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1. Introduction

1.1. Rough paths and regularity structures

The theory of rough paths [36] deals with controlled differential equations of the form

dYt = f0(Yt)dt+
d∑

i=1
fi (Yt) dXi

t Y0 = y0 ∈ Re ,

with (X1, ..., Xd) : [0, T ] → Rd, of low, say α-Hölder, regularity for 0 < α ≤ 1. As may 
be seen by formal Picard iteration, given a collection f0, f1, ..., fd of nice vector fields 
on Re, the solution can be expanded in terms of certain integrals. Assuming validity of 
the chain-rule, and writing X0(t) ≡ t for notational convenience, these are just iterated 
integrals of the form 

∫
dXi1 · · · dXin with integration over n-dimensional simplex. In 

geometric rough path theory one postulates the existence of such integrals, for sufficiently 
many words w = (i1, . . . , in), namely |w| = n ≤ [1/α], such as to regain analytic control: 
the collection of resulting objects

〈X, w〉 =
∫

. . .

∫
dXi1 . . . dXin

(integration over s < t1 < · · · < tn < t, for all 0 ≤ s < t ≤ T )
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subject to suitable analytic and algebraic constraints (in particular, Chen’s relation, 
which describes the recentering s → s̃) is then known as a (level-n) geometric rough 
path, introduced by [36]. For the readers convenience we give some precise recalls, along 
the lines of Hairer–Kelly [33], in Section 1.2 below. Without assuming a chain-rule (think: 
Itô), iterated integrals of the form 

∫
XiXjdXk appear in the expansion, the resulting 

objects are then naturally indexed by trees, for example

The collection of all such objects, again for sufficiently many trees, |τ | = #nodes ≤ [1/α]
and subject to algebraic and analytic constraints, form what is known as a branched 
rough path [28,33]. Here again, we refer to Section 1.2 for a precise definition and further 
recalls.

A basic result - known as the extension theorem [36,28] - asserts that all “higher” 
iterated integrals, n-fold with n > [1/α], are automatically well-defined, with validity 
of all algebraic and analytic constraints in the extended setting.1 Solving differential 
equations driven by such rough paths can then be achieved, following [27], see also [24], 
by formulating a fixed point problem in a space of controlled rough paths, essentially a 
(linear) space of good integrands for rough integration (mind that rough path spaces are, 
in contrast, fundamentally non-linear due to the afore-mentioned algebraic constraints). 
Given a rough differential equation (RDE) of the form

dY = f0(Y )dt + f (Y ) dX

it is interesting to see the effect on Y induced by higher-order perturbations (“trans-
lations”) of the driving rough path X. For instance, one can use Itô integration to 
lift a d-dimensional Brownian motion (B1, ..., Bd) to a (level-2) random rough path, 
X = BItô (ω) of regularity α ∈ (1/3, 1/2), in which case the above RDE corresponds to 
the classical Itô SDE

dYt = f0(Yt)dt +
d∑

i=1
fi (Yt) dBi

t , Y0 = y0 ∈ Re .

However, we may perturb BItô =
(
B,BItô) via BItô

s,t �→ BItô
s,t + 1

2I (t− s) =: BStrat
s,t , without 

touching the underlying Brownian path B. The above RDE then becomes a Stratonovich 

1 This entire ensemble of iterated integrals is called the signature or the fully lifted rough path.
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SDE. On the level of the original (Itô)-equation, the effect of this perturbation is a 
modified drift vector field,

f0 � f0 + 1
2

d∑
i=1

∇fifi ,

famously known as Itô-Stratonovich correction. Examples from physics (e.g. Brownian 
motion in a magnetic field) suggest second order perturbation of the form BStrat

s,t �→
BStrat
s,t + a (t− s), for some a ∈ so (d), the SDE is then affected by a drift correction of 

the form

f0 � f0 +
∑
i,j

aij [fi, fj ] .

In the context of classical SDEs, area corrections are also discussed in [34], and carefully 
designed twisted Wong–Zakai type approximations led Sussmann [40] to drift corrections 
involving higher iterated Lie brackets. This was reconciled with geometric rough path 
theory in [22], and provides a nice example where (Brownian) rough paths (with γ = 1

2−
regularity) need to be studied in the entire scale of different rough path topologies 
indexed by γ ∈ (0, 1/2).

As we shall see, all these examples are but the tip of an iceberg. It will also be seen 
that there is a substantial difference between the geometric rough path case and the 
generality aimed for in this paper.

We finally note that tampering with “higher-levels” of the lifted noise also affects the 
structure of stochastic partial differential equations: this is not only omnipresent in the 
case of singular SPDEs [30,29], but very much in every SPDE with rough path noise as 
remarked e.g. in [9].

From rough paths to regularity structures. The theory of regularity structures [30] ex-
tends rough path theory and then provides a remarkable framework to analyze (singular) 
semi-linear stochastic partial differential equations, e.g. of the form

(∂t − Δ)u = f (u,Du) + g (u) ξ (t, x, ω)

with (d + 1)-dimensional space-time white noise. The demarche is similar as above: noise 
is lifted to a model, whose algebraic properties (especially with regard to recentering) 
are formulated with the aid of the structure group. Given an (abstract) model, a fixed 
point problem is solved and gives a solution in a (linear) space of modelled distributions. 
The abstract solution can then be mapped (“reconstructed”) into an actual distribution 
(a.k.a. generalized function). In fact, one has the rather precise correspondences, Table 1
(see [24] for explicit details in the level-2 setting).
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Table 1
Basic correspondences: rough paths ←→ regularity structures.

rough path ←→ model
Chen’s relation ←→ structure group
controlled rough path ←→ modelled distribution
rough integration ←→ reconstruction map

Furthermore, one has similar results concerning continuity properties of the solution map 
as a function of the enhanced noise:

continuity of solution in (rough path ←→ model) topology

Unfortunately mollified lifted noise - in infinite dimensions - in general does not converge 
(as a model), hence renormalization plays a fundamental role in regularity structures. 
The algebraic formalism of how to conduct this renormalization then relies on heavy 
Hopf algebraic considerations [30], pushed to great generality in [7], see also [31] for a 
summary. Our investigation was driven by two questions:

(1) Are there meaningful (finite-dimensional) examples from stochastics which require 
(infinite) renormalization?

(2) Do we have algebraic structures in rough path theory comparable with those seen in 
regularity structures?

To be more specific, with regard to (1), consider the situation of a differential equation 
driven by some finite-dimensional Brownian (or more general Gaussian) noise, mollified 
at scale ε, followed by the question if the resulting (random) ODE solutions converge as 
ε → 0. As remarked explicitly in [24, p. 230], this is very often the case (with concrete re-
sults given in [24, Sec.10]), with the potential caveat of area (and higher order) anomalies 
([22,21] ...), leading to a more involved description (sometimes called finite renormaliza-
tion) of the limit. We emphasize, however, that this is not always the case; there are 
perfectly meaningful (finite-dimensional) situations which require (infinite) renormaliza-
tion, which we sketch in Section 4.3 below together with precise references. We further 
highlight that a natural example of geometric rough path (over R2) with a logarithmi-
cally diverging area term requiring (infinite) renormalization appears in Hairer’s solution 
of the KPZ equation [32]. This situation is characteristic of singular SPDEs, in which 
the procedure described above typically leads to plain divergence, cured by “subtracting 
infinities”, a.k.a. infinite renormalization.

Much effort in this work is then devoted to question (2): In [7], the algebraic formalism 
in regularity structures relies crucially on two Hopf algebras, T+ and T− (which are 
further in “cointeraction”). The first one helps to construct the structure group which, 
in turn, provides the recentering (“positive renormalization” in the language of [7]) and 
hence constitutes an abstract form of Chen’s relation in rough path theory. In this sense, 
T+ was always present in rough path theory, the point being enforced in the model case 
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of branched rough paths [28,33] where T+ is effectively given by the Connes-Kreimer 
Hopf algebra.

Question (2) is then reduced to the question if T−, built to carry out the actual 
renormalization of models, and subsequently SPDEs, (“negative renormalization” in the 
language of [7]), has any correspondence in rough path theory. Our answer is again 
affirmative and we establish the precise relation:

translation of rough paths ←→ renormalization of models

At last, during the course of writing this paper, we realized that we have been touching 
on a third important point, whose importance seems to transcend the rough path setting 
in which it is discussed.

(3) How does one obtain from the renormalized model, in some algebraic and automated 
fashion, the renormalized equation?

It is indeed the algebraic approach to “translation of rough paths” (i.e. renormaliza-
tion of a branched rough path model) that indicated an important role played by pre-Lie 
structures, which first appear in Section 3.2 to construct the translation operator (on 
forest series) and then to characterize its dual. These considerations help answer the 
(not very precise) question of what pre-Lie structures (after all, a well-known tool in 
the renormalization theory, e.g. [37] and the references therein) have to do with rough 
paths and regularity structures. From a regularity structures perspective, a remarkable 
consequence is that this allows to understand directly the action of the renormalization 
group on the (to-be-renormalized) equation at hand, thus providing an answer to ques-
tion (3). Indeed, by exploiting the pre-Lie structure of the space of trees, we obtain a 
direct conversion formula for the RDE driven by a translated branched rough path; see 
Section 5.2, Theorem 38, and Remark 40. The analogous statement in regularity struc-
tures is an explicit form of an arbitrary renormalized SPDE, a result which was recently 
established in [5].

Several remarks are in order.

• We first develop the algebraic renormalization theory for rough paths in its own 
right, analytic considerations then take place in Section 5. The link to regularity 
structures and its renormalization theory is only made in Section 6.

• While pre-Lie morphisms play a crucial role in the construction of translation maps, 
we point out that in certain situations the fine-details of pre-Lie structures are not 
visible; see the final point of Theorem 30, as well as Remarks 34 and 51.

• In Section 4.3 we present several examples, based on finite- (and even one-) di-
mensional Brownian motion, which do require genuine renormalization. Another 
interesting type of rough path renormalization, aiming at fractional Brownian (recall 
divergence of Lévy area for Hurst parameter H ≤ 1/4, [16]) based on Fourier nor-
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mal ordering, was proposed by Unterberger [41]. That said, his methods and aims 
are quite different from those considered in this paper and/or those from Hairer’s 
regularity structures.

• The existence of a finite-dimensional renormalization group is much related to the 
stationarity of the (lifted) noise, see [30] and the recent article [11]. In the rough path 
context, this amounts to saying that a random (branched) rough path X = X (ω), 
with values in a (truncated) Butcher (hence finite-dimensional Lie) group G, actually 
has independent increments with respect to the Grossmann-Larson product 	 (dual 
to the Connes-Kreimer coproduct Δ�). In other words, X is a (continuous) G-valued 
Lévy process. This yields a close connection to the works [23,14] devoted to the study 
of Lévy rough paths; in Section 4.2 we shall see how Lévy triplets (or rather tuples 
in the absence of jumps) behave under renormalization.

1.2. Geometric and non-geometric rough paths

In this subsection, we briefly recall the notions of geometric and branched rough paths; 
see [25,28,33] for further details. See also Sections 2.1 and 3.1 for further details on the 
algebraic structures involved.

Geometric rough paths. Consider a path X : [0, T ] → Rd. A (geometric) rough path 
over X is a map X : [0, T ]2 → T ((Rd)), where T ((Rd)) =

∏∞
k=0(Rd)⊗k is the space 

of “tensor series” over Rd, which should be thought of as the iterated integrals of X. 
Equipping Rd with an inner product, we can identify T ((Rd)) with the algebraic dual of 
the tensor algebra

T (Rd) = R⊕Rd ⊕ (Rd)⊗2 ⊕ . . . .

One should think of the components of X as formally being given by

〈Xs,t, ei1...in〉 :=
t∫

s

. . .

t2∫
s

dXi1
t1 . . . dX

in
tn , (1)

for i1, . . . , in ∈ {1, . . . , d}, where Xi
t = 〈Xt, ei〉 and where we use the shorthand ei1...in =

ei1∗ . . . ∗ein with ∗ denoting the tensor product in T (Rd). We emphasize that, unless 
n = 1, the definition (1) is, in general, only formal and one should think of the rough 
path X as defining the RHS.

Observe that if X is smooth and (1) is used to define X, then the so-called shuffle 
identity holds

〈Xt, ei1...in〉〈Xt, ej1...jm〉 = 〈Xt, ei1...in

∃ ej1...jm〉 , for all ei1...in , ej1...jm ∈ T (Rd) ,

(2)
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where ∃ denotes the (commutative) shuffle product [39]. While we do not give the 
definition of ∃ here or prove this identity, we remark that it is a direct consequence 
of integration by parts. Another important algebraic identity which holds in this case is 
Chen’s relation

Xs,t = Xs,u∗Xu,t , for all s, t, u ∈ [0, T ] ,

which can be shown by an application of Fubini’s theorem.
The concept of a (weakly geometric) rough path should be thought of as a general-

ization of these identities to paths of lower regularity.

Definition 1. Let γ ∈ (0, 1]. A γ-Hölder weakly geometric rough path is a map X :
[0, T ]2 → T ((Rd)) satisfying

i) 〈Xst, x ∃ y〉 = 〈Xst, x〉〈Xst, y〉, for all x, y ∈ T (Rd),
ii) Xst = Xsu∗Xut for all s, t, u ∈ [0, T ],
iii) sups �=t |〈Xst, ei1,...,in |〉/|t− s|γn < ∞, for all n ≥ 1 and i1, . . . , in ∈ {1, . . . , d}.

Branched rough paths. One is often interested in paths X for which natural defi-
nitions of “iterated integrals” do not satisfy classical integration by parts and thus do 
not constitute geometric rough paths, e.g., integrals defined in the sense of Itô for a 
semi-martingale X. Branched rough paths are a generalization of geometric rough paths 
which allows for violation of the shuffle identity (2) and thus of the usual rules of calcu-
lus. This is achieved by substituting the space T ((Rd)) with a larger (Hopf) algebra H∗

in which natural generalizations of properties i), ii), and iii) are required to hold. The 
Hopf algebra H∗ is known as the Grossman–Larson algebra of series of forests, and is 
the algebraic dual of the Connes–Kreimer Hopf algebra [15] consisting of polynomials of 
rooted trees with nodes decorated by the set {1, . . . , d}.

Denoting by � the (commutative) polynomial product on H and by 	 the (non-
commutative) Grossman–Larson product on H∗, we have the following analogue of 
Definition 1.

Definition 2. Let γ ∈ (0, 1]. A γ-Hölder branched rough path is a map X : [0, T ]2 → H∗

satisfying

a) 〈Xst, τ1 � τ2〉 = 〈Xst, τ1〉〈Xst, τ2〉 for all τ1, τ2 ∈ H,
b) Xst = Xsu 	 Xut for all s, t, u ∈ [0, T ],
c) sups �=t |〈Xst, τ〉|/|t− s|γ|τ | < ∞ for every forest τ ∈ H, where |τ | denotes the number 

of nodes in τ .

Here we set 〈Xs,t, •i〉 := Xi
s,t and then think of the components of X given by the 

formal recursion
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〈Xs,t, [τ1 � . . .� τn]•i
〉 =

t∫
s

〈Xs,u, τ1〉 . . . 〈Xs,u, τn〉dXi
u (3)

for trees τ1, . . . , τn ∈ H and i ∈ {1, . . . , d}, where [τ1 � . . . � τn]•i
denotes the tree 

formed by grafting the trees τ1, . . . , τn onto a single root with label i. If X is smooth 
and one uses (3) to define X, then, as before, points a) and b) are direct consequences 
of integration by parts and Fubini’s theorem respectively.

Equipping T ((Rd)) with the tensor Hopf algebra structure, there is a canonical graded 
embedding of Hopf algebras T ((Rd)) ↪→ H∗. Points a), b), and c) are therefore general-
izations of points i), ii), and iii), hence every geometric rough path constitutes a branched 
rough path. We emphasize however that this embedding is strict and a) is more general 
than i), which allows a general branched rough path X to violate classical integration 
by parts. For example, if X is defined via (3) using Itô integrals for a semi-martingale 
X, then X is an example of a γ-Hölder branched (but in general not geometric!) rough 
path for any γ ∈ (0, 12 ).

1.3. Translation of paths

Consider a d-dimensional path Xt, written with respect to an orthonormal basis 
e1, . . . , ed of Rd,

Xt =
d∑

i=1
Xi

tei.

