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ABSTRACT. A spacelike surface M in 3-dimensional de Sitter space 5? or 3-dimensional anti- 
de Sitter space HE is called isoparametric, if M has constant principal curvatures. A timelike 
surface is called isoparametric, if its minimal polynomial of the shape operator is constant. In 
this paper, We determine the spacelike isoparametric surfaces and the timelike isoparametric 
surfaces in S? and H8. 

$1. Introduction. 

A hypersurface M of a complete simply-connected Riemannian manifold R"t1(c) of 
constant curvature c is isoparametric if M has constant principal curvatures. There are 
many results about the isoparametric hypersurfaces in Riemannian space forms (cf. [CE], 
[CHEN], [N-R]). For the isoparametric hypersurfaces in the indefinite space forms, Nomizu 
[NO] derived the Cartan formula for spacelike isoparametric hypersurfaces in Lorentzian 
space forms. Hahn [HA] considered the general case of indefinite space forms of curvature 
c and obtained the Cartan-type formula. Magid [MA] studied Lorentzian hypersurfaces 
in the Minkowski space E?. He obtained a complete classification of isoparametric hyper- 
surfaces in E?. In this paper, we consider the problem in 3-dimensional de Sitter space 
S? and 3-dimensional anti-de Sitter space H?. A spacelike surface M in 3-dimensional de 
Sitter space S? or 3-dimensional anti-de Sitter space H} is called isoparametric, if M has 
constant principal curvatures. A timelike surface M in 3-dimensional de Sitter space S? or 
3-dimensional anti-de Sitter space H? is called isoparametric, if its minimal polynomial of 
the shape operator is constant. we will prove the following theorems. 

Theorem 1.1. Let x: M — S? be a spacelike isoparametric surface, then, by a transfor- 
mation in E;, it can be written as the one of the following surfaces: 

(i) the totally umbilical surface; 
(ii) z(u,v) = (asin(u), acos(u), bsinh(v),bcosh(v)), a? —b? = 1. 
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Theorem 1.2. Let c : M — Hi be a spacelike isoparametric surface, then, by a transfor- 
mation in Es, it can be written as the one of the following surfaces: 

(i) the totally umbilical surface; 
(ii) z(u,v) = (asinh(u), bsinh(v), acosh(u),bcosh(v)), a? + 6? = 1. 

Theorem 1.3. Let « : M — S} be a timelike isoparametric surface such that the mean 
curvature H and the Gauss curvature « satisfy H? —-K+1#40, then, by a transformation 
in Et, tt can be written as the following surface: 

1 1 1 1 
Fa (u+v),acos Fiat v), Bosh Te (u — v), bsinh Jan — v)),   z(u,v) = (asin 

where a? + 0? = 1. 

Theorem 1.4. Let: M - H® be a timelike isoparametric surface such that the mean 
curvature H and the Gauss curvature « satisfy H* —«K—1> 0, then, by a transformation 
in ES, it can be written as the one of the following surfaces: 

1 1 1 1 
i u,v) = (asinh —=(u-+t v), bcosh ——(u — v),a cosh ——(u+v), bsinh ——(u— v)), () #(u2) = (asinh T-(u + v), boosh T (u— 9), acosh = (u-+ v),bsinh (uv) 

where a? — b? = 1. 

1 1 1 1 
u+v),acos —=-(u-+ v), bsin ——(u — v), bcos ——-(u — v)), Jaq” +?) 0098 Fee (4+ 0), Bsn Tae (u— v)obeos Fe (u— 0) 

  (ii) a(u,v) = (asin 

where a* — 6? = —1. 

§2. Preliminaries. 

Let Ky” be the m-dimensional pseudo-Euclidean space with the natural basis €1,..., € 
its metric < , > is given by 

m3) 

m—q . m 

(2.1) <2,y >= Liyi — S- Ljyj, tT, y EE, 
i=1 j=m—qt+l 

where © = (11, 22,-..,Lm), Y = (Y1,Y2) ++) Ym). The n-dimensional de Sitter space S? and 
n-dimensional anti-de Sitter space Hf’ are defined by 

(2.2) t= (2 CET! :< 2,2 >=1), 

(2.3) HY = (2 € EST? :<.a4,2 >= —1). 

