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Abstract. We introduce the class of α-firmly nonexpansive and quasi α-
firmly nonexpansive operators on r-uniformly convex Banach spaces. This
extends the existing notion from Hilbert spaces, where α-firmly nonex-
pansive operators coincide with so-called α-averaged operators. For our
more general setting, we show that α-averaged operators form a subset of
α-firmly nonexpansive operators. We develop some basic calculus rules for
(quasi) α-firmly nonexpansive operators. In particular, we show that their
compositions and convex combinations are again (quasi) α-firmly nonex-
pansive. Moreover, we will see that quasi α-firmly nonexpansive operators
enjoy the asymptotic regularity property. Then, based on Browder’s demi-
closedness principle, we prove for r-uniformly convex Banach spaces that
the weak cluster points of the iterates xn+1 := Txn belong to the fixed
point set Fix T whenever the operator T is nonexpansive and quasi α-
firmly. If additionally the space has a Fréchet differentiable norm or satis-
fies Opial’s property, then these iterates converge weakly to some element
in Fix T . Further, the projections PFix T xn converge strongly to this weak
limit point. Finally, we give three illustrative examples, where our theory
can be applied, namely from infinite dimensional neural networks, semi-
group theory, and contractive projections in Lp, p ∈ (1, ∞)\{2} spaces
on probability measure spaces.
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1. Introduction

Averaged operators play an important role in the fixed point theory in Hilbert
spaces. They emerged as a tool to obtain solutions to fixed point problems,
where the underlying operator is not contractive and thus applying Banach’s
fixed point theorem becomes inaccessible. The most notable appearance of
averaged operators in the theory of Hilbert spaces is the classical method of
iterations introduced by Krasnoselskij [34] and Mann [37]. The notion of aver-
aged operators can be naturally extended to any topological vector space, in
particular to Banach spaces. However, unlike in the Hilbert setting, the use-
fulness of averaged operators in Banach spaces is not immediately obvious. To
make our point that such operators have many desirable properties related in
particular to convergence theory, we introduce a related class of operators act-
ing on r-uniformly convex Banach spaces, that we call α-firmly nonexpansive.
These operators extend an analogue notion for Hilbert spaces, see, e.g., [36]
for a pointwise variant, which in fact coincides with the concept of averaged
operator there [8, Chapter 5]. For our general setting, we can show that an
averaged operator is always α-firmly nonexpansive. Notions of a firmly non-
expansive operators acting on Banach spaces date back to Bruck [31], who
introduced a definition that coincides with the usual one in a Hilbert space
and was also used by Browder, [13, Definition 6] under the name firmly con-
tractive. A somewhat stronger then Bruck’s notion has found applications also
in nonlinear metric spaces, in particular geodesic metric spaces, see Ariza-Ruiz
et al. [3,4] and Bačak [17], and Reich and Shafrir [43] in hyperbolic spaces.
In contrast to these definitions, our notion of α-firmly nonexpansive and quasi
α-firmly nonexpansive operators is less geometrically, but more analytically
inspired. More precisely, it is dictated by the defining inequality for r-uniformly
convex Banach spaces. In particular, Bruck’s notion always implies ours, but
not conversely. Our focus is on convergence properties of iterates generated by
quasi α-firmly nonexpansive operators, where we follow first the way of Opial’s
theorem [40] to prove the desired convergence result. Then later by applying
Browder’s demiclosedness principle [14] we show that weak cluster points of
a nonexpansive operator that has at least one fixed point and is asymptotic
regular, all belong to the fixed point set of the operator. If additionally the
space has a Fréchet differentiable norm then these iterates converge weakly
to a certain element in the fixed point set. We figured out some interesting
relations of our approach to operators appearing in semigroup theory and to
contractive projections in Lp spaces on probability measure spaces. The later
one can be actually seen as conditional expectations [2]. In our future research,
we will be also interested in L1 and L∞ spaces. At least for finite dimensional
L∞ spaces, averaged operators were recently addressed in connection with L∞
Laplacians in imaging in [18]. The notion of α-firmly nonexpansive operator
has also been considered in metric spaces, see for instance [9,10] for the case
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of a CAT(0) space and [11] for a recent generalization to (non-linear) metric
spaces.

This paper is organized as follows. In Sect. 2 we collect preliminaries
about r-uniformly convex Banach spaces. In particular, we address the rela-
tion between different notations and prove an inequality for projections onto
closed, convex sets. Then, in Sect. 3, we introduce α-firmly nonexpansive oper-
ators in r-uniformly convex Banach spaces. We show the relation to related
definitions in the literature, prove that compositions and convex combinations
of such operators remain α-firmly nonexpansive and highlight the connection to
α-averaged operators. Section 4 deals with quasi α-firmly nonexpansive opera-
tors, where relations between fixed point sets are central. Fixed point iterations
for quasi α-firmly nonexpansive operators are studied in Sect. 5. Starting with
the proof that quasi α-firmly nonexpansive operators are asymptotic regu-
lar, we follows the path of Opial’s convergence theorem. However, we provide
another proof of the theorem for uniformly convex Banach spaces by means
of an auxiliary lemma. In general for r-uniformly convex Banach spaces that
do not satisfy Opial’s property we show that the weak cluster points of the
iterates of a nonexpansive operator that is also quasi α-firmly nonexpansive,
all belong to the fixed point set of the operator. Moreover if the space has a
Fréchet differentiable norm then these iterates converge weakly to a certain
element in the fixed point set. Finally, some possible directions for applying
our theory are sketched in Sect. 6.

2. r-Uniformly Convex Spaces

A normed space (X, ‖ · ‖) is uniformly convex, if for every ε > 0, there exits
δ(ε) > 0 such that for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ 2ε
it holds 1

2‖x + y‖ ≤ 1 − δ(ε). Uniformly convex spaces are reflexive and their
dual spaces are uniformly convex, too. Examples of uniformly convex spaces
are Lp and �p, p ∈ (1,∞) as well as Sobolev spaces Wm

p , p ∈ (1,∞) [38] and
Orlicz spaces [32]. Therefore L1, L∞ and C[0, 1] are not uniformly convex.
Every closed subspace of a uniformly convex Banach space is again uniformly
convex. Moreover, uniformly convex Banach spaces are have the Kadec–Klee
property, also known as Radon–Riesz property, meaning that fn ⇀ f and
‖fn‖ → ‖f‖ implies fn → f .

The notion of uniformly convex normed spaces was introduced by Clark-
son [21], who examined integrals of functions mapping from the Euclidean
space to a Banach space and established an analogy to real-valued functions of
bounded variation. Uniformly convex spaces play an important role in approx-
imation theory, since in such spaces there exists for every x ∈ X an element
of best approximation in a closed convex set which is moreover unique, see,
e.g. [20]. Indeed, uniformly convex spaces are strictly convex, i.e. the relation
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‖λx + (1 − λ)y‖ < 1 is fulfilled for all x, y ∈ X, x �= y with ‖x‖ = ‖y‖ = 1 and
all λ ∈ (0, 1).

In this paper, we are interested in special uniformly convex spaces. To
this end, we consider the so-called modulus of convexity of X given by

δX(ε) := inf
{
1 − 1

2 ‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ 2ε
}

.

If there exists C > 0 and r ∈ [2,∞) such that δX(ε) ≥ (
ε
C

)r for every ε ∈ (0, 1],
then (X, ‖ · ‖) has a modulus of convexity of power type r. By a result of Pisier
[42] each uniformly convex Banach space admits an equivalent norm with a
modulus of convexity of power type r for some r ≥ 2. There exist several
equivalent definitions in the literature. For r ≥ 2, Borwein et al. [12] showed
that a Banach space (X, ‖ · ‖) has a modulus of convexity of power type r if
and only if the function ‖·‖r is uniformly convex, meaning that for every ε > 0
it holds

inf
x,y

{‖x‖r + ‖y‖r

2
−

∥
∥
∥

x + y

2

∥
∥
∥

r

: ‖x − y‖ = 2ε

}
> 0.

