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Chapter 2

Introduction

2.1 Drug Discovery and Drug Design

The following section provides an overview over the process of drug discovery
and design.1 An in depth introduction can be found in these books [17, 18].
Steps in the process that have been treated in this thesis are pointed out in
the last paragraphs.

Solid biological basic research on disease mechanisms is nowadays the
basis of drug discovery and drug design. Ideally, one finds that stimulating
or inhibiting a certain target receptor (usually a protein) will help cure the
disease, ease the pain etc. Due to advances in genomics [19–21], proteomics
and other parts of systems biology, the analysis of signalling pathways [15] is
currently gaining importance in understanding complex disease mechanisms.
This set of methods can greatly facilitate the process of identification and
validation of drug targets (e.g. receptors).

One of the first steps in discovering a new drug is to develop an exper-
iment that allows for testing whether a molecule binds to the target. This
type of experiment is called assay. Once such an assay has been developed to
the point where it is applicable in an automated way, one chooses compounds
for investigation in high throughput screening (HTS). The number of com-
pounds depends on the budget of the company and can exceed one million
compounds. These are typically selected from a much larger number of com-
pounds that are available in-house or from external vendors. The majority
stems from combinatorial libraries and can be synthesized by machines using
a certain set of chemical reactions to combine predefined suitable building
blocks [22]. The step of choosing a collection of compounds for screening
from a larger set of available/feasible molecules will later be referred to as
library design. Results from HTS campaigns are very noisy, the effects of hit
compounds identified in HTS are therefore carefully examined in regular lab-
oratories. Out of the confirmed hits, one selects molecules as starting points
for developing lead compounds.

1The actual process depends on the company. This summary was partly inspired by
[16].
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8 Introduction

When looking for hits, assessing the potential of compounds using com-
putational methods (in silico methods) can be seen as an alternative to high
throughput screening. The most popular group of methods is called virtual
screening [23, 24]. Depending on which information is available, different
virtual screening protocols can be applied:

If, for example, the 3D structure of the target protein is known, one can
exploit it in different ways, commonly referred to as structure based design
[25]. One can simulate (or even calculate2) how different molecules fit into the
active site of the target. Depending on the amount of human intervention in
evaluating the goodness of the fit, this is either referred to as docking or high
throughput docking. The latter not only requires computationally efficient
algorithms and high performance computers / clusters, but also good scoring
functions. Alternatively, one can virtually build a molecule out of fragments
directly inside the active site of the protein model, choosing each fragment so
that the fit to the target is optimal. This strategy is called “de novo design”
[26–29].

Without a 3D structure of the target protein, one can investigate com-
pounds that are similar to know actives (active compounds) [30, 31]. These
may be natural products [32], drugs previously developed by other compa-
nies that are already on the market but still protected by patents or actives
reported in the literature. In the first two cases one looks for molecules where
the relevant functional groups can adopt 3D structures similar to the known
active compounds. At the same time, they are supposed to be somewhat
dissimilar in a chemical sense, because natural products are often expensive
to synthesize and patents for compounds also cover chemically very similar
structures. Looking for new compounds with similar activity as known ac-
tives is called ligand based virtual screening. As explained above, the goal is
typically not only to find new actives, but new actives of a different chemotype
or scaffold (hence the often used term scaffold hopping [33, 34] to describe
the goal). Pseudoreceptor models can be used to bridge ligand based- and
(protein-) structure based virtual screening [35].

Having found hits using any of the above methods, one proceeds to ex-
amining these few compounds in the lab and selects or develops [36] lead
compounds (short: leads) that are suitable for further development (see be-
low) in so called hit to lead programs.

In the following lead optimization phase, variants of these lead compounds
are synthesized in a more or less systematic way: The many decisions which

2Hybrid methods of molecular mechanics simulations (for most parts of the protein)
and efficient quantum mechanical methods like DFT [13, 14] (for the active site) can be
used to precisely calculate interaction energies.
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compound or small batch of compounds to synthesize and test next are often
made on the basis of very little information. The experience (and luck) of the
people making the respective decisions therefore have a lot of influence on the
duration of this phase. One continues until one finds a compound that has the
required properties or the project is cancelled. At this stage, compounds are
synthesized by humans. Together with some basic tests the costs can easily
reach 10,000 $ per compound. Some companies regularly stop a predefined
percentage of all projects to avoid investing too much into dead ends or too
difficult paths. Both for projects and for individual compounds this is some-
times referred to as “fail cheap - fail early” paradigm. Sometimes thousands
of compounds are made and tested until one finally succeeds; even 10,000
compounds are not uncommon. For promising compounds, extensive toxi-
cologic and pharmacologic profiles are done using computational methods,
laboratory experiments involving cells (in vitro testing) and in animal mod-
els. Finally, drug candidates are selected for first experiments with humans
& patent applications are submitted. The duration of the patent protection
depends on the country. Typical times for the United States and Europe are
20 years. Note that time starts running before clinical testing begins, i.e.
years before the drug reaches the market.

Clinical testing happens in four phases involving increasing numbers of
both patients and healthy volunteers (from 20-80 people in phase 1 to 1000-
3000 people in phase 3). One determines characteristics like the distribution
in the body, suitable dose range, potential side effects and effectiveness of the
new drug. Registration can be done after successful phase 3 trials. Ideally,
one then gets the permission to market the drug. After introducing the drug
into the market, further studies are performed (phase 4).

The whole process can cost on the order of a billion dollars and in rare
cases even exceed two billion dollars. Once the drug is on the market, one
can, in theory, sell it infinitely, but as soon as the patent protecting the
compound runs out, other companies are allowed to “copy” it. Not having
invested into basic research and development, these generic drug makers can
sell it at a very low price and still be profitable.

Speeding up the drug design process is therefore very desirable for the
following reasons:

• one can save many millions of euros by avoiding useless experiments
and finding good compounds faster

• one can increase the time that one spends alone on the market, pro-
tected by a still running patent and can recover investments into basic
research and development
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Traditionally, early research was very focussed on the effect on the target.
Properties relating to Absorption, Digestion, Metabolism, Excretion & Tox-
icity (ADME/Tox ) were investigated late in the lead optimization process.
In recent years, most companies have started considering these properties as
early as possible.

The author of this thesis contributed to developing models for the follow-
ing properties:

• Partition Coefficients (Sec. 5.2)

• Aqueous Solubility (Sec. 5.3)

• Cytochrome P450 Inhibition (Sec. 5.4)

• Metabolic Stability (Sec. 5.5)

• Ames Mutagenicity (Sec. 5.6)

• hERG Channel Blockade Effect (Sec. 5.7)

These models allow taking the respective properties into account already in
early development stages, i.e. when building libraries for high throughput
screening, in hit to lead programs and at the beginning of lead optimization.
Four of these models have been equipped with graphical user interfaces (see
Sec. 3.8) and deployed for use by researchers at Schering (now part of Bayer
Healthcare).

Furthermore, the author of this thesis participated in a ligand based virtual
screening project leading to new PPARγ agonists (Sec. 5.9).

Three new machine learning technologies aimed at lead optimization were
conceived. The first algorithm improves prediction accuracy for new com-
pound classes by means of a local bias correction. The other two algorithms
can help human experts in choosing new compounds to investigate: The first
method explains individual predictions of kernel based models (Sec. 4.3). The
second method identifies the features that are most promising for optimizing
each individual molecule (Sec. 4.4 and 5.8).
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2.2 Machine Learning

The following section introduces general machine learning paradigms and
methods. The next section discusses the state of the art, challenging aspects
and the authors contributions to machine learning in drug discovery and drug
design.

Machine learning can be regarded as data driven generation of predic-
tive models. Supervised machine learning assumes that there is a set of n
given pairs {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi ∈ Rd denotes the vector
of the d feature (descriptor) values calculated in the pre-processing for the
object (chemical compound) i and yi refers to the corresponding label. One
distinguishes two types of supervised learning problems, depending on the
structure of y. For classification, y consists of a finite number (very often
two, sometimes more) of class labels (i.e. mutagenic vs. non-mutagenic),
and the task is to correctly predict the class membership of objects. For
regression, yi ∈ R, and the task is to predict some real valued quantity (i.e.
a property like a binding constant) based on the object features. Training
examples are assumed as ideally identically distributed samples from a prob-
ability distribution PX×Y . One aims to find a function f which can predict
the label for unknown objects represented as feature vectors x.
When measuring the quality of f , contradictory aspects have to be consid-
ered: On the one hand, the complexity of the function f must be sufficient to
express the relation between the given labels (y1, y2, . . . , yn) and the corres-
ponding feature vectors (x1,x2, . . . ,xn) accurately. On the other hand, the
estimating function should not be too complex (e.g. too closely adapted to
the training data) to allow for reliable predictions of unknown objects. This
tradeoff is captured mathematically in the minimization of the regularized
empirical loss function [37]:

minRreg
emp(f) =

1

n

n∑
i=1

`(f(xi), yi)︸ ︷︷ ︸
quality of fit

+ λ · r(f)︸ ︷︷ ︸
regularizer

. (2.1)

where l : R× R→ R refers to a loss function, r : L→ R to a regularization
function and λ to a positive balance parameter. The first term in Equation
2.1 measures the quality of the fit of the model on the training data, and
the second term penalizes the complexity of the function f to prevent over-
fitting. The parameter λ is used to adjust the influence of the regularization
function r. In addition to preventing over-fitting, it is often used to ensure
that the problem in Equation 2.1 is not illposed which is required by various
optimization methods. The loss function ` determines the loss resulting from
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the inaccuracy of the predictions given by f . Many regression algorithms use
the squared error loss function

`(f(xi), yi) = (f(xi)− yi)2. (2.2)

Most inductive machine learning methods minimize the empirical risk func-
tion with respect to different regularization terms r and loss functions `.

Popular supervised learning algorithms include Support Vector Machines
[38–42], Gaussian Processes [11, 43, 44], Decision Trees [45] and Artificial
Neural Networks [46–48]. The most commonly used way of representing
molecules is choosing one out of many available tools to calculate a vector
of so called chemical descriptors characterizing the molecule [49]. Standard
learning algorithms for vectorial data can then be applied to these descrip-
tors. Sometimes the features of the test set are already available when the
model is trained. I.e. one builds a model based on a training set of chemical
molecules, intending to apply this model to an already collected/generated
library of molecules. This setting is generally referred to as semi-supervised
machine learning.3 If a learning machine can suggest which compounds to
investigate next to achieve the maximum improvement of the model, we are
in an active learning scenario [50]. Finally, sometimes no labels exist for a
collection of objects and one seeks to detect some type of order in the data
based on the features alone. This setting is commonly called unsupervised
machine learning or clustering [51–57]. More general definitions of machine
learning also include different types of signal processing (e.g. in brain com-
puter interface systems [58–64]), and various unsupervised and supervised
projection and dimensionality reduction algorithms [65–73]. A recent ini-
tiative in the machine learning community [74] advocates the use of open
source software for machine learning and points to a free software repository
established to facilitate this move.

In the work leading up to this thesis, non-linear Bayesian regression and
classification using Gaussian Process priors have been applied to different
learning tasks and are also used as the starting points for newly developed
algorithms for explaining individual predictions and eliciting hints for com-
pound optimization. Therefore, a separate section has been devoted to Gaus-
sian Processes, namely Sec. 3.3.

3Other definitions of semi-supervised machine learning are more broad and also include
procedures where any set of unlabeled data is used in the learning process.
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2.3 Machine Learning in Drug Discovery and Drug Design

2.3.1 State of the Art

In 2005, when work leading to this thesis commenced, there were no predic-
tive models for metabolic stability (Sec. 5.5) and the hERG channel blockade
effect (Sec. 5.7) available on the market. Existing predictive tools for par-
tition coefficients (Sec. 5.2), aqueous solubility (Sec. 5.3) and mutagenicity
(Sec. 5.6) performed reasonably well on publicly available benchmark sets of
compounds, but did not generalize to the in-house compounds of pharma-
ceutical companies. Figure 2.1, a scatter-plot from predicting log D7 using
the commercial tool ACD v. 9.0 [75] for 7013 in-house compounds of Scher-
ing, illustrates the problem: We see a lot of compounds where the predictions
deviate from the true values by several log units. Most of them occur for com-
pounds with relatively high log D7. Unfortunately, these are the compounds
that tend to bind proteins very well and are therefore very interesting in the
context of drug discovery & design (most drug targets are proteins).

Furthermore, in 2005 none of the existing commercial models for ADME/-
Tox properties had the ability to quantify the confidence into each individual
prediction. As explained in Sec. 3.7, this is a very desirable feature in drug
discovery & drug design, where models are often operated outside of their
respective domains of applicability.

The causes of the anti-inflammatory and anti diabetic effects of bermuda
grass (cynodon dactylon) were unknown until our screening for new PPARγ
agonists (Sec. 5.9) lead to a first hypothesis.

When understandable models for application in lead optimization were
sought, researchers resorted to building linear models based on small train-
ing sets of compounds represented by small sets of descriptors. Using all
available training data and/or complex kernel-based models while still being
able to understand each individual prediction were not yet feasible (Sec. 4.3).
Furthermore, there was no technology that allowed to elicit hints for com-
pound optimization (Sec. 4.4).
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Drug Discovery poses Challenging Machine Learning Tasks
Challenging Aspect Author’s Contribution

flawed representation concepts
multiple mechanisms
activity cliffs
systematical measurement errors smart preprocessing, prior knowledge
heteroschedastic noise (labels) smart preprocessing, prior knowledge
outlying compounds (labels) smart preprocessing
outlying compounds (features) smart preprocessing
missing values (features) smart preprocessing
scarce training data publish large benchmark set Sec. 5.6

Specific Challenges Faced in Lead Optimization
black-box inacceptable algorithm for explaining Sec. 4.3
hints for optimization desired algorithm for giving hints Sec. 4.4
covariate shift, but new labels av. algorithm for bias correction Sec. 4.2
very high reliability desired confidence estimates Sec. 3.7

Table 2.1: Overview over challenging aspects arising when constructing machine learning
based models for use in drug discovery and drug design and the author’s contributions.
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Figure 2.1: This Scatter-plot from predicting log D7 using the commercial tool ACD v.
9.0 [75] for 7000 in-house compounds of Schering illustrates how commercial tools typically
perform well on public benchmark data but do not perform well on in-house data. See
Sec. 5.2 for details on log D prediction.
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2.3.2 Challenging Aspects and the Author’s Contributions

When constructing machine learning based models for use in drug discov-
ery and drug design, many challenging aspects arise. Table 2.1 presents an
overview over these challenges. The next subsection introduces challenging
aspects that have not been treated in this thesis and points to more detailed
explanations given in the appendix. The following four subsections are ded-
icated to challenging aspects where the author has contributed to progress
in the field. This includes newly invented algorithms, algorithms initially
introduced into the field, careful pre-processing and publishing a new large
benchmark data set

Challenging Aspects Not Treated

Molecules are dynamical three dimensional objects, exhibiting many different
types of flexibility (see Sec. A.1.1). Available representations of molecules
for machine learning either completely ignore this fact by considering only
features derived from the two dimensional graph of the molecule, or they
consider a small arbitrarily chosen number of 3D structures that may or may
not be relevant for the task at hand. Consequently, the accuracy that can
be achieved by machine learning models based on these representations is
limited. See Sec. A.1.1 for a more detailed discussion including examples.

As explained in Sec. 2.2, popular machine learning algorithms rely on the
assumption that training data and future test data are sampled from the
same underlying probability density, and further assume that the conditional
distribution of target values given the input features (descriptors) is the same
in both test and training data. Violation of the first assumption is often re-
ferred to as covariate shift or dataset shift and is encountered in most drug
discovery applications (see Sec. A.1.2). If new measurements have become
available since the model has been built, bias correction allows to achieve
better generalization performance (see subsection on new algorithms below).
As of today, there is no satisfying solution known that allows improving pre-
dictions in case of violation of the second assumption (multiple mechanisms,
see Sec. A.1.3). In the work leading up to this thesis, datasets contain-
ing multiple mechanisms have been encountered in the studies described in
Sec. 5.5 (Metabolic Stability), Sec. 5.3 (Aqueous Solubility), Sec. 5.4 (Cy-
tochrome P450 Inhibition) and Sec. 5.6 (Ames Mutagenicity). See Sec. A.1.3
for a more detailed discussion. Considering confidence estimates to identify
reliable predictions can partially alleviate this problem (see separate section
below).

Machine learning in drug discovery and design relies on the assumption
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that similar molecules exhibit similar activity. Unfortunately, many relevant
properties exhibit sudden jumps in activity. The existence of such activity
cliffs is not entirely surprising since molecular recognition plays a crucial role
in determining properties like binding to receptors or the active sites of en-
zymes. In this thesis, activity cliffs are present in PPARγ binding (Sec. 5.9),
Metabolic Stability (Sec. 5.5), Cytochrome P450 Inhibition (Sec. 5.4), Ames
Mutagenicity (Sec. 5.6), hERG Channel Blockade Effect (Sec. 5.7) and to
some degree even in Aqueous Solubility (Sec. 5.3). See Sec. A.1.4 for more
information on activity cliffs.

Data Scarcity Alleviated by New Benchmark Data Set

Today, the academic part of the field of chemoinformatics still suffers from
a lack of large high-quality datasets. A new dataset on Ames mutagenicity
was collected from the literature by collaborators at Bayer Schering Pharma
and jointly released to the public (Sec. 5.6). The set attracted the imme-
diate attention of numerous researchers. Currently, a joint publication by
researchers from eight different groups across the world is in preparation.

Challenging Aspects Handled in Data Pre-Processing

Systematical measurement errors, heteroschedastic noise, compounds with
outlying labels or features or even missing values in some features necessi-
tate carefully performing various pre-processing steps before training machine
learning models. A typical workflow for constructing machine learning mod-
els based on data from drug discovery & design is indicated in Figure 2.2.
Note the prominent position and size of the box labeled “pre-processing”.
Therefore, separate sections have been developed to the most important pre-
processing steps:

Visualizing many different aspects of new datasets can help detect poten-
tial problems (e.g. strong outliers) early and can give hints as to the difficulty
of the modeling task, sensible choice of kernels & parameters etc. In the first
subsection of Sec. 3.2, recent examples are used to illustrate how many useful
hints and pieces of information can already be found using linear principle
component analysis (PCA).

In the chemoinformatics community, there exists a widespread belief that
feature selection or dimension reduction using projection techniques is essen-
tial for any modelling task. The second subsection in Sec. 3.2 acknowledges
that while there are good reasons for doing feature selection, it is definitely
not always necessary and can even be harmful.
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Figure 2.2: A typical workflow for constructing machine learning models based on raw
data from drug discovery & design. Note the prominent position and size of the box
labeled “pre-processing”.
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The third subsection in Sec. 3.2 discusses detection and analysis of out-
liers by visual inspection, using outlier indices in descriptor space, based on
prior knowledge and when multiple measurements per compound are avail-
able. Furthermore, the identification of outlying predictions with respect to
the predicted confidence estimates of Gaussian Processes and a “reverse en-
gineering” exercise of models & training sets for a-posteriori explanation of
these outlying predictions is presented.

Increasing Reliability of Predictions by Considering Confidence Estimates

As explained in Sec. 2.2, most machine learning algorithms rely on the fact
that training data and future test data are sampled from the same underlying
probability density. This assumption is typically violated in drug discovery
applications (i.e. they exhibit covariate shift or dataset shift, see Sec. A.1.2).
In other words: In drug discovery and drug design, predictive models are
often operated outside of their respective domain of applicability (DOA).
Unless some new measurements have been made since the model has been
built (see next subsection for new algorithms developed for this scenario), it
may not be possible to achieve better predictions. In this case, in may be
very helpful to know which predictions are most likely incorrect (outside the
DOA) or correct (inside the DOA). Sec. 3.7 explains this concept in more
detail and lists heuristics that have been conceived in the chemoinformatics
community.

Gaussian Process models can produce a predictive variance along with
each individual prediction. This variance can be interpreted as an estimate
of the confidence in each individual prediction. This concept has been in-
troduced to the chemoinformatics community during the work leading up to
this thesis. Sec. 3.3 explains Gaussian Process Models and points to relevant
publications. In this thesis, the practical usefulness of predictive variances is
investigated in Sec. 5.2 (Partition Coefficients), Sec. 5.3 (Aqueous Solubility),
Sec. 5.5 (Metabolic Stability) and in preparing hit-lists in a virtual screening
for new PPARγ agonists (Sec. 5.9).

Newly Developed Algorithms

As time progresses, new projects are started and new compound classes are
explored. As explained in Sec. 2.2, almost all supervised machine learning
algorithms rely on the fact that training data and future test data are sampled
from the same underlying probability density. Violation of this assumption
(covariate shift) may lead to a bias. More information about covariate shift
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can be found in the appendix Sec. A.1.2. In the lead optimization application
scenario, one question that regularly arises is how to best use the first new
measurements for compounds belonging to a newly explored compound class,
i.e. a new part of the chemical space. New different model selection and bias
correction algorithms are introduced in Sec. 4.2 and an evaluation of these
algorithms in the context of the hERG Channel Blockade Effect is presented
in Sec. 5.7.

In this thesis, two separate methodologies for explaining individual pre-
dictions of (possibly non-linear) machine learning models are presented. The
method presented in Sec. 4.3 explains predictions by the means of visualiz-
ing relevant objects from the training set of the model. This allows human
experts to understand how each prediction comes about. If a prediction con-
flicts with his intuition, the human expert can easily find out whether the
grounds for the models predictions are solid or if trusting his own intuition
is the better idea.

The method presented in Sec. 4.4 utilizes local gradients of the model’s
predictions to explain predictions in terms of the locally most relevant fea-
tures. This not only teaches the human expert which features are relevant
for each individual prediction, but also gives a directional information. Ab-
stractly speaking, one can learn in which direction a data point has to be
moved to increase the prediction for the target value. In the context of lead
optimization, this means that the human expert can obtain a type of guidance
in compound optimization.





Chapter 3

Methods (Utilized / Improved)

3.1 Overview

This chapter introduces the methodology that was applied and partially re-
fined in the work leading up to this thesis. Methods that have been newly
developed are presented in Chapter 4.

The first four sections in this chapter deal with topics that are considered
essential parts of any machine learning study in chemoinformatics. Each
section focuses on the aspects that are most relevant to this thesis as a whole
and points to the literature for more comprehensive coverage of the respective
topic.

When first analyzing a new (raw) set of data, many aspects need to
be considered. Systematical measurement errors, heteroschedastic noise,
compounds with outlying labels or features or even missing values in some
features necessitate carefully performing various pre-processing steps before
training machine learning models. Therefore, Sec. 3.2 contains separate sub-
sections on important pre-processing steps, namely visual data inspection,
feature selection and outlier detection & analysis.

The account of machine learning algorithms (Sec. 3.3) focuses on non-
linear Bayesian regression and classification using Gaussian Process priors
(GP), because this method was introduced into the field of chemoinformatics
and for the first time, individual confidence estimates were provided based
on a solid theoretical foundation. The section explains how GPs work and
discusses their advantages in the context of chemoinformatics.

Sec. 3.4 discusses evaluation strategies that allow reaching all the goals
that one may have in a typical modeling study: Starting from a batch of data,
one selects features, chooses a modeling algorithm and tunes free parameters.
In the end one seeks to estimate the generalization performance including
or excluding extrapolation. Care has to be taken to both obtain models
that generalize well and realistically estimate this achieved generalization
performance.

The section on performance indicators contains a mostly informal col-
lection of the author’s insights regarding various standard loss functions,

21
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modified versions of standard loss functions and a new loss function that was
conceived to express the specific goals of a virtual screening application.

The following three sections deal with more advanced topics.
As detailed in Sec. 3.6, multiple kernel learning allows to simultaneously

take different aspects of the same piece of information into account. Further-
more, one can use this technique to combine heterogeneous types of informa-
tion (e.g. vectorial molecular descriptors & molecular graphs).

A typical challenge for statistical models in the chemical space is to ade-
quately determine the domain of applicability, i.e. the part of the chemical
space where the models’ predictions are reliable. Sec. 3.7 treats both heuris-
tics that have been previously used in the chemoinformatics community and
recent probabilistic models.

When trying to establish new computational methodology that can be
relevant to the work of bench chemists (who tend to focus on the synthetic
aspects of chemistry), it is necessary to adapt to their needs and preferences.
Sec. 3.8 describes a graphical user interface that allows easy access to models
that have been developed with contributions by the author of this thesis.
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3.2 Data Pre-Processing

A typical workflow for constructing machine learning models based on data
from drug discovery & design has been introduced in Figure 2.2 on page 17.
Note the prominent position and size of the box labeled “pre-processing”. In
this section, three separate subsections illustrate important pre-processing
steps.

The first subsection lists a number of possible first steps in analyzing
a new dataset. Visualizing many different aspects can help detect poten-
tial difficulties early and can give hints as to sensible choices of kernels &
parameters and the difficulty of the modeling task.

In the chemoinformatics community, there exists a widespread belief that
feature selection or dimension reduction using projection techniques is essen-
tial for any modelling task. The second subsection acknowledges that while
there are good reasons for doing feature selection, it is definitely not always
necessary and can even be harmful.

The third subsection discusses detection and analysis of outliers by visual
inspection, using outlier indices in descriptor space, based on prior knowledge
and when multiple measurements per compound are available. Furthermore,
the identification of outlying predictions with respect to the predicted con-
fidence estimates of Gaussian Processes and a “reverse engineering” exercise
of models & training sets for a posteriori explanation of these outlying pre-
dictions is presented.

