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Abstract

Charge and exciton transport in disordered media plays an essential role in
modern technologies. Classical examples are amorphous and organic semi-
conductors where the disorder can give rise to localized electron states. These
localized electrons effectively behave like discrete particles hopping between
discrete sites in an inhomogeneous environment.

A popular model for such a hopping process is the random walk among
random conductances where the jump rate between any two sites is the
same in both directions. The long-time behavior of such a random walk,
when it is killed at the boundary of a large box, is intimately linked to
the first eigenvectors and eigenvalues of its generator with zero Dirichlet
boundary condition. This follows directly from the spectral decomposition
of the associated heat equation.

In this thesis, we study these first eigenvectors and eigenvalues when the
underlying lattice is Zd. In addition to the spectrum, we study the homoge-
nization properties of the corresponding Poisson equation.

Regarding the spectrum, we find that in dimensions d ≥ 2 and for inde-
pendent and identically distributed positive conductances, there is a sharp
transition between a completely localized and a completely homogenized
regime. This transition hinges on the exponent q = sup{r ≥ 0: E[ω−r] <∞}
where E[ω−r] is the inverse rth moment of the conductance ω.

If q < 1/4, then we show that for almost every environment the first
Dirichlet eigenvectors asymptotically concentrate in a single site and the
corresponding eigenvalues scale subdiffusively. We further prove weak con-
vergence of the rescaled eigenvalues to non-degenerate random variables.
Our proofs are based on a spatial extreme value analysis of the local speed
measure, Borel-Cantelli arguments, the Rayleigh-Ritz formula, results from
percolation theory, path arguments and the Bauer-Fike theorem.

On the other hand, if q > 1/4, then we show that the properly rescaled
first eigenvectors and eigenvalues converge almost-surely to the first eigenvec-
tors and eigenvalues of a homogenized operator. For this result it is sufficient
to assume stationary and ergodic conductances, which are positive between
nearest neighbors. Apart from that, we further allow unbounded-range con-

v



vi Abstract

nections. In this general case we need a stronger integrability condition on
the lower tail of the conductances, which coincides with a well-known nec-
essary condition for the validity of a local central limit theorem for the
random walk among random conductances. The main result on the way to
spectral homogenization is the homogenization of the corresponding Poisson
equation. More precisely, we prove two-scale convergence of the solutions
and their gradients. As an application of spectral homogenization, we prove
a quenched large deviation principle for the normalized and rescaled local
times of the random walk in a growing box. Our proofs are based on a com-
pactness result for the Laplacian’s Dirichlet energy, Poincaré inequalities,
Moser iteration and two-scale convergence.



Zusammenfassung

Die elektronischen Transporteigenschaften ungeordneter Medien spielen eine
wichtige Rolle in vielen modernen Technologien. Klassische Beispiele sind
amorphe und organische Halbleiter, deren Eigenschaften stark davon geprägt
sind, dass viele Elektroneneigenzustände auf Grund der Unordnung lokalisiert
sind. Diese lokalisierten Elektronen verhalten sich wie diskrete Teilchen, die
in der inhomogenen Umgebung zwischen diskreten Orten hin und her sprin-
gen.

Ein verbreitetes Modell für einen solchen Sprungprozess ist die Irrfahrt
(random walk) mit zufälligen Leitfähigkeiten, für die die Sprungrate zwischen
zwei Orten in beide Richtungen die gleiche ist. Das Langzeitverhalten einer
solchen Irrfahrt, die zusätzlich darauf bedingt wird eine große Box nicht zu
verlassen, wird stark durch die ersten Eigenvektoren und Eigenwerte ihres
Generators mit Null-Dirichlet-Randbedingungen bestimmt. Dies folgt direkt
aus der spektralen Zerlegung der zugehörigen Diffusionsgleichung.

In dieser Dissertation untersuchen wir diese ersten Eigenvektoren und
Eigenwerte, wenn das zu Grunde liegende Gitter Zd ist. Zusätzlich zum Spek-
trum untersuchen wir die Homogenisierungseigenschaften der verwandten
Poissongleichung.

Für das Spektrum beobachten wir in Dimensionen d ≥ 2 für unabhängige
gleichverteilte Leitfähigkeiten einen scharfen Übergang zwischen einem kom-
plett lokalisierten und einem komplett homogenisierten Regime. Dieser Über-
gang wird durch den Exponenten q = sup{r ≥ 0: E[ω−r] < ∞} bestimmt,
wobei E[ω−r] das inverse r-te Moment der Leitfähigkeiten ω ist.

Für den Fall q < 1/4 zeigen wir, dass sich die ersten Dirichlet-Eigenvek-
toren für fast alle Realisierungen der Umgebung in einem einzigen Ort
konzentrieren und, dass der zugehörige Eigenwert subdiffusiv skaliert. Wei-
terhin zeigen wir, dass die reskalierten Eigenwerte in Verteilung zu nicht-
trivialen Zufallsvariablen konvergieren. Unsere Beweise benutzen eine räum-
liche Extremwertanalyse des lokalen Geschwindigkeitsmaßes, Borel-Cantelli-
Argumente, das Rayleigh-Ritz-Prinzip, Ergebnisse aus der Perkolationsthe-
orie, Pfadargumente und das Bauer-Fike-Theorem.
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viii Zusammenfassung

Auf der anderen Seite, wenn q > 1/4, dann zeigen wir, dass die richtig
reskalierten ersten Eigenvektoren und Eigenwerte fast sicher zu den ers-
ten Eigenvektoren und Eigenwerten eines homogenisierten Operators kon-
vergieren. Für dieses Resultat können wir sogar annehmen, dass die Leitfähig-
keiten stationär und ergodisch sind und langreichweitige Verbindungen exis-
tieren, solange wir weiterhin annehmen, dass die Leitfähigkeiten zwischen
nächsten Nachbarn positiv bleiben. In diesem allgemeinen Fall brauchen wir
allerdings eine stärkere Integrabilitätsbedingung an die unteren Schwänze
der Leitfähigkeiten. Diese Bedingung fällt mit einer bekannten notwen-
digen Bedingung für den lokalen zentralen Grenzwertsatz der zugehörigen
Irrfahrt zusammen. Unser Hauptresultat auf dem Weg zu spektraler Ho-
mogenisierung ist die Homogenisierung der verwandten Poissongleichung.
Genauer gesagt beweisen wir die Zweiskalenkonvergenz der Lösungen und
ihrer Gradienten. Als eine Anwendung der spektralen Homogenisierung
zeigen wir ein fast-sicheres Prinzip der großen Abweichungen für die normier-
ten und reskalierten Lokalzeiten der Irrfahrt in einer wachsenden Box. Unsere
Beweise basieren auf einem Kompaktheitsresultat für die Dirichletenergie des
Generators, Poincaré-Ungleichungen, Moseriteration und Zweiskalenkonver-
genz.
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Chapter 1

Introduction

For our modern-life technologies, it is of paramount importance to under-
stand and control charge transport in a wide range of materials. In recent
years, industry and research are especially interested in the transport prop-
erties of amorphous and organic materials since they combine several elec-
tronic, chemical and mechanical advantages.

In contrast to inorganic crystals, these materials are highly disordered and
it is therefore not a trivial question whether a certain material admits effec-
tive properties as, for example, an effective conductivity. Many disordered
media do indeed display an effective behavior on large scales but this is def-
initely not the case for some chalcogenide glasses where the conductivity
depends on the thickness of the material [SM75].

To explain why in some materials the disorder averages out and in others
it does not is an intriguing quest for both physicists and mathematicians.
Several models for disordered media have therefore enjoyed considerable in-
terest in the recent decades. Prominent among these is the class of hopping
models where discrete particles jump between discrete sites according to
specific jump rates.

In this thesis, we consider such a model, the random conductance model,
where the jump rate between any two sites is the same in both directions. A
particle that moves according to these jump rates, performs a random walk
among random conductances.

In the 1970’s physicists were very interested in this model because it
describes the high-temperature limit of the diffusion of optical excitations in
fluorescence line-narrowing experiments, see [HHB77]. In recent years, it has
received further mathematical attention and it was found that, under a wide
range of conditions, the disorder does indeed average out, see [ABDH13,
ADS16]. This means that, in many respects, we observe a homogeneous
behavior on large scales. On the other hand, there are also regimes where
particular properties display an anomalous behavior, see [BBHK08, BB12].

In this thesis, we are interested in the generator Lω of the random walk
among random conductances, which we also call random conductance Lapla-
cian. In particular, we study the spectrum of this Laplacian on a bounded

1





1.1 Hopping transport 3

(a) Extended electron wave in a
periodic potential (courtesy of Jannick

Weißhaupt).

(b) Localized electron wave in a
disordered potential.

Fig. 1.2: Real part of the solution Ψ of the Schrödinger equation (1.1). In (a)
the potential around each of the atoms (gray circles) is the same and therefore the
overall potential is periodic. Consequently, the wave function Ψ extends over the
whole crystal. In (b) an inhomogeneous potential causes the solution Ψ to localize
on a few atoms (Anderson localization).

we find it important to place the random conductance model in some wider
context.

Nevertheless, we will give an application for the random conductance
model at the end of Section 1.1.2, i.e., the transport of optical excitations
among impurity ions in fluorescence line-narrowing experiments.

1.1.1 Electrons in inorganic crystals

Hopping transport is dominant in highly disordered systems, as for example
in amorphous materials. This is in contrast to the wave-like electron trans-
port usually prevailing in periodic structures such as inorganic crystals. The
reason is that the spatial and energetic disorder localizes the quantum me-
chanical electron states between which the electrons move by tunnel effect.1

This is even the case in the low-temperature regime of many inorganic semi-
conductors, which are nearly perfect crystals with some randomly distributed
impurities.

Before we trace back the experiments and ideas that finally confirmed the
hypothesis of hopping transport in inorganic semiconductor crystals, let us
first understand the dominant transport mechanism at room temperature.
In inorganic semiconductor crystals this is the so-called band or wave-like
transport.

Wave-like transport. In inorganic crystals the atoms are ordered in a
periodic structure and thus give rise to a periodic potential. Quantum theory

1 The tunnel effect is a quantum mechanical phenomenon where the electron hops
over a high potential barrier, which it could not overcome in the framework of classical
physics.



4 1 Introduction

(a) Pure semiconductor crystal. (b) n-type semiconductor.

Fig. 1.3: Simplified band model. In the pure semiconductor crystal (a) all valence
electrons are bound in the full valence band at zero temperature and there are
no free charge carriers. An energy gap divides both bands. At higher temperatures,
electrons are excited into the conduction band and can move as free (negative) charge
carriers in the conduction band. The resulting holes in the valence band also move
as free (positive) charge carriers. At room temperature, however, there are still very
few of these intrinsic free carriers. Electronically active impurities, as for example
electron donors as in (b), generate new allowed energy states in the energy gap
between valence and conductance band and therefore lower the activation energy.
These impurity states are localized in space. A semiconductor where most of the
impurities are donors (acceptors) is called n-type (p-type) semiconductor.

predicts that electrons behave like waves with a probability density |Ψ|2,
where Ψ is the solution to the time-independent Schrödinger equation

ĤΨ = EΨ (1.1)

with Ĥ the corresponding Schrödinger operator and E the energy of the
solution Ψ. In a periodic structure, these solutions have the form

Fig. 1.4: Allowed
energy bands.

Ψ(x) = eik·x uk(x) (x ∈ R3) , (1.2)

where k ∈ R3 is the so-called wave vector and uk(x) is a
complex-valued periodic function with the same periodic-
ity as the crystal itself. In Figure 1.2a we have depicted a
schematic view of the real part of Ψ along one coordinate
axis. It follows that the probability density of an electron
extends over the whole crystal. What we have to keep in
mind is that in a perfect crystal, all the electron states
are of this form even if, for illustrative reasons, we sketch
the electrons as particles as in Figure 1.3a, which we are
going to explain in a later paragraph.

If we would solve (1.1) in the case of a periodic potential, we would further
see that the possible values of the energy E lie in certain allowed energy
bands, which are separated by energy gaps, see Figure 1.4.
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At zero temperature, these bands are populated by the valence electrons2

from the lowest values of E to the higher values until all electrons are used
up. Due to Pauli’s exclusion principle, the number of electrons in each band
is bounded from above. When the energy bands are filled up, it might happen
that the highest one is only partly filled. Then a small electric field can induce
an electric current through the material and we say that the electrons are
effectively free. If this is the case, we call the material a metal.

In contrast, if there exists only completely full and completely empty
bands, a small electric field cannot induce an electric current since, in this
case, the electrons cannot move inside the band – again due to Pauli’s ex-
clusion principle. We call such a material either a semiconductor or an in-
sulator – depending on the energy gap that separates the highest occupied
band (valence band) and the lowest empty one (conduction band). At zero
temperature both types of material act as insulators but at higher tempera-
tures some electrons are thermally activated into the conduction band where
they contribute to an electric current, see Figure 1.3a. Since in insulators the
energy gap is larger than in semiconductors, it takes higher temperatures to
excite the electrons from the valence band into the conduction band. Nev-
ertheless, even in semiconductors this gap is usually large in comparison to
room temperature, and therefore we will observe only a small number of
electrons in the conduction band of a pure semiconductor crystal. On the
other hand, in the presence of electronically active impurities (donors and
acceptors), the energy gap is substantially reduced because these impurities
produce new energy levels between the valence and the conduction band, see
Figure 1.3b. The intentional introduction of such impurities is called doping.

Doped semiconductors at room temperature. We can picture the sit-
uation in a doped semiconductor as follows: In a pure semiconductor crys-
tal, say silicon, all valence electrons are bound in the interatomic bonds.
In the case of silicon, these are four electrons. If such a crystal is doped
with phosphorus, which has five valence electrons, four of these electrons
will contribute to the bonds to the neighboring silicon atoms but one elec-
tron remains free. At zero temperature, the Coulomb attraction between the
phosphorus nucleus and the fifth electron still binds the electron to the phos-
phorus atom. But since this electron does not contribute to an interatomic
bond, its activation energy to the conduction band is much smaller than the
activation energy of the other electrons. We call such impurities that have
an excess valence electron donors and semiconductors that are mostly doped
with donors n-type semiconductors.3

We can also dope the semiconductor with impurities that have one elec-
tron less in the outermost shell, as for example boron with three valence
electrons. Then the current would not result from thermally activated elec-
trons in the conduction band but rather from thermally activated (positively

2 Electrons in the outermost shell of the atom.
3 “n” for “negative” in contrast to “p” for “positive”.



6 1 Introduction

charged) holes in the valence band. We call these impurities acceptors and
semiconductors that are mostly doped with acceptors p-type semiconductors.
The mechanisms behind hole transport are analogous to the mechanisms
behind electron transport but less intuitive on first sight. Therefore we will
concentrate on n-type semiconductors in what follows.

Tunnelhaftleitung. The concept of electrons moving as free carriers in
allowed energy bands dates back to Wilson in 1931 [Wil31]. Although widely
accepted, this concept was nevertheless disputed in the subsequent years
because some experimental puzzle pieces did not fit the picture. One of these
puzzle pieces was that the band model implies that in a doped semiconductor
the conductivity σ depends on the temperature T as

σ = Ae
− B
kBT , (1.3)

where kB is the Boltzmann constant and A and B are other constants. As
Gudden and Schottky argued in their talk at the 11th Deutschen Physiker-
Tagung in 1935 [GS35], the number B should be a material constant inde-
pendent of the temperature whereas A should mostly vary with impurity
concentration.4 This was, however, in contrast to experimental data, for ex-
ample by Fritsch [Fri35]. Therefore Schottky suggested that there might be
a second transport mechanism. Plausible to him was a model where the
charges hop between impurity centers by tunnel effect, something he called
Tunnelhaftleitung (“tunnel adherence conduction”).

This is something qualitatively different from the wave-like transport of
the previous paragraphs. There the electrons were always viewed as waves
that extend over the entire crystal. A current was produced by a subtle
change in the distribution of the electrons among the allowed wave states.
Now, on the other hand, Schottky treats the electrons as if they were particles
and the current is produced simply by many particles moving into the same
direction.

Experimental evidence of hopping transport. After the talk by Gud-
den and Schottky in 1935, the next important progress in the direction of un-
derstanding and verifying hopping transport in semiconductors is attributed5

to Busch and Labhart in 1946, who carefully measured the conductivity and
Hall constants of silicon carbide over a wide range of temperature and im-
purity concentrations [BL46].

4 Actually A is also temperature dependent because it represents the mobility of the
charge carriers, which depends on temperature. But compared to the exponential
term, it is usually a good approximation to consider A as constant in T .
5 See for example Mott & Twose [MT61] and Shklovskii & Efros [SE84, Chapter 4].
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Fig. 1.5: Figure 6 from [Bus46]
shows the conductivity σ in a loga-
rithmic scaling in dependence of the
inverse temperature 1/T . Important
for us is the change of slope between
regimes II and III.

In fact, it was still difficult to ob-
tain genuine and noise-free data at that
time and in his article [Bus46], Busch
lists some examples of how easily the sil-
icon carbide measurements can be dis-
torted. For simplicity, let us concentrate
on the conductivity measurements by
Busch, which exhibited three tempera-
ture regimes,6 see Figure 1.5. Most im-
portant for us is the change of slope be-
tween regimes II and III, which could
not be explained by pure band theory.
Indeed, band theory would predict that
the conductivity decreases to zero with
the same slope as in regime II. But in-
stead, the slope in regime III is signifi-
cantly smaller the one in regime II.

In 1950 Hung and Gliessmann [HG50]
performed similar measurements in ger-
manium and confirmed the observations
by Busch. Hung conjectured that the
change of slope was due to the pres-
ence of another impurity band [Hun50].7

Furthermore, five years later, Fritzsche
[Fri55] excluded a large number of possible other reasons and therefore con-
cluded that the explanation by Hung seemed quite plausible.

But it was Conwell who, in 1956, combined a few arguments that gave the
hopping hypothesis more evidence [Con56]. First, she stresses that conduc-
tion at low temperatures and small impurity concentrations depends greatly
on the amount of compensation, i.e., the amount of impurities that are of
the opposite kind to the majority. This means that in a lightly-doped n-type
semiconductor where most of the impurities are electron donors, the pres-
ence of electron acceptors is crucial for low-temperature conduction. This
is because of the Coulomb interaction, each impurity state, which is local-
ized around a donor, can be occupied by at most one electron,8 similar to
the situation in a mathematical exclusion process. If all donor states are
occupied, conduction is not possible. On the other hand, if electron accep-
tors are present, these will attract electrons from the donors so that other
electrons can hop into the resulting gaps, see Figure 1.6. The importance
of compensation for low-concentration-low-temperature conduction is there-

6 The Hall measurements are important as well but their discussion would exceed
the scope of this introduction.
7 What Hung called “band” is actually the hopping regime. We assume that he used
the term “impurity band” for want of a better word.
8 Shklovskii and Efros point out that this is indeed not due to Pauli’s exclusion
principle, see [SE84, Section 2.1].
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Fig. 1.6: A silicon crystal doped with phosphorus
(P) and compensated with boron (B). The phospho-
rus atoms act like donors in silicon and the boron
atoms as acceptors. Since the boron atom has only
three valence electrons, there is one electron missing
in order to fill the bond to the fourth neighboring
silicon atom. At non-zero temperature, the boron
atom therefore attracts one electron from one of the
two phosphorus atoms, for example from the one we
labeled PII . This produces an empty donor state at
PII and the electron at PI can hop to PII .

fore in agreement with the hopping hypothesis and the exclusion principle
by Coulomb interaction.

Second, Conwell cites data from spin-resonance experiments of Fletcher et.
al., which show hyperfine lines for lightly-doped but not for heavily-doped sil-
icon crystals [FYPM54]. These hyperfine lines correspond to electrons bound
to donors. The fact that they vanish for higher impurity concentrations is a
consequence of several localization-delocalization transitions, which for ex-
ample Baltensperger predicted already in 1953 [Bal53]. Therefore this is also
in good agreement with the theory.

Localization transitions. Above a critical impurity concentration both
the data from Fletcher and the model by Baltensperger predict that there
is something like an “impurity band formation”.9 This happens when the
overlap between the highly localized wave functions is large enough, such
that tunneling is no longer necessary and we arrive at a degenerate elec-
tron gas [MT61]. Above this concentration, the electrons should move by
yet another transport mechanism and, indeed, Conwell observes that the
low-temperature conduction properties of highly impure samples differ qual-
itatively from the ones for low concentration samples. Similar observations
were found by Mott in the same year.

Although the model by Baltensperger and also a much-celebrated model
by Mott, see [SE84, Chapter 2.1], deliver theoretical explanations for such a
transition, they both consider impurities that form an ordered pattern inside
the semiconductor crystal. In contrast, in reality there is a huge energetic
and spatial disorder and we now know that the full theoretical explana-
tion must therefore include Anderson localization (energetic disorder but
spatial order) as well as Lifshitz localization (energetic order but spatial dis-
order), see [SE84, Chapter 2]. What these two models neglect, however, is
any electron-electron interaction. This, on the other hand, is a feature of the
Mott transition, which must therefore also contribute to the real situation.

Now we understand some of the background of hopping transport. Let us
conclude with the implications for crystalline semiconductors and then learn
about a model for electrons in amorphous semiconductors.

9 Note that this is something different than the “impurity band” meant by Hung.
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Conclusion for crystalline semiconductors. In order to conserve en-
ergy, the charge carriers have to absorb or emit phonons when they hop
from one site to another. This requires an activation energy ε3. We now
know that this activation energy is much smaller than the activation energy
ε1 from the impurity states into the conduction band.10 At the same time,
the hopping mobility µ3 is much smaller than the mobility µ1 in band trans-
port, which is why, at higher temperatures, the conductivity is dominated
by band transport.

Since the mobility is proportional to the conductivity, we obtain in good
approximation for the temperature regimes II and III:

σ(T ) = σ1 exp

(
− ε1

kBT

)
+ σ3 exp

(
− ε3

kBT

)
. (1.4)

This fits the experimental data in Figure 1.5.

1.1.2 Electrons in amorphous semiconductors

Although (1.4) is in good agreement with measurements in doped semicon-
ductor crystals, Clark noticed in 1967 that it fails for amorphous semiconduc-
tors as for example amorphous germanium [Cla67]. In fact, in this material
the conductivity follows the law

σ(T ) ∝ exp
[
−(T0/T )

1/4
]
, (1.5)

with a characteristic temperature T0. In 1968 Mott introduced the so-called
variable-range hopping [Mot68] and gave a heuristic explanation for the T 1/4-
law, nowadays referred to as Mott’s law. A more systematic approach was
later given by Ambegaokar, Halperin and Langer [AHL71] who used the re-
sistor network approach by Miller and Abrahams [MA60].11 Actually they
start with a model where the jump rates between two sites depend heavily
on the energy difference of these sites and are not at all symmetric. Further-
more they have to start with an exclusion process. But due to a detailed
balance relation and several other assumptions, they finally arrive at a re-
sistor network, where the conductance σij (the inverse resistance) between
the sites i and j is given by

σij = exp

[
−2αrij −

|Ei|+ |Ej |+ |Ei − Ej |
kBT

]
, (1.6)

10 There is an intermediate temperature regime to which belongs an activation energy
ε2 but this is beyond the scope of this introduction, see also [SE84, p. 79].
11 For a good overview, see also [SE84, Chapter 9].
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where α > 0 is a constant, rij the distance between i and j, Ei the energy
of the site i and kB the Boltzmann constant. Note that this conductance is
symmetric, i.e., σij = σji.

With the help of this model and a percolation ansatz, Ambegaokar and his
co-authors deduce Mott’s law if the energies |Ei| are distributed uniformly
between 0 and Emax > 0. This has been mathematically confirmed very
recently by Faggionato and Mimun [FM17].

The Miller-Abrahams model is already very near to the random conduc-
tance model. However, the conductances between different sites have a very
specific dependence structure.

1.1.3 Optical excitations among impurity ions

Fig. 1.7: An electron
is first optically ex-
cited from the energy
level E1 to the en-
ergy level E3. Then
it relaxes to the level
E2 without emitting
any light. Afterwards
it falls to E1 and
emits a photon with
the energy E2−E1.

In order to understand the diverse properties of var-
ious types of materials and molecules, science has in-
vented several experimenting strategies. One of these
strategies is to ray a sample with a laser pulse, which
optically excites electrons in the shell of the atoms to
higher energy levels. Afterwards, these electrons typi-
cally first relax to slightly lower energy levels by non-
radiative transitions12 and then fall back to the origi-
nal level by emitting a photon in the visible spectrum
(fluorescence), see Figure 1.7. When we measure the
spectrum of these photons, i.e. the fluorescence spec-
trum, then we can obtain information about the inner
structure of the material.

For inhomogeneous materials, however, it can be a
challenge to distinguish between effects arising from
the inhomogeneity and effects arising from the inner
structure of the individual atoms. That is, the peaks
in the fluorescence spectrum that belong to certain en-
ergetic transitions are broadened by I) homogeneous
line-broadening, or II) inhomogeneous line-broadening.
Homogeneous line-broadening already occurs for a sin-
gle atom, for example because there might exist mul-
tiple intermediate states like E2 in Figure 1.7. This
causes the emitted photons to have multiple energies.
On the other hand, inhomogeneous line-broadening is
an ensemble effect that is caused by the disorder of

a system, i.e., different atoms experience a different environment and have
therefore different optical properties. Since the measured fluorescence spec-

12 This means that they do not emit light.
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trum is a superposition of all the spectra of the single atoms, this leads to a
broadening.

In order to distinguish these two origins, Szabo reported in 1970 that he
had developed a technique where a ruby sample was rayed with a laser pulse
that had a very narrow frequency distribution and therefore only excited very
specific electrons that belonged to atoms of the same energetic population
[Sza70]. With this technique he was able to isolate the homogeneous line-
width of the fluorescence lines.

We point out that, as in Section 1.1.1, ruby is an impurity-doped crystal
where the disorder is mainly due to the randomly distributed impurities.

Fig. 1.8: An elec-
tron in the impurity
A has been excited
due to the laser pulse
but instead of relax-
ing directly, it trans-
fers the excitation to
a neighboring impu-
rity B, whose en-
ergy levels are differ-
ent from those of im-
purity A because of
the disorder in the
material.

What is interesting for us in this experiment is that
after some time the fluorescence spectrum begins to
broaden again because some excitations did not re-
lax back in their original energy levels but rather the
impurities transferred the excitation to their neighbor-
ing impurities, which have themselves a different ho-
mogeneous fluorescence spectrum, see Figure 1.8. We
say that the excitations hops from one impurity to
another. This leads again to an inhomogeneous line-
broadening.

The question is now how we best describe the dy-
namics of the excitation hopping. Huber, Hamilton
and Barnett proposed the following model [HHB77].
Let us assume that, initially, only a small number of
impurities is excited and therefore we can neglect any
exclusion effects in the temporal evolution. When we
take the average over disorder afterwards, we can fur-
ther assume that exactly one impurity is excited, for
example the one at the origin. Then we model the
probability pt(x) that the site x is excited with the
evolution equation

dpt(x)

dt
=

∑
sites y,

excluding x

[Wyxpt(y)−Wxypt(x)] , (1.7)

where Wxy is the hopping rate from site x to site y. Although this hopping
rate Wxy is a complicated object that involves the energy difference and
different forms of coupling between the impurities, Huber, Hamilton and
Barnett argue that in the high-temperature limit, the rate is symmetric,
i.e., Wxy = Wyx. In addition, instead of ruby, they consider the compound
Pr0.2La0.8F3 where experimental data suggest that the rate Wxy is even
independent of the energy mismatch but depends rather on the distance rxy
between the ions. It is certainly reasonable to assume that the disorder does
not make Wxy a deterministic function of the distance rxy. It follows that in
this case we arrive indeed at a random conductance model on a lattice with
randomly distributed sites.
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So, after an overview about hopping transport in anorganic semiconduc-
tor crystals, we learned about a model that describes electron transport in
amorphous semiconductors by a random resistor network. This model is near
to the random conductance model but also different in some respects. Now
we have also learned about a different kind of transport in disordered me-
dia, that is, the transport of optical excitations. Here, the diffusion is indeed
described by a random conductance model.

1.2 Random conductance model

Let us now focus on the mathematical definition of the random conductance
model and some aspects of its large-scale behavior.

1.2.1 Notation and key concepts

In principle, we can define the random conductance model on a general graph
(V,E) with a vertex set V and an undirected edge set E. Here, we wish to
restrict ourselves to the vertex set V = Zd and an edge set E that is either
the full set

E = {{x, y} : x, y ∈ Zd and x 6= y} (1.8)

or the set of nearest-neighbor edges

Ed = {{x, y} : x, y ∈ Zd, |x− y|1 = 1} . (1.9)

If two sites x, y ∈ Zd are neighbors according to Ed, we also write x ∼ y.
To each edge e ∈ E we assign a non-negative random variable ω(e). In

analogy to a resistor network, we call the random weight ω(e) conductance
of the edge e. If e = {x, y} for x, y ∈ Zd, we will also write ωx,y or ωxy
instead of ω(e). Since the edges in E are undirected, the conductances are
symmetric, i.e., ωxy = ωxy.

The family ω = (ω(e))e∈E is called environment or landscape and we
assume that it is governed by the probability space

(Ω,F ,P) =
(
[0,∞]E ,B([0,∞])⊗E ,P

)
. (1.10)

Moreover, we let E denote the expectation with respect to the law P.

Random walk among random conductances. Given a realization ω
of the environment, we consider the Markov chain on Zd with transition
rates related to the conductances ω(e). In the literature, one usually finds
two different rules on how to let the conductances govern the Markov chain.



1.2 Random conductance model 13

The first one is called the variable-speed random walk. When this random
walk is at a site x ∈ Zd, it waits for an exponential time with parameter

πx =
∑

y : {x,y}∈E

ωxy (1.11)

and then it jumps to one of the adjacent sites y with probability pxy =
ωxy/πx. Its mean waiting time at x is therefore 1/πx. Since the random
variable πx is related to the speed of the random walk at the site x, we call
the field {πx : x ∈ Zd} the local speed measure. The generator of this random
walk is the Laplacian Lω that acts on real-valued functions u ∈ `2(Zd) as

(Lωu)(x) =
∑

y : {x,y}∈E

ωxy(u(y)− u(x)) (x ∈ Zd) . (1.12)

The other notion of the random walk among random conductances is
the so-called constant-speed random walk. Its spatial trajectory looks the
same as the one of the variable-speed random walk but regardless where it
is, it always waits for an exponential time with mean 1. It follows that its
generator is the Laplacian Lωcs that acts on real-valued functions u ∈ `2(Zd)
as

(Lωcsu)(x) = (πx)
−1

∑
y : {x,y}∈E

ωxy(u(y)− u(x)) (x ∈ Zd) . (1.13)

Although it is the behavior of the two different random walks that justifies
the attributes “variable-speed” and “constant-speed”, we will use the term
“variable-speed random conductance model”, when we merely refer to the
Laplace operator defined in (1.12). In this thesis we only prove results for
the variable-speed random conductance model although the constant-speed
model is very popular among probabilists. We assert that most of the results
can be rewritten to suit the constant-speed case (see Remark 3.10) but their
proofs become even more technically involved.

It makes sense to understand one huge difference in the behavior of the
two random walks and this is in the shape of suitable trapping structures.

How to trap the random walks. Consider a site x ∈ Zd that is sur-
rounded by conductances of some order a > 0 as in Figure 1.9a. A variable-
speed random walk that is located at x waits for an exponential time with
mean (2da)−1. If a is very small, then we call x a variable-speed trap be-
cause, on average, the variable speed random has to wait for a long time
at x. On the other hand, the structure in Figure 1.9a is not a trap for the
constant-speed random walk since the constant-speed random walk always
jumps with rate 1.

Let us now consider a structure as in Figure 1.9b where we have an edge
with conductance of order b and all the adjacent conductances to this edge
are of order a. If we assume that the quotient b/a is very large, then both the
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(a) Variable-speed trap. (b) Constant-speed trap.

Fig. 1.9: Different shapes of traps.

variable-speed and constant-speed random walk hop very often between the
sites incident to the conductance of order b before leaving the structure. The
difference between the two random walks is in how much time they need to
hop back and forth. For the constant-speed random walk the time is of order
b/a regardless of whether a is small or b large. The variable-speed random
walk, on the other hand, needs a long time if b is of average size and a is very
small. In contrast, if b is very large and a is of average size, then it performs
the many hops very fast and leaves the structure after an average amount
of time. It follows that the constant-speed random walk can be trapped by
a single very large conductance but the variable-speed random walk cannot.

The heat kernel. With the random walk we now have two kinds of ran-
domness in our model: One from the random environment and one from
the random walk. In what follows, we will only consider the variable-speed
random walk, which we denote by (Xt : t ≥ 0). Given an environment ω and
an initial site x, we will denote the law associated with the random walk by
Pωx , i.e., Pωx [X0 = x] = 1. By Eωx we denote the corresponding expectation.

The heat kernel (pt, t ≥ 0) of the random walk encodes the probability
that a random walker that started at site x at time zero is at site y at time
t, i.e.,

pt(x, y) = Pωx [Xt = y] , (1.14)

where the superscript ω is usually suppressed in the expression pt(x, y).
The fact that the Laplacian Lω is the generator of the random walk X,

expresses itself in the heat equation

∂tpt(x, ·) = Lωpt(x, ·) , (1.15)

with initial condition p0(x, ·) = δx where

δx : Zd → R+, y 7→

{
1 for y = x

0 else.
(1.16)
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Dirichlet spectrum. The main object of this thesis is to study the be-

havior of the first k Dirichlet eigenvalues λ
(n)
1 ≤ . . . ≤ λ(n)

k and eigenvectors

ψ
(n)
1 , . . . , ψ

(n)
k of the sign-inverted generator −Lω in the ball

Bn :=
{
x ∈ Zd : |x|∞ < n

}
= (−n, n)d ∩ Zd (1.17)

with zero Dirichlet conditions at the boundary. This means we study the
solution to the problem

−Lωψ = λψ in Bn ,

ψ = 0 else.
(1.18)

For a symmetric operator as Lω, the Courant-Fischer theorem states that the
solutions to (1.18) are given by the minima and minimizers of the variational
problem (1.21). For this purpose let us introduce some more notation.

For a subset A ⊂ Zd we define the function space

`2(A) :=

{
f : Zd → R such that supp f ⊆A and

∑
x∈A

f(x)2<∞

}
⊂ `2(Zd) ,

(1.19)

where we let “supp f” denote the support of the function f . Accordingly,
for functions f1, f2 ∈ `2(Zd) we define the scalar product

〈f1, f2〉`2(A) =
∑
x∈A

f1(x)f2(x) .

For a real-valued function f ∈ `2(Zd) let us define the Dirichlet energy
Eω(f) with respect to the operator −Lω by

Eω(f) = 〈f,−Lωf〉`2(Zd) . (1.20)

Then, according to the Courant-Fischer theorem, the kth Dirichlet eigen-
value is given by the variational formula

λ
(n)
k = inf

M≤`2(Bn),
dimM=k

sup
f∈M,
‖f‖2=1

Eω(f) (1.21)

whereM≤ `2(Bn) means thatM is a linear subspace of `2(Bn). Note that

λ
(n)
k = Eω

(
ψ

(n)
k

)
.

Divergence form. In this context, we point out that we can also write
the Laplace operator of (1.12) as a divergence-form operator. In order to
explain this, let us assume for simplicity that the edge set E is equal to Ed.
For the case E = E, the definitions are analogous, see also Section 2.5.3.
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For a function u : Zd → R, we define the discrete derivative in x ∈ Zd for
the directions e1, . . . , e2d by

∂iu(x) = u(x+ ei)− u(x) , (i = 1, . . . 2d)

and similarly the gradient ∇u(x) = (∂1u(x), . . . , ∂2du(x)). Although it seems
peculiar that we define the derivative and the gradient with 2d directions
instead of d, this procedure becomes clear when we consider the case E = E
in Section 2.5.3. For a function v : Zd → R2d, we define the divergence

div v(x) =
2d∑
i=1

(vi(x)− vi(x− ei)) ,

where vi is the ith component of the vector v(x). Last, we define the space-
dependent tensor Aω(x) = diag(ωx,x+e1

, . . . , ωx,x+e2d
).

Then we see that

Lωu =
1

2
div (Aω∇u) , (1.22)

where the factor 1/2 is due to the 2d instead of d directions.
With these definitions, we can further write the Dirichlet energy as

Eω(f) =
1

2
〈∇f,−Aω∇f〉`2(Zd) .

Poisson equation. Besides the Dirichlet spectrum, our other object of
interest is the Poisson equation on the box Bn with zero Dirichlet boundary
conditions, i.e.,

−n2Lωun = fn on Bn,

un = 0 else.
(1.23)

We are especially interested in the question under what conditions on the
environment ω and the right-hand side fn, the solution un converges to the
solution of a homogenized Poisson equation.

1.2.2 Different aspects of large-scale behavior

In this section we wish to give an overview over different kinds of large-
scale behavior and existing results for the random conductance model. Since
the different classes of hopping models, i.e., random walks in random envi-
ronments were invented to account for the microscopic inhomogeneities of
complex materials, it is a natural question whether the microscopic inhomo-
geneities average out when zooming to larger scales.
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Mean squared displacement. Among physicists, the random walk among
independent and identically distributed conductances enjoys the reputation
that it behaves mostly homogeneous in dimensions d ≥ 2, given that the
edge set E equals Ed and the conductances are P-a.s. positive. This is due
to the fact that there is a simple percolation argument why the effective
conductivity σeff has to be positive, see [BG90, p. 177] and [Ale81]. Since
the effective conductivity σeff and the effective diffusion constant Deff are
related by the Einstein relation, it follows that the effective diffusion constant
is positive and diffusion therefore normal, i.e., it is to be expected that

E0

[
|Xt|2

]
∼ Deff · t . (1.24)

This implies that the random walk cannot behave subdiffusively and it fol-
lows that the higher-dimensional random conductance model cannot explain
the anomalous conductivity behavior that we observe in some amorphous
materials, see e.g. [SM75].

Invariance principles. It is remarkable that in 2012 Andres, Barlow,
Deuschel and Hambly showed that for the graph (Zd,Ed) with d ≥ 2 and
independent and identically distributed conductances ω, one can even allow
the conductances to be zero as long as

P[ω > 0] > pc(d) , (1.25)

where pc(d) is the critical probability for bond percolation on the graph
(Zd,Ed). These conditions are sufficient to prove a quenched functional cen-
tral limit theorem (QFCLT). This means that for P-a.e. environment ω where
the origin is in the infinite connected cluster, the rescaled walk(

X
(n)
t : t ≥ 0

)
:=

(
1

n
Xn2t : t ≥ 0

)
converges (under Pω0 ) in law to a Brownian motion on Rd with a deterministic
covariance matrix Σ2

X . This is, of course, a much stronger result than (1.24).