We are interested in constant speed perturbations, of the form

TvXt := Xt + tv, with v =
d∑

i=1
viei ∈ Rd.

In coordinates, (TvXt)i = Xi
t + tvi for i = 1, . . . , d, i.e.,

〈TvX, ei〉 = 〈Xt, ei〉 + 〈tv, ei〉 .

Consider now an orthonormal basis e0, e1, . . . , ed of R1+d, and consider the R1+d-valued 
“time-space” path

X̄t = Xt + X0
t e0 =

d∑
i=0

Xi
tei

with scalar-valued X0
t ≡ t. We can now write

TvX̄t = X̄t + tv = Xt + X0
t (e0 + v)
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which identifies Tv as linear map on R1+d, which maps e0 �→ e0 + v, and ei �→ ei for 
i = 1, . . . , d. We then can (and will) also look at general endomorphisms of the vector 
space R1+d, which we still write in the form

ej �→ ej + vj , j = 0, . . . , d

vj =
d∑

i=0
vijei ∈ R1+d.

(The initially discussed case corresponds to (v0, v1, . . . , vd) = (v0, 0, . . . , 0), with 
〈v0, e0〉 = 0, and much of the sequel, will take advantage of this additional structure.)

We shall be interested to understand how such perturbations propagate to higher 
level iterated integrals, whenever X has sufficient structure to make this meaningful. For 
instance, if X = B(ω), a d-dimensional Brownian motion, an object of interest would 
be, with repeated (Stratonovich) integration over {(r, s, t) : 0 ≤ r ≤ s ≤ t ≤ T},

(TvB)ijk0,T :=
∫

◦(dBi + vi dr) ◦ (dBj + vj ds) ◦ (dBk + vk dt) = Bijk
0,T + ...

where the omitted terms (dots) can be spelled out (algebraically) in terms of contractions 
of v (resp. tensor-powers of v) and iterated integrals of (1 + d)-dimensional time-space 
Brownian motion “(t, B)”. (Observe that we just gave a dual description of this pertur-
bation, as seen on the third level, while the initial perturbation took place at the first 
level: v is a vector here.)

There is interest in higher-level perturbations. In particular, given a 2-tensor v =∑d
i,j=1 v

ijei,j , we can consider the level-2-perturbation with no effect on the first level, 
i.e., (TvB)it ≡ Bi

t, while for all i, j = 1, ..., d,

(TvB)ijt = Bij
t + vij t

For instance, writing BI;w for iterated Itô integrals, in contrast to Bw defined by iterated 
Stratonovich integration, we have with v := 1

2I
d where (Id)ij = δij , i.e., the identity 

matrix,

(TvB
I)ijt = Bij

t .

This is nothing but a restatement of the familiar formula 
∫ t

0 BidBj + 1
2δ

ijt =
∫ t

0 Bi ◦
dBj . It is a non-trivial exercise to understand the Itô-Stratonovich correction at the 
level of higher iterated integrals, cf. [2] and a “branched” version thereof discussed in 
Section 4.1 below. Further examples where such translations serve as a “renormalisation” 
are discussed in Section 4.3, notably the case B̄ij = (TaB)ijt with an anti-symmetric 
2-tensor a = (aij) which arises in the study of Brownian particles in a magnetic field.
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It will be important for us to understand (explicitly) how to formulate (constant 
speed, higher) order translations, an analytic operation on rough paths, algebraically 
and “point-wise” terms of the time-space rough path.

1.4. Organization of the paper

This paper is organized as follows. In Section 2, we first discuss renormalization/trans-
lation in the by now well established setting of geometric rough paths. The algebraic 
background is found for instance in [39]. We then, in Section 3, move to branched rough 
paths [28], in the notation and formalism from Hairer-Kelly [33], and in particular intro-
duce the relevant pre-Lie structures. In Section 4 we illustrate the use of the (branched) 
translation operator (additional examples were already mentioned in Section 4.3), while 
in Section 5 we describe the analytic and algebraic effects of such translations on rough 
paths and associated RDEs. Lastly, Section 6 is devoted to the systematic comparison 
of the translation operator and “negative renormalization” introduced in [7].
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2. Translation of geometric rough paths

We review the algebraic setup for geometric rough paths, as enhancements of X =
(X0, X1, ..., Xd), a signal with values in V = R1+d. Recall the natural state-space of such 
rough paths is T ((V )), a space of tensor series (resp. a suitable truncation thereof related 
to the regularity of X). Typically Ẋ ≡ (ξ0, ξ1, ..., ξd) models noise. Eventually, we will be 
interested in X0(t) = t, so that X is a time-space (rough) path, though this plays little 
role in this section.

2.1. Preliminaries for tensor series

We first establish the notation and conventions used throughout the paper. Most 
algebraic aspects used in this section may be found in [39] and [25] Chapter 7.

Throughout the paper we let {e0, e1, . . . , ed} be a basis for R1+d. Consider the vector 
space of formal tensor series over R1+d
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T ((R1+d)) =
∞∏
k=0

(R1+d)⊗k

(with the usual convention (R1+d)⊗0 = R), as well as the vector space of polynomials 
over R1+d

T (R1+d) =
∞⊕
k=0

(R1+d)⊗k.

Note that T (R1+d) and T ((R1+d)) can equivalently be considered as the vector space of 
words and non-commutative series respectively in 1 + d indeterminates.

Recall that T ((R1+d)) can be equipped with a Hopf-type2 algebra structure

(T ((R1+d)), ∗,Δ ∃ , α)

with tensor (concatenation) product ∗, coproduct Δ∃ which is dual to the shuffle prod-
uct ∃ on T (R1+d), and antipode α. Recall that Δ ∃ is explicitly given as the unique 
continuous3 algebra morphism such that

Δ ∃ : T ((R1+d)) → T (R1+d)⊗T (R1+d)

Δ ∃ : v �→ v ⊗ 1 + 1 ⊗ v, for all v ∈ R1+d.

We shall often refer to elements ei1∗ . . . ∗eik as words consisting of the letters 
ei1 , . . . , eik ∈ {e0, . . . , ed}, and shall write ei1,...,ik = ei1∗ . . . ∗eik . We likewise denote 
by

(T (R1+d), ∃ ,Δ∗, α̃)

the shuffle Hopf algebra. Recall that by identifying R1+d with its dual through the basis 
{e0, . . . , ed}, there is a natural duality between T (R1+d) and T ((R1+d)) in which ∃ is 
dual to Δ ∃ , and ∗ is dual to Δ∗.

We let G(R1+d) and L((R1+d)) denote the set of group-like and primitive elements 
of T ((R1+d)) respectively. Recall that L((R1+d)) is precisely the space of Lie series over 
R1+d, and that

G(R1+d) = exp∗(L((R1+d))).

For any integer N ≥ 0, we denote by TN (R1+d) the truncated algebra obtained as 
the quotient of T ((R1+d)) by the ideal consisting of all series with no words of length 

2 The structure here is not exactly of a Hopf algebra since Δ∃ does not map T ((R1+d)) into T ((R1+d))⊗2, 
but rather into the complete tensor product T (R1+d)⊗2 	

∏∞
k,m=0(R

1+d)⊗k⊗(R1+d)⊗m, see [39, Sec. 1.4].
3 We equip henceforth T ((R1+d)) and T (R1+d)⊗T (R1+d) with the product topology.
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less than N (we keep in mind that the tensor product is always in place on TN(R1+d)). 
Similarly we let GN (R1+d) ⊂ TN (Rd) and LN (R1+d) ⊂ TN (R1+d) denote the step-N
free nilpotent Lie group and Lie algebra over R1+d respectively, constructed in analogous 
ways.

Finally, we identify Rd with the subspace of R1+d with basis {e1, . . . , ed}. From this 
identification, we canonically treat all objects discussed above built from Rd as subsets 
of their counterparts built from R1+d. For example, we treat the algebra T ((Rd)) and 
Lie algebra LN (Rd) as a subalgebra of T ((R1+d)) and a Lie subalgebra of LN (R1+d)
respectively.

2.2. Translation of tensor series

Recall that, by the universal property of T (R1+d) and the graded structure of 
T ((R1+d)), any linear map M : R1+d → T ((R1+d)) such that M(ei) has no compo-
nent of order zero (i.e., 〈M(ei), 1〉 = 0) for all i ∈ {0, . . . , d} extends uniquely to a 
continuous algebra morphism M : T ((R1+d)) → T ((R1+d)).

Definition 3. For a collection of Lie series v = (v0, . . . , vd) ⊂ L((R1+d)), define Tv :
T ((R1+d)) → T ((R1+d)) as the unique extension to a continuous algebra morphism of 
the linear map

Tv : R1+d → L((R1+d)) ⊂ T ((R1+d))

Tv : ei �→ ei + vi, for all i ∈ {0, . . . , d}.

In the sequel we shall often be concerned with the case that vi = 0 for i = 1, . . . , d
and v0 takes a special form. We shall make precise whenever such a condition is in place 
by writing, for example, v = v0 ∈ LN (Rd).

We observe the following immediate properties of Tv:

• Since Tv is a continuous algebra morphism which preserves the Lie algebra L((R1+d)), 
it holds that Tv maps G(R1+d) into G(R1+d);

• Tv ◦ Tu = Tv+Tv(u), where we write Tv(u) := (Tv(u0), . . . , Tv(ud)). In particular, 
Tv+u = Tv ◦ Tu for all v = v0, u = u0 ∈ L((Rd));

• For every integer N ≥ 0, Tv induces a well-defined algebra morphism TN
v :

TN (R1+d) → TN (R1+d), which furthermore maps GN (R1+d) into itself.

The following lemma moreover shows that Tv respects the Hopf algebra structure of 
T ((R1+d)). Note that T ((R1+d))⊗2 embeds densely into T (R1+d)⊗2, and thus Tv ⊗ Tv

extends uniquely to a continuous algebra morphism T (R1+d)⊗2 → T (R1+d)⊗2.

Lemma 4. The map Tv : T ((R1+d)) → T ((R1+d)) satisfies (Tv ⊗ Tv)Δ ∃ = Δ ∃ Tv and 
commutes with the antipode α.
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Proof. To show that (Tv ⊗ Tv)Δ ∃ = Δ ∃ Tv, note that both (Tv ⊗ Tv)Δ ∃ and Δ ∃ Tv are 
continuous algebra morphisms, and so they are equal provided they agree on e0, . . . , ed. 
Indeed, we have

Δ ∃ Tv(ei) = Δ∃ (ei + vi) = 1 ⊗ (ei + vi) + (ei + vi) ⊗ 1

(here we used that each vi is a Lie element, i.e., primitive in the sense Δ∃ vi = 1 ⊗vi+vi⊗1) 
and

(Tv ⊗ Tv)Δ ∃ (ei) = (Tv ⊗ Tv)(1 ⊗ ei + ei ⊗ 1) = 1 ⊗ (ei + vi) + (ei + vi) ⊗ 1,

as required. It remains to show that Tv commutes with the antipode α. Actually, this 
is implied by general principles (e.g. [38, Theorem 2.14], and the references therein), 
but as it is short to spell out, we give a direct argument: consider the opposite algebra 
(T ((R1+d)))op (same set and vector space structure as T ((R1+d)) but with reverse mul-
tiplication). Then α : T ((R1+d)) → (T ((R1+d)))op is an algebra morphism, and again it 
suffices to check that αTv and Tvα agree on e0, . . . , ed. Indeed, since vi ∈ L((R1+d)), we 
have α(vi) = −vi, and thus

αTv(ei) = α(ei + vi) = −ei − vi

and

Tvα(ei) = Tv(−ei) = −ei − vi. �
2.3. Dual action on the shuffle Hopf algebra T (R1+d)

We now wish to describe the dual map T ∗
v : T (R1+d) → T (R1+d) for which

〈Tvx, y〉 = 〈x, T ∗
v y〉, for all x ∈ T ((R1+d)), y ∈ T (R1+d).

We note immediately that Lemma 4 implies T ∗
v is a Hopf algebra morphism from 

(T (R1+d), ∃ , Δ∗, α̃) to itself.
For simplicity, and as this is the case most relevant to us, we only consider in detail the 

case v = v0 ∈ L((R1+d)), i.e., vi = 0 for i = 1, . . . , d (but see Remark 6 for a description 
of the general case).

Let S denote the unital free commutative algebra generated by the non-empty words 
ei1,...,ik = ei1∗ . . . ∗eik in T (R1+d). We let 1 and · denote the unit element and product 
of S respectively. For example,

e0,1 · e2 = e2 · e0,1 ∈ S,
e0 · e1,2 �= e0 · e2,1 ∈ S.
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For a word w ∈ T (R1+d), we let D(w) denote the set of all elements

w1 · . . . · wk ⊗ w̃ ∈ S ⊗ T (R1+d)

where w1, . . . , wk is formed from disjoint subwords of w and w̃ is the word obtained by 
replacing every wi in w with e0 (note that 1 ⊗ w, corresponding to k = 0, is also in 
D(w)).

Consider the linear map S : T (R1+d) → S ⊗ T (R1+d) defined for all words w ∈
T (R1+d) by

S(w) =
∑

w1·...·wk⊗w̃∈D(w)

w1 · . . . · wk ⊗ w̃.

For example

S(e0,1,2) =1 ⊗ (e0,1,2,)

+ (e0) ⊗ (e0,1,2) + (e1) ⊗ (e0,0,2) + (e2) ⊗ (e0,1,0)

+ (e0 · e1) ⊗ (e0,0,2) + (e0 · e2) ⊗ (e0,1,0) + (e1 · e2) ⊗ (e0,0,0)

+ (e0 · e1 · e2) ⊗ (e0,0,0) + (e0,1) ⊗ (e0,2) + (e1,2) ⊗ (e0,0)

+ (e0,1 · e2) ⊗ (e0,0) + (e0 · e1,2) ⊗ (e0,0)

+ (e0,1,2) ⊗ (e0).

Proposition 5. Let v = v0 ∈ L((R1+d)). The dual map T ∗
v : T (R1+d) → T (R1+d) is given 

by

T ∗
vw = (v ⊗ id)S(w),

where v(w1 · . . . · wk) := 〈w1, v〉 . . . 〈wk, v〉 and v(1) := 1.

In principle, Proposition 5 can be proved algebraically by showing that the adjoint 
of Φ := (v ⊗ id)S is an algebra morphism from T ((R1+d)) to itself, and check that 
Φ∗(ei) = Tv(ei) for every generator ei. Indeed this is the method used in Section 3.3 to 
prove the analogous result for the translation map on branched rough paths. However 
in the current setting of geometric rough paths, we can provide a direct combinatorial 
proof.

Proof. Note that the claim is equivalent to showing that for every two words u, w ∈
T (R1+d) (treating u ∈ T ((R1+d)))

〈Tvu,w〉 =
∑

〈w1, v〉 . . . 〈wk, v〉〈w̃, u〉. (4)

w1·...·wk⊗w̃∈D(w)
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Consider a word u = ei1∗ . . . ∗eik ∈ T (R1+d). Then

Tv(u) = ei1∗ . . . ∗(e0 + v)∗ . . . ∗eik ,

where every occurrence of e0 in u is replaced by e0 + v. We readily deduce that for every 
w ∈ T (R1+d)

〈Tv(u), w〉 =
∑

w1·...·wk⊗w̃∈D(w)
u=w̃

〈w1, v〉 . . . 〈wk, v〉. (5)

For example, with v = [e1, e2] = e1,2 − e2,1 and u = e0,1,2, we have

Tv(u) = e0,1,2 + e1,2,1,2 − e2,1,1,2,

and we see that indeed for

w ∈ A := {e0,1,2, e1,2,1,2, e2,1,1,2},

the right hand side of (5) gives 〈Tv(u), w〉, whilst 〈w1, v〉 . . . 〈wk, v〉 = 0 for all w ∈
T (R1+d) \ A and w1 · . . . · wk ⊗ w̃ ∈ D(w) such that u = w̃. But now (5) immediately 
implies (4). �
Remark 6. A similar result to Proposition 5 holds for the general case v = (v0, . . . , vd). 
The definition of S changes in the obvious way that in the second tensor, instead of 
replacing every subword by the letter e0, one instead replaces every combination of 
subwords by all combinations of ei, i ∈ {0, . . . , d}, while in the first tensor, one marks each 
extracted subword wj with the corresponding label i ∈ {0, . . . , d} that replaced it, which 
gives (wj)i (so the left tensor no longer belongs to S but instead to the free commutative 
algebra generated by (w)i, for all words w ∈ T (R1+d) and labels i ∈ {0, . . . , d}). Finally 
the term 〈w1, v〉 . . . 〈wk, v〉 would then be replaced by 〈(w1)i1 , vi1〉 . . . 〈(wk)ik , vik〉.

