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Abstract

This work establishes methods to investigate the butanol formation of Clostridium

acetobutylicum. In particular, the generation of two types of models will be extens-

ively discussed. Therefor, the required formal basis for the model evaluation and

the information technological standards will be introduced, e.g. the construction

of a local database of clostridial annotation in KEGG.

The first model is a static pathway-model that provides the integration of tran-

scriptome data into a metabolic-network model for visualisation and analysis

purposes. It is proposed to use a novel rule from boolean logic for data integration

to facilitate visual access to characteristics of the metabolic network. As con-

sequence, the postulation of experimental hypotheses is facilitated: The possibility

of a 3-hydroxybutyrate dehydrogenase activity in C. acetobutylicum is illumin-

ated. The resulting priority list from annotation transfer contains functional and

regulatory aspects of the data and the databases and it hereby offers an optimal

starting point to initiate experimental work.

The second model is a dynamic model that is used to map metabolome and

transcriptome data from fermentation experiments together. Its unique structure

allows a number of new analyses - and shows new problems. Its simulation results

suggest that the pH-shift in C. acetobutylicum can be solely related to transcript

dynamics. Optimisation strategies on the transcript level and the parameter level

of the model will be implemented and their results discussed.

Finally, the principal component analysis will be used to optimise computation

times of such a model and from this, two novel methods will be derived: dynamic

aspects of transcriptome data will be alternated to construct regulatory similar

expression profiles with different amplitudes, and genes will be classified according

to their regulatory similarity in a novel clustering approach.
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Abstract

Diese Arbeit umfasst die Methoden-Erstellung zur Erforschung der Butanol-

Bildung von Clostridium acetobutylicum über in silico Modelle. Zwei dieser

Modelle werden hier ausführlich besprochen und die notwendige Basis aus ma-

thematischen Formalismen für die Evaluierung sowie informationstechnischen

Herangehensweisen eingeführt, wie z.B. die Etablierung einer lokalen Datenbank

der Clostridien-Annotation aus KEGG.

Das erste zu besprechende Modell ist ein statisches Pathway-Model, das es

ermöglicht Transkriptom-Daten unter Zuhilfenahme eines metabolischen Netz-

werkes darzustellen und zu analysieren. Insbesondere wird eine boolesche Logik

diskutiert, die die Daten-Integration vollzieht. Charakteristische Eigenschaften

des Netzwerkes werden so hervorgehoben und metabolische Zustände visuell

zugänglich gemacht. Die Bildung experimenteller Hypothesen wird erleichtert:

Hier wird die Möglichkeit einer 3-Hydroxybutyrate dehydrogenase Aktivität in C.

acetobutylicum näher beleuchtet. Die resultierende Prioritätenliste des Annotations-

Transfers beinhaltet sowohl funktionale als auch regulatorische Informationen aus

Datenbanken und Experimenten und bietet somit einen optimalen Startpunkt,

experimentelle Forschung zu initiieren.

Das zweite zu besprechende Modell ist ein dynamisches Modell, das benutzt wird,

um Metabolom- und Transkriptom-Daten aus Fermentations-Experimenten zu

vereinigen. Seine besondere Struktur ermöglicht eine Vielzahl neuartiger Ana-

lysen - bringt aber ebenso neuartige Probleme mit sich. Die Resultate deuten

darauf hin, dass der pH-Shift in C. acetobutylicm allein von der Dynamik der

Transkriptom-Daten abhängt. Optimierungsstrategien auf Transkript-Ebene und

auf Parameter-Ebene des Modells werden implementiert und ihre Resultate disku-

tiert.

Schließlich wird über Hauptkomponenten-Analyse sowohl eine Methode zur Opti-

mierung der Laufzeiten eines solchen Modells gegeben als auch zwei neue Methoden

geschlussfolgert: Eine, um die zeitliche Dynamik der Transkriptom-Daten geeignet

zu variieren ohne regulatorische Profile zu verändern, die andere um Gene anhand

ihrer regulatorischen Ähnlichkeit zu klassifizieren.
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Chapter 1

Preliminaries

They both savoured the strange warm glow

of being much more ignorant than ordinary people,

who were ignorant of only ordinary things.

Terry Pratchett

This chapter introduces the two aspects in which this thesis in embedded, a

problem-centred project, SysMO-COSMIC2, and a systems biological approach

that integrates different types of data.



2 CHAPTER 1. PRELIMINARIES

On Usefulness

Systems biological strategies for several organisms were funded by the transnational

initiative SysMO to enhance European wide collaborations, This initiative is

divided into several sub-projects, one of them is SysMO-COSMIC2. This project

is the starting point of this dissertation because it follows an engineering approach

on a well known, widely treated problem: renewable energy production and

chemical key compound generation. In the scope of dwindling crude oil reserves

this problem requires recapitulation with modern biological and information

technological techniques. Such a sustainable technology is under development by

investigating the fermentation of Clostridium acetobutylicum and optimizing its

productivity.

On Work Distribution in SysMO-COSMIC

COSMIC funding was sustained over two periods of three years each. While in

the first period, development of suitable standard operating procedures (SOPs),

development of cloning techniques and fermentations of the wildtype of Cl. aceto-

butylicum were in focus of research, the second period was used to emphasise on

mutant generation and mutant fermentation.

The development of a SOP for fermentations was necessary to allow comparison

of different experiments carried out at different sites. This procedure describes

the set up of a continuous chemostat culture that is shifted between two distinct

metabolic states by fermenting at two different pH values. The recorded responses

are thought to give major insights into the regulatory mechanisms of the organism.

This work was distributed along three modelling groups and five experimental

groups and included the generation of suitable mutation technology, the culturing

of mutant strains, the establishment of downstream protocols and the generation

of models to describe and design experiments.

On Data Deposit

Parallel to the proposition of experiments, a computer scientific issue is challenged

within all SysMO projects: Quantity and size of data require meaningful ways

of organization in a database, of annotation and of standardisation. Identically,

modelling approaches require description of the inherent model structure, graphical

representation of the model details, and simulation annotation. To tackle this

problem a sustainable platform called SysMO-SEEK was established to allow

exchange and future use of data and models. This is achieved by implementing

several standard formats.

http://www.sysmo.net/
https://seek.sysmo-db.org/
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On Standards

The System’s Biology Markup Language (SBML) [Hucka et al., 2003] aims at an

unified description of biological models. It is a XML-based format, distributed

as level 3, and it is widely acknowledged. Usually, model deposition into online

resources as e.g. Biomodels [Li et al., 2010] requires SBML format. Rapid brows-

ing through published models, downloading them and checking the published

results is one feature of this standard format. Reproducibility of published results

can be ensured using SED-ML, the Simulation Experiment Description Markup

Language [Waltemath et al., 2011]. Standardisation of graphical representations

recently started by the use of SBGN, the Systems Biology Graphical Notation

[Klipp et al., 2007]. Finally, integration of software tools into web-pages, like

JWS [Snoep and Olivier, 2002] in SysMO-SEEK allow also the experimentalist

to access and use models. Also the use of Taverna, which will be used later (3.1)

is only possible through this standardisation. The ongoing research on suitable

SBML features provides also a framework to standardise experiments. It will be

shown that the transferability of XML formats between different tools is an issue

however [Alves et al., 2006] and also SBML is not yet flexible enough to consider

all models of a certain type. Lately, efforts were successful in unifying standards

for pathway models in with a plug-in for Cytoscape [Shannon et al., 2003] which

is named BiNoM. It is a promising tool for integration of data and interoperability

of standards [Bonnet et al., 2013].

On Automation

The different approaches for data-analysis, data-curation and data-integration

easily outnumbers the data-creation effort [Palsson and Zengler, 2010]. Automa-

tion represents a possible tool to increase reproducibility of results and reduce

this effort. It will be shown that even knowledge discovery can be undertaken by

an automation approach [Aksenov et al., 2005]. Therefor, the scope of this work

is broaded. It is focussed on Cl. acetobutylicum research but it may be equally

used for any other organism.

On Storage of Results

Data and models presented in this thesis will be linked to my personal profile∗ on

SEEK.

Reading of The Thesis

I encourage the electronic reading of this thesis, because the representation of

large networks is only poor in printed style. High zooms are supported by most

∗https://seek.sysmo-db.org/people/319

http://www.ebi.ac.uk/biomodels-main/
http://jjj.biochem.sun.ac.za/info.html
http://www.cytoscape.org/
https://seek.sysmo-db.org/people/319
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of the images. A digital copy† is deposited in SEEK.

The three main chapters are not strongly dependent on each other, cross-references

are given when necessary. Technical details and equations are given in the

appendices.

†https://seek.sysmo-db.org/presentations/88

https://seek.sysmo-db.org/presentations/88


Chapter 2

Introduction

Here’s what I think the truth is:

We are all addicts of fossil fuels in a state of denial,

about to face cold turkey.

Kurt Vonnegut

This introduction is dedicated to give the background of this thesis, microbial

butanol production. First, it will give a historical motivation for the research

of the biological process that uses Clostridium acetobutylicum (2.1). Past and

current studies focussed on the biological and biochemical factors involved in

butanol synthesis (2.2). Also, a bouquet of process variants were researched to

increase productivity (2.3). Combining these information will help in focussing

and understanding several key experiments from literature. These acquired data

will play a dominant role in the following three chapters (2.4).

Finally the thesis proposal (2.5) and the thesis outline (2.6) will be given.



6 CHAPTER 2. INTRODUCTION

2.1 Motivation of Research

This thesis’ core is the production of one chemical compound, butanol. From the

overview of its economical relevance (2.1.1), the necessity of alternative production

routes becomes obvious. Historically, a similar scenario was present when oil

refinery industry had not yet been developed. In these times, a biological process

had been used to generate acetone. It was named after its main products, acetone,

butanol and ethanol, the ABE-fermentation. This historical process was already

subjected to several optimisation approaches (2.1.2).

2.1.1 Butanol Resource Management

The Uses of Butanol

Butanol (CAS:71-36-3) serves as gasoline additive [Duerre, 2007] and as interme-

diate for the chemical production of acrylates, glycol ethers, resins, and various

esters. It further serves as solvent for various products, e.g. paints, gums, fats,

waxes, rubber, as a swelling agent and colour carrier in textile industry and as an

extraction agent for various drugs, antibiotics and hormones. It is also an additive

for the cosmetic and the cleaning industry [Company, 2006, SE, 2008]. In 2011,

the market volume of butanol is accounted to be 3 million tonnes, an increase

by 2.1 % compared to the previous year [Tanya Rezler, 2012]. The total market

price is estimated to rise from $5.9 bn from 2011 to $9.2 bn in 2015.

The Chemical Production of Butanol Relies on Oil Resources

The chemical process of butanol synthesis comprises the hydroformylation of

propylene with carbon monoxide to butyraldehyde in the presence of a rhodium-

based catalyst, which is followed by hydrogenation of the aldehyde to the al-

cohol [Siegel and Himmele, 1980]. In contrast to this oxosynthesis, the Reppe

synthesis directly produces butanol from propylene, it is however more expens-

ive [Lee et al., 2008b]. Since propylene is a product of the oil cracking process

[Li et al., 2007], butanol stands in direct relation with the availability of oil re-

sources.

New Opportunities Through Rising Oil Prices

The annual report of British Petroleum (BP) from 06/2012 [Dudley, 2012b] sum-

marises that the price for a barrel oil rose by 40 % from 2010 to 2011, which

makes the actual price $111.26 per barrel. This dramatic increase is not only the

result of dwindling crude oil resources, it can be also understood as a question for

a new process design of fuel production, that is covering both, world wide demand

and economical feasibility. Demand is increasing slower than supply (0.6 million

barrels per day vs 1.3 million barrels per day) which corresponds to growth by
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0.3 % and 1.3 %, respectively. The largest increase in consumption was registered

in China, 505.000 barrels/day. These numbers may sound enthusiastic, yet, pro-

jections from 01/2012 into the year 2030 estimate the increase of the global energy

consumption by 1.6 % p.a, leading to an increase by 39 % compared to nowadays

[Dudley, 2012a]. The major increase is due to non OECD-countries. Any estimate

that the consumption of raw materials may be regressive would be a fatal error

and new supply methods must be found. A second major issue is the import

dependency of crude oil for any country. Europe’s market is constantly and almost

entirely relying on the import of oil (94 % in 2030) and this dependency is even

increasing for gas (80 %). Industrial research consequently increases investments

into renewables, which are the fastest growing fuels by 8.2 % p.a. Butanol as

biofuel has a market value of $2.5 per gallon [Pfromm et al., 2010], while for the

chemical industry this price increases to $5-6 per gallon [Doris de Guzman, 2011].

Is Bio-Butanol a Competitor of Bio-Ethanol?

Bio-butanol production is considered an antagonistic product to bio-ethanol:

As fuel additive it has superior properties compared to ethanol. The Reid

vapour pressure (RVP) which is a measure of evaporative emissions is decreased

by a factor of 6 which makes butanol safer to handle. More importantly, its

improved hydrophobicity helps blending at higher concentrations with gasoline.

Engine modifications are not required. Ethanol can only be blended up to 85 %.

Hydrophobicity and decreased corrosiveness to metallic compounds of the pipelines

make butanol an ecologically safer compound regarding ground water. Last but

not least, the caloric value of butanol is just 10 % less than gasoline, and 50 %

higher than ethanol [Brekke, 2007, Duerre, 2007]. Environmental risk estimations

consider it as readily biodegradable under aerobic conditions. Acute toxicity in

water is reached at 0.5 g
L . Importantly, it has low potential to accumulate in a

biological system. Studies showed that in animal systems the LD50 ranged between

0.8 − 4 g/kg body mass. In vivo hydrolysis of butanol occurs fast, 20min after

application of radioactive butyl acetate (30.2mg/kg of body weight) to rats, the

hydrolysis product butanol was not detectable anymore [Hernandez, 2004].

Nevertheless, it is argued that the current production process can not compete

with bio-ethanol production as long as feed-stock costs represent a major factor

of the production costs. A megajoule energy costs $0.07 for butanol and $0.03

for ethanol. The authors further argue that the current process robustness is not

sufficient for an industrial scale production [Pfromm et al., 2010].

2.1.2 The Historical ABE Production Process

This section summarises the very exhaustive review by Jones and Wood

[Jones and Woods, 1986] if not stated otherwise.
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Research Aimed at Acetone as Primary Product

Originating from a research project for rubber synthesis in Great Britain, in

the period from 1912-1914, Chaim Weizmann isolated a butanol and acetone

producing strain that was able to grow on potato starch and a broad range of other

polysaccharide substrates, as root crops, nitrogen-fixing legumes, cereal crops and,

more generally agricultural soil. The resulting patent became the initial point of

research for the following generations. Acetone as a base chemical for colloidal

production had economical priority. The historical process of acetone production

took calcium acetate and disrupted it into calcium oxide and acetone with the

help of heat. Since during the First World War imports of calcium acetate were

stopped, the British economy had to find alternative production routes, and the

several clostridial species were promising candidates (table 2.1), one of them is

nowadays in focus of research, Clostridium acetobutylicum.

Table 2.1: Clostridium species of interest to chemical industry in the DSMZ
database

Species DSMZ ID

C. acetobutylicum 792
C. saccharobutylicum 13864

C. butyricum 10702
C. pasteurianum 525
C. beijerinckii 791

C. tyrobutyricum 2637

Competition Inspired Optimization of Substrate Utilisation

The research focus has been the growth of Clostridium acetobutylicium on a

multitude of substrates: monosaccharides like lactose, polysaccharides like cellulose,

and complex substrates like maize, waste sulfite liquor from paper industry and

molasses [Beesch, 1952]. It is not surprising that consequently a huge effort was

spent on optimal media research.

A first production plant for acetone production was erected in 1915, in the later

years similar plants followed in Canada, India, France and the United States.

The rising of automobile industry around 1920 led to an increased demand of

butanol which was hitherto an unwanted by-product of acetone formation. In

parallel, petrol-industry developed, and competitiveness of the process became an

issue. This inspired research on cultures using starch more efficiently as energy

source. Little success was granted to this approach and research was diverted

to the investigation of fermentations on a multitude of monosaccharides from

hydrolysates of complex carbon sources. The found strain CSC no.8 was able to

ferment up to 6.5 % of the sugars, leading to a butanol yield of 2 %. Increasing

http://www.dsmz.de/catalogues/details/culture/DSM-792.html
http://www.dsmz.de/catalogues/details/culture/DSM-13864.html
http://www.dsmz.de/catalogues/details/culture/DSM-10702.html
http://www.dsmz.de/catalogues/details/culture/DSM-525.html
http://www.dsmz.de/catalogues/details/culture/DSM-791.html
http://www.dsmz.de/catalogues/details/culture/DSM-2637.html
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this yield became a major task in research. In particular for Great Britain that

was heavily depend on import, the different carbon sources became the limiting

factor. 60 % of the butanol production costs were caused exclusively by the

substrate.

Competitiveness of Bio-Butanol Lasted Until the End of World War II

The improvement of strains remained an issue until the 2nd World War where

the demand of acetone again drastically increased. As a result, semi-continuous

fermentations were operated with a multi-column continuous distillation down-

stream to extract alcohols. Until 1960 the use of fermentation as production

route virtually ceased in all Western Countries, a plant in South Africa remained

operational until 1983.
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2.2 Biological Facts

This section will deal with the general introduction to the biology of C. aceto-

butylicum (2.2.1), which is then followed by a summary of biochemical production

pathways (2.2.2) and genetic optimisation of strains (2.2.3).

2.2.1 What is Clostridium acetobutylicum?

Clostridium acetobutylicum is a member of the firmicutes genus. It is an obligate-

anaerobe, Gram-positive and spore forming organism that is able to ferment a

variety of different sugars and convert them to acetic acid, butyric acid and solvents

as acetone, butanol and ethanol in the typical ABE-fermentation [Duerre, 2005].

Its genome sequence was recorded and annotated in 2001 [Noelling et al., 2001]. It

consists of one main chromosome (3.94 Mb) and a mega plasmid pSOL1 (192 kb),

which contain 3740 protein-coding open reading frames and 107 RNA genes.

The life cycle consists of three distinct phases [Luetke-Eversloh and Bahl, 2011]:

• acidogenesis: In this phase the cells are exponentially growing and the

products acetic acid and butyric acid prevail.

• solventogenesis: In this phase the cells take up the excreted acids and

metabolise them to the corresponding alcohols, ethanol and butanol, as

well as acetone, in a fixed ratio depending on the substrate. For glucose as

substrate the ratio of ABE products is 3:6:1.

• sporulation: In this phase, productivity ceases and cells transform into a

durable state until environmental conditions ameliorate.

The major part of solventogenic genes is located on the pSOL1 plasmid

[Grimmler et al., 2011]. Losing the plasmid thereby results into a solvent negative

strain [Rogers, 2002]. In order to prevent this loss, it is required to apply several

stress parameters on the cultures e.g. addition of acids, decreases in pH, changes

in dilution rate or temperature [Barbeau et al., 1988].

2.2.2 Biochemical Pathways

Carbohydrate Uptake

There are two distinct uptake systems in bacteria, either ion channel mediated

uptake along an ion gradient, mainly H+ and Na+ ions, or active import by

cleavage of high-energy bonds, mainly ATP or phosphoenolpyruvate (PEP). The

latter of both mechanism is the predominant in clostridial species. A multitude

of sugars can be imported by different phosphotransferase systems (PTS), in

total 13 systems are known in C. acetobutylicum, including one on the pSOL1
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plasmid [Duerre, 2005, p.155ff]. It was shown, that glucose uptake is pH dependent

[Yerushalmi et al., 1986b].

Glycolysis and Acid and Solvent Pathways

Biochemical studies on glycolysis are rare in C. acetobutylicum, the pathway is

mainly inferred from the genome sequence. Only the glyceraldehyde-3-phosphate

dehydrogenase has been analysed [Duerre, 2005, p.675]. However, the main path-

way for acid and solvent production are extensively studied. This section summar-

ises [Duerre, 2005, p.671ff]. As shown in figure 2.1, activation of pyruvate (Pyr)

Ac-P Ac-CoA

AcAc

AcON

Ac

Bu-CoABu-P

AcAc-CoA

Bu

Pyr

Bual

Acal EtOH

BuOH

La

Cro-CoA

BHBu-CoA

Glucose

CAC1742
(pta)

CAP0165 (adc)

CAC1743
(ack)

CAC3076
(ptb)

CAC2873 (thlA)
CAP0078 (thlB)

CAP0163
CAP0164
(ctfAB)

CAC3075
(buk)

CAC2229
CAC2499

(pfor)

CAP0162
CAP0035

(adhe)

CAP0162
CAP0035

(adhe)

CAP0025
CAC3375
CAP0035
CAP0162

CAC3298 
CAC3299
(BdhAB)

CAC0267
CAC3552

(ldh)

CAC2711 (bcd)

CAC2708 (hbd)

CAC2712 (crt)

Glycolysis

Figure 2.1: Production pathways of butyric and acetic acid and the solvents
acetone, ethanol and butanol. Adopted from [Duerre, 2005, p.674] and
[Lee et al., 2008b]. Abbreviations are explained in the text.

to acetyl-CoA (Ac-CoA) is achieved via the pyruvate ferredoxin-oxidoreductase

(pfor). This system produces hydrogen and carbondioxide. Lactate (La) is pro-

duced via a lactate deyhdrogenase (ldh). Acetyl-CoA is the key compound in acid

and solvent production. Condensation of two molecules acetyl-CoA via thiolase

(thlAB) leads to one molecule acetoacetyl-CoA (AcAc-CoA). Acetoacetyl-CoA

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2229+cac:CA_C2499
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0267+cac:CA_C3552
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2873+cac:CA_P0078
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is converted to β-hydroxy-butyryl-CoA (BHBu-CoA) that is subsequently de-

hydrated to crotonyl-CoA (Crt-CoA) which then is converted to butyryl-CoA

(Bu-CoA), via the three enzymes 3-hydroxybutyryl-CoA dehydrogenase, crotonase,

butyryl-CoA dehydrogenase (hbd, crt, bcd) respectively. These three genes form

an operon.

Depending whether acidogenic or solventogenic conditions prevail, the fluxes from

acetyl-CoA and butyryl-CoA are diverted into different directions: During acido-

genesis, each CoA-derivative is phosphorylated with inorganic phosphate by their

respective phosphotransferase, phosphotransacetylase or phosphotransbutyrylase

(pta and ptb), into acetyl-phosphate (Ac-P) and butyryl-phosphate (Bu-P). These

phosphates act as donor for the reaction of two distinct kinases, acetate kinase

(ack) or butyrate kinase (buk) to generate ATP and the acids, acetate and butyrate

(Ac and Bu).

During solventogenesis, acid re-uptake acts either by the reverse reaction of the

kinases, or via an acetoacetyl-CoA: acetate/butyrate-coenzyme A transferase

(ctfAB) consisting of two subunits. ctfAB accepts acetoacetyl-CoA as CoA-donor

and transfers the CoA to the acids, the products are the respectve CoA-acid de-

rivative and acetoacetate. Acetoacetate decarboxylase (adc) acts on acetoacetate

and produces acetone (AcON). The two CoA-derivatives are reduced to their

respective aldehydes (adhE) and alcohols via unspecific alcohol dehydrogenases

(BdhAB). A complete view on reaction mechanisms of these enzymes is given

elsewhere [Gheshlaghi, 2009].

Uptake of Acids

The investigation of the effect of propionic and acetid acid uptake on the

metabolic spectrum during batch fermentation showed that two pathways are

active, the CoA-transferase pathway and the kinase-phosphotransbutyrylase

pathway. The latter was dominant and led to an increase of solvent yields

[Huesemann and Papoutsakis, 1990]. Phosphotransbutyrylase acts on its sub-

strates in a ping-pong like mechanism. Its activity is highly sensitive to pH changes

in the physiological range, mainly in the butyryl-phosphate direction but not so

much in the butyryl-CoA direction. Further it is inhibited by ATP, suggesting a

role of ATP for the determination of reaction direction [Wiesenborn et al., 1989].

Both re-uptake paths of acids are confirmed by several pulse experiments in

batch culture. Flux balance analysis showed that in batch culture the short-term

response to an acetic acid pulse in acidogenesis, the flux from acetyl-CoA to

acetoacetyl-CoA is increased, but not the CoA-transferase activity. The long-

term response showed increased acetone and reduced butanol concentrations. A

butyrate pulse in chemostat culture showed that butyrate is mainly taken up

via the CoA-transferase pathway, however the butyrate synthesis still prevailed

[Junne, 2010].

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2712
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2711
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1742
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3076
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1743
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3075
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0163+cac:CA_P0164
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0165
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0162+cac:CA_P0162
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3298+cac:CA_C3299
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The Metabolic Shift

The metabolic shift is the transitional phase C. acetobutylicum undergoes when

acidogenesis halts and solventogenesis starts. It is reversible [Haus et al., 2011]

and acidogenic conditions are maintained above pH 5.7 in continuous culture,

solventogenic conditions are established below a pH of 4.3 [Janssen et al., 2010].

The conversion of acids into solvents is seen as a de-acidification mechanism

[Monot et al., 1984, Huang et al., 1985]. Since the internal pH of C. acetobutyl-

icum cannot be maintained at a constant level [Gottwald and Gottschalk, 1985],

this suggests that the switch is linked to the pH. Indeed, in pH-uncontrolled cul-

ture a surplus in acid production or addition of high amounts of acetic acid (up to

200 mM) cause an acid-crash which blocks solventogenesis [Maddox et al., 2000,

Cho et al., 2012]. These results were confirmed by addition of less then 2 mM

formic acid in two separate studies [Wang et al., 2011, Cho et al., 2012]. The

importance of internal pH and the pH-gradient between cell and the reactor are

extensively discussed elsewhere [Papoutsakis et al., 1987].

As undissociated butyrate concentrations are linked to internal pH, its precurs-

ors like butyryl-phosphate may also have signalling function [Desai et al., 1999,

Paredes et al., 2005]. Indeed a butyrate kinase deletion mutant showed a sig-

nificant earlier start of solventogenesis compared to the wildtype. Addition-

ally, the concentration of butyryl-phosphate was bimodal with one peak cor-

responding to solvent production and one corresponding to carboxylic acid re-

utilization [Zhao et al., 2005]. The onset of solventogenesis showed correlations

with butyryl-CoA spikes in batch culture [Boynton et al., 1994] and to undissoci-

ated butyric acid levels around 6−13 mM [Monot et al., 1984, Huang et al., 1985,

Terracciano and Kashket, 1986, Huesemann and Papoutsakis, 1988]. A current

study of a deletion mutant of the butyric acid production pathway re-evaluates

the hypothetical role of butyrylphosphate and butyryl-CoA and it comes

to the conclusion that neither is necessary for the onset of solventogenesis

[Lehmann and Luetke-Eversloh, 2011]. Similarly, the role of acetic acid on the

onset of the pH-shift is also controversial. Studies suggest both, that internal acetic

acid has no effect [Bahl et al., 1982a, Zhao et al., 2005], while acetate stimulus

experiments suggest it has an effect [Junne, 2010].

The alteration of electron flow is suspected to induce the shift [Meyer et al., 1986,

Rao and Mutharasan, 1987]. Also a characteristic increase of the redox-potential

is observed during the shift [Grupe and Gottschalk, 1992, Peguin et al., 1994].

The deletion mutant of one of the two acid kinases and the CoA-transferase is

unable to produce solvents, the authors consider this a result of the inability to

control electron flow of C. acetobutylicum M5 [Sillers et al., 2008]

The DNA-topology is influenced by different environmental conditions and it

was shown that relaxation of the coiling increased acetoacetate decarboxylase

transcription [Duerre, 2005, p.680].
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Finally, sigma factors are suspected to play a significant role, in particular Spo0A

phosphorylation has a primary role in the onset of solventogenesis. Spo0A deletion

mutants neither show sporulation nor butanol production [Ravagnani et al., 2000].

However, over-expression of this gene did not alter the onset time of solventogenesis

[Alsaker et al., 2004]. The general organization and regulation of solventogenic

genes in operons is reviewed by [Duerre et al., 2002].

In C. acetobutylicum P262, acidogenesis and solventogenesis seem to operate in

parallel - the cells undergo cyclic changes in productivity during a chemostat at

different dilution rates [Clarke et al., 1988]. The authors suggest, that it is un-

likely that both pathways are operating in parallel in one cell, a mixed population

hypothesis may be reasonable. Current research re-investigates this hypothesis

and models indicate such a possibility [Millat et al., 2013b].

2.2.3 Engineering a Butanol Production Strain

A summary of pathway remodelling approaches is given by [Lee et al., 2008b,

Luetke-Eversloh and Bahl, 2011]. Butanol increase is reported by non-replicative

plasmid inactivation of butyrate kinase [Green et al., 1996]. Combination of the

butyrate-kinase mutant with over-expression of an alcohol dehydrogenase yielded

a strain that produced 16.7 g
L of butanol [Harris et al., 2000]. A transcriptional

repressor for solvent synthesis was recognised and studied, its inactivation res-

ulted in a deregulated solvent production strain with better yields of solvents

[Nair et al., 1999]. Overexpression of the alcohol dehydrogenase and downregula-

tion of the CoA transferase using antisense RNA (asRNA) yielded an increase

of ethanol concentrations to 9 g
L and butanol levels comparable to the wildtype

[Tummala et al., 2003a].

In a corresponding study, thiolase and alcohol dehydrogenase were overexpressed

by using the phosphotransbutyrylase promotor and again asRNA for ctfAB si-

lencing, a higher selectivity of butanol to acetone was achieved. Solvent titers

reached 30 g
L [Sillers et al., 2009].

Engineering of thiolase was performed using an E. coli library that was screened

for optimal thiolase activity before it was inserted into C. acetobutylicum. The

resulting strain showed less growth and optimised alcohol titers for both, ethanol

and butanol [Mann and Luetke-Eversloh, 2013].

Deletion and overexpression analysis of Spo0A revealed a fundamental role in

both, sporulation and initiation of solvent production as transcriptional reg-

ulator, which also regulates other sporulation factors, similar to B. subtilis

[Harris et al., 2002, Thormann et al., 2002].

The newly developed ClosTron insertion mutation II technology [Heap et al., 2007]

can be used to achieve highly reproducible knock-out mutants. Use of this sys-

tem is reported for transforming C. acetobutylicum into an ethanol producer

by inactivation of 3-hydroxybutyryl-CoA-dehydrogenase. Inactivation of this
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whole pathway did neither alternate sporulation nor the onset of solventogen-

esis [Lehmann and Luetke-Eversloh, 2011]. Deletion of the phosphotransacetylase

alone does not change acetate production and the deletion of the acetoacetate

decarboxylase resulted in a drastically reduced acetone production. Combined

deletion of both genes increased the flux to butyryl-CoA leading to butyrate

[Lehmann et al., 2012a]. Inactivation of the acetate kinase alone did not alternate

the solvent production either, the double knock-out of butyrate and acetate kinases

is currently under investigation [Kuit et al., 2012]. The deletion of phosphotrans-

butyrylase showed as well high ethanol and butanol yields and a disruption

of butyrate production, pH control was necessary to allow the metabolic shift.