Local limit theorem. An even stronger result is the local central limit
theorem (LCLT) that states that the heat kernel converges point-wise. As
Andres, Deuschel and Slowik prove in [ADS16], this theorem holds on the
graph (Zd,Ed) with dimension d ≥ 2 if there exist p, q ∈ (1,∞] satisfying
1/p + 1/q < 2/d such that E[ω(e)p] < ∞ and E[ω(e)−q] < ∞ for any edge
e ∈ Ed. That is, for P-a.e. environment ω and for every T2 > T1 > 0 and
K > 0 we have

lim
n→∞

sup
|x|≤K

sup
t∈[T1,T2]

∣∣ndpn2t(0, bnxc)− kt
∣∣ = 0 , (1.26)

where kt is the heat kernel of the Brownian motion from the QFCLT.
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A similar result was shown by Boukhadra, Kumagai and Mathieu in
[BKM15] for independent and identically distributed conductances under
the condition that P[ω ≤ a] = aγ (a ∈ [0, 1]) for a γ > 1/4, i.e., when there
exists q > 1/4 such that E[ω−q] <∞. Their specific choice of P was for sim-
plicity reasons since their results can easily be generalized to a wider class
of distributions.

When the LCLT fails. In contrast to the last paragraph, let us assume
that there exists q′ < d/2 such that E[ω−q

′
] = ∞. Then in analogy to the

arguments in the proof of [ADS16, Theorem 5.4], one can show that there
might exist a sequence (xn)n∈N of sites such that |xn| < n and πxn ∈ o(n−2).
More precisely, one can show that for any q < d/2 we can construct a
stationary and ergodic environment such that E[ω−q] < ∞ and such that
a sequence (xn)n∈N as described above exists. We call the sites xn traps.
As Andres, Deuschel and Slowik argue in Step 5 of the proof of [ADS16,
Theorem 5.4], the presence of such traps contradicts the validity of a local
central limit theorem. Note, however, that this is not a contradiction to
the quenched functional limit theorem since the QFCLT associates with
macroscopic properties of the random walk, in contrast to the local limit
theorem, which is sensitive to microscopic trapping structures.

For positive i.i.d. conductances ω on (Zd,Ed), the traps occur even for
P-a.e. environment ω if there exists q′ < 1/4 such that E[ω−q

′
] = ∞, see

[BKM15, Remark 1.10(1)] and also our discussion on page 23.

Anomalous heat-kernel decay. In addition to the failure of the local
limit theorem, there is another phenomenon for heavy-tailed conductances:
This is the anomalous heat-kernel decay for dimensions four and higher. For
example, in [BBHK08] the authors Berger, Biskup, Hoffmann and Kozma
consider the discrete-time version of the constant-speed random walk for di-
mensions d ≥ 5. They prove that for every increasing sequence (an)n with
an → ∞, there exists an i.i.d. law P on bounded, nearest-neighbor conduc-
tances with P[ω > 0] > pc(d) and a P-a.s. positive random variable C(ω),
such that we have

Pω0 (Xn = 0) ≥ C(ω)

ann2
(1.27)

along a non-random subsequence for P-a.e. environment ω where the origin
is in the infinite connected cluster. The diffusive or normal polynomial order
would be n−d/2.

A similar result holds for d = 4 as Biskup and Boukhadra show in [BB12]
with (1.27) replaced by

Pω0 (Xn = 0) ≥ C(ω) logn

ann2
.
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Similar as for the failure of the LCLT, these results are not a contradiction
to the QFCLT.

Local times. Another natural quantity to study is how much time the
random walker X has spend in any site z ∈ Zd up to a time t, i.e., the family
of occupation time measures

lt(X, z) :=

t∫
0

δz(Xs) ds (z ∈ Zd, t > 0) . (1.28)

For the random walk X, which takes values in the discrete space Zd, these
measures are also called local times. For a set A ⊂ Zd, we accordingly write

lt(X,A) =

t∫
0

1A(Xs) ds (t > 0) , (1.29)

where 1A is the indicator function on the set A. When we embed Zd into Rd
in the canonical way, then the above formula also makes sense for A ∈ Rd.
Therefore we write for the Brownian motion B from the quenched functional
limit theorem

lt(B,A) =

t∫
0

1A(Bs) ds (t > 0) . (1.30)

Since for any open set A ∈ Rd and any T > 0 the measure lT (·, A) is
a bounded and continuous function on the Skorohod space D([0, T ],Rd), it
follows that the QFCLT implies that

Eω0

[
lT (X(n), A)

]
→ EBM

0 [lT (B,A)] , (1.31)

where EBM
0 is the expectation with respect to the law of the Brownian mo-

tion.
Apart from this immediate result about the limit law of the local times,

there is a beautiful connection between the large-deviation behavior of the
local times with the Dirichlet energy in (1.20). That is, for a bounded and
connected domain B ⊂ Zd, the famous result by Donsker, Varadhan and
Gärtner (cf. [DV75-83] and [Gär77]) states that for a fixed environment ω
and under the measures P0[ · | supp lt ⊆ B], the normalized local times 1

t lt
satisfy a large deviation principle (LDP) with the rate function Iω−infM Iω,
where Iω(µ) = Eω(

√
µ) and

M =
{
µ : µ ∈ `1(Zd), supp f ⊆ B, ‖f‖1 = 1

}
. (1.32)

Roughly speaking, this means that for large times t we have
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1
t log Pω0

[
1
t lt ≈ µ | supp lt ⊆ B

]
∼ −

(
Iω(
√
µ)− inf

M
Iω
)
. (1.33)

In Section 2.2.4 we explain what an LDP is in greater detail.
For the annealed setting, where the underlying measure is averaged over

the environment, König, Salvi and Wolff [KSW12] investigate the case where
the law of the conductances has the form

logP[ωxy ≤ ε] ∼ −Dε−η , ε→ 0 ,

with the parameters D, η ∈ (0,∞). They show that under the annealed
sub-probability law EP0[ · ∩ {supp lt ⊆ B}], the process of normalized local

times satisfies a large deviation principle with speed t
η

1+η and an explicit rate
function. In a subsequent paper, König and Wolff [KW15] extend their result
to growing boxes and find an interesting sharp transition in the parameter
η: For η > d/2, i.e. for light-enough tails near zero, an LDP holds and the
rate function is of a continuous form. On the other hand, if η ≤ d/2, then
this continuous rate function does no longer have compact level sets and
therefore one cannot expect an LDP to be valid. Moreover, in this case,
the leading-order logarithmic asymptotics of the non-exit probability of the
time-dependent set do not depend on the growing set at all but are the same
as for the static setting. König and Wolff interpret this as a sign for clumping
behavior, i.e., that the random walk gets trapped in a finite region. However,
it is still an open problem to actually determine the asymptotic shape of the
local times conditioned on the event that the random walker has not left the
box. This is definitely an interesting open task.

Let us now go back to (1.33) and the quenched setting, i.e., where we fix
a realization of the environment. If ψB1 is the minimizer of Eω over all `2-
normalized functions with support enclosed in B, then the right-hand side
of (1.33) is maximal for

√
µ = ψB1 , i.e., then it is zero. This means that

for large times t and under the condition that the random walker has not
exited the domain B, the asymptotic shape of the normalized local times is
1
t lt ≈

(
ψB1
)2

. Since ψB1 is the principal Dirichlet eigenvalue on the domain
B with zero Dirichlet conditions, the large deviations of the local times
are closely connected to the spectral properties of the random conductance
Laplacian. In addition, the Donsker-Varadhan-Gärtner LDP implies that the
non-exit probability Pω0 [supp lt ⊆ B] behaves like exp

(
−λB1 t

)
, where λB1 is

the principal Dirichlet eigenvalue of the Laplacian −Lω on the domain B.

Spectral asymptotics and Poisson equation. Since these are the main
objects in this thesis, we review the earlier results regarding these topics in
Section 1.4. Nevertheless, we wish to comment on a variant of the Poisson
equation because of its important relation to heat-kernel convergence. Let

−Lωu− λu = f on Zd (1.34)
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where we have to subtract the massive term λu in order to eliminate the
kernel of the operator −Lω. The Laplacian Lω itself is not invertible on Zd.
We call the massive term also spectral shift since it shifts the whole spectrum
by the constant λ. The convergence of solutions to (1.34) when the lattice
constant approaches zero, is connected with the convergence of the heat
kernel: By virtue of, for example, [ZP06, Theorem 9.2] (a generalization
of the Trotter-Kato Theorem, as Faggionato [Fag08, Section 7] calls it), the
convergence of solutions to (1.34) implies the convergence of the semigroups.

Γ-convergence. Very recently Neukamm, Schäffner and Schlömerkemper
[NSS17] proved stochastic homogenization of a very large class of energy
functionals in the sense of Γ-convergence. Roughly speaking, we say that
a sequence Fn of functionals Γ-converges to a limit F if the following two
properties are fulfilled:

I) F (x) ≤ lim infn→∞ Fn(xn) for every sequence xn that converges to x.
II) For every x there exists a recovery sequence xn that converges to x such

that F (x) ≥ lim supn→∞ Fn(xn).

For an introduction to Γ-convergence, see for example [Mas93].
For a nice domain A ⊂ Rd, the authors of [NSS17] consider a sequence

of energy functionals (Eε(ω; · , A))ε on the sequence of rescaled graphs εG
where ε plays the role of 1/n in the notation of above. Under certain mo-
ment and convexity conditions they show that this sequence Γ-converges to
a continuous deterministic functional

Ehom(u,A) =

∫
A

Whom(∇u(x)) dx

with the energy density Whom.
Their setting is more general than ours in the sense that they also consider

the so-called system case where, for example, u : Zd → Rn with n ∈ N not
necessarily equal to one. On the other hand, they consider only bounded-
range connections. As a special case, their results imply that in the random
conductance model the Dirichlet energy Γ-converges and the minimizers have
a strongly convergent subsequence if E[ω(e)−d/2] < ∞ for nearest-neighbor
edges e. Similar as for the local limit theorem, this condition can be improved
to E[ω(e)−1/4] <∞ in the i.i.d. case, see also Remark A.1. We will comment
on how this relates to spectral homogenization and the Poisson equation in
Section 1.4.
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1.3 Results in a nutshell and heuristics

Let us briefly summarize our main results and some elements of the proofs
in a simplifying way. Rigorous statements are in Section 2.2 for the homog-
enization results and Section 3.1 for the localization results.

We group our results into three sections: First, the dichotomy between
a completely homogenized and a completely localized regime in the case
of independent and identically distributed (i.i.d.) conductances on nearest-
neighbor edges. Second, the localization of the first k Dirichlet eigenvec-
tors when the tail of the conductances near zero is heavy enough and the
conductances are i.i.d., and third, the homogenization of the first k Dirich-
let eigenvectors and eigenvalues when the tail of the conductances is light
enough.

1.3.1 Dichotomy in the i.i.d. case

Let us assume that exactly the nearest-neighbor conductances are positive
and that these are independent and identically distributed. Let us further

recall that λ
(n)
1 ≤ . . . ≤ λ

(n)
k are the first k Dirichlet eigenvalues of −Lω in

the box Bn = (−n, n)d ∩ Zd and that ψ
(n)
1 , . . . , ψ

(n)
k are the corresponding

eigenvectors. We call n2λ
(n)
1 , . . . , n2λ

(n)
k the diffusively rescaled eigenvalues

and say that the eigenvalues scale subdiffusively if λ
(n)
1 , . . . , λ

(n)
k ∈ o(n−2).

Moreover, let us define

q = sup{r ≥ 0: E[ω−r] <∞} . (1.35)

Note that by Jensen’s inequality, it follows that E[ω−r] <∞ for all r < q.
With these definitions, the results in Chapter 2 imply as a special case

that

q > 1/4⇒

{
a.s. complete hom. of first k Dirichlet eigenvectors and

a.s. convergence of diffus. rescaled first k Dirichlet eigenvalues.

(1.36)

In contrast, under some further regularity assumptions and in dimensions
d ≥ 2,13 we show in Chapter 3 that

q < 1/4⇒

{
a.s. complete localization of first k Dirichlet eigenvectors and

a.s. subdiffusive scaling of first k Dirichlet eigenvalues.

(1.37)

13 For dimension one, see Remark 3.14 and [Fag12].
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Together, (1.36) and (1.37) imply that the spectrum of the Laplacian dis-
plays a sharp transition between a completely homogenized and a completely
localized regime. With the results of Neukamm, Schäffner and Schlömer-
kemper in [NSS17] and a small improvement in their calculations, we can
even infer that E[ω−1/4] < ∞ is sufficient for spectral homogenization, see
Remark A.1. However, there still remains a critical regime around q = qc

and it might be that there localization and homogenization coexist along
different random subsequences as n tends to infinity. But this is still an open
problem.

It is not very surprising that the critical exponent qc = 1/4 is the same
as for the validity of the local limit theorem of the corresponding random
walk. Indeed, the reason why the local limit theorem fails for q < 1/4 (see
e.g. [BKM15, Remark 1.10(1)]) is the same as for the subdiffusive scaling of
the principal Dirichlet eigenvalue. We are going to discuss this in the next
paragraphs.

Under what circumstances should the principal Dirichlet eigenvalue scale
subdiffusively? Let us recall the variational formula (1.21), which implies
that

λ
(n)
1 = inf

supp f⊆Bn,
‖f‖2=1

〈f,−Lωf〉 = inf
supp f⊆Bn,
‖f‖2=1

∑
{x,y}∈Ed

ωxy(f(x)− f(y))
2
. (1.38)

Fig. 1.10: Trap zn.

Furthermore, let us now suppose that the box Bn con-
tains a site zn where all the surrounding conductances
are much smaller than n−2, see Figure 1.10. We call
such a site a trap. Then we choose a test function
f = δzn , insert it into the variational formula (1.38)
and obtain that

λ
(n)
1 ≤ πzn ∈ o(n−2) .

This means that the presence of such a trap zn is
a contradiction to spectral homogenization where we

would expect that n2λ
(n)
1 converges almost-surely to a non-trivial limit. At

the same time, it is a contradiction to pt(zn, zn) . t−d/2 when t is of order
n2, see [BKM15, Remark 1.10(1)], and therefore it is a contradiction to the
validity of a local limit theorem.

Under what conditions does such a trap zn exist? Let us suppose that all
the 2d conductances connecting a given site with its neighbors are less than
or equal to some value g(n). We call such a site a g(n)-trap. For a given site

the probability to be a g(n)-trap is P[ω ≤ g(n)]
2d

. Since the number of sites
in the box Bn is of order nd, the expected number of g(n)-traps in Bn is of
order

Λg(n) := ndP[ω ≤ g(n)]
2d
. (1.39)
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In the critical case we set g(n) = n−2. We furthermore assume, for simplicity,
that P[ω ≤ a] = aγ for a ∈ [0, 1]. Note that in this case, the exponent q equals
γ, although E[ω−γ ] =∞. Now we observe that

ndP
[
ω ≤ n−2

]2d
= nd−4dγ →

{
0 if γ > 1/4 ,

∞ if γ < 1/4 .
(1.40)

Thus, for γ < 1/4 we expect to have many traps in the box Bn and for
γ > 1/4 we expect to have none.

This is, of course, neither a proof of that a localized test function as
f = δzn is indeed the best choice for the variational formula (1.38), nor is it

a proof that for γ > 1/4 the principal eigenvalue λ
(n)
1 scales diffusively. This

is, amongst other things, the work done in this thesis.

1.3.2 Localization

We proceed with summarizing the results of Chapter 3 where we still assume
that exactly the nearest-neighbor conductances are positive and that these
are independent and identically distributed.

Principal Dirichlet eigenvalue. Let g : (0,∞) → (0,∞) be a function
that decreases monotonically to zero and is asymptotically smaller than n−2.
As we have discussed in the previous section, the function Λg : (0,∞) →
(0,∞) defined in (1.39) carries the information about how many g(n)-traps
we can expect in the box Bn. We make this rigorous with the help of the
Borel-Cantelli arguments in Lemmas 3.19 and 3.24. Generally, if Λg diverges
fast enough, then P-a.s. for n large enough, the box Bn contains at least
one g(n)-trap. In this case, 2dg(n) is a trivial upper bound for the principal
Dirichlet eigenvalue by the same reasoning as in the previous section. On the
other hand, if Λg decreases fast enough to zero, then P-a.s. for n large enough,
the box Bn does not contain a g(n)-trap and it is possible to show that then

g(n) is an asymptotic lower bound for the principal Dirichlet eigenvalue λ
(n)
1 .

In between, however, there is a regime where Λg neither increases nor
decreases fast enough and the principal Dirichlet eigenvalue will sometimes
be smaller than and sometimes be greater than g(n). This is especially the
case when Λg is constant.

In Section 3.1.1 our aim is to find optimal conditions to determine whether
g(n) is an asymptotic upper or asymptotic lower bound for the principal
Dirichlet eigenvalue. We summarize these conditions in Figure 3.1. In this
figure we see that for the lower bound the sharp condition is whether or
not

∫∞
0
u−1Λg(u) du < ∞. For the upper bound, on the other hand, the

sufficient and the necessary conditions differ by a double-logarithmic order.
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Heuristics on the lower bound. For the lower bound of the principal
Dirichlet eigenvalue we have to put in significantly more work than for the
upper bound. The key idea, however, is linked to the considerations for the
shape theorem of first-passage percolation, see e.g. Cox and Durrett [CD81]
for the sample case d = 2. The philosophy is that we have to show that each
site in the box Bn is sufficiently well reachable by conductances that are
significantly greater than the lower bound candidate g(n).

Note that this is similar to the idea of Lemma 4.6 in [BKM15] where the
authors prove this for a polynomial tail of the conductances with parameter
γ and the candidate g(n) = n−α with α > 1/(2γ). Indeed, for the lower

bound on the principal Dirichlet eigenvalue λ
(n)
1 , we adapt a path argument

from [BKM15, Lemma 5.1], see Section 3.6.
It turns out that a crucial element of the proof is to give a condition

that implies that P-a.s. for n large enough all sites in the box Bn have
at least one incident edge with conductance greater than g(n), similar to
[CD81, p. 585] and [Kes86, Theorem (1.7)]. In general, we let g : R+ →
R+ be a continuous function that decreases to zero and define g−1(v) :=
inf{u : g(u) = v} as its inverse. Further, we let ω1 . . . , ω2d be 2d independent
copies of the conductance ω. Then

E
[
g−1(max{ω1, . . . , ω2d})d

]
= d

∞∫
0

u−1Λg(u) du <∞ (1.41)

implies that P-a.s. for n large enough, all sites in the box Bn have at least one
incident edge with conductance greater than g(n). This together with a path
argument, which we adapt from [BKM15], gives the P-a.s. lower bound for

the principal Dirichlet eigenvalue λ
(n)
1 (given that g(n) is not asymptotically

larger than n−2). On the other hand, if Condition (1.41) is violated, then
the same arguments as in Cox and Durrett [CD81, p. 585] yield that, P-a.s.
as n tends to infinity, the box Bn contains a g(n)-trap infinitely often, see
Lemma 3.19.

Eigenvectors. Under certain regularity assumptions on the distribution
function F of the conductances14 we show that the principal Dirichlet eigen-

vector ψ
(n)
1 asymptotically localizes in the site z(1,n) that minimizes the local

speed measure π over the box Bn. For this purpose, we first show that all

the mass of the eigenvector ψ
(n)
1 has to be concentrated on a sparse set I (n)

(see Definition 3.34 and Lemma 3.44) and then we use an extreme value
analysis of the local speed measure π in Bn to infer complete localization.
This requires some technical effort since the random variables {πx : x ∈ Bn}
are not independent.

In order to infer the complete localization, we need the Perron-Frobenius

property of Remark 3.3, i.e., that we can assume that ψ
(n)
1 is non-negative.

14 See Assumption 3.11.
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This is the reason why it is not trivial to generalize the localization result
to the higher order eigenvectors. We achieve this with the help of auxiliary
eigenvectors and the Bauer-Fike theorem. That is, we prove that the kth

Dirichlet eigenvector ψ
(n)
k asymptotically concentrates in the site z(k,n) where

the local speed measure π attains its kth minimum πk,Bn over the box Bn.
As a direct consequence of the localization, the kth Dirichlet eigenvalue

λ
(n)
k behaves asymptotically like πk,Bn .

Weak convergence of the eigenvalues. Roughly speaking, if the dis-
tribution function F varies regularly at zero with index γ ∈ (0, 1/4),
then we show that there exists a slowly varying function L∗(n) such that

L∗(n)n
1
2γ λ

(n)
k converges in distribution to a non-degenerate random vari-

able. This is in analogy to [Fag12, Theorem 2.5(i)] for the one-dimensional
case.15

1.3.3 Homogenization

Let us now assume a more general setting: First, instead of i.i.d. conduc-
tances, we only assume that the conductances are stationary and ergodic
with respect to spatial translations. Next, we still assume that all nearest-
neighbor conductances are positive but now also conductances on long-range
connections are allowed to be non-zero as long as

E

∑
z∈Zd

ω0z|z|2
 <∞ .

This is the minimal assumption that we need in order to use the usual L2-
theory of Section 2.5.2. Heuristically, this condition ensures that we do not
enter the superdiffusive regime whose investigation lies outside the scope of
this thesis.

Regarding the lower tail of the conductances, we are going to see that we
have a critical moment condition as well. Let us recall the definition of q in
(1.35), where we take only nearest-neighbor conductances into account, and
let us assume that

q > qc =


d/2, for general stationary, ergodic conductances and d ≥ 2,

1/4, for i.i.d. nearest-neighbor conductances and d ≥ 2,

1, for d = 1.

(1.42)

15 Note the different scale: For d = 1 it would be n1+1/γ instead of n1/(2γ).



1.3 Results in a nutshell and heuristics 27

Thus, the critical exponent qc coincides with the critical exponent for the
local central limit theorem. Under the condition that q > qc we show that
the diffusively rescaled solution to the Poisson equation (1.23) converges al-
most surely to the solution of a homogenized Poisson equation. By virtue of
[JKO94, Chapter 11] it follows that the diffusively rescaled eigenvectors and
eigenvalues converge almost surely as well. As an application of the spectral
homogenization, we prove a quenched large deviation principle for the occu-
pation time measures, given that the random walk stays in a slowly growing
box, see Proposition 2.12. Thereby, we extend the results of [KW15, Theo-
rem 1.8], where the authors use the close connection between the Dirichlet
energy of the Laplace operator and the Donsker-Varadhan rate function of
the occupation time measures of the associated random walk – a fact that
we already mentioned on page 19.

Poincaré inequality. For self-adjoint Laplace operators, a crucial condi-
tion for many kinds of asymptotic homogenization is – apart from ergodicity
– the validity of the Poincaré inequalities. This means that we need the
inequalities (2.27) and (2.35).

For spectral homogenization this is immediately evident since the optimal
constant C in (2.35) is exactly the inverse of the principal Dirichlet eigenvalue
of the Laplacian (see Remark 2.10). In the situation of this thesis, we will
see that the Poincaré inequalities (2.27) and (2.35) are not only necessary
but carry us quite far, although they are not completely sufficient for our
results. In fact, E[ω(e)−qc ] <∞ is sufficient for the Poincaré inequalities but
not for the Moser iteration, which we use in Section 2.3.2.

Moreover, if we would take into account the long-range connections, we
could even improve the sufficient condition for the Poincaré inequalities.

Optimality. For the moment, let us assume that only nearest neighbors
are connected, or equivalently, that only nearest-neighbor conductances carry
a positive conductance. As we explain in Remark 2.10, excepting the critical
case q = qc, the condition in (1.42) is optimal.

If q < qc, then it is possible (and in the i.i.d. case even almost sure,
see Chapter 3) that trapping structures as in Figure 1.10 appear, which
immediately contradict the Poincaré inequality.

If q = qc, then we have to look closer. As we have already mentioned
in Section 1.3.1, the results of Neukamm, Schäffner and Schlömerkemper in
[NSS17] imply that even E[ω(e)−d/2] < ∞ is sufficient for homogenization,
see also Remark 2.3. In dimension one, Faggionato [Fag12, Theorem 2.6] also
showed that E[ω(e)−1] < ∞ is sufficient. The reason why we do not reach
this condition is that we need q > qc for the Moser iteration, as we have
already mentioned in the previous paragraph.
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1.4 Comparison with earlier results

Our investigation on the spectral behavior of the random conductance Lapla-
cian fits well with the results of earlier research.

Dimension one. In the special case of dimension one, Faggionato [Fag12]
showed that a finite inverse moment of ω is sufficient for spectral homog-
enization [Fag12, Proposition 2.6]. We reproduce this result in Chapter 2.
Further, if the inverse conductances ω−1 are i.i.d. and in the domain of at-
traction of an α-stable law with 0 < α < 1, then Faggionato showed that
the vector of the first k Dirichlet eigenvalues rescaled by n1+1/α times a
slowly varying function converges in distribution to the vector of the first
k Dirichlet eigenvalues of a random generalized differential operator [Fag12,
Theorem 2.5]. This compares to our result Corollary 3.17.

Spectral homogenization for d ≥ 2. Boivin and Depauw [BD03] proved
spectral homogenization for stationary and ergodic conductances that fulfill
the uniform ellipticity condition, i.e., where there exist positive and finite
constants that uniformly bound the conductances from above and below.

As we have already mentioned in Section 1.2.2, when the conductances
have a bounded range, Neukamm, Schäffner, and Schlömerkemper [NSS17,
Corollary 3.4, Remark 3.6, Proposition 3.24] have recently proved that for
q > qc the Dirichlet energy of −Lω Γ-converges to a deterministic, homoge-
neous integral and the minimizers admit a strongly convergent subsequence.
This holds also if E[ω−qc ] <∞.16 This together with [Mas93, Theorem 13.5]
implies that Conditions I–IV of [JKO94, Chapter 11] are fulfilled and spec-
tral convergence follows. On the other hand, in Chapter 2 we use the method
of stochastic two-scale convergence by Zhikov and Pyatniskii [ZP06] to show
that the Poisson equation homogenizes. There our approach is similar to the
one of Faggionato [Fag08] who already employed two-scale convergence in
order to show homogenization for a Laplacian with bounded conductances
and shifted spectrum as in (1.34). From the homogenization of the Poisson
equation, the spectral homogenization follows again by [JKO94, Chapter 11].

The basis for both [NSS17] and Chapter 2 are Poincaré and Sobolev in-
equalities that were already used by Andres, Deuschel, and Slowik [ADS16]
to prove a quenched local CLT under suitable moment conditions. This is
one reason why the critical exponents match each other.

Relation to heat-kernel upper bounds. In this paragraph we explain
why the subdiffusive scaling of the principal Dirichlet eigenvalue contradicts
the validity of a local central limit theorem. As we have already mentioned in
Section 1.2.2, the local CLT was established in 2015 by the two teams of au-
thors Andres, Deuschel, Slowik [ADS16] and Boukhadra, Kumagai, Mathieu

16 On how to obtain the result for q = qc in the i.i.d. case, see our Remark A.1.
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[BKM15]. For independent and identically conductances both require that
there exists ε > 0 such that both E[ω] and E[ω−1/4−ε] are finite.

Let τA be the escape time from a setA ⊂ Zd, i.e., τA = inf{t ≥ 0: Xt /∈ A}.
There exists a natural relation between the principal Dirichlet eigenvalue of
the operator −Lω and the expected escape time Eωx [τBn ] from the box Bn,
see [BdH15, Section 8.4.1]:

λ
(n)
1 ≥

(
max
z∈Bn

Eωz
[
τBn
])−1

.

Thus, an upper bound for the principal Dirichlet eigenvalue λ
(n)
1 implies a

lower bound on the maximal expected escape time from the box Bn.
Now Lemma 2.1(i) of [BKM15] implies that if the heat kernel pt(x, y)

has a diffusive on-diagonal upper bound, i.e. there exists c ∈ (0,∞) and a
random n0 ∈ N such that

pn2(x, y) ≤ cn−d ∀x, y ∈ Bn , n ≥ n0 ,

then maxz∈Bn Eωz
[
τBn
]
∼ n−2. Diffusive heat-kernel upper bounds are a

necessary condition for the validity of a local CLT.
But if we assume that the principal Dirichlet eigenvalue scales subdiffu-

sively, i.e., λ
(n)
1 ∈ o(n−2), then maxz∈Bn Eωz

[
τBn
]

grows faster than n−2 and
therefore a subdiffusively scaling principal Dirichlet eigenvalue contradicts
the validity of a local CLT.

We can explain the exploding escape times by showing that a large box
contains some sites where the expected time to even leave the initial position
is anomalously long (see Section 3.2). Although this effect is related to the
one responsible for the anomalous heat-kernel decay observed in [BBHK08],
it is still a different one. In [BBHK08], the dominating effect is that a random
walk finds a trap elsewhere and then returns to its initial position. This
behavior has a more complex dependence on the Laplacian’s eigenvalues. In
[FM06], on the other hand, the situation is different due to the averaging
over the environment. There the dominating strategy is indeed to not leave
the initial position at all.

Localization for d ≥ 2. The results of Chapter 3 for the random conduc-
tance Laplacian compare well to similar results of the random Schrödinger
operator ∆ + ξ with random potential ξ : Zd → R, see [BK16] and [Ast16,
Ch. 6].

Homogenization of non-local operators. A related problem of a non-
local operator was recently studied by Piatnitski and Zhizhina [PZ17] in
the periodic case, where, as in the present article, the limit operator is a
deterministic second order elliptic operator.





Chapter 2

Homogenization1

In this chapter we assume a very general situation where the conductances
are stationary and ergodic with respect to spatial translations and, in addi-
tion, we allow unbounded-range connections. This means that the underlying
graph is the complete graph (Zd,E).

Under the condition that very long connections are sufficiently weak and
that the conductances have a sufficiently light tail near zero, we prove homog-
enization of the Poisson equation and spectral homogenization on a bounded
domain with zero Dirichlet boundary condition. As an application of spectral
homogenization, we prove a quenched large deviation principle for the occu-
pation time measures, given that the random walk stays in a slowly growing
box.

Besides ergodic theory, the main ingredient for homogenization are Poin-
caré and Sobolev inequalities, which are only valid if the lower tail of the
conductances fulfills a well-known moment condition, that is also crucial for
the validity of a local limit theorem of the random walk among random
conductances. In addition to Poincaré and Sobolev inequalities, our proofs
rely on stochastic two-scale convergence, an analytic method that is based
on the ergodic theorem and was introduced in [ZP06].

2.1 Notation and assumptions

For any ω ∈ Ω, we denote the set of open edges by

O ≡ O(ω) := {e ∈ E : ω(e) > 0} ⊂ E.

1 The content of this chapter is joint work with Martin Heida (Weierstraß-Institut
Berlin) and Martin Slowik (Technische Universität Berlin). It is accepted at the
journal Annales de l’Institute Henri Poincaré with the title “Homogenization theory
for the random conductance model with degenerate ergodic weights and unbounded-
range jumps” and it will soon be available at the DOI 10.1214/18-AIHP917.
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Moreover, we let τx denote the translation by a vector x ∈ Zd, i.e., we write
ωx,y = (τxω)0,y−x.

2.1.1 Assumptions

In this chapter we will usually assume that the law P fulfills the following
conditions.

Assumption 2.1.

(a) The law P is stationary and ergodic with respect to spatial translations
(τx)x∈Zd .

(b) E
[∑

z∈Zd ω0,z|z|2
]
<∞.

(c) For P-a.e. environment ω, the set O(ω) of open edges contains the set
Ed of nearest-neighbor edges of Zd.

Note that Lω is P-a.s. well-defined under Assumption 2.1(b).
In addition to Assumption 2.1, our main results rely on an integrability

condition for the lower tails of the conductances, for which we need to define
the notion of paths in (Zd,Ed). A path of length l between x and y in (Zd,Ed)
is a sequence (xi : i = 0, . . . , l) with the property that x0 = x, xl = y and
{xi, xi+1} ∈ Ed for any i = 0, . . . , l − 1. If ζ = (xi : i = 0, . . . , l) is a path
and there exists i ∈ {1, . . . , l − 1} such that {xi, xi+1} = e, then we use the
shorthand notation e ∈ ζ.

For any e ∈ Ed and N 3 l < ∞, let Γl(e) be a collection of paths in
(Zd,Ed) between the vertices of the edge e with length at most l such that
no two paths in Γl(e) share an edge. We define the measures νω and νωl on
Zd by

νω(x) :=
∑

e∈Ed : x∈e

ω(e)−1 and νωl (x) :=
∑

e∈Ed : x∈e

ωl(e)
−1, (2.1)

where

ωl(e)
−1 := min

ζ∈Γl(e)

∑
e′∈ζ

ω(e′)−1 . (2.2)

We let ζopt
l (e) denote the minimizer of the RHS of (2.2). For an example of

how to choose Γ9 reasonably for the nearest-neighbor lattice (Zd,Ed) if the
conductances are independent and identically distributed, see Figure 2.1.

Assumption 2.2 (Lower moment condition).
If d = 1, then E[1/ω(e)] <∞ for any e ∈ Ed. In addition, if d ≥ 2, then

(a) there exists l ∈ N such that E
[
(νωl (0))d/2

]
<∞.

(a’) there exists l ∈ N and q > d/2 such that E[(νωl (0))q] <∞.
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Remark 2.3. Note that Assumption 2.2(a) is sufficient for the Poincaré
inequalities (Section 2.3.1) and the compact embedding (Section 2.4). The
only reason why we need Assumption 2.2(a’) is the Moser iteration in the
proof of Proposition 2.17, which we need for the Auxiliary Lemma 2.36. In
fact, if we would assume that the length of the connections was bounded, or
in other words, there exists R < ∞ such that P-a.s. O(ω) ⊆ {e : |e| < R},
then the authors of [NSS17] proved Γ-convergence under Assumption 2.2(a).
Therefore the compact embedding of Section 2.4 implies the homogenization
result Theorem 2.5 and thus Assumption 2.2(a) is sufficient.

Fig. 2.1:
Independent paths

Remark 2.4 Generally, E[ω(e)−d/2] < ∞ for
edges e ∈ Ed is sufficient for Assumption 2.2(a).
This can even be improved if the conductances
ω(e) (e ∈ E) are independent and identically dis-
tributed (i.i.d.) and d ≥ 2. For example, on the
nearest-neighbor lattice (Zd,Ed) with independent
and identically distributed conductances, Assump-
tion 2.2(a) holds if E

[
ω(e)−1/4

]
<∞ for any edge

e ∈ Ed. Similarly, Assumption 2.2(a’) holds if
there exists q > qc = 1/4 such that E

[
ω(e)−q

]
<

∞ for any edge e ∈ Ed. This follows because any two sites in Zd are connected
through 2d independent nearest-neighbor paths (see Figure 2.1, cf. [ADS16,
Fig. 2], [Kes86, Fig. 2.1]).

If we added further links to the edge set E = Ed, the number of indepen-
dent paths between any two sites would increase whence the critical exponent
qc would decrease. If we assumed that the edge set E would contain all the
links of E, then it would even be sufficient to assume that there exists q > 0
such that E

[
ω(e)−q

]
< ∞. Note that in order not to violate Assumption

2.1(b), we would assume in this case that ω(e) = ω̃(e)/|e|α where the (ω̃(e))e
are i.i.d., α > d+ 2 and |e| is the euclidean length of the edge e.

2.1.2 The rescaled lattice

We aim to consider the behavior of the operator Lω in boxes of the form
Bn := (−n, n)d∩Zd with zero Dirichlet boundary conditions. More precisely,
we fix an environment ω on the entire Zd, let the box size n grow to infinity
and want to characterize the behavior of solutions to the Poisson equation
and the spectral problem. For this purpose we use analytic techniques as
introduced in Section 2.5. Regarding these techniques, it is more natural to
replace the lattice Zd by the rescaled lattice Zdε := εZd and the growing box
Bn by the box Qε := Q ∩ Zdε with Q = (−1, 1)d and ε = n−1.
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In this context, the Laplacian defined in (1.12) corresponds to the accel-
erated operator Lωε which acts on real-valued functions f ∈ `2(Zdε) as

(Lωε f)(x) = ε−2
∑
z∈Zdε

ω x
ε ,
z
ε
[f(z)− f(x)] ,

(
x ∈ Zdε

)
, (2.3)

where the conductances ω x
ε ,
z
ε

remain random variables associated with the

links in the edge set E, i.e., the links between sites in Zd. Note that if Lω is
the generator of a Markov process (Xt)t≥0, then Lωε is the generator of the
diffusively rescaled Markov process (Xε

t )t≥0, which fulfills Xε
t = εXε−2t.

For ε, p > 0 and Aε ⊆ Zdε , we define the function spaces

`pε(Aε) :=
{
v : Zdε → R : εd

∑
x∈Aε

v(x)p <∞
}

with ‖v‖`pε(Aε) :=

(
εd
∑
x∈Aε

v(x)p
)1/p

. (2.4)

We abbreviate `pε := `pε(Zdε).
Analogously to `pε , we introduce the Hilbert spaces H0,Hε through

H0 =
{
v ∈ L2

(
Rd
)

: supp v ⊆ Q
}
, Hε =

{
v ∈ `2ε(Zdε) : supp v ⊆ Qε

}
and let H0 and Hε be equipped with the scalar products

〈u, v〉H0
=

∫
Rd

u(x)v(x) dx , 〈uε, vε〉Hε = εd
∑
z∈Zdε

uε(z) vε(z) .

In analogy to (1.20), we define

Eωε (uε) := 〈uε,−Lωε uε〉Hε . (2.5)

For z ∈ Zdε , we let b(z, ε/2) denote the half-open ball z + (−ε/2, ε/2]
d
.

We define the local averaging operator Rε : H0 → Hε acting on functions
f ∈ H0 by

(Rεf)(z) = ε−d
∫

b(z, ε2 )

f(x) dx z ∈ Zdε . (2.6)

A direct calculation shows that its adjoint operator R∗ε : Hε → H0 is given
by

R∗εvε =
∑
z ∈Zdε

vε(z)1b(z, ε2 ) (vε ∈ Hε) , (2.7)

where we write 1b(z, ε2 ) for the characteristic function of b
(
z, ε2

)
.



2.2 Main results 35

2.2 Main results

2.2.1 Poisson equation

Given a function fε : Zdε → R, we are interested in the solution uε ∈ Hε of
the Poisson problem

−Lωε uε = fε on Qε (2.8)

with zero Dirichlet conditions. The above problem has a unique solution
because −Lωε is invertible on Hε.

Theorem 2.5. Let fε : Qε → R be a sequence of functions such that R∗εfε ⇀
f weakly in L2(Q) for some f ∈ L2(Q). If Assumptions 2.1 and 2.2(a’) hold,
then for almost all ω ∈ Ω the sequence of solutions uε ∈ Hε to the problem
(2.8) satisfies R∗εuε → u strongly in L2(Q), where u ∈ H1

0 (Q)∩H2(Q) solves
the limit problem

−∇ · (Ahom∇u) = 2f , (2.9)

almost everywhere in Q with Ahom defined through (2.54).

We prove this theorem at the end of Section 2.6. In Lemma 2.25 we prove
that Ahom is strictly positive definite and by standard arguments Ahom is
symmetric.

Based on Theorem 2.5, we introduce the operator

∀u ∈ L2(Q) Lω0 u := ∇ · (Ahom∇u) ,

such that −Lω0 is a symmetric positive definite operator on L2(Q) with do-
main H2(Q).

