvisited

(to be visited along the route of a vehicle in the near future) edges of each vehicle.

The estimated projected congestion contribution values assigned to the next edges

of a vehicle’s route at time instant Tcurr is depicted in Figure 4.3. As illustrated in

Figure 4.3, the highest projected congestion contribution value is assigned to the next

edge E23, which is the closest edge to the current position of the vehicle. The assigned

congestion contribution values decrease for the edges farther away from the vehicle,

or in other words, for the ones closer to the destination node (n6 in this case), s.t

p23
c > p34

c > p45
c > p56

c . The idea behind this assertion is that a vehicle will pass through

the edges that are farther away later. Thus, the congestion contribution values on these

edges would be assigned lower than the ones assigned on the edges that will be traversed

in the near future. In this work, the projected congestion contribution value is only

estimated for the next edges that are not visited by the vehicles yet, hence, this metric

is set to zero for the vehicles’ current edges.

To be more specific, if we consider the case depicted in Figure 4.3, the vehicle is

currently on the edge E12 and the projected congestion contribution value assigned on
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Figure 4.3: Projected congestion contribution along the edges of a vehicle route deter-
mined at time Tcurr.

the current edge E12 would be zero, s.t P 12
c = 0 at the time instant Tcurr. We estimate

the projected congestion contribution caused by one vehicle on an upcoming edge based

on the estimated time the vehicle enters the corresponding edge and the estimated time

that vehicle reaches the destination location. If we specifically consider the example

depicted in Figure 4.3, the projected congestion contribution p45
c caused by the vehicle

on the edge E45 can be calculated by using the estimated time T4 the vehicle enters to

the edge E45 and the estimated time T6 the vehicle arrives its destination. While doing

these calculations, we consider two cases as shown in Figure 4.3. In Case 1, the vehicle

receives the suggested route from the remote application server when it just enters its

current edge. In Case 2, the vehicle receives the calculated route when it is driving on

the current edge E12. We now illustrate how the projected congestion contribution value

is calculated for the edge E45 by considering both cases in the following. Then, we form

a generalized formulation.

Case 1: Vehicle receives the route when it just enters the current edge E12:

First, in Equation 4.4 and Equation 4.5, we calculate the difference between the esti-

mated time T4 that vehicle enters to edge E45 and the current time Tcurr at which the

vehicle receives the suggested route solution from the server.

T4 − Tcurr =
L12

S12
avg

+W 2
t +

L23

S23
avg

+W 3
t +

L34

S34
avg

+W 4
t (4.4)
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T4 − Tcurr =
4−1∑
i=1

(j=i+1)

[
Lij

Sijavg
+W i+1

t ] (4.5)

Based on Equation 4.4 and Equation 4.5, we can generalize the formulation for the

difference between the estimated time Tu that vehicle enters to edge Eu(u+1) and the

current time Tcurr as in Equation 4.6.

Tu − Tcurr =
u−1∑
i=1

(j=i+1)

[
Lij

Sijavg
+W i+1

t ], 2 ≤ u < nd (4.6)

where nd represents the destination node number.

Then, in Equation 4.7 and Equation 4.8, we calculate the difference between the

estimated time T6 that vehicle arrives at its destination and the current time Tcurr at

which the vehicle receives the suggested route solution from the server.

T6 − Tcurr =
L12

S12
avg

+W 2
t +

L23

S23
avg

+W 3
t +

L34

S34
avg

+W 4
t +

L45

S45
avg

+W 5
t +

L56

S56
avg

(4.7)

T6 − Tcurr =
6−2∑
i=1

(j=i+1)

[
Lij

Sijavg
+W i+1

t ] +
L(6−1)6

S
(6−1)6
avg

(4.8)

Based on Equation 4.7 and Equation 4.8, we can generalize the formulation for the

difference between the estimated time Tnd
that vehicle arrives to the destination and the

current time Tcurr as in Equation 4.9.

Tnd
− Tcurr =

nd−2∑
i=1

(j=i+1)

[
Lij

Sijavg
+W i+1

t ] +
L(nd−1)nd

S
(nd−1)nd
avg

(4.9)

where nd represents the destination node number.

Case 2: Vehicle receives the route when it is driving through its current edge E12:

First, in Equation 4.10 and Equation 4.11, we calculate the difference between the

51



estimated time T4 that vehicle enters to edge E45 and the current time Tcurr at which

the vehicle receives the suggested route solution from the server.

T4 − Tcurr = T 12
unpassed +W 2

t +
L23

S23
avg

+W 3
t +

L34

S34
avg

+W 4
t (4.10)

T4 − Tcurr =
L12 − L12

passed

S12
avg

+

4−1∑
i=2

(j=i+1)

[
Lij

Sijavg
+W i

t ] +W 4
t (4.11)

Based on Equation 4.10 and Equation 4.11, we can generalize the formulation for the

difference between the estimated time Tu that vehicle enters to edge Eu(u+1) and the

current time Tcurr as in Equation 4.12.

Tu − Tcurr =
L12 − L12

passed

S12
avg

+
u−1∑
i=2

(j=i+1)

[
Lij

Sijavg
+W i

t ] +W u
t (4.12)

Then, in Equation 4.13 and Equation 4.14, we calculate the difference between the

estimated time T6 that vehicle arrives at its destination and the current time Tcurr at

which the vehicle receives the suggested route solution from the server.

T6 − Tcurr = T 12
unpassed +W 2

t +
L23

S23
avg

+W 3
t +

L34

S34
avg

+W 4
t +

L45

S45
avg

+W 5
t +

L56

S56
avg

(4.13)

T6 − Tcurr =
L12 − L12

passed

S12
avg

+
6−1∑
i=2

(j=i+1)

[
Lij

Sijavg
+W i

t ] (4.14)

Based on Equation 4.13 and Equation 4.14, we can generalize the formulation for the

difference between the estimated time Tnd
that vehicle arrives to the destination and the

current time Tcurr as in Equation 4.15.

Tnd
− Tcurr =

L12 − L12
passed

S12
avg

+

nd−1∑
i=2

(j=i+1)

[
Lij

Sijavg
+W i

t ] (4.15)
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where nd represents the destination node number.

After the estimated time differences T4 − Tcurr and Tnd
− Tcurr are determined for

either Case 1 or Case 2, we define the projected congestion contribution caused by only

one vehicle onto the edge E45 as in Equation 4.16.

p45
c =

(T6 − Tcurr)− (T4 − Tcurr)
(T6 − Tcurr)

(4.16)

In the generalized form, the projected congestion contribution caused by only one vehicle

onto an edge included in the vehicle’s route can be given as in Equation 4.17

puvc =
(Tnd

− Tcurr)− (Tu − Tcurr)
(Tnd

− Tcurr)
(4.17)

This projected congestion value caused by each vehicle on to its next edges to be passed

are updated when the vehicle receives a new route from the server, or when it moves to

another edge. By this way, we maintain the updated projected congestion contribution

values of every edge in the road network at the remote application server. The total

projected congestion contribution level on an edge at a time instant Tk is determined

by summing up the congestion contribution values caused by all the vehicles whose

routes include that specific edge. Thus, if there are M vehicles whose routes contain

the edge Eij at time instant Tk, then the aggregated projected congestion constribution

on this edge at this time is found by P ijcTk =
∑M

m=1 p
ij
cTk

(vehicles registered to the

edge Eij : v1, v2, · · · vM ). The total projected congestion contribution associated to the

currently followed route of a vehicle at time instant Tk is given by sum of the aggregated

projected congestion contribution values assigned to each edge to be visited on that

route, P sdcTk
=
∑N−1

i=2
(j=i+1)

P ijcTk . One other optimization objective considered in this work

is to minimize the total projected congestion contribution value P sdcTk
on the routes of

the vehicles.
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Figure 4.4: LDM enriched with a network context layer [2].

Estimation of Communication Network Quality on the Roads

Similar to the work presented by Varga et al. in [47], we extend the LDM by an additional

layer that comprises Network Context (NC) Data (see Figure 4.4), which is collected by

means of CAM messages. This additional network-related data layer comprises static

and dynamic information regarding available access technologies.

In this study, we have modeled the urban scenario such that every connected vehicle

periodically broadcasts its traffic information message, i.e., vehicle’s current position,

current road ID, to the nearest RSUs. The message type that the vehicle’s traffic infor-

mation is broadcasted is called WAVE Short Message (WSM) in the Vehicles in Network

Simulation (Veins) framework. Once an RSU successfully receives a WSM message from

a vehicle, it extracts two information from the message: (i) the road ID, correspond-

ing to the current road ID of the vehicle that sends the message, and (ii) the received

signal power in dBm (decibel-milliwatts). Then, the RSU sends its own ID, road ID,

and received signal power (dBm) to the remote application server. Based on the sent

information by RSU, the network layer of the dynamic map data structure is updated.
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In more concrete terms, the entry of the network quality matrix corresponding to the

received road ID is updated by a network quality index φij , which is determined from

the signal power level in dBm. We have identified maximum and minimum signal power

levels as −50 dBm and −110 dBm respectively. When it is translated into network

quality index metric φ between 0 and 1 ([0, 1]); −50 dBm corresponds to φ = 1, and

−110 dBm signal power corresponds to φ = 0. According to this relation, the received

signal power in dBm is mapped to network quality index φ ∈ [0, 1] at the server-side.

The network-related edge weight γij is defined as the inverse of the network quality index

such that γij = 1
φij

. Hence, the total network-related weight on a route from source s

to destination d is defined as Γsd =
∑N−1

i=1
(j=i+1)

γij , where N is the last node number in

the route. The last optimization objective is to minimize the total network-related edge

weight Γsd on the routes of the vehicles.

4.3 Multi-Objective Optimization Problem Formulation

A multi-objective optimization problem (MOOP) is mathematically formulated as in

Equation 4.18 [90–94]:

minimize
x∈Ω

y = F (x) = (f1(x), f2(x), ..., fm(x))T

s.t. Ax ≤ bi

gj(x) ≤ 0, j = {1, 2, ..., p}

hk(x) = 0, k = {1, 2, ..., q}

lb ≤ xi ≤ ub, i = {1, 2, ..., Nvar},

(4.18)

where the evaluation function F (x) = (f1(x), f2(x), ..., fm(x))T represents a set of m

objective functions fi : Ω→ R to be minimized. In Equation 4.18, x = (x1, x2, ..., xn) ∈

Ω ⊂ Rn is the vector of decision variables constituting the search space Ω and Rn is

the n dimensional Euclidean space. The parameter y = (y1, y2, ..., ym) ∈ Y ⊂ Rm rep-

resents the vector of objectives constituting the objective space Y . The gj(x) ≤ 0, j =
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{1, 2, ..., p} and hk(x) = 0, k = {1, 2, ..., q} are the inequality and equality constraint

functions of the problem respectively. The lb and ub represent lower and upper bound-

aries of the variables, where Nvar is the total number of variables in the problem model.

Needless to say, the MOP can be also formulated as a maximization problem.

To substantiate, relying on the multi-objective optimization problem formulation pre-

sented in Equation 4.18, an instance of route planning problem can be defined by

considering four objective functions such that evaluation function F becomes F (x) =

(f1(x), f2(x), f3(x), f4(x))T . For instance, the first optimization objective can be defined

as minimizing the total traveled distance along the route, f1(x) =
∑N−1

i=1
(j=i+1)

Dij . The

second optimization objective is to minimize the total current congestion level along the

route, f2(x) =
∑N−1

i=1
(j=i+1)

T ijc . The third optimization objective is to minimize the total

aggregated projected congestion contribution level along the route, f3(x) =
∑N−1

i=1
(j=i+1)

P ijc .

The fourth optimization objective is to minimize the total network related edge weight

along the route, f4(x) =
∑N−1

i=1
(j=i+1)

γij . We can define a constraint regarding the trav-

eled distance metric. Let SP sd is the shortest path distance from source location s to

destination location d. Then, it can be stated that total distance of any route solution

from s to d should not exceed (1 + δ)SP sd. This implies that D̂sd ≤ (1 + δ)SP sd, and

the constraint of this problem instance is defined as g1 = D̂sd − (1 + δ)SP sd ≤ 0. In

the same way, different problem instances can be modeled with different objectives and

constraints.

In many real-world engineering problems, the multiple objective functions fi involved

in the MOP are in conflict with each other, meaning that an improvement made in one of

the objectives leads to deterioration on at least one of the other objectives [90] [95]. Due

to that reason, a single global solution that optimizes all the objectives fi, i = 1, ...,m

often does not exist. Rather, a set of best-compromising trade-off solutions can be found

based on the well-known Pareto optimality concept [96]. The main goal in MOPs is to

find out these best trade-off solutions, which are referred to as Pareto-optimal Solutions.

In the single-objective optimization problems, the goal is to minimize or maximize a

single objective in the search space Y ∈ R and there exists only one optimum point on the
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objective vector. Although there are several optimal solutions in the search space, they

are all mapped to the same objective vector [97]. Unlike single-objective optimization

problems, in the MOPs there exists multiple objective vectors in the objective space

representing different trade-offs [97]. In this case, several optimal solutions in the search

space might be mapped to different objective vectors, and the comparison of individual

solutions becomes more complex for MOPs. In this regard, the well-known concept of

Pareto dominance is used to compare the solutions x ∈ Ω and the objective vectors

y ∈ Rm among each other. At this point, it is worth describing a set of definitions

used in this context, such as Feasible solution set, Pareto dominance, Pareto-optimal

solutions, Pareto-optimal front [90, 91, 93, 97].

x2
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y1

Decision Space Objective Space

f(x)

(x1, x2, … , xn)  
(y1, y2, … , xm)  
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Pareto-optimal solutions Pareto-optimal front

Figure 4.5: Illustration of the Pareto-optimal solutions in the decision space and Pareto
front in the objective space.

Feasible solution set: The feasible solution set Xf ⊂ Ω is the set of solutions x ∈ Ω

that satisfies all the constraints defined in the multi-objective optimization problem.

Pareto optimality: A feasible solution x ∈ Xf is said to be Pareto optimal in

the decision space Ω if @x′ ∈ Ω such that F (x
′
) = (f1(x

′
), f2(x

′
), ..., fm(x

′
)) dominates

F (x) = (f1(x), f2(x), ..., fm(x)).