It is well known that S? and Hi} are the complete connected pseudo-Riemannian hypersur- 

faces with constant sectional curvature 1 and -1 in Eft! and E%*"', respectively ({O]). 
Let N be a pseudo-Riemannian manifold with the pseudo-Riemannian metric g and M be 

a submanifold of N. If the pseudo-Riemannian metric 9 of N induces a Riemannian metric
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g (respectively, a pseudo-Riemannian metric, a degenerate quadric form) on M, then M is 

called a spacelike (respectively, timelike, degenerate) submanifold. 

We denote by V the covariant differentiation with respect to the indefinite Riemannian 

metric of E{ (or E3) and by V and V the covariant differentiations with respect to the 
induced metric of S? (or H?) and M, respectively. We denote by n(x) = —ez, (x € S3, 

e=1,  € Hj, « = -1), the normal vector field of S? (or H?) in E} (or E$); €, the normal 
vector field of M in S} (or Hf). Then, considering that M is locally embedded in S? (or 

H}), we have the following Gauss’s and Weingarten’s formulas. 

VxY =VxY+<X,Y>n 

(2.4) VxY =VxY +A(X, VE 

Vx = —A(X), 

where X and Y are tangent vector fields on M, and A is a field of type (1,1) tensor 

(Weingarten operator) on M corresponding to €, i.e., 

(2.5) < A(X), Y >= A(X,Y) <€,E>. 

Proposition 2.1. Let x : M — S# (or H}) be a timelike surface in S? (or H?). Then the 
Weingarten operator A of x has real eigenvalues if and only if the mean curvature H and 
the Gauss curvature k of x satisfying H* —k > 0. 
Proof. Let « : M — S} (or H}) be a timelike surface and {e1,e2} be a local pseudo- 
orthonormal basis of TM such that the metric of x is given by 

ds* =e” (du? — dv’). 

From (2.4) we have 

A(é1) = hyye1 — hizee 

A(e2) = haie1 — hazea, 

where h;; = h(e;,e;). Thus A has real eigenvalues if and only if 

(hit —_ hoo)? —_ 4(h?, _— hizh22) = 4(H? —_ kK) = 0. 

O 

It is easy to see by Theorem 1.3 and Proposition 2.1: 

Corollary 2.1. Let x: M — S? be a timelike isoparametric surface such that its Wein- 
garten operator has real eigenvalues, then, by a transformation in E7, it can be written as 
the following surface: 

1 iat, = Ta — v), bsinh ——(u —v)), / 2b 

1 
z(u,v) = (asin ks + v),acos —=—(u+ v), bcosh 

/ 2a /2a 

where a* + b? = 1.
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83. Spacelike isoparematric surfaces in S? and Hi. 

In this section, we prove the Theorem 1.1 and Theorem 1.2 given in section 1. Let 
zt: M — S} (or H}) C Ef (or E$) be a spacelike surface of 3-dimensional de Sitter space S¥ 
(or anti-de Sitte space H?) with the metric given by 

(3.1) g = 2e” (du? + du”) = 2e”|dz|? = e” (dz @dzZ+ dz @ dz), 

where z= u+ iv, dz = du+idv. Then from < 2,5 >= e (for S?3, ¢ = 1; for HS, e = —1) 
and 

g =< da, dx >= — < 2,d*z >= e’ (dz @ dz+ dz @ dz) 

we have 

<2z,0 > =< 03,0 >H=< Lz,0z >=< z,Lz >=< L,2zz >= 0 

(3.2) <2, Lez > SS Uz, 0 zz P< Lz, Lgz DH < Lz, 023 >H< Lz,L zz >= O 

<%z,03 >= —-— <2,20.3 >=e”. 

We use 
O L O _O 8 O L O 4 i O 

as Sees met eal ames Fm g= = -(—+i—). 
"Oz 2'du Av” ~* 7 2 O0u dv 

Let A be the Laplacian of g, then 

A = 2e° "0205, k= —e "Wes, 

where « is the Gauss curvature of g. 

We choose € € S} (or H#) such that 

<€,%z >=< £,%2 >=<f,2>=0, <&,€ >= —1. 

Then we have 

(3.3) Lez =W2zlzt+ pl, p=—<Bzz,€>. 

The mean curvture H of z is given by 

(3.4) HE =e "225 + EL. 

If H #0, we have 

(3.5) Oo p= —H'e™” < Gez,02z >. 

Let ® = ydz?. Then @ is global defined and &? is independent of the choise of €. 

