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Abstract

In this thesis a threefold approach to assess the risk of epidemic spread
on animal trade networks and pinpoint strategies to contain it is presented.
Firstly, an exhaustive description of a stochastic, event-driven, hierarchical
agent-based model designed to reproduce the infectious state of the cattle
disease called Bovine Viral Diarrhea (BVD) on the German trade network is
outlined. It takes into account a vast number of breeding, infectious and an-
imal movement mechanisms as provided by expert opinion with Susceptible-
Infected-Recovered type of dynamics with an additional permanently infec-
tious class for the farm-node dynamics and a supply-demand farm manager
mechanism governing the network structure and dynamics. A sensitivity
analysis on several key parameters of the model is also presented, and the
resulting disease and breeding dynamics are ultimately studied from many
aspects including numerous mitigation strategies of present and past gov-
ernment regulations, and of corresponding future, financial interest. Next a
mean field model for the spread of BVD is formulated to compare with the
agent based model and provide an analytical means towards the description
of the farm level dynamics including birth-death processes. A numerical sta-
bility analysis is presented as well as the derivation of the epidemiological
quantity of the basic reproduction number stemming from bifurcation argu-
ments. Moreover, numerical integrations are performed and a benchmark
is provided for the farm infectious and population dynamics of large farms
within the agent based model context. Lastly, a number of network analysis
tools are presented and applied on a dataset of cattle movements for the Ger-
man trade network. Each one tackles connectivity questions from a static,
a temporal, an embedded-geographical (spatial) and a topological point of
view, culminating in a worst-case assessment of a susceptible-infected, one-
way process.
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Deutsche Zusammenfassung

In dieser Arbeit wird ein dreifacher Ansatz zur Beurteilung des Risikos
der Ausbreitung einer Epidemie in Tierhandelsnetzen und zur Ermittlung
von Strategien zu ihrer Einddmmung vorgestellt. Zunéchst erfolgt eine aus-
fiihrliche Beschreibung eines stochastischen, ereignisgesteuerten, hierarchis-
chen, agentenbasierten Modells zur Reproduktion des Infektionszustandes
der Rinderkrankheit namens Bowine Virusdiarrhoe (BVD) auf das deutschen
Handelsnetz. Es  beriicksichtigt eine  Vielzahl von  Zucht-,
Infektions- und Tierbewegungsmechanismen, die durch ein Expertengut- achten
iiber das Susceptible Infected-Recovered Modell bereitgestellt werden. Das
Modell wird zusétzlich durch eine permanente Infektionsklasse fiir die Be-
triebsknotendynamik und einen Angebots-Nachfrage-Betriebsverwaltungs- mech-
anismus erweitert, welcher die Netzwerkstruktur und -dynamik vorgibt. Des
Weiteren wird eine Sensitivitdtsanalyse zu mehreren Schliisselparametern des
Modells vorgestellt. Die daraus resultierende Krankheits- und Zuchtdynamik
wird letztendlich unter vielen Aspekten untersucht, einschlieflich zahlreicher
Einddmmungsstrategien aktueller und vergangener staatlicher Vorschriften
und entsprechender zukiinftiger finanzieller Interessen. Anschlieffend wird
ein Mean Field Modell fiir die Ausbreitung von BVD formuliert, um es
mit dem agentenbasierten Modell zu vergleichen und ein analytisches Mit-
tel zur Beschreibung der Dynamik des landwirtschaftlichen Niveaus ein-
schlieflich der Geburts- und Sterbeprozesse bereitzustellen. Es wird eine
numerische Stabilitdtsanalyse vorgestellt, sowie die Ableitung der epidemi-
ologischen Groéfe der basic reproduction number aus Bifurkationsargumenten.
Dariiber hinaus werden numerische Berechnungen durchgefiihrt und mit
der Infektions- und Populationsdynamik von Grofbetrieben im Rahmen des
agentenbasierten Modellkontextes verglichen. Schliefslich werden eine Reihe
von Netzwerkanalyse-Tools vorgestellt und auf einen Datensatz von Rinder-
bewegungen im deutschen Handelsnetz angewendet. Jedes von ihnen befasst
sich mit Fragen der Konnektivitit aus statischer, temporéarer, geografischer
(réumlicher) und topologischer Sicht und endet
schlieflich mit einer Worst-Case-Analyse eines susceptible-infected Einweg-
prozesses.
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- Ack ja. Hur man vdnder sig har man rumpan bak, det ar en stor sanning.
- Rumpan bak, rumpan bak, det dr en stor sanning.
Det Sjunde Inseglet av Ingmar Bergman

- Ah, me. No matter which way you turn, you have your rump behind you.
That’s the truth.
- The rump behind you, the rump behind you there’s a profound truth.
The Seventh Seal by Ingmar Bergman
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CHAPTER 1

Introduction

1.1 Purpose and State of the Art

The topic of epidemic spread and its control in a theoretical manner has been
the topic of numerous studies ranging from the times of Daniel Bernoulli to
nowadays [Murray, 2002|. However it was the 20t century that witnessed an
unprecedented growth in the field after a series of works in its first half, culmi-
nating in the seminal Susceptible-Infected-Recovered (SIR) system formulated
by Kermack and McKendrick [Kermack and McKendrick, 1927|. The authors
assumed a population of individuals in the three aforementioned states and
arrived from first principles (by enumeration) to the ubiquitous SIR model,
which arguably has formed the starting point of every epidemic study, dis-
tinguishing the population in aggregates called compartments [Allen et al.,
2008; Anderson and May, 1992; Brauer and Castillo-Chavez, 2012; Diek-
mann et al., 2013; Kiss et al., 2017]. Despite the fact that epidemic spread
studies thereon into the 20" century have often been rather detached from
observations [Anderson and May, 1992|, the simplicity and predictive power
of the SIR model was exhibited on historical data, as well as on an ongoing
outbreak of malaria in India at the time of its formulation [Kermack and
McKendrick, 1927; Murray, 2002].

Notwithstanding, the original SIR model had underlying assumptions of
homogeneity of the population in age, susceptibility, infectiousness and spa-
tial distribution which soon became a topic of rigorous study per se and
added enormously to the literature and to the complexity of the field [An-
derson and May, 1992; Diekmann et al., 2013; Murray, 2002|. In particular
and in regard to the spatial structure of the population, apart from methods
of diffusion borrowed directly from physics [Murray, 2002; Postnikov and
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Sokolov, 2007], the capabilities that graph and network theory have offered
to epidemic spread studies has been phenomenal. Analyses on infectious
connectivity revolving around rigid structures (so-called static approaches)
[Ganesh et al., 2005; Holme et al., 2002; Pastor-Satorras and Vespignani,
2001] or assuming a dynamic regard in potential connections (time evolv-
ing approaches) [Holme and Saramiki, 2012] have tremendously added to
epidemiological understanding, forecasting and to epidemiology’s value as a
consultancy tool. In particular, introducing a network structure to an epi-
demic model can extend immensurably the basic SIR-type approaches by
introducing such dynamics at the node level (so-called metapopulation mod-
els), by introducing age structure in the population, hierarchy in infections,
or even indicate the conditions leading to an outbreak through a percola-
tion threshold [Colizza and Vespignani, 2007; Kiss et al., 2017; Sander et al.,
2002].

In the last quarter of the 20" century and continuing onwards to the
215% an additional powerful tool, with an ever increasing potential in time,
was added to the arsenal of theoretical epidemiology: the advent of computer
simulations [Epstein, 2006]. Work on simulating epidemic spread can mainly
be classified in two approaches: that concerning aggregates of populations
and an agent-based one. While the former is based, as the name suggests,
in groups of infectious individuals within a population, the latter is a micro-
scopic approach focusing on each individual and to his interaction with the
rest under well-defined rules as the system evolves. Either of the two provides
insight and results under conditions and assumptions which are cumbersome
and vastly complicated to model and calculate analytically. The initial fo-
cus of such simulations was agent-based and centered on obtaining results
of transitioning from one infectious state to another via sampling methods
(e.g. Monte-Carlo) [Elveback et al., 1971]. Lately, although studies are in-
cessant in the agent-based paradigm [Burke et al., 2006; Vestergaard and
Génois, 2015], there has been considerable predictive success in aggregated
models introducing network structure to account for migration and connec-
tivity of population groups [Bisset et al., 2009; Van den Broeck et al., 2011],
demonstrating the manifold potential and value of computational studies in
epidemiology.

With recurring epidemic outbreaks in human and animal populations the
interest in such models keeps attracting attention from theoreticians to policy
makers. Naturally, all the aforementioned tools and methods can be applied
to human as well as to animal populations, making in each case the neces-
sary adjustments pertinent to the case at hand. For the latter populations,
there has been increasing interest in the late 20" century onwards on epi-
demiological modelling motivated by domesticated animals’ outbreaks, such
as that of bovine spongiform encephalopathy or the foot-and-mouth disease,
which can have dire effects on both the economy and public health [Green
et al., 2006; Murray, 2002; Ortiz-Pelaez et al., 2006]. In addition, the focus
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has been more and more orientated towards the combination of predictive,
comprehensive epidemiological results and intervention or control of the an-
imal systems under study, as the demand for intuitive, risk assessment and
data-oriented results has been on the rise [Hoscheit et al., 2016; Natale et al.,
2009; Sun et al., 2013; Widgren et al., 2016]. To that end, all three topics
broached above come combined into play to provide epidemiological insight
and risk assessment, namely mathematical modelling, network theory and
computer simulations under the restrictive scope of observations manifested
in datasets.

It is exactly this last point on which we aim to contribute with the work
presented in this thesis. Having attained from the Friedrich-Loeffler insti-
tute a movements’ dataset concerning the cattle trade network of Germany
and expert opinion on a particular cattle disease called Bovine Viral Diar-
rhea (BVD) we aim to bring all three components, computer simulations,
standard, analytical mathematical modelling and dynamical network theory
to the service of epidemiologically significant questions from a theoretical
physics perspective.

1.2 Thesis Organisation

Having introduced the topic to the reader we now proceed to briefly outline
the structure of this thesis which is divided into three chapters following the
above mentioned points: one treating the BVD epidemic spread computa-
tionally, one from a dynamical system perspective and one from a network
analysis viewpoint.

In chapter 2 we treat the problem of BVD spread in the German cattle
trade network in a computational fashion. We start by introducing some
related biological background to the reader, as well as some information re-
lated to the structure of the agricultural system, the corresponding policies
for the containment of BVD in Germany, as well as the current status of
BVD on the network. We then proceed to thoroughly describe a stochastic,
event-driven, agent-based model that we will use for the analysis. We also
perform a sensitivity analysis on some key parameters of the system and
lastly present results of the simulation investigating different scenarios of
intervention strategies on a global and local (farm-node) level for the para-
metric setup as dictated by the literature and expert opinion. We finally
summarise and conclude with potential future work.

In chapter 3 we formulate a deterministic, delayed, mean field model as
a first approximation to analytically compare the results of the agent-based
model presented in the previous chapter. We first prove some basic theo-
retical properties of interest and then go on to numerically investigate the
stability of the system while listing several theoretical prerequisites. Finally,
we follow a formulation to derive an important epidemiological quantity
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called the basic reproduction number and numerically integrate the system
to benchmark with the results of the agent-based model from the previous
chapter. We finally summarise and provide an outlook of this work.

The last chapter 4 presents a network epidemic risk assessment of the five-
year German cattle movement dataset based on a selection of four comple-
mentary network analysis scopes. The first consists of a static treatment of
the dataset including statistics, component and degree distribution analysis.
The second involves a temporal treatment based on activity and similarity
(what we will call memory) distributions. The third is about a spatial treat-
ment embedding the network in a geographical framework and performing
Fourier analysis on the movement time-scales, as well as examining distance
distributions. The fourth presents a temporal accessibility treatment lead-
ing to a worst-case epidemic scenario assessment on the dataset given an
initial infectious seed. Similarly to the previous chapters we summarise and
consider future research directions.



CHAPTER 2

BVD Agent-Based Model

2.1 Preliminaries

To set the stage we introduce some biological aspects of Bovine Viral Diar-
rhea (BVD), how it is identified, its current status and the related contain-
ment policies in Germany. All this information will act as a driving force to
develop and set the parameters with a biological justification of an agent-
based model, with which we aim to reproduce the existing BVD conditions
and policies in Germany. We shall thoroughly describe this model following
a particular format from the literature. Lastly, once we have achieved the
goal of emulating the current status of BVD in Germany we will proceed
to simulate counter strategies of financial interest in order to assess their
benefits towards the eradication of the disease in Germany.

2.1.1 BVD Description, Identification and General Policies
Disease Description and Transmission Mechanisms

BVD is a disease caused by a virus of the genus Pestivirus affecting bovines
with a high worldwide prevalence [Kelling, 2004; Lindberg and Alenius, 1999;
Pinior et al., 2017; Sgrensen et al., 1995|. Specifically for the case of cattle
its prevalence in livestock has a significant economical impact |Greiser-Wilke
et al., 2003; Stahl and Alenius, 2012] as it affects mainly the milk yield of
cattle and the population itself [Gethmann et al., 2015]. BVD is not a human
transferable disease (zoonotic in the veterinary terminology), and as such the
main concern about its consequences is financial [Pinior et al., 2017].

BVD appears in three distinct identified virus strains, of which the two
(BVDV-1 and BVDV-2) have been well understood, account for the vast
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majority of the worldwide cases and are the main concern in the related con-
tainment strategies [Santman-Berends et al., 2015; Stahl and Alenius, 2012].
In addition, BVD is a virus which can be spread both horizontally and ver-
tically, i.e. through contact mechanisms in an existing population and via
breeding across generations respectively. Horizontally, the virus can spread
to individual animals via pathways such as direct contact (through droplet
spreading by e.g. sneezing), feces, all sorts of bodily fluids, contaminated
farm tools or workers’ garments and more rarely from external wildlife reser-
voirs. Vertically, a carrying animal which is transiently infected can either
(except for the case of abortions) give birth to an immunosuppressed animal
which will be carrying and spreading the virus to the end of its life or to an
animal which has attained immunity during its mother’s infection [Lanyon
et al., 2014; Lindberg, 2003; Viet et al., 2007].

Animals suffering from BVD can be roughly classified into acutely, tran-
siently infected and persistently infected ones [Lindberg, 2003|, with the lat-
ter being the main source of direct transmissions. Furthermore, an infection
can have dire consequences for a carrying animal’s fetus.

e Transiently Infected (TI) Animals

A healthy animal infected by BVD undergoes an incubation period of 2-
4 days before it exhibits the first symptoms. These include respiratory
and gastrointestinal disorders such as coughing and diarrhea, mucosal
lesions, general fatigue, lack of appetite, and reduced milk yield for the
females. Additionally, BVD can affect the cows’ reproductive system
leading to probable future malformations, abortions, sterility and frail
births. In most cases the infection is not lethal and the animal recovers
within one to two weeks.

Except for the danger of disease spread, this stage is particularly dan-
gerous for pregnant cows, as persistently infected animals can be pro-
duced from such infections (in utero) and appear upon birth. In par-
ticular, the early stage of the first trimester is the most critical when
the fetus’ immune system has not yet developed and can be infiltrated
by the virus causing permanent immunosuppression and far more pro-
nounced symptoms than the ones appearing in transiently infected an-
imals. In later stages of the pregnancy the probability of the offspring
being persistently infected drops drastically. The infection upon preg-
nancy though can still have averse effects on the newborn even at later
stages. Such effects include but are not limited to lifelong weaknesses
of the offspring, an abortion or general degeneracies which would be
more probable than normal [Gethmann, 2018; Gethmann et al., 2015;
Kelling, 2004; Lanyon et al., 2014; Lindberg, 2003|.

e Persistently Infected (PI) Animals
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If a carrying, otherwise healthy cow is infected during its first trimester
of pregnancy and the embryo survives, in the vast majority of cases it
will be born into a persistently infected state as explained above. Such
pregnant cows are called ‘trojan‘ cows in the veterinary community,
exactly because they do not give any signs that would give rise to
suspicion for the PI animal to be brought to life and they themselves
can be perfectly healthy. The newborn in this case will be frail and
weak throughout its (reduced) lifetime, it will be immunosuppressed
(low antibody level protection) and prone to other diseases due to the
virus establishing itself in an embryonic state prior to the embryo’s
immunological development and will of course have a very low milk
yield. Most importantly these animals shed huge amounts of the virus,
up to ten times more than their TT counterparts [Sarrazin et al., 2014],
constituting a severe hazard to the whole herd where they belong as
well as to neighbouring herds with which they may come into contact,
especially if the herds are naive (i.e. have not had prior exposure to
BVD) [Rodning et al., 2012]. Albeit their shorter lifespan and reduced
reproductive abilities compared to the rest of the cattle, if such animals
do get pregnant and produce offspring, then the offspring will be PI in
virtually all cases, as the virus will have been introduced to the embryo
since its conception [Gethmann, 2018; Gethmann et al., 2015; Lanyon
et al., 2014; Lindberg, 2003].

A well known complication of BVD is the mucosal disease, which is the
result of a mutation of the BVD virus [Gethmann, 2018; Lanyon et al., 2014;
Lindberg, 2003]. This condition is lethal and mostly concerns animals of 6
months to 2 years of age. Essentially it exhibits all the reported symptoms
of a BVD acute infection in far more severe forms particularly regarding
dermatological symptoms such as erosive lesions and bloats. The duration
of the infection lasts from 2 days to 3 weeks, in which the animal wastes away
from high loss of fluids (from the aforementioned dermatological symptoms
and diarrhea), high fever and anorexia.

Lastly, regarding maternal antibody protection mechanisms they come
from two sources: either from colostrum administration with the first meal
or from a mother cow which had been immune to BVD prior to carriage.
The protection is transient and lasts between 6-9 months [Gethmann, 2018;
Lindberg, 2003; Tratalos et al., 2017|.

Policy Orientation and Goals

From the short previous description it follows that from a policy maker’s
point of view the points of focus for first the containment and then the erad-
ication of BVD would revolve around the following [Lindberg and Alenius,
1999|:
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1. Develop a sound biosecurity (i.e. surveillance and action) programme.
2. Identify and eliminate the PI animals as soon as possible.

3. Label compromised premises as such according to some criteria (e.g.
PT identification).

4. Define restriction periods in animal movements for compromised premises.

5. Closely monitor newborns at the beginning of their lives, especially in
previously compromised premises.

Since the early 2000’s many northern European countries have introduced
regional or national containment programmes, which in time tend to evolve
to eradication programmes of BVD depending on the assessed severity on
the economy and political factors [Briilisauer et al., 2010; Gethmann et al.,
2015; Greiser-Wilke et al., 2003; Hofig, 2014; Houe, 1999; Marschik et al.,
2018; Pinior et al., 2017; Sgrensen et al., 1995; Stahl and Alenius, 2012;
Thomann et al., 2017; Thulke et al., 2017]. Two have been the models mostly
followed in European BVD counter programmes, namely the Scandinavian
and the Swiss [Stahl and Alenius, 2012] with their main differences lying in
the testing of animals either through a combined antibody (serological) and
antigen (virus) course of testing or in a direct virus test respectively.

BVD Tests and Statistical Identification

As already explained the identification of BVD relies mainly on two test
categories: the antibody test and the antigen test.

Antibody Test This type of test (usually ELISA) consists of testing a
blood sample (typically the serum), for the presence of antibodies,
which would imply that the animal has been exposed to the virus in
the past and has therefore developed resistance mechanisms (antibod-
ies). If the animal is infected or suspicious for infection at the time of
the test and its BVD virus antibody levels are low or non existent, with
a repeated test after 2-3 weeks (typical recovery time of the animal) the
test can verify whether the animal was a TT or is a PI by examining
the post infection concentration of antibodies. Furthermore, except
for individual-based such a test can be an indicator of the BVD herd
immunity level by testing pools of collected blood (serum) or the bulk
tank milk of a herd [Gethmann, 2018; Lanyon et al., 2014]. Regarding
the ‘trojan’ cows carrying a PI in their uterus, it has been reported
by [Lanyon et al., 2014] that their antibody concentration levels can
be significantly higher in the mid to later stages of the pregnancy due
to the immunological reaction of the cow to its PI embryo shedding
internally the virus. This test however is not considered to be a good
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proxy for BVD herd-immunity due to the logistics involved in gather-
ing sufficiently large specimen pools, selecting representative animals
and to the compromised time frame in which such tests are performed
against possible movement of calves [Tratalos et al., 2017].

Antigen Test This type of test (usually RT-PCR due to its cost-efficiency
compared to other such tests, and excellent sensitivity and specificity
performance) may come either from a collected tissue or blood of the
animal and aims at detecting the virus directly at the individual animal
level. Consequently, this test matches policies’ focus on identifying and
removing PI animals as soon as possible. It does not however make
any guarantees for herd immunity as the antibody test, since an animal
can be infected directly after the test [Gethmann, 2018; Lanyon et al.,
2014].

Combining all the previously outlined information about the antibody,
the antigen test and the description of BVD one can draw four points of
complementary interpretations and conclusions of the results:

Antibody Negative and Antigen Negative No evidence of past or present
BVD virus infection. Possible early stages of the infection (before
symptoms and immunological reaction). Quarantine for three weeks
and retest animals in case of any animal movement to account for the
latter case.

Antibody Positive and Antigen Negative Antibody presence from three
possible sources: a) Colostrum administration to younglings in effect,
b) prior vaccination in effect, ¢) previous infection. From the third case
there arises the danger of a PI offspring.

Antibody Negative and Antigen Positive The animal is infected with
the virus. To discern a PI from a TT infection a retesting after 3 weeks
would be required.

Antibody Positive and Antigen Positive A rare case of a test assertion
of BVD virus infection. Retest the animal after 3 weeks to conclude
whether it was a TTI or a PI.

Moreover, the veterinarian community mostly qualifies the success of
the two aforementioned tests by measuring their sensitivity and specificity
according to a predefined sample group of animals [Briilisauer et al., 2010;
Gethmann, 2018; Lanyon et al., 2014; Lindberg, 2003; Thulke et al., 2017].
In both these and all the related statistical measures of a binary result’s
veracity there is always an interplay between the four possible outcomes of
the tested binary characteristic as can be seen in table 2.1: Truly Positive
(TP), Truly Negative (TN), Falsely Positive (FP) and Falsely Negative (FN).
We follow [Skiena, 2017] for a brief overview of these two quantities.
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Result (Positive, Negative)
TP FP
TN FN

Veracity (True, False)

Table 2.1: Truth table for a binary (positive-negative) test.

Sensitivity It quantifies the test’s capacity to correctly identify truly pos-
itive results over the universally true cases (i.e. TP and FN) in a
population Se = % with the marginal values being in [0, 1] for
absolute failure of the goal or success respectively. In the context of
BVD, a high sensitivity for the antibody test means that most of the
animals which have had some infectious history with BVD, are un-
der the protection of a vaccination’s effect or of maternal antibodies
(colostrum) are identified by the test as immune, while for the antigen
test it means that most of the animals which are infected by the BVD
virus at the time of the test are correctly identified as such.

Specificity It quantifies the test’s capacity to correctly reject truly negative
results over the universally false cases (i.e. TN and FP) in a population
Sp = %}_\IFF, with the marginal values in [0, 1] for absolute failure of the
goal or success respectively. In the context of BVD, a high specificity
for both the antibody and the antigen test means that most of the
animals at the time of the test are correctly identified as susceptible
(or perhaps at a very early stage of infection).

In Germany the current level of both the sensitivity and specificity (ear
tag and ELISA) of all tests (antigen only implemented) is at 99% [Gethmann,
2015], a value exceeding those reported for Scotland in 2010 and for Ireland
in 2017 |Thulke et al., 2017].

2.1.2 Legal Status and Regulations in Germany

The E.U.’s communal concerns on agricultural policies dealing with diseases
such as BVD in the early 2000s were not the first attempts on that mat-
ter. In Germany in particular regulations and legislation at the federal or
regional level were already existent at the time [Gethmann, 2018; Wernike
et al., 2017]. However, due to the effect of BVD on the economy, the need
for a systematic understanding and containment of BVD, as well as due to
political progress made at the E.U. level, Germany has enforced a nation-
wide surveillance programme since the 15 of January 2011 [Ministry of Food
and Agriculture, 2008; Wernike et al., 2017]. This testing scheme envisions
antigen, ELISA ear tag tests.