Pareto dominance: Lets assume that x1 and x2 are two feasible solutions in the

decision space. It is said that x1 dominates x2, denoted as x1 ≺ x2 if fi(x1) ≤ fi(x2), ∀i ∈
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{1, 2, ...,m} and ∃i ∈ {1, 2, ...,m} s.t fi(x1) < fi(x2).

Pareto-optimal solutions: A feasible solution x∗ ∈ Xf is said to be a Pareto-

optimal solution if @x′ ∈ Ω such that F (x
′
) ≺ F (x∗). All the nondominated Pareto-

optimal solutions x∗ ∈ Ω comprises the Pareto set (PS), formally defined as PS = {x ∈

Ω | x′ ∈ Ω, F (x
′
) ≺ F (x). The Pareto-optimal solutions of a MOP are depicted on the

left hand side of Figure 4.5 with blue rectangles.

Pareto-optimal front: The Pareto front is the image of the Pareto-optimal solutions

(Pareto set) in the objective space. If x ∈ Ω is the set of Pareto-optimal solutions, the

Pareto-front is denoted as PF = {F (x)| x ∈ Ω}. The Pareto-optimal fronts of a MOP

are depicted on the right-hand side of Figure 4.5 with grey circles.
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5 Population-based Metaheuristic

Approach for Vehicular Route Planning

Many real-world optimization problems are computationally complex, include multiple

objectives to be satisfied simultaneously, and thus can not be always resolved in a fea-

sible way by using the traditional, exact methods such as Integer Linear Programming

(ILP). Especially, when the problem instance is relatively large, it becomes computa-

tionally expensive and infeasible to find out the globally optimum solution(s) by using

the exact methods. The same fact holds true for the real-world vehicular route plan-

ning problem instances as one category of combinatorial optimization problems. In

particular, this is valid for the cases that there are multiple objective functions to be

minimized or maximized and there is a large road network model at hand. Considering

the non-deterministic polynomial-time hard (NP-hard) vehicular route planning prob-

lem instances, the population-based metaheuristic algorithm approaches could be an

effective solution alternative. Although it is not guaranteed to find globally optimum so-

lution(s), the heuristic-based stochastic search methods are able to find sufficiently good

solution(s) effectively. Regarding this, we adapt, implement and apply different versions

of population-based evolutionary algorithm approaches to find optimal or near-optimal

solution(s) for the vehicular route planning problem. This chapter introduces the evolu-

tionary computation concept and its main principles in a broader view. Being one of the

widely known and mainstream categories of the evolutionary computation paradigm, the

Genetic Algorithm (GA) approach is illustrated over a single-objective route planning

problem instance. In addition, we introduce the Multi-Objective Evolutionary Algorithm

(MOEA) approach to resolve multi-objective vehicular route optimization problems and
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Figure 5.1: The stochastic search process in evolutionary algorithms [97].

we detail a state-of-the-art MOEA that we concern within this study.

5.1 Evolutionary Computation

The use of evolutionary computation techniques dates back to late 1950s, which are based

on Darwin’s biological evolution and natural selection theories. Since it has been orig-

inated in the 1950s, many different variants of the evolutionary computation paradigm

are developed and applied to resolve complex real-world applications [98]. In 1960s-70s,

three categories of evolutionary computation techniques are introduced: evolutionary

programming, genetic algorithm, and evaluation strategies. Another class of evolution-

ary computation, namely genetic programming is devised in the 1990s. It has been

highlighted that algorithms designed under the field of evolutionary computation are ef-

ficient, flexible, and sufficiently robust in solving various complex optimization problem

types [99]. The methodologies designed in this domain, often referred to as evolutionary

algorithms, imitate the concepts of the natural evolution process, i.e., selection, recom-

bination, and mutation. In general terms, a set of solution candidates (individuals)

are iteratively evolved towards the optimum set of solutions by using these bio-inspired

algorithmic operators.

An overall stochastic search process utilized in the evolutionary algorithms is depicted

in Figure 5.1 [97] and summarized in the Algorithm 1 [98] [100]. The evolutionary al-

gorithms begin with an initial and often randomly generated population of candidate

solutions. This initial population of solutions is then iteratively updated by using the
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operators such as selection, recombination, and mutation throughout the evolutionary

computation process (see Figure 5.1). In each generation of the algorithm, firstly, the cur-

rent candidate solutions are evaluated based on particular objective function(s). Based

on this evaluation, a scalar ranking value referred to as fitness value, is assigned to each

individual in the population. This fitness value quantifies, to what extent a particular

individual is fitting to be the solution of the optimization problem based on the objective

function(s). The individuals with higher fitness values have more suitable genes, and

closer to be the optimum solution to the problem. Thus, the individuals with high fitness

values are given a higher chance to be selected for reproduction, that is, their features

are transferred to the next generations. In this way, the less suitable solution alterna-

tives are eliminated and the quality of the solution set is improved in every generation

of the algorithm. The solution set is iteratively evolved until the maximum number of

generations limit is reached or a predefined quality is satisfied by the solutions. In the

end, an optimal or near-optimal solution set is obtained among which the best fitting

solution(s) is/are selected to be the most optimum solution(s) for the problem. The fol-

lowing section illustrates the use of the genetic algorithm approach on a single objective

route optimization problem, and in the following section, we give an overview of MOEAs

that we have used to solve the multi-objective vehicular route optimization problem.
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Algorithm 1: Evolutionary algorithm process.

Input : Initialize the population P ← P0

Evaluate the initial population P0

generation g ← 0

Output: Final population (set of solutions) P ∗

1 while termination criteria is not met do

2 Select parent individuals from Pi for recombination, and

generate offspring Qi

3 Utilize mutation operator

4 Evaluate Pi ∪Qi and select P
′
i

5 Increment the generation number: i = i+ 1

6 end

7 Output: P ← P ∗

5.2 Single-Objective Route Planning using Genetic Algorithm

Approach

The Genetic Algorithm approach is adapted and implemented to solve single-objective

route planning problem. The objective of the route optimization problem is to minimize

the total traveled distance by vehicle from its source location to its destination location.

Formally, if we define an objective function f : Ω ⊆ Rn → R, Ω 6= ∅, f∗ = f(x∗) > −∞

is referred to as the globally minimum value ⇔ ∀x ∈ Ω : f(x∗) ≤ f(x), for x ∈ Ω, where

x∗ is the globally minimum solution [91].

This section introduces the Genetic Algorithm and illustrates how it is used to find

the shortest-path route from a source node to a destination node on a directional graph

representing a randomly generated road network. Prior to the multi-objective opti-

mization problem model, which is the main concern of this study, we have analyzed

the applicability of the Genetic Algorithm on finding the shortest paths with a single

objective.
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5.2.1 Genetic Algorithm

Genetic Algorithm is a widely used, effective metaheuristic technique to solve complex

optimization and search space problems [101] [102]. The procedure followed in this algo-

rithm mimics the genetic process of the biological organisms, which is based on the idea

that over the generations, populations evolve based on the principle of natural selection

or survival of the fittest according to Charles Darwin’s theory [103]. Inspired by the

concepts from evolutionary biology such as natural selection, crossover and mutation,

the genetic algorithm iteratively evolves the solution candidates towards the optimum

solution [104]. As mentioned in [103], in the natural behavior, the successfully per-

forming and highly adaptive individuals survive well and would have a higher chance

of mating. In other words, the successful and fit individuals have a relatively higher

number of offsprings compared to poorly performing individuals [103]. Hence, the genes

of the fit individuals spread to an increased number of offspring that will form the suc-

cessive generations [103]. In this way, the combination of good characteristics from fit

ancestors can produce superfit offspring having even higher fitness than their parents

[103]. Simulating this biological evolution process representing natural selection, the ge-

netic algorithm evaluates each individual in a population by using the objective function,

assigns a fitness value to each individual, and generates new populations by selecting,

mating, and mutating the individuals with better fitness value. According to the litera-

ture, the genetic algorithm is firstly described by John Holland in 1960s and developed

by him and his colleagues in 1960s and 1970s [105]. It is used to resolve many real-world

optimization problems in the fields of communication networks, image processing, route

planning, and neural networks [101]. The procedure of the genetic algorithm and its

operators, depicted in Figure 5.2, are well described in many sources in the literature

[101] [102] [103] [104] [105] [106].

As seen in Figure 5.2, the population size Npop, maximum number of generations

Ngen, number of variables Nvar, and the objective function F (x) can be specified as

input for the genetic algorithm. In most of the cases, the initial population is randomly

generated, but as stated in [103], it can be generated by using a heuristic as well. The
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random generation of the initial population allows the entire search space and wide range

of solution possibilities to be considered [102]. The individuals (chromosomes), each

of which corresponding to a solution candidate to the optimization problem, contain

a number of genes that is equal to the number of variables Nvar [101]. Then, each

individual in the initial population is evaluated using the objective function such that

a fitness value is computed and attributed to each one of the solution candidates. This

fitness value assigned to individuals represents to what extent they can be an optimum

solution for the problem. Based on the assigned fitness values, the individuals with higher

fitness values are selected among the first generation. The selected individuals are crossed

over to produce offspring for the new population representing the next generation. Thus,

the newly generated population has a higher portion of good features compared to the

previous generation [103]. By this way, the good features and characteristics, mixed

and exchanged with other good features by means of the crossing-over operator, are

spread to the subsequent generations [103]. Following the crossing-over operator, the

mutation operator is applied that corresponds to making some minor random changes

on the individuals of the newly generated population. The mutation operator allows the

algorithm to explore the search space well and avoids being trapped in a local optimum

[104]. The same procedure is repeated until the stopping criteria is satisfied, i.e., the

maximum number of generations is reached or a solution in the last generation satisfies

the predefined criteria [102].

Selection

The selection step determines which individuals of the current population will be involved

in the formation of the next population. The parents from the current population are

selected randomly such that they produce the children of the next generation as a result

of the crossover operator. At this step, if more fitting individuals (ones with higher

fitness value) are selected for crossing over, the genetic algorithm is to converge to the

optimal solution in a shorter amount of time. However, while selecting the fit individuals,

the premature convergence has to be avoided and the diversity of the solutions has to
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Figure 5.2: Flowchart representation of the Genetic Algorithm.
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be maintained throughout the genetic algorithm procedure. There are different types

of selection mechanism, i.e., uniform selection, roulette wheel selection, tournament

selection, stochastic selection, etc., found in the literature.

In the uniform selection, the expectation and number of the parents are used to select

mating parents to generate the next population [107]. The roulette wheel selection gives

higher chance for the individuals with better fitness and gives minor chance for the ones

with lower fitness to be selected. The selection of an individual is proportionate to its

fitness value [108]. In this scheme, a pie chart is divided into several portions and the

size of each portion is determined based on the fitness values of the individuals. In other

words, each individual is associated with a portion of the pie chart based on its fitness

value. Thus, the individuals with higher fitness values are associated with portions of

bigger size, and the individuals with lower fitness values are associated with the small-

size portions of the chart. In this way, if we think of that pie chart as a roulette wheel

and when the roulette wheel is rotated, the fitter individuals would have a higher chance

of being selected as their portions are bigger in size on the wheel. For instance, let us

assume that there are four individuals in the current population with fitness values 10,

15, 25, and 50. To determine the individuals’ chance of being selected, we can divide

each one’s fitness value to the total fitness value of 100. Then, the individuals would

have 0.1, 0.15, 0.25, and 0.5 chance of being selected respectively. In the tournament

selection method, an n number of individuals are randomly chosen from the current

population, then the best fitting individual is selected out of this randomly chosen set

of individuals for crossing over. The stochastic selection procedure associates current

population’s individuals to the segments of a line [107] [109]. Each individual is assigned

to a segment with a length in proportion to the assigned individual’s fitness value.

After the segmentation, equally distanced pointers are placed over the line, i.e., if 10

individuals are to be selected, then 10 equally distanced pointers are placed over the

line. As a result, the individuals whose segments are pointed out by the pointers are

selected for crossing over.
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Recombination (Crossover) Operator

The recombination, or crossover operator, refers to producing new solution candidates by

mating the old ones in the search space. With the crossover operator, the characteristics

and features of randomly selected parent chromosomes are merged and new solution

candidates (offspring) are created for the next generation. The genes on the parent

chromosomes are exchanged by following different crossover operators, which we detail

a few of them in this section. By the crossover operator, it is aimed at creating more

feasible and better solution candidates (offspring) by combining the beneficial genes and

characteristics of the parent chromosomes.

1 0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 1 1 1 1 0 1 0 1

1 0 0 1 1 1 1 1 0 1 0 1

0 1 0 0 1 0 1 0 0 0 1 1

Parent 1

Parent 2 Offspring 2

Offspring 1

Figure 5.3: One-Point Crossover operator performed on a pair of binary encoded chro-
mosomes to create two offspring.

Firstly, one-point crossover is the simplest and a widely applied crossover operator

in genetic algorithm-based approaches. With this operator, a cut point is randomly

selected for two chromosomes (parents) and the chromosome pairs are segmented into

two portions. Then, as illustrated in Figure 5.3, the genes after the cut point are swapped

and two offspring are created.

1 0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 1 1 1 1 0 1 0 1

Parent 1

Parent 2

1 0 0 0 1 1 1 0 0 0 0 1

0 1 0 1 1 0 1 1 0 1 1 1

Offspring 1

Offspring 2

Figure 5.4: Multi-Point Crossover operator performed on a pair of binary encoded chro-
mosomes to create two offspring.

In multi-point crossover operator, introduced by De Jong [110], multiple cut points are

randomly selected for a pair of chromosomes and the segments split by these cut points
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are alternatingly swapped between two chromosomes. As illustrated in Figure 5.4, two

offspring are created as a result of the multi-point crossover operator performed on two

binary encoded parent chromosomes.

1 0 0 1 1 0 1 0 0 0 1 1

0 1 0 0 1 1 1 1 0 1 0 1

Parent 1

Parent 2

1 1 0 0 1 0 1 1 0 0 0 1

0 0 0 1 1 1 1 0 0 1 1 1

Offspring 1

Offspring 2

Figure 5.5: Uniform Crossover operator performed on a pair of binary encoded chromo-
somes to create two offspring.

