Zeitschr/7-657 ## TECHNISCHE UNIVERSITÄT BERLIN Tachnische Universität Berlin Mathematische Fachbibliothek Inv.Nr.: ,5'5720 # ISOPARAMETRIC SURFACES IN 3-DIMENSIONAL DE SITTER SPACE AND ANTI-DE SITTER SPACE Huili LIU Guosong ZHAO Preprint No. 657/1999 PREPRINT REIHE MATHEMATIK FACHBEREICH 3 Et Berlin Jiiothek # ISOPARAMETRIC SURFACES IN 3-DIMENSIONAL DE SITTER SPACE AND ANTI-DE SITTER SPACE Huili Liu¹⁾²⁾³⁾⁴⁾, Guosong Zhao¹⁾³⁾ ABSTRACT. A spacelike surface M in 3-dimensional de Sitter space \mathbb{S}^3_1 or 3-dimensional antide Sitter space \mathbb{H}^3_1 is called isoparametric, if M has constant principal curvatures. A timelike surface is called isoparametric, if its minimal polynomial of the shape operator is constant. In this paper, We determine the spacelike isoparametric surfaces and the timelike isoparametric surfaces in \mathbb{S}^3_1 and \mathbb{H}^3_1 . ### §1. Introduction. A hypersurface M of a complete simply-connected Riemannian manifold $\mathbb{R}^{n+1}(c)$ of constant curvature c is isoparametric if M has constant principal curvatures. There are many results about the isoparametric hypersurfaces in Riemannian space forms (cf. [CE], [CHEN], [N-R]). For the isoparametric hypersurfaces in the indefinite space forms, Nomizu [NO] derived the Cartan formula for spacelike isoparametric hypersurfaces in Lorentzian space forms. Hahn [HA] considered the general case of indefinite space forms of curvature c and obtained the Cartan-type formula. Magid [MA] studied Lorentzian hypersurfaces in the Minkowski space \mathbb{E}_1^n . He obtained a complete classification of isoparametric hypersurfaces in \mathbb{E}_1^n . In this paper, we consider the problem in 3-dimensional de Sitter space \mathbb{S}_1^3 and 3-dimensional anti-de Sitter space \mathbb{H}_1^3 . A spacelike surface M in 3-dimensional de Sitter space \mathbb{S}_1^3 or 3-dimensional anti-de Sitter space \mathbb{H}_1^3 is called isoparametric, if M has constant principal curvatures. A timelike surface M in 3-dimensional de Sitter space \mathbb{S}_1^3 or 3-dimensional anti-de Sitter space \mathbb{H}_1^3 is called isoparametric, if its minimal polynomial of the shape operator is constant. we will prove the following theorems. **Theorem 1.1.** Let $x: \mathbf{M} \to \mathbb{S}^3_1$ be a spacelike isoparametric surface, then, by a transformation in \mathbb{E}^4_1 , it can be written as the one of the following surfaces: (i) the totally umbilical surface; (ii) $x(u, v) = (a \sin(u), a \cos(u), b \sinh(v), b \cosh(v)), \quad a^2 - b^2 = 1.$ ¹⁹⁹¹ Mathematics Subject Classification. 