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ISOPARAMETRIC SURFACES IN 3-DIMENSIONAL
DE SITTER SPACE AND ANTI-DE SITTER SPACE

HuiLt Liv?Y234% . Guosoneg Zuaob?)

ABSTRACT. A spacelike surface M in 3-dimensional de Sitter space S? or 3-dimensional anti-
de Sitter space ]HI:I’ is called isoparametric, if M has constant principal curvatures. A timelike
surface is called isoparametric, if its minimal polynomial of the shape operator is constant. In
this paper, We determine the spacelike isoparametric surfaces and the timelike isoparametric
surfaces in S and H§.

§1. Introduction.

A hypersurface M of a complete simply-connected Riemannian manifold R**1(c) of
constant curvature c is isoparametric if M has constant principal curvatures. There are
many results about the isoparametric hypersurfaces in Riemannian space forms (cf. [CE],
[CHEN], [N-R]). For the isoparametric hypersurfaces in the indefinite space forms, Nomizu
[INO] derived the Cartan forrriula for spacelike isoparametric hypersurfaces in Lorentzian
space forms. Hahn [HA] considered the general case of indefinite space forms of curvature
¢ and obtained the Cartan-type formula. Magid [MA] studied Lorentzian hypersurfaces
in the Minkowski space Ef. He obtained a complete classification of isoparametric hyper-
surfaces in Ef. In this paper, we consider the problem in 3-dimensional de Sitter space
S% and 3-dimensional anti-de Sitter space H3. A spacelike surface M in 3-dimensional de
Sitter space S? or 3-dimensional anti-de Sitter space HZ is called isoparametric, if M has
constant principal curvatures. A timelike surface M in 3-dimensional de Sitter space S$ or
3-dimensional anti-de Sitter space H3 is called isoparametric, if its minimal polynomial of
the shape operator is constant. we will prove the following theorems.

Theorem 1.1. Let z : M — S3 be a spacelike 1soparametric surface, then, by a transfor-
mation in B}, it can be written as the one of the following surfaces:

(i) the totally umbilical surface,

(ii) z(u,v) = (asin(u), a cos(u), bsinh(v), beosh(v)), a2 — b2 = 1.
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Theorem 1.2. Let z : M — H} be a spacelike isoparametric surface, then, by a transfor-
mation in E3, it can be written as the one of the following surfaces:

(i) the totally umbilical surface;

(i) z(u,v) = (asinh(u),bsinh(v), a cosh(u),bcosh(v)), a%+b% =1.

Theorem 1.3. Let z : M — S3% be a timelike isoparametric surface such that the mean
curvature H and the Gauss curvature k satisfy H? — k + 1 # 0, then, by a transformation
in B, it can be written as the following surface:

. (u+v),acos ! (u+v),bcosh !
v), —(u+v),bcosh —
V2a V2a /2b

z(u,v) = (asin (u—v),bsinh )

(=)
e () — 9]},
\/2b /
where a? 4 b% = 1.

Theorem 1.4. Let z : M — H? be a timelike isoparametric surface such that the mean

curvature H and the Gauss curvature s satisfy H?> — k — 1 > 0, then, by a transformation
in B, it can be written as the one of the following surfaces:

1 1 1
(1) z(u,v) = (asinh —=(u+v), bcosh —= (u — v), a cosh —— (u + v), bsinh

1
——— _’U 3
where a? — b% = 1.
(ii) (u,v) = (asin ! (u+v),acos ! (u+v),bsi ! (u—v),bcos L (u —v))
1) z(u,v) = (asin —(u , @08 —=—(u + v), bsin ——(u — v), —(u —v)),
V2a ’ V2a V/2b V/2b '

where a? — b% = —1.

§2. Preliminaries.

Let E7* be the m-dimensional pseudo-Euclidean space with the natural basis ey, ..
its metric < , > is given by

) ema

m—q . m

i=1 j=m—g+1

where z = (21,22, .., Tm), ¥ = (Y1,¥2, -+, Ym). The n-dimensional de Sitter space S} and
n-dimensional anti-de Sitter space H} are defined by

(2.2) T=(z B <,z >=1),
2.3 Hp = (zr € B}t i<z, 2 >= —1).
1 2

It is well known that ST and H} are the complete connected pseudo-Riemannian hypersur-
faces with constant sectional curvature 1 and -1 in Ef*! and EZ*!| respectively ([O]).