Fig. 2.2:
Triangular
lattice.

Remark 2.6 With our methods, Theorem 2.5 can be
easily generalized for other lattices than Zd. In order to
apply our methods directly, we just have to require that
the lattice is translationally invariant (for the two-scale
convergence, see Section 2.5.4) and fulfills a Sobolev
inequality (as in (2.24) or (2.25)) with isoperimetric
dimension dISO (to obtain the necessary Poincaré in-
equalities and make the Moser iteration work). For ex-
ample, the triangular lattice in Figure 2.2 is trans-
lationally invariant and has isoperimetric dimension
dISO = 2. If we therefore replace Zd by the triangu-
lar lattice and the dimension d in Assumption 2.2 by
the isoperimetric dimension dISO, Theorem 2.5 still holds.

Note that in view of Remark 2.4, we observe that in the case of inde-
pendent and identically distributed conductances on the triangular lattice,
Assumption 2.2(a) holds if E[ω(e)−1/6] <∞.
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Remark 2.7. Although we focus here on the random conductance model with
long-range jumps and positive nearest-neighbor conductances, our arguments
do not require the full strength of this assumption. For instance, we can also
extend the homogenization result to the nearest-neighbor percolation case.
More precisely, we can relax Assumption 2.1(c) such that the set of open
edges O(ω) ⊂ Ed forms a unique infinite cluster that satisfies both a vol-
ume regularity condition and a (weak) relative isoperimetric inequality on
large scales, cf. [DNS18]. Notice that in the nearest-neighbor percolation set-
ting, similar homogenization results have also been obtained by Faggionato in
[Fag08] under the additional assumption that the conductances are bounded
from above.

2.2.2 Spectral homogenization

In order to infer the large deviation principle Proposition 2.12, let us now
consider the spectrum of the operators −Lωε + RεV with an arbitrary
bounded, continuous potential V : Rd → R. On the domain Qε with zero
Dirichlet conditions we can represent −Lωε +RεV as a real symmetric ma-
trix and therefore we can choose the set

{
ψεj
}
j=1,...,k

of Dirichlet eigenvec-

tors such that they form an orthonormal system. By virtue of the Perron-
Frobenius theorem (see e.g. [Sen81, Chapter 1]) the principal Dirichlet eigen-
value λε1 is unique. Thus, we now consider the problem

ψεk ∈ Hε, (−Lωε +RεV )ψεk = λεkψ
ε
k, k = 1, 2, . . . ,

λε1 < λε2 ≤ . . . ≤ λεk . . . ,

〈ψεk, ψεl 〉Hε = δkl .

(2.10)

Similarly, we consider the spectrum of the operator −Lω0 + V , i.e.,

ψ0
k ∈ H0, (−Lω0 + V )ψ0

k = λ0
kψ

0
k, k = 1, 2, . . . ,

λ0
1 < λ0

2 ≤ . . . ≤ λ0
k . . . ,

〈ψ0
k, ψ

0
l 〉Hε = δkl .

(2.11)

In order to study the homogenization of (2.10) with a non-trivial potential
V , we need the following result.

Proposition 2.8. Let fε : Qε → R be a sequence of functions such that
R∗εfε ⇀ f weakly in L2(Q) for some f ∈ L2(Q). Let V : Rd → R be a
bounded, continuous potential such that lim infε→0 λ

ε
1 > 0. If Assumptions
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2.1 and 2.2(a’) hold, then for almost all ω ∈ Ω the sequence of solutions
uε ∈ Hε to the problem

(−Lωε +RεV )uε = fε (2.12)

satisfies R∗εuε → u strongly in L2(Q), where u ∈ H1
0 (Q) ∩H2(Q) solves the

limit problem
−∇ · (Ahom∇u) + 2V u = 2f , (2.13)

almost everywhere in Q with Ahom defined through (2.54).

We prove this proposition in Section 2.7. Note that under Assumption
2.2(a’), the condition V ≥ 0 is sufficient for lim infε→0 λ

ε
1 > 0.

By virtue of [JKO94, Lemma 11.3, Theorem 11.5], Proposition 2.8 implies
the following result, see Section 2.7. Note that for the spectral result we can
drop the assumption lim infε→0 λ

ε
1 > 0 as we explain in Section 2.7.

Theorem 2.9. Let V : Rd → R be a bounded, continuous potential and let
k ∈ N. If Assumptions 2.1 and 2.2(a’) hold, then

λεk → λ0
k P-a.s. as ε→ 0 . (2.14)

Further, the following statements are true:

(i) Let k ∈ N and let εm be a null sequence. Then there P-a.s. exists a family
{ψ0

j }1≤j≤k of eigenvectors of the operator −Lω0 + V and a subsequence,
still indexed by εm, along which the vector(

R∗εmψ
εm
1 , . . . ,R∗εmψ

εm
k

)
→
(
ψ0

1 , . . . , ψ
0
k

)
strongly in L2(Q) .

(ii) On the other hand, if the multiplicity of λ0
k is equal to s, i.e.,

λ0
k−1 < λ0

k = . . . = λ0
k+s−1 < λ0

k+1 (with λ0
0 < λ0

1 arbitrary) ,

then there P-a.s. exists a sequence ψε ∈ Hε such that

lim
ε→0
‖ψε −Rεψ0

k‖Hε = 0 , (2.15)

where ψε is a linear combination of the eigenfunctions of the operator
−Lωε +RεV corresponding to the eigenvalues λεk, . . . , λ

ε
k+s−1.

Note that Biskup, Fukushima and König [BFK16] proved a spectral ho-
mogenization theorem for a random bounded potential and the standard
lattice Laplacian. They later extended their result to unbounded potentials
in [BFK17].
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2.2.3 A note on optimality

Remark 2.10 Let us discuss in what sense Assumption 2.2 is optimal for
the result of Theorem 2.9 with V = 0. Since the principal Dirichlet eigenvalue
has the variational representation

λε1 = inf{〈uε,−Lωε uε〉Hε : uε ∈ Hε and ‖uε‖Hε = 1}

(also known as the Rayleigh-Ritz formula, or the Courant-Fischer theorem),
it is necessary for spectral homogenization that P-a.s. there exists C < ∞
such that

‖uε‖2Hε ≤ C〈uε,−Lωε uε〉Hε for all uε ∈ Hε (2.16)

and for all ε > 0 (uniform Poincaré inequality).

Fig. 2.3:
Variable-speed trap
in d ≥ 2, cf. Fig. 1.10.

If we assume that P-a.s. only nearest-neighbor
connections carry a positive conductance, i.e.,
O(ω) = Ed, then Assumption 2.2 is optimal for
the uniform Poincaré inequality up to the critical
case sup{r : E[ω(e)−r] <∞} = qc (cf. (1.42)). This
means that if sup{r : E[ω(e)−r] < ∞} < qc, then
it is possible to construct an environment where the
uniform Poincaré inequality does not hold as ε tends
to zero.

For d ≥ 2, this is due to trapping structures as in
Figure 2.3 where uε can concentrate its entire mass,
see e.g. the survey on eigenvalue upper bounds on
page 79. The construction of stationary, ergodic en-
vironments with such trapping structures is analo-
gous to the one of a trap for the constant-speed random walk in [ADS16,
Theorem 5.4]. In the i.i.d. case and if sup{r : E[ω(e)−r] < ∞} < 1/4, the
traps occur even P-a.s. for ε small enough and the principal Dirichlet eigen-
vector localizes P-a.s. in a single site Theorem 3.13.

In d = 1 and if sup{r : E[ω(e)−r] < ∞} < 1, even an i.i.d. environment
contradicts the uniform Poincaré inequality: By a Borel Cantelli argument
we can show that P-a.s. for ε small enough there exist edges e1 = {x1, y1} and
e2 = {x2, y2} such that x1 ∈ (−ε−1,−ε−1/2) ∩ Z and x2 ∈ (ε−1/2, ε−1) ∩ Z,
respectively, and such that both ω(e1) and ω(e2) decay much faster than
ε. When we insert a function uε ∈ Hε into (2.16) that is 1 on the interval
[max(εx1, εy1),min(εx2, εy2)] and zero otherwise, then we see that C diverges
as ε tends to zero, which is a contradiction to a uniform Poincaré inequality.

If we assume that O(ω) is P-a.s. strictly larger that Ed but contains only
connections of bounded length, an analogous construction as in [ADS16, The-
orem 5.4] shows that qc = d/2 is still optimal in the general stationary er-
godic case with d ≥ 2. For independent conductances however, qc decreases
when the upper bound for the length of the connections increases, see also Re-
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mark 2.4. On the other hand, if we assume that O(ω) contains connections
of unbounded length, all the suggested counterexamples fail and the question
about the optimal conditions requires further research.

2.2.4 Local times

Our main motivation for this chapter is to prove a quenched large deviation
principle (LDP) for the family of local times defined in (1.28) given that the
random walk stays in a certain growing region of the lattice. More precisely,
we define a spatial scaling αt with 1 � αt �

√
t and consider the rescaled

local times

Lt(z) :=
αdt
t
lt(bαtzc) (z ∈ Rd, t > 0) . (2.17)

Further, let Q = (−1, 1)d and define Qt = αtQ ∩ Zd. In [KW15, Theorem
1.8], the authors prove a quenched large deviation principle for the function
Lt given that supp(lt) ⊂ Qt and under the assumption that the conduc-
tances are i.i.d. and uniformly elliptic. Our aim is to generalize this result
to stationary and ergodic conductances and replace the uniform ellipticity
condition by a suitable moment condition.

Let us recall some facts about the local times of the simple random walk.
We define the set

F =
{
f2 : f ∈ L2(Q), ‖f‖2 = 1

}
(2.18)

and equip F with the weak topology of integrals against bounded continuous
functions V : Q→ R. Notice that on the event {supp(lt) ⊂ Qt} the function
Lt is an element of the set F and an L1-normalized random step function
on Rd.

In the case of a simple random walk, i.e., when ωx,z ≡ 1, it is known
that on the event {supp(lt) ⊂ Qt} the function Lt satisfies a large deviation
principle on F with scale tα−2

t and rate function I0 = ISRW − infF I
SRW,

where

ISRW(f) =

{∑d
i=1

∫
Q

(∂if(y))
2

dy = ‖∇f‖22, f ∈ H1
0 (Q) ,

∞ , else,
(2.19)

see [KW15] for further explanation and [GKS07]. We prove that under quite
general conditions, this is also true for the random conductance model, see
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Proposition 2.12 and Corollary 2.13. For general stationary and ergodic con-
ductances the resulting rate function reads

I0 = I − inf
F
I where I(f) =

{∫
Q

(∇f) ·Ahom∇f , f ∈ H1
0 (Q),

∞ , else,

(2.20)

and the matrix Ahom ∈ Rd × Rd is defined as in (2.54).

Assumption 2.11 (Heat kernel lower bounds). There exists c > 0 such
that P-a.s. for t large enough

Pω0 [Xt = x] ≥ ct−d/2 (2.21)

for all x ∈ Zd with |x| ≤
√
t.

Proposition 2.12. Let Assumptions 2.1, 2.2(a’) and 2.11 be fulfilled. Then
P-a.s. the rescaled local times Lt satisfy a large deviation principle with re-
spect to the weak topology of integrals against bounded continuous functions
V : Q → R under Pω0 [ · | supp(lt) ⊂ αtQ] on F . The scale is tα−2

t and the
rate function I0 is defined in (2.20).

We prove this proposition in Section 2.8 as a consequence of Theorem 2.9.
In the special case where only nearest-neighbor conductances are positive,

Proposition 2.12 together with the heat kernel bounds of [ADS16, Proposi-
tion 4.7] respectively, implies the following corollary.

Corollary 2.13. Let the conductances be stationary and ergodic with law
P and let P-a.s. O(ω) = Ed. For p, q ∈ [1,∞] satisfying 1/p + 1/q < 2/d
assume that E[ω(e)p] < ∞ and E[ω(e)−q] < ∞ for any e ∈ Ed. Then the
large deviation principle from Proposition 2.12 holds.

2.3 Inequalities

In analogy to the definition of `pε in (2.4), we define the following space-
averaged norms for functions f : Zd → R. Let A ⊆ Zd be a non-empty set
and p ∈ [1,∞). Then

∥∥f∥∥p,A :=

(
1

|A|
∑
x∈A
|f(x)|p

)1/p
and

∥∥f∥∥∞,A := max
x∈A
|f(x)| ,

(2.22)

where |A| is the counting measure on A. Moreover, we let

(f)A := |A|−1
∑
x∈A

f(x) (2.23)

abbreviate the average of f over the set A.
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2.3.1 Poincaré and Sobolev inequalities

The main objective in this subsection is to prove weighted Poincaré and
Sobolev inequalities. The Poincaré inequalities of Proposition 2.14 and (2.35)
are the main tools in the proof of Lemma 2.19, whereas the Sobolev inequal-
ity of Proposition 2.15 with ρ > 1 ensures uniform `∞-bounds of the solution
to the Poisson equation (see Section 2.3.2).

Starting point for our further considerations is the fact that the underlying
unweighted Euclidean lattice (Zd,Ed) satisfies the classical Sobolev inequal-
ity for any d ≥ 1. Let B ⊂ Zd be finite and connected and u : Zd → R.
Then,

inf
a∈R

∥∥u− a∥∥∞,B ≤ C1 |B|1/d
(

1

|B|
∑
x,y∈B
{x,y}∈Ed

∣∣u(x)− u(y)
∣∣) (2.24)

for d = 1, whereas for any d ≥ 2 and α ∈ [1, d) we have

inf
a∈R

∥∥u− a∥∥ dα
d−α ,B

≤ C1 |B|1/d
(

1

|B|
∑
x,y∈B
{x,y}∈Ed

∣∣u(x)− u(y)
∣∣α)1/α. (2.25)

For d ≥ 2 this Sobolev inequality follows from the isoperimetric inequality
of the underlying Euclidean lattice, see e.g. [Kum14, Theorem 3.2.7].

Proposition 2.14 (local Poincaré inequality). For any x0 ∈ Zd and
n ≥ 1, let B(n) ≡ B(x0, n) ⊂ Zd. Suppose that d = 1 and that νω(x) < ∞
for all x ∈ Zd. Then, there exists CPI <∞ such that

∥∥u− (u)B(n)

∥∥2
2,B(n) ≤ CPI

∥∥νω∥∥1,B(n)
n2

|B(n)|
∑

x,y∈B(n)

ωxy
∣∣u(x)− u(y)

∣∣2
(2.26)

for any u : Z→ R.
Furthermore, for every d ≥ 2 and l ∈ [1,∞) with νωl (x) < ∞ for all

x ∈ Zd, there exist constants CPI ≡ CPI(d, l) < ∞ and CW ≡ CW(l) < ∞
with CW(1) = 1 such that∥∥u− (u)B(n)

∥∥2
2,B(n)

≤ CPI

∥∥νωl ∥∥ d
2 ,B(n)

n2

|B(n)|
∑

x,y∈B(CWn)

ωxy
∣∣u(x)− u(y)

∣∣2, (2.27)

for any u : Zd → R, where the measure νl is given by (2.1) with suitable path
sets Γl.
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Proof of Proposition 2.14. As in [ADS16, Proposition 2.1 or 6.1], the
assertion is an immediate consequence of (2.25) and Hölder’s inequality (see
also [GM18, Lemma 2.3]). Nevertheless, we will repeat the argument here
for the reader’s convenience.

Since ‖u−(u)B(n)‖2,B(n) = infa∈R‖u−a‖2,B(n) ≤ infa∈R‖u−a‖∞,B(n), the
assertion (2.26) follows from (2.24) by an application of the Cauchy-Schwarz
inequality.

Let us now consider (2.27), i.e., the case d ≥ 2. For e = {x, y} ∈ Ed we let
|∇u(e)| denote the difference |u(x)− u(y)|. For any e ∈ Ed we observe that
by the Cauchy-Schwarz inequality

|∇u(e)| ≤
(

1

ωl(e)

)1/2( ∑
e′∈Ed

ω(e′) |∇u(e′)|2 1e′∈ζoptl (e)

)1/2
,

where we recall the definitions of ωl and ζopt
l in (2.2) and below. Thus, for

any α ∈ [1, 2), Hölder’s inequality yields

(
1

|B(n)|
∑

x,y∈B(n)
{x,y}∈Ed

|∇u({x, y})|α
)1/α

≤
∥∥νωl ∥∥1/2

α/(2−α),B(n)

(
1

|B(n)|
∑
e′∈Ed

ω(e′) |∇u(e′)|2Nl(e′)
)1/2
,

(2.28)

where

Nl(e
′) :=

∑
x,y∈B(n)
{x,y}∈Ed

1e′∈ζoptl ({x,y}) for any e′ ∈ Ed .

Note that there exists c < ∞ such that Nl(e
′) ≤ cld for any e′ ∈ Ed. In

addition, there exists CW < ∞ such that Nl(x, y) = 0 if x, y /∈ B(CWn).
Thus, when we choose α = 2d/(d+ 2), then (2.27) follows from (2.25). ut

Our next task is to establish the corresponding versions of (2.24) and
(2.25) on the weighted graph (Zd,Ed,ω). For this purpose, for d ≥ 2 and
q ≥ 1 we define

ρ ≡ ρ(d, q) :=
d

d− 2 + d/q
. (2.29)

Notice that ρ(d, q) is monotonically increasing in q and converges to d/(d−2)

as q tends to infinity. Moreover, ρ(d, d/2) = 1. For the following propositions,
recall the definitions of the Dirichlet energy in (1.20) and (2.5).
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Proposition 2.15 (Sobolev inequality). Let x0 ∈ Zd and n ∈ N. Suppose
that d = 1 and that νω(x) < ∞ for all x ∈ Zd. Then there exists CS < ∞
such that ∥∥u2

∥∥∞,B(x0,n) ≤ CS n
2
∥∥νω∥∥1,B(x0,n)

Eω(u)

|B(x0, n)|
(2.30)

for any u : Z→ R with suppu ⊂ B(x0, n).
Furthermore, for every d ≥ 2, q ∈ [1,∞) and l ∈ [1,∞) with νωl (x) < ∞

for all x ∈ Zd, there exists CS ≡ CS(d, q, l) <∞ such that

∥∥u2
∥∥
ρ,B(x0,n) ≤ CS n

2
∥∥νωl ∥∥q,B(x0,n)

Eω(u)

|B(x0, n)|
(2.31)

for any u : Zd → R with suppu ⊂ B(x0, n), where the measure νl is given by
(2.1) with suitable path sets Γl.

We prove Proposition 2.15 after the following remark.

Remark 2.16. For d = 1, Proposition 2.15 implies that

max
x∈Qε

(uε(x))
2 ≤ CS

∥∥νω∥∥1,B1/ε
Eωε (uε) . (2.32)

For d ≥ 2, Proposition 2.15 implies that

‖(uε)2‖`ρε(Qε) ≤ CS

∥∥νωl ∥∥q,B1/ε
Eωε (uε) . (2.33)

When we insert q = d/2 into (2.33), we especially obtain that

‖uε‖2`2ε(Qε) ≤ CS

∥∥νωl ∥∥ d
2 ,B1/ε

Eωε (uε) . (2.34)

Under Assumption 2.2(a) and by virtue of the ergodic theorem, (2.34) and
(2.30) imply that for d ≥ 1 there exists a P-a.s. finite C(ω) such that for all
ε > 0 and all uε ∈ Hε we have

‖uε‖2Hε ≤ C(ω) Eωε (uε) (uniform Poincaré inequality) . (2.35)

Proof of Proposition 2.15. In the sequel we will give a proof only for
(2.31). The assertion (2.30) follows by similar arguments. To lighten nota-
tion, set B(n) ≡ B(x0, n) and define A(n) := B(2n)\B(n). The constant
c ∈ (0,∞) appearing in the computations below is independent of α but
may change from line to line. Let a ∈ R and α ∈ [1, d). Since u(x) = 0 for
x ∈ A(n), we have

|a| = 1

|A(n)|
∑

x∈A(n)

|u(x)− a| ≤ |B(2n)|
|A(n)|

∥∥u− a∥∥1,B(2n) ≤ c
∥∥u− a∥∥ dα

d−α ,B(2n) .
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Hence, an application of Minkowski’s inequality yields∥∥u∥∥ dα
d−α ,B(n) ≤

∥∥u− a∥∥ dα
d−α ,B(n) + |a| ≤ c

∥∥u− a∥∥ dα
d−α ,B(2n).

Thus, for any q ≥ 1 the assertion (2.31) follows as in the previous proof from
(2.25) combined with (2.28) by choosing α = 2q/(q + 1) ∈ [1, 2). ut

2.3.2 Maximal inequality

Proposition 2.17 (`∞-bound for solution of Poisson equation in d ≥
2). Let d ≥ 2 and suppose that uε : Zdε → R is a solution of (2.8). For
some fixed l ∈ [1,∞) consider the measure νωl on Zd as defined in (2.1) and
assume that νωl (x) < ∞ for all x ∈ Zd. Then, for any q > d/2 there exist
ζ ∈ (0, 1], κ ≡ κ(d, q), and C1 ≡ C1(d, q) such that

max
x∈Qε

|u(x)| ≤ C1

(
1 ∨

∥∥νωl ∥∥q,B1/ε

∥∥fε∥∥`∞(Qε)

)κ ∥∥u∥∥ζ
`2ε
. (2.36)

We prove this proposition after the following remark.

Remark 2.18. Note that if uε : Zdε → R is a solution of (2.8), then due to
(2.32), (2.34) and the Cauchy-Schwarz inequality it follows for any dimension
d ≥ 1 that

‖uε‖2`2ε ≤ CS

∥∥νωl ∥∥ d
2 ,B1/ε

Eωε (uε) ≤ CS

∥∥νωl ∥∥ d
2 ,B1/ε

‖uε‖`2ε ‖f
ε‖`2ε(Qε) .

(2.37)

Let Assumption 2.2(a) be fulfilled. Then supε>0 ‖fε‖`2ε(Qε) < ∞ implies by
the ergodic theorem that both supε>0 ‖uε‖`2ε and supε>0 Eωε (uε) are bounded
as well. Thus, (2.32) implies that in dimension one supε>0 ‖uε‖∞ is bounded.
Furthermore, if even Assumption 2.2(a’) is fulfilled and supε>0 ‖fε‖`∞(Qε) <
∞, then (2.36) implies that supε>0 ‖uε‖∞ is bounded for d ≥ 2 as well.

Proof of Proposition 2.17. We use the Moser iteration scheme. Let
us fix ε > 0 and consider uε : Zdε → R with supp uε ∈ Qε. We define
ũα := |u|αsignu for any α ≥ 1. By virtue of Eq. (A.2) in [ADS15] we obtain
the following energy estimate

Eεω(ũαε ) ≤ α2

2α− 1
εd
∑
x∈Zd

ũ2α−1
ε (εx)(−Lωε uε)(εx) . (2.38)
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Since uε is a solution to the Poisson equation (2.8), the energy estimate
(2.38) implies that

Eεω((ũε)
α

) ≤ α2

2α− 1
‖fε‖`∞(Qε) ε

d
∑
x∈Qε

(ũε(x))
2α−1

=
α2

2α− 1
‖fε‖`∞(Qε)‖u

ε‖2α−1

`2α−1
ε

By the Sobolev inequality (2.33) and Jensen’s inequality it follows that

‖uε‖2α
`2αρε

≤ CS
α2

2α− 1
‖fε‖`∞(Qε)

∥∥νωl ∥∥q,B1/ε
‖uε‖2α−1

`2αε
, (2.39)

We define αj = ρj for j ∈ N0. Further, we set ζj := 1−1/(2αj) for ‖uε‖
`
2αj
ε

<

1 and ζj := 1 for ‖uε‖
`
2αj
ε
≥ 1. Recall that ρ ≡ ρ(d, q) > 1 for any q > d/2.

Furthermore, we observe that for any β > 0 we have maxx∈Qε |u(x)| ≤
(2/ε)d/β‖u‖`βε . Thus, by iterating the inequality (2.39) and using the fact

that
∑∞
j=1 j/αj < ∞, we obtain that there exists C1 ≡ C1(d, q) < ∞ such

that

‖uε‖∞ ≤ (2/ε)dε‖uε‖
`
1/ε
ε
≤ C1‖uε‖ζ`2ε

m∏
j=0

(
1 ∨ ‖fε‖`∞(Qε) ‖ν

ω
l ‖q,B1/ε

) 1

2ρj−1

where ζ =
∏m
j=0 ζj ≤ 1 and m such that 2αm > 1/ε. Choosing κ =∑∞

j=0 1/(2αj) <∞, we complete the proof. ut

2.4 Compact embedding

The very first step to prove homogenization of the operator Lωε is to show
that a sequence R∗εuε (uε ∈ Hε) has a strongly convergent subsequence if
supε Eωε (uε) <∞. The Dirichlet energy Eωε is defined in (2.5).

For any m ∈ N consider a partition of Q into md congruent open sub-
cubes (Qmj )j=1,...,md with side length 2/m. For a fixed m we further define

Qεj := supp R∗ε
(
Rε1Qmj

)
, where we suppress the superscript “m” although

Qεj depends on m. Then Qmj ⊂ Qεj and |Qεj\Qmj | → 0 as ε→ 0.

Lemma 2.19. Let ω ∈ Ω and assume that the uniform Poincaré inequality
(2.35) holds with a finite C(ω) and that for any m ∈ N there exists ε∗m > 0
such that for all ε < ε∗m we have

max
1≤j≤md

∥∥νωl ∥∥q,ε−1Qεj
≤ 2E[(νωl (0))

q
]
1/q

. (2.40)
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Then the Poincaré inequality (2.27) implies that for any sequence uε ∈ Hε
(ε−1 ∈ N) with supε>0 Eεω(uε) < ∞, the sequence (R∗εuε)ε>0 has a strongly
convergent subsequence in L2(Rd).

This result also follows from [NSS17, Lemma 3.3, Lemma 3.14].

Remark 2.20. If Assumptions 2.1 and 2.2(a) are fulfilled, then for P-a.e.
realization ω ∈ Ω the hypotheses of Lemma 2.19 are fulfilled. That is, by
virtue of Assumptions 2.1(a), (c) and 2.2(a) as well as Remark 2.16, there
exists a P-a.s. finite C(ω) such that (2.35) is fulfilled. Furthermore, the same
assumptions together with the ergodic theorem imply that P-a.s. there exists
ε∗m > 0 such that for all ε < ε∗m (2.40) holds.

Proof of Lemma 2.19. First of all we observe that by virtue of (2.35) we
have

‖R∗εuε‖2 = ‖uε‖`2ε ≤ C(ω)Eεω(uε) ,

which implies that supε>0 ‖R∗εuε‖2 is finite by assumption. By the Banach-
Alaoglu theorem it follows that there exists a subsequence, which we still
index by ε, and u ∈ H0 such that

R∗εuε ⇀ u weakly in L2(Q) .

We now show that u is also a strong limit. We estimate

‖R∗εuε − u‖22 ≤ 3
md∑
j=1

(
‖R∗εuε − (R∗εuε)Qεj‖

2
L2(Qεj)

+

+ ‖(R∗εuε − u)Qεj‖
2
L2(Qεj)

+ ‖(u)Qεj − u‖
2
L2(Qεj)

)
,

(2.41)

where, in analogy to (2.23), we abbreviate

(v)Qεj := |Qεj |−1

∫
Qεj

v(x) dx for v : Rd → R.

Since R∗εuε converges weakly in L2(Q) to u, the sum over the second term
on the right-hand side of (2.41) vanishes as ε tends to zero. It remains to
show that, as ε→ 0, the limit superior of the sum of the first and third term
is zero as well.

We use arguments similar to the ones given in [ADS15, Proposition 2.9],
see also [NSS17, Lemma 3.3, Lemma 3.14]. Let ei (i = 1, . . . , d) be the unit
base vectors of Rd. By virtue of Proposition 2.14 there exists CPI <∞ such
that P-a.s. for ε small enough the first term in the brackets of the right-hand
side in (2.41) can be estimated by
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‖R∗εuε − (R∗εuε)Qεj‖
2
L2(Qεj)

= ‖uε − (uε)Qεj‖
2
`2ε(Q

ε
j)

≤ CPI

∥∥νωl ∥∥q,ε−1Qεj

4εd

m2

d∑
i=1

∑
x,x+ei∈CWε−1Qεj

ωx,x+ei

(
∂εeiu

ε(εx)
)2

(2.42)

where for d = 1 we set l = CW = q = 1. For d ≥ 2 we set q = d/2. Since any
edge e ∈ Ed is contained in at most Co := 2dCW cubes CWε

−1Qεj , summing

over j = 1, . . . ,md yields

md∑
j=1

‖R∗εuε − (R∗εuε)Qεj‖
2
L2(Qεj)

≤ 4m−2CPICo Eεω(uε) max
1≤j≤md

∥∥νωl ∥∥q,ε−1Qεj
.

(2.43)

Note that Co is independent of m and Eεω(uε) is bounded in ε by assumption.
By virtue of (2.40), (2.41) and (2.43) it follows that there exists C < ∞

independent of m such that P-almost surely

lim sup
ε→0

‖R∗εuε − u‖22 ≤ Cm−2 + 3
md∑
j=1

lim sup
ε→0

‖(u)Qεj − u‖
2
L2(Qεj)

= Cm−2 + 3‖u−R∗2/mR2/mu‖22 .

Since m might be arbitrarily large and u ∈ L2(Q) has bounded support, the
claim follows. ut

2.5 Analytic tools

In this section we always assume that the law P is stationary and ergodic
with respect to spatial translations.

2.5.1 An ergodic theorem

In what follows, we will generalize a result by Boivin and Depauw.

Theorem 2.21 (Ergodic Theorem by [BD03, Theorem 3]). For every
f ∈ L1(Ω,P), for P-almost every ω ∈ Ω it holds

lim
ε→0

εd
∑

x∈ε−1Qε

v(εx)f(τxω) = E[f ]

∫
Q

v(x) dx ∀v ∈ C(Q) , (2.44)

and the Null-set depends on f but not on v.
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Remark 2.22. Evidently, we can also choose v as the characteristic function
of any relatively open or compact set A ⊂ Q and we obtain the Tempel’man
ergodic theorem.

We will use both Theorem 2.21 and Remark 2.22 in order to prove the
following theorem.

Theorem 2.23. For every f ∈ L1(Ω,P), for P-almost every ω ∈ Ω the
following holds: Let (uε)ε>0 be a sequence of functions from εZd → R with
support in Qε such that R∗εuε → u pointwise a.e. in Q. Furthermore, let
supε>0‖uε‖∞ <∞. Then u ∈ L∞(Q) and

lim
ε→0

εd
∑

x∈ε−1Qε

uε(εx)f(τxω) = E[f ]

∫
Q

u(x) dx (2.45)

and the Null-set depends on f but not on the sequence uε.

Proof. First we note that u ∈ L∞(Q) since supε>0‖uε‖∞ <∞. Now we let
η > 0 and let ρδ be a sequence of mollifiers approximating the identity. By
Egorov’s theorem, there exists a compact set Kη with L (Q\Kη) < η such
that both R∗εuε → u and uδ := u ∗ ρδ → u uniformly on Kη. We now make
the following decomposition:∣∣∣∣∣∣ εd

∑
x∈ε−1Qε

uε(εx)f(τxω)− E[f ]

∫
Q

u(x) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ εd
∑

x∈ε−1Qε

(uε(εx)− uδ(εx))f(τxω)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ εd
∑

x∈ε−1Qε

uδ(εx)f(τxω)− E[f ]

∫
Q

uδ(x) dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣ E[f ]

∫
Q

(uδ(x)− u(x)) dx

∣∣∣∣∣∣ (2.46)

Since uδ ∈ C(Q), the second summand on the above right-hand side con-
verges to zero by virtue of Theorem 2.21. For the first summand on the
right-hand side of (2.46) we estimate that

lim
ε→0

∣∣∣∣∣∣ εd
∑

x∈ε−1Qε

(uε(εx)− uδ(εx))f(τxω)

∣∣∣∣∣∣
≤ lim
ε→0

sup
x∈Kη

|uε(x)− uδ(x)| εd
∑

x∈ε−1(Kη∩Qε)

|f(τxω)|

+ lim
ε→0

(‖uδ‖∞ + ‖uε‖∞) εd
∑

x∈ε−1Qε\Kη

|f(τxω)| . (2.47)
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Since the functionR∗εuε converges uniformly in ε to u on Kη, we can estimate
by virtue of Remark 2.22 that

lim
ε→0

sup
x∈Kη

|uε(x)− uδ(x)| εd
∑

x∈ε−1(Kη∩Qε)

|f(τxω)|

≤ sup
x∈Kη

|uδ(x)− u(x)| |Q| E[f ] .

We further estimate the second summand on the right-hand side of (2.47)
by

lim
ε→0

(‖uδ‖∞ + ‖uε‖∞) εd
∑

x∈ε−1Qε\Kη

|f(τxω)| ≤ 2η sup
ε>0
‖uε‖∞E[f ] ,

where we have used Remark 2.22. Thus, as ε→ 0, we obtain that

lim
ε→0

∣∣∣∣∣∣εd
∑

x∈ε−1Qε

uε(εx)f(τxω)− E[f ]

∫
Q

u(x) dx

∣∣∣∣∣∣
≤ sup
x∈Kη

|uδ(x)− u(x)| |Q|E[f ] + 2η sup
ε>0
‖uε‖∞E[f ]

+

∣∣∣∣∣∣E[f ]

∫
Q

(uδ(x)− u(x)) dx

∣∣∣∣∣∣
As δ → 0, the uniform convergence uδ → u on Kη yields

lim
ε→0

∣∣∣∣∣∣ εd
∑

x∈ε−1Qε

uε(εx)f(τxω) − E[f ]

∫
Q

u(x) dx

∣∣∣∣∣∣ ≤ 2η sup
ε>0
‖uε‖∞E[f ] .

Since the last inequality holds for every η > 0, the claim follows. ut

2.5.2 Function spaces

In what follows, we always assume that Assumption 2.1(b) holds. We first
note that the probability space given in (1.10) is generated from the compact
metric space [0,∞]E , and therefore the notion of continuity on Ω makes
sense. We say that a function ϕ : Ω× Zd → R is shift covariant if it fulfills

ϕ(ω, x+ z)− ϕ(ω, x) = ϕ(τxω, z) (2.48)

for all x, z ∈ Zd (cf. [Bis11] Eq. (3.14)). Note that shift covariant functions
ϕ fulfill ϕ(ω, 0) = 0. Then (2.48) directly implies that

ϕ(ω, x) = −ϕ(τxω,−x) . (2.49)
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We define on Ω× Zd the space

L2
cov :=

{
ϕ : Ω× Zd → R : ϕ satisfies (2.48) and ‖ϕ‖L2

cov
<∞

}
,

where ‖ϕ‖2L2
cov

:= E

∑
z∈Zd

ω0,zϕ(ω, z)2

 .
Accordingly, we define the scalar product between ϕ1, ϕ2 ∈ L2

cov by

〈ϕ1, ϕ2〉L2
cov

:= E

∑
z∈Zd

ω0,zϕ1(ω, z)ϕ2(ω, z)

 . (2.50)

Note that L2
cov is a closed subspace of

⊗
z∈Zd L

2(Ω, µz), where µz is the
measure on Ω defined by dµz(ω) = ω0,z dP(ω). Since Ω is a compact metric
space, L2(Ω, µz) is separable for all z ∈ Zd and thus also the countable
product space

⊗
z∈Zd L

2(Ω, µz) and its subspace L2
cov are separable.

Further, we note that for all φ : Ω → R it holds that Dφ(ω, z) :=
Dzφ(ω) := φ(τzω) − φ(ω) satisfies Dφ(ω, x + z) − Dφ(ω, x) = Dφ(τxω, z).
Therefore Dφ is in L2

cov. A local function on Ω is a bounded, continuous func-
tion that only depends on finitely many coordinates of [0,∞]E . Following the
outline of Chapter 3 in [Bis11], we define the closed subspace

L2
pot := {Dφ : φ local}

L2
cov
.

Let L2
sol be the orthogonal complement of L2

pot in L2
cov and let us define

div(ωb) :=
∑
z

ω0,z(b(ω, z)− b(τzω,−z)) .

Note that since b satisfies (2.49), the last equation also reads

div(ωb) = 2
∑
z

ω0,zb(ω, z). (2.51)

Then we have the following lemma.

Lemma 2.24 ([Bis11, Lemma 3.6]).

div(ωb) = 0 for all b ∈ L2
sol and P-a.a. ω . (2.52)
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Using the above notation, we define χ ∈
(
L2

pot

)d
through

χ = argmin

E
∑
z∈Zd

ω0,z|z + χ̃(ω, z)|2
 : χ̃ ∈

(
L2

pot

)d , (2.53)

i.e., −χj is the orthogonal projection of zj ∈ L2
cov on the space L2

pot with
respect to the scalar product defined in (2.50). We will see below that we
can write the homogenized matrix as

(Ahom)i,j = E

∑
z∈Zd

ω0,z(ei · [z + χ(ω, z)])(ej · [z + χ(ω, z)])

 , (2.54)

where the ei, i = 1, . . . , d, denote the unit base vectors of Rd. In analogy to
[Fag08, Lemma 4.5] we know the following result.

Lemma 2.25. Suppose that E
[
νωl (0)

]
<∞ with νωl as defined in (2.1). Then

the matrix Ahom is positive definite. In particular, the vectorial space spanned
by the following vectors

E
[∑

z∈Zd ω0,z zb(ω, z)
]
∈ Rd, b ∈ L2

sol (2.55)

coincides with Rd.

Proof. First we notice that ψ(·, ei) ∈ L1(Ω,P) for any ψ ∈ L2
cov and

i = 1, . . . , d, provided that E[νωl (0)] < ∞. Indeed, by the Cauchy-Schwarz
inequality and the shift covariance (2.48), we observe that

E
[
|ψ(ω, ei)|

]
≤ E

[
1/ωl(0, ei)

]1/2(E[ ∑
x,y∈ζoptl

ωxy|ψ(τxω, y − x)|2
])1/2

≤
√
l |Γl|E

[
νωl (0)

]1/2 ∥∥ψ∥∥L2
cov
, (2.56)

where we abbreviate ζopt
l = ζopt

l ({0, ei}), recall (2.2). Moreover, by adapt-
ing the argument given in [Bis11, Proof of Lemma 4.8], it follows that
E[ψ(ω, ei)] = 0 for any ψ ∈ L2

pot and i = 1, . . . , d. In particular,

E[χj(ω, ei)] = 0

for any i, j = 1, . . . , d.
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Now let v ∈ Rd\{0}. Since E[v · χ(ω, ei)] = 0, it follows that

(v · ei)2 = (v · ei)E
[(
v · [ei + χ(ω, ei)]

)]
(2.56)

≤ |v · ei|
√
l |Γl|E

[
νωl (0)

]1/2 E [∑
z∈Zd

ω0,z

(
v · [z + χ(ω, z)]

)2]
.

Thus, by summing both sides over i = 1, . . . , d, we obtain

√
(v,Ahomv) = E

[∑
z∈Zd

ω0,z

(
v · [z + χ(ω, z)]

)2]

≥ |v|
2
2

|v|1
(
l |Γl|E

[
νωl (0)

])−1/2
> 0 .