3. Translation of branched rough paths

In the previous section we studied the translation operator T , in the setting relevant 
for geometric rough path. Here we extend these results to the branched rough path setting, 
calling the translation operator M to avoid confusion. Our construction of M faces new 
difficulties, which we resolve with pre-Lie structures. The dual view then leads us to 
an extraction procedure of subtrees (a concept familiar from regularity structures, to be 
explored in Section 6).
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3.1. Preliminaries for forest series

As in the preceding section, we first introduce the notation used throughout the 
section. Our setup closely follows Hairer-Kelly [33]. (For additional algebraic background 
the reader can consult e.g. [26], Chapter 14.)

Recall that a rooted tree is a finite connected graph without cycles with a distinguished 
node called the root. A rooted tree is unordered if there is no order on the edges leaving 
a node. We let B = B(•0, ..., •d) denote the real vector space spanned by the set of 
unordered rooted trees with vertices labelled from the set {0, . . . , d}. We denote by B∗

its algebraic dual, which we identify with the space of formal series of labelled trees; we 
write B∗ = B∗(•0, ..., •d) accordingly. We canonically identify with R1+d the subspace of 
B (and of B∗) spanned by the trees with a single node {•0, . . . , •d}.

We further denote by H = H(•0, ..., •d) the vector space spanned by (unordered) 
forests composed of trees (including the empty forest denoted by 1), and let H∗ =
H∗(•0, ..., •d) denote its algebraic dual which we identify with the space of formal series of 
forests. We canonically treat B∗ as a subspace of H∗. Following commonly used notation 
(e.g. [33]), for trees τ1, . . . , τn ∈ B we let [τ1 . . . τn]•i

∈ B denote the forest τ1 . . . τn ∈ H
grafted onto the node •i.

We equip H∗ with the structure of the Grossman-Larson Hopf-type4 algebra

(H∗, 	,Δ�, α)

and H with the structure of the dual graded Hopf algebra (the Connes-Kreimer Hopf 
algebra)

(H,�,Δ�, α̃).

In other words, H is the free commutative algebra over B equipped with a coproduct 
Δ�, and graded by the number of vertices in a forest. We shall often drop the product 
� and simply write τ � σ = τσ.

The coproduct Δ� may be described in terms of admissible cuts, for which we use the 
convention to keep the “trunk” on the right: for every tree τ ∈ B

Δ�τ =
∑
c

τ c1 . . . τ
c
k ⊗ τ c0 ,

where we sum over all admissible cuts c of τ , and denote by τ c0 the trunk and by τ c1 . . . τ
c
k

the branches of the cut respectively.

4 Again, Δ� does not map H∗ into H∗⊗2, but instead into the complete tensor product H⊗2 	∏∞
k,m=0 H(k) ⊗ H(m), where H(k) denotes the vector space of forests with k vertices, and therefore the 

structure is not exactly that of a Hopf algebra. Note also that Δ� is continuous for the product topologies, 
which we equip H∗ and H⊗2 with henceforth.
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In the sequel, we shall also find it convenient to treat the space H equipped with 	 as 
a subalgebra of H∗, in which case we explicitly refer to it as the algebra (H, 	).

Recall that the space of series B∗ is exactly the set of primitive elements of H∗. We let 
G = G(•0, ..., •d) denote the group-like elements of H∗, often called the Butcher group, 
for which it holds that

G = exp�(B∗).

All the objects introduced above play an analogous role to those of the previous 
section. To summarize this correspondence, it is helpful to keep the following picture in 
mind

“Series space” ... H∗(•0, ..., •d) ≡ H∗ ←→ T ((R1+d))

“Polynomial space” ... H(•0, ..., •d) ≡ H ←→ T (R1+d)

Lie elements ... B∗(•0, ..., •d) ≡ B∗ ⊂ H∗ ←→ L((R1+d))

Group-like elements ... G(•0, ..., •d) ≡ G ⊂ H∗ ←→ G(R1+d).

As in the previous section, for any integer N ≥ 0 we let HN denote “truncated” 
algebra obtained by the quotient of H∗ by the ideal consisting of all series with no 
forests having less than N vertices (we keep in mind that the product 	 is always in 
place for the truncated objects). Similarly we let GN ⊂ HN and BN ⊂ HN denote the 
step-N Butcher Lie group over R1+d its and Lie algebra respectively, constructed in 
analogous ways.

Finally, as before, we write “(Rd)” to denote the analogous objects built over Rd, 
treated as subsets of their “full” counterparts built over R1+d (by identifying Rd with 
the subspace of R1+d with basis {e1, . . . , ed}). For example, we treat H∗(Rd) and BN (Rd)
as a subalgebra of H∗ and a Lie subalgebra of BN respectively.

3.2. Translation of forest series

3.2.1. Non-uniqueness of algebra extensions
In the previous section, we defined a map Tv which “translated” elements in T ((R1+d))

in directions (v0, . . . , vd) ⊂ L((R1+d)), and which mapped the set of group-like elements 
G(R1+d) into itself. In the same spirit, we aim to define a map Mv which translates 
elements in H∗ in directions (v0, . . . , vd) ⊂ B∗, and which likewise maps G into itself.

Note that our construction of Tv relied on the fact that any linear map M : R1+d →
T ((R1+d)) such that 〈Mv, 1〉 = 0 for v ∈ R1+d extended uniquely to a continuous 
algebra morphism M : T ((R1+d)) → T ((R1+d)) (for the product ∗). We note here that 
no such universal property holds for H∗; indeed, there exists a canonical injective algebra 
morphism
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ı : T ((R1+d)) → H∗

ı : ei �→ •i
(6)

which embeds T ((R1+d)) into a strict subalgebra of H∗.
Specifically, we can see that ı is injective by considering the space B∗

� ⊂ B∗ of linear 
trees, i.e., trees of the form [. . . [•i1 ]•i2

] . . .]•ik
. Then there is a natural projection π� :

H∗ → B∗
� , and one can readily see that π� ◦ ı is a vector space isomorphism (this is the 

same isomorphism described in Remark 2.7 of [33]). To see further that the image of 
T ((R1+d)) under ı is not all of H∗, it suffices to observe that the linear tree [•i]•j

is not 
in the algebra generated by {•i}1+d

i=1 .

Remark 7. The embedding ı arises naturally in the context of branched rough paths as 
this is essentially the embedding used in [33] to realize geometric rough paths as branched 
rough paths (though note ı in [33] denotes π� ◦ ı in our notation).

Remark 8. While the above argument shows that (B, [·, ·]) is clearly not isomorphic to 
L(R1+d) as a Lie algebra, it is a curious and non-trivial fact that (B, [·, ·]) is isomorphic 
to a free Lie algebra generated by another subspace of B. Correspondingly, (H, 	), being 
isomorphic to the universal enveloping algebra of B, is isomorphic to a tensor algebra 
(see [19] Section 8, or [12]). This was used in [4] to show that the space of branched 
rough paths is canonically isomorphic to a space geometric rough paths over an enlarged 
vector space.

It follows from the above discussion that given a map M : R1+d → H∗, even one 
whose range is in B∗, there is in general no canonical choice of how to extend M to 
elements outside ı(T ((R1+d))) if we only demand that the extension M : H∗ → H∗ is an 
algebra morphism (moreover, without calling on Remark 8, it is a priori not even clear 
that such an extension always exists).

Example 9. Consider the case of a single label 0 (i.e. d = 0), and the map M :
{•0, [•0]•0} → B∗ given by

M : •0 �→ •0

M : [•0]•0 �→ •0.

Since

•0 	 •0 = [•0]•0 + 2 •0 •0,

we may extend M to an algebra morphism on the truncated space H2 → H2 by setting

M(•0•0) = 1 ([•0]•0 + 2 •0 •0 − •0) .
2
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This example shows that, on the level of the truncated algebras, there is not a unique 
algebra morphism above the identity map id : •0 �→ •0.

Of course it is not clear from the above that the identity map id : •0 �→ •0 can extend 
in a non-trivial way to an algebra morphism on all of H∗ �→ H∗, but such extensions will 
always exist due to Remark 8.

In what follows, we address this non-uniqueness issue by demanding a finer structure 
on the extension of M , namely that M : B∗ → B∗ is a pre-Lie algebra morphism. 
The notion of a pre-Lie algebra will be recalled in the following subsection, and the 
significance of preserving the pre-Lie product on B∗ is first seen when establishing a dual 
characterization of M (Proposition 19), and then again in Section 5.2 when studying the 
impact on (rough) differential equations. For now we simply state that this is a natural 
condition to demand given the role of pre-Lie algebras in control theory and Butcher 
series [8,37].

3.2.2. The free pre-Lie algebra over R1+d

Definition 10. A (left) pre-Lie algebra is a vector space V with a bilinear map � : V ×V →
V , called the pre-Lie product, such that

(x � y) � z − x � (y � z) = (y � x) � z − y � (x � z), for all x, y, z ∈ V.

That is, the associator (x, y, z) := (x � y) � z − x � (y � z) is invariant under exchanging 
x and y.

One can readily check that every pre-Lie algebra (V, �) induced a Lie algebra (V, [·, ·])
consisting of the same vector space V with bracket [x, y] := x � y − y � x.

Example 11. A basic example of a pre-Lie algebra is the space of smooth vector fields on 
Re with the product (fi∂i) � (fj∂j) := (fi∂ifj)∂j . The induced bracket is the usual Lie 
bracket of vector fields.

The space of trees B can be equipped with a (non-associative) pre-Lie product �:
B × B → B defined by

τ1 � τ2 =
∑
τ

n(τ1, τ2, τ)τ,

where the sum is over all trees τ ∈ B and n(τ1, τ2, τ) is the number of single admissible 
cuts of τ for which the branch is τ1 and the trunk is τ2. Equivalently, � is given in terms 
of 	 by

τ1 � τ2 = πB(τ1 	 τ2),
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where πB : H → B is the projection onto B.
It holds that (B, �) indeed defines a Lie algebra for which

[τ1, τ2] := τ1 � τ2 − τ2 � τ1 = τ1 	 τ2 − τ2 	 τ1,

i.e., the Lie algebra structures on B induced by 	 and � coincide. Moreover since �
respects the grading of B, we can naturally extend � to a bilinear map on the space of 
series, so that (B∗, �) is also a pre-Lie algebra.

We now recall the following universal property of (B, �) first established by Chapoton 
and Livernet [13] Corollary 1.10 (see also [17] Theorem 6.3).

Theorem 12. The space (B, �) is the free pre-Lie algebra over R1+d.

An equivalent formulation of Theorem 12 is that for any pre-Lie algebra (V, �) and 
linear map M : R1+d → V , there exists a unique extension of M to a pre-Lie algebra 
morphism M : (B, �) → (V, �).

3.2.3. Construction of the translation map
An immediate consequence of Theorem 12 is the following.

Theorem 13. Every linear map M : R1+d → B∗ extends to a unique continuous algebra 
morphism M : H∗ → H∗ whose restriction to B∗ is a pre-Lie algebra morphism from B∗

to itself.

Proof. By Theorem 12, M extends uniquely to a pre-Lie algebra morphism M : B → B∗. 
Recall also that, by the Milnor-Moore theorem, (H, 	) is isomorphic to the universal 
enveloping algebra of (B, [·, ·]). It follows that M extends further to a unique algebra 
morphism M : (H, 	) → (H∗, 	). Finally, since M necessarily does not decrease the 
degree of every element x ∈ H, we obtain a unique continuous extension M : H∗ → H∗

for which the restriction M : B∗ → B∗ is a pre-Lie algebra morphism as desired. �
We can finally define a natural translation map Mv : H∗ → H∗ analogous to Tv.

Definition 14. For v = (v0, . . . , vd) ⊂ B∗, define Mv : H∗ → H∗ as the unique continuous 
algebra morphism obtained in Theorem 13 from the linear map

Mv : R1+d → B∗

Mv : •i �→ •i + vi, for all i ∈ {0, . . . , d}.

Example 15. Let us illustrate how the construction works in the case of two nodes with 
a single label 0. Since Mv is constructed as pre-Lie algebra morphism, we compute

Mv

(
[•0]•

)
= Mv (•0 � •0) = Mv (•0) � Mv (•0) = (•0 + v0) � (•0 + v0) .
0
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Since Mv is in addition an algebra morphism w.r.t. 	 we have

(•0 + v0) 	 (•0 + v0) = (Mv•0) 	 (Mv•0) = Mv (•0 	 •0) = Mv

(
2 •0 •0 + [•0]•0

)
from which we can uniquely determine Mv (•0•0).

As in the previous section, we shall often be concerned with the case that vi = 0
for i = 1, . . . , d and v0 takes a special form. We again make precise whenever such a 
condition is in place by writing, for example, v = v0 ∈ BN (Rd).

We observe the following immediate properties of Mv, analogous to those of Tv:

• Since Mv is an algebra morphism which preserves the Lie algebra B∗, it holds that 
Mv maps G into G;

• Mv ◦Mu = Mv+Mv(u), where we write Mv(u) = (Mv(u0), . . . , Mv(ud)). In particular, 
Mv+u = Mv ◦Mu for all v = v0, u = u0 ∈ B∗(Rd);

• For every integer N ≥ 0, Mv induces a well-defined algebra morphism MN
v : HN →

HN , which maps GN into GN ;
• Recall the embedding ı : T ((R1+d)) → H∗ from (6). Then for all v = (v0, . . . , vd) ⊂

L((R1+d)), it holds that Mı(v) ◦ ı = ı ◦Tv (as both are continuous algebra morphisms 
from T ((R1+d)) to H∗ which agree on e0, . . . , ed).

As in the remark before Lemma 4, note that H∗⊗2 embeds densely into H⊗2, and 
thus Mv ⊗Mv extends uniquely to a continuous algebra morphism H⊗2 → H⊗2.

Lemma 16. The map Mv : H∗ → H∗ satisfies (Mv ⊗ Mv)Δ� = Δ�Mv and commutes 
with the antipode α.

Remark 17. We note that in the following proof, we only use the fact that Mv is a 
continuous algebra morphism from H∗ to itself which preserves the space of primitive 
elements B∗, and so do not directly use the fact that Mv preserves the pre-Lie product 
of B∗.

Proof. To show that the maps (Mv ⊗Mv)Δ� and Δ�Mv agree, by continuity it suffices 
to show they agree on H. In turn, their restrictions to H are algebra morphisms on (H, 	), 
and, since (H, 	) is the universal enveloping algebra of its space of primitive elements B
by the Milnor-Moore theorem, it suffices to show that

(Mv ⊗Mv)Δ�τ = Δ�Mvτ, for all τ ∈ B.

But this is immediate since Mv maps B∗ into itself and Mv(1) = 1. It remains to show 
that Mv commutes with the antipode, which follows from the same argument as in the 
proof of Lemma 4. �
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3.3. Dual action on the Connes–Kreimer Hopf algebra H

As in Section 2.3, we now wish to describe the dual map M∗
v : H → H for which

〈Mvx, y〉 = 〈x,M∗
v y〉, for all x ∈ H∗, y ∈ H.

For simplicity, we again consider in detail only the special case vi = 0 for i = 1, . . . , d
(but see Remark 21 for a description of the general case).

Let A denote the unital free commutative algebra generated by the trees τ ∈ B. We 
let 1 and · denote the unit element and product of A respectively. The algebra A plays 
here the same role as the algebra S in Section 2.3.

Remark 18. Although the algebras (A, ·) and (H, �) are isomorphic, they should be 
thought of as separate spaces and thus we make a clear distinction between the two.

For a tree τ ∈ B, we let D(τ) denote the set of all elements

τ1 · . . . · τk ⊗ τ̃ ∈ A⊗ B

where τ1, . . . , τk is formed from all disjoint collections of non-empty subtrees of τ (includ-
ing subtrees consisting of a single node), and τ̃ is the tree obtained by contracting every 
subtree τi to a single node which is then labelled by 0 (note that 1 ⊗ τ , corresponding 
to k = 0, is also in D(τ)).