Visual Data Inspection

Research papers tend to focus on the final results of model building & vali-
dation, while skipping over some of the preliminaries. This section will list a
number of possible first steps in analyzing a new dataset. Visualizing many
different aspects can help detect potential problems (e.g. strong outliers)
early and can give hints as to the difficulty of the modeling task, sensible
choice of kernels & parameters etc. Properties generally useful to visualize
include:

• histogram of the target values

• 2/3 D plots of raw/normalized descriptor values

• 2/3 D plots of correlation between descriptors (see Fig. A.4 in Sec. A.4
for an example)

• plots of linear/kernelized principle component analysis (PCA) compo-
nents of all/most relevant descriptors [76–81]
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Figure 3.1: Compounds used in modeling log D, projected onto the first two principle
components obtained by linear PCA. The color of each point encodes the target value of the
respective compound. One can observe a smooth transition from low log D compounds at
the bottom left corner of the plot to high log D compounds at the top right corner. Under
these circumstances, one can expect that modeling log D will be feasible.

• plots of kernel matrices (if kernel methods are being applied)

In the following paragraphs, recent examples will be used to illustrate how
many useful hints and pieces of information can already be found using linear
principle component analysis (PCA). The difficulty of modeling partition
coefficients (log D) and aqueous solubility of compounds is estimated from
the respective visualizations and the identification of outliers in a dataset on
the hERG channel blockade effect is demonstrated.

Figure 3.1 results from a linear PCA of a subset1 of the features used
in modeling the log D dataset discussed in Sec. 5.2. Each compound in the
dataset is represented as a dot in the coordinate system. The first two princi-
ple components determine the x and y coordinate, respectively, and the log D
value of the compound is shown through the color of the respective point.
We can observe a strong relationship between the position of the points and
their color. Apparently, the first two components alone contain so much in-
formation about each compound that it will be easy to estimate its log D
quite accurately.

1A subset of relevant features was selected using the p-values for the hypothesis of
linear correlation of each feature with the label as determined in a permutation test using
1000 random permutations of the labels.
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Figure 3.2: Compounds used in modeling aqueous solubility, projected onto the first
two principle components obtained by linear PCA. The color of each point encodes the
target value of the respective compound. We can observe some clusters with compounds of
similar solubility and in some cases smooth transitions from one cluster to the next. Under
these circumstances, one can expect that modeling will be feasible, although somewhat
less easy than the log D task presented previously. Compounds in the external validation
set are marked with black circles and are projected onto a small subspace of the 2 D plot.

Figure 3.2 shows a similar plot for set of data on the aqueous solubility of
compounds. Again one can observe a relationship between the position and
the color of each point, but this relationship seems to be somewhat less obvi-
ous than the previously discussed log D task. Additionally, the black circles
representing external validation compounds only span a small subspace of the
data. This can be taken as a hint that the covariate shift phenomenon may
be present. See Sec. 5.3 for a discussion of modeling aqueous solubility and
Sec. A.1.2 for a discussion of the covariate shift phenomenon. Indeed, model-
ing aqueous solubility turned out to be more challenging than the previously
mentioned log D task.

Figure 3.3 shows different linear PCA plots for a dataset used to model the
hERG channel blockade effect (see Sec. 5.7). In all three plots, the position
of each compound is determined by the first two principle components of the
ChemaxonFP descriptor set2. One can observe a sparse cloud of points below
the dense region.

2Out of all four available descriptor sets, the the ChemaxonFP descriptors were chosen
b.c. in the resulting visualizations the outliers stand out most clearly.
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Figure 3.3: PCA visualizations of a dataset used to model the hERG channel blockade
effect of molecules (represented by ChemaxonFP descriptors) show outliers with respect
to the first two principle components (sparse cloud of points below the dense region). Very
few of these are automatically labeled as outliers when considering only the ChemaxonFP
descriptors (subfigure a), probably because the two dimensional plot does not conserve
the neighborhood relationships present in the data (subplot b). When labeling outliers
based on four different sets of descriptors, a larger fraction of the sparse bottom cloud is
recovered (subplot c).

The data was analyzed using the κ, γ and δ indices introduced by Harmel-
ing et al. (see third subsection in Sec. 3.2 and [82]). The first two in-
dices, κ and γ, are variants of heuristics that have been previously used in
the chemoinformatics community (see Sec. 3.7, paragraph on distance based
methods): κ is simply the distance to the kth nearest neighbor and γ is the
mean distance to k nearest neighbors (i.e. a mean of scalers). The last index,
δ, corresponds to the length of the mean vector to k nearest neighbors (i.e.
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a mean of vectors). Since κ and γ are only based on distances, they do not
explicitly indicate whether interpolation or extrapolation is going to be nec-
essary to make a prediction. δ allows to make this distinction and indicates
exactly how much extrapolation is necessary.

When marking the 503 most outlying points out of all 676 points based
on each points δ index (for k = 5), we see that only very few points from the
sparse cloud below the dense region are selected (Figure 3.3a). This lack of
agreement between the δ indices and the two dimensional projection proba-
bly results from the fact that neighborhood relationships are not conserved
in the projection. Figure 3.3b illustrates this issue: The blue lines indicating
each points nearest neighbor with respect to all descriptor dimensions often
connect points that are not neighbors in the two dimensional projection. In
Figure 3.3c, a point is marked in red if it is in the top 50 of δ indices for
any of the four sets of descriptors used to model the hERG channel block-
ade effect. When selecting the 50 most outlying compounds with respect to
four different descriptor sets, a maximum of 200 compound could be marked
as outliers. However, only 117 compounds are selected as outliers, because
many compound are considered outliers with respect to more than one set of
descriptors. Comparing Figure 3.3a and Figure 3.3c, we find that incorpo-
rating information about compounds that are outliers with respect to other
descriptor sets than ChemaxonFP helps to recover a larger fraction of points
in the sparsely populated cloud below the dense region in all three plots in
Figure 3.3. The complete evaluation of single models (see [4]) was then per-
formed twice, once including and once excluding the 117 potential outliers.
For the more advanced algorithms (SVM and GP) the resulting performance
did not differ significantly for the two cases. It was concluded that the GP
and SVM learning algorithms are robust enough to deal with the outliers in-
cluded in the present set of data. Therefore all compounds from the original
set were included in the evaluation of both single and ensemble models (see
Sec. 3.2 and Sec. 5.7 for details).

In conclusion, using linear PCA, the relative difficulty of modeling log D
and aqueous solubility of compounds was correctly estimated from the re-
spective visualizations. The identification of outliers in a dataset on the
hERG channel blockade effect is demonstrated: From the visualizations, one
can learn that the κ, γ and δ indices can be used to automatically find
outliers. The agreement of visually and automatically identified outliers
increases strongly when indices calculated from additional feature sets are

3Motivated by the histogram of δ indices for each descriptor set, the number of outliers
was set to 50, i.e. by this working definition, a compound is an outlier if its δ-index is in
the top 50 of δ-indices for each set of descriptors.
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considered in the automatic detection procedure.
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Feature Selection vs. Identifying Important Features

In the chemoinformatics community, there exists a widespread belief that
feature selection (or dimension reduction using projection techniques such
as linear PCA oder Kernel PCA [76–81]) is essential for any modelling task
(see [83–85], [86] and references therein). The following section acknowledges
that while there are good reasons for doing feature selection, it is definitely
not always necessary and can even be harmful [87, 88].

Selecting a small set of features from a given larger set is usually done
with one or both of these goals in mind:

• Reduce the number of features to be used by a given machine learning
algorithm.

• Learn more about a given dataset, i.e. make sure that features that
correlate with the target value are not artifacts, but do make sense in
a physical / chemical way.

There are different possible reasons why one might want to reduce the number
of features that will be used in learning:

• Some learning algorithms (e.g. plain unregularized linear regression)
fail to converge when correlated features are present. Eliminating cor-
related features by feature selection or projection methods is therefore
essential.

• In some learning algorithms controlling the complexity of the learned
models is made more difficult by using a larger number of features.

• Using a smaller number of features reduces the computational cost of
any learning algorithm. Depending on the algorithm, the difference
may or may not be a good reason to perform feature selection.

When using a learning algorithm that provides an easy way of controlling the
complexity of the resulting model, like Gaussian Processes or Support Vector
Machines, including many features does not have a negative impact on the
models generalization performance, even if they are correlated, misleading
or just noise. This finding was confirmed in a number of studies [3–12].
Feature selection algorithms were therefore usually applied to investigate the
importance of individual descriptor dimensions to learn more about the data
(see the last paragraphs of this section).

There is a number of ways in which feature selection can have a nega-
tive impact on modeling: In the end, one typically wants to estimate the
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generalization performance of the models one constructed. Feature selection
easily leads to overfitting: The resulting model will be too closely adapted to
the given dataset. This has two big backdraws at the same time: Firstly, the
performance on new data is worse that it could have been with proper feature
selection (or maybe no feature selection at all) [87, 88]. Secondly, general-
ization estimation based on models that overfit via global feature selection
leads to overoptimistic results, even if the models themselves are evaluated
in a sensible way (see Sec. 3.4 for a discussion).

In the special case of Gaussian Processes we found that using a small sub-
set of descriptors sometimes results in only slightly decreased accuracy when
comparing to models built on the full set of set descriptors. The predictive
variances, however, turn out to be too optimistic [7, 8, 12]. In other words:
The target value is predicted accurately for most compounds, but the model
cannot correctly detect whether the test compound has, for example, addi-
tional functional groups. These functional groups might not have occurred
in the training data, and were thus excluded by the feature selection step.
In the test case, the information about these additional functional groups is
important since it helps to detect that these compounds are different from
those the model has been trained on, i.e., the predictive variance should in-
crease. Including whole blocks containing important descriptors leads to both
accurate predictions and predictive variances. For a GP model with individ-
ual feature weights in the covariance function these surplus descriptors can
be given small (but non-zero) weights during training.4 In consequence the
model has more information than it needs for just predicting the target value
and can respond to new properties (functional groups etc.) of molecules by
estimating a larger prediction error.

As mentioned in that last paragraph, Gaussian Process models can use co-
variance functions with individual weights for each feature dimension. These
parameters are then automatically set in the learning phase. Unless one uses
adequate priors, the algorithm tends to set many feature weights to zero,
thereby effectively turning the weighting into an internal feature selection
mechanism. Just as any other feature selection procedure, this will some-
times lead to overfitting the data [88]. Nevertheless, this procedure can be
used to learn something about the training data: During our studies on aque-
ous solubility, and partition coefficients (log D and log P) features with high
weights included the number of hydroxy groups, carboxylic acid groups, keto
groups, nitrogen atoms, oxygen atoms and total polar surface area. These
features are plausible when considering the physics involved, see [7, 11, 12]
for details.

4This goal can be achieved by imposing appropriate priors on the feature weights.
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In trying to understand more complex chemical or biological phenomena,
a more fine grained analysis of the relevance of individual features may be
helpful. A procedure for identifying locally relevant features, i.e. features rel-
evant to the prediction produced for each individual molecule, is introduced
in Sec. 4.4.

Outlier Detection & Analysis

In the work leading up to this thesis, the following types of detection and
analysis of outliers have been applied:

• Identification of outlying compounds by visual inspection

• Identification of outlying compounds using outlier indices in descriptor
space

• Identification of outlying measurements based on prior knowledge

• Identification of outlying measurements when combining multiple mea-
surements per compound

• “Reverse engineering” models & training sets for a posteriori expla-
nation of outlying predictions (outlying with respect to the predicted
confidence estimates)

Visual inspection of different aspects of each new dataset is useful in many
ways beyond pointing to possible outliers. Therefore, a separate subsection
has been devoted to this topic, namely the first subsection in Sec. 3.2. Each
of the remaining four topics is discussed in one of the following paragraphs.

Identification of outlying compounds using outlier indices in descriptor space

Many kernel based learning algorithms (if regularized properly) are robust
enough to deal with outliers in descriptor space as encountered during the
work leading up to this thesis. Therefore it is often not necessary to remove
any compounds from these datasets. The following paragraph illustrates
this typical case: While constructing models for the hERG channel blockade
effect (see Sec. 5.7), visual inspection of the raw descriptors and different PCA
visualizations indicated that several percent of all compounds in the data set
might be outliers (see the first subsection in Sec. 3.2 and [4]). Therefore, it
was decided to analyze the data considering the κ, γ and δ indices introduced
by Harmeling et al. [82]. κ and γ are variants of local density estimators
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that are already established in the chemoinformatics community (see Sec. 3.7,
paragraph on distance based methods). δ is the length of the mean vector
to k nearest neighboring compounds in descriptor space. It measures locally
just how much extrapolation is required to make a prediction for each new
compound. As described in the context of visual data inspection (see the first
subsection in Sec. 3.2), the first modeling experiments have been conducted
twice. Once after removing outliers based on their δ indices and once with
all compounds included. Both kernel based algorithms (Gaussian Process
regression (GP) and Support Vector regression (SVR)) performed well, even
with outlying compounds in the training set. It was concluded that the GP
and SVR learning algorithms are robust enough to deal with the outliers in
this set of data and all compounds were used throughout the study. See
Sec. 5.7 for details.

Identification of outlying measurements based on prior knowledge

Machine learners (i.e. experts for machine learning) are typically not experts
in every field of science and engineering where they apply their algorithms.
However, it is very desirable to understand as much as possible about the
problem to be modeled: Any prior information may be useful in modeling.
In the case of predicting the metabolic stability of compounds (see Sec. 5.5),
the training set of data was generated by measuring the percentage of each
compound remaining after incubation with liver microsomes of humans, rats
and mice, respectively (for details on the procedure see [6]). It follows that
measurements should span the range between 0 % and 100 %. In practice,
however, some values exceed 150 %. Upon noticing this fact in a first visual
inspection of the data (first subsection in Sec. 3.2), it was found that mea-
surements exceeding 100 % by up to 20 % can be explained by measurement
noise. The most plausible explanation for measurement values exceeding
150 % was issues like too slow dissolution: In these cases, the compounds
are only partially dissolved when the incubation is started and continue to
dissolve during the incubation period. Therefore, it was decided to filter out
the most extreme measurements and otherwise treat metabolic stability as a
classification problem (see Sec. 5.5 for details).

Identification of outlying measurements when combining multiple measure-
ments per compound

Datasets with multiple measurements for some of the compounds in the re-
spective datasets were available in the studies described in Sections 5.3 and
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5.5. Such measurements are merged to obtain a consensus value for model
building. For each compound, one generates the histogram of experimental
values. Characteristic properties of histograms are the spread of values (y-
spread) and the spread of the bin heights (z-spread). If all measured values
are similar (small y-spread), the median value is taken as consensus value. If
a group of similar measurements and smaller number of far apart measure-
ments exists, both y-spread and z-spread are large. In this case one treats the
far apart measurements as outliers, i.e., one removes them and then uses the
median of the agreeing measurements as consensus value. If an equal num-
ber of measurements supports one of two (or more) far apart values (high
y-spread and zero z-spread), one discards the compound. The only free pa-
rameter in this procedure is the threshold between small and large y-spreads.
When modeling aqueous solubility, this value was set to the experimental
noise value (0.5 log-units). In modeling metabolic stability, this threshold
was chosen as 25 units.

In addition to removing outlying measurements, the merging procedure
introduced in the last paragraph also allows for passing extra information
to learning algorithms capable of using it. Based on the assumption that
consensus values based on several agreeing measurements will be more re-
liable than single measurements one can divide all compounds into groups
encoding consideration of 1, 2 or more agreeing measurements, and pass this
“noise group” information to the Gaussian Process learning algorithm. In
a study on aqueous solubility, a noise level of 0.5 log units was learned for
the group of compounds where only one measurement was available. This
observation agrees with the prior knowledge about the experimental uncer-
tainty. Compared to single measurements, smaller noise values were learned
for compounds where 2, 3 or more agreeing measurements were available, see
[11].

A posteriori explanation of outlying predictions (outlying with respect to the
predicted confidence estimates)

The predictions of GP models are Gaussian distributions, characterized by a
mean and a variance. The variance can be transformed into a standard devi-
ation σ for use as a confidence estimate (see also Sec. 3.7). If all assumptions
concerning the data and it’s distribution are met (see Sec. A.1.2, A.1.3), 68 %
of all predictions should be within 1 ∗σ, 95 % within 2 ∗σ and 99,7 % within
3∗σ. Table 3 in [11] lists compounds where the measured solubility is outside
the 3 ∗ σ interval in more than 5 (out of the 10) cross-validation trials. With
each test compound, the three training compounds with the highest value



34 Methods (Utilized / Improved)

for the covariance function are listed (i.e. the training compounds with the
highest impact on the respective inaccurate prediction). Interestingly, most
of these predictions can be attributed to misleading measurements in the
training data (sometimes leading to corrections being made to the respective
database) or limitations in the descriptors (i.e. almost identical descriptors
for compounds with very different correct measurements of their solubility).
See [11] for a discussion of each compound presented.
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3.3 Learning Algorithms

Non-linear Bayesian Regression using Gaussian Process Priors

Gaussian Process (GP) models are techniques from the field of Bayesian
statistics. O’Hagan [89] presented one of the seminal work on GPs, a recent
book [43] presents an in-depth introduction. The first application of GPs in
the field of chemoinformatics (including an evaluation of the quality of the
confidence estimates) is documented in our paper on aqueous solubility [11].
This paper was quickly followed by a study conducted at BioFocus[90], in
which blood-brain barrier penetration, hERG inhibition and aqueous solu-
bility were modeled. Today, two different very powerful commercial imple-
mentations of Gaussian Process training tools are available from BioFocus
and idalab GmbH, respectively. A number of free implementations [74] have
been posted on [91]. This section explains how GPs work, followed by a
discussion of their advantages in the context of chemoinformatics.

In GP modelling, one considers a family of functions that could potentially
model the dependence of the property to be predicted (function output, de-
noted by y, also called “target function”, “target property”, or “target”) from
the features (function input, denoted by x, in chemoinformatics also referred
to as “descriptors”). This space of functions is described by a Gaussian Pro-
cess prior. 25 such functions, drawn at random from the prior, are shown in
Figure 3.4 (left). The prior captures, for example, the inherent variability of
the target value as a function of the features. This prior belief is then up-
dated in the light of new information, that is, the measurements (“labels”) at
hand. In Figure 3.4 (middle), the available measurements are illustrated by
three crosses. Principles of statistical inference are used to identify the most
likely posterior function, that is, the most likely target function as a com-
bination of prior assumptions and observed data (shown in the right panel
of Figure 3.4). The formulation with a prior function class is essential in
order to derive predictive variances for each prediction. Note also that the
uncertainty increases on points that are far from the measurements.

The main assumption of a Gaussian Process model is that the target
function can be described by an (unknown) function f that takes a vector of
molecular descriptors as input, and outputs the target. x denotes a vector
of descriptors, which is assumed to have length d. The target property of a
compound described by its descriptor vector x can thus be written as f(x).
It is assumed that f is inherently random.5

5The notation here is chosen to allow an easy understanding of the material, thus
dropping, e.g., a clear distinction between random variables and their outcome.
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Figure 3.4: Modelling with Gaussian Process priors. Left: 25 samples from a Gaussian
Process prior over functions, each plotted as y = f(x). For illustration, only functions for
one-dimensional input x are considered. Middle: After observing 3 data points (crosses),
one only believes in functions from the prior that pass through a “tunnel” (depicted by the
triangles) near the data (crosses). These functions are samples from the “posterior” distri-
bution. Right: Summarizing representation of beliefs about the plausible true functions,
obtained from the 25 samples from the posterior shown in the middle pane. For each
input one computes the mean of these functions (red line) and the standard deviation.
The shaded area encompasses ±2 standard deviations around the mean.

The Gaussian Process model is built from measurements for a set of n
compounds. For each of these n compounds, one has a descriptor vector,
x1 . . .xn, (each of length d), together with a measurement of the target prop-
erty, y1, . . . yn. Additionally, one accounts for the fact that these measure-
ments are not accurate, and assumes that the n measured values are related
to actual target property by

yi = f(xi) + ε, (3.1)

where ε is Gaussian measurement noise6 with mean 0 and standard deviation
σ.

The name “Gaussian Process” stems from the assumption that f is a
random function, where functional values f(x1), . . . , f(xn) for any finite set
of n points form a Gaussian distribution.7 This implies that one can describe
the process also by considering pairs of compounds x and x′. The covariance
for the pair is given by evaluating the covariance function,

cov(f(x), f(x′)) = k(x,x′), (3.2)

similar to kernel functions in Support Vector Machines [38, 92]. Note, that
all assumptions about the family of functions f are encoded in the covariance

6In the typical Gaussian Process model, all measurements share the same measurement
noise. This condition can be relaxed, i.e. to incorporate prior knowledge about distinct
groups of compounds with different measurement noise.

7For simplicity, it is assumed that the functional values have zero mean. In practice,
this can be achieved easily by simply shifting the data before model fitting.
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function k. Each of the possible functions f can be seen as one realization
of an “infinite dimensional Gaussian distribution”.

Let us now return to the problem of estimating f from a data set of n
compounds with measurements of the target property y1, . . . , yn, as described
above in Eq. (3.1). Omitting some details here (the derivation can be found
in appendix B in [11]), it turns out that the prediction of a Gaussian Process
model has a particularly simple form. The predicted function for a new
compound x∗ follows a Gaussian distribution with mean f̄(x∗),

f̄(x∗) =
n∑
i=1

αik(x∗,xi). (3.3)

Coefficients αi are found by solving a system of linear equations,
k(x1,x1) + σ2 k(x1,x2) . . . k(x1,xn)
k(x2,x1) k(x2,x2) + σ2 . . . k(x2,xn)

...
...

...
k(xn,x1) k(xn,x2) . . . k(xn,xn) + σ2



α1

α2
...
αn

 =


y1

y2
...
yn


(3.4)

In matrix notation, this is the linear system (K+σ2I)α = y, with I denoting
the unit matrix. In this framework, one can also derive that the predicted
property has a standard deviation of

std f(x∗) =

√√√√k(x∗,x∗)−
n∑
i=1

n∑
j=1

k(x∗,xi)k(x∗,xj)Lij (3.5)

where Lij are the elements of the matrix L = (K + σ2I)−1.

Relations to Support Vector Machines Gaussian Process models share
with the widely known support vector machines the concept of a kernel (co-
variance) function. Support vector machines (SVM) implicitly map the ob-
ject to be classified, x, to a high-dimensional feature space φ(x). Classifica-
tion is then performed by linear separation in the feature space, with certain
constraints that allow this problem to be solved in an efficient manner. Sim-
ilarly, support vector regression [92] can be described as linear regression in
the feature space. Gaussian Process models can as well be seen as linear
regression in the feature space that is implicitly spanned by the covariance
(kernel) function [43]. The difference lies in the choice of the loss function:
SVM regression has an insensitivity threshold, that amounts to ignoring small
prediction errors. Large prediction errors contribute linearly to the loss. GP
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models assume Gaussian noise, equivalent to square loss. As for support
vector machines, the mapping of input space to feature space is never com-
puted explicitly. In SVMs and GP models, only dot-products of the form
〈φ(x), φ(x′)〉 are used in the algorithm. Such dot products can be evaluated
cheaply via the covariance (kernel) function, since 〈φ(x), φ(x′)〉 = k(x,x′).

Note, however, that SVMs are completely lacking the concept of uncer-
tainty. SVMs have a unique solution that is optimal under certain conditions
[92, 93]. Unfortunately, these assumptions are violated in some practical
applications.

Relations to Neural Networks Radial Basis Function networks with a
certain choice of prior distribution for the weights yield the same predictions
as a Gaussian Process model [43]. More interestingly, it can be shown that a
two-layer neural network with an increasing number of hidden units converges
to a Gaussian Process model with a particular covariance function [94].

Using GP Models For predicting Partition Coefficients (Sec. 5.2) and
Aqueous Solubility (Sec. 5.3), a covariance function of the form

k(x,x′) =

(
1 +

d∑
i=1

wi(xi − x′i)2

)−ν
(3.6)

is used (the “rational quadratic” covariance function [43]). k(x,x′) describes
the “similarity” (covariance) of the target property for two compounds, given
by their descriptor vectors x and x′. The contribution of each descriptor to
the overall similarity is weighted by a factor wi > 0 that effectively describes
the importance of descriptor i for the task of predicting the respective target
property.

Clearly, one cannot set the weights wi and the parameter ν a priori.
Thus, one extends the GP framework by considering a superfamily of Gaus-
sian Process priors, each prior encoded by a covariance function with specific
settings for wi. The search is guided through the superfamily by maximiz-
ing a Bayesian criterion called the evidence (marginal likelihood). For n
molecules x1, . . . ,xn with associated measurements y1, . . . , yn, this criterion
is obtained by “integrating out” everything unknown, namely all the true
functional values f(xi). Using vector notation for f = (f(x1), . . . , f(xn)) and
y = (y1, . . . , yn), one obtains

L = p(y | x1, . . . ,xn, θ) =

∫
p(y|f , θ) p(f | x1, . . . ,xn, θ) df . (3.7)
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This turns out to be

L = −1

2
log det(Kθ + σ2I)− 1

2
y>(Kθ + σ2I)−1y − n

2
log 2π (3.8)

Here, det denotes the determinant of a matrix, and > is vector transpose. Kθ

is used to explicitly denote the dependence of the covariance matrix K on a
set of parameters θ of the covariance function.8 Gradient ascent methods9 can
now be used to maximize L with respect to covariance function parameters θ
and the measurement variance σ2. References [43, 96] present further details.

The following advantages of Gaussian Processes are relevant for their
application in drug discovery & design:

• As illustrated above, Gaussian Process models allow for quantifying
the confidence in each individual prediction. Since this feature is very
useful in chemoinformatics, a separate section has been devoted to this
topic, namely Sec. 3.7.

• In GP modeling, heterogeneous types of information about one set of
compounds can be combined via combined covariance functions. This
Bayesian concept is similar in spirit to the frequentist concept of mul-
tiple kernel learning, see Sec. 3.6.

