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To do harm to other animals in order to find out how we function is highly

questionable.
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Abstract

Cortical Spreading Depression (CSD) is a pathological dysfunction of brain activity

that occurs during neurological diseases like e.g. migraine and stroke. In the electro-

corticogram, it can be measured as a slowly propagating depression of the signal, which

is associated with the depolarization of the neuronal membrane potential involving a

redistribution of ions across the cell membrane. Despite substantial progress in the un-

derstanding of CSD, both biophysical processes during CSD and external influences on

CSD are still incompletely known.

For control of CSD by external neuromodulation, knowledge is required about cellu-

lar processes involved in CSD and interference of CSD with external forces. This is of

clinical importance because CSD causes transient neurological deficits and subsequently

headache (migraine) or permanent brain damage (stroke and brain injury).

In this thesis, we first study cellular processes involved in CSD using an ion-based model

(bottom-up approach).

Second, we investigate external forces on CSD in a generic neuronal model (top-down

approach).

To get deeper insight in biophysical processes involved in CSD, we carefully develop a

biophysical neuron model for CSD that describes transport processes on a tissue level.

Therefore, we start from a Hodgkin-Huxley type model including time-dependent ion

concentrations. The local model consists of two compartments, a neuron surrounded by

a closed extracellular space. The transmembrane currents are assumed to be a combi-

nation of gated and leak currents, ion pumps are also included. The model is bistable;

besides the physiological resting state a second stable state exists, which is a depolar-

ized state with largely depleted ion gradients. This state characterizes the pathological

depolarization during CSD.

We first investigate the robustness of this bistability for changes in strength and dy-

namics of the gated currents with a bifurcation analysis. We find quantitative changes,

however bistability holds in a wide parameter range.

Then, we add a third compartment to the model, the astrocytes. They function as a

buffer for excess ions in the extracellular space. This can, with convenient parameter
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values such as the size of the glial compartment and the amount of ion channels at the

glial membrane, change dynamics from bistable to excitable, i.e., excitable with large

depletion of ion gradients. In the local system, we identify the parameter range in which

the glial buffer deletes bistability. In the monostable system, the depolarized state is

transient, the systems recovers to the physiological state after each excitation.

Next, we assume the glial compartment to be a bath. The astrocytes are closely con-

nected to the blood vessels, what gives reason to the approximation that excess ions

in the astrocytes are cleared by the vasculature instantaneously. The mathematical

advantage of this description, which can be derived by a limit value generation of an

infinitely large glial compartment, is that we obtain a model with a reduced number of

rate equations. In the reduced model, the buffer function of the astrocytes is increased.

In addition, we carefully address the problem of electroneutrality. This is not negligible

in this grey matter model including a net flow of ions from one side of the membrane to

the other. We find that the particular mathematical description of the membrane po-

tential determines the charge distribution. Analyzing this in detail enables us to identify

an appropriate model description that accounts for electroneutrality.

To describe transport processes during CSD and, in particular, to develop hypothesis

about when and why ionic homeostasis fails, we develop a spatially continuously ex-

tended neuron model. First, we couple the two-compartmental elements consisting of

a neuron surrounded by an extracellular space by extracellular diffusing ions in a one-

dimensional geometry. Thereby, we pay attention to electroneutral diffusion.

The bistable model spatially coupled by diffusion has propagating front solutions, i.e.,

solutions that connect the two stable states and propagate with constant shape and

velocity.

Next, we add the glial compartment to the spatially extended neuron model. Depending

on parameter values, the local elements are bistable or monostable. Analyzing whether

lateral diffusion in the extracellular space contributes to relaxation we find that this is

not the case. A system consisting of bistable elements spatially coupled by extracellular

diffusing ions has propagating front solutions, whereas a system consisting of monostable

elements has propagating pulse solutions, i.e., solutions that start and end in the same

stable state and propagate with constant shape and velocity.

Next, to model ion movement through glial gap junctions, we also allow for diffusion

within the glial compartment. This system has propagating pulse solutions in the whole

analyzed parameter regime. The pulse width decreases due to diffusion in the glial com-

partment, thus our model suggests that gap junctional coupling facilitates relaxation.

In addition, we address the in literature contradicting discussed role of neuronal gap

junctions. Although assumed to be only rare, our model proposes that they have a

strong inhibitory effect on CSD.
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Grafstein proposed in 1963 to model front propagation of CSD using a generic one vari-

able reaction-diffusion model (today known as Schlögl model). Although Grafstein’s

hypothesis has to be modified, the essential view of a reaction-diffusion process still

holds.

To describe CSD by an effective model that also allows for analytical approximations,

we use an extension of the Schlögl model with a second variable, which is known as the

FitzHugh-Nagumo (FHN) model. Thereby, we investigate the role of external influences

such as the curvature of the cortex or an externally applied electrical field on CSD.

First, the effect of advection on the propagation of traveling waves in a one-dimensional

medium is studied. The advection term can describe an electrical field externally ap-

plied parallel to propagation direction and, in addition, advection in a one-dimensional

medium is an approximation of the effect of front curvature on wave propagation in a

two-dimensional medium.

In particular, the effect of advection on the critical minimal speed of traveling waves is

studied. Previous theoretical studies estimated this effect on the velocity of fast waves,

a stable stationary propagating solution of FHN model, and predicted the existence of a

critical advection strength below which propagating waves are not supported anymore.

Here, an analytical expression for the advection-velocity relation of the slow wave, an

unstable stationary propagating solution of the FHN model, is derived. Then, the criti-

cal advection strength is calculated taking into account the unstable slow wave solution.

We also analyze the two-variable reaction-diffusion-advection model numerically in a

wide parameter range. Due to the new control parameter (advection) we can find sta-

ble wave propagation in the otherwise non-excitable parameter regime, if the advection

strength exceeds a critical value. Comparing theoretical predictions to numerical re-

sults, we find that they are in good agreement. Theory provides an explanation for the

observed behaviour.

Next, to investigate the influence of the geometry of the brain on CSD, we study reaction-

diffusion waves on curved two-dimensional surfaces, and determine the influence of curva-

ture upon the nucleation and propagation of spatially localized waves. We show that the

stability of propagating wave segments crucially depends on the curvature of the surface.

As they propagate, they may shrink to the uniform steady state or expand, depending

on whether they are smaller or larger than a critical nucleus. This critical nucleus for

wave propagation is modified by the curvature acting like an effective space-dependent

local spatial coupling, similar to diffusion, and thus extending the regime of propagating

excitation waves beyond the excitation threshold of flat surfaces. In addition, curva-

ture can even change stability of wave segments. In particular, a negative gradient of

Gaussian curvature Γ, that occurs, if the open ends of a wave segment, whose center

of mass is stored at the outside of a torus surface (positive Γ), point towards the torus
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inside (negative Γ), allows for stable propagation of localized wave segments remaining

unchanged in size and shape or oscillating periodically in size.



Zusammenfassung

Cortical Spreading Depression (CSD) ist eine pathologische Fehlfunktion der Hirnak-

tivität, die bei neurologischen Erkrankungen wie z.B. Migräne und Schlaganfall auftritt.

Im Elektrokortikogramm kann sie als eine langsam propagierende Unterdrückung des

Signals gemessen werden. Es kommt zu einer Depolarisation des neuronalen Membran-

potentials, das durch eine Umverteilung der Ionen durch die Zellmembran verursacht

wird. In den letzten Jahren wurden wesentliche Fortschritte im Wissen über CSD

erzielt, dennoch sind sowohl biophysikalische Prozesse als auch äußere Einflüsse, die

CSD auslösen können, noch unzureichend bekannt.

Um CSD durch externe Neuromodulation kontrollieren zu können, ist es erforderlich,

über die zellulären Vorgänge während CSD und über die Wechselwirkung von CSD mit

äußeren Einflüssen Bescheid zu wissen. Dies ist von klinischer Bedeutung, da CSD

sowohl vorübergehende neurologische Defizite mit anschließenden Kopfschmerzen

(Migräne) als auch dauerhafte Hirnschäden (Schlaganfall und Hirnverletzung) verur-

sachen kann.

In dieser Arbeit haben wir zunächst mit Hilfe eines biophysikalischen Modells mit dy-

namischen Ionenkonzentrationen zelluläre Vorgänge untersucht, die an CSD beteiligt

sind (Bottom-up-Ansatz).

Dann haben wir mit Hilfe eines generischen neuronalen Modells untersucht, wie äußere

Kräfte auf CSD wirken (Top-Down-Ansatz).

Um mehr über die biophysikalischen Prozesse, die an CSD beteiligt sind, herauszufinden,

entwickeln wir ein biophysikalisches Neuronenmodell für CSD, das Transportprozesse auf

Gewebeniveau beschreibt. Dazu starten wir von einer Erweiterung des Hodgkin-Huxley-

Modells mit zeitabhängigen Ionenkonzentrationen. Das lokale Modell besteht aus zwei

Kompartiments, einem Neuron umgeben von einem geschlossenen extrazellulären Raum.

Die Transmembranströme sind eine Kombination aus spannungsabhängigen Strömen

und Leckströmen, Ionenpumpen sind ebenfalls enthalten. Dieses Modell ist bistabil;

neben dem physiologischen Ruhezustand hat es einen zweiten stabilen Zustand mit de-

polarisiertem Membranpotential und weitgehend erschöpften Ionengradienten. Dieser

Zustand beschreibt die pathologische Depolarisation während CSD.
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Nach einer kurzen Einführung des Modells untersuchen wir, ob die Bistabilität eine

robuste Eigenschaft des Systems ist. Dazu führen wir unter Variation der Stärke und

Dynamik der spannungsabhängigen Ströme eine Bifurkationsanalyse durch. Trotz quan-

titativer Unterschiede bleibt die Bistabilität in einem weiten Parameterbereich erhalten.