For the surface x we have the following structure equations: 

Leg = WzLz + v& 

Lez = —ce" n+ Hervé 

(3.6) Lez = Welz + YE 

€, = Hx,+ ye “xz 

&z = ge “xr, + Hz;.
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From @zzz = £zzz we obtain the integrability conditions for the structure equations of x: 

(3.7) wes +e |p|? = ce” + H?e” 
. z= He” 

that is 

(3 8) Pz = He” 

—~kK+e *" |p|? = H? -e. 

By (2.4) and (2.5) we have 

1, 
(3.9) p= ~ge o(hu an hoe + 2ihy2), 

where h,; is the second fundamental form of z. 

If ¢ : M — Sj (or H}) is a isoparametric surface, then by the definition we know that 
the Gauss curvature « and the mean curvature H of x are constant. From (3.8) we know 
that yz = 0 and e~?”|y|? is constant. If y = 0, the surface is totally umbilical. If y 4 0, 
from (3.8) we have 

0 = A(loge~*” |p|?) = A(—2w + log y + log) = —2Aw. 

Therefore we get 
1 

K=-—e "wiz = 5 Au = (), 

The surface is flat and we can choose the coordinate z such that w = 0. In this case, (3.8) 
becomes 

(3.10) = Be = 0 
lel? = H? -«. 

But yz = 0 and |y|? = constant yield that ~ is constant. Then we have the following 
structure equations for the surface x: 

Lez = € 

Leg = —Ex + HE 

(3.11) Lez = PF 

Es = He, + PLZ 

€z = pt, + Herz, 

where |y|? = H? — e. By a transformation of z we can assume that y= p> 0. We solve 
the equations (3.11) under the conditions y? = H? —e and y > 0. From py = 422 = “ez 
we get Fy, = 0. Then the surface x can be written as 

(3.12) x= f(u)+g(v), f(u),g(v) € FE} (or Ep).
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From (3.11) and (3.12) we have 

(H — 9)fuu — (H+ 9) toy = Sepa; 

then 

(H — vp) f"(u) — dey f(u) =a 

(H+ y)g"'(v) + 4depg(v) = a, 

where a is constant vector in E{ (or E$). 
By a translation in E} (or Ej) we may assume that a = 0. Then we obtain 

  

  

elt _ Ae 
f"(u) = Ag) 

(3.13) 7, — AEP 
g (v) = Hag” 

yp”? = H? ~e. 

(a) When ¢ = 1, (3.13) is 

f"(u) = 2 p(w) 

  

  

  

  

HI — 
(3.14) W(,) — 749 

9 U)= 5 re 

(H + y)(H — y) =1. 

Therefore 

4 4 
f(u) = cg sinh ( = u) + c4 cosh ( r u) 

H—p H-yp (3.15) 

  

  

for H-w>Oor 

  
  

    

_ H — 
(3.16) ; 

g(v) = ¢3 sinh ( 7) + c4 cosh ( | ; 

for H — » < 0. The surface is congruent to the surface (ii) of Theorem 1.1. 
(b) When ¢ = —1, (8.13) is 

  f"(u) = 2 fF (u) yp-—fH 

4 (3.17) Y g(v) 

yp? = B41, 

  

WW _
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Therefore 

    me al 4p 4ip f(u) = cy sinh (\/- = 7 + c3 cosh ( D =) 

+ h 4p C4 COS ot a 

y — H > 0. The surface is congruent to the surface (ii) of Theorem 1.2. 
This completes the proof of the Theorem 1.1 and Theorem 1.2. 

(3.18) 
    a(v) = casinh (f=? 

§4. Timelike isoparematric surfaces in S? and H3. 

In this section, we prove the Theorem 1.3 and Theorem 1.4 given in section 1. Let 

a: M - S? (or H?) Cc Ef (or E$) be a timelike surface of 3-dimensional de Sitter space S3 
(or anti-de Sitte space H?) with the metric given by 

(4.1) g =e" (du ® duv+ dv @ du). 

Then from < 2,2 >=e (for S?, « = 1; for H3, « = —1) and 

g =< dz, dr >= — < z,d*z >= e“” (du @ du + dv @ du) 

we have 

< fy, > =< Ly, UL >H< Ly, Ly > =< Ly, Ly >=< L,0yy >= 0 

(4.2) <2, 2y0 > == Cy Ban >< Lay Soy P< My, Day > HK Fy. Fay >= 0 

< Ly, Ly > = — <2L,Lyy >=e”™. 

