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Abstract

From transport economic literature it is known that pricing (environmental) externalities

can improve the efficiency of a transport system. However, in real-world politics, policy setting

often follows so-called ‘backcasting’ approaches where predefined goals are set, and policy mea-

sures are implemented to reach those goals. This study presents, for a specific case study, an

parametric approach to identify the gap between toll levels derived from environmental damage

cost internalization and toll levels from the goal to reduce global greenhouse gas emissions in

the transport sector until 2020 by 20% (avoidance cost approach). For this purpose, the damage

costs internalization is applied to a real-world scenario of Munich metropolitan area. The results

indicate that the desired reduction in CO2 emissions is not reached. This parametric internal-

ization approach with damage cost estimates from the literature yields toll levels that are by a

factor of 5 too low in order to reach the predefined goal. When aiming at overall emission cost

reductions by 20%, the damage cost estimates are even by a factor of 10 too low. Furthermore,

it is shown that the major contribution to the overall emission reduction stems from behavioral

changes of (reverse) commuters rather than from urban travelers; under some circumstances,

the latter even increase their CO2 emission levels. Finally, the study indicates that there might

be conflicting trends for different types of pollutants, i.e. pricing emissions does not necessarily

result in a reduction of all pollutant types.
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1 Introduction and problem statement

Rapid urbanization has led to significant increases of transport-related negative externalities (e.g.

emissions, congestion, accidents, noise etc.). The costs of these externalities can amount to a

considerable share of a country’s GDP (Gross Domestic Product). For example, the total external

costs of transport excluding congestion costs for EU plus Norway and Switzerland in 2008 add up

to more than 500 billion EUR – 4% of the total GDP – and the congestion costs of road transport

ranges between 146 and 243 billion EUR, i.e. 1 to 2% of the total GDP (van Essen et al., 2011).

Transport systems operate inefficiently unless the costs of these externalities are borne by the

responsible households and firms. For almost a century, it is known that internalizing external

effects by a tax can change users’ behavior and increase overall benefits (Pigou, 1920). Therefore,

many past contributions investigated the impact of internalizing external costs. Some studies focus

on finding theoretically optimal congestion tolls (see, e.g., Vickrey, 1969; Henderson, 1974; Arnott

et al., 1993), and other studies examine the effect of congestion pricing strategies on emission levels

(see, e.g., Daniel and Bekka, 2000; Beevers and Carslaw, 2005). Substantially less effort has been

undertaken to develop exhaust emission internalization strategies, or to evaluate the impacts of

environmental pricing strategies on congestion (see, e.g., Kickhöfer and Nagel, 2013; Wang et al.,

2014). Very little research has focused on combined pricing schemes, even though it is well known

that these different external effects of transportation are positively correlated (see, e.g., Barth and

Boriboonsomsin, 2009; Beamon and Griffin, 1999). This lack of research might be explained by the

fact that time losses (and in consequence congestion levels) can be obtained relatively easily from

standard transport simulation toolkits, but environmental impacts other than CO2 require rather

sophisticated (post-processing) models and the true marginal costs (and in consequence damage

levels) are hard to obtain.

In real-world politics, the focus is therefore typically on so-called ‘backcasting’ approaches

(Geurs and van Wee, 2000, 2004; IWW et al., 1998) rather than on marginal cost pricing strategies.

The idea behind backcasting is to set political goals, and implement a number of policy measures

in order to achieve these goals. Consequently, this procedure implicitly defines implementation

(= avoidance) costs and ignores the damage cost approach from above. A prominent example of

such policy setting in the European Union (EU) is the agreement to limit global warming below

2◦ Celsius (European Commission, 2011). In order to achieve this goal, the directive 2008/101/EC

(2008) sets the goal to reduce global greenhouse gas (GHG) emissions in the transport sector by at
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least 20% until 2020 with respect to 1990 levels. In this context, several regulation schemes have

been set up: (1) Emission trading system, (2) Use of renewable energy sources, (3) Reduction in

the energy use of buildings and industries, (4) Improvement in fuel and vehicle technology. For the

road transport sector, improvements in vehicle and fuel technology might play an important role.