53C50, 52C21, 53C40. Key words and phrases. isoparametric surface, de Sitter and anti-de Sitter space, principal curvature. ¹⁾Partially supported by DFG466-CHV-II3/127/0. ²⁾Partially supported by Technische Universität Berlin. ³⁾Partially supported by NSFC. ⁴⁾Partially supported by SRF for ROCS, SEM; the SRF of Liaoning and the Northeastern University. **Theorem 1.2.** Let $x : \mathbf{M} \to \mathbb{H}^3_1$ be a spacelike isoparametric surface, then, by a transformation in \mathbb{E}^4_2 , it can be written as the one of the following surfaces: - (i) the totally umbilical surface; - (ii) $x(u, v) = (a \sinh(u), b \sinh(v), a \cosh(u), b \cosh(v)), \quad a^2 + b^2 = 1.$ **Theorem 1.3.** Let $x: \mathbf{M} \to \mathbb{S}^3_1$ be a timelike isoparametric surface such that the mean curvature H and the Gauss curvature κ satisfy $H^2 - \kappa + 1 \neq 0$, then, by a transformation in \mathbb{E}^4_1 , it can be written as the following surface: $$x(u,v) = (a\sin\frac{1}{\sqrt{2}a}(u+v), a\cos\frac{1}{\sqrt{2}a}(u+v), b\cosh\frac{1}{\sqrt{2}b}(u-v), b\sinh\frac{1}{\sqrt{2}b}(u-v)),$$ where $a^2 + b^2 = 1$. **Theorem 1.4.** Let $x: \mathbf{M} \to \mathbf{H}^3$ be a timelike isoparametric surface such that the mean curvature H and the Gauss curvature κ satisfy $H^2 - \kappa - 1 > 0$, then, by a transformation in \mathbb{E}^4_2 , it can be written as the one of the following surfaces: (i) $$x(u,v) = (a \sinh \frac{1}{\sqrt{2}a}(u+v), b \cosh \frac{1}{\sqrt{2}b}(u-v), a \cosh \frac{1}{\sqrt{2}a}(u+v), b \sinh \frac{1}{\sqrt{2}b}(u-v)),$$ where $a^2 - b^2 = 1$. (ii) $$x(u,v) = (a\sin\frac{1}{\sqrt{2}a}(u+v), a\cos\frac{1}{\sqrt{2}a}(u+v), b\sin\frac{1}{\sqrt{2}b}(u-v), b\cos\frac{1}{\sqrt{2}b}(u-v)),$$ where $a^2 - b^2 = -1$. ### §2. Preliminaries. Let \mathbb{E}_q^m be the *m*-dimensional pseudo-Euclidean space with the natural basis $e_1,...,e_m,$ its metric < , > is given by (2.1) $$\langle x, y \rangle = \sum_{i=1}^{m-q} x_i y_i - \sum_{j=m-q+1}^m x_j y_j, \quad x, y \in \mathbb{E}_q^m,$$ where $x = (x_1, x_2, ..., x_m)$, $y = (y_1, y_2, ..., y_m)$. The *n*-dimensional de Sitter space \mathbb{S}_1^n and *n*-dimensional anti-de Sitter space \mathbb{H}_1^n are defined by (2.2) $$\mathbb{S}_1^n = (x \in \mathbb{E}_1^{n+1} : \langle x, x \rangle = 1),$$ $$\mathbb{H}_1^n = (x \in \mathbb{E}_2^{n+1} : \langle x, x \rangle = -1).$$ It is well known that \mathbb{S}_1^n and \mathbb{H}_1^n are the complete connected pseudo-Riemannian hypersurfaces with constant sectional curvature 1 and -1 in \mathbb{E}_1^{n+1} and \mathbb{E}_2^{n+1} , respectively ([O]). Let **N** be a pseudo-Riemannian manifold with the pseudo-Riemannian metric \bar{g} and **M** be a submanifold of **N**. If the pseudo-Riemannian metric \bar{g} of N induces a Riemannian metric g (respectively, a pseudo-Riemannian metric, a degenerate quadric form) on M, then M is called a