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Abstract

In the present work a chemical reaction between a solid and a diffusing con-
stituent is considered. Many experimental observations show a coupling be-
tween mechanical stresses and the kinetics at a chemical reaction interface that
propagates in a deformable solid. In general, two major processes control the
chemical reaction: diffusion of a reactant through the reacted material and
the consumption of the diffusing reactant by a chemical reaction. Mechanical
stresses may affect the reaction front propagation via the direct influence on
the diffusion process, the reaction rate, or both.

The reaction localized at a sharp interface is considered. The kinetics of
the interface is modeled by using the chemical affinity tensor concept, which,
in a thermodynamically consistent way, couples mechanical stresses and the
chemical reaction rate. The tensorial nature of the affinity tensor follows from
the fact that the reaction occurs at the oriented surface element.

The chemical interface can be retarded or even blocked by mechanical stresses.
When modeling the moving interface, especially when approaching the blocking
position, the question of stability arises naturally. A kinetic stability approach
for the analytical stability analysis of interfaces at a chemical equilibrium is
formulated and applied in several examples.

A finite element procedure for numerical simulations of the reaction front
propagation is developed based on remeshing algorithms. In order to check
as to whether the numerical procedure can be used for the stability analysis
of the interface, several problems are examined numerically, and the results
are verified with analytical solutions and predictions of stability. Also, the
developed procedure is cross-validated with another numerical method for
simulating the moving interface, namely CutFEM.

The last part of the manuscript reports experimental findings of IMC growth
in microchips during a high-temperature storage test. The growth kinetics is
modeled by applying a continuum model based on the chemical affinity tensor.
By evaluating and combining a real experiment with theory, values for the
diffusion coefficient and the chemical reaction constants are obtained. These
values demonstrate the consistency of the developed theoretical models.





Numerical and analytical studies of the chemical reaction front kinetics in solids V

Zusammenfassung

In dieser Arbeit wird die chemische Reaktion zwischen einem Festkörper und
einem diffundierenden Anteil untersucht. Viele experimentelle Beobachtungen
zeigen eine Kopplung der mechanischen Spannungen mit der Kinetik an der
chemischen Reaktionsfläche auf, die sich in einem verformbaren Festkörper
ausbreiten kann. Hauptsächlich steuern zwei Prozesse die chemische Reaktion:
die Diffusion eines Reaktionspartners innerhalb des reagierenden Materials und
die Umsetzung des diffundierenden Reaktionspartners aufgrund der chemis-
chen Reaktion. Die mechanischen Spannungen können somit eine direkte
Auswirkung auf die Ausbreitung der Reaktionsfront haben, indem sie entweder
den Diffusionsprozess beeinflussen, oder indem sie die Reaktionsgeschwindigkeit
manipulieren, wobei auch beides gleichzeitig möglich ist.

Der Reaktionsvorgang an einer ausgezeichneten Grenzschicht wird unter-
sucht. Die Kinetik der Grenzschicht wird mit Hilfe des Konzeptes des chemis-
chen Affinitätstensors modelliert, der, aufbauend auf den thermodynamischen
Grundgesetzen, die mechanischen Spannungen mit der chemischen Reaktions-
geschwindigkeit in Verbindung setzt. Der Affinitätstensors orientiert sich am
entsprechenden Oberflächenelement, an dem der Reaktionsvorgang stattfindet.

Die Ausbreitung der chemischen Grenzschicht kann durch die mechanische
Beanspruchungen behindert oder sogar komplett blockiert werden. Bei der
Modellierung der sich bewegenden Grenzschicht, insbesondere beim Erreichen
der Blockade, stellt sich die Frage nach der Stabilität. Ein kinetischer Ansatz
für die analytische Stabilitätsuntersuchung von Grenzschichten im chemischen
Gleichgewicht wird formuliert und in mehreren Beispielen angewendet.

Ein Finite-Elemente-Verfahren zur numerischen Simulation der Ausbreitung
der Reaktionsfront wird mit Hilfe von Algorithmen zur Wiedervernetzung
entwickelt. Um zu prüfen, ob das numerische Verfahren für die Stabilitäts-
analyse an den Grenzschichten hinreichend genau ist, werden verschiedene
Problemstellungen auch numerisch untersucht. Diese Ergebnisse werden mit
den analytischen Lösungen und den Stabilitätsvorhersagen bestätigt. Zusät-
zlich wird das entwickelte Verfahren zur Simulation der Ausbreitung der sich
bewegenden Grenzschicht auch mit einer anderen numerischen Methode, der
sogenannten CutFEM, validiert.

Im letzten Teil der Arbeit werden experimentelle Neuheiten des IMC-
Wachstums in Mikrochips während eines Hochtemperatur-Storage-Tests
vorgestellt. Die Kinetik des Wachstums wird mit Hilfe eines Kontinuumsmod-
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ells, das auf dem chemischen Affinitätstensor basiert, nachgestellt. Durch
die Auswertung und Kombination von realen Experimenten mit der Theorie,
werden der Diffusionskoeffizient und die Konstanten der chemischen Reak-
tion genau bestimmt. Diese Werte zeigen die Konsistenz der entwickelten
theoretischen Modelle.
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1 Introduction

During the last decades, much attention in continuum mechanics has been paid
to the study of materials, which change their structure due to phase or chemical
transformations under thermomechanical actions (see, e.g., Grinfeld [1991];
Gurtin [2000]; Abeyaratne and Knowles [2006]; Müller, Vilchevskaya, and
Freidin [2015]; Freidin and Vilchevskaya [2020] and the references therein). The
peculiarity of such studies is their interdisciplinarity, where coupled problems
of mechanics, physics, and chemistry arise. As an example of mechanical and
physical phenomena coupling, one can consider austenite-martensite phase
transformation or orientation (ordering) transformation in polymers. In the
present work, coupled problems of mechanics and chemistry are considered.
There are two terms to describe such a coupling: mechanochemistry and
chemomechanics (see, e.g., Freidin and Vilchevskaya [2020]). Both of them
used to emphasize that mechanical processes influence the chemical ones
and vice versa. In this work, stress-affected chemical reactions in solids are
considered. Without further elaboration on etymology, the coupling of chemical
and mechanical phenomena is defined by the word “mechanochemistry” in the
following text.

Some examples of mechanochemical problems come from MicroElectroMe-
chanical Systems (MEMS) and microelectronics. Oxidation processes intercon-
nected with crack growth in polycrystalline silicon microscale parts determine
the lifetime of MEMS (e.g., Muhlstein, Stach, and Ritchie [2001]; Muhlstein,
Brown, and Ritchie [2002]; Muhlstein and Ritchie [2003]). In Buttner and
Zacharias [2006] it was shown that on nanoscale mechanical stresses can retard
the oxidation of silicon nanowires.

In microelectronics, the growth of the Intermetallic Compound (IMC) phases
in Pb-free solders is of great interest. The main technological process for
creating an electrical contact between components in a (micro-) electric circuit
is soldering. After soldering, an IMC layer appears and establishes a mechanical
contact between eutectic tin-silver solder bumps and Cu interconnects, see,
e.g., Callister Jr. and Rethwisch [2010]. IMC formation is a result of diffusion
and chemical reaction processes, which involve a change in shape and volume
between the products and reactants. Strictly speaking, IMC formation is based
on a multicomponent diffusion in solids, including vacancies as a migrating
species leading to Kirkendall voiding (Dybkov [2010]; Ross, Vuorinen, and
Paulasto-Kröckel [2016]). In addition to mechanical stress it can be enhanced
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by electric currents (Chao et al. [2009]) Fig. 1.1. Consequently, the rate of
IMC growth has a strong implication on solder joint reliability.

(a) (b)

Fig. 1.1: Cross section of a solder bump prior (a) and after (b) current stressing,
reprinted from Chao et al. [2007]

Other examples of such mechanochemical studies are Lithium-Ion Batteries
(LIBs) with novel anode materials, such as silicon. The charge capacity of a
silicon-based anode is about ten times higher than the capacity of graphite
anodes, which are most commonly used in the industry (Kasavajjula, Wang,
and Appleby [2007]). However, the lithiation and de-lithiation with large
amounts of Li result in dramatic volumetric changes of 300% in the Si anodes,
which can lead to fracture of the anode, Fig. 1.2. In order to cope with the large

(a) (b)

Fig. 1.2: SEM morphology of 250 nm a-Si film on Cu after 1 (a), and 30 cycles (b),
reprinted from Kasavajjula, Wang, and Appleby [2007]

volume change and, therefore, to obtain better capacity retention and cycle life
for Si anodes, various designs of different anode structures have been proposed,
such as thin films (Bourderau, Brousse, and Schleich [1999]), nanoparticles (Liu
et al. [2012a]), nanowires or hollow nanowires (Jia and Li [2015]; Zhao et al.
[2012b]), and even remarkable morphologies, such as honeycomb structures
(Baggetto, Danilov, and Notten [2011]). Unless accommodated by appropriate
compensating deformation, the large volumetric change generates mechanical

Chapter 1. Introduction
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stresses, which, in turn, may affect the diffusion (Yang [2010], Chang, Moon,
and Cho [2015]). Recent experimental observation shows (Liu et al. [2012a];
Liu et al. [2012b]; McDowell et al. [2013]; Liu et al. [2013]) that there is a sharp
interface between lithiated and unlithiated phases, that the lithiation process
may be controlled by an interfacial chemical reaction (Zenga et al. [2016]), and
that the chemical reaction rate is affected by mechanical stresses as well (Yang
[2010]; Cui, Gao, and Qu [2012a]; Levitas and Hamed [2013]). As a result, one
faces a complex coupled problem of mechanochemistry with a moving chemical
reaction front.

A distinctive feature of the aforementioned examples is that the thickness
of the interface is negligible when compared to the characteristic dimensions
of considered solid bodies. For instance, in the case of silicon lithiation, the
interface thickness is roughly 1 nm when the silicon nanoparticle or nanowire
has a diameter of 150 -250 nm, see, e.g., McDowell et al. [2013].

In general, two major processes control the propagation of a sharp chemical
reaction front: (i) diffusion of a reactant in the body undergoing a chemical
reaction, (ii) consumption of the diffusing reactant by a chemical reaction at
the reaction front. Thus, stresses may affect the reaction front propagation
via the influence on diffusion, or the reaction rate, or both. To couple the
chemical reaction rate with the mechanical stresses, some models include
additional stress-dependent cross-effect terms in the diffusion flux which appears
based on generalized expressions of stress-dependent scalar chemical potentials:
Knyazeva [2003]; Loeffel and Anand [2011]; Cui, Gao, and Qu [2012b]; Bower
and Guduru [2012]; Levitas and Hamed [2013]; Brassart and Suo [2013].
However, the velocity of the reaction front may be controlled by the reaction
rate rather than by the diffusion (see, e.g., Zhao et al. [2012a]; Jia and
Li [2015] and references therein). In this case, the influence of stresses on
the reaction rate becomes important. In classical physical chemistry, the
reaction rate is determined by a scalar chemical affinity, which is equal to a
combination of scalar chemical potentials of the reaction constituents (Prigogine
and Defay [1954]). Scalar chemical potentials were derived for the case of phase
transformations in gases and liquids where stresses were reduced to a scalar
pressure (Gibbs [1948]).

In the last decades of the XXth century, it was recognized, that chemical
potential is a tensor in the case of solid phases. The tensorial nature followed
from the fact that the equilibrium was considered not just in a point of the
interface but at oriented surface element, see, e.g., Bowen [1967]; Truesdell
[1969]; Grinfeld [1980]; James [1981]. Later, a tensorial nature of the chemical
potential was discussed in Rusanov [2005]; Rusanov [2006]. These results
could be considered as a prelude to the tensorial chemical affinity, and in
Freidin [2013]; Freidin, Vilchevskaya, and Korolev [2014] it was shown, that
in the case of a propagating reaction front the driving force is equal to the
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normal component of the chemical affinity tensor which, in turn, equals to the
combination of the chemical potential tensors of solid constituents and the
chemical potential of the diffusing constituent. By this approach, mechanical
stresses affect the reaction rate via the chemical affinity tensor. A kinetic
equation for the propagating chemical reaction front was formulated in the
form of the dependence of the normal component of the reaction front velocity
on the normal component of the chemical affinity tensor.

This work can be considered as a step of further utilization of the chemical
affinity tensor concept in a form developed in Freidin [2009]; Freidin [2013];
Freidin, Vilchevskaya, and Korolev [2014]; Freidin [2015]; Freidin et al. [2016],
for studying stress-controlled chemical reaction front propagation. The kinetics
of the front propagation is described within the frames of the mechanics of
configurational forces. It is known that in the case of quasi-static stress-
induced phase transformations the configurational force driving the interface
is given by the jump of the normal component of the Eshelby stress tensor
(see, e.g., monographs Silhavy [1997]; Abeyaratne and Knowles [2006]; Maugin
[2010]; Gurtin [2000] and reference therein). As it was derived and approbated
during the last years, in the case of stress-assisted chemical reactions, the
configurational force is determined by the normal component of a chemical
affinity tensor. In both cases, based on irreversible thermodynamics reasons, a
kinetic equation can be formulated in the form of the dependence of the interface
velocity on the corresponding configurational force. Then stresses and strains
affect the interface propagation as they are presented in the configurational
force.

In the case of phase transformation, a zero configurational force corresponds
to phase equilibrium, but this is only a necessary condition of phase equilibrium,
and the interface may be unstable in such a state (Grinfeld [1982]; Grinfeld
[1990]; Grinfeld [1991]). In the case of a chemical reaction, zero configura-
tional force corresponds to chemical equilibrium at which the reaction front
propagation is blocked. Therefore, by analogy with phase transformations, the
question about the stability of the reaction front in the vicinity of the blocking
state arises naturally. Chemical reaction retardation and even blocking by
mechanical stresses were experimentally observed in, e.g., Marcus [1982]; Kao
et al. [1988]; Mihalyi, Jaccodine, and Delph [1999]; Heidemeyer et al. [2000];
Buttner and Zacharias [2006]. Special attention was paid to the influence of
mechanical stresses on the stability of the growing interface in Ortiz, Repetto,
and Si [1999]; Phan et al. [2001]; Barvosa-Carter and Aziz [2004]; Zeeshan and
Venkatasubramanian [2017]; Ahmad and Viswanathan [2017]. These problems
occur in the solid electrolyte interfaces modeling for Li-ion batteries, Natsiavas
et al. [2016]; Hüter et al. [2017].

The importance of the stability analysis of chemical reaction fronts also
follows from the following circumstances. The difference between phase and

Chapter 1. Introduction
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chemical transformations is that in the latter case one deals with an open
system with diffusion. One more equation – a diffusion equation – is included in
the analysis in comparison with phase transformations. But a more important
difference may be that a stress-induced phase transformation starts only if
it provides minimization of the energy, and the origin of the transformation
may be inside of a body or at the outer surface of a body depending on energy
preferences and stability. For example, in the case of isotropic phases, for a
spherical particle undergoing a phase transformation under increasing external
strain, an equilibrium and stable new phase domain can grow only from the
center of the particle if a shear module of a new phase is larger than a shear
module of an initial phase. Other interfaces are unstable even if they satisfy
phase equilibrium conditions. If the shear module of the new phase is less than
the shear module of the initial phase, then a stable new phase grows from the
outer surface of the particle (Eremeev, Freidin, and Sharipova [2003]; Eremeev,
Freidin, and Sharipova [2007]). The origin of phase transformations can also
be a new phase nucleus, which starts at imperfections or heterogeneities (see,
e.g., Vilchevskaya, Filippov, and Freidin [2013]). Then the position of the
interfaces is affected by the position of the imperfections. Moreover, two-phase
microstructures may be more preferential then two-phase configurations with
one smooth interface (Ball and James [1987]; Chenchiah and Bhattacharya
[2008]; Antimonov, Cherkaev, and Freidin [2016]; Freidin and Sharipova [2018]).
At given boundary conditions, it is a material “that decides” where to initiate
a new phase and how it will grow.

The situation is different in the case of chemical reaction fronts. Here the
direct reaction can go only if a diffusing reactant is delivered to the reaction
front through the transformed material. In the case of the aforementioned
spherical particle, the supply of the diffusing constituent is possible only
through the surface of the particle. Therefore, the direct chemical reaction
can start only at the outer surface and the front can propagate only inwards,
irrespectively of the shear moduli of the solid reactants. In the case of the
reverse reaction, the reactant is taken away from the front, and the front
propagates outwards.

Therefore, starting place of the reaction and direction of the front propagation
are controlled by the supply or removal of the diffusing reactant. It means that
the reaction front may be forced to go in the direction of an unstable blocking
state and this instability may affect the propagation of the interface. Thus,
in the case of chemical reactions unstable reaction fronts are of interest not
only from the mathematical point of view but also because they are physically
meaningful.

Stability of the interface between material phases for phase transformation
was previously studied in, e.g., Grinfeld [1982]; Gurtin [1983]; Grinfeld [1990];
Grinfeld [1991]; Fried [1993]; Osmolovsky [2000]. In the current work, the



6

stability of the reaction front is studied by using the procedure of so-called
linear kinetic stability analysis and says that the interface is unstable if its
small perturbations grow due to the kinetic equations. The utilized procedure
was developed and explored earlier for the case of equilibrium phase interfaces
in Eremeev, Freidin, and Sharipova [2003]; Fu and Freidin [2004]; Freidin et al.
[2006]; Eremeev, Freidin, and Sharipova [2007].

Note that kinetic stability analysis performs not only an energy-based check-
ing of the stability and states the fact of the stability loss, but also gives
hints on types (or modes) of instabilities formation and the tendencies of
further kinetics of the perturbations. In Phan et al. [2001]; Barvosa-Carter
and Aziz [2004] the authors numerically considered the growth stability of
crystalline silicon from the amorphous phase. Based on a kinetic model from
Barvosa-Carter et al. [1998], the authors considered the influence of mechanical
stresses and growth kinetic anisotropy on the interface roughening. Consid-
ering the kinetic model of film growth resulting from deposition and mass
transport proposed in Ortiz, Repetto, and Si [1999], the authors in Natsiavas
et al. [2016] analyzed the influence of the elastic pre-stress on the stability of
planar growth asymptotic analysis of a nearly flat interface for the problem of
anode-electrolyte interaction. Based on these results, the authors in Hüter et al.
[2017] considered the stability of the electrode-coating-electrolyte interface
depending on the thickness of the thin film interlayer and the magnitude of
the elastic pre-stresses.

In Zeeshan and Venkatasubramanian [2017] the stability criteria for elec-
trodeposition at solid-solid interfaces is derived using linear stability analysis
assuming that the solids are linearly elastic isotropic materials based on a
kinetic model proposed by Monroe and Newman [2004]. It described later
cathodic roughening and dendritic growth by taking into account mechanical
stresses and their influence on the current exchange densities and potentials at
the roughened interface.

Independently of the kinetic stability analysis, the concept of phase transition
zones (PTZ) was introduced in Freidin and Chiskis [1994a]; Freidin and Chiskis
[1994b]. The PTZ is a zone in a strain space formed by all strains which can
exist at the equilibrium interfaces in a given material. The procedure was
developed for the case of nonlinear-elastic materials in Freidin and Chiskis
[1994a]; Freidin and Chiskis [1994b]; Freidin et al. [2006], and then for the
case of linear elastic phases in Freidin [1999]; Morozov and Freidin [1998].
Correlation of the results obtained by the kinetic stability analysis and the
PTZ approach is discussed in Fu and Freidin [2004]; Eremeev, Freidin, and
Sharipova [2003]; Freidin et al. [2006]; Eremeev, Freidin, and Sharipova [2007];
Vilchevskaya, Filippov, and Freidin [2013]. In these works, it was shown that
instability of phase interface is not observed if the strains at the interface in a
body belong to the boundary of the PTZ. Then in the papers Grabovsky and

Chapter 1. Introduction
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Truskinovsky [2011]; Grabovsky and Truskinovsky [2013], it was proved that
belonging of strains to the external PTZ-boundaries is a necessary stability
condition.

In the current work, the kinetic stability analysis and the PTZ procedure
are compared for the interfaces at the equilibrium position. However, the PTZ
approach cannot be explicitly extrapolated to the case of the chemical interface
at the reaction blocking state. The linear stability analysis procedure for phase
transformations is extended to the case of a chemical reaction. Note that
analytical investigation of the interface stability based on the perturbed kinetic
equation is rather complicated, even for simple geometries. Therefore, in this
work, a numerical procedure for simulating the reaction front propagation is
developed. This procedure is verified with analytical solutions, and special
attention is paid to the interfaces approaching the equilibrium position. It is
done to check whether the developed numerical methods can reveal physically
stable and unstable configurations.

Many numerical simulations of the transformation fronts propagation have
been made earlier in problems of different nature. For the case of phase
transformations see, e.g., Finite Element Analysis (FEA) applications in Mueller
and Gross [1998]; Mueller and Gross [1999]; Gross, Mueller, and Kolling [2002];
Mueller, Gross, and Lupascu [2006]. Stress-field analysis in Li-ion batteries
during propagation of the lithiation front propagation was performed using FE
in Jia and Li [2015]. A description of the FE simulation of the propagation
of a chemical reaction front with the reaction front kinetics controlled by the
chemical affinity tensor was implemented in Freidin et al. [2016].

In this work, an FEM procedure for numerical simulations of the reaction
front propagation is developed based on remeshing algorithms. Utilizing
the proposed procedures, the propagation of the transformation fronts is
simulated, and the consistency between the numerical and analytical results
is checked. The method itself is compared to other numerical approaches
to simulate the interface propagation, namely the CutFEM approach. A
more detailed discussion about this is given in Chapter 3. The numerical
simulations demonstrate how interfaces propagate if the equilibrium positions,
found analytically, are stable or unstable. In the case of stable configuration, the
interface converges smoothly to the equilibrium position. If the configuration
is unstable, the interface also propagates smoothly toward the equilibrium
position, but in the vicinity of the equilibrium, when the interface velocity
is almost zero, the instabilities become visible and start to grow. This effect
may be explained by the competition between global and local kinetics of
the interface propagation. It should be emphasized that the existence and
propagation of the chemical reaction fronts far from equilibrium is a natural
process and stress-induced front retardation and these instabilities, which might
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grow considerably, may be the source of further fracture, or another type of
failure.

This manuscript is organized as follows. In Chapter 2, an overview of the
chemical affinity tensor concept is given. A kinetic stability approach for the
analytical stability analysis of interfaces at a chemical equilibrium is formulated.
It is done by extending the linear stability analysis procedure developed for
phase transformations. In this chapter two simplest problems are studied for
linear elastic solid phases of reactants: stability of the plane problem with
planar interface in the infinite layer and axially-symmetric plane problem
with a cylindrical interface. The influence of the material parameters on the
stability of the interface is studied, and, as a result, “stable” and “unstable”
sets of parameters are proposed for the following numerical simulations. An
FE procedure for numerical simulations of the reaction front propagation based
on remeshining algorithms is introduced in Chapter 3. Different approaches
to simulating numerically the moving interface are discussed and compared.
To check whether the numerical procedure for simulating the reaction front
propagation can adequately reveal stable and unstable behavior of the interface,
several problems are examined numerically and compared with the analytical
solutions and stability predictions from the previous chapter. Also, the remesh-
ing procedure is cross-validated with the other numerical method for simulating
the moving interface, namely the CutFEM. Chapter 4 contains theoretical and
experimental studies of the IMC growth at the interface between copper pads
and tin-based solder alloys. The first part of Chapter 4 reports experimental
findings of IMC growth in different microchips during a high-temperature stor-
age test. The growth kinetics is modeled employing a continuum model based
on the chemical affinity tensor concept. By combining experiment, theory, and
a comparison of experimental data and theoretical predictions, the values of
the diffusion coefficient and an estimate for the chemical reaction constants are
obtained. Each chapter is finalized by the conclusions section, and the final
Chapter 5 gives the general conclusions and the outlook.

