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' Abstract 

We study relations between Weyl geometries and Codazzi structures (see [1]) and investigate examples 

of Weyl geometries on affine hypersurfaces. 
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0 Introduction 

In section 1 we summarize basic facts on Weyl structures. In the literature there are differences in the 

definition of a Weyl structure depending on the choice of a constant; for this reason we define a Weyl 

structure using an arbitrary constant to: A Weyl structure on a C™-manifold M is given by a quadruple 

W = {V, C,~,7} (where V is a torsion-free connection, C a conformal class of semi-Riemannian metrics, 
me R\ {0} and T a class of one-forins) satisfying the compatibility condition (1.4) below. 

In [1] the authors investigate the relation between Codazzi structures C = {P,C} (where P is a projective 

class of connections and C a conformal class of semi-Riemannian metrics) and Weyl structures W on a 
manifold M. They show how a Wey] structure can be constructed from a Codazzi.structure and vice versa. 

We give a short introduction to these constructions (with an arbitrary non-zero real number to) in section 2 

and prove a necessary and sufficient condition for a bijective relation between Weyl and Codazzi structures. 

In section 3 we investigate two naturally arising one-forins in the theory of affine hypersurfaces, i.e. the 

connection form 7 and the T chebychev form T. We show that the vanishing of the exterior derivative of one 
of them is equivalent to the vanishing of the the exterior derivative of the other, so the construction of a non 
trivial Weyl structure (see definition 1.3.1 below) is either possible with both of them or none of them. For 

this Weyl geometry, we prove the following two results: 

(i) Only on hyperquadrics, the induced connection can be realised as either a Weyl connection or the 

Levi-Civita connection of the affine metric h. 

(ii) The induced connection of the centroaffine hypersurface geometry is invariant under gauge transfor- 

mations of the Weyl geometry. 

We refer the reader to [11] or [6] for definitions and facts on affine differential geometry, for more detailed 
proofs see [9]. In this work we always assume that the C'- manifolds are simply connected and real. 
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1 Weyl structures 

Let Af be a connected C’*-manifold of dimension n > 2, let ¥(M) the set of tangent vector fields and let 

u,v,w,... denote elements from ¥(M). 

1.1. Projective structure and conjugate connections 

Definition 1.1.1 Let V, V* be torsion-free connections on a manifold M. 

(i) V and V™ are called-projectively equivalent iff there exists a one-form & such that, for allu,v € ¥ (M), 

Vuv = Vivt &(u)u + a(v)u, (1.1) 

we will write Vi ~ V*, | 

(ii) The set P(V) :-= {V*|V* ~ V} is called the projective class of V. 

(il) A connection V is called flat iff its curvature tensor is identical zero. 

(iv) V is called projectively flat if it is projectively equivalent to a flat connection. 

(v) The projective curvature tensor W with respect to V is defined by 

Wu,v)w = R(u,v)w — P(u,w)v + P(v,w)ut+ Plu, v)w — Pv, w)w 

  where P(u,v) = Ky {nRie(u, v) — Rie(v, u)}. — 2-1] 

The projective flatness of a connection is related to the projective curvature tensor W and to P in the 

following way (for the proof see [2]): 

Theorem 1.1.2 (Weyl) A connection V on a manifold M is projectively flat if and only if 

(i) W is equal to zero on M and 

(ii) (VuP)(o,w) = (VyP)(u,w) for all u,v,w € ¥(M). 

Definition 1.1.3 Let h be a semi-Riemannian metric on a manifold M and u,v,w € X(M). 

(i) Two sonnendions V and V* are called conjugate w.r.t. h iff they satisfy 

wh(v,w) = h(Vyv,w) + h(v, View). (1.2) 

The triple {V,h, V*} is called a conjugate triple. 

(ii) Let V be a connection and Tt a one-form such that Vh+7h is totally symmetric. Define a torsion-free 

connection V* by 

uh(v,w) = h(VFv,w) + h(v, Vuw)) + F(v)h(u, w). (1.3) 

Then V* is said to be semi-conjugate to V relative to h by 7. 

Remark 1.1.4 Let V* be semi-conjugate to V relative to h by 7. Define V via V,v = Vu + A(u, v)T, 

then it is easy to see that {V,h, V} is a conjugate triple. 

Proposition 1.1.5 ([7]) Let {V,h, V*} be a conjugate triple and R, R* the curvature tensors of V and V* 

respectively. For all u,v,w,z€ X(M), we have the relation h(R(u, v)w, z) + h(w, R*(u,v)z) = 0.