Metabolic profiles of mutants are pH-dependent: With no pH-control there is

no acetone, and accumulation of acetate. With pH-control there is acetone pro-

duction and re-uptake of acetate. It was equally shown that butyrate may be

re-assimilated in the ptb mutant [Lehmann et al., 2012b].

A different metabolic approach converts acetone to isopropanol: Insertion of

dehydrogenases from other species allow the production of more than 20 g
L of

alcohol [Lee et al., 2012, Dusseaux et al., 2013]. Earlier, other authors reported

an increase from 2 g
L to 18.8 g

L by simultaneous disruption of both kinases and

the insertion of a mutated alcohol dehydrogenase [Jang et al., 2012], which is in

contrast to another study, who reported that their double knock-out strain did

not produce butanol [Sillers et al., 2008].

2.2.4 Concurrent Designs

Concurrent processes are established, the butanol production apparatus of

C. acetobutylicum is shuttled into E. coli and other bacteria. Although the

productivity is low, the authors suggest a high potential of this approach

[Inui et al., 2008, Nielsen et al., 2009]. Still, a complete unadapted organism

faces the same challenges of butanol stress on the cell membrane than the better

adapted Clostridia. A completely different approach to butanol production is

performed by employing monoxygenases and butane as substrate [Duerre, 2005,

p.685].On this process a patent is pending (patent EP 0 987 348 A1).
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2.3 Butanol Fermentation

This section reviews the necessary technological and environmental parameters

that allow a sustained butanol production in C. acetobutylicum

2.3.1 Production of Butanol

Media Composition

A minimal medium with proteins and glucose supplemented with p-aminobenzoic

acid and biotin was sufficient to promote growth [Beesch, 1952]. When the fer-

mentation was operated in glucose or ammonia limited mode, no solvents but only

acids were produced. It was equally shown that butyric acid at a pH less than

5.0 could shift the culture to solventogenesis with improved ratios of products

[Bahl et al., 1982a].

The same authors showed that a phosphate limited medium could produce superior

results to the hitherto existent fermentations. They were able to ferment 54 g
L of

glucose to 10 g
L of butanol and 4 g

L of acetone [Bahl et al., 1982b].

The role of ions in the fermentation broth was elucidated in the same year

by another group, who showed that iron, magnesium and potassium ions can

promote growth, only magnesium and manganese ions had a deleterious ef-

fect when applied in excess [Monot et al., 1982]. Conversely, it was shown that

iron limitation and viologene addition as redox-agent enhance the butanol yield

[Peguin and Soucaille, 1995].

Substrates, Product Yields and Product Spectra

The typical ratio of 6:3:1 of butanol, acetone, ethanol is reached on starch,

saccharose, xylose and fructose, while a ratio of 5:4:1 is reached on arabinose

[Beesch, 1952]. Using a mixture of glucose and xylose (1:1), it was found that

uptake of xylose seems repressed by glucose uptake, since xylose but not glucose

accumulated in the medium [Fond et al., 1986]. Solvent productivity on all the

three, glucose, xylose and its mixture was at most 0.8 g
Lh , 0.58

g
Lh and 0.94 g

Lh .

Another mixed substrate fermentation of glucose and low-grade glycerol (1:1 and

2:1) in a chemostat showed that butanol was the major endproduct (43 % and 63 %)

and the culture could be maintained stable over 70 days. In two experiments, gluc-

ose was entirely consumed (15 g
L and 30 g

L) and 43 % of added glycerol was used.

Solvent productivity was assessed as 0.47 g
Lh [Andrade and Vasconcelos, 2003].

Grown solely on glycerol, 1,3-propanediol is formed, when grown on rhamnose,

also 1,3-propanediol, propionic acid and propanol are produced [Forsberg, 1987].

Complex substrates like corn fibre yield lower solvent productivity (0.2 g
Lh to

0.4 g
Lh) and they require addition of xylanases to successfully start the batch

fermentation. Uptake of glucose and arabinose was superior to uptake of galactose
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and xylose [Qureshi et al., 2006]. Similarly, a complex substrate mixture from hy-

drolysates of distillers grain was studied on different clostridial species. Clostridium

acetobutylicum could reach a solvent productivity in batch operation mode of

about 0.25 g
Lh , fermenting the following sugars in decreasing order of preference:

glucose, arabinose, galactose, cellobiose, xylose, mannose. Inhibitory effects of

the hydrolysis products syringaldehyde, ferulic and p-coumaric acid, as well as

the growth stimulating effect of furfural and hydroxymethyl furfural were demon-

strated in this study [Ezeji and Blaschek, 2008].

Input of carbondioxide to the fermentation by gassing inhibits dehydrogenase

activity and increases butanol yields [Kim et al., 1984]. In a glucose limited che-

mostat, carbon monoxide gassing leads to decreased growth rates but increased

glucose uptake, with no acetone but sustained butanol production of 0.74 g
Lh

[Meyer et al., 1986].

2.3.2 Counteracting the Effects of Butanol

Butanol Effects

The accumulation of butyrate and acetate in the membrane does not cre-

ate massive cell leakage [Huang et al., 1985]. Butanol however has a chao-

tropic effect on the membrane which results in early cell death and small pro-

ductivity. It is one major focus in optimisation proceedings. It was shown

that the internal pH could not be maintained and there was leakage of ATP

[Bowles and Ellefson, 1985, Balodimos et al., 1988] or PEP and therefore a stop

of the glycolytic flux [Gheshlaghi, 2009]. In contrast, a metabolome study showed

that addition of 5 g
L butanol did not drastically affect intracellular metabolite

pools [Amador-Noguez et al., 2011]. This is confirmed by two butanol stress ex-

periments in continuous culture, a pulse experiment [Janssen et al., 2012] and

a stepwise forcing experiment [Schwarz et al., 2012]. Pulse experiments with

butanol in batch culture during the acidogenic and solventogenic phase increased

acetate uptake in the short term, but in the long term every reaction is reduced

[Junne, 2010]. As a result of butanol stress, the fraction of saturated to unsatur-

ated fatty acids showed a dose-dependent increase. Conversely, butanol challenges

of 0.25 % vol/vol and 0.75 % vol/vol were used to study the tolerance of two

strains, the pSOL1 deletion strain as control strain and the strain 824(pGROE1)

that contains the chaperone system groESL under a thiolase promotor. Butanol

addition increased the expression of the major stress responses and the solvent

formation genes, while it decreased the expression of genes for fatty acid synthesis

and glycolysis [Tomas et al., 2004].

A library enrichment study allows the identification of genes conveying butanol

tolerance. It was undertaken by transferring stationary phase cultures into media

with increased butanol concentrations. Strains containing a plasmid with the
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CAC1869 gene showed a 81% increase in butanol tolerance compared to the wild

type. It grew to higher cell densities and showed a prolonged metabolism. It

remained an open question which regulations were changed due to over-expression

of this gene [Borden and Papoutsakis, 2007].

Fermentation Operation Modes

A review on butanol toxicity and possibilities to overcome it, is given by

[Ezeji et al., 2010].

First attempts to reduce the chaotropic effects of butanol were started by using

liquid-liquid extraction with n-decanol saturated with butyric acid. A continuously

operated membrane bioreactor was therefore connected to a mixer-settler cascade.

A fourfold increase of butanol (0.51 g
Lh to 1.96 g

Lh) could be noted. Direct contact

to the decanol phase caused cell damage however. Additionally, butyric acid

saturation of the extraction phase was necessary to prevent its removal from the

fermentation process [Eckert and Schuegerl, 1987].

Pervaporation, that is evaporation of a liquid after diffusion through a membrane,

was used to remove butanol in chemostat culture. It increased the product forma-

tion rate to 2.34 g
Lh and higher [Izak et al., 2008].

Perstraction is a similar process where butanol is allowed to diffuse through a

permeable membrane into an ionic liquid. An increase of butanol production from

0.057 g
Lh to 0.21 g

Lh was reached. An eightfold higher amount of lactose could be

fermented during this batch fermentation compared to the usual batch operation

mode [Qureshi and Maddox, 2005].

In all these methods the fermentation broth is in direct contact to the membrane

and fouling of the membrane becomes an issue. A method like vacuum product

recovery overcomes this problem. Although butanol has a higher boiling point,

the azeotropic mixture with the other alcohols in the fermentation broth leads to

a better vaporisation. This approach allows the cells to completely utilise glucose

for higher growth and higher concentrated product streams [Mariano et al., 2011].

Biocatalysis by immobilised cells allows the conversion of substrate to the desired

product, in a first attempt C. acetobutylicum was supplied with a medium that

did not support cell growth and effects of different feeding stream metabolites

were investigated. The packed-bed reactor was run in continuous mode, cells

were immobilised in alginate beads. Productivity of this system was lowered

by sporulation and cell death, still butyrate supply of 2 g
L allowed produc-

tion of 1.9 g
L butanol after 10 h of cultivation. Activity regeneration in the

same system can be reached by supply of ammonia and vitamins in the feed

[Reardon and Bailey, 1989, Reardon and Bailey, 1992]. In a different setting, im-

mobilised cells were examined for their extracellular α-amylase activity on starch

in the feed flow. The total solvent yield was 1 g
L [Badr et al., 2001]. Finally,

biomass recycling was used to increase butanol yields. It was shown that under

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1869
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non-glucose limiting conditions recycling lowers the ATP demand and increases

solvent yields, under limiting conditions only higher yields of acids were reached.

In general, a range of total solvent productivity between 4.2 g
Lh to 6.5 g

Lh were

reached and the authors proposed an experiment that would ultimately lead to a

total solvent productivity of 12.4 g
Lh [Meyer and Papoutsakis, 1989].
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2.4 Published Data

This works aims at integration of transcriptome data and metabolome data and the

evaluation of database information in view of transcriptome data. A short introduc-

tion into both omics will be given here (2.4.1). For completeness, some proteome

studies are also mentioned. For a more in-depth introduction about opportunities

and pitfalls, refer to this review on bacterial omics [Mashego et al., 2007].

In the second part of this section, three different experiments will be introduced

in more detail (2.4.2). They will serve as data for the models that are going to be

established throughout this thesis.

2.4.1 Analysis Techniques for Different Omics

A short review on omics is given by [Fiehn, 2001, Joyce and Palsson, 2006].

Metabolomics

The physico-chemical properties of the ABE-products allow an easy detection

by gas chromatography [Fond et al., 1984, Green et al., 1996, Harris et al., 2000,

Lehmann et al., 2012a]. However, since the evaporation of acids may impose

some methodological problems, the use of a High-Performance Liquid Chroma-

tography (HPLC) and a refractive index detector is also frequently encountered

[Buday et al., 1990, Tomas et al., 2003, Tummala et al., 2003a, Kuit et al., 2012].

The coupling of a tandem mass spectrometer to the HPLC allows the de-

termination of intracellular metabolites. This procedure requires several pre-

paratory steps, e.g. rapid sampling and rapid quenching [Schaub et al., 2006,

Schaedel and Franco-Lara, 2009]. Such approaches were used for determining

intracellular metabolites of E. coli grown in C13-glucose supplemented medium

[Schaub, 2005, Bajad et al., 2006]. For C. acetobutylicum, one similar study of

a batch culture is published. 121 metabolites were measured using a tandem

mass spectrometry after addition of universally labelled C13-glucose. Massive

changes in all metabolites during the shift from acidogenesis to solventogenesis

were observed. The carbon flux is redirected from biomass growth to solvent

production [Amador-Noguez et al., 2011].

Online measurements procedures are published for metabolite analysis using a

mid-infrared spectroscopy approach [Kansiz et al., 2001] and for redox balance

determination using a fluorescent probe [Srivastava and Volesky, 1991].

Transcriptomics

The analysis of the complete transcriptome of C. acetobutylicum allows the tem-

poral resolution nowadays. Numerous such data sets are available: Study of Spo0A

overexpression [Alsaker et al., 2004], groESL overexpression [Tomas et al., 2003],



2.4. PUBLISHED DATA 21

ctfAB knockdown [Tummala et al., 2003b] and the transcriptional programme

of sporulation [Alsaker and Papoutsakis, 2005, Jones et al., 2008] were performed.

Responses to butanol addition [Alsaker et al., 2004, Alsaker et al., 2010, Janssen et al., 2012,

Schwarz et al., 2012] and to several acids [Alsaker et al., 2010] were recorded. Re-

production of array results is usually undertaken by using a real-time PCR

approach on few genes [Nolan et al., 2006, Lehmann and Luetke-Eversloh, 2011].

The quantities measured by both approaches are in general comparable

[Dallas et al., 2005].

Proteomics

Stress response related proteins were detected using pulse-labelled proteins in

a batch culture [Terracciano et al., 1988]. The proteome study of a phosphate-

limited chemostat culture analysed 130 proteins and found 52 proteins being

up-regulated two-fold during the onset of solventogenesis, and 34 proteins being

downregulated by the same factor [Schaffer et al., 2002]. A more sensitive pro-

teome protocol was developed and tested in a similar culture, yielding a resolution

of over one thousand proteins on a 2D gel [Schwarz et al., 2007a]. In a phosphate-

limited chemostat, 15 proteins could be specifically assigned to acidogenesis and

29 to solventogenesis [Janssen et al., 2010].

2.4.2 Data Treated Within This Thesis

Three different data sets will be shown here, the standard batch fermentation in

complex medium, the acid stimulation experiments of that batch fermentation,

and the continuous fermentation under phosphate limited conditions.

The Standard Batch Fermentation

The first fermentation in which metabolomic and transcriptomic data were both

collected was done in the Papoutsakis laboratory [Alsaker and Papoutsakis, 2005,

Jones et al., 2008]. The transcriptome data is large as it was collected over 25

samples along the whole fermentation time. A batch culture was grown in complex

growth medium (CGM) and maintained at pH ≥ 5 until sporulation. Butyrate

spiked after 16 h and butanol production started at the same time. The expo-

nential growth became stationary and cells switched to solventogenesis. This

fermentation yielded 11 g
L of butanol after 45 h. Cells continued to morphologic-

ally change until 60h but productivity ceased. A K-means cluster algorithm split

the transcriptional analysis data into five groups, corresponding to several phases,

thus identifying the genes significantly up-regulated during these phases.

During the first phase, cell motility genes are up-regulated, as well as glucose

transporter genes and nucleotide transporter genes.

The second phase is marked by an increase in energy production and the sporula-
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tion relevant markers abrB and sinR are up-regulated.

The third cluster is overlapping with the second, however expression is sustained

over a longer period and genes relevant for fatty acid biosynthesis and iron import

are up-regulated. In this third cluster, the key solventogenic genes, Granulose form-

ation genes and stress and heat shock proteins are up-regulated. Also branched

amino acid synthesis seems up-regulated.

The fourth cluster contains numerous carbohydrate relevant uptake genes, and

genes encoding for transport of inorganic ions and amino acids. Starch metabol-

ism genes were also up-regulated and may be involved in granulose formation.

Additionally, arginine biosynthesis genes were up-regulated, because arginine was

probably depleted in the medium.

Acid Stimulus During Batch Fermentation

In the stimulation experiment of the Papoutsakis group, acetate, butyrate and

butanol were added during the exponential phase [Alsaker et al., 2010]. Preparat-

ory studies suggested that levels of 46, 78 and 107 mM of acetate, and levels of

17, 33 and 49 mM of butyrate negatively affect the metabolism. A summary of

all metabolic effects is given in the paper.

While acetic acid stress (45 mM) down-regulates butyrate formation and vice

versa, butyrate stress (50 mM) down-regulates acetate formation. Addition of

acids up-regulated stress response and solventogenic genes but unexpectedly not

sporulation relevant genes. Transporter proteins, post-translational modification

proteins and energy metabolism genes are up-regulated after acetate and butyrate

stress. The amino acid transport and metabolism show both, upregulation and

downregulation. Spo0A is slightly up-regulated, but upregulation ceased for spor-

ulation genes within 6 h. Glucokinase and the IIABC phosphotransferase-system

were first highly expressed and later downregulated.

The Continuous Fermentation According to COSMIC-SOP

This section summarises the paper of. [Grimmler et al., 2011].

Acidogenic steady state conditions at pH 5.8 are reached after approximately

150 h, 25 mM of acetate are present and 51 mM of butyrate. After switching

off pH-control, pH 4.5 is reached and then maintained actively by pH-control.

Solventogenic conditions are thereby established, and 37 mM of butanol and

24 mM of acetone are produced. Ethanol concentrations remained unchanged

in both conditions, 5 mM and 8 mM . Glucose showed a peak during the shift,

from 51 mM under acidogenic conditions to 92 mM during the shift to 86 mM

under solventogenic conditions. The peak of glucose corresponds to maximum

concentrations of acids and optical density.

245 genes were differentially expressed and collected in 4 groups, up-regulated

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0310
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0549
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2613
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0570
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genes under either acidogenesis (Group 1) and solventogenesis (Group 2), induced

(Group 3) or repressed (Group 4) only during the shift:

Group 1 arginine biosynthesis, flagellin biosynthesis, acetyl-CoA conversion to

crotonyl-CoA, alcohol dehydrogenase ,

Group 2 endoglucanases, glycerol-3-phosphate dehydrogenase, flavodoxin, cysteine

and sulfur metabolism, fatty acid synthesis, glycosyltransferases, solvento-

genic genes, cellusomal-like genes

Group 3 pyruvate decarboxylase, stress response, predicted mannose uptake

system

Group 4 carbon-monoxide dehydrogenase, glycerol-3-phosphate transport, tri-

carboxyacid cycle.

The increase of glucose during the shift is argued to reflect the increased carbon

uptake of the organism through acid re-assimilation. Sporulation and solvento-

genesis are two separate events and also the transcription of stress related genes

was already initiated when butanol was not present in the medium. Also, fatty

acid synthesis may not be a consequence of butanol stress, as the relevant genes

are up-regulated already during the transition.

http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0025
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2.5 Summary and Thesis Proposal

The necessity of researching alternative production routes for fuels in particular

for butanol is widely accepted. An effective and competitive process would not

only sustain the transition from fossil fuels to regenerative energy but it would

equally offer independence of a national economy to imports of raw oil. Since

from the historical perspective C. acetobutylicum was primarily an acetone produ-

cer, butanol production was not in focus. By considering the physico-chemical

properties of butanol in combination to the lengthy optimisation approaches to

overcome problems of process design, the design of an optimal production strain

is a very demanding task and a serious disadvantage to this process. The different

possibilities of genetic engineering propose a new approach to overcome the before

mentioned problems.

In silico design of an organism helps in reducing the experimental workload

associated with this engineering problem. It can suggest experiments on the one

hand, and it procures the scientist with a tool to investigate and focus on key

aspects of the system on the other hand. This thesis contributes to such a design

by proposing approaches to the following tasks:

1. Investigation of data with a focus on the relationship of the reactome with

the underlying proteomic or transcriptomic data profiles.

2. Hypothesis procurement for the filling of annotation gaps in the proteomic

database of C. acetobutlicum based on database and data information.

3. Generation of a model that integrates transcriptome and metabolome data

for the in silico description of different culture and process designs.

4. Hypothesis procurement for the directed generation of mutants from the

estimated parameters of the dynamic model.
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2.6 Outline

Chapter 3 provides answers for the first two tasks. It will present an automated

modelling approach that integrates reaction annotations and temporal transcript

level data from several experiments into a database. The evaluation of transcript

data from a reactome point of view adds a further dimension for data evaluation

besides gene annotation and may enhance readability of the data. From a graph-

theoretic formalism approaches to investigate the transcriptome data are proposed.

Reduction of complexity and several examples will be shown. Missing reaction

annotations represent gaps in this database. The investigation how to find them

and infer knowledge will occupy the second part. A comparative approach will

be proposed that integrates again transcriptome data and database-information.

This approach will be carried out for a specific enzyme, the 3-hydroxybutyrate

dehydrogenase which is not annotated in C. acetobutylicum but in numerous other

organisms.

Chapter 4 provides answers to the other two tasks by integrating time-series

of transcript level data into a reaction network model of clostridial butanol syn-

thesis. The model construction and model evaluation with respect to metabolomic

data and mutation experiments occupies this chapter’s first part. It will be shown

that the metabolic shift can be solely explained through transcript dynamics

without requiring considerations of pH. The second part then treats local and

global sensitivity analysis and their use for finding an experimentally feasible

optimal parameter sets that increases solvent productivity, which will be presented

for several reactions.

Chapter 5 focusses on one implementation problem of this novel dynamic model

type. High numerical effort for the calculation of the integrated transcript level

profiles needs alleviation. Compression using the principal component analysis

does not only allow to increase calculation speed, but it will also inspires a novel

tool for model analysis in scope of optimisations by varying dynamic pattern

in the data, and it will inspire a data analysis routine in scope of clustering of

regulatory similar information.





Chapter 3

Automated Network Model

Creation

The important thing in science

is not to so much to obtain new facts

as to discover new ways of thinking about them.

Sir William Bragg

Biological information tends to be very heterogeneous in its qualities: Tran-

scriptome data stand beside the network structure of a biological pathway, protein

sequences stand beside regulatory cascades. However, these information represent

one same organism and belong together. Their integration represents one key

challenge. This chapter proposes an automated procedure to answer some aspects

of this challenge.

Starting from an overview of existing approaches of available pathway-databases

for C. acetobutylicum (3.1), it is deduced that an independent and more flex-

ible solution is required here. This database then is extended by integrating

experimental transcript level time-series in a novel way (3.2). Some examples

of derived models will be given in a graph format (3.3). Gaps in the present

annotation represent a challenge that this model cannot cover. A strategy to

overcome such gaps is annotation-transfer between species for which a methodo-

logy will be proposed (3.4). This will lead to the construction of hypotheses that

can be experimentally verified and a second possibility to integrate a different

type of data-base information, the enzyme annotation and Pfam-motifs, with

transcriptome experiments. As case study the research of a 3-Hydroxybutyrate

dehydrogenase in C. acetobutylicum will be undertaken (3.5). The conclusion is

given in section 3.6.
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3.1 Database-Harvesting

3.1.1 Existing Pathway-Models

A metabolic network, synonymously a pathway-model, is a mapping of compounds

to compounds via reactions. Reactions are the result of an enzyme activity, which

is the result of the protein product of a specific gene. The correct gene-reaction

annotation is an ongoing process in the databases, e.g. not all reactions bear E.C.

numbers, not all genes are identified as enzymes. Many tools are available to

bridge some of such short-comes [Durot et al., 2009].

The online database MetRxn was only recently published. It harvests information

from KEGG, BRENDA and MetaCyc. Extensive curation effort was put in this

database by resolving naming inconsistencies, by balancing of stoichiometry and

charges, and by reconciliation of missing information between the databases. The

aim of MetRxn is the creation of pathway-models usable for flux balance analysis,

the comparison of conserved reactions throughout species and the identification

of all possible conversion routes from one substrate to one product. In total, 44

models of organisms are stored there [Kumar et al., 2012]. Notwithstanding the

efforts, download of the pathway-model of C. acetobutylicum from MetRxn was

not possible at writing time of this thesis and it could not be used. It consists of

430 metabolites connected by 363 reactions .

Earlier, a similar network was created and manually curated, containing 479

metabolites connected by 502 reactions [Lee et al., 2008a]. It aimed again at

flux balance analysis and growth performance evaluation from fermentation data.

Curation of the network was performed by several gap-filling procedures, as e.g.

BLAST research of missing enzymes. Single gene deletion studies suggest that

194 reactions are essential, and 27 reactions are partially essential. Parallel to this

work, other authors published their network [Senger and Papoutsakis, 2008]. It

contains 422 metabolites in 552 reaction. Curation was performed using a maximal

flux criterion for biomass production in conjunction with biomass constituting

equations and a thermodynamical consideration of the free Gibbs energy. Flux

balance analysis was again the aim and outcomes of single gene knock-outs were

proposed.

All three authors made neither workflows for database creation nor the databases

themselves publicly available. A reactome-knowledgebase has been established for

various other organisms and allows integration of softwares, namely Cytoscape

and R, as well as the interpretation of transcript expression data on the website

[Matthews et al., 2009]. In the commercial software Insilico a published model

for C. acetobutylicum exists that contains 507 reactions and 310 compounds.

http://metrxn.che.psu.edu
http://www.reactome.org/ReactomeGWT/entrypoint.html
http://www.insilico-biotechnology.com/
https://seek.sysmo-db.org/models/27
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3.1.2 Local Solutions

Published networks were not available and their construction tools were not

accessible. Also the designation published softwares was very specific and did not

suffice for several features that will be required later.

The first task for any local solution is to gain access to a database, e.g. KEGG.

While there are several published softwares that access KEGG directly (e.g.

YANAsquare [Schwarz et al., 2007b]), again none of them seems flexible enough to

deal with the manifold of deposited information, nor was it possible to download en-

tire genomes. A programme used for building pathway-models and integrate data is

the very recently published RAVEN-toolbox [Agren et al., 2013]. Also the Vanted

toolbox integrates data into SBGN models from KEGG [Junker et al., 2006]. How-

ever, the most flexible solution for this thesis was Taverna: A programme able to

integrate a manifold of web-services, connect data-pipelines to one desired output

[Hull et al., 2006]. In combination with MATLAB it is possible to pipeline the

information for further use. Very recently, the creation of precise signalling models

from KEGG has been treated and a KEGG translator for networks published

[Wrzodek et al., 2013].

http://129.16.106.142/tools.php?c=raven
http://www.taverna.org.uk/
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3.2 Network Analysis of the Clostridial Reactome

It is the scope of this section to create an on-place database that allows easy

information retrieval and its manipulation, and human-readable maps of the

stored annotations.

Through Taverna it was possible to automatically create a mapping from gene

identifiers (cac:) to reaction identifiers (rn:) to reaction partners (cpd:) by

harvesting KEGG with a workflow (B.1).

For the integration of transcriptome data to the downloaded reactions in a graph-

based format, a graph-theoretical backbone is introduced: Necessary notations and

the definitions of a graph are given (3.2.1) and a suitable software searched (3.2.2).

Structural characterisation of a biochemical network will aid in visualisation as

well as model analysis 3.2.3. Finally, a novel mathematical formalism will be

presented to integrate data into the database (3.2.4).

3.2.1 Graph Definition and Notations

Several possibilities to describe a metabolic network exist. One could define

reactions and metabolites as nodes and link both when the metabolite is part

of the reaction. Using a line graph transformation, one could as well study the

reactions linked by their respective metabolites [Nacher et al., 2005]. Here graphs

with only one type of nodes are treated: metabolite nodes that are being connected

with each other if and only if they are substrate and product of each other in

the same reaction. This graph will be named the metabolite-metabolite mapping

(MMM) or in mathematical notation, it is a graph G = (V, E) that contains two

sets, a set V of nodes v connected by a set of edges e ∈ E . For convenience, the

genome of C. acetobutylicum is understood as set X of increasing numbers until

the last gene with number NJ :

X := {j; j = 1...NJ} (3.1)

The mapping of the numbers in X to the corresponding reactions will be called

Rct. Rct is not injective, since one reaction may be performed by several enzymes.

The graph G is generated by applying Rct on X . It is implicitly understood that

no node without edge must exist and that the set of nodes is given at all times

(e.g. all annotated metabolites in KEGG). Rct only acts on the edges:

GX = (VX , EX ), EX := Rct(X ). (3.2)

Further, ”∩” and ”∪” denote the intersection and the union, respectively, and ”\”

is the set difference.

A transcript level at time ti of gene j ∈ X will be named xj(ti).

http://www.genome.jp/kegg/
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3.2.2 Softwares For Visualisation of Graphs

Visualisation of large networks and their annotations is a persistent problem

throughout systems biology. KEGG pathways are manually drawn and curated

and thereby easy to overview, however the greater scope of one metabolite within

the whole networks is lost. In order to gain a broader view on metabolite

connectivity, the first ansatz was to find a software that makes annotations and

pathways human-readable. Requisites to the softwares were: easy inter-operability

with MATLAB and Excel, ease of layouting, and visualisation of multidimensional

annotations. These softwares were tested:

• BioLayout Express 3D (BL3D)

• yED

• Cytoscape

• CellNetAnalyzer (CNA)

BL3D [Theocharidis et al., 2009] serves mainly for graphical layouting in two or

three dimensional space, it further offers two handy applications. One is the

possibility to search for a node in the internet by simple clicking it and accessing

a user-defined web page. The dbget functionality of KEGG can be perfectly

used for such purpose for all three types of identifiers (cac:, rn:, cpd:). Rapid

annotation retrieval in KEGG, makes BL3D an excellent tool for storing and

investigating graphs. A second important tool is the MCL-clustering algorithm

that detects densely connected nodes [van Dongen, 2000]. This algorithm will be

used in chapter 5. No interaction with Excel is possible.

yED has superior abilities compared to BL3D in aligning nodes and edges via a

huge library of algorithms. Graphical manipulation of node properties allows a

virtual designing of graphs in two dimensional space. Drawing of new nodes and

connecting them to the network is made easy. Uploading of annotations is not

possible. Again no interaction with Excel is possible.

Cytoscape’s [Shannon et al., 2003] essential strength is graph theoretical analysis

of network properties and still a large library of algorithms for graph formatting.

The possibility to integrate various annotations makes this the most power-

ful working tool [Troyanskaya, 2005, Joyce and Palsson, 2006]. Interaction with

Excel-files is implemented.

Finally, CellNetAnalyzer [Klamt et al., 2007] is a tool for the mathematical in-

vestigation of pathway models, its capabilities for visualisation are limited. Since

it is programmed in MATLAB, interaction with other scripts is facilitated.

Interaction of these four programmes with each other is complicated, while the

graphml-languages is supported by the first three softwares, CellNetAnalyzer ac-

cepts SBML, which the others do not. Still, the current version of graphml seems

http://www.biolayout.org/
http://www.yworks.com/de/products_yed_about.html
http://www.cytoscape.org/
http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html
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not be standardized at such point that several softwares can be automatically

interlinked. This problem is reported for several other tools that use SBML as

well [Joyce and Palsson, 2006]. For this reason, interaction is granted by using a

simple node list. This however, makes re-layouting necessary. For this reason, the

use of Cytoscape is preferred because it offers a vast library of algorithms.