Chapter 1. Introduction
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2 Chemical reaction front kinetics and
stability

2.1 Chemical affinity tensor and general problem
statement

Consider a solid body undergoing a chemical transformation caused by a
chemical reaction localized at a sharp interface. In general, the equation of a
chemical reaction can be written as follows

𝑛−𝐵− + 𝑛*𝐵* → 𝑛+𝐵+, (2.1)

where 𝑛−, 𝑛* and 𝑛+ are the stoichiometric coefficients, 𝐵−, 𝐵* and 𝐵+ are
the species involved in the reaction: initial material, diffusing reactant, and the
reaction product, respectively. The reaction between 𝐵− and 𝐵* is localized
at the reaction front Γ and is supported by the diffusion of 𝐵* through 𝐵+ as
schematically shown in Fig. 2.1. It is assumed that all delivered 𝐵* is consumed
by the reaction. The reaction is accompanied by the change of volume at the
reaction front. This deformation produces mechanical stresses at the front
which in turn may affect the front propagation. Here and further in the text
of the manuscript index “−” denotes the initial material, “*” states for the
diffusing constituent, and “+” denotes the transformed material, which is the
product of the chemical reaction.

The notion of the chemical affinity arises from fundamental results by Gibbs
and De Donde (see, e.g., Prigogine and Defay [1954]). It was shown that in the
case of a chemical reaction the factor conjugate to the reaction rate 𝜔 in the
expression of the entropy production 𝑃 multiplied by temperature 𝑇 was equal
to the combination of the chemical potentials of the reaction constituents:

𝑇𝑃 = 𝐴𝜔, 𝐴 = −
∑︁

𝑛𝑘𝑀𝑘𝜇𝑘, (2.2)

where 𝜇𝑘 is the chemical potential of the 𝑘-th constituent (per unit mass),
𝑀𝑘 is the molar mass of 𝑘-th constituent, the stoichiometric coefficient 𝑛𝑘

contributes to the sum with a positive sign “+” if the 𝑘-th constituent is
produced in the reaction and with a negative sign “−” if the 𝑘-th constituent
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Γ𝐵− 𝐵+

𝐵*

t0

u0

Ω+

Ω−

Fig. 2.1: A schematic representation of a localized chemical reaction in solids.

is consumed. For the reaction (2.1) the classical chemical affinity would be

𝐴 = 𝑛−𝑀−𝜇− + 𝑛*𝑀*𝜇* − 𝑛+𝑀+𝜇+, (2.3)

where 𝜇+, 𝜇− and 𝜇* are the mass densities of the chemical potentials of the
constituents 𝐵+, 𝐵− and 𝐵*, respectively. The factor 𝐴 was called the chemical
affinity of the reaction. Then a kinetic equation in a form of the dependence
of the reaction rate on the chemical affinity can be formulated. One of the
accepted dependencies (see Glansdorff and Prigogine [1971]) for the reaction
rate is the equation

𝜔 = 𝜔

[︂
1 − exp

(︂
− 𝐴

𝑅𝑇

)︂]︂
, (2.4)

where 𝜔 is the so-called partial rate of a direct reaction, which is defined by
the concentrations of the reactants, 𝑅 is the universal gas constant.

The relationships (2.2)–(2.4) were formulated for reactions in systems like
gases or liquids for which chemical potentials and, therefore, chemical affinity
can be presented as scalar values. The observation that the phase equilibrium
and chemical reaction take place not just in a point but at an oriented area
element passing through the point, led to the idea of a tensorial nature of the
chemical potential and chemical affinity (see the discussion on the tensorial
nature of a chemical potential in Grinfeld [1991] and on the tensorial nature
of the chemical affinity in Freidin and Vilchevskaya [2020]). One can see here
an analogy to the concept of stress. A stress state is determined by a scalar
pressure acting in a point in the case of liquids and gases. However, in the case
of a solid, instead of pressure, a stress tensor determines a traction acting at
the oriented area element passing through a point.

It was shown that the reaction rate is determined by the normal component
𝐴𝑛𝑛 of the chemical affinity tensor A, see the derivations in Freidin [2013];

Chapter 2. Chemical reaction front kinetics and stability
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Freidin, Vilchevskaya, and Korolev [2014]; Freidin [2015], and the chemical
affinity tensor has the same mathematical form as the scalar affinity (2.3) but
with tensorial chemical potentials instead of scalar ones. A kinetic equation
similar to the equation (2.4) can be taken for the reaction rate 𝜔𝑛 at the area
element with the normal n:

𝜔𝑛 = 𝑘*𝑐

[︂
1 − exp

(︂
−𝐴𝑛𝑛

𝑅𝑇

)︂]︂
, (2.5)

where it is taken into account that in the case of the reaction between solid and
gaseous constituents 𝜔 can be taken in a form 𝜔 = 𝑘*𝑐 where 𝑐 is the partial
molar concentration of the diffusing reactant. Mechanical stresses affect the
reaction rate via the normal component of the affinity tensor. The normal
component of the reaction front velocity 𝑉𝑛 can be expressed in terms of the
reaction rate from the mass balance at the reaction front:

𝑉𝑛 = 𝑛−𝑀−
𝜌−

𝜔𝑛. (2.6)

In order to handle further analytical calculations and to obtain the unknown
parameters of the model, linear elastic solid reactants are considered. In this
case the constitutive equations of 𝐵− and 𝐵+ are

𝜎− = C− :𝜀−,

𝜎+ = C+ : (𝜀+ − 𝜀tr),
(2.7)

and the Helmholtz free energies of the solid reactants are represented by

𝑓−(𝜀) = 𝜂− + 1
2𝜀− :C− :𝜀−,

𝑓+(𝜀) = 𝜂+ + 1
2(𝜀+ − 𝜀tr) :C+ : (𝜀+ − 𝜀tr),

(2.8)

where C± are stiffness tensors, 𝜂± are temperature dependent chemical energies
of the reactants 𝐵±. An isotropic transformation strain tensor can be considered

𝜀tr = 𝜀trI, (2.9)

where principal strains 𝜀tr are the same at all points of the domain occupied
by 𝐵+, and differences related to the deviations of the concentration of the
diffusing reactant are neglected.

Two sources of the volume change are considered: deformation due to
the chemical transformation itself and deformation due to the diffusion of
the diffusing reactant (see, e.g., Freidin [2013]; Müller, Vilchevskaya, and
Freidin [2015]; Freidin and Vilchevskaya [2020]). The total deformation can

Section 2.1. Chemical affinity tensor and general problem statement
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be estimated as follows. A material 𝐵− is placed on one side of the reaction
front and the mix of the materials 𝐵+ and 𝐵* is on the other side. Due to the
chemical reaction (2.1), the elementary volume d𝑉− = 𝑛−𝑀−/𝜌− transforms
into the volume d𝑉+ = 𝑛+𝑀+/𝜌+ where 𝜌± are the reference mass densities
of solid reactants 𝐵±. The ratio of these volumes is

𝐽ch = 𝑛+𝑀+/𝜌+
𝑛−𝑀−/𝜌−

. (2.10)

The diffusion may produce additional volume 𝜉𝑛*𝑀*/𝜌* inside material 𝐵+,
where 𝜌* is the reference mass density of the diffusing reactant 𝐵*. The
parameter 𝜉 reflects the deformational interaction between the reactants 𝐵*
and 𝐵+. In fact, 𝐵− “transforms” into the mix of 𝐵+ and 𝐵* at the interface Γ.
Then the ratio of stress-free volumes of materials coexisting across the reaction
front is given by

𝐽tr = 𝑛+𝑀+/𝜌+ + 𝜉𝑛*𝑀*/𝜌*
𝑛−𝑀−/𝜌−

. (2.11)

The case 𝜉 = 0 in (2.11) corresponds to a solid skeleton approach, according to
which the diffusion of 𝐵* is not accompanied by volume expansion of 𝐵+. The
case 𝜉 = 1 corresponds to adding the volumes of 𝐵+ and 𝐵*. The value of the
parameter 𝜉 depends on the mechanism of the diffusion of 𝐵* and saturations
ability of 𝐵+ with respect to diffusing 𝐵*. The diffusion of 𝐵* through 𝐵+
may occur by a vacancy mechanism involving two counter fluxes: of 𝐵* and
of vacancies. Then at the reaction front atoms of 𝐵* take places of these
vacancies, and this may also lead to shrinkage of 𝐵+, which corresponds to
the case 𝜉 < 0.

In the case of small deformations, the transformation strain can be calculated
as 𝜀tr = (𝐽1/3

tr −1). To keep strain compatibility conditions (i.e., continuity of a
body) across the reaction front in the presence of volume change 𝐽tr, additional
strains appear and produce internal stresses. These internal stresses together
with external loading influence the reaction front velocity.

Further, it is assumed that the chemical potential of the diffusing reactant
is given by

𝑀*𝜇* = 𝜂* +𝑅𝑇 ln 𝑐

𝑐*
, (2.12)

where 𝜂* is the chemical energy of the diffusing constituent 𝐵* and 𝑐* is a
reference concentration of 𝐵*.

In quasi static approach, neglecting the pressure terms acting on the diffusing
constituent (the solid skeleton approach) it can be shown (see, e.g., Freidin,
Vilchevskaya, and Korolev [2014]) that from (2.7)–(2.12) the normal component

Chapter 2. Chemical reaction front kinetics and stability
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of the chemical affinity tensor can be expressed as

𝐴𝑛𝑛 = 𝑛−𝑀−
𝜌−

𝜒+ 𝑛*𝑅𝑇 ln 𝑐

𝑐*
, (2.13)

where the contribution of mechanical and chemical energies is presented by

𝜒 = 𝛾+ 1
2𝜎− : 𝜀− − 1

2𝜎+ : (𝜀+ − 𝜀tr) + 𝜎± : J𝜀K. (2.14)

It should be noted that due to displacement and traction continuity conditions
𝜎− : J𝜀K = 𝜎+ : J𝜀K. In the expression (2.14)

𝛾 = 𝜂− − 𝜂+ + 𝜌−
𝑛−𝑀−

𝑛*𝜂* (2.15)

is the combination of the chemical energies of the reactants and square brackets
denote the jump of the value across the reaction front, J𝜑K = 𝜑+ − 𝜑−.

In the works by Kubanov and Freidin [1988]; Freidin [1989]; Morozov and
Freidin [1998]; Freidin [2010] a phase transformation problem was considered
and expressions for the jump of the normal component of the Eshelby stress
tensor across the interface were derived. These results were used in later work by
Freidin, Vilchevskaya, and Korolev [2014]; Freidin [2015] where the expression
for the normal component of the chemical affinity tensor was derived through
strains at only one side of the chemical interface (e.g., here it is expressed by
the strains from the “−” side):

𝐴𝑛𝑛 = 𝑛−𝑀−
𝜌−

(︂
𝛾− 1

2 𝜀tr : C+ : 𝜀tr − 1
2 𝜀− : [[C]] : 𝜀− +

𝜀− : C+ : 𝜀tr + 1
2 q− : K+ (n) : q−

)︂
+ 𝑛*𝑅𝑇 ln 𝑐

𝑐*
,

(2.16)

where

q± = [[C]] :𝜀± − C+ : 𝜀tr,

K∓(n)={n G∓(n)n}𝑠, G∓(n)=(n · C∓ · n)−1.
(2.17)

In (2.17) the upper and lower subscripts “+” and “−” in the relationships corre-
spond to each other, G(n) is the Fourier transform of the Green tensor (the in-
verse of the acoustic tensor), and 𝑠 means symmetrization: 𝐾𝑖𝑗𝑘𝑙 = 𝑛(𝑖𝐺𝑗)(𝑘𝑛𝑙).
If the tensor [[C]]−1 exists, then the mechanical contribution in the expression
for 𝐴𝑛𝑛 can be rewritten in a similar manner as it was shown in Kubanov and

Section 2.1. Chemical affinity tensor and general problem statement
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Freidin [1988] for the case of phase transformations:

𝐴𝑛𝑛 = 𝑛−𝑀−
𝜌−

(︂
𝛾*− 1

2 q− :
(︁
[[C]]−1 − K+ (n)

)︁
: q−

)︂
+ 𝑛*𝑅𝑇 ln 𝑐

𝑐*
,

where 𝛾* = 𝛾− 1
2 𝜀tr : [[B]]−1 : 𝜀tr, B± = C−1

± .

(2.18)

One should note that the latter expression is suitable for analytical solutions and
for the following linear stability analysis. However, expressions (2.13)–(2.14)
should be utilized in the numerical simulations.

The mechanical stresses 𝜎 and the concentration 𝑐 of the diffusing reac-
tant 𝐵* can be found from the solution of the system of equations which include:

(i) Mechanical equilibrium equations:

∇ · 𝜎 = 0 (2.19)

with boundary and interface conditions:

u|Ω1
= u0, 𝜎 · n|Ω2

= t0,

JuK|Γ = 0, J𝜎K · n|Γ = 0 ,
(2.20)

where u0 and t0 are the given displacement and traction vectors at the
corresponding outer boundaries Ω1 and Ω2 of the body;

(ii)The constitutive equations (2.7) of the solid reactants;

(iii) The diffusion equation defined over the domain occupied by the material
B+

Δc = 0 , (2.21)

with the boundary and interface conditions:

𝐷n · ∇𝑐− 𝑎(𝑐* − 𝑐) = 0 at Ω+,

𝐷n · ∇𝑐+ 𝑛*𝜔𝑛 = 0 at Γ,
(2.22)

where 𝐷 is the diffusivity, 𝑎 is the mass transfer coefficient, or the dissolution
constant (Xin et al. [2003]; Lin et al. [2017]) at the outer boundary of the body,
n is the normal directed outward the domain 𝐵+. For the sake of simplicity,
the steady-state diffusion is considered with stationary diffusion equation. One
should note, that if the characteristic time of the reaction is much smaller
than the relative time of the diffusion, then the chemical reaction is diffusion
controlled. For this case a non-stationary diffusion equation should be utilized.

The first boundary condition in (2.22) defines the flux of 𝐵* through the
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external boundary in relation with the solubility of 𝐵* in 𝐵+ and means that
the supply of 𝐵* through the boundary stops if the saturation 𝑐* is reached.
On the other hand, the Dirichlet boundary condition 𝑐 = 𝑐* can be prescribed
at Γ+, however, being less physically reasonable comparing to Robin boundary
condition (2.22)1.

The second boundary conditions in (2.22) follows from the mass balance
between the supplied and consumed 𝐵* at the reaction front and the assump-
tion that the velocity of diffusing particles is much greater than the velocity
of the reaction front. The reaction rate 𝜔𝑛 in the boundary condition at the
chemical reaction front couples the elasticity and the diffusion problems. One
should note that starting from equation (2.22), the coefficient 𝑛* is assumed
to be equal to one. This can be done by normalizing all of the stoichiometric
coefficients in (2.1), i.e., 𝑛− → 𝑛−/𝑛*, 𝑛+ → 𝑛+/𝑛*. This also leads to
avoiding a nonlinearity of the boundary condition at the moving interface
(2.22)2 when it is rewritten in terms of concentrations (see, e.g., Freidin et al.
[2016]).

(iv) To close the system of equations one has to add the kinetic equation (2.5)
for 𝜔𝑛 which defines the reaction front velocity via (2.6) with the dependence
of 𝐴𝑛𝑛 on the stresses and concentration given by (2.13)–(2.15).

The reaction rate can be expressed in terms of the equilibrium concentration
𝑐eq as shown, for instance, in Freidin, Vilchevskaya, and Korolev [2014]:

𝜔 = 𝑘* (𝑐− 𝑐eq) , where 𝑐eq = 𝑐* exp
(︂

−𝑛−𝑀−
𝜌−

𝜒

𝑅𝑇

)︂
,

where 𝜒 is taken from (2.14), or can be rewritten as

𝜒 =𝛾(𝑇 ) − 1
2𝜀tr : C+ : 𝜀tr − 1

2𝜀− : JCK : 𝜀−+

𝜀− : C+ : 𝜀tr + 1
2q− : K+(n) : q−

=𝛾*− 1
2 q− :

(︁
[[C]]−1 − K+ (n)

)︁
: q−,

(2.23)

similarly to (2.16) and (2.18).

It should be noted that if the concentration of the diffusing constituent at
the reaction front is equal to 𝑐eq then the driving force is equal to zero and the
thermodynamic equilibrium is reached.

Section 2.1. Chemical affinity tensor and general problem statement
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2.2 On stability of a chemical interface

A special case when the driving force is equal to zero for all points of the interface
is considered as an equilibrium configuration. However, even if the interface
velocity is zero, an additional stability analysis of the “reaction blocking” state
is required. The kinetic equation and the behavior of the perturbed solution on
the perturbed interface is analyzed in this section. To this end the procedure
described by Eremeev, Freidin, and Sharipova [2007] is followed, where the
authors analyzed the stability of the interface between two phases at the
mechanical equilibrium during a phase transformation. In the next sections it
will be shown that there are certain mathematical similarities between chemical
and phase transformation regarding the linear stability analysis. Therefore
phase transformation front kinetics and stability is studied as well as chemical
interface stability.

It is important to notice that within perturbation approach the configuration
is considered as stable if the equilibrium chemical reaction front with a normal
parallel to the tensile or compressive deformation is stable. In other words,
configurations, which tend to change their microstructure (e.g., optimal lami-
nates discussed in Antimonov, Cherkaev, and Freidin [2016]) are considered as
unstable.

The main idea behind perturbing the interface is that if the equilibrium
position is stable then the perturbed configuration will return to its unperturbed
state. As mentioned above, the equilibrium position of the interface is reached
when the thermodynamic force is equal to zero in all points of the interface.
Linear stability analysis considers small perturbations of the displacements
and position of the interface. Consequently, the displacement and the interface
position in the perturbed state are written as follows:

u = u0 + w, R = R0 + 𝜂n0, (2.24)

where u0 and R0 correspond to the equilibrium displacements and interface
position, w and 𝜂 are the perturbations, n0 is a normal to the unperturbed
interface (Fig. 2.2). Linearization of the Boundary Value Problem (BVP)
defined by (2.19)–(2.20) using the constitutive equation (2.7) and the additional
thermodynamic condition 𝜒 = 0 leads to the following set of equations and
boundary conditions for w and 𝜂 which were obtained in Eremeev, Freidin,
and Sharipova [2003]; Eremeev, Freidin, and Sharipova [2007]. In the domains
𝑉± the differential equation and the boundary conditions take the form:

∇ · 𝜎±(w) = 0, 𝜎±(w) = C± : ∇w,
w|Ω1

= 0, n · 𝜎+(w)|Ω2
= 0.

(2.25)
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Γ0 Γ

R0
R

n0

n

Fig. 2.2: Unperturbed and perturbed interfaces Γ0 and Γ.

Displacement and traction continuity conditions at the interface are

JwK = −𝜂Jn · ∇u0K, n · J𝜎(w)K = ∇𝜂 · J𝜎0K − 𝜂n · Jn · ∇𝜎0K. (2.26)

Analogously to the perturbed displacements, the perturbed solution for the
diffusion problem consists of the original solution c0 and an additional small
perturbation term:

𝑐 = 𝑐0 + 𝑠. (2.27)

A linearization of the boundary value problem defined by (2.21)–(2.22) provides
the following set of equations for the diffusion perturbation value 𝑠, which are
coupled with the displacement perturbation w by the chemical reaction rate

Δ𝑠 = 0,
𝐷n0 · ∇𝑠+ 𝑛*𝛿𝜔(w, 𝑠) = 0 at the reaction front interface,

𝐷n0 · ∇𝑠+ 𝛼𝑠 = 0 at the reactant supply surface.
(2.28)

In the following sections a detailed derivation of the boundary and interface
conditions is given for the perturbed boundary value problem written in (2.25)–
(2.28). For this purpose a variation of the normal vector, jump across the
interface conditions, the driving force and the chemical reaction rate are derived.

2.2.1 Variation of the normal

If 𝑞1, 𝑞2 are the curvilinear coordinates at the interface, then unperturbed and
perturbed interfaces are presented by the vectorial functions R = R0

Γ(𝑞1, 𝑞2)
and R = RΓ(𝑞1, 𝑞2), respectively. Then the basis vectors on the unperturbed

Section 2.2. On stability of a chemical interface



18

and perturbed interfaces are defined by

R0
𝛼 = 𝜕R0

Γ
𝜕𝑞𝛼

, R𝛼 = R0
𝛼 + 𝜕(𝜂n)

𝜕𝑞𝛼
, 𝛼 = 1, 2. (2.29)

Due to the perturbation, the normal to the interface becomes

n = n0 + 𝛿n. (2.30)

Then

n · R𝛼 = 0 = (n0 + 𝛿n) · R0
𝛼 + (n0 + 𝛿n) ·

(︃
𝜕n0

𝜕𝑞𝛼
𝜂 + n0 𝜕𝜂

𝜕𝑞𝛼

)︃
. (2.31)

Neglecting second order terms and taking into account relationships n0 · 𝛿n = 0

and n0 · 𝜕n0

𝜕𝑞𝛼
= 0, the following expression can be derived

𝛿n · R0
𝛼 = − 𝜕𝜂

𝜕𝑞𝛼
. (2.32)

Since 𝛿n · R0
𝛼 = 𝛿𝑁𝛼 is the covariant component of the vector 𝛿n in the dual

basis R𝛼0, the above equality takes the vectorial form

𝛿n = − ̃︀∇𝜂, where ̃︀∇ = R𝛼0 𝜕

𝜕𝑞𝛼
(2.33)

stands for a 2D nabla-operator in 𝑞1-𝑞2 coordinate system.

2.2.2 Variation of a jump across the interface
To formulate displacement and traction continuity conditions across the per-
turbed interface, a general expressions of the variation of a jump due to
variation of the interface position and displacement field is derived.

Given displacement field u, consider a function

𝜑(R | u) =
{︃
𝜑−(R | u), R ∈ 𝑣−

𝜑+(R | u), R ∈ 𝑣+

where the functions 𝜑−(R | u) and 𝜑+(R | u) are smooth enough in domains 𝑣−
and 𝑣+. Denote by 𝜑±(RΓ | u) and ∇𝜑±(RΓ | u) the limit values of 𝜑 and ∇𝜑
at the corresponding sides of the interface. Referring to the Figure 2.2, consider
two configurations: (i) with the unperturbed interface R0

Γ at displacement
field u0 and (ii) with the perturbed interface RΓ = R0

Γ + 𝛿RΓ at perturbed
displacement u = u0 + w. Then the jumps of 𝜑 (RΓ,u) across perturbed

Chapter 2. Chemical reaction front kinetics and stability



Numerical and analytical studies of the chemical reaction front kinetics in solids 19

interface, the jump of 𝜑
(︀
R0

Γ,u0)︀ across unperturbed interface and the jump of
the variations 𝛿𝑢𝜑

(︀
R0

Γ | u0)︀ of 𝜑 due to displacement perturbations are related
as

J𝜑 (RΓ | u)K = J𝜑
(︁
R0

Γ | u0
)︁
K + J𝛿𝑢𝜑

(︁
R0

Γ | u0
)︁
K + 𝛿RΓ · J∇𝜑

(︁
R0

Γ | u0
)︁
K. (2.34)

To prove (2.34) note that the functions 𝜑+(R | u) and 𝜑−(R | u) are defined
only in the domains 𝑣+ and 𝑣−, respectively, and the interface position is given
by R0

Γ if the displacement is u0, and by RΓ if the displacement is u. Therefore
𝜑+ is defined in points R0

Γ and RΓ at displacement u and in points R0
Γ at both

displacements u0 and u. Then, neglecting second (and higher) order terms
with respect to perturbations one can obtain the following expressions

𝜑+ (RΓ | u) = 𝜑+
(︁
R0

Γ,u
)︁

+ 𝛿RΓ · ∇𝜑+
(︁
R0

Γ | u
)︁

𝜑+
(︁
R0

Γ | u
)︁

= 𝜑+
(︁
R0

Γ | u0
)︁

+ 𝛿𝑢𝜑+
(︁
R0

Γ | u0
)︁ (2.35)

and, thus, with the same accuracy

𝜑+ (RΓ | u) = 𝜑+
(︁
R0

Γ | u0
)︁

+ 𝛿𝑢𝜑+
(︁
R0

Γ | u0
)︁

+ 𝛿RΓ · ∇𝜑+
(︁
R0

Γ | u0
)︁
. (2.36)

Analogously, since function 𝜑− is defined in points RΓ at displacement u and
at displacement u0 and in points RΓ and R0

Γ at displacement u0, one can write

𝜑− (RΓ | u) = 𝜑−
(︁
R0

Γ | u0
)︁

+ 𝛿𝑢𝜑−
(︁
R0

Γ | u0
)︁

+ 𝛿RΓ · ∇𝜑−
(︁
R0

Γ | u0
)︁
. (2.37)

Subtracting (2.37) from (2.36) gives the formula (2.34).