Thus, the matrix Ahom is positive definite. By following literally the proof
of [Fag08, Lemma 4.5] we obtain the claim. ut

Bochner spaces. We will use the concept of Bochner spaces, which are
a special case of the theory outlined in [Ma02]. Let X be a normed space
with norm ‖·‖X with the corresponding topology and Borel-σ-algebra and
let U ⊂ Rd be a Lebesgue-measurable set. Then, for 1 ≤ p <∞, we define

‖f‖Lp(U ;X) :=

∫
U

‖f(x)‖pXdx

 1
p

,

Lp(U ;X) :=

f : U → X : f is measurable and

∫
U

‖f(x)‖pX dx <∞

 .

Given a measure space (Ω,F ,P), it turns out that Lp(U ;Lp(Ω,P)) and
Lp(U × Ω; L ⊗ P) are isometrically isomorph via the trivial identification
f(x)(ω) = f(x,ω). Here, L denotes the Lebesgue measure and L ⊗ P de-
notes the product measure. While not being necessary, this notation has
proved useful in homogenization theory since the introduction of two-scale
convergence in [All92]. In particular, it gives a clear and intuitive meaning
to spaces such as

L2(Q;L2
cov) :=

{
ϕ : Q× Ω× Zd → R :

∫
Q

‖ϕ(x, ·, ·)‖L2
cov

dx <∞ ,

ϕ(x, ·, ·) ∈ L2
cov for a.e. x ∈ Q

}

or, equivalently, L2(Q;L2
pot).
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If X̃ ⊂ X is a family of vectors in X, we denote

C(Q)⊗ X̃ := span
{
xf : f ∈ C(Q) , x ∈ X̃

}
.

If X̃ is a countable dense subset of X, i.e. X is separable, every element
of L2(Q;X) can be approximated by finite sums of elements of C(Q) ⊗ X̃
[Ma02].

2.5.3 Discrete derivatives

With the following definitions of discrete derivatives, we can write the oper-
ator Lωε in divergence form.

Definition 2.26 (Discrete derivatives). For u : Zdε → R we define the
ε-forward derivative in the direction z ∈ Zd by

∂εzu(x) = ε−1(u(x+ εz)− u(x)) , (2.57)

and the analogous backward derivative,

∂ε−z u(x) = ε−1(u(x)− u(x− εz)) . (2.58)

Further, we define ∇εu(x, z) := ∂εzu(x) and write ∇εu(x) for the func-
tion that maps z ∈ Zd to ∇εu(x, z). Accordingly, we define ∇ε−u(x, z) :=
∂ε−z u(x) and ∇ε−u(x). Moreover, for a function v : Zdε × Zd → R we define

divεv(x) =
∑
z∈Zd

∂ε−z v(x, z) . (2.59)

We use this notation to clearly distinguish between ∇ε, an operator on dis-
crete functions, and ∇, an operator on the Sobolev space H1

(
Rd
)
. A direct

calculation shows that when Aεω maps v(x, z) 7→ ω x
ε ,
x
ε+zv(x, z), then

−Lωε uε = −1

2
divε(Aεω∇εuε) . (2.60)

Moreover, for vε : Zdε → R we observe that

〈−Lωε uε, vε〉Hε =
εd

2

∑
x∈Zd

∑
z∈Zd

ωx,x+z

(
∂εzu

ε(εx)
)(
∂εzv

ε(εx)
)
. (2.61)

When we compare the divergence form of the operator Lωε in (2.60) with
the limit operator in (2.9), we better understand the result of Theorem
2.5. Furthermore (2.61) implies that Lωε is strictly positive definite on any
bounded domain with zero Dirichlet conditions at the boundary.
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2.5.4 Two-scale convergence

We adapt the concept of stochastic two-scale convergence by Zhikov and
Piatnitsky [ZP06] to our setting.

We denote by zi the function that maps z ∈ Zd onto its i’th coordinate
and observe that, since E

[∑
z∈Zd ω0,z|z|2

]
is finite, zi ∈ L2

cov for i = 1, . . . , d.
Since L2

cov is separable, there exist countable sets Φsol ⊂ L2
sol and Φpot ⊂

L2
pot such that Φ := Φsol⊕Φpot⊕{z1, . . . , zd}⊕{1} is dense in L2

cov. We can
assume that every ϕ ∈ Φpot is the gradient of a local function. Furthermore,
there exists a countable subspace Ψ ⊂ C∞c (Rd) such that Ψ is dense both in
L2(Rd) and in C∞c (Rd). We then find that Ψ⊗ Φ is dense in L2(Rd;L2

cov).

Definition 2.27 (Typical realizations). We denote by ΩΦ ⊂ Ω the set of
all ω ∈ Ω such that Theorem 2.21 holds

a) for all f(ω) :=
∑
z∈Zd ω0,zϕ(ω, z), where ϕ ∈ Φ,

b) for all f(ω) :=
∑
z∈Zd ω0,z(ϕiϕj)(ω, z), where ϕi, ϕj ∈ Φ, and

c) and for all f(ω) :=
∑
z∈Zd\Z ω0,z|z|2, where Z is a finite subset of Zd,

d) div(ωb) ◦ τx = 2
∑
z ωx,x+zb(τxω, z) = 0 for all b ∈ Φsol and all x ∈ Zd.

We call ΩΦ the set of typical realizations.

Remark 2.28. Note that P(ΩΦ) = 1 (compare to [Fag08, Lemma 4.4]).

Definition 2.29 (Two-scale convergence). Let wε : εZd × Zd → R. We
say that wε converges weakly in two scales to w ∈ L2(Rd;L2

cov) if

lim
ε→0

εd
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,x+zwε(εx, z)ϕ(τxω, z)

=

∫
Rd

v(x)E

∑
z∈Zd

ω0,zw(x,ω, z)ϕ(ω, z)

 dx (2.62)

for all v ∈ C∞c (Rd) and all ϕ ∈ Φ. In this case we write wε
2s
⇀ w.

Proposition 2.30. For all typical realizations ω ∈ ΩΦ it holds: If wε : εZd×
Zd → R and C <∞ are such that

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+zw
2
ε(εx, z) ≤ C ∀ε > 0 , (2.63)

then there exists a subsequence wεk and w ∈ L2(Rd;L2
cov) such that

wεk
2s
⇀ w . (2.64)
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Proof. The proof goes along the lines of classical proofs of two-scale con-
vergence like for example in [ZP06], Section 5.

We observe that for every v ∈ Ψ and ϕ ∈ Φ we find

lim sup
ε→0

εd

∣∣∣∣∣∣
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,x+zwε(εx, z)ϕ(τxω, z)

∣∣∣∣∣∣
(2.63)

≤ lim sup
ε→0

√
C

εd ∑
x∈Zd

∑
z∈Zd

ωx,x+zv
2(εx)ϕ2(τxω, z)

1/2

(2.44)

≤
√
C‖v‖L2‖ϕ‖L2

cov
, (2.65)

where, in the last step, we have also used that v has bounded support. It
follows that since Ψ and Φ are countable, we can choose a subsequence
εk → 0 as k →∞ such that the limit I(vϕ) of

Iεk(vϕ) := εdk
∑
x∈Zd

v(εkx)
∑
z∈Zd

ωx,x+zwεk(εkx, z)ϕ(τxω, z)

exists for every v ∈ Ψ and ϕ ∈ Φ. We notice that the functional I(·) is
linear in vϕ ∈ Ψ ⊗ Φ. Furthermore, due to (2.65), I(·) is continuous on
span{Ψ⊗ Φ}. It follows by Riesz representation theorem that we can find
w ∈ L2(Rd;L2

cov) such that

I(vϕ) =

∫
Rd

v(x)E

∑
z∈Zd

ω0,zw(x,ω, z)ϕ(ω, z)

 dx .

Since Ψ⊗ Φ is dense in L2(Rd;L2
cov), we obtain that w is uniquely defined.

Since, in addition, Ψ is dense in C∞c , we find for every v ∈ C∞c (Rd) and
ϕ ∈ Φ that Iεk(vϕ)→ I(vϕ) as ε→ 0 and hence (2.64) holds. ut

Lemma 2.31. For all typical realizations ω ∈ ΩΦ and all Lipschitz functions
v : Rd → R there exists C(ω) ∈ (0,∞], which depends only on supp v and
ω, such that

sup
ε>0

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z(∂
ε
zv(εx))

2
< C(ω)‖∇v‖2∞ . (2.66)

If supp v is bounded, then C(ω) is P-a.s. finite.
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Proof. We observe that we can interchange the order of the sums and esti-
mate

εd
∑
z∈Zd

∑
x∈Zd

ωx,x+z(∂
ε
zv(εx))

2

≤ εd ‖∇v‖2∞
∑
z∈Zd

∑
x∈ε−1(supp v∪(supp v−εz))

ωx,x+z|z|2

≤ εd ‖∇v‖2∞
∑

x∈ε−1 supp v

∑
z∈Zd

ωx,x+z|z|2

+ εd ‖∇v‖2∞
∑
z∈Zd

∑
x∈(ε−1 supp v)−z

ωx,x+z|z|2

The first term on the above right-hand side is finite by virtue of the ergodic
theorem. This also holds for the second term after an index shift in x and a
rearrangement of the two sums. ut

Lemma 2.32. Let Qε = Q ∩ εZd. For all typical realizations ω ∈ ΩΦ it
holds:

lim sup
ε→0

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z(∂
ε
zv(εx)−∇v(εx) · z)2

= 0 for all v ∈ C∞c (Rd) .

(2.67)

Proof. Let δ > 0. Since E
[∑

z∈Zd ω0,z|z|2
]
< ∞, we can choose a finite

point-symmetric subset Zδ ⊂ Zd such that

E

 ∑
z∈Zd\Zδ

ω0,z|z|2
 < δ .

Then we split the sum in (2.67) into a sum over z ∈ Zδ and a sum over
z /∈ Zδ.

For z ∈ Zδ we observe that, since v ∈ C∞c (Rd), we have

v(x+ εz)− v(x)

ε
−∇v(x) · z → 0 (2.68)

uniformly in x ∈ Rd. Further, we observe that there exists ε∗ > 0 such that
for z ∈ Zδ and for all ε < ε∗, the statement εx /∈ 2 supp v implies that
εx+ εz /∈ supp v. It follows that for ε small enough, we have
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εd
∑
x∈Zd

∑
z∈Zδ

ωx,x+z

(
v(εx+ εz)− v(εx)

ε
−∇v(εx) · z

)2

≤ εd
∑

x∈2ε−1 supp v

∑
z∈Zδ

ωx,x+z

(
v(εx+ εz)− v(εx)

ε
−∇v(εx) · z

)2

.

This together with (2.68) and the ergodic theorem implies that

εd
∑
x∈Zd

∑
z∈Zδ

ωx,x+z

(
v(εx+ εz)− v(εx)

ε
−∇v(εx) · z

)2

→ 0 as ε→ 0 .

Let us now consider the case z /∈ Zδ. As in the proof of Lemma 2.31, we
interchange the sums and observe that

εd
∑
x∈Zd

∑
z/∈Zδ

ωx,x+z

(
v(εx+ εz)− v(εx)

ε
−∇v(εx) · z

)2

≤ 4‖∇v‖2∞εd
∑
z/∈Zδ

∑
x∈ε−1(supp v∪supp v−εz)

ωx,x+z|z|2

≤ 4‖∇v‖2∞εd
∑

x∈ε−1 supp v

∑
z/∈Zδ

(
ωx,x+z|z|2 + ωx,x−z|z|2

)
By the ergodic theorem and the choice of Zδ it follows that the limit superior
of the above right-hand side is bounded from above by a constant times
δ| supp v|, which we can choose arbitrarily small. ut

Corollary 2.33 (of Lemma 2.32). For all typical realizations ω ∈ ΩΦ it

holds: If wε
2s
⇀ w, then for all v ∈ C∞c (Rd) the limit

lim
ε→0

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+zwε(εx, z)∂
ε
zv(εx)

=

∫
Rd

E

∑
z∈Zd

ω0,zw(x,ω, z)(∇v(x) · z)

dx . (2.69)

Proof. First we observe that zi ∈ Φ for i = 1, . . . , d and ∂eiv ∈ C∞c (Rd)
where the ei, i = 1, . . . , d, denote the unit base vectors of Rd. Therefore the

assumption that wε
2s
⇀ w implies that

lim
ε→0

εd
∑
x∈Zd

∂eiv(εx)
∑
z∈Zd

ωx,x+zziwε(εx, z)

=

∫
Rd

∂eiv(x)E

∑
z∈Zd

ω0,zziw(x,ω, z)

dx ,
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where the ei, i = 1, . . . , d, denote the unit base vectors of Rd. It follows that

lim
ε→0

εd
∑
x∈Zd

∇v(εx) ·
∑
z∈Zd

ωx,x+zzwε(εx, z)

=

∫
Rd

∇v(x) · E

∑
z∈Zd

ω0,zzw(x,ω, z)

dx

for all v ∈ C∞c (Rd). In order to prove (2.69), it thus remains to show that

lim
ε→0

∣∣∣∣∣∣ εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z(∂
ε
zv(εx)−∇v(εx) · z)wε(εx, z)

∣∣∣∣∣∣→ 0 .

This follows from Cauchy-Schwarz, i.e.,∣∣∣∣∣∣ εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z(∂
ε
zv(εx)−∇v(εx) · z)wε(εx, z)

∣∣∣∣∣∣
≤

εd ∑
x,z∈Zd

ωx,x+zw
2
ε(εx, z)

1/2εd ∑
x,z∈Zd

ωx,x+z(∂
ε
zv(εx)−∇v(εx) · z)2

1/2

.

The first factor on the right-hand side is bounded by assumption and the
second factor converges to zero by virtue of Lemma 2.32. ut

2.5.5 Convergence of gradients

Let us start with the following auxiliary lemma.

Lemma 2.34. For all ω ∈ ΩΦ and all b ∈ Φsol the following is true:∑
x∈Zd

∑
z∈Zd

∂εzv(εx)ωx,x+zb(τxω, z) = 0 (2.70)

for all v ∈ `∞(Zdε) with bounded support.

Proof. We write the left-hand side of (2.70) as

ε−1
∑
x∈Zd

∑
z∈Zd

v(εx+ εz)ωx,x+zb(τxω, z)− ε−1
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,x+zb(τxω, z)

The second term is immediately zero since ω ∈ ΩΦ and div(ωb) ◦ τx =
2
∑
z∈Zd ωx,x+zb(τxω, z) by (2.51). The first term is absolutely convergent

and therefore we can interchange the sums. After an additional index shift
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x x− z, we obtain that the above first term is equal to

ε−1
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx−z,xb(τx−zω, z)

= −ε−1
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,x−zb(τxω,−z) ,

where we have used (2.49) as well as the symmetry of the conductances. The
claim follows from (2.51) and b ∈ Φsol since ω ∈ ΩΦ. ut

We can now prove the convergence of gradients. Our result is the natural
transfer to the corresponding original result by Nguetseng [Ngu89] to the
present setting.

Lemma 2.35 (Two-scale convergence for gradients). For all ω ∈ ΩΦ

such that the Poincaré-inequality (2.35) holds uniformly in ε, also the follow-
ing holds true. If uε : Zdε → R is a family of functions with supp(uε) ⊆ Q∩Zdε
for all ε and

sup
ε>0

εd ∑
x∈Zd

∑
z∈Zd

ωx,x+z(∂
ε
zu
ε(εx))

2
+ ‖uε‖∞

 < ∞ , (2.71)

then there exists a subsequence uε
′
, u ∈ H1

0 (Q) and ν ∈ L2(Rd;L2
pot) such

that

R∗ε′uε
′
⇀ u in L2(Rd) , ∂ε

′

z u
ε′(x)

2s
⇀ ∇u(x) · z + ν(x,ω, z) as ε′ → 0 .

(2.72)
Further, if the compact embedding of Lemma 2.19 holds, then R∗ε′uε

′ → u
strongly in L2(Rd).

Proof. Condition (2.71) together with Lemma 2.19 implies that there exists
a subsequence, which we still index by ε, and u ∈ L2(Q) such that R∗εuε → u
in L2(Rd). It remains to show that u ∈ H1

0 (Q) and to proof the second
statement in (2.72).

By virtue of Proposition 2.30, Condition (2.71) further implies that there
exists a subsequence, which we still index by ε → 0, and w ∈ L2(Rd;L2

cov)

such that ∇εuε 2s
⇀ w in the two-scale sense. We choose b ∈ Φsol and v ∈

C∞c (Rd) and apply (2.70) to the discrete product rule

∂εz(vuε)(εx) = v(εx)∂εzu
ε(εx) + uε(εx+ εz)∂εzv(εx)

to obtain that

0 = εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z

(
v(εx)∂εzu

ε(εx) + uε(εx+ εz)∂εzv(εx)
)
b(τxω, z) .

(2.73)
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For the first term on the right-hand side of (2.73), we obtain from the
two-scale convergence of ∇εuε that

εd
∑
x∈Zd

v(εx)
∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx)b(τxω, z)

→
∫
Rd

v(x)E

∑
z∈Zd

ω0,zw(x,ω, z)b(ω, z)

dx .

(2.74)

For the second term on the right-hand side of (2.73), we first notice that
the sum is absolutely convergent since

εd
∑
x∈Zd

∑
z∈Zd

∣∣∣∣ωx,x+z b(τxω, z)u
ε(εx+ εz)

(
v(εx+ εz)− v(εx)

ε

) ∣∣∣∣

= εd
∑
z∈Zd

∑
x∈ε−1Qε−z

∣∣∣∣ωx,x+z b(τxω, z)u
ε(εx+ εz)

(
v(εx+ εz)− v(εx)

ε

)∣∣∣∣

= εd
∑
z∈Zd

∑
x∈ε−1Qε

∣∣∣∣ωx−z,x b(τx−zω, z)uε(εx)

(
v(εx)− v(εx− εz)

ε

) ∣∣∣∣

= εd
∑

x∈ε−1Qε

∑
z∈Zd

∣∣∣∣ωx,x+z b(τxω, z)u
ε(εx)

(
v(εx+ εz)− v(εx)

ε

) ∣∣∣∣ ,
(2.75)

where for the last equality we have used the symmetry of the conductances,
the shift covariance (2.49) and the substitution z  −z. We now use the
fact that uε and ∇v are bounded, apply the Cauchy-Schwarz inequality and
the ergodic theorem to obtain that the above sum is indeed finite. It follows
that for the second term on the right-hand side of (2.73), we can exchange
the order of the sums. By the same arguments as those that led to (2.75),
we obtain that

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z u
ε(εx+ εz)∂εzv(εx)b(τxω, z)

= εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z u
ε(εx)∂εzv(εx)b(τxω, z) .
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Further we notice that since uε has support only in ε−1Qε, we can estimate

εd
∑
x∈Zd

uε(εx)
∑
z∈Zd

ωx,x+z (∂εzv(εx)−∇v(εx) · z)b(τxω, z)

≤ ‖uε‖2∞

εd∑
x∈Zd

∑
z∈Zd

ωx,x+z (∂εzv(εx)−∇v(εx) · z)2

1/2

×

εd ∑
x∈ε−1Qε

∑
z∈Zd

ωx,x+z b
2(τxω, z)

1/2

.

The limit superior of the second factor vanishes due to Lemma 2.32 and the
third factor is finite due to the ergodic theorem. Thus, for ω ∈ ΩΦ we have

lim sup
ε→0

εd
∑
x∈Zd

uε(εx)
∑
z∈Zd

ωx,x+z (∂εzv(εx)−∇v(εx) · z)b(τxω, z) = 0 .

(2.76)

To summarize, for the second term on the right-hand side of (2.73), it
follows that

lim
ε→0

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z u
ε(εx+ εz) ∂εzv(εx) b(τxω, z)

= lim
ε→0

εd
∑
x∈Zd

uε(εx)∇v(εx) ·

∑
z∈Zd

z ωx,x+z b(τxω, z)

 .

By the assumptions on ω and b, the last bracket on the above right-hand
side is in L1(Ω,P). Since we already know that the subsequence R∗εuε → u
in L2(Rd), there exists a further subsequence, which we still index by ε→ 0,
where uε converges pointwise a.e. in Q [Bre11, Theorem 4.9]. Moreover, uε

has support in Qε and supε>0 ‖uε‖∞ <∞ by assumption. It follows that we
can apply Theorem 2.23 along the above subsequence and obtain that

εd
∑
x∈Zd

uε(εx)∇v(εx) ·

∑
z∈Zd

z ωx,x+z b(τxω, z)



→
∫
Rd

u(x)∇v(x) · E

∑
z∈Zd

zω0,zb(ω, z)

 dx . (2.77)
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Thus we obtain by (2.73) that

∫
Rd

v(x)E

∑
z∈Zd

ω0,zw(x,ω, z)b(ω, z)

dx

= −
∫
Rd

u(x)∇v(x) · E

∑
z∈Zd

zω0,zb(ω, z)

dx . (2.78)

Let us now argue that (2.78) implies that ∇u ∈ L2(Rd). By virtue of
(2.55), for any i = 1, . . . , d we choose bi such that E

[∑
z∈Zd ω0,zzb

i(ω, z)
]

=
ei. Then (2.78) implies that∣∣∣∣∣∣
∫
Rd

u(x)∂iv(x) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Rd

v(x)E

∑
z∈Zd

ω0,zw(x,ω, z)bi(ω, z)

dx

∣∣∣∣∣∣
≤ ‖bi‖L2

cov

∫
Rd

|v(x)|

E
∑
z∈Zd

ω0,zw
2(x,ω, z)

1/2

dx

≤ ‖v‖2‖bi‖L2
cov

 ∫
Rd

E

∑
z∈Zd

ω0,zw
2(x,ω, z)

dx

1/2

.

Since w ∈ L2(Rd, L2
cov), there exists C < ∞ such that for any i = 1, . . . , d

we observe that ∣∣∣∣∣∣
∫
Rd

u(x)∂iv(x) dx

∣∣∣∣∣∣ ≤ C‖v‖2 .
By virtue of [Bre11, Proposition 9.3] it follows that ∇u ∈ L2(Rd). Since
u|Rd\Q = 0, we conclude u ∈ H1

0 (Q).
We now use integration by parts on the right-hand side of (2.78) and

obtain that∫
Rd

v(x)E

∑
z∈Zd

ω0,z(w(x,ω, z)−∇u(x) · z)b(ω, z)

dx = 0 . (2.79)

Since the last equation holds for all v ∈ Ψ and all b ∈ Φsol, we find that

w(x,ω, z) = ∇u(x) · z + ν(x,ω, z) with ν ∈ L2(Rd;L2
pot) .

ut
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2.6 Proof of Theorem 2.5

We start with an auxiliary lemma.

Lemma 2.36. Let fε : Q ∩ Zdε → R be a sequence of functions such that
R∗εfε ⇀ f weakly in L2(Q) for some f ∈ L2(Q) and such that supε‖fε‖∞ <
∞. Then for almost all ω ∈ Ω it holds: The sequence of solutions uε ∈ Hε to
the problem (2.8) satisfies R∗εuε → u strongly in L2(Q), where u ∈ H1

0 (Q)∩
H2(Q) solves the limit problem (2.9).

Proof. We test Equation (2.8) with an arbitrary test function gε : Zdε → R
with supp gε ⊆ Q ∩ Zdε and obtain by Notation (2.60) and Equation (2.61)
that

〈−Lωε uε, gε〉Hε = 1
2 〈A

ε
ω∇εuε,∇εgε〉Hε = 〈fε, gε〉Hε . (2.80)

We now choose gε = uε and apply (2.35) and Cauchy-Schwarz to obtain that

‖uε‖2Hε ≤ Cε
d
∑
x∈Zd

∑
z∈Zd

ωx,x+z (∂εzu
ε(εx))

2 ≤ 2C‖uε‖Hε‖f
ε‖Hε . (2.81)

Hence, in combination with Remark 2.18 we conclude that

‖uε‖2`2(Q∩Zdε) + εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z (∂εzu
ε(εx))

2 ≤ 4C2 sup
ε>0
‖fε‖2`2(Q∩Zdε)

(2.82a)
and sup

ε>0
‖uε‖∞ <∞ . (2.82b)

It follows that by virtue of Lemma 2.19 and Lemma 2.35, there exists u ∈
H1

0 (Q), ν ∈ L2(Q;L2
pot) and a subsequence, which we still index by ε, such

that

R∗εuε → u , strongly in L2(Q) and ∂εzu
ε(x)

2s
⇀ ∇u(x)·z+ν(x,ω, z) as ε→ 0

(2.83)
for all x, z ∈ Zd and ω ∈ ΩΦ.

Let us choose v ∈ C∞c (Rd) with supp v ∈ Q and ϕ ∈ Φpot with ϕ = Dϕ̃
for some bounded local function ϕ̃. When we insert gε = εvϕ̃ into (2.80),
then we observe for all ε > 0 that

εd
∑
x∈Zd

2fε(εx)(εv(εx)ϕ̃(τxω))

= εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx) (v(εx+ εz)ϕ̃(τx+zω)− v(εx)ϕ̃(τxω))

= εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx)

× [v(εx)(ϕ̃(τx+zω)− ϕ̃(τxω)) + εϕ̃(τx+zω)∂εzv(εx)] ,
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which, by definition of ϕ̃, means that

εd
∑
x∈Zd

2fε(εx)(εv(εx)ϕ̃(τxω))

= εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx) v(εx)ϕ(τxω, z)

+ εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx) εϕ̃(τx+zω)∂εzv(εx) . (2.84)

The second summand on the above right-hand side vanishes as ε→ 0 since

εd
∣∣∣ ∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx) εϕ̃(τx+zω)∂εzv(εx)

∣∣∣
≤ εd+1‖ϕ̃‖∞

∣∣∣∣∣∣
∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx) ∂εzv(εx)

∣∣∣∣∣∣
≤ ε‖ϕ̃‖∞

εd ∑
x∈Zd

∑
z∈Zd

ωx,x+z (∂εzu
ε(εx))

2

1/2

×

εd ∑
x∈Zd

∑
z∈Zd

ωx,x+z (∂εzv(εx))
2

1/2

. (2.85)

By assumption ‖ϕ̃‖∞ is bounded. The second factor is bounded due to (2.82)
and the third factor is bounded by virtue of Lemma 2.31. Since the left-hand
side of (2.84) vanishes as well, (2.83) and (2.84) imply that in the limit ε→ 0
and along the chosen subsequence we obtain

∫
Q

v(x)E

∑
z∈Zd

ω0,z(∇u(x) · z + ν(x,ω, z))ϕ(ω, z)

 dx = 0 . (2.86)

Since Φpot is dense in L2
pot and Ψ is dense in H1

0 (Q), Equation (2.86) holds
for all ϕ ∈ L2

pot and all v ∈ H1
0 (Q).

Let χ ∈
(
L2

pot

)d
be given through (2.53). Since u ∈ H1

0 (Q) is given, the
function ν(x, ω̃, z) := ∇u(x) · χ(ω̃, z) is the unique solution to (2.86). We
have thus identified ν.

Now we observe that if we test (2.80) by an arbitrary g ∈ C∞c (Rd) with
support in Q, we obtain that

εd
∑
x∈Zd

∑
z∈Zd

ωx,x+z ∂
ε
zu
ε(εx) ∂εzg(εx) = εd

∑
x∈Zd

2fε(εx)g(εx) .
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Passing to the limit, we obtain by virtue of Corollary 2.33 and ν(x,ω, z) =
∇u(x) · χ(ω, z) that

∫
Rd

E

∑
z∈Zd

ω0,z(∇u(x) · (z + χ))(∇g(x) · z)

 dx =

∫
Rd

2f(x)g(x) dx . (2.87)

When we now insert v = ∂ig and ϕ = χi for i = 1, . . . , d into (2.86) and
add the resulting equations to (2.87), then we obtain that

∫
Rd

E

∑
z∈Zd

ω0,z(∇u(x) · (z + χ))(∇g(x) · (z + χ))

 dx =

∫
Rd

2f(x)g(x) dx .

(2.88)

A comparison with the definition of Ahom in (2.54) finally yields that u solves∫
Q

∇u · (Ahom∇g) =

∫
Q

2f g for all g ∈ C∞c (Rd) with supp g ⊆ Q .

(2.89)
Since Ahom is non-degenerate, we find that (2.89) is the weak formulation of
(2.9). Hence, from elliptic regularity theory [Eva10, Chapter 6], we obtain
that u ∈ H2(Q) ∩H1

0 (Q).
Since the solution u of (2.9) is unique, it follows that (2.83) holds for the

entire sequence. ut
As for the last ingredient for the proof of Theorem 2.5, we observe the

following: On the cube Q the operator −Lωε with zero Dirichlet conditions
is strictly positive definite (see e.g. (2.61)) and thus it follows that on Q its
inverse Bε : Hε → Hε is well-defined. Similarly, the inverse B0 : H0 → H0 of
−Lω0 on Q is well-defined. We have the following lemma.

Lemma 2.37. The operators Bε,B0 are P-a.s. positive, compact and self-
adjoint. The norms ‖Bε‖ are P-a.s. bounded by a constant independent of
ε.

Proof. Since Ahom is positive definite (see e.g. proof of Lemma 2.25) and
symmetric (by definition), the properties of B0 follow from the theory of
elliptic partial differential equations, see e.g. [Eva10, Chapter 6].

The operator Bε is uniformly bounded in ε by virtue of (2.82a). Moreover,
Bε is real and symmetric by construction and therefore self-adjoint. Finally,
its range Hε is finite-dimensional and thus Bε is compact. ut
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Proof of Theorem 2.5. Let us first show that

lim
ε→0

∫
Rd

(
R∗εuε

)
v =

∫
Rd

uv for all v ∈ C(Q) , (2.90)

where u ∈ H2(Q) ∩H1
0 (Q) is the solution to (2.9). Indeed, since Bε is self-

adjoint, we observe that∫
Rd

(
R∗εuε

)
v =

∫
Rd

(
R∗εBεfε

)
v =

〈
fε,

(
BεRεv

)〉
Hε
.

Since R∗εRεv ⇀ v in L2 and supε>0 ‖Rεv‖∞ <∞, Lemma 2.36 implies that
BεRεv converges strongly in L2 to B0v. It follows that

lim
ε→0

〈
fε,

(
BεRεv

)〉
Hε

=

∫
Rd

f
(
B0v

)
=

∫
Rd

(
B0f

)
v =

∫
Rd

uv ,

where we have used that the operator B0 is self-adjoint, see Lemma 2.37.
We further note that supε>0 ‖R∗εuε‖2 <∞ by the same arguments as for

(2.82a). Since C(Q) is dense in L2(Q), it thus follows that R∗εuε ⇀ u. By
virtue of Lemma 2.19 and (2.82a) we conclude that R∗εuε → u strongly in
L2. ut

2.7 Proofs of Proposition 2.8 and Theorem 2.9

Proof of Proposition 2.8. The existence of solutions to (2.12) follows
from positivity of the first eigenvalue for small ε. Hence we can calculate
the apriori estimates similar to (2.81) by testing (2.12) with uε and using
lim infε→0 λ

ε
1 > 0 to obtain

‖uε‖2Hε ≤ (λε1)−1〈−Lωε uε +RεV uε, uε〉Hε ≤ 2(λε1)−1‖uε‖Hε‖f
ε‖Hε .

Since V is bounded, this implies that 〈−Lωε uε, uε〉Hε is bounded in ε.
From Lemma 2.19 it follows that R∗εuε → u strongly in L2(Q) and hence
R∗ε(RεV uε) ⇀ V u. Hence from Theorem 2.5 we obtain that u solves (2.13).

ut

Proof of Theorem 2.9. First, we notice that without loss of generality, we
can assume that the function V is nonnegative. Otherwise, we simply sub-
stitute V for V −minx∈Q V (x) and prove the result for the new V . Then we
notice that the substitution has simply shifted the spectrum by the constant
minx∈Q V (x) and the new eigenvectors are the same as the old ones. Thus,
it suffices to prove the claim for V ≥ 0. Note that (2.61) directly implies
that if V ≥ 0, then λε1 is positive.



2.7 Proofs of Proposition 2.8 and Theorem 2.9 67

Then Lemmas 2.39 and 2.37 ensure that Conditions I-IV of [JKO94, Sec-
tion 11.1] are satisfied and Theorem 2.9 follows by virtue of [JKO94, Theo-
rems 11.4, 11.5]. ut

As in the paragraph before Lemma 2.37, we now define the operators
Bε(V ) and B0(V ) as the inverses of −Lωε +RεV and −Lω0 + V , respectively.
For V ≥ 0, we further consider the spectrum of the operators Bε(V ), where
we drop the argument “(V )” for readability:

ψεk ∈ Hε, Bεψεk = µεkψ
ε
k, k = 1, 2, . . . ,

µε1 ≥ µε2 ≥ . . . ≥ µεk . . . , µεk > 0 ,

〈ψεk, ψεl 〉Hε = δkl ,

(2.91)

as well as the spectrum of the operator B0(V ), where we also drop the
argument “(V )” for readability:

ψ0
k ∈ H0, B0ψ

0
k = µ0

kψ
0
k, k = 1, 2, . . . ,

µ0
1 ≥ µ0

2 ≥ . . . ≥ µ0
k . . . , µ0

k > 0 ,

〈ψ0
k, ψ

0
l 〉Hε = δkl .

(2.92)

Remark 2.38. The eigenfunctions {ψεk}k of the operator Bε and the eigen-
functions

{
ψ0
k

}
k

of the operator B0 coincide with the eigenfunctions of the
operators −Lωε +RεV and −Lω0 + V , respectively. Their eigenvalues relate
to those of −Lωε +RεV and −Lω0 + V by

µεk = (λεk)
−1
, µ0

k =
(
λ0
k

)−1
k = 1, 2, . . . .

Lemma 2.39.

(i) For any u ∈ H0, the following is true:

‖Rεu‖Hε ≤ ‖u‖H0
. (2.93)

Further,

lim
ε→0
〈uε, vε〉Hε = 〈u, v〉H0

. (2.94)

provided that u, v ∈ H0 and uε, vε ∈ Hε and

lim
ε→0
‖uε −Rεu‖Hε = 0, and lim

ε→0
‖vε −Rεv‖Hε = 0 . (2.95)
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Let V : Rd → R be a non-negative, continuous potential. If Assumptions
2.1 and 2.2(a’) are fulfilled, then furthermore the following statements hold.

(ii) Let f ∈ H0 and let fε ∈ Hε. Then the following is true:
If

lim
ε→0
‖fε −Rεf‖Hε = 0 , (2.96)

then

lim
ε→0
‖Bεfε −RεB0f‖Hε = 0 P-a.s. (2.97)

(iii) For any sequence fε ∈ Hε such that supε ‖fε‖Hε < ∞, there exists a
subsequence fε

′
and a vector w0 ∈ H0 such that

lim
ε′→0

∥∥∥R∗ε′Bε′fε′ − w0
∥∥∥
H0

= lim
ε′→0

∥∥∥Bε′fε′ −Rε′w0
∥∥∥
Hε′

= 0 .

Proof. For (i): Let u ∈ H0. By Jensen’s inequality it follows that

‖Rεu‖2Hε = εd
∑
z∈Zdε

ε−2d
( ∫
b(z, ε2 )

udx
)2

≤ εd
∑
z∈Zdε

ε−d
( ∫
b(z, ε2 )

u2 dx
)

= ‖u‖2H0
.

For (2.94) we first observe that

|〈uε, vε〉Hε − 〈u, v〉H0 | ≤
∣∣〈vε, uε −Rεu〉Hε ∣∣+

∣∣∣∣∣ ∑
z∈Zdε

∫
b(z, ε2 )

u(R∗εvε(z)− v) dx

∣∣∣∣∣
≤ ‖vε‖Hε‖uε −Rεu‖Hε + ‖u‖H0

‖vε −Rεv‖Hε .

(2.98)

The second term on the above right-hand side converges to zero by assump-
tion. For the first term we note that the triangle inequality together with
(2.93) yields

‖vε‖Hε ≤ ‖Rεv‖Hε + ‖vε −Rεv‖Hε ≤ ‖v‖H0 + ‖vε −Rεv‖Hε ,

which is bounded from above. It follows that the first term on the right-hand
side of (2.98) converges to zero as well.

Part (ii) follows directly from Proposition 2.8 and (2.94). Similarly, Part
(iii) follows from Proposition 2.8 and (2.94) since supε ‖fε‖2 < ∞ implies
that there exists a subsequence ε′ along which R∗ε′fε

′
⇀ f in L2. ut
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2.8 Proof of Proposition 2.12

Proof of Proposition 2.12. This proof is an application of the Gärtner-
Ellis theorem and goes along the lines of [KW15, Theorem 1.8]. For the
convenience of the reader, we outline the main steps here.

Let V : Rd → R be a bounded, continuous function. We define the gener-
ating cumulant function

Λt(V ) :=
α2
t

t
log Eω0

exp

− t

α2
t

∫
Q

V (y)Lt(y) dy


∣∣∣∣∣∣X[0,t] ⊂ αtQ

 . (2.99)

As in [KW15], it suffices to show that

Λ(V ) := lim
t→∞

Λt(V ) = −λ1(V ) + λ1(0) , (2.100)

where λ1(V ) denotes the principal Dirichlet eigenvalue of −Lω0 +V on Q with
zero Dirichlet boundary conditions. Then the claim follows by the Gärtner-
Ellis theorem.

In order to show (2.100), we define the operator Pω,Vt acting on real-valued
functions f ∈ `2(αtQ ∩ Zd) by

(
Pω,Vt f

)
(z) := Eωz

exp

− t

α2
t

∫
Q

V (y)Lt(y) dy

1{X[0,t]⊂αtQ}f(Xt)


(2.101)

for all z ∈ αtQ∩Zd. Since Lt is a step function, Pω,Vt admits the semigroup
representation

Pω,Vt = exp
{
−tα−2

t

[
−α2

tLω + Vt
]}
, (2.102)

where the operator in the exponent is considered with zero Dirichlet condi-
tions at the boundary of αtQ ∩ Zd and

Vt(z) :=

∫
[− 1

2 ,
1
2 ]

V

(
z + y

αt

)
dy (z ∈ αtQ ∩ Zd) .

Let λ
(t)
1 (V ) denote the principal Dirichlet eigenvalue of −α2

tLω + Vt on

αtQ∩Zd with zero Dirichlet boundary conditions. Let ψ
(t)
1 (V ) be the corre-

sponding principal Dirichlet eigenfunction. Then, in order to show (2.100),
for any V ∈ Cb(Rd) we have to show that

lim
t→∞

α2
t

t
log
(
Pω,Vt 1

)
(0) = lim

t→∞
λ

(t)
1 (V ) = λ1(V ) . (2.103)
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The second equality follows by virtue of Theorem 2.9. It remains to prove
the first equality. For this purpose we notice that an eigenvalue expansion
together with Cauchy-Schwarz and Parseval’s identity yields that(

Pω,Vt 1
)

(0) ≤
√
|αtQ| exp

{
− t

α2
t

λ
(t)
1 (V )

}
.