3.2.3 Graph Characterisation

A human-readable graph is achieved by visualising graph parameters, e.g. dis-

tance measures. This step also helps in characterising the network further

[Stelling et al., 2002, Klipp et al., 2004]. This approach focusses on certain

network properties, e.g. centrality measures give a prioritisation of targets

[Aittokallio and Schwikowski, 2006]. The following enumeration of network para-

meters relies on [Barabási and Oltvai, 2004].

Node Degree

The node degree is the number of neighbours of v ∈ V. In a random network

the node degree probability P (k) of a node having exactly k connections is a

gaussian function. In a biological network this probability has a sharp peak at the

beginning and then it falls according to a power law: P (k) ∝ kγ with γ < 0. Such

a network is called scale-free. The parameter γ further characterises the networks

robustness: For −3 < γ < −2 the emerging network properties are robust against

failure of single nodes. For γ ≈ −2, highly connected nodes are in contact with

the major parts of all nodes, while for γ ≈ −3 these highly connected nodes

disappear and a random network emerges. Here, it is obtained by a non-linear

regression routine of Cytoscape.

Network Diameter

The network diameter ∆G is the maximal distance between any two nodes v, w ∈ V .

It serves as a measure for the compactness of the graph. However, only a small

diameter is a reliable parameter since it truly shows that nodes are within close

proximity, whereas a large diameter only shows that two nodes are distant,

while the others may be compact. Compact networks suggest an easy and rapid

communication of the interlinked nodes.

Centrality Measures

The eccentricity Cecc(v) is the reciprocal the shortest paths with maximal lengths

from the node v ∈ V to other nodes w ∈ V.

Cecc(v) :=
1

max{dist(v, w) : w ∈ V}
(3.3)
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Thus, a high eccentricity shows that all other nodes are in proximity, whereas a

low eccentricity means that at least one node and its neighbours are very far.

The closeness Cclo is the reciprocal of the sum of all shortest paths that contain

v ∈ V.

Cclo(v) :=
1

∑

w∈V dist(v, w)
(3.4)

Likewise the eccentricity, high values are positive in the sense of proximity. The

closeness gives a tendency how the node is embedded in the graph, if either

isolated or central.

The radiality Crad is the average of the difference of the graph diameter and the

shortest paths from v ∈ V to all other nodes.

Crad(v) :=

(
∑

w∈V ∆G + 1− dist(v, w)
)

n− 1
(3.5)

Hence, by consequently subtracting the shortest paths, the radiality becomes high

if all the paths are short, the node is then in the centre. Conversely, if all the

paths are long, then the node is in the periphery.

The stress centrality Cstr stands for the number of shortest paths σst from any

nodes s ∈ V, t ∈ V different to v ∈ V passing through v.

Cstr(v) :=
∑

s 6=v∈V

∑

t 6=v∈V

σst(v) (3.6)

In biological terms, high stress shows how much a molecule is involved in the

cellular processes, it may not however symbolise how much this node is necessary

to hold together the different parts of the graph.

Likewise the stress centrality, the betweenness Cbet considers shortest paths from

nodes s to t passing through a node v, however it weights this number with the

total number of shortest paths connecting s and t, but not necessarily passing

through v.

Cbet(v) :=
∑

s 6=v∈V

∑

t 6=v∈V

σst(v)

σst
(3.7)

Thereby, if v ∈ V is the only connection between s ∈ V and t ∈ V, it gets a high

betweenness value. As complementary information to the stress centrality, this

value allows to assess the importance of a node to connect different parts of the

network.

A visualisation of two such parameters is easy to fulfil in Cytoscape: The node

colour and the node size are mapped to desired continuous graph parameters.

Further mappings are possible, e.g.discrete graph parameters can be mapped to

the node shape.

3.2.4 Data-Driven Network Generation - Methodology

The database that integrates transcriptome data and pathway information will

be called a data-driven pathway. By this integration, analysis of data is possible
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by a perspective from the reaction network. Reduction of the whole network of

achievable reactions to the achieved reactions will help in characterising the current

status of the cell. It was suggested that the visualisation of networks during

different metabolic states provides a beneficial analysis tool [Khatri et al., 2012].

Surprisingly, the integration of short time-series data into networks for this purpose

is not encountered in literature, consider the review by [Dutta et al., 2009].

Boolean Rules for a Two-State System

The starting point is the entire graph as derived from the KEGG database

GKEGG
CAC = (V, E), E = Rct(X ). (3.8)

GKEGG
CAC consists of 792 reactions that are connecting 852 metabolites.

For data-integration, a filtering approach will be used, so that pathway activity can

be assessed from the sub-graphs of GKEGG
CAC [Aittokallio and Schwikowski, 2006,

Reed et al., 2006]: Knowing transcriptome experiments from several culture states

one can evaluate the bacterium’s regulatory events and provide hints on the cur-

rent necessity of enzyme synthesis and hereby activation of the conversion from

substrates to products. More precisely, one analyses two non-overlapping culture

states, e.g. acidogenesis vs solventogenesis or short term response vs long term

response. For simplicity they are referred to as s1 and s2.

X bu(s) will denote the set of all transcript level expression values larger than some

boundary bu at state s:

X bu(s) :=
{

j : xj
(

ts
)

> bu, j ∈ X
}

(3.9)

and Xbl(s) is the set of all transcript expression values smaller than some boundary

bl at state s:

Xbl(s) :=
{

j : xj
(

ts
)

< bl, j ∈ X
}

. (3.10)

Having this partition, a third partition is immanent, the set transcripts of which

is neither clearly repressed nor clearly induced, they are uncertain:

X bl
bu
(s) :=

{

j : bl < xj(ts) < bu, j ∈ X
}

. (3.11)

Creation of Data-Driven Pathways From Logical Rules

Application of the three rules creates a boolean network from the initial graph

GKEGG
CAC . Two rules are shown here for state s2:

1. genes up-regulated at s2: X
bu(s2)

2. genes down-regulated at s1 and uncertain at s2: Xbl(s1) ∩ X bl
bu
(s2)
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For simplicity, symmetry of the boundary parameters is assumed, ‖bl‖ = ‖bu‖ = b.

While the first logical rule is the intuitive approach when considering transcript

data - up-regulation is considered as activation, the second rule transfers the

available information from one state to the other. If indeed expression were first

repressed during one state and it were relieved during the later state, it appears

that if a repression were relieved. Vice versa, if it were repressed in the second

state and uncertain during the first state, the organism appears to start repression.

This is an augmentation of state s2 with respect to s1, because data from the

uncertain regions is used that would have been otherwise neglected. By this

augmentation is a positive statement about cell efficiency.

In order to distinguish the outcomes of these two rules, two types of graphs are

generated, the augmentation graph (Ga-graph) and the induction graph (G-graph).

For simplicity of evaluation a combination of both graphs, the H-graph, is suitable

H := Ga ∪G = (V, Ea ∪ E). (3.12)

Note, that one must not augment when as reference an untreated culture is

used, as e.g. in [Alsaker et al., 2010], since augmentation only makes sense when

the reference state for microarray hybridisation is taken from the same culture,

either at a separate time-point or as average over all time-points. An external

reference is uninformative.

The following example illustrates the use of these rules to distinguish between

two states, e.g. acidogenesis (s1) and solventogenesis (s2). The non-augmented

graph G during s2 reads:

G(s2) :=
(

V, E ∩ E(s2)
)

, E(s2) = Rct
(

X b(s2)
)

. (3.13)

Consequently, the augmented graph H during state s2 then reads as

H(s2) :=
(

V, E ∩ E(s2)
)

, E(s2) = Rct
(

X b(s2) ∪
(

X−b(s1) ∩ X−b
b (s2)

)

)

. (3.14)

Similarly, the active reactions during s1 after augmentation are defined as:

H(s1) :=
(

V, E ∩ E(s1)
)

, E(s1) = Rct
(

X b(s1) ∪
(

X−b(s2) ∩ X−b
b (s1)

)

)

. (3.15)

Validation and Model Reduction

Considering the two sets of edges E(s1) and E(s2) closer, it becomes apparent that

redundancy in biochemical pathways makes the intersection of both a non-empty

set despite the underlying sets of genes being distinct. It will therefore be of

interest to consider a third graph:

GcX :=
(

V, E ∩ E(s1) ∩ E(s2)
)

. (3.16)
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As two entirely different states are compared, this graph will help identifying

sustained reactions. Finally, the graph of all inactive reactions will be necessary

for validation:

Ginact :=
(

V, E \
(

E(s1) ∪ E(s2)
)

)

(3.17)

Further reduction of graph size may become necessary to increase readability. One

way of doing this without loosing connectivity information, is to assume again

efficiency. A biological reaction from a substrate to a distant product takes a

shortest path without deviating to far distant molecules. Betweenness or stress

values larger than zero indicate that a node is used by at least one shortest

path. Thereby, iterative elimination of nodes from G with no stress value reduces

the network size. Ultimately, this means that solitary linear branches are cut

one-by-one from the periphery of the network until a bifurcation is reached.

3.2.5 Summary

This section proposes two rules for the creation of a pathway-model that integrates

transcriptome data with database knowledge to increase readability of data.

Use of the Data-driven Pathway

Literature shows that creation of meaningful flux balance network models is a

laborious task because of the urgent need to create a realistic representation of

the in vivo fluxes [Lee et al., 2008a]. There is no need to re-investigate such a

model, because several flux balance models for C. acetobutylicum do already exist

[Lee et al., 2008a, Senger and Papoutsakis, 2008].

The established data-driven pathway formalism serves for data visualisation in a

graph-based format. It was shown that regulatory networks are better analysed

in such a format [Freeman et al., 2007]. Therefor it was not urgently necessary to

unify compound isomers and to determine reaction directions, or to fill gaps that

are due to database errors. This explains the huge differences in metabolite and

reaction number between the published models and the raw model downloaded

from KEGG (900 in this study compared to 400 to 500 in other studies).

Boolean Rules for Integration of Omics

Some authors do report the application of boolean rules, but these rules are

not given [Duarte et al., 2007]. Other authors specify their rules in a one-

point measurement, however they do not include how they deal with con-

tinuous data [Covert et al., 2001]. Metabolic fluxes after deletion of unex-

pressed transcripts were used to relate transcript profiles and reaction profiles

[Akesson et al., 2004]. Pathway models were generated from up-regulation assess-

ments [Patil and Nielsen, 2005]. They proposed to track differentially expressed

genes but made no use of repressed genes or the temporal structure of their data.
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Projects like Reactome offer different clustering and data analysis algorithms, but

not the type proposed here.

Augmentation as proposed here unveils information from a two-point comparison.

Repression during one state and uncertain levels during a second state represent

additional information to the usual events of up-regulation. This additional

information is expected to reveal further information, as e.g. on constitutively

expressed genes.

Boolean Rules Can be Expanded to Multiple States

Although a comparison of two different states already offers valuable information

[Reed et al., 2006], this is a limitation that can be overcome easily. If there are

more than two clearly distinguishable states or phenotypes, then splitting the

time-series data into regions and using the correspondence of genes to these regions

helps in robustification of the model. For standardisation of transcriptome data, a

similar approach was suggested [Yang et al., 2003]. That is, a gene is counted as

up-regulated or down-regulated if this occurs more than once in the corresponding

region.

Rules and Data are Not Limiting

Boolean approaches has been shown to construct networks that contain a rich

complexity to be studied [Dhaeseleer et al., 2000]. The here presented approach

takes transcriptome data. In a similar fashion it could also make use of proteome

data. Further, the use of transcriptome data is not limiting. C. acetobutylicum is

not a fast growing organism, and it was shown that a mapping between transcripts

and proteins is possible in a single cell study if samples are not taken directly

after cell splitting [Golding et al., 2005].

Promising Results by Integrating Omics Data

Different Omics are already reported to be integrated into pathway models:

Integration of metabolome measurements from stimulus-response experiments

into pathways was treated by [Cakir et al., 2006]. They achieved the unification

of metabolome and transcriptome-measurements which enabled them to assess

whether genes are hierarchically or metabolically regulated. A successful approach

of transcriptome integration is reported: A graph was generated from genes that

were connected based upon Pearson correlation. Unfortunately, the biological

meaning of strongly correlated transcript expression profiles to gene-gene corres-

pondence is not discussed. The built model aided in mapping MCL-generated

clusters to specific tissues [Freeman et al., 2007].

In contrast to hypothesis-driven research, work with huge data from transcriptome

experiments allows knowledge discovery [Bassett Jr et al., 1999]. In this sense the

http:\www.reactome.org
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result of the integration of time-series data of transcript levels into a pathway

model is a tool that should not be underestimated. Here, the visualisation of

transcriptome data will eventually lead to knowledge discovery, as will be shown

in the following sections.

Outlook: Further Integration Possibilities

This pathway can be further filtered by integrating more information: The en-

zyme’s substrate specificity adds one filter criterion - substrates with a small

specificity can be neglected, and the number of links between two metabolites

effectively reduced. BRENDA offers such information and is readily accessible

in Taverna through a SOAP-service [Chang et al., 2009]. This route was not

undertaken here: Many enzymes have not yet been tested experimentally in C.

acetobutylicum, hence also these information require comparison approaches, e.g.

filling gaps by considering phylogenetically close relatives.

Reactions thermodynamics further discriminate the reaction directions. Fur-

ther, implementation of this approach would include redox-potential consid-

erations, intracellular pH measurements and energy balance determination

[Kumar et al., 2012]. Yet, available data are insufficient for such purpose.

Outlook: Possibilities of Validation

Viability of the network is one type of network validation commonly suggested

[Reed et al., 2006]. Building a data model from transcriptome data alone natur-

ally is not sufficient to create a viable organism, as only regulatory events are

detectable and constitutive genes are missing [Troyanskaya, 2005]. Validation

can still be carried out on the experimental level, using knock-out mutants and

phenotype comparison, enabling a check whether database entries are missing

[Reed et al., 2006].

http://www.brenda-enzymes.info/
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3.3 Data-Driven Pathways

With the available integration scheme it is now possible to re-consider published

data. First, a possibility to fix a suitable boundary parameter b must be found

(3.3.1), then three experiments are introduced: the standard batch fermentation

in complex medium (3.3.3, Gbatch, [Jones et al., 2008]), the acetic acid addition

experiment in batch culture (3.3.4, Gbatchpulse, [Alsaker et al., 2010]), the pH-

shift experiment in continuous culture under phosphate limitation according to

COSMIC-specifications (3.3.5, Gconti, [Grimmler et al., 2011]).

For visualisation purposes the node for H2O with all its connections was deleted.

An overview of the considered states is given in table 3.1. Further, a summary of

some graph properties is given in table 3.2. The γ-parameter shows that the initial

Table 3.1: Considered states of data-driven networks in three published experi-
mental settings.

Gbatch Gbatchpulse Gconti

s1 10h 15min post pulse pH 5.8 (acidogenesis)
s2 40h 20h post pulse pH 4.5 (solventogenesis)

network and its data-driven derivatives are organised in communities. Although

these networks are not scale-free by common definition, the different filtering

approaches, both rules, and different boundary parameters do not drastically

change this parameter. Only for the inactive reaction graph it can be noticed

that no organisational structure is preserved, which is expected.

3.3.1 Derivation of the Boundary Parameter

For the determination of the boundary parameter, this section proposes to access

a structural property, the fraction of edges to nodes (E/N). This number allows

to track whether constitutive edges or peripheral edges are being eliminated when

a stricter, increasing, boundary parameter is used. Deletion in the periphery will

more likely create solitary nodes that are not considered further. In the converse,

a decreasing boundary parameter allows to assess whether new nodes are added

to the graph or existing nodes interlinked. This entirely refers to the boundary

parameter determination shown in figure 3.2.

Different Metabolic States are Distinguished by the Edges to Nodes Fraction

To deduce which states should be considered as s1 a scan over ranges of b is

necessary. An example of such a scan over is shown for the stimulated batch

experiment in figure 3.1: Stress induced through the acetate pulse becomes

apparent here, only few genes are up-regulated directly after the pulse (t1). The

long-term response shows a steady increases of metabolic active genes until this
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Table 3.2: Summary of generated graphs
none: no regression of γ was possible because R2 ≤ 0.6.

Graph b Nodes Edges γ (R2) ∆G

GKEGG
CAC - 902 2176 -1.29 (0.81) 12

Gconti(s1) 1.1 280 384 -1.33 (0.79) 15
Hconti(s1) 1.1 346 475 -1.35 (0.75) 16
Gconti(s2) 1.1 362 523 -1.51 (0.86) 14
Hconti(s2) 1.1 502 910 -1.40 (0.83) 14
Gconti,cX 1.1 144 181 none 11
Hconti,cX 1.1 165 204 none 13
Gconti,inact 1.1 400 355 -2.24 (0.97) 19
Hconti,inact 1.1 231 164 -2.65 (0.96) 7

Hbatch(s1) 0.8 306 447 -1.48 (0.78) 17
Hbatch(s1) 1.3 211 292 -1.42 (0.71) 18
Hbatch(s2) 0.8 394 585 -1.38 (0.77) 16
Hbatch(s2) 1.3 197 263 -1.41 (0.76) 16
Hbatch,cX 0.8 68 82 none 4
Hbatch,cX 1.3 46 61 none 4
Hbatch,inact 0.8 320 257 -2.57 (0.97) 11
Hbatch,inact 1.3 574 504 -2.70 (0.92) 22

Gbatchpulse(s1) 1.1 70 76 -1.59 (0.79) 6
Gbatchpulse(s2) 1.1 354 519 -1.40 (0.82) 15
Gbatchpulse,inact 1.1 512 465 -2.50 (0.92) 15

number attains its maximum at t8. Accordingly, reaction and metabolite numbers

follow this course. Major differences only become visible when the edges to nodes

fraction is calculated. The network which is most invariant to changes of b is

found at t4. Choosing t1 and t7 as representative time-points for two different

metablic states, the difference between both networks is maximal, and they are

clearly distinguishable from the network at t4.

Choice of b - Discrimination by Defects of E/N

The fraction of edges is expected to monotonically decrease, otherwise a defect

has occurred: The centrality measures of the initial graph GKEGG
CAC (figure 3.3)

indicate that the major part of the nodes is densely connected - betweenness

values are small - and there is not a large set of nodes lying in the graphs periphery

- closeness values are small. Additionally, by application of the boolean rules

the graph diameter decreases for each experiment but γ stays unaltered. These

observations show that the graphs integrity is loosened by deletion of edges not

nodes. The behaviour of Hbatch(s2) for b > 1.4 indicates therefore an undesired

defect in the graph’s topology. Here the graph is split into numerous smaller
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Figure 3.1: Complete scan of b through all times (t1, ..., t8) of the stimulated batch
experiment, Gbatchpulse.
Upper left: up-regulated genes
Upper right: activated reactions (edges)
Lower left: activated metabolites (nodes)
Lower right: edges to nodes fraction

sub-graphs that are not connected.

With the same reasoning a sudden steep descent as present in figure 3.1 for t7
shows a second defect, here the number of nodes and edges is approaching zero

because at b > 1.5 most nodes are being deleted.

Choice of b - Discrimination by Levels and Descent

The steepness of descent of the E/N can be regarded as uncertainty of the bound-

ary parameter b - in the close proximity of a chosen value the graphs topology

should not undergo strong alternations. For this reason, an analysis of the graph

should be carried out at some flat point of the curve.

In Gbatch E/N has a similar descent during both states until b = 1.5, then the

defect occurs. The same behaviour without defect for large values is visible for

Gconti, here the descent is weaker for the state s1. Both graphs start at the

same level of E/N. It can be expected that the topology properties of the graphs

are similar too. Considering the stimulated batch culture, here both states are

immanently different, the short-term response is 0.2 smaller than the long-term

response, also their descents differ between each other: While it is strong for low

b and then decreases close to zero for s1, it is constant for s2. The steeper descent

accounts for randomly spread edges. A constant level accounts for the deletion of

the same number of edges and nodes, hence nodes from the networks periphery

are being deleted for increasing b.
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Figure 3.2: Scan of b for different transcriptome experiments. E/N is the fraction
of edges to nodes.

In order to study the effects of the choice of b, two different values, b1 = 0.8, b2 = 1.3,

will be compared for the batch culture. Since the stimulated batch culture is

referenced to an unstimulated batch culture, it is reasonable to choose b = 1.1 as

intermediate value of this interval.

3.3.2 Augmentation Characterises Solventogenesis

Acidogenesis and solventogenesis are two distinct states that are expected to be

visible in these networks in either experiment, batch culture or continuous culture.

For both it does not matter whether the graph is augmented during state s2, since

not much additional information is gained with respect to E/N. However, there

is a difference up to 0.2 between G(s1) and H(s1) in both experiments. This

eventually shows that a number of unconsidered reactions in s1 are of no need in

s2 anymore and are therefore shut down. This indicates that solventogenic phase

is an adaptation to more hostile conditions. While the main metabolism from

s1 is largely preserved, additional reactions ensure the survival of the organism.

This becomes obvious in the continuous culture, Hconti(s2) is much larger than

Hconti(s1) (table 3.2) and their intersection Hconti,cX is large, it contains one

fourth to one third of both graphs. In the converse Hbatch(s2) is smaller by 0.2

than Hconti(s2), here metabolic activity ceased because of starting sporulation.

Reactions that are relevant for sporulation are not covered by the KEGG database.
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Figure 3.3: Left: Node degree distribution in GKEGG
CAC with the linear fit for

determination of γ.
Right: Centrality statistics in GKEGG

CAC . Further centrality measures are not shown
as betweenness and stress are strongly correlated, as well as closeness, eccentricity
and radiality are strongly correlated.

3.3.3 Visualisation of the Standard Batch Fermentation

In the standard batch fermentation [Jones et al., 2008] in complex medium s1
corresponds to t = 10 h (figure 3.4) when solvent production starts, and s2
corresponds to t = 40 h (figure 3.5) when the culture enters the sporulation-state.

The reference state is the average over all transcripts and measured time-points.

The authors distinguish in their paper, six different clostridial stages occurring

in the temporal transcript expression data. The here chosen states are well

distinguishable according to these stages. Visualisation is focussed on revealing

the outcomes of two different boundary parameters.

Early Phase

The reactions (b = 1.3) during s1 are sulfur aminoacid and serine metabolism,

co-factor synthesis, parts of sugar metabolism yielding butanoic acid and parts of

cell wall synthesis.

This view is complemented with the more uncertain reactions (b = 0.8), in partic-

ular for leucine- and gluthatione-synthesis. The pathway for mureine synthesis

http://www.genome.jp/dbget-bin/www_bget?rn:R00586+rn:R00651+rn:R00897+rn:R01287+rn:R01800+rn:R03132+rn:R03411+rn:R03599+rn:R03601+rn:R03659+rn:R03662+rn:R04710+rn:R04773+rn:R04859+rn:R07460+rn:R08218
http://www.genome.jp/dbget-bin/www_bget?rn:R01072+rn:R01127+rn:R04144+rn:R04208+rn:R04325+rn:R04326+rn:R04463+rn:R04560
http://www.genome.jp/dbget-bin/www_bget?rn:R00586+rn:R01100+rn:R01105+rn:R01678+rn:R03355+rn:R04633+rn:R05112
http://www.genome.jp/dbget-bin/www_bget?rn:R01090+rn:R01214+rn:R01216+rn:R01226+rn:R02199+rn:R03657+rn:R08198
http://www.genome.jp/dbget-bin/www_bget?rn:R00274+rn:R00900+rn:R07034+rn:R07035
http://www.genome.jp/dbget-bin/www_bget?rn:R05627+rn:R05629+rn:R05630
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Figure 3.4: Early Batch Experiment (Hbatch(s1)), darkblue and lightblue: b > 0.8;
darkblue: b > 1.3

is added. A delta-2-oxidreductase for crotonic acid becomes apparent. Also a

threonine lyase is active.

From the graph it is easily visible, that lowering b does not interlink existing

compounds but instead, it adds new branches to the existing network.

Late Phase

Compared to the early phase, the late phase contains less reactions and metabolites

for the stronger certitude than for the weaker - here, one obtain the same number of

metabolites which are more densely connected. For b = 1.3 the energy metabolism,

http://www.genome.jp/dbget-bin/www_bget?rn:R01689
http://www.genome.jp/dbget-bin/www_bget?rn:R00751
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Figure 3.5: Late Batch Experiment (Hbatch(s2)), darkblue and lightblue b > 0.8 ,
darkblue: b > 1.3

glycolytic paths, pentose pathways and secondary metabolism become apparent,

aspartate metabolism and glutamate are central. On a less certain level nucleotide

synthesis, butanal production and membrane biosynthesis are seen. The reactions

for b = 0.8 are connections of the more certain reactions for b = 1.3: Acetate,

O-acetyl-serine and acetyl-CoA are the most stressed metabolites (not shown)

for b = 0.8. As expected, they play a central role during s1. For b = 1.3, these

metabolites move back in ranking to places 8, 5 and 6 respectively.



46 CHAPTER 3. AUTOMATED NETWORK MODEL CREATION

dUTP

L-Glutamine

L-Glutamate

dCTP CTP

UTP

5,6,7,8-Tetrahydromethanopterin

NH3
5-Methyl-5,6,7,8-tetrahydromethanopterin

Methyl-Co(III)
corrinoid protein

HCO3-
Carbamoyl
phosphate

Co(I) corrinoid
protein

dGDPL-Aspartate

N-Carbamoyl-L-aspartate

dCDP GDP

dADP

CDP

ATP
ADP

CO

CO2

2-Oxoglutarate

CoA

Succinyl-CoA

Acetyl-CoA

Orthophosphate
Succinate NADP+ NADPHFumarate

UDP
dUDP

(15S)-15-Hydroxy-5,8,11-cis-13-trans-eicosatetraenoatePeptide-L-methionine
(R)-S-oxide

Sedoheptulose
1,7-bisphosphate

UMP

D-Fructose
1,6-bisphosphate

D-Fructose
6-phosphate

beta-D-Fructose
1,6-bisphosphate

15(S)-HPETEPeptide-L-methionine

5(S)-HETE
(S)-DihydroorotateThioredoxinThioredoxin

disulfide
Orotate

5(S)-HPETE

L-Cysteine

Ribonucleoside
diphosphate

S-Glutathionyl-L-cysteine

beta-D-Fructose
6-phosphate

Glutathione

Sedoheptulose
7-phosphate Glutathione

disulfide

2'-Deoxyribonucleoside
diphosphate

Hydrogen
selenide

Trypanothione
disulfideMethylselenic acid

Selenite

2,4-Diamino-6-hydroxylaminotoluene

D-Galactose
6-phosphate

Orotidine
5'-phosphate

D-Tagatose
6-phosphate

2,4-Diamino-6-nitrotoluene
TrypanothioneMethaneselenol

Figure 3.6: Early Batch Pulse Experiment (Gbatchpulse(s1)), colour:green to red
for decreasing eccentricity, size: small to large for increasing stress

3.3.4 Visualisation of the Acetic Acid Pulse Experiment in Batch

In the acetic acid pulse experiment [Alsaker et al., 2010], s1 corresponds to the

short-term response after 0.25 h (figure 3.6) and s2 to the long-term response after

20 h (figure 3.7). Here, the reference state is an independent batch culture and for

each measured time-point, an untreated reference is used. Therefor, one must not

augment the G-graph. Visualisation is focussed on the different graph topological

parameters stress and eccentricity and their role to increase human-readability of

the network.

Short-term Response

For the short-term response, the network is small - only few paths are activated

after the pulse. Notably, reactions around ammonia and phosphate become

apparent, conversion of fructose-bis-phosphate and seduheptulose phosphates,

http://www.genome.jp/dbget-bin/www_bget?rn:R00762+rn:R01845+rn:R04780
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glutamine and aspartate conversion. Further, few reactions are involving acetyl-

CoA. Thioredoxin utilization increases by multiple reactions.

Long-term Response

The long-term response is more complex than the short-term response. It involves

a variety of CoA-reactions, a multitude of carbon dioxide involving reactions.

here are butanoyl-CoA originating reactions, synthesis of different amino acids

and acetyl-CoA driven synthesis of branched small fatty acids. Further, the

ABC-transporters for sugars are activated. One also finds upgregulated sugar

import in the batch culture, this suggests that acetic acid has a stimulating effect

on glucose uptake. This was seen also in continuous culture (data not shown).

From a comparison with Hconti(s2), one recognises that more than two third of

the involved reactions are identical to the late stimulated network. Acetic acid

addition seems indeed be an inducer for a state comparable to solventogenesis,

this also was seen in continuous culture, acetone and butanol were produced after

short and sustained stimuli with acetic acid (data not shown).

3.3.5 Visualisation of the pH-Shift Experiment in Continuous Culture

The pH-shift experiment [Grimmler et al., 2011] is more useful with respect to the

batch fermentation experiment because of two aspects: The two phases are clearly

separated before and after the shift and no sporulation occurs in the continuous

culture. Acidogenic conditions correspond to s1, early solventogenic condition,

when the pH is stabilised to s2. Visualisation is focussed on the comparison of

augmented and non-augmented graph and centralities of the augmented graph.

The Graph of Acidogenesis

Graph centrality measures are shown in figure 3.8 and complemented with a

third dimension, the G- and H-graph (figure 3.9). Glutamate and joint amino

acids like glutamine and aspartate take a central role of this pathway. In a more

distant region different CoA and phosphate derivatives are present. The most

outside regions are occupied by several fatty acid metabolites and vitamines. Most

interestingly for this network in contrast to solventogenesis, the carbon dioxide

node is only loosely connected to the overall network.

There is the carbon monoxide fixation pathway, known to be active for several

organisms and Clostridia, but not in C. acetobutylicum [Koepke et al., 2011], the

decarboxylation of isocitrate to oxoglutarate and the oxidative decarboxylation of

oxoglutarate to succinyl-CoA. All these reactions belong to the H-graph, hence

are strongly down-regulated in solventogenesis. There is no other decarboxylase

up-regulated in acidogenesis.