Dann fügen wir dem Modell ein drittes Kompartiment hinzu, die Astrozyten. Sie können

überschüssige Ionen aus dem extrazellulären Raum aufnehmen. Durch die Variation von

Parametern wie der Größe der Astrozyten und der Anzahl an Iononkanälen durch die

Astrozytenmembran lässt sich die Dynamik des Systems von bistabil zu monostabil

ändern. Das monostabile System ist anregbar. Nach einer geeigneten Anregung kommt

es, bevor das physiologische Gleichgewicht wiederhergestellt wird, zu einer transienten

Depolarisation des neuronalen Membranpotentials, das durch eine starke Abnahme der

Ionengradienten verursacht wird. Wir bestimmen den Parameterbereicht, in dem der

Ionenaustausch zwischen Extrazellulärraum und Astrozyten die Bistabilität aufhebt.

Als nächstes beschreiben wir die Astrozyten als Bad. Diese Näherung wird mit der

Annahme begründet, dass überschüssige Ionen in den Astrozyten schnell von den Blut-

gefäßen, die direkt mit den Astrozyten verbunden sind, aufgenommen werden. Mathe-

matisch entspricht diese Beschreibung dem Grenzwert unendlich großer Gliazellen. In

dem nun bezüglich der Anzahl an Ratengleichungen reduzierten Modell wird das phy-

siologische Gleichgewicht nach einer Störung schneller wiederhergestellt.

Bei der Entwicklung des Modells brücksichtigen wir das Problem der Elektroneutralität.

Da wir ein Modell der grauen Substanz entwickeln, das einen Ionen-Fluss durch die Mem-

bran beschreibt, darf dies nicht vernachlässigt werden. Wir zeigen, dass die hier gewählte

mathematische Bechreibung des Membranpotentials die Ladungsverteilung beeinflusst.

Durch eine detaillierte Untersuchung dieses Zusammenhangs finden wir eine geeignete

Beschreibung, die Elektroneutralität gewährleistet.

Ausserdem entwickeln wir ein räumlich ausgedehntes neuronales Modell. Damit wollen

wir Transportprozesse während CSD beschreiben, um herauszufinden, wann Ionen-

homöostase gewährleistet ist und wann nicht.

Als erstes koppeln wir neuronale Elemente, die aus zwei Kompartiments, Neuronen und

einem Extrazellulärraum, bestehen, durch Ionendiffusion im Extrazellulärraum Ionendif-

fusion. Auch hier achten wir auf Elektroneutralität, durch eine elektroneutrale Beschrei-

bung des diffusiven Ionenflusses ist diese gewährleistet. Durch die diffusive Kopplung

bistabiler Elemente erhalten wir ein Medium, das Frontlösungen hat. Das sind Wellen,

die die beiden stabilen Zustände verbinden und sich mit konstanter Geschwindigkeit und

Form fortbewegen.

Als nächstes koppeln wir neuronale Elemente bestehend aus drei Kompartimenten, Neu-

ronen, Astrozyten und einem Extrazellulärraum, wieder durch Diffusion im Extrazel-

lulärraum. Je nach Parameterwahl sind die lokalen Elemente bistabil oder monostabil.

Uns interessiert es, ob laterale Diffusion im Extrazellulärraum zur Ionenhomöostase
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beiträgt. Wir stellen fest, dass dies nicht der Fall ist. Ein Medium bestehend aus

bistabilen Elementen hat Frontlösungen, wohingegen ein Medium bestehend aus mono-

stabilen Elementen Pulslösungen hat, also Lösungen, die im gleichen stabilen Zustand

starten und enden und sich mit konstanter Form und Geschwindigkeit fortbewegen.

Da die Astrozyten durch Gap Junctions miteinander verbunden sind, haben wir auch

den Einfluss von Ionendiffusion innerhalb des Gliakompartiments auf CSD untersucht.

Im gesamten von uns untersuchten Parameterbereich hat dieses Medium Pulslösungen.

Die Pulsbreite hängt dabei von der Stärke der Diffusion im Gliakompartiment ab. In

unserem Modell trägt also der Ionenfluss durch Gap Junctions zur Ionenhomöostase bei.

Desweiteren haben wir den in der Literatur widersprüchlich diskutierten Einfluss von

neuronalen Gap Junctions auf CSD untersucht. Es gibt zwar nur eine geringe Anzahl

an Gap Junctions zwischen den Neuronen, dennoch ist ihre inhibitorische Wirkung auf

CSD in unserem Modell beträchtlich.

Im Jahr 1963 schlug Grafstein vor, die Frontpropagation von CSD mit einem generischen

Reaktions-Diffusionsmodell mit nur einer Variablen zu beschreiben. Heute ist dieses

Modell als Schlögl-Modell bekannt. Grafsteins Hypothese muss zwar modifiziert wer-

den, der wesentliche Bestandteil aber, nämlich die Beschreibung von CSD als Reaktions-

Diffusionsprozess, ist noch gültig.

Um CSD mit einem geeigneten Modell zu beschreiben, das auch analytische Näherungen

zulässt, verwenden wir eine Erweiterung des Schlögl Modells mit einer zweiten Variablen,

das FitzHugh-Nagumo (FHN) Modell. Dies ermöglicht es uns, die Wirkung äußerer

Einflüsse wie der Krümmung des Kortex oder eines extern angelegten elektrischen Felds

auf CSD zu untersuchen.

Zunächst untersuchen wir den Einfluss von Advektion auf die Propagation von Wellen

in einem eindimensionalen Medium. Der Advektionsterm kann ein elektrisches Feld

beschreiben, das extern parallel zur Propagationsrichtung angelegt ist. Ausserdem

beschreibt Advektion in einem räumlich eindimensionalen Medium näherungsweise den

Einfluss der Krümmung der Wellenfront in einem räumlich zweidimensionalen Medium

auf die Wellenpropagation. Insbesondere wird der Einfluss von Advektion auf die kri-

tische minimale Geschwindigkeit von sogenannten traveling waves untersucht. Bisherige

theoretische Arbeiten haben den Einfluss von Advektion auf die Geschwindigkeit der fast

waves, einer stabilen stationär propagierenden Lösung des FHN Modells, näherungsweise

berechnet und haben gezeigt, dass es eine kritische Advektionsstärke gibt, unterhalb von

der keine stabile Wellenpropagtion möglich ist.

Hier leiten wir einen analytischen Ausdruck her, der den Einfluss von Advektion auf die

Geschwindigkeit der slow waves, einer instabilen stationär propagierenden Lösung des

FHN Modells, beschreibt. Dann berechnen wir unter Berücksichtigung der slow waves

die kritische Advektionsstärke.
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Ausserdem untersuchen wir das Reaktions-Diffusions-Advektionsmodell in einem großen

Parameterbereich numerisch. Der neue Kontrollparameter (Advektion) ermöglicht sta-

bile Wellenpropagation im sonst nicht anregbaren Parameterbereich, wenn die Advek-

tionsstärke einen kritischen Wert übersteigt. Die theoretischen Vorhersagen und die

numerischen Ergebnisse stimmen überein. Die Theorie liefert eine Erklärung für das

numerisch beobachtete Verhalten.

Als nächstes untersuchen wir den Einfluss der Geometrie des Gehirns auf CSD. Wir un-

tersuchen Wellen auf gekrümmten zweidimensionalen Flächen und bestimmen den Ein-

fluss der Krümmung auf Keimbildung und Propagation räumlich begrenzter Wellenseg-

mente. Wir zeigen, dass die Stabilität von Wellensegmenten maßgeblich von der Krüm-

mung der Fläche abhängt.

Lokalisierte Wellensegmente können zum homogenen Grundzustand abklingen oder sich

ausdehnen, je nachdem, ob sie kleiner oder größer als der kritische Nukleus sind. Die

Größe des kritischen Nukleus hängt von der Krümmung der Fläche ab. Die Krümmung

der Fläche gleicht mathematisch einer effektiv ortsabhängigen räumlichen Kopplung

ähnlich der Diffusion. Damit lässt sich erklären, warum auf gekrümmten Flächen der Pa-

rameterbereich, in dem Wellenpropagation möglich ist, im Verhältnis zu ungekrümmten

Flächen verschoben ist.

Ausserdem beeinflusst die Krümmung die Stabilität von Wellensegmenten. Ein nega-

tiver Gradient der Gaußschen Krümmung Γ, der auftritt, wenn die offenen Enden eines

Wellensegments, dessen Schwerpunkt auf der Außenseite eines Torus (negatives Γ) liegt,

richtung Torusinnenseite (positives Γ) ragen, kann lokalisierte Wellensegmente stabi-

lisieren. Diese propagieren dann mit konstanter Form und Größe oder mit periodisch

oszillierender Größe.
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Chapter 1

Introduction

1.1 Cortical Spreading Depression

Cortical spreading depression (CSD) is a temporary but massive perturbation in the cor-

tical ionic homeostasis leading to a depression of neuronal activity that spreads through

the cortex and other grey matter regions in brain. CSD is an emergent phenomenon

arising from the interaction of local nonlinear processes in grey matter. Neural and glial

compartments, the extracellular space and the vasculature play a role in CSD.