The details of this programme can be found in the corresponding mandate
(from here on ‘old regulation’), but in a nutshell contain of the following
essential points:
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e All newborn animals should be tested within two weeks from their
birth.

e Traded animals have to be tested before their movement if they have
no test status. Positively tested animals cannot be moved from their
farm.

e An identified infected animal should be removed within two weeks from
its verified status. The farm can still trade in that time.

e Should a farmer be convinced that a positive test is questionable, he
can ask for a second test within 60 days. In case of a repeated positive
result the animal should be removed within one week from its confirmed
status. This option is advisable only for exceptionally precious animals.

e A farm is declared to be BVD-free if all tests for any of its animals
over six months of age have always resulted to a negative result for at
least twelve months.

As there were several liabilities with the old regulation, especially con-
cerning the freedom to move animals after their confirmed positive status
and before their elimination, amendments to the first mandate have been
put into effect since 2016 [Ministry of Food and Agriculture, 2016]. The
main differences from the old regulation are summarised in the following
points

e Should an animal be tested positive, the farm is quarantined for 40
days. No animal movements to or from the farm is allowed.

e In the case of a requested second test from a farmer the test should be
performed within 40 days.

In figure 2.1 the various stages of the possible two rounds of ear tag testing
are presented in detail. In practice and for modelling purposes though the
most important piece of information in case of a positive test is the total
elapsed time between the first test and the removal of the animal in days.

2.1.3 Towards an Agent-Based Model

If one bears in mind the combined factors of the current German agricultural
system, the past and present national legislation and practices against BVD
as well as the PI animals’ statistics since the adoption of a national inter-
vention programme in 2011 one realises that there is a wide range of details
to be taken into account towards a model of BVD spread with demographics
and migration from node to node (farm). To that end, a microscopic agent-
based approach (i.e. a system of ‘agents‘ interacting with a predefined set of
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Remove
positive
animal: 1-21 d

Ear tagging
and sampling
0-7d

Sample
transport
1-5d

Sample
analysis and
reporting: 1 d

Single testing: retesting
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removal: 3-34 d
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14-40 d after
first test
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Remove
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Figure 2.1: Retesting regulations and practices according to the old (2011-
2016) and new (2016 onwards) mandate (‘d’ stands for days). The inset
displays the actual percentage of positively tested animals since 2011. Cour-
tesy of J. Gethmann. Data extracted from the HIT database (see section
2.1.3).
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rules) would provide the sufficient level of detail to capture in a model all the
aforementioned factors and to serve towards the disease’s eradication, which
is the present goal of the relevant German policy makers [Macal and North,
2010]. Additionally, to circumvent the conundrum of the agents’ nature def-
inition we set hierarchical levels for them. By that we mean that except for
the obvious selection of the animals being the agents in the model, hierar-
chically higher entities such as the farm and the global system should play
a role in the model through their individual behaviour and set of actions.

Regarding the specifics of the design and structure of the model, except
for the reasoning we already mentioned, our decisions were largely dictated
by field studies compiled by expert opinion |Gethmann, 2015| as well as
similar work on the matter [Damman et al., 2015; Iotti et al., 2017; Thulke
et al., 2017; Tinsley et al., 2012].

There is a vast variety of ways from which one can choose and classify
agent-based models in the literature [Albrecht and Stone, 2017; Grimm et al.,
2010; Shoham and Leyton-Brown, 2008]. In our case we choose the model
to be stochastic, event-driven and to some extent data-driven. Firstly, the
stochasticity reflects the complexity of real-world fluctuations in the breeding
and infectious dynamics, as well as in their interplay in a causally evolving
system and in line with previous work [Damman et al., 2015; Totti et al.,
2017; Thulke et al., 2017; Viet et al., 2004]. Especially for the infection
dynamics, we set them to be realised as a Markov process’s events (i.e. all the
variables pertaining to the infection are dependent only on the corresponding
ones of the previous time step [van Kampen, 2003]) implemented with a
variant of the Gillespie algorithm [Gillespie, 1976; Vestergaard and Génois,
2015]. Secondly,the event-driven paradigm is an appealing choice for the
model as the breeding and infectious dynamics of BVD on cattle can be
modelled as a chain of discrete events triggered from one another and of
whose next series of events can be scheduled and calculated upon the formers’
execution in a causal manner [Fishman, 2013; Kiss et al., 2017|. This is also
similar to the model used on the assessment of the BVD current policies
on the Irish cattle trade network|Thulke et al., 2017|. Lastly, we aim to
initialise the model and introduce the node heterogeneities of the real cattle
trade network of Germany by using the farm size distribution extracted from
the Herkunftssicherungs und Informationssystem fiir Tiere (HIT) database
provided from our collaborators from the Friedrich-Loeffler Institute (FLI).
Notwithstanding, we do not design the model so as to allow cattle movement
data to drive the trading events or distinguish between farm types (e.g. beef,
dairy or mixed) as in [Courcoul and Ezanno, 2010; Tinsley et al., 2012] and
[Totti et al., 2017]. Our goal is to design a simple supply and demand system,
which we achieve by defining a farm manager entity for every farm (the
network’s node unit). This farm manager submits demands and offers of
animals according to its needs to a central entity called ‘the market‘, which
in turns distributes and regulates the posted demands and offers. We will
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describe these entities and mechanisms in detail in the following section 2.2.
Regarding the farm types, as demonstrated in [Iotti et al., 2017] the dairy
farms account for the vast majority of the spreading events of BVD for the
agricultural system of Italy. In Germany this effect is even more pronounced
as animals reaching fattening (beef) farms virtually in all cases are destined
for the slaughterhouse, thus narrowing the analysis and our simulation’s
design attention to dairy farms [Gethmann, 2018|.

Available Data

As explained in [Wernike et al., 2017| the current German nationwide control
programme has brought the PI prevalence of BVD to 0.02% in animals and
0.16% in holdings for the whole country, which makes Germany one of the
leading countries in the related biosecurity measures. The progressional
improvement of the BVD situation since the adoption of the old regulation
(01.01.2011) can be clearly seen per federal state and nationwide in the
statistics of figure 2.2. Nevertheless, due to the regional and federal level
BVD intervention programmes adopted prior to the old regulation we can
only speculate as to the exact PI prevalence level at the beginning of the old
regulation (01.01.2011) countrywide. In figure 2.3 we can see the trend of the
annual BVD prevalence per federal state since 2000 when the records begin.
It becomes immediately evident that before 2011 there were great variations
among the federal states in annual PI prevalence. This led us to calibrate
the model speculatively and according to expert opinion on that matter as
we will see in the description of the model that is to follow in section 2.2.8
[Bioglio et al., 2016; Ezanno et al., 2007; Gethmann, 2018; Viet et al., 2004].
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Taken from [Wernike et al., 2017].
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In regard to the model’s breeding calibration we use animal demographics
extracted from the HIT database in the period 01.01.2010-31.12.2014, the
living age and age of death distributions of which can be seen in figure 2.4.
We shall refer to the calibration procedure in section 2.2.8. A last remark
concerning the subplots of figure 2.4 is the notable lower male life expectancy
than the female one. Although expert opinion confirms that the birth ratio of
female to male animals is approximately 1 : 1 leaning slightly on the female
side [Gethmann, 2018], the needs of the agricultural system, the fact that cow
inseminations takes place artificially and the fact that dairy farms consist
predominantly of female animals lead us to expect a longer life expectancy
of female animals as indicated by the relevant data of the subplots of figure
2.4.

Finally, as will be explained in section 2.2.6 the simulation we will be
presenting is based on the farm size distribution of the state of Thuringia
(our model system), which includes 4,054 farms containing 342,211 animals
in total. Furthermore, we will use for scaling purposes the corresponding
farm size distribution of Germany, which includes 156,620 farms containing
12,642,530 animals in total. Both these distributions were provided by the
FLI (extracted from the HIT database) in two-column CSV format, where
the first column’s entries referenced the number of animals and the second the
number of farms corresponding to that number of animals on the same line.
Both of the distributions reflected the recorded farm numbers in Germany
for the year 2014. For the latter distribution this count can be seen in the
trend of figure 2.5 displaying the registered farms in Germany per year from
2008 to 2016. To end with, the aforementioned farm size distributions, as
well as those of the states of Bavaria and Rhineland-Palatinate (also for 2014
and provided by the FLI from the HIT database), are displayed in figure 2.6
on a semi-log scale for a countrywide comparison.

2.2 BVD Agent-Based Model Description

In this section we present and describe thoroughly the agent-based model
following the Overview, Design concepts and Details (ODD) protocol after
its last revision in [Grimm et al., 2010] and after the example of [Thulke
et al., 2017]. The source code of the model can be found in the repository
https://github.com/Yperidis/bvd _agent based model.

2.2.1 Overview

The ODD protocol is followed to describe a hierarchical event-driven, stochas-
tic agent-based model written in C++ for single-thread execution, which
models the spread of Bovine Viral Diarrhea (BVD) between animals in the
herd, the farm (through contact) and the in between farm level (through
animal movements).
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Federal State Code Name
BB Brandenburg
BE Berlin
BW Baden-Wiirttemberg
BY Bavaria
HB Bremen
HE Hesse
HH Hamburg
MV Mecklenburg-Vorpommern
NI Lower Saxony
NW North Rhine-Westphalia
RP Rhineland-Palatinate
SH Schleswig-Holstein
SL Saarland
SN Saxony
ST Saxony-Anhalt
TH Thuringia

Table 2.2: Code names of the 16 German federal states according to the ISO
3166-2:DE part of the ISO 3166 standard for country prefixes.

5000
Age (days)

Age (days)

Figure 2.4: Age distribution of female and male animals (top and lower left
column respectively) and age distribution of female and male animals (top
and lower right column respectively) at trade, slaughter and other causes of
death as provided by [Gethmann, 2018] from the HIT database. The label
shorthands ‘T7, ‘SL’ and ‘OT’ stand for trade, slaughter and other deaths
respectively, while the ‘M’ and ‘F’ refer to male and female animals. Semi-log

plots.
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Figure 2.5: Trend of Germany’s farm count for the years 2008-2016. The
farm count is on the vertical axis. Courtesy of J. Gethmann. Source data
from the federal statistical bureau of Germany (‘GENESIS-Online Daten-
bank‘, Statistisches Bundesamt).
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Figure 2.6: Comparative farm size distributions of the German states of
Thuringia (TH in blue small dots), Rhineland-Palatinate (RP in red trian-
gles), Bavaria (BY, in green big dots) and of all of Germany (DE in magenta
‘X’s) in semi-log plot.
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4 System

Farm

Herd

Animal

Figure 2.7: The simulation’s four hierarchical levels in descending order:
System, Farm, Herd, Animal.

2.2.2 Purpose

The whole simulation was designed in a way to accommodate the particu-
larities pertinent to the agricultural cattle system of Germany. In addition,
all the results and the related sensitivity analysis performed were generated
using farm size distributions of federal German states as extracted from the
HIT database. The simulation is to serve as a tool for approximating the
current status of the BVD dynamics within the German agricultural system
and most importantly for assessing the effect of various considered strategies
implemented as policies by the administration in a cost effective manner to
promote the eradication of BVD.

2.2.3 Entities, State Variables and Scales

There are four hierarchical levels of the simulation, the System, the Farm,
the Herd and the Animal, with the System being the superset of all and the
Animal being the smallest unit as shown in figure 2.7. As will be apparent in
the upcoming lists the animal agent entity is by far the most complex of all
the levels, as it contains events and variables to model breeding, infectious,
movement and trading, testing and vaccinating features.

1. Pregnancy Related Cow Events
Note that breeding and health related states are intertwined in this
category.
e No calf, i.e. a non pregnant cow.

e Susceptible mother.

e Persistently infected mother.
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Immune, i.e. mother with life-long immunity.

Cripple, i.e. a cow which gives birth to a malformed calf, which
is to be put down immediately.

Abort, i.e. a cow which is going to have an abortion.

Infertile, i.e. a cow which has met the criteria to be classified as
such.

2. Infectious States

Susceptible
Transiently Infected
Immune

Persistently Infected

3. Test Related States

No status, i.e. the animal has not been tested.

Negative test

Positive test

Positive once, i.e. an animal which has been tested positive once.
Positive twice, i.e. an animal which has been tested positive twice.

Positive mother, i.e. an animal which has been tested positive
and has had offspring prior to testing.

4. Animal Trade Related Criteria

Calf (female).

Heifer pre breeding, i.e. a heifer which is not ready to be insemi-
nated.

Heifer ready for breeding
Infertile

Pregnant

Dairy cow

Old cow

Male calf

Young bull

Old bull

Number of types. Accounting for future extensions (additional
criteria).
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5. Events

Given in descending priority. Each one refers to a single hierarchical
level of the system, i.e. to the system level, to the herd level, to the
farm level or to the animal level.

Change containment strategy. System level.

Jungtier small group. Farm level. Jungtier refers to the young
calf window strategy.

Jungtier exec. System level (triggers Jungtier small group).
Quarantine end. Farm level.

Virus test. Refers to a blood, antigen (virus) test initiated from
the young calf window strategy. Animal level.

Antibody test. Animal level. Refers to a serological test (blood).

Test, accounting for the virus test through tissue testing (ear tag).
Initiated via birth. Animal level.

Manage, calls the farm manager. System level.
Stop, halts the simulation. System level.
Wrrite output, writes the specified output to a file. System level.

Log output, writes the specified output to the memory. System
level.

Abortion. Animal level.
Insemination. Animal level.
Conception. Animal level.
Birth. Animal level.

Death. System level.

End of MA, signifies the expiry of the maternal antibody effect
for a calf. Animal level.

Infection. Animal level.

Recovery. Animal level.

Slaughter. System event.

Culling, accounting for extensions of Slaughter. System event.
Vaccinate. Animal level.

End of vaccination, signifies the expiry of a vaccination’s effect.
Animal level.

Trade. Farm level.

Remove cow, which is an action for a positive test. Animal level.
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6. Time-Scales
A direct consequence of the events’ definition, the time-scales refer
again to a single hierarchical level of the system.
e BVD transiently infectious period (recovery). Animal level.

Maternal antibody protection period. Animal level.

e Pregnancy period. Animal level.

Animal movement event’s period. Farm level.

7. Farm Types

Simple One Herd Farm
Small One Herd Farm
Slaughterhouse

o Well

8. Network Entities

e Farm manager
o Market

2.2.4 Process Overview and Scheduling

As an overview of the code’s processes and scheduling flows we distinguish
three intertwined modules as seen in figures 2.8, 2.9 and 2.10: one for the
breeding mechanism, one for the infectious mechanism and one for the man-
agement protocol respectively. We further present a short set of serial in-
structions, which illustrates the flow of the model as a whole according to
a priority queue containing all the scheduled events. We finally illustrate in
figure 2.11 the vertical and horizontal (i.e. by birth or contact respectively)
infectious transmission flow as modelled in the simulation. Everything takes
place in (floating point) continuous time, in which events take place in dis-
crete points in time. The events in turns trigger one another in the spirit of
the event-driven paradigm [Fishman, 2013].

1. START

2. Initialise system (farm and animal variables)
3. Schedule future events for initialised animals
4. Log the system’s (initial) state

5. Execute the queue’s events of any of the 4 system levels (system, farm,
herd or animal) until either the queue is empty or the stop event (equiv-
alent to the specified end time) is reached
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6. Log every event after its execution

7. STOP

To give a brief explanation of the various actions and objects in figures
2.8, 2.9 and 2.10, the green triangles represent the initiation of an event, the
rhombuses a binary query, the rectangles operations within the scope of an
event, the red ovals the scheduling of an event and the yellow parallelograms
a frozen state awaiting to be initiated by an event. Further, for each of the
modules and across them in the various figures 2.8, 2.9 and 2.10, we can
discern distinct submodules which feed each other to form the module of
the corresponding figure. To clarify this interdependence, we give just one
example for each figure to initiate the reader into the logic of the underlying
event-driven mechanisms. The corresponding details to interpret the flow
charts of all figures 2.8, 2.9, 2.10 and 2.11 in depth can be found in section
2.2.7 where we scrutinise through all the steps of the simulation’s submodels.
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In figure 2.8 we take the example of a birth event. Such an event will
eventually lead to the scheduling of an insemination for the newborn in its
adult life. Until that age is reached the event is put on hold. In turns, once
the insemination is executed it leads to the scheduling of a conception event
within a number of tries (stochastically determined). If some try is going to
be successful the conception event is scheduled, which is again put on hold
until the system time reaches its execution time counting from the time of the
insemination event’s execution. Similarly and serially, the execution of the
conception event at the appropriate system time will lead to the scheduling
of either a birth or an abortion event (within some stochastically determined
gestation period from the conception event’s execution time) and then be put
on hold. Finally, when the time for a new birth event has been reached, the
circle between two birth events will have been completed.

In figure 2.9 we present an example for an infection event. It is initiated in
a farm and, depending on the age group of an animal, after several operations
and queries on the animal’s state will eventually lead to the scheduling of a
recovery event and to the scheduling of a change of the infection rate (farm
level event), which we are going to see in section 2.2.7 in equation (2.1).
Both are then put on hold. The former, once executed will in turns lead
to the scheduling of the change of the infection rate of the farm again and
then be put on hold. Eventually, the animal will die by the execution of
a death event, scheduled from the module of figure 2.8. Once this latter
event is executed one more infection rate changing event will be scheduled.
Meanwhile, depending on the availability of susceptible animals in a farm,
the existence of an infected animal (TT or PI) in a farm will trigger a new
infection event to be scheduled according to the value of the infection rate
for the farm in question at the time when the infected animal appears in it.

In figure 2.10 the only initiated event is the managing one. For a certain
farm, the managing event will go through the demands of the farm in animals
(so as to keep its population constant), calculate them and depending on the
farm’s status of being quarantined or not might schedule a direct trade to
the slaughterhouse in the former case (the only possible trade for a farm in
case it has been quarantined). Then it is put on hold until the predefined
time of its execution. Then the farm will be managed in its next period
according to its determined value from the system parameters.

Regarding figure 2.11 the horizontal (contact) mechanism consists of the
straightforward infectious transmissions of susceptible animals within a farm,
owing to their (random) contact with either of the infectious animals TT or PI
with corresponding infectious transmission rates Apr and Apy. Eventually, the
infection will spontaneously lead to a recovery within a recovery period Tyec.
Furthermore, animals with a temporary immunity acquired from their parent
(maternal antibodies) lose this immunity spontaneously within a period Tyt -
Lastly, animals that have been vaccinated retain their immunity for a period

Tvac-
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version. All instructions refer to the farm level.
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Vertically (i.e. through breeding) a susceptible carrying cow throughout
its gestation period 7Tgest Will give birth to a susceptible animal. A carrying
cow which has recovered prior to its conception, will give birth to an animal
with temporary (maternal antibody) immunity after her gestation period
Tgest has elapsed. The same holds for a carrying cow that has been under
the effect of a vaccination upon her conception. A PI carrying cow will
always give birth to a PI after her gestation period 7Tges. Finally, a carrying
cow that will become temporarily infected during its early pregnancy stages
will give birth to a PI animal. Conversely, if it will get infected in its later
pregnancy stages it will give birth to a recovered animal after time 7gegt.
Moreover, there is a chance that the embryo will be aborted within some
stochastically determined abortion period Taport-

2.2.5 Design Concepts

In this section we summarise the concepts permeating the design of the
simulation.

Basic Principles

After initialisation the simulation flow is executed according to a priority
queue of the simulation’s scheduled events. This is a LIFO (‘last in, first
out’) container (i.e. a data structure with specific access rules) essentially
representing a queue with its elements being sorted pairwise first according to
some criteria and then according to its LIFO principle [Skiena, 1998; Thulke
et al., 2017]. The priority criteria are

1. Causality priority. This means that given two events scheduled for
execution at times t; and to with ¢; < 9, the event corresponding to
t1 would be sorted to be executed before that corresponding to t5, even
if the one of to was stored in the queue structure before that of ¢;.

2. Event priority. This sorting follows the list sorting presented for the
events in section 2.2.3, which has a basis relevant to the BVD disease
biology and to the agricultural system’s structure. Events with a higher
priority are sorted to be executed before ones with a lower priority.

Due to the sequential triggering of events in an event-driven simulation
a priority queue container is the natural data structure to employ for such
computations |[Fishman, 2013; Skiena, 1998|. Such a structure has also been
implemented in a patch-based scheme [Allen et al., 2008; Brauer and Castillo-
Chavez, 2012] simulation for evaluating BVD within the Irish agricultural
system [Thulke et al., 2017].
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Figure 2.11: The modelled horizontal and vertical transmission schemes of
BVD within the simulation. Tgest; Taborts; Trecs Tmat and Tyac stand for the
gestation period, the time elapsed between the infection and an abortion,
the average recovery time, the maternal antibody effect period and a vacci-
nation’s effect duration respectively. The symbols Ap; and App correspond
to the transmission rates of S to TI from a contact between a susceptible
animal and a TI or a PI animal respectively. M refers to animals with tem-
porary immunity being born from immune cows (of either active or passive
immunity) prior to their conception. Compare also with the nomenclature

in [Viet et al., 2004].
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Stochasticity

All events pertaining to breeding, infections, recoveries, testing, vaccinations
and animals selected to be classified in a certain group are executed at times
and have outcomes drawn from either a uniform or a triangular distribution
(float or integer depending on the application). Naturally, the stochastic
times are drawn in a way which respects causality. For the choice of either one
of the two aforementioned random number distributions made, the expert
opinion of [Gethmann, 2015, 2018| was utlilised. All the random generator
calls employ the Mersenne-Twister algorithm as implemented in the GNU
Scientific Library |Galassi et al., 2018|. For the infectious waiting times an
exponential random distribution was employed due to the Markovian nature
of the infection events.

Sensing

Overall, the dynamics of the animal movement network are governed by
three intertwined factors: the farm manager, the market and the independent
mechanisms (testing and end of life cycle) that dispatch an animal to the
slaughterhouse.

Each farm of the network has a farm manager which posts its demands
and offers in animals to a central entity called ‘the market‘, which in turns
decides how the trading partners (farms) are going to be distributed based
on the posted demands and offers. The offer and demand of cows (described
in section 2.2.7 by equation (2.4)) therefore implicitly dictates largely the
connectivity evolution of the movements’ network in time. Furthermore,
animals that are identified as PI or that end their life cycle and are scheduled
for removal also dictate a farm’s connection to the slaughterhouse.

Given the aforementioned ways with which the agents in the network
evolve, their movements can provide information about an epidemic both
through ‘infection tracing’ (i.e. tracing an infection of nodes back to a source
node) or through ‘contact tracing’ (i.e. identifying all the possible contacts
of nodes for control strategies) [Eames, 2005].

Collectives

The 3 higher-level entities out of the 4 of the system presented in section
2.2.3 are regarded as collective entities. This is a direct consequence of the
model’s hierarchical structure: animals are part of a herd, herds belongs to
a farm (although not considered in this study, there can be more than one
in a farm) and farms belong to the system.

Apart from the intrinsic hierarchy of the system, when selected for de-
mands and offers the animals can be classified into collective sex and age
classes, which constitute trade criteria groups. The different classes of ani-
mal trading groups have been exhibited in section 2.2.3 and are specified in
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detail in table 2.6.

2.2.6 Initialisation

The system is initialised with all links being inactive, i.e. at the snapshot
corresponding to t = 0 the cattle movements’ network has no edges.

1.

Setting up the farm size distribution

A farm list is read from an input csv file with two columns of inte-
gers and the total number of animals and farms (including wells and
slaughterhouses separately from the rest of the farms) is counted at
this stage. The farm distribution is created.

Setting up the farm infectious levels, the animal count and the respec-
tive age distribution

From the total number of farms the amount of those which are going to
be Pl-infected and PI-free is determined stochastically with a threshold
provided by the ini file. Subsequently the animal count and the age
distribution (triangular) for every animal of the farm are determined.

Setting up the types of farms

All the types of farms are initialised iterating through the farm size dis-
tribution. This effectively determines which of the non well or slaugh-
terhouse farms are going to be of the small or simple one-herd type.
The former does not include annual replacement on the herd, while the
latter does. The threshold of animals which determines the type of the
farm is defined from an ini file.

Farm initialisation

For every accessed farm its corresponding number of animals is ini-
tialised.