In addition, the whole conversion path from acetyl-CoA to butanal is already

http://www.genome.jp/dbget-bin/www_bget?rn:R00256+rn:R00575+rn:R01397
http://www.genome.jp/dbget-bin/www_bget?rn:R00296+rn:R01197+rn:R09096+rn:R09294
http://www.genome.jp/dbget-bin/www_bget?rn:R02016+rn:R02017+rn:R02018+rn:R02019+rn:R02024+rn:R04294+rn:R07607
http://www.genome.jp/dbget-bin/www_bget?rn:R00006+rn:R00014+rn:R00132+rn:R00226+rn:R00691+rn:R00994+rn:R01197+rn:R01373+rn:R01652+rn:R01728+rn:R03348+rn:R04355+rn:R04673+rn:R04726+rn:R04952+rn:R04957+rn:R04960+rn:R04963+rn:R04968+rn:R05149+rn:R05813+rn:R06895+rn:R07762+rn:R08648+rn:R10052+rn:R10092+rn:R10115+rn:R10119
http://www.genome.jp/dbget-bin/www_bget?rn:R00811+rn:R02630+rn:R02631+rn:R02704+rn:R02738+rn:R02780+rn:R03076+rn:R03232+rn:R04076+rn:R04111+rn:R04393+rn:R04394+rn:R05132+rn:R05168+rn:R05199+rn:R05570+rn:R05820+rn:R07671+rn:R08366+rn:R08367+rn:R08559+rn:R08860
http://www.genome.jp/dbget-bin/www_bget?rn:R00296+rn:R09096+rn:R09317+rn:R09294
http://www.genome.jp/dbget-bin/www_bget?rn:R00709
http://www.genome.jp/dbget-bin/www_bget?rn:R01197
http://www.genome.jp/dbget-bin/www_bget?rn:R01197
http://www.genome.jp/dbget-bin/www_bget?rn:R00238+rn:R01171+rn:R01172+rn:R01175+rn:R01177+rn:R01178+rn:R01976+rn:R03026+rn:R03027
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Figure 3.7: Late Batch Pulse Experiment (Gbatchpulse(s2)), colour:green to red for
decreasing eccentricity, size: small to large for increasing stress

present. Membrane lipid synthesis/degradation and hydrofolate synthesis uniquely

belong to the H-graph.

Graph of the Solventogenesis

The solventogenic graph is larger than the acidogenic graph. Graph centralities are

shown in figure 3.10 which is again complemented with the G-graph, and H-graph

(figure 3.11). The most central metabolites are glutamate, ATP, further pyruvate

and phosphoenolpyruvate. In the medium and long range, a multitude of sugar

and nucleotide involving reactions are found. In contrast to acidogenic conditions,

carbon dioxide plays a central role together with pyruvate, ATP, ammonia and

glutamate. Surprisingly, also the position of butanoyl-CoA has changed, it is

shifted to the periphery. The production of carbondioxide is related to membrane

lipid conversion,, to pyruvate decarboxylation. Further reactions are

1. rn:R06895: coproporphyrinogen-III:S-adenosyl-L-methionine oxidoreductase

http://www.genome.jp/dbget-bin/www_bget?rn:R04355+rn:R04726+rn:R04952+rn:R04957rn:R04960+rn:R04963+rn:R04968+rn:R07762+rn:R10115
http://www.genome.jp/dbget-bin/www_bget?rn:R00006+rn:R00012+rn:R00224+rn:R00226+rn:R00636+rn:R07161
http://www.genome.jp/dbget-bin/www_bget?rn:R06895
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Figure 3.8: Continuous Experiment, Acidogenesis (Hconti(s1)), colour: green to
red for decreasing eccentricity, size: small to large for increasing stress

2. rn:R03508: 1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose-5-phosphate car-

boxy-lyase

3. rn:R03348: Nicotinate-nucleotide:pyrophosphate phosphoribosyltransferase

4. rn:R01728: Prephenate:NAD+ oxidoreductase

5. rn:R01366: Acetoacetate carboxy-lyase

6. rn:R00965: orotidine-5’-phosphate carboxy-lyase

7. rn:R00451: meso-2,6-diaminoheptanedioate carboxy-lyase

8. rn:R00178: S-adenosyl-L-methionine carboxy-lyase

http://www.genome.jp/dbget-bin/www_bget?rn:R03508
http://www.genome.jp/dbget-bin/www_bget?rn:R03348
http://www.genome.jp/dbget-bin/www_bget?rn:R01728
http://www.genome.jp/dbget-bin/www_bget?rn:R01366
http://www.genome.jp/dbget-bin/www_bget?rn:R00965
http://www.genome.jp/dbget-bin/www_bget?rn:R00451
http://www.genome.jp/dbget-bin/www_bget?rn:R00178
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Figure 3.9: Continuous Experiment, Acidogenesis, with Augmentation, green
and red: Hconti(s1), red: G

conti(s1)

One finally observes several sulfuric aminoacid relevant reactions in the H-graph.

http://www.genome.jp/dbget-bin/www_bget?rn:R00651+rn:R00782+rn:R00897+rn:R00999+rn:R01285+rn:R01286+rn:R01287+rn:R01288+rn:R01777+rn:R02408+rn:R02508+rn:R03132+rn:R03217+rn:R03260+rn:R03601+rn:R04859+rn:R04941+rn:R04944+rn:R04945+rn:R04946
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Figure 3.10: Continous Experiment, Solventogenesis (Hconti(s1)), colour:green to
red for decreasing eccentricity, size: small to large for increasing stress
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Figure 3.11: Continous Experiment, Solventogenesis, with Augmentation, green
and red: Hconti(s1), red: G

conti(s1)
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3.3.6 Conclusions

In this section several data were presented with the previously derived formalism

for data-driven pathway generation. As this model was used for visualisation only

purposes, it was not curated. As soon as the download from published curated

databases is possible, visualisation of these pathways can be re-done easily because

of script automation (appendix B.2).

Biological Activity is Critical for the Choice of the Boundary Parameter

As first challenge, a scheme was researched at which transcript expression level

a reaction is considered active in the network. The boundary parameter b was

derived using a general graph topological trait, the edges to nodes fraction in

combination to general graph statistics. Similar proceeding are known to be fruitful

in pathway recognition [Khatri et al., 2012]. The precise network and its outcome

still heavily depend on the choice of b. While its definition is intuitive, it includes

the assumption that it is single-valued for each experiment. Transcriptional

activity, defined as the activity of RNA polymerase, is known to differ along

the bacterial life cycle [Golding et al., 2005]. Consequently, each state could also

obtain its individual b accounting for different transcriptional activities. On the

one hand, the design of the reference state in the microarray experiment copes

with that problem: By taking the average over all time-points as reference, the

variations in transcriptional activity can be accurately covered. On the other

hand, other data reference to a state at the beginning or the end of cultivation,

and thereby they distort the data. Time-dependent choice of b is comparable to a

segmented normalisation of data, proven superior before [Yang et al., 2003].

Improved Evaluation of the Boundary Parameter by Qualitative Biological

Knowledge?

Statistical tools to assess significant changes in expression pattern were used

[Cakir et al., 2006], this is comparable to the determination of a significant b.

It is equally reported that statistical tools work on the edge of their intended

capability, non-statistical tools are proven more worthy [Huang et al., 2009]. An

optimal parameter for the transcriptome evaluation can be found by an alternative

route - complementation with pathway information. Expectations on compound

connectivity are biologically testable, e.g. the number of reactions converting

ATP or NADH is one feasible criterion.

Alternatively, changes in product concentrations can be mapped to changes in

respective transcripts. Accumulation of metabolite pools suggest that there are

more influx than outflux reactions. This naturally requires a better curated

network.

From a comparative perspective, one can also note that the transcriptome data
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can be split into two functionally different sets, a set of enzyme-coding transcripts

and a set of non-enzyme coding transcripts as will be shown in the next section

for a different purpose (equation 3.21). Both subsets are correlated because they

represent the vital organism. If it were possible to access all transcriptional

regulators in C. acetobutylicum as it is for E.coli [Gama-Castro et al., 2008] with

their respective open reading frames (ORFs), deduction of b requires that these

sets correlate for a given b.

Augmentation Requires More Extensive Studies

After the proposition of the augmentation rule (section 3.2.4) its application showed

that it acts very differently on the solventogenic state than on the acidogenic

state - while in acidogenesis an influence could be noted, solventogenesis did not

show alternated graph topologies.

This result relies on the sizes of the three different regions that are constructed

by choosing the boundary parameter b. This choice is critical at the point where

genes vary close to the boundary δb

δb = |x(s1)− x(s2)| = (−b− ǫ− (−b+ ǫ)) = 2ǫ ≈ 0

Such genes are falsely considered as augmented: In continuous culture 24% of all

augmented genes from acidogenesis differ by less than one order of magnitude,

during solventogenesis that is 20%.

It is suggested to further investigate other augmentation rules, e.g. X 0
b (s) that

circumvents this problem.

Multidimensional Visualisation is a Challenge

Multi-dimensionality easily arises in the biological context. Here, the visualisation

of KEGG database was undertaken by a metabolite-metabolite mapping with

integrated data. The underlying structure is however more complicated because re-

actions usually require more than one substrate to produce more than one product.

Such graphs are hypergraphs; sets of nodes are connected by sets of edges. The

visualisation of such problems is only at its beginnings [Junghans, 2008].

Already for the simple graphs shown here visualisation is a challenge in Cytoscape.

It was the aim to facilitate hypothesis generation. In particular, visualisation

of ontologies for genes, enzymes, reactions, metabolites and pathways require

side-by-side visibility. Several graphs and their different attributes were shown, the

two boundary parameters in the batch experiment, the two types of logical rules

in the continuous experiment, the network centrality measures in the stimulated

batch experiment. More annotation needs to be fed to the graph in order to

allow easier interpretation, up to five dimensions are possible in one graph, still

Cytoscape is not equipped for such a purpose. Enrichment tools are frequently
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encountered [Huang et al., 2009] and efforts are spent in visualising ontologies

in web-interfaces [Dennis et al., 2003], in trees [Chevenet et al., 2006], a tool for

multidimensional annotation visualisation in graphs seems missing so far.

Dynamic visualisation by movies shows the emergence of paths and their disap-

pearance. Usability assessments of this approach indicate that static networks are

easier to treat [Farrugia and Quigley, 2011]. Dynamic and static possibilities to

visualise different timescales are reviewed by [Secrier and Schneider, 2013].

Use of this Model

From the networks of batch culture and stimulated batch culture it was shown

that a state comparable to solventogenesis was induced by acetate addition. This

view is supported by experiments in continuous culture according to COSMIC

specifications in which acetate stimuli (50 mM) as pulse or as step-function were

applied during acidogenesis. The acetate was used for the production of acetone

and butanol. It was also found in these cultures that glucose uptake is stimulated

and growth starts.

It was further shown that positions of metabolites within the data-driven network

can be monitored across different metabolic states and pathways. The appearance

of crotonate indicates a pathway that contains this metabolite. It will be shown

in the next section that the observance of this metabolite leads to the formulation

of a new pathway and the annotation of yet unannotated proteins.
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3.4 Identification of Missing Reactions

Missing annotations for reactions are frequently encountered. One possibility to

deal with these gaps is to transfer annotation from other species [Forslund, 2011].

This section lays the fundamentals to compare organisms based on a KEGG-

database query and Pfam-motifs (3.4.1). Comparing a close relative to C. acet-

obutylicum which is B. subtilis (3.4.2) is carried out and hypotheses can be

constructed side to side to the MMM.

3.4.1 Comparative Approach

Motivation

The original annotation of C. acetobutylicum is incomplete, a large set of genes

has no annotation. Recently reported experiments suggest that there may be

branches in the acid and solventogenic pathways missing, because a knock-out

of the transacetylase and transbutyrylase still yielded an acetate and butyr-

ate positive mutant [Lehmann et al., 2012a, Lehmann et al., 2012b]. Also the

hitherto unannotated tricarboxylic acid-cycle was only recently discovered by

a metabolome study [Crown et al., 2011]. Determination of function is known

to be possible through homologies in close relatives [Durot et al., 2009]. The

use of Pfam-motifs [Punta et al., 2012] and Pfam-motif architecture has therefor

gained increasing interest during the last years [Ofran et al., 2005, Lin et al., 2006,

Koestler et al., 2010].

Database Query of Missing Reactions

Assume there is a second organism to which one can compare the clostridial

reactome. Applying the following database query efficiently identifies missing

reactions in one organism by comparing functional similar homologues in the

other. First, the reactome and the occurring Pfam-motifs will be harvested. As

before the set of reactions an enzyme can perform (RX ), is given by a map Rct

from a specific set of genes X ⊂ XKEGG which forms a subset of all genes in the

database, here the genes in KEGG XKEGG.

RX := Rct
(

X
)

. (3.18)

A similar map Pfa is given to determine the constituting Pfam-motifs for each

protein from the gene sequence (PX ):

PX := Pfa
(

X
)

. (3.19)

It will be required to determine the inverse of the map Rct. For a specific reaction

r ∈ RX it is given by:

Rct−1(r ∈ RX ) :=
{

x ∈ XKEGG : r = Rct
(

x)
}

. (3.20)
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From this definition it becomes clear that the inverse takes values in the whole set

of genes within KEGG. The inverse of a specific Pfam-motif is defined similarly.

Not every protein is bearing catalytic functions, therefore the kernel X0 of Rct is

useful to enhance computational efficiency:

Rct
(

X0

)

= ∅. (3.21)

This kernel partitions the set of genes accordingly to their existing reaction-

annotation XReact.

XReact := X \ X0 (3.22)

Pfam-Motif Comparison Between Two Organisms

Choosing a close relative of C. acetobutylicum, e.g. B. subtilis, one can assume

that the reactome of B. subtilis is better curated than the one of Clostridium.

In order to compare both reactomes, one first determines reactions specific to B.

subtilis (RBS
spec) by subtracting common reactions from both reactomes:

RBS
spec := Rct

(

XBS
React

)

\Rct
(

XCA
React

)

(3.23)

The inverse of this map now shows all the genes specific to these unknown reactions

in Clostridium but known in Bacillus. Intersection with the genes of Bacillus

narrows the solution space to the genes of interest (XBS
spec) in this study:

XBS
spec := Rct−1

(

RBS
spec

)

∩ XBS (3.24)

The Pfam-motifs of interest P are now determined from this set of specific

genes
(

Pfa
(

XBS
spec

)

)

and retrieved in the genes with no reaction annotation of

Clostridium
(

P
(

XCA
0

)

)

. The two set of genes (Xcomp) bearing at least one of

these motifs then will serve as database for comparison of these two species:

P := Pfa
(

XBS
spec

)

∩ P
(

XCA
0

)

(3.25)

XCA
comp := Pfa−1

(

P
)

∩ XCA (3.26)

XBS
comp := XBS

spec (3.27)

Similarity Measure for Functional Homologs

Connection of the two gene sets XCA
comp and XBS

comp according to their Pfam-motifs

P yields a map.

This map however requires reduction to be useful for manual inspection: Sim-

ilarity in one motif only is not sufficient to hypothesise on the same function.

Consequently, it is necessary to restrain the connections by assuming, that two

genes of Bacillus and Clostridium are connected only when at least a percentage of

their motifs is similar. Established similarity measures for Pfam-motif comparison



58 CHAPTER 3. AUTOMATED NETWORK MODEL CREATION

are given in [Lin et al., 2006]. The Jaccard-index J(x, x̂), x ∈ XCA, x̂ ∈ XBS

[Levandovski and D, 1971] is one of them:

J(x, x̂) =
PCA(x) ∩ PBS(x̂)

PCA(x) ∪ PBS(x̂)
(3.28)

This study proposes to use a different measure nP(x, x̂) for such purpose as will

become clear instantly:

nCA
P (x, x̂) :=

∣

∣PCA(x) ∩ PBS(x̂)
∣

∣

|PCA(x)|
(3.29)

nBS
P (x, x̂) :=

∣

∣PBS(x̂) ∩ PCA(x)
∣

∣

|PBS(x̂)|
(3.30)

nP(x, x̂) :=
1

2

(

nCA
P (x, x̂) + nBS

P (x, x̂)
)

. (3.31)

Comparison of Similarity Measures

Consider the three following general cases of two sets P (g1) and P (g2):

1. case: P (g1) = {P1, P2} versus P (g2) = {P1, · · · , P10}

2. case: P (g1) = {P1, · · · , P4} versus P (g2) = {P3, · · · , P12}

3. case: P (g1) = {P1, · · · , P4} versus P (g2) = {P3, · · · , P6}

Obviously for case 1, P (g1) contains all items that are present in P (g2). It is

possible that P (g2) functions as P (g1), only P (g1) has more motifs. The Jaccard-

index J
(

P (g1), P (g2)
)

= 0.2 is less beneficial in this case then the here proposed

similarity measure n
(

P (g1), P (g2)
)

= 0.5(1 + 0.2) = 0.6.

The overlap in case 2 is identical to case 1, now P (g1) contains two distinct

motifs to P (g2), the sizes of proteins are as in case 1. Again, the Jaccard-index

J
(

P (g1), P (g2)
)

= 1
6 is less beneficial n

(

P (g1), P (g2)
)

= 0.5(0.5 + 0.2) = 0.35.

Case 3 studies the effect if the sizes of both proteins are equal, both indices are

increased to J
(

P (g1), P (g2)
)

= 0.333̄ and n
(

P (g1), P (g2)
)

= 0.5(24 + 2
4) = 0.5.

The Jaccard index indicates again a very low similarity, although half of the

motifs in both proteins are equal. These three examples show that the Pfam-motif

similarity nP gives a bonus to small proteins. If their function is known annotation

transfer to larger proteins is enhanced.

3.4.2 Comparison of B. subtilis and C. acetobutylicum

The calculated sets from the previous presented approach are listed in table 3.4.2.

The number of genes with a reaction annotation is higher for Bacillus than for

Clostridium (747 vs 600). Consequently, the number of reaction specific to Bacillus

is more than twice as large as the number of reactions in Clostridium (388 vs 139).
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Table 3.3: The download of information from KEGG concerning both organisms
resulted in approximately equal sized genomes (X ). The Bacillus genome contains
more genes with reaction-annotation (X \ X0) and more reactions (RX ) than the
one of Clostridium. There are twice as much reactions that can be inferred from
B. subtilis than from C. acetobutylicum (Rspec) for the respective other organism.
267 genes are responsible for these reaction (Xspec). 512 motifs are found in this
specific gene-set of Bacillus.

sets B. subtilis C. acetobutylicum

size size

X 4422 4021
X \ X0 747 600
RX 1041 792
PX 5004 4494
Rspec 388 139
Xspec 267 145
Xfinal 204 821

A map of RBS
spec is given in figure 3.12. This map is one tool to track reactions

that are not present in C. acetobutylicum. Connection of the genes according

to their Pfam-motifs yields a second tool for rapid function suggestion (figure

3.13). Direct annotation transfer is possible for smaller connected components

in this unfiltered map by considering high edge-weights because several protein

functions are contained in few very specific Pfam-motifs, e.g. CoA-transferase

activity. The correct reaction-annotation is given for several enzymes (table 3.4.2),

however the protein does not contain an E.C. number in C. acetobutylicum. This

proof of concept shows also that hypothetical proteins with unknown functions

are mapped to proteins with functional annotation, suggesting hypotheses can be

derived from such maps.

Possible model reduction is achieved by choosing a threshold for the edges weights

filtering all edges with nP < 0.5, reduces the model size by 66% (figure 3.14).
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Figure 3.12: The reduced MMM of B. subtilis shows the reactions that are not
annotated in C. acetobutylicum. As before, the size of the nodes correlates to
stress and the colour to the eccentricity, red correspond to high values, and green
to low values. This network consists of 577 metabolites, thereof 334 unique to B.

subtilis.
rectangle: the compound is present only in B. subtilis.
ellipsoid: the compound when is present in both organisms.
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Figure 3.13: Genes of C. acetobutylicum are connected to the genes of B. subtilis
which have an reaction annotation that is not found in C. acetobutylicum. The size
of the nodes correlates with stress, and the colour corresponds to the eccentricity
on an increasing green to red scale.
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Table 3.4: Small connected components of this mapping either reproduce, expand
or induce functions on proteins. The two columns of genes are connected to each
other in the database. The first block of this table shows examples of enzymes that
are correctly annotated and mapped together. These genes in Clostridium are
not completely annotated as enzymes and represent gaps in the KEGG database.
The second block represents the genes with poor or missing annotation, here the
annotation can be considerably enriched with the Bacillus information.
DH = dehydrogenase, ST = sulfotransferase

x Annotation x̂ Annotation

CAC0997 nucleoside-diphosphate kinase BSU22730 same (EC:2.7.4.6)
CAC1200 phospho-adenylylsulfate ST BSU10930 same (EC:1.8.4.8)
CAC1200 phospho-adenylylsulfate ST BSU15570 same (EC:1.8.4.8)
CAC1462 levanase/invertase BSU34460 same (EC:3.2.1.65)
CAC1462 levanase/invertase BSU27030 same (EC:3.2.1.65)
CAC3498 ribokinase sugar kinase BSU35920 same (EC:2.7.1.15)
CAC1574 4-hydroxybutyrate DH BSU31050 choline DH (EC:1.1.1.-)
CAC3392 butanol DH BSU31050 choline DH (EC:1.1.1.-)
CAP0059 alcohol DH BSU31050 choline DH (EC:1.1.1.-)
CAC0804 Pectate lyase related protein BSU07560 pectate lyase (EC:4.2.2.2)
CAC1190 Fe-S-cluster redox protein BSU32330 lipoyl synthase [EC:2.8.1.8]
CAC1229 hypothetical protein BSU10250 lipoate-protein ligase (EC:6.3.2.-)
CAC3238 hypothetical protein BSU32330 lipoyl synthase [EC:2.8.1.8]

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0997
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU22730
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1200
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU10930
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1200
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU15570
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1462
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU34460
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1462
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU27030
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3498
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU35920
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1574
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU31050
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3392
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU31050
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0059
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU31050
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0804
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU07560
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1190
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU32330
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1229
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU10250
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3238
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU32330
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Figure 3.14: The distribution of edge weights of the comparative approach.
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3.5 Annotation Transfer a Case-Study: 3-HBDH Activity

in Clostridium

Here the example research of an enzyme activity in C. acetobutylicum will be

carried out. After introduction of the general approach (3.5.1), experimental

indications and database information are collected (3.5.2 and 3.5.3), then hypo-

theses will be given (3.5.4) and methods results will be shown (3.5.5). Finally

some conclusions will be drawn (3.5.6).

3.5.1 Annotation Transfer Methods

Available Annotation Transfer Methods

Three different methods (M1,M2,M3) will be considered for annotation transfer.

M1: BLASTP mapping [Altschul et al., 1997] of two protein sequences, e.g. a

protein of C. acetobutylicum to a close relative like B. subtilius was repor-

ted to detect enzymes with a comparable function [Rost et al., 2003] and

architecture [Lee et al., 2008a].

M2: Phylogenetic approaches have been used with success for annotation transfer

[Pellegrini et al., 1999]. Comparing the Pfam-motifs of a chosen protein

throughout different species gives a second approach. Indeed, combinations

of domains are enriched in some functional classes [Forslund, 2011]. Pfam-

domain architecture is accessible by several tools, e.g. the Weighted Domain

Architecture Comparison Tool (WDAC) [Lee and Lee, 2009] or the Feature

Architecture Comparison Tool (FACT) [Koestler et al., 2010]. Here, the

Pfam-motifs responsible for an enzymatic activity in other organisms will

be determined from a frequentist point of view and then these motifs will

be retrieved in the clostridial annotation. This can be considered a pre-

selection step before the more exhaustive Pfam-motif architecture approach

is calculated.

M3: Enzymes of one pathway are known to build stoichiometric complexes that

channel the substrate [Srere, 1987]. Clustering of gene expression data

is frequently used to reveal open reading frames and co-regulated genes

[Tavazoie et al., 1999, Dhaeseleer et al., 2000]. By fixing a regulatory as-

sumption, e.g. by choosing a gene of a target pathway, all possibly co-

regulated genes are identified.
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Integration of Annotation Transfer Methods

Any annotation transfer method M should be able to create subsets from the

whole set of genes, they are named candidates XMi

XMi
:= Mi(X ). (3.32)

In order to evaluate the retrieval of a candidate by a method, a score-matrix (CM )

is defined with the NM methods as columns and the NJ genes as rows:

CM :=

{

1;x ∈ XMi

0;x /∈ XMi

(3.33)

Combining these counters in a ranking sM with a column-vector of weights w

enables the integration of all methods to one numeric value.

sM := CM
w

||w||
(3.34)

3.5.2 Collection of Experimental Indications

Indications for the Presence of Crotonate

It was mentioned earlier that during the batch fermentation data a delta-2

oxidoreductase is up-regulated during acidogenesis and down-regulated during

solventogenesis (3.3.3). The same pattern is obvious in the two stationary states

of the continuous culture (figure 3.9 and figure 3.11). Measurements confirm that

indeed crotonate is present in small amounts during continuous culture ∗. This

suggests that there may be a pathway that uses crotonate.

Indications for a Unreckoned Butyrate Production Pathway

Mutants of acetate kinase or butyrate kinase did always produce minor amounts

of both acids [Green et al., 1996] and butyrate was taken up by an unknown path-

way - the established reverse kinase pathway and CoA-transferase activity were

knocked-out [Lehmann et al., 2012b]. An acetoacetate decarboxylase knock-out

mutant produces increased amounts of butyrate when supplemented with calcium

carbonate and methyl viologen [Jiang et al., 2009]. In a different culture, knock-

out mutants of acetoacetate decarboxylase have increased butyrate concentration

and acetoacetate does not accumulate [Lehmann et al., 2012a]. Acetoacetate addi-

tion in pH-uncontrolled culture leads to increased butanol and butyrate production.

In pH-controlled culture this effect is less pronounced [Papoutsakis et al., 1987].

This suggests that butyrate may be processed back to acetoacetate and vice versa

under particular circumstances.

∗personal communication, Kengen Laboratory, Wageningen
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3.5.3 Collection of Database Information

Simplistic Approach to Alternative Production Pathways

Investigation of the clostridial reactome shows that no other reaction than the

delta-2 oxidoreductase (E.C. 1.3.1.31, rn:R01689) is able to use crotonate as

substrate or product. It seems unreasonable that an enzyme exists without any

further integration of its substrates or products in other pathways. A simplistic

approach would acknowledge that the enzymes (CAC2708, CAC2710, CAC2711)

using the CoA-derivates acetoacetyl-CoA, crotonyl-CoA, 3-hydroxybutyryl-CoA

have a broad specificity towards non-CoA derivates. However, this unspecific

reaction is not annotated in KEGG for these enzymes, also the crotonase is not

annotated to process CoA-derivatives. It is further known that C. acetobutylicum

possesses several distinct enzymes that do the same reactions, e.g. butanol

dehydrogenases [Grimmler et al., 2011], [Duerre, 2005, p.678].

Complex Approach to Alternative Production Pathways

Plausible other possibilities of this alternative pathway are presented in figure

3.15. Variant A assumes that other CoA-transferases than ctfAB are producing

the corresponding acids and CoA-derivates. Variant B assumes an unannotated

dehydrogenase in C. acetobutylicum that uses acetoacetate as substrate and

produces 3-hydroxybutyrate (B1) which is then the substrate for an unannotated

dehydratase to produce crotonic acid (B2). Variant C suggest that this pathway

can be inversed in direction.

There are No Unknown CoA-Transferases

The determination of variant A is straightforward through Pfam-motifs. The

motif for a general CoA-transferases is the CoA trans-motif. Which is available

in C. acetobutylicum only in the already mentioned proteins ctfAB (CAP0163 and

CAP0164). This finding is complemented by a transacetylase inactivation strain

that was not able to re-assimilated acids [Green et al., 1996]. Substrate specificity

of the CoA-tranferases is broad, crotonate may be used as substrate, with an

activity loss of 39% [Hartmanis et al., 1984]. Other authors report various other

CoA-thioester substrates and cofactors for this enzyme [Barker et al., 1978].

No 3-Hydroxybutyrate Dehydrogenase is Known in C. acetobutylicum

Variant B1 is performed by the 3-hydroxybutyrate dehydrogenase (3-HBDH, EC

1.1.1.30, rn:R01361). Interestingly, no reaction for variant B1 is found in C.

acetobutylicum, the only way metabolising acetoacetate is via decarboxylation

[Papoutsakis et al., 1987]. However, in 750 other organisms there is this activity,

http://www.genome.jp/dbget-bin/www_bget?rn:R01689
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2710
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2711
http://www.genome.jp/dbget-bin/www_bget?Pfam:CoA_trans
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0163
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0164
http://www.genome.jp/dbget-bin/www_bget?rn:R01361
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Figure 3.15: Alternative models of butyric ccid production suggest three different
variants of crotonate production via CoA-transferases (variant A), acetoacetate
consumption (variant B) or the inversed pathway (variant C)

one of them is B. subtilis (BSU38970, yxjF). By considering the two established

tools for comparison of C. acetobutylicum to B. subtilis the 3-HBDH reaction is

visible in the metabolic network (figure 3.12) and several proteins similar to the

Bacillus 3-HBDH are found (figure 3.13).

No 3-Hydroxybutyrate Dehydratase is Known

Finally, variant B2 is a dehydratase activity. While a motif is reported for CoA-

dependent dehydratases, there is no known reaction catalysing the conversion

from 3-hydroxybutyrate to crotonate. This reaction can only be an unspecific

byproduct of another enzyme, or a product of a multi-step reaction within one

enzyme. Fortunately, Pfam-motifs have further annotations, e.g. the Epimerase-

motif which has a hydratase annotation.

3.5.4 Hypotheses for Annotation Transfer

M1: BLASTP of the clostridial proteome against yxjF (BSU38970) using KEGG.

M2: A phylogenetic comparison of Pfam-motifs from all 750 annotated 3-HBDH

to the clostridial genome using Taverna and MATLAB (B.1 and B.2).

http://www.genome.jp/dbget-bin/www_bget?bsu:BSU38970
http://www.genome.jp/dbget-bin/get_linkdb?pf:Epimerase
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU38970


68 CHAPTER 3. AUTOMATED NETWORK MODEL CREATION

M3: Clustering of batch (ba) [Jones et al., 2008] and continuous (cu) culture data

[Grimmler et al., 2011] according to three different regulatory scenarios:

A1: Expression of the 3-HBDH is co-regulated to genes of the pathway

that converts acetoacetyl-CoA to butyryl-CoA under acidogenic condi-

tions, the responsible enzymes are encoded in the transcripts CAC2709,

CAC2711, CAC2712 [Jones et al., 2008, Grimmler et al., 2011] (ac).

A2: Expression of the 3-HBDH is co-regulated to genes of the pathway

that converts acetoacetyl-CoA to butyryl-CoA under solventogenic

conditions, the responsible enzymes are encoded in the transcripts

CAC2009, CAC2012, CAC2016 [Jones et al., 2008, Grimmler et al., 2011]

(so)

A3: Expression of the 3-HBDH is co-regulated to the gene coding for the

enoate-reductase CAC3371 (er).

Clustering is performed by Genesis, [Sturn et al., 2002] using a kmeans

algorithm and the euclidean distance metric.

3.5.5 Results

Results of the BLASTP Approach

The gene BSU38970 from B. subtilis was used as example for an annotated 3-HBDH

in a close relative. The BLASTP matches are noted in table 3.5. A small E-value

shows significant matches to the target structure. However, the size of the protein

may be significantly smaller than the target structure.