• Data sets for multiple target values (e.g. one set for aqueous solubility
and a different set for partition coefficients) can be treated in a single
learning procedure. Even if the datasets overlap only partially, infor-
mation gained from one set eases solving the remaining task(s) [44]. In
the machine learning community, this is called multi task learning. A
concise overview of multi task learning (using a variety of algorithms)
in chemoinformatics can be found in this recent article [97].

• When using kernels with separate width parameters for each dimension,
the weighting of the features can be optimized by a gradient ascent on
the evidence. Optionally, one can later use this information to reduce
the number of features to present to a second GP or other learning
algorithm or to identify important features (see the second subsection
in Sec. 3.2 for a discussion).

• Many types of previous knowledge that one might have about the data
can be included into GP models. In [11], it was known that different

8In the case of Eq. (3.6), θ = {ν, w1, . . . , wd} for a total of d descriptors.
9In the actual implementation, the Broyden-Fletcher-Goldfarb-Shanno method [95] is

used.
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subsets of measurements in the training data were moderately reliable,
more reliable and very reliable, respectively. We then trained GP mod-
els such that a different noise variance was learned for each group of
compounds. Even without specifying different priors for the groups,
the models automatically learned lower noise levels for the more reli-
able measurements. See [11] for details.

• The algorithm presented in Sec. 4.3 explains predictions of machine
learning models by the means of visualizing relevant objects from the
training set of the model. This allows human experts to understand
how each prediction comes about. In case of kernel methods (including
Gaussian Processes), the contribution of individual testpoints can be
calculated analytically.

• Sec. 4.4 proposes a method that can explain the local decisions taken
by arbitrary (possibly) non-linear classification algorithms. In a nut-
shell, the estimated explanations are local gradients that characterize
how a data point has to be moved to change its predicted label. For
models where such gradient information cannot be calculated explic-
itly, a probabilistic approximate mimic of the learning machine to be
explained is employed. In the special case of Gaussian Processes, lo-
cal gradients of predictions can be calculated analytically. See Sec. 4.4
for derivations & illustrations and Sec. 5.8 for an application in drug
discovery & design.

Due to these advantages, GP regression models were used in the following
studies: [3–12, 90, 98]. The first use of GP classification models in the
context of drug discovery and design is described in our study [6], further
applications include [1, 5].

Other Learning Algorithms

When introducing new methods, it generally makes sense to compare their
performance with established models of equal or lesser complexity. Brief
introductions to each method can be found in [10]. The reader is invited to
consult the literature cited directly following each algorithm’s name below to
learn more about the respective method.

• Support Vector Machines [38–42] for regression and classification served
as equally complex but more established [99, 100] type of model in [3–
8, 12].
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• Random forests [101] (i.e. ensembles of decision trees [45]) have been
previously used in drug discovery & drug design. Benchmarks were
included in [4, 5, 7, 8, 12].

• k-Nearest-Neighbor models were applied in [5], Sec. 4.3 and 4.4.

• Linear models [102] represent the least complex type of models and
were included as baselines in [3–8, 12].
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3.4 Evaluation Strategies

Many different strategies for evaluating models exist:

• single validation set

• leave one out cross-validation

• leave k-percent out cross-validation

• leave one cluster out cross-validation

• nested cross-validation variants

• blind tests / prospective evaluation

When choosing an evaluation strategy, the most important question has to
be: What is the goal of this evaluation? One may want to

1. select features / descriptors

2. select a modeling algorithm

3. tune model parameters

4. estimate generalization to unseen data following the same distribution
as the training data

5. estimate generalization to unseen data following a different distribution
than the training data.

Very often, one wants to do all of the above: Starting from a batch of data,
one selects features, chooses a modeling algorithm and tunes free parameters.
In the end one seeks to estimate the generalization performance including or
excluding extrapolation.

The most common mistake is trying to estimate the generalization per-
formance using data that has been used in model building. If any of the test
data has been used in any of the model building steps (selecting features,
algorithm and tuning parameters), estimates of generalization performance
will invariably turn out too optimistic. This means that one needs to split
the data into at least three sets: The first set is used to train models using
different algorithms, feature sets and parameters. These different models are
then applied to the second set of data. Based on the performance on this set,
one selects one (!) model. This final model is then applied to the third set to
estimate generalization performance. This is the exact point where mistakes
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Figure 3.5: An illustration of nested cross-validation for evaluating a learning system.
In an outer cross-validation loop, the overall data are partitioned randomly into K parts.
K − 1 of these splits are used as the training data. The training data are in turn split
again, and used in an inner cross-validation loop. Model parameters are chosen such that
the cross-validation estimate of the error rate in the inner loop is minimized. The resulting
model is then evaluated on the test data in the outer loop.

are made, or phrasing this criticism differently: This is where acceptable ex-
periments are interpreted in a misleading way. Often, multiple models are
evaluated on the third set and the results are presented side by side, followed
by an interpretation that focuses on the best model. It is easy to understand
that this interpretation will lead to too optimistic results, if one considers
an extreme case: One constructs models that generate completely random
predictions. If one evaluates a large number of such models on any finite set
of data, one finds a number of models that perform very well. These models
are, however, very unlikely to perform well on any other set of data.

Following the three-set strategy outlined in the last paragraph has one
backdraw: Depending on the nature of the data, the chosen random split
can have a big impact on model building (including selecting features, algo-
rithm and free parameters) and, of course, on the estimated generalization
performance. Therefore it is a good idea to investigate an (ideally large)
number of different random splits of the data. In the case of a two set eval-
uation strategy (for example for just selecting a model), investigating many
different splits is equivalent to leave k-percent out cross-validation. Nested
cross-validation (see Figure 3.5 for an explanation) allows investigating many
different splits of the data without loosing the advantages of the three-set
strategy outlined above: The procedure ensures that the generalization per-
formance is estimated using data that has not been used in the construction
of each respective model.

All above mentioned strategies estimate generalization to unseen data
following the same distribution as the training data. This is no coincidence:
As explained in Sec. A.1.2, most machine learning algorithms rely on this
assumption. Strategies exist that allow achieving good results if training
and and test data follow different, but overlapping distributions, provided
that the the conditional distribution of target values given the input features
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(descriptors) is the same in both test and training data. In the machine
learning community, this scenario is known as covariate shift and corres-
ponds to “mild extrapolation”, see Sec. A.1.2 for details. The assumption of
equal conditionals is often violated in drug discovery applications: In new
projects, new compound classes may be investigated. These new compounds
can exhibit new mechanisms of action (see Sec. A.1.3), possibly leading to
complete failure of previously constructed models.

Imagine a set of measurements for 100 compounds, belonging to 10 struc-
tural classes. If we evaluate models on any single random split of the data
or in a number of random splits (e.g. in leave k-percent out cross-validation)
it is very likely that for every molecule in every test set, structurally similar
compounds exist in the respective training set. To simulate the effect of new
structural classes being introduced in new projects, one can generate splits
where the distributions of test and training data differ substantially. One pos-
sible way to do this is leave one cluster out cross-validation, see [3, 4, 10, 103]
for a description. Alternatively, one can take the temporal structure of the
dataset into account, i.e. train on compounds measured before a given date
and test on compounds that were measured after this date. If the evaluation
is done by a group of people who were not involved in model building, using
measurements that were not available to the modellers, this is called “blind
evaluation”. In [5–9, 11, 12] a combination of the two last-mentioned strate-
gies was used to evaluate model performance. Models were constructed by
researchers at Fraunhofer FIRST and Idalab. The final evaluation of each
model was done by scientists at Bayer Schering Pharma, using new data that
had accumulated over last couple of months, including compounds from new
projects. This way of evaluating models is very similar to a strategy often
referred to as “prospective evaluation”. Here, one also applies the models to
newly measured compounds. However, the new compounds were typically se-
lected using the same model that is finally evaluated. Depending on the type
of model, this can introduce a bias towards easily predictable compounds
and will (as intended) introduce a bias towards compounds with desirable
properties.
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3.5 Performance Indicators

In drug discovery & design, performance indicators (or loss functions) are
used for a number of different purposes, including:

• steering the process of model fitting inside a learning algorithm

• guiding automatic tuning of hyperparameters of the learning algorithm

• allowing the modeller to assess the quality of a model

• communicating the quality of a model to non-experts

In the work leading up to this thesis, various standard regression, classifica-
tion and ranking loss functions were used. This includes mean absolute error,
mean squared error, root mean squared error, percentage of prediction within
different intervals from the true value, correlation coefficients, Kendall’s τ and
area under the ROC curve. Additionally, modified versions of standard loss
functions and one completely new loss function were conceived.

Hints for Practitioners

The following subsection contains a somewhat informal collection of findings
on loss functions that the author beliefs may be useful for practitioners in
the field of chemoinformatics.

• Loss functions inside learning algorithms can be implicitly contained
in the formulation of the optimization problem. One example is the
standard formulation of Gaussian Processes, based on the assumption
of Gaussian noise. This noise-model leads to an implicit squared error
loss function. See paragraph “Relations to Support Vector Machines”
on page 37.

• When using loss functions for tuning real valued hyperparameters, dif-
ferentiable loss functions have the obvious advantage of enabling the
use of gradient descend methods. If different local minima exist or
when tuning hyperparameters expressed by integers, network architec-
tures etc., grid search algorithms are a good choice. In this case, loss
functions need not be differentiable, but are required to be informative
with respect to the goal of the optimization.

• In the presence of outliers, the often used mean squared error loss-
function can be misleading, because it is easily dominated by small
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numbers of outliers. The mean absolute error is somewhat more robust
in this respect, but in the presence of very extreme outliers it will also
be misleading. Unless other ways of avoiding these far off predictions
can be found (e.g. detection of outliers based on their features, see
third subsection in 3.2), a simple way of avoiding their dominance in
parameter tuning is to redefine the loss function to disregard a certain
percentage of least accurate predictions.

• When assessing the quality of a model as a human, it is generally a
good idea to not rely on a single number statistic. [104] illustrates how
correlation coefficients can be misleading. Instead, one should look
at plots such as scatterplots, receiver operating characteristic curves
(ROC) and cumulative histograms.

• “Staircase plots” can be very useful for providing a visual impression
of the quality of confidence estimates (see Figure 5.2 in Sec. 5.2 and
Figure 5.5 in Sec. 5.3). If a single number statistic is desired, Kendall’s
τ [105] can be used.

A New Loss Function for Virtual Screening

It is important to use a loss function that represents the application scenario
as closely as possible. When preparing a virtual screening for new PPARγ
agonists (see Sec. 5.9) a new loss function was defined to this end: When
performing the retrospective evaluation, it was known that the prospective
evaluation would comprise experimentally investigating the activity of 20
or less compounds chosen out of a database containing more than 300.000
compounds. Including inactive compounds in the top 20 is very undesirable,
whereas errors in the remaining bulk of predictions are irrelevant. Therefore
the loss function “FI20” was defined as the fraction of inactive compounds in
the top 20 ranked compounds. Additionally, standard regression performance
indicators considering the whole set of test data were calculated to find out
whether the newly introduced FI20 loss function actually results in choosing
different models. Different models were chosen using different loss functions.
The model chosen based on the FI20 loss function turned out to suggest the
most promising candidate molecules according to a panel of human experts.
The activity of a number of molecules was measured and a number of new
PPARγ agonists agonists were identified. Interestingly, the FI20 score for
the actual experiments was almost identical to the score estimated during
the prospective evaluation. See Sec. 5.9 for details.
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3.6 Incorporating Heterogeneous Types of Information

Chemical molecules are commonly represented by their structural formula,
sometimes referred to as the molecular graph. For the use in machine learn-
ing, one typically calculates vectorial features, so called chemical descriptors.
These can then be used as inputs for almost all learning methods. Kernel
based learning methods access the data exclusively via a kernel function.
Therefore any type of data can be used, provided one can define a kernel
function to handle it. A number of kernel functions for graphs, including
molecular graphs, have been proposed, see [106] and references therein. These
allow to directly use structural formulas in kernel based learning methods and
have first been used with Support Vector Machines (see Sec. 3.3).

A linear combination of two kernels is again a kernel. By using different
types of kernels defined on the same type of input, one can take different
aspects of the same piece of information into account, see [107, 108] and
references therein. By combining two kernels defined on different types of
input, one can combine heterogeneous types of information. In Gaussian
Process learning one can optimize the weighting of the different kernels by a
gradient ascend on the evidence (see Sec. 3.3). Sec. 5.9 describes a first study
using both a graph kernel based directly on the molecular graph and multiple
standard kernels based on different sets of vectorial molecular descriptors.
The successful application illustrates how the different types of information
complement each other.

3.7 Quantifying Domain of Applicability

A typical challenge for statistical models in the chemical space is to ade-
quately determine the domain of applicability, i.e. the part of the chemical
space where the model’s predictions are reliable. To this end several methods
have been conceived. An informal graphical overview is presented in Fig-
ure 3.6, details are given in the following paragraphs and references therein.

Range based methods are based on checking whether descriptors of test set
compounds exceed the range of the respective descriptor covered in training
[109, 110]. A warning message is raised when this occurs. Also, geometric
methods that estimate the convex hull of the training data can be used to
further detail such estimates [111]. Mind that both these methods are not
able to detect “holes” in the training data, that is, regions that are only
scarcely populated with data.10

10Holes in the training data can, in principle, be detected using geometric methods in
a suitable feature space. To the best of the author’s knowledge, there exists no published
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Quantitative Structure 

Activity Relationships
• popular in drug design

• predict complex properties of

   molecules

• based on measurements and

  “descriptors” of a “training” set 

   of compounds

• machine learning algorithms

   allow non-linear generalisation

Aqueous Solubility
• training: 650 in-house, 

 3300 literature compounds

• blind test: 550 in-house

• performance increases when 

using GP & focussing on DOA

References
Schroeter, Schwaighofer et al, J. Comp. Aid. Mol. Des., 2007

Schwaighofer, Schroeter et al, J. Chem. Inf. Model. 47(2):407-

424, 2007
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Lipophilicity
• training:15,000 in-house, 

8000 literature compounds

• blind test: 7000 in-house

• performance increases when 

using GP & focussing on DOA

References
Schroeter, Schwaighofer et al, ChemMedChem 2007

Schroeter, Schwaighofer et al, Molecular Pharmaceutics 
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Metabolic Stability
• training: 2200 in-house

• blind test: 700 in-house

   compounds

• performance increases when 

using GP & focussing on DOA

References
Schwaighofer, Schroeter et al, J. Chem. Inf. Model. submitted
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Figure 3.6: Different methods for producing individual confidence estimates for predic-
tions have quite different advantages. Fully, partially or not possessing an advantage is
indicated by green, yellow or red color, see [7] for details.

If experimental data for some new compounds are available, error esti-
mates based on the library approach can be used. By considering the closest
neighbors in the library of new compounds with known measurements, it is
possible to get a rough estimate of the bias for the respective test compound.
Alternatively, one can use this bias estimate to correct the prediction (see
Sec. 4.2). This approach has recently been evaluated, see Sec. 5.7 and [4] for
a discussion.

Probability density distribution based methods could, theoretically, be used
to estimate the model reliability [111]. Still, high dimensional density esti-
mation is recognized as an extremely difficult task, in particular since the
behavior of densities in high dimensions may be completely counterintuitive
[112]. Furthermore, regions where the model does not fit the data or where
the labels of the training data are inconsistent can not be detected based on
the density of training data.

Distance based methods and extrapolation measures [109, 111, 113–115]
consider one of a number of distance measures (Mahalanobis, Euclidean etc.)
to calculate the distance of a test compound to its closest neighbor(s) or the
whole training set, respectively. Another way of using distance measures is to
define a threshold and count the number of training compounds closer than

study about this kind of approach.
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the threshold. Hotellings test or the leverage rely on the assumption that
the data follows a Gaussian distribution in descriptor space and compute the
Mahalanobis distance to the whole training set. Tetko correctly states in [114]
that descriptors have different relevance for predicting a specific property and
concludes, that property specific distances (resp. similarities) should be used
11.

When estimating the domain of applicability with ensemble methods, a
number of models is trained on different sets of data. Typically the sets
are generated by (re)sampling from a larger set of available training data.
Therefore the models will tend to agree in regions of the descriptor space
where a lot of training compounds are available and will disagree in sparsely
populated regions. Alternatively, the training sets for the individual models
may be generated by adding noise to the descriptors, such that each model
operates on a slightly modified version of the whole set of descriptors. In
this case the models will agree in regions where the predictions are not very
sensitive to small changes in the descriptors and they will disagree in de-
scriptor space regions where the sensitivity with respect to small descriptor
changes is large. This methodology can be used with any type of models,
but ensembles of artificial neural networks (ANNs) [113–117] and ensembles
of decision trees [4, 110, 113] (“random forests”, [101]) are most commonly
used.

The idea behind Bayesian methods is to treat all quantities involved in
modeling as random variables. By means of Bayesian inference, the a pri-
ori assumptions about parameters are combined with the experimental data,
to obtain the a posteriori knowledge. Hence, such models naturally output
a probability distribution, instead of the “point prediction” in conventional
learning methods. Regions of high predictive variance not only indicate com-
pounds outside the domain of applicability, but also regions of contradictory
or scarce measurements. Gaussian Process regression and classification are
popular examples of Bayesian methods, see Sec. 3.3.

Figure 3.7 shows a simple one-dimensional example of the four differ-
ent methods of error estimation that were employed in [7]. The sine function
(shown as a blue line in each subplot) is to be learned. The available training
data are ten points marked by black crosses. These are generated by ran-
domly choosing x-values and evaluating the sine function at these points. We
simulate measurement noise by adding Gaussian distributed random numbers
with standard deviation 0.2 to the y-values.

11There is an interesting parallel to Gaussian Process models: When allowing GP mod-
els to assign weights to each descriptor that enters the model as input, they explicitly
construct a property specific distance measure and use it both for making predictions and
for estimating prediction errors.
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Figure 3.7: The four different regression models employed in [7] are trained on a small
number of noisy measurements (black crosses) of the sine function (blue line). Predictions
from each model are drawn as solid red lines, while dashed red lines indicate errors es-
timated by the respective model (in case of the Gaussian Process and random forest) or
a distance based approach (in case of the Support Vector Machine and Ridge Regression
model).

The random forest, Figure 3.7 (a), does provide a reasonable fit to the
training points (yet the prediction is not smooth, due to the space dividing
property of the decision trees). Predicted errors are acceptable in the vicinity
of the training points, but overconfident when predictions far from the train-
ing points are sought. It should be noted that the behavior of error bars in
regions outside of the training data depends solely on the ensemble members
on the boundary of the training data. If the ensemble members, by chance,
agree in their prediction, an error bar of zero would be the result.

The linear model, Figure 3.7 (b), clearly cannot fit the points from the
non-linear function. Therefore, the distance based error estimations are mis-
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leading: Low errors are predicted in regions close to the training points, but
the actual error is quite large due to the poorly fitting model. This shows
that the process of error estimation should not be decoupled from the actual
model fitting: The error estimate should also indicate regions of poor fit.

The Support Vector Machine, Figure 3.7 (c), adapts to the non-linearity
in the input data and extrapolates well. The error estimation (distance
based procedure as described in Sec. 4.5 in [7]) produces slightly conser-
vative (large) error bars in the region close the training points, and too small
errors when extrapolating.

The Gaussian Process, Figure 3.7 (d) also captures the non-linearity in the
input data and is able to extrapolate. Predicted errors are small in the region
close to the training points and increase strong enough in the extrapolation
region.

Gaussian Process based domain of applicability estimation is also dis-
cussed in Sec. 5.2 (partition coefficients) and Sec. 5.3 (aqueous solubility).
Ensembles and distance based methods were also applied, for a discussion, see
the respective journal publications on partition coefficients [7, 12] and aque-
ous solubility [8, 11]. Furthermore, predictive variances of Gaussian Process
have been considered in Sec. 5.5 (Metabolic Stability) and in preparing hit-
lists in a virtual screening for new PPAR-gamma agonists (Sec. 5.9).

A completely new approach to the domain of applicability question has
been conceived for application in lead optimization (see Sec. 2.1). In this
application scenario, human experts periodically decide which small group
of molecules is going to be synthesized and investigated next. If a model
could visually express how the prediction was constructed from the relevant
(ideally small) part of the training data, the human expert could judge the
applicability of the model by himself. For a description of this new type of
technology, see Sec. 4.3.

3.8 Presenting Results to Bench Chemists

Scientists working in fields like chemoinformatics and computational chem-
istry tend to have a good knowledge of many different software tools, different
operating systems and are often able to use (or sometimes even prefer) com-
mand line tools. On the other hand, bench chemists tend to focus on the
synthetic aspects of chemistry, and are not always willing to spend a lot of
time on learning how to use many different (possibly complicated) software
tools. When trying to establish new computational methodology that can be
relevant to the work of bench chemists, it is therefore necessary to adapt to
their needs and preferences. This includes using the same units that they use
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Figure 3.8: The propEYE toolbox provides an easy to use graphical user interface for
submitting property calculation jobs to the backend-servers running the tools developed
at Fraunhofer FIRST and Idalab.

in the lab as well as interfacing with their favorite molecule drawing programs
and databases.

In a joint effort by the computational chemistry and chemoinformatics
groups at Schering, an easy to use interactive graphical user interface called
propEYE was developed. This section details how the models developed at
Fraunhofer FIRST and Idalab (see Secs. 5.2 - 5.5) can be accessed using
propEYE.

When creating a new prediction job using propEYE (see Figure 3.8),
structures of molecules can be imported directly from the main corporate
database of Schering or from local files in SD-Format. Alternatively, one
can draw molecules using ISIS-draw and drag and drop them into the input-
table. The checkboxes on the right hand side can be checked to ask for the
corresponding property to be calculated.

On the backend-servers, the Gaussian Process models developed at Fraun-
hofer FIRST and Idalab are implemented in the form of daemons. This has
the advantage that the rather large inverted kernel matrices for the log D7

models based on big sets of training data can be kept in memory. Conse-
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Figure 3.9: The propEYE results window lists both running and completed jobs. Upon
selecting a completed job, results are displayed in a table. Molecules are displayed as 2 D
graphics, together with their ID and the different calculated properties. A traffic light
coloring scheme indicates whether each property is already in the rage that is desirable for
drug molecules.

quently, the system can react very quickly. Small jobs are given priority, so
interactive use of the system is possible even if properties for whole libraries
of compounds are being calculated at the same time. The status of jobs in
the queue is graphically indicated in the output window of propEYE, see Fig-
ure 3.9. Clicking a completed job makes the program display the results in
the form of a table. The first column contains images of the 2 D-structures of
all molecules. This is an important aspect, because it makes browsing much
more comfortable for chemists. The next columns contain the compound ID
and all calculated properties. The background of each cell is made either
green, yellow or red, depending on whether the property displayed in the
cell is already in the range desired for drug molecules (green), inacceptable
(red) or in between (yellow). Units were chosen to match those that bench
chemists use in the lab, e.g. mg

ml
for aqueous solubility rather than the mol

l

that is often used in computational studies.

The propEYE toolbox contains an extensive documentation of all fea-
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Figure 3.10: Contents of the propEYE documentation.

Figure 3.11: The propEYE documentation contains background information on every
underlying model.
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Figure 3.12: The propEYE documentation includes links to research papers on the
respective properties.

tures and even includes research papers written about the different models
implemented on the backend-servers, see Figs. 3.10, 3.11 and 3.12. In case
any questions remain open, support telephone numbers are displayed in every
application window.





Chapter 4

Newly Developed Methods

4.1 Overview

Three new algorithms were developed to cope with the specific requirements
of lead optimization, the most challenging part of the drug discovery process.
The first new algorithm can improve the accuracy of models in the early
stages of lead optimization projects. The second new algorithm can explain
individual predictions made by complex models to human experts and the
third new algorithm generates hints for compound optimization.

Imagine a setting where human experts have access to multiple predictive
models (including commercial black box models) and the first measurements
of compounds from a certain new compound class (e.g. part of the chemical
space) are available. How can one obtain the best possible predictions from
all these sources of knowledge simultaneously? Sec. 4.2 introduces several en-
semble modeling approaches where the most recent measurements are used to
either select the best model from the ensemble, construct a suitable weight-
ing of multiple models in the ensemble or even correct a bias that one (or
more) ensemble members may consistently exhibit when making predictions
for compounds that are similar to certain test compounds.

Two separate methodologies for explaining individual predictions of (pos-
sibly non-linear) machine learning models are presented. The method pre-
sented in Sec. 4.3 explains predictions by the means of visualizing relevant
objects from the training set of the model. This allows human experts to
understand how each prediction comes about. If a prediction conflicts with
his intuition, the human expert can easily find out whether the grounds for
the models predictions are solid or if trusting his own intuition is the better
idea [2].

The method presented in Sec. 4.4 utilizes local gradients of the models
predictions to explain predictions in terms of the locally most relevant fea-
tures. This not only teaches the human expert which features are relevant
for each individual prediction, but also gives a directional information. Ab-
stractly speaking, one can learn in which direction a data point has to be
moved to increase the prediction for the target value [1]. In the context of

57
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lead optimization, this means that the human expert can obtain a type of
guidance in compound optimization.

4.2 Incorporating Additional Measurements

In drug discovery & design, modellers typically have access to a number of
predictive tools for some of the relevant properties. Tools may have been
bought from vendors or trained in-house. For each of these tools, the respec-
tive training set may or may not be known, the algorithm used in training
each model may or may not be well documented. If re-trainable in-house
tools are available, one often has access to measurements for additional com-
pounds that have become available after they have been trained last, and
that are not included in any of the commercial tools. An idea originally
published by Kühne et al. [118] comprises not just retraining the in-house
tools including all new compounds. Instead, they used new compounds to
choose one out of a whole collection of tools that will probably predict a
certain unknown compound most accurately. The set of new compounds is
called“correction set”, and models are evaluated in a leave one compound out
cross-validation setting where each compound from the correction set is in
turn left out and treated as new. The following section summarizes the selec-
tion approach conceived by Kühne et al. and several ideas going beyond the
original publication. An evaluation of these ensemble modeling algorithms is
presented in Sec. 5.7.