Consider the linear map δ : H → A ⊗H defined for all trees τ ∈ B by

δτ =
∑

τ1·...·τk⊗τ̃∈D(τ)

τ1 · . . . · τk ⊗ τ̃ ,

and then extended multiplicatively to all of H, where we canonically treat A ⊗H as an 
algebra with multiplication MA⊗H(τ1⊗ τ̂1⊗τ2⊗ τ̂2) := (τ1 ·τ2) ⊗ (τ̂1� τ̂2) for τ1, τ2 ∈ A, 
τ̂1, ̂τ2 ∈ H.

For example,

(7)
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Proposition 19. Let v = v0 ∈ B∗. The dual map M∗
v : H → H is given by

M∗
v τ = (v ⊗ id) ◦ δ(τ),

where v(τ1 · . . . · τk) := 〈τ1, v〉 . . . 〈τk, v〉 and v(1) := 1.

For the proof of Proposition 19, we require the following combinatorial lemma. We 
note that similar “cointeraction” results appear for closely related algebraic structures 
in [8, Thm 8] and [7, Thm 5.37]. We will particularly discuss in further detail the link 
with the work of [7] in Section 6.

Lemma 20. Let �∗: B → B ⊗ B denote the adjoint of �. It holds that

(id⊗ �
∗)δ = M1,3(δ ⊗ δ) �∗, (8)

where M1,3 : A ⊗ B ⊗ A ⊗ B → A ⊗ B ⊗ B is the linear map defined by 
M1,3(τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = τ1τ3 ⊗ τ2 ⊗ τ4.

Proof. Note that

�
∗ τ =

∑
c

bc ⊗ τc

where the sum runs of all single admissible cuts c of τ , and bc is the branch, τc the 
trunk of c. Consider a single cut c of τ across an edge e. Let τ c denote the sum of the 
terms of (id⊗ �∗)δτ obtained by contracting all collections of subtrees of τ which do not 
contain e, followed by a cut (on the second tensor) along the edge e (which necessarily 
remains). One immediately sees that τ c is equivalently given by first cutting along e, 
and then contracting along all collections of subtrees of bc and τc, and then grouping the 
extracted subtrees together, i.e., τ c = M1,3(δ⊗ δ)(bc ⊗ τc). It finally remains to observe 
that summing over all single cuts c gives (8). �
Proof of Proposition 19. Denote by

Φ = (v ⊗ id) ◦ δ : B → B.

By duality, it follows from Lemma 16 that M∗
v is a Hopf algebra morphism. In particular, 

it suffices to show that Φτ = M∗
v τ for every tree τ ∈ B.

To this end, observe that Lemma 20 implies �∗ Φ = (Φ ⊗ Φ) �∗, from which it 
follows that Φ∗ : B∗ → B∗ is a pre-Lie algebra morphism. Furthermore, for every tree 
τ ∈ B

for all i ∈ {1, . . . , d}, 〈Φ∗•i, τ〉 = 〈•i,Φτ〉 = 〈•i, τ〉 = 〈Mv•i, τ〉;
〈Φ∗•0, τ〉 = 〈•0,Φτ〉 = 〈•0, τ〉 + 〈v, τ〉 = 〈Mv•0, τ〉.



Y. Bruned et al. / Journal of Functional Analysis 277 (2019) 108283 25
It follows that Φ∗ is a pre-Lie algebra morphism on (B∗, �) which agrees with Mv on 
the set {•0, . . . , •d} ⊂ B∗. Hence, by the universal property of (B, �) (Theorem 12), Φ∗

agrees with Mv on all of B∗, which concludes the proof. �
Remark 21. A similar result to Proposition 19 holds for the general case v = (v0, . . . , vd). 
The definition of δ changes in the obvious way that in the second tensor, instead of re-
placing every subtree by the node •0, one instead replaces every combination of subtrees 
by all combinations of •i, i ∈ {0, . . . , d}, while in the first tensor, one marks each ex-
tracted subtree τj with the corresponding label i ∈ {0, . . . , d} that replaced it, which 
gives (τj)i (so the left tensor no longer belongs to A but instead to the free commutative 
algebra generated by (τ)i, for all trees τ ∈ B and labels i ∈ {0, . . . , d}). Finally the term 
〈τ1, v〉 . . . 〈τk, v〉 would then be replaced by 〈(τ1)i1 , vi1〉 . . . 〈(τk)ik , vik〉.

4. Examples

In the following examples, we assume that we are given a probability space (Ω, F , P )
and a filtration (Ft)t≥0 satisfying the usual hypotheses and to which all mentioned 
stochastic processes are adapted.

4.1. Itô-Stratonovich conversion

As an application of Proposition 19, we illustrate how to re-express iterated 
Stratonovich integrals (and products thereof) over some interval [s, t] as Itô integrals. 
Consider the R1+d-valued process Bt = (B0

t , B
1
t , . . . , B

d
t ), where (B1

t , . . . , B
d
t ) is an 

Rd-valued Brownian motion with covariance [Bi, Bj ]t = Ci,jt, and B0
t ≡ t denotes the 

time component. Let BStrat denote the enhancement of Bt to an α-Hölder branched 
rough path, α ∈ (0, 1/2), using Stratonovich iterated integrals. For example,

〈
BStrat

s,t , τ
〉

=
∫

· · ·
∫

s<t1<···<tm<t

◦ dBi1
t1 ◦ · · · ◦ dBim

tm (9)

for the linear tree τ = [. . . [•i1 ]•i2
. . .]•im

, i1, . . . , im ∈ {0, . . . , d},

and

〈
BStrat

s,t , τ
〉

=
t∫

s

Bj
uB

k
u ◦ dBi

u

for τ = [•j•k]•i
, i, j, k ∈ {0, . . . , d}.

Similarly, we define BItô in exactly the same way using Itô integrals.
For a tree τ ∈ B, recall the definition of D(τ) ⊂ A ⊗ B from Section 3.3 (which was 

used to define δ). Consider the function C : D(τ) → R defined by
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C(τ1 · . . . · τk ⊗ τ̃) =

⎧⎪⎪⎨
⎪⎪⎩

1 if τ1 · . . . · τk ⊗ τ̃ = 1 ⊗ τ

2−k
∏k

n=1 C
in,jn
n if τn = [•in ]•jn

for all n = 1, . . . , k
0 otherwise.

Proposition 22. For every tree τ ∈ B it holds that

〈BStrat
s,t , τ〉 =

∑
τ1·...·τk⊗τ̃∈D(τ)

C(τ1 · . . . · τk ⊗ τ̃)〈BItô
s,t , τ̃〉. (10)

Proof. Consider the sum of linear trees v = v0 = 1
2
∑d

i,j=1 C
i,j [•i]•j

∈ B2(Rd). One 
can readily verify that BStrat = Mv(BItô), understood in the pointwise sense BStrat

s,t =
Mv(BItô

s,t ). Indeed, both BStrat and Mv(BItô) are a.s. “full” α-Hölder rough paths, where 
this fact - in the case of Mv(BItô) - either requires an (easy) check by hand, or an appeal 
to Theorem 30, (ii), below. Since, by construction, both agree on the first two levels, 
and α ∈ (1/2, 1/3), we see that BStrat and Mv(BItô) must be equal, a.s., thanks to the 
uniqueness part of the extension theorem.

It then follows by Proposition 19 that

〈BStrat
s,t , τ〉 = 〈BItô

s,t ,M
∗
v τ〉 =

∑
τ1·...·τk⊗τ̃∈D(τ)

〈BItô
s,t , 〈v, τ1〉 . . . 〈v, τk〉τ̃〉.

Since 〈v, 1〉 = 1, while 〈v, τn〉 = 1
2C

i,j if τn = [•i]•j
and zero otherwise, we obtain 

precisely (10). �
Example 23. Suppose B is a standard Brownian motion, i.e., Ci,j = δij . Consider the 
tree τ = [•j•k]•i

, so that

〈BStrat
s,t , τ〉 =

t∫
s

Bj
uB

k
u ◦ dBi

u.

Recalling the explicit form of δτ in (7), we see that if i is distinct from both j, k, then 
only 1 ⊗ τ remains in D(τ) for which C is non-zero, and so (in trivial agreement with 
stochastic calculus)

〈BStrat
s,t , τ〉 = 〈BItô

s,t , τ〉.

On the other hand, if i = j �= k, an additional term [•i]•i
⊗ [•k]•0 appears in D(τ) at 

which C is 1
2 , and so

〈BStrat
s,t , τ〉 = 〈BItô

s,t , τ〉 + 1
2

∫ ∫
dBk

t1dB
0
t2
s<t1<t2<t
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= 〈BItô
s,t , τ〉 + 1

2

t∫
s

Bk
udu.

The case i = k �= j is identical. At last, in the case i = j = k, looking at δτ shows that

〈BStrat, τ〉 = 〈BItô, τ〉 + 1
2

∫ ∫
s<t1<t2<t

dBi
t1dB

0
t2 + 1

2

∫ ∫
s<t1<t2<t

dBi
t1dB

0
t2

= 〈BItô, τ〉 +
t∫

s

Bi
udu.

Remark 24. When τ = [. . . [•i1 ]•i2
. . .]•im

is a linear tree, this is in agreement with [2]
Proposition 1. In fact, by considering general semi-martingales X1

t , . . . , X
d
t and adding 

extra labels •i,j , 1 ≤ i ≤ j ≤ d (thus increasing the underlying dimension from d to 
d + d(d + 1)/2) to encode the quadratic variants [Xi, Xj ], the above procedure (in the 
more general setting with elements vij = [•i]•j

∈ B2(Rd), see Remark 21), immediately 
provides an Itô-Stratonovich conversion formula for general semi-martingales.

4.2. Lévy rough paths

Note that the example in the previous section can be viewed as follows: BItô and BStrat

are both G2-valued Lévy processes which are branched p-rough paths, 2 < p < 3, and one 
can recover the signature of one from the other by a suitable (deterministic) translation 
map Mv : G → G. We now consider a generalization of this setting to arbitrary GN -valued 
Lévy processes, which have already been studied in the context of rough paths in [23,14].

Let τ1, . . . , τm be a basis for BN consisting of trees, which we identify with left-
invariant vector fields on GN , where we suppose for convenience that τ1 = •0. Recall 
that GN is a homogenous group in the sense of [20] (cf. [33] Remark 2.15).

Recall that to every (left) Lévy process X in GN without jumps and with identity 
starting point (i.e., X0 = 1GN a.s.) there is an associated Lévy tuple (A, B), where 
B =

∑m
i=1 B

iτi is an element of BN and (Ai,j)mi,j=1 is a correlation matrix. Then the 
generator of X is given for all f ∈ C2

0 (GN ) by (see, e.g., [35])

lim
t→0

t−1E [f(x 	Xt) − f(x)] =
m∑
i=1

Bi(τif)(x) + 1
2

m∑
i,j=1

Ai,j(τiτjf)(x).

Lemma 25. Let M : HN → HN be an algebra morphism which preserves GN and X a 
Lévy process in GN with Lévy tuple (A, B).

Then M(X) is the (unique in law) GN -valued (left) Lévy process with generator given 
for all f ∈ C2

0 (GN ) by
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lim
t→0

t−1E [f(x 	MXt) − f(x)] =
m∑
i=1

Bi(Mτif)(x) + 1
2

m∑
i,j=1

Ai,j(MτiMτjf)(x). (11)

Proof. The fact that MX is a Lévy process is immediate from the fact that X is a Lévy 
process and that M : GN → GN is a (continuous) group morphism. It thus only remains 
to show (11), where we may suppose without loss of generality that x = 1GN . To this 
end, define h = f ◦M and observe that

lim
t→0

t−1E [f(MXt) − f(1GN )] =
m∑
i=1

Bi(τih)(1GN ) + 1
2

m∑
i,j=1

Ai,j(τiτjh)(1GN )

(note that in general h might fail to decay at infinity and thus not be an element of 
C2

0 (GN ), however the above limit is readily justified by taking suitable approximations). 
Using the fact that (τh)(x) = d

dth(x 	etτ ) |t=0, one can easily verify that for all σ, τ ∈ BN

and x ∈ GN

(τh)(x) = (Mτf)(Mx),

(στh)(x) = ((Mσ)(Mτ)f)(Mx),

from which (11) follows. �
We now specialize to the case that (Ai,j)mi,j=1 is a correlation matrix for which Ai,i = 0

whenever τi has more than �N/2� nodes, which is a necessary and sufficient condition for 
the sample paths of X to a.s. have finite p-variation for all N < p < N + 1 [14]. Assume 
also that Ai,i = 0 whenever τi contains a node with label 0, and that B = τ1 = •0, so 
that for all f ∈ C2

0 (GN )

lim
t→0

t−1E [f(x 	Xt) − f(x)] = (τ1f)(x) + 1
2

m∑
i,j=1

Ai,j(τiτjf)(x).

The drift term (τ1f)(x) should be interpreted as the time component of the branched 
rough path X (which also explains the zero-diffusion condition in the direction of trees 
with a label 0).

Any other GN -valued Lévy process X̃ without jumps and the same correlation matrix 
(Ai,j)mi,j=1 is also a branched p-rough, and its generator differs from that of X only by a 
drift term. As a consequence of Lemma 25, we see that every such X̃ can be constructed 
by applying a (deterministic) translation map Mv to X. In particular, the full signature 
of X̃ can be recovered from that of X, generalizing the example from Section 4.1.

Corollary 26. Let v = v0 ∈ BN and Mv : HN → HN the truncation of the translation 
map from Section 3.2.3.

Then Mv(X) is the (unique in law) GN -valued (left) Lévy process with generator given 
for all f ∈ C2

0 (GN ) by
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lim
t→0

t−1E [f(x 	Mv(Xt)) − f(x)] = (•0 + v)f(x) + 1
2

m∑
i,j=1

Ai,j(τiτjf)(x).

Remark 27. The statement of the corollary likewise holds for every algebra morphism 
M : HN → HN satisfying M•0 = •0 + v and Mτ = τ for all forests τ ∈ HN without a 
label 0, which is a manifestation of the final point of the upcoming Theorem 30 (ii).

4.3. Higher-order translation and renormalization in finite-dimensions

In [6], from which we give an excerpt in this subsection, two examples are studied of 
families of random bounded variation paths (Xε)ε>0 whose canonical lifts to geometric 
rough paths (Xε)ε>0 diverge as ε → 0. In particular, ODEs driven by Xε in general 
also fail to converge. However, for suitably chosen vε = vε0 ∈ LN (Rd), for which in 
general limε→0 |vε| = ∞, one obtains convergence of the translated rough paths TvεXε. 
In particular, it follows from the upcoming Theorem 38 that solutions to modified ODEs 
driven by Xε, with terms generally diverging as ε → 0, converge to well-defined limits. 
In this specific context, the translation maps Tvε are precisely the renormalization maps 
occurring in regularity structures when applied to the setting of SDEs; we shall make 
this connection precise in Section 6.

Physical Brownian motion in a (large) magnetic field. It was shown in [21] that the 
motion of a charged Brownian particle, in the zero mass limit, in a magnetic field which 
is kept constant while taking the limit, naturally leads to a perturbed second level, of 
the form B̄s,t = BStrat

s,t + v (t− s) for some 0 �= v ∈ so (d), v being proportional to the 
strength of the magnetic field. We now want to look at the evolution of the system under 
the blow-up of the magnetic field.

Consider a physical Brownian motion in a magnetic field with dynamics given by

mẍ = −Aẋ + Bẋ + ξ, x(t) ∈ Rd,

where A is a symmetric matrix with strictly positive spectrum (representing friction), B
is an anti-symmetric matrix (representing the Lorentz force due to a magnetic field), and 
ξ is an Rd-valued white noise in time. We shall consider the situation that A is constant 
whereas B is a function of the mass m.

We rewrite these dynamics as

dXt = 1
m
Ptdt, X0 = 0,

dPt = − 1
m
MPtdt + dWt, P0 = 0,

where M = A −B, and we have chosen the starting point as zero simply for convenience. 
We furthermore introduce the parameter ε2 = m and write Xε

t , P
ε
t , and Mε = A − Bε

to denote the dependence on ε.
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We are interested in the convergence of the processes P ε and MεXε in rough path 
topologies. As before in Section 2, let G2(Rd) and L2(Rd) denote the step-2 free nilpotent 
Lie group and Lie algebra respectively. Let us also write L2(Rd) = Rd ⊕ L(2)(Rd) for 
the decomposition of L2(Rd) into the first and second levels, where we identify L(2)(Rd)
with the space of anti-symmetric d × d matrices.