Results of the Phylogenetic Approach

750 organisms contain annotated 3-HBDH, harvest of their Pfam-motif showed

that the average value of motif per enzyme is nine. Within the frequent motifs

(table 3.6) the two adh-motifs and the KR-motif are predominant. They could

serve as first criterion for research of the 3-HBDH. Following the list, several

NAD-motifs are preserved throughout most of the species. One further observes

the 3HCDH N-motif and the Epimerase motif as being characteristic.

With the adh short and the adh short C2 motif, 749 organisms are already covered.

The only organism not covered is Brucella melitensis, its 3-HBDH contains

only low abundant motifs: the TrkA N, the 3HCDH N and the 2-Hacid dh C.

Eleven genes contain only the adh short C2-motif, they are found in the genus

Rickkettsia. Another eleven organisms contain only the adh short-motif. These are

more heterogeneously spread than for the adh short C2-motif, containing higher

vertrebrates (Pongo abelii or Sus scrofa) and bacteria, e.g. Desulfobacterium

autotrophicum.

http://genome.tugraz.at/genesisclient/genesisclient_description.shtml
http://www.genome.jp/dbget-bin/www_bget?bsu:BSU38970
http://www.genome.jp/dbget-bin/www_bget?bme:BMEII1090
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Table 3.5: BLASTP of the aminoacid sequence of BSU38970 to the proteome of C.
acetobutylicum

Gene-ID E-value

CAC2607 5.00E-38
CAC3574 5.00E-37
CAC3462 9.00E-28
CAC0361 3.00E-27
CAC2626 3.00E-23
CAC1423 7.00E-17
CAC3335 9.00E-17
CAC1576 5.00E-15
CAC2992 8.00E-15
CAC1331 1.00E-13
CAC0536 4.00E-10
CAP0051 6.00E-09
CAC3484 5.00E-08
CAP0001 7.00E-07
CAC3355 8.00E-04

The number of considered motifs determines the number of candidates. From the

pure frequentist point of view, the first four motifs seem promising as model for

the 3-HBDH activity if not the Brucella gene would be annotated with the same

function but without these motifs. In order to increase the list of candidates also

low abundant motifs (at least 10% matching) will be considered as relevant. The

corresponding solution set contains 79 proteins.

Results of the Regulatory Approach

The four genes CAC2708, CAC2710, CAC2711, CAC3371 from the regulatory assump-

tions, were located in three different clusters during batch and continuous culture

(refer to figure 3.16). For the operon that is up-regulated under solventogenic

conditions (CAC2009, CAC2012, CAC2016) the same cluster partition was used. Nat-

urally within the results, all genes from the assumptions occur in these clusters.

Three other genes are co-regulated in both experiments (ba, co) and bearing

similar motifs: CAC2713, the redox-sensing transcription repressor Rex, which is

in the same open reading frame, a ketopantoate reductase named PanE/ApbA,

CAC2937 and a nucleoside-diphosphate-sugar epimerase, CAC2166.

The ketopantoate reductase, shares several motifs with CAC2708: a NAD binding 2-

motif, three different dehydrogenases, the NAD Gly3P dh N-motif, the 3HCDH N-

motif, responsible for the reduction of 3-hydroxyacyl-CoA and NAD-binding and

the UDPG MGDP dh N-motif. Finally, the ApbA-motif responsible for keto-

pantoate reductase activity is found in both proteins. Domains unique to the keto-

http://www.genome.jp/dbget-bin/www_bget?bsu:BSU38970
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2607
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3574
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3462
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0361
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2626
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1423
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3335
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1576
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2992
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1331
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0536
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0051
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3484
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0001
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3355
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2710
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2711
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3371
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2009
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2012
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2016
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2713
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2937
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2166
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?Pfam:NAD_binding_2
http://www.genome.jp/dbget-bin/www_bget?Pfam:NAD_Gly3P_dh_N
http://www.genome.jp/dbget-bin/www_bget?Pfam:3HCDH_N
http://www.genome.jp/dbget-bin/www_bget?Pfam:UDPG_MGDP_dh_N
http://www.genome.jp/dbget-bin/www_bget?Pfam:ApbA
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Table 3.6: List of 3-HBDH motifs most frequently occurring in 750 annotated
KEGG species.

Motif Frequency

adh short 0.98
adh short C2 0.98
KR 0.97
Epimerase 0.70
Eno-Rase NADH b 0.42
3HCDH N 0.40
NAD binding 10 0.35
Polysacc synt 2 0.23
Saccharop dh 0.21
DUF1776 0.19
TrkA N 0.16
THF DHG CYH C 0.15
3Beta HSD 0.14
RmlD sub bind 0.13
AdoHcyase NAD 0.13
Shikimate DH 0.11
2-Hacid dh C 0.10

pantoate reductase are a synthase for heptaprenyl diphosphate HEPPP synt 1,

DUF1879, a domain of unknown function, and a C-terminal ApbA-motif.

It should be noted, that CAC3371 shares many similar functions to CAC2708 as well,

suggesting that this gene may also have more activities than already annotated.

Integration

The precedent approaches, the BLASTP-search, the phylogenetic comparison

and the clustering all show different candidates (3.7). These weights are chosen

to add to 9 for the experimental and for the database assisted methods. Since

a gene can only be contained within one cluster for either culture method, the

maximal score achievable is 6. The only exception to this occurs when two

assumptions are contained within the same cluster, e.g. the CAC3335 is contained

in the clusters of CAC2708, CAC2709, CAC2711 in batch culture, and the A1 and

A3 condition partially overlap for three candidates. The score further prefers

the database methods to the experimental methods by three points (9 versus

6 for batch and continuous culture). BLASTP is considered much inferior to

Pfam-motif search (2 versus 7). The final ranking is shown side-to-side with

the Pfam-motif similarity nP in table 3.8. It is obvious from the table, that

integration of different methods drastically changes the ranking compared to the

Pfam-motif frequency alone. The sugar epimerase CAC2166, the ketopantoate

http://www.genome.jp/dbget-bin/get_linkdb?pf:adh_short
http://www.genome.jp/dbget-bin/get_linkdb?pf:adh_short_C2
http://www.genome.jp/dbget-bin/get_linkdb?pf:KR
http://www.genome.jp/dbget-bin/get_linkdb?pf:Epimerase
http://www.genome.jp/dbget-bin/get_linkdb?pf:Eno-Rase_NADH_b
http://www.genome.jp/dbget-bin/get_linkdb?pf:3HCDH_N
http://www.genome.jp/dbget-bin/get_linkdb?pf:NAD_binding_10
http://www.genome.jp/dbget-bin/get_linkdb?pf:Polysacc_synt_2
http://www.genome.jp/dbget-bin/get_linkdb?pf:Saccharop_dh
http://www.genome.jp/dbget-bin/get_linkdb?pf:DUF1776
http://www.genome.jp/dbget-bin/get_linkdb?pf:TrkA_N
http://www.genome.jp/dbget-bin/get_linkdb?pf:THF_DHG_CYH_C
http://www.genome.jp/dbget-bin/get_linkdb?pf:3Beta_HSD
http://www.genome.jp/dbget-bin/get_linkdb?pf:RmlD_sub_bind
http://www.genome.jp/dbget-bin/get_linkdb?pf:AdoHcyase_NAD
http://www.genome.jp/dbget-bin/get_linkdb?pf:Shikimate_DH
http://www.genome.jp/dbget-bin/get_linkdb?pf:2-Hacid_dh_C
http://www.genome.jp/dbget-bin/www_bget?Pfam:HEPPP_synt_1
http://www.genome.jp/dbget-bin/www_bget?Pfam:DUF1879
http://www.genome.jp/dbget-bin/www_bget?Pfam:ApbA_C
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3371
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708


http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2710
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2711
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3371
http://pat.kobic.re.kr/wdac/index.htm
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Figure 3.17: Map of 3-HBDH candidate genes and their Pfam-motifs.
green: gene identifier, red: motifs not retrieved by the phylogenetic Pfam-research,
darkblue to white: increasing frequency of occurrence in the phylogenetic Pfam-
research
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Table 3.7: Integration of the three approaches with the assumptions and different
datasets results in a data matrix C that is truncated to high score genes.

weights w 2 7 3 3 3 3 3 3

Genes M1 M2 M3ba,ac M3ba,so M3ba,er M3co,ac M3co,so M3co,er

CAC2166 0 1 1 0 1 1 0 0
CAC3371 0 1 1 0 1 0 0 1
CAC0267 0 1 1 0 1 0 0 0
CAC2009 0 1 0 1 0 0 1 0
CAC2708 0 1 1 0 0 1 0 0
CAC2713 0 1 1 0 0 1 0 0
CAC2937 0 1 1 0 0 0 0 1
CAC3335 1 1 0 0 0 0 0 1
CAC3355 1 1 0 1 0 0 0 0

Table 3.8: Application of the defined numerical weights produced priorities
the candidates, the concomitant mapping of similarity to the B. subtilis Pfam-
annotation represents a second dimension of information.

Genes g Annotation sM nP(g,BSU38970)

CAC2166 nucleoside-diphosphate-sugar epimerase 0.59 0.65
CAC3371 2-enoate reductase 0.59 0.06
CAC0267 L-lactate dehydrogenase 0.48 0.23
CAC2009 3-hydroxyacyl-CoA dehydrogenase 0.48 0.28
CAC2708 3-hydroxybutyryl-CoA dehydrogenase 0.48 0.25
CAC2713 redox-sensing transcriptional repressor Rex 0.48 0.07
CAC2937 ketopantoate reductase PanE/ApbA 0.48 0.34
CAC3335 Short-chain alcohol dehydrogenase enzyme 0.44 0.63
CAC3355 polyketide synthase 0.44 0.21

each other. If there is a 3-HBDH in C. acetobutylicum experiments should aim at

this gene first and then the two others.

3.5.6 Critical Evaluation

Starting from the research of unannotated reactions, a tool was constructed

that compared two organisms based on their statistical Pfam-motif similarity.

Differences of annotated reactions are readily visualised by a second tool, the

mapping of Rspec in a MMM. From these two tools and experimental data,

an alternative production pathway of butyrate was proposed. The researched

3-HBDH activity was conducted by integration of three different methods for

annotation transfer, thereof one established, the BLASTP, one current approach

in its simpler version, the Pfam-motif search, and regulatory investigation to

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2166
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3371
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C0267
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2009
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2713
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2937
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3335
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3355
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integrate experimental data by clustering. As a result, candidates for the 3-HBDH

in Clostridium acetobutylicum were proposed.

Remarks on Data

There is not yet strong evidence that a crotonate utilisation pathway is missing.

The deletion of the 3-hydroxybutyryl-CoA dehydrogenase results in a butyrate

and butanol deficient strain [Lehmann and Luetke-Eversloh, 2011]. This suggests

that at least one product of this enzyme has a fundamental role for this pathway,

e.g. crotonyl-CoA as CoA donor for hydroxybutyrate. Experiments with supple-

mentation of crotonic acid or acetoacetate in minimial medium in pH-uncontrolled

batch culture were inconclusive regarding the role of crotonate in the wildtype

(results not shown).

Remarks on Tools

The comparison of C. acetobutylicum and B. subtilis via their Pfam-motif similarity

nP created a similarity map. This tool for the identification of annotation gaps

can be used for any other organism and also by employing different similarity

measures, as suggested by [Lin et al., 2006]. It is extendable by further organisms,

however visualisation then gets a bigger challenge. Also, the retrieval of a suitable

cut-off value for the similarity measure is not evident. Here an external criterion

must be found.

Remarks on BLASTP

BLASTP was earlier encouraged [Rost et al., 2003]. It assumes the two types of

enzyme are very similar, so it is required that yxjF is not a unique type enzyme as

e.g. the 3-HBDH of Brucella melitensis. The Pfam-motif map of candidates from

BLASTP is shown in figure 3.18. The 15 candidate proteins are centred around

mainly six motifs: adh short, adh short C2, KR, epimerase, NAD binding 10,

and 3HCDH N. As was shown in the phylogenetic approach, these motifs are

characteristic for most 3-HBDH and yxjF is indeed an adequate role-model for a 3-

HBDH activity. However, the use of BLASTP is now discouraged [Forslund, 2011]

because it is reckoned it is better suited to calculate a phylogenetic distance

than a functional distance. It is a comparative approach which can only identify

homologies, not analogies.

Remarks on Pfam-Motif Comparison

The here presented statistical approach for Pfam-motif comparison along different

phylogenies is only possible if the motif is unspecific. Targets like a CoA-transferase,

a fumarase, or a crotonyl-hydratase are readily identifiable by their respective

Pfam-motif. Still, the information content of two different Pfam-motifs is not
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Figure 3.18: Pfam-motif map of 15 BLASTP candidates with low E-values. KEGG
gene identifiers are marked in green hexagons, Pfam-motifs in orange circles.

identical and requires weighing according to their promiscuity along the kingdoms

[Lee and Lee, 2009]. For the phylogenetic comparison of 750 different species and

their 3-HBDH this was not urgently necessary because these enzymes are spread

through all kingdoms and only few domains were highly promiscuous, e.g. the

adh motif.

A sole statistic remains erroneous, for this reason online tools like WDAC and

FACT were used for the ultimate candidate selection. These tools require longer

calculation times and a full genomic research is a computationally demanding

task.

Pfam-motifs do not represent the sole possibility for annotation transfer, active-

site profiling has been proven successful for the identification of highly conserved

three dimensional structures of kinases from sequence data [Cammer et al., 2003].
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Remarks on Clustering

Clustering has been proven worthy for functional annotation [Dhaeseleer et al., 2000].

Two plausibility criteria were used to restrain the candidate space. The first

assumes that the known pathway for acetoacetyl-CoA and acetoacetate reduction

runs in parallel to the unknown pathway. A similar approach was assumed by

[Brown et al., 2000] who related tumor proteins to ribosomal proteins.

Nevertheless, false negative candidates are a risk with clustering as with any other

data criterion since abstract assumptions are imposed: by choice of data curation

and standardisation, by choice of clustering algorithm, by choice of distance

metric [Brown et al., 2000, Brohee and van Helden, 2006, Freeman et al., 2007].

Despite this drawback, clustering induces a beneficial partition of the candidate

space and partition of the candidate space through clustering allows the step-

by-step elimination of invalid assumptions. If there is strong evidence that a

gene cannot be co-regulated to a member of a cluster, all other members are also

eliminated.
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3.6 Final Conclusions

Overview

The manifold uses of pathway models were this chapter’s main topic: the contex-

tualisation of data, the guidance for metabolic engineering, the hypothesis-driven

discovery and the network property discovery [Oberhardt et al., 2009]. This

chapter started from the KEGG database and proposed Taverna as suitable tool

for the harvest of metabolite reaction networks, multidimensional annotation

and Pfam-motifs. For the analysis of the clostridial reactome, a formalism was

introduced that allowed the integration of transcriptome data and the formal

reaction-database to a data-supplemented database or a data-driven database. Sev-

eral visualisation softwares and visualisation methods were tested to allow manual

investigation of this database. From this, research of the 3-hydroxybutyrate

dehydrogenase activity within existing annotations was motivated. A scheme

was proposed to reveal candidates from integration of three different methods,

database related and experiment related.

Contextualisation of Data and Network Property Discovery

Huge amounts of data are produced and deposited, metabolomic data and tran-

scriptomic data stand side by side, the integration of omics is a necessary step

in research [Joyce and Palsson, 2006]. In 2011 the HITS-Institute published an

article that data-driven science represents a challenge for computer sciences and

a re-thinking of the roles of hypothesis driven approaches to organisation of

data into meaningful sets [Reuter, 2011]. Information retrieval and evaluation is

facilitated when data is partitioned into smaller sets [Khatri et al., 2012]. In this

thinking, the here presented pathway model approach represents one possibility

to coherently, self-consistently organise different data from different experiments:

Evaluation of transcriptome data on the reactome level reduces the number of

considered transcripts and it enables the evaluation the data in terms of graph

analysis.

The first step in this organisation is to make sense of the data and try then

to infer structures from the data. This is defined as a top-down approach by

[van Riel, 2006]. In several aspects, the here presented model contains a top-down

approach, because it integrated the data by using two logical rules, the result is a

subgraph that serves for several evaluations: Graph centralities help in manual

ranking metabolites according to their position in the network, the edges to

nodes fraction was able distinguish solventogenesis and acidogenesis, qualitative

assessments like the connectivity of a single metabolite through out the different

states provides first directions for its importance.

Known approaches of pathway analysis remain valid for this type of data-

base in order to create further metadata: Dynamic properties of the net-

http://www.h-its.org/
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work can still be derived [Klipp et al., 2004], network-motifs can be enriched

[Joyce and Palsson, 2006], elementary modes and cut sets can be calculated

[Klamt and Gilles, 2004].

Hypothesis-Driven Discovery and Guidance For Metabolic Engineering

The observation of crotonate synthesis is just one example how hypotheses are built

from such a model. Gene-Reaction Networks are frequently encountered in literat-

ure, still models concentrate on flux balance calculation [Durot et al., 2009], the al-

ternative evaluation of transcriptome data in the here proposed graph-based format

seems underrepresented for hypothesis finding and metabolic engineering strategies.

One reason for this is the focus on statistical evaluation of differentially expressed

genes [Patil and Nielsen, 2005]. Differential expression can be understood as a ma-

jority criterion for data reduction [Yang et al., 2005]. Within the spirit of person-

alised medicine and individual treatments [W and BM, 2007, Katsnelson, 2013],

the focus on single genes and their position within the whole network needs to be

restrengthened. This type of data-model should be understood as a complement

to statistical science. Crotonate synthesis is unreported in C. acetobutylicum,

what other annotations are missing in the published models?

The annotations of genomes is a long lasting process [Khatri et al., 2012].

This work proposes therefor a comparison tool and integration schemes of

data and the Pfam-database for annotation discovery. Within this scope

the here introduced metabolic networks, comparison tools and the ranking

score construct several what-if scenarios that aid in metabolic engineering

[Aittokallio and Schwikowski, 2006, Durot et al., 2009]. For several well studied

organisms a reactome knowledgebase is established [Matthews et al., 2009], this

work is a methodological contribution to it.

The experimental investigation of a hypothesis is the ultimate step. It seems

to be carried out with increasing ease: Multiple-site mutants of C. acetobutyl-

icum become more and more frequent, e.g. [Jiang et al., 2009, Sillers et al., 2009,

Lehmann et al., 2012a, Lehmann et al., 2012b].



Chapter 4

Automated Dynamic Model

Creation

Little by little, one travels far

John Ronald Reuel Tolkien

This chapter starts with the question which metabolic engineering strategies

can be employed in order to increase butanol production. A dynamic model of

butanol production that integrates time series of transcript data and metabolome

data will be therefor used. Existing approaches are reviewed first (4.1) and the

unique properties of this model introduced. From mass balance equations (4.2) a

formalism for the implementation in the IT-architecture will be given (4.3). This

model will be used for the parameter estimation of two different experiments (4.4).

Hypotheses will be generated by employing global sensitivity analysis (4.5) which

are followed by the conclusions (4.6).
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4.1 Historical Perspective

Algebraic Rules For Flux Balance Analysis

Early studies on the stoichiometry of ABE-fermentations revealed simple al-

gebraic rules to connect data with unknown information like the energy value.

Their application was to check data inconsistencies [Yerushalmi et al., 1983,

Papoutsakis, 1984]. These rules additionally lead to a program that enables

the use of constraint flux balance analysis (FBA) that gives insights in the flux dis-

tributions of the organism. It was used by [Junne, 2010] to evaluate the outcome of

stimulus response experiments in batch and continuous culture. Other applications

are known [Desai et al., 1999, Lee et al., 2008a, Senger and Papoutsakis, 2008].

Integration of mRNA Yielded Superior Results

The early model by [Votruba et al., 1986] is a data-based model that is driven by

curve fitting of different batch fermentation results to some function. Its kinetics

are Michaelis-Menten type kinetics or directly proportional with butanol based

inhibition terms. Direct relations between the different compounds through meta-

bolic pathways are not considered. However, this model introduces a metabolic

activity functional based on total RNA, which helps in describing the culture’s

history and consequently culture growth. In the same year, a model for glucose

uptake was published by [Yerushalmi et al., 1986b], they were proposing an active

site model that explains substrate internalisation and product externalisation.

The same authors also extended their model to relate mRNA concentrations and

butanol production from glucose. The mRNA is given the role to reflect culture

states. They assume diffusion of compounds through the cell membrane and

inhibition by butanol [Yerushalmi et al., 1986a, Yerushalmi et al., 1988].

Integration of Inhibitory Effects of Acids And Solvents

The model by [Jarzebski et al., 1992] aims at the understanding of a chemostat at

different pH values and thereby dissociation states of butyric acid. This coupling

influences growth and the onset of solventogenesis. A set of logical rules covers

inhibitory effects of butyric acid. This model describes the data well: Two steady

state values and a sustained oscillation are covered. Still, this type of logical

rules is insensitive to major system changes, as e.g. fermentations of mutants or

changes of medium composition. A product inhibition model was proposed by

[Özilgen, 1988] to describe several fermentation experiments. It assumes logistic

growth and inhibition of accumulated products.
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Integration of Biochemical Pathway Information and pH

The Shinto model [Shinto et al., 2007] proposes the first mechanistic view on the

ABE fermentation by considering the underlying biochemical pathways. Kin-

etics are Michaelis-Menten type, the CoA transferase reaction from butyrate

or acetate to the corresponding CoAs is a random bi-bi mechanism. It is a

batch fermentation model that does not distinguish between intracellular and

extracellular metabolites. Similarly to the other models it considers biomass

production that is inhibited by butanol. Here biomass production is propor-

tional to acetyl-CoA levels. [Junne, 2010] also proposes a dynamic model for

solvent formation. This model includes pH mediated dissociation of compounds.

Enzyme concentrations are modelled as sigmoidal function accordingly to the

available transcript expression levels during batch fermentation. Additional

transport terms for acids are implemented. Finally, models were developed that

assume the translation of enzymes is pH-dependent, these models explain the

pH-shift in the continuous chemostat experiment as proposed by the COSMIC

SOP [Haus et al., 2011, Millat et al., 2013a].

Integration of Time Series of Transcriptome Data in Kinetic Models

The integration of transcriptome data in a time series format and com-

bine it with metabolome was introduced by [Götz and Reuss, 2009], this ap-

proach seems unique in literature. A stochastic model is proposed by another

group that involves enzyme concentrations that are integrated as time profiles

[Liebermeister and Klipp, 2006], integration of metabolome and transcriptome

regulation in a flux balance model is described elsewhere [Covert et al., 2001].

A simpler approach of comparing two different concentrations is reported for a

lactate dehydrogenase model, where ratios of different isozymes are incorporated

[Downer et al., 2006]. In E. coli regulatory networks are inferred from mRNA

data and integrated to the mass-balance as an ODE system [Carrera et al., 2009].
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4.2 Derivation of the Dynamical Model

The creation of a model for an organism offers many tasks. Clearly, the manifold

connections within a biological network, the interactions within one Omic and the

interaction between Omics, they all represent a tremendous amount of data to

be mapped into a model. Such model ideally covers the in vitro behaviour under

the chosen environmental conditions. However, calculation and identification

of all factors remains impossible, not only because functions of proteins remain

obscure (3.5), the amount of available data does usually not suffice to predict

a unique parameter set. Consequently, it is not the task to integrate all known

interactions, but to find a minimal model to understand the function of the

organism [Durot et al., 2009].

This chapter proposes such a model for butanol production in C. acetobutylicum

and a formalism for the implementation of time series of transcript level data.

Model Structure

Within the cell, the biochemical network of butanol synthesis is considered as

already presented (figure 2.1). Reduction of the pathways to the branching points

yields the network shown in figure 4.1. Arrows in this pathway indicate the

reaction direction as considered in the model. Touching arrows indicate the

concomitant use of several substrates to several products. Stoichiometry is not

shown in this model representation. The CAC and CAP numbers represent the

transcripts considered as relevant for the reaction. A list of compounds and used

abbreviations is given in table 4.1.

Reduction to branching points assumes that no intermediate molecule has regu-

latory functions. Since literature suggests a regulatory-role of acetyl-phosphate

and butyryl-phosphate they remain included for monitoring purposes. Glucose

uptake and glycolysis are combined to one reaction due to the fact that meas-

urements of intermediates are difficult to access. Finally, kinetics of this model

are oriented on Gheshlagi et al. [Gheshlaghi, 2009] and the PhD thesis of Stefan

Junne [Junne, 2010].

A structured model approach is taken here, the cell and the reactor are two separ-

ate entities. Transport phenomena within each compartment will be furthermore

neglected. Transport between compartment boundaries is simplified by assuming

an intracellular substrate is converted into an extracellular product.

The goal of this model is to monitor the current status of the cell not simply by

some pH-dependency but by following the expression of the relevant transcripts.

Therefore, no pH description is necessary and the dissociation state of acids is

unconsidered. A model of non-autonomous differential equations is achieved that

combines three types of information: the biochemical pathways, the transcript
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level data for each enzyme involved in the pathways, and the enzyme kinetic

information from literature.

11 1

78

2

45

3

6

0

10

9
CAC1742

CAP0165

CAC1743

CAC3076

CAC2873

CAC2708
CAC2711
CAC2712

CAP0163
CAP0164

CAC3075 CAP0162
CAC3298
CAC3299

CAP0162
CAC3298
CAC3299

Figure 4.1: Minimal Model pathway structure for butanol synthesis by
C.acetobutylicum. The grey box is the substrate 0: glucose.
Red boxes show the solvents (8: acetone, 9: ethanol, 10: butanol).
Green boxes show the acids (2: acetate, 6: butyrate). Blue boxes intracellular
intermediates (1: acetyl-CoA, 3: aceto-acetyl-CoA, 4: butyryl-CoA,5: butyryl-
phosphate, 7: acetoacetate, 11: acetyl-phosphate).

4.2.1 Derivation of the Model

Comparison of Compartment Volumes

The conversions take place in a cell, which is considered a compartment contained

in the reactor. The cell density (̺X) is defined as dry mass of cells (mX) per

cell volume (VC). The mass of cells further corresponds to the measured biomass

concentration (cX) in the reactor volume (VR):

̺X =
mX

VC
=

cXVR

VC
(4.1)
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Compound number compound CHEBI-ID Abbreviation

0 glucose 17234 Glc
1 acetyl-CoA 15351 ACoA
2 acetic acid 15366 ACE
3 acetoacetyl-CoA 15345 AACoA
4 butyryl-CoA 15517 BCoA
5 butyryl-phosphate 17260 BUP
6 butyric acid 30772 BU
7 acetoacetate 13705 AA
8 acetone 15347 ACN
9 ethanol 16236 ETOH
10 butanol 28885 BUOH
11 acetyl-phosphate 15350 ACP

Table 4.1: Compound Overview

The volume of the liquid phase (VL) is the difference of reactor volume and cell

volume:

VL = VR − VC = VR

(

1−
VC

VR

)

= VR

(

1−
cX
̺X

)

(4.2)

Biomass of C. acetobutylicum is not growing to high cell densities, hence we can

assume cX
̺X

≪ 1 and thereby we neglect the cell volume compared to the reactor

volume:

VL ≈ VR. (4.3)

Relating Reaction Rates to Cell and Reactor

The total reaction rate (R) is the amount of one substance (n) being converted

over time (t). Since the model is a two-compartment model, this reaction can be

referenced to the cell (ri) or to the reactor (ro).

R = riVC = roVL (4.4)

from equation 4.3 follows

ro = ri
VC

VR
(4.5)

from equation 4.1 follows

ro = ri
cX
̺X

(4.6)

http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:17234
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15351
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15366
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15345
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15517
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:17260
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:30772
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:13705
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15347
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:16236
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:28885
http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15350
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The Time Law for Changes of Intracellular Concentrations

In the next step, the time law for the change of an intracellular component from

the mole balance is derived. A substance ni is produced and consumed by NR

reactions. The balance for an intracellular metabolite yields:

dni

dt
=

NR
∑

k=1

vkRk (4.7)

vk =

{

−1 if ni is a substrate

+1 if ni is a product
(4.8)

Expanding the left-hand side of equation 4.7:

dni

dt
=

d(ciVC)

dt
(4.9)

=
d(ciVR

cX
̺X

)

dt
(4.10)

=
dci
dt

cXVR

̺X
+

d cX
̺X

dt
ciVR +

dVR

dt

cX
̺X

ci (4.11)

Now assume constant cell density and exponential growth at a rate µ and divide

by the reactor volume:

dci
dt

cX
̺X

+ µci
cX
̺X

+
1

VR

dVR

dt

cX
̺X

ci =

NR
∑

k=1

vkr
o
k (4.12)

Factorise
cX
̺X

and simplify the right-hand side according to equation 4.3

cX
̺X

(

µci +
dci
dt

+
ci
VR

dVR

dt

)

=

NR
∑

k=1

vkr
o
k (4.13)

For batch and chemostat, the reactor volume remains constant
(

dVR

dt = 0
)

and

after simplification and rearrangement one gets

cX
̺X

(

µci +
dci
dt

)

=

NR
∑

k=1

vkr
o
k (4.14)

cX
̺X

(

µci +
dci
dt

)

=

NR
∑

k=1

vk
Rk

VR
(4.15)

dci
dt

= (

NR
∑

k=1

vkr
i
k)− µci. (4.16)
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The Time Law for Changes of Extracellular Concentrations

As before, a substance no is produced or consumed by NR reactions. Additionally,

it is transported out of the reactor by transport term Tsink.

dno

dt
=

NR
∑

k=1

vkRk − Tsink (4.17)

In continuous culture this sink is due to a pump and therefor dependent on the

pump flow rate F :

Tsink = Fco (4.18)

Converting into concentrations and dividing by VR, where D =
F

VR
is the dilution

rate:

dco
dt

=

NR
∑

k=1

vk
Rk

VR
−

F

VR
co (4.19)

=

NR
∑

k=1

vkr
i
k −Dco (4.20)

4.2.2 Formalism

For the automated integration of the mathematical equations and biochemical

network into the model, a formalism is required that is applicable to both com-

partments such that it is only necessary to specify whether a compound is located

in one or the other.

In a first step, a compound is given an unique number either manually or by

a reckoned online repository like from the database and ontology of Chemical

Entities of Biological Interest (CHEBI). Using CHEBI-IDs is one step forward

to sustainability of the model, they are unique and searchable through online

services, and may be parsed in SysMO-SEEK.