Animal initialisation

For every initialised animal multiple parameters including its age, sex,
health status (S, I, R, P) and future events are determined. The future
events are discerned into those for male and those for female animals
separately.

e For male animals their transfer to the slaughterhouse is scheduled
at a time equal to their life expectancy. This life expectancy is
determined by assigning different probability margins for three
age cohorts of the animals. The greatest weight lies in the second
and third, which also contain larger maximal life expectancies
than the first cohort (up to around 2 years). More details at the
birth event.
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e For female animals their first insemination age is determined and
the time for calving as well. If they are not of the right age to
calve (i.e. produce offspring), then their insemination is scheduled
within a time from when they will come of age to calve plus a
uniform number between 0 and the minimum pregnancy duration.
If they are of the right age to calve, their labour is scheduled
within a time ranging from the current time and the minimum
pregnancy duration. Subsequently to the right calving age, the
health status of the calves to be born is determined based on the
health status of their mothers.

(a) If the mother at this stage is TI then the calf can only be PI
or an an abortion will occur. This is a stochastic outcome of
the parameter settings for the infection during the first period
of pregnancy. See tables 2.12 and 2.14

(b) If the mother at this stage is PI then the calf will be a PI.

(c) If the mother is S or R at this stage the calf is set to be
S (potential MA protection is provided upon the call of the
birth event if the mother is R).

2.2.7 Submodels

In this section the functionality of the different modules of the simulation
is described in detail. In spite of the fact that effort was made to set clear
borderlines among the different modules there is occasionally considerable
overlap as will be apparent in what is to come. The specific choice of distri-
butions and parameters used follow [Gethmann, 2015].

Breeding Cycle

Naturally, this mechanism concerns only female animals (cows). It is as-
sumed that cows will always give birth to a single animal.

1. Insemination

Specified in time upon initialisation for non-calf females, the insemina-
tion is the event which can trigger a conception, and in turns a birth,
and a vaccination for an animal already in the system.

Apart from the initialised cows the first insemination is scheduled upon
the birth of surviving female calves between one and a half and two
years (see table 2.17).

For cows remaining in the system and taking part in the calving process
(i.e. regardless of whether they gave a birth or had an abortion, their
carriage was counted as a calving) the next insemination is scheduled
during their resting time after they gave birth or had an abortion.
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This resting time is determined by drawing random numbers from a
triangular distribution with an upper limit of roughly a month and a
lower of four months (see table 2.17).

Regarding the triggering of a conception, an insemination will deter-
mine whether and when a conception would be scheduled depending
on the animal’s age. In any case each animal gets up to four chances to
get inseminated, each with increasing probability of success. The wait-
ing times between successive inseminations are determined by drawing
randomly from a triangular distribution with an upper limit of 18 days
and a lower of 24. The setup of the model is such that heifers will
always be impregnated within the four insemination attempts, while a
0.08% chance of infertility exists for the rest of the cows. In this last
case the cow is declared to be infertile after the four attempts’ time
has passed plus a uniformly drawn random number between 0 and 14
days, and then the registering of it for sale to the slaughterhouse takes
place instead of a conception event within a day from that time.

Regarding the case of an active vaccination strategy, provided that
the effect of a potential previous vaccination has worn out, in the case
that this effect’s expiry took place before a minimum time which must
elapse between the insemination and the vaccination (set to a month
by default), then a vaccination event is scheduled by the insemination
upon the insemination’s scheduling.

2. Conception

This event can only be triggered from an insemination and its outcome
is either the scheduling of a birth or the scheduling of an abortion. In
any case the survival and state of the embryo are determined by the
state of the mother at this stage (tables 2.12 and 2.14). In particular:

e If the mother is transiently infected at this stage the embryo will
either become a persistently infected animal or it will even more
likely be aborted, in which case its abortion is scheduled within
the next two days.

e If the mother is persistently infected at this stage the embryo will
definitely reach birth and will be a persistently infected animal as
well.

e If the mother is susceptible the embryo will be susceptible if a
birth is scheduled for it.

e If the mother has any sort of immunity (i.e. temporary from
a vaccination or permanent from an infection), the embryo will
acquire maternal antibody protection upon its birth, if the birth
is realised.



CHAPTER 2. BVD AGENT-BASED MODEL 35

At this point the realisation of a birth or an abortion (if the latter
has not already been scheduled due to the mother being transiently
infected) is determined by drawing randomly from uniform distribu-
tions within different time windows of the gestation period. These
windows were defined as follows with a probability up to 12% and are
biologically motivated:

e The first two months (abortion).
e The second to the third month (abortion).

e The third to the fourth month (abortion).
e The remaining time up to the 210"
tion).

The time from the 280 to the 29274 day of the pregnancy (birth).

day of the pregnancy (abor-

For the exact parametrisation of the abortion probabilities at a partic-
ular pregnancy stage see table 2.14.

3. Birth

This event is either triggered for the initialised cows at the beginning
of the simulation or through a conception event, as long as a cow has
not been declared infertile as previously explained.

The history of births a cow has had is the indicator of how many times
it will continue being inseminated and therefore possibly reach a birth
event, a feature which was already anticipated at the insemination’s
description. In the model this history is defined through a calving
number at the creation of an animal. This number is determined by
drawing randomly from a triangular distribution with an upper limit
of 3 and a lower of 5. Therefore, the maximum number of calvings a
cow can have is 5 and in every birth event a unit is subtracted from its
calving number (table 2.17). Once its calving number has been spent,
i.e. becomes zero, the cow is sent to the slaughterhouse within one day
of its last labor instead of having its rest time scheduled after calving
(see the insemination cycle regarding the rest times). At this stage the
cow’s labour is being recorded in its birth history.

Having dealt with the birth history of the cow in labor, the first thing
that is specified upon birth is whether the embryo is a stillbirth. All
further actions in respect to a birth event assume that the birth is not
a stillbirth.

At first, the health statuses of the newborn calf and the mother are
determined, the birth of the calf is noted in time and the mother is
declared to be non-pregnant. The possible outcomes read thus:
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e [f the mother is susceptible then the newborn will also be suscep-
tible.

e If the mother has any sort of immunity (i.e. permanent or tem-
porary) acquired prior to the conception, then the newborn will
acquire a temporary immunity inspired biologically by maternal
antibody protection. The duration of this immunity is determined
in days by drawing random numbers from a triangular distribu-
tion with an upper limit of 180 and a lower of 270, corresponding
roughly to 6 to 9 months (table 2.17).

e [f the mother has acquired permanent immunity during the preg-
nancy and this stage (of birth) has been reached, then this means
that the calf will either be permanently infected (early pregnancy
stages) or will have acquired permanent immunity (later preg-
nancy stages). See table 2.12.

e [f the mother gives birth to a malformed calf, regardless of her
status the model assumes that this is equivalent to the death of
the calf (it is being directly put down).

Next and depending on the specified health status of the calf, its sur-
vival or not as a calf is determined.

e [fit is a persistently infected calf then its theoretical absolute life-
time maximum is set to 10 years according to field observations.
For approximately the three quarters of the observed cases, four
cohorts are defined for the lifetime of such calves corresponding
to their four first years of life. A fifth cohort accounts for the rest
of the cases. Finally, the lifetime of the persistently infected calf
is determined by drawing randomly from uniform distributions
respective to each cohort, after the animal has been assigned to a
particular cohort by drawing randomly from a uniform percentage
distribution in the following manner (see also table 2.15):

(a) A lifetime of up to a year with a 50% probability.

(b) A lifetime of a year up to two years with a 17% probability.

(c) A lifetime of two years up to three years with a 5% probabil-
ity.

(d) A lifetime of three years up to four years with a 1.5% proba-
bility.

(e) A lifetime of four years up to ten years with a 26.5% proba-
bility.

e In all the rest of the cases the calves are distributed in three mor-

tality age cohorts of their category by drawing randomly from a
uniform percentage distribution. Each cohort has a corresponding
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lifetime probability, being drawn randomly from uniform distri-
butions once more, defined in the following:

(a) [0,2.5) days with a 2.5% probability.
(b) [2.5,182.5) days with a 10% probability.
(c) [182.5,365) days with a 1.5% probability.

Afterwards the sex of the newborn is determined (see table 2.16). If
the newborn is female and it has been determined to survive its first
insemination age, then its first insemination age is scheduled by draw-
ing randomly from a triangular distribution with an upper limit of 480
days and a lower of 600.

If the newborn is a male, additionally to its survival conditions set
before, its life expectancy is scheduled as outlined for the male animals
at initialisation. The male newborns are distributed in the cohorts
by drawing randomly from a uniform percentage distribution. These
three cohorts have a corresponding lifetime probability, each of which
is defined by drawing randomly from a triangular distribution. At the
end of its lifetime each male animal is sent to the slaughterhouse. The
probabilities to be distributed in each cohort and the two limits of the
corresponding triangular distributions (2.17) are as follows:

(a) Upper limit 0 and lower 30 days with a 30% probability.
(b) Upper limit 170 and lower 250 days with a 35% probability.
(¢) Upper limit 450 and lower 750 days with a 35% probability.

If the newborn is a female and it survives at least until its first insem-
ination age, then an insemination is scheduled for it at that time.

Lastly, in case an ear tag strategy is in effect the testing time of the
newborn is scheduled for a time being drawn randomly from a trian-
gular distribution with an upper limit of 4 days and a lower of 30 (first
month of life).

4. Abortion

This event essentially checks that the animal in question is indeed
female, cancels a possible scheduled future birth or abortion (see ex-
planation in the infection scheme), counts the abortion as a calving if
the time elapsed since the last conception event is larger than 240 days
and schedules the resting time of the animal until its next insemination
(if applicable —see insemination’s description).

5. Death

Any of the death, culling or slaughter events encountered are treated
similarly and signify the removal of the animal in question (and its
associated scheduled events) from the system.



CHAPTER 2. BVD AGENT-BASED MODEL 38

6. Rest time after abortion

This event has a dual role. Apart from scheduling the rest time of the
animal in question as described in the insemination, it also sets the
criterion which signifies the end of the breeding cycle of the animal.
This criterion is that the calving number of the animal has reached to
zero. In this case its selling to the slaughterhouse is scheduled within
half a day.

Infection Cycle
1. Infection

An infection happens at the animal level for susceptible animals and
is dependent on the number of its infected neighbours, i.e. the number
of TT and PI animals. The neighbourhood of an animal is defined
to be any member of the herd with an equal contact probability and
infections in a specific time ¢ take place with a certain instantaneous,
stochastic infection rate, of the form found in [Viet et al., 2004]:

PIi(t)
Ni(t)

Ai(t) = Brr + B L) +> 5m,1]m (2.1)
m#l

Ni(t) m(t)

where Bpr and Sy are the BVD transmission coefficients with inverse
time units, PIj(t), TIj(t) and Nj(t) the PI, TT and total animal number
in the herd [ at time ¢, By the BVD transmission rate from the PI
animals of any other herd m to [ and PI,(t) and N,,(¢) the number
of PI animals in herd m. While the § coefficients are fixed through-
out the simulation, the TI, PI and total herd numbers are generally
stochastically changing for every time ¢, thus the characterisation of
the rate A\;(t) as stochastic. If the rate \;(t) is multiplied with the
population of S of the herd (number of infection candidates) for time
t then the resulting rate represents the total infections per time unit
a(t) = N(t) x S(t).

It is clear from the summation term in equation (2.1) that infections
can also occur across herds as well (as only one herd per farm is sim-
ulated in the scope of this study, this is of no concern), but only due
to the infectiousness of the PI animals as in |[Viet et al., 2004|. This
introduces subnetwork dynamics within the node, where each herd is
a node and can influence its neighbouring (i.e. within the farm node)
herd nodes’ infectious states. The TI contribution is negligent in this
case of infection in-between herds.

Regarding the infectious process, we define it to be a random, Marko-
vian event within the herd [. Due to the fact that the average waiting
time for such events from one arbitrary time point ¢; to the next t, is
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exponentially distributed [van Kampen, 2003], the total infections per
time unit a are constant in that time window (and thus its factors S
and ;) and serves as the rate parameter of the exponential distribu-
tion from which the probability to observe a waiting time 7, in the
said time frame is drawn. Said differently, the average waiting time
between two successive infection events at t1 and t9 (t1 < t9) for a
constant and positive, non-zero infection rate coefficient a in this time
interval is

(7o) = a /0 e=atidp = L. (2.2)

a

with the integral’s limits being so because of the domain on which time
is defined.

Let it be stressed succinctly again that the average waiting time from
one infection to another is defined for constant total infections per
time unit @ in the time window [t1,¢2]. This a is in turns calculated
after the susceptible population in the herd in question and equation
(2.1) for every time an infection rate changing event takes place, i.e.
for any event of priority equal or lower to that of birth as ordered
in the event list in section 2.2.3. Thus the average waiting time (7,)
changes with every change of the instantaneous infection rate \;(¢). By
examining the two marginal cases of the total infections per time unit
a between two successive infection events at t; and to the necessity of
the definition of a becomes evident.

e Fora > 1ort; — tg then () — 0, which means that the waiting
time is negligible if the distinct infection events are very close to
each other, if the pool of susceptible candidate victims is enormous
in that time window (S > 1) or conversely if the instantaneous
infection rate of (2.1) assumes a high value in [t1,t2], A\; > 1.

e For ¢ — 0 then (r,) — oo. This means that if the pool of
the susceptible population is zero and the instantaneous infection
rate is not zero (e.g. if the S portion of the population has been
depleted and only R, TT and PI remain), then the waiting time
between two successive infection events will be infinite as (for all
else remaining constant) there will be no available candidates to
infect.

It follows that, although the infection event refers to the animal level,
the infection rate changing event refers to the herd level and therefore
its change will correspond to a herd, not an animal. Note that if
the infection rate is scheduled to change before a potential scheduled
infection, the infection will not be scheduled as the conditions for its
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realisation change exactly due to the rate’s variation. Consequently, an
infection event’s transition probability is only dependent on the state
variables corresponding to the time step directly prior to its execution,
therefore qualifying it to be termed a Markov process [van Kampen,
2003].

As already mentioned, for the particular case of this model, the inter-
herd transmission coefficients do not play a role as they refer to herds
within the same unit (e.g. farm) and a single farm has been modeled
to contain only one herd.

Once an animal from a certain herd has been chosen for an infection its
age plays a role in the decision on whether it should recover or die from
the disease. Furthermore, if the animal is a carrying cow a stochastic
decision is made on the effect of the disease on its pregnancy. The
exact aforementioned cases read as follows:

(a) Calf Animal: A decision is made on its survival from BVD (see
table 2.11):

e If it survives, its recovery is scheduled after its infection du-
ration.

e If it does not survive, its death is scheduled after its infection
duration.

(b) Non-Calf Animal: Tts sex is determined. If the animal is a cow
the outcomes of BVD on the embryo are the following depending
on the stage of the pregnancy:

e It will be persistently infected (early stages).
e It will be aborted (early to mid stages).

e It will be malformed, which in this model is killed immedi-
ately (mid to later stages).

e It will have lifelong immunity (mid and mostly later stages).

Note that the pregnancy stages were only qualitatively described
here and correspond to four successive cohorts in time. Each co-
hort has its own probability definition for the possible embryo
outcome. For details see table 2.12. Furthermore, an important
assumption made for carrying cows during the infection is that
should an infection-caused abortion be defined to occur sooner
than an already scheduled abortion originating from a conception
event, then the conception-caused abortion will be invalidated and
the infection-caused abortion will take its place in the event sched-
ule. Moreover, three marginal cases of the abortion in respect to
the birth scheduling are distinguished so as to avoid conflicts.
Specifically:



CHAPTER 2. BVD AGENT-BASED MODEL 41

e If an infection-induced abortion is to take place after a sched-
uled birth, then the abortion is executed immediately.

e If an infection-induced abortion is to take place before a
scheduled birth, then the abortion is scheduled as planned
with all the considerations so far outlined.

e If an infection-induced abortion is to take place simultane-
ously with a birth, then the birth prevails.

Regardless, the non-calf animal is not modeled to die from the
infection, thus its recovery is scheduled after the duration of the
infection.

2. Infection rate change

Any of the events birth, death, end of MA, infection, recovery, trade,
remove cow, slaughter, culling, vaccinate or end of vaccination change
either the herd population, the TT or the PI population, or change
the neighbors of any animal within the herd. This means that these
events would change the infection rate (2.1) directly or its effect on the
population of susceptible animals.

The trade and the rest of the infection rate changing events are handled
separately. This is because in the former case the scheduled events are
transferred along with the animal to the destination herd/farm, while
in the latter all the scheduled events for the animal pertain to its herd
(also the farm in the modelling so far).

3. Recovery

This event simply depopulates the TI group and transfers the output
to the R group at the scheduled times of recovery for the corresponding
animal.

4. End of maternal antibody protection

This event signifies the end of the maternal antibody protection from
BVD for calves drawing random numbers from a triangular distribution
ranging up to three quarters of a year (see table 2.17).

5. Vaccination scheduling, duration and expiry

If a vaccination strategy is in effect, the first vaccination of a surviving
calf is determined upon its birth for its 186" day of age. The effect
of this vaccination for a susceptible animal, (i.e. a transition in the
R group with a note that the immunity is temporary), provided it is
successful, is set for a year (365 days) from the ini file, upon which
time a compensation between the R and S groups will take place for
the particular animal. If the animal is not susceptible, the vaccination
will simply have no effect on the health status of the animal, but its
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Test correct? | Status | Result
True TI, PI | Positive
False S, R | Negative
False TI, PI | Negative
True S, R | Negative

Table 2.3: The conditions for the four different possible outcomes of an
antigen test result pertaining to a single animal.

Test correct? | Status Result
True R Positive
False S, TI, PI | Negative
False R Negative
True S, TI, PI | Negative

Table 2.4: The conditions for the four different possible outcomes of an
antibody test result pertaining to a single animal.

next vaccination will be scheduled in one year from the current time.
The only reason for a vaccination not to take place in precisely these
scheduled time frames, provided the animal in question is alive, is that
the vaccination scheduling overlaps with the minimum distance from
the insemination (see 2.2.7).

Testing Schemes

In the code both testing an animal for BVD through an antigen test (the
so called wvirus test) or by an antibody test are in effect, depending on the
implemented testing strategy. Taking that into account, the settings in the
code for an antigen test to be declared positive are shown in table 2.3 and are
determined by the accuracy of the test. Similarly for the antibody test see
table 2.4. In essence, the Result column of table 2.3 is a logical conjunction
result between the test correctness truth value and whether the animal in
question is indeed sick (i.e. TI, PI being True) or not (S, R being False)
for the antigen test, and whether the animal in question is indeed immune
(i.e. R being True) or not (S, TI, PI being False) for the antibody test. In
other words, the result asserts if the test identified a positive animal, which
is identical to the test’s sensitivity as defined in section 2.1.1.

The following distinctions of tests are in terms of periodicity and scope,
i.e. either once in their lifetime for all animals or periodically for a sample
of animals from each farm.

o Far Tag
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If the ear tag strategy is in effect, then a test is scheduled for the
animal in question depending on its age and scheduled only by the
birth scheme. This test concerns the antigen test (virus test) by a
tissue sample (ear tag), is non periodical in the lifetime of the animal
and can lead to a second round of antigen test testing (blood testing)
as will be clear in the following (see also figure 2.1).

Before anything else, what is determined is whether the test is positive.
This can naturally be either a true or a false positive depending on the
set sensitivity threshold value from the ini file (i.e. the probability to
detect a truly sick animal) and the health status of the animal, as seen
in table 2.3. The specificity (i.e. the probability to successfully identify
a non-infected animal) has been assumed to be unity (certainty) for the
aims of the simulation [Gethmann, 2018].

1. If the test is positive, then firstly the default values are being read
on whether the farm will be quarantined and for how long. This
depends on the strategy implemented, but for the baseline sce-
nario (no strategy) no quarantine is enforced. Next the animal is
being registered to have been tested once with a 92% probability
and with the remaining 8% for a second test. If the animal is
to be tested only once, then it is registered for removal within a
time drawn randomly from a uniform distribution between 3 and
34 days. In the case of a second scheduled test, the next test is
scheduled by drawing again randomly from a uniform distribution
between the same day and a maximum time for retesting the ani-
mal set from the ini file. By default this is set to two months (60
days). See also figure 2.1. The second round of test is a different
event than the first (‘virus test’ instead of ‘test’) accounting for
a blood test instead of a tissue one. If the animal is specified
to be positive again, this time its removal is scheduled by draw-
ing randomly from a uniform distribution between 3 and 23 days.
Lastly, if the animal is a cow and has had offspring, all of them
are declared to have had a positive mother. This is significant to
determine whether the offspring of a cow corresponding to a farm
should automatically also be sent to the slaughterhouse without
further testing if their mother’s test results is positive.

2. If the test is negative the animal is simply declared to be such and
in case it is not one of the initialised cows it is declared negative
in the event that its mother had been positive.

o Young Calf Window

If the young calf window (YCW) strategy is in effect, then a sample
of animals is scheduled to be selected for testing for every farm of the
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system periodically. The period is defined in the ini file and is set by
default to be 186 days (approximately half a year). The methodology
of this approach follows [Conraths and Gethmann, 2015] and asserts
that given a herd of a certain size only a random sample of its animals
older than six months and younger than two years of age suffices to
determine the existence of infectious animals in it up to a certain limit
with a confidence of 95% through testing. That is because animals over
six months of age will have, on average, lost any potential maternal
antibody immunity that they may have acquired upon birth by the
time of the test (especially in an agricultural system where the calves
are being massively administered colostrum with their first meal) and
if they are younger than two years of age they will not have, on average,
started to produce offspring. Therefore, any positive tests from such a
specimen would suggest that there has been some source of infection in
the farm exceeding the set limit at the 95% confidence interval. In the
model’s case the upper limit of 20% prevalence of infected animals in
the herd (of size N) given a random sample size n of negatively tested
animals was set, as displayed in table 2.5. The table (the simulation’s
sample size is within the population limits of table 2.5) was derived
with reasoning starting from the hypergeomteric distribution (formula
(2.3)). That means that given a finite population of animals N, from
which n are randomly drawn (tested) without replacement and K are
indeed positive in the population, then k from the drawn ones will be
positive. Formulated symbolically, this translates to the probability

mass function
K N-K
(X = k) = k n—k
p =R)= N )
n
where with ( “ > the binomial coefficient is meant [Krishnamoorthy,

b
2006].

Since what is being sought with this strategy is herd immunity the
antibody test is used on the sampled animals (see table 2.4 for the
correspondence of the test outcomes to the animals’ infectious states).

(2.3)

In case even one animal is identified as positive during the YCW proto-
col, then all the animals of the herd (and thus of the farm in the scope
of the model) are scheduled within half a day to be tested according to
the virus test (blood test) of the ear tag protocol previously described.
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N | <10 <20| <40 | €80 | <£160 | > 180
n 8 10 12 13 13 14

Table 2.5: Population sizes (N) and the corresponding samples (n) needed
to be tested negative so that the prevalence of the infected animals in the
population will not exceed 20% with a confidence of 95%.

Animal Movements

This is the module that builds the network and allows it to evolve. The
terms trade and movement shall be used indiscriminately here, regardless of
whether the movement is defined in the system to be an actual trade or a
removal of the animal i.e. a dispatch to a slaughterhouse.

1. The Manage Action

This is the first stage a farm has to go through in order to have some
contact with the rest of the system. The manage action consists of a
series of actions, which assess whether a farm can have any interactions
with the rest of the system in the first place, whether it needs input,
if it is eligible for output and of what kind should the input or output
(animals) in question be. To that end, each farm has its own managing
protocol called the farm manager.

To start with, for the running time of the system a daily management
period is set by default, but this can be changed from the ini file and
for the results we have assumed a weekly management period. That
means that each and every farm runs its management protocol (the
farm manager) in every management period of 7 days.

The management protocol is comprised of a number of steps.

(a) Check if the farm is under quarantine for selling and for buying
animals. If yes, that is the end of the current management action.

(b) The demand of animals is calculated. This is realised by firstly
ensuring that the animals to be purchased will only be pregnant
cows and above a purchasing margin set at the input ini file (by
default this is zero). Next, the actual demand calculation takes
place, which depends on the type of farm taken into account.
Currently this would mean either a simple one herd farm or a
small one herd farm, the difference of the two lying in the inclu-
sion of herd rejuvenation or not respectively (see section 2.2.7).
Regardless, a quota of pregnant cows demanded by the farm in
question for a specific herd is set upon its creation and is equal
to its herd size per herd (remember that the farms in this scope
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()

include only one herd each). Thus, the number of requested cows
is calculated as the difference between the fixed quota and the
herd size in question at the time of demand, for the case that
this difference is above zero. Naturally, if the farm type is of the
simple one herd, the fixed quota number is reduced by the farm’s
replacement percentage (again, see section 2.2.7).