It was proved by Ball et al. [7] that (X, ‖ · ‖) has a modulus of convexity of
power type r if and only if there is a constant K > 0 such that

∥
∥
∥

x + y

2

∥
∥
∥

r

+
∥
∥
∥

x − y

2K

∥
∥
∥

r

≤ ‖x‖r + ‖y‖r

2
(1)

for all x, y ∈ X. Clearly, by the parallelogram law in Hilbert spaces
∥
∥
∥

x + y

2

∥
∥
∥
2

+
∥
∥
∥

x − y

2

∥
∥
∥
2

=
‖x‖2 + ‖y‖2

2
,

these spaces have modulus of convexity of power type r = 2. By Clarkson’s
inequalities [21], the spaces Lp and �p have modulus of convexity of power type
r = p for p ∈ [2,∞) and modulus of convexity of power type r = q = p/(p− 1)
for p ∈ (1, 2), where 1

p + 1
q = 1. In both cases, we can choose K = 1 in

(1). Actually, it was shown that for p ∈ (1, 2], the Lp spaces are 2-uniformly
convex for p ∈ (1, 2] and we have K = 1/

√
p − 1, see [7,28]. Other examples

of uniformly convex spaces are the Sobolev spaces Wm
p , p ∈ (1,∞).

We will use another definition. For r ∈ [2,+∞) we say that (X, ‖ · ‖) is
an r-uniformly convex space, if there exists a constant cr > 0 such that for all
w ∈ [0, 1] and all x, y ∈ X it holds

‖(1 − w)x + wy‖r ≤ (1 − w)‖x‖r + w‖y‖r − cr

2
w(1 − w)‖x − y‖r. (2)

Setting x = 0 and y �= 0, it follows immediately from the definition that cr ≤ 2.
Definition (2) was used in the more general setting of geodesic spaces, where
the norm is replaced by the geodesic distance, by Naor and Siberman [39]
and also by Ariza-Ruiz et al. [3,4]. Note that in a Hilbert space (X, ‖ · ‖), we
have equality in (2) for r = 2, c2 = 2 and all w ∈ [0, 1]. Indeed, by the next
proposition, (X, ‖ · ‖) has modulus of convexity of power type r if and only if
the space is an r-uniformly convex.
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Proposition 2.1. Equation (2) with w = 1
2 implies (1) with K determined by

cr = 8
(2K)r . If (1) is fulfilled, then (2) holds true with cr = 4

(2K)r and with
c2 = 8

(2K)2 if r = 2.

Proof. The first implication is straightforward.
For the second part, we follow the lines of [1, Remark 2.1]. Suppose that

(1) is fulfilled. Then we have for w ∈ [0, 1/2] by convexity of ‖ · ‖r and (1) that

‖(1 − w)x + wy‖r =
∥
∥
∥(1 − 2w)x + 2w

(x + y

2

)∥
∥
∥

r

≤ (1 − 2w)‖x‖r + 2w
∥
∥
∥

x + y

2

∥
∥
∥

r

≤ (1 − 2w)‖x‖r + 2w
(1

2
‖x‖r +

1
2
‖y‖r −

∥
∥
∥

x − y

2K

∥
∥
∥

r

)
)

= (1 − w)‖x‖p + w‖y‖r − 2w
∥
∥
∥

x − y

2K

∥
∥
∥

r

≤ (1 − w)‖x‖r + w‖y‖r − cr

2
w(1 − w)‖x − y‖r

for cr ≤ 4/ ((2K)r(1 − w)). The largest constant cr such that this inequality
is fulfilled for all w ∈ [0, 1/2] is cr = 4

(2K)r . Note that we get cr = 8
(2K)r for

w = 1
2 .
Similarly we can argue for w ∈ [1/2, 1].
For r = 2, it can be shown by standard arguments on midpoint convexity

that (2) holds true for all w ∈ [0, 1] if and only if it holds true for w = 1
2 . Then

the final claim follows from the above inequality. �

As already mentioned, projections onto closed, convex sets in uniformly
convex spaces are uniquely determined. In r-uniformly convex spaces they
fulfill the additional relation stated in the following proposition.

Proposition 2.2. Let C ⊆ X be a closed, convex set in an r-uniformly convex
space (X, ‖ · ‖). Then, for every x ∈ X, the orthogonal projection PCx of x
onto C is nonempty and consists of one element. Moreover, it holds for all
x ∈ X and all y ∈ C that

‖x − PCx‖r +
cr

2
‖PCx − y‖r ≤ ‖x − y‖r. (3)

and for all x, y ∈∈ X that

‖PCx − PCy‖r ≤ 1

cr

(
‖x − PCy‖r + ‖y − PCx‖r − ‖x − PCx‖r − ‖y − PCy‖r

)
.

(4)

Proof. It remains to prove (3). Then relation (4) follows immediately. For
x ∈ C, the assumption follows since cr ≤ 2. For x ∈ X\C and y ∈ C\PCx, let
(1 − w)PCx + wy, w ∈ (0, 1). Then (1 − w)PCx + wy ∈ C since C is convex.
By p-strongly convexity of ‖ · ‖r, we get
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‖x − ((1 − w)PCx + wy)‖r ≤ (1 − w)‖x − PCx‖r

+w‖x − y‖r − cr

2
(1 − w)w‖PCx − y‖r.

Together with ‖x − PCx‖ ≤ ‖x − ((1 − w)PCx + wy)‖ this implies

w‖x − PCx‖r +
cr

2
(1 − w)w‖PCx − y‖r ≤ w‖x − y‖r.

Dividing by w and taking limit as w goes to zero, we get the assertion (3).
�

Remark 2.3. (Projections in Banach spaces) It is known that projections are
nonexpansive, whenever X is a Hilbert space. In the converse, it is known
that if projections onto closed, convex sets in a Banach space X of dimension
≥ 3 are nonexpansive, then X must be a Hilbert space [41, Theorem 5.2].
In fact we have even the stronger statement that in a non-Hilbert Banach
space X of dimension ≥ 3 no bounded, smooth, closed and convex subset C
of X with a nonempty interior is a nonexpansive retract of X, that is there
exists no nonexpansive mapping R : X → C such that Rx = x for all x ∈ C
[15, Theorem 1]. For the case of dimension 2, we can refer to [26] for an
exhaustive analysis of nonexpansive retracts. In particular, only the so-called
radial projections on certain sets are nonexpansive mappings under special
conditions [26, Theorem 2]. For a study of various aspects of nonexpansive
retracts and retractions in certain Banach and metric spaces, with special
emphasis on the so called compact nonexpansive envelope property we refer
to [33].

While in general projections in Banach spaces fail to be nonexpansive, in
uniformly convex Banach spaces, hence also in r-uniformly convex spaces, it
can be shown that projections are uniformly continuous on bounded sets, see
[19, Theorem 3.10].

3. α-Firmly Nonexpansive Operators

Let (X, ‖ · ‖) be an r-uniformly convex space and D,E ⊆ X nonempty sets.
For α ∈ (0, 1), an operator T : X → X is said to be α-firmly nonexpansive on
D × E if for all x ∈ D and all y ∈ E it holds

‖Tx − Ty‖r ≤ ‖x − y‖r − cr

2
1 − α

α
‖(I −T )x − (I −T )y‖r.

If D = E = X, we simply say that T is α-firmly nonexpansive. If T : X → X
is α-firmly nonexpansive for some α ∈ (0, 1), then we see, since 1−α

α , α ∈ (0, 1)
is monotone decreasing, that T is α-firmly nonexpansive for any α′ ∈ (α, 1).

Remark 3.1. There exist several definitions of firmly nonexpansive operators
on Banach spaces in the literature. Let

ϕ(w;T, x, y) := ‖(1 − w)x + wTx − ((1 − w)y + wTy)‖.
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Note that ϕ(0;T, x, y) = ‖x − y‖ and ϕ(1;T, x, y) = ‖Tx − Ty‖. For a fixed
w ∈ [0, 1), let us say that an operator T : X → X is w-firmly nonexpansive, if

ϕ(1;T, x, y) ≤ ϕ(w;x, y) (5)

for all x, y ∈ X. Then Bruck [31] called the operator T firmly nonexpansive if
(5) holds true for all w ∈ [0, 1). This concept of firmly nonexpansiveness was
also used by Browder [13] under the name firmly noncontractive.