On the other hand, since Pω,Vt ≥ 0, we can estimate from below(
Pω,Vt 1

)
(0) ≥ 1

supαtQ ψ
(t)
1

(
Pω,Vt ψ

(t)
1

)
(0) ≥ ψ

(t)
1 (0) exp

{
− t

α2
t

λ
(t)
1 (V )

}

since ψ
(t)
1 is a normalized eigenfunction. Thus, if ψ

(t)
1 (0) decays at most

polynomially, we have proved the claim.
Similar to the proof in [KW15], we obtain that

ψ
(t)
1 (0) ≥ e−λ(V )−V ∗

(
max

x∈αtQ∩Zd
ψ

(t)
1

)(
min

x∈αtQ∩Zd
P
α2
tω

0 [X1 = x]

)
, (2.104)

where V ∗ is an upper bound for V . Since ψ
(t)
1 is normalized and

min
x∈αtQ∩Zd

P
α2
tω

0 [X1 = x] = min
x∈α2

tQ∩Zd
Pω0 [Xαt = x]

decays at most polynomially by Assumption 2.11, the claim follows. ut



Chapter 3

Localization1

In this chapter we assume that the conductances ω are independent and
identically distributed positive random variables between nearest neighbors
and zero elsewhere. This means that we assume that our underlying graph
is (Zd,Ed) with the edge set Ed defined in (1.9). We restrict ourselves to
dimensions d ≥ 2. For the one-dimensional case, see [Fag12].

In what follows, let ω be a copy of the conductance variables. Moreover,
we call F : [0,∞) → [0, 1], u 7→ P[ω ≤ u] the distribution function of the
conductances.

Previously, we have seen that, if E[ω−1/4] <∞, then the top of the Dirich-
let spectrum of the Laplacian Lω in the box Bn homogenizes. Now we would
like to study the case γ < 1/4 where γ = sup{q ≥ 0: E[w−q] < ∞}, i.e.,
when the conductances have a very heavy tail near zero. Note that a critical
regime remains, to which belongs the case P[ω ≤ a] = a1/4 for a ∈ [0, 1].
Here, we are going to see that for γ < 1/4, the principal Dirichlet eigenvalue

λ
(n)
1 scales subdiffusively almost-surely, i.e., it approaches zero much faster

than n−2. If, in addition, certain regularity assumptions apply, then the first

k Dirichlet eigenvectors ψ
(n)
1 , . . . , ψ

(n)
k in the box Bn concentrate in a single

site as n tends to infinity.
In this chapter, the box Bn is defined as

Bn := [−n, n]d ∩ Zd

instead of (−n, n)d ∩ Zd as in (1.17).
Let us now recall the definition of the local speed measure π and introduce

its order statistics.

1 Part of this chapter is published as F. Flegel: “Localization of the principal
Dirichlet eigenvector in the heavy-tailed random conductance model”, Electron.
J. Probab., 23:no. 68, 1–43, 2018. The other part is currently available as the
preprint “Eigenvector localization in the heavy-tailed random conductance model”
(arXiv:1801.05684).
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Definition 3.1 (Local speed measure and its order statistics). We
define the local speed measure π by

πz =
∑

x : x∼z
ωxz (z ∈ Zd) (3.1)

and we label the order statistics of the set {πz : z ∈ Bn} by

π1,Bn ≤ π2,Bn ≤ . . . ≤ π|Bn|,Bn . (3.2)

Furthermore, for k, n ∈ N let z(k,n) be the site where π attains its kth mini-
mum over Bn, i.e., πz(k,n)

= πk,Bn .

Let Fπ be the distribution function of the random variable π, i.e., the dis-
tribution function of the sum of 2d independent copies of the conductance
ω.

Remark 3.2. If the distribution function F is continuous, then Fπ is con-
tinuous as well and therefore P-almost surely π1,Bn < π2,Bn < . . . < π|Bn|,Bn
for all n ∈ N. It follows that the minimizers z(k,n) are P-a.s. unique.

We show that the kth Dirichlet eigenvector ψ
(n)
k approaches the δ-function

in the site z(k,n) where the local speed measure π attains its kth minimum

in the box Bn. This further implies that the kth Dirichlet eigenvalue λ
(n)
k is

asymptotically equivalent to the kth minimum πk,Bn of π over the box Bn.
If the conductances vary regularly at zero with positive index, then the kth
minimum of {πx : x ∈ Bn} converges weakly as if it was the kth minimum of
an independent field, see the proof of Corollary 3.17. It follows that, in this

case, the properly rescaled kth eigenvalue λ
(n)
k converges in distribution to a

non-degenerate random variable. This relates to a similar result in dimension
d = 1, see [Fag12, Theorem 2.5(i)].

Generally, the results of this chapter for the random conductance Lapla-
cian compare well to similar results of the random Schrödinger operator ∆+ξ
with random potential ξ : Zd → R, see [BK16] and [Ast16, Ch. 6]. For more
references, we refer the reader to Section 1.4.

Let us briefly outline the strategy of this chapter. First we give asymptotic

lower and upper bounds for the principal Dirichlet eigenvalue λ
(n)
1 where we

aim to find as optimal conditions as possible. Indeed, for the lower bound
the condition that we find is sharp, see Theorem 3.7. In contrast, for the
upper bound the sufficient and the necessary conditions differ by a double-
logarithmic order, see Theorem 3.5. For this part we use path arguments
that are adapted from [BKM15] as well as Borel-Cantelli arguments and
percolation results.

Second, we state the localization of the principal Dirichlet eigenvector

ψ
(n)
1 , see Theorem 3.13, which relies heavily on the extreme value analysis of

Section 3.7.3. Afterwards we use the localization of the principal eigenvector
as an inductive base case for the localization of the higher order eigenvectors,
see Theorem 3.16 and its proof in Section 3.9.
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The reason why we first concentrate on the principal Dirichlet eigenvector
is that we can assume that all its entries are non-negative due to the Perron-
Frobenius theorem, see the remark below.

Remark 3.3 (Perron-Frobenius). For a given box Bn the operator Lω
together with the zero Dirichlet boundary conditions can be written as a
|Bn| × |Bn|-matrix with non-negative entries everywhere except on the di-
agonal. Since the matrix is finite-dimensional, we can add a multiple of the
identity to obtain a non-negative primitive matrix without changing the ma-
trix’ spectrum. By the Perron-Frobenius theorem (see e.g. [Sen81, Chapter
1]) it follows that its principal eigenvalue is simple and we can assume with-
out loss of generality that its principal eigenvector is positive.

This remark is an essential ingredient for Lemma 3.45 and it does not hold
for any higher order eigenvectors. Therefore, in order to infer localization

of the second eigenvector ψ
(n)
2 , we first prove localization of an auxiliary

principal eigenvector φ
(n)
2,1 where we simply impose another zero Dirichlet

condition at the localization center z(1,n) of the principal eigenvector ψ
(n)
1 ,

see Definition 3.52. For this auxiliary eigenvector we can again apply the

Perron-Frobenius theorem. Then we show that the eigenvector φ
(n)
2,1 is indeed

close to the eigenvector ψ
(n)
2 by invoking the Bauer-Fike lemma, see Section

3.8.3 as well as the proof of Theorem 3.16. The localization of the other
eigenvectors follows by induction.

3.1 Main Results

3.1.1 The principal Dirichlet eigenvalue

Let g : (0,∞) → (0,∞) be a function that decreases monotonically to zero
and let us recall the definition of the function Λg : (0,∞)→ (0,∞) in (1.39).
As we have explained above (1.39), the function Λg relates to the expected
number of g(n)-traps in the box Bn.

In our results, we often require recurring conditions on the function
g : (0,∞) → (0,∞). Let us recall that a function g varies regularly at in-
finity (zero) with index ρ ∈ R if g(u) = uρL(u) where L is a slowly varying
function at infinity (zero), i.e., for all C > 0 we have

L(Cu)

L(u)
→ 1 as u→∞ (as u→ 0)

see e.g. [BGT89, Chapter 1].
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Assumption 3.4. Let g : (0,∞)→ (0,∞).

(a) The function g varies regularly at infinity with an index strictly less
than −2.

(b) The function u 7→ u2g(u) is monotone and has a finite limit as u tends
to infinity.

(b’) The function u 7→ u2g(u) converges monotonically to zero as u tends to
infinity.

Our first theorem gives a sufficient and a necessary condition for the
function g being is an asymptotic upper bound for the principal Dirichlet

eigenvalue λ
(n)
1 . Note that, given one of the Assumptions 3.4 (a) or (b’) is

true, then the sufficient and necessary conditions coincide up to the case
where Λg scales exactly like log log n. We summarize all the conditions of
the following two theorems in a graphical overview (see Figure 3.1).

Theorem 3.5 (Upper bound). Let g : (0,∞) → (0,∞) be a function
that converges monotonically to zero and let Λg be as in (1.39). Then the
following statements are true:

(i) If there exists ε > 0 such that for all n large enough

Λg(n)

log log n
≥ 2 + ε , (3.3)

then P-a.s. for n large enough λ
(n)
1 ≤ 2dg(n).

(ii) On the other hand, if

lim
u→∞

Λg(u)

log log u
= 0 , (3.4)

and one of the Assumptions 3.4 (a) or (b’) is true, then P-almost surely

lim supn→∞
λ
(n)
1

g(n) =∞.

We prove part (i) of this theorem in Section 3.2 and part (ii) in Section 3.3.
Note that in (ii) the Assumptions 3.4 (a) and (b’) correspond to the fact
that we can only deduce that the limit superior diverges if we assume that

g is in o(n−2). This is because in the diffusive regime λ
(n)
1 scales like n−2.

In the case where the distribution function F (a) varies regularly at zero
with index γ > 0, Theorem 3.5 (i) implies the following corollary. Since its
proof is immediate, we omit it.

Corollary 3.6. Let δ > 0. If F varies regularly at zero with index γ > 0,

then P-a.s. for n large enough the function g(n) = n−
1
2γ+δ is an asymptotic

upper bound for λ
(n)
1 . If even F (a) = aγ for a ∈ [0, 1], then the upper bound

can be improved to g(n) = n−
1
2γ ((2 + ε) log log n)

1
2dγ .
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Fig. 3.1: Visualization of our results from Theorems 3.5 and 3.7 for a fixed distri-
bution function F that is continuous and strictly monotone near zero. The figure
shows the space of functions g : (0,∞)→ (0,∞) that decrease to zero. The space is
depicted such that if f ∈ o(g), then f appears left of g. For simplicity we assume that
g fulfills one of the Assumptions 3.4 (a) or (b’). If F−1(u−1/2) ∈ o(g(u)), then Λg(u)
diverges. If g even decays slowly enough such that condition (3.3) is fulfilled, then P-

a.s. for n large enough λ
(n)
1 ≤ 2dg(n). On the other hand, if g(u) ∈ o(F−1(u−1/2)),

then Λg(u) converges to zero. If g even decays fast enough such that (3.5) is ful-

filled, then there exists c > 0 such that P-a.s. for n large enough λ
(n)
1 ≥ cg(n). The

figure also shows that around g(u) ∼ F−1(u−1/2) there is an interval where g is
definitely neither an a.s. asymptotic upper nor an a.s. asymptotic lower bound, see
e.g. Corollary 3.9.

Note that if F varies regularly at zero with index γ > 0, then γ =
sup{q ≥ 0: E[ω−q] < ∞}, as defined in the introduction. Further note that
if γ ∈ [0, 1/4), then there exists η > 0 such that the expectation E

[
ω−1/4+η

]
diverges, cf. the conditions of [ADS16, Theorem 1.13].

The second theorem gives conditions for when the function g is an asymp-

totic lower bound of the principal Dirichlet eigenvalue λ
(n)
1 . Note that this

theorem implies that, given one of the Assumptions 3.4 (a) or (b) is true,
then the condition in (3.5) is sharp. We further comment on these conditions
in Section 3.3. As with the conditions of Theorem 3.5, we summarize them
in the graphical overview Figure 3.1.

Theorem 3.7 (Lower Bound). Let g : (0,∞) → (0,∞) be a continuous
decreasing function that fulfills one of the Assumptions 3.4 (a) or (b). Let
Λg be as in (1.39). Then the following statements are true: If

∞∫
0

u−1Λg(u) du <∞ , (3.5)

then there exists a constant c > 0 such that P-a.s. for n large enough

λ
(n)
1 ≥ cg(n). If, on the other hand, Condition (3.5) does not hold, then

P-a.s. lim infn→∞
λ
(n)
1

g(n) = 0.

We prove the first part of this theorem in Section 3.3. The second part, i.e.,
where Condition (3.5) does not hold, is covered in Section 3.2.
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Similarly as for Theorem 3.5, we obtain the following corollary. As before,
its proof is immediate and therefore we omit it.

Corollary 3.8. Let δ > 0. If F varies regularly at zero with index γ ∈
(0, 1/4], then P-a.s. for n large enough the function g(n) = n−

1
2γ−δ is an

asymptotic lower bound for λ
(n)
1 . If even F (a) = aγ for a ∈ [0, 1], then the

lower bound can be further improved. For example g(n) = n−
1
2γ (log n)

− 1
2dγ−δ

is an asymptotic lower bound in this case.
Furthermore, if F varies regularly at zero with index γ > 1/4, then there

exists c > 0 such that cn−2 is an asymptotic lower bound for λ
(n)
1 . Then

Eω(f) ≥ cn2‖f‖2 for all f ∈ `2(Bn), which is a Poincaré inequality for
functions with bounded support.

Note that for i.i.d. conductances with finite expectation of w−1/4 the
Poincaré inequality for functions with bounded support is also a consequence
of [ADS16, Proposition 2.4] (with q = d/2, η a step function and νω replaced
a ν̃ω which for each neighbor sums over the optimal detour from the 2d
independent paths in Figure 2 of [ADS16]).

When we assume that F is bijective near zero and set g(u) = F−1(u−1/2),
then Theorems 3.5 (ii) and 3.7 directly imply the following corollary. Its proof
is immediate once we have observed that Λg(u) is constant in u.

Corollary 3.9. Assume that there exists v > 0 such that F : [0, v) →
F ([0, v)) is bijective and that the function u 7→ u2F−1

(
u−

1
2

)
converges

monotonically to zero. Then

lim inf
n→∞

λ
(n)
1

F−1
(
n−

1
2

) = 0 and lim sup
n→∞

λ
(n)
1

F−1
(
n−

1
2

) =∞ P-a.s. (3.6)

We comment on this behavior in Remark 3.18 in Section 3.2.
Note that in the special case where there exists γ ∈ (0, 1/4) such that the

law P of the conductances fulfills P[ω ≤ a] = aγ for a ∈ [0, 1], Corollary 3.9
implies that

lim inf
n→∞

n
1
2γ λ

(n)
1 = 0 and lim sup

n→∞
n

1
2γ λ

(n)
1 =∞ P-a.s. (3.7)

Remark 3.10 (Constant speed). If the conductances are bounded from
above, we conjecture that, qualitatively, the results below should also hold for
the constant-speed random conductance model, i.e., where the Laplacian is
given by

(Lωcsf)(x) = π−1
x

∑
y : |x−y|1=1

ωxy(f(y)− f(x)) (x ∈ Zd, f ∈ `2(Zd)) .

In this case, the critical exponent γπc should be 1
8

d
d−1/2 (cf. [BKM15, Theorem

1.8 (1)]). Further, the typical trapping structures are not single sites but
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pairs of sites (cf. [ADS16, Figure 1]). In a similar way as we adapt the proof
techniques of [BKM15] for the variable-speed case, this should be possible for
the constant-speed model. However, the proofs become much more technical.

3.1.2 Localization of the principal Dirichlet
eigenvector

Now we show that P-a.s. as n tends to infinity, the principal Dirichlet eigen-

vector ψ
(n)
1 localizes in the sequence of sites (zn)n∈N that minimize π over

the box Bn. Since we assume that the distribution function F is continuous,
this sequence is P-a.s. uniquely defined. Note that by virtue of Remark 3.3

we can assume without loss of generality that ψ
(n)
1 is non-negative.

Further, since the distribution function F is continuous, for each a ∈ [0, 1)
there exists s ≥ 0 such that F (s) = a. For what follows, we thus define the
function g as

g : [0,∞)→ [0,∞), u 7→ sup
{
s ≥ 0: F (s) = u−1/2

}
. (3.8)

Assumption 3.11. Let F be continuous and vary regularly at zero with in-
dex γ ∈ [0, 1/4). Assume that there exists a∗ > 0 such that F (ab) ≥ bF (a) for
all a ≤ a∗ and all 0 ≤ b ≤ 1. In the case where γ = 0, we assume addition-
ally that there exists ε1 ∈ (0, 1) such that the product n2+ε1g(n) converges
monotonically to zero as n grows to infinity.

Remark 3.12. In the case where γ > 0, it follows that (1/F (1/s))2 varies
regularly at infinity with index 2γ. Further, (1/F (1/s))2 diverges as s→∞.
It follows that 1/g(u) = inf

{
s ≥ 0: (1/F (1/s))2 = u

}
varies regularly at

infinity with index 1/(2γ) by virtue of [Res87, Prop. 0.8(v)] and thus g varies
regularly at infinity with index −1/(2γ). Since in addition γ < 1/4, there
exists ε1 ∈ (0, 1) such that −1/(2γ) < −(2 + ε1).

Theorem 3.13 (Localization of the principal Dirichlet eigenvector).
Let the distribution function F be such that Assumption 3.11 holds. For
n ∈ N let zn be the site that minimizes π over Bn. Then P-a.s. the mass of

the principal Dirichlet eigenvector ψ
(n)
1 with zero Dirichlet conditions outside

the box Bn increasingly concentrates in the site zn. More precisely, P-a.s. for
n large enough

ψ
(n)
1 (zn)2 ≥ 1− n−ε1/4 , (3.9)

where for γ > 0 the value of ε1 ∈ (0, 1) is chosen such that 1/(2γ) > 2 + ε1.

We prove this theorem in Section 3.7.4.
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Remark 3.14 (Dimension one). Note that we cannot expect that a result
like Theorem 3.13 holds in dimension one. This is because in dimension one,
the probabilistic cost to generate a hardly reachable area is independent of
the area’s diameter.

As a consequence of Theorem 3.13 we have the following corollary, which we
prove in Section 3.7.5, as well as the weak convergence of the principal eigen-
value, see Section 3.1.4. Similar results hold for the higher order eigenvalues
and -vectors, see the next section.

Corollary 3.15. Assume that the distribution function F fulfills the condi-

tions of Assumption 3.11. Then the principal Dirichlet eigenvalue λ
(n)
1 P-a.s.

behaves like minx∈Bn πx for large n, i.e.,

P

[
lim
n→∞

λ
(n)
1

minx∈Bn πx
= 1

]
= 1 . (3.10)

3.1.3 Higher order eigenvalues and -vectors

After we have understood the base case k = 1, we can move to the higher
order eigenvalues and eigenvectors. In the main theorem of this section, we

see that the kth Dirichlet eigenvector ψ
(n)
k increasingly concentrates in the

location z(k,n) of the kth minimum πk,Bn of the field {πx : x ∈ Bn}, where
the local speed measure π and its order statistics are defined in Definition
3.1. Likewise, the kth Dirichlet eigenvalue asymptotically behaves like the
kth minimum of πk,Bn .

Theorem 3.16. Let k ∈ N. If Assumption 3.11 holds, then the kth Dirichlet

eigenvalue λ
(n)
k with zero Dirichlet conditions outside the box Bn fulfills

P

[
lim
n→∞

λ
(n)
k

πk,Bn
= 1

]
= 1 (3.11)

and the mass of the kth Dirichlet eigenvector ψ
(n)
k asymptotically concen-

trates in the site z(k,n). More precisely, if ε1 > 0 is as in Assumption 3.11
or Remark 3.12, then P-a.s. for n large enough

1− n−ε/8 ≤
λ

(n)
k

πk,Bn
≤ 1 for all ε < ε1 (3.12)

and

ψ
(n)
k

(
z(k,n)

)
≥
√

1− n−ε/4 for all ε < ε1 . (3.13)

We prove this theorem in Section 3.9.
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3.1.4 Weak convergence of eigenvalues

Similar to [Fag12, p. 7], we define

h : (0,∞)→ (0,∞), u 7→ inf

{
s :

1

Fπ(1/s)
= u

}
. (3.14)

If F varies regularly at zero with index γ > 0, then by virtue of Lemma 3.47,
it follows that Fπ varies regularly at zero with index 2dγ. It thus follows by
virtue of [Res87, Proposition 0.8(v)] that h varies regularly at infinity with
index 1/(2dγ). Therefore there exists a function L∗ that varies slowly at
infinity such that

h(|Bn|) = n
1
2γ L∗(n) . (3.15)

Corollary 3.17. Assume that F fulfills Assumption 3.11 with γ > 0 and
let L∗ be as in (3.15). Let k ∈ N. Then as n tends to infinity, the product

L∗(n)n
1
2γ λ

(n)
k converges in distribution to a non-degenerate random variable.

More precisely,

lim
n→∞

P
[
L∗(n)n

1
2γ λ

(n)
k > ζ

]
= exp

(
−ζ2dγ

) k−1∑
j=0

ζ2dγj

j!
for all ζ ∈ [0,∞) .

(3.16)

We prove this corollary in Section 3.10.

3.2 Survey on proofs for upper bounds.

Let us consider the variational formula (1.21). The equation implies that for
any real-valued test function f ∈ `2(Zd) with supp f ⊆ Bn and ‖f‖2 = 1 we
can estimate

λ
(n)
1 ≤ 〈f,−Lωf〉 =

1

2

∑
x∈Zd

∑
y : y∼x

ωxy(f(x)− f(y))2 .

Suppose that zn is a random site that minimizes π (see (1.13)) in Bn. Now
we choose the function f such that its whole mass is concentrated in the
site zn ∈ Bn, i.e., f = δzn . When we insert this into the variational formula
(1.21), then we obtain that

λ
(n)
1 ≤ min

x∈Bn
πx ≤ 2d min

x∈Bn
max
y : x∼y

ωxy . (3.17)

It remains to find conditions under which the above right-hand side can
be bounded from above by a decreasing function g(n). As we have already
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mentioned before, a quantity which carries this information, is the function
Λg defined in (1.39), as we see in the two following proofs.

Proof of Theorem 3.5 (i). Condition (3.3) together with Lemma 3.24
implies that P-a.s. for n large enough there exists a site zn ∈ Bn such that
maxy : y∼zn ωzny ≤ g(n). Choose the test function fn = δzn and insert it into
the variational formula (1.21). The claim follows. ut

Proof of Theorem 3.7 if Condition (3.5) fails. If Condition (3.5) fails,
then we have c

∫∞
0
u−1Λg(u) du = ∞ for any c > 0. For a site z ∈ Zd let

z + N = {e ∈ Ed : z ∈ e} be the set of edges incident to the site z and note
that |z+N| = 2d for all z ∈ Zd. A substitution of variables and Lemma 3.19
imply that for any c > 0 the following event occurs P-a.s. infinitely often as
n → ∞: There exists a site zn ∈ Bn+1 such that all edges in zn + N have
conductance smaller than or equal to g(cn).

Every time this event occurs, we choose the test function fn = δzn (as in
the proof of Theorem 3.5 (i)), insert it into the variational formula (1.21)
and immediately obtain that

lim inf
n→∞

λ
(n)
1

g(cn)
≤ 2d P-a.s. for any c > 0 .

We now show that this implies the claim. Let c > 1 and recall that
we have assumed that one of the Assumptions 3.4 (a) or (b) is true. In
any case it follows that eventually 2g(n) ≥ c2g(cn). It follows that P-a.s.

lim infn→∞
λ
(n)
1

g(n) ≤ 4dc−2. This holds for any c > 1, implying that P-a.s.

lim infn→∞ λ
(n)
1 /g(n) = 0. ut

Remark 3.18. Now we can intuitively understand the result of Corollary
3.9: For the choice g(u) = F−1(u−1/2), the function Λg is constant one.
Therefore for every c > 0 P-a.s. there exists an infinite subsequence nk where
the box Bnk contains a (cg(nk))-trap. However, as we will see in Section 3.3,
P-a.s. there also exists an infinite subsequence n′k where the box Bn′k does

not contain a sufficiently good trap. It follows that the asymptotics of λ
(n)
1

fluctuate around the asymptotics of F−1(u−1/2).

3.3 Survey on proofs for lower bounds

In what follows we give a survey on the proofs of Theorem 3.5 (ii) as well as
Theorem 3.7 if Condition (3.5) holds. We recall the relation in (1.41), i.e.,

E
[
g−1(max{ω1, . . . , ω2d})d

]
= d

∞∫
0

u−1Λg(u) du , (3.18)
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and use the line of thought of that paragraph. The arguments of that sec-
tion are made rigorous in several auxiliary lemmas, which we present in the
subsequent sections.

Proof of Theorem 3.7 if Condition (3.5) holds.. By virtue of Lemma
3.19 with A = {e ∈ Ed : 0 ∈ e} it follows that P-a.s. there exists n∗1 ∈ N such
that for all n ≥ n∗1 all sites z ∈ Bn have an incident edge with conductance
greater than g(n).

Further, if we understand the expression g−1(v) as inf{u : g(u) = v}, then

Λg(u) ≤ ud P
[
g−1(max{ω1, . . . , ω2d}) ≥ u

]
and Markov’s inequality implies that Λg(u) ≤ E

[
g−1(max{ω1, . . . , ω2d})d

]
for all u ∈ [0,∞). By virtue of (3.18) and Condition (3.5), it follows that Λg
is bounded from above. Therefore Corollary 3.22 (with m = 2d and κ = d)
implies that there exists ε > 0 such that P-a.s. there exists n∗2 ∈ N such that
for all n ≥ n∗2 and for all z ∈ Bn+3d the box B3d(z) contains at most 3d− 1
edges with conductance less than or equal to g(n1−ε). Now we choose ξ small
enough such that P-a.s. there exists n∗3 such that for all n ≥ n∗3 Assumptions
(ii), (iii) and (iv) of Proposition 3.38 are fulfilled. This is possible by virtue
of (3.34) and Lemmas 3.27 and 3.28. Then the claim follows by virtue of
Proposition 3.39 with nk = k + max(n∗1, n

∗
2, n
∗
3). ut

Proof of Theorem 3.5 (ii). Let c > 1. In any case of 3.4 (a) or (b’),
we observe that for n large enough cg(n) ≤ g

(
c−1/2n

)
. It follows that the

quotient Λcg(u)/ log log u is bounded as u tends to infinity. Thus we know the
following by Corollary 3.23: There exists ε > 0 such that P-a.s. for n large
enough, there are at most 2d edges in any subbox B3d(z) ⊂ Bn+3d with
conductance smaller than or equal to cg(n1−ε). This implies Assumption (i)
of Proposition 3.38 with cg instead of g. Now we choose ξ small enough such
that P-a.s. for n large enough Assumptions (ii), (iii) and (iv) of Proposition
3.38 are fulfilled. This is possible by virtue of (3.34) and Lemmas 3.27 and
3.28.

Further, Condition (3.4) together with Lemma 3.25 implies that P-a.s. as
the box size n grows to infinity, there exists a random subsequence n′ = n′(ω)
along which each site z ∈ Bn′ has at least one incident edge e such that
ω(e) > cg(n′). It follows that we can apply Proposition 3.39 with cg instead
of g and obtain that there exists C > 0 (independent of c since we have
assumed 3.4 (a) or (b’)) such that along the random subsequence n′k and for
k large enough

Eω(f) ≥ Ccg(n′k)‖f‖22 for any f : Zd → R with supp f ⊆ Bn′k .

Since this holds for any c > 1, this implies the claim. ut
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3.4 Borel-Cantelli arguments

In this section we always assume that the dimension d ≥ 2 and that the
conductances are i.i.d. with law P. We further let g : (0,∞) → (0,∞) be a
function that decreases monotonically to zero. Moreover, we use the following
abbreviations: For α > 0 and an edge set A ⊆ Ed we define the event

Jα(A) = {∃e ∈ A : ω(e) > α} . (3.19)

For a set A ⊂ Zd we define E(A) to be the set of edges that connect a site
in A with a neighbor in positive axes direction (i.e., right, above, in front,
etc.), i.e.,

E(A) = {{x, y} ∈ Ed : x ∈ A and ∃j ∈ {1, . . . , d} such that y = x+ ej} ,

where {ej} is the canonical basis of Zd. For A ⊆ Ed we write z + A for the
translation of A by z ∈ Zd, i.e., for x, y, z ∈ Zd with {x, y} ∈ Ed we define
z + {x, y} = {x+ z, y + z}.

Further, for a sequence of events (En)n∈N we recall the definitions

lim inf
n→∞

En =

∞⋃
n=1

( ∞⋂
k=n

En

)
and lim sup

n→∞
En =

∞⋂
n=1

( ∞⋃
k=n

En

)
.

Lemma 3.19. If b ∈ N and A ⊆ E(Bb) is an edge set with |A| = m, then

P

lim inf
n→∞

⋂
z∈Bn+b

Jg(n)(z+A)

=

{
1, if

∫∞
0
ud−1P[ω ≤ g(u)]

m
du <∞, (3.20a)

0, otherwise. (3.20b)

This means that if and only if the integral
∫∞

0
ud−1P[ω ≤ g(u)]

m
du is finite,

then P-a.s. for n large enough for all sites z ∈ Bn+b the edge set z + A
contains a conductance greater than g(n). Otherwise the complement of this
event occurs for infinitely many n.

Remark 3.20. The result of Lemma 3.19 as well as the proof are general-
izations of the considerations of Cox and Durrett [CD81] and Kesten [Kes03,
p. 108] (there, m = 2d and g(n) = n−1). For the sake of completeness, we
included the proofs here.

Proof of Lemma 3.19. For (3.20a): We first show that

0 = 1− P
[

lim inf
|z|∞→∞

Jg(|z|∞−b)(z + A)

]
= P

[
lim sup
|z|∞→∞

(
Jg(|z|∞−b)(z + A)

)c]
.

(3.21)

We achieve this by applying the first Borel-Cantelli lemma, i.e., we have to
estimate
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∑
z∈Zd\Bb

P
[(
Jg(|z|∞−b)(z + A)

)c]
=

∞∑
k=b+1

∑
|z|∞=k

P[ω ≤ g(|z|∞ − b)]m

≤ 2d
∞∑

k=b+1

(2k + 1)d−1P[ω ≤ g(k − b)]m .

Since g(·) is monotonically decreasing, P[ω ≤ g(·)] is monotonically decreas-
ing as well. Further, there exists an index kb such that k − b ≥ 2−1(k + 1)
for all k ≥ kb. It follows that there exists C <∞ such that∑

z∈Zd\Bb

P
[(
Jg(|z|∞−b)(z + A)

)c]
≤ C + 4dd

∞∑
k=b+1

(2−1(k + 1))d−1P
[
ω ≤ g

(
2−1(k + 1)

)]m
.

This implies that there exists c <∞ such that the left-hand side is bounded
from above by C+c

∫∞
0
ud−1P[ω ≤ g(u)]

m
du, which is finite by assumption.

The claim (3.21) follows from the first Borel-Cantelli lemma.
To arrive at the claim of the lemma, we observe that (3.21) implies that

P-a.s. there exists n∗ ∈ N such that for all |z|∞ ≥ n∗ the set z+A contains at
least one conductance greater than g(|z|∞−b). If n > n∗ and z ∈ Bn+b\Bn∗ ,
i.e., |z|∞ ∈ (n∗, n+b], this means that z+A contains at least one conductance
greater than g(n) (recall that g is monotonically decreasing). Since n∗ is finite
and g decreases monotonically to zero, it also follows that there exists a finite
n′ ≥ n∗ such that for all edges e ∈ E(Bn∗+1) we have g(n′) < ω(e). Thus,⋂
z∈Bn+b

Jg(n)(z + A) is true P-a.s. for n large enough.

For (3.20b): Let
∫∞

0
ud−1P[ω ≤ g(u)]

m
du = ∞. We want to show that

this implies

P

lim inf
n→∞

⋂
z∈Bn+b

Jg(n)(z + A)

 = 0 . (3.22)

Let us define the set Ab = (2b + 1)Zd. It suffices to prove the claim (3.22)
for the intersection over z ∈ Bn+b ∩Ab, which in turn follows by the second
Borel-Cantelli lemma if∑

z∈Ab

P
[(
Jg(|z|+b)(z + A)

)c]
=∞ ,

since the events
{
Jg(|z|+b)(z + A)

}
z∈Ab

are independent. To prove that the

above sum diverges, we observe that there exists a constant C > 0 such that
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z∈Ab

P
[(
Jg(|z|+b)(z + A)

)c]
≥ 2d(2b+ 1)d

∞∑
k=1

(2k − 1)d−1P[ω ≤ g((2b+ 1)k + b)]
m

≥ C
∞∫

0

ud−1P[ω ≤ g(u)]
m

du .

By the assumption
∫∞

0
ud−1P[ω ≤ g(u)]

m
du =∞, the sum diverges. ut

Corollary 3.21 (of Lemma 3.19). Let b ∈ N and m ≤ |E(Bb)|. Then the
following equivalence holds:

∞∫
0

ud−1P[ω ≤ g(u)]
m

du <∞

⇔ P

lim inf
n→∞

⋂
A⊆E(Bb),

|A|≥m

⋂
z∈Bn+b

Jg(n)(z + A)

 = 1 . (3.23)

Proof of Corollary 3.21. For “⇐”, we apply Lemma 3.19 for an arbi-
trary A ⊆ E(Bb) with |A| = m. For “⇒”, note that since Bb is finite, the
intersection over the edge sets A on the right-hand side of (3.23) runs over
finitely many events. By virtue of Lemma 3.19 the claim holds for each of
these events and therefore also for the finite intersection. ut

Corollary 3.22 (of Corollary 3.21). Let b,m, κ ∈ N with m < |E(Bb)|. If
udP[ω ≤ g(u)]

m
is bounded from above, then

P

lim inf
n→∞

⋂
A⊆E(Bb),

|A|≥m+κ

⋂
z∈Bn+b

Jg(n1−ε)(z + A)

 = 1 for all ε ∈ [0, κ(m+ κ)−1) .

(3.24)

Proof. We show that the integral
∫∞

0
vd−1P

[
ω ≤ g

(
v1−ε)]m+κ

dv is finite
and then we apply Corollary 3.21.

The change of variable v1−ε = u yields

∞∫
0

vd−1P
[
ω ≤ g

(
v1−ε)]m+κ

dv

= (1− ε)−1

∞∫
0

ud(1−ε)−1−1P[ω ≤ g(u)]
m+κ

du .
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Now we consider that

ud(1−ε)−1−1P[ω ≤ g(u)]
m+κ

= ud((1−ε)−1−1− κ
m )−1

(
udP[ω ≤ g(u)]

m)1+ κ
m .

Since both udP[ω ≤ g(u)]
m

and P[ω ≤ g(u)]
m

are bounded from above, we
obtain that

∞∫
0

ud(1−ε)−1−1P[ω ≤ g(u)]
m+κ

du

≤
u1∫
0

ud(1−ε)−1−1 du+ C

∞∫
u1

ud((1−ε)−1−1− κ
m )−1 du <∞

for any u1 ∈ (0,∞) and a suitable C < ∞. Since ε ∈ [0, 1) and d ≥ 2, the
first integral on the right-hand side is finite. Further, since ε < κ(m+ κ)−1,
the second integral on the right-hand side is finite as well. ut

For the next three results, we define Λg as in (1.39).

Corollary 3.23 (of Corollary 3.21). Let Λg(u)/ log log u be bounded from
above for u large enough and let b ≥ 2. Then

P

lim inf
n→∞

⋂
A⊆E(Bb),

|A|≥2d+1

⋂
z∈Bn+b

Jg(n1−ε)(z + A)

 = 1 for all ε ∈
(
0, (2d+ 1)−1

)
.

(3.25)

Proof. We show that the integral in (3.23) is finite for m = 2d + 1 and
g(u1−ε) instead of g(u). The assumption on the function Λg implies that
there exists C <∞ such that for u large enough

u(d+ 1
2 )(1−ε)P

[
ω ≤ g(u1−ε)

]2d+1

(log log u1−ε)
1+ 1

2d

< C for all ε ∈ (0, 1).

It follows that for u large enough

udP
[
ω ≤ g(u1−ε)

]2d+1 ≤ Cu−
1
2 +ε(d+ 1

2 )(log log u1−ε)1+ 1
2d .

This implies that the integral
∫∞

0
ud−1P

[
ω ≤ g(u1−ε)

]2d+1
du is finite for all

ε < (2d+ 1)−1. The claim follows by virtue of Corollary 3.21. ut
For the next lemma we need the following definition: For i, k ∈ N with

i ≤ k we define Ai,k as the set which “has residue class i modulo k”, i.e.,

Ai,k =
{
z = (z1, . . . , zd) ∈ Zd : z1 + . . .+ zd ≡ i mod k

}
. (3.26)
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Note that for fixed k, the sets Ai,k are disjoint and eventually the sets Bn ∩
Ai,k have cardinality greater than (2n)d/k. For k = 2 we especially define
the even lattice as the set

Ae =
{
z ∈ Zd : |z|1 ≡ 0 mod 2

}
. (3.27)

Accordingly, the odd lattice is Ao = Zd\Ae.

Lemma 3.24. Let k ∈ N with k ≥ 2. Further, let N = {e ∈ Ed : 0 ∈ e}.
Then the following implication is true: If there exists ε > 0 and n∗ ∈ N such
that

Λg(n)

log logn
≥ k + ε for all n ≥ n∗,

then P

[
lim sup
n→∞

( ⋂
z∈Bn∩A

Jg(n)(z + N)

)]
= 0

for any A ∈ {A1,k, . . . , Ak,k}, i.e., P-a.s. for n large enough there exists a
site zn ∈ Bn ∩ A that is completely surrounded by edges with conductance
less than or equal to g(n). It follows that P-a.s. for n large enough there exist
k distinct sites z(1,n), . . . , z(k,n) ∈ Bn that all fulfill πz(i,n)

≤ 2dg(n) (i ≤ k).

Proof. We first prove the claim for the subsequence nj = 2j with j ∈ N and
with g(2n) instead of g(n). Then we show how to infer the claim along the
whole sequence n ∈ N.

For the first part, let ω1, . . . , ω2d be 2d independent copies of w. Since k ≥
2, it follows that for any α > 0 and any fixed i the events {Jα(z + N)}z∈Ai,k
are independent and thus we can estimate

P

 ⋂
z∈Bnj∩Ai,k

Jg(2nj)(z + N)

 = P[max{ω1, . . . , ω2d} > g(2nj)]
|Bnj∩Ai,k|

≤
(

1− P[ω ≤ g(2nj)]
2d
)(2nj)

d/k

≤ exp

(
−1

k
(2nj)

dP[ω ≤ g(2nj)]
2d

)
.

The assumption on Λg implies that the right-hand side is summable along
the sequence nj = 2j . Thus, it follows directly by the Borel-Cantelli lemma
that the statement of this lemma holds along the subsequence nj and with
g(2nj) instead of g(nj).