In uniform crossover, the selected parent chromosomes are not split into segments to

exchange parts of chromosomes. Rather, each one of the genes on the chromosomes is

considered individually. While creating the offspring, a gene is swapped or not with a

probability of 0.5. It is illustrated in Figure 5.5 that genes on the parents are swapped

with 0.5 probability when creating the two offspring. In other words, as described in

[111], the genes on the parent chromosomes are copied to the offspring based on an

arbitrarily generated binary crossover mask. If the corresponding bit of the binary

crossover mask is 1, the gene from the first parent is passed to the offspring. Otherwise,

if the corresponding bit is 0, the gene from the second parent is copied to the offspring.

Given a real valued parent chromosome strings, parent 1 P1 and parent 2 P2, the

intermediate crossover produces offspring using Equation 5.1 below, where Oi is the

resulting offspring, n is the number of variables on a chromosome, and α is a uniform

randomly chosen value over the interval [−0.25, 1.25] [112].

Oi = P 1
i + α (P 2

i − P 1
i ), i = 1, 2, · · · , n (5.1)

The heuristic crossover operator makes use of the fitness values of parent chromo-

somes to decide on the search direction. The search is moved from the parent with a

lower fitness value towards the parent with a better fitness value. In heuristic crossover
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operator, the offspring are found by using Equation 5.2.

O1 = BP + β (BP −WP )

O2 = BP,
(5.2)

where BP is the best parent, WP is the worst parent and β is a random number chosen

in between [0, 1].

Mutation Operator

The mutation operator is performed on a single offspring such that randomly selected

genes on the offspring are exposed to a small change. The genes that undergo mutation

are selected with the mutation probability rate pm. More specifically, as noted in [113],

if a randomly generated number within the interval [0, 1] is greater than the predefined

pm, then a mutation is employed to the corresponding gene. Otherwise, the gene remains

unchanged. The mutation probability rate should not be too small in order not to lose

the genes that would have been beneficiary in the optimization process, and it should

not be too high to avoid excessive perturbations that could take place on the individuals

[101].

By means of the mutation operator, the lost genes from the population during the

selection process can be replaced and retried, or the genes that are not present in the

population can be provided [101]. Additionally, as noted in [114], it plays a key role in

maintaining the genetic variation within the population by allowing the entire solution

space to be searched for the most optimal solution. Thus, the mutation operator avoids

the search algorithm to get trapped in local minima. As illustrated in Figure 5.6, two

significant types of mutation operators are single gene mutation and multi gene mutation

operators [101].

In the uniform mutation operator, two-step procedure is applied [107]. First, a frac-

tion of genes (entries) of an individual is selected such that each selected gene has a

mutation rate probability of being mutated. Then, in the second step, the entries to be

mutated are replaced with a random value selected over the range of the corresponding
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Parent 1

Parent 2
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Offspring 2
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Single 
Gene

Multi 
Gene

Figure 5.6: Single gene and multi gene mutation operators applied on a binary coded
chromosome.

entry. The Gaussian mutation operator adds a random number from a Gaussian dis-

tribution with zero mean to the genes of an individual [107]. The standard deviation

of the Gaussian distribution is determined by two parameters, scale and shrink. The

scale parameter defines the standard deviation at the first generation, and the shrink

parameter determines how the standard deviations shrink as the number of generations

increases [107].

Priority-based Encoding Method

In the process of finding the shortest path by genetic algorithm, the encoding of an

individual (chromosome) to a valid route (path) representation is critical [101] [115].

Being an effective solution encoding strategy, we have used the priority-based encoding

scheme in this work to represent the given chromosomes as valid paths. The priority-

based encoding method used with our genetic algorithm can be summarized as below

[101] [115]:

1. Firstly, a route array with a length equal to the number of nodes in the road

network is created. The first element of the route array is given as the current

node ID. For instance, if we consider a road network with 200 nodes, then the

size of the initialized route array would be 1x200. If we assume that a vehicle is

currently at node 1 and attempts to go to the destination node nd = 200, then the

first element of the route array is assigned as 1. This means the source node is set

to ns = 1.
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2. An array maintaining the priority values is created with elements randomly gener-

ated in between a specified interval, i.e., [1, 10]. The indices of this priority array

represent the node IDs.

3. Then, the neighbors of the source node are iterated by using the adjacency matrix

M200x200 corresponding to the road network with 200 nodes. During the iteration,

if the searched node nk is already in the route array, then set the priority value

corresponding to this node nk to minus infinity, Pnk = −∞.

4. If a node nk in the neighbor set of the source node ns is found to be the destination

node nd, then the node nk is appended at the end of the route array. As the

destination node is found, the algorithm terminates at this point.

5. Otherwise, the priority values of the nodes within the neighbor set of the source

node ns are compared and the node with the highest priority value is appended as

the next node to be visited at the end of the route array.

To illustrate the priority-based encoding method, we can consider the simple undi-

rected network topology used in the article [115]. As depicted in Figure 5.7, the network

graph has 6 nodes and 10 edges. In this example, it is assumed that a connected route

or path is to be found from the source node n1 to the destination node n6. The priority

values corresponding to each node are given by an array P = [3, 5, 4, 6, 2, 1] [115] as seen

in the figure. The first node is eventually n1 is assigned as the first element of the route

array. Then the priority values of the adjacent nodes to the current node n1 are searched,

which are n2, n3 and n4 with priority values 5, 4 and 6 respectively. The one with the

highest priority value 6 is the node n4, so that n4 is added to the route array as the

next note to be visited. At this point, the current node is set to n4 and the neighboring

nodes of n4 (n1, n3 and n5) are searched. As n1 is already added to the route array, it is

not considered, and its priority value is set to −∞. As the priority of n3 is higher than

that of n5, n3 is appended next to the route array. Among the neighbors of node n3, the

ones that are not added to the route array (n2, n5 and n6) are considered. The node

n2 with the highest value is added to the route array. In the final step, as the node n6
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is the only unvisited node connected to the node n2, n6 is appended to the route array,

which is also the destination node. In the end, the priority array P = [3, 5, 4, 6, 2, 1] is

represented as a route array as R = [n1, n4, n3, n2, n6] as seen in Figure 5.7.
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Figure 5.7: Priority based encoding for a network model [101] [115] [116].

5.2.2 Analysis of Single-Objective Route Optimization by using Genetic

Algorithm

A random road network graph with 200 nodes and 560 edges is generated by using the

netgenerate function of the mobility simulator SUMO (see Listing 5.1). The resulting

.xml file RandomRoadNetwork.xml, representing the road network, is used to extract

the distance of each road (edge) and the adjacency matrix is created. The diagonal and

no-link entries are set to an extremely high value. We then run the Genetic Algorithm to

optimize the shortest-path from the first node n1 to the destination node n200. We have

used the priority-based encoding method to represent the randomly generated solutions

as a route.

List of Listings 5.1: The command to generate random network in SUMO.

$ netgenerate −−rand −o RandomRoadNetwork.net.xml −−rand.iterations=200

The simulations are performed for different algorithm parameters, i.e., population size,

selection type, crossover type, and mutation rate. The best score values are recorded for
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Figure 5.8: The best score plots for different population sizes, i.e., population size: 10,
20, 30, and 40.

every 20 iterations in each case and the mean best score values are plotted. As Figures

5.8, 5.9, 5.10, and 5.11 illustrate, the Genetic Algorithm effectively converges to the

optimum solution as the number of generations increase. The algorithm first finds a very

high number as the best score, and then, as the number of generations increases, the cost

of the shortest-distance route is found closer to the expected value. In the following, we

explain the four case studies we have performed to evaluate the operation of the Genetic

Algorithm with different parameter settings.

Case study 1: In the first case study, we have run the Genetic Algorithm for different

population sizes, i.e., population size: 10, 20, 30, and 40. As seen in Figure 5.8, the

Genetic Algorithm converges to the optimum solution faster when the population size

is set to be 40. The algorithm reaches the expected shortest-path route solution at

approximately 25th generation. When the population size decreases from 40 to 10, the

algorithm converges to the optimum solution in a longer time. As seen in Figure 5.8,

when the population size is 10, the optimum result is found at around generation 450.

Case study 2: In the second case study, we have run the Genetic Algorithm for different
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Figure 5.9: The best score plots for different selection types, i.e., uniform selection,
roulette wheel selection, tournament selection, and stochastic selection.

selection types, i.e., uniform selection, roulette wheel selection, tournament selection, and

stochastic selection. As it is observed from Figure 5.9, the uniform selection provides

the best performance and the fastest convergence. The algorithm finds the shortest-path

route at around 100th generation when the selection type is selected as uniform. In the

case of tournament selection, the genetic algorithm can not exactly reach the optimum

solution even when the generation number is 500.

Case study 3: In the third case study, we have run the Genetic Algorithm for different

crossover types, i.e., single-point crossover, two-point crossover, intermediate crossover,

and heuristic crossover. As it is seen in Figure 5.10, in the case of two-point crossover,

the algorithm shows a promising performance as it converges to the optimum solution

when the generation number is around 125. When the crossover type is set to heuristic,

the algorithm does not show good performance compared to the other three options, as

the best result is reached at around generation 470.

Case study 4: In the fourth case study, we have run the Genetic Algorithm for different

mutation rates, i.e., mutation rate: 0.01, 0.08, 0.1, and 0.3. As Figure 5.11 illustrates,
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Figure 5.10: The best score plots for different crossover types, i.e., single point crossover,
two point crossover, intermediate crossover, and heuristic crossover.

Figure 5.11: The best score plots for different mutation rates, i.e., mutation rate: 0.01,
0.08, 0.1, and 0.3.
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the algorithm finds out the shortest-path route faster when the mutation rate is set to

0.3. When the mutation rate is given as 0.01, the optimum solution could not be reached

even when the generation number is 500.

5.3 Multi-Objective Evolutionary Algorithm Approach for

Vehicular Route Planning

The real-world combinatorial optimization problems usually require multiple and of-

ten conflicting objectives to be satisfied simultaneously. When the unique character-

istics and requirements of the connected and automated vehicles are considered, the

next-generation route planning frameworks need to be designed in a way that they can

handle multiple objectives. In this regard, metaheuristic search techniques could be

an effective approach to solve multi-objective vehicular route planning problems with

constraints. Specifically, in this work, we have used population-based evolutionary algo-

rithm techniques to search and find out trade-off solutions for the multi-objective route

planning problem instances. The population-based evolutionary algorithms are suitable

and robust techniques to handle multiple, conflicting objectives, highly complex, and

large search spaces [97] [117]. Due to their population-based nature, the methods and

algorithms in this category are able to provide a set of optimal and near-optimal solu-

tions simultaneously in one simulation run [90]. Considering the requirement of finding

multiple trade-off optimal solutions rather than finding a single optimal solution, this

feature of population-based evolutionary algorithms is useful and convenient for the

multi-objective optimization problems [117]. Especially, as highlighted by Zitzler et al.

[97], the evolutionary algorithm approaches could be relevant in the cases that flexibility

in the problem formulation is desired, we are interested in obtaining a Pareto-optimal

set of solutions representing different trade-offs, and the high problem complexity does

not allow the use of exact methods to solve the multi-objective optimization problem.

In addition, the use of population-based evolutionary algorithms requires fewer domain

information for the problem when compared to classical methods as highlighted in [93]
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[118]. This section introduces a widely used, effective category of evolutionary search

techniques, namely Multi-Objective Evolutionary Algorithms (MOEA), as a solution

approach for the vehicular route planning problem instances concerned in this study.

There has been considerable interest in multi-objective evolutionary algorithms when

dealing with multi-objective, real-world optimization problems since the mid-1980s [97].

Several variants of MOEAs have been designed, proposed, and used since David Schaf-

fer’s work published in 1985 that introduces the Vector Evaluated Genetic Algorithm

(VEGA) approach [119]. The methods and algorithms proposed under this category

are applied for solving both continuous and combinatorial multi-objective optimization

problems in various engineering fields [90]. The algorithms classified under this category

combine the basic principles of evolutionary computation and the classical multi-criteria

decision-making procedure [97]. As mentioned by Zitzler [97], rather than aggregating

multiple objectives into a single composite objective function, the evolutionary compu-

tation techniques used to solve multi-objective optimization problems mostly rely on

the Pareto dominance concept introduced by Goldberg in 1989. Most of the MOEAs

make use of the domination concept to compare the solutions in the presence of multiple

objectives and aim at finding the non-dominated, trade-off optimal set of solutions in

the end [117]. At this point, it can be noted that there are four primary goals in MOEAs

[91] [97] [120]: (i) the nondominated set of points in the objective space and their cor-

responding solution points in the decision space need to be preserved throughout the

MOEA process, (ii) the search process in the evolutionary algorithm needs to be steered

towards the Pareto-optimal region and towards the Pareto-optimal front, (iii) the ap-

proximated set of optimal solutions obtained as a result of the evolutionary computation

have to be diverse, and (iv) the algorithm has to provide a sufficient but also a limited

number of Pareto points to the user for decision making. Among the resulting trade-off

optimal solutions, it can not be said that a solution is better than the other optimal

solutions without providing any further information [117]. In an ideal case, all the re-

sulting optimal or near-optimal solutions are equally important, and the user makes use

of high-level qualitative information to select one among them [117].
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5.3.1 Non-Dominated Sorting Genetic Algorithm-2 (NSGA-2) Adapted to

Vehicular Route Optimization

In this study, we have adapted the well-known and widely used multi-objective evolution-

ary algorithm to dynamically optimize the routes of vehicles, namely Non-Dominated

Sorting Genetic Algorithm 2 (NSGA-2) proposed by Dep et al. [121]. The NSGA-2

algorithm is proposed by Dep et al. as an improved version of its predecessor Non-

Dominated Sorting Genetic Algorithm (NSGA) [122]. The authors in [121] argue that

there are three main drawbacks of the previous non-dominated sorting based genetic al-

gorithm approach, which are noted as (i) high computational complexity resulting from

nondominated sorting process, (ii) lack of elitism, and (iii) the need for specifying the

sharing parameter σshare. With the NSGA-2 algorithm, authors claim that computation

complexity of the non-dominated sorting process is reduced from O(MN3) to O(MN2),

where M is the number of objectives in the problem and N stands for the population

size. The NSGA-2 algorithm combines the previous and the current population for the

non-dominated sorting process. This way, the elitism is ensured by maintaining the most

optimal solutions at every generation and a better convergence to the non-dominated

front is achieved. As authors note, the diversity among solutions is maintained by

crowding distance measure, which does not require to preset a parameter, i.e., the shar-

ing parameter in the NSGA algorithm. Based on the simulation results obtained by

considering difficult optimization problem sets, Deb et al. states in [121] that NSGA-

2 outperforms two contemporary MOEAs, namely Pareto-archived Evolution Strategy

(PAES) and Strength-Pareto Evolutionary Algorithm (SPEA), regarding convergence to

the true Pareto-optimal solutions and divergence of the found solutions.