A stronger condition was required in nonlinear spaces, namely by Reich
and Shafier [43] in hyperbolic spaces and by Baćak [17] and Ariza-Ruiz et al.
[3] in Hadamard spaces. These authors called T : X → X firmly nonexpansive,
if the function ϕ(·;T, x, y) is nonincreasing on [0, 1] for all x, y ∈ X. Indeed,
for Banach spaces these definitions coincide.

By the following proposition, the relation (5) implies that T is α-averaged
for some α ∈ [12 , 1).

Proposition 3.2. Let (X, ‖ · ‖) be a r-uniformly convex space. If the operator
T : X → X fulfills (5) for some w ∈ [0, 1), then it is α-firmly nonexpansive for
α ∈ [ 1

1+w , 1). In particular, if T : X → X fulfills (5) for all w ∈ [0, 1), i.e., if T
is firmly nonexpansive in the sense of Bruck, then it is α-firmly nonexpansive
for all α ∈ [ 12 , 1).

Proof. Let T : X → X fulfill (5), i.e., ‖Tx − Ty‖ ≤ ϕ(w;x, y) for all x, y ∈ X
and some w ∈ [0, 1). Since (X, ‖ · ‖) is p-uniformly convex, where p ∈ [2,+∞],
we have on the other hand

ϕ(w;x, y)r = ‖(1 − w)(x − y) + w(Tx − Ty)‖r

≤ (1 − w)‖x − y‖r + w‖Tx − Ty‖r − cr

2
w(1 − w)‖(I −T )x − (I −T )y‖r.

Combining both inequalities, we obtain

(1 − w)‖Tx − Ty‖r ≤ (1 − w)‖x − y‖r − cr

2
w(1 − w)‖(I −T )x − (I −T )y‖r,

‖Tx − Ty‖r ≤ ‖x − y‖r − cr

2
w‖(I −T )x − (I −T )y‖r

≤ ‖x − y‖r − cr

2
1 − α

α
‖(I −T )x − (I −T )y‖r

for w ≥ 1−α
α , resp. α ≥ 1

1+w . �

By the next proposition, convex combinations and compositions of α-
firmly nonexpansive operators are again α-firmly nonexpansive.

Proposition 3.3. Let T1, T2, . . . , Tn : X → X be α-firmly nonexpansive with
constants αi ∈ (0, 1) and wi ∈ [0, 1], i = 1, 2, . . . , n such that

∑n
i=1 wi = 1.

Then the following relations hold true:
(i) The operator T :=

∑n
i=1 wiTi is α-firmly nonexpansive with constant

α = αmax := max{αi : i = 1, . . . , n}.
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(ii) The operator T := Tn . . . T2T1 is α-firmly nonexpansive with constant

α :=
(
1 +

1 − αmax

nr−1αmax

)−1

, .

The same relations are fulfilled for quasi α-firmly nonexpansive operators
T1, T2, . . . , Tn : X → X.

Proof. (i) By convexity of ‖ · ‖r, p ≥ 1, we have

‖Tx − Ty‖r ≤
n∑

i=1

wi‖Tix − Tiy‖r

for all x, y ∈ X and since the Ti are α-firmly nonexpansive, we get

n∑

i=1

wi‖Tix − Tiy‖r ≤ ‖x − y‖r − cr

2

n∑

i=1

wi
1 − αi

αi
‖(I −Ti)x − (I −Ti)y‖r,

for all x, y ∈ X. We have

1 − αmax

αmax
≤ 1 − αi

αi
(6)

for all i = 1, 2, . . . , n and consequently

n∑

i=1

wi‖Tix − Tiy‖r ≤ ‖x − y‖r − cr

2
1 − α

α

n∑

k=1

wi‖(I −Ti)x − (I −Ti)y‖r.

so that we get by convexity of ‖ · ‖r, p ≥ 1 for all x, y ∈ X finally

n∑

k=1

wi‖Tix − Tiy‖r ≤ ‖x − y‖r − cr

2
· 1 − α

α
‖(I −T )x − (I −T )y‖r.

(ii) Let Sk := Tk . . . T2T1 for k = 1, 2, . . . , n with the convention S0 := I. Since
the Ti are α-firmly and by (6), we obtain

‖Tx − Ty‖r = ‖Tn . . . T2T1x − Tn . . . T2T1y‖r

≤ ‖Sn−1x − Sn−1y‖r − cr

2

1 − αn

αn
‖(I −Tn)Sn−1x − (I −Tn)Sn−1y‖r

. . . .

≤ ‖x − y‖r − cr

2

n∑

i=1

1 − αi

αi
‖(I −Ti)Si−1x − (I −Ti)Si−1y‖r

≤ ‖x − y‖r − cr

2

1 − αmax

αmax

n∑

i=1

‖(I −Ti)Si−1x − (I −Ti)Si−1y‖r.
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By convexity of ‖ · ‖r, p ≥ 1, we get

‖(I −T )x − (I −T )y‖r = nr
∥
∥
∥

1
n

n∑

i=1

(I −Ti)Si−1x − (I −Ti)Si−1y
∥
∥
∥

r

≤ nr−1
n∑

i=1

‖(I −Ti)Si−1x − (I −Ti)Si−1y‖r.

Noting that

(I −T ) =
n∑

i=1

(I −Ti)Si−1,

and setting α :=
(
1 +

1 − αmax

nr−1αmax

)−1

∈ (0, 1), this yields

‖Tx − Ty‖r ≤ ‖x − y‖r − cr

2nr−1

1 − αmax

αmax
‖(I −T )x − (I −T )y‖r

≤ ‖x − y‖r − cr

2
1 − α

α
‖(I −T )x − (I −T )y‖r

for all x, y ∈ X. �

The concept of α-firmly nonexpansive operators is closely related to those
of α-averaged operators. Recall that an operator T : X → X is α-averaged
with averaging constant α ∈ (0, 1), if there exists a nonexpansive operator
R : X → X such that

T = (1 − α) I +αR. (7)

Remark 3.4. For Hilbert spaces X = H it can be shown that (7) holds true if
and only if T : H → H fulfills

‖Tx − Ty‖2 ≤ ‖x − y‖2 − 1 − α

α
‖(I −T )x − (I −T )y‖2, (8)

see, e.g. [8, Proposition 4.25]. Therefore, with r = 2 and c2 = 2, the α-firmly
nonexpansive operators coincide with the α-averaged operators on Hilbert
spaces.

We will see, that the remark is no longer true for general r-uniformly
convex spaces. But first let us consider some useful properties of averaged
operators. These properties were proved with different averaging constants for
Hilbert spaces in [8,24] based on the equivalent relation (8). Since we have
not found a proof for general Banach spaces in the literature, we give it in the
“Appendix”.

Proposition 3.5. Let T1, . . . , Tn : X → X be α-averaged operators with averag-
ing constants αi ∈ (0, 1) and wi ∈ [0, 1], i = 1, 2, . . . , n such that

∑n
i=1 wi = 1.

Then the following relations hold true:
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(i) The operator T :=
∑n

i=1 wiTi is α-averaged with averaging constant α :=∑n
i=1 wiαi.

(ii) Then the operator T := Tn . . . T2T1 is α-averaged with averaging constant
α = 1 − Πn

i=1(1 − αi).

The next proposition states that the set of α-firmly nonexpansive opera-
tors include those of α-averaged operators.

Proposition 3.6. Let (X, ‖ · ‖) be a r-uniformly convex space. Then an α-
averaged operator is α-firmly nonexpansive.

Proof. Let T : X → X be an α-averaged operator with averaging constant
α ∈ (0, 1). By (7) there exists a nonexpansive operator R : X → X such that
T := (1 − α) I +αR. For x, y ∈ X, we obtain by (2) with w = α that

‖Tx − Ty‖r ≤ (1 − α)‖x − y‖r + α‖Rx − Ry‖r

− cr

2
α(1 − α)‖(I −R)x − (I −R)y‖r

and rearranging terms

α(‖x − y‖r − ‖Rx − Ry‖r) ≤ ‖x − y‖r − ‖Tx − Ty‖r

− cr

2
1 − α

αr−1
‖(I −T )x − (I −T )y‖r.

Now the nonexpansivity of R and the fact that αr−1 ≤ α for r ≥ 2 and
α ∈ [0, 1] yields the assertion

0 ≤ ‖x − y‖r − ‖Tx − Ty‖r − cr

2
1 − α

α
‖(I −T )x−(I −T )y‖r.