To infer the claim of the lemma along the entire sequence, we define

Mn := inf
x∈Bn∩A

sup
e∈x+N

ω(e) ,

where A ∈ {A1,k, . . . , Ak,k}.
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Note that Mn is monotonically decreasing in n. By the first part of the
proof we know that

P
[
lim inf
j→∞

Mnj

g(2nj)
≤ 1

]
= 1 . (3.28)

For n ∈ N we now choose jn such that

2jn ≤ n ≤ 2jn+1 .

Since g and M( · ) are both monotonically decreasing, this implies that

M2jn ≥Mn and g(n) ≥ g
(
2jn+1

)
. Thus, the claim follows by (3.28). ut

Lemma 3.25. Let N be as in Lemma 3.24. If the function u 7→ ug(u) de-
creases monotonically to zero or g varies regularly at infinity with index less
than −1 and in any case

lim
u→∞

Λg(u)

log log u
= 0 , then P

[
lim sup
n→∞

( ⋂
z∈Bn

Jcg(n)(z + N)

)]
= 1 ∀c > 0 .

(3.29)

Proof. For A ⊂ Zd, a fixed c > 0, and a fixed function g let us abbreviate

Hn
A =

⋂
z∈A

Jcg(n)(z + N) .

Let us briefly outline the idea of the proof: It is sufficient to show that the
claim is true along the subsequence nj = jj . First we show that

∞∑
j=1

P
[
H
nj
Bnj

]
=∞ (3.30)

which, since H
nj
Bnj
⊂ H

nj
Bnj \Bnj−1+1

, implies that
∑∞
j=1 P

[
H
nj
Bnj \Bnj−1+1

]
=

∞. Note that since for i, j ∈ N with i 6= j the intersection ⋃
z∈Bnj \Bnj−1+1

z + N

 ∩
 ⋃
z∈Bni\Bni−1+1

z + N

 = ∅ ,

the events
{
H
nj
Bnj \Bnj−1+1

}
j≥2

are independent. Thus, given (3.30), we can

infer by the second Borel-Cantelli lemma that

P
[
lim sup
j→∞

H
nj
Bnj \Bnj−1+1

]
= 1 . (3.31)
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Then we show that

P
[
lim inf
j→∞

H
nj
Bnj−1+1

]
= 1 . (3.32)

Since by definition

H
nj
Bnj

= H
nj
Bnj \Bnj−1+1

∩Hnj
Bnj−1+1

,

(3.32) together with (3.31) implies the claim of the lemma.
Let us start with the proof of (3.30). We note that for Ae and Ao as

defined in (3.27) the FKG-inequality implies that

P
[
H
nj
Bnj

]
= P

[
H
nj
Ae∩Bnj

∩Hnj
Ao∩Bnj

]
≥ P

[
H
nj
Ae∩Bnj

]2
.

Then we recall that Ae was constructed such that H
nj
Ae∩Bnj

is the intersection

of less than (2n + 1)d i.i.d. subevents
{
Jcg(nj)(z + N)

}
z∈Ae∩Bnj

, each with

probability

P
[
Jcg(nj)(N)

]
= 1− P[ω ≤ cg(nj)]

2d
.

Thus for j large enough, there exists C <∞ such that

P
[
H
nj
Bnj

]
≥
(

1− P[ω ≤ cg(nj)]
2d
)2(2nj+1)d

=

((
1− P[ω ≤ cg(nj)]

2d
)P[ω≤cg(nj)]−2d)2(2nj+1)dP[ω≤cg(nj)]2d

≥ exp
(
−CndjP[ω ≤ cg(nj)]

2d
)

= exp(−CΛcg(nj)) . (3.33)

Now we explain why the assumptions on g and Λg imply that the right-hand
side of (3.33) is not summable for any c > 0. If c ≤ 1, then Λcg(n) ≤ Λg(n)
for all n ∈ N. It follows that for any ε > 0 there exists j∗ ∈ N such that for
all j > j∗ we have

Λcg(nj) < ε(log j + log log j) < 2ε log j .

When we choose ε < (2C)−1, then we see that the right-hand side of (3.33)
is not summable. Let us now assume that c > 1. If u 7→ ug(u) decreases
monotonically to zero, then cg(n) ≤ g(n/c) for all n. If g varies regularly at
infinity with index less than −1, then for any c̃ > c and for n large enough
cg(n) ≤ g(n/c̃). This implies that for n large enough Λcg(n) ≤ c̃dΛg(n/c̃).
Thus, by similar arguments as for the case c ≤ 1, we obtain that the right-
hand side of (3.33) is not summable. This concludes the argument for (3.30).

Let us proceed with the proof of (3.32). Note that for any ε > 0 we have
nj+1 ≥ h(nj) with h(u) = u(log u)1−ε. This is because for j large enough
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and any ε > 0 we have

nj+1 = (j + 1)

(
1 +

1

j

)j
jj ≥ (j + 1)nj ≥ nj(log nj)

1−ε
.

Thus, (3.32) is a consequence of

P

lim inf
n→∞

⋂
z∈Bn+1

Jcg(h(n))(z + A)

 = 1 ∀c > 0 .

By virtue of Lemma 3.19 we can thus verify (3.32) by showing that for all
c > 0 the integral

∞∫
0

ud−1P[ω ≤ cg(h(u))]
2d

du <∞ .

To see that the integral is indeed finite, we consider the following: There
exists a constant C <∞ such that

∞∫
0

ud−1P[ω ≤ cg(h(u))]
2d

du

≤ C +

∞∫
2

u−1

(
u

h(u)

)d(
h(u)d P[ω ≤ cg(h(u))]

2d
)

du

= C +

∞∫
2

u−1(log u)
−d(1−ε)

Λcg(h(u)) du .

Again, we distinguish the cases c ≤ 1 and c > 1. If c ≤ 1, then cg ≤ g. If
c > 1, then we observe, as before, that cg(u) ≤ g(u/c) for u large enough.
Therefore the condition on Λg implies that also Λcg(u)/ log log u → 0 as
u tends to infinity. Since h diverges, it follows that there exists u∗ < ∞
such that Λcg(h(u)) ≤ log log h(u) for all u ≥ u∗. Further, since on the
interval [2, u∗] the function Λcg(h(·)) is bounded, the claim follows since∫∞
u∗
u−1(log u)

−d(1−ε)
log log h(u) du is finite. ut

3.5 Percolation results

In this section we adapt three standard percolation results that we need for
the path arguments of the next section in order to establish the lower bound
for the principal Dirichlet eigenvalue.
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Let us consider the standard Bernoulli bond percolation on the graph
(Zd,Ed), i.e., we assume that the conductances are independent random
variables with common law P such that an individual conductance is 1 with
probability p and 0 otherwise. For an introduction to percolation we refer
the reader to [Gri99]. As in the previous section, we call ω = (ω(e))e∈Ed ∈
{0, 1}Ed an environment and we denote the law of the environment by P. If
the conductance ω(e) of an edge e is equal to 1, then we call e an open edge.
Otherwise we call the edge e closed. Given a realization ω of the environment,
we denote the set of open edges by EO ⊂ Ed.

Consider the random graph (Zd,EO). Following the terminology of Grim-
met [Gri99], we call the connected components of this graph open clusters
and, for x ∈ Zd, we write C (x) for the open cluster that contains the site x.
Note that C (x) ⊂ (Zd,EO) is a graph. We define the clusters in this way in
order to make sense of Dirichlet forms defined as in (3.35) below. However,
when we write |C (x)|, we refer to the number of sites in C (x). Furthermore,
when C is a cluster and y is a site in the vertex set of C , then we use the
shorthand notation y ∈ C . Similarly, if e is in the edge set of C , then we
write e ∈ C .

We say that a path l = (x0, . . . , xm) is open if and only if {xi−1, xi} ∈ EO

for all i ∈ {1, . . . ,m}.
Let pc(d) be the critical probability such that P-a.s. there exists an infinite

open cluster C∞. This cluster is P-a.s. unique. We assume that pc(d) < p < 1.
Note that C∞ contains all sites x that are connected to infinity through an
open path as well as all open edges that are incident to a site in C∞. We
further define H as the complement of C∞ in Zd, i.e., we regard H as a set
of sites.

The main object of this section is to collect results from the literature and
adapt the details such that they exactly fit our needs.

Lemma 3.26 ([BKM15, Lemma 4.2]). Let η ∈ (0, 1). Then for p suffi-
ciently close to one, there exist constants C <∞ and c > 0 such that

P[|Bn ∩ C∞| ≤ η|Bn|] ≤ Ce−cn for all n ≥ 1. (3.34)

The second lemma is an implication of Lemma 3.26 above.

Lemma 3.27. Let d ≥ 2 and choose p such that Lemma 3.26 holds with
η = 1

2 . Then P-a.s. for n large enough there exists an injective map ϕ1 : H ∩
Bn → C∞ such that for any site x ∈ H ∩ Bn the distance |x − ϕ1(x)|1 ≤
2d(log n)(d+1).

Proof of Lemma 3.27. The proof of this lemma follows the lines of
the first paragraph of the proof of [BKM15, Lemma 4.7] but we included
the proof here for completeness. For z ∈ Zd and m ≥ 0, we denote
Bm(z) =

{
x ∈ Zd : |x− z|∞ ≤ m

}
. Choose the percolation parameter p such

that (3.34) is fulfilled with η = 1
2 . Let m = b(log n)d+1c and consider the
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disjoint partition Pm := {Bm((2m+ 1)z)}z∈Zd of Zd. Then Lemma 3.26
implies that there exist c, C ∈ (0,∞) such that

P

 ⋃
B∈Pm,
B∩Bn 6=∅

{
|B ∩ C∞| ≤ 1

2 |B|
} ≤ ∑

B∈Pm,
B∩Bn 6=∅

P
[
|B ∩ C∞| ≤ 1

2 |B|
]

≤ C(2n+ 1)d exp
(
−c(log n)

d+1
)
,

which is summable. By the Borel-Cantelli lemma it follows that P-a.s. for n
large enough we have |B ∩ C∞| > |B|/2 in any B ∈ Pm with B ∩Bn 6= ∅.

Now we construct ϕ1 as follows: For x ∈H ∩Bn choose B ∈ Pm (unique)
such that x ∈ B. Choose ϕ1(x) ∈ B∩C∞ in an injective way - this is possible
since |H ∩ B| < |C∞ ∩ B|. The `1-distance between x and ϕ1(x) is thus
smaller than or equal to 2d(log n)(d+1). ut

For f : Zd → R with ‖f‖22 <∞ we define the Dirichlet-form EC∞(f):

EC∞(f) =
∑

{x,y}∈C∞

(f(x)− f(y))2 , (3.35)

as well as the norm ‖f‖`2(C∞) =
∑
x∈C∞

f2(x).
In the following lemma we give a lower bound for the principal Dirichlet

eigenvalue on Bn ∩ C∞. The lemma is similar to Theorem 1.3 from [MR04]
with the difference that Bn ∩C∞ is in general not connected and we do not
include the condition that 0 ∈ C∞.

Lemma 3.28. Let d ≥ 2 and choose p such that Lemma 3.26 holds with
η > 1

2 . Then there exists a (deterministic) constant c > 0 such that P-a.s.
for n large enough and all real-valued functions f ∈ `2(Zd) with supp f ⊆ Bn
we have

‖f‖2`2(C∞) ≤ cn
2EC∞(f) . (3.36)

The proof of this lemma is rather standard given the relative isoperimetric
inequality from Theorem 3.29 below (see e.g. [Sal97, p. 83]) but since the
details are slightly different, we include the proof for the convenience of the
reader. Let A ⊆ C∞ be a set of sites. We define the relative edge boundary
of A with respect to C∞ as the edge set

∂E(A|C∞) = {{x, y} ∈ C∞ : x ∈ A and y ∈ C∞\A} .

Further, as in [BBHK08], given a percolation environment ω, we call the set
A ⊆ Zd ω-connected if every two sites in A can be connected by a finite
path that uses only open edges and runs only through sites in A. Then we
have the following theorem.
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Theorem 3.29 ([BBHK08], Theorem A.1). For all d ≥ 2 and p > pc(d),
there are positive and finite constants c1 = c1(d, p) and c2 = c2(d, p) and a
P-a.s. finite random variable n0 = n0(ω) such that for each n ≥ n0 and each
ω-connected A satisfying A ⊂ C∞ ∩Bn and |A| ≥ (c1 log n)d/(d−1) we have

∂E(A|C∞) ≥ c2|A|(d−1)/d . (3.37)

Remark 3.30. Let A ⊂ C∞ ∩ Bn and n0, c1, c2 be as in Theorem 3.29. If
A is ω-connected and |A| ≥ (c1 log n)d/(d−1), then the relative isoperimetric
inequality (3.37) yields

|∂E(A|C∞)|
|A|

≥ c2
|A|1/d

≥ c2
3n

,

where we have used that A ⊆ Bn and thus |A|1/d ≤ (2n + 1)d. If, on the
other hand, |A| < (c1 log n)d/(d−1), then eventually

|∂E(A|C∞)|
|A|

≥ 1

|A|
≥ 1

(c1 log n)d/(d−1)
≥ 1

n
.

It follows that there exists c > 0 such that for n large enough and all ω-
connected A ⊂ C∞ ∩Bn we have

|∂E(A|C∞)|
|A|

≥ c

n
. (3.38)

If A is not ω-connected, then similar to the arguments in [MR04, Section
3.1], we write A =

⋃
iAi where the Ai are the ω-connected components of

the set A. Thus,

|∂E(A|C∞)|
|A|

=
1

|A|
∑
i

|∂E(Ai|C∞)|
|Ai|

· |Ai| ≥
c

n|A|
∑
i

|Ai| =
c

n
.

It follows that (3.38) holds for all sets A ⊂ C∞ ∩Bn.

Proof of Lemma 3.28. Let n0 be as in Theorem 3.29 and let n ≥ n0.
Further let f : Zd → R such that supp f ⊆ Bn. We apply the mean value
inequality and Hölder’s inequality to obtain

√
4d ‖f‖`2(C∞)

√
EC∞(f) ≥

√ ∑
{x,y}∈C∞

(f(x) + f(y))
2
√ ∑
{x,y}∈C∞

(f(x)− f(y))
2

≥
∑

{x,y}∈C∞

∣∣f2(x)− f2(y)
∣∣ . (3.39)

Now we use a standard approach which is known as the co-area formula (see
e.g. [Sal97, p. 83]):
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∑
{x,y}∈C∞

∣∣f2(x)− f2(y)
∣∣ =

∑
x∈C∞

∑
y : {x,y}∈C∞,
f(x)≥f(y)

∞∫
0

1{f2(x)>t≥f2(y)} dt .

If for t ≥ 0 we define the set of sites At =
{
x ∈ C∞ : f2(x) > t

}
, then we see

that ∑
x∈C∞

∑
y : {x,y}∈C∞,
f(x)≥f(y)

1{f(x)2>t≥f2(y)} = |∂E(At|C∞)| .

By virtue of Theorem 3.29 and Remark 3.30 it follows that there exists c > 0
such that eventually

∑
{x,y}∈C∞

∣∣f2(x)− f2(y)
∣∣ ≥ c

n

∞∫
0

|At| dt =
c

n

∑
x∈C∞

f2(x) .

Together with (3.39) this implies that√
EC∞(f) ≥ c√

4d · n
‖f‖`2(C∞) .

ut

3.6 Path argument

In this section we give the two Propositions 3.38 and 3.39, which transfer
the knowledge we obtained by the Borel-Cantelli arguments in Section 3.4
to lower bounds on Dirichlet energies. In order to achieve this, Lemma 3.33
generalizes and modifies the path argument in [BKM15, Lemma 4.7]. Before
we start, we give a definition which is crucial for the remaining part of the
paper.

Definition 3.31. Let G = (V,E) be an undirected graph and ω = (ω(e))e∈E.
For f : V → R, we define the Dirichlet energy on G as

EωG (f) =
1

2

∑
x∈V

∑
y∈V,
{x,y}∈E

ωxy(f(x)− f(y))2 . (3.40)

Remark 3.32. For ξ > 0 let us define a(e) = 1{ω(e)≥ξ} (e ∈ Ed). Let us
call an edge e open if and only if a(e) = 1 and let C be an open cluster in
the environment a = (a(e))e∈Ed . Then, with reference to (3.35), we obtain
that ξEC (f) ≤ EωC (f) for all real-valued functions f ∈ `2(Zd).
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Since we apply a similar argument for two slightly different situations (i.e.,
once for the proofs of Theorems 3.5 and 3.7, see Proposition 3.39, and once
for the proof of Theorem 3.13, see Proposition 3.38), we kept the conditions
of the following lemma as general as necessary.

Lemma 3.33. Let G = (V,E) be a subgraph of (Zd,Ed) and let C =
(VC ,EC ) be a subgraph of G . Assume that ν, L ∈ (0,∞) and B ⊆ V are
such that the following conditions are fulfilled:

(i) There exists a constant µ > 0 such that for all f : V → R with supp f ⊆
B the following inequality holds:

EωC (f) ≥ µ‖f‖2`2(C ). (3.41)

(ii) There exists an injective map ϕ : B\VC → VC such that the following
holds: From any x ∈ B\VC there exists a (self-avoiding) directed path
l(x, ϕ(x)) to ϕ(x) in G such that

a. all e ∈ l(x, ϕ(x)) fulfill ω(e) > ν,
b. |l(x, ϕ(x))| ≤ L.

Then for all f : V → R with supp f ⊆ B the following holds:

EωG (f) ≥
(
(2L)d+1ν−1 + 3µ−1

)−1‖f‖2`2(G ) . (3.42)

Proof of Lemma 3.33. We generalize the proof of [BKM15, Lemma
5.1], which uses arguments from [Bou10, Lemma 3.4]. Let f : V → R with
supp f ⊆ B. For the following calculation we abbreviate f(y) − f(z) =
df((y, z)) where (y, z) is the (directed) edge from site y to its neighbor z.
For x ∈ B\VC we write f(x) as a telescopic sum

f(x) =
∑

b∈l(x,ϕ(x))

df(b) + f(ϕ(x)) .

We apply the Cauchy-Schwarz inequality and expand the terms on the right-
hand side by the conductances:

f2(x) ≤ 2|l(x, ϕ(x))|
ν

∑
b∈l(x,ϕ(x))

ω(b) (df(b))2 + 2f2(ϕ(x)) .

Now we sum over all x ∈ B\VC and use the upper bound for |l(x, ϕ(x))|
according to Condition (ii)b:∑
x∈B\VC

f2(x) ≤ 2L

ν

∑
x∈B\VC

∑
b∈l(x,ϕ(x))

ω(b) (df(b))2 + 2
∑

x∈B\VC

f2(ϕ(x)) .

(3.43)
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Let us look at the last term on the right-hand side: By definition ϕ is injective
and its image is in VC . This means that∑

x∈B\VC

f2(ϕ(x)) ≤
∑
x∈VC

f2(x) .

Since the path l(x, ϕ(x)) has a length of at most L, any path that uses a
given edge b must have started in an `1-ball of radius L around b =: {b1, b2}
with b1, b2 ∈ Zd. Thus, if the path l(x, ϕ(x)) runs through the edge b, then

x ∈
{
z ∈ Zd : ‖z − b1‖1 ≤ L− 1

}
∪
{
z ∈ Zd : ‖z − b2‖1 ≤ L− 1

}
.

Since in dimension d ≥ 2 and for L ≥ 2, the cardinality of either one of
the above `1-balls is bounded from above2 by 2d−1Ld, it follows that the
cardinality of the whole set on the above right-hand side is bounded from
above by (2L)d. Thus, the sum over b ∈ l(x, ϕ(x)) on the right-hand side in
(3.43) uses each edge not more than (2L)d times, whence∑

x∈B\VC

∑
b∈l(x,ϕ(x))

ω(b) (df(b))2 ≤ (2L)dEωG (f) .

Completing the sum to all sites x ∈ G and using the comparability between
EωG (f) and EωC (f), we obtain by virtue of Condition (i):

∑
x∈V

f2(x) ≤ (2L)d+1

ν
EωG (f) + 3

∑
x∈VC

f2(x) ≤
(

(2L)d+1

ν
+

3

µ

)
EωG (f) .

ut

3.6.1 Asymptotics of the principal Dirichlet eigenvalue

From the path argument in Lemma 3.33 we can use our observations from
Section 3.4 to obtain lower bounds of the Dirichlet forms. We use similar
arguments as in [BKM15, Lemma 5.1]. Let us fix ξ > 0 such that

P[ω > ξ] > pc(d) . (3.44)

Moreover, we fix an environment ω and define a new environment a by
setting

a(e) = 1{ω(e)>ξ} (e ∈ Ed) , (3.45)

2 In dimension d = 2, the cardinality of an `1-ball with radius R is 1 + 2R(R+ 1) <

2(R + 1)2. If V
(1)
d (R) is the cardinality of an `1-ball with radius R in dimension d,

then one convinces oneself that V
(1)
d (R) < 2(R+ 1)V

(1)
d−1(R).
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as in Remark 3.32. We denote the unique infinite cluster of the environment a
by C ξ and we use the same shorthand notations as explained at the beginning
of Section 3.5. Further we define C ξ

n as the restriction of C ξ to the box Bn
and similarly the holes H ξ

n .
Additionally, we define a second percolation environment ω̃g(n) for g :

(0,∞)→ (0,∞) by setting

w̃g(n)(e) = ω(e)1{ω(e)>g(n)} (e ∈ Ed) . (3.46)

Thus, edges with conductance less than or equal to g(n) are considered to be
closed and all others keep their original conductance. With this terminology
we can now define the following clusters.

Definition 3.34. For a fixed function g and a fixed ε > 0, let Dn be the
unique infinite open cluster of ω̃g(n1−ε). Regarding this cluster, we use the
same shorthand notations as introduced at the beginning of Section 3.5. Fur-
thermore, let In = Bn\Dn be the set of holes in Bn.

Definition 3.35. We call a set I ⊂ Zd sparse if the set I does not contain
any neighboring sites. Further, a set I ⊂ Zd is b-sparse if any box Bb(z) ⊂
Zd with z ∈ Zd contains at most one site of the set I .

Remark 3.36. Let b1 < b2 be natural numbers. If a set I ⊂ Zd is b2-sparse,
it is also b1-sparse and sparse.

Lemma 3.37. Let b ∈ N with b ≥ 2d and g : (0,∞)→ (0,∞) be a decreasing
function. For a fixed environment ω assume that for n large enough for
all z ∈ Bn+b the edge set E(Bb(z)) contains at most 3d − 1 edges with
conductance less than or equal to g(n1−ε). Further, let Dn be as in Definition
3.34 the unique infinite cluster. Then, for n large enough the set In =
Bn\Dn is b-sparse.

Proof. To show that for n large enough the set In is b-sparse, we first show
that for n large enough the set In is sparse. We define Ĩn = Zd\Dn. Let
us assume that for infinitely many n there exists a pair of neighbors z1, z2

in the set In = Ĩn ∩ Bn. Since by assumption Dn is the unique infinite
cluster, it follows that for n large enough Dn∩Bn 6= ∅. Thus, we can assume
without loss of generality that z1 has a neighbor x ∈ Dn. If z1 does not have
a neighbor in Dn, then we consider a self-avoiding path l inside Bn from z1

to a site x ∈ Dn ∩ Bn. Let x′ be the first site on the path l that is in Dn

and let z′1 be the preceding site to x′ on the path l. Since z1 does not have
a neighbor in Dn, the site z′1 is different from z1 and thus z′1 has a further
predecessor z′2 ∈ In on the path l. It follows that the neighbors z′1, z

′
2 are in

In ∩Bn and further z′1 has a neighbor x′ ∈ Dn ∩Bn.
In the context of this proof, for z ∈ Ĩn we define Ĩn(z) ⊂ Ĩn as the

connected component that contains z, i.e., y ∈ Ĩn(z) if there exists a path
l ⊂ Ed between the sites z and y that runs only through sites in Ĩn.

Let z1 be as above. We distinguish two cases now:
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‖f‖2`2(C ξ) ≤ c1n
2
kEC ξ(f) ≤ ξ−1c1n

2
kEωC ξ(f) . (3.47)

(iv) There exists an injective map ϕ1 : H ξ ∩ Bn → C ξ such that for any
x ∈H ξ ∩Bn there exists a directed path l1(x, ϕ1(x)) in (Zd,Ed) from x
to ϕ1(x) of length |l1(x, ϕ1(x))| ≤ 2d(log n)(d+1).

Then for k large enough, Dnk is the unique infinite open cluster of the envi-
ronment ω̃g(n1−ε) (see Definition 3.34) and

EωDnk
(
f
)
≥
(

2d+1(log nk)4d2g
(
n1−ε
k

)−1
+ 3c1ξ

−1n2
k

)−1

‖f‖2`2(Dnk ) ,

for all real-valued functions f ∈ `2(Zd) with supp f ⊆ Bnk and with EωDnk as

in Definition 3.31.

Proposition 3.39. Let the assumptions of Proposition 3.38 be true for a
subsequence (nk)k∈N as well as one of Assumptions 3.4 (a) or (b). Further,
assume that along the same subsequence for all z ∈ Bnk there exists an
incident edge with conductance greater than g(nk). Then there exists c > 0
such that for k large enough

Eω
(
f
)
≥ cg(nk)‖f‖22

for all real-valued functions f ∈ `2(Zd) with supp f ⊆ Bnk . If one of the
Assumptions 3.4 (a) or (b’) is fulfilled, then the constant c can be chosen
independently of g.

We prove these propositions in the next section.

3.6.2 Proofs of Propositions 3.38 and 3.39

Proof of Proposition 3.38. In this proof we shortly write n for a member
of the subsequence (nk)k∈N. The fact that for n large enough there exists a
unique infinite open cluster of the environment ω̃g(n1−ε), follows from As-

sumption (ii) when we choose n such that g
(
n1−ε) ≤ ξ, i.e., when C ξ ⊂ Dn.

For the actual claim we apply Lemma 3.33 with G given by the cluster
Dn and C given by C ξ. Further, let νn = g

(
n1−ε). Further, if we choose

µn = ξ
c1n2 in the place of µ in (3.41), then Condition (i) of Lemma 3.33 is

fulfilled.
We are now going to construct the map ϕ : Bn ∩Dn ∩H ξ → C ξ and the

path l(x, ϕ(x)). For the next paragraph we say that a conductance is “bad” if
it is smaller than or equal to g(n1−ε). Let ϕ = ϕ1|H ξ∩Bn∩Dn (see Assumption
(iv)). By Assumption (i), each subbox B3d(z) with z ∈ Bn+3d contains at
most 3d− 1 bad conductances. We thus construct the path l(x, ϕ(x)) by the
following algorithm: The path l(x, ϕ(x)) follows l1(x, ϕ(x)) until it hits an
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It follows that the map ϕ : In → Dn is injective and the path l(x, ϕ(x)) =
(x, ϕ(x)) fulfills the requirements of Lemma 3.33.

It follows that for n large enough

Eω
(
f
)
≥
(

2d+1g(n)−1 + 2d+3(log n)4d2g
(
n1−ε)−1

+ 9c1n
2ξ−1

)−1

‖f‖22

for all f : Zd → R with supp f ⊆ Bn:
We have assumed that one of Assumptions 3.4 (a) or (b) is fulfilled. Let us

first assume that Assumption 3.4 (b) is true and that the limit of u2g(u) is
smaller than c2 ∈ (0,∞). It follows that eventually 9c1ξ

−1n2g(n) < 9c1c2ξ
−1

and

2d+3(log n)4d2 g(n)

g
(
n1−ε

) < 2d+5(log n)4d2n−2ε < 1 ,

and therefore for n large enough

Eω
(
f
)
≥ g(n)

1 + 2d+1 + 9c1c2ξ−1
‖f‖22 (supp f ⊆ Bn) .

If we assume that Assumption 3.4 (b’) is fulfilled, then eventually even
9c1ξ

−1n2g(n) < 1 and thus the lower bound becomes independent of c1, c2,
and ξ.

Let us now assume that Assumption (a) is true. Then there exists ρ < −2
such that we can write g(n) = nρL(n) where L varies slowly at infinity. It
follows that eventually

9c1ξ
−1n2g(n) < 1 and 2d+3(log n)4d2 g(n)

g
(
n1−ε

) = nρε
2d+3(log n)4d2L(n)

L(n1−ε)
< 1 .

It follows that in this case for n large enough

Eω
(
f
)
≥ g(n)

2d+1 + 2
‖f‖22 .

ut

3.7 Localization of the principal eigenvector

For the proof of Theorem 3.13 we need to analyze the extreme value statistics
of the dependent field of random variables (πz)z∈Bn . Heuristically speaking,
since the smallest values of (πz)z∈Bn are far apart (see e.g. Lemma 3.43), they
are asymptotically independent. In order to make this argument rigorous
(see e.g. Lemma 3.49), we first introduce a decomposition of the lattice Zd.
Then we continue with a number of auxiliary lemmas in Section 3.7.2 and
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the extreme value analysis in Section 3.7.3. Finally, we give the proof of
Theorem 3.13 in Section 3.7.4. In Section 3.7.5, we prove Corollaries 3.15
and 3.17.

3.7.1 Decomposition of the lattice

To reduce the number of indices, we fix k ∈ N throughout this section, i.e.,
although most of the quantities discussed in this section depend on some
k ∈ N, it will not show as an index.

We define the cube N ⊂ Zd as

N := {1, . . . , 2(k + 1)}d ,

and the vertex set V as

V :=
⋃̇

y∈(2k+3)Zd
(y + N ) ,

where y + N =
{
z ∈ Zd : z − y ∈ N

}
.

The important two features of the set V are that first, for all a, b ≥ 0 and
all x, y ∈ (2k + 3)Zd with x 6= y, we see that

P
[

min
z∈x+N

πz ≤ a, min
z∈y+N

πz ≤ b
]

= P
[

min
z∈x+N

πz ≤ a
]
P
[

min
z∈y+N

πz ≤ b
]
,

(3.48)

and second, the following lemma.

Lemma 3.40. For any vertex set A ⊂ Zd with cardinality |A | ≤ 2(k + 1)
there exists x ∈ Bk+1 = {−k− 1,−k, . . . , k, k+ 1}d such that A ⊂ x+ V ={
z ∈ Zd : z − x ∈ V

}
.

Proof. First we note that the set V is equal to the set{
y = (y1, . . . yd) ∈ Zd : (y1 6≡ 0 mod (2k + 3)), . . . , (yd 6≡ 0 mod (2k + 3))

}
.

Let A = {v1, . . . , v2k+2} with v1, . . . , v2k+2 ∈ Zd and let v1,1, . . . , v2k+2,1

be the first components of the vectors v1, . . . , v2k+2. Then we choose the
first component x1 of the translation vector x = (x1, . . . , xd) ∈ Bk+1 such
that its residue class modulo (2k + 3) is not among the residue classes of
−v1,1, . . . ,−v2k+2,1 modulo (2k+3). This is possible since−v1,1, . . . ,−v2k+2,1

assume at most 2k + 2 different residue classes modulo 2k + 3. The other
components of the translation vector x are chosen likewise. ut



102 3 Localization

Let us now define the random variable χ as

χ := min
z∈N

πz (3.49)

and, for x ∈ Zd, analogously χx as

χx := min
z∈x+N

πz . (3.50)

Lemma 3.41. For any a ≥ 0, the value of Fχ(a) := P[χ ≤ a] is bounded by

(2k + 2)dFπ(a)−
(

(2k + 2)d

2

)
F (a)4d−1 ≤ Fχ(a) ≤ (2k + 2)dFπ(a) .

Proof. First we note that

P[χ ≤ a] = P
[

min
z∈N

πz ≤ a
]

= P

[ ∨
z∈N

(πz ≤ a)

]
. (3.51)

Since the set N contains (2k + 2)d vertices, the above right-hand side is
bounded from above by (2k + 2)dP[π ≤ a]. For the lower bound, we simply
expand the right-hand side of (3.51) by one term more, i.e.,

P

[ ∨
z∈N

(πz ≤ a)

]
≥ (2k + 2)dP[π ≤ a]−

∑
z1,z2∈N ,
z1 6=z2

P[πz1 ≤ a, πz2 ≤ a] .

(3.52)

The claim follows since there are
(

(2k+2)d

2

)
pairs z1, z2 ∈ N with z1 6= z2

and in order to achieve that simultaneously πz1 ≤ a and πz2 ≤ a, at least
4d− 1 independent conductances have to be less than or equal to a. ut

Lemma 3.42. Let F be continuous and let Fχ be as in Lemma 3.41. Then
the random variable Fχ(χ) is uniformly distributed on [0, 1].

Proof. Since π is the sum of 2d independent random variables with contin-
uous distribution function, it has a continuous distribution function as well.
It follows that Fχ : [0,∞)→ [0, 1] is also continuous and thus surjective.

Let a ∈ [0, 1). Since Fχ is surjective, there exists b such that Fχ(b) = a.
Since Fχ is also monotonically increasing, it follows that

P[Fχ(χ) ≤ a] ≤ P[χ ≤ sup {b : Fχ(b) = a}] = Fχ(sup {b : Fχ(b) = a}) = a

and

P[Fχ(χ) ≤ a] ≥ P[χ ≤ inf {b : Fχ(b) = a}] = Fχ(inf {b : Fχ(b) = a}) = a .

ut
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3.7.2 Auxiliary lemmas

Throughout this section we assume that the distribution function F is con-

tinuous. We recall that ψ
(n)
1 is the principal Dirichlet eigenvector and that

it is associated with the principal Dirichlet eigenvalue λ
(n)
1 . We normalize it

such that ‖ψ(n)
1 ‖2 = 1. By virtue of the Perron-Frobenius Theorem we can

assume without loss of generality that ψ
(n)
1 is nonnegative everywhere, see

Remark 3.3.
In Lemma 3.44 we are going to see that ψ

(n)
1 concentrates on the

cluster Dn, which we defined in Definition 3.34. Further, when the sites
z(1,n), z(2,n), . . . , z(k,n) are the locations of the smallest, the second-smallest
up to the kth smallest value of πz for z ∈ Bn, then Lemma 3.45 implies that

the smaller the quotient πz(1,n)
/πz(2,n)

, the more ψ
(n)
1 tends to concentrate in

the site z(1,n). Since F is continuous, these minimizers z(1,n), . . . , z(k,n) are
P-a.s. unique.

In order to bound the quotient πz(1,n)
/πz(2,n)

from above in Section 3.7.3,
we collect some further structural properties of the environment in this sec-
tion.

For what follows it is important to note that with g as defined in (3.8),
we have

Λg(n) = ndP
[
ω ≤ sup

{
s : F (s) = n−1/2

}]2d
= 1 .

We thus have the following lemma.

Lemma 3.43. Let g be as in (3.8) and ε2 ∈ (0, 1/3). Let b, k ∈ N. Then
P-a.s. for n large enough and for all z ∈ Bn+b the edge set E(Bb(z)) con-
tains at most 3d− 1 edges with conductance less than or equal to g(n1−ε2).
Furthermore, if Dn is as in Definition 3.34 with ε = ε2, then P-a.s. for n
large enough the set In = Bn\Dn is b-sparse and z(1,n), . . . , z(k,n) ∈ In.

Proof. Since Λg is constant and therefore bounded, the first claim follows
by virtue of Corollary 3.22 (with m = 2d and κ = d).

Since the function n 7→ g(n1−ε2) decreases to zero, P-a.s. for n large
enough the cluster Dn is the unique infinite cluster of the environment
ω̃g(n1−ε2 ). We can thus apply Lemma 3.37 and obtain that P-a.s. for n large
enough the set In is b-sparse.

For the last statement: Since the quotient Λg((·)1−ε2/2)(n)/ log logn di-

verges for n growing to infinity, Lemma 3.24 implies that P-a.s. for n large
enough πz(1,n)

≤ . . . ≤ πz(k,n)
< 2dg(n1−ε2/2). This implies that eventually

z(1,n), . . . , z(k,n) ∈ In. ut

Lemma 3.44. Let the function g be as in (3.8). Assume that there exists
ε1 ∈ (0, 1) such that one of the two cases occurs: g varies regularly at infinity
with index ρ < −(2 + ε1) or the product n2+ε1g(n) converges monotonically
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to zero as n grows to infinity. Further, let ε = ε2 = 7ε1
8(2+ε1) and Dn be as in

Definition 3.34. Then P-a.s. for n large enough∥∥ψ(n)
1

∥∥2

`2(Dn)
≤ n−ε1/2 . (3.53)

Proof. We aim to apply Proposition 3.38 to the set Dn. By virtue of Lemma
3.43 with b = 3d, it follows that Assumption (i) of Proposition 3.38 is fulfilled
P-a.s. for n large enough. Further we choose ξ > 0 small enough such that
P-a.s. for n large enough Assumptions (ii), (iii) and (iv) are fulfilled. This is
possible by virtue of the Lemmas 3.26, 3.27 and 3.28. It follows that there
exists c > 0 such that P-a.s. for n large enough

EωDn
(
f
)
≥
(

2d+1(log n)4d2g
(
n1−ε2

)−1
+ cn2

)−1

‖f‖2`2(Dn) , (3.54)

for any function f : Zd → R with supp f ⊆ Bn. In any case, the assumptions
imply that the product n2+ε1g(n) converges to zero as n grows to infinity.

Therefore n2g
(
n1−ε2

)
/(log n)4d2 converges to zero as well. It follows that if

C = 2d+1 + 1, then (3.54) implies that P-a.s. for n large enough

EωDn
(
f
)
≥ 1

C

g
(
n1−ε2

)
(log n)4d2

‖f‖2`2(Dn) .

On the other hand, we know that the term Λg((·)1−ε3 )(n)/ log logn diverges

for any ε3 > 0. Let us specifically choose ε3 = ε1(8(2 + ε1))
−1

. Now we use
Theorem 3.5 (i) and the fact that the Dirichlet energy Eω majorizes EωDn to
infer that P-a.s. for n large enough

2dg(n1−ε3) ≥ λ(n)
1 = Eω

(
ψ

(n)
1

)
≥ EωDn

(
ψ

(n)
1

)
≥ 1

C

g
(
n1−ε2

)
(log n)4d2

∥∥ψ(n)
1

∥∥2

`2(Dn)
.

(3.55)

When we solve this inequality for
∥∥ψ(n)

1

∥∥2

`2(Dn)
, we obtain that

∥∥ψ(n)
1

∥∥2

`2(Dn)
≤ c1C

g(n1−ε3)(log n)4d2

g(n1−ε2)
.