Selection by MAE (MAE Model) In this approach the single model
with the lowest mean absolute error on the neighboring compounds
in the correction set is selected to predict the desired value for the unknown
compound. The calculation of the mean absolute error (MAE) on the k
nearest neighbors is based on the distance measure introduced in [4]:

MAE(fi) =
1

k

k∑
j=1

| fi(xj)− yj | . (4.1)

Here fi refers to one of the l trained single models. Chemical compounds
are represented by descriptor vectors xj and the property to be predicted is
written as yj. The predicted value f ∗(xt) of this ensemble model is given by

f ∗(xt) = fminMAE(xt) with f minMAE = argmin
fi i=1,..,l

(MAE(fi)). (4.2)

This is the type of algorithm originally proposed by Kühne et al. [118].
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Weighted Model This model is based on the idea that a weighted sum
of all predictions of the different single models can result in a greater
improvement than selecting the prediction of only one model. The mixing
coefficient of each model υfi

is calculated according to the mean absolute
error of the model on the neighboring compounds in the correction set:

υfi
=

1

MAE(fi)

(
l∑

j=1

1

MAE(fj)

)−1

such that
l∑

i=1

υfi
= 1 (4.3)

and the predicted value of the weighted model can be written as

f ∗(xt) =
l∑

i=1

υfi
fi(xt). (4.4)

The higher the accuracy of a single model fi in the neighborhood of the
unknown compound t the greater the impact of the model fi on the prediction
of the weighted model.

Bias Corrected Model In this approach first one single model is selected
with respect to the mean absolute error on the neighboring compounds, iden-
tically to the MAE model. From the prediction of the selected model one
subtracts the mean error on the neighbors in the correction set. To in-
corporate the distance between the unknown compound t and its neighbors
we define a distance weight for each of the k nearest neighbors as

dj =
1

‖ xt − xj ‖red

(
k∑
i=1

1

‖ xt − xi ‖red

)−1

j = 1, . . . , k. (4.5)

This way close compounds receive high distance weights. The selected model
is now given as

fweightedDist = argmin
fi i=1,..,l

(
1

k

k∑
j=1

‖ fi(xj)− yj ‖red
dj

)
. (4.6)

And the prediction is given as the prediction of fweightedDist reduced by the
prediction error on the neighborhood

f ∗(xt) = fweightedDist (xt)−
1

k

k∑
j=1

fweightedDist (xj)− yj
dj

. (4.7)
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Average KNN Model and Random Choice Model These models are
baselines to determine the amount of improvement achieved by applying en-
semble models. In the Random Choice Model the prediction of one standard
model is chosen randomly as the predicted value.
Unlike all other models, the Average Model predicts the value for the un-
known compound without considering the prediction of the single models.
The prediction is the average of the true values of the neighboring com-
pounds

f ∗(xt) =
1

k

k∑
j=1

yj. (4.8)

Results of an evaluation of these algorithms for combining predictions
from individual models in the context of the hERG channel blockade effect
are described in Sec. 5.7. Details and background information can be found
in [4].
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4.3 Explaining Individual Predictions using Objects from the
Training Set

In this thesis, two separate methodologies for explaining individual predic-
tions of machine learning models are presented. The method presented in
this section explains predictions by the means of visualizing relevant objects
from the training set of the model. This allows human experts to understand
how each prediction comes about. If a prediction conflicts with his intuition,
the human expert can easily find out whether the grounds for the models
predictions are solid or if trusting his own intuition is the better idea [2].

The method presented in Sec. 4.4 utilizes local gradients of the model’s
predictions to explain predictions in terms of the locally most relevant fea-
tures. This not only teaches the human expert which features are relevant
for each individual prediction, but also gives a directional information. Ab-
stractly speaking, one can learn in which direction a data point has to be
moved to increase the prediction for the target value [1]. In the context of lead
optimization, this means that the human expert can obtain a type of guid-
ance in compound optimization. For this reason, the two explaining-related
methodologies are presented in separate sections.

4.3.1 Motivation

Let us consider lead optimization (see Sec. 2.1). In this application scenario
for machine learning models, human experts periodically decide which small
batch of molecules is going to be synthesized and investigated next. Models
can support humans in making such decisions by providing accurate pre-
dictions of the relevant properties of the compounds under consideration.
However, human experts are not likely to trust a model if its prediction de-
viates from their own intuition. This deviation might occur for any of these
reasons:

1. The models prediction is correct.

(a) Its training data includes relevant information that the expert
doesn’t know yet.

(b) It has generalized from known data in a valid way that is not
obvious to the human expert.

(c) It has generalized from known data in an invalid way that is not
obvious to the human expert, i.e. the correct prediction was a
lucky strike.
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2. The human experts intuition is correct. The models predictions is
wrong because

(a) The local density of training compounds is not high enough.

(b) The local labeling of training compounds is correct, but inconsis-
tent.

(c) The local labeling of training compounds is wrong/inaccurate.

(d) The features (vectorial descriptors, 2D-graphs ...) given to the
learning algorithm do not represent the molecules sufficiently well.

(e) The internal representation of compounds in the learning algo-
rithm (e.g. the kernel or covariance function) does not capture
the relevant bits of information.

(f) Hyperparameter selection (if applicable) led to non-optimal pa-
rameters.

(g) Learning (model fitting) led to a non-optimal model.

If a model could visually express how each prediction was constructed from
a small number of most relevant compounds in the training data, the human
expert could easily recognize case 1(a). In the following, such visualizations
will be called explanations. By definition, the human expert cannot distin-
guish between cases 1(b) and 1(c). To be on the safe side, he should therefore
trust his intuition and not believe the models predictions in cases 1(b,c) and
2(a-g). If he learns from the models explanations that case 1(a) applies,
his intuition and the model prediction will be in sync again, because he has
learned some decision-relevant new facts from the model.

Relation to Confidence Estimates

Individual confidence estimates, e.g. predictive variances from Gaussian Pro-
cess Models (see Sec. 3.3) can, in principle, help to avoid inaccurate predic-
tions, because they are often made with lower confidence than correct predic-
tions (see Sec. 3.7). Considering the different cases defined above, predictive
variances can help to detect cases 2(a) and 2(b). The remaining cases 2(c-g)
can, by definition, not be detected by the model itself. External tools, such
as local density estimators, outlier indices etc. may use different (internal)
representations of the data and may be able to detect potentially unreliable
predictions where the model itself predicts confidently. However, the princi-
ple difficulties listed in cases 2(c-g) apply to all conceivable external tools in
an analog way.
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4.3.2 Prerequisites for Obtaining helpful Explanations

The key hypothesis introduced in the motivational first part of this section
is that sometimes (specifically: case 1(a) in the list above) a human expert’s
intuition and a model’s prediction do not match, because the models training
data includes relevant information that the expert doesn’t know yet. In this
case, a visualization of the relevant part of the training data is useful if
the human expert agrees that the compounds (and metadata) presented as
explanations are indeed relevant to the prediction, because he can then learn
something new. Consequently, his intuition and the models prediction finally
match again.

Therefore, the model’s explanations for a certain prediction will be useful
if the following criteria are met:

1. The prediction is correct.

2. The prediction is based on few enough training compounds to allow the
human expert to grasp the visualization.

3. The prediction is based on training compounds that are similar to the
test compound (according to the perception of the user)

4. At least some of these relevant training compounds (or their labels) are
new to the user.

The following paragraphs present how a study can be set up such that all
four requirements are satisfied. The discussion starts with the easiest re-
quirements (no. 4 and no. 1) and then proceeds to the more difficult parts
(no. 2 and no. 3).

The fourth requirement can, for the purpose of this present investigation,
be satisfied by making the assumption that any compound might be unknown
to some human expert who might want to use the system.

To satisfy the first requirement, one can generate predictions for held-
out test-compounds with known labels and then choose correctly predicted
test-compounds for in depth investigation.

The second requirement can be made more specific by consulting the
psychological literature. As originally established by Miller [119] and later
confirmed by many other researchers, humans can efficiently deal with up to
7 ± 2 items simultaneously. In this study, the k-nearest-neighbor classifier
(KNN) will be used as a baseline method. KNN-predictions are always based
on odd numbers of training compounds. Considering that the user will have
to simultaneously consider the test compound in question together with all
training compounds relevant to this prediction, choosing k = 7 would result
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in 7 + 1 = 8 items, i.e. demanding above average cognitive skills on the
part of the user. To be on the safe side while establishing the usefulness of
explanations, the constraint k ≤ 5 was chosen for this study, resulting in a
maximum of 5 + 1 = 6 items. Unlike KNN, more complex machine learning
methods do not have a parameter that limits how many training points will
be taken into account. Furthermore, this number may vary depending on the
test points for which predictions are sought. Hence, a subsection of Sec. 4.3.4
is devoted to the question how complex machine learning algorithms can be
modified to operate sufficiently local.

The last requirement depends (by definition) on the user. Ideally, one
would perform an evaluation with a large number of human experts. How-
ever, this type of investigation is out of the scope of this work. The initial
evaluation presented in the following sections was performed by the author
of this thesis and is considered a starting point for further investigations.
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4.3.3 Concepts & Definitions

If unlimited computational resources were available, explanations could be
generated for any machine learning model using a brute force approach along
these lines:

1. Train a model using the full set of training data.

2. Perform leave-one-out cross-validation on the training data and keep
all models.

3. Use each model to generate predictions for the test-compound for which
explanations are sought.

4. Sort the leave-one-out models by how much the prediction for the test
compound varies when compared to the prediction from the model that
was trained on the full training set. The compounds left out by the
models at the top of the list cause the largest changes in prediction
when left out and are therefore the most relevant part of the training
set.

As discussed in more detail in the next subsection, explanations generated in
this way can be useful if the machine learning algorithm operates sufficiently
local. Applying the same algorithm to global models (like linear regression)
would yield the same explanations for any conceivable test point. There-
fore, they cannot lead the user to new insights by pointing out the training
compounds that are most relevant to each individual test compound.

In the special case of the k-nearest-neighbor classifier one can directly use
the k nearest neighbors of each test-point to generate explanations.

Kernel methods like support vector machines for classification (SVM) and
regression (SVR), Gaussian Process regression (GPR) and kernel ridge regres-
sion (KRR) all rely on the following general equation to calculate predictions
[120].

f(x) =
n∑
i=1

αik(xi,x∗) + b (4.9)

Depending on the learning method, n is either the number of support vectors
(for sparse methods like SVM, SVR) or the number of all training compounds
(in case of GPR, KRR). The weights αi are optimized during model fitting
and k(xi,x∗) denotes the kernel function between the respective support
vector / training compound xi an the test compound x∗.

Predictions made by Gaussian Process Classification (GPC) models in-
clude the above expression f(x), but additionally take the predictive variance
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into account. Let varf (x0) be the variance of f(x0) under the GP posterior
for f . The probability for being of the positive class p(x0) predicted by GPC
can be shown to be (see Equation 6 in [121])

p(x0) =
1

2
erfc

(
−f(x0)√

2 ∗
√

1 + varf (x0)

)
,

with erfc being the complementary error function.
For all kernel methods mentioned above, the contribution of each training

point can therefore be calculated analytically. The vector of contributions βt
of each training point to the prediction for a specific test point xt is hereby
defined as follows,

f(xt) = K∗α
= K∗(K + Iσ)−1y
= βtyt

with K symbolizing the kernel matrix of the training data, K∗ as the kernel
matrix between the training and the test data, σ as the learned noiselevel
and y symbolizing the vector of training labels.

The normalized contribution of each of the n training points to the pre-
diction f(xt) can then be written as:

β̂t :=
|K∗(K + Iσ)−1|∑n

i=1 βt,i
(4.10)
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Learning Algorithm AUC Error rate
GPC RBF 83.7 % 23.2 %

GPC ISOAK 82.2 % 25.2 %
KNN (k = 5) 66.8 % 33.7 %

Table 4.1: Area under the receiver operating characteristic curve (AUC) and error rate
for a k-nearest-neighbor classifier (KNN), Gaussian Process Classification (GPC) utilizing
the radial basis function (RBF) kernel and GPC with the ISOAK molecular graph kernel.

4.3.4 Examples & Discussion

Data and Learning Algorithms

The Ames mutagenicity benchmark dataset introduced in Sec. 5.6 is used to
investigate the usefulness of explanations. From the viewpoint taken for this
particular purpose, the modeling task can be summarized as follows:

• supervised classification task

• dataset: 6512 molecules with labels for Ames toxicity (see Sec. 5.6).

• training set: 1000 randomly chosen compounds, including 203 com-
pounds listed in the world drug index (WDI) [122].

• test set: 4512 randomly chosen compounds, including 1213 compounds
listed in the WDI.

• data representations: 904 dimensional vectors (a subset from the Dragon
descriptors [123] as chosen previously, see Sec. 5.6) serve as input for
GPC with a radial basis function kernel (RBF), 200 out of these 904
feature dimensions are used by KNN1 and molecular graphs serve as
input for the ISOAK molecular graph kernel [106].

• learning algorithms investigated for predicting: See Sec. 5.6 for results
obtained using Support Vector Machines, Gaussian Process Classifica-
tion, Random Forests and k-Nearest-Neighbor

• learning algorithms investigated for explaining : Gaussian Process Clas-
sification and k-Nearest-Neighbor

1Features were automatically selected using the p-values for the hypothesis of linear
correlation of each feature with the label as determined in a permutation test using 1000
random permutations of the labels.
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Table 4.1 lists the error rate and area under the receiver operating charac-
teristic curve (AUC) for the models applied in this study. Results obtained
using Gaussian Process Classification (GPC) with RBF kernel are on par
with previous results (see Sec. 5.6), despite the fact that in the last study a
much larger fraction of all compounds was used to train the models.2 KNN
performs significantly worse when considering AUC. One reason may be that
KNN does not interpolate as well as GPC. A second reason is that while
being a useful single number statistic for classifiers with real valued output
(like SVM and GPC), AUC can be misleading when being applied to KNN
with small k.3 The newly introduced GPC with the ISOAK molecular graph
kernel performs almost as well as GPC with RBF kernel when considering
both AUC and error rate.

Initial Explanations & Missing Locality of GPC models

Using these models, initial experiments on generating explanations were per-
formed. In line with the previously presented motivation (Sec. 4.3.1) and
prerequisites (Sec. 4.3.2), the ten most confidently made predictions for WDI
compounds4 made by each model are identified. Table 4.2, 4.3 and 4.4. list
these ten test compounds together with the five most relevant compounds
from the respective training set (explanations).

Inspecting the test compounds predicted most confidently by the KNN
model with k = 5 (Table 4.2), one finds that they are structurally not very
similar to the training compounds presented. Therefore, explanations gener-
ated in this way will not be convincing in the eyes of a human expert utilizing
this model.5

Next, the ten test compounds predicted most confidently by the Gaussian
Process Classification (GPC) model utilizing the ISOAK molecular graph
kernel are investigated (Table 4.3). As one would expect when using a graph
kernel, the predictions are based on structurally very similar molecules in the

2Previously, a 5-fold cross-validation was performed with additional compounds in a
static training set. Therefore, more than 5000 compounds were used in training each
model and only ≈ 1000 compounds were used as respective test set.

3AUC can be misleading when being applied to KNN with small k because AUC is
originally an indicator of ranking performance. KNN generates a real valued output, but
only 2k+ 1 different values (voting outcomes in the range [−k . . . k]) are possible. Among
test compounds with the same voting outcome, the order is random, which tends to result
in low AUCs for small values of k.

4When feasible, WDI listed test compounds are chosen for visual inspection, because
they are the most relevant type of compound.

5Explanations identified by KNN models can potentially be improved by using different
distance functions and vectorial data representations.
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test mol. explanations (most relevant molecules in training set)

Table 4.2: The left-most column lists ten of the test compounds predicted most confi-
dently by the KNN model with k = 5. The remaining five columns contain the explana-
tions, i.e. in this case the five nearest neighbors from the training set. Structurally these
neighbors are not very similar to the test compounds in the leftmost column. Therefore,
they will not be convincing in the eyes of a human expert utilizing this model.
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test mol. explanations (most relevant molecules in training set)

Table 4.3: The left-most column lists the ten test compounds predicted most confidently
by the Gaussian Process Classification (GPC) model utilizing the ISOAK molecular graph
kernel. The remaining five columns contain the explanations, i.e. the five compounds
from the training set that are most relevant for the respective prediction. As one would
expect when using a graph kernel, the predictions are based on structurally very similar
molecules in the training set and the resulting explanations may be perceived as convincing
by human experts utilizing this model.
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test mol. explanations (most relevant molecules in training set)

Table 4.4: The left-most column lists the ten test compounds predicted most confidently
by the Gaussian Process Classification (GPC) model utilizing the radial basis function
(RBF) kernel. The remaining five columns contain the explanations, i.e. the five com-
pounds from the training set that are most relevant for the respective prediction. Despite
the fact that structural information about the graph is only implicitly contained in the uti-
lized vectorial descriptors, the predictions are based on structurally very similar molecules
in the training set and the resulting explanations may be perceived as convincing by human
experts utilizing this model.
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training set. The resulting explanations may be perceived as convincing by
human experts utilizing this model.

Lastly, visually inspecting the ten test compounds predicted most con-
fidently by the Gaussian Process Classification (GPC) model utilizing the
radial basis function (RBF) kernel, one finds that this model also identifies
structurally very similar neighbors. This is somewhat surprising, because
structural information about the molecules is only implicitly contained in
the vectorial descriptors that enter the RBF kernel as inputs. Consequently,
this type of model can also produce explanations that may be perceived as
convincing by human experts.

Further considering these initial explanations, one important question
comes to mind: How local are these models? In case of KNN with k = 5,
the five most relevant compounds together determine, by definition, 100% of
the prediction. When considering GPC RBF and the ten test compounds in
Table 4.4, this percentage drops to between 6.0 and 9.3%. Similarly, for GPC
ISAOK (Table 4.3) the five most relevant compounds together determine only
4.1 to 6.3 % of the predictions for the ten test compounds.

Increasing Locality of GPC

Having learned that the example predictions made by the GPC RBF and
GPC ISOAK models are almost completely determined by other compounds
than the five compounds most relevant to each respective prediction, the
next questions are: Are the respective ten test compounds special or are the
models simply not very local? And if they are not local, can we make these
models sufficiently local for generating convincing explanations?

In case of the GPC RBF model, the answer is yes: The kernel width
controls directly how local the model operates. Normally, this parameter is
automatically set during model fitting [121]. On this data set, a kernel width
of ≈ 7 is learned. The impact that manually reducing the kernel width has on
the area under the receiver operating characteristic curve (AUC) and error
rate achieved by GPC RBF is illustrated by diamonds in Figure 4.1. Results
of GPC ISOAK and KNN with k = 5 are indicated by solid and dashed
horizontal lines, respectively. One can see that the AUC achieved by GPC
RBF decreases as the kernel width is reduced. However, no sudden drop can
be observed – AUC decreases in small steps from 84 % down to 76 %. The
error rate behaves similarly: It increases in small steps from 23% up to 28%.
The diamonds used for GPC RBF cross the solid horizontal line indicating
the performance achieved using GPC ISOAK, i.e. GPC RBF can perform
less good, equal to or better than GPC ISOAK, depending on the kernel
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Figure 4.1: The impact of manually reducing the kernel width of a GPC RBF model
is illustrated by diamonds. Performance achieved using the GPC ISOAK model is indi-
cated by solid lines and KNN (k = 5) results are represented by dashed horizontal lines,
respectively.
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width used, and performs best when using the kernel width automatically
determined in the model fitting process. Mind that for the range of kernel
widths presented, GPC RBF always outperforms KNN (k = 5) by a large
margin.

Table 4.5 presents more detailed information about GPC RBF models
trained using different kernel widths: The first row corresponds to the model
with the learned kernel width. In each subsequent row, the kernel width is
manually set 0.5 units smaller than in the previous row, thereby spanning
the range [7 . . . 2.5].

• Column (a) shows histograms of the predictions for the whole test set.

• Column (b) contains histograms indicating for each prediction on the
test set, exactly how many training compounds are minimally needed
to determine ≥ 80 % of the respective prediction (measured by the β̂t
coefficient introduced in Sec. 4.3, Eq. 4.10).

• Column (c) shows histograms indicating the fraction of positives (class
1 compounds) among the smallest possible set needed to determine
80 % of each test prediction.

In the first row, we can see that predictions span the whole range [0 . . . 1]
(column (a)). For vast majority of test set predictions, 300 to 400 training
set compounds are minimally needed to determine 80 % of the respective
prediction as indicated by the β coefficient introduced in Sec. 4.3 (histograms
in column (b)). Considering our goal of explaining predictions using five
training compounds, this model is certainly not local enough. Column (c)
presents histograms indicating the fraction of positives (class 1 compounds)
among the smallest set needed to determine 80% of each test prediction. For
most predictions from the model with the learned kernel width, this fraction
is in the range [0.48 . . . 0.58]. The large differences in the predictions that
are relatively evenly distributed in the whole range [0 . . . 1] are therefore not
the result of a simple KNN-like voting of many equally important training
compounds. Instead, large differences in the α coefficients learned by the
model result in very different predictions for different test compounds.

When the kernel width used is manually reduced and kept fixed during
the model fitting process, predictions span smaller and smaller ranges. At the
smallest kernel width investigated, the range inside which most predictions
can be found has shrunk to [0.495 . . . 0.505]. Keep in mind that Figure 4.1
indicates that, at the same time, performance measured by error rate and
AUC decreases only slightly. Therefore, most predictions are still correctly
place below or above the class-separating threshold of 0.5 (as indicated by
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Table 4.5: The first row corresponds to the GPC RBF model with the learned ker-
nel width (≈ 7). In each subsequent row, the kernel width is manually set 0.5 units
smaller than in the previous row, thereby covering the range [7 . . . 2.5]. Column (a) shows
histograms of the predictions for the whole test set. Column (b) contains histograms in-
dicating for each prediction on the test set, exactly how many training compounds are
minimally needed to determine ≥ 80 % of the respective prediction and column (c) shows
histograms indicating the fraction of positives (class 1 compounds) among the smallest
possible set needed to determine 80 % of each test prediction.
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the still rather low error rate). Also, the numerical value of the predictions
still is somehow related to the confidence in each prediction (as indicated
by the still relatively high AUC). Predictions do, however, loose the original
meaning of being the probability of the respective compound belonging to
the positive class (which is exhibited by the model with the learned kernel
width presented in the topmost row).

As column (b) indicates, the number of compounds needed to determine
≥ 80 % of each prediction decreases as the kernel width is decreased. For
kernel widths ≤ 3.5, almost all test compounds can be predicted using at
most five training compounds. Remarkably, even these very local GPC RBF
models still outperform KNN (with k = 5)) by a large margin (as previously
established in Figure 4.1).

Finally, column (c) shows that the fraction of positives (class 1 com-
pounds) among the smallest possible set needed to determine 80 % of each
test prediction starts out around 0.5, but when the kernel width is reduced,
it moves into the extremes (mostly either 0 or 1). This is necessarily so,
because, as observed in the last paragraph on column (b), when using small
kernel widths, predictions only depend on a very small number of compounds
and, consequently, the probability of observing a consistent neighborhood in-
creases.

Quality of Explanations Based on Local GPC RBF Models

As established in Sec. 4.3.4, reducing the kernel width of GPC RBF in-
deed results in test set predictions being almost completely determined by
five or less compounds in the training set. Since the reduced kernel width
is imposed throughout the learning process, the weight coefficients α that
are learned by the GPC algorithm can turn out differently when the kernel
width is changed. The previously discussed Table 4.4 shows the explana-
tions (most relevant training compounds) for the compounds predicted most
confidently by the GPC RBF model with the learned kernel width ≈ 7. Ta-
ble 4.6 presents, for the same ten test compounds as seen in Table 4.4, the
explanations generated by the GPC RBF model with the smallest kernel
width investigated (2.5). Again, the explanations are found to be visually
convincing and, as expected (Sec. 4.3.4), they almost completely determine
the predictions obtained: Percentages are in the range [81 . . . 100] % and are
95 % on average. As these are compounds predicted most confidently by a
previously introduced model with a larger kernel width, one may ask: How
about the predictions made most confidently by the new much more local
model? Table 4.7 presents the test compounds predicted most confidently
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test mol. explanations (most relevant molecules in training set)

Table 4.6: For the same ten test compounds as seen in Table 4.4, this table shows the
explanations generated by the GPC RBF model with the smallest kernel width investigated
(2.5). Again, the explanations are found to be visually convincing and (due to the reduced
kernel width) they almost completely determine the predictions obtained.
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test mol. explanations (most relevant molecules in training set)

Table 4.7: The left-most column lists the ten test compounds predicted most confidently
by the GPC RBF model with the manually enforced kernel width 2.5. The remaining five
columns contain the explanations, i.e. the five compounds from the training set that are
most relevant for the respective prediction. They are structurally very similar molecules
predicted and may be perceived as convincing by human experts utilizing this model.



4.3 Explaining Individual Predictions 79

by the very local GPC RBF model. Again, the explanations are found to be
convincing. Predictions are almost completely determined by the depicted
training compounds ([99 . . . 100] %, with the average at 99.7 %).

4.3.5 Conclusion

Models can support human experts (e.g. in the lead optimization phase
of the drug discovery process) in making decisions by providing accurate
predictions of the relevant properties of the compounds under consideration.
However, human experts are not likely to trust a model if its prediction
deviates from their own intuition. In the previous sections, a method for
generating explanations of predictions was developed. By consulting these
explanations, the user may learn that predictions that have previously been
perceived as surprising are in fact made by generalizing in an acceptable way
from a small6 set of structurally similar training compounds that he did not
know before.