1.2 Weyl geometry 

Definition 1.2.1 Letn > 2 and M be a n-dimensional manifold endowed with a torsion-free connection V. 

Consider a conformal class of semi-Riemannian metrics C := {Bh|0 < BE C™(M)}, a constant m € R\ {0} 

and a sel of one-forms T := {On| he C}. 

(i) The quadruple {VC ,t0, 7} is called a Weyl structure W on M iff for the connection V and all semi- 

Riemannian metrics h €C the following condition is satisfied: 

Vi = wb, Oh =: WOWh. (1.4) 

The condition (1.4) is called compatibility condition and (M,W) is called a Weyl manifold. 

(il) If for the connection V, an arbitrary semi-Riemannian metric h and wm € R \ {0} given there exists a 

one-form 0 such that the compatibility condition is satisfied, then V is called Weyl connection and we 

write V =: V(h, to, 8). 

If we inake a conforinal change of the metric there exists a transformation of the one-form that preserves 

the compatibility condition for all metrics in C. 

Definition 1.2.2 Let 0 < BE C™(M) and V = V(h, iu,0). The snapping 

h— Bh, 6+ 6++dlnp. (1.5) 

is called gauge transformation. 

Remark 1.2.3 From definition 1.2.2 one easily verifies that the compatibility condition is invariant under 

gauge transformations. 

a 

From a given metric h € C,-a real non-zero number tv and a one-form 6 one can construct a torsion-free 

connection V satisfying (1.4); thus (h, 10,9) induce a Weyl geometry. 

Lemma 1.2.4 Leth eC, mw € R\ {0}, 6 be a one-form and V the Levi-Civita connection of h. Then 

(i) the Weyl connection V = V(h, 0,0) can be expressed in terms of h,vo and 6 by 

Vu = Vyv — = {A(u)u + O(v)u + h(a, vo} for allu,v € ¥(M), (1.6) 

where @ is defined by A(u) =: h(u,9); this construction is invariant under gauge transformations; 

(ii) the connection V defined in (i) satisfies the compatibility condition. 

Proof. For the proof see [12]. | 

Remark 1.2.5 For a Weyl connection V it is obvious that its curvature tensor R defined by R(u,v)w := 

{VuVu-—VuVu- Viu,v) }w and its Ricci tensor Ric defined by Ric(v, w) := trace{u > R(u,v)w} are invariant 

under gauge transformations.



1.3 Weyl curvature 

Definition 1.3.1 Let V = V(h, 10,0) be a Weyl connection and u,v, w € £(M). 

(i) The length curvature F: X(M) x X(M) — C™(M) is defined by 

F(u,v) = —w d6(u, v) | (1.7) 

where dO denotes the exterior derivative of 6. We call a Weyl structure trivial iff F = 0. 

(ii) The directional curvature is the mapping K: X(M) x X(M) x ¥(M) > X(M) defined by 

K(u, v)w = R(u,v)w — F(u, v)w. - (1.8) 

Remark 1.3.2 F is obviously gauge invariant and so is K, too. 

Lemma 1.3.3 The following relations for R, F and K 

(i) n(R(u,v)w,w) = F(u,v)h(w,w), 

(ii) A(K(u,v)w,z) = —h(w, K(u, v)z), 

(ii) (a) A(u,v)wl,»w and (b) F(u,v)w|lw, 

(iv) 2F(u,v)h(w,z) = h(R(u,v)w, z) + h(w, R(u, v)z) 

hold for allh €C and u,v,w,z € ¥(M). 

Proof. (i) — (iii) are well known, see [12]. (iv) follows directly from (i) and (iii). LJ 

The relation 1.3.3 (iv) is similar to a relation of curvature tensors of conjugate connections. As a consequence 

of proposition 1.1.5 and lemma 1.3.3 (iv) we get for an arbitrary choice of a semi-Riemannian metric h € C: 

Corollary 1.3.4 Let V = V(h, 10, 8) be a Weyl connection, {V,h, V*} the conjugate triple and R, R* the 

curvature tensors of V respectively V*. The equation R*(u,v)w a R(u,v)w — 2F(u,v)w is valid for all 

u.v,w € X(M). This relation is gauge invariant. 

Remark 1.3.5 The conjugate connection V* of {V,h} is torsion-free if 9 = 0; then we have V* = V = V. 

Theorem 1.3.6 ([3]) If and only if F = 0 then the Weyl connection V = V(h, 10,0) is the Levi-Civita 

connection. of an appropriate metric h® € C. 