�

The following examples show that the reverse inclusion is in general not
true.

Example 3.7. Equip R
n with the norm ‖x‖ := (|x1|r + |x2|r + · · ·+ |xn|r)1/r for

some p ≥ 2. Let B(0, r) be the closed ball at 0 of radius r < 1. Let R : Rn → R
n

be the operator defined as

Rx :=

{
−x

r
x ∈ B(0, r)

0 x /∈ B(0, r)

Given α ∈ (0, 1) define

Tx := (1 − α)x + αRx ∀x ∈ R
n.

Clearly the operator R is not nonexpansive. Define the set D(r) := {x ∈
R

n | ‖y‖ > 1 + r}. Note that for all x ∈ B(0, r), y ∈ D(r) we have
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‖Tx − Ty‖r = ‖(1 − α − α
1
r
)x − (1 − α)y‖r = ‖ − α

x

r
+ (1 − α)(x − y)‖r

≤ α
1
rr

‖x‖r + (1 − α)‖x − y‖r − cr

2
α(1 − α)‖(1 +

1
r
)x − y‖r

≤ α + (1 − α)‖x − y‖r − cr

2
α(1 − α)‖(1 +

1
r
)x − y‖r

≤ α(1 − ‖x − y‖r) + ‖x − y‖r − cr

2
1 − α

α
‖(I −T )x − (I −T )y‖r

≤ ‖x − y‖r − cr

2
1 − α

α
‖(I −T )x − (I −T )y‖r.

Therefore T is α-firmly nonexpansive on B(0, r) × D(r).

Example 3.8. Let (X, ‖ · ‖) be an �p space for some p > 2. Let T : X → X be
an operator acting by the formula Tx := (x1, 0, . . . , 0, . . .) for all x ∈ X where
x := (x1, x2, . . .). Let αr := cr/(cr + 2) then T is α-firmly nonexpansive with
α := αr. Indeed

‖Tx − Ty‖r +
cr

2
1 − αr

αr
‖(I −T )x − (I −T )y‖r

= ‖Tx − Ty‖r + ‖(I −T )x − (I −T )y‖r

= |x1 − y1|r +
∞∑

i=2

|xi − yi|r

=
∞∑

i=1

|xi − yi|r = ‖x − y‖r.

Suppose that R : X → X is some operator such that T := (1 − αr) I +αrR.
By r-uniform convexity of (X, ‖ · ‖) we obtain

‖Tx − Ty‖r ≤ (1 − αp)‖x − y‖r + αp‖Rx − Ry‖r

− cr

2
αp(1 − αp)‖(I −R)x − (I −R)y‖r.

Rearranging terms and using identity (7) for the operator R we get

αr(‖x − y‖r − ‖Rx − Ry‖r) ≤ ‖x − y‖r

− ‖Tx − Ty‖r − cr

2
1 − αp

αp−1
p

‖(I −T )x − (I −T )y‖r.

By the fact that αr−1
p < αp for r > 2 we obtain for all x, y �= 0 that

αr(‖x − y‖r − ‖Rx − Ry‖r) < ‖x − y‖r − ‖Tx − Ty‖r

−cr

2
1 − αr

αr
‖(I −T )x − (I −T )y‖r.

By the above calculations the right hand side vanishes. Therefore ‖x − y‖r <
‖Rx − Ry‖r for all x, y �= 0. Hence R cannot be a nonexpansive operator.
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4. Quasi α-Firmly Nonexpansive Operators

Let (X, ‖ · ‖) be an r-uniformly convex space. For α ∈ (0, 1), an operator
T : X → X is said to be quasi α-firmly nonexpansive, if FixT �= ∅ and for all
x ∈ X and all y ∈ Fix T it holds

‖Tx − Ty‖r ≤ ‖x − y‖r − cr

2
1 − α

α
‖(I −T )x − (I −T )y‖r.

It follows directly from the definition that a quasi α-firmly nonexpansive oper-
ator T : X → X fulfills for all x ∈ X and all y ∈ Fix T the relation

‖Tx − y‖r ≤ ‖x − y‖r − cr

2
1 − α

α
‖Tx − x‖r. (9)

We say that T : X → X is quasi nonexpansive, if FixT �= ∅ and for all x ∈ X
and all y ∈ Fix T ,

‖Tx − y‖ ≤ ‖x − y‖.

Lemma 4.1. Let T : X → X be a quasi nonexpansive operator. Then FixT is
a nonempty closed, convex set.

Proof. By definition FixT is nonempty. Let (xn)n∈N ⊆ Fix T such that xn →
x for some x ∈ X. Then, by the triangle inequality and since T is quasi
nonexpansive, we obtain

0 ≤ ‖Tx − x‖ ≤ ‖Tx − xn‖ + ‖xn − x‖ ≤ 2‖xn − x‖ → 0 as n → +∞.

Therefore Fix T is a closed set. Now let w ∈ [0, 1] and x1, x2 ∈ FixT . Consider
the element xw := (1 − w)x1 + wx2 ∈ X. By the triangle inequality and the
quasi nonexpansiveness of T , we conclude

‖x1 − x2‖ ≤ ‖x1 − Txw‖ + ‖Txw − x2‖ ≤ ‖x1 − xw‖ + ‖xw − x2‖ = ‖x1 − x2‖.

Therefore, Txw is on the line segment [x1, x2] joining x1 with x2. Hence we
get

‖x2 − xw‖ + ‖xw − Txw‖ = ‖x2 − Txw‖
≤ ‖x2 − xw‖ if Txw ∈ [x1, xw],

‖Txw − xw‖ + ‖xw − x1‖ = ‖Txw − x1‖
≤ ‖xw − x1‖ if Txw ∈ [xw, x2],

and consequently Txw = xw so that FixT is convex. �

The next proposition describes the fixed point sets of the composition and
convex combination of finitely many quasi α-firmly nonexpansive operators.

Proposition 4.2. Let Ti : X → X be quasi α-firmly nonexpansive operators
with constants αi ∈ (0, 1), i = 1, 2, . . . , n and wi ∈ [0, 1], i = 1, 2, . . . , n
such that

∑n
i=1 wi = 1. Let T : = TnTn−1 . . . T2T1 and S :=

∑n
i=1 wiTi. If⋂n

i=1 Fix Ti �= ∅, then Fix T = FixS =
⋂n

i=1 Fix Ti. In particular, Fix T is a
nonempty, closed, convex set.
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Proof. It is clear that
⋂n

i=1 Fix Ti ⊆ Fix T and
⋂n

i=1 Fix Ti ⊆ FixS. By
assumption, this implies that FixT and FixS are nonempty.
1. We show the other direction for FixT by induction on n ∈ N. For n = 1
the claim is evident. Suppose that the statement is true for the composition of
k ≤ n−1 operators. Set T̃ : = Tn−1Tn−2 . . . T2T1. Take x ∈ Fix T . Then we have
three mutually exclusive situations: First, T̃ x ∈ Fix Tn, which implies T̃ x =
TnT̃ x = Tx = x. Therefore x ∈ Fix T̃ ∩ FixTn and by induction hypothesis
x ∈ ⋂n

i=1 Fix Ti. Second, let x ∈ Fix T̃ . Then x = Tx = TnT̃ x = Tnx implies
x ∈ Fix Tn and consequently x ∈ Fix Tn ∩ T̃ =

⋂n
i=1 Fix Ti. Third, consider

x /∈ Fix T̃ and T̃ x /∈ Fix Tn. Then, for any y ∈ Fix Tn ∩ Fix T̃ , we have by (9)
that

‖x − y‖r = ‖TnT̃ x − Tny‖r ≤ ‖T̃ x − y‖r − cr

2
1 − αn

αn
‖T̃ x − TnT̃ x‖r

< ‖T̃ x − T̃ y‖r

Since y ∈ Fix T̃ =
⋂n−1

i=1 Fix Ti and T̃ is the composition of quasi nonexpansive
operators, it is easy to check that T̃ is also quasi nonexpansive. Hence we
get the contradiction ‖x − y‖r < ‖x − y‖r. In summary, this yields FixT =⋂n

i=1 Fix Ti.
2. Now let x ∈ Fix S and y ∈ ⋂n

i=1 Fix Ti. Then

‖x − y‖r = ‖Tx − Ty‖r = ‖
n∑

i=1

wi(Tix − Tiy)‖r ≤
n∑

i=1

wi‖Tix − Tiy‖r

≤ ‖x − y‖r − cr

2

n∑

i=1

wi
1 − αi

αi
‖x − Tix‖r.