The new patent pending [2] method for generating explanations is based
on the introduced β coefficient. More specifically, β̂t is defined as the vec-
tor of normalized contribution of each training point to the prediction for a
specific test point xt and can be calculated analytically for kernel methods
such as support vector machines for classification and regression, Gaussian
Process regression and classification and kernel ridge regression. Explana-
tions generated for Gaussian Processes for Classification (GPC) models of
Ames toxicity have been investigated. As a baseline, the k-Nearest-Neighbor
algorithm (KNN) was investigated (when using KNN with sufficiently small
k, the nearest neighbors can serve as explanations).

The KNN model turned out to present training compounds that are struc-
turally quite different from the respective test compounds. The GPC model
utilizing the ISOAK molecular graph kernel succeeded in identifying training
compounds that are structurally similar to the respective test compounds.
This was expected, since the kernel explicitly uses the molecular structure.
Unfortunately, this model is not sufficiently local, i.e. each prediction is
based on hundreds of training compounds. GPC RBF models are capable of
identifying training compounds that are structurally similar to the respective
test compounds. This is a somewhat surprising result, because the vectorial
descriptors serving as input to the RBF kernel contain the molecular graph
only implicitly. Furthermore, these models can be made to operate suffi-
ciently local. The most local GPC RBF models investigated rely on less that

6This set has to be small, because (as learned from research in psychology) humans
can only consider 7± 2 items simultaneously.
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five training compounds for making each test prediction and still outperform
KNN (k = 5) by a large margin.

Interesting directions for future research include investigating explana-
tions for other classifiers and regression models. Furthermore, evaluating a
large number of explanations with an (ideally also large) group of experts is
considered the best possible way of quantifying how useful such explanations
can be in practice.

Note added between grading and publication of Timon Schroeter’s
dissertation: In the inital version of this thesis, the author has suggested
evaluating a large number of explanations with an (ideally also large) group
of experts. David Baehrens (who was initially supervised by the author of
this thesis and later by Katja Hansen and Mikio Braun) has conducted this
evaluation and has published the results in his diploma thesis [124].

In a forced choice paradigm, human users were presented with conflicting
predictions by two models trained on different subsets of the Ames muta-
genicity benchmark data set that we published earlier [5]. Forty one (41)
students studying pharmaceutical sciences, medicine, chemistry and other
subjects each answered forty (40) questions. The effect of the students sub-
ject and the effect of explanations were quantified in terms of conditional
odds ratios. Students studying pharmaceutical sciences were found to choose
correct predictions with a two-fold increased probability (relative to the ran-
dom choice baseline). For students of any subject, explanations were shown
to result in a 93 % increased probability of choosing correct predictions. The
latter result is also statistically significant at a p-value of 0.01.

In conclusion, a large number of explanations has been evaluated using a
large group of experts. Explanations led to a statistically significant (p=0.01)
strong increase (93 %) in probability of choosing correct predictions, therby
underscoring that human users can strongly profit from explanations.
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4.4 Guiding Compound Optimization & Explaining Decisions
using Local Gradients

In this thesis, two separate methodologies for explaining individual predic-
tions of (possibly non-linear) machine learning models are presented. The
method presented in Sec. 4.3 explains predictions by the means of visualiz-
ing relevant objects from the training set of the model. This allows human
experts to understand how each prediction comes about. If a prediction con-
flicts with his intuition, the human expert can easily find out whether the
grounds for the models predictions are solid or if trusting his own intuition
is the better idea [2].

The method presented in this section utilizes local gradients of the mod-
els predictions to explain predictions in terms of the locally most relevant
features. This not only teaches the human expert which features are rele-
vant for each individual prediction, but also gives a directional information.
Abstractly speaking, one can learn in which direction a data point has to
be moved to increase the prediction for the target value [1]. In the context
of lead optimization, this means that the human expert can obtain a type
of guidance in compound optimization. For this reason, the two explaining-
related methodologies are presented in separate sections.

4.4.1 Introduction

Automatic non-linear classification is a common and powerful tool in data
analysis. Machine learning research has created methods that are practically
useful and that can classify unseen data after being trained on a limited
training set of labeled examples. Nevertheless, most of the algorithms do
not explain their decision. However, in many application scenarios of data
analysis it is essential to obtain an instance based explanation, i.e. one
would like to gain an understanding what input features made the non-linear
machine give its answer for each individual test object and how one could
modify this object to optimize its properties.

In the lead optimization phase of the drug discovery process (as intro-
duced in Sec. 2.1), variants of the respective lead compounds are synthesized
with the goal of finally producing a drug candidate that fulfills all require-
ments. Reaching this goal typically takes thousands of experiments, each
of which is quite expensive. The many decisions which compound or small
batch of compounds to synthesize and test next are made by humans, and
they are often made on the basis of very little information. A type of guid-
ance in compound optimization that facilitates choosing the most promising
compounds in each iteration can therefore be of great value.
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Typically, explanations are provided jointly for all instances of the train-
ing set, for example feature selection methods find out which inputs are
salient for a good generalization [125]. While this can give a coarse im-
pression about the global usefulness of each input dimension, it is still an
ensemble view and does not provide an answer on an instance basis. In the
neural network literature also solely an ensemble view was taken in algo-
rithms like input pruning [126]. The only classification which does provide
individual explanations are decision trees [102].

This section proposes a simple framework that provides local explanation
vectors applicable to any classification method in order to help understanding
prediction results for single data instances. The local explanation yields the
features being relevant for the prediction at the very points of interest in the
data space and is able to spot local peculiarities which are neglected in the
global view e.g. due to cancellation effects.

The section is organized as follows: Local explanation vectors are techni-
cally defined as class probability gradients and an illustration for Gaussian
Process Classification (GPC) is given. In the following subsection, the new
approach is contrasted with related work. Some methods output a prediction
without a direct probability interpretation. For these, our recent publication
[1] proposes a way to estimate local explanations.

Results obtained using this new methodology are presented in Sec. 5 and
in [1]. More specifically, in section 4 in [1] it is applied to learn distinguish-
ing properties of Iris flowers by estimating explanation vectors for a k-NN
classifier applied to the classic Iris dataset. Section 5 in [1] discusses how
the approach applied to a SVM classifier allows to explain how digits ”two”
are distinguished from digits ”8” in the USPS dataset. In section 5.8.1 a
challenging real world application scenario is presented in which the pro-
posed explanation capabilities prove useful: In the lead optimization phase
o the drug discovery process, human experts regularly decide how to modify
existing lead compounds in order to obtain new compounds with improved
properties. Models capable of explaining predictions can help in the process
of choosing promising modifications. The automatically generated expla-
nations match with chemical domain knowledge about toxifying functional
groups of the compounds in question.

The presentation of results is concluded in the last paragraph of Sec. 4.3.
Our recent publication [1] discusses further characteristic properties and lim-
itations of the new methodology. Future directions are two-fold: First it is
believed that the new method will find its way into the tool boxes of practi-
tioners who not only want to automatically classify their data but who also
would like to understand the learned classifier. The second direction is to
generalize this approach to other prediction problems such as regression.
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4.4.2 Definitions

This Subsection gives definitions of local explanation vectors in the classi-
fication setting. It starts with a theoretical definition for multi-class Bayes
classification and then gives a specialized definition being more practical for
the binary case.

For the multi-class case, suppose one is given data points x1, . . . , xn ∈ <d
with labels y1, . . . , yn ∈ {1, . . . , C} and one intends to learn a function that
predicts the labels of unlabeled data points. Assuming that the data could
be modelled as being IID-sampled from some unknown joint distribution
P (X, Y ), in theory, one can define the Bayes classifier,

g∗(x) = arg min
c∈{1,...,C}

P (Y 6=c | X=x)

which is optimal for the 0-1 loss function [see 127].

For the Bayes classifier one defines the explanation vector of a data point
x0 to be the derivative with respect to x at x = x0 of the conditional proba-
bility of Y 6=g∗(x0) given X = x, or formally,

Definition 4.1.

ζ(x0) :=
∂

∂x
P (Y 6=g∗(x0) | X=x)

∣∣∣∣
x=x0

Note that ζ(x0) is a d-dimensional vector just like x0 is. The classifier
g∗ partitions the data space <d into up to C parts on which g∗ is constant.
Under the usual assumption that P (X =x | Y = c) is for all c smooth in x,
ζ(x0) defines on each of those parts a vector field that characterizes the flow
away from the corresponding class. Thus entries in ζ(x0) with large absolute
values highlight features that will influence the class label decision of x0. A
positive sign of such an entry implies that increasing that feature would lower
the probability that x0 is assigned to g∗(x0). Ignoring the orientations of the
explanation vectors, ζ forms a continuously changing (orientation-less) vector
field along which the class labels change. This vector field lets one locally
understand the Bayes classifier.

For the case of binary classification we directly define local explanation
vectors as local gradients of the probability function p(x) = P (Y = 1 | X =
x) of the learned model for the positive class.

So for a probability function p : <d → [0, 1] of a classification model
learned from examples {(x1, y1), . . . , (xn, yn)} ∈ <d × {−1,+1} the explana-
tion vector for a classified test point x0 is the local gradient of p at x0:
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Definition 4.2.

ηp(x0) := ∇p(x)|x=x0

By this definition the explanation η is again a d-dimensional vector just
like the test point x0 is. Its individual entries point in the direction the pre-
diction would take when the corresponding feature of x0 is increased locally
and their absolute values give the amount of influence in the change in pre-
diction. As a vector η gives the direction of the steepest ascent from the test
point to higher probabilities for the positive class. For binary classification
the negative version −ηp(x0) indicates the changes in features needed to in-
crease the probability for the negative class which may be especially useful
for x0 predicted in the positive class.

In the following, definition 4.2 is applied to model predictions learned by
Gaussian Process Classification (GPC), see Sec. 3.3. GPC is used here for
three reasons. First is the state-of-the-art performance of Gaussian Processes
for real world data sets, including challenging chemoinformatics data, see e.g.
[7, 8, 11, 12, 90, 98, 121]. It is natural to expect a model with high prediction
accuracy on a complex problem to capture relevant structure of the data
which is worth explaining and may give domain specific insights in addition
to the values predicted. For an evaluation of the explaining capabilities of
our approach on a complex problem from chemoinformatics see section 5.8.1.
Second GPC does model the class probability function used in Definition
4.2 directly.7 And third it is possible to calculate the local gradients of the
probability function analytically for differentiable kernels as follows.

Let f(x) =
∑n

i=1 αik(x, xi) be a GP model trained on sample points
x1, . . . , xn ∈ <d where k is a kernel function and αi are the learned weights
of each sample point. For a test point x0 ∈ <d let varf (x0) be the variance of
f(x0) under the GP posterior for f . The probability for being of the positive
class p(x0) predicted by GPC can be shown to be (see Equation 6 in [6])

p(x0) =
1

2
erfc

(
−f(x0)√

2 ∗
√

1 + varf (x0)

)
,

with erfc being the complementary error function.

Then the local gradient of p(x0) is given by

7For other classification methods such as Support Vector Machines which do not provide
a probability function as its output, our recent publication [1] proposes a way to estimate
local explanations.
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3
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)
.

As a kernel function choose e.g. the RBF-kernel k(x0, x1) = e−(x0−x1)2w,
which has the derivative ∂

∂x0,j
k(x0, x1) = −2we−(x0−x1)2w(x0,j − x1,j) for j ∈

{1, . . . , d}. Then the elements of the local gradient ∇f(x)|x=x0 are

∂f

∂x0,j

= −2w
n∑
i=1

αie
−(x0−xi)

2w(x0,j − xi,j),

for j ∈ {1, . . . , d}.
For varf (x0) = k(x0, x0)− kT∗ (K + Σ)−1k∗ the derivative is given by

∇varf (x)|x=x0

=
∂varf

∂x0,j

= ∂
∂x0,j

k(x0, x0)− 2 ∗ kT∗ (K + Σ)−1 ∂
∂x0,j

k∗

for j ∈ {1, . . . , d}.
Figure 4.2 shows the training data of a simple object classification task

(a) and the model learned using GPC (b). The data in (a) is labeled −1 for
the blue points and +1 for the red points. As illustrated in (b) the model
is a probability function for the positive class which gives every data point
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(c) Local explanation vectors
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(d) Direction of explanation vectors

Figure 4.2: Explaining simple object classification with Gaussian Processes.

a probability of being in this class. In (c) the probability gradient of the
model is shown together with the local gradient explanation vectors. On the
hypotenuse and at the corners of the triangle explanations from both features
interact towards the triangle class while along the edges the importance of
one of the two feature dimensions singles out. At the transition from the
negative to the positive class the length of the local gradient vectors repre-
sents the increased importance of the relevant features. As indicated by (d),
explanations close to the edges of the plot (especially in the right hand side
corner) point away from the positive class. However, as we can learn from
(c), their magnitude is very small, and following explanation vectors with
large magnitude indeed leads to the positive class.
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4.4.3 Related Work

Assigning potentially different explanations to individual data points dis-
tinguishes our approach from conventional feature extraction methods that
extract global features that are relevant for all data points, i.e. those features
that allow to achieve a small overall prediction error. Our notion of explana-
tion is not related to the prediction error, but only to the label provided by
the prediction algorithm. Even though the error is large, our framework is
able to answer the question why the algorithm has decided on a data point
the way it did.

The explanation vector proposed here is similar in spirit to sensitivity
analysis which is common to various areas of information science. A classical
example is the outlier sensitivity in statistics [128]. In this case, the effects
of removing single data points on estimated parameters are evaluated by an
influence function. If the influence for a data point is significantly large, it
is detected as an outlier and should be removed for the following analysis.
In regression problems, leverage analysis is a procedure along similar lines.
It detects leverage points which have potential to give large impact on the
estimate of the regression function. In contrast to the influential points (out-
liers), removing a leverage sample may not actually change the regressor, if
its response is very close to the predicted value. E.g. for linear regression the
samples whose inputs are far from the mean are the leverage points. Our
framework of explanation vectors considers a different view. It describes the
influence of moving single data points locally and it thus answers the question
which directions are locally most influential to the prediction. The explana-
tion vectors are used for extracting sensitive features which are relevant to the
prediction results, rather than detecting/eliminating the influential samples.

In recent decades, explanation of results by expert systems have been an
important topic in the AI community. Especially, for those based on Bayesian
belief networks, such explanation is crucial in practical use. In this context
sensitivity analysis has also been used as a guiding principle [129]. There the
influence is evaluated of removing a set of variables (features) from evidences
and the explanation is constructed from those variables which affect inference
(relevant variables). For example, [130] measures the cost of omitting a single
feature Ei by the cross-entropy

H−(Ei) = H(p(D|E);P (D|E\Ei) ) =
∑

P (dj|E) log
P (dj|E)

p(dj|E\Ei)
,

where E denotes evidences and D is the target variable. The cost of a subset
F ⊂ E can be defined similarly. This line of research is more connected
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to our work, because explanation can depend on the assigned values of the
evidences E, and is thus local.

Similarly [131] and [132] try to explain the decision of trained kNN-,
SVM- and ANN-models for individual instances by measuring the difference
in their prediction with sets of features omitted. The cost of omitting features
is evaluated as the information difference, the log-odds ratio or the difference
of probabilities between the model with knowledge about all features and
with omissions respectively. To know what the prediction would be without
the knowledge of a certain feature the model is retrained for every choice of
features whose influence is to be explained. To save the time of combinatorial
training [131] propose to use neutral values which have to be estimated by
a known prior distribution of all possible parameter values. As a theoretical
framework for considering feature interactions, [132] propose to calculate the
differences between model predictions for every choice of feature subset. The
principal differences between our approach and these frameworks are: (i)
We consider continuous features and no structure among them is required,
while the other frameworks start from binary features and may require dis-
cretization steps with the need to estimate parameters for it. (ii) We allow
changes in any direction, i.e. any weighted combination of variables, while
other approaches only consider the omission of a set of variables.



Chapter 5

Results

5.1 Overview

This chapter presents the results of six studies on constructing models for
various ADME/Tox 1 properties, results obtained using a new algorithm for
explaining predictions & eliciting hints for compound optimization and the
results of a virtual screening study. The results of each individual work have
been previously published. The respective journal publications are referenced
in Table 1.1 in Sec. 1.2 and inside each individual section. More specifically,
the ADME/Tox properties investigated in this chapter are:

• Partition Coefficients (Sec. 5.2)

• Aqueous Solubility (Sec. 5.3)

• Cytochrome P450 Inhibition (Sec. 5.4)

• Metabolic Stability (Sec. 5.5)

• Ames Mutagenicity (Sec. 5.6)

• hERG Channel Blockade Effect (Sec. 5.7)

Local gradients for explaining individual classification decisions and eliciting
compound optimization are validated in Sec. 5.8, using two benchmark sets
of data that are well known in the machine learning community (IRIS flowers
and USPS digits) and was then applied to Gaussian Process Classification
models for Ames mutagenicity.

Furthermore, the author of this thesis participated in a virtual screening
study that led to the discovery of new PPARγ agonists (Sec. 5.9). Both
retrospective and prospective results are discussed.

1The acronym ADME/Tox stands for properties relating to Absorption, Digestion,
Metabolism, Excretion & Toxicity of chemical compounds.
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5.2 Partition Coefficients

Lipophilicity of drugs is a major factor in both pharmacokinetics and phar-
macodynamics. Since a large fraction of drug failures (∼ 50%) [133] results
from an unfavorable PC-ADME/T profile (physicochemistry, absorption, dis-
tribution, metabolism, excretion, toxicity), predicted octanol water partition
coefficients log P and log D are nowadays considered early on in lead discov-
ery. Due to the confidentiality of in-house data, makers of predictive tools are
usually not able to incorporate such data from pharmaceutical companies.
Commercial predictive tools are therefore typically constructed using publicly
available measurements of relatively small and mostly neutral molecules. Of-
ten, their accuracy on the in-house compounds of pharmaceutical companies
is relatively low [115].

The following section describes how predictive models for lipophilicity
were constructed in collaboration with researchers at Bayer Schering Pharma.
The usefulness of individual confidence estimates produced using different
algorithms was evaluated; the discussion in this section focuses on Gaussian
Process models. A more detailed description of the results of modeling log D7

using different machine learning methods and both in-house and public data
sets can be found in [7, 12].

From a machine learning perspective, the modeling task can be summa-
rized as follows:

• supervised regression task

• training data: 14556 compounds, blind2 test data: 7013 compounds

• data representation: 1664 dimensional vectors [123]

• learning algorithms investigated: Gaussian Processes, support vector
machines, random forests, ridge regression

Figure 5.1 illustrates the prediction performance achieved by our Gaus-
sian Process model, compared to the commercial tool ACDLabs v9. Both
models were applied to the same set of 7013 drug discovery compounds in
a blind test scenario, as described in Sec. 3.4. We chose the mean absolute
error, root mean squared error and the percentage of compounds predicted
correctly within one log unit as numerical performance indicators. ACDLabs
v9 performs as follows: 1.40, 1.79 and 44.2 %. Confirming the impression

2Initially, performance was estimated in cross-validation on the training data. Later,
the final model was evaluated by a group of researchers who were not involved in model
building, using a set of new measurements that had become available in the meantime.
Hence the term “blind test”, see also Sec. 3.4.
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(b) Gaussian Process

Figure 5.1: Scatter-plots from predicting log D7 using the commercial tool ACDLabs v.
9.0 [75] and Gaussian Process models for a blind test set of 7013 drug discovery compounds.
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(b) Random Forest

Figure 5.2: Exploiting model based error bars, the mean absolute error can be reduced
significantly. Predictions of log D7 for blind test set (see Sec. 5.2) are binned by model
based confidence estimates such that each of the seven bins contains 1000 compounds.

from Figure 5.1, our own final Gaussian Process Model produces much better
results, namely 0.60, 0.82 and 81.2 %. These results support the promising
impression gained from the visual pre-analysis described in Sec. 3.2.

How useful are the individual confidence estimates produced by the Gaus-
sian Process model? One possible way of using these confidence estimates is
ranking predictions by their assigned confidence and then checking whether
the model actually does make smaller prediction errors when it predicts con-
fidently or, vice versa, large prediction errors where it’s not confident. If so,
we could either focus on the most confident predictions or discard just the
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most inconfidently made predictions.

Kendall’s τ is a measure of ranking quality [105] and is 1 for 100 % cor-
rectly ordered lists and 0 for random lists. For the blind test set, we find the
following τs, when considering individual compounds, bins of five and bins of
twenty compounds: 0.29, 0.54, 0.72. By definition, the confidence estimates
(error bars) produced by Gaussian Processes only have a meaning in a statis-
tical sense, i.e. 68 % of all predictions are within one standard deviation. In
this case, however, they carry a lot of information even when considering in-
dividual compounds. When first sorting by the confidence estimate and then
binning neighboring predictions and averaging both confidence estimates and
actual prediction errors observed, we find that τ increases significantly.

What do these τs mean for our prediction performance indicators used in
the second last paragraph? We order our predictions by the confidence esti-
mates produced by the Gaussian Process model, and then just take the top
of the list, where the confidence estimate (error bar) is below 0.3. This part
of the list still contains predictions for 2603 compounds and our performance
indicators come out at 0.40, 0.55 and 91.3 %. So by focussing on the more
confident predictions, we decrease the mean absolute error by one third to
just 0.4 log units and we now predict more than 90 % of all log D7 correct
within one log unit. Figure 5.2 illustrates which mean absolute errors can
be achieved, not just when focussing on the top of the list, but also by just
rejecting the most inconfidently made predictions etc.

5.3 Aqueous Solubility

Aqueous solubility is of paramount importance to many areas of chemical
research, such as medicinal chemistry, pharmacokinetics, formulation, agro-
chemistry [134] and environmental applications. In the drug design pro-
cess, 50% of the failures[133] are due to an unfavorable, PC-ADME/T profile
(physicochemistry, absorption, distribution, metabolism, excretion, toxicity),
often resulting from poor aqueous solubility. There exists a connection be-
tween lipophilicity (Sec. 5.2) and aqueous solubility: The general trend is:
The more lipophilic the compounds, the less soluble they are. However, sol-
ubility is more complicated than that: It also depends on the stability of the
crystals of the compound. Small changes in a compounds structure can have
a big impact on the stability of its crystals, consequently making solubility
very difficult to predict. A lot of research has thus been devoted to developing
in-silico models for aqueous solubility [116, 135–152]. The aqueous solubility
of electrolytes at a specific pH is especially hard to predict [151, 152], but
many drugs are electrolytes.



5.3 Aqueous Solubility 93

The following section describes how predictive models for aqueous solu-
bility were constructed in collaboration with researchers at Bayer Schering
Pharma. It discusses how it was noticed that the training and blind test data
(described below) exhibit the “covariate shift” phenomenon (Sec. A.1.2) and
illustrates how one can use individual confidence estimates to obtain reliable
predictions for the compounds included in the respective models domain of
applicability (Sec. 3.7). This section focuses on Gaussian Process models
and the two in-house sets of data. A more detailed description of the results
obtained using different machine learning methods and both in-house and
public data sets can be found in [7, 12]. This sections last paragraph treats
the a posteriori explanation of predictions that are outliers with respect to
the confidence estimates predicted by the respective Gaussian Process model.

From a machine learning perspective, the modeling task can be summa-
rized as follows:

• supervised regression task

• training data: 626 in-house compounds (the “Flask” dataset) and 3500
public compounds

• blind3 test data: 536 compounds (the “Flask external” dataset)

• data representation: 1664 dimensional vectors [123]

• learning algorithms investigated: Gaussian Processes, support vector
machines, random forests, ridge regression

We chose the mean absolute error, root mean squared error and the per-
centage of compounds predicted correctly within one log unit as numerical
performance indicators. On the “Flask” dataset, ACDLabs v9 performs as
follows: 0.90, 1.16 and 64 %. Our own final Gaussian Process Model pro-
duces better results, namely 0.60, 0.77 and 82 %. In the blind test scenario,
when applying both models to all compounds in the “Flask external” dataset
(regardless of the models domain of applicability, as discussed below), one
obtains the following performance estimates for ACDLabs v9 : 0.98, 1.24 and
58 % and for our own final Gaussian Process Model: 0.73, 0.93 and 75 %.

3Initially, performance was estimated in cross-validation on the training data. Later,
the final model was evaluated by a group of researchers who were not involved in model
building, using a set of new measurements that had become available in the meantime.
Hence the term “blind test”, see also Sec. 3.4.
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(a) GPsol on Flask (external validation)
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(b) GPsol on Flask
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(c) GPsol on Huuskonen

Figure 5.3: Scatterplots for the GPsol models on each of the three datasets described in
[8, 11]. The vertical green lines mark the “fit-for-purpose” range [151, 152] to assess the
performance of models in the logSW range relevant to drug discovery.

Both the “Flask” and “Flask external” sets of data are “fit-for-purpose” for
drug discovery4, which also means that they are more difficult to model than

4In drug discovery projects, aqueous solubility is typically between 0.1 µg/L and 250
µg/L. For a compound with a molecular weight of 500 g/mol this corresponds roughly
to the logSW range from −7 to −3.5. Delaney [152] observed that a lot of models in
the literature are trained on public datasets spanning more than ten orders of magnitude.
Compounds with low logSW are usually harder to predict than soluble ones, nevertheless
statistics are typically presented for the whole range of logSW . Delaney suggests that
studies should be assessed using an element of “fit-for-purpose” (FFP). Johnson et al. [151]
picked up the suggestion and evaluated a number of studies, taking into account the
performance of the models in the logSW range from −7 to −3.