As illustrated in Figure 5.12, the adapted NSGA-2 algorithm mainly follows two pro-

cesses, namely non-dominated sorting and crowding distance sorting. Firstly, the parent

population Pt is created that contains the randomly generated individuals (solutions).

The individuals specific to our vehicle routing problem are lists of random numbers in

between predefined lower and upper bounds, i.e., −1000 ≤ x ≤ 1000. The size n of

the lists representing the individuals are set to be the number of nodes in the studied
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Figure 5.12: Illustration of the NSGA-2 algorithm.

road network model, and the population size is preset before starting the simulation,

i.e., N = 200. Each and every individual (solution candidate) in the parent popula-

tion Pt is assigned a fitness value based on the performance indicators defined in the

problem. Specific to the vehicle route optimization problem considered in this study,

these performance indicators can be defined as the total traveled distance, travel time,

current congestion level, projected congestion level, network quality index of the route.

These objectives can be varied by adding the necessary extensions to the simulation

framework. It is important to note here that the individuals representing the solution

candidates first converted into valid route representations by means of Priority-based

Encoding methodology, and then their fitness values are computed using the objective

functions. If a randomly generated solution candidate, containing numbers in between

the preset boundaries, can not be converted into a valid route representation, its cost is

eventually assigned to a very high value.

Next, the offspring population Qt is generated out of parent population Pt by using

predefined selection, crossover and mutation operators [87]. The generated combined

population Rt = Pt∪Qt, with a size of twice as the size of the parent population, is used
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for the non-dominated sorting process as illustrated in Figure 5.12. By means of the

fast non-dominated sorting procedure, the individuals in the combined population Rt

are grouped in different fronts F1, F2, F3..., and are assigned a rank based on the front

they belong to. The individuals in the lower number of fronts have a higher ranking

value, i.e., an individual in the first front F1 has a higher rank than an individual in the

second front F2. In order to classify the individuals into fronts, every individual p in

the combined population Rt is compared to every other individual q, and it is pairwise

checked if it dominates or is dominated by the other individual [121] [123]. While

doing this pairwise checking, the number of individuals that dominate the individual

p is counted and recorded, which is called the domination count np. Additionally, the

list of individuals Sp that is dominated by the individual p is maintained. Taking this

recorded information as a basis, the fast non-dominated sorting process is performed.

The first front F1 contains the individuals with domination count zero, and it should be

noted that every individual in the first front has a list of individuals that it dominates.

To determine the second front F2, these lists of the individuals in the first front are

iterated and whenever an individual q is found in these lists, the domination count of

the corresponding individual nq is subtracted one. Thus, as a result of this iteration, the

individuals that are only dominated by the individuals in the first front would have zero

domination count, which are placed in the second front F2. The same iterative method

is performed for the lists of the individuals comprising the second front, in order to

determine the third front F3 individuals. This procedure is repeated until all individuals

in Rt belong to a front.

When the non-dominated sorting is completed, the individuals from the best fronts

are chosen for the new parent population Pt+1 until the original size of N is reached.

When the size of the last front is higher than the remaining size of the new population,

a set of individuals from the last front are selected based on the crowding distance

sorting method. For instance, as illustrated in Figure 5.12, the size of front F3 does

not fit the remaining population size, and therefore, only a group of individuals are

selected out of front F3 for the next generation based on crowding distance sorting.
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Figure 5.13: Illustration of the Crowding Distance Sorting.

By means of crowding distance sorting, the individuals in the front are sorted based

on their Manhattan distance in the objective space [87]. Considering an intermediate

individual i, two neighboring individuals are selected (corners of a cuboid, as seen in

Figure 5.13). For each objective function in the problem, the distance of individual

i is calculated as the normalized difference of the corresponding function values of two

neighbor individuals i−1 and i+1 [121]. The total crowding distance of an individual i is

then the sum of its distance values with respect to all objective functions. As mentioned

in [121] [123], for each objective function, the individuals taking the minimum and the

maximum function values are assigned a distance value of infinity. Then, the individuals

with the highest crowding distance value are passed to the new parent population Pt+1

from the last front. By this way, the individuals located in less crowded regions are

selected and passed to the next generation, which eventually contributes to preserving
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diversity [121]. The overall NSGA-2 algorithm is summarized in Algorithm 2.

Algorithm 2: Nondominated Sorting Genetic Algorithm 2 (NSGA-2).

Input : Size of the population N

Number of generations g

Output: Nondominated set of solutions.

1 Initialization: Randomly generate the initial population Rt = Pt +Qt.

2 for i← 1 to g do

3 for every solution in combined population, Rt = Pt +Qt do

4 Obtain the fronts by fast nondominated sorting, F = (F1, F2, ...)

5 Calculate crowding distance

6 Add solutions to the next generation starting from the first front until N

solutions

7 end

8 Select solutions on the lower front with crowding distance

9 Create the next generation by genetic operators: Selection, Recombination

and Mutation.

10 end

11 The output is the nondominated set of solutions.

82



6 Implementation

6.1 Simulation Approaches for Vehicular Communication based

Applications

This section gives an overview of the recent approaches and contributions for the sim-

ulation of Cooperative Intelligent Transport System (C-ITS) applications based on the

Vehicle-to-Everything (V2X) communication paradigm. When the literature is exam-

ined, it is seen that there has been significant research effort in building up a simulation

environment for the proper validation and assessment of various V2X-based applications

or solution approaches, before their actual deployment in the field. Additionally, there

is a number of comprehensive survey studies [124] [125] [126] [127] found in the litera-

ture, investigating the relevant research works by discussing their pros and cons. Below,

we present a set of prominent research works in this context which we picked from the

related literature.

In [128] authors carry out a simulation study to investigate the performance of delay-

critical safety applications over commonly used DSRC wireless communication standard

in a VANET model. The simulation study is performed as a two-phase process. First,

authors perform a simulation study to evaluate the performance of the DSRC physical

layer under a variety of vehicle speeds and multi-path delay spreads using Matlab. The

physical layer performance of the DSRC standard is quantified by measuring the link

bit error rate (BER). Based on the simulation results it is indicated that the DSRC

standard tolerates very large delay spreads, however, it is sensitive to vehicle speeds and

high mobility. In the second phase of their study, authors develop a simulation testbed
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to evaluate how the collision avoidance safety applications are supported by DSRC based

VANETs by considering realistic vehicular mobility models. As mentioned in the arti-

cle, the road topology and the mobility model are ported from the CORSIM (CORridor

SIMulator) vehicle traffic simulator which are then converted to the Qualnet simulator

format. Authors conclude that the DSRC standard shows a promising latency perfor-

mance for the time-critical collision avoidance applications, whereas the throughput is

found to be moderate.

Authors in [129] emphasize the importance of using realistic mobility models for

VANET simulations and introduce a tool in this regard, namely MOVE, which is built

on top of the open-source simulator of SUMO. As detailed in the article, MOVE allows

users to generate realistic vehicular mobility models that can be used by the widely used

network simulators, such as ns-2 and Qualnet, to perform VANET simulations. Two

main components of the developed tool are Map Editor and Vehicle Movement Editor.

The former is used to generate maps either manually, automatically, or by importing

from real-world map databases. The latter allows users to define vehicle movements

manually by specifying the route properties, or automatically by specifying the vehicle

flows. To evaluate the impacts of mobility models on VANET simulations, authors sim-

ulate and compare the performance of an ad-hoc routing protocol by using a realistic

MOVE mobility model and random waypoint model, by taking the packet delivery ratio

as a metric. Based on the simulation results, the packet delivery ratio is found to be con-

siderably lower when a realistic MOVE mobility model is used compared to a simplified

open field model.

Authors in [130] present the VanetMobiSim that provides extensions to a generic user

mobility simulator previously developed, namely CanuMobiSim [131]. As noted in the

article, VanetMobiSim extends the mobility model included in CanuMobiSim [131] by

providing new features in terms of both macro-mobility and micro-mobility. From the

macro-mobility perspective, VanetMobiSim includes the effects of points of interest on

vehicle mobility. Additionally, it includes more detailed road structure characterization

compared to CanuMobiSim. From the micro-mobility perspective, two additional models
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are provided for the vehicles: (i) capability to handle intersections and (ii) possibility to

utilize lane change and takeover maneuvers. With these additional features provided by

VanetMobiSim, it is claimed by the authors that VanetMobiSim generates more realistic

vehicular mobility traces to be used by telecommunication network simulators, which

would result in more trustworthy VANET simulations.

Likewise, authors in [132] highlight the importance of using realistic mobility models

for the evaluation of VANET applications via simulations and propose an integrated mo-

bility and traffic model in this direction, namely STRAW (Street Random Waypoint). As

detailed in the article, the proposed STRAW model makes use of a simple car-following

model with traffic control. According to authors’ claim, the introduced vehicular traffic

mobility model enables the use of traffic information to dynamically adjust the routes

of mobile nodes during the simulation run. Authors use two ad-hoc protocols, AODV

(Ad-hoc On-Demand Distance Vector) and DSR (Dynamic Source Routing), and an-

alyze and compare the performance of their proposed STRAW model with a classical

Random Waypoint (RWP) Model. Based on the simulation carried out in three environ-

ments (an open field without streets, downtown Chicago and North End of Boston), it

is concluded that the packet delivery ratio significantly varies when the STRAW model

is used and when RWP is used for both ad-hoc routing algorithms. Additionally, when

the runtime and memory overhead is investigated for the STRAW and RWP models, au-

thors state that realistic and large-scale vehicular mobility can be successfully modeled

in commodity hardware.

With the aim of providing a stable, easy-to-use, and realistic vehicular network simu-

lator to the VANET community, authors in [133] design and present GrooveSim, which

includes a variety of mobility, trip, communication, and traffic density models. It is

stated that the GrooveSim allows to evaluate protocols by simulating thousands of vehi-

cles across wide-scale road topologies. Five mode operation of GrooveSim covers actual

on-road inter-vehicle communication, simulation of traffic networks with thousands of

vehicles, visual playback of driving logs, hybrid simulation composed of real and simu-

lated vehicles, and easy test-scenario generation as listed in the article [133]. Authors
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use GrooveNet, a geographic broadcast protocol to evaluate the GrooveSim that sup-

ports two modes of messaging, diffusion and directed broadcast. Based on the simulation

results, authors state that geographic broadcast routing is effective in delivering time-

bounded messages over multi-hop communication.

The above-mentioned approaches rely on a two-step procedure that is utilized sequen-

tially. First, as a preliminary step, the mobility traces are generated by means of a

traffic simulator. Then, the generated mobility files are fed into a network simulator in

an appropriate format. Afterwards, the network simulator is run based on this imported

mobility data. This approach can be valid for the uni-directional scenarios where the ve-

hicular mobility is not affected by the network situation, i.e. infotainment applications.

However, for the scenarios in which the network status affects the mobility behavior of

the vehicles, the simulation setup has to enable bi-directional data exchange between the

mobility simulator and the network simulator. In other words, a closed-loop mechanism

needs to be set up that allows mobility and network simulators to exchange data in

the runtime of the simulation. In the following, we present the simulation frameworks

modeled and developed in this direction. When the studied concept in this work is

considered, the integrated and bidirectionally coupled simulation frameworks allowing

online interaction in the runtime would be a more promising option. Thus, among the

simulation setups mentioned below in this context, we chose to use the Veins (Vehicles

in Network Simulation) framework for this work, which will be detailed in the following

section.

Authors in [134] make extensions to the SWANS wireless network simulator to en-

able two-way communication between the mobility model and the networking model.

With these extensions, feedback between the application layer and the mobility model

is provided, which enables two-way communication. For instance, a customizable high-

way topology is built to support highway scenarios. As another extension, the mobility

model of the SWANS is extended to enable vehicle control, such as acceleration, decel-

eration, and lane change. Additionally, the (probabilistic) Inter-Vehicle Geocast (IVG)

broadcasting technique is implemented and an enhanced node model is included for the
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addition of non-communicating vehicles, road-side units, and obstacles to a simulation.

Finally, statistical and logging facilities are included in the extended framework for the

reporting of simulation metrics. According to authors’ claim, these additions to the

SWANS network simulator are to allow for realistic VANET simulations of important

safety and traffic information applications.

Another hybrid simulation framework, namely GrooveNet, is presented and detailed in

[135] that supports vehicular communications. As highlighted by the authors, GrooveNet

enables the communication between real and simulated vehicle nodes, such that vehi-

cles in close proximity are able to exchange packets. Authors indicate that this feature

provides rapid development as well as correctness and stress testing of vehicular net-

work protocols. It enables the prototyping of test-beds for multi-hop communication on

the road, as noted by the authors. Regarding scalability, according to authors’ claim,

GrooveNet allows running simulations consisting of thousands of virtual vehicles in any

US city.

In [136], authors present their simulation architecture, namely Traffic and Network

Simulation Environment (TraNS), targeting realistic simulation and evaluation of VANET

based applications. As stated in the article, TraNS enables the coupling of SUMO, as

the traffic simulator, and NS2, as the network simulator. Authors highlight the two

distinct modes of operation provided by TraNS: network-centric mode and application-

centric mode. In the network centric mode, the mobility traces are first generated by

the traffic simulator prior to the network simulation. The mobility-related information

is then parsed and translated into a format that can be used by the network simulator.