If quantity 𝜑 denotes the displacement vector field u then 𝛿𝑢𝜑 denotes
the displacement perturbation w. Since, due to displacement continuity,
Ju0(R0

Γ)K = Ju(RΓ)K = 0, from (2.34) it follows that

JwK + 𝛿RΓ · J∇u0K = 0. (2.38)

From the displacement continuity it follows that J∇u0K = n0a, where a =
n0 · J∇u0K is the amplitude of jump. Then only normal component 𝜂 of 𝛿RΓ
remains in the displacement continuity condition that becomes so-called second
order compatibility condition (2.26)1:

JwK + 𝜂n0 · J∇u0K = 0. (2.39)

Further, without loss of generality, we assume that 𝛿RΓ = 𝜂n0.
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For the jump of stresses (2.34) can be rewritten as follows

J𝜎 (RΓ,u)K = J𝜎
(︁
R0

Γ,u0
)︁
K + J𝜎

(︁
R0

Γ,w
)︁
K + 𝜂n0 · J∇𝜎

(︁
R0

Γ,u0
)︁
K (2.40)

where 𝜎
(︀
R,u0)︀ and 𝜎±(R,u) are given by (2.7) with strain tensors 𝜀0 = ∇u0

and 𝜀 = ∇u, respectively, 𝜎±(w) = C± : ∇w. Then at the perturbed interface

n · J𝜎 (RΓ,u)K = (n0 + 𝛿n)·
(︁
J𝜎
(︁
R0

Γ,u0
)︁
K + J𝜎

(︁
R0

Γ,w
)︁
K +

𝜂n0 · J∇𝜎
(︁
R0

Γ,u0
)︁
K
)︁

= 0.
(2.41)

Taking into account that n0 · J𝜎
(︀
R0

Γ,u0)︀K = 0, using the formula (2.33) for 𝛿n
and neglecting second order terms we come to the final expression (2.26)2 for
the linearized traction continuity condition at the perturbed interface

n0 · J𝜎(w)K = ̃︀∇𝜂 · J𝜎0K − 𝜂n0 · J∇𝜎0K · n0, (2.42)

where 𝜎0
± = 𝜎±

(︀
R0

Γ,u0)︀ and 𝜎±(w) = 𝜎±
(︀
R0

Γ,w
)︀
.

2.2.3 Linearized kinetic equation for perturbed phase interfaces

By (2.18), the driving forces at the perturbed and unperturbed interface are

𝜒|Γ = 𝛾* − 1
2
(︁
q0

− + 𝛿q−
)︁

:
(︁
JCK−1 − K+(n0 + 𝛿n)

)︁
:
(︁
q0

− + 𝛿q−
)︁
,

𝜒|Γ0 = 𝛾* − 1
2q0

− :
(︁
JCK−1 − K+(n0)

)︁
: q0

−,
(2.43)

where q0
− = [[C]] :𝜀0

− − C+ : 𝜀ch, 𝛿q− is calculated by Eq. (2.37):

𝛿q− = 𝛿𝑢q0
− + 𝜂n0 · ∇q0

− = JCK : ∇w− + 𝜂n0 ·
(︁
∇𝜀0

− : JCK
)︁
. (2.44)

Then, with K+(n0 + 𝛿n) = K(n0) + 𝛿K(n0), the expression of the driving
force variation takes the form

𝛿𝜒 = −q0
− :

(︁
JCK−1 − K+(n0)

)︁
: 𝛿q− + 1

2q0
− : 𝛿K(n0) : q0

−. (2.45)

In the case when the normal n0 is an eigenvector of q0
− and material “+”

is isotropic, the last term in (2.45) is equal to zero. Indeed, the fourth rank
tensor K+ (n) in the case of an isotropic material can be presented with the
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use of in special tensorial basis (see Kunin [1983]) as

K+ (n) = 1
𝜇+

(︁
E5 − κ+E6

)︁
, (2.46)

where

E5 = (ne𝑘e𝑘n)𝑠 = 1
4 (ne𝑘e𝑘n + e𝑘ne𝑘n + ne𝑘ne𝑘 + e𝑘nne𝑘) ,

E6 = nnnn,

κ+ = 𝜆+ + 𝜇+
𝜆+ + 2𝜇+

= 1
2(1 − 𝜈+) ,

upper script 𝑠 denotes here the symmetrization of a fourth rank tensor with
respect to permutation of indices within the first and second pairs, vectors
e𝑘 (𝑘 = 1, 2, 3) form an orthonormal basis, and e𝑘e𝑘 is a second rank unit
tensor. Note that E5 is also symmetric with respect to the permutation of the
pairs of indices. The variation of E5 equals to

𝛿E5 = 1
4 ((𝛿n)e𝑘e𝑘n + ne𝑘e𝑘𝛿n + e𝑘(𝛿n)e𝑘n + e𝑘ne𝑘𝛿n+

+ (𝛿n)e𝑘ne𝑘 + ne𝑘(𝛿n)e𝑘 + e𝑘(𝛿n)ne𝑘 + e𝑘n(𝛿n)e𝑘)

Then, since n · 𝛿n = 0, it is clear that if n is an eigenvector of q,

q : 𝛿E5 : q = 0 (2.47)

and, analogously, q : 𝛿E6 : q = 0, and finally

q : 𝛿K : q = 0.

By (2.44) and (2.45), with this additional assumption about the eigenvector of
q0, the expression for the variation of the driving force takes the form

𝛿𝜒 = −q0
− :
(︁
JCK−1 − K+(n0)

)︁
: JCK : 𝜀−(w−)−

𝜂 q0
− :

(︁
JCK−1 − K+(n0)

)︁
:
(︁
n0 ·

(︁
∇𝜀0

− : JCK
)︁)︁
.

(2.48)

The variation can also be expressed in terms of strains on the “+” side of the
interface:

𝛿𝜒 = −q0
+ :
(︁
JCK−1 + K−(n0)

)︁
: JCK : 𝜀+(w+)−

𝜂 q0
+ :

(︁
JCK−1 + K−(n0)

)︁
:
(︁
n0 ·

(︁
∇𝜀0

+ : JCK
)︁)︁
.

(2.49)
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Note that the last terms in Eqs. (2.48) and (2.49) are zero if the normal
derivatives n0 · ∇𝜀0

∓ of the strains 𝜀0
∓ are zero. This is, for example, the case

of piece-wise homogeneous two phase deformations with plane interfaces, or
in the case of spherically or axially symmetric two-phase deformations in a
solid cylinder or sphere when the strain is uniform in the inner domain. In the
last case one can take representation (2.48) or (2.49), depending on what the
phase, “−” or “+”, occupies the inner domain.

The normal components 𝑉𝑛 and 𝑉 0
𝑛 of the velocities V and V0 of the

perturbed and unperturbed interfaces with an accuracy of the second order of
smallness are related as

𝑉𝑛 = 𝜕RΓ
𝜕𝑡

· n = 𝜕
(︀
R0

Γ + 𝜂n0)︀
𝜕𝑡

· (n0 + 𝛿n) = 𝑉 0
𝑛 + V0 · 𝛿n + 𝜕𝜂

𝜕𝑡
. (2.50)

Since only normal component of the interface velocity is essential, one may
accept V0 = 𝑉 0

𝑛 n0. Then

𝛿𝑉𝑛 = 𝑉𝑛 − 𝑉 0
𝑛 = d𝜂

d𝑡 . (2.51)

The kinetic equation for the phase transformation front is 𝑉 ph
𝑛 = 𝜅ph𝜒. Then

from (2.48), (2.49) and (2.51) it follows that perturbations evolve according to
the kinetic equation that can be presented in the following forms:

1
𝜅ph

d𝜂
d𝑡 = −q0

− :
(︁
JCK−1 − K+(n0)

)︁
: JCK : 𝜀−(w−)−

𝜂 q0
− :

(︁
JCK−1 − K+(n0)

)︁
:
(︁
n0 ·

(︁
∇𝜀0

− : JCK
)︁)︁

= q0
+ :
(︁
JCK−1 + K−(n0)

)︁
: JCK : 𝜀+(w+)

−𝜂 q0
+ :

(︁
JCK−1 + K−(n0)

)︁
:
(︁
n0 ·

(︁
∇𝜀0

+ : JCK
)︁)︁
.

(2.52)

2.2.4 Linearized kinetic equation for perturbed chemical interfaces

The variation of thr reaction rate 𝛿𝜔 in (2.28) depends on the displacements
perturbation vector w and the diffusion perturbation 𝑠. Keeping in mind that
𝐴𝑛𝑛 ≈ 0 and 𝑐* = 𝑐0 = 𝑐eq near equilibrium (for the details we refer to Freidin,
Vilchevskaya, and Korolev [2014]), the reaction rate can be expressed by using
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Eq. (2.5):

𝜔(w, 𝑠) = 𝑘*𝑐

(︂
1 − exp

(︂
−𝐴𝑛𝑛(w, 𝑠)

𝑅𝑇

)︂)︂
= 𝑘*(𝑐0 + 𝑠)𝐴𝑛𝑛(w, 𝑠)

𝑅𝑇

= 𝑘*𝑐
0

𝑅𝑇

(︃
𝑛−𝑀−
𝜌−

𝛿𝜒+𝑅𝑇 ln
(︃
𝑐0 + 𝑠

𝑐*

)︃)︃
+ · · ·

= 𝑘*𝑐
0

𝑅𝑇

(︂
𝑛−𝑀−
𝜌−

𝛿𝜒+𝑅𝑇
𝑠

𝑐*

)︂
+ · · · ,

(2.53)

where 𝛿𝜒 is a variation of the mechanical part of the chemical affinity tensor,
which has the same form as the variation of the driving force in the case of
phase transformations (2.48). The variation of the diffusion related logarithmic
term in the expression for 𝐴𝑛𝑛 can be obtained as follows

𝛿

(︂
ln 𝑐(R)

𝑐*

)︂
= ln 𝑐

𝑐*

⃒⃒⃒⃒
R0

+ 𝛿𝑐

𝑐

⃒⃒⃒⃒
R0

+ 𝜂n0 · ∇ ln 𝑐

𝑐*

⃒⃒⃒⃒
R0

+ · · · . (2.54)

At the thermodynamical equilibrium the concentration of the diffusing com-
ponent in the reactant material is constant (as can be seen from the solution
in Freidin, Vilchevskaya, and Korolev [2014]) and equal to 𝑐*. That means
that the first and the last terms in Eq (2.54) are equal to zero. According to
the notation in Eq (2.27), the variation of the concentration at the interface is
equal to 𝑠. Hence,

𝛿

(︂
ln 𝑐(r)

𝑐*

)︂
= 𝑠

𝑐*
. (2.55)

Finally, the linearized kinetic equation is obtained by substituting the linearized
reaction rate (2.53) into the kinetic equation (2.6):

1
𝜅ch

d𝜂
d𝑡 =𝑛−𝑀−

𝜌−

[︁
−q0

− :
(︁
JCK−1 − K+(n0)

)︁
: JCK : 𝜀−(w−)−

𝜂 q0
− :

(︁
JCK−1 − K+(n0)

)︁
:
(︁
n0 ·

(︁
∇𝜀0

− : JCK
)︁)︁]︁

+𝑅𝑇
𝑠

𝑐*

(2.56)

where 𝜅ch is a positive constant.

2.3 Stability of a planar chemical interface

As a first example, a stability of the planar interface is analyzed using the
aforementioned procedure. A chemical reaction in the layer of thickness 𝐻 is
considered, as illustrated in Fig. 2.3. Lower boundary is fixed and displacement
𝑢0 in 𝑦-direction is applied at the upper boundary. This external load is further
considered as a parameter for controlling the resulting equilibrium position.
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Diffusing constituent is supplied through the lower boundary and the reaction
takes place at 𝑦 = ℎ. This gives the following boundary condition for the
mechanical equilibrium equation, (2.19):

u|𝑦=0 = 0, u|𝑦=𝐻 = 𝑢0e𝑦,

𝑢𝑥 = 0, 𝜎𝑥𝑦 = 0, at 𝑥 = 0 and 𝑥 = 𝐿.
(2.57)

and for the diffusion equation, (2.21):

𝐷n · ∇𝑐+ 𝛼 (𝑐− 𝑐*) = 0, at 𝑦 = 0,
n · ∇𝑐 = 0, at 𝑥 = 0 and 𝑥 = 𝐿.

(2.58)

Linear elastic solid reactants are considered with the constitutive equations
(2.7) and elasticity tensors taken in a form

C± = 𝜆±II + 2𝜇±
4I, (2.59)

where 𝜆± and 𝜇± are Lamé parameters and 4I is the forth rank unit tensor.
For the sake of simplicity of further derivations, the chemical transformation
strains assumed to be planar, namely 𝜀tr = 𝜀tr(e𝑥e𝑥 + e𝑦e𝑦). One should note
that the chosen boundary conditions (for both mechanical equilibrium and
diffusion problem) on left and right boundaries of the layer may be considered
as a way to model an infinite layer.

𝑥

𝑦

ℎ

𝐻

𝐿0

-○

+○

Fig. 2.3: A schematic representation of the planar chemical reaction front.

Assuming that the parameters of the problem are such that there exists an
equilibrium configuration of the reaction front inside the layer, the mathematical
problem is to determine whether this configuration is physically stable or
unstable. Furthermore, only planar equilibrium configurations of the front are
considered, i.e., all points of the front belong to the line 𝑦 = ℎ, where ℎ is a
constant. At this state, the solution of the balance equation and the diffusion
equation are displacements u0 and concentration 𝑐0 = 𝑐*, the stresses emerging
in the body are denoted as 𝜎0. The closed form expressions for these quantities
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are shown in Appendix A.1. From this point, the superscript “0” refers to the
variable taken from the solution of the unperturbed BVP.

According to the utilized approach, as described in Section 2.2, the equilib-
rium configuration of the front is perturbed,

R = R0 + 𝜂 (𝑥, 𝑡) n0, (2.60)

where R and R0 are positions of the points of the front at the perturbed and
the unperturbed states, respectively, n0 = e𝑦 at the equilibrium, 𝜂 (𝑥, 𝑡) is the
amplitude of the perturbation. The perturbation of the front necessary leads
to the perturbation of the solutions of the PDEs:

u (𝑥, 𝑦, 𝑡) = u0 (𝑦) + w (𝑥, 𝑦, 𝑡) ,
w (𝑥, 𝑦, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑡) e𝑥 + 𝑣 (𝑥, 𝑦, 𝑡) e𝑦,

𝑐 (𝑥, 𝑦, 𝑡) = 𝑐0 (𝑦) + 𝑠 (𝑥, 𝑦, 𝑡) ,
(2.61)

where w and 𝑠 are the perturbation functions for the displacements and
concentration respectively. From this point, the superscript “0” refers to the
variable taken from the solution of the unperturbed BVP. Linearization of the
balance equation gives

∇ · 𝜎± (w) = 0, 𝜎± (w) = C± : ∇w. (2.62)

The boundary conditions from (2.57) are:

w = 0, at 𝑦 = 0 and 𝑦 = 𝐻,

w · e𝑥 = 0, 𝜎± (w) : e𝑥e𝑦 = 0, at 𝑥 = 0 and 𝑥 = 𝐿,
(2.63)

and interface conditions at 𝑦 = ℎ are defined in (2.26).
The linearized diffusion equation reads:

Δ𝑠 = 0, (2.64)

and the linearized boundary conditions (2.58) are

𝐷n · ∇𝑠+ 𝛼𝑠 = 0, at 𝑦 = 0,
𝐷n0 · ∇𝑠+ 𝜔 (w, 𝑠) = 0, at 𝑦 = ℎ,

n · ∇𝑠 = 0, at 𝑥 = 0 and 𝑥 = 𝐿.

(2.65)

Variations of energy 𝛿𝜒(w) and the reaction rate 𝛿𝜔 (w, 𝑠) have form (2.48)
and (2.53), respectively.

Solution of the perturbed system of equations (2.62) and (2.64) defines the
dependency of displacements u and concentration 𝑐 (and therefore the reaction
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front velocity) on the amplitude of the perturbation 𝜂. For the case of the
planar interface, these dependencies can be obtained analytically in a series
form. To satisfy the boundary conditions at 𝑥 = 0 and 𝑥 = 𝐿, the solution is
found as series

𝑢 (𝑥, 𝑦, 𝑡) =
∞∑︁

𝑛=1
𝑈𝑛 (𝑦, 𝑡) sin (𝑘𝑛𝑥) , 𝑣 (𝑥, 𝑦, 𝑡) =

∞∑︁
𝑛=1

𝑉𝑛 (𝑦, 𝑡) cos (𝑘𝑛𝑥) ,

𝜂 (𝑥, 𝑡) =
∞∑︁

𝑛=1
𝜉𝑛 (𝑡) cos (𝑘𝑛𝑥) , 𝑠 (𝑥, 𝑦, 𝑡) =

∞∑︁
𝑛=1

𝑆𝑛 (𝑦, 𝑡) cos (𝑘𝑛𝑥) , 𝑘𝑛 = 𝑛𝜋

𝐿
.

One can show that functions 𝑈𝑛 (𝑦, 𝑡) and 𝑉𝑛 (𝑦, 𝑡) which satisfy equation (2.62)
are

𝑈𝑛 (𝑦, 𝑡) = 𝐴𝑛 (𝑡) exp (𝑘𝑛𝑦) +𝐵𝑛 (𝑡) 𝑦 exp (𝑘𝑛𝑦) +
𝐶𝑛 (𝑡) exp (−𝑘𝑛𝑦) +𝐷𝑛 (𝑡) 𝑦 exp (−𝑘𝑛𝑦) ,

𝑉𝑛 (𝑦, 𝑡) =
(︂

−𝐴𝑛 (𝑡) +𝐵𝑛 (𝑡) 𝜆+ 𝜇+ 2
𝜆+ 𝜇

1
𝑘𝑛

)︂
exp (𝑘𝑛𝑦) −𝐵𝑛 (𝑡) 𝑦 exp (𝑘𝑛𝑦) +(︂

𝐶𝑛 (𝑡) +𝐷𝑛 (𝑡) 𝜆+ 𝜇+ 2
𝜆+ 𝜇

1
𝑘𝑛

)︂
exp (−𝑘𝑛𝑦) +𝐷𝑛 (𝑡) 𝑦 exp (−𝑘𝑛𝑦) .

Since the material properties are different for domains 𝛺+ and 𝛺−, there are
two functions 𝑈𝑛. The first is defined in 𝛺+ with Lamé parameters 𝜆+ and 𝜇+,
the second is defined in 𝛺− with Lamé parameters 𝜆− and 𝜇−. Analogously,
there are two functions 𝑉𝑛. Functions 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 are then found from
the boundary conditions (2.63). Time dependency in these functions comes
from dependency of the boundary conditions on 𝜂 (𝑥, 𝑡). It is easy to see from
the boundary conditions that each function 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛 is proportional to
𝜉𝑛 (𝑡), e.g., 𝐴𝑛 (𝑡) = 𝑎𝑛𝜉𝑛 (𝑡), where 𝑎𝑛 is some constant. This allows expressing
variation 𝛿𝜒 as a function of 𝜉𝑛:

𝛿𝜒 (𝑡) =
∞∑︁

𝑛=1
𝐿ph

𝑛 𝜉𝑛 (𝑡) cos (𝑘𝑛𝑥) , (2.66)

where 𝐿ph
𝑛 is a constant. Here the superscript “ph” refers to the phase transfor-

mation, since the expression (2.66) is to be used in the kinetic equation (2.52)
if the phase transformation interface stability is considered.

Further, the perturbed diffusion equation (2.64) has to be solved. Function
𝑆𝑛 (𝑦, 𝑡) can be found in a form

𝑆𝑛 (𝑦, 𝑡) = 𝐸𝑛 (𝑡) exp (𝑘𝑛𝑦) + 𝐹𝑛 (𝑡) exp (−𝑘𝑛𝑦) , (2.67)

where functions 𝐸𝑛, 𝐹𝑛 are found from the boundary conditions. Furthermore,
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as seen from the boundary conditions, each function 𝐸𝑛, 𝐹𝑛 is proportional
to 𝜉𝑛 (𝑡), e.g., 𝐹𝑛 (𝑡) = 𝑓𝑛𝐿

ph
𝑛 𝜉𝑛 (𝑡), where 𝑓𝑛 is a constant. Thus, from the

boundary conditions, it is easy to show that

𝐸𝑛 (𝑡) = 𝐿ph
𝑛 𝜉𝑛 (𝑡) −𝜅

𝜑𝑛
, 𝐹𝑛 (𝑡) = 𝐿ph

𝑛 𝜉𝑛 (𝑡) −𝜅
𝜑𝑛

𝐷𝑘𝑛 − 𝛼

𝐷𝑘𝑛 + 𝛼
, (2.68)

where the following notation is introduced:

𝜑𝑛 = 𝐷𝑘𝑛 exp (𝑘𝑛ℎ) −𝐷𝑘𝑛
𝐷𝑘𝑛 − 𝛼

𝐷𝑘𝑛 + 𝛼
exp (−𝑘𝑛ℎ) +

𝑘* exp (𝑘𝑛ℎ) + 𝑘*
𝐷𝑘𝑛 − 𝛼

𝐷𝑘𝑛 + 𝛼
exp (−𝑘𝑛ℎ) ,

𝜅 = 𝑘*𝑐*
1
𝑅𝑇

𝑛−𝑀−
𝜌−

.

When all the constants are found, and the corresponding perturbed functions
w and 𝑠 are obtained, one can substitute them into the kinetic equation (2.56).
Then the following equation for the evolution of the perturbation 𝜉𝑛 is obtained:

1
𝜅

𝜌−
𝑛−𝑀−

d𝜉𝑛

d𝑡 = 𝐿ch
𝑛 𝜉𝑛,

where

𝐿ch
𝑛 = 𝐿ph

𝑛

⎛⎜⎜⎝1 −
𝑘* exp (𝑘𝑛ℎ) + 𝑘*

𝐷𝑘𝑛 − 𝛼

𝐷𝑘𝑛 + 𝛼
exp (−𝑘𝑛ℎ)

𝜑𝑛

⎞⎟⎟⎠ . (2.69)

Sign of 𝐿ch
𝑛 defines the behavior of the solution: when the sign is negative for

each 𝑛, the perturbation decays in time, and the reaction front moves back to
its equilibrium position. If at least one 𝐿𝑛 is positive, than the perturbation
with this wave number grows exponentially, which leads to the instability of
the interface.

The specific form of the obtained expression for 𝐿ch
𝑛 is very useful. One

can show that the expression in parentheses in (2.69) is always positive. This
means that sings of 𝐿ch

𝑛 and 𝐿ph
𝑛 always coincide. If a stress-induced phase

transformation problem is considered, for which the velocity is defined by
equation (2.52), similar analysis of a perturbed boundary gives

1
𝑘ph

d𝜉𝑛

d𝑡 = 𝐿ph
𝑛 𝜉𝑛.