Johnson’s FFP range is indicated by vertical green lines in Figure 5.3. Only 37% of the
compounds in the “Huuskonen” set are in this range. On the other hand more than 90%
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many public benchmark sets, including the Huuskonen set of data [135]. In
addition to “just being difficult”, they also exhibit characteristics that can
be taken as hints that training and test data are not sampled from the same
distribution5. In the machine learning community, this phenomenon is called
“covariate shift”. One could argue that aqueous solubility additionally pos-
sesses characteristics typical of the “multiple modes of action” phenomenon,
because relatively similar molecules can adopt quite different crystal struc-
tures and the stability of the crystal influences the observed solubility. Both
phenomena are discussed in Sec. A.1.2. The observations hinting at covariate
shift are:

• In a PCA visualization (see Figure 3.2 in Sec. 3.2), the “Flask external
validation” data are projected onto a small subspace of the 2 D plot.

• In Figure 5.3(a) GPsol predictions appear to be“vertically compressed”.6

• Inspecting Figure 5.3 we find that a lot of points representing predic-
tions for the “Flask” and “Huuskonen” sets are very close the diagonal
(i.e., very accurate). The spread is much larger in case of the “Flask
external validation” setup.

• In Tab. 2 in [8] we can see clearly that the performance decreases when
comparing “Flask external” with the cross-validation results on “Flask”.

Histograms of Mahalanobis distances from each compound to the closest com-
pound in the respective training set are shown in Figure 5.4. Distances for
the cross validated “Flask” setup were calculated for the training/validation-
split of one arbitrarily chosen cross validation run. Distances were calculated
based on the same set of descriptors that was used to build the models. In
the investigated training/validation-split of the“Flask”validation setup, 97%
of the compounds have at least one neighbor at a distance smaller than 1500
units. In the “Flask external validation” setup, only 48% of the compounds
have neighbors closer than 1500 units. This clearly confirms that “Flask ex-
ternal” is a set of compounds that is, to a large extent, structurally dissimilar

of the compounds in the two in-house data sets from Bayer Schering Pharma (compounds
from drug discovery projects) are in the FFP range (94% of the “Flask” dataset and 91%
of the “Flask external validation” dataset, respectively).

5The decrease in performance observed when looking at external validation data could
be taken as a hint that the more complex models did over-fit their training data. We did,
however, not observe typical symptoms of over-fitting, e.g. a too large number of support
vectors in a support vector regression model.

6By its construction, predictions from the Gaussian Process model get closer to the
mean logSW when new compounds are more dissimilar to those in the training set. At
the same time, the size of the predicted error bars increases.
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Figure 5.4: Histograms of Mahalanobis distances from each compound to the closest
compound in the respective training set. Distances for the cross-validated “Flask” setup
were calculated for the training/validation-split of one arbitrarily chosen cross-validation
run.

to the training data in “Flask”. Thus, we can assume that the decrease in
performance is caused by a large number of compounds being dissimilar to
the training set compounds and we are indeed observing the covariate shift
phenomenon as discussed in Sec. A.1.2. Many compounds are thus outside
of the models’ respective domains of applicability. If this assumption holds,
it should be possible to achieve higher performance by rejecting compounds
that are outside the domain of applicability:

When new compounds are dissimilar to those in the training set, predic-
tions from the Gaussian Process model get closer to the mean logSW . At
the same time, the size of the predicted error bars increases. In Figure 5.5
(right hand side) we present a scatterplot for GPsol on the “Flask exter-
nal” validation set. Black points represent the confident predictions, whereas
grey points represent the less confident predictions with predicted error bars
larger than 0.6 log units. Vertical compression can be observed in the cloud
of grey points, but is not present in the cloud of black points. Thus, we con-
clude that the vertical compression observed in Figure 5.3 is indeed caused
by compounds that are dissimilar to the training set.

Consequently, performance statistics can be improved by focussing on the
most confident predictions. Figure 5.5 (left hand side) shows a staircase plot.
We see that performance statistics, in this case the mean absolute error, can
indeed be improved. In fact, they can be improved to the level previously
estimated using cross-validation on the “Flask” set of data (see Tab. 2 and
Tab. 3 in [8]).

Table 3 in [11] shows compounds from the Huuskonen set of data that
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(a) GPsol on Flask (external validation)
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(b) GPsol on Flask (external validation)

Figure 5.5: Left hand side: Mean absolute error achieved when binning by confidence
estimates produced by GPsol. Each column represents one fourth (133 compounds) of the
“Flask external” validation set. We observe that the MAE can be reduced significantly by
by focussing on the most confident predictions (leftmost bin). Right hand side: Scatterplot
for GPsol on the “Flask external” validation set. Black points represent confident predic-
tions, grey points represent less confident predictions with predicted error bars larger than
0.6. Dashed red lines indicate the range true value ± 1 log unit. We observe that the black
points deviate less from the ideal prediction (red diagonal line) than the grey points, i.e.
confidently made predictions are visibly closer to the true value.

are mispredicted by our GP model and where the prediction error is outside
of the 99 % confidence interval. It turned out that the two major reasons for
these mispredictions are low data quality (e.g., contradictory measurements)
and inherent limitations caused by the molecular descriptors (two compounds
with different solubility but almost identical descriptors). In some cases of
contradictory measurements it was possible to identify the true value and
correct the respective entry in the database. See the last paragraph of Sec. 3.2
and [11] for details on how this analysis was carried out.





5.4 Cytochrome P450 Inhibition 99

5.4 Cytochrome P450 Inhibition

The five most important members of the Cytochrome P450 superfamily of
heme-containing monooxygenases, namely CYP 1A2, 2C19, 2C9, 2D6 and
3A4, are responsible for clearance of more than 90% of all marketed drugs
[153–156]. Their inhibition can result in unwanted drug-drug interactions,
making it desirable to identify problematic compounds as early as possible
in the drug design process. Quantitative Structure Activity Relationships
(QSAR), pharmacophore modeling and homology modeling have all been
used to generate predictions for molecules binding either as substrates or in-
hibitors. Also, several groups have combined pharmacophores with homology
models [157]. However, many parts of the mechanisms of catalysis, activation
and inhibition are still poorly understood [154]. All of the above mentioned
approaches aim at understanding CYP inhibition via explicit models of the
inhibition process. In contrast, approaches based on statistical learning have
been used in these studies [158–160]. In 2005, the study published by Kless
et al. [160] was the only publication about application of machine learning
methods to data about all of the five most important CYP isoenzymes. The
general consensus is that CYP inhibition is a very difficult modeling problem.

The following section describes how predictive models for inhibition of
each of five cytochrome P450 enzymes were constructed in collaboration with
researchers at Schering. In 2006, CYP 2D6 was first crystallized and its 3D
structure determined, following the previous discoveries of the 3D structures
of CYP 2C9 and CYP 3A4 [161–163]. This knowledge allows for protein
structure based approaches (such as docking) to be used in identification of
CYP inhibitors. The study described in the following was started in 2005
and employed a ligand based approach.

From a machine learning perspective, the modeling task can be summa-
rized as follows:

• supervised multiclass classification / ordinal regression task

• training data: ∼ 800 compounds with labels for each of 5 CYP sub-
types, blind7 test data: ∼ 170 compounds with labels for each of 5
CYP subtypes

• labels: compounds, are labeled as weak, moderate or potent inhibitors
of the respective CYP subtype, see Sec. A.2 for detailed definitions.

7Initially, performance was estimated in cross-validation on the training data. Later,
the final model was evaluated by a group of researchers who were not involved in model
building, using a set of new measurements that had become available in the meantime.
Hence the term “blind test”, see also Sec. 3.4.
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• source: most compounds are in-house compounds of Schering, but for
some compounds, measurements have been curated from the literature
(see Sec. A.2 for the exact composition of each dataset). As the litera-
ture compounds span a larger part of the chemical space, it is not clear
whether including this data can improve predictions for future in-house
compounds.

• data representation in first modelling effort: The following six vecto-
rial representations were used, see Appendix A.3 for a description of
each type of representation: Ghose-Crippen [164]8, BCUT [166, 167],
UNITY fingerprints [168], LogD prediction module from ACD Labs
[75], VolSurf [169], GRIND [170]

• data representation in second modelling effort:1664 dimensional vectors
generated using the Dragon descriptor generator [123]

• learning algorithms investigated in first modelling effort: decision trees
[171], k-Nearest Neighbor (kNN) [172], Gaussian Processes[43], Support
Vector Machines (SVM) [38, 173, 174], Linear Programming Machines
(LPM) [175, 176].

• learning algorithms investigated in second modelling effort: Gaussian
Processes

PCA plots using all descriptors together can be found in Figure 5.6. Some
structure can be recognized, but in two dimensions even the two most differ-
ent classes (only weak and potent inhibitors are shown, moderate inhibitors
are omitted) do not look separable. Therefore it is unclear whether classifi-
cation using many dimensions will be possible.

For each of the five CYP isoenzymes, two classifiers are build: The first
discriminating between weak inhibitors and non-weak (i.e., moderate and
potent) inhibitors (Task 1), the second discriminating between potent and
non-potent (moderate and weak) inhibitors (Task 2). For each of these clas-
sifiers, it is not clear which descriptor and learning method is best suited
for the respective classification task. Thus, classifiers for each combination
of descriptors and learning methods were constructed. As a further subdivi-
sion, classifiers from the in-house data, and from the union of in-house and
literature data were investigated.

As on single sets of descriptors the best results were achieved using sup-
port vector machines with RBF kernels, this method was also chosen for

8It was checked whether using Fisher Scores [165] of the Ghose-Crippen [164] descriptors
facilitates modeling. The accuracy achieved was very similar in both cases, therefore the
plain Ghose-Crippen descriptors were used in the remaining part of the study.
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Figure 5.6: PCA visualizations of the CYP inhibition data. For each subtype, we project
the data onto the first two PCA components, after removing descriptor dimensions that
are uncorrelated with the class label.

evaluating combinations of descriptors. This was done by concatenating the
preprocessed features and then proceeding as described for single descriptors.
Considering all subtypes, both datasets (in-house only and including exter-
nal) and both types of classifiers (potent vs. non-potent, weak vs. non-weak)
there are 15∗5∗2∗2 = 300 pairs and 20∗5∗2∗2 = 400 triples of descriptors
theoretically to be considered. A greedy approach was employed in choosing
combinations to avoid making too many experiments. It was found that sim-
ply using all descriptors together works as well as the best combinations of
descriptors. However, Volsurf and GRIND descriptors being computationally
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1A2 2C19 2C9 2D6 3A4
Overall 89.16 80.94 NaN 91.92 NaN
Schering compounds 84.35 81.91 77.26 89.16 79.58
non-Schering compounds 91.72 73.41 65.30 84.04 68.73

Table 5.1: Performance of classifiers for WEAK compounds in each CYP subtype (task
1). The figures given are the area under the ROC curve in %

1A2 2C19 2C9 2D6 3A4
Overall 95.06 87.15 NaN 91.61 87.34
Schering compounds 83.60 87.59 84.96 87.82 83.93
non-Schering compounds 93.07 72.78 71.79 72.01 68.81

Table 5.2: Performance of classifiers for POTENT compounds in each CYP subtype (task
2). The figures given are the area under the ROC curve in %

expensive, it was decided to use the combination of Ghose Crippen and ACD
descriptors for the (then thought to be final) model. ROC curves for these
models are shown in Figure 5.7 and 5.8, the performance is summarized in
Table 5.1 and 5.2.

Simulations showed that for most CYP subtypes a global model is supe-
rior to separate models for public and in-house data. However, for detecting
potent CYP 2C9 inhibitors, using separate models for public and in-house
compounds turned out to be more reliable. Likewise, for identifying weak
inhibitors, separate models for the subtypes 2C9 and 3A4 are beneficial. For
Task 1, an overall performance of about 87% was achieved, whilst classify-
ing the public data was generally more difficult than classifying the in-house
compounds. This, however, might be due to the fact that the amount of avail-
able external training data was much smaller than the number of compounds
available from the in-house subspace. For Task 2, an overall performance
of 87% to 95% was achieved Here, as well, classifying the external data was
more difficult.

A blind test (Sec. 3.4) was conducted using ∼ 170 compounds from re-
cent projects. Despite the promising impression that the training data are
difficult, but modeling is feasible, the results of this test were not satisfying
and it was decided to evaluate the Dragon software for descriptor generation,
because it provides a very large (> 1600) and diverse set of descriptors. Dif-
ferent ways of preprocessing the respective Dragon blocks were investigated
and several ways of selecting individual descriptors, whole blocks of descrip-
tors and combinations thereof were applied. Finally, a Gaussian Process
model based on certain 10 blocks of Dragon descriptors was constructed and
evaluated in a second blind test. This new model can provide a moderate
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Figure 5.7: ROC curves for predicting POTENT CYP inhibitors in cross-validation on
the training data.
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Figure 5.8: ROC curves for predicting WEAK CYP inhibitors in cross-validation on the
training data.
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enrichment when ranking large libraries of compounds, but is not yet useful
for interactive use by bench chemists in lead optimization: The individual
predictions are often incorrect and the confidence estimates from the Gaus-
sian Process model are not strongly enough correlated with these deviations
to be able to compensate. This unsatisfying performance probably results
from the four facts that

• Cytochrome P 450 inhibition is an inherently difficult modeling prob-
lem,

• the amount of training data available was relatively small,

• some of the enzymes have large flexible active sites, allowing for multi-
ple binding modes (see Sec. A.1.3),

• test data was sampled from newly explored regions in chemical space
that were not covered well by the training data (covariate shift, see
Sec. A.1.2)

and the confidence estimates of the Gaussian Process models were not accu-
rate enough to identify reliable predictions.
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5.5 Metabolic Stability

In the drug development process, 50% of the failures[133] in late development
stages are due to an unfavorable ADMET profile (Absorption, Distribution,
Metabolism, Excretion & Toxicity). Groups across the world have invested
a lot of research effort in obtaining in silico predictions for properties that
are closely related to the ADMET profile. See references in the sections
on partition coefficients (Sec. 5.2), aqueous solubility (Sec. 5.3), cytochrome
P450 inhibition (Sec. 5.4), toxicity (Sec. 5.6) and the hERG channel block-
ade effect (Sec. 5.7). Furthermore, commercial tools are available for most
of the above mentioned properties, excluding only the hERG channel block-
ade effect and metabolic stability. If a compound is metabolically unstable,
more than half of the drug molecules are lost during the first half hour in
the human body. In order to be able to reach and maintain efficacious con-
centrations of the compound in the tissue(s) where the target receptors are
located, one would (theoretically) have to give very large doses of the drug.
Large doses will, on the other hand, increase the risk of unwanted side ef-
fects. Building general-purpose models that are accurate over a large number
of structural classes is virtually impossible, since a plethora of not fully un-
derstood mechanisms is involved in metabolizing a chemical compound in
the human liver. Furthermore, experimental protocols and assays can vary
widely, such that tool predictions and actual experimental outcome may ex-
hibit large differences. Only when the classes of compounds are limited,
and experimental techniques are very homogeneous one can hope to estab-
lish Quantitative Structure Property/Activity Relationship (QSPR) models
that reliably predict a property like metabolic stability. Preceding the study
summarized in this section, there was only little published work about such
approaches[177, 178], despite development efforts by various pharmaceutical
companies.

The following section describes how predictive models for metabolic sta-
bility were constructed in collaboration with researchers at Bayer Schering
Pharma. Separate paragraphs discuss how extreme noise in the real valued
labels was dealt with and how prior knowledge was used to identify outliers
in labels, issues leading to a limited domain of applicability of the model and
lastly how confidence estimates produced using Gaussian Process models are
effective in identifying compounds for which reliable predictions can be made.
A more detailed description of the results of modeling metabolic stability us-
ing different machine learning methods and both in-house and public data
sets can be found in [6].

From a machine learning perspective, the modeling task can be summa-
rized as follows:
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• supervised regression task

• extremely noisy labels (see next paragraph for a discussion)

• training data: from 900 up to 1900 compounds for each of four separate
species9, blind10 test data: from 190 up to 700 compounds for each
species

• data representation: 1664 dimensional vectors generated using the Dragon
descriptor generator [123]

• learning algorithms investigated: Gaussian Processes for classification
and regression, support vector machines for classification and regres-
sion, ridge regression

The metabolic stability of compounds treated in this study was assessed
by measuring the percentage of each compound remaining after incubation
with liver microsomes of humans, rats and mice, respectively, for 30 minutes.
The procedure is described in detail in [6]. For the moment let us just note
that measurements should, theoretically, span the range between 0 % and
100 %. In practice, this is not the case: Not only are these measurements
very noisy (errors ± 20 % are in order), but there are also issues like too
slow dissolution: In these cases, the compounds are only partially dissolved
when the incubation is started and continue to dissolve during the incubation
period. This can result in measurement values exceeding 150 %. It was
decided to filter out these most extreme measurements and otherwise treat
metabolic stability as a classification problem. Later, the performance of
regression algorithms was also investigated and it was found that the ranking
performance11 increases only insignificantly.

Figure 5.9 illustrates the differences between training and blind test data
via a principal component analysis (PCA) plot. PCA was computed on
the descriptors for the training data, afterwards the blind test data were
projected into the same PCA coordinate system. The plot shows that train-
ing and blind test data contain compounds that are structurally different.
There are many different enzymes present in the microsomal preparation

9Measurements of metabolic stability were available for the following four species: hu-
mans, male mice, female mice and male rats.

10Initially, performance was estimated in cross-validation on the training data. Later,
the final model was evaluated by a group of researchers who were not involved in model
building, using a set of new measurements that had become available in the meantime.
Hence the term “blind test”, see also Sec. 3.4.

11Both Gaussian Process Classification models and Support Vector Machines for classi-
fication produce real valued output that allows to rank compounds.
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principal component analysis (PCA). The blind test data covers recent projects, and thus
follows a distribution that is different from the training data
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Figure 5.10: The output of a Gaussian Process Classification model is close to 0.5 if
predictions are made inconfidently. ROC curves resulting from rejecting predictions falling
inside “grey areas”, i.e. intervals [0.5−q . . . 0.5+q] are presented in the left hand side plot.
At the same time, the number of rejected compounds increases (right hand side plot). We
can see that the shape of the ROC-curves (left hand side) improves continuously as q is
increased, finally reaching almost 100 % correct classification (red curve at the top).

used for the measurements and some of the enzymes even have different ac-
tive sites. Therefore the models are simultaneously facing both a sampling
issue (Sec. A.1.2) and multiple mechanisms. The next paragraph explains
how reliable predictions can be identified.
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The output of a Gaussian Process Classification model is the probability
that the compound belongs to class 1. It becomes closer to 0.5 as the distance
to the training set increases and actually is 0.5 for compounds that are far
from the training set. Therefore a natural way to reject compounds that
are outside of the domain of applicability is to define some desired level of
confidence and then reject all predictions in the interval [0.5− q . . . 0.5 + q].
Receiver operating curves for different values of q in the range [0 . . . 0.45]
are shown in Figure 5.10 (left). At the same time, the number of rejected
compounds increases, see Figure 5.10 (right). We can see that the shape
of the ROC-curves improves continuously as q is increased, finally reaching
almost 100 % correct classification (red curve at the top).

In conclusion, one can use prior knowledge to identify outliers in the
training data, the domain of applicability of models is limited due to sampling
issues and multiple mechanisms, but using a Gaussian Process Classification
model one can predict the metabolic stability of compounds in the form of
a probability that the respective compound is stable. By leaving out unsure
predictions where the predicted probability is close to 50 %, performance can
be improved to the point of being almost perfect.
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5.6 Ames Mutagenicity

The bacterial reverse mutation assay (Ames test [179]) to detect mutagenicity
in vitro is of crucial importance in drug discovery and development as an early
alerting system for potential carcinogenicity and/or teratogenicity. In the
Ames test, frame-shift mutations or base-pair substitutions may be detected
by exposure of histidine-dependent strains of Salmonella typhimurium to a
test compound. When these strains are exposed to a mutagen, reverse mu-
tations to the wild-type histidine-independent form enable bacterial colony
growth on a medium deficient in histidine (”revertants”). Since many chemi-
cals interact with genetic material only after metabolic activation by enzyme
systems not available in the bacterial cell, the test compounds are in many
cases additionally examined in the presence of a mammalian metabolizing
system, which contains liver microsomes (with S9 mix, see [5]). Existing
commercial tools suitable for predicting the outcome of the Ames test, such
as DEREK and MultiCASE, provide promising results on several evaluation
data sets and the possibility to derive structure-activity and/or even mech-
anistic information from the predictions. Still, these commercial tools are
limited in terms of statistical performance, technical accessibility for bench
chemists and adaptability to a company’s chemical space. In the public liter-
ature, several approaches have been followed to predict Ames mutagenicity,
generally yielding good specificity and sensitivity values (prediction accuracy
of up to 85%). Depending on the descriptors and the statistical methods
used, some of the models offer structure-activity information, such as Helma
et al.[180] or Kazius et al. [181], some are however harder to interpret due
to their choice of chemical descriptors, such as Feng et al. [182]. Moreover,
different data sets have been used in the respective studies [180–182] without
disclosing the splits (training set / test set) used for model evaluation.

The following section describes how a large unique benchmark set was
collected (and published) and predictive models for Ames mutagenicity were
constructed in collaboration with researchers at Bayer Schering Pharma. An
evaluation of several machine learning algorithms and three commercial tools
is presented. The benchmark data set was used for developing two new
frameworks for interpreting results and increasing the acceptance of models
by bench chemists. Sec. 4.3 explains predictions in terms of the most relevant
compounds in the training set,. In contrast, Sec. 4.4 explains predictions in
terms of the locally most relevant features. These are identified using local
gradients which, at the same time, provide hints that can help in compound
optimization.

From a machine learning perspective, the modeling task can be summa-
rized as follows:
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• supervised classification task

• evaluation strategy: Five fold cross-validation, each time including a
static training set (see below).

• data representation: 904 dimensional vectors (blocks 1, 2, 6, 9, 12,
15, 16, 17, 18 and 20 of DRAGON-X version 1.2 [123] based on a 3D
structure generated by CORINA version 3.4 [123]

To allow for a reasonable comparison of different methods, we assembled
a new benchmark set of 6512 compounds together with their Ames test re-
sults from public sources. As described in [5], we make this large unique
benchmark set - including well-defined random splits - publicly available to
facilitate future comparisons with prediction methods of other researchers.

Using the benchmark data set, four machine learning techniques and three
commercial prediction tools were evaluated. For the non-commercial machine
learning methods we considered a support vector machine, a Gaussian Pro-
cess, a random forest and a k-nearest neighbor model. For the machine
learning algorithms, short descriptions and references to the literature can
be found in Sec. 3.3). The commercial tools are described in the following:

• Pipeline Pilot’s Bayesian categorization model[183] provides supervised
Bayesian learning for large data collections. In our example, we have
combined this Bayesian classifier with Pipeline Pilot’s ECFP chemical
fingerprint technology (ECFP 4 fingerprints).

• DEREK (Version 10.0.2 Service Pack 3, Knowledge Base Release DfW
10.0.0 25 07 2007, Lhasa Ltd., UK) is an expert system providing known
structure-activity relationships (SARs), each relating to a toxicological
endpoint. The mutagenicity prediction by DEREK was considered pos-
itive if a structure triggered at least one mutagenicity alert, and nega-
tive if it did not raise any mutagenicity alerts. Compounds contained
as examples in the knowledge base of DEREK were excluded from the
evaluation[184].

• MultiCASE (Multicase Inc., USA) is a correlative tool predicting tox-
icity on the basis of structural fragments statistically correlated with
activity (QSAR). For mutagenicity prediction, the commercially avail-
able AZ2 mutagenicity module was used. Compounds contained in the
training set of the AZ2 module were excluded from the evaluation[185].

All models were evaluated in a 5-fold cross validation setting. Firstly
all compounds which were verifiably known to DEREK or MultiCASE were
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Model AUC
SVM 0.86± 0.01
GP 0.84± 0.01
Random Forest 0.83± 0.01
k-Nearest Neighbor 0.79± 0.01

Table 5.3: Cross validation results for parametric classifiers.

pooled together in a static training set. The remaining data set was divided
into five cross validation splits. Within each step of the cross validation all
models were trained on a set of four cross validation splits together with
the static training set (at least 5525 compounds). The fifth split forms the
validation set. To select the parameters for the machine learning algorithms
an inner loop of cross validation was performed on the training settings.

We measured the quality of the resulting models using the Receiver Op-
erating Characteristic (ROC, see Figure 5.11). In an ROC graph the false
positive rate (1 - specificity) is plotted against the true positive rate (sensi-
tivity). The point (0,1) in this diagram marks a perfect classifier; at (0,0) all
samples are classified as negative and in (1,1) all samples are assigned to the
positive class.
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Figure 5.11: Receiver operating characteristic (ROC) curve / point for each model.

Cross validation results are presented in Figure 5.11 and Table 5.3. For
a presentation and discussion of sensitivity & specificity see [5]. PipelinePi-
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lot, trained with the developed data set, shows the best results of the three
commercial tools followed by MultiCASE. The expert system DEREK shows
the lowest sensitivity and specificity of all considered models. MultiCASE
and DEREK cannot take advantage of the rich information provided by the
training data. They are based on a fixed set of mainly 2D descriptors (Multi-
CASE) or a static system of rules derived from a largely unknown data set and
expert knowledge (DEREK). Moreover, the rules contained in DEREK may
in part be too generic to reflect the influence of the chemical neighborhood
of a functional group on their mutagenic activity. It can be assumed that
there are unknown structure activity relationships which are not contained in
the DEREK knowledge data base. The employed AZ2 model of MultiCASE
cannot be adapted to a specific chemical space and therefore yields a lower
prediction accuracy. Nevertheless, DEREK and MultiCASE are still essential
for drug discovery and development as they provide structure-activity and/or
mechanistic information essential for structure optimization and regulatory
acceptance.