However, most estimates indicate that innovations in vehicle and fuel technology are only able to

stabilize transport-related emissions (IEA, 2014). This is due to potential rebound effects where

the resulting reduction in generalized costs will yield higher demand which, in turn, can (partly)

neutralize the positive impact of technological improvements (Divjak, 2009; Parry and Small, 2005).

Also Edenhofer et al. (2015) highlight that omitting pricing strategies and focusing on technological

changes only will forgo a major part of the potential welfare improvements. Another point of

concern from these innovations is the growing divergence between “type-approved” (emission tests

under laboratory conditions) and on-road CO2 emission from the vehicles (Moch et al., 2014; EEA,

2014). This gap has increased from 8% in 2001 to 38% in 2013 (Moch et al., 2014). That is,

improvements in vehicle and fuel technology might not be effective under on-road conditions what

might further pull back the GHG emission targets.

In the light of the above, the questions arise (i) to what extend pricing schemes, in particular

the internalization of air pollution externalities, would contribute to the political goal, and (ii)

how (additional) prices would need to be set in order to reach this target. Or, in other words, how

different the price levels of a (best-practice) damage cost approach are compared to the backcasting

approach.

Thus, in a first step, the present study applies a marginal cost-based pricing scheme for exhaust

emissions to a real-world scenario of the Munich metropolitan area in Germany similar to work by

Kickhöfer and Nagel (2013); Agarwal and Kickhöfer (2015). In a second step, the paper attempts

to identify the necessary additional prices, as multiples of the original damage cost estimates, in

order to reach the EU 2020 CO2 reduction targets.

The remainder of the paper is organized as follows. Sec. 2 describes the travel demand simulator

MATSim briefly. Different approaches for environmental policy setting and their implementation in

the MATSim framework are discussed in Sec. 3. Further, scenario set up for a real-world case study

is displayed in Sec. 4 and the results are analyzed in the Sec. 5. Finally, the study is concluded and

possible ways forward are shown in Sec. 6.
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2 Travel demand simulator – MATSim

MATSim1 is a transport simulation framework designed to simulate large-scale scenarios in reason-

able computation time (Balmer et al., 2009). It is therefore chosen for all simulation runs. Minimal

inputs to the model are network data and daily plans of all individual travelers (= agents), forming

the initial demand (see Fig. 1), as well as various configuration parameters.

initial 
demand analyses mobsim scoring 

replanning 

Figure 1: MATSim cycle (Horni et al., in preparationb)

Every agent in the simulation, learns and adapts to the system within an iterative process. This

process is composed of the following three steps:

1. Simultaneous execution of plans (mobsim): In the first step, daily plans of all individ-

uals are executed simultaneously on the network. In this study, a state-of-the-art queuing

model (Gawron, 1998; Cetin et al., 2003) is used which follows the traditional “first-in-first-

out” queuing logic.

2. Evaluation of plans (scoring): In order to model the choice between multiple potential

daily plans, executed plans of all agents are evaluated using a utility function, indicating the

performance (or score) of the plan. A plan’s utility (Splan) is represented by:

Splan =

N−1∑
q=0

Sact,q +
N−1∑
q=0

Strav,mode(q) (1)

where N is the number of activities, Sact,q is the utility from performing activity q and

Strav,mode(q) is the (typically negative) utility for traveling to activity q. In short, the utility

earned from performing an activity is given by2

Sact,q = βdur · ttyp,q · ln(tdur,q/t0,q) (2)

1See www.matsim.org; for detailed information, please refer to Horni et al. (in preparationa).
2 See Charypar and Nagel (2005) and Nagel et al. (in preparation), Sec. 3.2, for a more detailed description.
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where tdur,q and ttyp,q are actual and typical durations of activity q, respectively. βdur is the

marginal utility of activity duration. t0,q is the minimal duration, which essentially has no

effect as long as dropping activities is not allowed. The simplified mode-specific utility from

traveling by car or public transport (PT) following Nagel et al. (in preparation) is described

by:

Scar(q) = βtrav,car(q) · ttrav,q + βm · γd,car(q) · dtrav,q

SPT (q) = CPT (q) + βtrav,PT (q) · ttrav,q + βm · γd,PT (q) · dtrav,q
(3)

where ttrav,q and dtrav,q is the travel time and distance between activity q and q+ 1. Cpt(q) is

the Alternative Specific Constant (ASC) of public transport (PT).