On the other hand, in the application-centric mode of TraNS, the traffic and network

simulators run simultaneously. This mode does not require the initial generation of mo-

bility traces from the traffic simulator for the use of a network simulator. In this case,

information exchange is enabled between both simulators in runtime, via a specific inter-

face, called TraCI. In this way, the mobility of the individual vehicles can be controlled

and manipulated by the network simulator in the runtime of the simulation.

In [70], authors couple the vehicular mobility simulator MobiDense with the network
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simulator Qualnet, which continually exchange information at each step of the simula-

tion. As authors detail in the article, by combining topology and traffic flow information,

MobiDense generates mobility traces for the vehicles. It allows the dynamic update of

the road weights, provides detailed street information, and routes the vehicles based on

the topology and the estimated traffic conditions. Qualnet simulator, using the vehi-

cles’ positions and the streets’ traversal times provided by the MobiDense, disseminates

the information based on a gossip-based ad-hoc routing scheme. Authors test and eval-

uate their proposed decentralized, dynamic vehicular routing system, namely CATE

(Computer-Assisted Traveling Environment), by using this coupled mobility-network

simulator setup. As detailed in the article, in the designed CATE system, each vehicle

acts as a traffic probe and creates traffic samples (linkID, delay, timeStamp, carID) every

time it exits a road segment. Then those traffic samples are broadcasted to neighboring

vehicles based on a sample selection algorithm by using a utility function representing

the effectiveness of each sample. Each vehicle then estimates the traffic conditions based

on the received samples and dynamically reroutes itself by using Dijkstra shortest path

algorithm run on a weighted graph. Based on the simulations, authors conclude that

their decentralized routing model can reduce traffic congestion in a realistic scenario.

Vehicles In Network Simulation (Veins) [137, 138] is a widely used hybrid simula-

tion framework that enables bi-directional coupling of road traffic simulator (SUMO)

and network simulator (OMNET++) to test and evaluate various V2X-based solution

approaches. Authors in [137] underline the necessity of bi-directionally coupled simula-

tors for realistic modeling and evaluation of VANET scenarios, by proposing their Veins

framework. In the paper, the bi-directional coupling and the information exchange be-

tween the SUMO and OMNET++ simulators are described in detail. To demonstrate

the viability of the developed Veins framework, two sets of experiments are carried out.

In one set of experiments, authors use a centralized inter-vehicle communication (IVC)

model, where vehicles maintain a TCP connection to the central server to exchange mes-

sages. In the second set of experiments, a decentralized and self-organizing model is used

for the information dissemination among vehicles. These two sets of experiments are run
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by considering the Manhattan grid scenario and the street map of Erlangen-Germany.

With the presented simulation results, authors indicate that the IVC significantly allevi-

ates the negative impact of an artificial accident on travel times. Additionally, it is found

out that the simulations that included an artificial traffic incident, but no IVC, recorded

a larger amount of Co2 emission. In the end, authors highlight that with their Veins

framework, enabling the bidirectional coupling between two state-of-the-art simulators,

the impact of IVC on the road traffic or environment can be accurately investigated.

Authors of [139] test and evaluate their intelligent routing approach, based on VANETs,

by using the Veins framework as the mediating interface between SUMO and OM-

NET++. The SUMO is used to generate synthetic traffic demand by assigning random

source and destination points. By means of the Veins framework, the vehicular nodes

in the SUMO are mapped with the network elements in OMNET++. In the simulation

scenario, authors periodically generate accident situations over traffic regions. Once the

accident is simulated, the vehicle involved in the incident broadcasts a notification mes-

sage to the neighboring vehicles. Upon receiving the message, the neighboring vehicles

act based on their location, accident location, and their intended travel path. The sim-

ulations are run on the study regions from Colombo and Kandy cities in Sri Lanke, by

enabling and disabling the re-routing component of the vehicles. Based on the simulation

results, authors conclude that the trip duration and waiting time of vehicles significantly

get reduced when the re-routing component is enabled.

Authors in [140] build up an integrated simulation framework, based on High Level

Architecture (HLA), by combining VISSIM, NS-2, and connected vehicle (CV) applica-

tion simulator. As indicated in the article, the HLA architecture provided a standard

interface and simulation logic for the flexible integration of different simulation tools.

With the support of the real-time infrastructure (RTI) component, a valid simulation

logic and coordination between the VISSIM and Ns-3 is ensured. Authors specifically

underline the advantages provided by the HLA-based architecture, such as promoting

interoperability and reusability of simulation components. The proposed simulation

framework is validated by demonstrating two case studies: i) speed guidance application
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at intersections and ii) intersection collision warning.

In the same direction, authors in [141] combine VISSIM and NS-3 by using Matlab

as a defacto RTI for the purpose of simulating V2X operations. The inbuilt Waypoint

Mobility Model of NS-3 is used for the simulations such that the mobility information

from VISSIM is correctly reflected in NS-3 in an on-line manner. As detailed in the paper,

authors create Vehicle Node objects with a Socket attached to them to enable dynamic

addition and removal of nodes in NS-3 at runtime. The proposed simulation setup

is tested and validated by implementing the Green Light Optimized Speed Advisory

(GLOSA) application. Based on the simulation results, authors indicate that the GLOSA

offers an improvement with respect to traffic efficiency, Carbon Monoxide emissions, and

fuel consumption.

The open-source project, iTETRIS, supported by the European Commission, is con-

ducted for the large-scale assessment of Cooperative ITS applications and road traffic

management solutions [142]. The paper [143] gives an overview of the simulation ar-

chitecture and presents the main achievements obtained with the development of the

iTETRIS platform. The 3-Blocks architecture of the iTETRIS framework [143], seen as

a logical extension of the TraNS [136], proposes a real-time closed-loop coupling between

SUMO and ns-3 with the use of a central control component, namely iTETRIS Control

System (iCS). It is stated that by externalizing the application logic, iCS provides feasi-

bility for users to develop their solutions without the knowledge of hidden kernel (SUMO

and ns-3). To meet the requirements of the iTETRIS project, authors make extensions to

both SUMO and ns-3 tools. The SUMO is extended to compute the pollutant emission

or fuel consumption of the simulated vehicles. Other extensions provided for SUMO are

divided into topics of intelligent rerouting, intelligent traffic lights, and advanced driver

assistance systems. Concerning the networking side, a geographical addressing scheme

is incorporated into the implementation of ns-3.

The V2X simulation runtime infrastructure - VSimRTI is a comprehensive and flexible

framework that enables the coupling of different simulators (traffic simulator, commu-

nication simulator, environment simulator, etc.) for the assessment of various new solu-
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tions or applications offered in the context of future Intelligent Transport Systems (ITS)

[144]. With the easy integration of relevant simulation tools via VSimRTI, more realistic

simulation environments can be created. This eventually leads us to make more reliable

and proper evaluations of the developed V2X-based solutions before or during their field

tests are being carried out. VSimRTI is based on the IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA), which is a standardized approach to

combine different simulators with each other [145, 146]. Inspired by the HLA standard,

VSimRTI makes use of the federate-ambassador concept to build up a holistic simula-

tion setup by interconnecting various discrete event-based simulators. By this concept,

each simulator is encapsulated by a federate and the ambassadors enable a bidirectional

interaction between simulators and the runtime infrastructure. There exist two types of

ambassadors: i) Federate ambassador provides an interface used by the VSimRTI to con-

trol simulators and convey information from other simulators. ii) VSimRTI ambassador

provides an interface for the federates to access VSimRTI services, which are federation,

time, and interaction management. In this architecture, the overall integrated and holis-

tic simulation system is named as a federation of simulators (federates) [145]. The HLA

standard consists of rules, a runtime infrastructure, interface descriptions and an object

model template [145, 146]. The rules refer to the requirements defined for the federation

and the interaction among the coupled simulators. The runtime infrastructure is the

central component, which handles the communication among the participating simu-

lators encapsulated by federates and controls the overall simulation run. In the HLA

architecture, the object model templates are provided for the formal definitions of the

data transferred among the federates. The integration of different simulators is enabled

by the interface descriptions.
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Figure 6.1: Veins Architecture [147].

6.2 Integrated and Bidirectionally Coupled Simulation

Environment

6.2.1 Vehicles in Network Simulation (Veins)

Veins is an open-source, bidirectionally coupled simulation framework for vehicular net-

work simulations, which integrates two well-known simulators from mobility and network

domains: SUMO (mobility generator) and OMNET++ (event-based network simulator)

[147] [148] (see Figure 6.1). While SUMO runs road traffic simulations and generates

mobility traces of the vehicles; OMNET++ performs network-related simulations. The

bidirectionally coupled Veins framework enables the two-way interaction between SUMO

and OMNET++ during the simulation runtime. With this real-time information ex-

change, the realistic vehicular mobility traces generated by SUMO can be provided to

OMNET++, which corresponds to the movement of network nodes. The simulation of

mobile network nodes in the OMNET++ also influences the mobility of vehicles in the

SUMO side through two-way interaction provided by the Veins middleware framework.

Veins framework provides a comprehensive tool suite including various Inter Vehicular

Communication (IVC)-specific models to enable realistic vehicular network simulations
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[147]. We summarize the functionality of the main components and models used by the

Veins framework in the following:

MiXiM: Veins relies on MixiM that provides detailed models and protocols for the

wireless and mobile simulations in OMNET++ [149]. Combining and extending several

existing simulation frameworks, MiXiM provides modular implementations for wireless

communication (wireless channel, fading, etc), mobility models, obstacle models, physi-

cal layer models, protocols at the Medium Access Control (MAC) level and localization

[149]. In addition, as indicated in [149], a user-friendly graphical representation of the

wireless networks and mobile nodes is enabled by the MiXiM with the support of de-

bugging and complex scenario modeling. Readers are referred to [149] for a detailed

description of the network simulation models and components provided by the MiXiM

framework.

Traffic Control Interface (TraCl): The online coupling between SUMO and OM-

NET++ is enabled by TraCl protocol [150] [60]. TraCl provides access to the SUMO

server side during the simulation runtime by using a TCP connection. During the simu-

lation run, various mobility-related information can be retrieved from SUMO by means

of the TraCl protocol, and further, the behaviors of the actors involved in the mobil-

ity simulator can be manipulated as well. It also allows us to observe the influence

of vehicular network simulations on the mobility patterns of the vehicles via an online

coupling.

The sequence of message exchange between SUMO and OMNET++ within the bidi-

rectionally coupled simulation framework is depicted in Figure 6.2. As detailed in [148],

the road traffic microsimulation in SUMO is advanced by the generated timesteps, and

the control modules integrated with OMNET++ and SUMO buffer the commands in

between the timesteps, which would enable the synchronous interaction between the two

simulators. As illustrated in Figure 6.2, at each timestep OMNET++ sends buffered

commands to SUMO (first phase), and then the execution of these buffered commands is

triggered in the second phase. After the triggered timestep of road traffic microsimula-
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tion by SUMO is executed, the resulting updated positions of the vehicles are sent back to

OMNET++. With this mobility information received, OMNET++ reacts to the newly

generated mobility traces by adding, removing, or moving nodes. Then, OMNET++

advances the simulation until the next timestep that allows the changing environmental

conditions to affect the nodes’ movements, i.e., their speed and routes. This way, the

synchronized simulation of road mobility and network simulators are enabled, and the

influence of inter-vehicular communication can be reflected on the instantiated vehicles’

movements in a more realistic manner.
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Figure 6.2: Sequence of message exchange between OMNET++ and SUMO [60] [148].

IEEE 802.11p and IEEE 1609.4 DSRC/WAVE: To realize realistic simulations for

IVC-specific applications considering the unique and challenging features of vehicular

networks, i.e., highly mobile topology, high velocities of vehicles, and short connection

periods, Veins framework provides a protocol stack IEEE 1609 DSRC/WAVE together

with DSRC PHY and MAC layer standard IEEE 802.11p [151]. The implementation of

the WAVE protocol stack is provided in the Veins as free and open-source software, which

provides notable improvements in terms of received data packets compared to traditional
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WiFi standards (IEEE 802.11b or IEEE 802.11a), especially in the scenarios with high

traffic density [151]. The implemented WAVE IEEE 802.11p model in Veins makes use

of the OMNET++ network simulator and MiXiM framework as indicated in [151]. The

model includes QoS channel access relying on Enhanced Distributed Channel Access

(EDCA) [147]. As noted in [151], the packet error model of the implemented model is

derived from [152]. The probability of a successfully transmitted packet with 18Mbit/s

data rate using 16-QAM OFDM is computed by the Equation 6.1 [151]. Regarding the

higher layers of the implemented DSRC/WAVE stack, Veins provides models for channel

hopping based on the standards, i.e., switching between the control channel (CCH) and

service channels (SCH) [147]. Additionally, an application layer is provided on top of

the MAC layer that enables to send WAVE Short Messages (WSMs), beacons, CAMs,

and BSMs [147] [151].

pok =
(

1− 1.5 erfc (0.45
√
SNIRmin)

)
(6.1)

6.2.2 Simulation of Urban Mobility (SUMO)

Simulation of Urban Mobility (SUMO) is an open-source, time-discrete and microscopic

traffic simulation package. It is a widely used simulation tool that enables to test various

solution approaches regarding traffic management, dynamic routing, and autonomous

driving. [59] [153]. SUMO allows to import real-world road networks from external

sources (eg. Open Street Map) and model the traffic demand. Thereafter, city-scale

simulations can be run. Being a microscopic traffic simulator, SUMO allows defining

each vehicle explicitly, including vehicle’s id, vehicle’s type, the route that the vehicle

is to follow within the road network, etc. Once the required inputs are defined and the

scenario-specific configurations are done, SUMO performs large-scale simulation runs

and generates various output files. The simulation results and statistics can be analyzed

with the help of these output files and the necessary improvements can be made on the

developed application. Undoubtedly, a very useful feature of the SUMO is that it can be

coupled with other simulation tools on a common framework to simulate more complex
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scenarios. For instance, it can be connected to communication simulators (OMNET++,

NS3, etc.) by using the Traffic Control Interface (TraCI) framework [60], which is the

case for our work as well. Throughout the mobility simulations in this study, the Krauß

car-following model is used provided by SUMO.

6.2.3 Objective Modular Network Testbed in C++ (OMNET++)

OMNET++ is an open-source, extensible, modular, C++ based discrete-event network

simulation framework used for modeling wired and wireless communication networks, in-

ternet protocols, queueing networks, multiprocessors, and other parallel and distributed

systems [86] [154].