For every ε > 0, define the matrix

Cε =
∞∫
0

e−Mεse−(Mε)∗sds,

and the element

vε = −1
2(MεCε − Cε(Mε)∗) ∈ L(2)(Rd).

For α ∈ (1/3, 1/2], due to the extension theorem, any α-Hölder weakly geometric 
rough path Z : [0, T ]2 → G(Rd) is fully characterized by the truncation π2Z : [0, T ]2 →
G2(Rd). Thus, for the purpose of this example, we represent any such rough path Z by 
the increments Zs,t of the underlying path and the second level Zs,t, i.e.

Zi
s,t = 〈Zs,t, ei〉, Zj,k

s,t = 〈Zs,t, ej,k〉.

In this special case and for any v = v0 ∈ L(2)(Rd), the translation map introduced in 
Definition 3 is given by

Tv(Zs,t,Zs,t) = (Zs,t,Zs,t + (t− s)v). (12)

Consider the G2(Rd)-valued processes

(P ε
s,t,P

ε
s,t) =

⎛
⎝P ε

s,t,

t∫
s

P ε
s,r∗ ◦ dP ε

r

⎞
⎠ ,

(Zε
s,t,Z

ε
s,t) =

⎛
⎝MεXε

s,t,

t∫
s

MεXs,r∗d(MεXε)r

⎞
⎠ ,

and the canonical lift of the Brownian motion W

(Ws,t,Ws,t) =

⎛
⎝Ws,t,

t∫
s

Ws,r∗ ◦ dWr

⎞
⎠ ,

where the integrals in the definition of P ε
s,t and Ws,t are in the Stratonovich sense.

Contrary to [21], we allow blow-up of the magnetic field with rate Bε � ε−κ, κ ∈ [0, 1], 
as a method to model magnetic fields which are large (in a quantified way) in comparison 
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to the (small) mass. The paths Zε then form approximations of Brownian motion, whose 
canonical rough path lifts (Zε, Zε) do not converge in rough path space (due to divergence 
of the Lévy’s area). The following result establishes convergence of the “renormalised” 
paths Tvε(P ε

s,t, P
ε
s,t) and Tvε(Zε

s,t, Z
ε
s,t).

Theorem 28 ([6] Theorem 1). Suppose that

lim
ε→0

|Mε|εκ = 0 for some κ ∈ [0, 1]. (13)

Then for any α ∈ [0, 1/2 − κ/4) and q < ∞, it holds that Tvε(P ε, P ε) → (0, 0) and 
Tvε(Zε, Zε) → (W, W ) in Lq and α-Hölder topology as ε → 0. More precisely, as ε → 0, 
in Lq

sup
s,t∈[0,T ]

|P ε
s,t|

|t− s|α + sup
s,t∈[0,T ]

|P ε
s,t + (t− s)vε|
|t− s|2α → 0,

and

sup
s,t∈[0,T ]

|Zε
s,t −Ws,t|
|t− s|α + sup

s,t∈[0,T ]

|Zε
s,t + (t− s)vε −Ws,t|

|t− s|2α → 0.

In particular, if κ ∈ [0, 23 ), one can take α ∈ (1
3 , 

1
2 − κ

4 ) and convergence takes place in 
α-Hölder rough path topology.

Lastly, we would like to point out that higher order renormalization can be expected 
in the presence of highly oscillatory fields, which also points to some natural connections 
with homogenization theory.

Fractional delay / Hoff process. Viewed as two-dimensional rough paths, Brownian 
motion and its ε-delay, t �→ (Bt, Bt−ε), does not converge to (B,B), with - as one may 
expect - zero area. Instead, the quadratic variation of Brownian motion leads to a rough 
path limit of the form (B,B;A) with area of order one. It is then possible to check that, 
replacing B by a fractional Brownian motion with Hurst parameter H < 1/2, the same 
construction will yield exploding Lévy area as ε ↓ 0.

The same phenomena is seen in lead-lag situations, popular in time series analysis. 
As in the case of physical Brownian motion in a (large) magnetic field, these divergences 
can be cured by applying suitable (second-level) translation / renormalization operators, 
as we shall now see; for details on the (non-divergent) Brownian / semi-martingale case, 
see e.g. [25, Ch.13] and [18].

Consider a path X : [0, 1] �→ Rd. Let n ≥ 1 be an integer and write for brevity 
Xn

i = Xi/n. Consider the piecewise linear path X̃n : [0, 1] �→ R2d defined by

X̃n
2i/2n = (Xn

i , X
n
i ),

X̃n
(2i+1)/2n = (Xn

i , X
n
i+1),
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and linear on the intervals 
[ 2i
2n ,

2i+1
2n

]
and 

[2i+1
2n , 2i+2

2n
]

for all i = 0, . . . , n − 1. Note that 
this is a variant of the Hoff process considered in [18].

Denote by X̃n
s,t = π2 exp∗(X̃n

s,t+An
s,t) the level-2 lift of X̃n, where An

s,t is the (2d) ×(2d)
anti-symmetric Lévy area matrix given by

An
s,t = 1

2

⎛
⎝ t∫

s

X̃n
s,r∗dX̃n

r −
t∫

s

X̃n
s,r∗dX̃n

r

⎞
⎠ .

Let H ∈ (0, 1) and consider a fractional Brownian motion BH with covariance 
R(s, t) = 1

2 (t2H + s2H − |t − s|2H). Let X : [0, 1] �→ Rd be d independent copies of 
BH .

Recall the definition of Tv from (12). We are interested in the convergence in rough 
path topologies of Tṽn(X̃n) where ṽn ∈ L(2)(R2d) is appropriately chosen. Define the 
(diagonal) d × d matrix

vn = 1
2E

[
n−1∑
k=0

(Xn
k+1 −Xn

k ) ⊗ (Xn
k+1 −Xn

k )
]

= n1−2H

2 I,

and the anti-symmetric (2d) × (2d) matrix

ṽn =
(

0 −vn

vn 0

)
∈ L(2)(R2d).

Finally, consider the path X̃ = (X, X) : [0, 1] �→ R2d, its canonically defined Lévy area 
A (which exists for 1/4 < H ≤ 1), and its level-2 lift X̃ = π2 exp∗(X̃ +A). The following 
result establishes convergence of the “renormalized path” Tṽn(X̃n).

Theorem 29 ([6] Theorem 5). Suppose 1/4 < H ≤ 1/2. Then for all α ∈ [0, H) and 
q < ∞, it holds that Tṽn(X̃n) → X̃ in Lq and α-Hölder topology. More precisely, as 
n → ∞, in Lq

sup
s,t∈[0,T ]

|X̃n
s,t − X̃s,t|
|t− s|α + sup

s,t∈[0,T ]

|An
s,t + (t− s)ṽn −As,t|

|t− s|2α → 0.

Rough stochastic volatility and robust Itô integration. Applications from quantitative 
finance recently led to the pathwise study of the (1-dimensional) Itô-integral,

T∫
0

f(B̂t)dBt with B̂t =
t∫

0

|t− s|H−1/2
dBs

where f : R → R is of the form x �→ exp (ηx). When H ∈ (0, 1/2), the case relevant in 
applications, this stochastic integration is singular in the sense that the mollifier approx-
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imations actually diverge (infinite Itô-Stratonovich correction, due to infinite quadratic 
variation of B̂ when H < 1/2). The integrand f(B̂t), which plays the role of a stochastic 
volatility process (η > 0 is a volatility-of-volatility parameter) is not a controlled rough 
path, nor has the pair (B̂, B) a satisfactory rough path lift (the Itô integral 

∫
B̂dB is 

well-defined, but 
∫
BdB̂ is not). The correct “Itô rough path” in this context is then an 

Rn+1-valued “partial” branched rough path of the form
(
B, B̂,

∫
B̂dB, ...

∫
B̂ndB

)

where n ∼ 1/H. Again, mollifier approximations will diverge but it is possible to see 
that one can carry out a renormalization which restores convergence to the Itô limit. 
(We note the similarity with SPDE situations like KPZ.) See [1] for details.

5. Rough differential equations

5.1. Translated rough paths are rough paths

We now show that the maps Tv and Mv act on the spaces of weakly geometric and 
branched rough paths. Throughout, we regard these rough paths as fully lifted, as can 
always (and uniquely) be done thanks to the extension theorem. The action of our 
translation operator is then pointwise, i.e.

(MvX)s,t := Mv(Xs,t),

and similarly for the geometric rough path translation operator T . In the following, we 
let |w| denote the length of a word w ∈ T (R1+d) (resp. number of nodes in a forest 
w ∈ H), and equip the space of α-Hölder weakly geometric (resp. branched) rough paths 
with the inhomogeneous Hölder norm

||X||α-Höl;[s,t] = max
|w|≤�1/α�

sup
u �=v∈[s,t]

|〈Xu,v, w〉|
|v − u||w|α ,

where the max runs over all words w ∈ T (R1+d) (resp. forests w ∈ H) with |w| ≤ �1/α�.

Theorem 30. Let α ∈ (0, 1] and X a α-Hölder weakly geometric (resp. branched) rough 
path over R1+d.

(i) Let v = (v0, v1 . . . , vd) be a collection of elements in LN(R1+d) (resp. in BN ).
Then TvX (resp. MvX) is a α/N -Hölder weakly geometric (resp. branched) rough 
path satisfying

||TvX||α/N-Höl;[s,t] (resp. ||MvX||α/N-Höl;[s,t]) ≤ Cv ||X||α-Höl;[s,t] (14)
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for a constant Cv depending polynomially on v.
(ii) Let v = (v0, 0, . . . 0) for v0 ∈ LN

(
R1+d

)
(resp. v0 ∈ BN ). Suppose that X satisfies

||X||(1,α)-Höl;[s,t] := max
|w|≤�1/α�

sup
u �=v∈[s,t]

|〈Xu,v, w〉|
|v − u|(1−α)|w|0+α|w| < ∞, (15)

where the max runs over all words w ∈ T (R1+d) (resp. forests w ∈ H) with |w| ≤
�1/α� and |w|0 denotes the number of times the letter e0 (resp. label 0) appears in 
w.
Then TvX (resp. MvX) is a α ∧ (1/N)-Hölder weakly geometric (resp. branched) 
rough path over R1+d satisfying

||TvX||α∧(1/N)-Höl;[s,t] (resp. ||MvX||α∧(1/N)-Höl;[s,t]) ≤ Cv ||X||(1,α)-Höl;[s,t]

for a constant Cv depending polynomially on v.
Finally, in the setting of branched rough paths, let M : H∗ → H∗ be any algebra 
morphism which preserves G and such that Mτ = τ for every forest τ ∈ H without 
a label 0, and M•0 = Mv•0 = •0 + v0. Then MX = MvX.

Before the proof of the theorem, several remarks are in order.

Remark 31. In Theorem 30 we treat α-Hölder weakly geometric rough paths as already 
enhanced with their iterated integrals. Thus Xs,t is an element of T ((R1+d)) and (TvX)s,t
is just the image of Xs,t under Tv. Therefore the statement of the proposition is that not 
only does (TvX)s,t have the correct regularity on the first n = �1/α� levels to qualify 
as a rough path but that all further iterated integrals are already given, in a purely 
algebraic way, by (TvX). That said, if one takes the level-n view, writing πn(TvX) for 
the translation only defined as a level-n rough path, the extension theorem asserts that 
there is a unique full rough path lift, say Z. But then, by the uniqueness part of the 
extension theorem, Z = TvX so that our construction is compatible with the rough path 
extension.

The same remark applies to branched rough paths, where we recall that, as a particular 
consequence of the sewing lemma, every α-Hölder branched rough paths admits a unique 
lift (extension) to all of H∗ ([28] Theorem 7.3, or [33] p. 223). We would also like to 
point out that Boedihardjo [3] recently extended a result on the factorial decay of lifts 
of geometric rough paths (first shown in [36]) to the branched setting, answering a 
conjecture in [28].

Remark 32. In the case of geometric rough paths the previous remark points to an 
alternative (analytic) construction of the translation operator, first defined on a smooth 
path X identified with its full lift X ≡ (1, X1, X2, ...), and subsequently extended to 
geometric rough paths by continuity. We stick to the case of one Lie polynomial v0 =
v = (v1, v2, ...vN ) which we want to add at constant speed to X. At level 1, obviously 
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(TvX)1s,t = X1
s,t + (t − s)v1 and (TvX) is a Lipschitz path (a 1-rough path). We then 

perturb the canonically obtained (extended) 2-rough path which in turn we can perturb 
on the second level by adding (t − s)v2, thereby obtaining a (non-canonical) 2-rough 
path. Iterating this construction allows us to “feed in, level-by-level” the perturbation v
until we arrive at a rough path TvX with regularity α-Höl ∧ (1/N). We leave it to the 
reader to check that this construction yields indeed TvX. The severe downside of this 
construction is its restricted to geometric rough paths, not to mention its repeated use of 
the (analytic) extension theorem, in a situation that is within reach of purely algebraic 
methods.

Remark 33. The condition on X in equation (15) is very natural and arises by “colifting” 
a Lipschitz path X0 with a d-dimensional α-Hölder weakly geometric rough path. More-
over, this is a special case of a weakly geometric (p, q)-rough path (see [25] Section 9.4), 
and the statement can readily be extended to this general setting. One can also make 
a statement about the continuity of the maps (v, X) �→ TvX and (v, X) �→ MvX in 
suitable rough path topologies. However these points will not be explored here further.

Remark 34. The proof of Theorem 30 part (i) will reveal that the only properties required 
of Tv (resp. Mv) is that it be an algebra morphism, preserves group-like (or equivalently 
primitive) elements, is upper-triangular (increases grading), and that it increases the 
grade of every word of length k (resp. forest with k nodes) to at most Nk. While already 
the first of these conditions uniquely determines Tv once Tv(ei) = ei + vi is chosen, 
we emphasize that without demanding that Mv is a pre-Lie algebra morphism, there is 
freedom to how Mv can be extended to satisfy these properties even after Mv(•i) = •i+vi
is chosen.

In general, different choices of Mv will give rise to different branched rough paths 
Mv(X). There is a notable exception to this, which is when X is the canonical lift of 
a Lipschitz (or more generally α-Hölder, α ∈ (1/2, 1]) path in R1+d. Then for every 
algebra morphism M : H∗ → H∗ such that M•i = Mv•i = •i + vi, it holds that 
MX = MvX. Indeed, in this case X is necessarily in the image of G(R1+d) ⊂ T ((R1+d))
under the embedding (6), and since M and Mv agree on the generators •i, it follows that 
MX = MvX (this discussion relates of course to the final point of Theorem 30 part (ii), 
where upon demanding additional structure on X, we see that all maps M satisfying the 
specified properties agree on X).

Remark 35. Observe that the level-N lift of a weakly geometric rough path is precisely 
the solution to the linear RDE

dYt = L(Yt)dXt, Y0 = 1 ∈ TN (R1+d),

where L = (L0, . . . , Ld) are the linear vector fields on TN (R1+d) given by right-
multiplication by (e0, . . . , ed) respectively. In much the same way, the level-N truncation 
of the translated path Yt := πN (TvXt) is the solution to the modified linear RDE
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dYt = Lv(Yt)dXt, Y0 = 1 ∈ TN (R1+d),

where now Lv = (Le0+v0 , . . . , Led+vd) are given by right-multiplication by (e0 +
v0, . . . , ed + vd) (which is a special case of the upcoming Theorem 38).

We note however that the same conclusion does not hold for branched rough paths. 
Indeed, even the level-N lift of a branched rough path X, N ≥ �1/α�, is in general not 
the solution of a linear RDE driven by X, which can easily be seen from the fact that 
linear RDEs are completely determined by the values 〈Xs,t, τ〉 where τ ranges over all 
linear trees τ = [. . . [•i1 ]•i2

. . .]•im
(see, e.g., [33] Example 3.11). A simple example is 

any branched rough path X for which 〈X, τ〉 ≡ 0 for all linear trees τ (e.g., the 1
3 -Hölder 

branched rough path for which 〈Xs,t, τ〉 = t − s for some τ = [•i•j ]•k
and zero for every 

other tree τ of size |τ | ≤ 3), so that every linear RDE driven by X is constant.