The machine learning algorithms in contrast exclusively derive their knowl-
edge from the training data. The fact that none of the other tools could
outperform one of the machine learning models (5.11) indicates the power
of the latter approaches and the higher information content of the provided
benchmark data set. The rather good performance of the simple k-Nearest
Neighbor model indicates a strong influence of small local molecular changes
on Ames mutagenicity. However the application of more sophisticated ma-
chine learning methods results in a significant performance gain especially
for the support vector machine.

In conclusion, all five evaluated machine learning methods (SVM, Gaus-
sian Process, Random Forest, k-Nearest Neighbors and the commercial Pipe-
line Pilot) yield good results on the benchmark data set. The future evalua-
tion of additional prediction methods on the published benchmark data set
represents a promising strategy for further optimization of Ames mutagenic-
ity prediction. Furthermore, scientists interested in method development may
benefit from the present work as all modeling and evaluation results obtained
using the new data set allow for a direct comparison of different methods. In
fact, work in this direction has already begun. A joint publication summariz-
ing the results of a challenge on this benchmark set is currently being written
by members of several research groups. Future development will strive for
improving the accuracy of machine learning based prediction tools that yield
interpretable results. First steps in this direction are presented in Sec. 4.3
and 4.4.
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5.7 hERG Channel Blockade Effect

In recent years, avoiding drug induced cardiac arrhythmia has become an
important optimization parameter during the discovery and development
of new drugs [186, 187]. One of the most common issues is the prolonga-
tion of the QT interval12 by blocking the human ether-a-go-go related gene-
encoded potassium channel (hERG channel) expressed in cardiac muscle cells
[188, 189]. QT prolongation enhances the risk of potentially fatal torsades
de pointes. A number of drugs that were withdrawn from the market due
to QT prolongation such as terfenadine or cisapride were shown to cause an
unwanted blockade of the hERG channel. Following the“fail fast – fail cheap”
paradigm of drug discovery it is highly desirable to identify compounds which
exhibit hERG inhibition early in the discovery process [190]. In this context,
in-silico methods have been developed and established to either cope with
limited capacities for in-vitro testing or to assess virtual compounds. For a
survey on computational efforts towards a model for hERG blockade, com-
prising homology models, pharmacophore approaches and QSAR models, the
reader is referred to recent reviews [191–196]. Various modern machine learn-
ing methods which relate molecular descriptors with biological activities are
available, and techniques like support vector machines (SVMs [38]), artifi-
cial neural networks [126], or, more recently, Gaussian Processes [43] (GPs),
have been applied to address drug absorption, distribution, metabolism, ex-
cretion, or toxicity and hERG inhibition [121, 197–201]. Regression models
based on public domain hERG data sets in general exhibit predictive powers
between r2 = 0.5 and r2 = 0.7 (estimated from cross-validation experiments
or predictions for independent test set molecules).

The following section describes how predictive models for the hERG chan-
nel blockade effect were constructed in collaboration with researchers at
Boehringer Ingelheim Pharma GmbH. It focuses on the aspect of using the
hERG prediction problem as a test bed for evaluating several techniques for
fusing predictions from multiple models. Ensemble algorithms are introduced
in Sec. 4.2. Different visualizations of the data generated in a pre-analysis
are shown in Sec. 3.2. A more detailed description of the results of modeling
can be found in [4].

From a machine learning perspective, the modeling task can be summa-
rized as follows:

• supervised regression task

• dataset: 660 compounds, investigated in clustered cross-validation [4]

12The time between the start of the Q wave and the end of the T wave in the heart’s
electrical cycle is called QT interval.
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Figure 5.12: Combination of a Random Forest, a Gaussian Process and a SVR Model
trained on equal sets: Box-plot depiction of the root mean squared error (RMSE) of the
different ensemble methods in the clustered cross-validation setting over 50 repetitions.
The upper dashed line refers to the RMSE of the underlying single Random Forest model,
the lower dashed line marks the RMSE of a Random Forest model trained in leave-one-
out cross validation. The ensemble methods are evaluated with respect to ten nearest
neighbors of each compound. The box covers 50% of the actual data, the box height being
the interquartile range, the horizontal line denotes the median. The whiskers are at most
1.5 the interquartile range. Points outside this range are marked as outliers.

• data representation: QSAR descriptors available in MOE (MOE 2007.09,
Chemical Computing Group, Montreal, Canada), ChemAxon pharma-
cophoric fingerprints (ChemAxon Kft, Budapest, Hungary), CATS de-
scriptors [202], VolSurf (vsplus 0.4.5a, Molecular Discovery Ltd, UK),
using four standard chemical probes (water, hydrophobic probe, car-
bonyl oxygen, and amide nitrogen [203, 204]).

• learning algorithms investigated: Gaussian Processes regression, sup-
port vector regression, random forests, ridge regression

• ensemble algorithms investigated: “selection by MAE”,“weighted”,“bias
corrected”, “average KNN”,“random choice”, see Sec. 4.2 for definitions.

Combination of different single models trained on equal training sets

Figure 5.12 visualizes the distribution of the RMSE over 50 repetitions for
the different ensemble algorithms described in Sec. 4.2 when training the
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Figure 5.13: Combination of 20 classical bagging Random Forest Models trained on
different sets: Box-plot depiction of the root mean squared error (RMSE) of the different
ensemble methods in the clustered cross-validation (see Sec. 3.4 setting over 50 repetitions.
The upper dashed line refers to the RMSE of the average underlying single Random Forest
model, the lower dashed line marks the RMSE of a Random Forest model trained in leave-
one-out cross validation. The ensemble methods are evaluated with respect to ten nearest
neighbors of each compound. The box covers 50% of the actual data, the box height being
the interquartile range, the horizontal line denotes the median. The whiskers are at most
1.5 the interquartile range. Points outside this range are marked as outliers.

three single models on identical data. The RMSE of the Random Choice
model equals the RMSE of the single Random Forest Model. This was to be
expected, because the single models (GP, SVR and Random Forest) perform
about equally well. The Weighted as well as the Selection by MAE approach
introduced by Kühne et al. [118] do not improve the performance significantly
compared to the single Random Forest model (upper dashed line). The
reason for this observation is illustrated in 5.14: The prediction errors of each
individual model for the compounds are highly correlated. If one single model
results in an inaccurate prediction the other two single models show equally
large prediction errors and a compensation of prediction errors through a
combination of the single models is hardly possible.

The local bias correction (in the Average KNN and the Bias corrected)
model shows a comparably large improvement. For the latter one the mean
RMSE is even smaller than the RMSE of a Random Forest model evaluated in
leave-one-out cross validation on the whole correction set while also utilizing
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Figure 5.14: Visualization of the strong correlation between the absolute error of the GP
and SVR model (left) and the GP and the Random Forest model (right). The correspond-
ing correlation coefficients amount to 0.96 (GP versus SVR), 0.86 (GP versus Random
Forest) and 0.82 (SVR versus Random Forest).

the training set (lower dashed line). This result indicates that a local bias
correction is even more important than the choice of the prediction method.
Considering the fact that in the Bias corrected consensus model the single
models are only trained on two thirds of the data set and not on nearly
the whole data set like in the leave-one-out model this seems surprising.
Interestingly, incorporating additional information about just the ten nearest
compounds allows to reach this small RMSE.13

Combination of equal single models trained on different training sets

This subsection discusses the performance of ensemble models which combine
the predictions of 20 Random Forests trained on different parts of the training
set. Using a bagging approach, a different training set is constructed for each
Random Forest and they are combined using the same ensemble algorithms
and cross-validation setting as described in the previous section.

The main results of this evaluation are summarized in 5.13. The underly-
ing single models are now trained on data sets with more variety. Due to the
different training sets, the differences between each group of single models
now occur on different clusters of compounds and some errors of the single

13Using ten nearest neighbors, saturation is reached for all algorithms employed. See [4]
for details.
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models can be compensated by choosing the best performing model included
in the ensemble model. However, the distribution of the RMSE shows simi-
lar tendencies as in the previous setting: For the Random Choice model we
observe a worse performance than a single model (upper dashed line) and
the Weighted Model again only achieves a small improvement. In contrast to
the previous observation, the Selection by MAE Model introduced by Kühne
et al. [118] now achieves a somewhat larger improvement with respect to the
single Model (RMSE reduced from 0.76 to 0.70). The Bias corrected Model
again achieves the largest improvement of all ensemble methods (RMSE re-
duced from 0.76 to 0.57).

In conclusion, local bias correction may be a good way to cope with
the strong locality of the hERG inhibition problem while still profiting from
global trends in the data. Furthermore the experiments indicate practical
hints for the use of machine learning models in drug design: When new mea-
surements are added to an existing training set, a simple local bias correction
can substitute retraining a whole SVR, Gaussian Process or Random Forest
model on the expanded data set. Further investigation is necessary to evalu-
ate in which cases the bias corrected approach is adequate and in which cases
retraining should be preferred.
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5.8 Local Gradients for Explaining Individual Classification
Decisions & Guiding compound optimization

Overview

In this thesis, two separate methodologies for explaining individual predic-
tions of (possibly non-linear) machine learning models are presented. The
method presented in Sec. 4.3 explains predictions by the means of visualiz-
ing relevant objects from the training set of the model. This allows human
experts to understand how each prediction comes about. If a prediction con-
flicts with his intuition, the human expert can easily find out whether the
grounds for the models predictions are solid or if trusting his own intuition
is the better idea.

Sec. 4.4 proposes a method that sheds light into the black boxes of non-
linear classifiers. In other words, it introduces a method that can explain
the local decisions taken by arbitrary (possibly) non-linear classification al-
gorithms. In a nutshell, the estimated explanations are local gradients that
characterize how a data point has to be moved to change its predicted label.
For models where such gradient information cannot be calculated explicitly,
a probabilistic approximate mimic of the learning machine to be explained
is employed.

To validate the new gradient based methodology, [1] shows how it can
be used to draw new conclusions on how the various Iris flowers in Fisher’s
famous dataset are different from each other (section 4 in [1]) and how to
identify the features with which certain types of digits 2 and 8 in the USPS
dataset can be distinguished (section 5 in [1]). In the following Subsection,
the method is applied to a challenging drug discovery problem, namely the
prediction of Ames mutagenicity (Sec. 5.6). Results fully agree with exist-
ing domain knowledge, which was not available to the method. Even local
peculiarities in chemical space (the extraordinary behavior of steroids) was
discovered using the local explanations given by the new approach.

5.8.1 Explaining Mutagenicity Classification by Gaussian Processes

In the following section we describe an application of our local gradient ex-
planation methodology to a complex real world data set. Our aim is to
find structure specific to the problem domain that has not been fed into
training explicitly but is captured implicitly by the GPC model in the high-
dimensional feature space used to determine its prediction. We investigate
the task of predicting Ames mutagenic activity of chemical compounds. Not
being mutagenic (i.e. not able to cause mutations in the DNA) is an impor-
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tant requirement for compounds under investigation in drug discovery and
design. The Ames test [179] is a standard experimental setup for measuring
mutagenicity. The following experiments are based on a set of Ames test
results for 6512 chemical compounds that we published previously.14

GPC was applied as detailed in the following:

• Class 0 consists of non-mutagenic compounds

• Class 1 consists of mutagenic compounds

• Randomly split 6512 data points into 2000 training and 4512 test ex-
amples such that:

– The training set consists of equally many class 0 and class 1 ex-
amples.

– For the steroid compound class the balance in the train and test
set is enforced.

• 10 additional random splits were investigated individually. This con-
firmed the results presented below.

• Each example (chemical compound) is represented by a vector of counts
of 143 molecular substructures calculated using the Dragon software
[205].

• Normalize training and test set using the mean and variance of the
training set.

• Apply GPC model with RBF kernel

• Performance (84 % area under curve) confirms our previous results [5].
Error rates can be obtained from Figure 5.15.

Together with the prediction we calculated the explanation vector (as intro-
duced in section 4.4.2 with Definition 4.2) for each test point. The remainder
of this section is an evaluation of these local explanations.

In Figures 5.16 and 5.17 we show the distribution of the local importance
of selected features across the test set: For each input feature we generate a
histogram of local importance values, as indicated by its corresponding entry
in the explanation vector of each of the 4512 test compounds. As a common
visual reference, the normal distribution with a standard deviation of 0.02

14See [5] for results of modeling this set using different machine learning methods. The
data itself is available online at http://ml.cs.tu-berlin.de/toxbenchmark

http://ml.cs.tu-berlin.de/toxbenchmark
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Figure 5.15: Receiver operating curve of GPC model for mutagenicity prediction

(arbitrary choice) is included in each histogram. Each subfigure contains
two measures of (dis-)similarity for each pair of distributions. The p-value
of the Kolmogorov-Smirnoff test (KS) gives the probability of error when
rejecting the hypothesis that both relative frequencies are drawn from the
same underlying distribution. The symmetrized Kullback-Leibler divergence
(KLD) gives a metric of the distance between the two distributions.15

The features examined in Figure 5.16 are counts of substructures known to
cause mutagenicity. We show all approved “specific toxicophores” introduced
by [207] that are also represented in the Dragon set of features.

The features shown in Figure 5.17 are known to detoxify certain toxi-
cophores [again see 207]. With the exception of (e) the toxicophores also
have a toxifying influence according to our GPC prediction model. Feature
(e) seems to be mostly irrelevant for the prediction of the GPC model on the

15Symmetry is achieved by averaging the two Kullback-Leibler divergences:
KL(P1,P2)+KL(P2,P1)

2 , cf. [206]. To prevent zero-values in the histograms which would
lead to infinite KL distances, an ε > 0 has been added to each bin count.



122 Results

test points. In contrast the detoxicophores show overall negative influence on
the prediction outcome of the GPC model. Modifying the test compounds
by adding toxicophores will increase the probability of being mutagenic as
predicted by the GPC model while adding detoxicophores will decrease this
predicted probability.

So we have seen that the conclusions drawn from our explanation vectors
agree with established knowledge about toxicophores and detoxicophores.
While this is reassuring, such a sanity check required existing knowledge
about which compounds are toxicophores and detoxicophores and which are
not. Thus it is interesting to ask, whether we also could have discovered
that knowledge from the explanation vectors. To answer this question we
ranked all 143 features by the means of their local gradients16. Clear trends
result: 9 out of 10 known toxicophores can be found close the top of the list
(mean rank of 19). The only exception (rank 81) is the aromatic nitrosamine
feature.17 This trend is even stronger for the detoxicophores: The mean rank
of these five features is 138 (out of 143), i.e. they consistently exhibit the
largest negative local gradients. Consequently, the established knowledge
about toxicophores and detoxicophores could indeed have been discovered
using our methodology.

In the following paragraph we will discuss steroids18 as an example of
an important compound class for which the meaning of features differs from
this global trend, so that local explanation vectors are needed to correctly
identify relevant features.

Figure 5.18 displays the difference in relevance of epoxide (a) and aliphatic
nitrosamine (c) substructures for the predicted mutagenicity of steroids and
non-steroids. For comparison we also show the distributions for compounds
chosen at random from the test set (b,d). Again the p-value of the KS test
and the symmetric KL divergence are used to measure the difference and
distance in each pair of distributions. While containing epoxides generally

16Tables resulting from this ranking are made available as a supplement to [1] and can
be downloaded from the journals website.

17This finding agrees with the result obtained by visually inspecting Figure 5.16(e).
We found that only very few compounds with this feature are present in the dataset.
Consequently, detection of this feature is only possible if enough of these few compounds
are included in the training data. This was not the case in the random split used to
produce the results presented above.

18Steroids are natural products and occur in humans, animals and plants. They have a
characteristic backbone containing four fused carbon-rings. Many hormones important to
the development of the human body are steroids, including androgens, estrogens, progesta-
gens, cholesterol and natural anabolics. These have been used as starting points for the
development of many different drugs, including the most reliable contraceptives currently
on the market.
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tends to make molecules mutagenic (see above), we do not observe this effect
for steroids. “Immunity” of steroids to the epoxide toxicophore is an estab-
lished fact and has first been discussed by [208]. This peculiarity in chemical
space is clearly exhibited by the local explanation given by our approach.
For aliphatic nitrosamine, the situation in the GPC model is less clear but
still the toxifying influence seems to be less in steroids than in many other
compounds. To our knowledge, this phenomenon has not yet been discussed
in the pharmaceutical literature.

In conclusion, we can learn from the explanation vectors that:

• toxicophores tend to make compounds mutagenic (class 1)

• detoxicophores tend to make compounds non-mutagenic (class 0)

• steroids are immune to the presence of some toxicophores (epoxide,
aliphatic nitrosamine)
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Figure 5.16: Distribution of local importance of selected features across the test set of
4512 compounds. Nine out of ten known toxicophores [207] indeed exhibit positive local
gradients.
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Figure 5.17: Distribution of local importance of selected features across the test set of
4512 compounds. All five known detoxicophores exhibit negative local gradients
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Figure 5.18: The local distribution of feature importance to steroids and random non-
steroid compounds significantly differs for two known toxicophores. The small local gradi-
ents found for the steroids (shown in blue) indicate that the presence of each toxicophore
is irrelevant to the molecules toxicity. For non-steroids (shown in red) the known toxi-
cophores indeed exhibit positive local gradients.
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5.9 Virtual Screening for PPARγ Agonists

The peroxisome-proliferator activated receptor family (PPAR) are nuclear re-
ceptors acting as transcription factors. They are involved in lipid metabolism
and inflammatory response regulation and act as corresponding drug targets.
The following section describes how predictive models for PPARγ were con-
structed in collaboration with researchers at the University of Frankfurt.
It discusses how the training data was used in a clustered cross-validation
scheme to evaluate the generalization capability of different combinations
of data representations and learning algorithms. The last two paragraphs
present how the best performing models were applied in screening two large
vendor libraries: New PPARγ agonists were discovered, including a PPARγ
selective compound with a new scaffold. This new compound is especially
interesting, because it is almost identical to a natural product in plants that
exhibit anti-diabetic and anti-inflammatory effects. The newly discovered
PPARγ agonist represents a first hint to the cause of these effects. A more
detailed discussion of the results of this virtual screening study can be found
in [3].

From a machine learning perspective, the modeling task can be summa-
rized as follows:

• ranking based on real valued labels, implemented as follows:

– supervised regression task

– ranking of unlabeled library by predicted target value & confidence

– experimental investigation of 16 compounds from hitlist

• training data: 144 compounds with real valued labels (binding affinity
expressed as pKi) [209], “leave 50 % of all clusters out” cross-validation

• unlabeled screening library: 360 · 103 compounds from the Asinex[210]
Gold and Platinum libraries19

• data representation: molecular graphs, CATS2D[211] topological phar-
macophore descriptor (210-dimensional autocorrelation vector), MOE[212]
2D descriptors (184 diverse 2d descriptors), Ghose-Crippen fragment
descriptors[164, 213, 214] (109 substructure counts)

• learning algorithms investigated: Gaussian Processes, support vector
machines, ridge regression

19Asinex[210] Gold (233 · 103 compounds) and Platinum (129 · 103 compounds) libraries
were combined, resulting in 360·103 compounds after removal of duplicates and compounds
not processable by intermediate other software.
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Figure 5.19: Employed combinations of molecular descriptors, kernels (where applicable)
and machine learning methods.

• kernel functions: ISOAK molecular graph kernel [106], radial basis
function (RBF), rational quadratic (RQ) and combinations thereof (mul-
tiple kernel learning, see Sec. 3.6)

A flowchart illustrating the employed combinations of molecular descrip-
tors, kernels (where applicable) and machine learning methods can be found
in Figure 5.19. The retrospective part of the study was conducted as follows:
All models were evaluated in 10 runs of “leave 50 % of all clusters out” cross-
validation (see Sec. 3.4 for a discussion of evaluation strategies). The exact
same splits into training and test data were used by all algorithms. Perfor-
mance indicators for each algorithm were averaged over the 10 runs and are
listed in tables 5.4, 5.5 and 5.6, together with the standard deviation over the
10 runs. The standard regression performance indicators were found to be
highly correlated with each other (r > 0.95), therefore we only list the mean
absolute error alongside our newly defined FI20 performance indicator.20

Table 5.4 lists results achieved with three different learning algorithms
each combined with three different vectorial descriptor sets. The non-linear
Support Vector Regression and Gaussian Process models perform better than

20FI20 is the fraction of inactive compounds in the top 20 of the ranking obtained
with the respective model, see Sec. 3.5 for a discussion of performance indicators and loss
functions)
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Learning Algorithm Descriptors MAE FI20

SVR rbf ACATS 0.68 ± 0.06 0.33 ± 0.08
GC 0.86 ± 0.12 0.41 ± 0.09

MOE 0.69 ± 0.08 0.29 ± 0.14
Linear RR ACATS 1.7 ± 0.14 0.80 ± 0.08

GC 1.7 ± 0.08 0.79 ± 0.04
MOE 1.45 ± 0.04 0.78 ± 0.05

GP RBF & RQ ACATS 0.66 ± 0.09 0.27 ± 0.14
GC 0.86 ± 0.07 0.33 ± 0.12

MOE 0.76 ± 0.06 0.25 ± 0.12
Table 5.4: For Support Vector Regression, Linear Ridge Regression and Gaussian Process
regression based on ACATS, Ghose Crippen & MOE2D descriptors we list the Mean
Absolute Error and the Fraction of Inactives in the top 20

Learning Algorithm Node & Edge MAE FI20

GP ISOAK none 0.68 ± 0.06 0.33 ± 0.15
GP ISOAK Type 0.74 ± 0.06 0.32 ± 0.14
GP ISOAK PPP 0.70 ± 0.06 0.38 ± 0.09

Table 5.5: Using atom & bond types (Type) or pharmacophore points (PPP) in addition
to the plain graph structure does not improve the performance of ISOAK based Gaussian
Process models. See Table 5.4 for abbreviations.

the linear Ridge Regression, indicating that the relationship between activity
and the chosen descriptors is indeed non-linear. Non-linear models with the
richer MOE2D and ACATS descriptor sets outperform models based on the
rather simple Ghose Crippen fragment descriptors.

Table 5.5 lists performance indicators obtained when applying variants of
the ISOAK graph kernel. Interestingly, comparing molecules based on the
graph structure alone results in more accurate predictions than comparing
molecules based on both their graph structure and either atom & bond types
or pharmacophore points.

Learning Algorithm & Descriptors MAE FI20

GP ISOAK, 1 RBF, 1 RQ 0,67 ± 0,08 0,31 ± 0,14
GP ISOAK, 1 RBF, 1 RQ, adj. var. 0,66 ± 0,07 0,32 ± 0,15
GP ISOAK, 3 RBF, 3 RQ 0,70 ± 0,11 0,21 ± 0,09
GP ISOAK, 3 RBF, 3 RQ, adj. var. 0,71 ± 0,12 0,26 ± 0,12

Table 5.6: The Gaussian Process Models based on both ISOAK graph kernels and RBF
& RQ kernels with vectorial descriptors yield the lowest MAE and FI20 values observed
so far. See Table 5.4 for abbreviations.
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(a) GP 1 RBF, 1 RQ (ACATS) (b) GP ISOAK, 3 RBF, 3 RQ

(c) GP ISOAK, 1 RBF, 1 RQ, adj. var.

Figure 5.20: Plots of predictive variance vs. predicted binding affinity, obtained by
applying the three chosen models to the screening database. Both values were fused into a
single list by subtracting the predictive standard deviation from each prediction and sorting
by the result, so that compounds with highly confident high predictions can be found at
the top of the list[215]. The top 30 compounds suggested by each model are marked
with red dots in each plot. They differ from the compounds with highest confidence in
the prediction (blue dots) and the compounds with the highest predicted binding affinity
(green dots).

Statistics for the most complex models can be found in Table 5.6: These
Gaussian Process models were build using both the molecular structure and
vectorial descriptors at the same time, by combining ISOAK graph kernels
and RBF & RQ kernels in a multiple kernel learning (MKL) setting. Giving
the compounds with higher activity more weight in hyperparameter opti-
mization does not have a visible effect on the performance. Combining all
vectorial features into one RBF & RQ kernel results in slightly reduced mean
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absolute errors. However, using individual RBF & RQ kernels for the three
individual vectorial descriptor sets we obtained the lowest values for the FI20

performance indicator. When grouping models based on their performance,
three groups can be identified:

• All linear models were found to be very inaccurate (MAE > 1.45, FI20

> 0.78).

• Both non-linear models based on GC descriptors reach the same MAE
of 0.86 ± 0.10. The SVR model exhibits an FI20 of 0.41 ±0.09. Incor-
porating the confidence estimates of the Gaussian process model results
in a slightly reduced FI20 of 0.33 ±0.12, despite equal regression per-
formance.

• Non-linear models based on the vectorial MOE or ACATS descriptors,
molecular structures or combinations thereof all achieve mean MAEs
between 0.66 and 0.74. All eleven models reach FI20 below 0.40. Five
models even reach FI20 between 0.2 and 0.3.

While the differences between the groups are large, differences within the best
performing group are as small as the standard deviations across the ten runs.
Instead of choosing a single final model for the prospective evaluation based
on these results alone, we first chose a group of three very well performing
models with different characteristics:

• The GP model with an ISOAK graph kernel and 3 individual RBF
& RQ kernels for each respective vectorial descriptor set was chosen
because it exhibits the lowest FI20 score (0.21 ±0.09) observed in all
experiments, combined with a rather low MAE of 0.70 ±0.11. At the
same time it includes all available information about each compound.

• A GP model with an ISOAK graph kernel and one single RBF & RQ
kernel for all vectorial descriptor sets taken together was chosen because
it exhibits the lowest MAE (0.66 ±0.07) observed in all experiments,
combined with a reasonable FI20 score of 0.32 ±0.15. It also includes
all available information about each compound and gives the active
compounds higher weight in the parameter optimization.