To finish the proof, we use one of the additional assumptions about g: If
g varies regularly at infinity with index ρ < −(2 + ε1), then we can write
g(n) = nρL(n) where L varies slowly at infinity. In this case we observe that
eventually

c1C
g(n1−ε3)(log n)4d2

g(n1−ε2)
= c1Cn

3ρε1
4(2+ε1)

(log n)4d2L(n1−ε3)

L(n1−ε2)
≤ n−ε1/2 ,



3.7 Localization of the principal eigenvector 105

which implies the claim. In the other case, i.e., if the product n2+ε1g(n)
converges monotonically to zero as n tends to infinity, we observe that even-
tually

c1C
g(n1−ε3)(log n)4d2

g(n1−ε2)
≤ c1Cn−(2+ε1)(ε2−ε3)(log n)4d2 ≤ n−ε1/2 ,

which implies the claim as well. ut

Lemma 3.45. Let y, z ∈ Bn with πz < πy and y � z. Assume that ψ
(n)
1

is nonnegative. Further, define my = 2 maxx : x∼y ψ
(n)
1 (x). Then the mass

ψ
(n)
1 (y) is bounded from above by

ψ
(n)
1 (y) ≤ my

1− πz
πy

. (3.56)

Proof. We assume the contrary, i.e., we assume that

myπy + ψ
(n)
1 (y)(πz − πy) < 0 . (3.57)

Then we define a new function φ : Zd → R+ by setting

φ(x) =


ψ

(n)
1 (x) , for x /∈ {y, z} ,

my , for x = y ,√
ψ

(n)
1 (y)2 + ψ

(n)
1 (z)2 −m2

y , for x = z .

(3.58)

Note that since (3.57) implies that ψ
(n)
1 (y) > my, it must be φ(z) > ψ

(n)
1 (z).

Obviously, supp φ ⊆ Bn and ‖φ‖2 = 1. Therefore, by the variational formula
(1.21) and Remark 3.3, the Dirichlet energy 〈φ,−Lωφ〉 is larger than the

principal Dirichlet eigenvalue λ
(n)
1 .

However, the Dirichlet energy 〈φ,−Lωφ〉 of φ is given by

λ
(n)
1 +

[ ∑
x:x∼y

ωxy

(
ψ

(n)
1 (x)−my

)2

−
∑
x:x∼y

ωxy

(
ψ

(n)
1 (x)− ψ(n)

1 (y)
)2
]

+

[ ∑
x:x∼z

ωxz

(
ψ

(n)
1 (x)− φ(z)

)2

−
∑
x:x∼z

ωxz

(
ψ

(n)
1 (x)− ψ(n)

1 (z)
)2
]
.

(3.59)

Evaluation of the first bracketed summand on the right-hand side gives:
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x:x∼y

ωxy

(
ψ

(n)
1 (x)−my

)2

−
∑
x:x∼y

ωxy

(
ψ

(n)
1 (x)− ψ(n)

1 (y)
)2

=
∑
x:x∼y

ωxy

(
ψ

(n)
1 (y)−my

)(
2ψ

(n)
1 (x)−my − ψ(n)

1 (y)
)

≤ −ψ(n)
1 (y)

∑
x:x∼y

ωxy

(
ψ

(n)
1 (y)−my

)
, (3.60)

where the last inequality follows by the definition of my and since Assump-

tion (3.57) implies that ψ
(n)
1 (y) > my. Further, we evaluate the second brack-

eted summand in (3.59) as∑
x:x∼z

ωxz

(
ψ

(n)
1 (x)− φ(z)

)2

−
∑
x:x∼z

ωxz

(
ψ

(n)
1 (x)− ψ(n)

1 (z)
)2

=
∑
x:x∼z

ωxz

(
φ(z)− ψ(n)

1 (z)
)(
φ(z) + ψ

(n)
1 (z)− 2ψ

(n)
1 (x)

)
.

Since ψ
(n)
1 is nonnegative and since Assumption (3.57) implies that φ(z) >

ψ
(n)
1 (z), we conclude that∑

x:x∼z
ωxz

(
ψ

(n)
1 (x)− φ(z)

)2

−
∑
x:x∼z

ωxz

(
ψ

(n)
1 (x)− ψ(n)

1 (z)
)2

≤
∑
x:x∼z

ωxz

(
φ(z)2 − ψ(n)

1 (z)2
)

=
∑
x:x∼z

ωxz

(
ψ

(n)
1 (y)2 −m2

y

)
,

(3.61)

where the last equality follows by the definition of φ(z). When we insert
(3.60) and (3.61) into (3.59), then we obtain that the Dirichlet energy
〈φ,−Lωφ〉 is bounded from above by

λ
(n)
1 − ψ(n)

1 (y)
∑
x:x∼y

ωxy

(
ψ

(n)
1 (y)−my

)
+
∑
x:x∼z

ωxz

(
ψ

(n)
1 (y)2 −m2

y

)
= λ

(n)
1 + ψ

(n)
1 (y)2(πz − πy) +my

(
ψ

(n)
1 (y)πy −myπz

)
≤ λ(n)

1 + ψ
(n)
1 (y)

[
myπy + ψ

(n)
1 (y)(πz − πy)

]
. (3.62)

Under Assumption (3.57) and because ψ
(n)
1 (y) is nonnegative, it follows that

the Dirichlet energy of φ is not larger than λ
(n)
1 . This is a contradiction to

the considerations above. ut
Let Fπ be as defined before (3.14). Then we have the following two lem-

mas.

Lemma 3.46. If there exists a∗ > 0 such that F (ab) ≥ bF (a) for all a ≤ a∗
and all 0 ≤ b ≤ 1, then Fπ(ab) ≥ b2dFπ(a) for all a ≤ a∗ and all 0 ≤ b ≤ 1.
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Proof. Let a ≤ a∗, 0 ≤ b ≤ 1 and let ω1, ω2 be two independent copies of
ω. Then

P[ω1 + ω2 ≤ ab] =

∞∫
0

P[ω2 ≤ ab− t] dP[ω1 ≤ t]

≥ b

∞∫
0

P
[
ω2 ≤ a−

t

b

]
dP[ω1 ≤ t] .

where we have used that P[ω2 ≤ ab−t] ≥ bP[ω2 ≤ a−t/b] and dP[ω1 ≤ t] ≥ 0
for all t ∈ [0,∞). It follows that

P[ω1 + ω2 ≤ ab] ≥ bP[ω2 ≤ a− ω1/b] = bP[ω1 ≤ ab− bw2] .

Similarly, we infer that P[ω1+ω2 ≤ ab] ≥ b2P[ω1+ω2 ≤ a]. The claim follows
by induction. ut

Lemma 3.47. If there exists γ ∈ [0, 1/4) such that F varies regularly at zero
with index γ, then Fπ varies regularly at zero with index 2dγ.

Proof. Let L [F ] be the Laplace transform of F . Then the Laplace transform
of Fπ fulfills

L [Fπ] = (L [F ])
2d
.

By virtue of the Tauberian theorems, more precisely by virtue of Theorem 3
in [Fel71, XIII.5] (or, equivalently Theorem 1.7.1’ of [BGT89]), L [F ] varies
regularly at infinity with index −γ. It follows that L [Fπ] varies regularly
at infinity with index −2dγ. Hence, by another application of Theorem 3 in
[Fel71, XIII.5] we obtain that Fπ varies regularly at zero with index 2dγ. ut

Lemma 3.48. Let σ1, σ2, . . . be a sequence of i.i.d. random variables with
continuous distribution. For N ∈ N, let σ1,N ≥ σ2,N ≥ . . . ≥ σN,N be the
N th order statistics. Let a > 0 and i, j, k, l,m ∈ N with N > j > i as well
as N > l > m > k. Then the events {σi,N − σj,N ≤ a} and {σk,l > σk,m}
are independent.

Proof. As in the proof of [Res87, Proposition 4.3], we observe that since the
distribution of the σ’s is continuous, we can assume without loss of generality
that there are no ties between the σ’s and we observe that each of the N !
orderings σq1 < . . . < σqN is equally likely where q1, . . . , qN is a permutation
of 1, . . . , N . Now we note that whether or not {σk,l > σk,m} is univocally
given by the specific ordering (q1, . . . , qN ). On the other hand, the difference
between any two order statistics σi,N and σj,N is completely independent of
the ordering (q1, . . . , qN ). ut
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3.7.3 Extreme value analysis

In what follows, we let π1,Bn ≤ π2,Bn ≤ . . . ≤ π|Bn|,Bn denote the order
statistics of the set {πz : z ∈ Bn}. For l ∈ N we let z(l,n) denote the site in
Bn that fulfills πz(l,n)

= πl,Bn . Note that since F is continuous, the sites
z(l,n) are P-a.s. unique. The main lemma of this section is the following one.

Lemma 3.49 (Quotient of order statistics). Let F be continuous and
assume that there exists a∗ > 0 such that F (ab) ≥ bF (a) for all a ≤ a∗ and
all 0 ≤ b ≤ 1. Let ε > 0 and k ∈ N. Then P-a.s. for n large enough

1− πk,Bn
πk+1,Bn

> n−ε . (3.63)

We prove the lemma after the proof of Lemma 3.50. The main diffi-
culty here is that the random variables in {πz : z ∈ Bn} are not inde-
pendent. However, as Lemma 3.43 shows, the smallest values are located
very far apart and therefore they are heuristically independent. In or-
der to make this idea rigorous, we use the notation of Section 3.7.1. For

an x ∈ Bk+1, let χ
(x)
(1,n) ≤ χ

(x)
(2,n) ≤ . . . denote the order statistics of{

χy : y ∈ Zd, y + N ⊂Bn+2k+1∩ (x+V )
}

. Here, we have to define the order
statistics with respect to Bn+2k+1 since

it is not necessarily
⋃
y∈Zd,

(y+N )⊂x+V ,
(y+N )∩Bn 6=∅

(y + N ) ⊆ Bn (3.64)

but instead
⋃
y∈Zd,

(y+N )⊂x+V ,
(y+N )∩Bn 6=∅

(y + N ) ⊆ Bn+2k+1 , (3.65)

see also Figure 3.4. Our aim is to compare the π1,Bn , . . . , πk+1,Bn with the

χ
(x)
(1,n), χ

(x)
(2,n), . . . for a suitable x ∈ Bk+1 and we will explain how to do this

in the proof of Lemma 3.50.

Since for any j and any x ∈ Bk+1, the random variable χ
(x)
(j,n) P-a.s.

decreases monotonically to zero as n tends to infinity, it follows that P-a.s.

for n large enough χ
(x)
(k+2,n−2k−3) ≤ a

∗ with a∗ as in Lemma 3.49.

Now we let the function g be as defined in (3.8) and let ε2 ∈ (1, 1/3).
Since the quotient Λg((·)1−ε2/2)(n)/ log logn diverges for n growing to infinity,

Lemma 3.24 implies that P-a.s. for n large enough

π1,Bn−2k−3
≤ . . . ≤ πk+1,Bn−2k−3

< 2dg((n− 2k − 3)1−ε2/2) ,

which is eventually smaller than g(n1−ε2). Since the distribution function
F is continuous, it follows that P-a.s. the above inequalities are even strict.
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Fig. 3.4: Decomposition of the box B12 into subcubes (y + N )y∈(7Zd+x) of x +

V with the translation vector x = (−4,−3) ∈ B3. We have chosen k = 2 and
thus N = {1, . . . , 6}2. The gray dots depict the sites of Z2 and the black dots
especially the sites of B12. The slightly larger black circle in the middle is the origin.
The gray squares depict the subcubes y + N and the white dots indicate the sites
{z(1,12), z(2,12), z(3,12), z(1,5), z(2,5), z(3,5)}. These six sites will become important
in (3.81). In the depicted situation, the choice of x ∈ B3 is unique given these
six sites. Furthermore, this figure illustrates that when we want to account for all
the important sites {z(1,12), z(2,12), z(3,12), z(1,5), z(2,5), z(3,5)}, then we have to
consider the union of all (y + N ) ⊂ (x + V ) with y such that y + N ∩ B12 6= ∅.
Since we do not want to cut the subcubes at the boundary of B12, some subcubes
protrude into the space Bc

12, see also (3.65).

The above considerations together with Lemma 3.43 imply that the event

G∗n :=
{
π1,Bn−2k−3

< . . . < πk+1,Bn−2k−3
< g(n1−ε2)

}
∩
{

max
x∈Bk+1

χ
(x)
(k+2,n−2k−3) ≤ a

∗
}

∩
{
∀z ∈ Bn+2k+1 :

∣∣{e ∈ E(Bk+1(z)) : ω(e) ≤ g(n1−ε2)
}∣∣ ≤ 3d− 1

}
occurs P-a.s. for n large enough, i.e., P[lim infn→∞ G∗n] = 1.

Here comes the lemma that connects the π1,Bn , . . . , πk+1,Bn with the

χ
(x)
(1,n), χ

(x)
(2,n), . . .. Let us define the event Gn as

G∗n ∩
⋃

x∈Bk+1

({{
z(1,n), . . . , z(k+1,n), z(1,n−2k−3), . . . , z(k+1,n−2k−3)

}
⊂ x+ V

}
∩
{
{πk,Bn , πk+1,Bn} ⊂

{
χ

(x)
(k,n), χ

(x)
(k+1,n), χ

(x)
(k+2,n)

}}
∩
{
πk+1,n−2k−3 ∈

{
χ

(x)
(k+1,n−2k−3), χ

(x)
(k+2,n−2k−3)

}})
.

(3.66)
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Let us now show that on the event
{
{z(1,n), . . . , z(k+1,n)} ⊂ x+ V

}
P-a.s.

for n large enough

πk+1,Bn ≤ χ
(x)
(k+2,n) . (3.70)

We assume the counter event, i.e., that πk+1,Bn > χ
(x)
(k+2,n). It follows that

there exist two sites z∗1 , z
∗
2 ∈ (Bn+2k+1\Bn) ∩ x + V with πz∗1 < πk+1,Bn

and πz∗2 < πk+1,Bn . Since on G∗n each edge set E(y + N ) with y ∈ Bn+2k+1

contains at most 3d−1 edges with conductance less than or equal to g(n1−ε2)
and further πk+1,Bn < g(n1−ε2), it follows that for n large enough, these two
sites z∗1 , z

∗
2 have to be located in different cubes y∗1 + N and y∗2 + N , with

y∗1 , y
∗
2 ∈{y ∈ ((2k + 3)Zd + x) : (y + N ) ∩Bn 6= ∅,

(y + N ) ∩Bn−2k−3 = ∅} , (3.71)

see also Figure 3.5. Thus χy∗1 and χy∗2 are new records in the sense that

both χy∗1 < χ
(x)
(k+1,n−2k−3) and χy∗2 < χ

(x)
(k+1,n−2k−3). Now we observe that

the cardinality of the set on the right-hand side of (3.71) is of order nd−1.
Further, by virtue of [Res87, Proposition 4.3], the probability that one spe-
cific value χy∗ with y∗ in the set on the right-hand side of (3.71) fulfills

χy∗ < χ
(x)
(k+1,n−2k−3), is of order n−d. It follows that the probability of the

event πk+1,Bn > χ
(x)
(n,k+2) is of order

(
nd−1/nd

)2
= n−2 and thus the claim

(3.70) follows by the Borel-Cantelli lemma.
Because of (3.69) and since by definition πk,Bn ≤ πk+1,Bn , it fol-

lows that P-a.s. for n large enough both values πk,Bn and πk+1,Bn are in{
χ

(x)
(k,n), χ

(x)
(k+1,n), χ

(x)
(k+2,n)

}
.

Similar to the considerations leading to (3.68), (3.69) and (3.70), we infer
that on the event

{
{z(1,n−2k−3), . . . , z(k+1,n−2k−3)} ⊂ x+ V

}
we have P-a.s.

for n large enough

πk+1,Bn−2k−3
∈
{
χ

(x)
(k+1,n−2k−3), χ

(x)
(k+2,n−2k−3)

}
.

ut

Proof of Lemma 3.49. Without loss of generality we may and will assume
that ε < 1.

We abbreviate En =
{
n−ε ≥ 1− πk,Bn

πk+1,Bn

}
. Since P[lim supn→∞Gc

n] = 0

by Lemma 3.50, we already know that
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P
[
lim sup
n→∞

En

]
= P

[
lim sup
n→∞

(En ∩Gn)

]

= lim
n→∞

P

[
(En ∩Gn) ∪ . . . ∪ (En+2k+2 ∩Gn+2k+2)

∪
∞⋃

m=n+2k+3

(Em ∩Gm ∩ (Em−2k−3 ∩Gm−2k−3)
c
)

]
.

Since again P[lim supm→∞Gc
m] = 0, it follows that

P
[
lim sup
n→∞

En

]
≤ (2k + 3) lim sup

n→∞
P[En ∩Gn]+

+ lim
n→∞

P

[ ∞⋃
m=n+2k+3

(
Em ∩Gm ∩ Ec

m−2k−3

)]
. (3.72)

We now treat the first and second term on the above right-hand side sepa-
rately.

Let us first show that

lim sup
n→∞

P[En ∩Gn] = 0 . (3.73)

We decompose En ∩Gn as

En ∩Gn =
⋃

x∈Bk+1

(
En ∩Gn ∩

{
{z(1,n), . . . , z(k+1,n)} ⊂ x+ V

})
(3.74)

and note that on the event Gn ∩
{
{z(1,n), . . . , z(k+1,n)} ⊂ x+ V

}
we have

πk,Bn
πk+1,Bn

≤ max
k≤i<j≤k+2

χ
(x)
(i,n)

χ
(x)
(j,n)

(3.75)

by definition of the event Gn in (3.66).
Now we define Fχ as in Lemma 3.41. By definition, Fχ is an increasing

function and thus on the event Gn ∩
{
z(1,n), . . . , z(k+1,n) ∈ x+ V

}
it follows

that n−ε > 1− πk,Bn/πk+1,Bn implies that(
∃ k ≤ i < j ≤ k + 2 : Fχ

(
χ

(x)
(i,n)

)
≥ Fχ

(
(1− n−ε)χ(x)

(j,n)

))
.

Our next aim is to extract the factor (1 − n−ε) from inside the function

argument of Fχ. Since on the event Gn we have χ
(x)
(j,n) ≤ a

∗ for all j ≤ k+ 2,

we estimate by virtue of Lemmas 3.41 and 3.46
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Fχ

(
(1− n−ε)χ(x)

(j,n)

)
3.41
≥ (2k + 2)dFπ

(
(1− n−ε)χ(x)

(j,n)

)
−
(

(2k+2)d

2

)
F
(

(1− n−ε)χ(x)
(j,n)

)4d−1

3.46
≥ (1− n−ε)2d(2k + 2)dFπ

(
χ

(x)
(j,n)

)
−
(

(2k+2)d

2

)
F
(

(1− n−ε)χ(x)
(j,n)

)4d−1

3.41
≥ (1− n−ε)2dFχ

(
χ

(x)
(j,n)

)
−
(

(2k+2)d

2

)
F
(

(1− n−ε)χ(x)
(j,n)

)4d−1

.

Thus, on the event Gn ∩
{
{z(1,n), . . . , z(k+1,n)} ⊂ x+ V

}
the event En im-

plies that there exist k ≤ i < j ≤ k + 2 such that

Fχ

(
χ

(x)
(i,n)

)
Fχ

(
χ

(x)
(j,n)

) ≥ (1− n−ε)2d −
(

(2k + 2)d

2

)F((1− n−ε)χ(x)
(j,n)

)4d−1

Fχ

(
χ

(x)
(j,n)

) .

Now we observe that by virtue of Lemma 3.42, the random variable Fχ(χ)
is uniform on [0, 1]. It follows that the random variable σ := − logFχ(χ)
is exponentially distributed with parameter 1. In analogy to the definitions

above, we define σz := − logFχ(χz), σ
(x)
(j,n) := − logχ

(x)
(j,n) for j = 1, . . . , k+2.

Thus, using the decomposition (3.74), we can bound P[En ∩Gn] by

P[En ∩Gn]

≤
∑

x∈Bk+1

k+2∑
i,j=k,
i<j

P

[
Gn ∩

{
{z(1,n), . . . , z(k+1,n)} ⊂ x+ V

}

∩

{
σ

(x)
(i,n)−σ

(x)
(j,n)≤− log

(
(1−n−ε)2d−

(
(2k+2)d

2

)F(
(1−n−ε)χ(x)

(j,n)

)4d−1

Fχ
(
χ
(x)

(j,n)

)
)}]

≤
∑

x∈Bk+1

∑
k≤i<j≤k+2

P

[
σ

(x)
(i,n) − σ

(x)
(j,n) ≤ − log

(
(1− n−ε)2d − n−ε

)]
+

+
∑

x∈Bk+1

∑
k≤i<j≤k+2

P

[(
(2k + 2)d

2

)
F
(

(1−n−ε)χ(x)

(j,n)

)4d−1

Fχ
(
χ
(x)

(j,n)

) > n−ε

]
.

(3.76)

In the first summand on the above right-hand side we have the differ-
ence between any pair of the kth to (k + 2)th largest values of a se-
quence of independent exponential variables with parameter 1. By virtue
of [Dev86, Chapter 5, Theorem 2.3], we know that the normalized spacings{
i ·
(
σ

(x)
(i,n) − σ

(x)
(i+1,n)

)}
i=k,k+1

are i.i.d. exponential variables with parame-

ter 1. It follows that
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∑
k≤i<j≤k+2

P

[
σ

(x)
(i,n) − σ

(x)
(j,n) ≤ − log

(
(1− n−ε)2d − n−ε

)]

≤ 3P

[
σ

(x)
(k+1,n) − σ

(x)
(k+2,n) ≤ − log

(
(1− n−ε)2d − n−ε

)]

= 3
(

1− e(k+1) log((1−n−ε)2d−n−ε)
)
≤ 3(k + 1)(2d+ 1)n−ε , (3.77)

which converges to zero.
For the second summand on the right-hand side of (3.76), we infer that

since F is increasing, and by virtue of Lemma 3.41, that

P

[(
(2k+2)d

2

)F(
(1−n−ε)χ(x)

(j,n)

)4d−1

Fχ
(
χ
(x)

(j,n)

) > n−ε

]
≤ P

[(
(2k+2)d

2

)
nε >

Fχ
(
χ
(x)

(j,n)

)
F
(
χ
(x)

(j,n)

)4d−1

]

≤ P

[(
(2k+2)d

2

)
(nε + 1) >

(2k+2)dFπ
(
χ
(x)

(j,n)

)
F
(
χ
(x)

(j,n)

)4d−1

]
.

Since π is the sum of 2d independent copies of the conductance ω, we can
bound Fπ(a) ≥ F (a/(2d))

2d
for all a ≥ 0. Together with the assumption in

the present lemma this implies that

Fπ(a) ≥ (2d)−2dF (a)
2d

for all a ≤ a∗ (3.78)

and therefore

P

[(
(2k + 2)d

2

)
(nε + 1)>

(2k+2)dFπ
(
χ
(x)

(j,n)

)
F
(
χ
(x)

(j,n)

)4d−1

]

≤P

[(
(2k + 2)d − 1

)
nε>(2d)−2dF

(
χ

(x)
(j,n)

)1−2d
]

where we have furthermore used that nε ≥ 1 for all n ∈ N. Since F is
continuous and increasing, it follows that there exists a constant A < ∞
such that

P

[(
(2k + 2)d − 1

)
nε > (2d)−2dF

(
χ

(x)
(j,n)

)1−2d
]

≤ P

[
χ

(x)
(j,n) > inf

{
b : F (b) = An−

ε
2d−1

}]
.

Let βn be the cardinality of the set
{
y ∈ Zd : (y+N ) ⊂ Bn+2k+1 ∩ (x+V )

}
.

Then for any a ≥ 0 and j ∈ {k, k + 1, k + 2} we know that
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P
[
χ

(x)
(j,n) > a

]
≤ P

[
χ

(x)
(k+2,n) > a

]
= P[χ > a]

βn + βnP[χ > a]
βn−1

(1− P[χ > a])

+ . . .+

(
βn
k + 1

)
P[χ > a]

βn−k−1
(1− P[χ > a])

k+1

≤ (k + 2)βk+1
n P[χ > a]

βn−k−1
.

By virtue of Lemma 3.41 and (3.78) we thus obtain for all 0 ≤ a ≤ a∗ that

P

[
χ

(x)
(j,n)>a

]
≤ (k+2)βk+1

n

(
1−
(
k+1
2d2

)d
F (a)2d+

(
(2k+2)d

2

)
F (a)4d−1

)βn−k−1

.

We now insert a = inf
{
s : F (s) = An−

ε
2d−1

}
and observe that, with this

choice, F (a)4d−1 is o
(
F (a)2d

)
viewed as functions of n. Furthermore, there

exist C1, C2 ∈ (0,∞) such that C1n
d + k + 1 ≤ βn ≤ C2n

d. It follows that
there exists B > 0 depending on the dimension d and the index k such that
for n large enough

P

[
χ

(x)
(j,n) > F−1

(
An−

ε
2d−1

)]
≤ (k + 2)Ck+1

2 n2d
(

1−Bn−
2dε

2d−1

)C1n
d

. (3.79)

Since we have assumed that ε < 1 at the beginning of this proof, this con-
verges to zero and is even summable. This concludes the proof of (3.73).

Let us now treat the second term on the right-hand side of (3.72). We
split the event Em into(
Em ∩

{
πk+1,Bm < πk+1,Bm−2k−3

})
∪
(
Em ∩

{
πk+1,Bm = πk+1,Bm−2k−3

})
and we observe that

P
[
Em ∩

{
πk+1,Bm = πk+1,Bm−2k−3

}
∩ Ec

m−2k−3

]
= 0 . (3.80)

This is because since F is continuous, we have P-a.s. π1,Bm < π2,Bm < . . . <
π|Bm|,Bm . Therefore πk+1,Bm = πk+1,Bm−2k−3

P-a.s. implies that when the
box Bm−2k−3 was enlarged to Bm, there was no new record value smaller
than πk+1,Bm−2k−3

. On this event Ec
m−2k−3 implies Ec

m.
Equation (3.80) implies that

lim
n→∞

P

[ ∞⋃
m=n+2k+3

(
Em ∩Gm ∩ Ec

m−2k−3

)]

≤ lim
n→∞

∞∑
m=n+2k+3

P
[
Em ∩Gm ∩

{
πk+1,Bm < πk+1,Bm−2k−3

}]
.
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By Lemma 3.40 we decompose and estimate

P
[
Em ∩Gm ∩

{
πk+1,Bm < πk+1,Bm−2k−3

}]
≤

∑
x∈Bk+1

P
[
Em ∩Gm ∩

{
πk+1,Bm < πk+1,Bm−2k−3

}
∩
{
{z(1,m), . . . , z(k+1,m)} ⊂ x+ V

}
∩
{
{z(1,m−2k−3), . . . , z(k+1,m−2k−3)} ⊂ x+ V

}]
. (3.81)

On the event Gn ∩
{
{z(1,m−2k−3), . . . , z(k+1,m−2k−3)} ⊂ x+ V

}
, we know

that

πk+1,Bm−2k−3
∈
{
χ

(x)
(k+1,m−2k−3), χ

(x)
(k+2,m−2k−3)

}
.

Therefore we further decompose the sample space Ω by

Ω =

k+1⋃
i=k

k+2⋃
j=i+1

k+2⋃
l=k+1

{
πk,Bm = χ

(x)
(i,m)

}
∩
{
πk+1,Bm = χ

(x)
(j,m)

}
∩
{
πk+1,Bm−2k−3

= χ
(x)
(l,m−2k−3)

}
.

And this we split into the three cases l < j, l = j and l > j, i.e.,

∑
x∈Bk+1

k+1∑
i=k

k+2∑
j=i+1

k+2∑
l=k+1

P[. . .]

=
∑

x∈Bk+1

k+1∑
i=k

 k+2∑
j=i+1

j−1∑
l=k+1

P[. . .] +
k+2∑
j=i+1,
l=j

P[. . .] +
k+2∑
j=i+1

k+2∑
l=j+1

P[. . .]

 .

(3.82)

Let us consider the first term on the above right-hand side. It has to be
j = k + 2 and l = k + 1. Thus it contains

P
[
Em ∩Gm ∩

{
{z(1,m), . . . , z(k+1,m)} ⊂ x+ V

}
∩
{
{z(1,m−2k−3), . . . , z(k+1,m−2k−3)} ⊂ x+ V

}
∩
{
πk+1,Bm < πk+1,Bm−2k−3

}
∩
{
πk,Bm = χ

(x)
(i,m)

}
∩
{
πk+1,Bm = χ

(x)
(k+2,m)

}
∩
{
πk+1,Bm−2k−3

= χ
(x)
(k+1,m−2k−3)

}]
,
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which is less than or equal to P
[
χ

(x)
(k+2,m) < χ

(x)
(k+1,m−2k−3)

]
. But if χ

(x)
(k+2,m) <

χ
(x)
(k+1,m−2k−3), then there are at least two sites

y∗1 , y
∗
2 ∈

{
y ∈ ((2k+ 3)Zd + x) : (y+N ) ∩Bk 6= ∅, (y+N ) ∩Bm−2k−3 = ∅

}
such that χy∗1 , χy∗2 < χ

(x)
(k+1,m−2k−3). Since the cubes (y + N ), y ∈ ((2k +

3)Zd+x), are disjoint, the probability that this happens is of order m−2, see
e.g. the considerations in the proof of Lemma 3.50 or [Res87, Proposition
4.3]. This implies that the sum over m is finite.

Now we consider the second term on the right-hand side of (3.82). It
contains

k+2∑
j=i+1

P
[
Em ∩Gm ∩

{
z(1,m), . . . , z(k+1,m)} ⊂ x+ V

}
∩
{
z(1,m−2k−3), . . . , z(k+1,m−2k−3)} ⊂ x+ V

}
∩
{
πk+1,Bm < πk+1,Bm−2k−3

}
∩
{
πk,Bm = χ

(x)
(i,m)

}
∩
{
πk+1,Bm = χ

(x)
(j,m)

}
∩
{
πk+1,Bm−2k−3

= χ
(x)
(j,m−2k−3)

}]

≤
k+2∑
j=i+1

P

m−ε > 1−
χ

(x)
(i,m)

χ
(x)
(j,m)

 ∩ {χ(x)
(j,m) < χ

(x)
(j,m−2k−3)

}
≤

k+2∑
j=i+1

P
[{
σ

(x)
(i,m) − σ

(x)
(j,m) ≤ − log

(
(1−m−ε)2d −m−ε

)}
∩
{
σ

(x)
(j,m) > σ

(x)
(j,m−2k−3)

}]
+

k+2∑
j=i+1

P

[(
(2k + 2)d

2

)
F
(

(1−m−ε)χ(x)

(j,m)

)4d−1

Fχ
(
χ
(x)

(j,m)

) > m−ε

]
,

where we have applied the same considerations as for (3.76). The second sum-
mand on the above right-hand side is already summable over m as we have

shown in (3.79). For the first term we recall that the σ
(x)
z are independent

exponential random variables and by virtue of Lemma 3.48 the two events{
σ

(x)
(i,m) − σ

(x)
(j,m) ≤ − log

(
(1−m−ε)2d −m−ε

)}
and

{
σ

(x)
(j,m) > σ

(x)
(j,m−2k−3)

}
are independent. The probability of the event{

σ
(x)
(i,m)− σ

(x)
(j,m) ≤ − log

(
(1−m−ε)2d−m−ε

)}
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is of order m−ε, see (3.77), whereas the probability of the event{
σ

(x)
(j,m) > σ

(x)
(j,m−2k−3)

}
is of order m−1, see e.g. [Res87, Proposition 4.3]. It follows that the second
term on the right-hand side of (3.82) is summable over m as well.

Now we consider the third term on the right-hand side of (3.82). Here,

i = k, j = k + 1 and l = k + 2. Since thus πk+1,Bm−2k−3
= χ

(x)
(k+2,m−2k−3),

it follows that there exists a site z∗ ∈ (Bm−2\Bm−2k−3) ∩ x + V such that
πz∗ < πk+1,Bm−2k−3

. Thus, the cube y + N with y ∈ (2k + 3)Zd + x that
contains this site z∗, is associated with a χy that is a new record in the sense

that χy < χ
(x)
(k+1,m−4k−6). It follows that χ

(x)
(k+1,m−2k−3) < χ

(x)
(k+1,m−4k−6).

Therefore we arrive at

P
[
Em ∩Gm ∩

{
z(1,m), . . . , z(k+1,m)} ⊂ x+ V

}
∩
{
z(1,m−2k−3), . . . , z(k+1,m−2k−3)} ⊂ x+ V

}
∩
{
πk+1,Bm < πk+1,Bm−2k−3

}
∩
{
πk,Bm = χ

(x)
(k,m)

}
∩
{
πk+1,Bm = χ

(x)
(k+1,m)

}
∩
{
πk+1,Bm−2k−3

= χ
(x)
(k+2,m−2k−3)

}]
≤ P

m−ε > 1−
χ

(x)
(k,m)

χ
(x)
(k+1,m)

 ∩ {χ(x)
(k+1,m−2k−3) < χ

(x)
(k+1,m−4k−6)

}
≤ P

[{
σ

(x)
(k,m) − σ

(x)
(k+1,m) ≤ − log

(
(1−m−ε)2d −m−ε

)}
∩
{
σ

(x)
(k+1,m−2k−3) > σ

(x)
(k+1,m−4k−6)

}]
+ P

[(
(2k + 2)d

2

)
F
(

(1−m−ε)χ(x)

(k+1,m)

)4d−1

Fχ
(
χ
(x)

(k+1,m)

) > m−ε

]
.

Both summands are summable over m by the same considerations as above.
We thus conclude the proof. ut

3.7.4 Proof of Theorem 3.13

Let us recall that we assumed that one of the two following cases occurs:
γ ∈ (0, 1/4) or γ = 0 and there exists ε1 ∈ (0, 1) such that the product
n2+ε1g(n) converges monotonically to zero as n grows to infinity.
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In the case where γ > 0, it follows that (1/F (1/s))2 varies regularly at
infinity with index 2γ. Further, (1/F (1/s))2 diverges as s→∞. It follows by
virtue of [Res87, Prop. 0.8(v)] that 1/g(u) = inf

{
s ≥ 0: (1/F (1/s))2 = u

}
varies regularly at infinity with index 1/(2γ) and thus g varies regularly at
infinity with index−1/(2γ). Since in addition γ < 1/4, there exists ε1 ∈ (0, 1)
such that −1/(2γ) < −(2 + ε1).

In any case, we define Dn as in Definition 3.34 with ε = ε2 = 7ε1
8(2+ε1) ∈

(0, 1/3). Let In = Bn\Dn. By virtue of Lemma 3.43 and Remark 3.36
we know that P-a.s. for n large enough the set In is sparse in the sense
of Definition 3.35 and further z(1,n), z(2,n) ∈ In. It follows that P-a.s. for
n large enough the sites z(1,n) and z(2,n) are no neighbors. We abbreviate
zn = z(1,n).

Now we let αn = n−ε1/8 and note that{∥∥ψ(n)
1

∥∥2

`2(Bn\{zn})
> α2

n

}
⊆
{∥∥ψ(n)

1

∥∥2

`2(Dn)
>
α2
n

2

}
∪
{∥∥ψ(n)

1

∥∥2

`2(In\{zn})
>
α2
n

2

}
. (3.83)

However, by virtue of Lemma 3.44 we know that P-a.s. for n large enough∥∥ψ(n)
1

∥∥2

`2(Dn)
≤ α4

n , (3.84)

and thus P-a.s. the limit superior of the first event on the right-hand side of
(3.83) vanishes.

In order to estimate the probability of the second event on the right-hand

side of (3.83), we now estimate
∥∥ψ(n)

1

∥∥
`2(In\{zn})

in terms of
∥∥ψ(n)

1

∥∥
`2(Dn)

.

By virtue of Remark 3.3, we can assume without loss of generality that ψ
(n)
1

nonnegative. Let y ∈ In\{zn} and define my = 2 maxx:x∼y ψ
(n)
1 (x). On the

event where In is sparse, y � zn. Therefore we know by virtue of Lemma

3.45 that ψ
(n)
1 (y) ≤ my

(
1− π1,Bn

πy

)−1

. By definition πy ≥ π2,Bn and thus it

follows that P-a.s. for n large enough

∥∥ψ(n)
1

∥∥2

`2(In\{zn})
≤
(

1− π1,Bn

π2,Bn

)−2 ∑
y∈In\{zn}

m2
y .

Moreover, on the event where In is sparse, any neighbor of y ∈ In is in Dn

and therefore

∥∥ψ(n)
1

∥∥2

`2(In\{zn})
≤ 8d

(
1− π1,Bn

π2,Bn

)−2∥∥ψ(n)
1

∥∥2

`2(Dn)
. (3.85)

On the event where (3.84) is true and In is sparse, we hence infer that
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1

∥∥2

`2(In\{zn})
>
α2
n

2

}
⊆
{

4
√
dαn > 1− π1,Bn

π2,Bn

}
.

However, by virtue of Lemma 3.49 we know that P-a.s. for n large enough
4
√
dαn < 1− π1,Bn

π2,Bn
. The claim follows.

3.7.5 Asymptotics of principal Dirichlet eigenvalue

Proof of Corollary 3.15. By virtue of (3.17), we already know that

λ
(n)
1 ≤ minz∈Bn πz. By (3.9) we further know that there exists ε1 > 0 such

that P-a.s. for n large enough

ψ
(n)
1 (zn)2 ≥ 1− n−ε1/4 .

It follows that P-a.s. for n large enough

λ
(n)
1 = 〈ψ(n)

1 ,Lωψ(n)
1 〉 ≥

∑
x : x∼zn

ωxzn

(
ψ

(n)
1 (zn)− ψ(n)

1 (x)
)2

≥
(
n−ε1/8 −

√
1− n−ε1/4

)2

min
z∈Bn

πz . (3.86)

The claim (3.10) follows. ut

3.8 Auxiliary spectral problems

Definition 3.51 (Auxiliary lattice and Laplacian). We define the set

B
(n)
l = Bn\

{
z(1,n), . . . , z(l−1,n)

}
(3.87)

and abbreviate the operator Lω with zero Dirichlet conditions outside B
(n)
l

as Lω(l,n), i.e., we define

Lω(l,n) := 1
B

(n)
l

Lω 1
B

(n)
l

, (3.88)

where the operator 1
B

(n)
l

is the identity on B
(n)
l and zero otherwise.

Since the operator −Lω is self-adjoint, the operator −Lω(l,n) is self-adjoint as
well. This justifies the next definition.
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Definition 3.52 (Auxiliary eigenvectors and values). We define the

eigenvalues of the operator −Lω(l,n) restricted to `2
(
B

(n)
l

)
by

µ
(n)
l,1 ≤ µ

(n)
l,2 ≤ . . . ≤ µ

(n)

l,|B(n)
l |

(3.89)

and its eigenvectors by

φ
(n)
l,1 , φ

(n)
l,2 , . . . , φ

(n)

l,|B(n)
l |
∈ `2

(
B

(n)
l

)
with

〈
φ

(n)
l,i , φ

(n)
l,j

〉
= δij . (3.90)

Note that B
(n)
1 = Bn and thus µ

(n)
1,k = λ

(n)
k and φ

(n)
1,k = ψ

(n)
k . Moreover the

variational formula for the auxiliary eigenvalues reads

µ
(n)
l,m = inf

M≤`2(B
(n)
l

),

dimM=m

sup
f∈M,
‖f‖2=1

Eω(f) . (3.91)

Similar to Remark 3.3, we have the following remark about the principal
auxiliary eigenvector and eigenvalue.