spacelike (respectively, timelike, degenerate) submanifold. We denote by ∇ the covariant differentiation with respect to the indefinite Riemannian metric of \mathbb{E}^4_1 (or \mathbb{E}^4_2) and by $\overline{\nabla}$ and ∇ the covariant differentiations with respect to the induced metric of \mathbb{S}^3_1 (or \mathbb{H}^3_1) and \mathbf{M} , respectively. We denote by $\eta(x) = -\varepsilon x$, $(x \in \mathbb{S}^3_1, \varepsilon = 1, x \in \mathbb{H}^3_1, \varepsilon = -1)$, the normal vector field of \mathbb{S}^3_1 (or \mathbb{H}^3_1) in \mathbb{E}^4_1 (or \mathbb{E}^4_2); ξ , the normal vector field of \mathbf{M} in \mathbb{S}^3_1 (or \mathbb{H}^3_1). Then, considering that \mathbf{M} is locally embedded in \mathbb{S}^3_1 (or \mathbb{H}^3_1), we have the following Gauss's and Weingarten's formulas. (2.4) $$\begin{cases} \widetilde{\nabla}_X Y = \overline{\nabla}_X Y + \langle X, Y \rangle \eta \\ \overline{\nabla}_X Y = \nabla_X Y + h(X, Y) \xi \\ \overline{\nabla}_X \xi = -A(X), \end{cases}$$ where X and Y are tangent vector fields on \mathbf{M} , and A is a field of type (1,1) tensor (Weingarten operator) on \mathbf{M} corresponding to ξ , i.e., $$(2.5) < A(X), Y >= h(X, Y) < \xi, \xi > .$$ **Proposition 2.1.** Let $x: \mathbf{M} \to \mathbb{S}^3_1$ (or \mathbb{H}^3_1) be a timelike surface in \mathbb{S}^3_1 (or \mathbb{H}^3_1). Then the Weingarten operator A of x has real eigenvalues if and only if the mean curvature H and the Gauss curvature κ of x satisfying $H^2 - \kappa \geq 0$. **Proof.** Let $x : \mathbf{M} \to \mathbb{S}^3_1$ (or \mathbb{H}^3_1) be a timelike surface and $\{e_1, e_2\}$ be a local pseudo-orthonormal basis of TM such that the metric of x is given by $$\mathrm{d}s^2 = e^w(\mathrm{d}u^2 - \mathrm{d}v^2).$$ From (2.4) we have $$A(e_1) = h_{11}e_1 - h_{12}e_2$$ $$A(e_2) = h_{21}e_1 - h_{22}e_2,$$ where $h_{ij} = h(e_i, e_j)$. Thus A has real eigenvalues if and only if $$(h_{11} - h_{22})^2 - 4(h_{12}^2 - h_{11}h_{22}) = 4(H^2 - \kappa) \ge 0.$$ It is easy to see by Theorem 1.3 and Proposition 2.1: **Corollary 2.1.** Let $x: \mathbf{M} \to \mathbb{S}^3_1$ be a timelike isoparametric surface such that its Weingarten operator has real eigenvalues, then, by a transformation in \mathbb{E}^4_1 , it can be written as the following surface: $$x(u,v) = (a\sin\frac{1}{\sqrt{2}a}(u+v), a\cos\frac{1}{\sqrt{2}a}(u+v), b\cosh\frac{1}{\sqrt{2}b}(u-v), b\sinh\frac{1}{\sqrt{2}b}(u-v)),$$ where $a^2 + b^2 = 1$. ## §3. Spacelike isoparematric surfaces in \mathbb{S}^3_1 and \mathbb{H}^3_1 . In this section, we prove the Theorem 1.1 and Theorem 1.2 given in section 1. Let $x: \mathbb{M} \to \mathbb{S}^3_1$ (or \mathbb{H}^3_1) $\subset \mathbb{E}^4_1$ (or \mathbb{E}^4_2) be a