From the last inequality we obtain

cr

2

n∑

i=1

wi
1 − αi

αi
‖x − Tix‖r ≤ 0,

which is true if and only if Tix = x for every i = 1, 2, . . . , n. Thus x ∈⋂n
i=1 Fix Ti. �

As an immediate implication of Proposition 4.2 we obtain the following
calculus rules for the class of quasi α-firmly nonexpansive operators.

Proposition 4.3. Let Ti : X → X be quasi α-firmly nonexpansive operators
with constants αi ∈ (0, 1), i = 1, 2, . . . , n and wi ∈ [0, 1], i = 1, 2, . . . , n
such that

∑n
i=1 wi = 1. Let T : = TnTn−1 . . . T2T1 and S :=

∑n
i=1 wiTi. If⋂n

i=1 Fix Ti �= ∅, then s and T are also quasi α-firmly nonexpansive operators.

Proof. Note that by Proposition 4.2, we have
⋂n

i=1 Fix Ti = FixT = FixS.
The rest is analogous as the proof of Proposition 3.3. �
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5. Fixed Point Theorems

In this section, we are interested in fixed point iterations of quasi α-firmly
nonexpansive operators. We start with the important observations that these
operators are asymptotic regular, a property which is essential for the con-
vergence when following ideas of Opial’s convergence theorem. We will give a
different proof of Opial’s well-known theorem, and address in a corollary, the
convergence of the iterates produced by our quasi α-firmly nonexpansive oper-
ators. In the second part of this section, we will deal with separable uniformly
convex Banach spaces and will see that also in this case convergence results
can be achieved based on demicloseness considerations.

An operator T : X → X is asymptotic regular at x ∈ X if and only if

lim
n→∞ ‖Tn+1x − Tnx‖ = 0,

and it is said to be asymptotic regular on X if this holds true for every x ∈ X.

Lemma 5.1. Let (X, ‖·‖) be an r-uniformly convex Banach space and T : X →
X a quasi α-firmly nonexpansive operator. Then T is asymptotic regular.

Proof. By quasi α-firmly nonexpansiveness of T we obtain

‖Tn+1x − y‖ ≤ ‖Tnx − y‖
for all n ∈ N and all y ∈ Fix T . This means that (‖Tnx−y‖)n∈N is a monotone
decreasing non-negative sequence. Hence limn→∞ ‖Tnx − y‖ = d(y) for some
real number d(y) (possibly depending on y) for every y ∈ Fix T . Again by
quasi α-firmly nonexpansiveness we obtain

‖Tn+1x − Tnx‖r ≤ 2αcr

c(1 − α)

(
‖Tnx − y‖r − ‖Tn+1x − y‖r

)
.

Passing in the limit as n → +∞ gives the result. �

Let (X∗, ‖·‖∗) denote the dual space of (X, ‖·‖). A sequence (xn)n∈N ⊆ X

converges weakly to an element x ∈ X, denoted by xn
w→ x if limn→∞ f(xn) =

f(x) for all f ∈ X∗. An element x ∈ X is a weak cluster point of a sequence
(xn) ⊆ X if and only if there is a subsequence (xnk

) of (xn) such that xnk

w→ x.
A sequence (xn)n∈N ⊆ X is Fejér monotone with respect to a set S ⊆ X, if

‖xn+1 − y‖ ≤ ‖xn − y‖
for all y ∈ S and all n ∈ N.

A Banach space X is said to satisfy Opial’s property if and only if xn
w→ x

implies

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

for all y ∈ X\{x}. For xn
w→ x and y ∈ X\{x}, Opial’s property implies
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lim sup
n→∞

‖xn − x‖ = lim
k→∞

‖xnk
− x‖ < lim inf

k→∞
‖xnk

− y‖ ≤ lim sup
n→∞

‖xn − y‖.

(10)

Not all Banach spaces enjoy Opial’s property. For example Hilbert spaces and
�p spaces for p ∈ (1,∞] satisfy the property, while Lp((0, 2π)), p ∈ (1,∞]\{2}
does not.

Remark 5.2. Let X, ‖ · ‖) be a uniformly convex Banach space. If X has a
weakly continuous duality mapping, then X satisfies Opial’s property [40,
Lemma 3]. Further, Opial’s property is equivalent to the coincidence of the
weak convergence with the so-called Δ-convergence,1 [44, Theorem 3.19].
Moreover for every separable Banach space, there is an equivalent norm such
that Opial’s property is satisfied [47, Theorem 1].

In Theorem 5.4, we will recall a classical result of Opial [40] on the con-
vergence of fixed point iterations in spaces having Opial’s property. Indeed,
Opial proved his result for Hilbert spaces based on Šmulian’s and mentioned
that it can be generalized to uniformly convex Banach spaces. Here we will
give another proof of the theorem, which makes use of the following lemma.

Lemma 5.3. Let (X, ‖ · ‖) be a uniformly convex Banach space with Opial’s
property and (xn)n∈N ⊆ X a Fejér monotone sequence with respect to a set
S ⊆ X. If all weak cluster points of (xn)n∈N belong to S, then xn

w→ x for
some x ∈ S.

Proof. Since (xn)n∈N is Fejér monotone with respect to S, it is a bounded
sequence. Hence it has a weakly convergent subsequence. First, we prove that
(xn)n∈N can have at most one weak cluster point in S. Suppose in contrary,
that there exist two subsequences (xnk

)k∈N and (xmk
)k∈N such that xnk

w→ x

and xmk

w→ y for some x �= y in S. Let r1 := lim supk→∞ ‖xnk
− x‖ and

r2 := lim supk→∞ ‖xmk
− y‖, where w.l.o.g. r1 ≤ r2. By (10), we have the

inequality

r2 < lim sup
k→∞

‖xmk
− x‖. (11)

For every ε > 0, there exists k0 such that ‖xnk
− x‖ < r1 + ε for all k ≥ k0.

By Fejér monotonicity with respect to S we obtain that ‖xmk
− x‖ ≤ ‖xnk

−
x‖ < r1 + ε whenever mk ≥ nk0 . Consequently, there exists k1 > 0 such that
‖xmk

− x‖ < r2 + ε for all k ≥ k1. However this contradicts (11).
Second, we show that the whole sequence xn

w→ x for some x ∈ S.
Let x ∈ S be the unique weak cluster point of the sequence (xn)n∈N. If the
whole sequence does not weakly converge to x, then there is a weakly open
neighborhood U of x such that X\U contains infinitely many terms of the
sequence (xn)n∈N. On the other hand, {xn : xn ∈ X\U} is bounded, so that

1Δ-convergence is a notion of weak convergence for metric spaces introduced by [35, Lim
1976].
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it has a weakly convergent subsequence. Let y be its weak cluster point. Since
X\U is weakly closed and hence weakly sequentially closed, we know that
y ∈ X\U . By construction y �= x. which contradicts the uniqueness of the
weak cluster point. �

Here is Opial’s theorem [40] together with an alternative proof.

Theorem 5.4. Let (X, ‖ · ‖) be a uniformly convex Banach space satisfying
Opial’s property. Let T : X → X be a nonexpansive operator. If Fix T �= ∅ and
T is asymptotic regular, then for any x0 ∈ X, the iterates xn+1 := Txn, n ∈ N

converge weakly to an element x∗ ∈ Fix T .

Proof. Since by assumption FixT �= ∅, the operator T is quasi nonexpansive.
For an arbitrary fixed x0 ∈ X, we consider the iterations xn+1 := Txn, n ∈
N. Then the sequence (xn)n∈N is Féjer monotone with respect to FixT and
therefore bounded. Hence there exists a subsequence (xnk

)k∈N which converges
weakly to some x∗ ∈ X. By the triangle inequality and since T is nonexpansive,
we obtain

‖xnk
− Tx∗‖ ≤ ‖xnk

− Txnk
‖ + ‖Txnk

− Tx∗‖ ≤ ‖xnk
− Txnk

‖ + ‖xnk
− x∗‖.