The farm’s demand is registered to the market (see further below
in the same section), which decides on which two farms (of any
farm type) will be the exchanging partners.

Next the supply of animals is calculated for the farm at hand. For
that a similar methodology is followed to that for the demanded
animals, with the difference being that the momentary herd size
should be larger than the fixed quota of animals for any number
of animals to be registered for selling.

The farm manager goes through ten available animal trading cri-
teria for each herd and groups the herd’s animals to each one of
them according to their sex and age status. Then it attempts
to sell as many of the herd’s animals as possible from groups
with a higher priority and disproportionately many animals when
compared to the rest of the groups. These criteria were already
outlined in section 2.2.3 and are summarised in their correspond-
ing sex, age and fertility groups in table 2.6. The reasoning of
categorising the animals to such trading groups is that, should
the animals to be traded be prioritised, then animals with de-
creased financial benefit against others (mainly older or infertile
cows) should be traded first if possible. As implied though, it is
possible to set the selling sorting criteria to be evenly distributed
among the different groups through a setting in the ini file or by
leaving the related field empty.

Regarding priority trading criteria, at this stage it is possible
to define the trading criterion for the animals to be following
the numbering of table 2.6! in descending order for each farm.
Animals from groups with the same priority numbering are drawn
for filling the selling group with a weight proportional to the group
size they belong to. This last point is also the distribution rule
for the offered group for sale when there is no prioritising of the
trade). The way to activate this priority in animal selling is to fill
the related field of the ini file with the value ‘OldCowsFirst’ (see
table 2.7).

Provided the farm is not under quarantine, similarly to the farm’s
demand, its animal supply is registered to the market, which de-

! A month is assumed to have 30 days.
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cides on which any two farms will be once again the exchanging
partners.

If the farm is under quarantine its animal supply is met by the
slaughterhouse’s demand.

Before the management cycle for the farm ends the farm’s regis-
tered demands and offers (in the form of queues) which were not
directed to a trade by the market are fulfilled. This is achieved in
two different ways depending on the related setting from the ini
file.

The first (called ‘dump’) consists of matching all of the farms’ de-
mands from the well farms and conversely, all of the farms’ offers
from the slaughterhouse. It follows logically that the demands
and offers in question cannot come from the slaughterhouses or
the wells as they serve as drains and sources of the system respec-
tively. Furthermore, self-trade is inhibited as well as direct trade
from the wells to the slaughterhouses.

The second (called ‘demand’) treats the slaughterhouses and the
wells as the rest of the farms, with the logical restriction that the
first cannot post offers to the market while the latter cannot post
requests (demands). In case of unfulfilled trade offers the animals
offered remain in their farms.

2. The Market

If the market is to be distinguished from the management cycle, then
it is simply to make clear that it performs the matching between the
trading partners (i.e. different farms) and the demands and offers
posted to it by the farm manager with queue containers. It is therefore
an integral part of the management cycle, but a separate entity from
the farm manager protocol.

Effectively it uses a similar mechanism for both registering demands
and offers of animals to match them in pairs. The criterion for the
matching is defined by four factors:

The trading partners (farm types) cannot be the same (self-trade).

The trading partners cannot be the pair well-slaughterhouse (source
to drain case).

If the behavior of the well and the slaughterhouse is set to fulfill
the offers and requests of the unfulfilled trades at the end of a
management cycle (‘dump’ setting in the ini file) the farm regis-
tering a demand cannot be a slaughterhouse (see the last step of
the manage protocol).
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Group Type Status

1) Male calf Male of age < 6 months

1) Young bull Male of age < 17 months

1) Old bull Male not calf and not young

1) Infertile Female > 15 months with > 3 inseminations
2) Old cow Female of age > 4 years

3) Heifer pre breeding Female animal of age 6-15 months

4) Heifer ready for breeding | Female of age > 15 months with no offspring
5) Calf Female up to 6 months of age

6) Pregnant Female of age > 25 months with offspring

6) Dairy cow Non pregnant cow able to breed

Table 2.6: The various categories the animals of a herd can be grouped in to
be sold according to some global selling strategy. The numbering corresponds
to the ascending diminishing of prioritisation for the various selling groups
assuming the OLD COWS_FIRST selling strategy. Groups of the same
number have the same level of priority. In case of an evenly distributed
selling strategy the group numbering is rendered irrelevant.

e If the previous point is the opposite (‘demand’ setting in the ini
file), all the remaining offers and requests are annulled.

Farm Types

In this section we describe the differences of the four different farm types
presented as system entities in section 2.2.3. The threshold for farms to be
either of the simple one herd or of the small one herd type can be set in the
ini file according to the number of animals corresponding to a farm. The
field is called ‘smallFarmSizeMax‘and indicates the limit of animals that a
farm should have to be specified as a small one herd farm.

e Simple One Herd Farm

This is a farm containing only one herd of animals. It both offers
and demands animals according to its needs, which are to preserve its
population constant in every management period by comparing some
quota set upon initialisation randomly from the given farm size dis-
tribution, reduced by a replacement percentage corresponding to a
rejuvenation strategy of such farms, with the instantaneous popula-
tion of the farm. Symbolically those needs are expressed in equation
(2.4) rounded to the closest integer value. The surplus sees to the
term Ngyota X (1 — replacement) being greater than Ni,siant., while
the opposite holds for the deficit.
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The replacement percentage for the one herd farm type is set by de-
fault to be 27.9% x 7/365 [Gethmann, 2018], which roughly translates
to a quarter of the herd being rejuvenated every year for a weekly
management period (numerator) and can be altered in the given ini
file. Rejuvenation means that a said percentage of animals is sub-
tracted from the herd population’s quota and is requested once per
year through trades in pregnant heifers. Given the default values, it
becomes evident from equation (2.4) that this rejuvenation effect has
an effect only for farms with an animal population above 100.

surplus/deficit = [ Nquota X (1 — replacement) — Ninstant| (2.4)

e Small One Herd Farm This farm type is similar to the simple one herd
farm with the sole difference being that it does not include rejuvenation
for its animals via trades. The rationale behind this is that small unit
farmers will keep in general their domestic animal population constant
and not renew it throughout the animals’ lifetime.

e Slaughterhouse

This farm type has a dual function as a sink and as a demand farm
which can be alternated in the ini file. On the one hand it can act as
a sink for the simulation (slaughterhouse type demand set to ‘dump’
in the ini file), i.e. if after all the demands in a management period
have been met the market still has unmatched offered animals, those
animals will be channeled to the slaughterhouse. On the other hand,
the slaughterhouse can act as a small one herd farm, but only with
demands (slaughterhouse type demand set to ‘demand’ in the ini file),
therefore contributing to the supply-demand mechanism of the market.
Thus, it will always ascertain that all the offers that it can accommo-
date (‘dumping capacity per type’ setting in the ini file) will be met.
The rest will remain in their original farms.

o Well

This farm type acts inversely to the slaughterhouse dually as a source
and an offering farm depending on the settings of the ini file (same
as for the slaughterhouse). On the one hand, if there are not enough
offers of animals to keep the population constant it will provide them
(slaughterhouse type demand set to ‘dump’ in the ini file). On the
other hand, it can also act as a small one herd farm which only offers
animals, making sure that no demand is left unmet at the end of a
management period, provided the well has enough animals to offer
(‘number of cows in well” setting in the ini file).

Note that either one of the functions of the well or the slaughterhouse
are mutually activated as per the description. Therefore they can either
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simultaneously function as a sink and source only entity of the simulation
or as small one herd farms which either only demand or only offer animals,
fulfilling the unmatched offers and demands in the market to their given
capacity respectively. Assuming the latter setting in effect (‘demand’) it is
possible to include more than one well or slaughterhouse in the simulation.

2.2.8 Parameters and Sensitivity Studies

First the calibration according to demographic data from the HIT database is
presented and then all the simulation’s parameters and random distributions
are listed. Finally, a sensitivity analysis based on previous work and expert
opinion is performed. Guidelines from field observations and expert opinion
were provided by [Gethmann, 2015].

Calibration

For tuning the breeding and network behaviour of the system the work of
[Blunk, 2017] in section 4.3 was followed closely as the treatment there is
exhaustive. The idea was to follow common practice [Tinsley et al., 2012]
and compare age and sex distributions (see figure 2.4 in section 2.1.3) with
different simulation outcomes. For that purpose, the eight possible permuta-
tions of three binary parameters controlled from the ini file were examined.
Those were the selling strategy (see the first column of table 2.6), the slaugh-
terhouse behaviour (dump or demand, see section’s 2.2.7 explanation) and
whether the market is set to ignore the type of demands that the farms
post to it (true or false for any specific group demanded from table 2.6)
as exhibited in table 2.7. The result was that combination 7 of the three
parameters fitted the data of figures 2.4 most closely and was thus adopted
for the simulations. In words, the seventh combination of table 2.7 envisions
the selling strategy to be evenly distributed among the different groups of
animals classified in table 2.6, the slaughterhouse to act as a small one herd
farm that only posts demands to the market and the market to ignore the
specific demands of the farms in groups of animals.

Parameter Selection

For all the parameters not concerning calibration expert opinion was used
[Bioglio et al., 2016; Ezanno et al., 2007; Gethmann, 2018; Gethmann et al.,
2015; Viet et al., 2004]. All the simulations ran for a simulation runtime of
Tsim = 20,000 steps with a resolution of 5 steps. As a result of the global
parameters’ selection (tables 2.8 and 2.10), those time steps correspond to
calendar days. The tests’ specificity success probability was assumed to be
100% for the needs of the simulation following expert opinion [Gethmann,
2018].
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# | selling strategy  slaughterhouse behaviour ignore type of demand
1 OldCowsFirst dump true
2 OldCowsFirst dump false
3 OldCowsFirst demand true
4 OldCowsFirst demand false
5 | evenlyDistributed dump true
6 | evenlyDistributed dump false
7 | evenlyDistributed demand true
8 | evenlyDistributed demand false

Table 2.7: The 8 different trading scenarios based on the existent binary
values of the 3 dominant, relevant parameters.

To start with, table 2.8 contains all the parameters in regard to all the
dynamics within the farm and the scope of the strategies presented in table
2.22 of section 2.3. The farms’ population infectious states were initialised
randomly from the given farm size distribution CSV file. Their infectious
states were also randomly allocated between the PI and Pl-free farms (see
table 2.9) with a 98% bias towards PI-free farms, as explained in table 2.10.
Furthermore, table 2.10 contains all the relevant details permeating the type
of farms, their number and their animal movement capabilities through the
market.

In tables 2.11, 2.12, 2.13, 2.14 and 2.15 all the probabilities concerning
hard-coded infectious and breeding parameters as well as their interplay dur-
ing the simulation and upon initialisation are presented. Moreover, in tables
2.16 and 2.17 the usage of uniform and triangular random distributions for
number generation in the simulation’s different processes (breeding and in-
fectious in the former, and breeding, infectious and testing in the latter) is
displayed. The latter implicates lack of homogeneity and detailed informa-
tion about the interval over which the process in question takes place and its
‘mode’ defines an ‘educated guess’ bias [Krishnamoorthy, 2006]. The appli-
cation details and necessity of the aforementioned tables become apparent
as one inspects the various submodels listed and unravelled in section 2.2.7.
Lastly, for all the statistical results the pseudo random number generator en-
vironment was setup as the GNU Scientific Library dictates [Galassi et al.,
2018] was seeded with the number 2,333,600,960.

Sensitivity Analysis

According to what has been explained up to this point and previous work
[Ezanno et al., 2007], the system parameters whose diverse effect if changed
should be checked are dominantly four: the transmission coefficients of (2.1),
the vaccination success probability, the ear tag test sensitivity and the gen-
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Parameter Value Description
Brr 0.03 per time unit TI infectious coefficient in equation (2.1) [Viet et al., 2004]
Bp1 0.5 per time unit PT infectious coefficient in equation (2.1) [Viet et al., 2004]
AtTrAb. 2 days Time between infection and abortion for a T1I, pregnant cow
Atnfert., Fin. insem.-Remov. 14 days Time elapsed between last insemination attempt and removal for an infertile cow
Calf age threshold 180 days Beyond this age the animal is not a calf anymore
Abortion as calving 240 days Beyond this pregnancy stage the abortion is counted as a calving
TI calf death prob. 2% Probability for a TI calf to die from the infection
18% vacc. age 186 days First vaccination age for the animal
Vacc. work prob. 98.5 % Vaccination working probability
Vacc. effect At 365 days Effect duration of a successful vaccination
Atvace.-Insem. 42 days Time interval required for a vaccination to take place before an insemination [Damman et al., 2015]
Sensitiv. success prob. 99% Test’s sensitivity success probability
Test again prob. 2% Probability for positively tested animals to be retested
Atgests 60 days Time elapsed between two tests in the old regulation (strategy 2 in table 2.22) [Ministry of Food and Agriculture, 2008|
Atiests 40 days Time elapsed between two tests in the new regulation (strategy 3 in table 2.22) [Ministry of Food and Agriculture, 2016|
Alguarant. 40 days Quarantine period for a farm after the new regulation [Ministry of Food and Agriculture, 2016]
Tyew,1 186 days Periodicity of the YCW test (strategies 5a, 6a, 7, 9 as in table 2.22)
Tyew2 356 days Periodicity of the YCW test (strategies 5b, 6b as in table 2.22)

Table 2.8: Global infectious, breeding, testing, quarantine and vaccination
parameters set in the simulation per strategy (see table 2.22) where applica-
ble. The programme follows the outline of [Gethmann, 2015] unless explicitly
stated otherwise in the table. All the testing and vaccination parameters can
be controlled from the input ini file. The rest are hard-coded.

Tuple of Infectious States’ Fractions Value
(S,1,R, P)pr (0.46,0.06, 0.46,0.02)
(S, I, R, P)PLiree (0.79,0.005,0.205, 0)

Table 2.9: The various infectious states for the populations of every farm
upon initialisation. The fraction with the underscript ‘PI’ denotes farms
destined to have a non-zero PI percentage, while that with ‘PI-free’ farms
free from any PI animals. The PI population tuple fractions were randomly
allocated to 2% of the input farms upon initialisation [Gethmann, 2018].
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Parameter Value Description
Small Farm Margin 10 Population of a farm below which a farm is classified as of small farm type
Farm Sizenin 10 Farm population above which farms are retained in the input
Farm Sizemax 10,000 Farm population below which (inclusive) farms are retained in the input
Slaughterhouses 1 Number of additional farms of the slaughterhouse type in the simulation
Wells 1 Number of additional farms of the well type in the simulation
Slaught. capacity 10,000 Number of animals a slaughterhouse can accept in a single call from a farm
Well yield 10,000 Number of animals a well can introduce in a single call to a farm
Well yield in TI 2% The percentage of TI animals in every farm call from the well
Well yield in PI 2% The percentage of PI animals in every call from the well
Threshold buy 0 The global threshold above which farms can buy animals
Threshold sell 0 The global threshold above which farms can sell animals
Replacement 0.0054 Relevant term in equation (2.4) (on a herd’s annual rejuvenation)
Infectious margin prob. 2% Selection threshold below which the population of a randomly initialised farm has a PI fraction

Table 2.10: Farm related parameters according to [Gethmann, 2015] and
[Gethmann, 2018]. All the parameters can be controlled from the input ini

file.

Death | Survival
2% 98%

Table 2.11: Effect probabilities (complementary) of BVD on a calf in case of
infection. After |[Gethmann, 2015|.

Pregnancy periods PI | Aborted | Cripple R

15% [0-70) days | 90 % | 100% 0% 0%
2nd: [70-120) days | 45% 60% 75% | 100%
34 [120-180) days | 0% 20% 45% | 100%
41 [180-max) days | 0% 5% 20% | 100%

Table 2.12: Calf outcome mass (cumulative) probabilities in case of the car-
rying cow’s infection (horizontally) during pregnancy, max—=[280-292). After
|Gethmann et al., 2015|.

Insemination No | Heifers | Dams
1 90.48% | 67.03%
2 99.53% | 93.84%
3 99.98% | 99.2%
4 100% | 99.92%

Table 2.13: Mass (cumulative) probabilities for a successful insemination of
heifers and dams-cows out of four total inseminations. Note that only cows
have a 0.08% probability to be declared infertile. After [Gethmann, 2015].
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Stage Probability
15% |0-60) days %
204 [60-90) days 9%
34 [90-120) days 10%
4% [120-210) days 12%

Table 2.14: Abortion mass (cumulative) probabilities dependent on the stage
of pregnancy. After |[Gethmann, 2015|.

Age Probability
15t year [0-365) days 50%
274 year [365-730) days 67%
34 year [730-1095) days 2%
4™ year [1,095-1,460) days 73,5%
Further years [1,460-3,650) days 100%

Table 2.15: PI death mass (cumulative) probabilities dependent on age.
After [Gethmann, 2015].

Random process Max Min
PD 292 280
TI At CD 7 days | 0 days
Female 50 0

Table 2.16: Uniform distributions used in the simulation: Pregnancy dura-
tion (PD), calf time of death by infection (TI A¢ CD), sex determination
(female). After [Gethmann, 2015].
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Random process Min Max Mode
TAAD 0 3,000 200
TET 4 days 30 days | 11 days
T 18 days | 24 days | 21 days
FIA 480 days | 600 days | 540 days
CA No 3 5 4
DI 4 days 8 days 7 days
TR 42 days | 115 days | 90 days
MAD 180 days | 270 days | 210 days
MLE!st 0 days | 30 days | 10 days
MLE?nd 170 days | 250 days | 200 days
MLE?d 450 days | 750 days | 640 days

Table 2.17: Triangular distributions used in the simulation: Initial Animals’
Age Distribution (IAAD), time of first test (TFT), inter-insemination time
(IIT), first insemination age (FIA), number of calvings (CA No), duration of
infection (DI), time of rest (TR), maternal antibody duration (MAD), male
life expectancy (MLE). After [Gethmann, 2015].

eral variance of the system (i.e. different seeds).

1. Transmission Rates

Some preliminary work concerning sensitivity of the transmission co-
efficients of (2.1) for the baseline scenario was done by Inia Steinbach
in 2016 [Steinbach, 2016]. Here this work is extended by testing the
final state of the PI animals in numbers as a function of the trans-
mission coefficient for the TI animals Sy and the PI animals Bp; of
equation (2.1). Once more the catalytic factor affecting the final state
of the PI animals is shown to be the PI transmission coefficient Sp;
as demonstrated in table 2.18. This result is somewhat contrary to
that of [Ezanno et al., 2007] mainly because the between-herd (animal
group in the authors’ case) dynamics were non-existent in this simu-
lation as opposed in that work. To be precise, despite the form of the
infectious dynamics being nearly identical in the two works (equation
(2.1)) the authors of [Ezanno et al., 2007] considered only a five an-
imal group herd. In the simulation of this work, due to the effect of
vertical transmissions, i.e. PI animals latently appearing in the system
after a pregnant cow’s infection, the effect of the PI transmission coef-
ficient Sp; dominates over Bp;. Furthermore, the sensitivity analysis
of [Ezanno et al., 2007| on the PI animals’ death rates is not directly
comparable to this work as a uniform random distribution is employed
for that purpose.
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Pgna No || Brr | Bpr
11 0.01 | 0.1
210 0.01 | 0.5
278 0.01 | 0.8

12 0.03 | 0.1
305 0.03 ] 0.5
12 0.05 | 0.1
317 0.05| 0.8
21 0.1 | 0.1

Table 2.18: Final number of persistently infected animals as a function of
Brr and Bpy from formula (2.1).

Probability Style (Position)

0 Solid, blue (left)

0.1 Dashed, red (left)

0.2 Dotted-dashed, green (left)
0.3 Dashed, dotted, magenta (left)
0.8 Solid, blue (right)

0.98 Dashed, red (right)

0.99 Dotted-dashed, green (right)

0.998 Dashed, dotted, magenta (right)
1 Dotted, black (right)

Table 2.19: Probabilities of the test’s sensitivity for scenario 3 (i.e. old and
new regulation implementation, see table 2.22 in section 2.3).

2. Ear Tag and Retesting Laps

For the tests’ effect on the PI prevalence their sensitivity was exam-
ined? by varying the test’s accuracy probability as seen in figure 2.12.
Not surprisingly, as the sensitivity probability tends to certainty the PI
prevalence tends to eradication as all the infected animals are identified
(see the corresponding sensitivity relation in section 2.1.1).

3. Vaccination Success Probability

For the vaccination’s effect on the PI prevalence the vaccination’s work-
ing probability was varied from zero to one as demonstrated in figure
2.13. As with the tests’ sensitivity success probability, the increase
of certainty for the vaccine’s working probability leads to eventual ex-
tinction of the PI population. However, the vaccination’s effect on

2Do not confuse the statistical quantity of sensitivity with the sensitivity analysis of
various parameters in a model.
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Figure 2.12: Scenario 3 (i.e. old and new regulation implementation with ear
tag and blood tests, see table 2.22 in section 2.3) for different test accuracy
probabilities ranging from 0 to 1, as outlined in table 2.19. The effect of the
ear tag test protocol is enforced from day 10,000 onwards.

the PI population is slower than that of the tests’ sensitivity success
and requires near certainty values to lead to extinction. This could
be attributed to the fact that indiscriminate vaccination of animals
regardless of their infectious status reaches its intended targets slower
than tests of all animals, which aim to identify and remove the infected
ones.

4. Variance

For completeness and reliability of the stochastic nature of the simu-
lation a sensitivity analysis was performed on the PI prevalence per-
centage as a function of the seeds of the random number generator
as displayed in figure 2.14. The differences proved to be of the order
of 0.001% implying that the results have to be robust to stochastic
fluctuations.

2.3 Simulation Plan

To emulate the network’s behaviour and to predict the effect of different
counter measures on the PI prevalence we formulated a simulation plan of
intervention strategies according to expert opinion [Gethmann, 2018], prece-
dent and the literature [Conraths and Gethmann, 2015; Damman et al.,
2015; Totti et al., 2017; Thulke et al., 2017; Tinsley et al., 2012; Wernike
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Figure 2.13: Strategy 8 (i.e. only vaccination as explained in table 2.22 of
section 2.3) for different vaccination working probabilities ranging from 0 to
1 as outlined in table 2.20.

Probability Style (Position)

0 Solid, blue (left)
0.1 Dashed, red (left)
0.2 Dotted-dashed, green (left)
0.3 Dashed, dotted, magenta (left)
0.8 Solid, blue (right)
0.9 Red, dashed (right)

0.985 (default) Dotted-dashed, green (right)
1 Dashed-dotted, magenta (right)

Table 2.20: Vaccination working probabilities for the sensitivity of strategy
8 (only vaccination as intervention strategy -see table 2.22 in section 2.3).
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Figure 2.14: Scenario 1 (baseline to all, see table 2.22 in section 2.3) for
different seeds as outlined in table 2.21.

Seed No Style (Position)
2,333,600,960 Solid, blue (left)
2,333,600,970 Dashed, red (left)

2,333,601,960 Dotted-dashed, green (left)
2,333,620,963 | Dashed, dotted, magenta (left)

2,333,710,962 Dotted, black (left)
2,333,970,967 Solid, blue (right)
2,333,650,932 Dashed, red (right)

4,333,600,860 Dotted-dashed, green (right)
3,323,601,969 | Dashed, dotted, magenta (right)

Table 2.21: Seeds for the variance of scenario 1 (baseline).
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Strategy | Description
1 No control (baseline)
2 Old regulation
3 New regulation
4 New regulation and vaccination
5a New regulation and YCW with a semesterly frequency
5b New regulation and YCW with an annual frequency
6a New regulation, vaccination and YCW with a semesterly frequency
6b New regulation, vaccination and YCW with an annual frequency
7 YCW with a semesterly frequency
8 Vaccination
9 Vaccination and YCW with a semesterly frequency

Table 2.22: The different strategies comprising the scenarios presented in ta-
ble 2.23. YCW is the young calf window protocol. See the testing description
in section 2.2.7.

et al., 2017|. This plan consists of 13 different scenarios, one baseline where
the system is allowed to evolve freely without any intervention strategy and
12, each of which contains some sort of mitigation strategy for BVD, applied
at different times, after the free system’s dynamics (baseline) have settled
to an equilibrium. The particular ordering of the strategies in each scenario
and consequently the number of scenarios were dictated by the needs of a
cost-benefit analysis performed by collaborators of the FLI [Gethmann, 2018|
and similar to a recent work done for the federal state of Styria in Austria
[Marschik et al., 2018|.