Furthermore the symmetry of the Ricci tensor Ric is closely related to the vanishing of the length curvature, 

a straightforward computation shows Ric(u,v) — Rie(v,u) =n F(u,v). This proves: 

Proposition 1.3.7 Let V = V(h, tv, 6) be a Weyl connection, Ric the Ricci tensor and F the length curva- 

ture wrt. V. Then we have that F = 0 if and only if Ric is symmetric. 

The projective flatness of a Weyl connection is also related to the vanishing of the length curvature. 

Theorem 1.3.8 Let V = V(h, tv, 0) be a Weyl connection and W the projective curvature tensor w.r.t. V. 

If in > 3 then we get that W=0 implies F = 0.



Proof. Let n > 3 and u,v,w € X(M) be h-orthogonal by pairs. Then 

Gx Wu, v)w = K(u, v)w — Pu, w)v + P(v, w)u — F(u,v)w + P(u, v)w — P(v, u)w. 

It is sufficient to show F(u,v) # P(u, v) — P(v,u) because the other terms are h-orthogonal to w. Using 
proposition 1.3.7 we have Plu, v) — Pv, u) = SF (u,v). L] 

Remark 1.3.9 If the length curvature does not vanish the Weyl connection cannot be projectively flat in 
dim(A) > 3. In dimension two an analogon to this is not known. 

2 Codazzi structures 

2.1 Introduction 

Definition 2.1.1 Let P* := P(V*) be a projective class of torsion- jree connections! , C a conformal class of 
semi-Ricmannian metrics and u,v,w € X(M). 

(i) If for nn, phones hEC there exists a V" € P* such that the equation 

(Vi) (v, w) = (Veh) (u, w) | (2.1) 

holds, then the pair {V*,h} will be called a Codazzi pair. 

(ii) Equation (2.1) is called Codazzi equation for V* and h. 

(ili) Jf there exists a Codazzi pair {V*,h} in {P*,C}, then iP", C} ts called a Codazzi structure on M. 

(iv) A Codazzi transformation is the mapping 

he Bhai h®, Viuwn Vivtd InB(u)u + dlnB(u)u =: V**. (2.2) 

Remark 2.1.2 If {P*,C} is a Codazzi structure then for every h € C there exists a V € P* such that 
{h, V} is a Codazzi pair; the Inapping A +> V is injective, not surjective. 

2.2 The constructions 

Tn [1], the authors considered two constructions: (i) Given a Weyl] structure? one constructs a Codazzi 
structure aud (ii) vice versa, construct a Weyl structure from a given Codazzi structure. 

(i) Construct a Codazzi structure from a given Weyl structure {V = V(h,to,4),C, 10 7} on M: Ving 
lemma 1.2.4 (i) we have V,,v = Vu — 2 {6( (u)v + 6(v)u — h(u,v)0}. Define 

Viv=Vuvt . { (uw) + 6(v)u + h(u,vjo (2.3) 

and a connection V that is conjugate to V* with respect to h: 

Vuv:= Vyv- 2 & {8(u) + 6(v)u + A(u, vo}. 

The result is that {V*,h} and {V,h} are Codazzi pairs and V* is projectively equivalent to V. 
  

‘that do not necessarily have a symmetric Ricci tensor 
2 with t = 2, which is not a necessary condition. One can choose an arbitrary tw € R \ {0}.
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Remark 2.2.1 For the curvature tensors R* of V* and R of V of conjugate connections we have proposition 

1.1.5 (Le. h(R(u, v)w,z)+h(w, R*(u,v)z) = 0); given a Weyl structure one can construct a Codazzi structure, 
in this situation proposition 1.1.5 is equivalent to lemma 1.3.3 (iv) (i.e. h(R(u,v)w, z) + h(w;, R(u,v)z) = 
2F(u,v)h(w, z)). Lemina 1.1.5 is not conformally invariant but lemma (1.3.3) (iv) obviously is invariant 

uuder gauge transformations that include a conformal change of the metric. 

(ii) Again, following [1], we can construct a Weyl structure from a Codazzi structure: let {P,C} bea 

Codazzi structure. For a fixed Codazzi pair {V,h} € {P,C}, we define the (1.2)-tensor C: 

C:=V-V.. (2.4) 

V and V are torsion-free, therefore C is a symmetric (1.2)-tensor. For C' define the associated one-form 

nT(v) := trace {ur C(u,v)}. (2.5) 

A Codazzi transformation induces the following transformation formulas for C and T (see [11], propo- 
sition 5.1.3.) 