The second step concerns the naming of reaction, as KEGG reactions are undirec-

ted and unrelated to compounds, the use of these identifiers is not recommended

here. In order to give a reaction a direction, they are called rs|p, where s and

p are substrate-ID and product-ID delimited by the ”|” character. Without

loss of generality, multiple substrates and multiple products can be introduced

rs1,s2,...,sN |p1,p2,...,pM . Equations 4.16 and 4.20 can be generalised to equation 4.21:

dck
dt

=
∑

j

Ṽjrj|k −
∑

i

Ṽirk|i −Dk · ck (4.21)

The parameter vk is not necessary anymore, because the direction of the

reaction is clear from the reaction identifiers, rj|k is the production of substance k,
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reaction kinetic transcripts involved
(cac:CA ...)

r0|1 glucose feed

r1|11 MMT C1742

r11|1 MMT C1742

r11|2 MMT C1743

r2|11 MMT C1743

r2,3|1,7 bi-substrate MMT P0163, P0164

r1|3 bi-substrate MMT C2873

r3|4 substrate inhibition C2708, C2710, C2711

r4|5 competitive product inhibition C3076

r5|4 MMT C3076

r5|6 MMT C3075

r6|5 MMT C3075

r6,3|4,7 bi-substrate MMT P0163, P0164

r7|8 MMT P0165

r1|9 MMT C3298, C3299, P0162

r4|10 uncompetitive product inhibition C3298, C3299, P0162

r3|7 r2,3|1,7 + r6,3|4,7 P0163, P0164

Table 4.2: Model reaction kinetics and transcripts: The rs|p reaction-identifier
shows the directed conversion from substrate s to product p using the transcript
data from the respective transcript-identifiers. The kinetic model kin is specified
in the second column. MMT: Michaelis-Menten type

rk|i is the consumption of substance k. However, the two process designs, batch

and continuous culture, require a generalisation of the dilution Dk and the two

compartment system requires a the factor Ṽ .

D takes three values:

Dk = 0 : batch conditions, k is extracellular

Dk = µ : batch conditions, k is an intracellular compound.

Dk =
F

VR
: continuous conditions, k is either extracellular or intracellular

Ṽj and Ṽi also take three values:

Ṽ = 0 : There is no reaction between the compounds k, i or k, j.

Ṽ = ρX
cX

: k is an intracellular compound.

Ṽ = 1 : k is an extracellular compound.

http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1742
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1742
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1743
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C1743
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0163
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0164
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2873
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2708
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2710
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C2711
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3076
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3076
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3075
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3075
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0163
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0164
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0165
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3298
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3299
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0162
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3298
http://www.genome.jp/dbget-bin/www_bget?cac:CA_C3299
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0162
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0163
http://www.genome.jp/dbget-bin/www_bget?cac:CA_P0164
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Kinetic Laws and Integration of Transcript Levels

The amount of enzyme present in the cells is assumed to be time-dependent by

explicitly integrating time-series data of the corresponding transcripts (table 4.2)

into the rate equation. The type integration is explained in the next section, here

it is an unspecified function f .

The reaction rate further depends on a specific kinetic (kin, table 4.2) that is a

function of substrate concentrations (cs), product concentrations (cp) and in case

of inhibitions also on any other species ci.

The enzymes maximal rate k̄s|p [mole/time unit] is related to this kinetic. This

rate is the product of the maximal specific rate ks|p [mole/(time unit, g biomass

and amount of enzyme)] the biomass cX [g biomass] and the amount of enzyme

which is a function of transcript levels f . This gives the generalised reaction rate

equation from a substrate s to a product p:

rs|p = k̄s|pkins|p(cs, cp, ci) (4.22)

= ks|p · f(transcript levels of rs|p) · cX · kins|p(cs, cp, ci) (4.23)

By this definition, the established ODE-system of non-autonomous equations

constitutes a descriptive model of the ABE-process.

4.2.3 Integration of Time-Dependent Data

Description of Growth And Glucose Consumption

Growth and glucose consumption are not modelled using mass balance, nor

are they coupled to occurring reactions, e.g. acetyl-CoA was used for growth

modelling [Shinto et al., 2007]. They are instead implemented as piecewise linear

interpolations of the data. It is known that linear interpolations only poorly

describe the data, however non-linear estimators or functional data analysis,

require deep knowledge on data-structure and, more importantly, a sufficient large

sampling set [Lehmann et al., 1999, Gustafsson et al., 2009]. Since replicates in

fermentation experiments are rare, application of these advanced methods is

difficult.

Therefore, it is assumed that the acetyl-CoA influx is directly proportional to the

glucose uptake of the cell from the medium. The proportionality constant is the

substrate yield Y pGlc, it models the fraction of glucose used for growth compared

to the glucose used for metabolite synthesis.

Growth is also considered directly proportional to the measured optical density in

the medium.

Description of Transcript Levels

Transcript levels are also implemented as piecewise linear interpolations for the

same reasoning as before. Data sparseness in the temporal dimension is usually
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more severe in that data than for growth or substrate profiles. Nevertheless, other

studies were successful in establishing a transcription model that can be used for

integration of transcript levels [Chen et al., 1999].

In order to use transcript data as a protein quantity it is necessary to assume that

transcript levels map to protein levels. This assumption requires the study of two

processes, protein translation and mRNA stability. Since C. acetobutylicum is not

rapidly growing, the ribosome quantity remains constant during duplication of

the cells and is not limiting [Golding et al., 2005]. Second it is necessary to scale

the data to an upper bound. Since data are present in logarithmic format, the

maximum should be scaled to zero to achieve maximal flux at least once during

the time course of the experiment.

Third, in vivo transcript stability is an unknown parameter in this model. It

is a function of the cell’s status and may also differ for each transcript, a com-

plete modelling of transcript translation and degradation was carried out earlier

[Arnold, 2002]. It is clear from this modelling that the interplay of translation

and degradation is not a linear function, and the transcriptome time series data

needs to be shifted in a non-linear fashion in order to map to proteome data.

However, no proteome data in such temporal dimension is available and even

if it were available the here applied methods would not change. Consequently,

transcript expression data will be used as development standard until enough

protein data is available.

Lumped reactions, e.g. the three reactions from acetoacetyl-CoA to butyryl-CoA

are calculated as average of transcript levels, since usually the corresponding genes

are organised in an operon and are expected to behave similarly.

Model Equations

The entire models equations are noted in appendix A.
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4.3 Model Implementation

Various tools are available to implement ordinary differential equations for simu-

lation and parameter estimation. The integration of temporal profiles from data

for transcripts, biomass and glucose represent an additional requirement to the

software.

Only two packages were found that fulfil this requirement, one is SBTOOLBOX2

[Schmidt and Jirstrand, 2006], a third party toolbox for MATLAB written by

Henning Schmidt. Its computing power has been widely used in the biological

community. It offers a graphical user interface that allows the execution of com-

plex calculation tasks and it offers a library of scripts that can be freely accessed.

The evaluation of C-script by MATLAB, called MEX-compilation, also greatly

increases performance of the scripts.

The commercial SimBiology Toolbox by MATLAB can be used as well, however,

its functionality is very limited when it comes to further analyses, e.g. sensitivity

analysis.

Data Pre-Requisites

Transcript data must not have no missing values. Instead of linear interpolation,

other imputation techniques are less error prone. The Metagenealyse-webpage

uses principal component analysis (PCA) for imputation [Daub et al., 2003] of

missing data in time-profiles of transcript data.

The Standard Format

A model standard-format is required to automatically integrate time-series data.

It should be parsable by MATLAB and convertable to a readily calculable SB-

TOOLBOX2 model (B.3).

The standard-format is sketched in a toy-model in figure 4.2. First, the basic

structure of the SBTOOLBOX2-model serves as core model and necessary para-

meters are predefined and therefor set to 0 (rGlcIn - the glucose influx into the

organism, mue - the growth rate as determined from the change of optical density,

cX - the biomass as determined from the optical density). The piecewise linear

interpolations are calculated from matrix data. Second, the implementation of

transcript data interpolation requires that transcript-identifiers (T1, T2) can be

separated and addressed. The format of a multidimensional function f(T1, T2)

makes this possible.

Initially, SBML models would be suitable as sustainable formats for model deposit

and retrieval, as well as interactivity between several softwares for visualisation

and calculation. However, this newly developed data-driven model type does not

fit into a SBML-standard so far. SED-ML standards may cover this shortly. Until

then this approach has to suffice.

http://metagenealyse.mpimp-golm.mpg.de/
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********** MODEL NAME

Toy Model

********** MODEL NOTES

This model serves for illustration of the automated data implementation

procedure.

********** MODEL STATES

d/dt(x)=(rhoX/cX)*(rGlcIn - rxy)

d/dt(y)=(rhoX/cX)*rxy-mu*y

x(0)=0

y(0)=0

********** MODEL PARAMETERS

rhoX=300

kxy=0.1

K=0.1

********** MODEL VARIABLES

rGlcIn=0

cX=0

mu=0

********** MODEL REACTIONS

r0x=rGlcIn

rxy=f(T1,T2)*cX*kxy*x/(x+K)

********** MODEL FUNCTIONS

********** MODEL EVENTS

********** MODEL MATLAB FUNCTIONS

Figure 4.2: Structure of the standard model in SBToolbox2: The model is
given a name that is used through out the model analysis. MODEL STATES
are the compound under investigation given by the differential equation and
its initial concentration. MODEL PARAMETERS govern the reaction kinetics.
MODEL VARIABLES are an explicit function of time. MODEL REACTIONS
are dependent on the MODEL STATES and the MODEL VARIABLES. MODEL
FUNCTIONS allow the user to supply self-defined functions.
This toy model shows the automated data implementation method. The model
consists of two differential equations for the compounds x and y, and two reactions
r0|x and rx|y, rGlcIn is the glucose influx into the organism and rx|y a conversion
from x to y at a maximal rate of kx|y with Michaelis-Menten constant K. This
conversion rate is happening inside a compartment of time-dependent volume
cX and constant density ̺X . µ is the associated compartment growth rate and
governs the dilution of the compound x by growth. The conversion of x to y is
governed by two different transcripts T1 and T2 that are combined by a function
f , e.g. the average later on.
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SimBiology Toolbox

As a commercially available software, the SimBiology-toolbox by MATLAB was

tested. The implementation of the model can be undertaken by a GUI guided

approach and by a scripting approach. Since the model is large, it is recommended

to use batch processing of pre-defined equation files. A list of all involved

reactions with relevant substrates and products was created and converted into an

interpretable format for this toolbox. It turned out that data-dependent variation

of transcript level profiles was not feasible ab initio in this toolbox. A programmed

work-around in C that made it possible to implement it however for all three

time courses, transcripts, biomass and glucose variation. However, it turned out

that proprietary scripts as e.g. the sensitivity analysis in SimBiology were not

supportive for varying compartment size so far. The investigation of this software

was aborted at that point. Further softwares were tested, but the same effects as

reported by Alves et al were observed: Interoperability of softwares, interfaces

and documentation are poor for many of them and specific problems were either

difficult or even impossible to be solved [Alves et al., 2006].
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4.4 Evaluation of Experiments

4.4.1 Computer, Softwares, Data, Algorithms

Computer

All simulations were carried out on a AMD Phenom (TM) II X6 1090T processor

with 3.20Ghz, 16GB of RAM.

Softwares

Simulations were run on Windows 7 SP1, 64bit. The list of all softwares is given

in table 4.3.

MATLAB 7.13.0.564 (R2011b)

Bioinformatics Toolbox 4.0
Optimization Toolbox 6.1
Parallel Computing Toolbox 6.1
SimBiology 4.0
Statistics Toolbox 7.6
Symbolic Math Toolbox 5.2
SB Toolbox 2 Development
SBPD Development

Table 4.3: Softwares

Data for Parameter Estimation and Cross-Validation

The first set of data is the batch fermentation in complex medium [Jones et al., 2008].

Its model is called the batch model (BM). Solvent production starts after the stop

of growth in the transitional phase after 10 h.

The second set of data was collected during continuous fermentation in phos-

phate limited medium [Grimmler et al., 2011]. Its model is called the continuous

model (CM). For the simulation the time frame of the data was shifted since data

recording commenced only at 110 h after inoculation. The shift occurred after

160 h.

Algorithms for Model Simulation

BM and CM are constructed by the previously described scheme (section 4.2).

Appendix A shows the model equations for the CM, for the BM, the same equa-

tions are valid but D = 0. Simulation of differential equations in SBTOOLBOX2

and SBPD follows the MATLAB integration of stiff differential equations (ode15s,

ode23s) with standard parameters (absolute tolerance of 1e-6, and relative toler-

ance of 1e-3).
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Algorithms for Parameter Estimation

Parameter estimation used a particle swarm search [Vaz and Vicente, 2007] com-

bined with the Nelder-Mead-Simplex algorithm [Flannery, 2007]. The first al-

gorithm offers the possibility to find a global minimum of the optimization

functional because of its stochastic nature. For the same reason, its convergence

to the minimum is very slow and therefore enhanced by the simplex algorithm.

Both algorithms are implemented to consider box constraints of the parameters. It

was not possible to impose constraints on the states. The estimation is carried out

only for the maximal rates and the substrate yield within a box of 10−3 mM to

103 mM . Michaelis-Menten constants were set to 1 mM and inhibitory constants

were set to 1 M .

Approach for Simulation of Mutation Experiments

Experiments in which promoters were replaced by a new promoter are mapped to

the model by replacing the transcript level profiles of the original promoter with

the corresponding profiles of transcripts behind the new promoter. This profile

transfer is feasible under the assumption that the newly integrated promoter

and the changed transcript expression does not profoundly affect the overall

expression.

Knock-down and over-expression studies are simulated by assuming that the

dynamics of the transcript-data persist, but its levels are changed. This is done

by alternating the maximal conversion rate ks|p.

For deletion experiments the corresponding rate was decreased by three orders of

magnitude because low values of activities are reported even for deletion mutants.

For up-regulation experiments the double of the corresponding rate was assumed,

as [Mann and Luetke-Eversloh, 2013] indeed reported.

Approach for Disturbance Analysis

For estimation of parameter certainty a disturbance analysis is carried out. The

initial parameter-set is perturbed by 10% and re-estimated using the Nelder-Mead-

simplex algorithm. This is done several times, here n = 200, and the resulting

parameter-distributions after re-estimation are evaluated.

Approach for Cross-Validation

A cross-validation by using batch and continuous data is carried out. The

corresponding models, BM and CM, are re-estimated within a 20% range of

the original parameter set. Only the substrate yield Y pGlc was permitted to

re-adjust freely, assuming that different media compositions strongly affect glucose

consumption.
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List of Goals for Validation

The following list of facts is tested for validation of the model and its simulation

results.

1. Levels and dynamics of measured metabolomic data of wild-type cultures

[Jones et al., 2008, Grimmler et al., 2011] are predicted.

2. Levels and dynamics of measured metabolomic data of mutant-type

cultures [Green et al., 1996, Lehmann et al., 2012a, Lehmann et al., 2012b,

Mann and Luetke-Eversloh, 2013] are predicted.

3. Cross-Validation of continuous data and batch data leads to comparable

results.

4. In batch culture in complex medium butyryl-CoA and butyryl-phosphate

show twin-peaks, acetyl-phosphate shows one peak, corresponding to acid

uptake [Zhao et al., 2005, Amador-Noguez et al., 2011].

5. Acetyl-CoA and butyryl-CoA concentrations decrease during the shift in

continuous culture [Grupe and Gottschalk, 1992].

6. In batch culture the amounts of acetoacetyl-CoA, 3-hydroxybutyryl-

CoA, crotonyl-CoA are less than 21µM , 11µM , 10µM , respectively

[Boynton et al., 1994].

7. The following metabolites are higher concentrated in the mid-exponential

phase than in the solventogenic phase: acetyl-phosphate, acetyl-CoA,

butyryl-CoA, 3-hydroxybutyryl-CoA. Acetyl-CoA and butyryl-CoA pro-

files are similar [Amador-Noguez et al., 2011].

8. Acetate concentrations and acetone production are correlated but not butyr-

ate concentrations, the ATP balance is favoured via acetate phosphorylation

[Desai et al., 1999, Lehmann et al., 2012b].

9. The CoA-transferase preferably acts on acetate. Acetate kinase is favoured

in the reverse direction. Phosphotransbutyrylase and thiolase have the

highest activity [Vasconcelos et al., 1994].

10. Activity of phosphotransbutyrylase is seen earlier than butyrate kinase in

batch fermentations. Thiolase and β-hydroxybutyryl-CoA dehydrogenase

peak in mid-exponential phase [Hartmanis and Gatenbeck, 1984].

11. The pools of acetyl-CoA and acetate are highly interchangeable because of

the rapid reversibility of phosphotransacetylase [Amador-Noguez et al., 2011].

12. Parallel activity of solvent and acid pathways in one organism are unfavour-

able and indicate a mixed population [Clarke et al., 1988].



96 CHAPTER 4. AUTOMATED DYNAMIC MODEL CREATION

4.4.2 Parameter Estimations and Validation

Results of the Batch Model
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Figure 4.3: Parameter estimation of the batch culture metabolome data using the
BM and cross-validation to the CM and continuous culture data. Model results
(left) are split into acids(above), solvents (center) and intracellular metabolites
(below). The validation (right) is split accordingly. Dotted values represent data,
lines represent model results.

Metabolite profiles are shown in figure 4.3 and reaction profiles in figure 4.4.

The simulation of concentrations of acetic acid and butyric acid in the BM follow

the dynamics of the data. Levels of simulated butyric acid are too low compared to

measurement data and the peak at 18h cannot be reached. The simulated solvent

levels of acetone and ethanol correspond to measurements, however the butanol

production starts too early and does not reach the maximal level. The intracellular

metabolites acetyl-CoA, acetoacetate and butyryl-CoA reach an unrealistic high

level in the simulation. Acetoacetyl-CoA shows a short spike to 1 M around 8 h.

The simulated concentrations of acetyl-phosphate and butyryl-phosphate reach a

plateau around 0.5 M and 0.25 M respectively during the exponential phase.

The sum of the CoA-transferase reactions r3|7 is highest at 18 h, the onset of

solventogenesis. The major contribution to this reaction is given by r63|47 not

by r23|17. Activity of butanol dehydrogenase r4|10 shows a similar profile to

acetoacetate formation, however there is an earlier peak. Acetone formation is

bimodal, one peak at 18h, the second between 30 h and 40 h. Ethanol formation

is very low overall.

r4|5 and r5|4 are the fastest reaction, they have an equal and again bimodal

behaviour: one peak at 18 h and a second 4 h later. r1|3 has a peak at the

same time, the further processing via r3|4 is very low, with a maximum earlier
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Figure 4.4: Parameter estimation of the batch culture data metabolome using the
BM and cross-validation to the CM and continuous culture data. Model results
(left) are split into reactions known to be active during acidogenesis (above) and
during solventogenesis (below). The validation (right) is split accordingly.

around 8 h. Both reverse kinase reactions r6|5 and r2|11 are not detectable.

The forward direction of the kinases is similar during acidogenic conditions,

only the acetate kinase reaction reappears during solventogenic conditions. The

phosphotransacetylase reaction performs equally well in both directions (r1|11 and

r11|1).

Results of the Continuous Model

Metabolite profiles are shown in figure 4.5 and reaction profiles in figure 4.6.

Estimation of acids and solvents concentrations in the CM follow the dynamics of

the pH-shift. A sharp decrease to zero and almost zero is calculated for butyrate

and acetate concentrations, respectively. Accordingly, the solvents increase to the

levels given by the measurement data. Acetoacetate concentration is highest with

a peak of more than 2 mM when butyrate uptake stops. Its level continue to be

high around 1 mM during solventogenesis. Butyryl-CoA and butyryl-phosphate

concentrations show an elevation during the shift to 1 mM and to 0.25 mM

respectively. The acetyl-CoA concentrations is shortly decreased during the shift

and regains its previous value of around 0.25 mM .

As in the batch model, the acetoacetate production r3|7 is dependent only on

r63|47 and not on r23|17. The decarboxylation r7|8 has the same velocity as r3|7 .

Production of alcohols occurs in the expected split ratio 1:3 approximately.

As before, r4|5, r5|4 are the fastest reactions, they are decreasing during the shift
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and increase afterwards. This behaviour is seen also for r1|3, r11|1,r1|11, the others

decline after the shift. r5|6 is stronger than r6|5.

Validation of the Batch Model

Metabolite profiles are shown in figure 4.3 and reaction profiles in figure 4.4.

The simulation results of the BM are comparable to the CM calculations: Acid

and solvent concentrations are met, with the exception of acetone. The dynamics

of solvent formation are also met. For the intracellular metabolites, again a huge

acetoacetate signal is seen, however, this time there is no accumulation of butyryl-

CoA, but still a twin-peak of 0.3 mM height. The acetoacetyl-CoA concentration

is step-wise increasing, which is in contrast to the CM. The reason for this is the

CoA-transferase reaction r3|7, that has reduced activity during solventogenesis

compared to the CM. The other solventogenic reactions look similar. During

acidogenesis r4|5 and r5|4 are still the fastest reactions. The other reaction rates

are comparable to the rates in the CM.

Validation of the Continuous Model

Metabolite profiles are shown in figure 4.5 and reaction profiles in figure 4.6.

The dynamics of solvent production are met by the validation model, however

levels for butanol are underestimated and for acetone and ethanol overestimated.

The dynamics of acid concentrations are well met for acetate but levels are

largely underestimated. The dynamics of butyrate concentrations are not met

and levels are underestimated. The validation model shows the same huge spikes

of intracellular metabolites as the BM. The other intracellular concentrations

and dynamics are similar to the BM, the plateau of butyryl-phosphate is more

elongated until 40 h. The reactions involved in solventogenesis have similar

dynamics and levels as the CM. The twin-peaked reactions r4|5 and r5|4 are

appearing as a single peak with its maximum higher than in the CM.

Parameter Sets and Disturbance Analysis

Considering the parameters (table 4.4), it is obvious that the conversaion rate

for acetyl-CoA dehydrogenation to acetaldehyde and ethanol (k1|9) is two orders

of magnitude lower than for butyryl-CoA (k4|10), still there is accumulation of

butyryl-CoA in the CM. k1|3, k3|4, k4|5, k5|4 have the highest specific rates and the

reverse rate k4|5 is stronger than the forward rate in every model. This is similar

for the acetate production branch: k11|1 is higher than k1|11. Not surprisingly

from the simulation curves k63|47 is large and the values of k23|17, k6|5 and k11|2
are close to zero. The major difference between the two parameter sets of CM

and BM is the activity of acetate kinase, the reverse direction k6|5 is active in the

continuous culture but not in the batch culture. Not surprisingly, many of the
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Table 4.4: Parameter-Estimations of batch culture data and continuous culture
data with the corresponding cross-validation of CM and BM and vice-versa within
a 20% margin of the parameters

parameter CM cross-validation BM cross-validation
parameters of CM to BM parameters of BM to CM

Y pGlc 6.07E-01 1.80E+00 1.42E+00 4.80E-01
k1|11 3.30E+01 3.95E+01 2.72E+01 2.17E+01

k11|1 3.29E+02 2.64E+02 7.36E+01 8.84E+01

k11|2 8.69E+01 1.04E+02 6.27E+01 5.01E+01

k2|11 1.00E-04 8.03E-05 1.74E-05 2.09E-05

k23|17 1.00E-04 1.20E-04 1.64E-05 1.97E-05

k1|3 2.02E+02 2.55E+02 1.91E+02 2.29E+02

k3|4 9.61E+02 8.31E+02 8.28E+02 6.62E+02

k4|5 1.31E+02 1.05E+02 1.65E+02 1.97E+02

k5|4 3.72E+02 4.47E+02 6.19E+02 4.95E+02

k5|6 9.78E+01 7.83E+01 8.45E+01 1.01E+02

k6|5 1.49E+00 1.19E+00 1.26E-05 1.49E-05

k63|47 1.97E+02 2.36E+02 1.94E+02 1.93E+02

k7|8 6.08E+00 4.86E+00 4.17E+00 5.00E+00

k1|9 3.89E+00 3.11E+00 1.21E+00 1.46E+00

k4|10 2.94E+02 3.53E+02 1.03E+03 8.23E+02

estimated parameters are highly uncertain, as a disturbance analysis indicates

(figure 4.7): The major part of parameters shows an approximately 10% variance

after the disturbance, the parameters k63|47, k3|4 have a lower variance, and the

parameters k1|9, k6|5, Y pglu the lowest variance. Asymmetries in the parameter

sets’ variances indicate that the objective function is asymmetrically shaped, e.g.

k3|4.

Validation by Mutant Experiments

Promoter experiments are shown in figure 4.8, deletion studies are given in figure

4.9.
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Figure 4.7: Boxplot of the parameter uncertainties in the CM after a 10%
disturbance of the initial parameter set. Parameters are scaled to their mean
value.
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Figure 4.8: Model results for published batch experiments of mutant cultures
whose transcripts are expressed behind a different promoter:
(A): wild type results
(B): silenced ctfB1 [Tummala et al., 2003b]. The authors report low butanol and
acetone titers and high butyrate titers. Here, butanol titers are unchanged and
indeed butyrate titers are elevated.
(C): alcohol dehydrogenase under the phosphotransbutyrylase promoter
[Sillers et al., 2009]. The authors report enhanced butanol and ethanol yields,
which is covered by the model. However, acetate does not accumulate as expected.
(D): both modification from (B) and (C) [Sillers et al., 2009]. Author report the
highest solvent yields in this mutant and best re-uptake of butyrate. Here butyrate
is taken up better than in (B) but still elevated levels are seen. Solvent yields are
indeed a little higher.
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Figure 4.9: Model results for several published batch experiments with deletion
mutants and optimised enzyme activities:
(A): phosphotransacetylase deletion [Lehmann et al., 2012a]. Authors report no
drastic change is provoked through, here ethanol yields are increased.
(B): CoA-transferase and acetoacetate decarboxylase deletion
[Lehmann et al., 2012a]. The authors report high amounts of acetate in
the fermentation broth, this cannot be recovered. Here, butyrate is accumulating
and the solvent production is similar to (A).
(C): CoA-transferase, acetoacetate decarboxylase and phosphotransacetylase
deletion [Lehmann et al., 2012a]. The authors report drastically decreased
acetate concentrations, this cannot be recovered. Here, solvent production is
similar to (A).
(D): phosphotransbutyrylase deletion [Lehmann et al., 2012b]. The authors
report elevated ethanol and butanol titers, this is covered by the model.
(E): enhanced thiolase activity [Mann and Luetke-Eversloh, 2013]. The authors
report elevated ethanol and butanol titers by 50% to 19% respectively. Butanol
titers are unchanged here, but ethanol elevated.
(F): butyrate kinase knock-down [Green et al., 1996]. The authors report reduced
and delayed butyrate formation and increased butanol production. This is
recovered by the model.
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4.4.3 Validation-Results

1. Levels and dynamics of the measured data are very well covered by the CM,

they are well covered by the BM. This expectation is met.

2. Mutant culture experiments can be partly mapped without further model

adjustment. This expectation is partly met.

3. Cross-validation is able to cover the dynamics but not the levels of the

metabolite data. This expectation is partly met.

4. Plateaus not peaks of butyryl-phosphate and acetyl-phosphate are observed

in the BM. Since these plateaus coincide with the overflow peak of acetyl-

CoA, there may be saturation of the reactions. This expectation may be

met.

5. Effectively, acetyl-CoA and butyryl-CoA concentrations do decrease during

the shift in the CM. This expectation is met.

6. The amount of acetoacetyl-CoA in the BM is larger than expected by ap-

proximately one magnitude. On the one hand, this could be explained to the

overflow of acetyl-CoA, on the other hand, overnight incubation of cell pel-

lets may have disrupted this intermediate [Grupe and Gottschalk, 1992], as

intracellular metabolites usually have a high turn-over and rapid disruption

[Schaub, 2005]. This expectation may be met.

7. The acetyl-CoA pool in the BM is very similar to the butyryl-CoA pool,

although they are one hour apart. In the CM, intracellular metabolites are

approximately equal concentrated in both phases. This expectation is met.

8. Butyrate concentrations are uniquely correlated to acetone production in

both models, and acetate concentrations are only diverted via the kinase

pathway. In order to overcome this drastic difference it is necessary to

incorporate ATP generation and consumption into the model. This would

allow to valorise the more profitable acetyl-phosphate generation on expense

of the butyryl-phosphate production. This expectation is not met.

9. The reverse phosphotransferase reaction is favoured in both models, however

the reverse kinase reaction can not be seen. This expectation is not met.

10. A high peak of thiolase activity and a smaller peak for 3-hydroxybutyryryl-

CoA dehydrogenase can be effectively seen in the BM. The kinases and

phosphotransferases however appear in parallel. This expectation is partly

met.
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11. High interchangeability of pools is given for the butyrate production from

butyryl-CoA. This may be due as well to the symmetric structure of the

model and be overcome integrating ATP. This expectation is not met.

12. Parallel occurrences of solventogenic and acidogenic pathways can be seen

in both, the CM and the BM. This expectation is met when a mixed culture

were present.
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4.5 Sensitivity Analysis

The parametrised dynamic model will be used to identify bottle necks from

which optimisation approaches are derived. Sensitivity analysis (SA) has aided

in the identification of key factors in several biological and chemical models

[Saltelli et al., 2000, Cho et al., 2003, Bentele et al., 2004, Lebedeva et al., 2012,

Pagel et al., 2013]. The local SA (LSA) focusses on a single point in parameter

space, the global SA (GSA) on parameter regions. A complete introduction to

both approaches is given elsewhere [Cacuci, 2003].

Local methods provide a high level of detail with less extensive calculations,

whereas global methods are best suited to handle highly variable parameters at the

cost of higher calculation demand [Rabitz et al., 1983]. The possibility of LSA to

only vary one parameter at a time neglects the opportunity to study the non-linear

effects of the different parameters amongst each other [van Riel, 2006], through this

the LSA is only able to capture few characteristics of the system [Zi et al., 2005].

It is indeed reported that solutions of the LSA appear as subsets of solutions

of the GSA [Lebedeva et al., 2012], which usually varies several parameters at

the same time. GSA is used for model simplification and it aids in parameter

estimation, it is better suited to problems in which uncertainties are in the order

of magnitudes and a strong non-linearity exists. Nevertheless, high numbers of

input variables and parameters are difficult to treat and a focus on a specific

model problem is recommended [Saltelli et al., 2000].

4.5.1 Local Sensitivity Analysis (LSA)

Given is a system of ordinary differential equations, with states x and parameters

p

dx

dt
=f

(

x,p, t
)

, x(0) = x0 (4.24)

Local sensitivities indices are calculated by evaluating the partial derivatives snq
defined and normalised as follows:

s∗nq =
pq
xn

·
δxn(t)

δpq
, snq(0) = 1 (4.25)

A state xn is called sensitive when its sensitivity is large, it is insensitive when

the sensitivity is close to zero. Since it is assumed, that all states are sensitive at

t = 0, insensitive states will decline towards zero over time.