In functional magnetic resonance imaging (fMRI) or electrocorticography (ECoG), CSD

can be measured. It is associated with a voltage variation, that peaks after several

seconds and is accompied by a huge rise in the extracellular potassium concentration

and a massive decrease in the extracellular concentrations of sodium and chloride [1].

The fast depolarization is followed by a much slower recovery process taking up to

minutes during which ion gradients are re-established towards their physiological values.

The massive ionic perturbation clearly distinguishes CSD from all other brain states

such as epileptic seizure activity, functional activation or the physiological resting state.

The sequence of ionic perturbation and its recovery spreads with a velocity of about

0.03 - 0.1 mm/s over cortical regions.

CSD is closely related to migraine with aura, stroke and brain injuries [2]. During

migraine aura, it spreads as a localized wave segment over an area of several centimeters.

In stroke, CSD starts near the infarct core and then circles it. Re-entrant SD waves

are believed to have the potential to worsen outcome in incremental steps with each

wave circling near the infarct core, but could also have some beneficial component by

stimulating blood flow in the penumbra zone far from the infarct tissue [3].

1
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1.2 Motivation

Brain function is the collective result of a huge number of mechanisms ranging from pro-

cesses at the cellular level like ion movement across the neuronal and glial membrane over

interactions of neurons by synaptic connections, gap junctional coupling and diffusion

of ions in the interstitial space to macroscopic properties of the brain like the curvature

of the cortex. The interaction of many components and mechanisms is necessary for

normal brain activity.

CSD is a pathological dysfunction of brain activity affecting an area of several square

centimeters of grey matter. Despite substantial progress in the understanding of CSD,

both biophysical processes during CSD and external influences on CSD are still in-

completely known. However, knowledge about cellular processes involved in CSD and

interference of CSD with external forces is of great relevance, not only for comprising

the functionality of the human brain, but also for developing novel future therapies for

this pathological states.

Computational neuroscience complements clinical neuroscience in providing the oppor-

tunity to isolate specific mechanisms that are believed to be relevant for normal brain

function. Simulations and analytical insights help us to understand the nervous system

in both health and disease. Here, to get deeper insight in biophysical processes involved

in CSD, we carefully develop a biophysical neuron model for CSD that describes trans-

port processes on a tissue level. In addition, to describe CSD by an effective model that

also allows for analytical approximations, we use an extension of the Schlögl model with

a second variable, which is also known as the FitzHugh-Nagumo model [4, 5]. Thereby,

we can investigate the role of external influences, such as the curvature of the cortex or

an externally applied electrical field, on CSD.

1.3 Overview of mathematical neuron models

The earliest mathematical model for electrically excitable living cells was proposed by

Hodgkin and Huxley in a series of papers in 1952 [6–10]. They describe the generation

and propagation of action potentials in the squid giant axon. Their model is based on

the approach that the neuronal membrane can be described as a capacitor, the nonlin-

ear conductance dynamics are achieved by voltage-gated ion channels. Originally, the

ionic species considered in the Hodgkin-Huxley (HH) model are sodium and potassium.

However, all kinds of ion channels can be incorporated into such a model scheme.
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In the following, especially many HH-based cardiac models were developed [11–13]. The

application to cortical dynamics was first mostly indirect by using the approximative

FHN model [4, 5], which is a mathematical reduction of the HH model to two dynamical

variables. As in the second part of this thesis, macroscopic properties of CSD are ana-

lyzed with this approach, the FHN model is discussed in detail later, Sect. 1.5. Another

HH-related model has to be mentioned, the Morris-Lecar model [14]. It is a two-variable

excitation model with two non-inactivating voltage-sensitive conductances. The original

form of the model employed an instantaneously responding voltage-sensitive calcium

conductance for excitation and a delayed voltage-dependent potassium conductance for

recovery. As the FHN model, it became very popular in neuronal network modeling.

Modeling cortical dynamics with the biophysical HH ansatz, it has to be considered that

mammalian neurons are more complex than the squid giant axon in both, the variety of

ion channels and morphology [15]. Based on the work of Traub [16, 17], biophysically

more detailed models, that contain those ion channels, received an increasing attention

since the late 1990s.

CSD is a massive perturbation of ionic homeostasis. Thus to model CSD, biophysi-

cal models based on HH formalism have to be extended including time-dependent ion

concentrations inside and outside the cells. Ion dynamics in HH-like models were first

studied in cardiac models [12]. On cortical models, this was for the first time applied in

2000 by Kager, Wadman and Somjen [18]. They proposed a very detailed model for a

single hippocampal pyramidal neuron surrounded by a restricted interstitial space. The

neuron consists of several compartments, it contains the neuronal soma and spatially

complex apical and basal dendrite branches. In addition, for each neuronal compart-

ment, the ion channels of sodium, potassium and chloride are adapted. The Nernst

potential of an independent leak current, here interpreted as the chloride current, is

fixed at -70mV. This makes sure that the model only has a single stable state, the physi-

ological state with a depolarized membrane potential. This model reproduces CSD very

well [18–21].

The effect of cortical ion dynamics was in the following studied by Barreto, Cressman

at al. in a model for epileptoform bursting modulation. They used a much simpler

HH-like description that neglects morphological details and only contains the classical

HH channels [22, 23].

In 2014, Hübel, Schöll and Dahlem designed a model for CSD based on the same ansatz

[24]. Their ion-based model consists of a single point neuron surrounded by a restricted

extracellular space. The transmembrane currents of the considered ions, sodium, potas-

sium and chloride, are HH-type. The Nernst potential of each ionic species is dynamic.

This is physically consequent, as especially during CSD, the intra- and extracellular ion
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concentrations are massively perturbed. They found, that this minor change results in a

different phase space structure, namely the model provides bistable dynamics. Besides

the physiological state, there exists a second stable state, which is much less polarized

due to a massive depletion of ion gradients. This state characterizes the depolarization

during CSD.

In parallel, also mathematical model approaches for CSD in spatially extended systems

were developed since the 1960s. The first model that describes propagation of CSD was

proposed by Grafstein in 1963 [25]. She used a one-variable reaction-diffusion model,

today known as Schlögl model, which equals the activator equation of the FHN model.

The local potassium release by the neurons is mimiced by a cubic rate function, what

provides bistability. The spatial coupling of the local elements is given by diffusing

potassium. The system consisting of bistable elements has propagating front solutions,

that connect the two stable states.

A model of CSD propagating in cortical neuronal structures that is based more directly

on biophysical quantities was developed by Tuckwell and Miura in 1978 [26]. Movement

of potassium and calcium across the neuronal membrane is introduced by leak, gated

and pump currents and, in addition, ion diffusion in the ECS is considered. The trans-

membrane currents are composed such that the model has a single stable fixed point.

Their model has solitary traveling wave solutions, i.e., pulses that start and end in the

single stable state and propagate with constant shape and velocity.

A model based on the same principles was composed by Huang, Miura and Yao in 2011

[27, 28]. They coupled excitable elements consisting of two single point compartments,

a neuron surrounded by a an extracellular space [27] based on the work of Kager, Wad-

man and Somjen [18–21], by extracellular diffusing ions. The main difference to the

model proposed by Tuckwell and Miura [26] is that they include a fuller repertoire of

transmembrane ionic currents, namely sodium, potassium and chloride currents. The

stable stationary propagating solution (waves that propagate with constant velocity and

constant shape) of the model consisting of monostable elements spatially coupled by

diffusion also are solitary traveling wave solutions.

1.4 Cellular processes during Cortical Spreading Depres-

sion

The function of a single neuron and the interaction of ensembles of neurons depend very

sensitively on the interplay of cellular processes such as the ability of ion movement

across the neuronal and glial membrane, clearance of excess ions by the vasculature and
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lateral diffusion in the extracellular space and through neuronal and glial gap junctions.

The ability of a neuron to produce voltage spikes depends very sensitively on the ion

concentration in the microenvironment of the cell. In this thesis, we carefully develop

a biophysical mathematical model, that allows us to systematically include or leave out

the different mechanisms that are believed to be relevant for ionic homeostasis. We

can thereby evaluate the importance of the specific processes and in particular develop

hypotheses about when and why ionic homeostasis fails.

Our model is based on a work of Hübel, Schöll and Dahlem [24]. Their local model

representing a neuron surrounded by an extracellular space is a modification of the

model proposed by Barreto, Cressman et al. [22, 23]. Three ionic species are considered,

sodium, potassium and chloride. The transmembrane currents considered are gated,

leak and pump currents. The model has bistable dynamics. Besides the physiological

depolarized state, it has a second stable state. To large a perturbation, as it occurs

under extreme conditions like CSD, results in a less polarized state with largely depleted

ion gradients. Thus, after a super-threshold excitation, the system remains in the less

polarized state and does not recover to the physiological state any more.

During anoxic depolarization, which is a progressive and uncontrollable depolarization

of neurons during stroke or brain ischemia, this behaviour has been observed. The depo-

larization during CSD, however, usually recovers after a time of about 100 s. Recovery

was long believed to be due to the pumps only, as with anoxic brain injury, the supply

of energy to drive the pumps is lost. The model from [24] proposes that homeostasis

cannot rely on the pumps alone, but an additional mechanism is needed.

In the first part of this thesis, we discuss, which mechanisms this might be. First,

the clearance of excess ions from the extracellular space by the glia cell is analyzed in

the local system. Then, in a spatially extended system, we investigate whether lateral

diffusion of excess ions contributes to ionic homeostasis. Therefore, we propose the to

our knowledge first three-compartmental ion-based model for CSD consisting of neurons,

an extracellular space and astrocytes. Gated and leak currents crossing the astrocytic

membrane are considered. We find that ion uptake by glia cells can change system

dynamics from bistable to excitable. In addition, we propose a simplified description

of the glia cells, namely to assume them to be a bath. This implies, that clearance of

excess ions within the glial syncytium is approximated to happen instantaneously, what

can be interpreted as the fast uptake of ions by the vasculature. We find that in this

open system, the physiological equilibrium is the single stable state and relaxation time

is shortened.