Since 𝐿ch
𝑛 and 𝐿ph

𝑛 have identical signs, the physical stability of a phase boundary
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(𝑎)

𝐿ch
𝑛

ℎeq

(𝑏)

𝐿ch
𝑛

ℎeq

Fig. 2.4: 𝐿𝑛-lines for the stability analysis of the planar chemical reaction front for
stable (𝑎) and unstable (𝑏) sets of elastic parameters.

in the phase-transformation problem necessarily results in the physical stability
of a chemical reaction front in the chemo-mechanical problem. Therefore, the
diffusing reactant does not influence stability of the front. The diffusion process
cannot stabilize the physically unstable front and also otherwise.

In Fig. 2.4 different possible scenarios are shown. The plots (a) and (b)
correspond to stable and unstable sets of material parameters for the planar
interface, respectively. For the stable configuration 𝐿ch

𝑛 is negative for each
𝑛 and all possible positions of the equilibrium position (which, as mentioned
earlier, is controlled by the external load 𝑢0). For the unstable configuration
the solution shows positive values of the 𝐿ch

𝑛 ’s .
It should be noted that negative values of the 𝐿𝑛’s is only a necessary but not a

sufficient stability condition. For the problem of phase transformation, which is
mathematically pretty similar to the problem of chemical transformation, there
is another necessary stability criteria which is based on the analysis of so called
phase transition zones (PTZ). It was proved in Grabovsky and Truskinovsky
[2011]; Grabovsky and Truskinovsky [2013] that if strains at the equilibrium
interface belong to the boundaries of the phase transition zones, then this
configuration is stable. This approach cannot be explicitly extrapolated to the
case of the chemical reaction, therefore PTZ and perturbation approaches are
later compared for the phase transformation problem.

Another weakness of the perturbation method is as follows. Assuming
the aforementioned configuration with the planar chemical interface with the
given material properties, one can obtain values for 𝐿ch

𝑛 for each positive
integer 𝑛. However, with growing 𝑛, system of equations for functions 𝐴𝑛,
𝐵𝑛, 𝐶𝑛, 𝐷𝑛 becomes ill-conditioned. It means, that for higher wave numbers
one cannot guarantee an accurate solution. However, for several observed
cases, the absolute value of 𝐿ch

𝑛 increases with 𝑛 for both stable and unstable
configurations, as shown in Fig. 2.4.
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One should note, that the material parameters for the following problems
are chosen to be dimensionless because of the following reasons. The purpose
of Sections 2.3–2.5 is the qualitative analysis of the stability behavior, that is
validated by the numerical results in the following Chapter 3. When considering
stability analysis, the material parameters are varied to consider different
physical scenarios, therefore, there is no reference to the real engineering
problem. Also, during the development of the numerical procedures, it is a
common practice to use dimensionless units. The units are taken into account
in the last Chapter 4, where the real engineering application is considered.

Having all this in mind, the following procedure was utilized in order to
obtain a stability regions in the material parametric space. It was shown,
that diffusion parameters of the model do not influence the stability behavior,
so they are kept fixed. In addition the Poisson’s ratios are fixed so that
𝜈+ = 𝜈− = 0.25, the elasticity modulus for one of the materials is selected to be
𝐸− = 60, external load was set to 𝑢0 = 0.02. With this, the parametric space
for the following study is defined by ratio 𝐸+/𝐸−, the value of the chemical
transformation 𝜀tr and the energy parameter 𝛾. In this work for the sake of
convenience, the chemical energy parameter 𝛾 was adjusted in order to get
the equilibrium position at the middle (ℎ𝑒𝑞 = 0.5) of the layer. From physical
point of view, variation of 𝛾 may correspond to the variation of temperature.

Varying the selected parameters, one can obtain the areas, where the values
for 𝐿1 are positive or negative, Fig. 2.5.

𝜀tr

𝐸+

𝐸−

(𝑎)

𝜀tr

𝐸+

𝐸−

(𝑏)

Fig. 2.5: The contour plots of: (𝑎) – 𝛾 for given external load in material parameter
space; (𝑏) – 𝐿1 for given external load in material parameter space at corresponding 𝛾
from figure (a). Black solid lines in (b) represent the 𝐿1 = 0 level.

The stability regions in Fig. 2.5 prescribe only a necessary condition, meaning
that if the region says “unstable” (𝐿1 > 0) then the system is physically unstable.
However, if the region states “stable” (𝐿1 < 0), an additional check for 𝑛 ≥ 2 is
required. Using these plots the stable (with the additional check) and unstable
configurations are selected for further study. The sets of elasticity parameters
at which the equilibrium planar chemical reaction front with a normal parallel
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𝜆+ 𝜆− 𝜇+ 𝜇− 𝜀tr

Stable 40 10 34 26 0.005Unstable 66 34 50 66

Tab. 2.1: Stable and unstable sets of material properties and parameters used in
analytical study and numerical simulation for the planar interface problem.

to the tensile or compressive deformation is stable or unstable are listed in
the Tab. 2.1. Later in the text set of parameters for which the equilibrium
position of the interface is stable or unstable is reffered to as “stable set of
parameters” or “unstable set of parameters”, respectively.

It has been shown that chemical and diffusion parameters do not affect the
stability of the planar interface in the equilibrium position. Therefore only one
set of the following chemical and diffusion parameters are used and they are
listed in Tab. 2.2.

Parameter 𝑛−𝑀−
𝜌−

𝑅𝑇 𝑐* 𝐷 𝑘* 𝛼

Value 43.2 2434.8 0.1 0.1 0.01 0.2

Tab. 2.2: Diffusion parameters used in analytical study and numerical simulation for
the planar interface problem.

These parameters are used in the following Chapter 3 as a reference values
to validate numerical procedures.

2.4 Stability of a cylindrical chemical interface
Consider a hollow cylinder undergoing a a chemical reaction, Fig. 2.6. Due to
symmetry only a quarter of the cylindrical cross-section will be shown in all
further figures.

The problem is axially symmetric, which means that u = 𝑢(𝑟)e𝑟. As it was
done in the case of planar interface, the transformation strains are assumed to
be planar:

𝜀tr = 𝜀tr(e𝑟e𝑟 + e𝜑e𝜑), (2.70)

where e𝑟 and e𝜑 are unit vectors of a cylindrical coordinate system. The
boundary conditions refer to the quantities shown in Fig. 2.6, where 𝜌 is an
interface radius, 𝑎 and 𝑏 are inner and outer radii of the cylinder, respectively,
can be written as

𝜎𝑟(𝑎) = 0, 𝑢(𝑏) = 𝑢0,

J𝑢(𝜌)K = 0, J𝜎𝑟(𝜌)K = 0.
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Γ

-○ +○

𝑢0

𝑎
𝑏

𝜌

Fig. 2.6: A hollow cylinder undergoing a phase transformation.

Diffusing reactant for the chemical reaction is supplied through the outer
surface of the cylinder. As it was done in previous sections a stationary
diffusion is considered. The corresponding diffusion equation in the case of
axial symmetry becomes:

d
d𝑟

(︂1
𝑟

d𝑐
d𝑟

)︂
= 0, 𝑟 ∈ [𝜌, 𝑏]. (2.71)

Boundary and interface conditions according to the notation of Figure 2.6 can
be written as follows (as described in Section 2.1):

𝐷
d𝑐
d𝑟

⃒⃒⃒⃒
𝑟=𝑏

− 𝛼(𝑐* − 𝑐(𝑏)) = 0, 𝐷
d𝑐
d𝑟

⃒⃒⃒⃒
𝑟=𝜌

− 𝑘* (𝑐(𝜌) − 𝑐eq(𝜌)) = 0. (2.72)

The solution to this particular problem can be found analytically as it
was shown in details, e.g., in Vilchevskaya and Freidin [2007] for the phase
transformation front kinetics problem. This solution and its extension for the
chemical reaction front propagation are given in the Appendix A.2.

If a cylinder undergoing a phase transformation,the phase transition front
velocity is given by the following expression (see Freidin [2007])

𝑉 ph
𝑛 = −𝜌̇ = 𝜅ph𝜒(𝜌), 𝜅ph > 0, (2.73)

where 𝜒 is the same as in the expression of the chemical affinity tensor 𝐴𝑛𝑛,
(2.14), but without the chemical energy term in the expression for the energy
parameter 𝛾, (2.15). Parameter 𝜅ph is a positive constant. One should note
that in current problem formulation n = −e𝑟. For a given load 𝑢0 and
choice of material parameters the dependence of the driving force 𝜒 on the
interface radius can be plotted. This driving force may have a zero value for
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a certain radius as shown in Fig. 2.7. For this radius the normal component
of the velocity of the interface is zero, so this radius is then referred to as an
equilibrium position.

𝜒
𝜌

Fig. 2.7: Dependence of the driving force on the interface radius.

Note that if the initial radius of the interface is greater than the equilibrium
one, the sign of the driving force 𝜒 is positive. Then according to (2.73) the
normal component of the velocity is positive. Keeping in mind that n = −e𝑟,
the phase transformation front is forced to move toward the equilibrium position.
The same happens if the initial radius of the interface is less then equilibrium
radius. This means that the solution is stable at the equilibrium radius with
respect to the radial perturbations.

The external load 𝑢0 can be considered as a parameter for controlling the
resulting equilibrium radius. Examples of the dependencies of the position of
the equilibrium radius on the external load are shown in Fig. 2.8 (a) and (b)
for a solid and for a hollow cylinder, respectively. Note that an equilibrium
radius may not exist within the range between internal and external radii of
the cylinder for some values of 𝑢0. In the case of a hollow sphere or a hollow
cylinder two equilibrium radii may correspond to one external load. A more
detailed discussion of this phenomenon for the spherical problem can be found
in Eremeev, Freidin, and Sharipova [2007]. Moreover, the case of an external
load at which there is only one equilibrium radius and the interface is stable
with respect to radial perturbations is considered in that reference.

As mentioned above, the equilibrium position of the interface is reached
when the thermodynamic force is equal to zero in all points of the interface.
Linear stability analysis considers small perturbations of the displacements
and position of the interface. Consequently, similarly to the planar interface
problem in Section 2.3, the displacement, concentration and the interface
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(𝑎) (𝑏)

u0 u0

𝜌eq 𝜌eq

Fig. 2.8: Dependence of thermodynamically equilibrium interface radius on the exter­
nal load for (𝑎) – solid and (𝑏) – hollow cylinders. Dashed line in (𝑏) corresponds to
the inner radius of the hollow cylinder.

position in a cylindrical coordinate can be written as

u = u0(𝑟) + w(𝑟, 𝜑), R = R0 + 𝜂(𝜑)n0,

w(𝑟, 𝜑) = 𝑢(𝑟, 𝜑)e𝑟 + 𝑣(𝑟, 𝜑)e𝜑,

𝑐 = 𝑐0(𝑟) + 𝑠(𝑟, 𝜑).
(2.74)

For the case of the hollow cylinder equilibrium equation (2.25) can be
rewritten as shown in Vilchevskaya and Freidin [2007]:

(𝜆+ 2𝜇)𝜕𝜓
𝜕𝑟

− 2𝜇
𝑟

𝜕𝜔

𝜕𝜑
= 0, (𝜆+ 2𝜇)1

𝑟

𝜕𝜓

𝜕𝜑
− 2𝜇𝜕𝜔

𝜕𝑟
= 0, (2.75)

where
𝜓 = 𝜕𝑢

𝜕𝑟
+ 1
𝑟

(︂
𝑢+ 𝜕𝑣

𝜕𝜑

)︂
, 𝜔 = 𝜕𝑣

𝜕𝑟
+ 1
𝑟

(︂
𝑣 − 𝜕𝑢

𝜕𝜑

)︂
.

Then the boundary conditions on the free inner surface (𝑟 = 𝑎) are

𝜆𝜓 + 2𝜇𝜕𝑢
𝜕𝑟

= 0, 𝜕𝑣

𝜕𝑟
= 0.

On the outer surface (𝑟 = 𝑏), where Dirichlet boundary conditions are applied,
the perturbation function has to vanish. Therefore

𝑢 = 0, 𝑣 = 0.

The interface conditions at 𝑟 = 𝜌 from (2.26) can be written for the new
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variables 𝑢 and 𝑣 as

J𝑢K = −𝜂
[︃[︃

d𝑢0

d𝑟

]︃]︃
, J𝑣K = 0,

[︂[︂
𝜆𝜓 + 2𝜇𝜕𝑢

𝜕𝑟

]︂]︂
= −𝜂

[︃[︃
d𝜎0

𝑟

d𝑟

]︃]︃
,

[︂[︂
2𝜇𝜕𝑣
𝜕𝑟

]︂]︂
= d𝜂

d𝜑J𝜎0
𝜑K.

(2.76)

Linearized diffusion equation (2.28) for the perturbed concentration in cylin-
drical coordinates takes the form

Δ𝑠(𝑟, 𝜑) = 𝜕2𝑠

𝜕𝑟2 + 1
𝑟

𝜕𝑠

𝜕𝑟
+ 1
𝑟2
𝜕2𝑠

𝜕𝜑2 = 0 (2.77)

with boundary conditions

−𝐷𝜕𝑠
𝜕𝑟

+ 𝑘*

(︂
𝑠+ 𝑐*

𝑛−𝑀−
𝜌−

𝛿𝜒

𝑅𝑇

)︂
= 0 at the reaction front,

𝐷
𝜕𝑠

𝜕𝑟
+ 𝛼𝑠 = 0 at the outer surface.

(2.78)

Together with Eq. (2.75) and its boundary conditions, which are related to
the perturbed mechanical problem, equations (2.77) and (2.78) form a set of
equations for 𝑢, 𝑣 and 𝑠. The aforementioned system of equations with the
boundary and interface conditions can be uniquely solved with respect to the
unknown functions. To do so, one has to follow the method proposed in Ere-
meev, Freidin, and Sharipova [2007] and the solution proposed by Vilchevskaya
and Freidin [2007] for the phase transformation problem. One can seek the
solution in a series form:

𝑢(𝑟, 𝜑) =
∞∑︁

𝑛=2
𝑈𝑛(𝑟) cos(𝑛𝜑), 𝑣(𝑟, 𝜑) =

∞∑︁
𝑛=2

𝑉𝑛(𝑟) sin(𝑛𝜑),

𝜂(𝜑) =
∞∑︁

𝑛=2
𝜉𝑛 cos(𝑛𝜑).

(2.79)

Then it is natural to seek the solution for 𝑠 also as a series:

𝑠(𝑟, 𝜑) =
∞∑︁

𝑛=2
𝑆𝑛(𝑟) cos(𝑛𝜑). (2.80)

Substitution of these series into the BVP provides a set of equations for the
amplitude functions 𝑆𝑛(𝑟), 𝑈𝑛(𝑟) and 𝑉𝑛(𝑟) for each integer number 𝑛 ≥ 2,
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which can be found uniquely. This means, that they can be expressed as

𝑈𝑛(𝑟) = 𝐴𝑈
𝑛 (𝑟)𝜉𝑛, 𝑉𝑛(𝑟) = 𝐴𝑉

𝑛 (𝑟)𝜉𝑛, 𝑆𝑛(𝑟) = 𝐴𝑆
𝑛(𝑟)𝜉𝑛 (2.81)

where 𝐴𝑈
𝑛 , 𝐴

𝑉
𝑛 and 𝐴𝑆

𝑛 are certain linear operators. After the solution of these
equations is obtained and substituted into the kinetic equation (2.56), the
latter takes the following form:

1
𝜅ch

d𝜉𝑛

d𝑡 = 𝐿ch
𝑛 𝜉𝑛, (2.82)

where 𝐿ch
𝑛 is a linear integro-differential operator. Similarly to the planar

interface solution given in Section 2.3, the solution of this equation is an
exponential one, and its power is defined by 𝐿ch

𝑛 . The character of the solution
is then governed by the sign of 𝐿ch

𝑛 . If the sign for each 𝑛 is negative then the
power of the exponent is also negative and the coefficients 𝜉𝑛 tend to zero in
time. This means that the function 𝜂, (2.79)3, vanishes in time and it can be
concluded that the perturbed interface moves toward its original equilibrium
position. If for at least one value of 𝑛 the sign of the 𝐿ch

𝑛 is positive, then
the amplitude 𝜉𝑛 will grow exponentially in time. Then the solution will be
unstable and the lowest number 𝑛 for which 𝐿ch

𝑛 is positive will define the
mode of the stability loss.

Analogously, if the stability analysis is performed for a cylinder undergoing
a phase transformation, one can obtain values for 𝐿ph

𝑛 from the solution of the
perturbed BVP (2.75)–(2.76) and the variation of the kinetic equation (2.52).
As a result for each number 𝑛 an equation for the amplitude of perturbation
𝜉𝑛 can be written as

1
𝜅ph

d𝜉𝑛

d𝑡 = 𝐿ph
𝑛 𝜉𝑛, (2.83)

where 𝐿ph
𝑛 is a linear integro-differential operator. As in the problem with

chemical interface, the character of the solution is governed by the sign of
the 𝐿ph

𝑛 . If the sign for each 𝑛 is negative, then the power of the exponent is
also negative and the coefficients 𝜉𝑛 tend to zero in time. This means that
the function 𝜂, which describes the divergence from the equilibrium position
of the transformation front, vanishes in time and one can conclude that the
solution is stable. If at least for one 𝑛 the sign of the 𝐿ph

𝑛 is positive, then the
amplitude 𝜉𝑛 will grow exponentially in time, the solution will be unstable.

In the case of cylindrical problem, the expressions for the 𝐿𝑛’s are very long,
which makes it impossible to relate 𝐿ch

𝑛 and 𝐿ph
𝑛 as it was done for the planar

interface in (2.69). Therefore for selected number of material parameters both
stability analyses are done: for phase transformation and for chemical reaction.
This is done to check whether the diffusion can impact the stability.
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(𝑏)
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𝑛
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Fig. 2.9: 𝐿𝑛-lines for the stability analysis of the cylindrical phase interface for: (𝑎)
- stable set of elastic parameters for the solid cylinder, (𝑏) - unstable set of elastic
parameters for the solid cylinder, (𝑐) - stable set of elastic parameters for the hollow
cylinder with internal radius 𝑟 = 0.1𝑅, (𝑑) - stable set of elastic parameters for the
hollow cylinder with internal radius 𝑟 = 0.5𝑅.

Since expressions for 𝐿𝑛’s do not add any value to the results they are
omitted in the manuscript. However, these complicated equations still can be
solved analytically without numerical methods. To handle them the symbolic
mathematics software Mathematica was used.

In Fig. 2.9 different possible phase transformation front stability scenarios are
shown. The plots (a) and (b) correspond to stable and unstable sets of material
parameters for the solid cylinder, respectively. For a stable configuration 𝐿ph

𝑛

is negative for each 𝑛 ≥ 2 and all possible positions of the equilibrium radius.
For the unstable configuration the solution shows positive 𝐿ph

𝑛 ’s. Plots (c)
and (d) were calculated only for “stable” material parameters and show the
influence of the inner diameter of the hollow cylinder on the stability of the
interface. Small holes, Fig. 2.9(c), lead to an unstable solution only for the
configuration where the equilibrium radius is close to the hole. The limit case,
when the hole diameter tends to zero, gives the solution for the solid cylinder,
as expected. Fig. 2.9(d) shows that for large inner diameters of the cylinder
the solution is unstable even for a stable set of parameters.
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(𝑎)

𝐿𝑛

𝜌eq

(𝑏)

𝐿𝑛

𝜌eq

Fig. 2.10: 𝐿𝑛-lines for the stability analysis of the cylindrical chemical reaction front
for: (𝑎) – stable set of elastic parameters for the hollow cylinder with internal radius
𝑟 = 0.1𝑅, (𝑏) – unstable set of elastic parameters for the solid cylinder.

𝜆+ 𝜆− 𝜇+ 𝜇−

Stable configuration 25 45 10 25
Unstable configuration 45 25 25 10

Tab. 2.3: Material properties and parameters used in analytical and numerical simu­
lation. Material “+” refers to the outer, material “−” to the inner region, respectively.

In Fig. (2.10) results are shown for the stable configuration of material
properties from Tab. 2.3, diffusion properties from Tab. 2.2 and energy
parameter 𝛾 = 0.15 for solid (a) and hollow (b) cylinders. For all configurations,
the presence of the diffusion in the model does not change the system behavior
compared to the phase transformation problem. The presence of inner hole
has the same effect on the stability behavior as in the phase transformation: a
small inner diameter affects only configurations where the equilibrium radius
is close to inner surface and in the limit of a vanishing radius results in the
solution for the solid cylinder. Large holes make the system unstable.

Using these results, the stable and unstable configuration is selected for
further studies. These values are listed in the Tab. 2.3. These parameters are
used in the following Chapter 3 as a reference values to validate numerical
procedures.

2.5 Remark on phase transition zones
For the problem of phase transformation, which is mathematically pretty
similar to the problem of chemical transformation, there is another necessary
stability criteria. The latter is based on the analysis of so called phase transition
zones. It was proved in Grabovsky and Truskinovsky [2011]; Grabovsky and
Truskinovsky [2013] that if strains at the equilibrium interface belong to the
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boundaries of the phase transition zones, then this configuration is stable.
However, this approach cannot be explicitly extrapolated to the case of the
chemical reaction.

The procedure of obtaining the process zones was discussed in many papers,
starting from Freidin and Chiskis [1994a]; Freidin and Chiskis [1994b] (more
general nonlinear elastic cases), Morozov and Freidin [1998] (linear elastic case)
and recent works about microstructures and optimal composites Antimonov,
Cherkaev, and Freidin [2016]; Freidin and Sharipova [2019]. In this section,
a short overview of this procedure is presented. Then, the PTZ approach is
utilized in order to validate results obtained with the perturbation method.

For the phase transformation problems, to construct the PTZs one has to
analyze the driving force 𝜒 given in a form (2.23). With this expression, only
the last term depends on the normal vector n. For the case of linear isotropic
material, this term is a quadratic form and reads

𝒦−(n) = q+ : K−(n) : q+ = 1
𝜇−

(︂
𝑁2 − 𝜆− + 𝜇−

𝜆− + 2𝜇−
𝑁2

1

)︂
, (2.84)

where
𝑁1 = n · q+ · n, 𝑁2 = n · q2

+ · n (2.85)

are so-called orientation invariants. It was shown that minimization of energy
with respect to the microstructure geometry (i.e., normal n direction) leads to
extrema condition of (2.84) at given q+. The maximum of 𝒦−(n) corresponds
to minimum of energy.

For the case of two phase configuration with only one inter-phase boundary,
the direction of the maximizing normal n*(q+) can be expressed through
the principal values of tensor q+. Let 𝑞𝑚𝑎𝑥, 𝑞𝑚𝑖𝑑 and 𝑞𝑚𝑖𝑛 be the maximum,
intermediate and minimum eigenvalue of q+ respectively with corresponding
eigenvectors e𝑚𝑎𝑥, e𝑚𝑖𝑑 and e𝑚𝑖𝑛; |𝑞|𝑚𝑎𝑥 and |𝑞|𝑚𝑖𝑛 be the maximum and
minimum absolute value of q+ eigenvalues. Then if

𝑞𝑚𝑖𝑛𝑞𝑚𝑎𝑥 < 0, or
{︃
𝑞𝑚𝑖𝑛𝑞𝑚𝑎𝑥 > 0
(1 − 𝜈−)|𝑞|𝑚𝑖𝑛 < 𝜈−|𝑞|𝑚𝑎𝑥

(2.86)

the maximizing normal n* = 𝑛𝑚𝑎𝑥e𝑚𝑎𝑥 + 𝑛𝑚𝑖𝑛e𝑚𝑖𝑛 and

𝑛2
𝑚𝑎𝑥 = (1 − 𝜈−)𝑞𝑚𝑎𝑥 − 𝜈−𝑞𝑚𝑖𝑛

𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛
, 𝑛2

𝑚𝑖𝑛 = 𝜈−𝑞𝑚𝑎𝑥 − (1 − 𝜈−)𝑞𝑚𝑖𝑛

𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛
. (2.87)
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Otherwise, namely {︃
𝑞𝑚𝑖𝑛𝑞𝑚𝑎𝑥 > 0
(1 − 𝜈−)|𝑞|𝑚𝑖𝑛 > 𝜈−|𝑞|𝑚𝑎𝑥,

(2.88)

the maximizing normal has only one component the basis of eigenvectors of q+
and n* = 𝑛𝑚𝑎𝑥e𝑚𝑎𝑥.