Remark 3.53 (Perron-Frobenius). For a given box Bn the operator Lω(l,n)

can be written as a (|Bn| − l + 1) × (|Bn| − l + 1)-matrix with non-
negative entries everywhere except on the diagonal. Since the matrix is finite-
dimensional, we can add a multiple of the identity to obtain a non-negative
primitive matrix without changing the matrix’ spectrum. By the Perron-
Frobenius theorem (see e.g. [Sen81, Chapter 1]) it follows that its principal

eigenvalue −µ(n)
l,1 is simple and we can assume without loss of generality that

its principal eigenvector is positive, which implies that φ
(n)
l,1 is nonnegative.

Lemma 3.54. For any l ∈ N and m ∈ {1, . . . , |Bn| − l + 1} the eigenvalue

µ
(n)
l,m is bounded from above by

µ
(n)
l,m ≤ πl+m−1,Bn . (3.92)

Proof. We choose

M = span
{
δz(l,n)

, δz(l+1,n)
, . . . , δz(l+m−1,n)

}
and insert it as a test space into the variational formula (3.91). ut

3.8.1 Principal eigenvectors

The following lemma is the analogue of Lemma 3.45, where we need the
Perron-Frobenius property.
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Lemma 3.55. Let k ∈ N and let y, z ∈ Bn ∩B
(n)
k with πz < πy and y � z.

Assume that φ
(n)
k,1 is nonnegative. Further, define my = 2 maxx : x∼y φ

(n)
k,1(x).

Then the mass φ
(n)
k,1(y) is bounded from above by

φ
(n)
k,1(y) ≤ my

1− πz
πy

. (3.93)

The proof of this lemma is analogous to the proof of Lemma 3.45 and there-
fore we omit it here.

Remark 3.56. Let us recall that in Assumption 3.11 we assume that one
of the two following cases occurs: γ ∈ (0, 1/4) or γ = 0 and there exists
ε1 ∈ (0, 1) such that the product n2+ε1g(n) converges monotonically to zero
as n grows to infinity. In the case where γ ∈ (0, 1/4), we define ε1 as in
Remark 3.12.

In both cases we define D(n) and I (n) as in Definition 3.34 with ε = ε2 :=
7ε1

8(2+ε1) . By virtue of Lemma 3.43 and Remark 3.36 we know that for any

fixed b ∈ N the set I (n) is b-sparse and therefore sparse P-a.s. for n large
enough in the sense of Definition 3.35. Moreover, Lemma 3.43 implies that
for any k ∈ N we have P-a.s. for n large enough z(1,n), . . . , z(k+1,n) ∈ I (n)

and thus P-a.s. for n large enough there is no pair of neighbors among the the
sites z(1,n), . . . , z(k+1,n). Since F is continuous, the sites z(1,n), . . . , z(k+1,n)

are P-a.s. unique.

The next lemma about the principal Dirichlet eigenvector φ
(n)
k,1 of the

auxiliary operator −Lω(k,n) is very similar to Lemma 3.44. Indeed, we can

nearly copy the proof since the deleted sites z(1,n), . . . , z(k−1,n) are in I (n),
see Remark 3.56.

Lemma 3.57. Let the function g be as in (3.8). Assume that there exists
ε1 ∈ (0, 1) such that one of the two cases occurs: g varies regularly at infinity
with index ρ < −(2 + ε1) or the product n2+ε1g(n) converges monotonically
to zero as n grows to infinity. Further, let ε = ε2 := 7ε1

8(2+ε1) and D(n) be as

in Definition 3.34. Then P-a.s. for n large enough∥∥φ(n)
k,1

∥∥2

`2(D(n))
≤ n−ε1/2 . (3.94)

Proof. The proof follows the lines of the proof of Lemma 3.44 until right
before (5.8). Here, we then apply Lemma 3.54 to infer that

πk,Bn ≥ µ
(n)
k,1 = Eω

(
φ

(n)
k,1

)
.

Moreover, by virtue of Lemma 3.24 there exists c1 <∞ such that P-a.s. for
n large enough

c1g(n1−ε3) ≥ πk,Bn
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with ε3 = ε1(8(2 + ε1))−1. The rest of the proof follows again the lines of
the proof of Lemma 3.44. ut

From Lemma 3.57 to localization in a single site, the main two ingredients
are Lemma 3.55 and Lemma 3.49 about the order statistics of {πx}x∈Bn .

The next lemma therefore follows.

Lemma 3.58. Let k ∈ N. Under Assumption 3.11, it follows that P-a.s. for
n large enough

φ
(n)
k,1

(
z(k,n)

)
≥
√

1− n−ε1/4 . (3.95)

This implies that P-a.s. for n large enough

µ
(n)
k,1 ≥

(
1− 2n−ε1/8

)
πk,Bn . (3.96)

Proof. In view of Remark 3.56, Lemma 3.55 and the extreme value result
Lemma 3.49, the proof of (3.95) is completely analogous to the proof of
Theorem 3.13 and thus we omit it here. For (3.96) we observe that since

µ
(n)
k,1 = 〈φ(n)

k,1 ,Lωφ
(n)
k,1〉 it follows that P-a.s. for n large enough

µ
(n)
k,1 ≥

∑
x : x∼z(k,n)

ωxz(k,n)

(
φ

(n)
k,1(z(k,n))− φ

(n)
k,1(x)

)2

≥
(
n−ε1/8 −

√
1− n−ε1/4

)2

πk,Bn .

ut

3.8.2 Orthogonality of eigenvectors

The next very simple ingredient of our proof is due to the orthogonality of
the eigenvectors.

Lemma 3.59. Let ε > 0, let j, l,m, n ∈ N with j < m and let φ
(n)
l,j (z) ≥√

1− n−ε/4. ∣∣∣φ(n)
l,m(z)

∣∣∣ ≤ n−ε/8 . (3.97)

Proof. For n = 1 the claim is immediate. For n ≥ 2 we observe that since
the eigenvectors φ

(n)
l,j and φ

(n)
l,m are orthogonal to each other, it follows that

φ
(n)
l,m(z) = −

∑
x6=z φ

(n)
l,j (x)φ

(n)
l,m(x)

φ
(n)
l,j (z)

.



124 3 Localization

By the Cauchy-Schwarz inequality it follows that for n greater than one

(
φ

(n)
l,m(z)

)2

≤

(∑
x6=z

(
φ

(n)
l,j (x)

)2
)(

1−
(
φ

(n)
l,m(z)

)2
)

(
φ

(n)
l,j (z)

)2

≤ n−ε/4

1− n−ε/4

(
1−

(
φ

(n)
l,m(z)

)2
)

where we have used that the assumption implies
∑
x6=z

(
φ

(n)
l,j (x)

)2

≤ n−ε/4.

The claim follows. ut

3.8.3 Higher eigenvalues and -vectors

We establish the connection to the original eigenvalues and -vectors via the
Bauer-Fike theorem [BF60], which we cite below from [JKO94, Lemma 11.2].

Lemma 3.60 ([JKO94, Lemma 11.2]). Let A : H → H be a linear self-
adjoint compact operator in a Hilbert space H. Let µ ∈ R, and let u ∈ H be
such that ‖u‖H = 1 and

‖Au− µu‖H ≤ α , α > 0 . (3.98)

Then there exists an eigenvalue µi of the operator A such that

|µi − µ| ≤ α . (3.99)

Moreover, for any β > α, there exists a vector u such that

‖u− u‖H ≤ 2αβ−1 , ‖u‖H = 1 (3.100)

and u is a linear combination of the eigenvectors of operator A corresponding
to the eigenvalues from the interval [µ− β, µ+ β].

Here comes the first application of Lemma 3.60.

Lemma 3.61. Let l ∈ N and m ∈ {1, . . . , |Bn| − l + 1}. Under Assumption
3.11 there exists i ∈ {1, . . . , |Bn| − l + 1} such that∣∣∣µ(n)

l,i − µ
(n)
l+m,1

∣∣∣ ≤ n−ε1/4 · πl+m−1,Bn . (3.101)
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Proof. We aim to apply Lemma 3.60 with the operator A = −Lω(l,n), the

Hilbert space H = `2(B
(n)
l ), the value µ = µl+m,1 and the vector u = φ

(n)
l+m,1.

First, we note that ‖φ(n)
l+m,1‖`2(B

(n)
l )

= 1. Next, we recall that φ
(n)
l+m,1 is an

eigenvector of the operator −Lω(l+m,n) to the eigenvalue µ
(n)
l+m,1 and therefore

∥∥∥Lω(l,n)φ
(n)
l+m,1+ µ

(n)
l+m,1φ

(n)
l+m,1

∥∥∥2

`2(B
(n)
l )

=
∑

z∈B
(n)
l \B

(n)
l+m

(
Lω(l,n)φ

(n)
l+m,1(z) + µ

(n)
l+m,1φ

(n)
l+m,1(z)

)2

,

where all other summands vanish. Recall that

B
(n)
l \B

(n)
l+m =

{
z(l,n), . . . z(l+m−1,n)

}
and by definition we have φ

(n)
l+m,1(z) = 0 for all z ∈

{
z(l,n), . . . z(l+m−1,n)

}
.

It follows that for all z ∈
{
z(l,n), . . . , z(l+m−1,n)

}
we have

Lω(l,n)φ
(n)
l+m,1(z) =

∑
x : x∼z

ωxz

(
φ

(n)
l+m,1(x)− φ(n)

l+m,1(z)
)

=
∑

x : x∼z
ωxz φ

(n)
l+m,1(x) .

Since πl+m−1,Bn ≥ πl+m−2,Bn ≥ . . . ≥ πl,Bn , it follows that

∥∥∥Lω(l,n)φ
(n)
l+m,1 + µ

(n)
l+m,1φ

(n)
l+m,1

∥∥∥2

`2(B
(n)
l )

≤ π2
l+m−1,Bn

∑
z∈B

(n)
l \B

(n)
l+m

max
x : x∼z

(
φ

(n)
l+m,1(x)

)2

.

Since by virtue of Remark 3.56 the sites z(1,n), . . . , z(l+m−1,n) are in I (n)

and are neither neighbors nor do they share a common neighbor P-a.s. for n
large enough, it follows that P-a.s. for n large enough∑

z∈B
(n)
l \B

(n)
l+m

max
x : x∼z

(
φ

(n)
l+m,1(x)

)2

≤
∑

x∈D(n)

(
φ

(n)
l+m,1(x)

)2

≤ n−ε1/2 ,

where the last bound is due to Lemma 3.57. The claim follows by virtue of
Lemma 3.60. ut
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Here comes the second application of Lemma 3.60.

Lemma 3.62. Let ε > 0, l,m ∈ N. If Assumption 3.11 holds and P-a.s. for
n large enough

φ
(n)
l,j

(
z(l+j−1,n)

)
≥
√

1− n−ε/4 for all 1 ≤ j ≤ m, (3.102)

then P-a.s. for n large enough there exists j ∈ {1, . . . , |Bn| − l−m+ 1} such
that

∣∣∣µ(n)
l,m+1 − µ

(n)
l+m,j

∣∣∣ ≤ πl+m−1,Bn

√
mn−ε/4

1−mn−ε/4
. (3.103)

Proof. We aim to apply Lemma 3.60 with the operator A = −Lω(l+m,n),

the Hilbert space H = `2(B
(n)
l+m), the value µ = µ

(n)
l,m+1 and the vector u =

φ
(n)
l,m+1/‖φ

(n)
l,m+1‖`2(B

(n)
l+m)

. First, we note that by definition ‖u‖
`2(B

(n)
l+m)

= 1

and P-a.s. for n large enough

‖φ(n)
l,m+1‖

2

`2(B
(n)
l+m)

= 1−
∑

z∈B
(n)
l \B

(n)
l+m

(
φ

(n)
l,m+1(z)

)2

≥ 1−mn−ε/4 (3.104)

by virtue of Condition (3.102) and Lemma 3.59.
Next, as we show in detail in (3.107), we can estimate∥∥∥Lω(l+m,n)φ

(n)
l,m+1 + µ

(n)
l,m+1φ

(n)
l,m+1

∥∥∥2

`2(B
(n)
l+m)

≤ max
z∈B

(n)
l \B

(n)
l+m

(
φ

(n)
l,m+1(z)

)2 ∑
x∈Bn

( ∑
z : z∼x

z∈B
(n)
l
\B(n)

l+m

ωxz

)2

. (3.105)

Since by virtue of Remark 3.56 we have P-a.s. for n large enough

B
(n)
l \B

(n)
l+m = {zl,n, . . . , zl+m−1,n} ⊂ I (n)

and I (n) is 1-sparse, it follows that on the right-hand side of (3.105) for

each x ∈ Bn the sum over
{
z ∈ B

(n)
l \B

(n)
l+m : z ∼ x

}
contains at most one

summand. Therefore P-a.s. for n large enough we can pull the square into
the inner sum. Then we rearrange both sums and use that for all z we have∑
x : x∼z ω

2
xz ≤ π2

z to infer that P-a.s. for n large enough
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∥∥∥Lω(l+m,n)φ
(n)
l,m+1 + µ

(n)
l,m+1φ

(n)
l,m+1

∥∥∥2

`2(B
(n)
l+m)

≤ max
z∈B

(n)
l \B

(n)
l+m

(
φ

(n)
l,m+1(z)

)2 ∑
z∈B

(n)
l \B

(n)
l+m

π2
z .

By virtue of Lemma 3.59 and Assumption (3.102), we know for all z ∈
{z(l,n), . . . , z(l+m−1,n)} that P-a.s. for n large enough∣∣∣φ(n)

l,m+1(z)
∣∣∣ ≤ n−ε/8 .

Furthermore,
∑
z∈B

(n)
l \B

(n)
l+m

π2
z ≤ mπ2

l+m−1,Bn
. It follows that P-a.s. for n

large enough∥∥∥Lω(l+m,n)φ
(n)
l,m+1 − µ

(n)
l,m+1φ

(n)
l,m+1

∥∥∥2

`2(B
(n)
l+m)

≤ mn−ε/4π2
l+m−1,Bn .

Together with (3.104) it follows that P-a.s. for n large enough∥∥∥Lω(l+m,n)u− µ
(n)
l,m+1u

∥∥∥2

`2(B
(n)
l+m)

≤ mn−ε/4

1−mn−ε/4
π2
l+m−1,Bn . (3.106)

and therefore the claim follows by virtue of Lemma 3.60.
It remains to justify (3.105). We start by inserting the definition of the

Laplacian, i.e.,∑
x∈B

(n)
l+m

(
Lω(l+m,n)φ

(n)
l,m+1(x) + µ

(n)
l,m+1φ

(n)
l,m+1(x)

)2

=
∑

x∈B
(n)
l+m

( ∑
z : z∼x

ωxz

((
φ

(n)
l,m+11B

(n)
l+m

)
(z)− φ(n)

l,m+1(x)
)

+µ
(n)
l,m+1φ

(n)
l,m+1(x)

)2

Now we rearrange the terms in order to cancel µ
(n)
l,m+1φ

(n)
l,m+1(x), i.e.,

above left-hand side =

=
∑

x∈B
(n)
l+m

( ∑
z : z∼x

ωxz

((
φ

(n)
l,m+11B

(n)
l

)
(z)− φ(n)

l,m+1(x)
)

+ µ
(n)
l,m+1φ

(n)
l,m+1(x)

−
∑
z : z∼x

ωxz

(
φ

(n)
l,m+11B

(n)
l \B

(n)
l+m

)
(z)

)2

,

where the first two terms cancel. The last term simplifies to
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LHS =
∑

x∈B
(n)
l+m

 ∑
z∈B

(n)
l \B

(n)
l+m : z∼x

ωxz φ
(n)
l,m+1(z)


2

≤ max
z∈B

(n)
l \B

(n)
l+m

(
φ

(n)
l,m+1(z)

)2 ∑
x∈Bn

( ∑
z∈B

(n)
l \B

(n)
l+m : z∼x

ωxz

)2

. (3.107)

ut
Both Lemmas 3.61 and 3.62 imply the following lemma.

Lemma 3.63. Let ε ∈ (0, ε1) and l,m ∈ N. If Assumption 3.11 holds and
P-a.s. for n large enough

φ
(n)
l,j

(
z(l+j−1,n)

)
≥
√

1− n−ε/4 for all 1 ≤ j ≤ m, (3.108)

then

µ
(n)
l,m+1 ≥

(
1− (2 +

√
m)n−ε/8

)
πl+m,Bn . (3.109)

Proof. Let us first assume that µ
(n)
l,m+1 ≤ µ

(n)
l+m,1. Due to Assumption (3.108)

we can apply Lemma 3.62. Because of the ordering µ
(n)
l+m,1 ≤ µ

(n)
l+m,2 ≤ . . . ,

it follows that Relation (3.103) holds with j = 1 and ε = ε. On the other

hand, if µ
(n)
l,m+1 > µ

(n)
l+m,1, then (3.101) holds with an index i ≤ m + 1. Let

us now argue why (3.101) holds with exactly i = m + 1 P-a.s. for n large
enough. We assume the contrary, i.e., that i ≤ m infinitely often as n tends
to infinity. Then (3.101) together with (3.96) implies that

µ
(n)
l,i ≥ µ

(n)
l+m,1 − n

−ε1/4πl+m−1,Bn ≥
(

1− 2n−ε1/8 − n−ε1/4
)
πl+m,Bn

Note that (3.92) implies that µ
(n)
l,i ≤ πl+i−1,Bn , which we assumed to be less

than or equal to πl+m−1,Bn infinitely often as n tends to infinity. Thus

πl+m−1,Bn

πl+m,Bn
≥ 1− 3n−ε1/8

infinitely often as n tends to infinity. This is a contradiction to Lemma 3.49.

Thus, since ε < ε1, it follows regardless of whether µ
(n)
l,m+1 ≤ µ

(n)
l+m,1 or

µ
(n)
l,m+1 > µ

(n)
l+m,1 that P-a.s. for n large enough

∣∣∣µ(n)
l,m+1 − µ

(n)
l+m,1

∣∣∣ ≤
√

mn−ε/4

1−mn−ε/4
πl+m−1,Bn ≤

√
mn−ε/8 · πl+m,Bn .

(3.110)
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Therefore P-a.s. for n large enough µ
(n)
l,m+1 is bounded from below by

µ
(n)
l,m+1 ≥ µ

(n)
l+m,1 −

√
mn−ε/8 · πl+m,Bn

(3.96)

≥
(

1− (2 +
√
m)n−ε/8

)
πl+m,Bn . (3.111)

ut
Now we have the ingredients to prove the main theorem by induction.

3.9 Proof of Theorem 3.16

By virtue of Lemma 3.54, we already know that

λ
(n)
k ≤ πk,Bn for all k ∈ N .

In what follows, we further prove (3.13) and that P-a.s. for n large enough

λ
(n)
k ≥

(
1− n−ε/8

)
πk,Bn for all ε < ε1 . (3.112)

We prove the claim by induction over k.

Base case: k = 1. In this case, Claim (3.13) is a consequence of (3.9) of
Theorem 3.13. Furthermore, Claim (3.112) follows because

λ
(n)
1 ≥

(
1− 2n−ε1/8

)
π1,Bn >

(
1− n−ε/8

)
π1,Bn for all ε < ε1 (3.113)

by virtue of (3.86).

Inductive step: (k − 1)  k. Suppose that the claims (3.12) and (3.13)
hold for some k− 1 ∈ N. We now show that this implies that the claims also
hold for k instead of k − 1.

For (3.12) this already follows by Lemma 3.63 with l = 1 and m = k− 1.
Note that here Condition (3.108) holds for all ε < ε1 and therefore (3.109)
holds even without the multiplicative constants. For (3.13) we apply the
second part of Lemma 3.60: Let 0 < δ < ε1/16 and

β
(n)
k = 2

√
k − 1n−δπk,Bn . (3.114)

Since πk−1,Bn ≤ πk,Bn , it follows that β
(n)
k > α

(n)
k with

α
(n)
k :=

√
k − 1n−ε1/8πk−1,Bn .
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Therefore Lemma 3.60 and (3.106) with l = 1 and m = k − 1 imply that
there exists a function u : Zd → R such that∥∥∥ψ(n)

k − u
∥∥∥
`2(Bn)

≤ 2
√
k − 1n−ε1/8πk−1,Bn

β
(n)
k

(3.115)

where u is a linear combination of the eigenvectors {φk,j}j≥1 corresponding

to the eigenvalues from the interval
[
λ

(n)
k − β(n)

k , λ
(n)
k + β

(n)
k

]
of the operator

−Lω(k,n). We now show that P-a.s. for n large enough u = φ
(n)
k,1 , i.e., that P-a.s.

for n large enough

specLω(k,n) ∩
[
λ

(n)
k − β(n)

k , λ
(n)
k + β

(n)
k

]
=
{
µ

(n)
k,1

}
. (3.116)

It suffices to show that P-a.s. for n large enough µ
(n)
k,2 > λ

(n)
k +β

(n)
k . We note

that Lemma 3.54 implies that

λ
(n)
k + β

(n)
k ≤

(
1 + 2

√
k − 1n−δ

)
πk,Bn . (3.117)

By virtue of Lemma 3.49 we have P-a.s. for n large enough
πk,Bn
πk+1,Bn

< 1 −
2
√
k − 1n−δ, whence it follows that P-a.s. for n large enough

λ
(n)
k + β

(n)
k <

(
1− 4(k − 1)n−2δ

)
πk+1,Bn ≤ µ

(n)
k,2 ,

where the last inequality follows since by the inductive assumption the re-
lation (3.108) holds for all ε < ε1 and therefore (3.109) holds for all ε < ε1

with l = k and m = 1. Therefore (3.116) is true.
It follows that for any 0 < δ < ε1/16 we have P-a.s. for n large enough∣∣∣ψ(n)

k (z(k,n))− φ
(n)
k,1(z(k,n))

∣∣∣ ≤ nδ−ε1/8πk−1,Bn

πk,Bn
< nδ−ε1/8 .

By virtue of Lemma 3.58, we already know that P-a.s. for n large enough∣∣∣φ(n)
k,1

(
z(k,n)

)∣∣∣ ≥ √1− n−ε1/4. It follows that

(
ψ

(n)
k (z(k,n))

)2

≥ 1− n−ε1/4 + n2δ−ε1/4 − 2nδ−ε1/8 ≥ 1− 2nδ−ε1/8 .

The claim follows since we can choose δ arbitrarily small.

3.10 Weak convergence of the eigenvalues

Because of Corollary 3.15 and Theorem 3.16, in order to prove Corollary
3.17, it remains to prove that
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lim
n→∞

P

[
πk,Bn >

ζ

n
1
2γ L∗(n)

]
= exp

(
−ζ2dγ

) k−1∑
j=0

ζ2dγj

j!
for all ζ ≥ 0 .

(3.118)

where the difficulty lies in the dependence of the random variables (πx)x∈Bn .
However, the dependence is very short-ranged since πx1

and πx2
are depen-

dent if and only if the sites x1, x2 are neighbors. We strongly rely on the
ideas of [Wat54], which we easily adapt to our needs.

In what follows, we always mean that a statement holds for all ζ ≥ 0 even
if we do not explicitly write so. We define

an :=
(
n

1
2γ L∗(n)

)−1

=
1

h(|Bn|)
= sup

{
t : Fπ(t) = |Bn|−1

}
.

with h as in (3.14) and L∗(n) as in (3.15). Then |Bn| = (P[π0 ≤ an])
−1

and
therefore

lim
n→∞

|Bn|P[π0 ≤ anζ] = lim
n→∞

Fπ(anζ)

Fπ(an)
= ζ2dγ (3.119)

since an → 0 as n → ∞ and Fπ varies regularly at zero with index 2dγ by
virtue of Lemma 3.47. We further note that if e1 ∈ Zd is a neighbor of the
origin, then P[{π0 ≤ anζ} ∩ {πe1

≤ anζ}] ≤ F (anζ)4d−1 since for the event
{π0 ≤ anζ} ∩ {πe1 ≤ anζ} at least 4d− 1 independent conductances ω have
to be smaller than or equal to anζ. By virtue of (3.78) and since F varies
regularly at zero with index γ, it follows that

|Bn|P[{π0 ≤ anζ} ∩ {πe1 ≤ anζ}]→ 0 as n→∞ . (3.120)

We start with the auxiliary Lemma 3.65, for which we need some further
definitions. For a set A ⊂ Zd we define CC(A) as the set of connected
components of A. Furthermore, we define the outer site boundary of the set
A as

∂A :=
{
z ∈ Zd\A : ∃x ∈ A with x ∼ z

}
. (3.121)

For the natural numbers q ≤ m we further define the number

C(n)
m,q(A) :=

∣∣{M ⊂ Bn\(A ∩ ∂A) : |M | = m, |CC(M)| = q}
∣∣ . (3.122)

If A is the empty set, we simply write C
(n)
m,q.

Remark 3.64. Note that if we fix k ∈ N, then as n tends to infinity we have

C
(n)
m,m(An) = |Bn|m/m! +O

(
|Bn|m−1

)
for all sequences of subsets An ∈ Bn

with the constraint |An| = k − 1. Moreover, for q ≤ m − 1 there exists
a constant cq < ∞ such that for all n ∈ N and all sequences of subsets



132 3 Localization

An ⊂ Bn with |An| = k − 1, we have C
(n)
m,q(An) < cq|Bn|q. Note that this cq

is independent of the specific choice of An.

Lemma 3.65. For any fixed k, l ∈ N the relations (3.119) and (3.120) imply
that

lim
n→∞

sup
An⊂Bn,
|An|=k−1

l∑
m=1

m−1∑
q=1

∑
M⊂Bn\(An∩∂An),

|M|=m,
|CC(M)|=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]
= 0 for all ζ ≥ 0 .

(3.123)

Proof. We are summing over sets M with the constraint |CC(M)| = q <
m = |M |. This means that here all the sets M contain at least one connected
component C with a neighboring pair of sites, i.e., P

[⋂
x∈C {πx ≤ anζ}

]
≤

P[{π0 ≤ anζ} ∩ {πe1
≤ anζ}]. Since πx and πy are independent if the sites x

and y are in two different connected components of M , it follows that

l∑
m=1

m−1∑
q=1

∑
M⊂Bn\(An∩∂An),

|M|=m,
|CC(M)|=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]

≤
l∑

m=1

m−1∑
q=1

C(n)
m,q(An)P[π0 ≤ anζ]

q−1P[{π0 ≤ anζ} ∩ {πe1
≤ anζ}]

By Remark 3.64 there exists a constant cq < ∞ such that C
(n)
m,q(An) ≤

cq|Bn|q for all sequences of subsets An ⊂ Bn with the constraint that |An| =
k − 1. Therefore the claim follows by (3.119) and (3.120). ut

Proof of Corollary 3.17. As already stated at the beginning of this
section, it remains to prove (3.118). We prove the claim by induction over k.

Base case: k = 1. For any even integer l ≤ |Bn| we estimate

1−
l−1∑
m=1

(−1)m−1
m∑
q=1

∑
M⊂Bn,
|M|=m,
CC(M)=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]

≤ P
[

min
x∈Bn

πx > anζ

]

≤ 1−
l∑

m=1

(−1)m−1
m∑
q=1

∑
M⊂Bn,
|M|=m,
CC(M)=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]
. (3.124)
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The first term in the above sums over m, i.e.
∑
x∈Bn P[πx ≤ anζ], is equal to

|Bn|P[π0 ≤ anζ] and converges to ζ2dγ . For the rest of the terms, for example
on the left-most side of (3.124), we observe that

l−1∑
m=1

(−1)m−1
m∑
q=1

∑
M⊂Bn,
|M|=m,
CC(M)=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]

=
l−1∑
m=1

(−1)m−1
m−1∑
q=1

∑
M⊂Bn,
|M|=m,
CC(M)=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]

+

l−1∑
m=1

(−1)m−1
∑

M⊂Bn,
|M|=m,
CC(M)=m

P

[ ⋂
x∈M
{πx ≤ anζ}

]
.

The first sum on the above right-hand side converges to zero as n tends to
infinity by virtue of Lemma 3.65 (with k = 1). The second sum contains only
sets M with CC(M) = |M |, i.e. sets which are completely disconnected. For
such sets all the events {πx ≤ anζ}x∈M are independent. It follows that the
second sum on the above right-hand side is

l−1∑
m=1

(−1)m−1
∑

M⊂Bn,
|M|=m,
CC(M)=m

P

[ ⋂
x∈M
{πx ≤ anζ}

]
=

l−1∑
m=1

(−1)m−1C(n)
m,mP[π0 ≤ anζ]

m
,

which, by virtue of (3.119) and Remark 3.64, converges to

l−1∑
m=1

(−1)m−1ζ2mdγ/m!

as n tends to infinity.
The same considerations hold also for the right-most side in (3.124) and

it follows that for any even integer l we have

l−1∑
m=0

(−ζ)2mdγ

m!
≤ lim
n→∞

P
[

min
x∈Bn

πx > anζ

]
≤

l∑
m=0

(−ζ)2mdγ

m!
.

Therefore the claim follows for k = 1.

Inductive step: (k − 1)  k. For the inductive step we consider

P[πk,Bn > anζ] = P[πk−1,Bn > anζ] + P[{πk,Bn > anζ} ∩ {πk−1,Bn ≤ anζ}] .
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Let us now assume that the claim (3.118) holds for some k − 1. It follows
that it remains to show that

lim
n→∞

P[πk,Bn > anζ, πk−1,Bn ≤ anζ] =
ζ2(k−1)dγ

(k − 1)!
exp
(
−ζ2dγ

)
.

Let us start with the decomposition

P[πk,Bn > anζ, πk−1,Bn ≤ anζ] (3.125)

=
∑
A⊂Bn,
|A|=k−1

P

⋂
x∈A
{πx ≤ anζ} ∩

⋂
y∈Bn\A

{πy > anζ}


=

∑
A⊂Bn,
|A|=k−1

P

⋂
x∈A
{πx ≤ anζ} ∩

⋂
y∈Bn\(A∩∂A)

{πy > anζ}


−

∑
A⊂Bn,
|A|=k−1

P

⋂
x∈A
{πx ≤ anζ} ∩

 ⋃
y∈∂A

{πy ≤ anζ}

 .
(3.126)

Let us argue that the second term on the above right-hand side converges
to zero as n tends to infinity. We observe that

∑
A⊂Bn,
|A|=k−1

P

⋂
x∈A
{πx ≤ anζ} ∩

 ⋃
y∈∂A

{y ≤ anζ}



≤
∑
A⊂Bn,
|A|=k−1

∑
y∈∂A

P

[
{πy ≤ anζ} ∩

⋂
x∈A
{πx ≤ anζ}

]

≤
∑
A⊂Bn,
|A|=k,

|CC(A)|≤k−1

P

[⋂
x∈A
{πx ≤ anζ}

]

which converges to zero by virtue of Lemma 3.65.
Let us now consider the first term on the right-hand side of (3.126). Since

for any y ∈ Bn\(A∩∂A) the random variable πy is independent of {πx}x∈A,
the first sum on the right-hand side of (3.126) is
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∑
A⊂Bn,
|A|=k−1

P

[⋂
x∈A
{πx ≤ anζ}

]
P
[

min
y∈Bn\(A∩∂A)

πy > anζ

]

≥ P
[

min
y∈Bn

πy > anζ

] ∑
A⊂Bn,
|A|=k−1

P

[⋂
x∈A
{πx ≤ anζ}

]

= P
[

min
y∈Bn

πy > anζ

]
k−1∑
q=1

∑
M⊂Bn,
|M|=k−1,
CC(M)=q

P

[ ⋂
x∈M
{πx ≤ anζ}

] .

(3.127)

Due to the inductive base case k = 1, the first factor in the above right-hand
side converges to exp

(
−ζ2dγ

)
. Similar to our arguments for the inductive base

case, we also argue that the second factor converges to ζ2(k−1)dγ/(k − 1)!.
Therefore, we already have the desired lower bound for the left-hand side of
(3.127). It remains to prove the desired upper bound. Similar to the proof for
k = 1, we let l be an even integer and estimate for all sequences of subsets
An ⊂ Bn with the constraint |An| = k − 1 that

P
[

min
y∈Bn\(An∩∂An)

πy > anζ

]

≤ 1 +
l∑

m=1

(−1)m
∑

M⊂Bn\(An∩∂An),
|M|=m

P

[ ⋂
x∈M
{πx ≤ anζ}

]

= 1 +
l∑

m=1

(−1)m
∑

M⊂Bn\(An∩∂An),
|M|=m,
CC(M)=m

P

[ ⋂
x∈M
{πx ≤ anζ}

]

+
l∑

m=1

(−1)m
m−1∑
q=1

∑
M⊂Bn\(An∩∂An),

|M|=m,
CC(M)=q

P

[ ⋂
x∈M
{πx ≤ anζ}

]

According to Lemma 3.65, the supremum of the last sum on the above right-
hand side taken over all sequences An ⊂ Bn with |An| = k − 1 converges to
zero. For the first sum we observe that since |CC(M)| = |M |, the set M is
sparse and therefore {πx}x∈M is a set of independent random variables. It
follows that
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l∑
m=1

(−1)m
∑

M⊂Bn\(An∩∂An),
|M|=m,
CC(M)=m

P

[ ⋂
x∈M
{πx ≤ anζ}

]

=
l∑

m=1

(−1)mC(n)
m,m(An)P[π0 ≤ anζ]

m

=
l∑

m=1

(−1)m
(
|Bn|m/m! +O

(
|Bn|m−1

))
P[π0 ≤ anζ]

m

by Remark 3.64. Taking the supremum over all sequences of subsets An ⊂ Bn
with the constraint |An| = k − 1, this still converges to

∑l
m=0 ζ

2dγm/m!.
Since this holds for every l ∈ 2N and we already have the lower bound
(3.127), the claim follows. ut



Appendix A

Improved moment condition for i.i.d.
conductances

Remark A.1. The authors of [NSS17] prove for nearest-neighbor connec-
tions e, that the moment condition E

[
ω(e)−d/2

]
<∞ is sufficient for homog-

enization, see [NSS17, Corollary 3.4, Remark 3.6, Lemma 3.14]. When they
assume that the conductances are independent and identically distributed,
they can improve this moment condition to E[ω(e)−q] <∞ for q > 1/4, see
Proposition 3.24 in [NSS17]. However, with a small alteration in the proof
of Proposition 3.24, we can show that even E

[
ω(e)−1/4

]
<∞ is sufficient.

For brevity, we assume that the reader is familiar with the article [NSS17]
and we copy the notation used therein. We have reached our goal, when we
can allow β = 2dγ in Step 2 of the proof of [NSS17, Proposition 3.24], i.e.,
if E[ω−γ ] <∞ implies E

[
µ( · ; e)βp

]
<∞ for β = 2dγ.

We will not use (94) but instead

∞ > E
[
ω−γ

]
= γ

∞∫
0

uγ−1P
[
ω−1 > u

]
du . (A.1)

Now we follow the lines of the proof in [NSS17], i.e.,

E
[
µ(e)βp

]
= βp

∞∫
0

tβp−1P
[
µ(e)−1 > t

]
dt

= βp

∞∫
0

tβp−1
2d∏
i=1

P

 ∑
b∈`i(e)

ω(b)−
1
p−1 > t

p
p−1

dt

With the same arguments as in [NSS17], we infer that

E
[
µ(e)βp

]
≤ 9βp

∞∫
0

tβp−1P
[
ω(b)−1 >

tp

9p−1

]2d

dt

By a change of variables we obtain that

137
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9βp

∞∫
0

tβp−1P
[
ω(b)−1 >

tp

9p−1

]2d

dt

=
9β

9β(p−1)

∞∫
0

uβ−1P
[
ω−1 > u

]2d
du

=
9β

9β(p−1)

∞∫
0

uγ−1P
[
ω−1 > u

]
·
(
uβ−γP

[
ω−1 > u

]2d−1
)

du .

(A.2)

By Markov’s inequality we obtain that

uβ−γP
[
ω−1 > u

]2d−1 ≤ uβ−γ E[ω−γ ]
2d−1

uγ(2d−1)
.

Since E[ω−γ ] <∞ and β ≤ 2dγ, this is bounded from above. Together with
(A.2) it follows that

E
[
µ(e)βp

]
. γ

∞∫
0

uγ−1P
[
ω−1 > u

]
du = E

[
ω−γ

]
<∞ . (A.3)
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50, 2018.

http://doi.org/10.5169/seals-111712
https://doi.org/10.1016/j.spa.2009.11.001
https://doi.org/10.1016/j.spa.2009.11.001
http://doi.org/10.5169/seals-111702
http://doi.org/10.5169/seals-111702
http://www.jstor.org/stable/2243411
http://www.jstor.org/stable/2243411
http://doi.org/10.1103/PhysRev.154.750
http://doi.org/10.1103/PhysRev.103.51
https://doi.org/10.1007/s00440-017-0759-z
https://doi.org/10.1007/s00440-017-0759-z
https://doi.org/10.1002/cpa.3160280102
https://doi.org/10.1002/cpa.3160280206
https://doi.org/10.1002/cpa.3160290405
https://doi.org/10.1002/cpa.3160360204
https://doi.org/10.1214/EJP.v13-591
https://doi.org/10.1214/EJP.v17-1831
https://doi.org/10.1214/EJP.v17-1831
https://doi.org/10.1007/s00440-005-0448-1
https://doi.org/10.1007/s00440-005-0448-1
https://arxiv.org/abs/1712.07980
https://arxiv.org/abs/1712.07980
https://doi.org/10.1002/andp.19354140406
http://doi.org/10.1103/PhysRev.99.406
http://doi.org/10.1103/PhysRev.95.844
http://doi.org/10.1103/PhysRev.95.844
https://doi.org/10.1137/1122003
https://doi.org/10.1137/1122003
https://doi.org/10.1016/j.anihpb.2005.12.002
https://doi.org/10.1016/j.anihpb.2005.12.002
http://doi.org/10.1214/16-AIHP793
http://doi.org/10.1214/16-AIHP793


References 141

Gri99. G. Grimmett. Percolation, Volume 321 of Grundlehren der mathematis-
chen Wissenschaften. Springer Berlin Heidelberg, 1999.

GS35. B. Gudden and W. Schottky. Probleme der Ionen-und Elektronenleitung
in nichtmetallischen festen Körpern. Z. Tech. Phys 16:323–327,1935.

HHB77. D. L. Huber, D. S. Hamilton and B. Barnett Time-dependent effects in
fluorescent line narrowing. Phys. Rev. B 16(10):4642–4650, 1977.

HG50. C. S. Hung and J. R. Gliessmann. The Resistivity and Hall Effect of
Germanium at Low Temperatures. Phys. Rev., 79:726–727, 1950.

Hun50. C. S. Hung. Theory of Resistivity and Hall Effect at Very Low Temper-
atures. Phys. Rev., 79:727–728, 1950.

JKO94. V. V. Jikov, S. M. Kozlov, and O. A. Oleinik. Homogenization of dif-
ferential operators and integral functionals. Springer Berlin Heidelberg,
1994.

Kes86. H. Kesten. Aspects of first passage percolation. École d’Été de Prob-
abilités de Saint Flour XIV - 1984, Volume 1180 of Lecture Notes in
Mathematics, pages 125–264. Springer Berlin Heidelberg, 1986.

Kes03. H. Kesten. First-passage percolation. From Classical to Modern Prob-
ability, Volume 54 of Progress in Probability, pages 93–143. Birkhäuser
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