3. Change of plans (replanning): After executing and scoring plans, a new plan is generated

for a predefined share of agents. The new plan is generated by modifying an existing plan

according with respect to predefined choice dimension.

3 Environmental policy setting

This section shortly describes the idea behind the principle of internalizing air pollution externalities

and the implementation in the MATSim framework (Sec. 3.1), Subsequently, an idea of how to link

this damage cost approach to political backcasting approaches is presented (Sec. 3.2).

3.1 Internalization

Internalization is the process in which the (damage) costs of one or several externalities are actually

charged to make them relevant in the behavioral decision making of users. In literature, this is

referred to as marginal social cost (MSC) pricing. These social costs are the sum of marginal

private costs (MPC) and marginal external costs (MEC) (see, e.g., Walters, 1961; Turvey, 1963).

By default, the MATSim utility functions only incorporate marginal private costs (MPC) which

correspond to (every agent’s) time and money spent for traveling between planned activities (see

Eq. 1). Agents do not take into account the emission costs which they cause to other agents or the

environment.

For the calculation of damage costs of exhaust emissions, an emission modeling tool is used which

has been developed by Hülsmann et al. (2011) and further improved and extended by Kickhöfer
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et al. (2013). Exhaust emissions are categorized as warm and cold-start emission. The cold-

start emissions are generated during the warm-up phase of vehicles, whereas warm emissions are

generated while driving. The most relevant parameters for their calculation essentially are parking

duration, distance traveled and vehicle characteristics, and engine type, road category and speed

of vehicles, respectively. At the end of the every link and for every vehicle, cold-start and warm

emissions are calculated based on the traffic states on the link. The essential parameters such

as parking duration, traveled distance, road category, speed of vehicle etc. are derived from the

simulation. With their help, the HBEFA3 database provides the resulting exhaust emission values

differentiated by type of pollutant.

In order to convert these emissions into vehicle-specific toll values, a method developed by

Kickhöfer and Nagel (2013) is used. It converts the time-dependent, vehicle-specific emissions into

a toll by using emission costs factors from the literature (see Tab. 1). Thus, in the simulation,

every time an agent leaves a link, the agent consequently pays the toll equivalent to the emissions

produced by her. As a reaction to the toll, agents learn and adapt their behavior within the iterative

learning cycle (see Sec. 2). Consequently, agents’ decisions are based on MSC, and the external

effect is internalized.

Table 1: Emission cost factors. Source: Maibach et al. (2008).

Emission type Cost factor (EUR/ton)

CO2 70

NMHC 1,700

NOx 9,600

PM 384,500

SO2 11,000

3.2 Backcasting

The process of internalizing environmental externalities based on marginal social costs as described

in Sec. 3.1 can, e.g., be used in computer models in order to identify the upper bound of possible

efficiency gains in a transport system. However, the calculation of dynamic, vehicle-specific emis-

sions is very complex and time consuming, and it remains unclear whether the cost factors (see,

3 ‘Handbook Emission Factors for Road Transport’, Version 3.1, see www.hbefa.net
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e.g., Tab. 1) can be determined in a way that they represent damage costs.

Because of this difficulty to determine actual damage costs, real world policies often use so-called

backcasting approaches, i.e. the definition of high level political goals (Geurs and van Wee, 2000,

2004; IWW et al., 1998), such as the reduction of GHG emissions in the transport sector by at least

20% until 2020 with respect to 1990 levels. Setting such goals implicitly defines implementation

(= avoidance) costs if certain policy actions are undertaken to reach the respective goal.

The idea of the present study therefore is to identify the order of magnitude of price level

differences between the internalization and the backcasting approach. For that purpose, emission

cost factors from Tab. 1 are increased by a multiplication factor following a parametric approach.