Proof of Theorem 30. (i) We are required to show that

1. TvX takes values in G(R1+d),
2. Chen’s relation (TvX)s,t∗(TvX)t,u = (TvX)s,u holds, and
3. the analytic condition (14).

The first two properties follow immediately from the analogous properties of X and 
the fact that Tv

∣∣
G(R1+d) : G(R1+d) → G(R1+d) is group morphism. To verify the final 

property, fix a word w ∈ T (R1+d). It readily follows from Proposition 5 and Remark 6
that T ∗

vw =
∑

i λiwi where λi ∈ R and wi is a word which satisfies N |wi| ≥ |w|. However

|〈Xs,t, wi〉| ≤ ||X||α-Höl;[s,t] |t− s|α|wi|,

and thus

|〈(TvX)s,t, w〉| = |〈Xs,t, T
∗
vw〉| ≤ C ||X||α-Höl;[s,t] |t− s|α|w|/N

with C depending only on w and (polynomially) on v. It follows that TvX is indeed 
a α/N -Hölder rough path, and the desired estimate (14) follows by running over all w
with |w| ≤ �N/α�. The proof for the case of branched rough paths is identical, using 
now Proposition 19.

The proof of the first statement of (ii) is virtually the same, except we now observe 
that Proposition 5 and the condition v = v0 ∈ LN (R1+d) imply that T ∗

vw =
∑

i λiwi

where λi ∈ R and wi is a word which satisfies

N |wi|0 + (|wi| − |wi|0) ≥ |w|.

The first statement of (ii) now follows from (15), and the proof for the case of branched 
rough paths is again identical.
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To show the last point of (ii), consider the subspace Hk(Rd) ⊕ 〈•0〉 ⊂ Hk spanned 
by •0 and all forests τ ∈ Hk without a label 0. Observe that it suffices to show that for 
every k ≥ 0, the level-k truncation πkX takes values in the subalgebra of Hk generated 
by Hk(Rd) ⊕ 〈•0〉.

To this end, consider the space C̃∞ defined as the collection of all piecewise smooth 
paths x : [0, T ] → Gk for which ẋ ∈ Hk(Rd) ⊕〈•0〉 (so that in fact ẋ ∈ Bk(Rd) ⊕〈•0〉). For 
every partition D = (t0, . . . , tm) ⊂ [0, T ], we can construct xD ∈ C̃∞ as the piecewise 
geodesic path (for the Riemannian structure of Gk) whose increment over [ti, ti+1] is 
exp(πBk(Rd)⊕〈•0〉 log Xti,ti+1). One can verify that condition (15) guarantees that xD →
πkX uniformly as |D| → 0. The conclusion now follows since, by construction, xD takes 
values in the subalgebra generated by Bk(Rd) ⊕ 〈•0〉. �
5.2. Effects of translations on RDEs

Throughout this section, we assume that f = (f0, . . . , fd) is a collection of vector 
fields on Re which are as regular as required for all stated operations and RDEs to make 
sense.

Observe that f induces a canonical map from LN (R1+d) to the space of vector fields 
Vect(Re) which extends the map ei �→ fi. Write fv for the image of v ∈ LN

(
Rd

)
under 

this map, e.g., for v = [e1, e2], we have the vector field f[e1,e2] ≡ [f1, f2]. Given a collection 
v = (v0, . . . , vd) ⊂ LN (R1+d), we write

fv = (fv
0 , . . . , f

v
d ) = (fe0+v0 , . . . , fed+vd).

Similarly, f induces a canonical map from BN to Vect(Re) which extends •i �→ fi
using the pre-Lie product � on Vect(Re) (recall from Example 11 that in coordinates (
f i∂i

)
�
(
gj∂j

)
≡

(
f i∂ig

j
)
∂j). Once more write fv for the image of v ∈ BN under this 

map, e.g., for v = [•1]•2
= •1 � •2, we have the vector field

f•1�•2 = f[•1]•2
≡ f1 � f2

Again given a collection v = (v0, . . . , vd) ⊂ BN , we write

fv = (fv
0 , . . . , f

v
d ) = (f•0+v0 , . . . , f•d+vd).

Remark 36. The map v �→ fv is closely related to the notion of elementary differentials 
in B-series [8] and has already been used to study solutions of branched RDEs in the 
works of Cass–Weidner [10] and Hairer–Kelly [33] (note also that our notation fv agrees 
with that of [33, Section 3]).

Remark 37. Treating LN (R1+d) (resp. BN ) as a nilpotent Lie (resp. pre-Lie) algebra, 
the map considered above is not in general a Lie (resp. pre-Lie) algebra morphism into 
Vect(Re).
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Theorem 38.

(i) Let notation be as in Theorem 30 part (i). Then Y is an RDE solution flow to

dY = f (Y ) d (TvX) (resp. dY = f (Y ) d (MvX))

if and only if Y is an RDE solution flow to

dY = fv (Y ) dX.

(ii) Let notation be as in Theorem 30 part (ii). Then Y is an RDE solution flow to

dY = f (Y ) d (TvX) (resp. dY = f (Y ) d (MvX))

if and only if Y is an RDE solution flow to

dY = fv(Y )dX ≡ f (Y ) dX + fv0 (Y ) dX0.

Remark 39. Since the space of weakly geometric rough paths embeds into the space 
of branched rough paths using the map (6), the statements in Theorem 38 for weakly 
geometric rough paths are a special case of those for branched rough paths. We make a 
distinction between the two cases only for clarity.

Proof. For clarity, we first prove the statement for geometric rough paths and then 
generalize to branched rough paths (although by Remark 39, it suffices to prove the 
statement only in the branched case).

Observe that for weakly geometric rough paths, (i) will follow directly from the usual 
Euler RDE estimate ([25] Corollary 10.15) once we show that

∑
|u|≤�1/α�

〈Xs,t, u〉fv
u(y) =

∑
|u|≤�N/α�

〈TvXs,t, u〉fu(y) + rs,t, for all y ∈ Re, s, t ∈ [0, T ],

(16)

where |rs,t| = o(|t − s|) and where the sums run over any orthonormal basis of 
L�1/α�(R1+d) and L�N/α�(R1+d) respectively.

Consider for the moment that f = (f0, . . . , fd) is a collection of smooth vector fields, 
so that Φf : u �→ fu is a genuine Lie algebra morphism from L(R1+d) into Vect∞(Re). 
Hence, whenever f are smooth, the maps Φf ◦Tv and Φfv are both Lie algebra morphisms 
from L(R1+d) into Vect∞(Re) which furthermore agree on the generators ei. Thus Φf ◦
Tv = Φfv , and so

∑
〈x, u〉fv

u =
∑

〈Tvx, u〉fu, for all x ∈ L(R1+d), (17)

u u
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where both sums run over any orthonormal basis of L(R1+d). This proves (16) for smooth 
f = (f0, . . . , fd). For the general case where f are only sufficiently regular for the stated 
RDEs to make sense, we note that equality (17) is purely algebraic, so (16) can be readily 
deduced by truncation.

To extend this argument to the case of branched rough paths, (i) will follow directly 
from the Euler estimate derived in [33] Proposition 3.8 once we show that

∑
τ∈B�1/α�

〈Xs,t, τ〉fv
τ (y) =

∑
τ∈B�N/α�

〈MvXs,t, τ〉fτ (y) + rs,t, for all y ∈ Re, s, t ∈ [0, T ],

(18)

where |rs,t| = o(|t − s|) and where the sums run over all trees τ in B�1/α� and B�N/α�

respectively.
As before, suppose first that f = (f0, . . . , fd) is a collection of smooth vector fields, so 

that Φf : x �→ fx ≡
∑

τ∈B〈x, τ〉fτ is a pre-Lie algebra morphism from B into Vect∞(Re). 
Hence, whenever f are smooth, the maps Φf ◦ Mv and Φfv are both pre-Lie algebra 
morphisms from B into Vect∞(Re) which furthermore agree on the generators •i. Thus 
Φf ◦Mv = Φfv , and so

∑
τ∈B

〈x, τ〉fv
τ =

∑
τ∈B

〈Mvx, τ〉fτ , for all x ∈ B.

As the above equality is purely algebraic, we again deduce (18) by truncation in the 
general case where f are only sufficiently regular for the stated RDEs to make sense.

The desired result in (ii) for both geometric and branched rough paths follows in the 
same way. �
Remark 40. Recall that Mv : B∗ → B∗ was constructed, from Section 3.2.2 on, as a 
pre-Lie algebra morphism. This matters in part (i) of Theorem 38 above, where this 
property is needed to obtain a universal conversion formula for translated RDEs. For 
example, consider that Mv was replaced by an algebra morphism M (which satisfies the 
conditions of Remark 34) such that M(•i) = •i for all i = 0, ..., d, but acted non-trivially 
on some higher order trees (so that M is not a pre-Lie morphism). Then given vector 
fields f , in general there does not exist another collection of vector fields fv such that 
for every branched rough path X, the RDE driven by M(X) along vector fields f agrees 
with the RDE driven by X along fv. Indeed, if such fv existed, then for every geometric 
(branched) rough path X (so that M(X) = X), the RDEs driven by M(X) and X agree 
without the need to change the vector fields f , so that necessarily fv = f . However if X
is a non-geometric branched rough path, the RDE driven by M(X) along vector fields 
f will not in general agree with the RDE driven by X along f .
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6. Link with renormalization in regularity structures

We now recall several notions from the theory of regularity structures and draw a 
link between the map δ from Section 3.3 and the coproduct Δ− associated to nega-
tive renormalization [7,31]. In particular, we demonstrate how negative renormalization 
maps on the regularity structure associated to branched rough paths carry a natural 
interpretation as rough path translations (see Theorem 50 below).

6.1. Regularity structures

Regularity structures usually deal with (e.g. SPDE solutions) u = u(z) where z ∈ Rn

(e.g. space-time), u takes values in R (or Re). Equations further involve a β-regularizing 
kernel, and there are d sources of noise, say ξ1, ..., ξd, of arbitrary (negative) order αmin, 
as long as the equation is subcritical.

6.1.1. Generalities
We review the general (algebraic) setup in the case n = 1, β = 1 and αmin ∈ (−1, 0).

In the spirit of Hairer’s formalism, consider the equation

u(t) = u(0) +
(
K ∗

d∑
i=1

fi(u(·))ξi(·)
)

(t), t ∈ R, (19)

where u(t) is a real-valued function for which we solve, ξi(t) are driving noises, fi are 
smooth functions on R (one could readily extend to the case that u takes values in Re

and fi are vector fields on Re), and K is a kernel which improves regularity by order 
β = 1.

Remark 41. The example to have in mind here is K(s) = exp(−λs)1s>0, which allows 
to incorporate an additional linear drift term (“−λudt”), or of course the case λ = 0, 
i.e. the Heaviside step function, which leads to the usual setting of controlled differen-
tial equations. We shall indeed specialize to the Heaviside case in subsequent sections, 
as this simplifies some algebraic constructions and so provides a clean link to rough 
path structures. For the time being, however, we find it instructive to work with a gen-
eral 1-regularizing K, as this illustrates the need for polynomials decorations as well as 
symbols Jk, representing k-th derivatives of the kernel.

Our driving noises ξi(t) should be treated as distributions on R of regularity Cα−1

for some α ∈ (0, 1) (which will later correspond to the case of α-Hölder branched rough 
paths). In the case that α ≤ 1/2, due to the product fi(u)ξi, (19) is singular and thus 
cannot in general be solved analytically. However the equation is evidently sub-critical 
in the sense of [30], and so one can build an associated regularity structure.
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Introducing the symbols. We first collect all the symbols of the regularity structure 
required to solve (19) and which is stable under the renormalization maps in the sense 
of [7]. Define the linear space

T = 〈W〉,

where W is the set of all rooted trees where every node carries a “polynomial” decoration 
k ∈ N ∪ {0} and where every edge which ends on a leaf may be (but is not necessarily) 
assigned a type tΞi

, i ∈ {1, . . . , d}. An edge with type tΞi
corresponds to the driving 

noise ξi. Every other edge has a type tK which means that it is associated to the kernel 
K. (For now, we only assume K is 1-regularizing, later we will take it to be the Heaviside 
step function.) Also, each node has at most one incoming edge with type belonging to 
{1, . . . , d}.5 With regard to [7], we also note the absence of edge decorations.6

To avoid confusion between the different meaning of trees in W and those introduced 
in Section 3, we will colour every tree in W blue. (For interpretation of the references to 
colour please refer to the web version of this article.) Every such tree has a corresponding 
symbol representation, e.g.,

where we implicitly drop the 0 decoration (↔ X0) from the nodes. It is instructive to 
check that W provides an example of a structure built from a subcritical complete rule 
(in the sense of [7] Section 5) arising from the equation (19). Indeed, we can give the set 
of rules used for the construction of

R(Ξi) = {()}, R(I) = {([I]�), ([I]�,Ξi), � ∈ N ∪ {0}, i ∈ {1, ..., d}}.

The notation [I]� is a shorthand notation for I, ..., I where I is repeated � times.
We define a degree | · | associated to an edge type and a decorated tree. For edge types 

and polynomials, we have

|Ξi| = α− 1, |I| = 1, |Xk| = k.

Then by recursion,

5 This rules out symbols corresponding to products of noise, such as ΞiΞj with i, j ∈ {1, . . . , d}.
6 This is in contrast to, say, KPZ or Φ4

3, where edge decorations appear in view of Du → I′ or renormal-
ization, respectively.
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|I(τ)| = |τ | + |I|,
∣∣∣∣∣
∏
i

τi

∣∣∣∣∣ =
∑
i

|τi|.

For a non-recursive definition see [7] where the degree is described through a summation 
over all the edge types and the decorations in the tree.

Remark 42. Remark that W ≡ WBHZr (the “r” in BHZr refers to reduced, in the ter-
minology of [7] these are trees without any extended decorations) will contain certain 
symbols which do not arise if one follows the original procedure of [30] (which, in some 
sense, is the most economical way to build the structure):

WHai14 ⊂ WBHZr ⊂ WBHZ.

Indeed in [30], the set of rules is not necessarily complete so one has to add terms by hand 
coming from the renormalization procedure and in the end one works with a space W̄Hai14
lying between WHai14 and WBHZr. For example, I(Ξi)I(Ξj), I(I(Ξk)), and I() ≡ I(X0)
do not appear in WHai14, but all of these appear in WBHZr. These in turn are embedded 
in WBHZ, a set of trees with extended decorations on the nodes and also colourings of 
the nodes which give more algebraic properties. In the setting of [7], we would work with 
an additional symbol 1α for α ∈ R, representing an extended decoration, which provides 
information on some “singular” (negative degree) tree which has been removed, and all 
of these symbols are would be placed using a complete set of rules.

Introducing T−. We define the space T− as

T− = {τ1 • · · · • τn, τi ∈ W, |τi| < 0}, (20)

where • is the forest product and the unit is given by the empty forest. (In other words, 
T− is the free unital commutative algebra generated by elements in W of negative degree.) 
We now recall that T− can be equipped with a Hopf algebra structure T− for which there 
exists a coaction Δ− : T → T−⊗T such that (T , Δ−) is a (left) comodule over T−. Then 
the action of a character � ∈ T ∗

− on x ∈ T , termed “negative renormalization”, is given 
by M�x = (� ⊗ id)Δ−x.

Following [31] Section 2 we can describe the coaction Δ− as follows. Fix a tree τ ∈
W, consider a subforest A ⊂ τ , i.e., an arbitrary subgraph of τ which contains no 
isolated vertices. We then write RAτ for the tree obtained by contracting the connected 
components of A in τ . With this notation at hand, we then define a linear map, the 
coaction,

Δ− : T → T− ⊗ T

by setting, for τ ∈ W,
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Δ−τ =
∑

A⊂T−

A⊗RAτ. (21)

Unfortunately, this is not quite the correct coaction as it does not handle correctly the 
powers of X. However, upon restriction to T̃ ⊂ T , as done in detail in the next section, 
this is precisely the form of the coaction (now on T̃ ). When moving to a coproduct this 
fortunately plays no role (since T− does not contain any non-zero powers of X or a factor 
of the form I()). By abuse of notation, Δ− also acts as a coproduct, that is

Δ− : T− → T− ⊗ T−. (22)

To be explicit, given f = τ1 · · · τn ∈ T , we have Δ−(f) = Δ−(τ1)...Δ−(τn) with each 
Δ−(τi) as defined above, but with an additional projection to the negative trees on the 
right-hand side of the tensor-product.