spacelike surface of 3-dimensional de Sitter space \mathbb{S}^3_1 (or anti-de Sitte space \mathbb{H}^3_1) with the metric given by $$(3.1) g = 2e^w(\mathrm{d}u^2 + \mathrm{d}v^2) = 2e^w(\mathrm{d}z)^2 = e^w(\mathrm{d}z \otimes \mathrm{d}\bar{z} + \mathrm{d}\bar{z} \otimes \mathrm{d}z),$$ where z = u + iv, dz = du + idv. Then from $\langle x, x \rangle = \varepsilon$ (for \mathbb{S}^3_1 , $\varepsilon = 1$; for \mathbb{H}^3_1 , $\varepsilon = -1$) and $$g = \langle dx, dx \rangle = -\langle x, d^2x \rangle = e^w (dz \otimes d\bar{z} + d\bar{z} \otimes dz)$$ we have (3.2) $$\begin{cases} \langle x_z, x \rangle = \langle x_{\bar{z}}, x \rangle = \langle x_z, x_z \rangle = \langle x_{\bar{z}}, x_{\bar{z}} \rangle = \langle x, x_{zz} \rangle = 0 \\ \langle x, x_{\bar{z}\bar{z}} \rangle = \langle x_z, x_{zz} \rangle = \langle x_{\bar{z}}, x_{\bar{z}\bar{z}} \rangle = \langle x_z, x_{z\bar{z}} \rangle = \langle x_{\bar{z}}, x_{z\bar{z}} \rangle = 0 \\ \langle x_z, x_{\bar{z}} \rangle = -\langle x, x_{z\bar{z}} \rangle = e^w. \end{cases}$$ We use $$\partial_z = \frac{\partial}{\partial z} = \frac{1}{2} (\frac{\partial}{\partial u} - i \frac{\partial}{\partial v}), \quad \partial_{\bar{z}} = \frac{\partial}{\partial_{\bar{z}}} = \frac{1}{2} (\frac{\partial}{\partial u} + i \frac{\partial}{\partial v}).$$ Let Δ be the Laplacian of q, then $$\Delta = 2e^{-w}\partial_z\partial_{\bar{z}}, \qquad \kappa = -e^{-w}w_{z\bar{z}},$$ where κ is the Gauss curvature of g. We choose $\xi \in \mathbb{S}_1^3$ (or \mathbb{H}_1^3) such that $$\langle \xi, x_z \rangle = \langle \xi, x_{\bar{z}} \rangle = \langle \xi, x \rangle = 0. \quad \langle \xi, \xi \rangle = -1.$$ Then we have $$(3.3) x_{zz} = w_z x_z + \varphi \xi, \quad \varphi = -\langle x_{zz}, \xi \rangle.$$ The mean curvture H of x is given by $$(3.4) H\xi = e^{-w} x_{z\bar{z}} + \varepsilon x.$$ If $H \neq 0$, we have (3.5) $$\varphi = -H^{-1}e^{-w} < x_{zz}, x_{z\bar{z}} > .$$ Let $\Phi = \varphi dz^2$. Then Φ is global defined and Φ^2 is independent of the choise of ξ . For the surface x we have the following structure equations: (3.6) $$\begin{cases} x_{zz} = w_z x_z + \varphi \xi \\ x_{z\bar{z}} = -\varepsilon e^w x + H e^w \xi \\ x_{\bar{z}\bar{z}} = w_{\bar{z}} x_{\bar{z}} + \bar{\varphi} \xi \\ \xi_z = H x_z + \varphi e^{-w} x_{\bar{z}} \\ \xi_{\bar{z}} = \bar{\varphi} e^{-w} x_z + H x_{\bar{z}}. \end{cases}$$ From $x_{z\bar{z}z} = x_{zz\bar{z}}$ we obtain the integrability conditions for the structure equations of x: (3.7) $$\begin{cases} w_{z\bar{z}} + e^{-w} |\varphi|^2 = -\varepsilon e^w + H^2 e^w \\ \varphi_{\bar{z}} = H_z e^w \end{cases}$$ that is (3.8) $$\begin{cases} \varphi_{\bar{z}} = H_z e^w \\ -\kappa + e^{-2w} |\varphi|^2 = H^2 - \varepsilon. \end{cases}$$ By (2.4) and (2.5) we have (3.9) $$\varphi = -\frac{1}{8}e^{-w}(h_{11} - h_{22} + 2ih_{12}),$$ where h_{ij} is the second fundamental form of x. If $x: \mathbf{M} \to \mathbb{S}^3_1$ (or \mathbb{H}^3_1) is a isoparametric surface, then by the definition we know that the Gauss curvature κ and the mean curvature H of x are constant. From (3.8) we know that $\varphi_{\bar{z}} = 0$ and $e^{-2w}|\varphi|^2$ is constant. If $\varphi \equiv 0$, the surface is totally umbilical. If $\varphi \neq 0$, from (3.8) we have $$0 = \Delta(\log e^{-2w}|\varphi|^2) = \Delta(-2w + \log \varphi + \log \bar{\varphi}) = -2\Delta w.$$ Therefore we get $$\kappa = -e^{-w}w_{z\bar{z}} = -\frac{1}{2}\Delta w = 0.$$ The surface is flat and we can choose the coordinate z such that $w \equiv 0$. In this case, (3.8) becomes (3.10) $$\begin{cases} \varphi_{\bar{z}} = H_z = 0 \\ |\varphi|^2 = H^2 - \varepsilon. \end{cases}$$ But $\varphi_{\bar{z}} = 0$ and $|\varphi|^2 = constant$ yield that φ is constant. Then we have the following structure equations for the surface x: (3.11) $$\begin{cases} x_{zz} = \varphi \xi \\ x_{z\bar{z}} = -\varepsilon x + H \xi \\ x_{\bar{z}\bar{z}} = \bar{\varphi} \xi \\ \xi_z = H x_z + \varphi x_{\bar{z}} \\ \xi_{\bar{z}} = \bar{\varphi} x_z + H x_{\bar{z}}, \end{cases}$$ where $|\varphi|^2 = H^2 - \varepsilon$. By a transformation of z we can assume that $\varphi = \bar{\varphi} > 0$. We solve the equations (3.11) under the conditions $\varphi^2 = H^2 - \varepsilon$ and $\varphi > 0$. From $\varphi \xi = x_{zz} = x_{\bar{z}\bar{z}}$ we get $x_{uv} = 0$. Then the surface x can be written as (3.12) $$x = f(u) + g(v), \quad f(u), g(v) \in \mathbb{E}_1^4 \text{ (or } \mathbb{E}_2^4).$$ From (3.11) and (3.12) we have $$(H - \varphi)x_{uu} - (H + \varphi)x_{vv} = 4\varepsilon\varphi x;$$ then $$\begin{cases} (H - \varphi)f''(u) - 4\varepsilon\varphi f(u) = a\\ (H + \varphi)g''(v) + 4\varepsilon\varphi g(v) = a, \end{cases}$$ where a is constant vector in \mathbb{E}_1^4 (or \mathbb{E}_2^4). By a translation in \mathbb{E}_1^4 (or \mathbb{E}_2^4) we may assume that a=0. Then we obtain (3.13) $$\begin{cases} f''(u) = \frac{4\varepsilon\varphi}{H - \varphi}f(u) \\ g''(v) = \frac{-4\varepsilon\varphi}{H + \varphi}g(v) \\ \varphi^2 = H^2 - \varepsilon. \end{cases}$$ (a) When $\varepsilon = 1$, (3.13) is (3.14) $$\begin{cases} f''(u) = \frac{4\varphi}{H - \varphi} f(u) \\ g''(v) = \frac{-4\varphi}{H + \varphi} g(v) \\ (H + \varphi)(H - \varphi) = 1. \end{cases}$$ Therefore (3.15) $$\begin{cases} f(u) = c_3 \sinh\left(\sqrt{\frac{4\varphi}{H - \varphi}}u\right) + c_4 \cosh\left(\sqrt{\frac{4\varphi}{H - \varphi}}u\right) \\ g(v) = c_1 \sin\left(\sqrt{\frac{4\varphi}{H + \varphi}}v\right) + c_2 \cos\left(\sqrt{\frac{4\varphi}{H + \varphi}}v\right), \end{cases}$$ for $H - \varphi > 0$ or (3.16) $$\begin{cases} f(u) = c_1 \sin\left(\sqrt{\frac{-4\varphi}{H - \varphi}}u\right) + c_2 \cos\left(\sqrt{\frac{-4\varphi}{H - \varphi}}u\right) \\ g(v) = c_3 \sinh\left(\sqrt{\frac{-4\varphi}{H + \varphi}}v\right) + c_4 \cosh\left(\sqrt{\frac{-4\varphi}{H + \varphi}}v\right), \end{cases}$$ for $H - \varphi < 0$. The surface is congruent to the surface (ii) of Theorem 1.1. (b) When $\varepsilon = -1$, (3.13) is (3.17) $$\begin{cases} f''(u) = \frac{4\varphi}{\varphi - H} f(u) \\ g''(v) = \frac{4\varphi}{\varphi + H} g(v) \\ \varphi^2 = H^2 + 1. \end{cases}$$ Therefore (3.18) $$\begin{cases} f(u) = c_1 \sinh\left(\sqrt{\frac{4\varphi}{\varphi - H}}u\right) + c_3 \cosh\left(\sqrt{\frac{4\varphi}{\varphi - H}}u\right) \\ g(v) = c_2 \sinh\left(\sqrt{\frac{4\varphi}{\varphi + H}}v\right) + c_4 \cosh\left(\sqrt{\frac{4\varphi}{\varphi + H}}v\right), \end{cases}$$ $\varphi - H > 0$. The surface is congruent to the surface (ii) of Theorem 1.2. This completes the proof of the Theorem 1.1 and Theorem 1.2. ## §4. Timelike isoparematric surfaces in \mathbb{S}^3_1 and \mathbb{H}^3_1 . In this section, we prove the Theorem 1.3 and Theorem 1.4 given in section 1. Let $x: \mathbf{M} \to \mathbb{S}^3_1$ (or \mathbb{H}^3_1) $\subset \mathbb{E}^4_1$ (or \mathbb{E}^4_2) be a timelike surface of 3-dimensional de Sitter space \mathbb{S}^3_1 (or anti-de Sitte space \mathbb{H}^3_1) with the metric given by $$(4.1) g = e^{w} (du \otimes dv + dv \otimes du).$$ Then from $\langle x, x \rangle = \varepsilon$ (for \mathbb{S}_1^3 , $\varepsilon = 1$; for \mathbb{H}_1^3 , $\varepsilon = -1$) and $$g = \langle dx, dx \rangle = -\langle x, d^2x \rangle = e^w (du \otimes dv + dv \otimes du)$$ we have $$\begin{cases} \langle x_u, x \rangle = \langle x_v, x \rangle = \langle x_u, x_u \rangle = \langle x_v, x_v \rangle = \langle x, x_{uu} \rangle = 0 \\ \langle x, x_{vv} \rangle = \langle x_u, x_{uu} \rangle = \langle x_v, x_{vv} \rangle = \langle x_u, x_{uv} \rangle = \langle x_v, x_{uv} \rangle = 0 \\ \langle x_u, x_v \rangle = -\langle x, x_{uv} \rangle = e^w. \end{cases}$$ We use $$\partial_u = \frac{\partial}{\partial u}, \quad \partial_v = \frac{\partial}{\partial v}.$$ Let Δ be the Laplacian of g, then $$\Delta = 2e^{-w}\partial_u\partial_v, \qquad \kappa = -e^{-w}w_{uv}.$$ where κ is the Gauss curvature of g. We choose $\xi \in \mathbb{S}_1^3$ (or \mathbb{H}_1^3) such that $$<\xi, x_u> = <\xi, x_v> = <\xi, x> = 0, <\xi, \xi> = 1.