We first list the different control strategies and then their application proto-
col manifested in the distinct scenarios in table 2.22. Similarly we summarise
the scenarios with the strategies being applied at targeted times in table 2.23.
Following the unit definition, which as we saw arose naturally in the param-
eter selection section 2.2.8, one time step should correspond to a day. The
total running time of our simulations spanned 20,000 days or roughly 55
years, in which we distributed the different strategies. The reasoning has
been always to start from a ‘no control’ state in equilibrium and apply some
control strategy on the system once its dynamics have settled on a fixed
point or have reached a state of slow variation.

According to table 2.23, the 10,000*" step of any of the mitigation strate-
gies signifies the start of the old regulation’s effect (2011). As explained in
section 2.1.3 though, the nationwide PI prevalence before 2011 is not known
due to lack of unified records. Hence, we restrict ourselves to the 10,000t"
time step to mark the initiations of the intervention strategies, as a large
enough time where the population dynamics appear to have stochastically
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Timeline (in days)

Scenarios 0 10,000 12,006 12,373 12,738 20,000

STR 2
STR 3

STR 1

STR 5a

STR 6a

STR 7

— =
e e A= N B N R N

—
N}

STRA4

[
w

STR9

Table 2.23: The scenario scheduling plan. STR stands for ‘strategy’ as
outlined in table 2.22. A colour block denotes the effect of the same strategy
throughout the different starting days.

settled to a fixed point and the infectious dynamics of the system seem to be
changing very slowly as seen in figures 2.15 and 2.16 (upper left) respectively.
In other words, our mapping of the 10,000*" time step with the commence-
ment of the year 2011 (enforcement of the old regulation) is only speculative
and cannot be precisely determined exactly due to the prior non-nationwide,
but regional intervention strategy programmes (compare the fractions of fig-
ure 2.17 with figures 2.2 and 2.3).

2.4 Results

2.4.1 The Thuringian Cattle Network

For the results that we present here all the global parameters listed in the
previous section (2.3) and in section 2.2.8 are assumed. We have omitted
small farms (with a population of less than 10 animals) from the simulation
with the assumption that they are in practice family farms, which rarely (if
ever) trade their animals and thus their contributions to the connectivity
of the network are negligible. This leaves us with a total of 1,657 ‘simple
one herd farms’ (see again the global settings of table 2.10 for the ‘small one
herd farm’ threshold) plus one slaughterhouse and one well (drain and source
respectively) set at the global parameters’ table 2.10. The total animal count
for the 1,657 farms from the given farm list of Thuringia is 333,350 animals.

The population remains statistically unchanged for the different scenarios
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Figure 2.15: Global population evolution for the baseline scenario 1. The
rest of the scenarios exhibit a statistically similar behaviour and are therefor
not shown.

as figure 2.15 suggests. Looking closely at the portion of figure 2.15 before
it reaches equilibrium we notice a damped periodic behaviour. This is an
after effect of the initialisation attributed to the female cows being impreg-
nated randomly within an interval ranging from time zero to the maximum
pregnancy duration according to a random uniform distribution (see table
2.16). As far as the initial transient is concerned, it is a collective, combined
effect of the input farm size distribution, the initial demographic conditions
of the animals (age, sex), their initial infectious conditions and the system’s
tendency to keep its population constant through animal movements and the
birth cycles as explained in section 2.2.7.

A quantity that the simulation’s observables enable us to study is the
various infectious states’ tuple (S, I, R, P) of the animals in every farm for
every time step. From this quantity we can examine the S, I, R and P in-
fectious states’ evolution at two different scales, namely the global-system
one and that of the farm. Furthermore, we can easily draw from the out-
put observables the farm PI animal or fraction count distribution along the
simulation’s farms at any state for any scenario.

Regarding the global evolution of the infectious states in figures 2.16,
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2.17 and 2.18 (the latter is merely a magnification of the former around the
PI and TI fractions’ values) we should make a number of remarks for the
interpretation of each scenario separately.

e Scenario 1 (baseline)

After a well-known [Keeling and Whorf, 2005; Murray, 2002; Rohani,
2008] initial epidemic transient representing the outbreak from the ini-
tial infectious seeds within the herd-farm level (see the initial conditions
in section 2.2.8) and from in-between farms (through movements) the
system’s infectious state fractions tend to an equilibrium state, with a
PI prevalence of around 1.1%. The corresponding PI fraction distri-
bution along all farms in figure 2.18 is the most pronounced of all the
scenarios, which is logical as there is no counter measure. Up to the
10,000 time step the behaviour of all the scenarios is identical.

e Scenarios 2, 8

Beyond the 10,000 time step the R fraction drops significantly and
the respective S increases. What happens is that due to the old regu-
lations’ effect the PI animals are being removed relatively fast (faster
in the new regulation than in the older) and therefore the naive popu-
lation, i.e. a population of S, is reinstated. When scenario 2 and 3 are
compared graphically on the same scale there is no significant differ-
ence between them. However, the new regulation’s effect in scenario 3
(partly a shorter time between two antigen tests and mostly the pro-
bation of a farm upon a PI detection) is more pronounced towards the
eradication of PI animals. Taking into account the respective PI popu-
lation fractions along the different farms in figure 2.18, despite the fact
that for scenario 3 we witness a higher PI fraction in some farm than
in scenario 2, still the PI fraction distribution is narrower in scenario
3 than in scenario 2 supporting our previous assessment that the new
regulation should be more effective than the old one towards the aim of
the PI eradication. The higher PI prevalence in the farm distribution
of figure 2.18 for scenario 3 is also a result of the Thuringian hetero-
geneities: there are not as many farms compared to states like Bavaria,
but the existing farms consists of huge animal populations. Overall,
scenario 3 depicts the current situation in Germany. The time frame
between the 10,000 day and the 12,006 day corresponds roughly to
the five and a half years (the half year difference with 2016 refers to a
transition period from one mandate to the next) of the old regulation’s
effect in Germany.

e Scenario 4

Beyond the 10,000" and up to the 12,3739 time step we observe as
expected the same behaviour as in scenario 3. After that point a
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behaviour similar to that of scenario 1 reappears due to the lift of the
intervention strategies. The final PI prevalence nevertheless appears to
be slightly less than that of scenario 1, a fact which is reflected in the
distribution width of the corresponding scenario of figure 2.18 when
compared to the width of the distribution for scenario 1. This could
be mainly attributed to the fact that at the point of the simulation
where the intervention strategies are lifted the population has settled
on a fixed point (see figure 2.15), which is robust to the variations we
implemented in the simulation plan (not presented due to minimal,
if any, observed changes when compared to figure 2.15). Thus the
animals’ movements could lead to fewer infections towards the steady
state.

e Scenario 5

The behaviour for this scenario is similar to scenario 3 with the essential
difference starting from the 12,3734 step where vaccination is added
to the new regulation. This action promotes the R population and
conversely reduces the S leading the curves to cross for a third time in
figure 2.16 before they settle on a steady state. The fact that not all
of the animals become immune at the steady state has to do with the
interplay between the vaccination and the breeding dynamics, which
sustain a non-zero susceptible population. As revealed in figure 2.18
this is one of the scenarios which leads to a PI extinction at the end of
the simulation.

e Scenarios 6, 7

In scenarios 6 and 7 the effect of scenario 3 has nearly eradicated the
PI animals therefore not exhibiting any dramatic difference from the
YCW'’s implementation from the 12,373 day onwards, either with a
periodicity of a semester (scenario 6 with strategy 5a) or of a year
(scenario 7 with strategy 5b). The two scenarios’ behaviour is similar
to that of 3, with 6 (semesterly YCW testing) leading to a higher naive
population reestablishment than 7 (annual YCW testing). This last
observation is easier to see in the respective distribution of figure 2.18:
the distribution of scenario 6 is narrower than that of scenario 7.

e Scenarios 8, 9

Similarly to scenarios 6 and 7, in scenarios 8 and 9 the effect of scenario
3 has nearly depleted the PI population by the 12,006 day to see any
relevant effect afterwards. However, the inclusion of vaccination leads
to a behaviour similar to that of scenario 5 for that last segment of
the simulation. The two scenarios, like 5, also lead to a final state PI
eradication.
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e Scenario 10

In scenario 10 the YCW strategy beyond the 12,006™ day induces
some periodicity in the PI population. This is an interesting effect
which is attributed to the periodicity of the YCW test. The (declin-
ing) peaks’ width of the PI population’s fraction in figure 2.17 signify
the semesterly periodicity of the YCW test, which would remove PI
animals generated in the time frame of no testing. This periodicity
can also be seen by the declining ripples on the S and R curves in the
corresponding plot of figure 2.16. This last effect would be induced by
the infectious transmissions of the recurring PI animals. As suggested
in figure 2.17, the respective distribution of figure 2.18 indicates that
at the final state there is still some non negligent PI occurrence in
Thuringia’s farms. Although in global population terms this PI preva-
lence seems to be rather low (less than 0.5%) it is rather alarming that
PI animals are relatively broadly distributed along the system’s farms,
introducing a risk of recurring future infections.

e Scenario 11

Scenario 11 beyond the 12,3739 day is again similar in behaviour to
scenario 5 concerning the S and R curves in the corresponding plot of
figure 2.16, although less pronounced than scenario 5. Looking closely
at the respective plot of figure 2.17 nonetheless we observe a short
period where the PI population shoots upwards and is replenished to
around the final state without strategy before dropping to minimal lev-
els in the following segment of the simulation. This has to do with the
point that was made in the sensitivity analysis section 2.2.8 when com-
paring the success probabilities of the tests’ accuracy and the working
probabilities of the vaccination on the PI prevalence, namely that the
indiscriminate vaccination scheduling protocol has a slower success rate
than that of the ear tag testing. Especially for the peak observed after
the 12,3734 day, it is a result of non-targeted vaccination (e.g. vacci-
nation on recovered pregnant cows that are destined to produce a PI
will not change the advent of the PI) in conjunction with the schedul-
ing mechanism of the vaccination itself, which is intertwined with the
insemination, as the latter needs to be scheduled at least 42 days after
the vaccination. To demonstrate the inefficiency of the non-targeted
vaccination in one last manner, although the PI fraction has become
very low, it is rather extraordinary that after 10,000 days (around 27
years) of the vaccination strategy’s effect there is still a relatively (say
to that of scenario 6) broad PI fraction distribution along the system’s
farms.

e Scenario 12
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Scenario 12 combines the new regulation with indiscriminate vaccina-
tion beyond the 12,3739 and up to the 12,738 day following simi-
lar results to scenario 11. However, the post 12,738" day behaviour,
which removes the new regulation’s effect, exhibits again a similar, yet
lower peak in PI as in scenario 11 before reaching minimal levels of
the PI population. This can be attributed to a prolonged declining
effect of Pl-removed animals induced from the prior enforcement of
the new regulation. Otherwise, in terms of the final state of the PI
fraction’s distribution along farms in figure2.18 the situation is com-
parable to that of scenario 11 even with slightly broader and higher PI
fractions. This demonstrates how unpredictably and inefficiently non-
targeted vaccination can affect the PI prevalence of the system: even
with a previously combined effect of vaccination with the new regula-
tion, when vaccination is left alone it fails to lead to the eradication of
the PI population even in a time-span of 26 years.

e Scenario 13

For scenario 13 the behaviour is similar to scenario 12 up to the 12,738
day. Beyond that we observe the first peak of the periodical PI increase
(roughly extending to a semester again, which is the period of the YCW
test) as in scenario 10, but with a smaller value due to the vaccination,
which accompanies the YCW strategy at this stage. Henceforth the
PI population is led to extinction by the vaccination’s effect as can be
seen in figure 2.18, underlying once again the importance of testing in
the enforced strategy towards PI eradication.

Regarding the local evolution of the S, I, R and P states in specific
farms we present some selected results in figures 2.19 to 2.23 concerning the
baseline scenario (1), the new regulation (current policy) scenario (3) and
one of the extinction scenarios (5) according to figure 2.18. The selection
criteria for picking specific farms were driven by spotting the snapshots of
the maximum and final global-system state level of the PI prevalence. For
those snapshots we then chose the farm with the highest PI animal count
(proved to be a single farm in every case) and drew its infectious states’ and
total population’s evolution. For the case of the extinction scenario 5 where
at the final state there is no PI animal in any farm we merely chose two farms
from the classes with the least and most (figures 2.22 and 2.23 respectively)
animal population as given in the Thuringian input farm size distribution.

As seen in figures 2.19 and 2.20 the only noticeable difference for the two
farms that exhibit the largest PI animal prevalence at the times of the global
maximum of the PI prevalence and at the end of the simulation respectively
is their size. Even that feature then follows the exact same trend just at
different values. A direct conclusion is that for the given Thuringian farm size
distribution the large farms are those that drive the course of the infection as
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Figure 2.16: Susceptible (solid, blue line), transiently infected (dashed red
line), recovered (dotted-dashed, green line) and persistently infected (dashed-

dotted, magenta line) fractions of the population for scenarios 1 to 13.
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Figure 2.17: Transiently (dashed, red line) and persistently (solid, magenta
line) infected population fractions for scenarios 1 to 13. Focus around the
TT and PI fractions from figure 2.16.
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Figure 2.18: P distribution fractions along the system’s farms at the final
time for scenarios 1 to 13. Eradication is achieved for scenarios 5 (new regu-
lation and vaccination), 8 (vaccination and YCW with a semesterly period),
9 (vaccination and YCW with an annual period) and 13 (new regulation,
vaccination and YCW with a semesterly period). See also table 2.23.
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Figure 2.19: Susceptible (solid, blue line), transiently infected (dashed red
line), recovered (dotted-dashed, green line) and persistently infected (dashed-
dotted, magenta line) fractions of the population for the farm with the max-
imum PI prevalence at the time of the maximum global PI prevalence in
scenario 1-baseline (see upper left plot of figure 2.17) for the upper left plot.
To the upper right the farm’s population and in the lower row the same
time-series as in the upper left plot, but only for the P and I fractions.
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Figure 2.20: Susceptible (solid, blue line), transiently infected (dashed red
line), recovered (dotted-dashed, green line) and persistently infected (dashed-
dotted, magenta line) fractions of the population for the farm with the max-
imum PI prevalence at the final time of the simulation in scenario 1-baseline
(see upper left plot of figure 2.17) for the upper left plot. To the upper right
the farm’s population and in the lower row the same time-series as in the
upper left plot, but only for the P and I fractions.

they represent a constant supply source of PI animals and, for the baseline
scenario, exhibit very similar infectious state dynamics to the corresponding
global case in figure 2.16.

In figure 2.21, again the selection criterion at the final state lead to a large
farm selection supporting our previous statement of the larger farms driving
the course of the infectious states’ dynamics. Interestingly though, there is a
slight modification (apart from the farm finite-size stochasticity exhibited in
the I-P versus time plot) of the farm level dynamics when compared to the
system level ones from figure 2.16. When the new regulation’s effect takes
place the naive population S decreases (with a compensated increase from
R) for roughly 1,000 days. This should be attributed to the new regulation’s
quarantine effect, which inhibits the exit of PI animals from the farm and
leads to a chain of infections within the farm. If the quarantine is imposed
repeatedly after positive tests for TT animals it then constitutes a plausible
explanation for the S-R decrease-increase before the inversion of their trends
as the global dynamics of the corresponding plot in figure 2.16 anticipates.

Finally, for the PI extinction scenario 5 of the new regulation augmented
by non-targeted vaccination in figures 2.22 and 2.23, as previously mentioned,
we selected a small and a large farm to examine their infectious dynamics
respectively. Once more, in the case of the small farm dynamics our argu-
ment that the small farms do not drive the infection is reinforced, for until
the counter measures are applied, with the exception of the initial global
infectious transient’s time frame, there is no significant contribution to the
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Figure 2.21: Susceptible (solid, blue line), transiently infected (dashed red
line), recovered (dotted-dashed, green line) and persistently infected (dashed-
dotted, magenta line) fractions of the population for the farm with the max-
imum PI prevalence at the final time of the simulation in scenario 3-new
regulation (see upper right plot of figure 2.17) for the upper left plot. To the
upper right the farm’s population and in the lower row the same time-series
as in the upper left plot, but only for the P and I fractions.
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Figure 2.22: Susceptible (solid, blue line), transiently infected (dashed red
line), recovered (dotted-dashed, green line) and persistently infected (dashed-
dotted, magenta line) fractions of the population for the farm with the max-
imum PI prevalence at the final time of the simulation in scenario 5-new
regulation and vaccination (see upper left plot of figure 2.17) for the upper
left plot. To the upper right the farm’s population and in the lower row the
same time-series as in the upper left plot, but only for the P and I fractions.
A specimen of the smallest farm class in the simulation.
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Figure 2.23: Susceptible (solid, blue line), transiently infected (dashed red
line), recovered (dotted-dashed, green line) and persistently infected (dashed-
dotted, magenta line) fractions of the population for the farm with the max-
imum PI prevalence at the final time of the simulation in scenario 5-new
regulation and vaccination (see upper left plot of figure 2.17) for the upper
left plot. To the upper right the farm’s population and in the lower row the
same time-series as in the upper left plot, but only for the P and I fractions.
The biggest farm class in the simulation with its only farm.

global dynamics as exhibited in the corresponding plot of figure 2.16. The
latter dynamics are closely followed by those of the large farm of figure 2.23.

To conclude this section, we saw that scenarios 5, 8, 9 and 13 drove
the system to a PI eradication indicating that the bio-security measure of
surveillance is indispensable to guarantee the success of any mitigation strat-
egy. Additionally, the evidence leads to the conclusion that a critical mass of
immunised animals (herd immunity) needs to be achieved before the system
is driven to a Pl-free state. In the framework so far investigated the herd
immunity has been achieved by augmenting the surveillance scheme with
vaccination.

2.4.2 Network Scaling

So far all the simulations have been in regard to the cattle farm list size
of the state of Thuringia, i.e. around 4,000 farms corresponding to 340,000
animals, out of which we assumed that only 1,657 with a count of 333,350 an-
imals participate regularly in the trading network. Nevertheless, we cannot
expect the network structure (heterogeneities) of Thuringia to be represen-
tative to that of Germany. Both the connectivity (which farms perform the
animal movements) and the weight (how many animals move) distributions
are expected to differ substantially. To give an example Thuringia has a
much smaller cattle population and less farms than those in Bavaria, which
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is still a subnetwork of Germany. Conversely, Thuringia’s farms are huge,
which is not something typical in Bavaria [Gethmann, 2018|.

Ideally, since Thuringia is a subnetwork of Germany, we would like to give
as input to the simulation the cattle farm list of Germany, which accounts
for around 156,000 farms counting up to more than 12 million animals (see
figures 2.5 and 2.6). However, since the market module uses queue containers
to match the demands and offers of potential trading partners holding all the
information of the simulation until they are met, the relevant cattle move-
ment requirements in memory grow tremendously [Skiena, 1998]. Presently
the largest simulations we have been able to run have been with less than
12,000 farms accounting for roughly 1 million animals.

Bearing all the above in mind, we normalised the farm distribution of
Germany with regard to the farms and scaled it up in increments of thou-
sands for otherwise identical settings of the simulation for scenario 1 (base-
line). The intermediate size (4,000 farms) counted approximately the given
of Thuringia both in farms and animals that we used in the simulations. The
results for the global fraction of the persistently infected animals at the end
of the simulation and at maximum with requirements up to 16 GB in mem-
ory can be seen in table 2.24. The larger the system size the more the global
PI fraction tends to stabilise to a precision of up to four significant digits.
The interpretation is that since the initial conditions, the infection, breed-
ing and network dynamics remain the same, as expected, the prevalence of
the persistently infected population fraction at the final state remains nearly
constant along the farm increments, provided that the farm number does
not become too small. This would constitute a justification for the usage
of a scaled down farm size distribution from Germany to the size, in ani-
mal population, of Thuringia in the model to draw conclusions for Germany.
We could therefore dispense with the non-representative heterogeneities of
Thuringia and use those of Germany for the input farm size distribution to
draw conclusions for the whole country, provided that we scaled down the
farm count of Germany to that of Thuringia.

However, we do need to note that as the system becomes smaller (i.e. by
scaling down the farm count of the German farm size distribution), finite-size
effects (of the farms) come into play. Thus, although all the above mentioned
mechanisms remain the same, due to the dominance of small farms and their
sparsity, the infectious and population dynamics are expected to be subject
to the fluctuations of the small farms (see e.g. figure 2.22).

2.5 Summary and Outlook

In this chapter we justified on biological, data, policy and agricultural grounds
a stochastic, event-driven agent-based model to emulate the current situa-
tion of BVD in Germany via within-farm contact mechanisms and through
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PI Fraction | Farm No
0.0109 2,000
0.0072 4,000
0.0072 6,000

Table 2.24: PI global fraction at the final state for different values of the
total farm count in the system.

animal movement contacts. We furthermore provided a thorough description
following a specific protocol (ODD), which included a sensitivity analysis of
key parameters identified from expert opinion, the literature and the model’s
specifics. In addition, we explored a number of mitigation strategies of inter-
est to a cost-benefit analysis for the FLI. The results have demonstrated that
the removal of PI animals through testing strategies combined with trading
restrictions are more effective than vaccination. Vaccination nevertheless re-
mains an important additional component of any preventing strategy aiming
towards the eradication of the massively infectious PI animals, as a means
of achieving herd immunity.

As future work, a sensitivity analysis variating the margins of the differ-
ent pregnancy stages’ outcomes for a wide possibility of PI vertical trans-
missions could aid to further compare with the results of [Ezanno et al.,
2007]. Moreover, the hard-coded distribution margins for the time elapsed
between a positive test and the animal’s possible removal should be further
investigated, especially towards the limit of coincidence of the two events as
a policy maker result of interest. In addition, as already mentioned in the
network scaling section 2.4.2 we would expect finite-size effects to come into
play below a certain threshold of scaling down the input farm size distribu-
tion of Germany, simply because of the depletion of large farm classes and
the dominance of the small ones in the process. Therefore, the limitations
of this methodology remain to be explored. In addition, as a next step the
code of the simulation should be extended so as to account for the

As far as quarantine strategies are concerned, heuristic approaches such
as of [Waniek et al., 2018] could prove useful to explore the possibilities of
rewiring contacts meeting certain criteria (e.g. the DICE method standing
for ‘disconnect internally, connect externally’) while keeping certain parts of
the network functional, so as to be less obtrusive to the underlying econ-
omy. Along the same lines, introducing a measure of robustness to the farm
manager and market as in [Schneider et al., 2011] to channel trades and re-
strictions could quantitatively keep systemically key nodes functional while
still providing intervention trade restrictions. Furthermore, the connection
strategy of each node (behaviour of farmers) can be modelled in one of the
various scoring ways (node ranking, activity, loyalty and differentiation crite-
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ria) [Albrecht and Stone, 2017; Gates and Woolhouse, 2015; Gross and Bla-
sius, 2008; Hébert-Dufresne et al., 2016; Shoham and Leyton-Brown, 2008;
Wang et al., 2016], which could lead to extensions of the model encompassing
these connectivity aspects as well.

Lastly, the code could be adapted to a distributed scheme similar to
[Parker, 2007] so as to accommodate the memory requirements of large farm
size distributions such as that of Bavaria or of all of Germany. Thus the
downscaling methodology, to which we had to base our results and which in
turns entails a certain breakdown limit, could be avoided altogether.



CHAPTER 3

BVD Mean Field Model

In this chapter we intend to formulate a mean field model (i.e. having no
spatial structure) for the spread of BVD in an animal population. With
this deterministic description we aim to compare the infectious dynamics
of the agent-based model presented in the previous chapter. Our approach
has been meticulous so as to introduce novel aspects, compared to existing
models which one could employ to address the same problem [Hethcote, 1994,
2000]. Notwithstanding, the model we will present may provide a baseline
model for an analytical approach to mitigation strategies [Pereira and Young,
2015].