In the remainder of this paper, this factor is referred to as “emission cost multiplication factor

(ECMF)”. The increased emission costs are then charged to the agents who eventually consider

them in their decision making. The study will report changes in agents’ behavior under different

levels of ECMF (see Sec. 4.2).

4 Real-world scenario: Munich

In this section, the set-up for the scenario of the Munich metropolitan area is illustrated shortly.

4.1 Inputs

The initial scenario was created by Kickhöfer and Nagel (2013) and further modified by Agarwal

et al. (2015). In the present study, the latter is used.

Network The Municipality of Munich (RSB, 2005) provided network data in the form of VISUM4

data, which is further converted into a MATSim network. It contains 17,888 nodes and 41,942 links.

Plans The demand in the Munich metropolitan area is based on four different data sources,

resulting in four subpopulation groups: urban, commuters, reverse commuters and freight. A

realistic activity-based demand for each of the user group is created as shown in Tab. 2. The

table also shows the number of individuals for each user group. For computational reasons, 1% of

total population is used for the present study. Network flow and storage capacities are adjusted

accordingly. In the simulation, only car mode is simulated on the network, all other modes are

4 ‘Verkehr In Städten UMlegung’, see www.ptv.de
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Table 2: User groups in the Munich metropolitan area

User group Data source No of individuals [million] Travel modes

Urban MiD 2002, Follmer et al. (2004) 1.4 car, PT, bike, walk,ride

Commuter
Böhme and Eigenmüller (2006)

0.3
car, PT

Reverse commuter 0.2

Freight (ITP and BVU, 2007) 0.15 car

assumed to run emission free and without capacity constraints. Therefore, in the present study, all

modes other than car depicted as non-car travel modes.

Following the study by Agarwal et al. (2015), the present study also uses two different public

transport (PT) modes and consequently two alternative specific constants for each PT mode. All

behavioral parameters and the approximate average Values of Travel Time Savings (VTTS) are

listed in Tab. 3.

Re-planning strategies As described in Sec. 2, two re-planning strategies modeled in order to

let the agents react towards different pricing schemes: route choice and mode choice. In every

iteration, 15% agents switch route, 15% agents switch mode5, and rest of the agents chose a plan

from their existing choice set according to multinomial logit (MNL) model. After 80% of the

iteration, agents only chose from their fixed choice set.

4.2 Base case and pricing schemes

A base case simulation is run for 1000 iterations and its output is then used as input for the different

policy cases:

• The base case is continued for 500 more iterations and is referred to as “Business As Usual”(BAU)

case. This is the reference case for comparison.

• Six different emission cost multiplication factors (ECMF), namely 1.0, 5.0, 10,0, 15.0, 20.0

and 25.0, are considered and for each ECMF, one simulation is set up by running for 500

iterations.

5 In accordance to the study Agarwal et al. (2015), an urban traveler can switch mode between car and slower

PT (speed 25 km/h) whereas, commuters and reverse commuters can switch mode between car and faster PT (speed

50 km/h).
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Table 3: Behavioral parameters.

Parameter Value Unit

Source: Kickhöfer (2014)

Marginal utility of activity duration (βdur) + 0.96 utils/h

Marginal utility of traveling by car (βtrav,car) – 0.00 utils/h

Marginal utility of traveling by PT (βtrav,PT ) – 0.18 utils/h

Monetary distance rate by car (γd,car(q)) –0.30 EUR/km

Monetary distance rate by PT (γd,PT (q)) –0.18 EUR/km

Marginal utility of money (βm) – 0.0789942 utils/EUR

Approximate average V TTScar + 12.15 EUR/h

Approximate average V TTSPT + 14.43 EUR/h

Source: Agarwal et al. (2015)

ASC for urban PT – 0.75 utils

ASC for commuters/reverse commuters PT – 0.3 utils

In each of the pricing schemes, emission cost factors (see Tab. 1) are increased by the above

mentioned ECMF to increase the toll for the agents. The reaction of the agents under various

ECMF is analyzed in the following Sec. 5.