In addition, to analyze whether lateral currents contribute to ionic homeostasis, we

carefully develop a spatially continuously extended ion-based model for CSD. To model
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the spatial coupling between the neuronal elements, we pick up the idea of modeling

the brain-cell microenvironment as porous medium [26, 28], i.e., the spatial coupling is

assumed to be due to diffusing ions. Previous ion-based reaction-diffusion models for

CSD have been proposed, i.e., monostable excitable elements consisting of two single

point compartments were spatially coupled by extracellular diffusing ions [26–28]. The

stable stationary propagating solution of this systems are pulses.

The single elements of our model consist of three compartments, a neuron and an astro-

cyte surrounded by an extracellular space. Depending on the properties of the astrocytic

compartment, the local elements are bistable or excitable. This enables us to identify

the role of lateral diffusive currents in buffering excess ions from the extracellular space.

The effect of gap junctions on CSD is widely unknown. Here, we analyze if they are

relevant for ionic homeostasis. Therefore, we consider all, extracellular diffusing ions,

ions diffusing through gap junctions in the glial syncytium and, in addition, ions diffusing

through neuronal gap junctions. Furthermore, we carefully address the problem of

electroneutrality in our grey matter model. First, electroneutrality of the transmembrane

currents is discussed, a model description that ensures electroneutral transmembrane

currents is identified. Second, analyzing diffusing charged particles, the electrical forces

among them cannot be neglected. To our knowledge, the only work that deals with this

topic in spatially extended models for CSD is from Mori from 2014 [29]. He follows a

formalism for electroneutral diffusion proposed by Rubinstein in 1990 [30]. We resume

this and discuss other possibilities to achieve electroneutral lateral currents.

In the neuronal medium, the type of inhomogeneous solutions reflect whether ionic

homeostasis holds. If ionic homeostasis completely fails, an excitation spreads over the

medium as a front. A functional buffer mechanism manages to recover a propagating

depolarization after a period of depolarization to ionic homeostasis. This behaviour is

reflected by pulses. However, in healthy brain, permanent ionic homeostasis (aside from

fluctuations due to normal neuronal activity) is desired. Thus an inhibitory mechanism

that prevents propagation of excitations is needed.

1.5 External influences on Cortical Spreading Depression

In addition to the biophysical processes explicitly described by the ion-based HH-type

model, we are interested in the influence of external forces such as the geometry of the

brain or an externally applied electrical field on CSD.

As there is clinical evidence that spatially localized wave segments play a dominant role

in CSD [3], we aim at investigating them. In general, spatially localized wave segments,
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as they propagate, may shrink, expand or remain unchanged in size and shape, in which

case they are called particle-like waves [31]. Spatially localized wave segments also

represent critical structures which can be stabilized by global feedback [32–34]. They

play an important role for the nucleation of propagating waves and wave segments in

2D spatial domains. Generally, waves can be controlled by feedback control. This is a

robust and versatile concept which uses the internal dynamics of the system to generate a

control signal which directs the system towards desired dynamics. A lot of examples are

provided by global or nonlocal and in some cases time-delayed feedback control of wave

propagation in reaction-diffusion systems [35–41]. On the other hand, the curvature of

the medium itself also provides a means of internal control of the stability, as we will

show in this thesis.

Most previous studies have focused on wave propagation in planar spatial domains,

yet there is also a considerable body of work on reaction-diffusion waves in curved

surfaces, mostly on spirals and ring waves [42–50], but not to the best of our knowlege

on nucleation. The cortex, however, represents a strongly curved surface. It is our

purpose to study nucleation and propagation of wave segments on curved 2D surfaces.

We demonstrate that positive or negative Gaussian curvature of the spatial domain has

a dramatically different effect upon the wave dynamics.

Furthermore, as small curvature of a wave front in 2D reaction-diffusion media can under

some approximations result in a reduced reaction-diffusion-advection description in one

dimension [51–53], we analyze critical properties of traveling waves in a spatially 1D

excitable medium.

Generic features of reaction-diffusion-advection models have been subject to detailed

mathematical analysis, e.g., conditions for the existence, uniqueness and asymptotic

stability of time periodic traveling wave solutions have been found [54], and the influ-

ence of nonlocal coupling on dynamics of reaction-diffusion-advection systems has been

analyzed [55–58]. Besides, critical properties of traveling waves affected by advection

have been discussed [49, 51, 52]. It has been shown, that advection can have destructive

and constructive effects on traveling waves, namely slowing them down and annihilate

them at a critical speed, and accelerating them [51].

Here, we show that in the non-excitable parameter regime, which does not support

traveling waves, advection can even induce stable propagation. We provide an analyt-

ical approximation for the effect of advection on the critical propagation velocity, i.e.,

the minimal possible velocity for stable wave propagation, and compare our results to

numerical simulations.
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As a model for traveling waves in one spatial dimension and for localized wave segments

on a curved 2D surface, we consider excitable media of activator-inhibitor type. FHN

dynamics are chosen, as they provide a mathematically tractable excitable medium of

activator-inhibitor type. The FHN model is based on a modification of the van der

Pol oscillator [59], i.e., an oscillator with non-linear damping that describes voltage

dynamics in an electrical circuit. The FHN model was first suggested by FitzHugh in

1961 [4], who called it Bonhoeffer-van der Pol oscillator [60, 61], and independently by

Nagumo et al. in 1962 [5]. By adding a driving current, they created a model for the

action potential.

The FHN model became extremely popular in modeling several physiological systems,

e.g., models of the heart [62, 63], of the muscle [62, 63] and especially spatially extended

network models for cortical activity [64–66] can be found. In addition, FHN equations

are a favorite model for the study of excitability. It also was suggested to describe the

fundamentally different ionic excitability of neuronal tissue causal for CSD [24, 67].

1.6 Structure of the thesis

This thesis is mainly divided into two parts. First, cellular processes involved in CSD

are studied in an ion-based model, Chapt. 2 and Chapt. 3. Second, a generic neuronal

model is proposed, Chapt. 4, and external forces on CSD in this simplified description

are investigated, Chapt. 5 and Chapt. 6.

In particular, in Chapt. 2, we introduce the local three-compartmental ion-based neuron

model. First, the bistable HH-type ion-based model consisting of neurons surrounded

by a closed extracellular space proposed in [24] is reviewed. Then, as in literature

exists a huge variety of HH parameter values, we show that the phase space structure

of the bistable model is quite robust under changes of this parameter values. In the

two-compartmental closed system, electroneutrality holds due to mass conservation. We

discuss a modification we will make to ensure, that electroneutrality also holds in open

systems. Next, glia cells crucial for buffering excess ions from the extracellular space

are introduced. Thereby, we carefully discuss, under which conditions they manage to

maintain ionic homeostasis in a closed local element.

In Chapt. 3, a spatial 1D neuronal model describing cellular processes on a tissue level

is designed. Therefore, the three-compartmental elements are spatially coupled by the

assumption of diffusing ions. Diffusive fluxes are described electroneutral. We show

that it depends on the strength of the particular transmembrane and diffusive currents

whether after an excitation recovery to the physiological equilibrium can be achieved.
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The second part of the thesis is structured as follows. In Chapt. 4, FHN equations are

introduced, local dynamics are reviewed. Using the FHN system as a model for CSD,

we analyze, whether, unless it does not allow for a direct interpretation in terms of ion

channels, it captures the threshold and excitation properties of the biophysical ion-based

model.

In Chapt. 5, the effect of advection on the propagation of traveling waves in one spatial

dimension is studied. In particular, an analytical approximation for the effect of advec-

tion on the critical minimal speed, below which no stable wave propagation is possible,

is found. Therefore, first the advection-velocity relation of the two traveling wave so-

lutions of the FHN model, the stable fast wave and the unstable slow wave, is derived.

Theoretical predictions are compared to numerical results.

Then, the generic reaction-diffusion system is extended to curved 2D surfaces, Chapt. 6.

Primary focus of this investigation is the influence of the curvature upon the nucle-

ation and propagation of spatially localized waves. We realize the geometry of the

excitable medium by a torus as it provides both, positive and negative Gaussian curva-

ture. We discuss wave solutions on a torus. We consider ring-shaped autowaves, wave

segments and unstable structures such as particle-like waves (critical nuclei) stabilized

by feedback control. Specifically, we study curvature-induced changes of nucleation and

curvature-induced stabilization of wave segments. The critical propagation effects cal-

culated in Chapt. 5 are numerically analyzed in two spatial dimensions with the help

of ring-shaped autowaves, that break up if their geodetic curvature exceeds a critical

value. Furthermore, critical propagation effects provide an explanation of the observed

curvature-induced stabilisation. In addition, we show that curvature can induce a mas-

sive change of lifetime of unstable structures.

In Chapt. 7, we conclude the thesis with a brief summary and an outlook on future

research projects that may follow our here presented results.





Chapter 2

Local dynamics of a biophysically

detailed neuron model

In this Chapter, a biophysically detailed local model for CSD is designed. The system

has time-dependent ion concentrations and consists of three compartments, a neuron

(NCS) and an astrocyte (ACS) surrounded by a closed extracellular space (ECS). The

model is based on the ion-based HH-type model proposed in [24], that consists of two

compartments, a single point neuron surrounded by a closed extracellular space.