We will first logically build on the standard Susceptible-Infected- Recovered
(SIR) model with demography to include the PI animal production through
the effect of delays following the biological description of section 2.1.1. Af-
ter a short treatment on the formulated system’s positivity for every time,
we will make some basic numerical investigations of the system’s stability
around its disease-free equilibrium and follow a methodology to estimate the
epidemiologically fundamental quantity of the basic reproduction number.
Finally, we will attempt to interpret our findings up to that point under the
scope of the system’s numerical integration.

3.1 Introduction

To compare the agent-based model of chapter 2 with an analytical approach
we resort to standard work done on deterministic models with demographics
(i.e. birth-death processes within a population) and spatial heterogeneities
within a metapopulation context [Allen et al., 2008; Brauer and Castillo-
Chavez, 2012; Hethcote, 2000; Murray, 2002; Rohani, 2008]. The former

75
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characteristic refers to a distinction of the population in compartments with
mass-action dynamics (anticipated in the reaction scheme (3.4) for the sys-
tem in question). This means distinguishing different infectious groups
within a population and assuming that each group can either interact with
the other in pairs (where applicable) to switch to another group or sponta-
neously reach another one, and in both cases following an exponentially dis-
tributed waiting time distribution (Poissonian process) [van Kampen, 2003|.
The latter feature (metapopulation) consists of ‘populations within popula-
tions’ exhibiting heterogeneities often termed patches in the relevant litera-
ture [Allen et al., 2008; Brauer and Castillo-Chavez, 2012|. In particular, the
most often employed method to model a metapopulation model is through
a network representation where each node contains a portion of the global
population with, in general, all the available compartments represented in it.
Under this scope the whole network can act as a reaction-diffusion (see [Mur-
ray, 2002]) system (reactions concerning the node dynamics and diffusion the
migration through the network’s connectivity) whose epidemic spread and
infectious invasion threshold can be analytically calculated as in [Colizza
and Vespignani, 2007; Colizza et al., 2007|. Having obtained this baseline
we can then add stochasticity to the infection and the breeding dynamics
to improve the level of comparison with the agent-based model [Allen et al.,
2008]. Within the scope of this chapter however we shall restrict ourselves
to establishing the reaction and demographic segment of the aforementioned
analytical programme. That is we shall assume a single population with
mean field theory contacts (i.e. where the population is assumed to be well-
mixed and homogeneous and thus all contacts are equally probable rendering
any spatial structure meaningless) and demographics following the German
cattle agricultural system’s structure and the BVD dynamics’ description of
chapter 2.

The approach presented in the following is not the first to attempt a de-
terministic description of BVD. Previous work employed a multi-compartmental
system to describe the various PI production pathways through different
pregnancy stages [Cherry et al., 1998] and an attempt to calculate funda-
mental epidemiological quantities (the basic reproduction number as shall be
defined in section 3.5) [Dieckmann et al., 2009, 2013]. It is nevertheless the
first to our knowledge which attempts to take into account comprehensively
the vertical transmission (i.e. by breeding) dynamics of BVD by incorporat-
ing an additional time-scale to that of infections in the system, namely the
maturity and birth cycle one. It also avoids the difficulties of high dimen-
sional compartmental systems, such as in [Cherry et al., 1998], by restricting
the number of compartments to four, which fundamentally, fully describe
the infectious states of BVD following its biological description [Gethmann,
2018; Lanyon et al., 2014; Lindberg, 2003].



CHAPTER 3. BVD MEAN FIELD MODEL 7

3.2 System Formulation

We start with a primitive dynamical system (i.e. whose dependent variables
are time-dependent), which is the so-called SIR model with demography and
is well established in the literature in [Diekmann et al., 2013; Murray, 2002;
Rohani, 2008|

S(t) = p— At)S(t) — uS(t)
(1) = A®)S(0) — I(t) — I (1) (3.1)
R(t) = 7I(t) — nR(t),

with S, I and R being the three compartments in which the population has
been divided, standing for susceptible, infected and recovered respectively,
p > 0 a constant rate for births and non disease related deaths (whose
inverse is the average lifetime of the population’s individuals), A(t) = BrI(t)
the force of infection with p; the infectious transmission rate and 7 the
rate of recovery (inverse to the average recovery period). Removing the
birth-death terms p from system (3.1) we are left with the standard SIR
model established in the seminal work of [Kermack and McKendrick, 1927]
and which constitutes the starting point of every well-mixed, homogeneous
epidemic model nowadays [Allen et al., 2008; Brauer and Castillo-Chavez,
2012; Hethcote, 2000; Murray, 2002; Rohani, 2008].

System (3.1) however does not capture even crudely the vertical dynam-
ics of BVD described in chapter 2 due at least to births taking place in
compartments other than S in reality, and due to the persistently infectious
compartment, which is absent from it. As a first attempt to rectify this
issue we can introduce an additional persistently infectious compartment P,
modify the force of infection as A(t) = BrI(t) + BpP(t) to take the infec-
tious contributions of the infectious P compartment into account with an
infectious transmission rate Sp > fBr > 0, and distribute the constant birth
term p from the S compartment of system (3.1) to the S, R and P compart-
ments. However, in this manner we are going to lose the physically necessary
disease-free equilibrium point as we can easily see in the form (3.2).

$(t) = & — A®)S(t) — uS (1)

1(t) = A(®)S(t) — VI () — uI(t) (3.2)
R(t) = & +91(t) - uR(1)

P(t) =& — uP(t)
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Thus we need to formulate a system starting from (3.1) with the minimal
requirements being the modification of the birth and death flows and an
extra persistently infectious compartment to start approaching the dynamics
described in chapter 2 in a single farm with a well-mixed, homogeneous
population (mean field dynamics). To that end we rewrite system (3.3) as

+ CR(t) (3.3)

which takes into account the persistently infectious animals with compart-
ment P, has as the force of infection the previously modified version A(t) =
BrI(t) + BpP(t) and its birth-death terms ¢;(t), i=S, I, R, P are time-
dependent. What remains to be done to reach our goal of retrieving a system
for BVD with demographics is to determine the ¢;(¢) terms.

We first start by modelling the BVD transmission and the cattle breeding
dynamics that we established in chapter 2 in a horizontal and vertical (i.e.
contact and birth based respectively) transmission scheme (3.4) and by illus-
trating the vertical transmissions in time in figure 3.1. In figure 3.1 we define
two time-scales associated with breeding and vertical transmissions; one for
the maturity of the animal, which we set as ¢ > 0 and one for the gestation
cycle of the animal, which we set to be 7 > 0. Breaking the gestation period
7 down into two successive periods 7 and 7 with 7 = 7 + 7 and 7 < T
we can relate the early critical pregnancy period for a PI offspring to enter
the P compartment in case of infection of the mother cow with the 71 time
window. We continue by relating the 7 period to correspond to the latter
pregnancy period where the offspring undergoes the disease with its mother
as an embryo with a developed immune system and is therefore born immune
in the R compartment. Thus we have two time-scales in the system: one for
the infectious dynamics (in an SIR fashion) and one for the demographics
as exhibited in figure 3.1. The time-scale referring to the vertical infections
(i.e. those coming from breeding) follows a similar formulation to systems
found in [Blyuss and Kyrychko, 2010; Hethcote and van den Driessche, 1995;
Sipahi et al., 2007].

We neglect abortions and all other by products of pregnancy considered
in the agent-based model and which follow observations, as well as the resting
time between cow pregnancies. Furthermore, as the BVD agent-based model
was focused on cows as the main proxies of BVD rather than both sexes of
cattle, we take only cows into account in the present modelling and thus the
dynamics that take place concern only farms with a female population, an
approximation which predominantes the structure of a dairy farm.
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Scheme (3.4) exhibits the dynamics that we seek from an individual, re-
action perspective, both for horizontal, contact and spontaneous (left block),
and for vertical, generative reactions (right block). On the left block we have
the standard SIR dynamics, where infections of S individuals take place with
a Br and a Bp infectious rate, depending on the contact conditions with the
I or P ones respectively. In turns, infectious individuals I enter the recovered
R state spontaneously with a rate +, whose inverse is the average waiting
time in the I state (i.e. the average recovery period). Lastly, in regard to
newly arrived individuals in the R state from an R parent (anticipated in
the right block), they spontaneously move to the S state after a p (maturity)
waiting time (from now on we shall refer to the maturity period with p and
forget its usage as the birth rate as we saw in systems (3.1) and (3.2)). On
the right block we see the vertical, birth dynamics taking place with a rate
k. Susceptible individuals throughout a gestation waiting time 7 give birth
to susceptible ones. Individuals who were infected at some point during the
gestation waiting time 7 = 7 + 7o recover with a rate v and produce new
individuals whose state depends on the period of 7 throughout which their
parent was infected. If the parent was infected during the 71 period, then the
offspring will be in the P state, while if the parent was infected during the
period, the offspring will be permanently in the R state (see also figure 3.1).
Individuals who were in the recovered state R during the gestation time 7
produce a temporarily R individual. Finally, individuals who were in the P
state during the gestation period 7 produce a P offspring.

Following the reasoning of figure 3.1 one way to account for single births
at a randomly picked time t is to integrate all the contributor animals over
their entire pregnancy period and average the integral with that period.
Therefore, for the S compartment such birth contributions would be written
as % tt:;f _.1S(0) + R(0)]d0 accounting for the susceptible arrivals from both
susceptible and immune cows (through the maturity period p for the latter
case), for the R compartment as 5 b . 1(0)d0 accounting for arrivals

t—p—
from the cows getting infected in the later part of their pregnancy 7o, as the
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Figure 3.1: Maturity and reproduction cycle of a female animal. With blue
we denote the persistently infected to-be-born calves, if the mother is infected
in its first stages of the pregnancy (71) and with red the permanently immune
to-be-born calves if the mother is infected in the later stages of its pregnancy

(2).
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m2/7 factor implies, and for the P compartment as T4 ﬁt:,iir 1(0) + P(0)dd
accounting for arrivals from the cows getting infected in the earlier part of
their pregnancy 71, as the /7 factor implies, and for the PI cows which
reproduce themselves.

We still however need to determine the outflow from the compartments
(death). Since we assumed in the BVD agent-based model that the farm
attempts to preserve its population constant through trades and we are not
going to consider any spatial structure in the analytical model, we define a
global control function D(¢) such that the total population of the system N
is always preserved N = S(t)+1(t)+ R(t)+ P(t), while retaining the feature
of the primitive system (3.1) that the death term should be proportional to
the compartment in question.

With all the above in mind system (3.3) becomes

. k [tm
S(t)=—-A(t)S(t)+ - / [S(0) + R(0)]d0 — D(t)S(t)

T Ji—p—r

1(t) = A(t)S(t) —»I(t) = DO)I(1)

R(t) = 41(t) + 22k /t :ﬁ 1(6)d0 — D(t)R(t) (3.5)

P(t) = k / o [5510) + P(0)] do - D(1) P(1)

—p—T

t—p .
where D(¢)/k = ==£=T S(?;(It()GHR(Q)w the total births such that N(t) =

0 Vt, with N(t) = const. = N = S(t)+1(t)+ R(t)+ P(t) for some constant,
non disease related birth-death rate & > 0. Note that this preservation
quality enables us (by knowing the population constant N) to reduce the
system’s four dependent variables to three. Further, y > 0 is a constant
denoting the average time it takes for calves to reach maturity, 7 is the total
average gestation period, and 71 > 0 and 7o > 0 (7 = 71 + 72) are two
subperiods of the gestation periods, which correspond to the typically P and
R outcomes for the embryo calf (77 < 72) as previously mentioned in scheme
(3.4) and following the logic of figure 3.1. Note that the maternal antibody
effect featured in the agent-based model of chapter 2 is taken into account by
the income of the R(f) term in the S compartment with the eventual waning
of the protective effect coming through the maturity time shift p. This is
demonstrated as well in the right block of scheme (3.4).

By examining system’s (3.5) equilibrium points we quickly realise that
there is a trivial endemic equilibrium point where all the population shifts
to the P compartment. Although strictly speaking on biological grounds
[Gethmann, 2018; Lanyon et al., 2014; Lindberg, 2003] the reproduction of
PI animals is non-negligible and possibly in an artificial environment set
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to prove the concept an ‘all PI’ population would be possible, in practice
the reported PI population is always a small minority of the total cattle
population [Pinior et al., 2017; Stahl and Alenius, 2012]. Therefore, to make
the analytical approach even more biologically plausible altogether we make
the assumption that I(#) > P(#) in the integral of the P equation of (3.5),
so as to make an endemic ‘all PI’ equilibrium impossible, and the system
takes the final form

. k [tm
S(t) =—A(t)S(t) + - / [S(0) + R(0)]d§ — D(t)S(t)

T Ji—p—r

1(t) = A(t)S(t) —7I(t) = D(O)I(1)

) o t—n
R(t) = ~I(t) + le / 1(6)d0 — D(t)R(t) (3.6)

which is an integro-differential, or a retarded functional differential, and au-
tonomous system (i.e. which is invariant to time translations) [Diekmann
et al., 1995, defined and continuous in the space {[—p — 7, —pu], R*}.

In the limit where the maturity and the pregnancy periods vanish, i.e.
7 — 0 and p — 0 we retrieve the system (3.7), which is very close to the
standard SIR without demography and has an extra constant contribution at
its force of infection A(t) = Br1(t)+ Py (Po = BpP, since the P compartment
remains constant), which takes us back to considering only one time-scale,
the one of the horizontal dynamics (i.e. where the infection dynamics take
place). The P compartment is uncoupled from the rest of the system and,
being constant, does not play a role in the system dynamics other than
translating the force of infection by a constant.

S((t)) _ ( )(t)( )( ) I(t)

I(t) = A(t)S(t t

R(t) = I(t) (37)
Pt) =

3.3 Positivity of Solutions

Before we proceed to the analysis of system (3.6) and make some brief refer-
ences to the relevant theory, we present a proof using standard calculus about
the sign of its solutions as it evolves in time. This will give physical credibil-
ity to the system as negative solutions are meaningless. Regarding that our
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analysis will be numerical in the following sections, this result constitutes
the only mathematically rigorous one in this chapter.

Assuming that the history functions of S(t), I(t), R(t) and P(t) are
all simultaneously non-negative and their sum positive and equal to N €
{N € R: N > 0} we can prove that the solutions of the equations of system
(3.6) are as well simultaneously non-negative for ¢ > 0 and that their sum is
positive. Symbolically:

S(t), I(t), R(t), P(t)>0forte|[—pu—r71,—p) (3.8)

where the [—p — 7, —p] interval refers to the first pregnancies of the system.
Additionally, we assume that the summation of the state variables S(t), I(¢),
R(t) and P(t) is constant for every given, positive time ¢. Symbolically

St)+1I(t)+ R(t)+P(t)=N>0fort € |[—pu—71,—p) (3.9)

where N € {N ¢ R: N > 0}.

Since the population is a constant IV, we need to prove that at the bound-
aries of [0, N]* the vector field is directed inwards.

We first normalise the system without loss of generality, i.e. ST = %,
It = %, Rt = % and PT = % for ease and will hence refer to the normalised
compartments ST, I, Rt and P! as S, I, R and P. Therefore the solutions
of the system will lie in the interval [0, 1] separately and will all add up to
unity 1= S(t) + I(t) + R(t) + P(t).

We start by the S (t) equation. Assuming that we are exactly at the left
boundary of [0, 1] at the beginning of time (i.e. S(t) = 0) we have to prove
that V¢ > 0, S(t) | g0 > 0. Indeed S(t) |s=0 = [, .[S(6) + R(6)]d0 >
0, due to our assumption about the history functions (3.8), which means
that the S(¢) function monotonically increases with time from its zero value.

The proof continues by examining first the sign of the P(t) ‘ P(t)=o and
then of the I(t) | 1(t)=0 and R(t) | ()0 equations in any order. We find that
they all have to be positive due to the history functions’ assumption (3.8)
and the previously established positive signs of their counterparts for ¢ > 0.
Thus S(t), I(t), R(t) and P(t) are all monotonically increasing with time
from their zero values.

We work similarly for the right boundary of [0, 1]. In this case S(t) | S(ty=1 =

tt__:_T[S(H) + R(0)]df —1 < 0, again due to the assumptions (3.8) and (3.9)
about the history functions. Hence S(¢) monotonically decreases with time

from unity. Similar argumentation follows to prove that I(t)| =1 <0,

R(t) | Rity=1 < 0 and P(t) | py=1 < 0 leading to the conclusion that I(t),
R(t) and P(t) all monotonically decrease with time from unity and the vec-
tor field points inwards [0, 1]*.

Finally, from the assumption (3.9) and what was just proven for ¢t > 0 it
follows that
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St)+I(t)+R(t)+Pt)=1>0fort >0 (3.10)

where the result also applies to any N € {N € R: N > 0}.
Q.E.D.

3.4 Stability Analysis

3.4.1 Rudiments of Delay Differential Equations and Equi-
libria
In many aspects of direct applicable interest the theory of ordinary differen-
tial equation (ODE) systems is extended to delay differential equation (DDE)
systems with some minimal additional requirements [Diekmann et al., 1995;
Hale, 1977]. We shall attempt to only describe some points which make the
definition of system (3.6) more meaningful and set the stage for the results
to be presented.

Most strikingly the difference between ODEs and DDEs appears in the
domain (vector space) of definition. Whereas an ODE system is usually
defined on a real interval mapped to the real or the complex domain (e.g.
[a,b] — R for a single equation, which constitutes a finite dimensional vector
space) a DDE system has to take into account its delays as well. For instance,
for a single-delay DDE with 7 as the delay, the domain over which it is defined
takes the form {[—7, 0], R} — R making its vector space infinite dimensional.
Moreover and in terms of definition again, any kind of ODE system depends
only on state variables and not on retarded ones as DDE systems. In other
words, in the example of the single-delay DDE that we previously assumed
the system is dependent on ¢t — 7 apart from ¢ as independent variables. This
intrinsic difference also sets DDE systems apart from ODE ones in that,
although both are defined continuously over a certain domain, if the delay
7 lies within that domain there will be a discontinuity for the DDE system
which will keep following it periodically with a period of exactly that delay
7. This is called discontinuity propagation in the DDE theory and is the
mechanism that can induce some temporary or permanent periodicity to the
system in question [Erneux, 2009|. In the case of system (3.6) we identify
this period as the span of the interval [—p — 7, —p], that is 7.

However, when treating a differential system as (3.6) at its equilibrium
(i.e. when it has become time invariant) both ODE and DDE systems are
subject to the same treatment. Furthermore, as far as stability is concerned,
DDE systems’s behaviour around an equilibrium point is determined by their
eigenvalue spectrum and the theory pertaining this stability is a natural
extension of the ODE theory taking into account the retarded variables and
the infinite dimension of the vector space on which the DDE system is defined
[Gu et al., 2003].
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As far as the equilibria of the system (3.6) at hand are concerned, it
is trivial to verify that it has three out of which only one is physically
acceptable (disease-free), and two rejected due to extinction and negative
population values (3.11). In addition, as we shall see in what is to come,
the numerics indicate the existence of at least one equilibrium point as well.
Its determination though would have come from the solution of a nonlinear
algebraic system, whose form does not seem to be solvable to the extent of
our knowledge. What can be done to approximate the (or the more than
one) location of the endemic equilibrium in the phase space is to provide an
initial position (S%, 1%, R%,, P)) and then use a root finding method, such
as Newton’s method [Burden and Faires, 2005|, to approximate the final so-
lution (Sso, Ioo;s Roos Po) = (0,0,0,0) of (3.6) at the steady state. We list
all the equilibria of (3.6) in (3.11). See also [Kuznetsov, 1995] for equilibria
locating methods based on their known stability.

(Sooy Isoy Roos Poo)1 = (0,0,0,0)  (extinction)
(Sooy Loy Roos Poo)2 = (N,0,0,0)  (disease-free) (3.11)
(Sooy Loy Roos Poo)3 = (5,0,—S5,0)  (non-physical) '
(SooanoaRooyPoo)4 = (gS,gI,gR,gP) (endemic),

for some possibly well-behaved (i.e. differentiable)  functions

9i(N, Br1, Bp,7, k, 7,71, 72) for i = S, I, R and P separately.

3.4.2 Linearisation Around Equilibria

Since we could not determine the endemic equilibrium, the only physically
acceptable equilibrium on which we can focus any linearisation and stability
analysis will be the disease-free one.

The most straightforward way to linearise (3.6) is equation-wise, keeping
terms of only first order. Furthermore, we approximate the ratio m01+a: up
to its first order term by expanding it by Taylor around = 0. Thus,

1 1 T

~ — —
~

ro+x  wo xd

symbol, i.e. X = S', f, R, ]57 N =S+1+R+Pand Ny = Sy+ Io+ Ro+ Pp.
This results in

. We moreover denote all the linear variables with a hat
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A S
S(t) =— {51—7050 + BpPoSo + *0(50 + Iy + Ro) — So — Ro]

_ <,8PP0 + Brlo + W) S(6) = BrSol (1)
—ﬂpSOP(t) WSON( )
0
L AR 3 So T4 . .
+ o /t_H_T {S(H) + R(Q) — FO [3(9) + I(Q) + R(Q)} } do

X I
I(t) = {511050 + BpPoSo — vIp — F(:)(SO + 1o+ Ro)}

+ (BpPo + Brlo) S(t) + (5150 -y - No

.~ So+Io+Ro. -
+ BpSoP(t) — %ION@)
0
Iok . A )
N /t - [5(9) +10) + R(e)} df

So+ Ip+ Ry -

R(t) = |:'YIO + *2[0 - @(50 +Ip + Ro)] +I(t) - N R(t)

So + Iy + Ry b= T2 & Ry A
TRON( ) + k/t_w {721(9) N (S(a) +10) + R(e)) } df
; T P So+ Io + Ry - So + Ip + R, .
P(t) = {110 - —O(So + 1o+ Ro)] - %P(t) O]
T 0 N§

+k/;:T 10 - 0 (860)+ 160) + R(o)) s

(3.12)

Substituting the values of the equilibrium disease-free point in the linearised
system (3.12) and assuming a linearised population N = 1 we obtain a
significantly reduced form

=i+ Re-ppp-t " iy

-
I=(Br—~v—1I+ppP

(3.13)
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for which the total population is preserved as it should.

System (3.13) can now serve as the starting point of a stability analysis
around the neighbourhood of a totally susceptible population, which is from
an epidemiological point of view the most interesting and important. That is
because an outbreak occurs exactly from what can be seen mathematically as
a perturbation of a susceptible population in favour of the infectious portions
(i.e. an infectious source which is at some reference point inserted in the
system).

3.4.3 Eigenvalue Identification and Stability

We start examining the stability of system (3.13) by estimating its eigenval-
ues. To simplify the analysis, we note that only the infectious subsystem of
the disease-free linear system (3.13) is significant, as it is the only relevant
portion for secondary infections given a certain source in a naive (i.e. totally
susceptible) population and therefore for the study of endemic conditions.
Another reason according to [Diekmann et al., 2009] is because only the
states of infection, i.e. those giving rise to new infections, are significant for
the calculation of an outbreak. As we shall see in the methodology of section
3.5, the projection on the infectious part of the subsystem suffices to com-
pletely describe the conditions for the generation of secondary infections in a
completely susceptible population from a single source. Mathematically put,
these conditions would be the identification of unstable eigenvectors (those
to which positive eigenvalues correspond), if any exist. This coincides with
the definition of the basic reproduction number Ry quantity and is equiva-
lent to our first observation. The basic reproduction number Ry is one of the
most important quantities to be calculated from a differential system model
providing a threshold condition for an epidemic [Diekmann et al., 2013]. We
shall define and treat this quantity more carefully in section 3.5.
The reduced infectious subsystem reads

1(t) = (B — v — V() + BpP(t)

P(t) = —P(t) + Lk /t ™ ie)ae.

T S
(3.14)

To find the eigenvalues of (3.14), we make the ansatz that its solutions are
of the form X (t) = c e, where X (t) = I(t) or P(t). Employing this ansatz
we retrieve the following system of characteristic equations
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Acr = (Br —v — V)er + Bpep
Aep = k—=— (ef)‘“ - ef’\(’”T)) —cp.
T
(3.15)
To make an assertion about the eigenvalues of system (3.15) in a unified
way which spans all of the infectious space we bring it in the form A(\)c = 0,

seen in (3.16), and demand that the determinant of A(\) be zero, so that it
can have linearly independent solutions (equation (3.17))

Br—~—1-2X Bp e\ (0
(kilai”(l—e—w _A_l)(c,;)—(o) (3.16)

From the det A(A) = 0 relation

T e M

A+ DB —v—=1=X) +ppk

(1 - e*”) = 0. (3.17)

-
3.5 The Basic Reproduction Number

In dynamical epidemic systems a fundamental quantity that is seemingly al-
ways sought as an epidemic growth indicator is the basic reproduction number
Ry. It is defined as the ratio of secondary infections in a naive (i.e. com-
pletely susceptible) population by a certain seed of infectious arrivals. This
of course constitutes no definition and a systematic methodology is required
to meaningfully determine it [Diekmann et al., 2013].