  

  

C¥(u,v) = C(u,v)- 5 {dlnB(u)v + dlnB(v)u + h(u,v)grad, np}, (2.6) 
Lom rd ‘ wl ® = ST - dnp. (2.7) 

Here we see that the one-form 2 T transforins like the one-form 6 that appears in the gauge trans- 

formation (1.5) with t= —2. Therefore this one-form is eligible to construct a Weyl connection: 

Vuvi= Vyut “is {T(u) +T(v)u— R(t, vr} (2.8) 

where T is defined by T(u) =: A(u, 7). 

Remark 2.2.2 The connection V is not necessarily projectively equivalent to the given V; the invariant 

formulation of lemma 1.1.5 for the curvature tensors is only possible if V and V are in the same projective 

class. 

Lemma 2.2.3 ({1]) Consider two Codazzi structures {P,C} and {P*,C} and define the symmetric (1.2)- 
hensor field y for any two Codazzi pairs {V,h} and {V*,h} by y(v, w) := Vyw-Viw. The Codazzi structures 

define the same Weyl structure if and only if y is apolar, which means trace {ur y(u,v)} = 0. 

Following [1] prescribe a Weyl structure and construct a Codazzi structure. From this Codazzi structure 
again a Weyl structure can be constructed. This latter Weyl structure coincides with the given one. 

On the other hand, if we start with a given Codazzi structure and first construct a Weyl structure and then 

from this a Codazzi structure again, the latter Codazzi structure need not to coincide with the given one. 

Theorem 2.2.4 Let {P,C} be a Codazzi structure and, for a fived h € C, construct a Weyl connection 

V=V(h, — ee T) following (2.4) - (2.8). From that Weyl connection construct a projective class P* as 
in (2.3); this implies that {P*,C} is a Codazzi structure. Then 

~P=P* if and only if, in P, there exists a Weyl connection compatible with hi: 

Proof. Let V € P be a Weyl connection and show that V is equal to V(h, ait T) € P*, using the 

projective equivalence of V and a V € P and lemma 1.2.4 (i). — | LJ 

Remark 2.2.5 Let C be a given conformal class; then there are two types of projective classes: projective 

classes that contain a Weyl connection compatible with C and others that do not contain such a connection.



3 Affine differential geometry of hypersurfaces 

3.1 Introduction 

Let M be orientable and A a real affine space of dimension n+ 1 equipped with the canonical flat connection 

V; let V be the real vector space associated to A and V* its dual space. Let 2: M > A be an immersion 

with an arbitrary transversal field y. Then we have the structure equations 

Vuda(v) = da(Vuv)+h(u,v)y, (3.1) 

dy(v) = da(—Sv)+7(v)y. (3.2) 

Here, h is a symmetric (0.2)-tensor field, V a torsion-free connection, called the induced connection, S a 

(1.1)-tensor field, called the shape operator and 7 a one-form called the connection form. 

Choose a conormal field Y: M — V* as the unique solution of 

Y(y)=1 and Y(d2x(v)) =0 (v € X(M)). (3.3) 

If x is a regular hypersurface — i.e. h is nondegenerate — then h is called the affine metric. 

Remark 3.1.1 The regularity of z is independent of the choice of y and equivalent to rank(dY,Y) =n+1. 

Let x be regular, then we can consider Y as a hypersurface Y: M —3 V* with transversal field (—Y’) and 

structure equation 

VudY (uv) = dY¥ (Viv) + $(u,v)(-Y). (3.4) 

V" is a torsion-free connection, called the conormal connection, and S is a symmetric (0.2)-tensor field. 

Iu this section we assuine all hypersurfaces to be regular; then the pair {Y,y} satisfying (3.3) is called a 

normalisation. 

Lemma 3.1.2 Some basic relations of the coefficients of the structure equations are: 

(i) {V*,h} is a Codazzi pair, 

(ii) V and V* are semi-conjugate relative to h by T and 

(iii) S(u,v) = A(Su,v) + (VEF)(v) — F(u)F(v). 

Proof. The proof of (i) follows [7]; use that Vv, as defined in remark 1.1.4, and V* are torsion-free and 

conjugate with respect to h. For (ii) show that Y(dy(v)) =: < Y,dy(v) > = f(v), use (i) and the fact that 
for a conjugate triple {V*, h, Vv} we have: V*h is totally symmetric iff VA is totally syinmetric, see [11], 

4.4.1; (iii) follows from (i), (ii) and the structure equations (3.1), (3.2) and (3.4). LJ 

Corollary 3.1.3 The Levi-Civita connection V of h in terms of V, V* and @ és given, using the notation 

of remark 1.1.4, by Vou = $(Veut+ Vyut A(u,v)r) = 3(Viu+ Vy).