Recalling the case of planar interface described in Section 2.3, the equilibrium
configuration is a horizontal interface with the normal n = e𝑦. In this problem,
the eigenvectors of q+ correspond to the Cartesian basis vectors, and q+ =
𝑞+

𝑥 e𝑥e𝑥+𝑞+
𝑦 e𝑦e𝑦+𝑞+

𝑧 e𝑧e𝑧. With this, the horizontal interface at the equilibrium
position is stable only if the condition (2.88) is satisfied and 𝑞𝑦 is the maximum
eigenvalue of q+. Analogously, for the cylindrical interface from Section 2.4,
only condition (2.88) leads to the stable equilibrium interface with the normal
n = e𝑟.

Phase transition zones built with the use of (2.86) and (2.88) are shown
in Figs. 2.11 and 2.12 for the planar and cylindrical problems, respectively.
These plots are built for the stable cases of phase transformation equilibrium,
and material parameters are given in Tabs. 2.1 and 2.3. Solid dots in both
figures represent the actual strains at the interface in the equilibrium position.
Dashed lines correspond to the condition (2.86) and solid lines – to condition
(2.88).

For selected material parameters strains at the interface belong to the phase
transition zones in the case of planar interface and the minimizing normal
vector has only one component e𝑦, so the configuration is stable. It is shown
earlier in the discussions about (2.69) that the diffusion does not affect the
stability of planar interface. Therefore, one can conclude that the chemical
interface is also stable.

For selected material parameters strains at the interface belong to the phase
transition zones in the case of cylindrical interface and the minimizing normal
vector has only one component e𝑟, so the configuration is stable. It is not
possible to study analytically the influence of the diffusion on the stability of
the cylindrical interface (see Section 2.4), therefore stability of the cylindrical
chemical interface cannot be proved.

2.6 Conclusions

Problem of a chemical interface propagation in linear elastic solids is formulated
based on the concept of chemical affinity tensor from works by Freidin [2013];
Freidin, Vilchevskaya, and Korolev [2014]; Freidin [2015]; Freidin et al. [2016].

Section 2.6. Conclusions
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Fig. 2.11: Phase transition zones for the stable set of material parameters from Tab.
2.1. Blue and red dots correspond to the strain state for planar interface configuration.
Dashed lines correspond to the condition (2.86), solid lines – to condition (2.88).
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Fig. 2.12: Phase transition zones for the stable set of material parameters from
Table 2.3. Blue and red dots correspond to the strain state for cylindrical interface
configuration. Dashed lines correspond to the condition (2.86), solid lines – to condition
(2.88).
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An estimation for the total deformation 𝐽 tr due to the chemical transformation
and the diffusion model is proposed.

A linear stability analysis problem is formulated for the phase transformation
interface in the equilibrium position (based on works by Eremeev, Freidin, and
Sharipova [2003]; Eremeev, Freidin, and Sharipova [2007]) and extended to the
case of the chemical interface. A detailed derivation for of the boundary and
interface conditions, as well as the kinetic equation, is given for the perturbed
phase transformation front and chemical interface.

In this work, the stability problems of a planar and cylindrical chemical
interface were considered analytically using the perturbed kinetic equation
approach. For the planar interface, it was shown that the diffusion does
not affect the stability of the interface. Stability regions were constructed
in material parametric space for that problem. For a cylindrical chemical
interface, two cases were studied: hollow and solid cylinders undergoing a
chemical reaction. It was shown that a small inner diameter does not affect
the stability behavior of the interface when the equilibrium position is far
enough from the hole, while large inner diameters with prescribed boundary
conditions on them make the system always unstable. Due to the complexity
of the perturbed kinetic equation, it was not possible to prove analytically the
influence of the diffusion parameters on the stability of the interface, when
compared to the mathematically similar problem for the phase transformation.
However, the results of the analyses show that for the selected choice of material
parameters diffusion did not change the stability behavior.

Even for the simple geometries and linear elastic materials, the perturbed
stability analysis is quite complicated and cumbersome. Therefore, in the next
chapter, it is studied whether the developed numerical approach for simulating
the chemical reaction (and the phase transformation) front propagation can
reveal stability or instability of the chemical interface.

Based on the results of the stability analysis, two sets of material parameters
are selected for further numerical studies of planar and cylindrical interfaces.
These sets are further referred as “stable” and “unstable” for stable and unstable
interface equilibrium position, respectively. An additional check was done for
the stable set of parameters using the PTZ approach. The latter, however, is
only relevant for the phase transformation problem. Its extension to the case
of the chemical reaction is not straightforward and was out of the scope of this
work. The PTZ criteria confirmed the stability of the phase transformation
front for the selected material parameters. As mentioned earlier, for all studied
cases the diffusion did not affect the stability behavior, therefore, it is assumed
that considered stable configurations are stable indeed.

All methods in this chapter considered the stability of the chemical reaction
front at the equilibrium position. The next chapter considers numerical studies
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of the chemical interface approaching this equilibrium position for both: stable
and unstable configurations.
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3 Numerical simulation and study of
the chemical reaction front kinetics

There is a large variety of numerical approaches that can handle problems
with moving interfaces. All of them can be divided into two groups relying on
a smooth and a sharp representation of the interface. A typical example of
the smooth-interface approach is the phase-field method, see e.g. Svendsen,
Shanthraj, and Raabe [2018]; Weinberg, Werner, and Anders [2018] in applica-
tion to chemo-mechanics and Schneider et al. [2017]; Schneider et al. [2018] in
application to the phase transformations. These methods require an additional
equation which governs the evolution of the phase field variable. Since the
kinetic equation for the interface is already chosen in the previous chapter, it
might be not convenient to utilize the phase field method to solve considered
type of problems. Moreover, given kinetic equation based on chemical affinity
tensor concept uses jump conditions across the interface. They are much easier
to satisfy for the sharp interface methods, where the thickness of the interface
is neglected. Therefore, the latter was chosen to be implemented using the
finite element method.

All sharp-interface finite-element based methods can be divided into three
subcategories. The first subcategory is when the interface coincides with the
element edges (or faces in 3D case) and the geometry is completely remeshed
each time the interface moves, e.g., Mueller and Gross [1998]; Mueller and
Gross [1999]; Gross, Mueller, and Kolling [2002]; Mueller, Gross, and Lupascu
[2006] for the case of phase transformations and, e.g., Freidin et al. [2016] in
application to chemo-mechanics. The second subcategory also relies on the
interface coinciding with the element edges/faces, however, the mesh in only
distorted as the interface moves, i.e., the nodes are moved, without changing
neither the number of the nodes nor the mesh connectivity, e.g., Morozov
et al. [2018a] in application to chemo-mechanics where such approach has been
implemented using the isogeometric method. The third subcategory unites
approaches where the interface cuts through the finite-element mesh in an
arbitrary way and moves independently of the mesh, which is unchanged from
one time increment to another. Typical examples of such approaches are the
level set method (e.g., Duddu et al. [2011]; Zhao, Bordas, and Qu [2015];
Moghadam and Voorhees [2016]) and the CutFEM, e.g., Hansbo, Larson, and
Larsson [2017]; Burman et al. [2018]; Poluektov and Figiel [2019]. In current
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work, the remeshing method is utilized for solving problems of moving chemical
interfaces. The used procedure is compared with the isogeometric analysis
and with the CutFEM method, therefore all free sharp-interface finite-element
based methods are covered in this study.

3.1 Description of the numerical procedure
Numerical procedure in the case of small strains and linear elastic materials
explicitly follows the analytical procedure showed in the Section 2.1. All the
assumptions from the previous chapter still hold:

• A plain strain formulation is considered;

• Both materials are assumed to be linear elastic;

• Diffusion of the particles does not introduce additional stresses (the solid
skeleton approach);

• Diffusion process is assumed to be much faster than the chemical reaction
front propagation;

• Some initial position of the chemical interface is introduced in the geom-
etry.

Necessity of existence of some thin initial layer of the new material is one of
the weaknesses of this procedure. In order to obtain the solution for stresses,
strains and concentration, one have to get at least one layer of finite elements
for each material domain. This issue is much less strict in the meshless methods
like aforementioned CutFEM. However it has its own challenges, which will be
discussed later in this chapter.

With the given geometry, interface position and boundary conditions, one can
obtain all the required values to calculate the normal component of the affinity
tensor, 𝐴𝑛𝑛. Indeed, since in the considered class of problems (as described
in Chapter 2) the mechanical and diffusion problems are decoupled, one can
solve them separately one after another. Solution of the first problem gives the
stresses and strains at the reaction front. These values are then substituted
into the boundary condition at the moving interface for the diffusion problem.
Solution of the latter gives the concentration of the diffusing constituent at the
chemical reaction front. Now, the 𝐴𝑛𝑛 can be calculated, and substituted into
the kinetic equation, providing the normal component of the reaction front
velocity. This kinetic equation is solved with the explicit Euler scheme and with
the given time increment one can calculate the normal displacement for each
point of the interface. With the new position of the chemical reaction front,

Chapter 3. Numerical simulation and study of the chemical reaction front kinetics



Numerical and analytical studies of the chemical reaction front kinetics in solids 45

Start

Input geometry and material
properties. Set initial position of the

interface (R0), Δ𝑡 and 𝑘 = 0

Generate the FE mesh for this
iteration and find normals n𝑘 at

each node of the interface

Calculate 𝜎𝑘 and 𝜀𝑘 for each node
of the interface, obtain 𝜔𝑘(𝜎𝑘, 𝜀𝑘)

Calculate 𝑐𝑘 for each node at the
interface, obtain 𝐴𝑘

𝑛𝑛(𝜎𝑘, 𝜀𝑘, 𝑐𝑘)

Δ𝑢𝑘 = 𝑘*𝑐
𝑘

(︃
1 − exp

(︃
−𝐴𝑘

𝑛𝑛

𝑅𝑇

)︃)︃
,

R𝑘+1 = R𝑘 + Δ𝑢𝑘 n𝑘

Finish

New iteration?

𝑘 = 𝑘 + 1

yes

no

Fig. 3.1: The flowchart for the numerical algorithm.

the procedure starts over with the next iteration. This process is summarized
in the flowchart shown in Fig. 3.1.

Since the used mathematical model provides the expression for the normal
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component of the reaction front velocity, one has to accurately calculate the
normal vector n to the reaction front. This is one of the main reasons why on
the first stages of this research, the isogeometric FEM procedures (Hughes,
Cottrell, and Bazilevs [2005]) were utilized. Problem formulation and main
results can be found in Morozov et al. [2018a]. By using Non-Uniform Rational
B-Splines (NURBS) as basis functions, one can calculate with high accuracy
the direction of the normal vector for any external or internal edge (curve)
of a geometrical domain, and particularly for the chemical reaction front. In
addition, IGA is more accurate with less computational effort compared to
standard FEA, cf. Morganti et al. [2015]. Comparison of the IGA and classical
FE models for the cylinder problem is shown in Fig. 3.2.

(a) (b)

Fig. 3.2: Geometry described by NURBS curves which is directly used for the numerical
simulation (a). Classical FE model for the numerical simulation (b).

Since IGA uses displacements of control points as degrees of freedom which
are not interpolative inside a domain, one cannot move the internal front
directly in general case (not for simple translation and rotation). Therefore,
a special procedure should be introduced to apply the displacement to the
interface and “re-mesh” the domain appropriately. To do so, an additional
elasticity problem is solved with Δ𝑢 applied at the interface boundary as
non-homogeneous Dirichlet boundary conditions. Nitsche’s method is used for
imposing such kind of boundary conditions weakly (Hansbo [2005], see also
Juntunen and Stenberg [2009] and references therein). Doing that, the elements
are simply distorted without changing the topology or mesh connectivity. This
new distorted mesh defines the new position of all the nodes (the whole
isogeometric model) and can be used as an input to the next iteration. Number
of elements remain the same during all analysis. This can be handled without
loss of the numerical accuracy because higher distortion of the elements is
allowed in the isogeometric method when compared to the standard FEM.

Despite all advantages, iterative update of the interface position may become
very complicated when the geometry is defined by NURBS, especially when
the interface between the domains has to be extrapolated or trimmed after the
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Fig. 3.3: Definition of the normal vector to the piecewise linear interface on the FE
mesh

movement. It was decided that working with more complex geometries and
loading scenarios is more important than computational time, therefore, for
the later studies the classical FEM procedure was utilized.

Traditional finite elements defines the interface as a piecewise linear curve
which makes it impossible to determine the normal uniquely. Usually, the
normal vector at a node is defined as a weighted sum of normal vectors to the
element edges, Fig. 3.3,

n = 1√︁
𝑙2𝑎 + 𝑙2𝑏 + 2𝑙𝑎𝑙𝑏n𝑎 · n𝑏

(𝑙𝑎n𝑎 + 𝑙𝑏n𝑏) , (3.1)

where n𝑎 and n𝑏 are the normal vectors to the element edges, 𝑙𝑎 and 𝑙𝑏 are the
lengths of these edges.

As mentioned earlier, in some configurations when moving the interface it
has to be adjusted, as shown in Fig. 3.4. The interface (the blue curve) may
move inside (left boundary) or outside (right boundary) the body domain. The
movement in normal direction is shown by black arrows and the new position
of the interface is indicated by a black dashed line.

In order to avoid this unphysical configuration, where the start and end of
the reaction front do not belong to the boundary of the body domain, a special
procedure was created. It cuts and linearly extrapolates the interface to adjust
the boundaries as shown by red curve in Fig. 3.4. In the analysis, this adjusted
curve is considered as a new position of the interface.

The numerical analysis was performed with the commercial finite element
program Abaqus. The problem was solved quasi-statically as described in
Freidin et al. [2016]; Morozov et al. [2018a]; Morozov et al. [2018b], where the
position of the interface defines the time dependence. A special Python script
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Fig. 3.4: Automated adjustment of the interface position during its propagation.

for Abaqus was developed to automate the process flow and postprocess the
results.

3.2 Kinetics of the cylindrical chemical reaction front
approaching the blocking state

A cylinder undergoing the chemical reaction is considered, as described in
Section 2.4 and in Fig. 2.6. Due to symmetry, only a quarter of the cylinder is
modeled. A thin layer of transformed material was assumed in the initial state
for the analysis. Material parameters for stable and unstable configurations
were chosen for the finite element model in accordance with Tab. 2.3. In order
to compare the kinetics near the thermodynamic equilibrium, the external
boundary conditions 𝑢0 were adjusted so that the equilibrium radii are the
same for both problems.

Fig. 3.5 (b) shows how the radius of the interface changes in time. The
stable configuration converges smoothly to the analytically predicted equilib-
rium radius. For the unstable configuration, the blue line, change of radial
coordinates are plotted for twenty equally spaced reference points distributed
along the interface (highlighted in Fig. 3.5 (a)). Note that during the first
fifteen increments, the displacements of these points are equal and the phase
transformation front keeps its originally circular shape. However, when the
front approaches the equilibrium radius, it changes its smooth behavior and
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(a)

𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝜌

(b)

Fig. 3.5: (a) – set of reference points on the interface for the output. (b) – results of
numerical simulations for stable (red curve) and unstable (blue curve) configurations
for the phase transformation front propagation problem.

Fig. 3.6: Typical shape of the phase interface after losing stability near the equilibrium
radius during numerical simulation.

the loss of stability is observed. The typical shape of the interface right after
losing the stability is shown in Fig. 3.6. This mode of stability loss is governed
by the numerical accuracy and, therefore, depends on the mesh discretization.
The instability shape of the initially circular interface on the FE mesh is shown
in Fig. 3.7.

The stable and unstable configurations behave in the same manner for phase
and chemical transformation fronts. The interface approaches the equilibrium
position similarly. Fig. 3.8 shows how the radius of the interface changes in time
during the chemical reaction. For the unstable configuration, the blue line, the
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Fig. 3.7: Shape of initially circular interface after the loss of stability on the FE mesh.

change of radial coordinates are plotted for twenty points equally distributed
along the interface. During the first twenty increments, the displacements
of these points are equal and the chemical reaction front keeps its originally
circular shape. As it approaches the predicted equilibrium radius, it changes
the smooth behavior and stability loss occurs. If the initial shape of the
reaction front is circular, the shape of the unstable interface is governed by the
numerical inaccuracy as it was in the case of phase transformations. One can
predefine the mode of the instability by introducing wave-type perturbations
with small amplitude and different frequency into the initial configuration.

In order to present kinetics of the interface approaching the equilibrium
radius from inside and from outside, the artificial case of so-called “backward
reaction” is analyzed. The reverse reaction mechanism might differ from the
direct reaction, but here it is assumed to be the same, just to test the numerical
procedure. Therefore, the initial chemical interface radius is set closer to the
center of the cross-section then the analytically predicted equilibrium radius.
For simplicity, it is assumed that during the simulation the gaseous constituent
diffuses from the chemical interface to the outer boundary of the body and the
material “+” transforms back to the material “−”.

Kinetics of the back and direct reactions with initially perturbed front is
shown in Fig. 3.9 for unstable configuration. Top row corresponds to the back
reaction and bottom - to the direct reaction. Left and right columns have
different frequency of the initial perturbation. In the case of stable material
parameters, the perturbations, as well as the ones introduced by numerical
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𝑛𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
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Fig. 3.8: Results of numerical simulations for stable (red curve) and unstable (blue
curve) configurations for the chemical reaction front propagation.

inaccuracy, vanish and stability occurs at the equilibrium radius. But for
another set of parameters, the perturbations amplify when the reaction front
comes to the equilibrium position, so that one can see the predefined mode of
the instability as shown in Fig. 3.9. This effect appears when the amplitude of
the initial perturbation is greater then the accuracy of the numerical scheme.

3.3 A note about stresses caused by the interface
instability

The growing perturbations in the case of unstable configuration result in the
redistribution of the stress fields. Examples of the von Mises stress fields for
circular and perturbed interfaces are shown in Fig. 3.10. For given example,
stresses at the perturbed interface are much higher than on circular interface
and, therefore, may lead to the plasticity or to some failure scenarios, like
delamination or fracture.

Stresses caused by the instability amplitude growth were analyzed in Morozov,
Freidin, and Müller [2019]. In this section, a static configuration is considered,
in which the chemical interface has a predefined sinusoidal-type shape near the
blocking state, as shown in Fig. 3.11. This position of the interface is similar
to the one shown in Fig. 3.9, e.g., top right. The unstable set of parameters
from Tab. 2.3 is used for the numerical analysis.
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Fig. 3.9: Kinetics of the initially perturbed interface with different predefined modes of
instability for the unstable set of material parameters. Top row - “backward reaction”,
bottom row - direct reaction.

(a) (b)

Fig. 3.10: The von Mises stress distribution for stable (a) and unstable (a) configura­
tions.

Various amplitudes and frequencies for the interface shape were analyzed.
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Fig. 3.11: Unstable configuration of a solid cylinder with predefined shape of the
interface. Stress distributions are analyzed along radial lines OA and OB.

Fig. 3.12: Distributions of von Mises stress along corresponding directions

Stress distributions along the radial lines OA and OB (Fig. 3.11) are shown in
Figs. 3.12–3.14.

The maximum von Mises stress in OB direction increases with the amplitude
and frequency of the interface shape. As shown in the previous section, the
amplitude grows with the propagation of the front in the unstable configuration.
This may lead to intensive plastic deformations.

Section 3.3. A note about stresses caused by the interface instability
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Fig. 3.13: Distributions of the hoop stress along corresponding directions

Fig. 3.14: Distributions of the radial stress along corresponding directions
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One should note that negative hoop stress (Fig. 3.13) in both OA and OB
directions do not change their sign in the vicinity of the stress concentration
due to the amplitude growth of the reaction front perturbation. However, an
increasing magnitude of the radial stress in the OB direction (Fig. 3.14) may
lead to delamination. In this case, not only the stress distribution but also the
conditions for the chemical reaction will change.

3.4 Comparison of the CutFEM and remeshing results

3.4.1 CutFEM overview

CutFEM belongs to subcategory of the numerical approaches where the in-
terface cuts through the finite-element mesh in an arbitrary way and moves
independently of the mesh. The mesh remains unchanged from one time
increment to another. Similar numerical approaches based on the same ideas
are the combination of the extended finite-element method (XFEM) to solve
the PDEs and the level-set method to move the interface, e.g., Zhao, Bordas,
and Qu [2013]; Zhao et al. [2013] in application to the phase transformations
and Duddu et al. [2011]; Zhao, Bordas, and Qu [2015] in application to chemo-
mechanics. Recently, the CutFEM method has been adapted for problems of
mechanochemistry by Poluektov and Figiel [2019], where the numerical method
has been formulated for the most general finite-strain mechanochemical setting,
i.e., involving non-linear PDEs. The CutFEM method has been originally
formulated for linear problems Burman and Hansbo [2012] and later adapted
specifically to linear elasticity Burman et al. [2018]; Burman et al. [2019a];
Burman et al. [2019b].

The CutFEM method relies on two main features: enforcement of the in-
terface conditions weakly using the Nitsche method, which allows solving the
discretized PDEs with the interface cutting through the elements, and intro-
duction of an inter-element stabilization, which addresses the ill-conditionality
of the discrete problem related to the interface partitioning the elements into
highly unequal spatial fractions. In Poluektov and Figiel [2019], the weak
form for the finite-strain coupled mechanochemical problem has been derived
from the variational principle, where problem-specific interface conditions (e.g.,
the force equilibrium and the displacement continuity for mechanics) and
inter-element stabilization terms have been used.

In this section the comparison of CutFEM and remeshing methods is per-
formed for linear elasticity. Therefore, the CutFEM-based method of Poluektov
and Figiel [2019] has been simplified to a linear elastic setting. This step is
out of scope of this work, therefore, the details are omitted.

The CutFEM-based and the remeshing methods are compared in three differ-
ent examples, which are considered in the following sections. The first example

Section 3.4. Comparison of the CutFEM and remeshing results
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is the propagation of a planar reaction front, with an initially introduced
perturbation. Two scenarios are considered: physically stable and physically
unstable behavior. The second example simulates the interface kinetics in the
specimen under shear load. The third example focuses on a different topology
of the reaction front, namely a closed curve. All mentioned examples are solved
on a 2D geometry with a plane-strain formulation, as it was done in previous
sections.

3.4.2 Stable and unstable configurations for planar chemical
interface

As mentioned above, to investigate the performance of the methods, physically
stable and physically unstable scenarios are considered. Geometry of the
problem is similar to one described in Section 2.3 and shown in Fig. 2.3.
However in this simulation the planar reaction front has an initial cos-type
perturbation.

For the mechanical problem, the following boundary conditions are used:
clamped bottom boundary, symmetry conditions on left and right boundaries,
prescribed displacements on top boundary (vertical displacement is 𝑢0, hori-
zontal displacement is zero). For the diffusion problem, the following boundary
conditions are used: mixed boundary conditions on bottom boundary and
interface (according to (2.22)), zero flux at left and right boundaries.

For the geometry dimensions 𝐻 = 𝐿 = 1 are used. The initial position of
the perturbed interface is taken to be curve 𝑦 = 0.1 + 0.002 cos (6𝜋𝑥). For the
physically stable case, Lamé parameters of the materials and transformation
strain are given in Tab. 2.1. External displacement was set to 𝑢0 = 0.0453.
For the physically unstable case, the parameters are also taken from Tab. 2.1,
but the applied displacement is 𝑢0 = −0.0381. One should note, that external
loads are different to adjust the equilibrium position to be in the middle of the
layer at ℎ = 0.5. As it was shown in Section 2.3, diffusion parameters do not
influence the stability of the interface. Therefore, only one set of the chemical
and diffusion parameters were used and they are listed in Tab. 2.2. Energy
parameter is taken 𝛾 = 0.05.