First, in Sect. 2.1, the two-compartmental model is reviewed. As shown in [24], the

model is bistable; besides the physiological resting state it has a second stable state,

a depolarized state with largely depleted ion gradients. This state characterizes the

pathological depolarization during CSD.

In literature, we find a huge variety of biologically plausible parameter values of the

HH model. However, slight variations in the parameter values might cause completely

different dynamics if a bifurcation is passed. Thus, in Sect. 2.2, we analyze whether the

bistability is robust under variations of the parameter values.

The transmembrane currents of the closed system are electroneutral. This is ensured

by the mathematical description of the membrane potential. However, if ion exchange

with the surrounding is considered, electroneutrality can be violated. In Sect. 2.3, we

discuss, how the model equations, in detail the mathematical description of the mem-

brane potential at both, the neuron and the astrocyte, have to be set up to ensure

electroneutrality in open systems.

The bistability of the two-compartmental model gives reason to the assumption that

ion pumps alone are not sufficient for ionic homostasis, but an additional mechanism

is needed. This might be the uptake of excess ions from the extracellular space by

11
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astrocytes. To model this, in Sect. 2.4.1, a third compartment is added to the system, the

astrocytes. Leak and pump currents crossing the astrocytic membrane are considered.

In Sect. 2.4.2, we analyze, under which conditions this glial buffer manages to recover

the system from the depolarized state to the polarized equilibrium. In addition, in

Sect. 2.4.3, we propose an open system, namely to model the glia cells as a bath. This

limit of infinitely large astrocytes is motivated by the fast clearance of excess charges in

the astrocytes by the vasculature and by diffusion within the glial syncytium. Last, in

Sect. 2.4.4, we show some examples of the temporal evolution of the membrane potential

and the ion concentrations in the particular compartments during relaxation.

2.1 Bistable two-compartmental ion-based model

In [24], an extension of the HH model including explicit expressions for intra- and extra-

cellular ion dynamics is proposed to describe local dynamics of CSD. The original HH

model [10] reads

∂V n
m

∂t
= − 1

Cm
(INa + IK + Ileak − Iapp), (2.1)

∂n

∂t
=

n∞ − n
τn

, (2.2)

∂h

∂t
=

h∞ − h
τh

, (2.3)

∂m

∂t
=

m∞ −m
τm

. (2.4)

(2.5)

The first equation states, according to Kirchhoff’s current law, that the excess charge

is stored on the membrane capacitor with capacitance Cm and potential V n
m. INa and

IK are the gated sodium and potassium current, Ileak a leak current that is carried by

unspecific ions and Iapp is an externally applied current. The other rate equations give

the dynamics of the gating variables, the potassium activator n, the sodium inactivator

h and the sodium activator m. The asymptotic values x∞ and the relaxation times τx

are given by

x∞ =
αx

αx + βx
, (2.6)

τx =
1

αx + βx
, (2.7)

with x being n, m or h.
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Throughout this thesis, αx and βx are chosen according to [24],

αm =
0.3(V n

m + 30)

1− exp (−(V n
m + 30)/10)

, (2.8)

βm = 12 exp (−(V n
m + 30)/10) , (2.9)

αn =
0.03(V n

m + 34)

1− exp (−(V n
m + 34)/10)

, (2.10)

βn = 0.375 exp (−(V n
m + 44)/80) , (2.11)

αh = 0.21 exp (−(V n
m + 44)/20) , (2.12)

βh =
3

1 + exp (−(V n
m + 14)/10)

. (2.13)

In the HH model, the transmembrane ionic currents are a combination of gated and leak

currents, whereat the gated currents are specifically calculated for each ionic species

(i.e., for sodium and potassium),

IgNa = ggNam
3h · (V n

m − ENa), (2.14)

IgK = ggKn
4 · (V n

m − EK), (2.15)

(2.16)

with the gated conductances ggNa,K and the Nernst potentials of sodium ENa and potas-

sium EK . This equilibrium potentials occur when the forces due to the concentration

gradient and the forces due to the electrical potential that drive a particular ionic species

through a membrane are balanced. In the HH model, the Nernst potentials are given as

constant parameter values.

The leak currents of all ions in the HH model are summarized in one unspecific leak

current,

Ileak = gl · (V + 68), (2.17)

with the leak conductance gl. Eq. (2.17) ensures that the single stable fixed point of the

system is the polarized membrane potential, V n
m = −68mV.

In [24], it is proposed to replace the leak current Ileak by a leak-only chloride current ICl

and also consider specific leak currents for sodium and potassium. The transmembrane

ionic currents then read

INa = I lNa + IgNa = (glNa + ggNam
3h) · (V n

m − ENa), (2.18)

IK = I lK + IgK = (glK + ggKn
4) · (V n

m − EK), (2.19)

ICl = I lCl = glCl · (V − ECl), (2.20)



14 2 Local dynamics of ion-based neuron model

with the gated and leak conductances gl,gj , where j = 1..3 specifies the respective ionic

species (Na, K and Cl). All model parameters are listed in Tab. 2.1. The units for

conductance densities imply, that ionic and pump current densities are in µA/cm2.

The HH model can be reduced by two common simplifications. One is to replace dy-

namics of the fastest gating variable m by its steady state value m∞,

m = m∞(V n
m). (2.21)

In addition, there is an approximate functional relation between h and n, that is usually

realized as a linear fit. This, however, in the ion-based version of the model, can lead to

negative values of h. Thus, in [24], a sigmoidal fit is used instead,

h = 1− 1

1 + exp(−6.5(n− 0.35))
. (2.22)

In the HH model, ion concentrations are model parameter. In ion-based models, intra-

and extracellular ion concentrations are dynamical variables. Temporal changes of ion

concentrations are caused by transmembrane currents. Here, gated, leak and pump

currents are considered,

∂Nan
∂t

= − γ

ωn
(INa + 3IP ), (2.23)

∂Kn

∂t
= − γ

ωn
(IK − 2IP ), (2.24)

∂Cln
∂t

= +
γ

ωn
ICl, (2.25)

with Nan, Kn and Cln being the concentration of sodium, potassium and chloride in

the NCS, and with the NCS volume ωn. The factor γ, the ratio of the membrane surface

Am and Faraday’s constant F,

γ =
Am
F
, (2.26)

converts currents to ion fluxes. INa, IK and ICl are the currents calculated by Eqs. (2.18)-

(2.20), a combination of gated and leak currents. The ATP-driven pump current IP , that

replaces intracellular sodium with extracellular potassium at a 3/2-ratio, is calculated

by a formalism proposed in [23],

IP (Nan,Kn) =
Imax

(1 + exp ((25−Nan)/3)) (1 + exp (5.5−Ke))
, (2.27)

where Imax is the maximal pump current.
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Name Value & unit Description

Cm 1 µF/cm2 membrane capacitance
glNa 0.0175 mS/cm2 sodium leak conductance
ggNa 50 mS/cm2 max. gated sodium conductance
glK 0.05 mS/cm2 potassium leak conductance
ggK 40 mS/cm2 max. gated potassium conductance
glCl 0.05 mS/cm2 chloride leak conductance

Na
(0)
n 25.35 mmol/l initial NCS sodium conc.

Na
(0)
e 115.52 mmol/l initial ECS sodium conc.

Na
(0)
a 25.35 mmol/l initial ACS sodium conc.

K
(0)
n 128.76 mmol/l initial NCS potassium conc.

K
(0)
e 3.96 mmol/l initial ECS potassium conc.

K
(0)
a 128.76 mmol/l initial ACS potassium conc.

Cl
(0)
n 10.80 mmol/l initial NCS chloride conc.

Cl
(0)
e 137.80 mmol/l initial ECS chloride conc.

Cl
(0)
a 10.80 mmol/l initial ACS chloride conc.

ωn 2160 µm3 NCS volume
ωe 720 µm3 ECS volume
ωa 2160 µm3 ACS volume
Imax 6.8 µA/cm2 max. pump current
Am 922 µm2 membrane surface
F 96485 C/mol Faraday’s constant

γ 9.556e−3 µm2mol
C conversion factor

R 8.135 J
mol K gas constant

T 310 K temperature
DNa 1.32 · 10−5 cm2/s sodium diffusion coefficient
DK 2.0 · 10−5 cm2/s potassium diffusion coefficient
DCl 2.0 · 10−5 cm2/s chloride diffusion coefficient
λe 1.6 tortuosity of the ECS
λa 3.2 tortuosity of the ACS
Ca 0.5 current strength at glial membrane

Table 2.1: Parameter values of two- and three-compartmental local and spatially
extended ion-based model.
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The rate equation for the membrane potential Eq. (2.1) including a chloride ICl and a

pump current IP reads

∂V n
m

∂t
= − 1

Cm
(INa + IK + ICl + IP − Iapp). (2.28)

Due to mass conservation, the extracellular ion concentration can be calculated by

cej = c
e(0)
j +

ωn
ωe

(
c
n(0)
j − cnj

)
, (2.29)

with cn,ej being the concentration of the j-th ionic species in the NCS and in the ECS

respectively, and with the ECS volume ωe. The superscript zero indicates initial values.