Therefore, passing to limit inferior, we obtain since T is asymptotic regular

lim inf
k→∞

‖xnk
− Tx∗‖ ≤ lim

k→∞
‖xnk

− Txnk
‖ + lim inf

k→∞
‖xnk

− x∗‖
= lim inf

k→∞
‖xnk

− x∗‖,

and by Opial’s property further x∗ = Tx∗ i.e. x∗ ∈ Fix T . Now by same
arguments if (xnm

)m∈N is another subsequence of (xn)n∈N converging weakly
to some element y∗ ∈ X, then y∗ ∈ Fix T . This means that all weak cluster
points of (xn)n∈N lie in FixT . By Lemma 5.3, it follows that x∗ = y∗ and that
the whole sequence (xn)n∈N weakly converges to x∗ ∈ Fix T . �

Based on Opial’s theorem, we have the following corollary for quasi α-
firmly nonexpansive operators.

Corollary 5.5. Let (X, ‖ · ‖) be an r-uniformly convex Banach space satisfying
Opial’s property and let T : X → X be a nonexpansive operator. If T is quasi
α-firmly nonexpansive, then for any x0 ∈ X the iterates xn+1 := Txn, n ∈ N

converge weakly to an element x∗ ∈ Fix T . Moreover, if x̄n := PFixT xn for all
n ∈ N, then limn→∞ x̄n = x∗.

Proof. The first assertion follows immediately by Theorem 5.4 and since by
Lemma 5.1 the operator T is asymptotic regular on X.

To show the second assertion, notice that by Lemma 4.1, the set Fix T
is nonempty, closed and convex. Therefore by Proposition 2.2 we have that
x̄n := PFixT xn for all n ∈ N is well defined and unique. Moreover for all
m,n ∈ N the following inequalities hold

‖xn − x̄n‖r +
cr

2
‖x̄n − x̄m‖r ≤ ‖xn − x̄m‖r. (12)
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Then Féjer monotonicity of (xn)n∈N with respect to FixT and (12) yield for
n ≥ m,

cr

2
‖x̄n − x̄m‖r ≤ ‖xm − x̄m‖r − ‖xn − x̄n‖r.

Passing in the limit as m,n → +∞ implies limm,n ‖x̄n − x̄m‖ = 0. Hence,
(x̄n)n∈N is a Cauchy sequence in Fix T . Since FixT is a closed set and hence
complete, we conclude limn x̄n = x̄∗ for some x̄∗ ∈ Fix T . Again, by Proposi-
tion 2.2, we obtain

‖xn − x̄n‖r +
cr

2
‖x̄n − x∗‖r ≤ ‖xn − x∗‖r

for all n ∈ N. Passing to the limit inferior implies

lim inf
n→∞ ‖xn − x̄∗‖r +

cr

2
‖x̄∗ − x∗‖r ≤ lim inf

n→∞ ‖xn − x∗‖r.

Finally, it follows by Opial’s property that x̄∗ = x∗. This completes the proof.
�

To state our next convergence result, we need the notation of differen-
tiability of a norm and demiclosedness of sets. Recall that X has a Fréchet
differentiable norm ‖ · ‖, if the norm as a function is Fréchet differentiable
except for x = 0. This is equivalent with the property that for every x on the
unit sphere S(X), the limit limt→0(‖x + ty‖ − ‖x‖)/t exists and is attained
uniformly in y ∈ S(X). Examples of Banach spaces with Fréchet differentiable
norm are the spaces Lp, p ∈ (1,∞), see [45, Theorem 8].

A mapping R : C ⊆ X → X is demiclosed at y ∈ X, if xn
w→ x ∈ C and

Rxn → y as n → ∞ implies Rx = y. If R is demiclosed at every y ∈ X, we
say that R is demiclosed. The following theorem states a well-known result of
Browder.

Theorem 5.6. (Browder’s demiclosedness principle [14]) Let (X, ‖ ·‖) be a uni-
formly convex Banach space and C ⊆ X a bounded, closed, convex set. If an
operator T : C → X is nonexpansive, then I −T is demiclosed.

As an immediate application of Browder’s demiclosedness principle we
obtain:

Theorem 5.7. Let (X, ‖·‖) be a uniformly convex Banach space and T : X → X
a nonexpansive operator. If Fix T �= ∅ and T is asymptotically regular, then,
for any x0 ∈ X, the weak cluster points of the iterates xn+1 := Txn, n ∈ N

belong to Fix T . If additionally ‖·‖ is Fréchet differentiable, then these iterates
converge weakly to a certain element in Fix T .

Proof. For any y ∈ FixT , we get by the nonexpansivity of T that ‖Txn+1 −
y‖ ≤ ‖Txn − y‖, n ∈ N. Especially, the sequence of iterates (xn)n∈N is
bounded. Then it has a subsequence (xnk

)k∈N which converges weakly to a
certain element x∗ ∈ X. Let B(x∗, R) be the closed ball of radius R > 0
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around x∗. For sufficiently large R, we have xn ∈ B(x∗, R) for all n ∈ N

and in particular (xnk
)k∈N ⊂ B(x∗, R). Let T̃ := T |B(x∗,R) be the restriction

of T on B(x∗, R). Then T̃ : B(x∗, R) → X is again a nonexpansive map-
ping. Since (X, ‖ · ‖) is uniformly convex and B(x∗, R) is a bounded, closed,
convex set, an application of Browder’s demiclosedness principle 5.6 implies
that I − T̃ is demiclosed. Note that by the asymptotic regularity of T , we
get ‖(I − T̃ )xnk

‖ = ‖xnk
− Txnk

‖ → 0 as k → +∞. By the demiclosedness
of I −T̃ , we obtain (I −T̃ )x∗ = 0 or equivalently x∗ = T̃ x∗ = Tx∗. Therefore
x∗ ∈ FixT . By the same arguments, if (xnm

)m∈N is another weakly convergent
subsequence, then its weak limit lies in Fix T . Thus, all weak cluster points of
the original sequence (xn)n∈N are in FixT .

Now assume that ‖ · ‖ is Fréchet differentiable. Let J : X → X∗ denote
the normalized duality mapping defined by

J(x) := {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2∗},

where 〈·, ·〉 is the dual pairing between X and X∗. By virtue of [46, Lemma 2.3],
we know that limn→∞〈xn, J(u−v)〉 exists for all u, v ∈ Fix T and in particular
〈x−y, J(u−v)〉 = 0, whenever x, y are weak cluster points of (xn)n∈N. Setting
u = x, v = y, we obtain ‖x − y‖2 = 〈x − y, J(x − y)〉 = 0 i.e. x = y. Since the
weak cluster points x and y were arbitrary chosen, they all coincide with some
x∗ ∈ FixT . An application of the same argument as in Lemma 5.3 yields that
xn

w→ x∗ ∈ FixT . �

As a consequence of the last theorem we get the following result on non-
expansive mappings that are quasi α-firmly nonexpansive.

Corollary 5.8. Let (X, ‖ ·‖) be an r-uniformly convex Banach space and let T :
X → X be a nonexpansive operator. If T is quasi α-firmly nonexpansive, then,
for any x0 ∈ X, the weak cluster points of the iterates xn+1 := Txn, n ∈ N

belong ∈ Fix T . If additionally ‖ · ‖ is Fréchet differentiable then these iterates
converge weakly to a certain element in Fix T .

Proof. Since T is quasi α-firmly nonexpansive operator, we have FixT �= ∅,
and T is asymptotic regular by Lemma 5.1. On the other hand, an r-uniformly
convex Banach space is uniformly convex, so that conclusion follows from The-
orem 5.7. �

6. Illustrative Examples

In this section, we illustrate by three examples, where the theory of α-firmly
nonexpansive operators might be of interest.
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6.1. Deep Learning

Recently, neural networks on infinite dimensional spaces have received a cer-
tain attention [23]. For applications of their finite dimensional counterparts,
we refer to [29,30]. To this end, let (X, ‖ · ‖) be a real �p-space, p ∈ (1,∞) and
Ak : X → X, k = 1, 2, . . . , d a family of affine mappings which are αk-firmly
nonexpansive. Consider a so-called stable activation function σ : R → R which
acts elementwise on the elements x ∈ X. Recall that Combettes and Pesquet
[22] called an activation function stable, if it is increasing, 1–Lipschitz contin-
uous and σ(0) = 0. The first two properties are equivalent to the fact that σ
is 1

2 -averaged. Note that most of the common activation functions are indeed
stable. Clearly, then σ : X → X (meant componentwise) is also 1

2 -averaged,
since there is a nonexpansive operator R : R → R such that

σ(x) =
(

1
2
(xi + Rxi)

)

i∈N

=
1
2

(x + (Rxi)i∈N) .