In Fig. 3.15, for the physically stable case, the time-evolution of the reaction
front is shown by plotting the 𝑦-coordinate of three different points of the
interface, with coordinates 𝑥 = 1/3, 𝑥 = 1/2, 𝑥 = 2/3, for both CutFEM and
remeshing solutions. It can be seen that for the most part of the simulation
time, all six curves are indistinguishable. At that stage, the absolute difference
between 𝑦-coordinates of the points resulting from two methods is in the range
of 10−4 to 10−6. However, when the velocity of the front becomes slow, near
the equilibrium position, the CutFEM-based approach produces an artifact:
the front rapidly aligns with the nearest element edges. This happens due
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Time, 𝑡

ℎ|𝑥

Fig. 3.15: Results of numerical simulations by CutFEM and by the remeshing pro­
cedures. Propagation of a planar chemical reaction front for stable configuration is
illustrated by the evolution of 𝑦-coordinate of three points of the front.

to numerical error of the stresses becoming dominant in the reaction front
driving force at slow front velocities and is the major disadvantage of using this
method for modeling an approach to the equilibrium. This issue arises from
the use of linear triangular elements and the calculation of the finite-element
stresses, which are constant within such elements. Therefore, to correct this
artifact in th CutFEM procedure, either a higher-order elements must be used,
or improved stress-calculation procedures must be involved.

In Fig. 3.16, for the physically unstable case, the time-evolution of the
reaction front is shown by snapshots of the front configuration at four different
moments of time. It can be seen that the discrepancy between the results
obtained by numerical methods accumulates with time and is mostly revealed
at the boundaries of the domain. The accumulation in time is related to
physical instability of the interface: as any perturbation of the front should
grow in time, a numerical perturbation (i.e. a numerical error) also grows.
The discrepancy at the edges of the domain is related to slightly different
extrapolation procedures in both approaches, the edge points of the interface
are allowed to move inside the domain (as shown in Fig. 3.4). In this case
the extrapolation is used to find new intersection points of the interface and
the boundary of the domain. For the CutFEM-based method, this has been
described in Poluektov and Figiel [2019] and for the remeshing it is shown in
Section 3.1.

For CutFEM, the mesh consists of linear elements in the form of isosceles
right triangle with the side of Δ𝑥. In the remeshing procedure, linear quads
with full integration were used, while the size of an element was approximately

Section 3.4. Comparison of the CutFEM and remeshing results
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𝑡 = 9600 𝑡 = 13600

𝑡 = 17600 𝑡 = 21600

Fig. 3.16: Results of numerical simulations by CutFEM and by the remeshing proce­
dures. Kinetics of the initially perturbed interface for the unstable configuration is
illustrated by four snapshots of the reaction front at different times.

equal to Δ𝑥. For this example Δ𝑥 = 1/64 was taken. Time steps of Δ𝑡 =
80 and Δ𝑡 = 160 were taken for the physically stable and unstable cases
respectively. For CutFEM, numerical parameters, which were denoted as 𝜆 and
𝜅 in Poluektov and Figiel [2019], were taken 104 and 10 respectively. Examples
of the meshes are shown in Fig. 3.17.

As shown in Fig. 3.15, in the case of stable equilibrium position of the
interface, the perturbation diminishes as the front approaches the equilibrium
position. When the selected elastic material constants correspond to equilibrium
being physically unstable, Fig. 3.16, the amplitude of the perturbation rapidly
(exponentially, as shown analytically in Section 2.3) grows, even before the front
approaches the equilibrium position. From this, one can conclude that both
methods reveal the instability effect and adequately simulate stable scenarios.
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Fig. 3.17: Cropped examples of the finite-element meshes used in CutFEM and
remeshing procedures are shown for the snapshot at 𝑡 = 17600 in Fig. 3.16.

Therefore, both of them can be used for modeling the reaction front kinetics
approaching stable and unstable equilibrium position.

3.4.3 Stable configuration for the chemical interface under shear

The second considered case is similar to the first example, however, an additional
shear displacements are applied at the top boundary. Therefore, the model
setup and the boundary conditions are same, except prescribed displacements
on top boundary: u = 𝑢0e𝑦 +0.01e𝑥. This creates a shear stress state, therefore,
if the initial position of the interface is horizontal the interface should rotate,
as it approaches the stable equilibrium position. Exactly this is observed in
the results of numerical simulations shown in Fig. 3.18, where snapshots of
the front configuration at four different moments of time are plotted.

The time-evolution of the reaction front is shown in Fig. 3.19 by plotting the
𝑦-coordinate of three different points of the interface with coordinates 𝑥 = 1/5,
𝑥 = 1/2, 𝑥 = 4/5, for both CutFEM-based and remeshing approaches.

Since the reaction front rotates, point 𝑥 = 1/5 moves slower and lags behind
point 𝑥 = 1/2, while point 𝑥 = 4/5 overtakes point 𝑥 = 1/2. Also, as in the
previous example, during most of the simulation time, when the velocity of the
front is relatively large, both numerical approaches give indistinguishable curves.
However, as the velocity drops with the front approaching the equilibrium
position, the CutFEM-based method results in the front aligning with the
nearest element edges. As the equilibrium position of the front is an inclined
curve, while element edges are either vertical, horizontal or inclined by 45,
the front acquires a stair-like shape. The remeshing procedure gives a smooth
enough piecewise-linear representation of the equilibrium position. Although
this is a noticeable drawback of the existing CutFEM-based approach, it can
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𝑡 = 4000 𝑡 = 16000

𝑡 = 40000 𝑡 = 60000

Fig. 3.18: Propagation of the initially planar chemical reaction front in a body under
shear loading. The kinetics is illustrated by four snapshots of the reaction front at
different times.

be clearly seen that the front position numerical error close to the equilibrium
position has an order of an element size.

3.4.4 Closed interface in the square domain

The third example focuses on a different topology of the reaction front, namely
a closed curve. In Section 2.4 cylindrical geometries were considered and
a set of parameters leading to stable configuration of the circular reaction
front have been established. In this section, the geometry is changed to a
square, which creates inhomogeneous stress distributions (with respect to the
polar angle in the polar coordinate system), and, therefore, leads to a more
complex equilibrium configuration. Diffusing reactant is supplied trough the
external boundaries and the initial position of the interface was a circle in the
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Time, 𝑡

ℎ|𝑥

Fig. 3.19: Propagation of the initially planar chemical reaction front in a body under
shear loading. The kinetics is illustrated by the evolution of 𝑦-coordinate of three
points of the front.

center of this square. To highlight the effect of stresses on the equilibrium
configuration of the reaction front, two different loading cases are considered:
biaxial stretching and piece-wise linear prescribed displacement. The last one
is chosen in a form

u0 = 𝑎0
2𝑥
𝐿

e𝑥 + 𝑎0
2𝑦
𝐻

(︂
1 +

⃒⃒⃒⃒2𝑥
𝐿

⃒⃒⃒⃒)︂
e𝑦, at 𝑦 = ±𝐻

2 ,

u0 = 2𝑥
𝐻
𝑎0

(︂
2 −

⃒⃒⃒⃒2𝑦
𝐻

⃒⃒⃒⃒)︂
e𝑥 + 2𝑎0

2𝑦
𝐻

e𝑦, at 𝑥 = ±𝐿

2 ,
(3.2)

where the origin of the coordinate system is assumed to be in the center of the
square. Graphical interpretation of the loading scenarios is shown in Fig. 3.20.

Before the analysis it was assumed that change of the main domain from
circular to square (to be precise, the solution domains are a square and
circle, but the entities they are modeling are a prism and cylinder) would not
change drastically neither position of the equilibrium interface nor its stability.
Therefore, for material parameters, a stable set for cylindrical problem from
Tab. 2.3 was used. The transformation strain was taken to be 𝜀 = 0.05. The
same chemical and diffusion parameters were used as in the first example
(Tab. 2.2), but with another value for the energy parameter 𝛾 = 0.15. For
the diffusion problem, the mixed boundary conditions were prescribed on all
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(a) (b)

Fig. 3.20: Considered loading cases: biaxial stretching (a) and piecewise-linear pre­
scribed displacement (b).

boundaries. For this example height and width of the square 𝐻 = 𝐿 = 2 are
taken. The radius of the interface initial position is set to 0.73. External loading
for biaxial stretching is applied to all the exterior edges and the amplitude is
set to 𝑢0 = 0.076. For the second loading case, the loading parameter 𝑎0 in
(3.2) is set to 0.025.

The initially circular configuration of the front evolves then into two different
shapes for these two loading scenarios, which are Shown in Figs. 3.21 - 3.22.

As in the previous examples, during initial stage (fast kinetics) both methods
produced indistinguishable results, therefore, the evolution of the reaction front
is not shown. At the final stage, i.e. close to equilibrium configuration, the
CutFEM-based method aligns with the element edges. Here, again, it is clearly
seen that the discrepancy in the front position has an order of an element size.

For solving these problems time step of Δ𝑡 = 50 is taken. For the CutFEM-
based approach, spatial step of Δ𝑥 = 1/32 was taken, for the remeshing
approach the average size of element on the interface Δ𝑥 = 0.0116 is taken for
the biaxial stretching case and Δ𝑥 = 0.0077 – for the second loading scenario.
Cropped examples of the finite-element meshes are shown in Fig. 3.23 for the
second loading case at time 𝑡 = 6100 (Fig. 3.22).

All the three simulated examples reveal that both numerical procedures show
qualitatively similar results. For the planar interface numerical simulations cor-
relate with the analytical predictions. Moreover, both CutFEM and remeshing
simulations shows same kinetic features for stable and unstable configurations.
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𝑡 = 2000 𝑡 = 15000

Fig. 3.21: Intermediate and final configurations of a closed-curve reaction front in a
2D body under biaxial stretching.

3.5 Kinetics of a chemical reaction front in a body with
a pore or an inclusion

Another example where the influence of the mechanical stresses on the kinetics
of the chemical interface can be clearly seen is a problem with the interface
approaching some inclusion. In the current section, a chemical reaction in
a finite layer with a cylindrical pore (or void) and with a cylindrical rigid
inclusion is considered, Fig. 3.24.

The reactant is supplied through the lower boundary. Left and right edges
are traction free. External displacements u = 𝑢0e𝑦 are applied to the upper
boundary, and lower boundary is fixed. The material parameters used in the
following numerical simulation are given in Tab. 2.1, the stable configuration
is considered. Diffusion parameters are the same as in Section 3.4.2. For this
particular problem 𝐻 = 1, 𝐿 = 2, the radius of the pore (or of the inclusion) is
𝑟 = 1 and the initial thickness of the transformed layer is ℎ = 0.1. An external
displacement is set to 𝑢0 = 0.0453.

Due to symmetry, only half of the model is considered. For both problems
time step of Δ𝑡 = 80 and spatial step of Δ𝑥 = 1/64 are taken. The kinetics of
the initially planar interface approaching the circular pore and solid inclusion

Section 3.5. Kinetics of a chemical reaction front in a body with a pore or an inclusion
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𝑡 = 3000 𝑡 = 6100

Fig. 3.22: Intermediate and final configurations of a closed-curve reaction front in a
2D body under complex loading.

(a) (b)

Fig. 3.23: Cropped examples of the finite-element meshes for final configuration of a
of a closed-curve reaction front in a 2D body under complex loading. (a) – CutFEM
results, (b) – remeshing results.

is shown in Fig. 3.25, (a) and (b), respectively. Similar setup for a uniform
layer (without the pore and inclusion) is shown in Fig. 3.25 (c). Dashed lines
correspond to intermediate positions of the interface at regular time intervals,

Chapter 3. Numerical simulation and study of the chemical reaction front kinetics



Numerical and analytical studies of the chemical reaction front kinetics in solids 65

𝑥
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𝑟

𝐿

𝐻

Fig. 3.24: Model for the finite layer with circular pore or inclusion.

which are equal to 20Δ𝑡 for all plots. One can see that the void accelerates
the front propagation, and the inclusion retards it.

(a) (b) (c)

Fig. 3.25: Kinetics of the initially planar chemical interface in the vicinity of a
cylindrical pore (a), a rigid inclusion (b), and in a uniform layer (c).

The distributions of the von Mises stress in the layer with a pore and with a
rigid inclusion are shown in Figs. 3.26 and 3.27, respectively.

The experiments show that pores (or voids) or another material insertions
may significantly influence the kinetics of the chemical reaction front prop-
agation. As an outlook for further study of the interface passing through
the region with inclusions, an additional procedure for adjusting the moved
interface might be developed, similar to one described in Fig. 3.4.
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Fig. 3.26: The von Mises stress distribution in the vicinity of a pore for the reaction
front position shown in the right inset.

Fig. 3.27: The von Mises stress distribution in the vicinity of a solid inclusion for the
reaction front position shown in the right inset.

3.6 Conclusions

An approach to study the influence of mechanical stresses on the chemical
reaction front propagation based on the chemical affinity tensor concept was
implemented in a numerical procedure.

From the correspondence of the analytical predictions and the results of
finite element simulations, it becomes evident that the numerical procedure
can be reliably used for the simulation of reaction and phase transformation
front propagation and a stability check of the interface in thermodynamic
equilibrium. The instability of the reaction front propagating towards the
unstable equilibrium was simulated and analyzed for initial states with a
not perfectly circular (or planar) interface by using the proposed numerical
procedure. Also, it was shown numerically that growing perturbations in the
case of unstable configuration may lead to plasticity and failure.

For the cylindrical interface, numerical simulations show that for the stable
set of material parameters both round and perturbed initial interface smoothly
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converge to the circular equilibrium position. For the unstable set of parameters
two scenarios are realized:

(i). An initially round interface keeps its shape while propagating toward
thermodynamic equilibrium. It can be concluded that the global kinetics
of the reaction front interface suppresses the process of stability loss.
When the interface approaches equilibrium, its velocity decreases, so that
it becomes comparable with the growth speed of the instability amplitude.
At this point, the shape of the unstable front becomes visible.

(ii). The amplitude of the initial perturbations of the interface grows with
the front propagation toward equilibrium. Numerical simulations show
that this process accelerates while the interface approaches equilibrium.
Note that for the studied parameters of the initial front perturbations,
the interface keeps the frequency of the predefined perturbations during
its propagation.

The proposed procedure was compared with the CutFEM approach to model
numerically the reaction front propagation. Both CutFEM and remeshing
methods show the same kinetics of the reaction front when it is far from the
equilibrium position. However, when the interface approaches the reaction
blocking state, the CutFEM approach produces an artifact solution, in which
the energy minimizing configuration forces the interface to align with the
nearest element boundary. This issue can be resolved by introducing a more
accurate procedure of calculating stresses at the interface, or by using the
second-order finite elements. When compared with CutFEM, the remeshing
procedure requires tracking the position of the interface, writing additional
scripts to handle geometry- and self-intersections of the front. Nevertheless,
both studied methods can be used to model the chemical reaction front kinetics.

A possible outlook for the remeshing procedure might be upgrading the
method to the case of large deformations and non-linear material constitu-
tive relations. This is already realized in CutFEM (Poluektov and Figiel
[2019]), while the remeshing procedure is rather limited by the Abaqus software
capabilities.

Having the remeshing procedure approbated and validated, it can be used
to solve a real engineering problem.

Section 3.6. Conclusions
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4 Experimental and theoretical studies
of Cu-Sn intermetallic phase growth

In this Chapter the growth of Inter-Metallic Compound (IMC) layers is consid-
ered: after soldering an IMC layer appears and establishes a mechanical contact
between eutectic tin-silver solder bumps and Cu interconnects in microelectronic
components. Intermetallics are relatively brittle in comparison with copper
and tin. In addition, IMC formation is typically based on multi-component
diffusion, which may include vacancy migration leading to Kirkendall voiding.
Consequently, the rate of IMC growth has a strong implication on solder joint
reliability. Experiments show that the intermetallic layers grow considerably
when the structure is exposed to heat. Mechanical stresses may also affect
intermetallic growth behavior. These stresses arise not only from external
loadings but also from thermal mismatch of the materials constituting the
joint, and from the mismatch produced by the change in shape and volume
due to the chemical reactions of IMC formation. This explains why in this
work special attention is being paid to the influence of stresses on the kinetics
of the IMC growth.

This chapter starts with a report of experimental findings regarding the IMC
growth at the interface between copper pads and tin based solder alloys in
different microchips during a high temperature storage test. Then the growth
kinetics is analyzed by means of a continuum model. By combining experiment,
theory, and a comparison of experimental data and theoretical predictions the
values of the diffusion coefficient and an estimate for the chemical reaction
constant are found. A comparison with literature data is also performed. This
chapter contains an overview of the results obtained in Morozov et al. [2018b];
Morozov et al. [2018a]; Morozov et al. [2020].

4.1 Overview on intermetallic compound growth

The main technological process for creating an electrical contact between
components in a (micro-) electric circuit is soldering. Different eutectic tin-
based alloys containing various metallic chemical elements (Zn, Bi, Pb, Ag,
Cu, etc.) are used for this process. One of the most common lead free solder
alloys in microelectronics is eutectic SnAg3.7 (or ternary SnAg3.6Cu0.8). This
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alloy is also used in Ball-Grid Array (BGA) components in the microelectronic
industry for solder bumps and paste (Lee and Mohamad [2013]).

Cu6Sn5

Cu3Sn

Fig. 4.1: Cu-Sn phase diagram, reprinted from Fürtauer et al. [2013].

An intermetallic, also known as an intermetallic compound, intermetallic
alloy, ordered intermetallic alloy, and a long-range-ordered alloy is a type of
metallic alloy that forms a solid-state compound exhibiting defined stoichiome-
try and ordered crystal structure, see, e.g., Callister Jr. and Rethwisch [2010].
In electric circuits Cu is used as a conductive material for contacting the
surfaces of the electronic components. During soldering the solder material
melts and gets in contact with the copper substrate so that a thin layer of a
particular IMC forms at the interface between the Cu and the tin-based solder.
In the absence of an IMC layer the bond between the solder and the substrate
is weak, since there is hardly no interaction between the metals at the boundary.
In Sn-Cu and Sn-Ag-Cu eutectic alloys the electrical and mechanical contact is
established by one (Cu6Sn5) or two (Cu6Sn5 and Cu3Sn) intermetallic phases,
respectively (e.g., Liashenko, Gusak, and Hodaj [2014]). Their formation is
determined by the temperature regime, according to the phase diagram shown
in Fig. 4.1. It involves three stages: dissolving of Cu in liquid Sn, a chemical
reaction between the components, and further crystallization. Further growth
of the IMC layer takes place in the solid state. The formation of IMCs occurs
according to the following chemical reactions between copper and tin

6 Cu + 5 Sn → Cu6Sn5,

3 Cu + Sn → Cu3Sn.
(4.1)

Phase Cu6Sn5 is also referred to as the 𝜂 and Cu3Sn as the 𝜀-phase.
As mentioned earlier, the existence of the IMC is a necessary condition for

the electro-mechanical contact. However, when compared to pure copper or tin
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the IMC is more brittle. This may lead to a decrease of the reliability of the
joint. In addition, intense diffusion of Cu (from the pad) or Sn atoms through
the IMC may lead to void formation due to the Kirkendall effect, see, e.g.,
Paul [2004]; Dybkov [2010].

There are many experimental studies of the IMC growth in solders of the
aforementioned two and other phases of more complex stoichiometry (Kim,
Huh, and Suganuma [2003]; Yu et al. [2005]; Min-Suk, Chan-Jin, and Hyuk-
Sang [2008]), such as microrelief mapping of the interface, the determination
of the chemical composition of the phases, or the influence of the soldering
time on the kinetics of the IMC formation, etc. In these systems the growth
velocities of the IMC interfaces are much higher than in homogeneously phased
solders.

A typical empirical kinetic equation for the IMC phase growth is based on
fitting the experimentally observed data and has the form (Cogan et al. [1984];
Dariavach et al. [2006]):

ℎ = ℎ0 + 𝑘𝑡1/𝑛, (4.2)

where ℎ and ℎ0 are the current and initial new phase thicknesses, 𝑡 is the
time, 𝑘 and 𝑛 are growth constants. Under the assumption that the major
contribution to IMC growth is bulk diffusion, the power law (4.2) takes the
form of a square root dependency (see, e.g., Gao et al. [2006]; Gao et al. [2019]).
In other words, any deviation from the square root behavior indicates that not
only bulk diffusion is governing the growth kinetics (Cogan et al. [1984]). In this
case the growth constant 𝑘 may be expressed through the diffusion coefficients,
𝐷, (Mei, Sunwoo, and Morris [1992]). The temperature dependence of the
latter can be expressed by an Arrhenius equation,

𝐷 = 𝐷0 exp
(︂

− 𝑄

𝑅𝑇

)︂
, (4.3)

where 𝐷0 is a pre-exponential factor, 𝑄 is the reaction activation energy, 𝑅
is the gas constant, and 𝑇 is the absolute temperature in 𝐾, see, e.g., Ross,
Vuorinen, and Paulasto-Kröckel [2016] and the references therein. Based on
these ideas a model for intermetallic growth in thin Sn joints between Cu
substrates was proposed in Arafat et al. [2020] with application to solder
microjoints.

An understanding of the IMC formation process and predicting its kinetics
in various range of temperatures is essential for evaluating the structural
integrity of solder interconnects. The electrical current during operation of the
microelectronic device can heat up a solder bump to 100°C - 150°C. This heat
stimulates IMC growth and as a result reduces the lifetime of the joint.

Section 4.1. Overview on intermetallic compound growth



72

4.2 Experiment overview
4.2.1 Specimen preparation
Two different types of microchips (referred to as Series I and II in Fig. 4.2
and in what follows) with BGA packages were available. The solder balls were
approximately of the same diameter, 500𝜇m. The frames of the microchips
were made of plastic or metal for Series I or II, respectively.

Series I Series II

1500𝜇m 3600𝜇m

Fig. 4.2: Photos of the microprocessor boards.

For the commercially obtained packages the exact information about the
solder material, the package substrate material, and its surface finish materials,
as well the ball attachment process was not available. Clearly, all of this
affects the initial IMC formation, as well as the diffusion processes during
its growth. Therefore, in order to obtain a somewhat clearer picture, the
following was assumed. According to performed EDXS (Energy-Dispersive
X-ray Spectroscopy) analysis, no other elements were found in the IMC region
apart from Cu and Sn. Hence it is fair to assume that the solder material was
eutectic tin silver (AgSn), and the substrate had an OSP (Organic Surface
Protection) coating. Moreover, note that the experimental work was carried
out in order to validate the analytical model of IMC growth but not of its
formation. The thickness of the IMC layers was measured before the heat
treatment and used as an initial condition for the theoretical model.

In order to reduce the number of tests and still get a reliable statistical
data, the experimental procedure to determine the kinetics of the IMC phase
growth was organized as follows. Before the experiment each of two types of
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microchips was dissected through an array of balls, as shown schematically in
Fig. 4.3, (a). The cross-section was polished with 3 𝜇m diamond polishing
suspension. In order to track the interface propagation, two micro-indenter
marks (Vickers method) were applied to each ball by a Buehler MicroMet
5103 microindentation hardness tester. These marks served as reference for
tracking the IMC growth interfaces in the neighborhood, Fig. 4.3, (b). After
the heat treatment and the EDXS analysis, the specimens were returned to
the oven. The same cross-sections of the same solder balls were examined
during the experiment. Note that only three balls per series were continuously
monitored during the heat treatment, which was already quite time-consuming
and operationally elaborate. In the curves below showing thickness of IMC
over time an average of the observed growth for the three balls per series is
displayed.

Cu

Sn

(a) (b)

Fig. 4.3: Cutting scheme applied to the microprocessor.