Remark 43. The spaces T− ≡ T −
BHZr, T −

BHZ and T −
Hai14 are the same in this framework

(cf. assumptions from the beginning of this subsection). Indeed, all negative trees of W
have a degree of the form Nα − 1. Then if we remove one negative subtree, of degree 
Mα − 1 say, from a negative tree, we obtain a degree (N −M)α which is positive and 
hence the “cured” tree does not belong to T−.

Introducing T+. In order to describe the space T+ as in [7], we need to associate to 
each edge a decoration k ∈ N ∪ {0} viewed as a derivation of the kernels or the driving 
noises. Such a decoration does not appear in T . Thus we will replace the letter I by J
in this context. We do not give any graphical notation for Jk, the edge with type tK and 
(edge) decoration k representing K(k), because these symbols ultimately will not appear 
in our context.

We define T+ as the linear span of

{Xk
n∏

i=1
Jki

(τi) | k, n ∈ N ∪ {0}, ki ∈ N ∪ {0}, τi ∈ W, |τi| + 1 − ki > 0}.

In other words, T+ is the free unital commutative algebra generated by

W+ := {X} ∪ {Jkτ | τ ∈ W, |τ | + 1 − k > 0}.

We use a different letter J to stress that W is different from W+. Moreover, the use of 
this letter is viewed in [7] as a colouration of the root and plays a role in the sequel. We 
also define the degree of a term

τ = Xk
n∏

Jki
(τi) ∈ T+, |τ | = k +

n∑
1 − ki + |τi|.
i=1 i=1
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The space T+ is used in the description of the structure group associated to T . More 
precisely, recall that T+ can be equipped with a Hopf algebra structure for which there 
exists a coaction Δ+ : T → T ⊗ T+ such that (T , Δ+) is a (right) comodule over T+. 
Following Hairer’s survey [31], the coaction

Δ+ : T → T ⊗ T+ (23)

is given by

Δ+Xi = Xi ⊗ 1 + 1 ⊗Xi , Δ+Ξi = Ξi ⊗ 1 , (24)

and then recursively by

Δ+I(τ) = (I ⊗ id)Δ+τ +
∑

�∈N∪{0}

X�

�! ⊗ J�(τ) (25)

and

Δ+(τ τ̄) = Δ+τ Δ+τ̄ . (26)

The coproduct Δ+ : T+ → T+ ⊗ T+ is then defined in the same way by replacing (25)
with

Δ+Jk(τ) = (Jk ⊗ id)Δ+τ +
∑

�∈N∪{0}

X�

�! ⊗ Jk+�(τ),

in which Δ+τ is understood as the coaction Δ+ : T → T ⊗ T+.
Then the action of a character g ∈ T ∗

+ on x ∈ T , termed “positive renormalization”, 
is given by

Γgx = (id ⊗ g)Δ+x.

Remark 44. The space T+ ≡ T +
BHZr depends strongly on the space W. We have

T +
Hai14 ⊂ T +

BHZr ⊂ T +
BHZ.

These two inclusions are Hopf subalgebra inclusions. Indeed, as proved in [7], the second 
one, with T+ equipped with coproduct Δ+ is a Hopf subalgebra inclusion (with Δ+

BHZ
found in [7, (4.14)]). The same is also true for T +

Hai14. The key point for the Hopf algebra 
structure is that, in the terminology of [7], the symbols defined in [30] and [7] are obtained 
by a “normal rule” which guarantees the invariance under Δ+. In the case of T +

BHZ, we 
use the degree | · |+ which is exactly | · | when we restrict ourselves to T +

BHZr.
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Remark 45. Unfortunately, there is a problem here in that, with the definition in equa-
tion (25), a desirable cointeraction between Δ+ and Δ− fails as we shall explain momen-
tarily. The “official” remedy, following [7], is to use the extended decorations through 
another degree | · |+ which takes into account these decorations and behaves the same as 
| · | for the rest. For example, one has |I(1βτ)|+ = |τ |++1 +β. The “correct” coaction Δ+

(see [7, (4.14)]) then also involves these extended decorations. The extended decorations 
are crucial in [7] for obtaining a cointeraction between the two Hopf algebras (T+, Δ+)
and (T−, Δ−):

M(13)(2)(4) (Δ− ⊗ Δ−)Δ+ =
(
id ⊗ Δ+)Δ−

where M(13)(2)(4) is given as M(13)(2)(4) (τ1 ⊗ τ2 ⊗ τ3 ⊗ τ4) = (τ1 • τ3) ⊗ τ2 ⊗ τ4. This 
identity is both true on T through the comodule structures and on T+ when the coprod-
uct Δ− is viewed as an action on T+. We have already came across something similar 
in Lemma 20, but in that case the maps involved were not really coproducts. In our 
simple framework, this property is not satisfied if we just consider the reduced structure. 
One can circumvent this issue without introducing extended decorations by changing 
the coproduct Δ+ to the form (27) given below. This approach is possible in our context 
(specifically, minimal degree α − 1 > −1 and 1-regularizing kernel) because we know a 
priori that each edge type I in the elements of W with negative degree has the same 
“Taylor expansion” of length 1 in (25) (� = 0). In general, we would use the extended 
decorations to maintain this property, however, in the specific setting of the Heaviside 
kernel, to which we will specialize from this moment on to the rest of the paper, we can 
just fix the length in the coproduct and not use the extended decorations. That is, we 
can get away by replacing (25) with the same formula, but only keeping � = 0 in the 
sum. Specifically, with J ≡ J0 this amounts to make the (recursive) definition of Δ+

with (25) replaced by

Δ+I(τ) = (I ⊗ id)Δ+τ + 1 ⊗ J (τ). (27)

We can also get rid of colours when we have no derivatives on the edges at the root: if 
we want to extract from I(τ1Ξi)I(τ2Ξj) all the negative subtrees, we observe that it is 
not possible to extract one at the root, and thus are only left with negative subtrees in 
τ1Ξi and τ2Ξj , which ensures that

M�I(τ1Ξi)I(τ2Ξj) = I (M� (τ1Ξi)) I (M� (τ2Ξj)) .

In the setting of [7], this multiplicativity property is encoded by a colour at the root 
which avoids the extraction of a tree containing the root.



46 Y. Bruned et al. / Journal of Functional Analysis 277 (2019) 108283
6.1.2. The case of rough differential equations
As in the last subsection: n = 1, β = 1 and noise degree αmin ∈ (−1, 0) > −1. We 

further specialize the algebraic set in that no symbols Jk and polynomials Xk with k > 0
are required in describing T+.

Assuming K to be the Heaviside step function, all derivatives (away from the origin) 
are zero, hence there is no need (with regard to W) to have any polynomial symbols (Xk

with k > 0). Removing these from W leaves us with W̃ ⊂ W which we may list as

W̃ = {Ξi, ..., I(Ξi)I(Ξj)Ξk, ..., 1, I(Ξi), I(Ξi)I(Ξj), ...

..., I(I(Ξi)I(Ξj)Ξk), I(I(Ξi)I(Ξj)), ..., I()I(), I(I()), ...},
(28)

(all indices are allowed to vary from 1, ..., d), with associated degrees |τ | as follows7:

α− 1, ..., 3α− 1, ...., 0, α, 2α, ... ..., 3α, 2α + 1, ...., 2, 2, ...

As in the case of W, elements of W̃ can be viewed as rooted trees, but without node 
decorations. For instance,

are trees (↔ symbols) contained in W, and also in WHai14, the symbols arising in the 
construction of [30], whereas

are contained in W, following the above construction taken from [7], in order to obtain 
stability under the negative renormalization maps (but not included in WHai14).

A linear subspace of T = 〈W〉 is then given by

T̃ := 〈W̃〉. (29)

Symbols for negative renormalization. Recall that, thanks to β = 1, noise degree 
α − 1 ∈ (−1, 0), no terms X, X2 or I(), ... arise as symbol in W− := {τ ∈ W | |τ | < 0}. 

7 tacitly assuming α < 1/3.
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(As a consequence, replacing W by WHai14, W̃ or WBHZ in the definition of the negative 
symbols makes no difference.) In particular,

W− = {Ξi, I(Ξi)Ξj , ..., I(Ξi)I(Ξj)Ξk, ...}

(where W− “ends” right before the element 1 in (28) above) contains no powers of X, 
(hence no need to introduce “W̃−”). As previously defined (see (20)), we have

T− = free unital commutative algebra generated by W−.

For instance, writing • for the (free, commutative) product in T−,

2Ξi −
1
3Ξi • Ξj + I(Ξi)Ξj • (I(Ξi)I(Ξj)Ξk)•2 ∈ T−.

Interpreting • as the forest product, elements in T− can then be represented as linear 
combinations of forests, such as

One can readily verify that Δ− : T → T− ⊗ T restricted to T̃ maps T̃ → T− ⊗ T̃ , also 
denoted by Δ− so that (T̃ , Δ−) is a subcomodule of (T , Δ−).

Symbols for positive renormalization and T+. Recall that T+ was generated, as a free 
commutative algebra, by

W+ := {X} ∪ {Jkτ | τ ∈ W, |τ | + 1 − k > 0}.

Writing J ≡ J0 as usual, we define a subset W̃+ ⊂ W+ as follows

W̃+ := {J τ | τ ∈ W̃} (30)

= {1,J (Ξi),J (I(Ξi)Ξj),J (I(I(Ξi)Ξj)Ξk),J (I(Ξi)I(Ξj)Ξk), ...,J (I(Ξi)I(Ξj)), ...}

with degrees 0, α, 2α, 3α, 3α, ..., 2α + 1, ... here.
Recall that elements in W+ can be represented by elementary trees, in the sense that 

- disregarding the trivial (empty) tree 1 - only one edge departs from the root. The same 
is true for elements in W̃+. Set

T̃+ := free unital commutative algebra generated by W̃+.

For example, writing τ1τ2 for the (free, commutative) product of τ1, τ2 ∈ T̃+, an 
example of an element in this space would be
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J (I(Ξi)Ξj) + J (I())J (1) + 3 J (Ξi)J (Ξj) + J (I(Ξi)Ξj)J (I(Ξk)Ξl) ∈ T̃+.

Fortunately, every such element can still be represented as a tree; it suffices to interpret 
the free product in T+ as the “root-joining” product (which is possible since all consti-
tuting trees are elementary). The (abstract) unit element 1 ∈ T+ is then indeed given by 
the (trivial) tree • ↔ X0, where we recall our convention to drop the node decoration 
“0”. For instance, the above element becomes8

Remark 46. Though we used the same formalism to draw trees as in the case of W̃
above, the interpretation here is slightly different in that all root-touching edges refer to 
J rather than I. As mentioned before, in [7], this is indicated by a blue colouring of the 
root.

As before, we define a coaction of T̃+ on T̃ (which we again denote Δ+ : T̃ → T̃ ⊗ T̃+) 
by (24), (26), and (27) as well as a coproduct Δ+ : T̃+ → T̃+ ⊗ T̃+ defined in the same 
way, but with I changed to J in (27). (In contrast to the case of Δ− discussed above, it 
is not the case that (T̃ , Δ+) is a subcomodule of (T , Δ+).)

We note already that (T̃+, Δ+) is isomorphic to the Connes-Kreimer Hopf algebra H
arising from the identifications laid out in the following subsection (and which will be 
used crucially in the proof of the upcoming Proposition 48).

6.2. Link with translation of rough paths

6.2.1. Identification of spaces
We now give a precise description the map Δ− in our context as well as its connection 

to the map δ from Section 3.3. To do so, we first need to introduce several identification 
of vector spaces and algebras, as well as appropriately identify branched rough paths as 
models on a regularity structure.

Recall the space H = H(•0, ..., •d) from Section 3 spanned by labelled forests with 
label set {0, 1, . . . , d}. Consider now the enlarged vector space

8 Remark that J (1), which corresponds to the right branch of the second term, could also have been 
written as J (), reflecting our convention to drop the decoration 0 from nodes (here: 1 ≡ X0). By the same 
logic, we could also write I(), one of the symbols arising in W, as I(1).
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H̃ := H⊕HΞ1 ⊕ ....⊕HΞd, (31)

driven by branched rough paths [38]). With T̃ as defined in (29), and in particular with 
noise types Ξ1, ..., Ξd, we then have a vector space isomorphism

H̃ ↔ T̃

obtained by adding an extra edge to indicate a noise Ξi, i �= 0, and by “forgetting” the 
label 0 (which is equivalent to setting the noise Ξ0 to the constant 1). For example,

Recall that B = B(•0, ..., •d) denotes the subspace of H spanned by trees, and define

B− = B−(•1, ..., •d) ⊂ B ⊂ H

as the subspace of B spanned by trees with no label 0 and with at most �1/α� nodes. 
Observe that there is a canonical vector space isomorphism

φ : B− → 〈W−〉 ⊂ HΞ1 ⊕ ....⊕HΞd ⊂ H̃, (32)

where we have used the identification H̃ ↔ T̃ ⊃ 〈W−〉 for the first inclusion (and both 

inclusions being strict: for the first, just consider the element Ξ1 /∈ 〈W−〉). We denote 

this isomorphism also by

τ �→ τ̇ := φ(τ).

For example,
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where we assume α ∈ (0, 1/3) so the tree appearing on the left is indeed an element in 
B−. Correspondingly, the symbol on the right has negative degree as an element of W, 
hence is an element of W−.

Write B∗
− for the dual of the (finite-dimensional) vector space B−. Of course, B∗

−
∼= B−

which allows us to identify B∗
− with 〈W−〉. Recall that (T−, •) was defined as the free 

unital commutative algebra generated by W−, and that G− ⊂ T ∗
− denotes the group of 

characters on T−. By definition of T−, we then have a bijection

B∗
− ↔ G−. (33)

To be fully explicit about this, recall that

T− = 〈τ̇1 • .... • τ̇n : τ̇i ∈ W−, n = 1, 2, ...〉,

so writing τi = φ−1(τ̇i) ∈ B−, we have that associated to v ∈ B∗
− the character � ∈ G−

given explicitly by the formula

�(τ̇1 · .... · τ̇n) = �(τ̇1)...�(τ̇n) = 〈v, τ1〉...〈v, τn〉.

Define now

(H−, ·)

as the free commutative algebra generated by the subspace B− of H̃ (remark that the 
product in H− has nothing to do with the product in H itself), so that there is an algebra 
isomorphism

H− ↔ T−.

A typical element of H− looks like:

whereas one has •
2
/∈ H−.

Note that we can also make the identification of algebras

H ↔ T̃+.

For instance, using the bracket notation,

[•0]•0 •0 +[•i]•j
[•k]•l

↔ J (I())J (1) + J (I(Ξi)Ξj)J (I(Ξk)Ξl) ∈ T̃+.
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We denote by G̃+ ⊂ T̃ ∗
+ the characters on T̃+ and note that there is also a bijection 

G ↔ G̃+, where we recall that G ⊂ H∗ is the Butcher group over R1+d, i.e., the set of 
characters on H.

To summarize, we have the following identifications in place

H̃ ↔ T̃ ,

H− ↔ T−,
H ↔ T̃+,

B∗
− ↔ 〈W−〉 ↔ G− ⊂ T ∗

−

G ↔ G̃+ ⊂ T̃ ∗
+ .

6.2.2. Renormalization as rough path translations
It now only remains to identify (a family of) branched rough paths with a class of 

models on a suitable regularity structure. Define the index set A := {0} ∪αN∪(αN−1). 
Recall that the action of g ∈ G̃+ on T̃ is given exactly as before by

Γgτ = (id ⊗ g)Δ+τ, for all τ ∈ T̃ .

Note that Γg indeed maps T̃ to itself due to the definition of G̃+. Note further that ΓgΓh

(as a composition of linear maps) is exactly Γg◦h (with ◦ the product in G̃+ given as the 
dual of Δ+), and so

G := {Γg : g ∈ (G̃+, ◦)},

is indeed a group of endomorphisms of T̃ .
Recall now the definition of a regularity structure from [30] Definition 2.1.