The Nernst potentials are dynamic now. They depend on the concentrations of the

respective ionic species inside and outside the cell,

Ej = −RT

zjF
ln
cnj
cej
. (2.30)

In [24], it is discussed that the ion-based system consisting of 5 rate equations

∂V n
m

∂t
= − 1

Cm
(INa + IK + ICl + IP − Iapp), (2.31)

∂n

∂t
=

n∞ − n
τn

, (2.32)

∂Nan
∂t

= − γ

ωn
(INa + 3IP ), (2.33)

∂Kn

∂t
= − γ

ωn
(IK − 2IP ), (2.34)

∂Cln
∂t

= +
γ

ωn
ICl (2.35)

is nonhyperbolic, i.e., the structurally unstable phase space structure can be changed

by arbitrarily small perurbations. In order to make the system structurally stable, it is

proposed to reduce the system. One variable (except for n) is eliminated and expressed

in terms of the others. As the membrane potential is a consequence of changes in

ion concentrations, here we choose to eleminate Eq. (2.31). For this purpose, first

Eqs. (2.33)-(2.35) are inserted into Eq. (2.31),

∂V n
m

∂t
=

ωn
Cmγ

(
∂Nan
∂t

+
∂Kn

∂t
− ∂Cln

∂t

)
. (2.36)

Integrating this over time yields the standard capacitor equation

V n
m =

1

Cmγ
ρn. (2.37)
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ρn,e is the total amount of charges in the NCS,

ρn = zn0Fωnc
n
imp +

3∑
j=1

zjFωnc
n
j , (2.38)

with the valence of the respective ions zj and the concentration and valence of the

impermeable ions in the NCS cnimp and zn0 respectively. The physiological meaning of

this reduction is that the possibility of unspecific applied currents is ruled out. For

instance, a perturbation on the potassium rate Eq. 2.34 should be interpreted as a

potassium current.

With Inj being the transmembrane gated, leak and pump currents of each considered

species,

InNa = (glNa + ggNam
3h) · (V n

m − ENa) + 3IP , (2.39)

InK = (glK + ggKn
4) · (V n

m − EK)− 2IP , (2.40)

InCl = glCl · (V − ECl), (2.41)

the full set of rate equations reads

∂n

∂t
=

n∞ − n
τn

, (2.42)

∂cnj
∂t

= −zj
γ

ωn
Inj . (2.43)

These rate equations are complemented by the following constraints,

m = m∞(V ), (2.44)

h = 1− 1

1 + exp(−6.5(n− 0.35))
, (2.45)

cej = c
e(0)
j +

ωn
ωe

(
c
n(0)
j − cnj

)
, (2.46)

V n
m =

1

Cmγ
ρn. (2.47)

The model presented here is bistable in a wide parameter range, see Fig. 2.1. In addition

to the polarized state (V n
m = −68mV), the system has a second stable state with depo-

larized membrane potential (V n
m ≈ −25mV) and largely depleted ion gradients. After a

super-threshold excitation (e.g., a strong current pulse or switching off ion pumps) the

system remains in the depolarized state and does not recover any more, Fig. 2.2. During

anoxic depolarization, we find this behaviour. The depolarization during CSD, however,

usually recovers after a time of about 100 s.
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Figure 2.1: (V nm, Imax)-bifurcation diagram of the two-compartmental ion-based
model Eqs. (2.42)-(2.47). The fixed point (FP) is presented as a black line, the maxi-
mal and minimal membrane potential of the limit cycle (LC) is drawn as a green line.
Stable sections are solid, unstable sections are dashed. Bifurcations are marked by
circles, the physiological resting state by a black square. Following the characteristic
z-shaped FP line from below, there are two limit point bifurcations (LP1, LP2) and
three supercritical Hopf bifurcations (HB1, HB2, HB3). The LCs created in HB1, HB2
and HB3 disappear in homoclinic bifurcations (HOMs). The number of stable (n−) and
unstable (n+) directions of the fixed point is indicated by the (n−, n+)-tuples. There
is bistability of a physiological state and a depolarized state between LP1 and HB3.
Figure from [24].

In Sect. 2.4.1, we show that the buffering of excess ions in the ECS by glia cells and

from there further in the blood vessels, Sect. 2.4.3, can maintain ionic homeostasis.

2.2 Robustness of the phase space structure

The model proposed in Sect. 2.1 is based on the HH model. In literature, we find a huge

variety of biologically plausible parameter values of the common HH model, see e.g.

[16, 17, 68]. However, in excitable systems, slight changes in the parameter values might

cause completely different dynamics if a bifurcation is passed. Here, the robustness

of the phase space structure of the ion-based model Sect. 2 to variations of parameter

values is discussed. Therefor, we vary several HH parameter values over a wide range

and compare the position of the stable states in a bifurcation diagram.

The parameter values of the common HH model are not directly comparable to the

parameter values of the ion-based HH-type model. In detail, the ion-based HH type

model has gated and leak currents for each ionic species Eqs. (2.18)-(2.20), whereas

the common HH model has specific gated currents and one unspecific leak current, see
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Figure 2.2: Response of the single-neuron model to a super-threshold excitation.
(a) The system initialized in the polarized membrane potential is perturbed by aug-
mentation of extracellular potassium concentration (grey shaded area). Thereby, the
membrane potential V nm depolarizes; the Nernst potentials Ej of each ionic species ap-
proach to V nm. (b) Inset at the rising front shows characteristic initial bursting. (c)
Corresponding ion concentration cj of K (blue), Na (red) and Cl (green), each in the
NCS (solid) and in the ECS (dashed). (d) Inset at the rising front shows changes of
ion concentrations.

Sect. 2. In addition, in the ion-based model, a description for potassium and sodium

ATPase is introduced. Furthermore, the Nernst potentials in the ion-based model are

dynamic, Eq. (2.30), whereas in the common HH model, they are static parameter values.

Thus, it is not surprising that completely different parameter values are used in ion-based

models, within which however also variations can be found [18–21, 23, 24, 27, 28]. In

all of this works, the choice of the parameter values is justified by the requested output

of the model merely. In the model approach proposed in [24], mainly parameter values

from [23] are used.

To analyze the robustness of the ion-based model, we consider a wide range of parameter

values. In detail, we investigate, in which parameter regime the model provides bistable

dynamics. As stability of the depolarized state is due to an equilibrium between the

gated and the pump currents of sodium and potassium, we analyze, how changes in the

gated currents affect the phase space structure. The strength of the gated currents is

defined by the gated conductances ggj , the voltage-dependent probability, that the gated

channels are open or closed is given by the gating variables m, h and n.
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In Sect. 2.2.1 we show, how bistability is affected by variations of the gated conductances

ggj , and in Sect. 2.2.2 we analyze, how changes in dynamics of the gating variables m, h

and n affect bistability.

2.2.1 Varying strength of gated currents

The gated currents considered are the fast inward sodium current and the slower outward

potassium current. After a small perturbation, ion pumps are required to recover the

system to the physiological steady state. The sodium-potassium ATPase counteracts the

gated currents, it pumps sodium out of the cell and potassium into the cell to maintain

ionic homeostasis. In the physiological steady state, the gated currents are almost zero,

leak currents and pump currents are balanced. If, however, the system is massively

perturbed, e.g., during CSD, the voltage-dependent gated currents can become very

strong. Then, ion pumps are not sufficient to recover the system to the physiological

steady state, but the system ends up in a depolarized state with largely depleted ion

gradients. In this depolarized state, the leak currents are very small, the pump currents

and the gated currents are balanced.

If the strength of both gated currents, the sodium and the potassium current, is in-

creased by the same factor, a larger pump current is required to compensate for the

gated currents. This can be seen in Fig. 2.3(a). The bifurcation diagram drawn with

the continuation software AUTO [69] shows the extracellular potassium concentration

Kex at fixed point values as a function of maximal pump rate Imax. Branches for varying

strength of gated conductances ggj are shown, whereat the relation of the gated conduc-

tance of sodium ggNa and potassium ggK is constant (ggNa/g
g
K = const.). Phase space

structure changes quantitatively, i.e., for stronger gated conductances ggj , a stronger

pump rate Imax is required to annihilate bistability. In addition, to maintain the depo-

larized equilibrium, in systems with stronger gated conductances, a larger concentration

of extracellular potassium Kex is required to increase the pump currents in the depolar-

ized state to be strong enough to compensate for the increased gated currents. Changing

the strength of both gated currents with the same factor changes the bifurcation dia-

gram quantitatively, but not qualitatively. The system provides bistability in a wide

parameter range.

However, if the strength of the gated potassium current ggK is changed massively whereas

the gated sodium current remains equal, the bifurcation diagram changes qualitatively,

Fig. 2.3(b). However, at the in literature usually used pump rate of about 5 µA
cm2 , the

system provides bistability for a wide range of ggK .
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Figure 2.3: Bifurcation diagram of the two-compartmental ion-based model
Eqs. (2.42)-(2.47). The extracellular potassium concentration Kex at fixed point values
is shown as a function of maximal pump current Imax. Fixed point branches are shown
for varying strength of gated conductances. (a) Varying strength of gated conductances
ggj , the relation of the gated conductances is constant (ggNa/g

g
K = const.); (b) varying

strength of the gated conductance of potassium ggK , the gated conductance of sodium
ggNa remains equal.

2.2.2 Varying dynamics of gated currents

Dynamics of the gated currents are defined by their voltage-dependent steady state

values x∞ and timescales τx,

x∞ =
αx

αx + βx
, (2.48)

τx =
1

αx + βx
, (2.49)

with x being n, m or h.

The fast gating variable m activates the gated sodium inward current, what causes

a depolarization. The depolarization is inhibited by h, the inactivation of the gated

sodium channel and by an increase of n, the activation of the gated potassium current.