By Proposition 3.6, the activation function is also 1
2 -firmly nonexpansive on

X. Then the neural network of depth d ≥ 1 given by

Φ(x; (Ak)d
k=1, σ) := Ad(σ(Ad−1 . . . A2(σA1x)))

is the composition of α-firmly nonexpansive operators. Consequently, by
Proposition 3.3 ii), the network itself is an α-firmly nonexpansive operator.

6.2. Semigroup Theory

Let (X, ‖ · ‖) be a Banach space and F : X → X a nonexpansive operator.
Given x ∈ X and λ ∈ (0,+∞), we define the mapping

Gx,λ : y �→ 1
1 + λ

x +
λ

1 + λ
Fy, y ∈ X.

Then Gx,λ is a contraction with Lipschitz constant λ/(1 + λ). By Banach’s
fixed point theorem Gx,λ has a unique fixed point, which we denote by Rλx.
The mapping x �→ Rλx is called the resolvent of F . By convention R0x := x
for all x ∈ X.

Proposition 6.1. Let (X, ‖·‖) be an r-uniformly convex Bancah space. Then the
resolvent Rλ of a nonexpansive operator F : X → X is α-firmly nonexpansive
for any λ > 0 and all α ≥ 1/2.

Proof. First, we have that Rλ is nonexpansive, since for any x, y ∈ X it follows
by the nonexpansivity of F that

‖Rλx − Rλy‖ ≤ 1
1 + λ

‖x − y‖ +
λ

1 + λ
‖FRλx − FRλy‖

≤ 1
1 + λ

‖x − y‖ +
λ

1 + λ
‖Rλx − Rλy‖,

and a rearrangement of terms yields ‖Rλx − Rλy‖ ≤ ‖x − y‖.
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Now set u := (1−w)x+wRλx and v := (1−w)y+wRλy, where w ∈ [0, 1].
Let s := (λ − wλ)/(1 + λ − wλ). Then straightforward calculations show that
Rλx = (1 − s)u + sFRλx and Rλy = (1 − s)v + sFRλy and consequently

‖Rλx − Rλy‖ ≤ (1 − s)‖u − v‖ + s‖FRλx − FRλy‖
≤ (1 − s)‖u − v‖ + s‖Rλx − Rλy‖.

Rearranging terms yield ‖Rλx − Rλy‖ ≤ ‖u − v‖. By definition of u and v,
this means that Rλ is firmly nonexpansive in the sense of Bruck, see Remark
3.1, and hence, by Proposition 3.2, it follows that Rλ is α-firmly nonexpansive
for any α ≥ 1/2. �

Proposition 6.1 has two important implications. First, we get inclined in
studying the fixed point problem Rλx = x instead of Fx = x. This is further
supported by the fact that FixF = Fix Rλ. It is trivial by definition of Rλ to
notice that x ∈ FixRλ implies x ∈ Fix F . For the other direction i.e. when
x ∈ FixF , we get from the following chain of equalities and inequalities

0 ≤ ‖Rλx − x‖ =
λ

1 + λ
‖FRλx − x‖ =

λ

1 + λ
‖FRλx − Fx‖ ≤ λ

1 + λ
‖Rλx − x‖

that x = Rλx. When the space X is r-uniformly convex satisfying Opial’s
property (else a separable space), then by Theorem 5.5 (Theorem 5.8), we
obtain that for any initialization x0 ∈ X, the iterates xn+1 := Rλxn converge
weakly to an element in FixRλ, and therefore to an element in FixF .

Second, we will demonstrate that there is an intimate relationship
between the class of α-firmly nonexpansive operators and the theory of strongly
continuous semigroups. Let t > 0 be fixed and choose n ∈ N. Consider the
operator

Tn,t := R t
n

◦ R t
n

◦ · · · ◦ R t
n︸ ︷︷ ︸

n−times

.

By virtue of Proposition 3.5 ii) it follows that Tn,t is itself α-firmly nonex-
pansive with constant αn = np−1/(np−1 + 1). If Ttx := limn→∞ Tn,tx for all
x ∈ X, then it is evident that Tt is nonexpansive, whenever this limit exists.
It can however been shown that such limit always exists and it is uniform in
t on bounded intervals, see [25] or [17, Theorem 4.3.3]). Moreover, the family
of operators (Tt)t>0 defines a strongly continuous semigroup of nonexpansive
operators, i.e., i) limt→0 Ttx = x, ii) Ts(Ttx) = Ts+tx for every s, t ≥ 0, and
iii) ‖Ttx − Tty‖ ≤ ‖x − y‖ for all x, y ∈ X and t ≥ 0.

6.3. Contractive Projections in Lp Spaces

Let (X, ‖ · ‖) by a Banach space. An operator P : X → X is a contractive
projection, if it is a linear operator, P 2 = P and ‖P‖ ≤ 1. For Lebesgue spaces
X = Lp, p ∈ (1,∞)\{2} on a probability measure space (Ω,Σ, μ), Ando [2]
proved that if P : Lp → Lp is a contractive projection such that P (1) = 1,
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then P is a conditional expectation EB with respect to some sub-σ-algebra
B of Σ. In general, every contractive projection P on Lp induces a canonical
conditional expectation. Byrne and Sullivan investigated such operators with
the additional property that I−P is also contractive and showed the following
result.

Theorem 6.2. (Structure of contractive projections [16]) Let (X, ‖ · ‖) be a
Lebesgue space on a probability measure space (Ω,Σ, μ). Then the operators
P : X → X and I −P are contractive if and only if P = (I +U)/2 for some
isometry U : X → X satisfying U2 = I.

This elementary observation puts the theory of conditional expectations
in Lp spaces in direct relation with the theory of averaged operators and con-
sequently with α-firmly nonexpansive operators. In particular, we obtain that
when P and I−P are both contractive, then P and I−P are α-firmly nonex-
pansive for any α ≥ 1/2.

Having contractive operators at hand, it is then desirable to investigate
the so-called feasibility problem in Banach spaces: Given a Banach space X
and a finite number of subspaces Si ⊆ X for i = 1, 2, . . . , n, find an element
x ∈ ⋂n

i=1 Si, provided that
⋂n

i=1 Si is nonempty.
A popular technique for solving such a problem, at least in the setting

of a Hilbert space, is the method of alternating projections. Here an arbitrary
point is chosen which is then projected to some subspace by means of the
metric (orthogonal) projection operator, then this projection is projected onto
the next subspace and so on it repeats itself in a cyclic order. It is known that
such a generated sequence always converges weakly to a certain element in the
intersection of the subspaces. The method of alternating projections was first
considered by von Neumann [48] for the case of two intersecting subspaces
in a Hilbert space, and then generalized by Halpern [27] to an arbitrary finite
number of intersecting subspaces. While the theory of metric projections works
well in Hilbert spaces, this is no longer true for general Banach spaces since
metric projections are not nonexpansive, see Remark 2.3. However, we can
still solve the feasibility problem, at least for Lebesgue spaces which are either
separable or satisfy Opial’s property, by using a method which we will call the
method of alternating contractive projections. Here, for given subspaces Si,
i = 1, 2, . . . , n, we require an equal number of contractive projection operators
Pi such that Pi(X) = Si, i = 1, 2, . . . , n. However, in a Lebesgue space not
every subspace is the image of some contractive projection. While it is known
that every subspace can be the image of at most one contractive projection,
only those subspaces which are isometric to an Lp space over some measure
space (Ω,Σ, μ) admit such a property [2, Theorem 4]. Such subspaces are
known as Lp-type subspaces.

Recall that Lebesgue spaces are examples of r-uniformly convex Banach
spaces with Fréchet differentiable norm. Here we restrict ourselves to feasibility
problems in Lebesgue spaces Lp, p ∈ (1,∞)\{2} on a probability measure space
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(Ω,Σ, μ), where the intersecting subspaces are the images of certain contractive
projections. We then can show the following result.