Lemma 47. The triplet (A, T̃ , G) is a regularity structure.

Proof. The only non-trivial property to check is that for all τ ∈ T̃ of degree α ∈ A and 
Γ ∈ G, Γτ − τ is a linear combination of terms of degree strictly less than α, which in 
turn is a direct consequence of the definition of Δ+ : T̃ → T̃ ⊗ T̃+ from (27) (see end of 
Section 6.1.2). �

Recall also the definition of a model on a regularity structure (see [30] Definition 2.17). 
Let M[0,T ] denote the set of all models (Π, Γ) for (A, T̃ , G) on R such that

(i) Πt1 is the constant function 1 for all t ∈ R,
(ii) Γst = id for s, t ∈ (−∞, 0] and for s, t ∈ [T, ∞),
(iii) (ΠtIy)′ = Πty for all t ∈ R and y ∈ T̃ . (Here (..)′ denotes the Schwartz deriva-

tive.)
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On the other hand, let Rα
[0,T ] be the set of all (1 + d)-dimensional α-Hölder branched 

rough paths X : [0, T ]2 → G whose zeroth component is time, i.e., 〈Xs,t, •0〉 = t − s and

〈Xs,t, [τ ]•0〉 =
t∫

s

〈Xs,u, τ〉du, for all τ ∈ H, s, t ∈ [0, T ]. (34)

Observe that this condition necessarily implies that X satisfies condition (15) from The-
orem 30 (cf. Remark 33). Note that Xs,t can be identified with an element of G̃+ due to 
the identification G ↔ G̃+.

Finally, observe that φ defined in (32) may be extended to a vector space isomorphism

φ : B ↔ HΞ0 ⊕HΞ1 ⊕ ....⊕HΞd
∼= H⊕HΞ1 ⊕ ....⊕HΞd ≡ H̃ (35)

which maps a tree τ ∈ B into a forest φ(τ) ≡ τ̇ , as illustrated in the following two 
examples:

Conversely, φ−1 adds an extra node (which becomes the root) and should be thought of 
as taking the integral of a symbol in H̃. The following result makes this precise by giving 
a bijection between M[0,T ] and Rα

[0,T ].

Proposition 48. There is a bijective map I : Rα
[0,T ] → M[0,T ] which maps a branched 

rough path X to the unique model (Π, Γ) ∈ M[0,T ] with the property that

(ΠsI τ̇)(t) = 〈Xs,t, τ〉 for all τ ∈ B, s, t ∈ [0, T ],

where we have made the identifications φ(τ) ≡ τ̇ ∈ H̃ ↔ T̃ . Furthermore, the model 
(Π, Γ) satisfies Γts = ΓXs,t

(where we have made the identification Xs,t ∈ G ∼= G̃+) and 
the multiplicativity property

Πt((Iy1) . . . (Iyn)) = Πt(Iy1) . . .Πt(Iyn), for all n ∈ N, yi ∈ T̃ . (36)

Proof. Consider X ∈ Rα
[0,T ]. For all s, t ∈ [0, T ] define Γts = ΓXs,t

and (ΠsI τ̇)(t) =
〈Xs,t, τ〉 for all τ ∈ B. Observe that we may further impose on (Π, Γ) that properties (i)
and (ii) hold. Furthermore, for every τ /∈ IT̃ , we may define Πtτ = (ΠtIτ)′, which 
completely characterizes Π. It remains to verify (36), that property (iii) holds for all 
τ ∈ IT̃ , and that (Π, Γ) is indeed a model.
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For (36), note that from (34) we have

Πt(I τ̇1 . . . I τ̇n) = (ΠtI(I τ̇1 . . . I τ̇n))′

= (〈Xt,·, φ
−1(I τ̇1 . . . I τ̇n)〉)′

= (〈Xt,·, [τ1 . . . τn]•0〉)′

= 〈Xt,·, τ1 . . . τn〉

= 〈Xt,·, τ1〉 . . . 〈Xt,·, τn〉 = Πt(I τ̇1) . . .Πt(I τ̇n).

To show property (iii) for τ̇ = I ˙̄τ ∈ IT̃ , where ˙̄τ ∈ T̃ , observe that φ([τ̄ ]•0) = τ̇ , so 
that again by (34)

Πtτ̇ = ΠtI ˙̄τ

= 〈Xt,·, τ̄〉

= (〈Xt,·, [τ̄ ]•0〉)′

= (ΠtIφ([τ̄ ]•0))′

= (ΠtI τ̇)′.

It remains to show that (Π, Γ) is a model. We first verify that ΠsΓs,t = Πt. Let τ ∈ B, 
so that I(τ̇) ∈ T̃ . Recall that the Connes-Kreimer coproduct Δ� : H → H ⊗H as was 
introduced in Section 3.1 can be defined recursively by

Δ�[τ1 . . . τn]•i
= [τ1 . . . τn]•i

⊗ 1 + (id ⊗ [·]•i
)Δ�(τ1 . . . τn),

for all τ1, . . . , τn ∈ B, i ∈ {0, . . . , d}.

With this recursion, one can verify that

Δ+ : I(T̃ ) → I(T̃ ) ⊗ T̃+

agrees with the “reversed” Connes-Kreimer coproduct

σ1,2Δ� : B → B ⊗H,

where σ1,2 : H ⊗ B → B ⊗ H, σ1,2 : τ ⊗ τ̄ �→ τ̄ ⊗ τ , and where we make the usual 
identification H ↔ T̃+ as well as φI : B → I(T̃ ) via φI : τ �→ I(τ̇) (which is of course 
just I ◦ φ). Therefore, treating Xs,t as a character on H ↔ T̃+, we have for all τ ∈ B
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(ΠtΓtsI τ̇)(u) = (Πt(id ⊗ Xs,t)Δ+I τ̇)(u)

= 〈Xt,u, (φI)−1(id ⊗ Xs,t)Δ+I τ̇)〉
= 〈Xt,u, (Xs,t ⊗ id)Δ�τ)〉
= 〈Xs,t ⊗ Xt,u,Δ�τ〉
= 〈Xs,t∗Xt,u, τ〉
= 〈Xs,u, τ〉
= Πs(I τ̇)(u).

(37)

Observe now that for τ ∈ T̃ , we have

ΓtsIτ = IΓtsτ + 〈Xs,t, Iτ〉1,

where we emphasize the symbol 1 ∈ T̃ . Therefore, by the (already established) proper-
ties (i) and (iii), it follows that for any τ ∈ T̃

ΠtΓtsτ = (ΠtIΓtsτ)′ = (Πt(ΓtsIτ − 〈Xs,t, Iτ〉1))′ = (ΠtΓtsIτ)′ = (ΠsIτ)′ = Πsτ,

which shows that ΠtΓts = Πs.
It remains to verify the analytic bounds on (Π, Γ). As in Theorem 30, denote by |τ |

the number of nodes in τ and by |τ |0 the number of nodes with the label 0. It follows 
that the degree of I τ̇ is given by |I τ̇ | = |τ |0(1 − α) + |τ |α. Since X satisfies (15), we 
have the analytic bound

|(ΠsI τ̇)(t)| = |〈Xs,t, τ〉| � |t− s||Iτ̇ |.

Since Πsτ = (ΠsIτ)′ by property (iii), we see that Π satisfies the correct analytic bounds. 
The exact same argument applies to Γ upon using the identification of Δ+ with σ1,2Δ�

above. Therefore (Π, Γ) is a model in M[0,T ] as claimed.
Finally, it remains to observe that we may reverse the construction. Indeed, starting 

with a model (Π, Γ) in M[0,T ], we may define X by 〈Xs,t, τ〉 = (ΠsI τ̇)(t). The facts 
that X satisfies (34) follows from property (iii), while the required analytic bounds for 
X to be an α-Hölder branched rough path follow from the analytic bounds associated 
to Π. To conclude, it suffices to verify that X thus defined satisfies Γts = ΓXs,t

and 
Xs,t∗Xt,u = Xs,u. To this end, note that by definition of the structure group G, there 
exists γts ∈ G̃+ ∼= G such that Γts = (id⊗γts)Δ+. Let X̃s,t ∈ G be the element associated 
to γts in the identification G̃+ ∼= G, and we aim to show X̃s,t = Xs,t. Indeed, from our 
identification H ↔ T̃+, it follows that for all τ ∈ B

〈γts,J τ̇〉 = 〈X̃s,t, τ〉.

On the other hand, we know that for all τ ∈ B
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〈Xs,t, τ〉 = (ΠsI τ̇)(t) = (ΠtΓtsI τ̇)(t) = (Πt(id ⊗ γts)Δ+I τ̇)(t) = 〈γts,J τ̇〉,

where for the last equality we have used property (i) and the fact that

Δ+I τ̇ = 1 ⊗ J τ̇ +
∑

I(τ̇ (1)) ⊗ τ̇ (2),

where every term I(τ̇ (1)) is of positive degree, and so (ΠtI(τ̇ (1)))(t) = 0. This concludes 
the proof that Γts = ΓXs,t

. To verify that Xs,t∗Xt,u = Xs,u, we can now simply reorder 
the sequence of equalities (37). �

Following [7] we introduce the renormalization map M� given by9

M� : T̃ → T̃ , τ �→ (�⊗ id) Δ−τ,

for a given character � ∈ G− ⊂ T ∗
− . In our case, we have the fact that M� commutes with 

I (cf. end of Remark 45)

M�I = IM�, (38)

which is readily verified by hand: I amounts to adding another edge to the root (thereby 
creating a new root), whereas M� amounts to extracting (negative) subtrees and maps 
them to R (via �). Clearly, the afore-mentioned edge (of degree 1) can not possibly be 
part of any singular subtree, hence the desired commutation.

This map acts on a model Π = (Π, Γ) and yields the renormalized model (see [7]
Theorem 6.15) given by

ΠM�
s := ΠsM�, ΓM�

t,s =
(
id ⊗ γM�

t,s

)
Δ+, γM�

t,s = γt,sM�.

Recall from Section 3.3 the map δ : B → A ⊗B, where A is the free commutative algebra 
generated by B (thought of as an isomorphic but different space to H). Recall also the 
(vector space) isomorphism φ : τ �→ τ̇ as detailed in (35) with which we identify H̃ ∼= B. 
Let π− : H̃ ∼= B → B− ∼= 〈W−〉 denote the projection onto terms of negative degree, 
which we extend multiplicatively to an algebra morphism π− : A → H−. We now define 
the map

δ− = (π− ⊗ id)δ : H̃ → H− ⊗ H̃.

For instance

δ−•0 = 1 ⊗ •0,

9 While we deliberately used the same letter, do not confuse M� : T̃ → T̃ with Mv : H∗ → H∗.



56 Y. Bruned et al. / Journal of Functional Analysis 277 (2019) 108283
whereas

δ•0 = •0 ⊗ •0 + 1 ⊗ •0.

We are now ready to state the link between translation of branched rough paths and 
negative renormalization in the following two results.

Lemma 49.

(i) For all τ ∈ B it holds that

Δ−τ̇ = Δ−φ (τ) = (φ⊗ φ) δ− (τ) .

(ii) Let v be an element of B∗
− and let � ∈ G− by the associated element in G− ⊂ T ∗

−, 
as was detailed in (33). Then

M�τ̇ = M�φ (τ) = φ (M∗
v τ)

Proof. (i) Let us consider [τ ]•i
∈ B. We then have the following identities:

Δ−φ([τ ]•i
) = Δ−τΞi =

∑
C=A·B⊂τ

(C ⊗ (RCτ)Ξi + A ·BΞi ⊗RCτ) . (39)

The sum is taken over all the couples (A, B) where A is a negative subforest of τ which 
does not include the root of τ and B is a subtree of τ at the root disjoint from A. In the 
sum in (39), the first term means that Ξi does not belong to the tree extracted at the 
root, while for the second term, Ξi belongs to the tree which comes from the product 
between Ξi and B giving a subtree of negative degree. One can derive the same identity 
for δ−. We first rewrite δ−:

δ−τ =
∑
A⊂τ

A⊗ R̃Aτ,

where A is a subforest of τ and R̃Aτ means that we contract the trees of A in τ and we 
leave a 0 decoration on their roots. Then the equivalent of (39) in that context is given 
by:

δ−[τ ]•i
=

∑
C̃=Ã·B̃⊂τ

(
C̃ ⊗ [R̃C̃τ ]•i

+ Ã · [B̃]•i
⊗ R̃Ã·[B̃]•i

[τ ]•i

)

(φ⊗ φ) δ−[τ ]•i
=

∑
C̃=Ã·B̃⊂τ

(
φ(C̃) ⊗ (R̃C̃τ)Ξi + φ(Ã) · B̃Ξi ⊗ φ

(
R̃Ã·[B̃]•i

[τ ]•i

))
.

Now we have the following identifications:
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φ(C̃) ↔ C, B̃Ξi ↔ BΞi, φ
(
R̃Ã·[B̃]•i

[τ ]•i

)
= R̃C̃τ ↔ RCτ, (R̃C̃τ)Ξi ↔ (RCτ)Ξi,

which gives the result.
(ii) Recall that δ− (τ) has an image of the form “forest ⊗ tree”, and that � ◦ φ =

v (which is a “dual” tree and multiplicative over forests). Also note that M∗
v τ =

(v ⊗ id) δ = (v ⊗ id) δ− whenever v ∈ B∗
− (which not true for general v ∈ B∗), so that

M�τ̇ = (�⊗ id) Δ−τ̇

= (�⊗ id) Δ−φ (τ)

= (v ⊗ φ) δ− (τ)

= φ
(
(v ⊗ id) δ−

)
= φ (M∗

v τ) . �
Theorem 50.

(i) It holds that the restriction Δ− : T̃ → T− ⊗ T̃ coincides with δ− : H̃ → H− ⊗ H̃, 
where we have made the identifications H̃ ↔ T̃ and H− ↔ T− as above.

(ii) Let v be an element of B∗
− and let � ∈ G− by the associated element in G− ⊂ T ∗

−, 
as was detailed in (33). Then the following diagram commutes

X ←→ Π
↓ ↓
MvX ←→ ΠM�

(iii) For v, v′ ∈ B− with associated characters �, �′ ∈ G−, it holds that the character 
associated to v + v′ is � ◦ �′, so that (B−,+) ∼= (G−, ◦).

Remark 51. In view of the final statement of Theorem 30 part (ii), we see that the 
commuting diagram in (ii) holds upon replacing Mv by any algebra morphism M :
H∗ → H∗ which preserves B∗, leaves invariant every forest without a label 0, and satisfies 
M•0 = •0 + v.

Remark 52. The final statement (iii) effectively says that the renormalization group 
associated to branched rough path is always abelian, despite the highly non-commutative 
nature of the Grossman-Larson Hopf algebra H∗.

Proof of Theorem 50. Part (i) is a just of a reformulation of Lemma 49 (i). To verify 
part (ii), in view of Proposition 48, we only need to check that for all τ ∈ B

ΠMl
s I τ̇ = 〈MvXs,·, τ〉 = 〈Xs,·,M

∗
v τ〉 .

The LHS can be rewritten as, thanks to (38) and Lemma 49 (ii)
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ΠM�
s I τ̇ = ΠsM�I τ̇

= ΠsIM�τ̇

= ΠsIφ (M∗
v τ) .

Applying Proposition 48 with τ̇ = φ (Mvτ) then shows that

ΠsIφ (Mvτ) = 〈Xs,·,M
∗
v τ〉

which is what we wanted to show.
Finally, to show (iii), we note that

〈� ◦ �′, τ〉 = 〈�⊗ �′,Δ−τ〉 = 〈�, τ〉 + 〈�′, τ〉, for all τ ∈ W−,

where the first equality follows by definition and the second from the fact that every 
element of W− is primitive with respect to the coproduct Δ−. Indeed from the Remark 43, 
we deduce that the coaction Δ− maps every τ ∈ W− into τ ⊗ 1 +

∑
(τ) τ

′ ⊗ τ ′′ such that 
τ ′′ is a tree of positive degree. However, Δ− as coproduct on T− (see (22)), will annihilate 
any term with τ ′′ of (strictly) positive degree. In particular then, Δ−τ = 1 ⊗ τ + τ ⊗ 1
for all τ ∈ W−, that is, any such τ is primitive. �
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