Modular and hierarchical network model: OMNET++’s component-based architec-

ture enables to build large models (networks) by assembling and combining reusable

components, referred to as modules [86]. As depicted in Figure 6.3, hierarchical net-

work structures are modeled from reusable modules with unlimited nesting. The simple

modules are the atomic elements of this hierarchy at the lowest level and they can not

be further divided into smaller components. They can be combined to form compound

modules as shown in Figure 6.3. Simple modules are the active elements of the model

programmed in C++ by using the simulation library classes. They contain the algo-

rithms and describe the behavior of the network model.

Simple modules communicate with message passing. The messages are sent and re-

ceived via gates, which are input and output interfaces of the modules (depicted as small

white boxes in Figure 6.3). Messages are sent either along a predefined path through

gates and a set of connections, or directly to the destination module. The messages are

sent through connections modeled between input and output gates of the modules. The

connections can be set between the gates of two simple modules within a compound

module, or between a gate of one simple module and a gate of the compound module.

When a module receives a message, the local simulation time of the module advances.

The connections are modeled to represent physical links by setting a set of parameters,
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compound module
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Figure 6.3: OMNET++ hierarchical network model composed of communicating simple
and compound modules [86].

i.e., data rate, propagation delay, bit error rate, packet error rate. Different connection

types can be defined by setting these properties accordingly, which refers to reusable

channel objects.

Network Description (NED) language: The structure of the model (network) is de-

fined by OMNET++’s topology description language, namely NED (Network Descrip-

tion). As detailed in the OMNET++ simulation manual [86], NED allows users to

declare simple modules, and connect them to build compound modules. The compound

modules can also be labeled as networks, which are self-contained simulation models. As

another component type, the instances of channel objects can also be used within the

compound modules. In the NED files, simple modules are declared by specifying their

externally visible interfaces, that are, gates and parameters [86]. The definition of com-

pound modules covers the declaration of their external interfaces (gates and parameters),

the submodules assembled within them and the interconnection between these submod-

ules [154]. At the highest level, the definition of a network refers to the definition of a

simulation model as an instance of a module type [154]. The NED network description

language supports large-scale network definitions with its features listed and described in

the manual [86]: hierarchical, component-based, interfaces, inheritance, packages, inner

types, and metadata annotations.

As indicated in [154], OMNET++ IDE includes a graphical editor that uses NED

as its native file format and can also work with an arbitrary, even hand-written NED

97



code. The graphical editor is a two-way tool such that a user can edit the network

topology either graphically or by using the NED source view. Indeed, it is allowed that

users can switch between the graphical view and source view at any time. Rather than

allowing for only fixed topologies, NED includes declarative constructs (resembling loops

and conditionals in imperative languages) such that it allows for parametrized topologies

[154]. With NED language, it is allowed to model common regular topologies (ring, grid,

star, tree, hypercube) or random interconnection by passing numerical parameters such

as size [154]. The network models defined by NED language can be mapped one-to-one

to Extensible Markup Language (XML), which eases the integration of OMNET++ with

other systems [154].

cDatarateChannelcDelayChannelcIdealChannelcSimpleModule

cModule cChannel

cComponent

cObject

...

Figure 6.4: Inheritance diagram that shows the relationship of the module, channel, and
component classes [86].

Components, Simple Modules and Channels: The network models in the OMNET++

simulation framework are made up from modules and connections, where modules could

be simple modules or compund modules, and connections can be represented as channel

objects [86]. Simple modules are the atomic and active components of the network

models, and their behavior is programmed in C++ using the OMNET++ simulation

class library. The channel objects, representing the connections and programmable by

the user, define the channel behavior with the assigned properties for propagation and

transmission time modeling, error modeling, and others [86]. The inheritance diagram
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that depicts the relationship between component, module, and channel classes is provided

in Figure 6.4. As seen in the diagram, modules are represented by cModule class, and

channels are represented by cChannel class. Both cModule and cChannel classes are

derived from the cComponent class, which is inherited from the cObject base class.

Simple module types can be defined by subclassing cSimpleModule class and compound

modules are defined by instantiating cModule class. As noted in the manual [86], the

cModule class can be overridden with @class in the NED file, and a simple module C++

class derived from cSimpleModule can be used for compound modules. For channel

behavior definition, there are three built-in channel types derived from cChannel class:

cIdealChannel, cDelay Channel and cDatarateChannel as seen in Figure 6.4. New

channel types are defined by subclassing cChannel or any other channel class [86].

Discrete Event Simulation (DES) in OMNET++: This section introduces a set of

simulation concepts used in our implementation and describes how discrete event sim-

ulation performs in the OMNET++ framework. As detailed in [86], a discrete event

system refers to a system where events (state changes) occur at discrete time instances.

It takes zero time for an event to happen and it is assumed that there is nothing in-

teresting happens between two consecutive events. In other words, there would be no

state changes in the simulation model between two events occurring one after another in

contrast to continuos systems, where state changes continuously take place throughout

the simulation. Examples for the events considered in the computer network simulations

could be the start of packet transmission, the end of packet transmission, and the expiry

of a retransmission timeout [86].

The list of future events to be processed in the discrete event simulation systems are

stored in data structures, called FES (Future Event Set) [86]. The working flow of dis-

crete event simulation systems using FES is summarized in the following pseudocode

(see Figure 6.5). In the initialization step, the data structures representing the simula-

tion model are built, user-defined initialization code is called, and the initial events are

inserted into FES in order to ensure that simulation can start [86]. Then, the events
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initialize -- this includes building the model and inserting initial events to 
FES

while (FES not empty and simulation not yet complete)
{
    retrieve first event from FES
    t:= timestamp of this event
    process event
    (processing may insert new events in FES or delete existing ones)
}

finish simulation (write statistical results, etc.)

Figure 6.5: Workflow of the discrete event simulation [86].

maintained in the FES are processed in a strict timestamp such that the currently pro-

cessed events do not have an impact on the previously called events. The processing

step at this point refers to calling codes provided by the user. At the final step, the

simulation terminates when there are no events left to be processed in the FES, model

time or CPU time limit is reached, or when the statistics reach the desired accuracy

as noted in the simulation manual [86]. This is the time where the user records the

resulting statistics into output files.

The events in the OMNET++ are represented by using messages as instances of the

cMessage class and its subclasses [86]. The messages are passed between the modules and

as noted in the OMNET++ manual, the place where the event will occur is the message’s

destination module, and the model time when the event occurs is defined as the arrival

time of the corresponding message [86]. OMNET++ employs the events maintained

within the FES in arrival time order for the sake of causality [86]. To be more specific,

given two messages, there are three rules defined regarding their execution: (i) the

message with the earlier earlier arrival time is executed first, (ii) if the arrival times are

equal, the one with the higher scheduling priority is executed first, where the scheduling

priority is a user-assigned integer attribute of messages, and (iii) if the priorities are the

same, the message with scheduled/sent earlier is executed first [86]. The simulation time

is defined based on the SimTime class that stores the simulation time in a 64-bit integer,

using decimal fixed-point representation [86]. A scale exponent global configuration
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variable is used to control the resolution such that all the SimTime instances have the

same resolution [86]. The exponent can take values between −18 (attosecond resolution)

and 0 (seconds) each of which corresponds to a range as presented in the Table 6.1.

Exponent Resolution Approximate Range

−18 10−18s(1as) +/− 9.22 s

−15 10−15s(1fs) +/− 153.72 minutes

−12 10−12s(1ps) +/− 106.75 days

−9 10−9s(1ns) +/− 292.27 years

−6 10−6s(1us) +/− 292271 years

−3 10−3s(1ms) +/− 2.9227e8 years

0 1s +/− 2.9227e11 years

Table 6.1: Exponents with corresponding resolutions and ranges [86].

6.3 Veins Framework Extended with Multi-Objective Route

Optimization

The overall simulation framework designed in this study is summarized and represented

in Figure 6.6. As illustrated, the simulation concept can be broadly categorized into two

parts that communicating via XML-RPC protocol: (i) the remote application server and

(ii) the implemented application as part of the OMNET++/Veins framework.

The remote application server module, namely server.py, is modeled and implemented

based on the Python programming language. When the server is started, the static and

dynamic data layers comprising the Local Dynamic Map (LDM) are initialized and their

corresponding matrices are generated based on the considered SUMO-compatible road

network model. Doing so, the adjacency matrices representing the physical distance be-

tween the network nodes, as well as travel time, current congestion, projected congestion

contribution, and the communication network quality are initialized. The XML-RPC

server module [155] is imported into the server.py such that the communication between

remote application server model and the OMNET++ application modules is established.

Based on the XML-RPC framework, the functions called by the OMNET++ application
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Remote Application Server (server.py)

Xmlrpc server module 

XMLRPCServer

XMLRPCRequestHandler

Multi-Objective Route Optimization Problem

Initialization

Evaluation

Functions registered to XMLRPC server

Update Route Information,
Remove Congestion Data,

Update Road Signal Quality,
Compute Route,

Calculate Rout Cost,...

Reset Simulation,
Log Data,

Save Signal Data,
Save Vehicle Route Cost Data,

Save Matrix,...

Called by OMNET Called by User

Objective Functions

Objective Function: Traveled Distance
Objective Function: Travel Time
Objective Function: Current Congestion
Objective Function: Projected Congestion Contribution
Objective Function: Communication Network Quality,...

(Priority-based Encoding)

Multi-Objective Optimization Algorithms

NSGA2 / NSGA3 / MOEA/D...

Selection: Random, Tournament Selection
Crossover Operators: Uniform, Differential Evolution, One 

Point, Two Point,...
Mutation Operators: Polynomial, Bitflip,... 

Antenna (xml)
Configuration (xml)
Road Network (net.xml)
Routes (rou.xml)
SUMO Configuration (sumo.cfg)
Trips (trips.xml)
OMNET Initialization (ini)

Veins Scenario

Application

MORouting.cc / MORouting.h
MORoutingRSU.cc / MORoutingRSU.h
Routing Message
MORouting.ned
MORoutingRSU.ned

Mobility Interfaces

Traffic Control Interface (TraCI)
TraCI Mobility
TraCI Vehicle
TraCI Command Interface
TraCI Color,
Simulation API SimTime,...

OMNET++ Application

Local Dynamic Map (LDM) extended with 
Network Context (NC) Object

Static Data Layer: Road network, road segments, 
distance information, speed limits,...
Dynamic Data Layer: Current congestion, 
projected congestion, signal power, 
communication network quality,...

Figure 6.6: Simulation Framework.

and the functions called by the user are initialized and registered. The functions to be

called by the OMNET++ refers to functions that are called by modules namely MO-

Routing.cc and MORoutingRSU.cc. The functions contained by these modules are used

to periodically report traffic information, vehicle route information, or the received signal

power information by the RSUs to the server. On the other hand, the functions that are

to be called by the simulation user can be used to reset the simulation, reinitialize the

data layers, or save the collected simulation recordings for further analysis. Additionally,

the multi-objective optimization problem is defined and initialized in the server.py mod-

ule based on the Multi-Objective Optimization in Python (Pymoo) framework [87]. The

number of variables (number of road network nodes), number of objectives, number of

constraints, and the boundaries for the solutions are initialized. In the evaluation module

of the problem model, the optimization problem objective functions and the constraints

are specified. The generated solution alternatives are evaluated at every generation

based on the specified objective functions and they are assigned a fitness value. The

objective functions regarding traveled distance, travel time, traffic congestion, and com-

munication network quality are defined, and the Priority-based Encoding method is used

to transform the solutions into valid route representations. Lastly, the multi-objective
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algorithm, i.e., NSGA-2, NSGA-3, MOEA/D, etc., is specified in the server.py module

to solve the dynamic route optimization problem. The algorithm is configured by setting

the parameters such as the number of generations, population size, crossover type and

mutation type by using the libraries of the imported Pymoo framework.

Figure 6.7: RSU Scenario.

On the other side, the OMNET++ application is designed and implemented relying

on the interfaces provided by the Veins framework. Firstly, the scenario is modeled

and initialized. The SUMO-compatible road network model is created, which can be

generated by using the network models provided by SUMO or by converting a real road

network model downloaded from the OpenStreetMap [83]. As a vehicular communica-

tion medium, we have used the IEEE 802.11p and IEEE 1609.4 DSRC / WAVE models

provided by the Veins [147]. The monopole antenna model [156] is used throughout the

simulations, and the analogue model is configured as Simple Pathloss Model. In the

OMNET++ .ini file, the network to be simulated is specified, which we name as RSUS-

cenario.ned network in our case (see Figure 6.7). As depicted in Figure 6.7, the network

description file RSUScenario.ned comprises and refers to RSU.ned and Car.ned files. The

scenario concerned in this figure has 7 RSUs. The node modules represent the vehicles

such that when a vehicle object is instantiated at the SUMO side, its corresponding node

module is created in the OMNET++ network simulation environment. As the vehicle
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moves and changes to a new position, its movement and changed position is reflected on

the node objects in the OMNET++. Mainly, the simulation parameters, RSU settings,

and IEEE 802.11p parameters are specified in the OMNET++ .ini file. The simulation

parameters section includes the size of the background area, simulation time limit, etc.

The RSU settings section specifies the locations of the RSU instances within the borders

of the background area. The parameters regarding the IEEE 802.11p model include the

maximum transmission power (mW), bit rate (Mbps), minimum signal power (dBm)

and antenna properties. In addition to the configurations regarding the vehicular com-

munication network, the SUMO-compatible road network (.net.xml), and the initially

generated trips (.trips.trips.xml) and routes (.rou.xml) of the vehicles are also included

in the Veins scenario directory. For instance, to generate the background traffic, first

the trips are randomly generated between a specified simulation time interval using the

randomTrips.py component of the SUMO [59]. Then, based on the created trips file,

the initial routes of the vehicles are determined using the duarouter component, which

relies on a shortest-path route computation method [59]. In the end, the routes of each

vehicle are stored in the (.rou.xml) file together with the departure time information.