Decisive for system dynamics is the relationship between the sodium and the potassium

currents, see Sect. 2.2.1. Thus, here we analyze, how phase space structure changes

under variations of the slow gating variable n, whereat the sodium gating variables m

and h remain constant.

The variations of n are realized by changing the steepness and position of the steady-

state conductance n4
∞. The HH exponential funtions of n are

αn(V ) =
αn1 (V + αn2 )

1− exp((V + αn2 )/αn3 )
, (2.50)

βn(V ) = βn1 exp(−(V + βn2 )/βn3 ). (2.51)

βn3 determines the steepness of n4
∞, see Fig. 2.4(a).
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Figure 2.4: (a) Steady-state conductance of sodium m3h normalized to a maximum
value of 1 (black, dashed) and of potassium n4∞ (coloured, solid) as a function of the
membrane potential V nm with varying steepness βn3 of the potassium conductance n4∞,
see Eq. (2.51). The other values of αn Eq. (2.50) and βn Eq. (2.51) are chosen ac-
cording to Eqs. (2.10),(2.11). (b) Corresponding bifurcation diagram calculated with
the two-compartmental ion-based model Eqs. (2.42)-(2.47). The extracellular potas-
sium concentration Kex at fixed point values is shown as a function of maximal pump
current Imax.

Varying the steepness of n4
∞ and quantifying the position of the stable states in a bifur-

cation diagram Fig. 2.4(b), we find that if the gated potassium currents open at a less

depolarized membrane potential, the depolarized state is annihilated at a smaller pump

rate Imax.

Next, to shift the position of n4
∞ with respect to V n

m, we first approximate the steady-

state conductance n∞ as proposed in [70] with

n∞(V ) =
1

1 + exp
(

(V n
1/2 − V )/kn

) . (2.52)

The timescale is approximated by

τn(V ) = Cnbase + Cnamp exp
(
−(V n

max − V )2/σ2
n

)
. (2.53)

We fit this to the original description Eqs. (2.48),(2.49) with αn defined by Eq. (2.10)

and βn defined by Eq. (2.11) using the NMinimize function of the software Mathematica.

The thereby determined parameter values of Eqs. (2.52),(2.53) are listed in Tab. 2.2.

The original and fitted curves of n∞(V ) and τn(V ) are shown in Figs. 2.5(a),(b). Replac-

ing the description of n∞(V ) and τn(V ) by the approximative descriptions Eq. (2.52)

and Eq. (2.53), the bifurcation diagram changes quantitatively, see Fig. 2.5(c). The

bistability in the parameter regime around Imax ≈ 5 µA/cm2 persists.
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Name Value Unit

V1/2 −28.4238 mV

kn 17.3834 1/mV
Cnbase 0.189003 ms
Cnamp 1.61589 ms

V n
max −64.3065 mV
σ2
n 74.6914 1/(mV)2

Table 2.2: Parameter values of fitted steady state value n∞(V ) Eq. (2.52) and
timescale τn(V ) Eq. (2.53).
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Figure 2.5: The original descriptions of the steady state conductance n4∞ and
timescale τn of potassium Eqs. (2.48),(2.49) are compared to the fitted descriptions
Eqs. (2.52),(2.53). (a) Steady-state conductance of potassium n4∞ as a function of the
membrane potential V nm. (b) Timescale τn as a function of the membrane potential V nm.
(c) Bifurcation diagram of the ion-based model Eqs. (2.42)-(2.47). The extracellular
potassium concentration Kex at fixed point values is shown as a function of maximal
pump current Imax.
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Figure 2.6: Shifting the Steady-state conductance of potassium n4∞ with respect to the
membrane potential V nm by varying V1/2, see Eq. (2.52). (a) Steady-state conductance of
sodium m3h normalized to a maximum value of 1 (black, dashed) and of potassium n4∞
(coloured, solid) as a function of the membrane potential V nm. (b) Bifurcation diagram
of the ion-based model Eqs. (2.42)-(2.47). The extracellular potassium concentration
Kex at fix point values is shown as a function of maximal pump current Imax.

The position of the steady-state conductance of potassium n4
∞ described by the approx-

imation Eq. (2.52) can easily be shifted with respect to the membrane potential V n
m by

varying the parameter V1/2, see Fig. 2.6(a). Be aware, that a shift of the steady-state

conductance n∞ also can be realized by adding a constant value ∆V to each V in αn

Eq. (2.50) and βn Eq. (2.51). However, for numerical reasons, I used the approxima-

tive description Eq. (2.52). We find that if the potassium currents are activated at a

smaller depolarization, a smaller pump rate Imax is sufficient to annihilate bistability,

Fig. 2.6(b).

In both analyzed cases, changing the steepness of the potassium steady-state conduc-

tance with respect to the membrane voltage and varying the position of the potassium

steady-state conductance with respect to the membrane voltage, we find qualitatively

the same results. First, if the gated potassium currents open at a smaller depolarization,

a smaller pump rate Imax is sufficient to annihilate bistability. Second, in the whole an-

alyzed range of potassium steady-state conductances, the model provides bistability in

a wide range of pump rates.

2.3 Membrane potential and electroneutrality

In most quantitative treatments of the membrane potential, electroneutrality is assumed.

Although there is an electrical potential across the membrane due to charge separation,

there is no measurable difference in the global concentration of positive and negative

ions in both sides of the membrane. That occurs, because a small undetectable change

in the charge concentration creates a great change on electrical potential.
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In most neuron models, changes in the membrane potential V n
m are assumed to be due

to transmembrane currents only and thus are proportional to changes in the amount of

charges in the NCS,

V n
m =

1

Cmγ
ρn. (2.54)

With this description, small changes in the amount of charges ∆ρn create great changes

in the membrane potential ∆V n
m, since Cmγ is very small. ∆ denotes the difference

between the initial and final value of a variable. Electroneutrality in the NCS holds, as

from

∆ρn = Cmγ∆V n
m (2.55)

follows, that

∆ρn ≈ 0. (2.56)

In a closed system, i.e., a neuron surrounded by an extracellular space without ion

exchange with the surrounding, electroneutrality in the NCS implies electroneutrality in

the ECS. As mass conservation constraint Eq. (2.46) holds, we can find an expression

for the membrane potential equivalent to Eq. (2.54). From mass conservation follows

charge conservation,

ρn = −ρe, (2.57)

if the initial conditions are chosen such that ρ
(0)
n = −ρ(0)

e . Inserting Eq. (2.57) in

Eq. (2.54) yields

V n
m = − 1

Cmγ
ρe. (2.58)

However, in open systems, e.g., if glial buffering is introduced or in spatially extended

systems with ion diffusion in the ECS, it has to be considered that changes in the

membrane potential are due to changes in the amount of charges in both, the NCS and

the ECS. This fact is captured by the definition of the membrane potential [71],

V n
m = Φn − Φe, (2.59)

with Φn,e being the electrical potential in the NCS and in the ECS respectively.
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We assume Φn and Φe to be proportional to the amount of charges in the NCS and in

the ECS respectively,

Φn = Kρn, (2.60)

Φe = Kρe. (2.61)

If the system is closed and the initial conditions are chosen such that ρn = −ρe, Eq. (2.59)

V n
m = K (ρn − ρe) (2.62)

is equivalent to Eq. (2.54) and to Eq. (2.58) for K = 1
2Cmγ

,

V n
m =

1

2Cmγ
(ρn − ρe) . (2.63)

If charge conservation is violated, Eqs. (2.54),(2.58) and (2.63) determine dissimilar be-

haviour. In particular, electroneutrality is affected. Calculating the membrane potential

by the amount of charges in the neuron Eq. (2.54) determines electroneutrality in the

NCS, see Eq. (2.56), but not in the ECS. Using the amount of charges in the ECS to

calculate the membrane potential Eq. (2.58) in contrast implies electroneutrality in the

ECS, but not in the NCS, as from Eq. (2.58) follows

ρe = CmγV
n
m ≈ 0. (2.64)

Using the definition of the membrane potential Eq. (2.63) however states that

ρn − ρe = 2CmγV
n
m ≈ 0. (2.65)

In this case, the amount of charges in the NCS equals the amount of charges in the ECS,

what not necessarily implies electroneutrality.

How to achieve electroneutrality in both compartments in open systems is discussed with

the help of examples in Sect. 2.4.4, and in spatially extended reaction-diffusion systems

in Sect. 3.1.1.

For the sake of completeness, I will add some considerations about neuronal systems

including astrocytes here. If the model has three compartments, neurons and astrocytes

surrounded by an extracellular space, the potential at both, the neuronal and the astro-

cytic membrane, has to be calculated. This could in a first approximation be done by

an expression following Eq. (2.54),

V n,a
m =

1

Cmγ
ρn,a, (2.66)
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with V a
m being the astrocytic membrane potential and ρa = za0Fωac

a
imp +

∑3
j=1 zjFωac

a
j

being the amount of charges in the astrocyte with the valence za0 and the concentration

of impermeable ions caimp. Thereby, it is neglected that due to currents through the

astrocytic membrane changes in the amount of charges in the ECS might occur, that

affect the neuronal membrane potential, and vice versa. This issue is taken into account

by a description according to Eq. (2.63),

V n,a
m =

1

2Cmγ
(ρn,a − ρe). (2.67)

Be aware, that this description is a consequence of the assumption of single point com-

partments, i.e., the spatial extension of the compartments is neglected. In fact, excess

ions in the particular compartments are stored close to the respective membrane, which

impedes them to gravitate towards each other. The charge concentration thereby de-

cays exponentially with respect to the distance from the membrane. The amount of

excess charges in the ECS is distributed into ones that are stored nearby the neuronal

membrane and ones that are stored nearby the astrocytic membrane and thus mainly

contribute to the respective potential. Hence the potential at the neuronal membrane

and the potential at the astrocytic membrane can be written as

V n
m =

1

2Cmγ
(ρn −Gρe), (2.68)

V a
m =

1

2Cmγ
(ρa − (1−G)ρe), (2.69)

with G being the portion of ECS charges stored at the neuronal membrane.