$$ Then we have (4.3) $$\begin{cases} x_{uu} = w_u x_u + \varphi \xi, & \varphi = \langle x_{uu}, \xi \rangle \\ x_{vv} = w_v x_v + \psi \xi, & \psi = \langle x_{vv}, \xi \rangle. \end{cases}$$ The mean curvture H of x is given by If $H \neq 0$, we have (4.5) $$\begin{cases} \varphi = H^{-1}e^{-w} < x_{uu}, x_{uv} > \\ \psi = H^{-1}e^{-w} < x_{vv}, x_{uv} > . \end{cases}$$ Let $\Phi = \varphi du^2$, $\Psi = \psi dv^2$. Then Φ and Ψ are global defined and Φ^2 and Ψ^2 are independent of the choise of ξ . For the surface x we have the following structure equations: (4.6) $$\begin{cases} x_{uu} = w_u x_u + \varphi \xi \\ x_{uv} = -\varepsilon e^w x + H e^w \xi \\ x_{vv} = w_v x_v + \psi \xi \\ \xi_u = -H x_u - \varphi e^{-w} x_v \\ \xi_v = -\psi e^{-w} x_u - H x_v. \end{cases}$$ From $x_{uvu} = x_{uuv}$ and $x_{uvv} = x_{vvu}$ we obtain the integrability conditions for the structure equations of x: (4.7) $$\begin{cases} w_{uv} - e^{-w} \varphi \psi = -\varepsilon e^w - H^2 e^w \\ \varphi_v = H_u e^w \\ \psi_u = H_v e^w \end{cases}$$ that is (4.8) $$\begin{cases} \varphi_v = H_u e^w \\ \psi_u = H_v e^w \\ \kappa + e^{-2w} \varphi \psi = H^2 + \varepsilon. \end{cases}$$ If $x: \mathbf{M} \to \mathbb{S}^3_1$ (or \mathbb{H}^3_1) is a isoparametric surface, then by the definition we know that the Gauss curvature κ and the mean curvature H of x are constant. From (4.8) we know that $\varphi_v = 0$, $\psi_u = 0$ and $e^{-2w}\varphi\psi$ is constant. If $H^2 - \kappa + \varepsilon \neq 0$, by (4.8) we know that $\varphi\psi \neq 0$. Then from (4.8) we get $$0 = \Delta(\log e^{-2w}\varphi\psi) = \Delta(-2w + \log \varphi + \log \psi) = -2\Delta w.$$ Therefore we get (4.9) $$\kappa = -e^{-w}w_{uv} = -\frac{1}{2}\Delta w = 0.$$ The surface is flat and we can choose the coordinate (u, v) such that $w \equiv 0$. In this case, (4.8) becomes (4.10) $$\begin{cases} \varphi_v = H_u = 0 \\ \psi_u = H_v = 0 \\ \varphi \psi = H^2 + \varepsilon. \end{cases}$$ But $\varphi_v = 0$, $\psi_u = 0$ and $\varphi \psi = constant$ yield that φ and ψ are constant. Then we have the following structure equations for the surface x: (4.11) $$\begin{cases} x_{uu} = \varphi \xi \\ x_{uv} = -\varepsilon x + H \xi \\ x_{vv} = \psi \xi \\ \xi_u = -H x_u - \varphi x_v \\ \xi_v = -\psi x_u - H x_v, \end{cases}$$ where $\varphi\psi = H^2 + \varepsilon$. We solve the equations (4.11) under the conditions $\varphi\psi > 0$. From (4.11) we have (4.12) $$\begin{cases} x_{uuu} + 2\varphi H x_{uu} - \varepsilon \varphi^2 x = 0 \\ x_{vvvv} + 2\psi H x_{vv} - \varepsilon \psi^2 x = 0. \end{cases}$$ By a parametric transformation $(u,v) \to (\sqrt{|\varphi|}u,\sqrt{|\psi|}v)$ we obtain (4.13) $$\begin{cases} x_{uuuu} + 2H(\operatorname{sign}\varphi)x_{uu} - \varepsilon x = 0 \\ x_{vvvv} + 2H(\operatorname{sign}\psi)x_{vv} - \varepsilon x = 0, \end{cases}$$ where $sign\varphi = 1$, when $\varphi > 0$; $sign\varphi = -1$, when $\varphi < 0$. If $\varphi \psi > 0$, then (4.13) becomes: (4.14) $$\begin{cases} x_{uuuu} + 2H(\operatorname{sign}\varphi)x_{uu} - \varepsilon x = 0 \\ x_{vvvv} + 2H(\operatorname{sign}\varphi)x_{vv} - \varepsilon x = 0. \end{cases}$$ (a) When $\varepsilon = 1$, (4.15) $x(u,v) = c_1 \sin \lambda(u+v) + c_2 \cos \lambda(u+v) + c_3 \cosh \mu(u-v) + c_4 \sinh \mu(u-v),$ where $c_1, c_2, c_3, c_4 \in \mathbb{E}_1^4$ are constant vectors and $$\lambda^2 = H(\operatorname{sign}\varphi) + \sqrt{H^2 + 1}, \quad \mu^2 = -H(\operatorname{sign}\varphi) + \sqrt{H^2 + 1}.$$ The surface is congruent to the surface given by Theorem 1.3. (b) When $\varepsilon = -1$, (4.16) $x(u,v) = c_1 \sinh \lambda(u+v) + c_2 \cosh \lambda(u-v) + c_3 \cosh \mu(u+v) + c_4 \sinh \mu(u-v)$, where $c_1, c_2, c_3, c_4 \in \mathbb{E}_2^4$ are constant vectors and $$\lambda^2 = -H(\operatorname{sign}\varphi) + \sqrt{H^2 - 1}, \quad \mu^2 = -H(\operatorname{sign}\varphi) - \sqrt{H^2 - 1}, \quad -H(\operatorname{sign}\varphi) > 0.$$ The surface is congruent to the surface (i) given by Theorem 1.4. (4.17) $x(u,v) = c_1 \sin \lambda(u+v) + c_2 \cos \lambda(u+v) + c_3 \sin \mu(u-v) + c_4 \cos \mu(u-v),$ where $c_1, c_2, c_3, c_4 \in \mathbb{E}_2^4$ are constant vectors and $$\lambda^2 = H(\operatorname{sign}\varphi) - \sqrt{H^2 - 1}, \quad \mu^2 = H(\operatorname{sign}\varphi) + \sqrt{H^2 - 1}, \quad H(\operatorname{sign}\varphi) > 0.$$ The surface is congruent to the surface (ii) given by Theorem 1.4. This completes the proof of the Theorem 1.3 and Theorem 1.4. **Acknowledgements.** We would like to thank Professor U. Simon for his hospitality during our research stay at the TU Berlin. #### REFERENCES - [CE] T. Cecil,, Lie Sphere Geometry: with Applications to Submanifolds, New York, Springer, 1992. - [CHEN] B. Y. Chen,, Riemannian Submanifolds, Handbook of Differential Geometry, North Holland, Volume 1, 1999. - [HA] J. Hahn, Isoparametric hypersurfaces in the Pseudo-Riemannian space forms, Math. Z. 187 (1984), 195-208. - [MA] M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), 165-197. - [N-R] R. Niebergall and P. J. Ryan, *Isoparametric hypersurfaces-The affine case*, Geometry and Topology of Submanifolds V, World Scientific (1993), 201-214. - [NO] K. Nomizu, On isoparametric hypersurfaces in the Lorentzian space forms, Japan J. Math. 7 (1981), 217-226. - [O] B. O'Niell, Semi-Riemannian Geometry, Academic Press, Orland, 1983. #### Huili Liu: Department of Mathematics, Northeastern University, Shenyang 110006, P. R. China E-mail address: liuhl@ramm.neu.edu.cn #### Guosong Zhao: Department of Mathematics, Sichuan University, Chengdu 610064, P. R. China E-mail address: gszhao@scu.edu.cn