Theorem 6.3. Let (X, ‖ · ‖) be a Lebesgue space and Si ⊆ X be closed, linear
subspaces of Lp-type that have nonempty intersection. Let Pi : X → X be
contractive projections with contractive complement I −Pi, such that Pi(X) =
Si, i = 1, 2, . . . , n. Set P : = PnPn−1 . . . P2P1. Then, for any given x0 ∈ X the
iterates xn := Pxn−1, n ∈ N converge weakly to an element x∗ ∈ ⋂n

i=1 Si.

Proof. Since for every contractive projection Pi its complement I −Pi is itself
contractive, there exists by Theorem 6.2 an isometry Ui : X → X such that
U2

i = I and Pi = (I +Ui)/2. In particular, Pi is α-firmly nonexpansive for every
i = 1, 2, . . . , n and α ≥ 1/2.

Further, we see by the following reasons that FixPi = Si, i = 1, 2, . . . , n:
Since Pi(X) = Si, there exists for any y ∈ Si an x ∈ X such that Pix = y.
By definition Pi is idempotent, so that y = Pix = P 2

i x = Piy. This implies
that y ∈ FixPi, and thus Si ⊆ Fix Pi. For the other direction, note that
x = Pix ∈ Pi(X) = Si. Therefore, FixPi = Si.

Then, the assumption
⋂n

i=1 Si �= ∅ is equivalent to
⋂n

i=1 Fix Pi �= ∅. In
particular, we have FixPi �= ∅ for every i = 1, 2, . . . , n, so that Pi is also
a quasi α-firmly nonexpansive operator. By Proposition 4.3, the composition
P := PnPn−1 . . . P2P1 is quasi α-firmly nonexpansive and by Proposition 4.2
we have FixP =

⋂n
i=1 Fix Pi =

⋂n
i=1 Si. Moreover, P is nonexpansive operator

as a composition of finitely many such operators. Since X is a Lebesgue space
and in particular an r-uniformly convex space with Fréchet differentiable norm,
then Corollary 5.8 implies that the iterates xn := Pxn−1, n ∈ N converge
weakly to an element x∗ ∈ ⋂n

i=1 Si. �

For an illustrative example consider the �p space. Notice that �p is a
Lebesgue space Lp on a measure space (Ω,Σ, μ) where Ω := N,Σ := 2N and μ is
the usual counting measure. Furthermore let U, V : �p → �p be operators acting
by the formulae Ux := (x2, x1, x3, x4, . . .) and V x := (x1, x3, x2, x4, . . .) for a
given x ∈ �p where x := (x1, x2, x3, . . .). Evidently both U and V are isometries
and satisfy U2 = V 2 = I. If PU := (I +U)/2 and PV := (I +V )/2 then in view
of Theorem 6.2 the operators PU , I −PU and PV , I −PV are contractive projec-
tions. Moreover let SU be the set of elements in �p of the form (a, a, ∗, ∗, . . .)
and SV be the set of elements (∗, a, a, ∗, . . .) where a ∈ R. Clearly SU ,SV

are closed linear subspaces of �p and are invariant under the isometries U and
V respectively. In particular we have PU (�p) = SU and PV (�p) = SV . Since
S := SU ∩ SV is nonempty, in fact it consists of all elements of the form
(a, a, a, ∗, ∗, . . .), then by Theorem 6.3 the iterates xn := PV PUxn−1, n ∈ N

converge weakly to an element in S .
Another method for solving feasibility problems in a Hilbert space is that

of averaged projections. Let us consider this method in Lebesgue spaces.



Vol. 76 (2021) On α-Firmly Nonexpansive Operators Page 23 of 27 172

Theorem 6.4. Let (X, ‖ · ‖) be a Lebesgue space and Si ⊆ X be closed linear
subspaces of Lp-type that have nonempty intersection. Let Pi : X → X be
contractive projections with contractive complement I −Pi, such that Pi(X) =
Si, i = 1, 2, . . . , n. Set P :=

∑n
i=1 wiPi, where wi ∈ (0, 1) fulfill

∑n
i=1 wi = 1.

Then, for any given x0 ∈ X the iterates xn := Pxn−1, n ∈ N converge weakly
to an element x∗ ∈ ⋂n

i=1 Si

Proof. Follows similar arguments as in the last Theorem. �

Remark 6.5. While Theorems 6.3 and 6.4 are special instances of the theory
developed here, it should be noted that the convergence in both theorems of
the iterates (xn)n∈N to x∗ holds in fact in the Lp norm. This has been shown
in [5,6] by different methods.
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7. A. Proof of Proposition 3.5

Proof. (i) By (7) there exist nonexpansive operators Ri : X → X such that
Ti := (1 − αi) I +αiRi, i = 1, 2, . . . , n. Define α :=

∑n
i=1 wiαi, then

T :=
n∑

i=1

wiTi =
n∑

i=1

wi(1 − αi) I +wiαiRi = (1 − α) I +
n∑

i=1

wiαiRi.

It suffices to show that R :=
∑n

i=1 wiαiRi/α is nonexpansive. This follows for
all x, y ∈ X from

‖Rx − Ry‖ ≤ 1
α

n∑

i=1

wiαi‖Rix − Riy‖ ≤ 1
α

n∑

i=1

wiαi‖x − y‖ = ‖x − y‖.

(ii) We prove the second claim by induction starting with two α-averaged
operators T1, T2 : X → X with averaging constants α1, α2 ∈ (0, 1). Then

T := T2T1 = ((1 − α2) I +α2R2)((1 − α1) I +α1R1)

for some nonexpansive mappings R1, R2 : X → X and we can rewrite T as

T = (1 − α1)(1 − α2) I +α1(1 − α2)R1 + α2R2((1 − α1) I +α1R1)

= (1 − α) I +αR,

where α := 1 − (1 − α1)(1 − α2) and

R :=
α1(1 − α2)

α
R1 +

α2

α
R2((1 − α1) I +α1R1).

For any x, y ∈ X we have

‖Rx − Ry‖ ≤ α1(1 − α2)

α1(1 − α2) + α2
‖R1x − R1y‖

+
α2

α1(1 − α2) + α2
‖R2((1 − α1)x + α1R1x) − R2((1 − α1)y + α1R1y)‖.

By nonexpansivity of R1, R2 and since ‖ · ‖ is convex, we obtain

‖Rx − Ry‖ ≤ α1(1 − α2)
α

‖x − y‖

+
α2

α
‖(1 − α1)x + α1R1x − ((1 − α1)y + α1R1y)‖

=
α1(1 − α2)

α
‖x − y‖ +

α2

α
‖(1 − α1)(x − y) + α1(R1x − R1y)‖

≤ α1(1 − α2)
α

‖x − y‖ +
α2

α
‖x − y‖

= ‖x − y‖,

so that R is a nonexpansive operator.
Let us assume the the claim is true for the composition of n−1 operators

and consider T := TnTn−1 . . . T1. By assumption T̃ := Tn−1 . . . T1 is an α-
averaged operator with constant α̃ = 1 − Πn−1

i=1 (1 − αi) and by the above
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considerations T = TnT̃ is an averaged operator with constant α = 1 − (1 −
αn)(1 − α̃) = 1 − Πn

i=1(1 − αi). �
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[9] Bërdëllima, A.: Investigations in Hadamard spaces. Ph.D. thesis, Georg-August-
Universität Göttingen, Göttingen, Germany (2020)
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172 Page 26 of 27 A. Bërdëllima and G. Steidl Results Math
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[33] Kopecká, E., Reich, S.: Nonexpansive retracts in Banach spaces. J. Fixed Point
Theory Appl. 77, 161–174 (2007)

[34] Krasnoselskij, M.A.: Two remarks on the method of successive approximations.
Uspehi. Mat. Nauk (N.S.) 10, 123–127 (1955)

[35] Lim, T.C.: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60,
179–182 (1976)

[36] Luke, D.R., Thao, N.H., Tam, M.K.: Quantitative convergence analysis of iter-
ated expansive, set-valued mappings. Math. Oper. Res. 43(4), 1143–1176 (2018)

[37] Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510
(1953)

[38] Marcellán, Y.F., Quintana, R., Rodŕıguez, J.M.: Markov-type inequalities and
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