Let N be a pseudo-Riemannian manifold with the pseudo-Riemannian metric § and M be
a submanifold of N. If the pseudo-Riemannian metric g of N induces a Riemannian metric
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g (respectively, a pseudo-Riemannian metric, a degenerate quadric form) on M, then M is
called a spacelike (respectively, timelike, degenerate) submanifold.

We denote by V the covariant differentiation with respect to the indefinite Riemannian
metric of Ef (or E3) and by V and V the covariant differentiations with respect to the
induced metric of S} (or H}) and M, respectively. We denote by n(z) = —ez, (z € S3,
e =1,z € H}, e = —1), the normal vector field of 3 (or H) in E} (or E4); £, the normal
vector field of M in S$ (or H3). Then, considering that M is locally embedded in S$ (or
H$), we have the following Gauss’s and Weingarten’s formulas.

VxY =VxY+ < X,Y >n
(2.4) VxY =VxY +h(X,Y)¢

where X and Y are tangent vector fields on M, and A is a field of type (1,1) tensor
(Weingarten operator) on M corresponding to £, i.e.,

(2.5) <AX),Y >=h(X,Y) < &E> .

Proposition 2.1. Let z : M — S} (or H3) be a timelike surface in S$ (or H3). Then the
Weingarten operator A of x has real eigenvalues if and only if the mean curvature H and
the Gauss curvature s of x satisfying H? — k > 0.

Proof. Let z : M — S} (or H}) be a timelike surface and {e1, ez} be a local pseudo-
orthonormal basis of TM such that the metric of z is given by

ds® = e¥(du® — dv?).

From (2.4) we have
A(e1) = hi1e1 — higey
A(ez) = haier — hases,

where h;; = h(e;, e;). Thus A has real eigenvalues if and only if

(h11 — ha2)® — 4(h3y — hirha) = 4(H? — k) > 0.

O
It is easy to see by Theorem 1.3 and Proposition 2.1:

Corollary 2.1. Let z : M — S3 be a timelike isoparametric surface such that its Wein-
garten operator has real eigenvalues, then, by a transformation in Ef, it can be written as
the following surface:

1

V/2b

(u— v),bsinhﬁ(u —v)),

1
(u +v),acos —(u+ v),bcosh

V2a

.1
z(u,v) = (asin T2

where a® + b% = 1.
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§3. Spacelike isoparematric surfaces in S? and ]H[“;'

In this section, we prove the Theorem 1.1 and Theorem 1.2 given in section 1. TLet
z: M — S% (or H}) C Ef (or E) be a spacelike surface of 3-dimensional de Sitter space St
(or anti-de Sitte space H3) with the metric given by

(3.1) g = 2¢"(du? + dv?) = 2¢¥|dz|? = ¥ (dz ® dz + dz ® dz),

where z = u + iv, dz = du + idv. Then from < z,z >= ¢ (for S$3, £ = 1; for H3, e = —1)
and

g =<dz,dz >= — < z,d%c >= e¥(dz®dz + dz ® dz)

we have
LT, > =< T3,T >=<T,,T, >=< Tz, Tz >=< I, Ty, >=10
(3.2) <Ly Tz5 > =< Ty Ty >=< L3,L355 >=< Ty, Lyz >=< T5,Tpz >=0
< ZyyTz >=—<2x,2.5 >=¢e".
We use
o 1,0 .0 o 1,0 .0

=2 "3 B %75 " alm e
Let A be the Laplacian of g, then

—w -
A =2e""0,05, k=—e Yw,s,

where x is the Gauss curvature of g.
We choose € € S3 (or H3) such that

L&y >=< €z >=<E,x>=0, <{E>=-].
Then we have
(3.3) Tez = WaTz + 06, 0= — < Ty € >
The mean curvture H of z is given by
(3.4) HE=eYz,z +ex.
If H # 0, we have
(3.5) o=—H e <, z,5>.

Let ® = pdz2. Then & is global defined and ®? is independent of the choise of £.
For the surface z we have the following structure equations:

(X2 = WeT, + @€

T,z = —ee’x + He"¢

(3.6) § Tzz = wzZz + @

&, =Hzx, + pe Vz;

\ &z =pe Yz, + Hz.
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@2

From z,;, = .,z we obtain the integrability conditions for the structure equations of z:

(3.7) Wz + e Y|p|? = —ee¥ + HZ%e¥
' Yz = Hzew
that is
. :Hze'w
(3.8) i A
—Kk+e p|*=H*—¢.