5 Results

In this section, the impact of the different emission cost multiplication factors (ECMF) on transport-

related indicators is presented. The absolute daily emission costs caused by all subpopulations

amounts to 3.7 m EUR. Tab. 4 shows the share of car trips and emission costs for the different

subpopulations. Though, freight car trips represent roughly 7.82% of all car trips, they contribute

to approximately 68.58% of the emission costs because freight vehicles emits more emissions other

vehicles and have longer travel distances (mean and median trip distances are 111 and 69 km). On

the other hand, urban travelers (62.66% car trips of all car trips) contribute to only 5.47% of total

emission costs.
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Table 4: Share of car trips and emission costs caused by different user groups for BAU scenario

Urban (Rev.) commuter Freight

% of trips 62.66 29.52 7.82

% of emission costs 5.47 25.95 68.58

5.1 Changes in emission costs

Tab. 5 shows the effect of different ECMF on emission costs caused by the respective subpopulation.

As expected, overall emission costs by tendency decrease with increasing ECMF. This reduction in

emission costs is a combined effect of re-routing and modal shift towards environmentally friendly

modes. As Tab. 6 shows, the modal shift is the driving force behind these savings. (Rev.) com-

muters are better off by already shifting to PT at low values of ECMF. In contrast, emission costs

caused by urban travelers’ first decrease slightly, then increase for ECMF = 5 and then decrease

again. The significant decrease in the car share of the (rev.) commuters has led to capacity relief

(see Tab. 6). As a consequence, car share for urban travelers increases and ultimately results in

higher emission costs at ECMF = 5. Afterwards, the tolls for urban travelers become so high that

even after further relief in the capacities, urban travelers are better off by changing to non-car

transport modes. This, in consequence, eventually diminishes the emission costs of urban travelers.

For freight transport where only route choice is allowed, the decrease in emission costs is – as

expected – by far smaller than for the other subpopulations.

Overall, for the whole population, ECMF and caused emission costs are inversely proportional

to each other, i.e. an increase in the ECMF yields a decrease in emission costs. However, this effect

stagnates at higher values of the ECMF (> 10). Thus, presumably, in order to achieve a 20%

emission cost reduction target, a toll level equivalent to 10 times of the damage costs is required.

5.2 Changes in pollutant types

Following the overall interpretation from above, the effects on different types of pollutants is pre-

sented next.

5.2.1 Changes in CO2

Fig. 2 shows the relative change in CO2 levels for various emission cost multiplication factors. The

trend is similar to emission costs, i.e. for (rev.) commuter, freight and the whole population, CO2
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Table 5: Daily change in emission costs (in percent) with respect to BAU for various ECMF

User group Emission cost multiplication factor

1 5 10 15 20 25

Urban -0.08 2.02 ↑ -3.16 -8.42 -13.22 -18.89

(Rev.) commuter -9.87 -63.19 -83.76 -88.07 -89.45 -89.60

Freight -0.23 -0.56 -0.67 -0.72 -0.70 -0.71

Total -2.72 -16.67 -22.37 -23.81 -24.42 -24.77

Table 6: Change in car trips (in percentage points) with respect to BAU for various ECMF

BAU
Emission cost multiplication factor

User group 1 5 10 15 20 25

Urban 22.98 0.22 1.39 1.14 0.66 0.20 -0.41

(Rev.) commuter 65.57 -7.04 -44.96 -59.57 -62.71 -63.61 -63.67

Freight 100.00 No change

Total 30.72 -0.79 -5.06 -7.29 -8.12 -8.63 -9.15

decreases with an increase in the ECMF. In contrast, for urban travelers, CO2 remains almost

same at ECMF = 1, increases at ECMF = 5 and afterwards decreases with increase in ECMF.

The increase at ECMF = 5 is due to the capacity relief effect (see Sec. 5.1). Interestingly, the EU

emission reduction target (i.e. 20% reduction in CO2) can be achieved at ECMF = 5 (or slightly

less). Recall that for a 20% reduction in the total emission costs, an ECMF = 10 or higher was

necessary.