The integrability conditions for the hypersurfaces 2 and Y in terms of V and V* read 

h(v,Su)—h(u, Sv) = 2dF(v,u), (3.5) 

(VyS)u—(VuS)v = F(v)Su—7(u)Sv, (3.6) 

R(u,v)w = hiv, w)Su—h(u,w)Sv (3.7) 

(Vuh)(u,w) +7(v)h(u,w) = (Vyh)(v,w) + F(u)a(v, w), (3.8) 

R*(u,v)w = S(v,w)u—S(u,w)v, (3.9) 

(ViS)(u,w) = (VES)(v,w); (3.10) 

the proof is analogous to [11], 4.8.1 and 4.8.2, compare also [8] and [4]. 

Remark 3.1.4 By the equations (3.9) and (3.10) it can be seen that, like in the case of relative? norma- 

lisatious, V* is projectively flat because the integrability conditions of V* are the same as in the case of 

relative normalisations (for the proof see [11], 4.10.3.2.). Moreover the Ricci tensor Ric* of V* is symmetric 

(see [11], 4.8.1.). 3 

3.2 The vanishing of the derivative of the connection form 

A natural question that arises is: under which conditions for the connection form is it possible to construct. 

uou-trivial Weyl structures. The existence of a connection form with non-vanishing exterior derivative is 

proved by Opozda: 

Theorem 3.2.1 ([8]) Let M be a simply connected n-dimensional manifold endowed with a connection V, 
asymmetric bilinear form h, a (1,1)-tensor field S and a one-form 7 such that equations (3.5) — (3.8) are 

satisfied. Then there are an nondegenerate immersion x: M > A and a vector field y transversal to x such 

thal V,h,S and + are the objects induced by {x,y} via (3.1) and (3.2). 

Here we can see that there are no further restrictions to 7, so we can assume that the exterior derivative of 

the connection form dves not vanish. In this case we can construct a non-trivial Weyl connection using T. 

The following lemma gives conditions to V,h and S, resp., which imply d7 = 0. 

Lemma 3.2.2 Let x be a hypersurface with transversal field y and conormal field Y. The following properties 

are equivalent: 

(i) dt = 0; 

(ii) S as selfadjoint w.r.t. h; 

(ui) V has a symmetric Ricci tensor; 

(iv) dT =0 where T (u) := 4trace {vu H (Vyu — Veu)}; T is called the Tchebychev form. 

Proof. For (i) © (ii) use (3.5); (ii) © (iii) follows from (3.7) and (iii) = (iv) is shown in [7], proposition 

4.1 and 4.4, . C] 

Remark 3.2.3 Because of the equivalence of (i) and (iv) there are either two one-forms to construct a 

non-trivial Weyl connection, or none. 
  

2 ‘s ee 
“where y is chosen such that 7 is equal to zero



Lemma 3.2.4 Let x: M — A be a hypersurface with transversal field y and conormal field Y. Let C be the 

conformal class of metrics such that h € C, V the Levi-Civita connection of h and u,v € X(M). If any one 

of the conditions (i) — (iv) is satisfied, then d7 = 0: 

(i) the induced connection is a Weyl connection, 

(ii) there exists h® €C such that {V,h} is a Codazzi pair, 

(iii) Vu = Vyu — Alu, v)T with T(u) =: h(u,r) for all (wu € X(M)), 

(iv) V as projectively equivalent to V. 

Proof. (i) Let V be a Weyl connection. From lemma 1.2.4 (i) we know that there exists a one-form @ such 

that Vyv = Vy — F1{A(u)u + a(v)u — h(u,v)a}, where a is defined by A(w) =: h(u,@). Using corollary 

3.1.3 we get Viv = Vyv + 3 {a(u)v + &(v)u — h(u,v)a} — h(u,v)?. Additionally we have (Vih)(v,w) = 

—w a(u)h(v,w) + F(v)h(u, w) + 7(w)h(u,v). Lemma 3.1.2 (i) implies a = —i7; we get 

Viv =Vyv- 4 {7(u)u + F(v)u + A(u,v)T}. (3.11) 

This aud remark 3.1.4 imply d7 = 0. 

(ii) A straightforward computation shows d7 = 0. 