The experimental procedure does not allow to fix the specimen in an epoxy
casing. Indeed, the melting temperature of the plastic is higher than melting
temperature of the solder material. However, the epoxy curing temperature is
close to the experimental temperature of 150oC. Therefore, all polishing was
performed “by hand,” which resulted in a relatively rough polished surface.
Nevertheless, the quality is fair enough to obtain the chemical interface kinetics
data, which is the aim of this study. Figure 4.4 shows the initial cross-section
of a solder ball. Differences in contrast correspond to different chemical
composition.

4.2.2 Experimental procedure
In the current study the process of IMC growth is analyzed in microprocessors
with BGA packages during a high temperature storage test. According to
the JESD22-A103 specification this experiment was performed at 150°C in a
vacuum oven over 1100 hours. The Series I ball was examined after 0, 120, 240,
360, 680, and 1000 h, and the Series II ball at 0, 120, 240, 360, 480, 800, and
1120 h, respectively. The chemical compositions were obtained from EDXS
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(a)

Cu

Sn

100𝜇m (b)

Cu6Sn5

Cu

Sn

10𝜇m

Fig. 4.4: Cross-sections of a solder ball from Series I before heat treatment, general
view (a) and interface zone (b).

analysis performed on an Oxford Instruments INCA X-Max detector fitted on
a MIRA 3 (TESCAN) microscope at voltage of 20 kV. The thickness evaluation
was based on postprocessing of micrographs with Python scripts.

4.3 Experimental results

The results for the two series are qualitatively different even though the
corresponding samples were heated and cooled under the same conditions. It
is suspected that this is due to the different casings and the associated heat
conduction properties: the thickness of the microprocessor case for Series I
(plastic casing) was about 150 𝜇m, and for series II (metal casing) about 360
𝜇m. Due to differences in the case materials and their thicknesses for samples
of series I and II, the true cooling rate down to room temperature could differ.
Both series of specimens contain a plastic circuit board and BGA in their
assembly. However, specimens from Series II have a additional metal framed
microchip. Therefore, the cooling time for Series II specimens is longer than
for specimens from Series I. The formation of IMC phases is a function of two
competing processes, namely growth and dissolution, which in turn depend
on the cooling rate. This could lead to the formation of various phases in
microprocessors of various designs.

Fig. 4.4 (b) shows that an IMC layer forms at the copper-solder interface
right after the attachment of solder balls on the microprocessor board copper
substrates. A spectroscopic analysis showed that its composition corresponds
to the compound Cu6Sn5. Note that the shape of the Cu6Sn5 layer has a
comb-like structure (also referred to as scallops in the literature, e.g., Kim
and Tu [1996]) for all of the studied samples. Its relief is governed by the
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roughness of the copper substrate, and the initial average height in the samples
was in the range 1.9 - 3.3 𝜇m. In addition, the tetragonal crystal structure of
Sn will result in an anisotropy of the diffusivity of the Cu atoms (Han et al.
[2017]; Wang et al. [2020]). It was also shown that the relief depends on the
crystalline structure of the underlying copper pad (Sunwoo, Morris, and Lucey
[1992]; Sang, Du, and Ye [2009]; Suganuma [2003]), which can be fine-grained
polycrystalline or even single-crystal based.

4.3.1 Chemical composition of the compounds

An EDXS analysis was performed at each stage of the experiment in order
to obtain the composition of the materials observed through the microscope.
The set of examined points for specimens from Series I after 1000 h heating
is shown in Fig. 4.5 and the corresponding compositions are listed in Tab.
4.1. All results are given in at% (atom percent). One should note that for
the composition 54.5 at% Cu and 45.5 at% Sn corresponds to Cu6Sn5 and
the composition 75 at% Cu and 25 at% Sn to Cu3Sn, respectively. From the
analyzed data it follows that during heat treatment (up to 1000 h) the chemical
composition (stoichiometric ratio) of the IMC remained constant and no other
intermetallic compounds (e.g., Cu10Sn3 or Cu41Sn11) were detected.

.1 .2
.3 .4

10𝜇m

Fig. 4.5: First set of points from the
interface region for EDXS analysis, a
ball from Series I at 𝑡 = 1000 h. The
corresponding data is listed in Tab. 4.1.

Point Cu Sn
1 54.5 45.5
2 52.4 47.6
3 52.7 47.3
4 53.1 46.9

Average 53.2 46,8

Tab. 4.1: Data obtained from the
EDXS analysis for the points in Fig. 4.5,
values are given in at%.

The set of points for the EDXS analysis of the solder material and the Cu
substrate of a specimen from Series I after 1000 h heating is shown in Fig. 4.6
and the results of the analysis are listed in Tab. 4.2. Points 1 and 2 in Fig. 4.6
are located in the copper substrate area. However, they contain 2.6 and 5.6
at% of Sn, respectively. Moreover, during separation of Sn atoms from Cu6Sn5
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.1 .2

.3

.4

.5

.6

10𝜇m

Fig. 4.6: Second set of points from the
interface region for the EDXS analysis,
a ball from Series I at 𝑡 = 1000 h. The
corresponding data is listed in Table
4.2.

Point Cu Sn
1 97.4 2.6
2 94.4 5.6
3 0.0 100.0
4 1.0 99.0
5 9.5 90.5
6 11.8 88.2

Tab. 4.2: Data obtained from the
EDXS analysis for the points in Fig. 4.6,
values are given in at%.

a reaction proceeds according to the following scheme:

Cu6Sn5 − 3 Sn → 2 Cu3Sn. (4.4)

As a result of reaction (4.4) and according to the phase diagram in Fig. 4.1, a
new Cu3Sn IMC should then be formed at the Cu – Cu6Sn5 interface. However,
in Series I this compound was not observed, possibly due to an extremely small
thickness of the Cu3Sn layer, which could not be detected.

The set of examined points for a specimen from Series II after 1120 hours
heating is shown in Fig. 4.7 and the results of the chemical composition analysis
are listed in Tab. 4.3.

It can be seen from Fig. 4.7 that, unlike Series I, there are no “islands” in
the IMC layer and the boundaries of the layers show less roughness (comb-like
structure). During heat treatment a composition of two IMC configurations
was temporarily observed. However, at the later stages of the experiment (after
360 h) the Cu3Sn phase vanished. The reason for this is unknown. In any
case this phase is not so easy to detect. To quote from Ross, Vuorinen, and
Paulasto-Kröckel [2016]: “However, it is well known that there is typically
a thin layer of Cu3Sn present between Cu and Cu6Sn5, which, immediately
after reflow, is generally only measurable by transmission electron microscopy
(TEM), although it can be resolved also by optical microscopy. Based on
literature data, we estimate the thickness of the Cu3Sn layer to be about 0.1
𝜇m.”
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.1

.2
3..4

25𝜇m

Fig. 4.7: Set of points from the inter­
face region for the EDXS analysis a
ball from Series II at 𝑡 = 1120 h. The
corresponding data is listed in Table
4.3.

Point Cu Sn
1 0.0 100.0
2 31.5 68.5
3 54.7 45.3
4 97.0 3.0

Tab. 4.3: Data obtained from the
EDXS analysis for the points in Fig. 4.7,
values are given in at%.

4.3.2 Thickness data for the IMC layers

In order to determine the characteristics of the growth kinetics of the inter-
metallic compounds a set of experiments was conducted using Series I and II
BGAs when exposed to a constant temperature. For each series measurements
were carried out as follows.

The heat treatment was performed at a constant temperature of 150 °C.
Measurements of the thickness were done at the same location of 3 balls, namely
near the micro-indenter mark. This procedure allows to track the thickness of
the layers at certain points and to average between the balls obtained within
each set of microprocessor BGAs.

As it was mentioned above, in the Series I balls only the Cu6Sn5 phase was
detected. It is known from the literature that the formation of the Cu6Sn5
phase is largely determined by the diffusion processes of Cu, and the diffusion
rate determines the thickness of the IMC layer (Schaefer, Fournelle, and Liang
[1998]; Lee and Mohamad [2013]). Fig. 4.8 shows typical micrographs of a
sample after 120 hours storage at a constant temperature of 150 °C.

By comparison of Figs. 4.4 (initial state) and 4.8 it follows that the thickness
of the Cu6Sn5 layer significantly increased. The comb-structure of the IMC
phase is preserved. Note that in one set of samples the thickness of Cu6Sn5
varies along the interface from 3.1 to 9.1 𝜇m (in comparison, the initial layer
thickness was 1.9-3.3 𝜇m, i.e., it increased 2 - 3 times). A large dispersion of
thickness, as well as a formation of IMC agglomerations, can be explained by
uneven grain growth rate (Yu and Wang [2008]). Fig. 4.8 shows that there are
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(a) 100𝜇m (b)
Cu6Sn5

(96-98)Sn - (4-2)Cu

10𝜇m

Fig. 4.8: Cross-section of a solder bump from Series I after 𝑡 = 120 h heat treatment,
general view (a) and enlarged region indicated by the red rectangle (b).

local border areas, “islands”, in which the initial composition of the solder is
preserved.

Intermetallic layers after 120 and 240 hours heat treatment are shown in
Fig. 4.9 ((a) and (b), respectively). The approximate shape of the interfaces
between the solder, IMC and the substrate is outlined by red color. One
should note that the chemical composition of the IMC remains unchanged and
the appearance of new crystalline phases was not detected. The intermetallic
compound grows in both directions, toward the solder and toward the substrate.
However, the growth rate of the latter is much less than the one on the solder
side. From Fig. 4.9 it is also seen that the area of the “island” regions decreases
with time, which indicates that the Cu6Sn5 grains grow in all directions and
not only perpendicular to the copper interface.

(a) (b)10𝜇m 10𝜇m

Fig. 4.9: IMC profiles in the solder bump from Series I after heat treatment: 𝑡 = 120 h
(a) and 𝑡 = 240 h (b). Spheroids of Cu6Sn5 are marked with green.
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The dark “island” in the solder area (marked by green color in Fig 4.9) are
spheroids of Cu6Sn5 that formed by spalling from the IMC-solder interface
(Liu et al. [1996]; Lee and Mohamad [2013]).

Both Sn and Cu6Sn5 islands are independent spheroids. It is most likely, that
if more material is polished from the surface of the specimen, these spheroids
will vanish. Therefore, since these areas do not really belong to the interface,
they are not considered, i.e., neither added nor subtracted during further
evaluation of the IMC phase thickness.

With further heat treatment a consistent increase in the thickness of the IMC
layer is observed. Fig. 4.10 shows the interface profiles at treatment times 360,
680 and 1000 h. It can be seen that the formation of a locally thick intermetallic
layer occurs. When comparing Fig. 4.10 (a) and (c), it follows that the areas
of the solder “islands” slightly increased upon heat treatment. This could be
explainable by surface effects after to the initial cut so that material might
have moved out of plane and was then removed during polishing.

(a) (b) (c)10𝜇m 10𝜇m 10𝜇m

Fig. 4.10: IMC profiles in a solder bump from Series I after heat treatment: 𝑡 = 360 h
(a), 𝑡 = 680 h (b) and 𝑡 = 1000 h (c).

Microphotographs for the Series II specimen are shown in Fig. 4.11 for times
from 0 h up to 120 h. One should note that for this series the thickness of the
IMC layer was less planar than for Series I. The initial thickness of the Cu6Sn5
phase varied from 1.7 to 4.0 𝜇m.

(a) 20𝜇m (b)
Sn

Cu6Sn5
Cu3Sn

Cu10𝜇m

Fig. 4.11: Cross-section of a solder ball from Series II in the interface region before
treatment at 𝑡 = 0, (a), and after treatment, 𝑡 = 120 h, (b).
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As shown in Fig. 4.11 (b), two intermetallic phases formed after treatment:
Cu6Sn5 and Cu3Sn. This is different from the result obtained for balls of
Series I. As it is known from the literature the formation of Cu3Sn occurs on
the interface between the copper substrate and the Cu6Sn5 compound. The
following chemical reaction describes its formation (Hu and Ke [2014]):

Cu6Sn5 + 9 Cu → 5 Cu3Sn. (4.5)

Despite storing in a vacuum oven, oxides and other compounds formed on the
surface of the specimens cross-section. This made it hard to evaluate the exact
thickness of the Cu6Sn5 layer for specimens of Series II at time 𝑡 = 480 h, since
part of the layer was covered with other materials (“oxidation dirt”), see Fig.
4.12.

5𝜇m

Fig. 4.12: Cross-section of the inter­
face region in a ball from Series II af­
ter 480 h heat treatment. The chemi­
cal composition of the marked area ob­
tained by the EDXS analysis is given
in Tab. 4.4.

Element Average, at %
C 20.57
O 4.62
Si 0.33
Cl 0.47
Cu 70.62
Sn 3.39

Tab. 4.4: Results of the EDXS analysis
of the marked area in Fig. 4.12.

The EDXS analysis shows the presence of 4.62% oxygen in the region where
only Cu is expected (see points 1 and 2 in Fig. 4.6, or point 4 in Fig. 4.7). To
remove the dirt cover an additional polishing was carried out. In the following
results, for this particular measurement, the thickness of the only visible IMC
layer is presented. However, this measurement is excluded during the analysis
for validation of the theoretical model. The thickness of the polished layer
can be estimated from Fig. 4.13, which shows the IMC interface profiles of
Series II microchips at the same spot at time 𝑡 = 800 h (a) and 𝑡 = 1120 h (b).
Therefore the thickness of the removed layer is not greater than 10 𝜇m.

In order to get statistical data about the thickness of the IMC all micrographs
were postprocessed with Python scripts. The positions of one interface were
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(a) (b)
20𝜇m 20𝜇m

Fig. 4.13: Cross-section of the IMC profile in a solder bump from Series II after heat
treatment: 𝑡 = 800 h (a) and 𝑡 = 1120 h after additional polishing (b).

subtracted from the other along the specimen. The mean value was chosen as
the current thickness and the standard deviation was calculated in order to
obtain an error estimate.

Results for Cu6Sn5 in Series I and II specimens are shown in Fig. 4.14. Due
to the uneven growth of the IMC layer and its comb-like shape, the standard
deviation from the mean value increases in time.
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Fig. 4.14: Growth of the mean thickness of Cu6Sn5 phase for the specimen from Series
I and II. Experimental points are connected by dashed lines for visual clarity only.

The IMC type Cu3Sn was observed only in Series II specimens and even
then only for a limited time period. The change of its thickness is shown in
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Fig. 4.15. Thus, during annealing for more than 480 hours, the Cu3Sn phase
dissolved, but the mechanism of this process is not understood.
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Fig. 4.15: Growth of the mean thickness of Cu3Sn for the specimens from Series I
and II. Experimental points are connected by dashed lines for visual clarity only.

4.4 Theoretical model

One of the aims of this work is to validate and quantify the model of reaction
front kinetics described in Section 2.1 on the basis of the experimental results
for the IMC growth.

4.4.1 Analytical solution of a model problem

As mentioned in the previous sections, only the Cu6Sn5 intermetallic phase was
detected at all stages of the experiment. Therefore, for simplicity of the further
analytical analysis, only this IMC is considered. It was pointed out that the
interface between Cu6Sn5 and Sn moves much faster than one between Cu6Sn5
and Cu. Therefore, it is also assumed that only the interface between the
IMC and the Sn is moving. The maximal thickness of the IMC layer observed
in the experiment was about 15𝜇m (Fig. 4.14) which is much less than the
diameter of the solder ball (approx. 500𝜇m, see Fig. 4.4). The above gives a
reason to consider a simple boundary value problem of mechanochemistry with
a planar chemical reaction front propagating in an infinite layer. Similar plane
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problems for moving interfaces have been previously studied analytically and
numerically, see, e.g., Freidin et al. [2016]; Morozov et al. [2018a]; Morozov
et al. [2018b] and also in the previous chapters of this manuscript.

Due to the experimental setup, the cross-sections of the specimens were
stress free surfaces during the whole experiment. The chemical reaction front
propagation was observed at these stress free surfaces. Strictly speaking, one
cannot use neither a plane strain nor a plane stress simplification in order
to find the stresses at the reaction front. Nevertheless, since one can find a
kinetic equation for the interface movement for both plane stress and plane
strain formulations in a closed form, the model problem is solved in this work
in both formulations, assuming that the real behavior may be somewhat “in-
between.” This gives the opportunity to fit the theoretical prediction with the
experimental results, as described in the next Section 4.4.2. Based on the fitted
data, an estimate is obtained for the diffusion coefficient and for the chemical
reaction kinetic constant.

Consider an elastic layer with a cross-section in the 𝑥𝑦-coordinate plane and
the plane reaction front propagating in the 𝑦-direction from 𝑦 = 0 to 𝑦 = 𝐻
where 𝐻 is the layer thickness and ℎ is the current reaction front position (Fig.
4.16). The storage temperature in the oven is 𝑇 and the reference temperature
is 𝑇0, 𝜃 = 𝑇 − 𝑇0.

Assume that, by boundary conditions, the upper side of the layer is traction-
free, then

𝜎−
𝑦 |𝑦=𝐻 = 0, (4.6)

and the lower side is fixed, then the displacement u+|𝑦=0 = 0. Assume that
the displacement is zero in 𝑥-direction: 𝑢±

𝑥 = 0 and, thus,

𝜀±
𝑥 = 0. (4.7)

The displacement and traction continuity conditions at the reaction front
will give, in particular, the continuity of 𝑦-components of the displacement
vector and the stress tensor:

J𝑢𝑦K𝑦=ℎ = 0, J𝜎𝑦K𝑦=ℎ = 0. (4.8)

The plane strain or the plane stress conditions are 𝜀±
𝑧 = 0 or 𝜎±

𝑧 = 0,
respectively. The equilibrium equations and boundary and interface conditions
in both plane statements will be satisfied for zero non-diagonal components of
stress and strain tensors, that is why these components are not mentioned above.
The displacement continuity condition at the reaction front also demands
continuity of 𝜀𝑧, which strictly speaking is not fulfilled in the plane stress
formulation, but the input of this formal incompatibility is neglected.
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Fig. 4.16: Model description.

By constitutive equations (2.7),

𝜀±
𝑥 − 𝛼±𝜃 − 𝜀tr

± = 1
𝐸±

(︁
𝜎±

𝑥 − 𝜈±(𝜎±
𝑦 + 𝜎±

𝑧 )
)︁
, (4.9)

where 𝐸± and 𝜈± are the Young’s moduli and Poisson’s ratios of the materials
𝐵±, 𝜀tr

− = 0, 𝜀tr
+ ≡ 𝜀tr. The formulas for 𝜀±

𝑦 and 𝜀±
𝑧 follow from (4.9) by cyclic

permutations of 𝑥, 𝑦, and 𝑧.
Substituting strains and stresses found from (4.9) by using the conditions

(4.6) – (4.8) and by taking into account all constraints regarding plane strain
and plane stress formulations into (2.14), one can obtain that the contribution
𝜒 in 𝐴𝑛𝑛 does not depend on the front position, and

𝜒 =

⎧⎪⎪⎨⎪⎪⎩
𝛾 + 1

2𝐸−𝛼
2
−𝜃

2 − 1
2𝐸+(𝛼+𝜃 + 𝜀tr)2, plane stress,

𝛾 + 𝐸−
1 − 𝜈−

𝛼2
−𝜃

2 − 𝐸+
1 − 𝜈+

(𝛼+𝜃 + 𝜀tr)2, plane strain.
(4.10)
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Then, by (2.5), the reaction rate becomes equal to

𝜔𝑛 = 𝑘*(𝑐− 𝜅𝑐*), (4.11)

where the stoichiometric coefficient 𝑛* is renormalized to one with respect to
all other stoichiometric coefficients, as shown in Chapter 2.1, and 𝜅 is defined
as

𝜅 = exp
(︂

−𝑛−𝑀−
𝜌−

𝜒

𝑅𝑇

)︂
. (4.12)

Diffusing Cu atoms are supplied through the lower side 𝑦 = 0 and the
formation of the intermetallic phase occurs at the interface between Cu6Sn5
and Sn at 𝑦 = ℎ. The diffusion equation takes the form

d2𝑐

dy2 = 0, 𝑦 ∈ [0, ℎ] (4.13)

with the boundary conditions

𝐷
d𝑐
dy

⃒⃒⃒⃒
𝑦=ℎ

+ 𝜔𝑛 = 0,

𝐷
d𝑐
dy

⃒⃒⃒⃒
𝑦=0

+ 𝑎(𝑐* − 𝑐(0)) = 0,
(4.14)

where 𝜔𝑛 is given by (2.5).
The solution of the diffusion problem finally gives the concentration at at

the reaction front as a function of the reaction front positon

𝑐|𝑦=ℎ = 𝑐*

1 + 𝜅

(︂
𝑘*
𝑎

+ 𝑘*ℎ

𝐷

)︂
1 + 𝑘*

𝑎
+ 𝑘*ℎ

𝐷

. (4.15)

Then the reaction rate takes a form of the dependence of the front position

𝜔𝑛 = 𝑘*𝑐*(1 − 𝜅)

1 + 𝑘*
𝑎

+ 𝑘*ℎ

𝐷

. (4.16)

Substitution of the expression (4.16) of the reaction rate into the formula (2.6)
for the interface velocity results in the explicit equation for the dependence of
the front position on time:

dℎ
d𝑡 = 𝑛−𝑀−

𝜌−

𝑘*𝑐*(1 − 𝜅)

1 + 𝑘*
𝑎

+ 𝑘*ℎ

𝐷

. (4.17)
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Integration yields an explicit dependence of time on the front position:

𝑡(ℎ) =

1
2
𝑘*
𝐷

(ℎ2 − ℎ2
0) +

(︂
1 + 𝑘*

𝑎

)︂
(ℎ− ℎ0)

𝑛−𝑀−
𝜌−

𝑘*𝑐*(1 − 𝜅)
, (4.18)

where ℎ0 is the initial thickness of the IMC layer appeared just after the solder
bump attachment.

The dependence (4.18) be rewritten in the standard form of the parabolic
law

ℎ(𝑡) =
√︀
𝐶1𝑡+ 𝐶2 + 𝐶3, (4.19)

where
𝐶1 = 2𝐷𝑛−𝑀−

𝜌−
𝑐*(1 − 𝜅),

𝐶2 =
(︂
ℎ0 −𝐷

(︂ 1
𝑘*

+ 1
𝑎

)︂)︂2
,

𝐶3 = −𝐷
(︂ 1
𝑘*

+ 1
𝑎

)︂
.

(4.20)

Note that the parameters 𝑘* and 𝑎 occur in (4.20) only in a combination of
the sum of the inverse values. Note also that the influence of mechanical
actions is represented by the parameter 𝜅, which is constant in the considered
case. External mechanical loading may lead to the dependence 𝜅 on the front
position, which would affect the front behavior.

The parabolic law (4.19) will be used in the next section for fitting parameters
to experimental data.

4.4.2 Fitting the model parameters
The mechanical properties of Cu, Sn and corresponding IMCs can be found in
the literature. Young’s modulus, Poisson’s ratio, and the coefficient of thermal
expansion are listed in Tab. 4.5 (Yang et al. [2008]; Jiang et al. [1997]). Molar
masses and densities are given in Tab. 4.6 (Sun and Yin [2009]).

Material 𝐸, GPa 𝜈 𝛼, K−1

Sn 50 0.36 22 · 10−6

Cu6Sn5 118 0.31 18 · 10−6

Tab. 4.5: Mechanical material properties used in the model, Yang et al. [2008]; Jiang
et al. [1997].

The solubility of Cu in the IMC is defined as the maximum achievable
concentration of copper in a Cu6Sn5 lattice. According to the phase diagram in
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Sn Cu Cu6Sn5 Cu3Sn
𝜌, g/cm3 7.280 8.960 8.280 9.140
𝑀, g/mol 118.7 63.55 974.8 309.3

Tab. 4.6: Molar masses and densities used in the model, Sun and Yin [2009].