The application in the OMNET++ side is mainly implemented in the MORouting.cc

and MORoutingRSU.cc modules based on c++ programming language. The MORout-

ing.cc module defines the behavior of each vehicle object instantiated within the Veins

simulation environment. The main function of the MORouting.cc module, namely han-

dlePositionUpdate, is called and run whenever a vehicle in the scenario moves by one

simulation unit. Hence, the functions defined within the MORouting.cc class are exe-

cuted for any vehicle move. In this module, whenever a routable vehicle (a vehicle that

is periodically rerouted by a multi-objective route optimization methodology) is instan-

tiated, an initial route request is sent for this vehicle to the server. Then, the calculated

route is assigned to this vehicle at the very beginning of its trip, and the data layers at

the server are updated accordingly based on the newly calculated route information. For

instance, the current congestion and the projected congestion contribution data layers

are updated based on the received route information at the server.py. After this initial-
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ization process, new routing requests are periodically sent for each one of these routable

vehicles throughout the simulation. The route information of the routable vehicles is

continuously sent to the server in predefined intervals and also whenever they change to

a new road segment (edge). The initialization process and the periodic route calculation

process are not applied for the unroutable vehicle types (vehicles that are not rerouted

throughout the simulation). However, the current route information of these unroutable

vehicles comprising the background traffic is also sent to the server whenever they change

to a new road segment (edge). In this way, the data layers regarding traffic congestion

are frequently updated by every vehicle in the scenario. Additionally, every vehicle in

the scenario periodically broadcasts its current road information to the RSUs and other

vehicle nodes via the WAVE Short Message (WSM) protocol provided by Veins. In the

MORoutingRSU.cc application module, whenever a message is successfully received by

an RSU, the message content is extracted and the route information received by the

vehicle is reported to the server, which is then used to update the dynamic data layers.

The Received Signal Strength (RSS) information, or signal power information, is also

extracted from the arriving message and sent to the server by the RSU. By this way, the

data layer, maintaining the signal power and communication network cost information,

is updated. Throughout the simulation, until the last vehicle instance leaves the simula-

tion, the multi-objective route planning mechanism is periodically run for the routable

vehicles based on the most up-to-date local dynamic map data structure.
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7 Analysis and Evaluation

This chapter presents the simulation test results we have obtained for different instances

of the multi-objective route optimization problem by considering road network mod-

els provided by the SUMO mobility simulator and a real-world road network scenario

provided by the OpenStreetMap [83]. The simulations are performed by varying the

set of objectives, constraints, and road network scenarios. We provide the analysis and

evaluation of the simulation outcomes for these different case studies.

7.1 Road Network Models

In the simulation studies, we have considered two types of road network scenarios, one

of which is generated by means of the abstract network generation method of SUMO

and the other one represents a region of Berlin. As an abstract road network model,

we have generated a spider-like network by using the netgenerate component of SUMO

[59]. The netgenerate is a tool of SUMO that is used to generate three types of abstract

networks, namely grid-like network, spider-like network and random network [59]. The

spider-like network model is used for this study. An example command for generating a

spider-like road network is given in the Listing 7.1 below. According to this command,

a spider-like network is generated with 10 arms, 6 circles, and a distance of 100 meters

in between the circles. Figure 7.1 shows the generated road network with 37 nodes and

144 edges, which is viewed by using the graphical editor of the SUMO namely netedit

[59].
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List of Listings 7.1: The command to generate spider-like road network in SUMO.

$ netgenerate −−spider −−spider.arm−number=10 −−spider.circle−number=6 −−

spider.space−radius=100 −−output−file=spiderNet.net.xml

Figure 7.1: Spider-like abstract road network model viewed by the netedit tool of SUMO.

Additionally, we have used a real-world road network model representing a region

of the Berlin city center. Figure 7.2 shows the corresponding real-world road network

model with 248 nodes and 507 edges, which is viewed by the sumo-gui tool. The road

network data is downloaded from the well-known and widely used map data source

OpenStreetMap [83]. Firstly, the map data corresponding to the selected region is

downloaded from the OpenStreetMap in .osm format, i.e., as Berlin.osm file. Then, the

OpenStreetMap .osm file format is converted to SUMO network format (.net.xml) by

using the netconvert tool of the SUMO. More specifically, the Berlin.osm file is converted

to Berlin.net.xml file by using the command given in the Listing 7.2 below. In this way, a

suitable network file format is generated that can be imported to SUMO. The command

provided in the Listing 7.2 is a general call for generating SUMO-network from .osm

data, but there are various additional options of netconvert tool listed in the SUMO
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website [59]. By setting these options accordingly, users are able to provide additional

data layers to the SUMO-network file. In this work, we have filtered out the irrelevant

data such as railroads and removed the redundant nodes in the road network model.

List of Listings 7.2: The command to generate SUMO network file from OpenStreetMap

file format.

$ netconvert −−osm−files berlin.osm.xml −o Berlin.net.xml

Figure 7.2: Real-world road network model representing a region of Berlin city center,
viewed by the sumo-gui tool.

7.2 Simulation Tests by using Spider-like Road Network Model

Case study 1: In this case study, we have considered a small-size road network with

31 nodes and 96 edges as seen in Figure 7.3. This road network model is formed by

removing out the nodes and edges of a spider-type network. The reason for using a

small-size network at the beginning of our simulation studies was to quickly observe if
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the multi-objective route optimization algorithm can find optimal routes by considering

the dynamically changing congestion parameter. For this purpose, a heavy traffic is

generated along the straight road that connects the leftmost edge and the rightmost

edge of the road network. The vehicles without rerouting capability are expected to

follow the straight road without avoiding congestion, and the vehicles with rerouting

capability are expected to turn on right or left sideways to avoid congestion. To ensure

that enough amount of congestion occurs along the straight road, additionally, we have

placed traffic lights at four junctions as can be seen in the Figure 7.3.

Figure 7.3: A basic road network model created by filtering out a spider-type network
model.

In this road network scenario, 15 vehicle instances are created in total, all of which

are traveling from the left-most edge to the right-most edge of the road network. The

first 10 vehicles depart at a time in between 0 − 20sec period, and the last 5 control

vehicles depart at time instances t = 50, 51, 56, 58, 60sec. The first 11 vehicles are set

to be not routable, and the last 4 vehicles are set to be routable. This way, the route

costs of two vehicles (one vehicle without rerouting capability that departs at t = 50sec,

and one vehicle with rerouting capability that departs at t = 51sec) are compared.

The route congestion cost values for these two vehicles are illustrated in Figure 7.4 (a).

The congestion cost of the currently followed routes of the two vehicles is recorded as

the vehicles change to a new edge. As seen in Figure 7.4 (a), the route congestion

cost of the routable vehicle is always lower than the route cost of the vehicle without

dynamic routing capability. In this case study, the multi-objective optimization problem
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instance for the routable vehicles is defined with two objectives and two constraints. The

objectives are to minimize the total traveled route distance and the current congestion

cost of the traveled route. The first constraint is that the route congestion cost should

be lower than or equal to 0.2; the second constraint is that distance of the offered route

solution needs to be lower than or equal to 1.5 times the shortest-path distance from

the current location of the vehicle to the destination location. As seen in Figure 7.4

(b), the ratio between the offered route distance and the shortest-path route distance

is always found to be lower than 1.5 for all the four routable vehicles. To dynamically

compute the shortest-path distance from the current location to the destination location

of a vehicle, we have used Dijkstra’s algorithm, presented in the article [157]. In this

scenario, the NSGA-2 algorithm is modeled and used for the dynamic route optimization

with population size of N = 200, maximum generation number of Ng = 50, crossover

probability of pc = 0.9 and mutation probability of pm = 0.05.

Figure 7.4: (a) Two vehicles’ route congestion cost. (b) The ratio of computed route
distance over shortest-path route distance for the 4 routable vehicles.

In the second part of this case study, the last 5 control vehicles are observed. First,
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simulation is run with all the 15 vehicles, including the last 5 control vehicles, without

rerouting capability. Then, only 5 vehicles out of 15 vehicles (control vehicles) are pe-

riodically rerouted with a period of 30sec. The vehicles without rerouting capability

means that they are following a shortest-path algorithm without considering dynamic

metrics to reach their destination. On the other hand, the rerouted vehicles periodi-

cally use a multi-objective route planning algorithm by considering both distance and

congestion parameters. As can be seen in Figure 7.5, the vehicles (yellow ones) with-

out rerouting capability follow the straight road, on the other hand, the vehicles with

rerouting capability (green vehicles) avoid the congested road (see Figure 7.6).

Figure 7.5: The simulation status recorded at t = 93.00sec. All 15 vehicles in the scenario
are set to be without rerouting capability.

Figure 7.6: The simulation status recorded at t = 83.900sec. The 5 of the 15 vehicles
(green vehicles) have the rerouting capability.

To illustrate this, Figure 7.7 shows the travel time, waiting time and time loss values of

the control vehicles obtained as a result of the simulations. The travel time parameter
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corresponds to the total time spent to travel the route, the waiting time is the time

that vehicle’s speed is below or equal to 0.1m/s, and time loss parameter is the time

lost because the vehicle travels below its ideal speed [59]. While calculating the waiting

time and time loss parameters, the scheduled stops are not taken into account [59]. In

SUMO, the desired speed of the vehicle instances are defined by using the speed factor

or speed deviation attributes [59]. As indicated in the SUMO User Documentation [59],

if a vehicle’s speed factor is set to be 1.2, then this vehicle can drive up to 20% above the

speed limit (legal speed); or if a vehicle’s speed factor is 0.8 than this vehicle is to travel

with a speed that is always 20% below the speed limit. In this scenario, the passenger

vehicles’ speed deviation attribute is taken as 0.1, which is the default value.

Figure 7.7: The travel time, waiting time, and time loss values of 5 control vehicles
involved in the scenario.

In Figure 7.7, it is seen that when there are reroutable vehicles (vehicles with green

color) involved in the simulation, their travel time, waiting time, and time loss values

decrease. The reason for this is that when vehicles have been rerouted by considering

the congestion metric, they have avoided the congested straight road in the middle of

the road network and reached their destination in less amount of time. Throughout the

simulation, the current congestion values of the routes followed by the control vehicles are
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recorded as they change to a different road segment (edge of the road network graph).

These current congestion values are recorded when the 5 control vehicles are all not

routable, and when they are set to be routable. The mean current congestion values of

the routes followed by the control vehicles are calculated for the two cases and illustrated

in Figure 7.8. As seen in Figure 7.8, the mean current congestion values of the routes of

the control vehicles decrease when they are reroutable and pass through road segments

with lower congestion cost metric.

Figure 7.8: Mean congestion cost of the 5 control vehicles when they are not routable
and when they are set to be routable.

Case study 2: In this case study, we have considered a spider-like road network

model with 61 nodes and 240 edges as seen in Figure 7.10. We have created 500 trips

as background traffic (represented by the yellow vehicles), which are departed at a time

in between 0− 500sec period. The start and end locations of these trips are determined

randomly. Then we have defined 30 additional trips all of which have been departed

from the left-most edge towards the right-most edge of the straight road in the middle

of the road network. We have placed 7 RSUs at the bottom part of the road network as
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Figure 7.9: Illustration of the optimal solutions in the objective space found by the
NSGA-2 as a result of a route request sent by a routable vehicle instance.

seen in Figure 7.10. The first 15 trips (represented by the red vehicles) of the additional

30 trips depart at a time between 250 − 265sec, and the other 15 trips (represented by

the green vehicles) depart at a time between 265 − 280sec. All the vehicles comprising

the background traffic (yellow vehicles) and the first group of 15 additional trips (red

vehicles) are not rerouted. The second group of 15 additional trips (green vehicles) is

rerouted by the network-aware multi-objective route optimization algorithm. In this

scenario, we have considered three objectives which are set to be minimizing traveled

distance, current congestion level, and communication network-related cost of the route.

The constraints are defined regarding the total traveled distance and the overall route

network quality. According to these constraints, the distance of the offered route should

be lower or equal to 1.7 times the shortest-path distance from the current location of a

vehicle to its target location, and the overall network cost of the offered route needs to

be lower or equal to 0.5 (and 0.4 to test another case). The NSGA-2 parameters are set

to be the same as the previous case study, as we have obtained sufficiently good results.
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As illustrated in Figure 7.9, the adapted NSGA-2 algorithm finds out the most optimum

solution set based on the set of defined objectives and constraints.

RSU [0]

RSU [1]

RSU [2]

RSU [3]

RSU [4]

RSU [5]

RSU [6]

Figure 7.10: Spider-like road network with RSUs deployed at the lower part.

In this case study, vehicle nodes periodically broadcast their road information, which

arrives at RSUs and other vehicles around, as seen in Figure 7.11. The RSUs receive

messages with higher signal power (dBm) from the vehicles that are traveling on the edges

closer to RSU locations. In other words, the signal power values assigned to the edges

at the lower portion of the road network are higher, compared to the ones at the upper

portion. Accordingly, as an intuitive observation, it is seen that vehicles with rerouting

capability (green vehicles) turn towards the RSUs and travel to their destination through

the lower part of the road network. More specifically, they follow the routes with higher

signal power and lower communication network cost. To quantitatively support this

intiutive observation, the signal power (dBm) and network cost values of the routes

traveled by the vehicles are recorded throughout the entire simulation time. When
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Figure 7.11: Illustration of the broadcast of road information by the vehicle nodes in the
spider-type road network scenario. There are 5 vehicle instances and their
network node representations at the very beginning of the scenario.

the vehicles change to a new road segment (edge), the total signal power and network

cost value of the routes that they are currently following are recorded. Figure 7.12,

comparing the simulation recordings of two vehicles (one without rerouting capability

and one with the rerouting capability) departed almost at the same time, illustrates

that rerouted vehicle’s routes have higher signal power (dBm) and lower network cost.

Likewise, Figure 7.13 compares the mean signal power and mean network cost resulting

from the routes traveled by two groups of vehicles: (i) the first group includes 15 vehicles

without rerouting capability (red vehicles on Figure 7.10) and (ii) second group is the

15 reroutable vehicles (green vehicles on Figure 7.10). The route cost measurements are

collected using the same methodology such that when vehicles change to a new road

segment (edge) their current route information is recorded. Similarly, as illustrated in

Figure 7.13, the mean signal power is found to be higher and the mean network cost is

found to be lower for the reroutable vehicles.