(iii) Using corollary 3.1.3 we have Vu = Vuv—2 h(w,v)r. Lemma 1.2.4 (i) shows 7 = 0, this implies d7 = 0. 

(iv) Let @ be a one-form such that Vv = Vyv — &(u)u — A(v)u. A similar calculation as in the proof of (i) 

shows Viv = Vue + &(u)u + &(v)u — h(u,v)r. The Codazzi property of {V*,h} leads us to 

Viv = Vayu - T(u)u — T(v)u — A(w, v)r. (3.12) 

With the same arguinentation as in (i) we get d7 = 0. LI 

Remark 3.2.5 In parts (ii) and (iv) of the above proof, it can be seen from the equations (3.11) and (3.12) 

that the cubic form C(u,v,w) := h(Vyu — Viv,w) has the form C(u,v,w) = &(u)h(v, w) + &(v)h(w, uw) + 
a(w)h(u,v). This is a uecessary and sufficient condition for 2(M/) to be a quadric — as shown in [5], theorem 

8. Therefore, only on quadrics, the induced connection can be realised as a connection that is projectively 

equivalent to the Levi-Civita connection, or as a Weyl connection. 

3.3 Transformations of the transversal field 

Lemma 3.3.1 (Transformation Lemma) Consider a hypersurface 7: M 3 A with two normalisations 

{Y,y} and { Y* ,y*} with the same orientation. There are a function 0 < ¢ € C™(M) and a vector field 

1) © X(M) such that y# = b'{y + da(n)}. Then we have 

(i) Y# =4Y, 

(ii) Vitu = Viv + dlnd(u)u + dlng(v)u, 

(iii) h# = gh, 

(iv) V#u = Vyv — A(u,v)n and 

(v) F#(v) = F(v) + H(v) — dlnd(v), where 7 is given by (wu) = h(u,) for all u € %(M).
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Proof. Straightforward calculations. | CI 

If we choose ¢ = 3 and 7) = (1+ + grad, InZ then we have a gauge transformation (h,7) 4 (Gh, F+id Inf), 

which is induced by a transformation of the transversal field. Moreover, if we set a = —1-it is easy to see 

that V is invariant under transformations of the transversal field with ¢ and 7 chosen as above. If we assume 

that V is a Weyl connection then lemma 3.2.4 shows that it is a trivial Weyl connection. 

3.4 The centroaffine connection as a gauge invariant connection 

Definition 3.4.1 Let w: M — V be a hypersurface with 0 ¢ 2(M), and x be transversal to a(M). Let 

{Yvy}be a normalisation and define the associated support function 

p= < Y,-2>. 

As « and y are transversal we can express y in terms of a and dx; by straightforward computations we get 

y= —p ‘a + da(grad, np + 7) and the decomposition 

Vida(v) = da(Vuv + h(u, v) {grad Inp + T}) — pu! h(u, v) a. 

Definition 3.4.2 Let: M — V be a hypersurface with normalisation {Y,y} and associated support func- 

tion p #0. Let V be the induced connection and 7 the connection form. Define the connection 

° 

Vu = Vuv + h(u, v) {grad, Inp + r}) 

where T is given by T(u) = h(u,T) for all wu € X(M). 

Remark 3.4.3 V again is a torsion-free connection (V: torsion-free, h symmetric). The geometric inter- 

pretation of V is that the pregeodesics of this connection are intersections of the hypersurface with planes 

that coutain the point ag. This connection is studied in [10] for the case of relative normalisations. 

Por a transformation yr Bo'y + (1+ + )da(grad, Inf) =: y* we have p> Bp := p*; the other quantities 

change as in the transformation lemma. We get 

<2 II a! Vitv + h® (u,v) {erad),»# Inp* + 7* \ 

= Vyv—-(1++)h(u, v)grad, Ing + Bh(u,v) 37! (grad, InBp + 7 + + grad, Inf) 

= Vu. 

We have proved: 

Proposition 3.4.4 Let «:M — V be a hypersurface as in definition 3.4.1. Then V is gauge invariant. 

The connection induced by a transversal field that is a multiple of its position vector field 2 is well-known 

in affine differential geometry of hypersurfaces: it is known as centroaffine connection. Therefore we have 

Corollary 3.4.5 The centroaffine connection is gauge invariant. 

‘Lemma 3.4.6 If V is a Weyl connection, then it is trivial.
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Proof. From the definition of V we can see that V is induced by the transversal field —p~!a. Lemma 3.2.4 
gives that the induced connection is a trivial Weyl connection. LI 
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