Implementation

Several mathematical methods exist to calculate these equations [Rabitz et al., 1983].

The direct differential method is implemented here, because its calculation is facil-

itated through the Symbolic Toolbox of MATLAB and SBTOOLBOX2. A script
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was programmed to integrate all sensitivity index equations into a SBTOOLBOX2

model (B.3.4).

LSA of the Continuous Model

The pathways are given in figure 4.1. A computation of the local sensitivity indices

of the CM shows that the sensitivity of acetate high for the phosphotransacetylase

forward-reaction (r1|11) and the acetate kinase (r11|2) during acidogenesis but

not during solventogenesis. No other metabolite is sensitive to these two reac-

tions (figure 4.10). Similarly, no metabolite is sensitive to the CoA-transferases

(r63|47, r23|47), the thiolase (r1|3) as shown in figure 4.11, or the lumped reaction

r3|4 and the transbutyrylase (r4|5, r5|4) as shown in figure 4.12. Butyrate and

butanol are sensitive to the reverse reaction of the butyrate kinase (r6|5) during

solventogenesis as shown in figure 4.13 and ethanol is highly sensitive to the

dehydrogenases (r1|9) as shown in figure 4.14.

This finding suggests that on the one hand that only k6|5 and k1|9 are sensitive

and an effect from variation of these parameters may be expected in the close

proximity. On the other hand, this finding corresponds to the uncertainty analysis

carried out earlier (figure 4.7) and suggests that these two parameters are the

most certain ones.
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Figure 4.10: LSA of the upper branch of acid formation. Sensitivities of acids
(left) and solvents (right) are shown as function of k1|11 (above), k11|1 (middle)
and k11|2 (below).
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Figure 4.11: LSA of the CoA-transferase and the thiolase. Sensitivities of acids
(left) and solvents (right) are shown as function of k63|47 (above), k23|17 (middle)
and k1|3 (below).
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Figure 4.12: LSA of the lower branch of acid formation.Sensitivities of acids (left)
and solvents (right) are shown as function of k3|4 (above), k4|5 (middle) and k5|4
(below).
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Figure 4.13: LSA of butyrate kinase. Sensitivities of acids (left) and solvents
(right) are shown as function of k5|6 (above) and k6|5 (below).

−2

0

2

k7|8

−2

0

2

k1|9

0 20 40 60 80

−2

0

2

k4|10

time [h]

S
en

si
ti
v
it
y

 

 

ACE

BU

0 20 40 60 80
time [h]

 

 

ACN

EtOH

BuOH

Figure 4.14: LSA of dehydrogenases. Sensitivities of acids (left) and solvents
(right) are shown as function of k7|8 (above), k1|9 (middle) and k4|10 (below).
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4.5.2 Global Sensitivity Analysis (GSA)

The parameter-set is uncertain as was shown earlier, also the LSA indicates that

the sensitivity of all states to all parameters is small. In the close proximity of

this parameter set there is no possibility to enhance the productivity of the cell

or to alleviate a possible bottle-neck. In order to estimate the global behaviour

of the model, a huger parameter region is now considered. Such evaluation is

possible by several methods that are all suited for GSA.

Methods and Implementation

Published methods for global sensitivity analysis are:

• Fourier Amplitude Sensitivity Test (FAST) [Saltelli et al., 1999]

• Partial Rank Correlation Coefficient (PRCC) [Bentele et al., 2004]

• Sobols Method [Sobol, 2001].

Applications of these three methods can be found in [Zheng and Rundell, 2006,

Marino et al., 2008]. PRCC answers the question how much a model output is

dependent on the parameter, while FAST indicates which parameter uncertainty

has the highest influence on the model variance. Sobols method and FAST are

comparable. In the scope of discrete transcriptomic data that induces steps into

the model, FAST seems the best suited algorithm because it is suited also for non-

monotonic systems. PRCC is not accurate for such systems [Marino et al., 2008].

The FAST Algorithm

This section is summarising [Saltelli et al., 1999].

Sensitivities by FAST represent fractions of the variance Dp caused by varying a

parameter to the overall variance D.

The variance is the second moment of a summary statistic over the Np-dimensional

parameter space KNp = (p|0 ≤ pq ≤ 1; q = 1, ..., Np). More generally, the rth

moment of the ODE-system f is given by:

< x(r) >=

∫

Kn

f r(p)P (p)dp (4.26)

where P is a probability distribution function over the parameters. The first

step is the calculation of such a statistic, by exploring the parameter space KNp

such that a filling curve pq(s) = Gq(sinωqs) with −∞ ≤ s ≤ ∞ comes close

to any point within. Gq is a transformation and the ωq are properly selected

frequencies. KNp is filled entirely if only the frequencies are incommensurate:
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These frequencies cannot be obtained by a linear integer combination of the other

frequencies:
Np
∑

q=1

rqωq 6= 0,−∞ < rq < +∞ (4.27)

Having distributed the parameters identically and uniformly, the integral for the

rth moment (equation 4.26) is simplified and evaluated along the filling curves pq:

x̄(r) = lim
T→∞

1

2T

∫ T

−T
f r(p(s))ds (4.28)

However incommensurate frequencies cannot be achieved due to numeric precision.

Hence, there is a T for which f(s) = f(s + T ) and it was shown that if ωq are

positive integers, T = 2π.

The total variance D of the model is therefore given by

D = x̄(2) −
( ¯x(1)

)2
=

1

2π

∫ π

−π
f2(s)ds−

( 1

2π

∫ π

−π
f(s)ds

)2
(4.29)

Expanding f(s) in a Fourier series over the domain of integer frequencies j with

its spectrum

f(s) =
∑+∞

j=−∞Aj cos(jsp) +Bj sin(js) (4.30)

Aj =
1
2π

∫ π
−π f(sp) cos(js)ds (4.31)

Bj =
1
2π

∫ π
−π f(sp) sin(js)ds (4.32)

Λj = A2
j +B2

j (4.33)

f(s) is real valued so that the variance attributed to the fundamental frequency

ωq and its higher harmonics hωq can be written as

Dq = 2
+∞
∑

h=1

Λhωq
(4.34)

The ratio
Dp

D
is the estimate of the main effect of pq on x.

Implementation

FAST, PRCC and Sobols method are readily implemented in SBTOOLBOX2.

However, all three methods do not allow a temporal resolution of the sensitivities.

The corresponding scripts were adopted in order to allow the calculation of sensit-

ivity indices over time (B.3.4).

The algorithm was set to calculate the sensitivities in the parameter cube centred

around the original parameter set with an upper-boundary two-fold larger and a

lower boundary only half of the original parameter set. Sensitivities are calculated

over time-intervals, here the first interval was chosen to last until 40 h and then

hourly steps until 80 h were calculated until then the last interval took until 100h.
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GSA of the Continuous Model

Acetate concentrations are weakly sensitive to the transacetylase (k1|11, k11|1)

and acetate kinase (k11|2) but to no other metabolite (figure 4.15).

Increasing sensitivity indices of butyrate and acetone towards k63|47 during solvent-

ogenesis indicate that only butyrate-uptake but not acetate-uptake can be influ-

enced via the CoA-transferase pathway. Ethanol is weakly sensitive to thiolase

(k1|3) (figure 4.16).

Acetone sensitivity is decreasing for k3|4 from high values in acidogenesis to small

values in solventogenesis, the profile of acetate is increasing during solventogenesis

to medium values. Sensitivity to the transbutyrylase (k4|5, k5|4) is decreasing for

butyrate from medium values in acidogenesis to small values in solventogenesis, it

is increasing for acetone to medium values in solventogenesis, it is constant for

butanol again at low values (figure 4.17).

The forward reaction of butyrate kinase (k5|6) has a weak influence on butyrate

during acidogenesis and on butanol for the whole fermentation. Again, sensitivity

of acetone is increasing for the forward-reaction of the kinase but not the reverse

direction during solventogenesis (figure 4.18).

Sensitivity of ethanol to k1|9 is largest, suggesting that ethanol yields are easily

influenced while the sensitivity of butanol towards k4|10 is production rate is only

average throughout the entire fermentation. Sensitivity of acetate peaks weakly

for the same parameter at 60h (figure 4.19).
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Figure 4.15: GSA of the upper branch of acid formation.
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Figure 4.16: GSA of the CoA-transferase and thiolase.
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Figure 4.17: GSA of the lower branch of acid formation.
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4.5.3 Summary

Not surprisingly, LSA and GSA obtained different results from the CM: While the

LSA focusses on a single point in parameter space, the global analysis summarises

the behaviour of the model in a parameter cube.

In both simulations ethanol is highly sensitive to k1|9 indicating that it is easy

to shift the strain to an ethanol producer, which is proven by experiments

[Lehmann and Luetke-Eversloh, 2011, Lehmann et al., 2012a]. Acetate concen-

trations are not sensitive to the activity of CoA-transferases. While the local

sensitivity points out the sensitivity of the reverse butyrate kinase reaction (k5|6)

alone, the global sensitivity analysis shows that cycling of butyrate through the

CoA-transferase and the transbutyrylase/kinase pathway influences the model.
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4.6 Final Conclusions

In this chapter a dynamical model was presented that integrated transcriptome

data with the biochemical reaction network of solvent production. Two dif-

ferent experiments, a continuous culture experiment under phosphate limiting

conditions and a batch culture experiment in complex medium were used for para-

meter estimation and cross-validation. Biological data and mutation experiments

were qualitatively mapped to the model and then two sensitivity analyses, the

local and the global sensitivity analysis, were conducted to identify bottle necks

and engineering strategies. High expectations are imposed on in silico models

[Lee et al., 2008b]. Universal applicability and predictive capability are only two

of them.

Universal Applicability of the Dynamic Model

The proceeding of model development and evaluation in this thesis was undertaken

semi-automatically. Download of relevant information from KEGG and the cre-

ation of a standard format for SBTOOLBOX2 allows the automated integration of

any reaction network with any data, not only transcriptome but also proteome data.

The selection of desired sub-networks is manual work. As soon as published curated

reactomes become available as download [Kumar et al., 2012, Agren et al., 2013]

entire automation is possible with this script or the SBML interface of SBTOOL-

BOX2.

The model was able to cover two entirely different experimental proceedings

(batch culture versus continuous culture, complex medium versus minimal me-

dium, highly resolved transcriptome data versus low resolved transcriptome data

in the temporal dimension) and some mutation experiment findings.

Universality arises from the description of these very different experiments and

through the integration of transcriptome data: The evaluation of mutation ex-

periments is conveniently done by integration of new transcriptome data in the

existing model or by profile transfer as was shown for data of [Sillers et al., 2009].

Achieved parameters from the estimations are comparable to each other within a

20% margin and only the substrate yield required large adjustment. The model

meets one third of the proposed expectations completely, one third only partly

and it fails for the last third. To overcome the mismatch to biological findings, e.g.

the importance of butyrate up-take via the CoA-transferase pathway despite the

coupling of acetate up-take, the integration of further data is necessary, e.g. energy

metabolism data. Online annotations of energy and redox influencing metabolites

and reactions are available, for growth the stoichiometry of growth and biomass

maintenance, linear models are already developed [Papoutsakis, 1984].
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Predictive Power and Usability of the Dynamical Model

The derivation of meaningful predictions is a challenging task and may often be

unsuccessful because of many parameters involved [Jamshidi and Palsson, 2008,

Durot et al., 2009]. 35 Parameters, thereof 13 maximal rates are many parameters

to describe five metabolome measurement time series.

Discrepancies of the model to the experimental findings are expected for the

prediction of mutant culture behaviours, as those generally show a different

growth behaviour and different regulatory mechanisms [Tummala et al., 2003b].

It is not surprising, that all parameters, despite the reverse butyrate kinase

reaction and the ethanol dehydrogenase reaction are uncertain. This robustness is

a desired feature of a biological model [van Riel, 2006], however several mutation

experiments show that it is not that robust. Here the predictive power of the

model fails. This robustness can also be interpreted as high uncertainty of the

parameters, as the calculated sensitivity analyses hinted.

Still, the results of a sensitivity analysis could be transferred into an engineering

strategy if the maximal conversion velocity were directly accessible. Such an

engineering is possible but imposes several problems, as was recently shown for the

clostridial thiolase [Mann and Luetke-Eversloh, 2013]. Still, SA did not produce

suitable engineering strategies, since ethanol is not in the scope of this work

and also the increase of the reverse-reaction of butyrate kinase will not directly

increase butanol yields because of the present forward-reaction.

However, this model format allows a second approach that will be introduced in

the next chapter, from which other strategies can be derived.

Problems of Dynamic Models for Integration of Omics

Currently efforts are spend on creating mechanistic models of transcription and

translation via bayesian networks and differential equations [Chen et al., 1999,

Dhaeseleer et al., 2000, Arnold, 2002, Vijesh et al., 2013], [Ingalls, 2013, chapter

7]. Implementations are reported for many networks that use Flux Balance Ana-

lysis (FBA) [Lee et al., 2008a, Senger and Papoutsakis, 2008] and many softwares

integrate FBA-methods, e.g. YanaSquare [Schwarz et al., 2007b] or CellNetAna-

lyzer [Klamt et al., 2007].

Other ways of integration transcriptome and metablome are not frequently en-

countered [Joyce and Palsson, 2006, Jamshidi and Palsson, 2008] and thereby sev-

eral problems concerning implementation and computation needed to be solved

here.

First, only two softwares were found that were able to allow integration of the

model formalism into their architecture and all following analyses needed to be

build on this integration. Missing SBML support for this model is a good indica-

tion that this model type is not widely spread, although a work-around solution
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may be present by using SED-ML ∗ [Waltemath et al., 2011]. SBTOOLBOX2 was

made the tool of choice because of two reasons: Codes are publicly available and

the text-based format of the model allowed easy automation of model creation and

evaluation. This is necessary to leverage one computational problem of parameter

estimation: Stiffness of the differential equations is increased by the integration

of transcript expression profiles. In steep profiles only many small time steps of

the integrator can lead to convergence, hence a huge number of calls for each

interpolation of transcript levels is necessary. Computational speed is proportional

to these calls if the number of integrated profiles is large enough. One solution to

this problem will be presented in the next chapter. This problem and its solution

are unique to this type of model and represent a new area of research for the

modelling science.

∗Personal communication, Dagmar Waltemath, Rostock



Chapter 5

Principal Component Analysis In

Modelling

That honey is sweet I refuse to assert;

that it appears sweet I fully grant.

Timon of Phlius

Principal Component Analysis (PCA) is widely used, this chapter proposes

three independent applications to this method. After its introduction (5.1), its

historical use as compression method to alleviate simulation effort in the dynamical

model from interpolations of transcript expression data (5.2). Very closely related

to this, is a optimisation tool based on PCA to alternate transcript expression

data under the side condition of preserved dynamic (5.3). The third application

then discusses the uses of this approach for a novel clustering method (5.4). A

conclusion is given afterwards (5.5).
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5.1 Introduction of PCA

Mathematical Background

An introduction to principal component analysis (PCA) and its mathematical

derivation is given by [Abdi and Williams, 2010].

The set D is the set of all transcript expression data in a matrix format in which

columns represent time and rows represent transcripts:

D = {xj(ti), j = 1...NJ , i = 1...NT }. (5.1)

Usually NT ≪ NJ . A PCA of the data consists in a dimensionality reduction of

D into few representative basis functions, called principal components (PC) with

respective coefficients (c). Each of the PCs is sorted according to their contri-

bution to the data’s variance. If indeed the data’s variance is low dimensional

then PCA is able to compress the data. It is reported that the first principal

components are usually representative for the data, they are optimal for compres-

sion [Janes and Yaffe, 2006]. Conversely, higher components may bear structural

information of the data [Yeung and Ruzzo, 2001].

Here, it will be assumed that only the first NP < NT components are relevant

and further components hold information about uncertainties. This happens on

the expense of low abundant pattern of the data that are furthermore neglected.

The basis representation of xj(t) in terms of principal components is then given

by:

xj(t) =

NP
∑

p=1

cjpPCp(t) (5.2)

Uses of PCA

Besides its compression abilities [Janes and Yaffe, 2006], PCA has a manifold

of other uses. Perturbed states are distinguished via PCA at the metabolome

and transcriptome level from the unperturbed states [Dutta et al., 2009]. Re-

verse engineering approaches were possible by calculation of a PC representation

of gene expression data [Yeung et al., 2002]. It furthermore allows the imputa-

tion of missing data-points in a less error-prone way than regression models

[Troyanskaya et al., 2001]. Correlations of the data to the principal components

help in the observation of genome-wide effects [Alter et al., 2000]. Evaluation of

global sensitivity results was recently shown to be facilitated when the principal

components where calculated [Sumner et al., 2012]. The use of PCA is reported

to minimise effects of measurement noise prior to clustering in several publications

[Brown et al., 2005, Janes and Yaffe, 2006]. Other authors argue that it may de-

grade cluster quality [Yeung and Ruzzo, 2001]. Uses of PCA for clustering are

only reported within a side-note [Holter et al., 2000].
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5.2 Data Compression in the Dynamical Model

Preliminaries

The dynamic model of the previous chapter suffers severe difficulties when it

comes to parameter estimations. The global sensitivity analysis shows on the

one hand that the parameters are not accurately estimated. On the other hand

the criterions to stop the estimation are not met rapidly enough. Interrupting

the simulation manually results in a highly non-reproducible parameter set. In

the scope of automation and reproducibility the convergence speed is a serious

problem.

Transcript Expression Data Problems

One reason why the dynamical model is computationally demanding is the in-

tegration of highly dynamic transcript expression profiles into the equations.

Changes of expression levels in the continuous culture consist up to two orders of

magnitudes.

Noise of these data further impedes the estimation speed. It is hardly accessible

due to the missing replicates of the available data. Highly expressed genes during

the solventogenic chemostat can be averaged to estimate noise, which is around

50% on the nominal scale, or 0.5 on the log scale.

Solutions

Dynamics of data cannot be reduced, however the number of dynamic profiles can

be reduced by choosing a suitable data-model, e.g. transcript within the same

open reading frame usually have similar dynamics and levels. Such a data-model

further needs to eliminate noise from the data.

Clustering offers one possibility to reduce size of data and create regulatory as-

sumptions, as seen before (3.5).

The performance of alternative representations in terms of non-linear regression is

greatly known in the biological community. The right choice of regressors or basis

functions is a non-trivial problem that requires in-depth knowledge of underlying

data structure. Also such a representation should be useful in a greater scope

than simple representation, e.g. the unravelling of regulatory dependencies. For

automation both these facts are critical.

Other possibilities of convergence amelioration by introducing system control

theory approaches as semi-quantitative measurements, Kalman filtering or network

modular topology increase estimation quality and convergence [van Riel, 2006].

The principal component representation of the data is a self-contained repres-

entation of the data and does not require prior knowledge, it also discriminates

between data and data-noise.
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PCA-assisted Data Compression

Equation 5.2 and the observation that usually NP < NT ≪ NJ , it is easy to

conclude that in a model in which all NJ transcript data levels are calculated, the

major computation time is used for the interpolation. However, all the information

necessary for calculation is stored in the NT components of the PC expansion.

For the CM, there are 14 different profiles and NT = 5, hence it is always better

to calculate only the NT PCs instead of all 14 profiles. The necessary 5 · 14 = 70

coefficient cjp can be integrated to the model prior calculation (B.3.2). The

calculation effort of the original model is NT ·NJ = 70 versus N2
T = 25 of this

compressed model. This corresponds to a theoretical improvement of speed by

63%. Computing 200 independent consecutive runs of the CM and its compressed

format, took 61 s to 29 s, respectively. This is a gain of 53%.
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5.3 Optimisation Approach via PCA

Time-resolved steering of promoter activity was a project goal within COSMIC2.

It can be expected that the directed change of transcript levels over time will be

in research focus soon. Models require to take this challenge and to guide the

experimentalist through the outcomes of different strain designs and temporal

profile designs.

The presented dynamical model contains transcript expression data and can be

used for such a prediction, if only a suitable scheme of alternation of these profiles

can be found.

Bootstrapping of Transcriptome Data Does not Influence the Metabolic Spec-

trum

The most general approach consists in the random generation of artificial tran-

script expression profiles. However, this easily results in numerical problems and

unrealistic model results.

A more directed approach than random design is toggling existing measurement

data, also known as bootstrapping [Pattengale et al., 2010]. The transcript ex-

pression data profile is considered a measurement curve that is the result of a

signal diverted by additive noise. For transcript expression profiles this approach

is feasible since the sample space is low populated in the temporal dimension

and an original profile can be parametrised for bootstrapping. Using again global

sensitivity analysis a huge number of model simulations and their effects were

studied. For the CM only the central point of the pH-shift data is sensitive (results

not shown). However, changes at this point showed no changes in productivity.

Directed Approach to Optimisation - Dynamic Features

Here, a novel approach is suggested. It includes an intelligent choice of profiles.

The data structure itself is not known but the use of PCA identifies the directions

of maximal variance, such direction will be called dynamic feature. Identifying the

PC with the dynamic aspects of the data [Holter et al., 2000] offers a possibility to

vary the dynamics of the data. This is referred to as dynamic features optimisation.

The study of combinations of dynamic features to construct new data restrains

the amount of possible profiles to only dynamically equal profiles (refer to 5.4).

Implementation

A script for alternation (B.4.1) was used to compute the new profiles. After

caluclation of the PCs, the scores are alternated by multiplication with 2, 1 or

0.5. Every combination of alternated scores gives a new profile from which a new

model is constructed and simulated.
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Primary Target - Butanol Dehydrogenase
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Figure 5.1: PCA Analysis of the transcript levels of the reaction r4|10.
(A): Three principal components are calculated from the entire transcriptome
data D over the pH-range of the pH-shift.
(B): The time-courses of the three transcripts and their sum as responsible for
butanol synthesis from butyryl-CoA in the CM.
(C): PC coefficients. The position of the three transcripts in the three dimensional
PC-space shows that all transcript levels have a negative contribution of the first
PC. The second PC introduces major dynamic differences between CAC3299 and
the other transcripts. Contributions of the third PC are not as important.

From GSA it was reckoned, that butanol dehydrogenase is weakly sensitive.

This is also the primary choice of all strategies.

The PCA transformation from the entire data D gives the three PC, as shown

in figure 5.1,A. The profiles of the three relevant transcripts of reaction r4|10,

CAC3298, CAC3299, CAP0162 add approximately to a straight line (figure 5.1,B)

- their coefficients are marked in green in figure 5.1,C1 and C2. As expected,

the profiles of CAC3298 and CAC3299 are very similar in their first PC. Their

major difference is found in the second PC, CAP0162 and CAC3298 have a negative

contribution, CAC3299 a positive contribution. The contribution of the third PC

is nearly negligible for all three transcript levels.

Alternation of the PCA coefficients according to the implemented scheme, yields
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a set of curves with different dynamic impacts. The maximum is attained always

at pH 4.5, the dynamics are shifted to even lower values during acidogenesis

(figure 5.2). For each profile, metabolite spectra are calculated (figures 5.3 and
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Figure 5.2: Profile design for r4|10 from dynamic features. Coefficients of the
individual profiles were alternated by either doubling or halving. Profiles prior to
normalisation (A) and after normalisation to the maximum (B) shows that the
maximal amount of enzyme, corresponding the maximal velocity is reached for all
profiles after the shift. Dynamics are unaltered since the profiles intersect at the
same level during the pH-shift.

5.4). Neither profile from the dynamic features increases the pull from glycolysis

to generate butanol, only butyrate is converted during acidogenesis to butanol.

Despite the earlier start of butanol synthesis in these scenarios, no further increase

of butanol yield is visible.

Other Targets

The calculation of dynamic features of butyryl-CoA synthesis from acetoacetyl-CoA

(r34) shows that this reaction is not limiting, alternation of the transcript profiles

does not yield an improvement. Down-regulation of the enzymes accumulates

the substrate and thereby leads to emptying the butyryl-phosphate and butyryl-

CoA pools. Interestingly, no changes on the upper-branch of acid or ethanol

synthesis is seen. Apparently, these reactions are limited. The surplus availability

of acetoacetyl-CoA leads to increased acetone formation that crashes when no

butyrate is present in the medium anymore.

The phosphtransbutyrylase reaction (r45) and the butyrate-kinase reaction (r56)

both have an identical influence. Butanol yields are increased by 15 mM and

acetone is reduced by 10 mM at the end of the fermentation (figure 5.5).
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Figure 5.3: Metabolic spectrum of the transcript optimization of r4|10.
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5.4 Clustering from Principal Components

For this section it is necessary to introduce some preliminary thoughts on current

clustering techniques, because PCA will be used in a somewhat different way of

thought than current techniques.

5.4.1 Introduction

The Current Paradigm in Transcriptome Analysis

Many problems in Omics are classification problems [Nobeli and Thornton, 2006].

A class or a cluster is a set items that share the same properties. In the scope

of transcript level profiles this classification is based on a similarity evaluation,

like the euclidean distance of two profiles or their co-variance: From the com-

bination of the correct metric with an expectation of measurement noise, the

clustering algorithm derives groups that share a low inner-cluster variance and

a large intra-cluster variance [Lukashin and Fuchs, 2001]. This algorithm re-

quires user-input on how much measurement noise is expected or how many

clusters constitute the data. Through this, a cluster is a function of the chosen

metric, the chosen cluster algorithm and a set of necessary parameters. The

number of employable metrics and clustering algorithms is extremely large

[Jiang et al., 2004b, Brown et al., 2005, Janes and Yaffe, 2006].

Critique of the Current Paradigm

The current paradigm has helped in the interpretation of many data since

first large data sets became first available: The original paper by Eisen et al.

[Eisen et al., 1998] was cited 13587 times ∗. However, what are the limitations of

transcriptional analysis by clustering?

It is well known, that not all transcripts are equally well transcribed during

the amplification reaction. From a stochastic point of view the multiplication

of very low abundant transcripts is a rare event because of the meeting prob-

ability of enzyme and transcript. Factors like the affinity between enzyme and

transcript, stress factors create an additional bias that is variable also in time.

This leads to the conclusion that quantities of co-transcribed genes are not equal

[You and Yin, 2000, Feder and Walser, 2005].

Further, clustering is known to reveal operons because the genes behind an operon

are concomitantly transcribed. However, metabolism-wide events will effect mul-

tiple open reading frames. These frames are not all transcribed behind promoters

of identical strength, the dynamics of expression will be similar but not the

amounts. These limitations mostly attack similarity metrics that are based on

∗15th August, 2013
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distances. Correlation metrics are better suited tools regarding these limitations,

they are, however, more severely affected by measurement noise.

Finally, there is the question of information between clusters: With any metric

it is only possible to make a binary decision whether two profiles are contained

within the same cluster or not, nothing more.

5.4.2 Geometric Approach to Clustering

PCA offers a possibility to achieve a geometrical dissection of the data in a similar

way as a correlation metric but without loosing relations between the different

geometric objects, and it dissects the measurement noise.

The NT dimensional vector of PCA coefficients cjp will be furthermore named

trait of the pth PC to focus on the fact that the PCs are universal within the

data - they span a space - and the appearance, the phenotype of a transcript

level profile depends on the impact of each individual PC. Indeed, all possible

dynamics of the treated experiment are coded within the PCs [Holter et al., 2000].

Conventional Clustering of Traits

In a first attempt the use of published clustering methods like k-nearest neighbours

or hierarchical clustering to identify agglomerations of cjp in the spanned space

was carried out. This attempt is difficult for the beforehand mentioned reasons:

First, the determination which amount of distance is due to measurement noise can

not be carried out, because noise is encoded in the higher dimensional components

and it is not transferred to the traits. Second, the traits are sorted according

to their importance in the total data variance. This imposes the necessity to

intelligible weighing of each dimension of PCs. One such weight could be the

variance contribution of each PC to the data. Since structural information may

be present in higher components [Yeung and Ruzzo, 2001], and not the entire

variance is considered, this approach is discouraged here.

Clustering by Tiling of the PC-Space

In a second attempt, it seems intelligent to start with new assumptions and to

try a new approach for making sense of traits with the help of a suitable tiling

that neither requires a clustering algorithm, nor a distance metric.

The space spanned by the principal components, is the space of all achievable

dynamics CPC:

CPC := {PC1,PC2, ...PCNP
}

In order to construct a tiling of this space, a meaningful concept for combination of

dynamics needs to be introduced. The trivial tiling is a partition into half-spaces



5.4. CLUSTERING FROM PRINCIPAL COMPONENTS 131

according to the sign of the respective components †. By pure visual inspection

any agglomeration of points within one partition may be considered a tiling, as in

figure 5.6,A. This is the established approach. Now, consider a straight line from

the origin that connects to any point. Mathematically, all points on a line in this

space do share the same proportions of each PCs.Such transcripts are called here

dynamically equal with respect to that line. In order to account for uncertainties

and to be of practical use, this line-object requires a thickness. Because there are

several possibilities to define this thickness, assumptions are required to define

this new geometric object :

1. A maximum principle: The line-object should not be larger than its con-

taining half-space.

2. An equality principle: Two line-objects are non overlapping and equally

sized.

3. A geometrical principle:

a) either the half-spaces are bisected into equal parts

b) or the half-spaces are trisected into equal parts.

The first assumption accounts for the impact of signs of traits on the phenotype a

change of sign may have significant effect on the overall phenotype. The second

assumption makes sure that no transcript expression profile is present in two

different tilings. The third assumption is the core of angular traits, because it

represents the human factor that classifies the relation between the coefficients

whether one is stronger present in the data than the other. Choosing a trisection

helps in classifying the traits that are strongly different to each other (sectors

1 and 3 in figure 5.6,C) by assuming that equally sized dynamic aspects are of

interest. By choosing the bisection, equal coefficients are put out of focus. Due

to the curse of dimensionality, this is the approach taken here. The number of

cones per two coefficients will be named nangle. For two principal components,

nangle = 8 cones are constructed (figure 5.6, B), by increasing the number to

four principal components, this number is increasing to nangle = 83 = 512 in the

case of trisection 12 cones are constructed from two principal components, and

nangle = 123 = 1728 from four principal components.

Both tilings further provides a possibility to define pairs of co-regulated and

anti-regulated transcript expression data: For a chosen cone, its point-reflection

is anti-regulated because all traits are reversed in their signs (figure 5.6,B, cones

2 and 5). A trait within such a cone will be called angular trait, it is defined as

αjp = arctan
(

cjp
cj1

)

.

†There are 2NP half-spaces.
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Figure 5.7: Pre-clustered data from cell cycle microarray data of yeast in a
PC-representation. Clusters are represented as colors. Cone-like and beam-
like structure are readily observed. Lines are manually drawn into the graphs.
Adaption from [Yeung and Ruzzo, 2001].

sectors rapidly converges close to zero (table 5.1). There is no best choice of NP

known [Yeung and Ruzzo, 2001]. Examples of clusters are shown in figure 5.9.