We use 3 3 

Oon= —, AW==—. 
Ou Oy 

Let A be the Laplacian of g, then 

A — 2e° Oy»; K = Ee Way, 

where « is the Gauss curvature of g. 

We choose € € S? (or H) such that 

< €,t, >=< fa, >=< fe >=0, <é,f>=—1. 

Then we have 

(4.3) ‘ = WyTy + v6, p=< Cans € > 

Lyy = Wyly + WE, pa< Lyv,§ >. 

The mean curvture H of x is given by 

(4.4) HE =e “tay tex.
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If H £0, we have 

-1— 
(4.5) p= He OS Begs Be 

. 1 = . 

w =H ev < Lyy, luv > - 

Let ® = ydu?, © = Wdv2. Then © and W are global defined and ®? and W? are independent 
of the choise of €. 

For the surface x we have the following structure equations: 

Luu = Wuly + ve 

Lyy = —Ee"n + Hevé 

(4.6) Lyy = WyLy + We 

Ey = —H2ry,—- pe "Ly 

Ey = —We “a, — Hx,. 

FYOM Lyyu = Luuy aNd Lyyy = Lyyy we obtain the integrability conditions for the structure 

equations of z: 

Wuy —€ “yy = —ce” — He 

(4.7) Yy = Ae” 

w, = Hye” 

that is 

_) = He” 

(4.8) Wy = Hye” 

K+e yy = H* +e. 

If « : M -> S? (or H§) is a isoparametric surface, then by the definition we know that 

the Gauss curvature « and the mean curvature H of x are constant. From (4.8) we know 
that yy = 0, vy = 0 and e~?” yy is constant. If H? -K +e 4 0, by (4.8) we know that 

yy #0. Then from (4.8) we get 

0 = A(loge~*” py) = A(—2w + logy + logy) = —2Aw. 

Therefore we get 

1 
(4.9) K=—-e "Wy = ~ Aw = QJ. 

The surface is flat and we can choose the coordinate (u,v) such that w = 0. In this case, 
(4.8) becomes 

Yy = A, =0 

(4.10) vy, = H, =0 

yy = H* +e.
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But gy = 0, dy = 0 and yy = constant yield that y and 7 are constant. Then we have 

the following structure equations for the surface z: 

Luu = pt 

Luy = —EX+ HE 

(4.11) Loy = WE 

Cu = — Hay — PLy 

oa = Lay — Hz, 

where pp = H* +. We solve the equations (4.11) under the conditions yy > 0. From 
(4.11) we have 

Lov + WH ty, — Epa = 0. 

By a parametric transformation (u,v) > (4/|plu, \/|w|v) we obtain 

Cuuu + 2H (signy)ryy, — ex = 0 

Dvn + 2H (sign) yy — ex = 0, 
where signy = 1, when y > 0; signy = —1, when y < 0. If pw > 0, then (4.13) becomes: 

Cuuuy + 2H (signy)ryy, — ex = 0 

Lyvoy + 2A (signy)fyy — ex = 0. 

(4.13) 

(4.14) 

(a) When ¢ = 1, 

(4.15) (u,v) = cy sinA(u+ v) + cg cos A(ut v) + €3 cosh p(u — v) + cg sinh pp(u — v), 

where €1, C2, C3, C4 € Ef are constant vectors and 

? = H(signy) + VH? +1, p= —H(signy) + / H2 +1. 

The surface is congruent to the surface given by Theorem 1.3. 
(b) When e = —1, 

(4.16) x(u,v) = c, sinh A(u + v) +c cosh A(u — v) +.€3 cosh p(u + v) + casinh p(u — v), 

where Cy, C2, C3, Ca € ES are constant vectors and 

\* = —H(signy)+ VH?-1, p= —H(signy) — / H2 — 1, —H(signy) > 0. 

The surface is congruent to the surface (i) given by Theorem 1.4. 

(4.17) z(u,v) =c,sinA(u + v) + c2cosA(ut+ v) + ¢3 sin p(u — v) + c4 cos u(u — v), 

where cj, C2, ¢3, c4 € Ey are constant vectors and 

? = H(signy) — /H?2-1, p= H(signy)+/H?2-1, H(signy) > 0. 

The surface is congruent to the surface (ii) given by Theorem 1.4. 
This completes the proof of the Theorem 1.3 and Theorem 1.4. 
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