5.2.2 Changes in NMHC

Fig. 3a shows the effect of ECMF on the exhaust of Non-Methane Hydrocarbons (NMHC) for urban

travelers and freight transport. For (rev.) commuters, levels of all pollutant types decrease with an

increase in ECMF whereas for freight, the levels of NMHC increases with increase in ECMF. For

urban travelers, similar to the total emission costs (see Sec. 5.1), the levels of all pollutants except

NMHC first decreases, then increase for ECMF = 5 and then again decreases with an increase in

the ECMF.

The emission level of NMHC mainly depends on fuel type, engine type, age of the vehicle and
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Figure 2: % Change in CO2 levels for various ECMF

vehicle speed (Haszpra and Szilágyi, 1994). Also, NMHC emissions are higher for cold-starts than

for a warmed up vehicle (Schmitz et al., 2000; Hoekman, 1992).

For the BAU scenario, urban travelers contribute to about 39% of total NMHC emissions

because: (1) They travel relatively shorter distance (average distance = 6.11 km) and, (2) They

perform multiple trips in a day, whereas (rev.) commuters and freight only perform 2 and 1 trips

per day, respectively. From Fig. 3, the following can be observed:

1. Urban: Pricing emission increases the number of urban car trips (see Tab. 6) and decreases

their average car distance (see Fig. 3b). It means, some of the non-car users with short

trip distance are better off by shifting to car mode. This eventually result in higher NMHC

emissions for urban travelers. On the contrary, at ECMF = 25, even after the decrease in the

average trip distance, the NMHC costs is reduced by more than 2% due to a significant drop

in car share.

12



(a) % Change in NMHC levels

(b) Change in average trip distance

Figure 3: Change in NMHC costs and average trip distance for urban and freight user groups with respect to BAU
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2. Freight: The freight user group is somewhat different than all other user groups. The average

trip distances decrease with increasing ECMF, but NMHC costs increase. The average trip

distance of freight trips is very high (average distance = 110.9 km) and freight vehicle fleet,

fuel type, age of the vehicle do not vary, thus, presumably, route shift from motorways to

local roads increases the NMHC costs.

It has been observed that total link counts increase with an increase in the ECMF and average

trip distance decreases (see Fig. 3b) with an increase in the ECMF. That is, freight trips are

shifted from longer links to multiple shorter links. A detailed closer analysis of these numbers

show that the major shift occur from motorway (faster speed links) to local and distributor

roads (slower speed links). Consequently, the level of NMHC rises with increase in the ECMF.

6 Conclusion and outlook

This study examined the gap between toll levels derived from (a) damage cost internalization and

(b) avoidance costs which are needed to achieve the EU 2020 CO2 reduction target. First, in order

to obtain the damage cost levels, marginal emission pricing by Kickhöfer and Nagel (2013) was

applied to a real-world scenario of the Munich metropolitan area. Second, in order to obtain the

possible avoidance cost toll levels, different emission cost multiplication factors (ECMF) were used,

modifying the damage cost estimates from the literature.

The results indicate that ECMF = 10 is required to reduce total emission costs by 20% whereas

ECMF = 5 is enough to obtain a 20% reduction in CO2 levels. That is, damage costs from the

literature have to be multiplied by a factor of 5 to achieve the EU 2020 CO2 reduction target.

However, at ECMF = 5, a significant increase in CO2 levels from urban travelers is observed. The

highest contribution comes from (rev.) commuters and their modal shift from car to non-car mode.

Urban travelers, however, shift to car mode because of the resulting relief in road capacities. Only

at very high toll levels, the car share of urban travelers decreases. Furthermore, the investigation

of emission levels indicates that the number of short urban car trips increases, and NMHC levels

therefore increase as well for all values of ECMF except ECMF = 25. Similarly, for freight, an

increase in NMHC is observed because of route shifts from motorway to local and distributor roads.

Clearly, pricing other externalities of transport as well as considering emissions by environ-

mentally friendly transport modes is required. This study nonetheless provides an insight about

potential different outcomes of internalizing damage costs or setting prices in order to reach a pre-
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defined goal. In future research, the authors aim to compare the above findings with the emission

and toll levels induced by an exposure pricing approach (Kickhöfer and Kern, 2015), and to perform

some kind of economic evaluation for the different pricing schemes.
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