In the following we shall apply on the disease-free linearised system (3.13)
the formulation outlined in [Diekmann et al., 2009, 2013] based on the so-
called next-generation matriz (NGM). The main idea behind the NGM is to
formulate it so that it takes into account the infectious arrivals of a popula-
tion demographically, i.e. across generations (hence the name) starting from
a naive population (disease-free equilibrium). Once the matrix has been
constructed the Ry quantity is no other than its spectral radius, which is its
largest eigenvalue [Boyce and DiPrima, 1997].

The first step would be to note that only the subsystem (3.14) contributes
to any infectious arrivals around the disease-free equilibrium point and suf-
fices for that reason to the aim of the NGM analysis. Next, we bring system
(3.14) to the form x = (T + X)x, where T is the transmission matrix and
Y is the transition matrix according to [Dickmann et al., 2009]. The first,
T, refers to infectious transmissions, while the latter 3 signifies the demo-
graphic arrivals (births-deaths) in the infectious compartments I and P. This
distinction is the basis of the NGM formulation.
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(1)-Cg (F)

where L = ftt:“_ d is an operator (i.e. a continuous map acting on a state
n—r
space to the same space) for the population states.
We now separate the matrix into its T and ¥ components in the sense

that we explained:

_( Br Bp (-1 0
T_<O 0 and X = k%ﬁ 1)

Regarding the components of ¥ as the rates of entry into an infectious
state, their inverse would equal the average waiting time spent in an infec-
tious state. Furthermore, if an imaginary direction is defined as positive
towards the infectious states I and P from the susceptible state S, then the
death or the transition to the R state would be defined as negative [Mur-
ray, 2002; van Kampen, 2003|. Finally, the product of the average waiting
time in an infectious state with the rate of arrival at that state (what the
components of the transmission matrix T represent), defined as the number
of susceptible contacts with infectious individuals per unit of time, would
result in the newly infected individuals. Following this line of thought and
condensing this information into a matrix form, the calculation of the prod-
uct —TE™! retrieves what is in [Diekmann and Heesterbeek, 2000] called
the large domain NGM Kjy. The naming of this matrix already implies
some redundancy in many cases, namely that states and arrivals that do not
provide any information about the infectious evolution of the system hori-
zontally and vertically are taken into account. The definition of K, generally
and for the case of (3.18) according to [Diekmann et al., 2009] is exactly the
aforementioned product

By g fe
Ky = TS ! = < 1yt "(3)75 Ty L 55’ ) . (3.19)

From that point we would like to reduce K;, to a matrix K , which would
refer only to the arriving and departing infectious states. To that end we
define an auxiliary matrix E consisting of unit column vectors spanning the
range of T (i.e. with as many columns as the corresponding non-zero rows
of T), which will serve in the reduction operations of K, as we are going to
see in a moment. In the case of (3.18), E is the vector

E:(é), (3.20)

and from there we define the transformation K = ETKLE for the calcu-
lation of the sought reduced NGM K, whose elements K;; are exactly the
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expected number of newly infected individuals at infectious state ¢ from a
newly introduced infectious individual at infectious state j. Essentially, with
this transformation and the form of E (remember that it spans the non-zero
rows of T in unit vector columns and thus accounts for transmissions from
non-infectious to infectious states) we ascertain that the resulting matrix
K does not contain any redundant information about the propagation of
the infectious states of the system at hand. The basic reproduction num-
ber is then defined as the spectral radius of K, p(K), which simply means
the maximum (dominant) eigenvalue of K [Boyce and DiPrima, 1997; Diek-
mann et al., 2013]. Of course what we just described is very general and
encompasses systems with infectious states that are not themselves infected
(e.g. are in an incubation, so-called ‘exposed’ state). In the case of (3.18)
the analysis is considerably simplified as the infectious states I and P have
the capacity to generate themselves new infections. This interpretation is
reflected in the very simple form that K assumes in this case, as it is it-
self a scalar operator (since it contains L) and therefore coincides with its
eigenvalue spectral range p(K). Thus, Ry assumes the form

Ro = p(K) = 1?7 + k% 1%7L. (3.21)

Recalling now that all the methodology we have followed so far concerns

the linearised system (3.14), which is in regard to the neighbourhood of the

disease-free equilibrium, the only state on which it would be meaningful for

RO to act as a proxy of secondary infections from a single source in a naive

population would be the constant disease-free one (5,1, R, P) = (1,0,0,0).
Then Ro(S,1,R, P)T = Ry.

Br_ 7 Bp

Ry = .
0 14+~ 7147

(3.22)

The reason an operator came into play in (3.21) was that in [Diekmann
et al., 2009, 2013] only one time-scale was assumed and most importantly the
prototype systems presented are ODE rather than functional retarded ones.
However, it is interesting to see the conditions under which this methodology
suffices to lead to the Ry calculation in our distributed delay system case
assuming that the operator Ry acts on the disease-free equilibrium as a
hypothetical perturbative factor. A more intricate iterative treatment for
the Ry calculation in distributed delay cases (for the susceptible class) is
presented in [Thieme, 2009].

Interestingly and from a consistency viewpoint, we can arrive to the
result (3.22) by substituting A = 0 in the characteristic equation (3.15)
defined in section 3.4.3 and employing the L’Hopital rule. That is because
A = 0 is the threshold for the growth or decay of the exponential solutions
X (t) = c,eM seen in subsection 3.4.3. When A > 0 the solutions grow and
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the system destabilises (outbreak), while when A < 0 the system is stable
and an epidemic never takes place.

[e’)‘“(l — e’)‘T)]/
(A7)’

_ b + BpkTi/T
v+1

where with the prime we denote differentiation in respect to \.

Working inversely, the reasoning of substituting a null eigenvalue A = 0
in (3.15) revealed a transcritical bifurcation around the disease-free point,
which epidemiologically is reasonable as it suggests an epidemic threshold.
An endemic equilibrium may not always exist (e.g. in the SIRS model where
the recovered state can return to being susceptible after a well defined time
-see |[Kyrychko and Blyuss, 2005] for a rigorous example), while the disease-
free does.

Comparing the form of (3.22) to that of (3.23) we notice that the latter’s
right-hand side is identical to that of the former. It follows then that the
behaviour of system (3.13) changes qualitatively (bifurcates) in respect to
the variation of its parameters for the critical value Ry = 1 exactly because
we are looking at the threshold between growth and decay of the exponen-
tial solutions for system (3.15). Thus, Ry = 1 is a threshold signifying the
appearance of an epidemic equilibrium and thus the conditions under which
an epidemic (i.e. I(t) > I(0) for some ¢t > 0) can marginally occur. We
deduce that the regime Ry < 1 should be that of no outbreak by the in-
terpretation of the parameters coming into (3.23): if the rate of infectious
removal v dominates those of the horizontal 5; and vertical arrivals fp7t,
then the infected individuals recover faster than they can transmit their in-
fection and therefore the infectious perturbation vanishes to the disease-free
state. Conversely, when Ry > 1 the new infections’ rate is greater than their
removal one and therefore an epidemic has to occur.

=0

71 ;.
ﬁ[—’y—l—l—ﬁpk—lhm
T A—=0

&1 (3.23)

3.6 Numerical Integration

In this section we shall tackle the original system (3.6) and attempt to use the
parametric insight gained from the analysis so far. Apart from understanding
system (3.6) our goal is to obtain informative solutions on the farm dynamics
and possibly on the overall S, I, R and P trends as a baseline comparison to
the agent-based model of chapter 2.

The dominant feature that sets numerically DDE systems apart from
their ODE counterparts is the fact that initial conditions are not sufficient
to provide a solution as in the ODE case. This is attributed to the retarded
(delayed) states appearing in DDE systems, which require information of
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the system prior to a reference time ¢t = 0. In particular for system (3.6)
the history of the system lies in the interval [—u — 7, —u). Therefore, we
will need knowledge of the S(t), I(t), R(t) and P(t) for t € [—p — 7,—pu) to
numerically integrate (3.6). It is also noteworthy to report that there is a
discontinuity at t = —pu, which propagates in periods of 7. This is owed to
the open right limit of the interval [—p — 7, —p).

Numerical schemes for DDE systems are possible only when their delays
are discrete [Erneux, 2009], therefore we introduce auxiliary variables in (3.6)

Yi(t) = /t s

—pu—T

v = [ " L)as

—pu—T

Y(t) = /_ R(6)do,

which will reduce it to from an integro-differential system to a DDE with
three more dependent variables. Thus, we are enabled to use a solver from
the literature for the now extended, seven variable system

é [Y1(t) + Ya(t)] — kg(z;l:f)j—(:)}z(%(—it_)f(g(t) ©)
Yi(t) +Yo(t) + Y(t)
S(t) + I(t) + R(t) + P(t)

S(t) = —A(t)S(t) +

I(t) = A@)S(t) —yI(t) —k

R(t) =71(6) + k3 Yalt) — b (gif);(;)y i(t])%(;f(fj )
T Y; Y- Y-
P(t) = k5¥a(t) — b (t)l(j);t) i(t})z(t) j(;) Ol (3.24)

Yi(t) = [S(t—p) — S(t—p—1)]
Yo(t) = [I(t —p) — I(t—p—7)]
Yi(t) = [R(t —p) — R(t —p—7)].

Having brought system (3.6) into the form (3.24) we can now employ the
PyDelay solver for the latter’s numerical integration [Flunkert, 2011]. The
solver utilises an explicit, i.e. each point on which the integration is calcu-
lated is based on previously determined values, Runge-Kutta method [Bo-
gacki and Shampine, 1989] with cubic Hermite polynomials for interpolating
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over the given number of points in the interval of integration and an adaptive
step size scheme [Burden and Faires, 2005].

Assuming a normalised population and following the biological reasoning
of a naive initial population we set the history function of S(¢) to be unity
over [—p—7,0), while we set all the other states to zero on the same interval.
At t = 0 we allow a discontinuity to take place accounting for a perturbation
in the naive population, namely that S(0) = 0.9 and I(¢) = 0.1. The rest of
the states remain zero at ¢ = 0, except for ¥7(0) = 1 to initialise the delayed
birth effects in (3.24). We set the total integration time to be equal to eight
T+ p periods. This would correspond to two female animals’ life cycles in the
agent-based model. As far as the system parameters are concerned, we as-
sume the values (8p, 1,7, k) = (10,1,1/14, 1) after biological reasoning. In
particular, the persistently infectious transmission rate Sp should be much
larger than the transiently infected one S; due to persistently infected ani-
mals shedding the virus throughout their lifetime and having larger amounts
of it in their bodies than their transiently infected counterparts. In addition,
the inverse of the recovery rate 1/ should give the average recovery time
which coincides with two weeks (fourteen days) and the birth rate is selected
to unity since its weight is determined by the weighing population factors
found in the expression D(t).

The parameters 7 = 270, 71 = 90, 79 = 180 and g = 550 correspond to
the gestation, first trimester, later gestation stage and maturity period in
days respectively. From the rest of the system’s parameters we focus on only
two parameter variations as of increased importance: firstly on the ratio
71/7 encountered in the numerator of the Ry expression (3.22) in section
3.4.3. This ratio introduces the novelty of vertical persistently infectious
transmissions, as we saw in the disease-free linearised system (3.13). It is
however also evident from the P expression of the original system (3.6).
Secondly and more trivially on the Sp transmission rate, as it implicitly
reinforces the P expression in the original system through the vertical (birth)
infectious transmission mechanism and certainly contributes greatly to the
force of infection A(t), as the biology of BVD demands.

Since our analysis focuses on the majority of the initial population being
susceptible with the rest being infectious it is reasonable to invoke the lin-
earised result of section 3.5 on the basic reproduction number Ry to compare
with the numerical results. In that respect, both the 7 /7 and Sp parame-
ters’ interplay affect the Ry non trivially, as they intertwine horizontal and
vertical transmission.

Bearing the previous in mind we summarise the different parameter re-
sults in figure 3.2. The exact choice of parameters can be found in table 3.1
referencing Ry.

The upper left plot simply demonstrates what we anticipated from the
linear analysis for 71 /7 = 0: without vertical transmissions of PI animals
(r1 = 0) the perturbation dies out and the naive population is restored.
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The middle left plot exhibits some damped periodicity of period equal to
u+ 7 and settles on an intermediate endemic state where the TI infections
dominate the population. It corresponds to the most realistic choice of pa-
rameters as explained in section 3.4.3. It is also rather similar, albeit less in
periodic damping towards the steady state to the middle right plot where the
Bp transmission rate is increased for the otherwise same realistic gestation
period parameters’ choice. The direct consequence is a dramatic reduction
of the S portion due to increased infectiousness and a slight increase of the
R portion as a reaction (recovery) to the I dominance. Surprisingly, the P
portion is virtually not affected, despite the increased transient infections I
which one would expect to increase the infectious portion corresponding to
the 71 /7 term in the P equation of (3.6).

The most striking plot however, is the upper right, which both oscillates
intensively and settles on a P dominant equilibrium for all the carrying cows’
infection shifted to their critical first gestation stage 7. If the P portion
is high then the infections are on the rise, which explains the pronounced
level of I and in turns the recovered curve fluctuation R. The S portion
gets virtually depleted, which is something completely counter intuitive to
the standard SIR system [Kermack and McKendrick, 1927; Murray, 2002;
Rohani, 2008]. In this latter case of the SIR system the epidemic dies out
not due to a depletion of the S portion rather because of the choice of the
system parameters (infectious transmission and recovery time). The result
at hand demonstrates however, that when vertical transmissions are taken
into account, then the S population can reach a point of extinction if all the
new arrivals (births) enter an infectious compartment (P in our case). In
reality though this is highly unlikely as it would imply a gestation period
which solely contributes to the P compartment, an implication countering all
biological evidence, but which can be artificially induced if all the carrying
cows are always infected in their first gestation trimester 7;. As far as the
plots of the lower row in figure 3.2 are concerned, the leftmost exhibits a
weakly, damped oscillatory behaviour towards an endemic equilibrium where
the S portion dominates. That is due to the decreased effect of the rate 8p,
which is brought down to the value of ; (see table 3.1). The rightmost is
virtually identical to the middle left and indicates that the system’s infectious
dynamics increase only slowly with the decrease of the infectious removal’s
rate, or said differently, with the increase of the recovery time.

In all the plots of figure 3.2 the basic reproduction number Ry proves to
be an indicator of the severity of the outbreak. For the value less than one,
the system’s states settle indeed on the disease-free equilibrium as expected
according to our analysis in section 3.4.3. For the value greater yet close to
one, the system exhibits a weak outbreak and settles on an endemic equilib-
rium with the S state being dominant. As we keep increasing Ry the I and,
ultimately for the highest value of Ry, the P state becomes dominant with
an increasing fluctuation of the intermediate states.
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Figure 3.2: Numerical integration for the variation of the parameters of
system (3.6) as listed in table 3.1. The S population fraction is represented
in solid blue, the I in dashed red, the R in solid green and the P in dashed-

dotted magenta. The constant system parameters are (5r, 1) = (1,550).

(11, 72, Bp, ) Ry (So, 1o, Ro, Po)
(0, 270, 10, 1/14) | 0.93 | (1.00, 0.00, 0.00, 0.00)
(90, 180, 10, 1/14) | 4.04 | (0.19, 0.36, 0.31, 0.14)
(270, 0, 10, 1/14) | 10.27 | (0.01, 0.17, 0.05, 0.77)
(90, 180, 20, 1/14) | 7.16 | (0.10, 0.39, 0.35, 0.16)
(90, 180, 1, 1/14) | 1.24 | (0.77, 0.11, 0.08, 0.04)
(90, 180, 10, 1/30) | 4.19 | (0.18, 0.37, 0.30, 0.14)

Table 3.1: Parameter variation on the leftmost column and the basic repro-
duction on the middle for the numerical integration of system (3.6) in figure
3.2. To the rightmost column we list the final states. See the Ry for the

correspondence to each plot.
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Figure 3.3: Final P,, state versus the P transmission rate Sp. The left plot
is a magnification of the right to demonstrate the epidemic onset (dashed
vertical line). The value of Sp for which Ry > 1 is found to be Sp &~ 1.13.

Finally, we check the role of the basic reproduction number Ry as an
epidemic threshold quantity in figure 3.3 by examining various final states
of the P portion as a function of the P transmission rate Sp. The dashed
vertical line on the right plot shows the value of Sp at the onset of the
epidemic. Indeed, Ry > 1 in this case according to the formula (3.22) and
the numerical value of the epidemic onset is Sp ~ 1.13. Except for the Bp
the system parameters and delays were as in the numerical integration for
Ro = 4.04 as seen in table 3.1.

Comparing the plots of figure 3.2 with the baseline scenario 1 for the
big (well-mixed) farms of chapter 2 in figures 2.19 and 2.20 we realise that
there is no obvious relation between the numerical integration of the mean
field system (3.6) and the simulated S, I, R and P states of the agent-based
model for the selected values of Ry in the former case. One major reason
where this is attributed to is the lack of spatial structure in the mean field
model. Despite the fact that figures 2.19 and 2.20 concern a single farm with
a large population, which according to the agent-based model’s description,
behave in a well-mixed fashion the farm still receives and dispatches animals
to other farms-nodes. In that manner, we cannot assert which individuals
play which infectious role throughout the evolution of the farm unless we
isolate it from the rest of the system. For short periods of time (quarantine
period) this isolated behaviour is exhibited in figure 2.21 for the agent-based
model. However, the period is short (40 days) and intermittent leading
again to wild speculation in the comparison of the agent-based with the
mean field case. The same holds for the global states’ evolution in the agent-
based model because they closely resemble the trends of the well-mixed, large
farms. Furthermore, a great range of details in the agent-based model are
not captured by the mean field system (3.6). To name a major such feature,
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the P contributions to their own class through vertical transmission was
neglected from system (3.5) to (3.6) in order to dispense with the endemic
‘all PI” equilibrium which we do not observe in practice. Lastly, the role
of stochasticity in the agent-based model was not taken into account in the
scope of our study.

3.7 Summary and Outlook

In this section we presented a mean field model for the spread of BVD in
a population which is required to be held constant. The formulation of
the model was built on the standard SIR one with demography, accounting
for vertical transmissions by introducing a time-scale for the animal repro-
duction cycle. We then proceeded to prove the positivity of the solutions
for that system and summarised some basic background on the treatment
of retarded functional systems. Next, after examining the equilibria of the
formulated model, we linearised around its disease-free infectious state and
argued on the system’s stability based on the resulting eigenvalue growth.
As a direct consequence of the stability argumentation, we calculated the
basic reproduction number as an epidemiological quantity of fundamental
interest for the growth of an epidemic, following the next generation matriz
formulation, as well as from bifurcation argumentation. Finally, we numeri-
cally integrated with the NumPy solver the system introducing a number of
auxiliary variables and compared the consistency with the basic reproduc-
tion number predictions, as well as with some of the agent-based model’s
results which had structural similarities.

As future points to cover, it is possible that a different set of parameters,
for Ry > 1 (outbreak), could lead to an R dominant state for the case of the
numerical integration of system (3.6), making the mean field model’s evolu-
tion better matching to that of a single farm or the global system evolving
freely in the agent-based model (scenario 1 of figures 2.16, 2.19 and 2.20).
Additionally, delay-induced periodicity is a possibility [Guckenheimer and
Holme, 1986; Kuznetsov, 1995] and should be investigated. In particular,
the combination of the horizontal transmission parameters gy and Sp with
the vertical transmission coefficient ratio 71 /7 could lead to recurrent infec-
tions related to the birth cycle. Such an effect is hinted through the damped
oscillatory behaviour in all the plots of figure 3.2 for which Ry > 1.

Another interesting topic to cover would be the interaction between dif-
ferent strains of BVD. According to laboratory reports, although the world-
wide prevalent strains of BVD are at most three [Lindberg, 2003; Pinior
et al., 2017; Stadhl and Alenius, 2012], through mutations in a closed envi-
ronment they can number up to hundreds [Center, 2003]. For such systems
there is immense interest in understanding the strain dynamics’ interplay for
formulating vaccinations, to name an application [Kelling, 2004]. What one
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studies in such cases is the indirect effect of strain mutation on the immuno-
logical response of the population to different strains. That is because for a
certain degree of similarity of the mutated strains portions of the population
having recovered from infection pertinent to a specific strain remain immune
to other infected portions corresponding to mutated strains (in respect to the
reference one) by cross-immunity |Gog and Grenfell, 2002; Gog and Swinton,
2002]. To delve into such an analysis we would need to reformulate system
(3.6) with as many degrees of freedom as the strains we would like to model.
The interaction of the strains on the different infectious states would then be
introduced by kernels similar to those reported by [Gog and Grenfell, 2002;
Gog and Swinton, 2002; Gomes et al., 2002| and the analysis would follow
the line of [Adams and Sasaki, 2009; Bauer et al., 2017; Gao et al., 2007,
2011].

Finally, to truly be able to compare with a model of the level of complex-
ity of the agent-based presented in chapter 2 the incorporation of mitigation
strategies such as vaccination in an analytical model for BVD would be
necessary. Although this is possible retaining the mean field character of
system (3.6) [Wang et al., 2016/, the most natural way to include mitigation
strategies such as quarantine and vaccination would be to introduce spatial
heterogeneities in the model in question. In many cases, this would lead to a
network metapopulation model for the epidemic spread [Colizza and Vespig-
nani, 2007; Colizza et al., 2007; Lentz et al., 2012] with node dynamics such
as of system’s (3.6).



CHAPTER 4

BVD Network Risk Analysis

In this chapter we will be focusing on the analysis of some aspects of the
German cattle trade network after we have briefly presented the dataset.
We do not aim for the analysis to be exhaustive, rather to assess the risk of
epidemic spread on the network following mainly works of Steinbach [Stein-
bach, 2016|, Lentz |Lentz, 2013; Lentz et al., 2016] and Valdano [Valdano,
2015]. A lot of the computations are also based on a generic cattle net-
work Python analysis code written in collaboration with Eugenio Valdano,
Andreas Koher and Alexandre Darbon. It can be found on GitHub under
https://github.com/eugenio-valdano?tab=repositories and is expected to be
made publicly available within the following months after the completion of
this thesis, along with a publication which has contributed to the analysis
of this chapter.

4.1 Datasets

The dataset used to analyse the German cattle trade network was extracted
from the HIT database by courtesy of the FLI institute. It consists of quadru-
ple entries of integers of the form (d, u, v, w), where d refers to an ascending
time-stamp, © and v refer to unique farm identification numbers and w to
the number of animals being moved in each entry (weight). Its time-span
ranges from 01.01.2010 to 31.12.2014 and has a daily resolution of cattle
movements.

The dataset of the cattle movements was accompanied by a dataset of
the unique farm ID entries with a corresponding geographic longitude and
latitude, which was randomised within the administrative district (Kreise) of
each farm. The reason for this randomisation was to respect the anonymity
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of farms within a radius of their administrative district’s kilometric span.

4.2 Network Analysis

We will separate our approach into four parts. Firstly, a temporally aggre-
gated static analysis in regard to centrality measures, network components
and descriptive statistics [Lentz et al., 2016; Newman, 2010; Valdano, 2015].
Secondly, a spatial concerning the node distribution on a geographical level
and Fourier analysis on the geographical data to reveal characteristic cattle
movement time-scales and their relative importance, as well as the proba-
bility density distributions of the geographic distances covered by the cattle
movements [Bajardi et al., 2012; Valdano, 2015; Woolhouse and et al., 2001].
Thirdly, a temporal employing both a trading loyalty measure to pinpoint
trade patterns in time [Bajardi et al., 2011; Lentz et al., 2011; Valdano, 2015;
Volkova et al., 2010a| as well as node and edge activation time assessments
[Lebl et al., 2016; Valdano, 2015]. Finally, a worst-case SI epidemic spread
scenario by means of the network’s accessibility as applied in [Lentz et al.,
2013, 2016].