By (2.4) and (2.5) we have

1 .
(3.9) p=—ge (b1 = haa + 2ih1s),

where h;; is the second fundamental form of z.

If  : M — S3 (or H2) is a isoparametric surface, then by the definition we know that
the Gauss curvature x and the mean curvature H of z are constant. From (3.8) we know
that ¢z = 0 and e™2¥|p|? is constant. If ¢ = 0, the surface is totally umbilical. If p # 0,

from (3.8) we have

0 = A(loge™?*|¢|?) = A(—2w + log v + log @) = —2Aw.

Therefore we get

1
k=—e Yw,; = -§Aw = ).
The surface is flat and we can choose the coordinate z such that w = 0. In this case, (3.8)
becomes
5 = H =0
(3.10) (’0’; ;
lp|” = H” —e.

But @z = 0 and |p|® = constant yield that ¢ is constant. Then we have the following
structure equations for the surface x:

(T2 = @€
Trz = —ET + HE
(3.11) § Tzz = @&

gz = H-'L'z + pxz

\ gz‘: = @xz +Hxi)

where |¢|? = H? — £. By a transformation of z we can assume that @ =@ > 0. We solve
the equations (3.11) under the conditions ¢? = H? — ¢ and ¢ > 0. From ¢f = z,, = =55
we get T, = 0. Then the surface z can be written as

(3.12) z=f(u)+g(), f(u),g(v)eE] (or E).



6 HUILI LIU, GUOSONG ZHAO
From (3.11) and (3.12) we have

(H - @i)xuu — (H + ©)xyy = depm;
then
(H — @) f"(v) — 4epf(u) = a
(H + ¢)g" (v) + 4epg(v) = a,

where a is constant vector in E} (or E3).
By a translation in Ef (or Ei) we may assume that @ = 0. Then we obtain

et . dep
() = L f ()
(3.13) 1" _ “4590
9" (v) = H+(’0g(v)
©?=H?—¢.

(a) When e =1, (3.13) is

F(0) = =2 f(u)

3.14 ne . —4p
\3.14) g (v) = Tto
(H+¢)(H - ) =1.

g9(v)

Therefore

4 4
f(u) = c3sinh ( 7 i u) + ¢4 cosh ( ¢ u)

: [ 4p 4o
V) = ¢ sin vV | + ¢ COoS v,
9(v) = e ( H+90) “ ( H+90>

(3.15)

for H— ¢ >0 or

- H —
(3.16) : i
g(v) = c3 sinh ( I;—I—(pgo v) + c4 cosh ( P;;o(pv) :

for H — ¢ < 0. The surface is congruent to the surface (ii) of Theorem 1.1.
(b) When € = —1, (3.13) is

(3.17)
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Therefore

f(u) = ¢1 sinh ( (pél_('DHu) + c3cosh ( (pél_(’DHu>

4 4 .
g(v) = cg sinh ( " _:DHv) -+ ¢4 cosh (« / (,o—l-LpHU) ,

¢ — H > 0. The surface is congruent to the surface (ii) of Theorem 1.2.
This completes the proof of the Theorem 1.1 and Theorem 1.2.

(3.18)

§4. Timelike isoparematric surfaces in S3 and H3.

In this section, we prove the Theorem 1.3 and Theorem 1.4 given in section 1. Let
z:M — S% (or H}) C Ef (or E3) be a timelike surface of 3-dimensional de Sitter space S3
(or anti-de Sitte space H3) with the metric given by

(4.1) g=¢e"(du® dv+ dv® du).
Then from < z,z >=¢ (for S}, e = 1; for H, e = —1) and

g =<dz,dz >= — < z,d%z >= ¢¥(du ® dv + dv ® du)

we have
L Ly T > =< Ly, &= Ty, Ty >=< Ty, Ty >=< T, Toyqy >= 0
(4.2) L L By > =€ By, Byy, >=F Dy Boy P=C By, Ty > =% Ty, Byy >=0
L Lyy Ty > = — < Ly Ty >= v,

We use 3 5

Oy = =—, O0p,=—.