Fig. 4.1 two stable phases can appear in the IMC at 𝑇 = 150oC: Cu6Sn5 and
Cu3Sn. By the reaction (4.5) the phase Cu3Sn forms when one mole of Cu6Sn5
reacts with nine moles of Cu. Therefore it is estimated that the maximum
amount of copper which can be dissolved in Cu6Sn5 is nine moles of Cu per
one mole of the IMC. In addition, here it is assumed that diffusing atoms of
Cu do not change the volume of the IMC. Hence, with the aforementioned
assumptions and based on the general definition of molar concentration, 𝑐* =
9 𝜌Cu6Sn5/𝑀Cu6Sn5 = 76 × 10−6 mol/mm3 was computed for the reference
value.

As mentioned earlier, the chemical energy parameter 𝛾 in (4.10) is determined
by the Cu6Sn5 formation energy. This energy is defined empirically. The
dependence of this energy on temperature in operating temperature range can
be approximated by (Huang et al. [2015])

Δ𝐺 = −7747.65 − 0.371𝑇 [J/mol], (4.21)

where 𝑇 is taken in K. In order to calculate 𝛾, the formation energy has to
be divided by the molar volume 𝑉Cu6Sn5 = 11.28 cm3/mol (value from Sobiech
et al. [2011]), since 𝛾 unit is an energy density per unit volume.

By (2.11), for the reaction (4.5) between Sn and Cu the ratio of volumes one
can find 𝐽tr = 1.44 (44% volume expansion) if 𝜉 = 0 (solid skeleton approach)
and 𝐽tr = 0.92 (8% volume shrinkage) if 𝜉 = −1. The question about the value
of the transformation strain accompanying IMC formation remains open and
estimates of the relative volume change are in the range from −10%, (e.g.,
Mei, Sunwoo, and Morris [1992]; Lee and Lee [1998]; Bordere et al. [2018])
up to +44%, (e.g., Jadhav et al. [2010]; Chudnovsky [2017]). Further the
model parameters are fitted for 𝜉 = −0.5, which corresponds to volume ratio
𝐽tr = 1.18. In particular, such a value of deformation may be consistent with a
small strain approach used in the modeling.

Certain material and chemical parameters remain unknown, namely 𝐷, 𝑘*,
𝑎. In order to get an estimate for these values one can try to fit the square root
curve, Eq. (4.19), constraining the parameters such that physically acceptable
values for 𝐷 and 𝑘* will result. The fitting process was performed by using
the weighted least square method, where the weights of the points depended
on their estimated error.

It should be noted that the equations proposed in Section 2.1 for the chemical

Section 4.4. Theoretical model
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reaction front kinetics represent the velocity of the interface in the initial,
undeformed configuration, while the micrographs track the position of the
interface in the current, deformed configuration. Therefore, before fitting, the
analytical curve and the experimental points were transferred to the initial
configuration, by multiplying by the corresponding transformation strain value.

The fitting curves for Series I and II specimens are shown in Fig. 4.17 and
Fig. 4.18, respectively.
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Fig. 4.17: Fitted square root dependence (4.19) for Series I specimens.

As it was noted in Section 4.2, the specimens of Series II were covered with
oxides and other compounds at time 𝑡 = 480 h so that a polishing procedure
was required. Therefore it is not surprising that the measured thickness of the
IMC layer at that data point departs from the general pattern, Fig. 4.18, and
contains an error that is hard to assess. Because of that the data point was
excluded from the fitting curve procedure.

Then the unknown material parameters 𝐷, 𝑘*, 𝑎 can be calculated from
(4.20). As it was noted, the kinetic parameter 𝑘* and the mass transfer
coefficient 𝑎 appear only in combination, so they cannot be resolved uniquely.
Found values of 𝐷 and the combination (1/𝑘* + 1/𝑎) are shown in Tab. 4.7.

In Yuan et al. [2015] diffusion coefficients of Cu in the IMCs were calculated
based on the measured composition profiles of the diffusion zones within the
temperature range of 130oC – 200oC. The authors showed that the diffusion
coefficient depends highly on temperature, stating that 𝐷 = 0.38 × 10−17m2/s
at 𝑇 = 130oC, 𝐷 = 9.5 × 10−17m2/s at 𝑇 = 150oC and 𝐷 = 60 × 10−17m2/s at
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Fig. 4.18: Fitted square root dependence (4.19) for Series II specimens. The point
marked with asterisk was excluded from the fitting procedure due to bad surface
condition of the specimen.

Parameter Formulation Series I Series II Average
𝐷, [m2/s] plane stress 2.1 1.5 1.8
×10−17 plane strain 6.4 4.8 5.6

1/𝑘* + 1/𝑎, [s/m] plane stress 89 57 73
×10−7 plane strain 28 18 23

Tab. 4.7: Estimated diffusion coefficient for two series of specimens.

𝑇 = 170oC. Keeping this in mind, one can conclude that obtaining the result
of the same order of magnitude can be considered as a good agreement. A
comparison of the diffusion parameters, averaged from the two experimental
results, with other works is shown in Tab. 4.8.

[1] [2] [3] [4] This work
plane stress plane strain

𝐷 [m2/s] 1.5 5.64 1.82 9.5 1.8 5.6×10−17

Tab. 4.8: Comparison of the obtained estimation of the diffusion coefficient with
literature data. [1] - Onishi and Fujibuchi [1975], [2] - Paul, Ghosh, and Boettinger
[2011], [3] - Kumar, Handwerker, and Dayanada [2011], [4] - Yuan et al. [2015].
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Both values of diffusion coefficients obtained in this work (basing on plane
stress and plane strain formulations) correlate with the data from various
papers and can be used as a reference for more complicated models based on
the chemical affinity tensor concept. These models can be extended since large
strains are involved and non-linear anisotropic materials as well.

4.5 Conclusions
A high-temperature storage test was carried out for two groups of microchips
with eutectic SnAg solder ball grid arrays. The specimens were cut and polished
before the heat treatment. The growth of the intermetallic phase was examined
by using the same set of solder balls through the entire experiment. The
proposed experimental procedure allowed to determine IMC growth kinetics
analyzing the small set of specimens. With the use of microindenter marks a
relative movement of the IMC interfaces and change of layer thickness were
obtained. This in turn lead to the evaluation and quantification of the kinetics
of intermetallic growth.

The growth of the Cu6Sn5 intermetallic compound was modeled analytically
based on the chemical affinity tensor concept and by taking a temperature
dependence into account. The experimental results were used to determine the
kinetic parameters in the chemical affinity tensor model for the first time. The
simplest model of infinitely wide layers of linear elastic solids was analyzed
and a theoretical prediction of the growth kinetics was obtained. The influence
of mechanical stresses on IMC growth was taken into account. By comparison
of the experimental data with the theoretical model the values of the diffusion
coefficient and of the chemical reaction constant were estimated. The obtained
diffusion coefficients correlate with the results from works of other researchers.
The kinetic parameters of the model can now be used as reference values for
more general cases with the kinetic equation based on the chemical affinity
tensor.

In work Morozov et al. [2018b] the influence of the temperature regimes,
in particular temperature cycling, is studied numerically. The change in
temperature has a triplicate effect on the IMC growths kinetics: (i) as a source
of the shear load, (ii) through thermal stresses in the solder bump, and (iii)
through the chemical energy. Numerically it was shown that under all these
conditions the IMC growth might go non-uniformly. However, the analysis was
performed only with approximately estimated diffusion constants and reaction
parameters, because the experiment from this chapter was carried out much
later. An essential outlook for current work would be a recalculation of the old
results with the new data given in this chapter.
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5 Conclusions

In this work coupled problems of mechanochemistry were considered, namely
the stress-affected kinetics of a chemical reaction front propagation in solids.
A coupling of mechanical stresses, diffusion, and chemical reactions was com-
prehensively investigated: analytically, numerically, and experimentally. The
main results of the thesis are as follows:

(i) A numerical procedure was developed and verified for simulating the
chemical reaction front propagation in elastic solids;

(ii) The analytical procedure for a linear stability analysis of an equilibrium
phase interface was extended to the case of a chemical reaction front.
The stability of the propagating reaction front was studied numerically
for cases of stable and unstable thermodynamic equilibrium interface
positions;

(iii) The competition between the global kinetics of the interface propagation
and the local kinetics of interface perturbations was demonstrated in the
case of an unstable equilibrium interface position;

(iv) A high-temperature storage test was carried out for microchips with
eutectic SnAg solder ball grid arrays. Based on the experimental results,
diffusion and reaction kinetics parameters for the case of intermetallic
growth in the context of the chemical affinity tensor concept were obtained
for the first time.

The problem of chemical interface propagation was modeled based on the
chemical affinity tensor concept. This concept allows studying the influence
of mechanical stresses on the kinetics reaction front propagation based on
fundamental thermodynamic principles. A number of problems were solved
analytically and numerically. It was demonstrated that the stresses (which
arise from external loading, due to the chemical transformation strains, etc.)
could accelerate, retard, or even block the reaction front.

One of the main aims of the present work was developing a stability analysis
procedure for chemical reaction fronts. This was motivated by the following
reasons. The supply of the diffusing reactant governs the chemical reaction.
Therefore, the reaction front may be forced to propagate towards the unstable
equilibrium position. The growing instabilities may lead to plasticity and failure.
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For the stability study a linearized perturbed boundary value problem was
formulated and solved analytically for two cases, namely planar and cylindrical
interfaces.

Even for these simple geometries the solution of the moving chemical in-
terface problem and especially the stability analysis might be complicated.
Therefore, a numerical procedure was developed using FEM for simulations of
the chemical reaction front propagation. The implementation of the procedure
was accomplished with the aid of the commercial FE software Abaqus. The
used method was verified by the analytical solutions for various problems of
chemical reaction front propagation. The proposed numerical procedure was
verified by comparison with the analytical predictions and also compared and
cross-verified with CutFEM and IGA-based procedures. It was shown that
the used numerical procedure can adequately reveal physical stability and
instability. The verified numerical procedure allowed to simulate the chemi-
cal reaction front kinetics when it approached stable or unstable equilibrium.
Numerical simulations allowed to observe the competition between global and
local kinetics of the chemical interface.

Many material, diffusion, and chemical reaction parameters have to be
defined in order to model the reaction front propagation, even if the linear
elastic materials and the simplest Fick’s diffusion are considered. Some of
the parameters (e.g., diffusion coefficients, the reaction rate constant and the
solubility of the diffusing reactant in the solid phase of the reaction product)
cannot be easily estimated. That is why one of the aims was to validate and
quantify the model of reaction front kinetics on the basis of experimental results.
To do this, a high-temperature storage test was carried out for microchips
with eutectic SnAg solder ball grid arrays and the kinetics of intermetallic
compound growth was evaluated. These experimental results were used then
to determine the kinetic parameters of the model. Such an evaluation in the
context of the chemical affinity tensor concept was done for the first time and
naturally required a comparison with the data given in other sources. The
obtained diffusion coefficients correlate with the results from works of other
researchers. Therefore, one can conclude that the chemical affinity tensor
approach can be used to model the reaction front kinetics and that the kinetic
parameters of the model can now be used as reference values for more general
cases.

Thus a model of the propagation of chemical reaction fronts in deformable
solids was formulated and numerically implemented. A comprehensive analysis
of the kinetics and stability of such fronts was performed for various conditions
and various types of mechanical loading. A practical basis has been created
for expanding this model and numerical procedures for subsequent studies. An
outlook for future research motivated by the obtained results may include:
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(i) In this work the correlation of the analytical predictions with numerical
results is shown and the analytical model is quantitatively verified with
the use of experimental results. To complete the cross-validation circle,
the numerical procedure might be utilized to simulate existing engineering
problems with the parameters obtained from the experiment.

(ii) The proposed numerical procedure may be extended to the general case
of large deformations. This development is needed, e.g., for modeling the
reaction of silicon lithiation, which is accompanied with 300% volumetric
expansion due to the chemical transformation or the silicon oxidation
reaction with 100% volumetric expansion.

(iii) In this work only stationary diffusion equation was considered. However,
if the characteristic time of the reaction is much less than the relative
time of the diffusion, then the chemical reaction is diffusion controlled.
For this case a dynamic diffusion equation should be utilized.

(iv) The processes of initial accumulation of diffusing reactant before starting
the reaction and separation of the reaction front from the boundary of
the body require an additional study.
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A Analytical solutions for planar and
cylindrical reaction fronts kinetics

One should note that analytical solutions based on the chemical affinity tensor
concept for various simple geometries were obtained in many works, e.g. for
planar interface in Freidin, Vilchevskaya, and Korolev [2014]; Morozov et al.
[2018b], for cylindrical problems in Vilchevskaya and Freidin [2013]; Morozov et
al. [2018a], and for spherically symmetric problems in Freidin [2015]; Freidin et
al. [2015]. Here the solutions for planar and cylindrical problems are presented
in a form used as unperturbed solutions in the stability analyses given in
Sections 2.3 – 2.5. Also, these solutions were used as a reference to validate
the numerical results in Chapter 3.

A.1 Planar reaction front kinetics

As an example, a chemical reaction in the infinite layer of thickness 𝐻 is
considered, as illustrated in Fig. 2.3. The diffusing constituent is supplied
through the lower boundary. This gives the following boundary conditions for
equations (2.19) and (2.21):

u = 0, at 𝑦 = 0,
u = 𝑢0e𝑦, at 𝑦 = 𝐻,

u · e𝑥 = 0, 𝜎 : e𝑥e𝑦 = 0, at 𝑥 = 0 and 𝑥 = 𝐿,

𝐷n · ∇𝑐+ 𝛼 (𝑐− 𝑐*) = 0, at 𝑦 = 0,
n · ∇𝑐 = 0, at 𝑥 = 0 and 𝑥 = 𝐿.

(A.1)

Solid constituents are assumed to be linear elastic and isotropic:

𝜎− = C− : 𝜀−, 𝜎+ = C+ : (𝜀+ − 𝜀tr), (A.2)
C± = 𝜆±II + 2𝜇±

4I, (A.3)

where 𝜆± and 𝜇± are Lamé parameters.
Due to the symmetry of the problem solutions for displacements and con-
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centration depend only on 𝑦 coordinate. Hence, they can be found as

u± =
(︀
𝐴±𝑦 +𝐵±)︀ e𝑦,

𝑐 = 𝐴𝑐𝑦 +𝐵𝑐.

Introducing the parameter 𝜁 = ℎ/𝐻, the constants can be found from the
boundary conditions (A.1) as:

𝐴+ = 𝑢0/𝐻(𝜆− + 2𝜇−) + 𝜃(𝜆+ + 𝜇+)(1 − 𝜁)
𝜁(𝜆− + 2𝜇−) + (1 − 𝜁)(𝜆+ + 2𝜇+) ,

𝐴− = 𝑢0/𝐻(𝜆+ + 2𝜇+) − 𝜃(𝜆+ + 𝜇+)𝜁
𝜁(𝜆− + 2𝜇−) + (1 − 𝜁)(𝜆+ + 2𝜇+) ,

𝐵+ = 0, 𝐵− = 𝐻

(︂
𝑢0
𝐻

−𝐴−
)︂
.

(A.4)

One should note that 𝜀± = 𝐴±e𝑦e𝑦 and stresses can be obtained from (A.2).
These stresses and strains are substituted into the expression for 𝐴𝑛𝑛

𝐴𝑛 = 𝑛−𝑀−
𝜌−

𝜒𝜁 + 𝑛*𝑅𝑇 ln 𝑐

𝑐*
, (A.5)

where 𝜒𝜁 is defined by Eq. (2.23) and represents the mechanical contribution
to the chemical affinity tensor at the interface position 𝜁.

The reaction rate can be rewritten as

𝜔 = 𝑘*𝑐

(︂
1 − exp

(︂
−𝐴𝑁𝑁

𝑅𝑇

)︂)︂
=

= 𝑘*𝑐

(︂
1 − exp

(︂
−𝑛−𝑀−
𝜌−𝑅𝑇

𝜒𝜁 − ln 𝑐

𝑐*

)︂)︂
.

(A.6)

Now if the following notation is introduced,

𝑒𝜁 = exp
(︂

−𝑛−𝑀−
𝜌−𝑅𝑇

𝜒𝜁

)︂
. (A.7)

a splitting of the exponent leads to

𝜔 = 𝑘*𝑐

(︂
1 − 𝑒𝜁

𝑐*
𝑐

)︂
= 𝑘*(𝑐− 𝑒𝜁𝑐*). (A.8)

With this expression for the reaction rate, boundary conditions for the diffusion

Chapter A. Analytical solutions for planar and cylindrical reaction fronts kinetics
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problem reads
𝐷

d𝑐
dy

⃒⃒⃒⃒
𝑦=ℎ

+ 𝑘*(𝑐(ℎ) − 𝑒𝜁𝑐*) = 0,

− 𝐷
d𝑐
dy

⃒⃒⃒⃒
𝑦=0

− 𝑎(𝑐* − 𝑐(0)) = 0.
(A.9)

Then, the constants for the solution can be found uniquely

𝐴𝑐 = − 𝑘*𝑐*(1 − 𝑒𝜁)

𝐷

(︂
1 + 𝑘*

𝑎

)︂
+ 𝑘*ℎ

, 𝐵𝑐 = 𝑐* + 𝐷

𝑎
𝐴𝑐, (A.10)

and the reaction rate as a function of the current thickness has the form

𝜔(ℎ) = 𝑘*𝑐*(1 − 𝑒𝜁)𝐷

𝐷

(︂
1 + 𝑘*

𝑎

)︂
+ 𝑘*ℎ

.

One should note that 𝑒𝜁 is also a function of current thickness. Then according
to Eq. (2.6) the reaction front velocity reads:

𝑉𝑦 = dℎ
d𝑡 = 𝑛−𝑀−

𝜌−
𝜔 = 𝑛−𝑀−

𝜌−

𝑘*𝑐*(1 − 𝑒𝜁)𝐷

𝐷

(︂
1 + 𝑘*

𝑎

)︂
+ 𝑘*ℎ

. (A.11)

This equation can be integrated numerically with explicit Euler scheme with
given initial thickness ℎ0 and time increment 𝛿𝑡:

ℎ𝑖+1 = ℎ𝑖 + 𝑉 𝑖
𝑦 𝛿𝑡, (A.12)

where 𝑉 𝑖
𝑦 is the front velocity calculated at 𝑖𝑡ℎ iteration, and 𝑖 = 1, 2 · · · is the

iteration number.

A.2 Cylindrical reaction front kinetics

The plane strain problem for the hollow and solid cylinder undergoing chemical
reaction (Figure 2.6) is considered. The internal and external radii are 𝑎 and
𝑏, respectively, the current position of the reaction front is a cylindrical surface
of the radius 𝜌. Diffusing reactant is supplied through the outer surface of the
cylinder. The transformation strain is assumed to be plane:

𝜀tr = 𝜀tr(e𝑟e𝑟 + e𝜑e𝜑), (A.13)

Section A.2. Cylindrical reaction front kinetics
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where 𝑒𝑟 and 𝑒𝜑 are the unit vectors of the cylindrical coordinates. Solid
constituents are assumed to be linear elastic and isotropic as in the previous
example, (A.2).

In order to find the stresses and strains at the reaction front we use the
equilibrium equation, which in the case of axial symmetry takes the form

d𝜎𝑟

d𝑟 + 𝜎𝑟 − 𝜎𝜑

𝑟
= 0 (A.14)

with boundary conditions for the hollow cylinder

𝜎𝑟(𝑎) = 0, 𝜎𝑟(𝑏) = 0, J𝑢(𝜌)K = 0, J𝜎𝑟(𝜌)K = 0 (A.15)

or for the solid cylinder

𝑢𝑟|𝑟→0 = 0, 𝜎𝑟(𝑏) = 0, J𝑢(𝜌)K = 0, J𝜎𝑟(𝜌)K = 0. (A.16)

The radial displacement is given by the Lamé solution:

𝑢±(𝑟) = 𝐴±𝑟 + 𝐵±
𝑟
, (A.17)

and the strains can be found through

𝜀±
𝑟 (𝑟) = d𝑢±(𝑟)

d𝑟 = 𝐴± − 𝐵±
𝑟2 , 𝜀±

𝜑 (𝑟) = 𝑢±(𝑟)
𝑟

= 𝐴± + 𝐵±
𝑟2 . (A.18)

Four unknown constants 𝐴± and 𝐵± can be found from the boundary
conditions (A.15) or (A.16), and e.g. for the case of solid cylinder:

𝐴+ =
𝑢0
𝑏

(𝜆− + 𝜇− + 𝜇+) + 𝜀tr𝜁2(𝜆+ + 𝜇+)
𝜁2(𝜆+ + 2𝜇+) + (1 − 𝜁2)(𝜆− + 𝜇− + 𝜇+) ,

𝐴− = 1
𝜁2

(︂
𝑢0
𝑏

+ (𝜁2 − 1)𝐴+

)︂
,

𝐵+ = 𝑏2
(︂
𝑢0
𝑏

−𝐴+

)︂
, 𝐵− = 0

(A.19)

where 𝜁 = 𝜌/𝑏.

The stresses and strains at the reaction can then be found from (A.2)
and (A.18), respectively. These stresses and strains are substituted into the
expression for 𝐴𝑛𝑛

𝐴𝑛 = 𝑛−𝑀−
𝜌−

𝜒𝜁 + 𝑛*𝑅𝑇 ln 𝑐

𝑐*
, (A.20)

Chapter A. Analytical solutions for planar and cylindrical reaction fronts kinetics
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where 𝜒𝜁 is defined by Eq. (2.23) and represents the mechanical contribution
to the chemical affinity tensor at the interface position 𝜁.

As in the previous example in A.1, the reaction rate takes form (A.8) with
same notation for the 𝑒𝜁 (which depends on the current interface radius) being
introduced.

The corresponding stationary diffusion equation in the case of axial symmetry
becomes:

d
d𝑟

(︂1
𝑟

d𝑐
d𝑟

)︂
= 0, 𝑟 ∈ [𝜌, 𝑏]. (A.21)

Boundary and interface conditions according to the notation of Figure 2.6 can
be written as follows (as described in Section 2.1):

𝐷
d𝑐
dr

⃒⃒⃒⃒
𝑟=𝑏

− 𝛼(𝑐* − 𝑐(𝑏)) = 0, 𝐷
d𝑐
dr

⃒⃒⃒⃒
𝑟=𝜌

− 𝑘* (𝑐(𝜌) − 𝑐*𝑒𝜁) = 0. (A.22)

In a cylindrical coordinate system the solution of the Laplace equation can
be found as follows:

𝑐(𝑟) = 𝐶1 ln
(︂
𝑟

𝑏

)︂
+ 𝐶2. (A.23)

The two unknown constants 𝐶1 and 𝐶2 can be found uniquely from the
boundary conditions (A.22):

𝐶1 = 𝑐*(𝑒𝜁 − 1)

ln 𝜌
𝑏

−𝐷

(︂ 1
𝑘*𝜌

+ 1
𝛼𝑏

)︂ , 𝐶2 = 𝑐* − 𝐷

𝛼𝑏
𝐶1. (A.24)

From (A.23), (A.24) it follows that

𝑐(𝜌) = 𝑐*

ln 𝜌
𝑏

−𝐷

(︂ 1
𝑘*𝜌

+ 1
𝛼𝑏

)︂ {︂(︂ln 𝜌
𝑏

− 𝐷

𝛼𝑏

)︂
𝑒𝜁 − 𝐷

𝑘*𝜌

}︂
(A.25)

Since n = −e𝑟 the normal component of the reaction front velocity is

𝑉𝑟 = −d𝜌
d𝑡 = 𝑛−𝑀−

𝜌−
𝑘* (𝑐(𝜌) − 𝑐*𝑒𝜁) , (A.26)

and the reaction front kinetics – the dependence 𝜌(𝑡) – can be obtained by
integration of Eq. (A.26) where the dependencies 𝑐(𝜌) and 𝑒𝜁 are already
found.

Section A.2. Cylindrical reaction front kinetics
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