4.2.1 Static Analysis

Myriads of methods exist for the analysis of static networks [Lentz et al.,
2016; Newman, 2010] and it is up to the particularities of the specific study
to illuminate which are the most appropriate for the task at hand.

Perhaps the most fundamental quantity that one can calculate directly
given a network is its degree distribution, which is a distribution of the
number of nodes each node of the network is connected to. Mathematically
this is best done by means of defining the adjacency matriz, i.e. a square
binary matrix with a dimension as large as the number of nodes of the
network.

(4.1)

A 1 if there is a link from i to j
Y10 if there is no link from i to j

It follows naturally from the definition of the adjacency matrix whether the
network is directed (A non-symmetric) or undirected (A symmetric).
Furthermore, if the adjacency matrix has non-binary integer values, then
these values represent the weights between the respective pairs of nodes,
which is an edge attribute. Similarly and extending from the notion of the
node degree, a node attribute can be defined measuring the sum of weights
resulting from all its connection with all of its neighbours. This is called
the strength of the node and is discerned to ‘out’ strength when summing
the weights of the edges to which the node is the reference of the connecting
pair, and the conversely to ‘in’ strength when summing the weights of the
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Figure 4.1: The degree (left column k), strength (middle column s4) and
weight (right column wy) distributions of the German cattle movements’ net-
work for different aggregation intervals (daily, weekly, monthly and annually
descending in rows from the top). The in and out components (were appli-
cable) are depicted in red and blue respectively. Each plot contains curves
drawn from as many sets of points correspond to as many aggregations. For
example the subplot to the far lower left contains 2 pairs of 5 curves (5 red
‘in” and 5 blue ‘out’) for the 5 annual aggregations of the dataset.

edges to which the node is the end of the connecting pair [Barrat et al., 2004;
Newman, 2010; Valdano, 2015]. Similarly, there is an edge property called
weight which measures the intensity of interaction between its connecting
nodes. Naturally, temporal networks by definition are not transitive due
to the unique direction of time (i.e. if i is connected to j at time ¢; and
j is connected to k at time ¢ then i is not necessarily connected to k in
both times). Nevertheless, we can extract temporal aggregations from such
networks in which any sense of temporal directionality is omitted.

Another fundamental way to summarise basic statistics of the network is
on annual temporal aggregation levels and on a complete temporal aggrega-
tion as shown in tables 4.1, 4.2 and 4.3. The quantities counted or measured
in those tables per aggregated year and per the total aggregated time-span of
the dataset make reference to the total amount of animals moved, to the to-
tal batches, i.e. groups of animals moved per trade event, the total edges, i.e.
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the number of recorded trade partners and the number of nodes (farms) in
table 4.1. Further, for the same aggregations, they refer to the average batch
size, i.e. average number of animals traded per event, weight with reference
to animals, i.e. average number of animals per pair of trading partners, and
batches, i.e. average number of trading events per pair of trading partners,
separately in table 4.2. Moreover, for the same aggregations, they include the
average degree per node and the average strength with respect to animals,
i.e. average number of traded animals per node, and batches, i.e. average
number of trade events per node, separately in table 4.3.

Year Animals Batches Edges Nodes
2010 13,420,268 3,166,372 755,163 183,486
2011 13,287,493 3,131,322 725,167 176,955
2012 13,251,071 3,083,943 701,942 170,324
2013 13,202,637 3,009,917 688,413 165,123
2014 13,636,593 3,025,296 686,728 161,285
TOTAL || 66,798,062 15,416,850 1,822,373 209,336

Table 4.1: German trade network statistics according to the HI-Tier database
for the period 2010-2014 and each year separately. Animal, batch, edge and
node count.

Av Weight Av Weight

Year Av Batch 57 (Animals)  (Batches)
2010 4.2 17.8 4.2
2011 4.2 18.3 4.3
2012 4.3 18.9 4.4
2013 4.4 19.2 4.4
2014 4.5 19.9 4.4
TOTAL 4.3 36.7 8.5

Table 4.2: German trade network statistics according to the HIT database
for the period 2010-2014 and each year separately. Average batch size count,
average weight for animals’ and average weight for batches’ count.

Furthermore, one can statically investigate the component composition
of a real-world network as in [Steinbach, 2016] and |Lentz et al., 2016]. This
analysis includes among others the determination of connectivity clusters
(subsets of nodes) called components, with implications for spreading pro-
cesses on the whole aggregated network. For a real world network, such as
the German cattle movements, one can follow a rigorous treatment to de-
fine a giant component, as a connected component (i.e. one for which all
nodes are connected through an arbitrary number of intermediate links) of
a relative non-zero size to the rest of the network [Dorogovtsev et al., 2001;
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Year Av degree Av Str Av Str
(ANIMALS) (BATCHES)
2010 4.1 73.1 17.2
2011 4.1 75.1 17.7
2012 4.1 77.8 18.1
2013 4.2 80.1 18.2
2014 4.3 84.5 18.8
TOTAL 8.7 319.1 73.6

Table 4.3: German trade network statistics according to the HIT database
for the period 2010-2014 and each year separately. Average degree count,
average strength of animals’ and of batches’ count.

Newman, 2010].

Following Letz et al. [Lentz et al., 2016] we can define a subset of nodes
of the network for which a path exists among all pairs of nodes in it, (in
the network terminology we say that the network is connected in this case)
where by path we mean a connection between any two nodes of the network
traversing an arbitrary number of intermediate nodes. In the literature, when
directionality is neglected, this subset is called the giant weakly connected
component (GWCC). Conversely, if that subset of the network is directed
the component is called the giant strongly connected component (GSCC).
Similarly, we can define giant components of nodes which can reach to or be
reached from the GSCC, but are not part of the GSCC themselves. These
are called the giant in and out components -GIC and GOC- respectively
[Dorogovtsev et al., 2001; Lentz et al., 2016; Nicosia et al., 2012]. Moreover,
nodes reachable from the GIC or that reach the GOC, but are not part of
the GSCC are called tendrils [Nicosia et al., 2012]. Finally, there are also
nodes that are part of the GWCC with no access to the GOC. These are
called EXT [Lentz et al., 2016]. It should be evident by now that the tendrils
and the external nodes are by definition of lower strategical importance in
controlling a spreading process on a connected network.

Once one has defined one of the aforementioned giant components, and
particularly the GSCC, one can calculate the range, average shortest path
length and the diameter. The length of a path is simply the number of nodes
traversed to reach one node from another and the shortest path length is the
minimal such length available on the network. The diameter of a network is
simply its maximum shortest path length, while the range of a specific node
is the number of nodes it can reach through a path of an arbitrary length.
This latter quantity is naturally of most interest for infections (and generally
for spreading processes) as it is a vulnerability indicator of the network given
a certain source of infection (spread) [Lentz et al., 2016; Newman, 2010].

In her master’s thesis Steinbach made all the relevant network compo-
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nent calculations of the aggregated German cattle trade network, as well as
the calculations for the range distribution of the network, and the diameter
and average shortest path length of the GSCC, which are all vulnerability
indicators on an aggregated level [Steinbach, 2016]. We summarise the main
results of our findings which agree with her work in tables 4.4 and 4.5.

Components || Nodes Edges
GWCC 209,155 1,822,268
GSCC 145,704 1,439,603
GIC 45,126 6,905
GOC 15,274 4,707
EXT, TEN 3,232 371,158

Table 4.4: Components’ enumerated elements.

Network Quantity Value
Average shortest path length (GSCC) 4
Max. range (GSCC) 160,977
Max. range (GIC) 161,002
Diameter 17

Table 4.5: Static vulnerability indicators.

According to these calculations the edges or trades of the GIC and GOC
are rather limited compared to those of the GWCC and GSCC, and are
mostly directed to and from the GSCC respectively. Similarly, seeing (table
4.5) that the GSCC has access to around 77% of the network within an
average of 4 steps elevates it to a crucial hub for the spread of an infection.
In addition, the GIC is implicitly of great importance to the spread, as it
gives input (i.e. is inwardly connected) to the GSCC while having access
to 77% of the network’s nodes (table 4.5). Together, the GSCC and GIC
constitute around 91% of the network’s nodes bringing them to the forefront
of a targeted control scheme (e.g. node removal).

4.2.2 Temporal Analysis

So far we have ignored the temporal aspect of the German cattle trade
network. In works such as [Grindrod et al., 2011; Konschake et al., 2013]
however it is stressed that quantities calculated for an evolving network may
vary wildly compared to their aggregated counterparts.

As in the static case, the approaches that one can follow to exhibit the
importance of the temporal aspect of a network on an infectious spread are
manifold [Holme, 2015; Kostakos, 2009; Lentz et al., 2016; Nicosia et al.,
2012]. Here we shall focus on two examples of such a temporal analysis,
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Figure 4.2: The monthly memory heat maps for the German cattle trade
network. Both the horizontal and vertical axes represent time in months.
By At = 28 slices we mean that we assume 28 consecutive day aggregations
as a month. Nodes’ case on the left and edges’ case on the right.

which illustrate the effect of temporal evolution on the epidemic dynamics,
namely the memory of the network and its activation time distributions.

With the quantity of memory we essentially calculate the Jaccard indez,
which is a statistical index measuring the similarity of two sets of objects.
In our case these objects are defined to be two arbitrary snapshots of the
network, i.e. two configurations of the network’s nodes and edges for two
discrete time steps ¢ and ¢’ [Skiena, 2017; Valdano et al., 2015b].

£t/ ’St N Stl‘

J = W, (4.2)
with S? being a snapshot of the network at time ¢, i.e. a set of the network’s
nodes or edges at that time. It is directly evident that the Jaccard index takes
values in [0,1], with the left and right extrema representing total dissimilarity
and absolute identification respectively.

We observe symmetrical patches of dissimilarity of consecutive months,
approximately at annual intervals, when measuring the memory for both the
nodes and the edges of the network. This means that the time-aggregated
network in question differs strongly from all other observation windows, i.e.
the set of common nodes or edges (left and right plot respectively) is small
compared to all the unions with the rest of the time-aggregated networks.
We further observe dark, diagonal stripes that correspond to a time shift
of about 12 to 24 months, meaning that we observe similar trade patterns
after about one year. This might reflect external factors differentiating the
network’s activity such as the demands around Christmas time or the end
of the year. Note that along the diagonal we do not perform the calculation
for clarity of the presentation, as the memory value is always equal to unity.

Regarding the activation time distributions, we measure the probabilities



CHAPTER 4. BVD NETWORK RISK ANALYSIS 106

10° 4
107" 4

- 10°

F107 4
102 3 L 1

, F10°
10° 3 E

F10°

activation

10% o
107 3
10°
107 4

f— - - - - - - - -7

[ 6 ] F
+ 10 _— . “”‘”‘”Jm
102

107
102 3

107
107 3
10°

inter-activation

10 3
107 4

10

Figure 4.3: Activation (top row) and inter-activation (lower row) time dis-
tributions for the nodes (left column) and the edges (right column) of the
cattle trade network of Germany on a log-log scale. The dashed vertical lines
correspond to a week, month and semester. Note that for the inter-activation
distributions the calculations assume that At = 1 as the minimal duration of
inactivity of a node or an edge, while for the activation distributions At = 2
as the the minimal duration of a node or an edge’s activity.

of randomly selected nodes or edges in the network being continually active
or inactive (inter-activation time). The relevant plots are shown in figure
4.3.

The inter-activation and activation distributions of figure 4.3 on the other
hand enable us to detect the natural time-scales which are most probably
active or not throughout the dataset. The inter-activation plot spans virtu-
ally the whole dataset’s duration, indicating the farms and trading partners
(nodes and edges) that rarely trade at the tail of the distribution. Con-
versely, the activation diagram indicates that trading partners barely trade
continually for more than 70 days and farms only seldom for up to 400 days
in the dataset. Especially in the inter-activation diagram the declining peaks
refer to time-scales which are of higher inactivity than the trend would oth-
erwise indicate, of which the most prominent belong to weekly, monthly and
semesterly pauses of the farms trading (node case) or of trading partners
trading (edge case) [Valdano, 2015]. The results of figure 4.3 are in good
agreement with similar produced in [Steinbach, 2016].
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Figure 4.4: Farm count distribution in Germany in bins of 10 x 10 km?.

This piece of information could be used to estimate the final outbreak
activity with an underlying SIR process as done in [Lebl et al., 2016] and
for different infective transmission rates as in both [Lebl et al., 2016] and
[Steinbach, 2016].

4.2.3 Spatial Analysis

Although the analysis of a network is generally uncoupled from analysing a
physical (geographical) space (the latter case of networks is called embedded,
while the former topological [Skiena, 1998]), since the nodes of the German
cattle trade network refer to geographical locations it is insightful to map
some of the analysis on a geographical level. To that end, we present the
distribution of the nodes on a map of Germany and draw a connection of
the network’s connectivity to characteristic time-scales of animal movements.
We further investigate the distance distributions corresponding to monthly
and annual aggregations of the network as a likelihood proxy for long-range
disease transmissions.

The first result is a direct representation of the nodes’ distribution on
Germany’s administrative borders as seen in figure 4.4. For illustrative pur-
poses we partitioned the map into bins of 10 x 10 km?, where the darker
colours of the grayscale imply a higher farm count. With such a represen-
tation it is directly evident which regions of the country are more dense in
farms.

Having an overview of the farms’ distribution in Germany it is important
to understand if there are specific time-frames of movement activity and how
intense these are. The most intuitive option would be to check for divisions
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of time of a calendar nature. We therefore search for the dominant activity
of movements in intervals of half a week, a week, a month, 2, 3 and 4 months,
a semester, and 1 and 2 years as shown in the colour code of figure 4.5. By
dominant activity we mean revealing the nodes that trade more intensely
on the aforementioned time-scales. The methodology we follow to that end
consists of several steps.

First, we isolate the trade of the dataset within the geographic bins of
figure 4.4. Next, we draw a histogram of all the real discrete Fourier trans-
form (DFT) amplitudes on the weight sequence {xn} of N elements from
the given edgelist, as displayed in equation (4.3) within each geographic bin.
Essentially the weights of the sequence refer to the ‘in” and ‘out’ number of
traded animals in time and in respect to a node. We apply the DF'T using the
real fast Fourier transform [Hamming, 1980]. Next, we keep the squares of
the DFT transform (the power spectrum) and rank those which fall within
a 0.1 tolerance interval centered around the previously mentioned time-
scales. Thus, to each time-scale corresponds a maximum amplitude from
the filtered ones. We call the lower ranked amplitudes harmonics due to
the reminiscent parallels this methodology draws to a ranking of frequencies
which are submultiples of a fundamental. However, this is not the case and
let the naming not be misleading towards the lower ranked frequencies being
submultiples of the dominant in our methodology.

= 27i
Xy = Z Ty, + €XP <—Nkn> (4.3)

These lower frequencies are shifted towards longer time-scales as can
be seen in figures 4.6-4.8 (2"4, 39 and 6'" harmonics). For the 2" and
34 harmonic we can already observe in figures 4.6 and 4.7 that the south
of Germany exhibits already more intense movements at time-scales longer
than the order of the corresponding harmonic. That is attributed to the
practice of moving cattle to higher altitudes in time-frames of 4 months to
semesters for the benefits that the Alpine climate has to offer to the cattle’s
well-being.

The last result of the spatial analysis is the distance probability density
functions of the trading events in monthly and annual aggregation intervals
as presented in the top and bottom row of figure 4.9 respectively, in the
weighted and unweighted case (left and right column respectively). Not
surprisingly, the weighted cases of any of the two aggregation partitions
pronounces the granulation of the distribution since the weights’ inclusion
make the events more heterogeneous on the time-space plane.

The immediate conclusion of the plots from figure 4.9 is that the vast
majority of cattle trading took place in distances less than 700 km, with
smaller distances being ever more favourable for the dataset’s time-span.
Finally, the fact that virtually no single trading event from node to node
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Figure 4.5: Characteristic dominant time-scales of animal movements in bins
of 10 x 10 km?. The upper figure concerns incoming activity to the node
distribution, while the lower the outward.
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Figure 4.6: Characteristic second time-scales’ harmonics of animal move-
ments in bins of 10 x 10 km?. The upper figure concerns incoming activity
to the node distribution, while the lower the outward.
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Figure 4.7: Characteristic third time-scales’ harmonics of animal movements
in bins of 10 x 10 km?. The upper figure concerns incoming activity to the
node distribution, while the lower the outward.
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Figure 4.8: Characteristic sixth time-scales’ harmonics of animal movements
in bins of 10 x 10 km?. The upper figure concerns incoming activity to the
node distribution, while the lower the outward.
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Figure 4.9: Monthly (top row) and annually (bottom row) aggregated dis-
tance probability density functions of the German cattle trade network’s
trading events throughout the dataset’s timespan. Both the weighted (left
column) and the unweighted cases (right column) are included.

surpassed 800 km is consistent with the fact of the dataset’s representation
of domestic trades in Germany. Such trades could not exceed the maximum
distance of the space (the country’s) available!

4.2.4 Network Accessibility

The concept of accessibility is not new and is well understood for static net-
works of N nodes through the definition of the (static) accessibility matrix
(4.4) as a function of the adjacency matrix that we defined in section 4.2.1
A |Grindrod et al., 2011; Holme, 2005; Lentz et al., 2016; Travencolo and
Costa, 2008|. The maximum order of the accessibility matrix (4.4) gives
information about the number of visits to a certain node. However, in the
work of [Lentz et al., 2013] this accessibility matrix was defined for tempo-
rally evolving networks with 7' time steps, corresponding to a causal series
of T snapshots of the network’s adjacency matrices {41, Aa ... Ar}, as pre-
sented in equation (4.5). The main idea behind the form of equation (4.5)
in contrast to equation (4.4) is that given the causal nature of an evolving
network and the potential loss of causal paths in a sequence of snapshots of
that network, the number of time-steps (in the static accessibility counter-
part we refer to path length instead of time-steps) needed for any node to
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reach another can only be revealed from the accessibility matrix if there is
some sort of memory term. This memory term is introduced by the identity
matrix in (4.5), which accounts for waiting times between the activation of
node pairs (i.e. the disappearance of edges due to the network’s evolution).

N
Pstat = Z(An) (4.4)
n=1
T
Ptemp = H(At + I) (45)
t=1

One of the great strengths that the accessibility matrix of a temporal
network offers for the study of spreading processes is that it allows the cal-
culation of the path density p(Piemyp) of the network

nnz(P)

N2
where the 1/N? is a normalisation factor for the size N x N of the adjacency
matrix and the nnz(P) refers to the number of nonzero elements of P. The
path density assumes values within [0, 1] and expresses (under the frequentist
scope) the probability that a randomly chosen pair of nodes (potentially the
same node twice) is connected through a time-respecting path of maximum
lentgth t, given as F,, = P(l < t) = p(Ptemp) |Lentz, 2013; Lentz et al.,
2013]. As a direct result we can estimate the outreach of a worst-case directed
spreading process. In the case of an epidemic spread that is equivalent to the
maximum outreach of an infected source node entering the evolving network
at t = 0 while the other nodes are all susceptible and remain infected after
they have been infected.

Lastly, knowing the path density of the temporal network we can nu-
merically calculate its shortest path duration probability distribution by its
numerical derivative SPD = F,, — F;, 1 for all the times corresponding to the
evolving network’s adjacency matrix sequence {A;, Ay ... Ap} [Lentz et al.,
2016; Steinbach, 2016]. The maximum value of this probability density dis-
tribution corresponds to the most likely shortest path duration, i.e. the time
it most probably takes the outbreak to reach its peak.

In figure 4.10 we present the path density of the German cattle trade
network for times between 0 and 1865 (the five years of the dataset counted in
days from 01.01.2010 to 31.12.2014) on the right axis and the corresponding
shortest path densities, assuming that the network is directed, on the left
axis. We observe that in the directed network case the most probable peak
of the spread given a source at ¢ = 0 occurs at 84 days, a result which also
agrees with that of [Steinbach, 2016]. Strikingly, as noted in [Steinbach,
2016], this epidemic peak at 84 days does not correspond to a characteristic
time-scale of the cattle chain of production as was the case in the swine trade

p(Premp) = (4.6)
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Figure 4.10: Probability density function (PDF) of the shortest path dura-
tion assuming a directed network. The peak is observed at 84 days (vertical,
black, dashed line). The black, solid line represents the path density (integral
of the PDF) of the network

network shown in the work of [Lentz, 2013; Lentz et al., 2016]. The outbreak
in the cattle trade network case must be therefore attributed to a supply and
demand dictated structure of the network.

For the generation of figure 4.10 we employed the code of Hartmut Lentz
[Lentz et al., 2013] adapted to our needs. The original code can be found on
the GitHub repository
https://github.com /hartmutlentz/ TemporalNetwork Accessibility.

4.3 Summary and Outlook

We outlined a short programme for the risk analysis of an infection spread on
the given network of the German cattle trade. The analysis contained static,
temporal, spatial and network accessibility components, all of which we deem
to be complementary for the purpose of an epidemic risk assessment.

As further work, the computationally intensive problem of the temporal
GSCCs calculation is worth investigating as presented in [Nicosia et al., 2012,
2013|. Furthermore, there is ongoing work and possibilities of estimating the
vulnerability of the evolving network mentioned in this chapter from a view-
point of a block-adjacency matrix containing the temporal component and
with an underlying SIS process as presented in [Taylor et al., 2012; Valdano,
2015; Valdano et al., 2015a, 2018]. Moreover, a robustness analysis can elicit
the vulnerability of specific nodes of the network as demonstrated in [Holme
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et al., 2002; Lentz, 2013] and [Steinbach, 2016]. Regarding precise outbreak
predictions employing a variable activation time see [Lebl et al., 2016]. For
targeted network rewiring strategies leading to epidemic extinction see the
Hamiltonian formulation of [Hindes and Schwartz, 2016; Schwartz et al.,
2011] with an underlying SIR process and furthermore [Holme, 2013] for a
component and synthetic network investigation to the extinction end, also
employing an SIR process. Moreover, since the network structure of the
German cattle trade is heterogeneous from an aggregated perspective (as in
it can be partitioned to constituent components as we saw in section 4.2.1)
a basic reproduction number can be defined for each one of its constituent
components as instructed in [Diekmann et al., 1990]. Then, as shown in
[Volkova et al., 2010b|, the weight distributions of the components can pro-
vide a means to calculate the variation of the basic reproduction number for
each one of them.

Furthermore, the movements between different production types can have
an effect on the epidemic spread as exhibited in [lotti et al., 2017; Koeppel
et al., 2018; Lindstrom et al., 2010]. Therefore a classification of farm types
and the partitioning of the network edgelists accordingly can serve towards
more accurate network analysis taking the subtlety of the farm types into
account. In addition, regarding the centrality analysis of the static, aggre-
gated network, if the farm type classification is made, then it would also be
important to measure the degree of assortativity for a certain node, i.e. its
tendency to connect to those with similar behaviour, where the similarity in
behaviour can be in class, activity, flow, etc. as in [Lentz et al., 2011, 2012,
2016; Rocha et al., 2010; Woolhouse and et al., 2001].

Lastly, visualisations resulting from the static and temporal network
analysis such as that of figure 4.11 can be furthered to reflect more sophis-
ticated work similar to that of [McGrath et al., 2018].
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Figure 4.11: Excerpt of trades and node in and out fluxes (right side in blue
and red colours respectively) for month 8 out of the 60 from the German
cattle trade network datset. The coloured nodes of the figure to the left
represent what we defined as strength in the static analysis. The animation
whose this graph is a snapshot of was generated with the work of Lukas

Kikuchi (DAAD student).
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Abbreviations

BVD Bovine Viral Diarrhea

DDE Delay Differential Equation

DFT Discrete Fourier Transform

FLI Friedrich-Loeffler Institute

FN False Negative

FP False Positive

HIT Herkunftssicherungs und Informationssystem fiir Tiere
I Transiently Infected

GIC Giant in Component

GOC Giant out Component

GSCC Giant Strongly Connected Component
GWCC Giant Weakly Connected Component
NGM Next-Generation Matrix

ODE Ordinary Differential Equation

ODD Overview, Design concepts and Details

P Persistently Infected
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PI Persistently Infected

R Recovered

S Susceptible

TT Transiently Infected
TN True Negative

TP True Positive

YCW Young Calf Window
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