Table 5.1: Overview of angular traits. The fraction of occupied to all sectors
is presented as function of NP and nangle. In the continuous culture NT=4,
NJ = 3807 while in the batch culture NT = 25, NJ = 1862 and in the RT-PCR
experiment NT = 91, NJ = 181.

experiment nangle NP = 2 NP = 3 NP = 4 NP = 5 NP = 6 NP = 7

conti. cult. 8 1 0.5 0.22 - - -
batch. cult. 8 1 0.5 0.25 0.1157 0.034 0.0064
RT-PCR 8 0.5 0.2031 0.0684 0.0146 0.0026 0

Transcript data from batch culture

This data-set shows a rich dynamic. Four PCs are needed to model more than 80%

of the data and sectors are the most occupied compared to the other two data-sets.

One can expect to find many dynamic features. The approach allows to cover

dynamically very similar and very close profiles whose levels spread during the

end of fermentation when sporulation of the cells and degradation of transcripts

occur.

In figure 5.9, examples of co-regulated and anti-regulated clusters are shown in

A1 and A2 respectively.
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Transcript data from continuous culture

This data-set shows a low dynamic and the smallest in temporal size. Three

components are needed to cover more than 80% of the variance. Due to the lack

of temporal resolution, clusters sizes are very large.

The example in 5.9, B shows again the co-regulated and anti-regulated clusters.

RT-PCR

This data-set is the smallest size although it has the largest resolution in time.

Clustering from PCs shows that only two of four half-spaces are occupied by the

loadings of the second PC. This takes into account that this data is only positive

and no anti-regulated clusters can be expected. Further, two components suffice

to model more than 80% of the data’s variance.

The example in 5.9,C shows the typical profiles that contain a spike.
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Figure 5.9: Angular traits examples from three data-sets. Examples are drawn by
random selection from the whole data for better visualisation. Axes labels are
omitted for simplicity.
(A1 & A2): batch data, NP = 4, co-regulated and anti-regulated
(B1 & B2): continuous data, NP = 4, co-regulated and anti-regulated
(C): RT-PCR data, NP = 4

5.5 Final Conclusions

PCA seems to encounter a revival in literature §, methods that use PCA are widely

accepted and sophisticated alterations, e.g. rotation of components are applicable

[Abdi and Williams, 2010]. The compression function of PCA is greatly known

since the famous eigen-faces have been published [Turk and Pentland, 1991]. Re-

cently, a report was published on the use of PCA to simplify sensitivity analysis

outputs in a meaningful way [Sumner et al., 2012]. The here presented analyses

add three further application of PCA in the biological sciences.

§more than 21000 articles were published as of 16th august 2013, in Google Scholar, one year
earlier only 2800 were published
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First, a compression of transcript expression level profiles was calculated to in-

crease computational power of the parameter estimation. This is not treated

because such dynamic model is not published. Second, a model-assisted optimisa-

tion approach was suggested from PCA that allowed the directed alternation of

transcript expression data dynamics. This is also new because of the novel model

structure. Finally, the use of principal components for clustering was elucidated

in a hitherto untreated way for the identification of dynamically equal profiles.

A Novel Clustering Approach Was Introduced

The here presented algorithm for clustering is to best knowledge novel in literature.

The uses of PCA are manifold and its use in clustering was limited to preprocessing

of data [Yeung and Ruzzo, 2001]. Here, two concepts, angular traits and angular

clusters make use of the information stored in the principal components.

Four challenges were defined by [Jiang et al., 2004b] to a good clustering al-

gorithm:

1. No dependance on prior knowledge:

No such knowledge is necessary here and parameter numbers are low.

2. High fidelity to filter signal from noise:

Noisy components of the data are filtered by PCA in the higher dimensional

components.

3. Possibility to build hierarchical structures:

The number of sectors nangle and the angular closeness approach can be

used to build a hierarchical structure.

4. Possibility to retrieve relationships between clusters:

Anti-regulation and co-regulation are retrieved by comparison of sectors.

Validation of clusters is usually carried out by assessing several similarity criteria

[Jiang et al., 2004b], this is not possible here since by definition of sectors, genes

within one sector are considered dynamically equal. A recurrence to other similarity

metrics like the euclidean space is not possible. A second possibility is given

by comparing the given clustering with a master clustering and to compare the

sorting of both. One similar method to this clustering is the Pearson correlation

to assess co-expression [Carrera et al., 2009], the building of a coherent cluster

[Jiang et al., 2004a] using Pearson correlation requires the definition of a threshold.

Such definition was avoided here by introducing a qualitative factor, the geometric

assumptions.
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Not All Data is Equally Well Represented by PCA

The use of PCA in knowledge generation is known [Alter et al., 2000], the here

presented algorithm can be considered as a complementary approach to already

existing ones, because it emphasises on structure evaluation. Since the number of

considered principal components is directly related to the structure properties,

angular traits becomes difficult when a large number of components is possible

but only few data are present (NT ≈ NJ ), which is the case for the RT-PCR data.

Data curves that are degenerated in the sense of having a unique profile compared

to the others are passing through undistinguished when NP is chosen too small.

When in contrast in such data NP is chosen too large, major pattern are split

into small pieces. The here presented algorithm works under the assumption that

all noise is equally spread in components with numbers larger than NP . In the

RT-PCR data this is not true. An identification of the correct NP would require

to measure the information content of angular traits per dimensions. Ultimately,

this leads to the question, if the proposed equality principle must be relaxed.

PCA for Modelling

The use of PCA for enhancing calculation speed by reducing interpolation effort

was proven. Its use for optimisation also proposes beneficial outcomes. Here, the

effect of such a change is critical. Large changes of the solvent spectrum lead to

large effect on transcriptome [Tummala et al., 2003a], the change of transcript

expression pattern should be soft. In order to investigate the effect of these

changes further, more experimental data is required.





Summary

1. Workflows were programmed that allowed automatic harvesting of the

KEGG-database. Compound information, Pfam-motif annotation of various

organisms, gene-enzyme-reaction-reaction pair mapping were achieved and

created the basis for automated creation of static and dynamic models.

2. A formalism for the integration of pathway information and transcript ex-

pression data was proposed. Transcriptome data was organised in a coherent

way and it was visualised successfully. Inspection of the pathway models and

of comparative maps to B. subtilis allowed hypothesis generation of a novel

pathway that requires the activity of an unannotated 3-hydroxybutyrate

dehydrogenase.

3. Application of the domain-grammar hypothesis inspired the formulation

of an algorithm for Pfam-motif collection of 3-HBDH from 750 organisms

from a frequentist point of view. Integration of experimental data by

assuming parallel regulation in clusters constructed hypotheses that can be

experimentally verified. The ranking of hypotheses was enabled by weighting

the results. This weight needs re-thinking in order to facilitate the ranking

procedure. The CAC3335 gene was suggested to contain a 3-HBDH activity

during solventogenesis.

4. Automated creation and integration of transcript data into KEGG-derived

dynamic models was programmed. This model type succeeded the repres-

entation of the pH-shift experiment without containing a pH-dependency.

Cross-validation between batch and continuous data was successful and the

parametrised model was qualitatively validated by simulating published

mutation experiments. Parameter certainty was discussed and possible

extensions of the model were proposed.

5. Local and global sensitivity analysis were performed for bottleneck identi-

fication. GSA showed that butanol dehydrogenase cannot pull enough the

carbon from other reactions like the butyrate production that was shown to

139
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be cycling between the kinase and the CoA-transferase pathway. The model

was shown to be robust against the major parameter changes.

6. Speed optimisation of the dynamic model was performed using PCA. This ap-

proach inspired a novel algorithm for model evaluation based on the dynamics

of transcript level data. An optimal transcript profile for butanol dehydro-

genase could not be found from the data but for butyrate transacetylase.

7. Furthermore, a clustering algorithm was constructed from PCA by chan-

ging the perspective from parametric clustering to geometric assumptions.

The characterisation of data according to their angular traits and angular

similarity gives a promising novel way of performing informative clustering.

Co-regulated and anti-regulated genes are easily computed by this algorithm.



Bibliography

[Abdi and Williams, 2010] Abdi, H. and Williams, L. (2010). Principal component

analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4):433–59.

[cited at p. 120, 135]

[Agren et al., 2013] Agren, R., Liu, L., Shoaie, S., Vongsangnak, W., Nookaew, I., and

Nielsen, J. (2013). The raven toolbox and its use for generating a genome-scale

metabolic model for penicillium chrysogenum. PLoS Comput Biol, 9(3):e1002980.

[cited at p. 29, 116]

[Aittokallio and Schwikowski, 2006] Aittokallio, T. and Schwikowski, B. (2006). Graph-

based methods for analysing networks in cell biology. Briefings in Bioinformatics,

7(3):243–55. [cited at p. 32, 34, 78]

[Akesson et al., 2004] Akesson, M., Förster, J., and Nielsen, J. (2004). Integration of gene

expression data into genome-scale metabolic models. Metabolic engineering, 6(4):285.

[cited at p. 36]

[Aksenov et al., 2005] Aksenov, S., Church, B., Dhiman, A., Georgieva, A., Sarangapani,

R., Helmlinger, G., and Khalil, I. (2005). An integrated approach for inference and

mechanistic modeling for advancing drug development. FEBS Letters, 579(8):1878 –

83. [cited at p. 3]

[Alsaker and Papoutsakis, 2005] Alsaker, K. and Papoutsakis, E. (October 15, 2005).

Transcriptional program of early sporulation and stationary-phase events in clostridium

acetobutylicum. Journal of Bacteriology, 187(20):7103–18. [cited at p. 21]

[Alsaker et al., 2010] Alsaker, K., Paredes, C., and Papoutsakis, E. (2010). Metabolite

stress and tolerance in the production of biofuels and chemicals: Gene-expression-based

systems analysis of butanol, butyrate, and acetate stresses in the anaerobe clostridium

acetobutylicum. Biotechnology and Bioengineering, 105(6):1131–47. [cited at p. 21, 22,

35, 39, 46]

[Alsaker et al., 2004] Alsaker, K., Spitzer, T., and Papoutsakis, E. (2004). Transcriptional

analysis of spo0a overexpression in clostridium acetobutylicum and its effect on the

cell’s response to butanol stress. Journal of Bacteriology, 186(7):1959–71. [cited at p. 14,

20, 21]

141



142 BIBLIOGRAPHY

[Alter et al., 2000] Alter, O., Brown, P., and Botstein, D. (2000). Singular value decom-

position for genome-wide expression data processing and modeling. Proceedings of the

National Academy of Sciences, 97(18):10101–6. [cited at p. 120, 137]

[Altschul et al., 1997] Altschul, S., Madden, T., Schaeffer, A., Zhang, J., Zhang, Z., Miller,

W., and Lipman, D. (1997). Gapped blast and psi-blast: a new generation of protein

database search programs. Nucleic Acids Research, 25(17):3389–402. [cited at p. 64]

[Alves et al., 2006] Alves, R., Antunes, F., and Salvador, A. (2006). Tools for kinetic

modeling of biochemical networks. Nature biotechnology, 24(6):667–72. [cited at p. 3, 92]

[Amador-Noguez et al., 2011] Amador-Noguez, D., Brasg, I. A., Feng, X., Roquet,

N., and Rabinowitz, J. D. (2011). Metabolome remodeling during the acidogenic-

solventogenic transition in clostridium acetobutylicum. Applied and Environmental

Microbiology, 77(22):7984–97. [cited at p. 17, 20, 95]

[Andrade and Vasconcelos, 2003] Andrade, J. C. and Vasconcelos, I. (2003). Continu-

ous cultures of clostridium acetobutylicum: culture stability and low-grade glycerol

utilisation. Biotechnology Letters, 25:121–5. [cited at p. 16]

[Arnold, 2002] Arnold, S. (2002). Kinetic Modelling of Gene Expression. PhD thesis,

University of Stuttgart, Germany. [cited at p. 89, 117]

[Badr et al., 2001] Badr, H., Toledo, R., and Hamdy, M. (2001). Continuous acetone-

ethanol-butanol fermentation by immobilized cells of clostridium acetobutylicum. Bio-

mass and Bioenergy, 20(2):119 – 32. [cited at p. 18]

[Bahl et al., 1982a] Bahl, H., Andersch, W., Braun, K., and Gottschalk, G. (1982a).

Effect of ph and butyrate concentration on the production of acetone and butanol by

clostridium acetobutylicum grown in continuous culture. Applied Microbiology and

Biotechnology, 14:17–20. [cited at p. 13, 16]

[Bahl et al., 1982b] Bahl, H., Andersch, W., and Gottschalk, G. (1982b). Continuous

production of acetone and butanol by clostridium acetobutylicum in a two-stage

phosphate limited chemostat. Applied Microbiology and Biotechnology, 15:201–5.

[cited at p. 16]

[Bajad et al., 2006] Bajad, S., Lu, W., Kimball, E., Yuan, J., Peterson, C., and Ra-

binowitz, J. (2006). Separation and quantitation of water soluble cellular metabolites

by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of

Chromatography A, 1125(1):76 – 88. [cited at p. 20]

[Balodimos et al., 1988] Balodimos, I., Kashket, E., and Rapaport, E. (1988). Metabolism

of adenylylated nucleotides in clostridium acetobutylicum. Journal of Bacteriology,

170(5):2301–2305. [cited at p. 17]

[Barabási and Oltvai, 2004] Barabási, A.-L. and Oltvai, Z. N. (2004). Network biology:

understanding the cell’s functional organization. Nature Review Bioinformatics, 5:101–

13. [cited at p. 32]

[Barbeau et al., 1988] Barbeau, J., Marchal, R., and Vandecasteele, J. (1988). Con-

ditions promoting stability of solventogenesis or culture degeneration in continuous



BIBLIOGRAPHY 143

fermentations of clostridium acetobutylicum. Applied Microbiology and Biotechnology,

29(5):447–55. [cited at p. 10]

[Barker et al., 1978] Barker, H., Jeng, I., Neff, N., Robertson, J., Tam, F., and Hosaka, S.

(1978). Butyryl-coa:acetoacetate coa-transferase from a lysine-fermenting clostridium.

Journal of Biological Chemistry, 253(4):1219–25. [cited at p. 66]

[Bassett Jr et al., 1999] Bassett Jr, D., Eisen, M., and Boguski, M. (1999). Gene expres-

sion informatics its all in your mine. Nature Reviews, 21:51–5. [cited at p. 37]

[Beesch, 1952] Beesch, S. (1952). Acetone-butanol fermentation of sugars. Industrial &

Engineering Chemistry, 44(7):1677–82. [cited at p. 8, 16]

[Bentele et al., 2004] Bentele, M., Lavrik, I., Ulrich, M., Ster, S., Heermann, D., Kalthoff,

H., Krammer, P., and Eils, R. (2004). Mathematical modeling reveals threshold

mechanism in cd95-induced apoptosis. The Journal of Cell Biology, 166(6):839–51.

[cited at p. 106, 110]

[Bonnet et al., 2013] Bonnet, E., Calzone, L., Rovera, D., Stoll, G., Barillot, E., and

Zinovyev, A. (2013). Binom 2.0, a cytoscape plugin for accessing and analyzing

pathways using standard systems biology formats. BMC Systems Biology, 7(1):18.

[cited at p. 3]

[Borden and Papoutsakis, 2007] Borden, J. and Papoutsakis, E. (2007). Dynamics of

genomic-library enrichment and identification of solvent tolerance genes for clostridium

acetobutylicum. Applied and Environmental Microbiology, 73(9):3061–8. [cited at p. 18]

[Bowles and Ellefson, 1985] Bowles, L. and Ellefson, W. (1985). Effects of butanol on

clostridium acetobutylicum. Applied and Environmental Microbiology, 50(5):1165–70.

[cited at p. 17]

[Boynton et al., 1994] Boynton, Z. L., B, G. N., and Rudolph, F. B. (1994). Intracellular

concentrations of coenzyme a and its derivatives from clostridium acetobutylicum atcc

824 and their roles in enzyme regulation. Applied and Environmental Microbiology,

60(1):39–44. [cited at p. 13, 95]

[Brekke, 2007] Brekke, K. (2007). Butanol - an energy alternative. Ethanol Today, pages

36–9. [cited at p. 7]

[Brohee and van Helden, 2006] Brohee, S. and van Helden, J. (2006). Evaluation of

clustering algorithms for protein-protein interaction networks. BMC bioinformatics,

7(1):488. [cited at p. 76]

[Brown et al., 2005] Brown, M., Dunn, W., Ellis, D., Goodacre, R., Handl, J., Knowles,

J., O’Hagan, S., Spasic, I., and Kell, D. (2005). A metabolome pipeline: from concept

to data to knowledge. Metabolomics, 1(1):39–51. [cited at p. 120, 129]

[Brown et al., 2000] Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey,

T., Ares, M., and Haussler, D. (2000). Knowledge-based analysis of microarray gene

expression data by using support vector machines. Proceedings of the National Academy

of Sciences, 97(1):262–7. [cited at p. 76]



144 BIBLIOGRAPHY

[Buday et al., 1990] Buday, Z., Linden, J., and Karim, M. (1990). Improved acetone-

butanol fermentation analysis using subambient hplc column temperature. Enzyme

and Microbial Technology, 12(1):24 – 7. [cited at p. 20]

[Cacuci, 2003] Cacuci, D. G. (2003). Sensitivity and uncertainty analysis. Chapman &

Hall. [cited at p. 106]

[Cakir et al., 2006] Cakir, T., Raosaheb Patil, K., Ilsen Önsan, Z., Özergin Ülgen, K.,
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Appendix A

Dynamic Model Equations

dceGlc

dt
= −r0|1

dciACoA

dt
=

ρ

cX
(r0|1Yp,Glc − r1|11 + r11|1 + r2,3|1,7 − r1|3 − r1|9)− µ · ciACoA

dceACE

dt
= r11|2 − r2|11 − r2,3|1,7 −D · ceACE

dciAACoA

dt
=

ρ

cX
(0.5r1|3 − r3|7 − r3|4)− µ · ciAACoA

dciBCoA

dt
=

ρ

cX
(r3|4 + r6,3|4,7 − r4|5 + r5|4 − r4|10)− µ · ciBCoA

dciBUP

dt
=

ρ

cX
(−r5|4 + r4|5 + r6|5 − r5|6)− µ · ciBUP

dceBU

dt
= r5|6 − r6|5 − r6,3|4,7 −D · ceBU

dciAA

dt
=

ρ

cX
(r3|7 − r7|8)− µ · ciAA

dceACN

dt
= r7|8 −D · ceACN

dceETOH

dt
= r1|9 −D · ceETOH

dceBUOH

dt
= r4|10 −D · ceBUOH

dciACP

dt
=

ρ

cX
(r1|11 − r11|1)− µ · ciACP
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r1|11 = f(C1742) · cX · k1|11
ciACoA

Km1|11 + ciACoA

r11|1 = f(C1742) · cX · k11|1
ciACP

Km1|11 + ciACP

r11|2 = f(C1743) · cX · k11|2
ciACP

Km11|2 + ciACP

r2|11 = f(C1743) · cX · k2|11
ceACE

Km2|11 + ceACE

r2,3|1,7 = f(P0163,0164) · cX · k2,3|1,7
ceACE

Km2,3|1,7 + ceACE

ciAACoA

Km2,3|1,7 + ciAACoA

r1|3 = f(C2873) · cX · k1|3
ciACoA

2

Km1|3
2 +Kn1|3c

i
ACoA + (ciACoA)

2

r3|4 = f(C2708,2711,2712) · cX · k3|4
ciAACoA

Km3|4 + ciAACoA +
(ci

AACoA
)2

Ki3|4

r4|5 = f(C3076) · cX · k4|5
ciBCoA

Km4|5 + ciBCoA +
ci
BUP

Ki4|5

r5|4 = f(C3076) · cX · k5|4
ciBUP

Km5|4 + ciBUP

r5|6 = f(C3075) · cX · k5|6
ciBUP

Km5|6 + ciBUP

r6|5 = f(C3075) · cX · k6|5
ceBU

Km6|5 + ceBU

r7|8 = f(P0165) · cX · k7|8
ciAA

Km7|8 + ciAA

r1|9 = f(C3298,3299,P0162) · cX · k1|9
ciACoA

Km1|9 + ciACoA

r4|10 = f(C3298,3299,P0162) · cX · k4|10
ciBCoA

Km4|10 + ciBCoA

Ki10|4,10

Ki10|4,10 + ceBUOH

r3|10 = r2,3|1,7 + r6,3|4,7

r6,3|4,7 =
f(CAP0163,P0164) · cX · kceBU · ciAACoA

Km+ ciAACoA · ceBU +KnAciAACoA · (1 +
ci
AACoA

KiA ) + KnBceBU · (1 +
ce
BU

KiB )
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Scripts

B.1 Taverna Workflows

In this section the design and operation of work-flows with Taverna [Hull et al., 2006]

is introduced.

Taverna is a free work-flow management system based on Java. It offers access

to various web-services by third-parties through the Web Service Description

Language (WSDL). Such parties are e.g. the European-Bioinformatics Institute

from the European Molecular Biology Laboratory (EMBL-EBI), the National

Center for Biotechnology Information (NCBI), Kyoto Encyclopedia of Genes

and Genomes (KEGG) and BioMart. Furthermore, local services, like Beanshell

scripts, Java API, R scripts and Excel interaction, support the processing of

automated database queries. A list of accessible services is given on biocatalogue.

Taverna Workflow Services

Access to web services and scripts is granted via Simple Object Access Protocols

(SOAPs) [?] or Representational State Transfer (REST) services [?]. Both consist

of a defined number of input ports, the processing of inputs and the output ports

for the query results. A sequence of services is connected by linking the output

and input ports and, if necessary, by introducing formatting services.

Obtaining The Reactome

Since the recent change of accessibility of the KEGG-API, the here treated work-

flows needed entire re-structuring. Luckily, things got easier:

Download of the organism-specific maps from genes to enzymes, to reactions,

to compounds are possible from the respective sites through copy paste. From

these three lists the unique reaction identifiers serve as input for the reaction-
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pair mapping workflow. It extracts the reactions with a REST-service first, then

it extracts the different RPAIR-identifiers for each reaction-identifier. Similar to

this workflow, annotation of compounds and genes is performed (annotation genes,

annotation compounds).

Phylogenetic Comparison

Given a specific enzyme number, the gene-identifiers for all annotated organism

are retrieved in KEGG, this is done by the enzyme in organism-workflow. Due

to formatting issues, the list of genes from this workflow is reorganised by a

MATLAB-script, enzymelistconversion.m, before Cytoscape can be used.
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B.2 Static Model Scripts

B.2.1 Model Creation

The determineboundaryparameter.m script serves for the data generation to

determine the boundary parameter b that is used for integration of data to the

reactome graph. It requires five arguments at maximum:

• the reactome database from KEGG, with reaction-IDs in the first, gene-IDs

in the second, and reaction pairs (cpd: cpd:) in the third column,

• a data matrix, with genes in the rows and experimental conditions in the

columns,

• an optional string argument H-graph to evaluate the boundary parameter

for the augmentation, otherwise the G-graph is calculated,

• an optional column-number which data column corresponds to state s1,

otherwise it is the first,

• an optional column-number which data column corresponds to state s2,

otherwise it is the last column.

The output is of this script a three dimensional data-cube, the two variable

dimensions are values of b and time of the data. From these the number of active

genes, the number of active reactions, the number of active metabolites, and the

edges to nodes fraction are calculated.

figure show determination b.m then provides a visualisation of the data-cube.

CreateFilteredGraphs.m

Integration of data into the reactome database is done by this script, it requires

seven input parameters:

1. the output directory,

2. a data matrix as before,

3. the reactome database as before,

4. the column-number for the first state,

5. the column-number for the second state,

6. boundary parameter b,

7. a string, assessing how to augment:
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• both, both states serve for augmentation

• simple, no augmentation

• after, the first state only serves for augmentation

• before, the second state only serves for augmentation.

The output creates several nodelists that are converted into graphs by Cyto-

scape: the graph in states s1, s2, the graph for all reaction occurring in neither

state, and the graphs for all reactions activated or inactivated in both states.

B.2.2 Creation of a Comparison Database

Creation of the comparison database from chapter 3.4.1 requires the following lists

from two organisms: a list of genes, the annotation databases as downloaded from

taverna, and the mappings of genes to reactions. From these three, the Cytoscape

maps are constructed. An example file is given in bsu cac comp.m.

B.2.3 Creation of 3-HBDH Candidates

This analysis requires one approach to compare pfam-motifs: A script to generate

a map of pfam-motifs from the gene-annotation (CreateGeneMotifMAP.m). This

map is suited for import into Cytoscape. A script counts the occurrences of genes

and motifs in the map (CountOccurrences.m). Selection of the most frequent motifs

or genes is carried out by FindFrequentMotifs.m. For the clustering it is necessary

to find genes in the same clusters over different data (IdentifySameClusterGenes.m)

and a method to create subsets of the reactome in terms of the candidate genes

and their pfam-motifs (SelectFromGeneMotifMap.m). Finally the conversion into

matrix-format allows saving the results (SaveMapAsMatrix ).

Inputs for these methods are simple lists of genes that are derived from the

analyses in other programmes.

The example script Search 3HBDH.m shows the automated candidate generation

with the help of the beforehand mentioned scripts.
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B.3 Dynamic Model Scripts

Model creation requires two computational steps, the conversion of the Reactome

database into the SBTOOLBOX2-format (ConvertKEGG2SBToolbox2.m) and

the supplying of the model with data (ConvertStdModel2SBT.m).

B.3.1 Converting The KEGG-Database Into The Standard Format

For conversion from KEGG into the standard format in theKEGG2SBTOOLBOX2 -

script three data-inputs are required:

• the local database as discussed earlier that contains the mapping of tran-

scripts to reactions

• the model file that contains all desired reactions and compounds, this can

be achieved either manually or by using Cytoscape.

• a list of extracellular compounds

The deposited script allows the computation of a complete standard model with

all transcripts at place, Michaelis-Menten type kinetics for multiple substrates,

if necessary and standardised parameters for the reactions, following the same

scheme as for reaction-identifiers. It is not possible to manually create reactions

that are not present in the database, if such a reaction is desired, it has to be in

both files, the database and the model.

B.3.2 Integrating Data Into The Standard Format

Integration is performed by the ConvertStdModel2SBT -script. It requires four

files

1. the standard-model file,

2. the transcriptome level timeseries data,

3. the glucose consumption profile,

4. the optical density profile

and a parameter that controls the integration of transcriptome level data that

either is implemented directly or via simplified via PCA reduction (5.1).

B.3.3 Model Simulation

Parameter estimation of the models is readily done by SBPD and the SBPD

file structure. For model comparison, several data were fed into the constructed

models. For model validation, several parameter variations were performed.
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B.3.4 Sensitivity Analysis

Local Sensitivity Analysis

The local sensitivity analyses requires the symbolic computing package from

MATLAB. The DeriveModel.m file takes a SBTOOLBOX-model and calculates

the derivatives of the maximal velocities, integrates them back into the model to

allow simulation.

Global Sensitivity Analysis

The global sensitivity analysis is readily available through SBTOOLBOX-scripts.

In order to allow temporally resolved indices, a calculation script (MySensitiv-

ityAnalysis2.m) was wrapped around this script to allow the analysis of time

intervals and the SBTOOLBOX-scripts (SBsensglobalfast.m, rel sensglobaldefault-

objectiveSB.m) were adapted. This adaption includes the calculation of the

FAST-alternations for the whole time interval once. Then the calculation is split

into intervals and the sensitivity indices calculated per interval.
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B.4 Principal Component Analysis

B.4.1 Dynamic Features

The dynamic features extraction and calculation is performed by the dy-

namic features.m-script. It is used to change three dynamical features by adding

150% or substracting 50% of the original parameter

B.4.2 Clustering

master script.m

This is the main calling script of the clustering algorithm, all parameters are

supplied in this module, the input and output directories, the data input and

the genes input (in case not the whole data set is to be used). Then the data

filter options, nonan, nT, how many missing values are admissible in a single

transcript expression profile and how many time points are to be taken. Then the

PCA-parameters, ncoeff, ssec and lsec, how many components are to be considered

and how the PC-space C should be partitioned. As these two numbers are the

numbers of partition in one half-space, they are dissected into 2ssec ≤ 2lsec parts.

Finally, the percentage of relevant data used to do the PCA is another input.

Filtering will be applied on two levels, the maximal span of the data and the

information content. Last but not least, the name of the annotation datafile is

supplied.

myGetGenData.m

This file imports the data matrix, with gene-identifiers in the rows, and the

temporal dimensions in the columns. A struct is handled back, it corresponds to

the specific filtering options with maximal nonan missing values of length nT.

mySaveGenData.m

This routine saves the struct obtained from myGetGenData.m for the imputation

or from the file obtained from the imputation back into a csv-file.

Imputation

Imputation is performed based on a web-service offered by the MPI-Potsdam

called MetaGeneAlyse [Daub et al., 2003]. The output-file from mySaveGenData

can be readily uploaded after manual replacement of occurring ”NaN” into ”NA”.

This website offers the opportunity to impute missing points according to three

different analyses based on Principal component analysis.
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MyDataReduction.m

For meaningful data reduction we use a percentile approach. The lowest dynamics

and the highest entropy content are filtered out from the respective distributions

at a level of perc. These scripts are achieved using the Statistics Toolbox by

MATLAB. Filtered out genes are written out in individual files.

myPCA2.m

This script is the core module where the evaluation of the data’s properties hap-

pen.

It starts with the mapping of transcript expression profiles into the principal

component space of size ncoeff. For small ncoeff, one can generate a typographic

visualisation of different combinations of principal components, facilitating the

overview, what type of dynamic behaviours can be achieved.

In the next script, mycalculus.m, the individual transcript expression profile coef-

ficients are mapped on a sphere and the angles with respect to the first coefficient

are calculated. Subsequently, these angles are grouped into the pre-defined sectors

that represent the partition of the sphere into 2ssec large parts up to 2lsec small

parts.

Transcript profiles with similar dynamics are grouped using the script Simil-

arGenes.m which compares the vectors of sector membership with each other and

dependent and for rco=0 angular traits are calculated. For rco¿0 neighbouring

sectors are taken into account.

For transcript profiles of inverse dynamics, the same script compares the vector

of sector membership to the reflected sector.

These information are then evaluated in the script SharedClusters.m.

Clustering and Results

Finally, for any parameter rco, the program expects a cluster table file from

BioLayoutExpress 3D, that is generated by using the MCL-algorithm. This file is

then used to generate maps of cluster-identifiers to gene-identifiers to the data.
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