• From the pool of still well performing but less complex models we
chose the GP model employing just one RBF & RQ kernel on a single
vectorial descriptor set (ACATS), achieving MAE 0.66 ±0.09 and FI20

0.27 ±0.14.
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The ASINEX database was then ranked with each of the three models
listed above. The predictive standard deviation was subtracted from each
prediction, so that compounds with highly confident high predictions can
be found at the top of the list [215]. The top 30 compounds are marked
with red dots in the confidence vs. target value plots for each model in
Figure 5.20. From these three lists, 16 compounds were selected by a panel
of human experts and experimentally tested, resulting in 8 novel PPARα and
PPARγ agonists with EC50 values as low as 9 µmol. Interestingly, 10 out of
16 cherrypicked compounds were suggested by this model: “GP with ISOAK
and 3 RBF and RQ kernels on the vectorial descriptors” (chosen for best FI20

score), and all 8 compounds exhibiting activity stem from this list.
The most potent compound is a known natural product in plants: Ber-

muda grass (cynodon dactylon) is known to be anti-inflammatory, for which
the PPARγ activity of our compound provides a first possible explanation.
A detailed discussion of this finding can be found in [3].



Chapter 6

Conclusion

This thesis presents a collection of seven studies about constructing predictive
models for application in drug discovery & drug design. Gaussian Process
models were introduced into the field of chemoinformatics and for the first
time, individual confidence estimates are provided based on a solid theoretical
foundation. Furthermore, new algorithms were developed to cope with the
specific requirements of lead optimization, the most challenging part of the
drug discovery process. The first new algorithm can improve the accuracy
of models in the early stages of lead optimization projects. The second new
algorithm can explain individual predictions made by complex models to
human experts and the third new algorithm generates hints for compound
optimization. Models developed in the above mentioned studies have been
deployed for use by human experts in pharmaceutical companies. A virtual
screening study has not only led to new agonists of PPARγ, but also helped
to understand the anti-diabetic and anti-inflammatory effects of bermuda
grass (cynodon dactylon).

From the point of view of machine learning, chemoinformatics is a very
challenging field of endeavor:

Learning algorithms are always based on some representation of objects
(in this case: molecules). Molecules are dynamical three dimensional ob-
jects, exhibiting many different types of flexibility. Available representations
of molecules for machine learning either completely ignore this fact by consid-
ering only features derived from the two dimensional graph of the molecule,
or they consider a small arbitrarily chosen number of 3D structures that may
or may not be relevant for the task at hand. Consequently, the accuracy that
can be achieved by machine learning models based on these representations
is limited.

Machine learning algorithms rely on the assumption that training data
and future test data are sampled ideally identically distributed (i.i.d.) from
the same underlying probability density, and further assume that the the
conditional distribution of labels (measurements) given the input features
(descriptors) is the same in both training and test data. Lastly, it is generally
assumed that similar molecules exhibit similar activity.
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In the machine learning community, violation of the first assumption is
called covariate shift or dataset shift. In the lead optimization application
scenario, one question that regularly arises is how to best use the first new
measurements for compounds belonging to a newly explored compound class,
i.e. a new part of the chemical space. New different model selection and bias
correction algorithms based on utilizing the labels of the nearest neighbors
in the recently measured set of compounds are introduced. An evaluation
of these algorithms in the context of the hERG Channel Blockade effect
reveals that a locally performed bias correction significantly improves models.
Interestingly, previously trained random forests profit so strongly from the
bias correction, that they even outperform k-nearest-neighbor models trained
in leave-one-out cross validation on all training and test data simultaneously.

Four out of seven modeling studies conducted in this thesis deal with
properties that have multiple underlying mechanisms that are relevant in
different parts of the chemical space. These properties are Metabolic Stabil-
ity, Aqueous Solubility, Cytochrome P450 Inhibition and Ames Mutagenicity.
Training data are typically scarce (e.g. several hundred training compounds
described by about equally many descriptor dimensions (features)). In new
projects, new compound classes are explored, i.e. test data are sampled from
a different part of the chemical space than the training data. Because of
the different underlying mechanisms, this leads to simultaneously violating
both the assumption of i.i.d. sampling and the assumption of equal con-
ditionals. Furthermore, all properties concerned with molecular recognition
can exhibit sudden extreme changes (activity cliffs). This necessitates com-
plex non-linear models and makes generalizing difficult. The six out of seven
studies conducted in this thesis where activity cliffs need to be considered
are: Metabolic Stability, Cytochrome P450 Inhibition, Ames Mutagenicity,
Aqueous Solubility, PPARγ binding and the hERG Channel Blockade Effect.

As indicated in the last paragraph, one has to expect that many predic-
tions for test compounds may be incorrect. It is therefore very desirable to
obtain some kind of confidence estimate that allows to identify compounds
for which reliable predictions can be made. To this end, Gaussian Process
(GP) models have been introduced into the field of chemoinformatics. Their
predictive variances can directly serve as individual confidence estimates.
The practical usefulness of predictive variances is investigated in detail for
models predicting Partition Coefficients, Aqueous Solubility and Metabolic
Stability. In each case it is shown that focussing on confidently predicted
compounds indeed significantly increases the accuracy of predictions. In a
virtual screening for compounds binding to the PPARγ receptor, predictive
variances of GPs were considered to select compounds with high values of
predicted binding affinity that are, at the same time, deemed to be very
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reliable. And indeed, new potent agonists of PPARγ were identified.
In addition to the above mentioned fundamental aspects that make chemo-

informatics challenging from the point of view of machine learning, there
are many more points to be considered when not only treating well curated
benchmark datasets, but really starting the process of model building from
raw datasets that have just been exported out of corporate databases or
gathered from (many) separate publications. Systematical measurement er-
rors, heteroschedastic noise, compounds with outlying labels or features or
even missing values in some features necessitate carefully performing various
pre-processing steps before training machine learning models. Since differ-
ent raw sets of data can vary tremendously, the process of pre-processing
is not easily formalized. The first three sections of this thesis describe in-
sights gained when transforming raw data into well-behaved training data
for machine learning models.

Two separate algorithms for explaining individual predictions of (possibly
non-linear) machine learning models are presented. The first method explains
predictions by the means of visualizing relevant objects from the training set
of the model. This allows human experts to understand how each predic-
tion comes about. If a prediction conflicts with his intuition, the human
expert can easily find out whether the grounds for the models predictions
are solid or if trusting his own intuition is the better idea. Theoretically, a
brute force algorithm can be applied to gather this information about any re-
trainable model, regardless of the underlying learning algorithm. As shown
in this thesis, a much more elegant solution exists for kernel based learning
methods. When the representer theorem can be applied (i.e. in the case
of support vector machines for classification (SVM) and regression (SVR),
Gaussian Processes for classification (GPC) and regression (GPR) and ker-
nel ridge regression (KRR)) one can calculate the normalized contribution of
each training data point analytically, and identify the most important points
to visualize. These are called explanations. GPC models trained using stan-
dard procedures were found to tend to rely on more training compounds than
one can use for producing an intuitively understandable visualization. By re-
ducing the width-parameter of radial basis function kernels, it is possible to
obtain models where predictions for test compounds are almost completely
determined by very few training compounds, so that intuitively understand-
able visualizations can indeed be produced. Furthermore, these explanations
were found to be convincing from a chemists point of view.

In a somewhat similar spirit, a second method utilizes local gradients of
the model’s predictions to explain predictions in terms of the locally most
relevant features. This not only teaches the human expert which features
are relevant for each individual prediction, but also gives a directional infor-
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mation. Abstractly speaking, one can learn in which direction a data point
has to be moved to increase the prediction for the label (measurement). In
the context of lead optimization, this means that the human expert can ob-
tain hints for compound optimization. An estimation framework allows to
obtain local gradients from any type of model, including k-nearest neighbor
classifiers, support vector machines, decision trees or neural networks. How-
ever, in case of Gaussian Process models, local gradients can be calculated
analytically. The new gradient based methodology was validated using two
benchmark sets of data that are well known in the machine learning com-
munity (IRIS flowers and USPS digits) and was then applied to Gaussian
Process Classification models for Ames mutagenicity. The new approach
correctly identified toxicophores and detoxicophores. Furthermore, even lo-
cal peculiarities in chemical space (the extraordinary behavior of steroids)
was discovered based on the local gradients of the predictions.

Future Directions

Today, machine learning based models are firmly established in the early
stages of the drug discovery process, i.e. in library design. In these early
stages, large numbers of compounds are ranked or filtered with respect to
different properties and any model that can make predictions that are signif-
icantly better than random choice has the chance to exert a positive effect,
even if the effect is not very large. In later stages of the drug discovery
process, more specifically in the lead optimization phase, requirements are
much higher: Human experts (often bench chemists) regularly decide which
small batch of molecules to synthesize and investigate next. They tend to
be very sceptical towards model predictions unless they understand exactly
how each prediction is generated. This behavior also makes sense, because
it is the researchers themselves who have to make the decision and bear the
responsibility. Algorithms capable of explaining predictions will be the key to
reaching the goal of much increased acceptance of models. Once models are
accepted by the relevant decision makers in lead optimization, technologies
for guiding compound optimization have the chance to become valuable.

While the lead optimization scenario served as the original motivation
and testbed for developing algorithms for explaining individual predictions,
both new methods can be applied to a wide range of modeling tasks. Wher-
ever human experts are to be supported in making decisions, explanations of
predictions will be valuable. Therefore, future research will strive for devel-
oping and refining algorithms for explaining predictions by machine learning
models and demonstrating their practical usefulness.



Appendix A

Misc

A.1 Challenging Aspects of Machine Learning in Drug
Discovery

A.1.1 Molecular Representations

The by far most critical aspect to consider when modeling the properties
of chemical compounds is the fact that state of the art representations of
molecules are seriously flawed. Chemical compounds are commonly charac-
terized by the 2D structure (graph) of their molecules. As an example, the
2D-structure and a ball and stick model of acetylsalicylic acid (also known as
Aspirin) can be found in Figure A.1. This representation has been developed
for use by human experts and is very useful in tasks like developing synthesis
paths, because 2D structures can easily be drawn by hand and printed in
books and they can be used to express chemical reactions or whole series
of reactions that one can learn to read, write, memorize and apply in the
laboratory. In the 2D-structure Figure A.1(a), each type of edge indicates
a different type of chemical bond: A single line symbolizes a single bond,
two parallel lines indicate a double bond and the circle drawn inside the six
membered ring indicates aromatic bonds. Note how the ensemble of atoms
symbolized in the right hand side of subfigure (a) appears in a different posi-
tion in subfigure (b). The position of this group of atoms (the acetyl group)
with respect to the remaining part of the molecule is arbitrary, because it
is connected through a single bond, and single bonds rotate freely. Further-
more, bonds can vibrate in different ways, including stretching and bending.
When dissolved in water, the acid group depicted in the top left hand corner
of Figure A.1(a) can dissociate its proton (H+ Ion) and later associate with
any proton nearby. In more complex molecules, more complex issues arise:
Protons can bind to different functional groups within the same molecule,
resulting in shift of the positions of alternatingly placed double and single
bonds. This often observed phenomenon is called tautomerism. In summary,
molecules can be flexible both in a physical sense (rotation and vibration)
and a chemical sense (dissociation & association of protons, tautomerism).

As a result of this flexibility, molecules adopt many different states when
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(a) 2D structure (b) Ball and Stick

Figure A.1: 2D-structure and a ball and stick model of acetylsalicylic acid, also known
as Aspirin.

observed in (aqueous) solution. Some states are more stable then others and
therefore contribute more to the time averaged distribution across all possible
states. Therefore, one could think of developing a molecular representation
based on this whole distribution of possible states and their relative probabil-
ity of occurrence. However, when binding to proteins, molecules can adapt to
the shape of the respective protein. In the most stable complex of a protein
and a molecule, the molecules state may be one that would not have been
stable in solution and is unique to this very complex.

The most popular way of representing molecules for the purpose of ma-
chine learning is choosing one out of many available tools to calculate a vector
of so called chemical descriptors from the 2D structure of the molecule, and
then apply standard learning algorithms to the resulting vectorial descrip-
tors (features). In this way, the flexible structure of molecules is completely
ignored. In a similar spirit, Kernel based machine learning methods like
support vector machines can directly use the 2D structure representation of
molecules if so called graph kernels are applied [106]. Again, the flexible
structure of molecules is ignored.

Some descriptor calculation tools also take the 3D structure of molecules
into account. As established above, the choice of any finite numbers of 3D
structures is arbitrary and one always runs the risk of overlooking the most
relevant ones for the respective modeling task. This may be the reason for the
fact that models based on 3D representations of molecules do not necessarily
outperform models based on 2D representations.
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Figure A.2: In both plots, the training and test data have different but overlapping
distributions. This scenario is known as “covariate shift” and can lead to models that will
not generalize well (left plot). If the density of the test data can be estimated, the sample
bias can be reduced or even eliminated using different weighing and sampling schemes
[216]. This leads to models that perform better on the test data (right plot).

A.1.2 Covariate Shift

This section introduces the phenomena “covariate shift” and “multiple modes
of action”, discusses ways of handling these situations and points to parts of
this thesis where either of the phenomena where observed.

Almost all known machine learning algorithms rely on the assumption
that both training data and future test data are sampled from the same
underlying probability density. If this assumption is not satisfied, we ex-
trapolate from the training data. (Mild) extrapolation is feasible if the the
conditional distribution of target values given the input features (descrip-
tors) is the same in both test and training data. In the machine learning
community, this scenario is known as covariate shift [216–220]. One of the
symptoms is a bias in the model selection and fitting phase. This bias can
result in models that do not perform well on the test data. If the density of
the test data can be estimated at the point in time when the model is trained,
for some types of models this bias can be reduced or even eliminated using
different weighing and sampling schemes. This is illustrated in Figure A.2,
using a one dimensional example.1 For a proof that unbiased estimators can
indeed be obtained, see [216]. For a detailed discussion, reading [220] and
references therein is suggested.

In drug discovery and development, covariate shift is omnipresent, due

1Keep in mind that the above mentioned scheme reduces the bias of a not complex
enough model by effectively discarding training data.
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Figure A.3: Top left: The enzyme displayed has two separate binding sites for small
molecules. Top right: There exists a general trend for proteins to bind molecules more
strongly as they get more lipophilic. Bottom left: Building a single simple model based
on the valuable descriptor “lipophilicity” results in misleading models. Bottom right: If
sufficient previous knowledge exists about both test and training data, one can construct
separate models for the site 1 and site 2 binding molecules. Alternatively one can use a
more rich feature set with a complex enough learning algorithm.

to the small training sets resulting from expensive experiments, but huge
libraries for which predictions are sought. The term “covariate shift”, how-
ever, is typically not used. It is not only relatively new and originated in
the machine learning community [216], but also because the situation is, in
fact, often even worse: As explained above, covariate shift can help select
better models in case training data and future test data are not sampled
from the same underlying probability density, provided that the the condi-
tional distribution of target values given the input features (descriptors) is
the same in both test and training data. As explained in the next subsection,
the latter assumption is unfortunately often not satisfied in drug discovery
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applications.

A.1.3 Multiple Mechanisms

Figure A.3 illustrates this fact for the problem of protein binding. In this
case, the protein under consideration is an enzyme, to which small molecules
(including drugs) can bind. Our enzyme has two geometrically quite different
active sites. Therefore, quite different molecules will bind to these different
sites (Figure A.3, top left). Proteins are, generally speaking, quite lipophilic.
Consequently, the more lipophilic a molecule, the stronger it binds to a given
protein. In Figure A.3 (top right) a plot of binding strength vs. lipophilicity
is shown. Inside each group (site 1 binders and site 2 binders) the binding
strength indeed increases as the lipophilicity increases. If we now train a
simple linear regression model using all data together (Figure A.3, bottom
left), we obtain a bad fitting model that points in the completely wrong di-
rection. This phenomenon is not restricted to enzymes with multiple binding
sites. Some enzymes only have one active site, but if this single site is large
and flexible, different types of molecules can dock into this site in differ-
ent orientations or binding modes. In the chemoinformatics community, this
problem is referred to as multiple mechanisms. Possible ways of obtaining
useful models are:

1. construct individual models for each site or mode of action, as illus-
trated in Figure A.3 (bottom right)

2. use a rich feature set and advanced learning algorithms to implicitly
construct local models for each mode of action by building a single
sufficiently complex non-linear model

The first option not only requires the knowledge which training molecule
binds into which site etc., but also leads to a number of different models.
Ideally, one would have to know the relevant binding site or mode of action
for each molecule in the test set to apply the adequate model from this set
of models. This type of knowledge is usually not available.

Building a single model as illustrated in Figure A.3 (bottom left) only
fails because this model has a one dimensional feature set and it is not suf-
ficiently complex. Imagine a rich feature set, corresponding to a very high
dimensional space. If any of the features are relevant for the problem at
hand, the molecules with different modes of action will automatically end up
in different regions of this space. If one now uses a learning algorithm that
can take local phenomena into account (e.g. a Support Vector Machine or
Gaussian process with a sufficiently local kernel function) one can succeed in
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training a single model that will perform well despite the different modes of
action within the same set of training (and test) data. Naturally, this model
will not be able to make reasonable predictions for the whole vast space of
feasible molecules. It is therefore important that models can provide some
sort of confidence estimate, that allows assessing whether a given molecule is
inside the domain of applicability, see Sec. 3.7.

A.1.4 Activity Cliffs

Machine learning in drug discovery and design relies on the assumption that
similar molecules exhibit similar activity. In other words, one hopes that the
“activity landscape” is somewhat smooth. However, very similar molecules
may in some cases possess very different activities leading to what can be
called activity cliffs. Maggiora [221] defines these by the ratio of the differ-
ence in activity of two compounds to their distance of separation in a given
chemical space. The existence of such activity cliffs is not entirely surprising
since molecular recognition plays a crucial role in determining activity.

Figure A.3 shows a simplified example where only the shape of molecules
is relevant. In reality, a small number of functional groups (e.g. hydrogen
donor or acceptor groups) in the molecule intensively interacts with their
respective counterpart in specific spots in the binding pocket. The number
functional groups in the molecule may be large, but only very few of them
([1...10]) participate in very important interactions. A slight change in the
molecular structure may, in general, only cause a small difference in activ-
ity, but when one of the key interactions is involved, activity may change
completely [221, 222].
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Isoenzyme weak moderate potent reported total
CYP 1A2 577 89 28 104 802
CYP 2C19 225 298 170 56 772
CYP 2C9 179 286 236 86 828
CYP 2D6 497 88 52 105 784
CYP 3A4 318 281 107 122 887

Table A.1: Number of compounds that are weak, moderate or potent inhibitors of each
CYP isoenzyme.

Isoenzyme Schering in-house [223] GT [224] other
CYP 1A2 720 124 67 7 41
CYP 2C19 718 72 55 13 38
CYP 2C9 719 122 97 16 83
CYP 2D6 718 152 119 19 129
CYP 3A4 711 188 129 25 98
total 3586 658 467 80 389

Table A.2: Number of CYP inhibition data that could be retrieved from the individual
data sources, [223, 224] and in-house data.

A.2 Data Used in Modeling Cytochrome P450 Inhibition

We consider a total 5180 data points on CYP inhibition of 1130 different
compounds. The data stems from two different sets:

1. A set of data collected from various literature sources [223, 224].

2. A large homogeneous set of quantitative data produced under stan-
dardized experimental conditions (in-house data at Schering).

Compounds in the in-house set of data were classified as weak (IC50 > 10µM),
moderate (1µM < IC50 < 10µM) or potent inhibitors(IC50 < 1µM) for
each of the five CYP isoenzymes. If no quantitative data was available,
but the structure was reported in the literature as an inhibitor of the specific
isoenzyme, this structure is classified as“reported”. It is likely that structures
with the label “reported” are moderate or potent inhibitors of the respective
CYP isoenzyme. These qualitative data stem from various literature sources
and have a higher diversity of CYP inhibitor structural classes.
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A.3 Descriptors Used in Modelling Cytochrome P450
Inhibition

Cytochrome P450 Inhibition is a highly complex process, it is thus not clear
which chemical descriptor can best capture the properties of a chemical com-
pound that are indicative of its inhibition behavior. Therefore, we consider
a total of six different sets of descriptors. These range from conceptually
simple and computationally cheap pseudo atom counts (Ghose-Crippen de-
scriptor) to complex and computationally more demanding 3 D descriptors
(VOLSURF). In the following section, each descriptor is explained shortly
and references to the original publications are provided.

The Ghose-Crippen descriptor comprises the numbers of occurrence of 120
different pseudo-atoms. It was originally developed to predict the octanol-
water partition coefficient [213]. P (octanol/water) is the ratio of the concen-
tration of a chemical in octanol and in water at equilibrium and at a specified
temperature. Octanol is an organic solvent that is used as a surrogate for
natural organic matter. G. & C. suggest that logP is useful for treating
ligand-receptor interaction. G. & C. also used these descriptors to predict
molecular refractivity [214]. The set of descriptors was later extended to al-
low prediction of logP for a wider range of compounds [164]. They argue that
the dispersive force between molecules (or a molecule and a macro-molecule
like a receptor) is related to their polarizability, which is proportional to
their molar refractivity and suggest that this property is therefore useful for
treating ligand-receptor interaction.

The BCUT descriptors are the highest and lowest eigenvalues of atomic
connectivity matrices, where the diagonal elements can be set to the atoms
mass, van der Waals volume, electronegativity or polarizability to reflect
the atoms’ ability to form bonds or otherwise interact [167]. They are an
extension of the Burden eigenvalues [166]. In our application, we consider
the 16 eigenvalues of largest magnitude and and 16 eigenvalues of lowest
magnitude.

UNITY fingerprints [168] (generated from the default screen2d definition
file shipped with the software) are represented as string of 988 bits. They were
developed to speed up database searches and work similar to hash functions.
928 bits are set to indicate the presence of paths of lengths 2 to 6 through
the molecular graph. The remaining 60 bits indicate the presence of certain
predefined fragments (e.g. rare atoms, or different ring systems).

The logD prediction module from ACD Labs [75] is used to predict logD
for the ten pH values between 2 and 11 and the number of rotable bonds.
These eleven numbers are then used as descriptors.

VolSurf descriptors [169] are generated in a three step process: A 3D
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structure of the molecule is calculated using Concord [225]. Then different
3D molecular interaction fields [226] are created by virtually moving different
hydrophilic or lipophilic probes around the molecule and recording distances
of equal interaction energy. In our cases the H2O, DRY and O probes were
used. These interaction fields are then used to calculate the actual VolSurf
descriptors, including volume, surface, globularity, different descriptors of
hydrophilic and lipophilic regions, interaction energy moment and others.

GRIND descriptors [170] are generated in a four step process. A 3D struc-
ture of the molecule is generated using Concord [225] and used to calculate
a molecular interaction field (see above). In our case, the DRY, O, N1 and
shape probes were used. A fixed number of nodes (e.g., 100) is chosen from
the grid to maximize the value of a scoring function that depends on the
sum of field intensities at all chosen points and the sum of distances between
all chosen points. The ensemble of these regions for all relevant probes is
called the virtual reaction site and forms the starting point for calculating
the actual GRIND descriptors: For each possible pair of nodes the product
of their field intensities is calculated. A discrete number of categories, each
representing a small range of distances, is considered. For each category, the
highest product of field intensities is stored. The parameters can be visu-
alized by plotting the highest products vs. the distance. If pairs of nodes
from the same molecular interaction field are considered, this is called auto-
correlogram, if the pairs of nodes are from two different molecular interaction
fields, this is called a cross-correlogram.
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A.4 Miscellaneous Plots
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Figure A.4: Blockwise correlation (Sec. 3.2) between Dragon descriptor dimensions of
compounds used in modeling aqueous solubility (Sec. 5.3). A lot of descriptor dimensions
are highly correlated, illustrated by the substructure inside each block.
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priors. In José M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M.
Smith, editors, Bayesian Statistics 6, volume 6, pages 475–501. Oxford
University Press, 1998.

[97] Alexandre Varnek, Cedric Gaudin, Gilles Marcou, Igor Baskin,
Anil Kumar Pandey, and Igor V. Tetko. Inductive transfer of knowl-
edge: Application of multi-task learning and feature net approaches to
model tissue-air partition coefficients. Journal of Chemical Informa-
tion and Modeling, 49(1):133–144, 2009. doi: 10.1021/ci8002914. URL
http://pubs.acs.org/doi/abs/10.1021/ci8002914.

http://pubs.acs.org/doi/abs/10.1021/ci800151m
http://pubs.acs.org/doi/abs/10.1021/ci800151m
http://dx.doi.org/10.1021/ci7000633
http://www.gaussianprocess.org/
http://www.gaussianprocess.org/
http://pubs.acs.org/doi/abs/10.1021/ci8002914


160 Bibliography

[98] Olga Obrezanova, Joelle M. R. Gola, Edmund J. Champness, and
Matthew D. Segall. Automatic qsar modeling of adme properties:
blood-brain barrier penetration and aqueous solubility. J. Comput.-
Aided Mol. Des., 22:431–440, 2008. URL http://dx.doi.org/10.

1007/s10822-008-9193-8.

[99] Klaus-Robert Müller, Gunnar Rätsch, Sören Sonnenburg, Sebastian
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[196] Britta Nisius and Andreas H. Göller. Similarity-based classifier us-
ing topomers to provide a knowledge base for herg channel inhibition.
J. Chem. Inf. Model., 49(2):247–256, 2009.

[197] T. Fox and J.M. Kriegl. Machine learning techniques for in silico mod-
eling of drug metabolism. Curr. Top. Med. Chem., 6:1579–1591, 2006.

[198] O. Obrezanova, G. Csanyi, J.M. Gola, and M.D. Segall. Gaussian
processes: a method for automatic qsar modeling of adme properties.
J. Chem. Inf. Model., 47:1847–1857, 2007.

[199] K.M. Thai and G.F. Ecker. Predictive models for herg channel blockers:
ligand-based and structure-based approaches. Curr Med. Chem., 14:
3003–3026, 2007.



170 Bibliography
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