ou &,
Let A be the Laplacian of g, then
A = 2e""0,0,, k=—e YWy,

where & is the Gauss curvature of g.
We choose € € S2 (or H3) such that

<&y =< Exy >=<E,x>=0, < E>=1.
Then we have

(4‘3> { Tyu = WyTy + Qoéa p =< xuu;& >

mvv:wvxv+¢§a ¢=< .’l?m),f>.
The mean curvture H of z is given by

(4.4) H¢ = e Yy, +ex.
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If H # 0, we have

(4.5) { o=He™ < Tyy, Tyy >

-1 -
Y=H" e < Dyy, Ty > -

Let ® = pdu?, ¥ = dv?. Then ® and ¥ are global defined and ®2 and ¥? are independent
of the choise of &.

For the surface z we have the following structure equations:

( Tyy = Wylqy + &
Tyy = —€e¥x + He"¢
(4.6) § oy = Woly + P&

§u = —Hzy — pe ™z,
\ & = —ye "z, — Hz,.

From %,y = ZTyyy and Tyyy = Zyye We obtain the integrability conditions for the structure
equations of z:

Wyy — e Y1) = —ge? — H2e®
(4.7) @y = Hye"
Yy = Hye"
that is
v, = Hye"
(4.8) hu = Hye®

k+e Pop = H? +¢.

If z : M — S% (or H) is a isoparametric surface, then by the definition we know that
the Gauss curvature x and the mean curvature H of z are constant. From (4.8) we know

that ¢, = 0, ¥, = 0 and e ?Y 1) is constant. If H? — k 4+ & # 0, by (4.8) we know that
o # 0. Then from (4.8) we get

0= A(loge ¥ pyp) = A(—2w + log p + log ¥) = —2Aw.
Therefore we get
(4.9) k=—e YWy, = —=Aw = 0.

The surface is flat and we can choose the coordinate (u,v) such that w = 0. In this case,
(4.8) becomes

Po = Hu =0
(4.10) thy = H, =0

o) = H? +¢.
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But ¢, = 0, 9, = 0 and ¢y = constant yield that ¢ and v are constant. Then we have
the following structure equations for the surface z:

(( Tuw = P€
Tyy = —€x + HE
(4.11) § Tyy = Y€

gu - —qu — PIy
\ & = —Yz, — Hz,,

where 1) = H? + . We solve the equations (4.11) under the conditions @y > 0. From
(4.11) we have

Touun + 20H Lyy — €0’z = 0
(412) { wu 0 P

Tovwy + 20 HEyy — e’z = 0.
By a parametric transformation (u,v) — (1/|¢|u, /|9 |v) we obtain
Tyuuw + 2H (signp)zy, —ex =0
{ Tyyoy + 2H (signy)z,, — ex = 0,
where signp = 1, when ¢ > 0; signp = —1, when ¢ < 0. If p > 0, then (4.13) becomes:
Tyuuu + 2H (8igNY) Ty — ex =0
{ ZTyyvy + 2H (signy)zy, — ez = 0.

(4.13)

(4.14)

(a) When € = 1,
(4.15)  z(u,v) = c1sinA(u + v) + ¢z cos A(u + v) + ¢3 cosh pu(u — v) + ¢4 sinh p(u — v),
where ¢4, €9, c3, ¢4 € Ef are constant vectors and

M = H(signp) + VH?2 +1, u?= —H (signy) + VvV H? + 1.

The surface is congruent to the surface given by Theorem 1.3.
(b) When e = —1,

(4.16) x(u,v) = c1sinh A(u + v) + ¢2 cosh A(u — v) + ¢ cosh p(u + v) + ¢4 sinh p(u — v),
where ¢1, ¢z, ¢3, ¢4 € E3 are constant vectors and
A’ = —H(signp) + VH2 -1, p?= —H (signy) — VH? -1, —H (signp) > 0.
The surface is congruent to the surface (i) given by Theorem 1.4.
(4.17) z(u,v) = c1sin A(u + v) + ca cos A(u + v) + 3 sin p(u — v) + ¢4 cos p(u — v),
where ¢y, g, 3, ¢4 € E] are constant vectors and
A% = H(signyp) — VH? -1, p? = H(signyp) + VH?2 -1, H(signy) > 0.

The surface is congruent to the surface (ii) given by Theorem 1.4.
This completes the proof of the Theorem 1.3 and Theorem 1.4.
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