We have modeled two scenarios such that in the first scenario the distance-related

constraint is included in the problem definition, and the communication network-related

constraint factor is taken as 0.5. For the second scenario, distance-related constraint is

not involved and the network-related constraint factor is set to be 0.4. In both Figure 7.12
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and Figure 7.13, it is seen that when the distance constraint for the reroutable vehicles is

not included in the problem definition and the network-related constraint factor is taken

as 0.4, the difference between the results of regular vehicles and the reroutable vehicles

becomes more apparent. When there is no distance constraint, the reroutable vehicles

(green vehicles) are able to travel through more distant roads and pass through closer

to RSUs. By this way, they travel through road segments with higher signal power and

lower network cost assigned, compared to the case where there is distance constraint.

The simulation results regarding mean signal power and mean network cost of these two

groups of vehicles are also presented in Figure 7.14 considering both scenarios.

Figure 7.12: Signal power and network cost when there is distance constraint and when
the network constraint factor is 0.5 ((a), (b)). Signal power and network
cost when there is no distance constraint and when the network constraint
factor is 0.4 ((c), (d)).
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Figure 7.13: Signal power and network cost when there is distance constraint and when
the network constraint factor is 0.5 ((a), (b)). Signal power and network
cost when there is no distance constraint and when the network constraint
factor is 0.4 ((c), (d)).

Figure 7.14: (a) Mean signal power. (b) Mean network cost.
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7.3 Simulation Tests by using Real-World Road Network Model

In this case study, we have performed simulations by considering a real road network

with 248 nodes and 507 edges. The road network represents a region in the Berlin city

center as can be seen in Figure 7.2. We have randomly generated 500 trips for a 1000sec

period and observed the routes of 10 vehicles among all the trips. Five of these vehicles

are departed at a time in between 480− 500sec without rerouting capability. The other

group of five reroutable vehicles is departed at a time in between 500−540sec. The start

location, destination location, and the initial route of these 10 vehicles are configured

to be the same at the beginning of the simulation. We have considered three objectives

and two constraints for the reroutable vehicles. The objectives are set to be minimizing

total traveled distance, current congestion cost, and the projected congestion cost. The

constraints are defined regarding the distance and current congestion cost metrics. The

maximum ratio of the calculated route distance over the shortest-path distance from the

vehicles’ current location to their destination location is set to be 1.5. In addition, the

maximum current congestion cost value on any edge of the calculated route is set to

be 0.25. Same as the previous cases, the NSGA-2 algorithm is used for this scenario.

The number of generations, population size, crossover probability, and mutation prob-

ability are set to be 50, 200, 0.9, and 0.05 respectively. During the simulation run, it

is observed that vehicles rerouted by using the multi-objective evolutionary algorithm

avoided the congested route regions and arrived at their destination at a shorter time

period compared to vehicles without rerouting capability. The rerouted vehicles fol-

lowed a longer-distance path as expected. The simulation outcomes of this case study

are summarized in Figure 7.15 and Figure 7.16. In Figure 7.15, it is seen that travel

time, waiting time, and time loss values are found to be lower for the rerouted vehicles.

Throughout the simulation, the distance and congestion-related route cost values of all

the vehicles are recorded at the time when vehicles change to another road segment. As

shown in Figure 7.16, the current congestion cost, projected congestion cost, and average

projected congestion cost of the rerouted vehicles remains lower than vehicles without

rerouting capability most of the time. Further, the calculated route distance of the
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rerouted vehicles is mostly not higher than 1.5 times the shortest-path distance at any

time of the simulation. There are two exception measurements as seen in Figure 7.16 (d)

such that two of the recorded ratios are found to be higher than 1.5. Most likely, these

exceptions occurred when the optimization algorithm could not find solutions satisfying

the given constraints, and in this case, the corresponding vehicle continued to follow the

previously calculated route.

Figure 7.15: The travel time, waiting time, and time loss values of 5 vehicles with and
without rerouting capability.
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Figure 7.16: (a) Current congestion cost, (b) projected congestion cost, (c) average pro-
jected congestion cost of the routes followed by the routable and unroutable
vehicles throughout the simulation. (d) The ratio of calculated route dis-
tance over shortest-path distance for the routable vehicles.
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8 Conclusion

This research study argues that route planning techniques and road traffic management

schemes might need to be revisited by considering the requirements of autonomous and

connected driving. At this point, we believe that seamless connectivity both within and

around the vehicle is one of the key enablers of the advanced autonomous driving appli-

cations, i.e., vehicle platooning, advanced driving, extended sensors, and remote driving,

which has to be concerned as an additional metric in the next-generation route planning

architectures [2]. The planned routes of the autonomous and connected vehicles have to

be dynamically adjusted in a way that vehicles have efficient and reliable connectivity

with a certain level of QoS throughout their travel until arriving at the destination loca-

tion [2]. Based on this idea, we design, implement and propose a multi-objective route

planning framework, which enables us to incorporate both traffic-related and communi-

cation network-related measures into the route optimization problem model.

Firstly, a bidirectionally-coupled simulation framework is set up, which includes a

mobility simulator for the simulation of vehicular traffic and a communication network

simulator for the simulation of wireless data transfer within the vehicular road environ-

ment. For the simulation of vehicular traffic, we have used the well-known mobility sim-

ulator, namely Simulation of Urban Mobility (SUMO). To simulate the communication

network simulations we have used the commonly used network simulator of Objective

Modular Network Testbed in C++ (OMNET++). These two simulators are integrated

by means of the Vehicles in Network Simulations (Veins) framework. In doing so, two-

way interaction between the mobility simulator and the network simulator is settled.

An urban scenario is modeled by using these two simulators, including autonomous and
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connected vehicles periodically rerouted throughout the road network, roadside units

that communicate with the vehicles and the remote application server. This integrated

simulation framework enabled to dynamically sense the traffic and communication net-

work conditions of the roads. The measured traffic condition information and network

status information are sent to the remote application server, resembling the Cooperative

Intelligent Transportation Systems (C-ITS) deployed in the urban areas. Additonally,

a continuously updated data structure, representing a local dynamic map (LDM), is

built at the server-side. This multi-layer data structure keeps different static and dy-

namic information regarding the road traffic conditions and availability of wireless access

technologies.

As an extension to these tools, we have established a modular framework that allows us

to incorporate and remove different objectives or constraints to/from the route planning

optimization problem model. For instance, by using this modular structure, one can

easily model objective functions or define constraints regarding the relevant metrics of the

vehicular route planning problem, i.e., traveled distance, travel time, current congestion

level and projected congestion contribution level, as described in the previous chapters

of this study. By considering the connectivity requirements of autonomous vehicles,

communication network quality metric can be incorporated into the problem instance.

In the modeled urban scenario, every vehicle instance periodically broadcasts its current

road information to the closest RSU. Upon successfully receiving the message from a

vehicle, the corresponding RSU node extracts a signal strength value (or signal power in

dBM) out of the message, which quantifies the network quality level at the road where

the message is sent. The RSU then sends the received signal strength measurement to

the application server together with the corresponding road information, and in this way,

the network layer of the dynamic data structure maintained in the server is updated.

Throughout the simulation, the same procedure is repeated by every RSU in the scenario

whenever they successfully receive road information from the vehicles.

When it comes to congestion metrics, we have concerned both current congestion level

and projected congestion contribution level on the roads in this work. The (near) real-
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time traffic information collected by the vehicles is reported to the application server both

periodically and when the vehicles change to a new road segment. Using this information,

the current congestion level on each road segment is estimated and continuously updated.

At the time that an alternative route is calculated by the server and sent to a vehicle,

the projected congestion contribution values along the new route of the corresponding

vehicle are updated in the relevant data layer of the server. The highest congestion

contribution value is assigned to the next road segment that the vehicle will be visiting

after receiving the alternative route. The following roads up to the last road segment are

assigned with lower values in decreasing order, as they will be visited at later times by

the vehicle. Further, the projected congestion contribution values assigned to the edges

involved in the new alternative route are updated with new values as the vehicle moves

on its route and changes to another edge. The same procedure is dynamically applied

for every vehicle involved in the scenario such that an aggregated projected congestion

contribution value is calculated for every edge resulting from the set of vehicles that

are to be passed along the corresponding edge. To realize this, we have determined

and recorded the registered vehicles for every edge at certain periods of time, where

registered vehicles refers to a set of vehicles that have the corresponding edge ID in their

currently followed route. The aggregated projected congestion contribution value of an

edge is calculated by using the route information of every registered vehicle to this edge

at a time. As was previously highlighted, by means of traffic congestion estimation for

the future, it is aimed to realize network-wide, global traffic optimization, rather than

rerouting the vehicles based on individually optimized routes in a greedy way.

With the traffic condition and communication network status information received,

a cost term is determined for every road segment associated to all the dynamically

changing metrics mentioned above. A cost matrix is created specific to each metric

and continuously updated based on the collected information. In addition to the cost

matrices standing for the dynamic metrics, we have created the distance cost matrix

of the road network as well. Using these cost matrices, the most optimum set of route

solutions are dynamically calculated for the vehicles by using the Multi-Objective Evo-
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lutionary Algorithm (MOEA) approach. For instance, when a route request is received

from a vehicle, the optimum routes with minimized total distance, current congestion,

aggregated projected congestion contribution, and communication network-related cost

can be calculated by the adapted MOEAs. By using the provided modular planning

framework, different types of algorithms in this context can be adapted with the re-

quired configurations, i.e., Multi-Objective Evolutionary Algorithm Based on Decompo-

sition (MOEA/D), Non-dominated Sorting Genetic Algorithm 2 (NSGA-2), and Non-

dominated Sorting Genetic Algorithm 3 (NSGA-3). For this thesis report, we have

mainly used the NSGA-2 algorithm as it provided promising performance with the mod-

eled road network scenarios. The group of vehicles subscribed to the designed route

planning scheme is periodically rerouted by using these state-of-the-art optimization

techniques for different cases, with a different set of objectives and constraints. The

algorithms and framework are validated on both synthetic and real-world road network

models.

8.1 Future Research Directions

A valuable extension to this work could be integrating the planned routes of vehicles

into the network resource management entity of communication service providers for

proactive resource allocation. As depicted in Figure 1.1, the feedback loop between the

network-aware route planning component of autonomous vehicles and the SDN-based

resource controller of the network provider can be implemented for this purpose. It

should be highlighted that autonomous and connected vehicles have the advantage of

having their route programmatically determined and adjusted, unlike human-operated

vehicles. Using this benefit, the planned and deterministic trajectories of the autonomous

vehicles can be provided as input to the network resource management entities such

that SDN-based controllers can preemptively allocate network resources (i.e., available

bandwidth, flow entries) along the trajectories of the vehicles. Thus, the trajectory-

based proactive network resource management can be implemented on the network side

as a future work for this study [2].
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As another research dimension, the presented route planning mechanism can be im-

proved to be a scale-invariant scheme. When there are larger-scale road network sce-

narios, the road network can be divided into multiple sub-regions, and there could be

local server node(s) specific to each region. These locally distributed server nodes would

be responsible for the route computations only within their area of concern. When the

sub-routes calculated in each region are combined, the resulting route would be the over-

all planned route of the vehicle from its start location to its destination location. This

way, the computation load on the central remote application server can be offloaded to

local servers. Additionally, the communication load can be reduced when compared to

a scenario where there is only one central server. In this case, there could be a threshold

between reducing the computation power and computing the globally optimum route,

which requires further analysis.

The ridesharing concept would provide further benefits when it is integrated into

large-scale AMoD systems, i.e., reduced passenger waiting time, congestion, energy con-

sumption, and traffic-related pollution [56] [158]. In an AMoD system where ridesharing

is enabled, multiple commuters traveling in the same direction are matched and assigned

to the same available vehicle. In this way, the size of the AMoD fleets can be reduced

and fewer vehicles can serve a similar amount of demand. As indicated in [158], two

objectives can be considered for the design of AMoD system with ridesharing, which

are maximizing quality of service and minimizing the operation cost. From the users’

perspective, the driving comfort throughout the ride is to be maximized, i.e., the total

travel time and waiting time of the passengers need to be minimized. When the op-

eration of the AMoD system is concerned, the fleet size and total energy consumption

need to be minimized [158]. Hence, the route planning mechanism of automated and

connected vehicles can be extended to consider the operation of a larger scale and more

realistic AMoD system model with ridesharing included.

Finally, the motion planning of autonomous and connected vehicles can be considered

as a whole by covering all the planning layers in the hierarchical decision-making mecha-

nism (see Section 2.2.1) as future work. Recall that this study focuses on the higher-level
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route planning of vehicles from their current location to their final destination location,

and aims to find out the most efficient sequence of road segments towards the final des-

tination point. In the higher-level route planning, a high level of abstraction is employed

such that lower-level variables in regard to motion planning (regulatory rules of the road,

presence of static and dynamic obstacles, vulnerable road users, more detailed and re-

alistic road structure) are abstracted away from the problem instance, as also explained

in [159]. Herewith, only higher-level metrics are considered, including the distance of

the roads, current and projected traffic congestion on the roads, speed limits on the

roads, direction of the traffic flow on each road, and estimated network quality index

associated to each road. As another research dimension, the lower level and shorter-term

planning problems of this hierarchy can be concerned by means of including lower-level

variables, objectives, and constraints into the problem model. There could be two main

approaches towards handling the overarching motion planning problem of autonomous

vehicles [159]. On one hand, if the motion planning problem is considered as one op-

timization problem and solved at once, the most optimum solution can be reached in

a computationally expensive way. As another option, if the motion planning problem

is decomposed into sub-problems with relevant objectives and constraints associated to

each layer, a sub-optimal solution can be reached in near real-time. Thus, studying

this threshold might be a research topic in this context. Additionally, building a more

comprehensive Local Dynamic Map (LDM) structure encompassing the information of

various static and dynamic traffic participants on the urban road environment could be

another relevant research problem. In this respect, the predictive, collision-free path

planning and control of the autonomous vehicles at the lower layer by considering the

forecasted trajectories of other traffic agents (vehicles, cyclists, pedestrians, etc.) could

be a valuable research dimension.
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