In a closed system, due to mass conservation, the changes in charges in the ECS are a

superposition of changes in charges in the NCS and changes in charges in the ACS,

ρe = −ρn − ρa. (2.70)

The amount of ρe can be separated in a portion generated by neuronal-extracellular ion

exchange Gn and a portion generated by astrocytic-extracellular ion exchange Ga,

ρe = Gnρe +Gaρe, (2.71)

with Gn = ρn
ρn+ρa

and Ga = ρa
ρn+ρa

= 1−Gn. Assuming that the distribution G aims at

an electrical equilibrium between the neuronal and the astrocytic membrane yields that

the portion Gn of ρe contributes to V n
m and the portion (1 − Gn) of ρe contributes to

V a
m, thus

G = Gn =
ρn

ρn + ρa
. (2.72)
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The description of the membrane potentials Eqs. (2.68),(2.69) in a closed system equals

Eq. (2.66), what can be seen by inserting G Eq. (2.72) and ρe Eq. (2.70) in Eqs. (2.68)-

(2.69),

V n
m =

1

2Cmγ
(ρn −Gρe) =

1

Cmγ
ρn, (2.73)

V a
m =

1

2Cmγ
(ρa − (1−G)ρe) =

1

Cmγ
ρa. (2.74)

In an open system, however, assuming that the distribution aims at an electrical equi-

librium, G has to be formulated in a more general way,

G = Θ((ρa − ρn) · ρe)) ·R1 +R2, (2.75)

with

R1 = | ρn − ρa |
1

| ρe |
Θ(| ρe | − | ρn − ρa |) + Θ(| ρn − ρa | − | ρe |), (2.76)

R2 = 0.5(1−R1), (2.77)

with Θ being the heaviside step function. Be aware that the equality of Eq. (2.66) and

Eqs. (2.68),(2.69) in open systems does not hold, as mass conservation Eq. (2.70) is

violated.

In Sect. 2.4.4, we show examples using description Eq. (2.66), Eq. (2.67) and Eqs. (2.68)-

(2.69) to calculate the membrane potential at the neuron and the astrocyte and discuss,

how electroneutrality is affected by the respective description.

2.4 Glial buffer

As shown in [24], the two-compartmental single-neuron model Eqs. (2.42)-(2.47) is

bistable. However, brain tissue depolarized due to CSD usually repolarizes after a time

of about 100 s. Thereby, clearance of extracellular excess ions, besides restoration in the

neuron by ATPase, likely depends on local uptake by- and intracellular transport within

astrocytes.

In this Section, the role of astrocytes on ionic homeostasis is analyzed. Therefore, we

first model the glia cells as an additional compartment, transmembrane ion exchange

with the ECS is assumed to be due to leak and pump currents, Sect. 2.4.1. We carefully

analyze, under which conditions this description manages to recover the system from

the depolarized to the polarized equilibrium, Sect. 2.4.2. Then, in Sect. 2.4.3, we ap-

proximate the glial compartment as a bath, what is reasonable under the assumption of
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fast clearance of glial excess ions by the vasculature and by lateral diffusion within the

glial syncytium.

2.4.1 Three-compartmental ion-based model including glia cells

The two-compartmental model Eqs. (2.42)-(2.47) is bistable, with a polarized physio-

logical and a depolarized pathophysiological state. However, in the brain of a migraine

patient, we expect the depolarized state to be transient, whereas the polarized equi-

librium is stable. We assume that due to ion uptake by the ACS, the physiological

polarized equilibrium is recovered after a period of depolarization.

Before we propose a formalism that captures this, we shortly discuss, which quantities

are decisive for bistability in the two-compartmental model. The condition for a stable

state is that the ion concentrations are constant,

∂cn,ej
∂t

= 0. (2.78)

This is satisfied if the sum over the transmembrane currents for each ionic species van-

ishes,

Inj = 0. (2.79)

At the neuronal membrane, the transmembrane currents considered are leak I lj , gated Igj

and pump currents IP . At the polarized membrane potential V n
m = −68mV, the gated

currents almost vanish (Igj ≈ 0), thus the leak currents I lj and the pump current IP are

balanced. In the depolarized state, however, the Nernst potentials Enj assimilate to the

membrane potential V n
m, thus the leak currents are very small (I lj ≈ 0). In addition, the

pump current IP is augmented, as the ion concentrations Nan and Ke are increased.

Thus, gated currents Igj are needed to compensate for the increased pump current IP .

At the astrocytic membrane, only leak Iaj and pump currents IaP are considered. In our

model, the leak currents IaNa, I
a
K and IaCl and the pump current IaP at the astrocytic

membrane V a
m equal the leak currents and the pump current at the neuronal membrane

except for a constant scaling factor Ca, which is a measure for the amount of chan-

nels at the astrocytic membrane in relation to the amount of channels at the neuronal

membrane. The transmembrane currents at the astrocyte are calculated by

IaNa = Cag
l
Na · (V a

m − EaNa) + 3IaP , (2.80)

IaK = Cag
l
K · (V a

m − EaK)− 2IaP , (2.81)

IaCl = Cag
l
Cl · (V a

m − EaCl), (2.82)
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with the pump current

IaP = Ca
ρ

(1 + exp ((25−Naa)/3)) (1 + exp (5.5−Ke))
. (2.83)

The dynamic Nernst potentials at the astrocytic membrane read

Eaj = −RT
zjF

ln
caj
cej
, (2.84)

with caj being the concentration of the j-th species in the glia cell. We thereby choose

the same initial ion concentrations in the glia cell and in the neuron,

c
a(0)
j = c

n(0)
j , (2.85)

see Tab. 2.1. This description of the glial transmembrane currents ensures that the

polarized resting state does not change, as the leak Ial and pump currents IaP are balanced

in the polarized equilibrium.

Ion exchange with the surrounding is not considered, thus mass conservation holds,

cej = c
e(0)
j +

ωn
ωe

(
c
n(0)
j − cnj

)
+
ωa
ωe

(
c
a(0)
j − caj

)
. (2.86)

Hence, to calculate the ion concentrations in all three compartments, the ion concen-

tration in two compartments has to be calculated with rate equations, and then the

ion concentration in the third compartment can be obtained by the mass conservation

constraint Eq. (2.86). Thus, three additional rate equations are needed. Either, the ion

concentrations in the ACS caj can be calculated by

∂caj
∂t

= −zj
γ

ωa
Iaj , (2.87)

with caj being the concentration of the j-th species in the ACS and Iaj being the considered

leak and pump currents of species j, that cross the astrocytic membrane, Eqs. (2.80)-

(2.82). Or, equivalent, the ion concentrations in the ECS cej can be calculated by

∂cej
∂t

= zj
γ

ωe

(
Inj + Iaj

)
. (2.88)
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The full set of rate equations reads

∂n

∂t
=

n∞ − n
τn

, (2.89)

∂cnj
∂t

= −zj
γ

ωn
Inj , (2.90)

∂caj
∂t

= −zj
γ

ωa
Iaj . (2.91)

These rate equations are complemented by the following constraints,

m = m∞(V ), (2.92)

h = 1− 1

1 + exp(−6.5(n− 0.35))
, (2.93)

cej = c
e(0)
j +

ωn
ωe

(
c
n(0)
j − cnj

)
+
ωa
ωe

(
c
a(0)
j − caj

)
, (2.94)

V n
m =

1

2Cmγ
(ρn − ρe) , (2.95)

V a
m =

1

2Cmγ
(ρa − ρe) . (2.96)

2.4.2 Dynamics of the three-compartmental model

In Sect. 2.4.1, we proposed a formalism for the glia cells such that the polarized equilib-

rium remains stable. Here, we analyze if the glial currents manage to recover the system

from the depolarized to the polarized state.

To get insight in existence and stability properties of the depolarized state, we determine

the projection of the 7-dimensional phase space of the system on the V n
m −

∂V nm
∂t -space.

Without currents crossing the glial membrane, temporal changes of the membrane po-

tential V n
m are caused by the transmembrane currents Inj only,

∂V n
m

∂t
= − 1

Cm

∑
j

Inj . (2.97)

To determine the dependency ∂V nm
∂t (V n

m), we calculate the voltage clamp curve. In ex-

periments, it is obtained by threading an electrode through a nerve axon and closing

the circuit with an external control circuit. Then, a step voltage is applied and held

constant. The ionic current is measured as a function of time at each fixed voltage level.

Thereby, two time scales are involved: a fast rise that corresponds to turning on the

sodium inflow (m), followed by a slower slope that is related to turning off the sodium

inflow (h) and turning on the potassium outflow (n). In our model, time scales are

widely separated; as τm = 0, m = m∞(V n
m) changes instantaneously if V n

m is varied,

whereas h and n change on a much slower time scale of several ms.
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Figure 2.7: Projection of the phase space of the three-compartmental ion-based model
Eqs. (2.89)-(2.96) on the V nm-space. At time T , a step voltage is applied. The negative

sum over the transmembrane currents −
∑
j I

n
j (t = T ), which is proportional to

∂V n
m

∂t , is
shown as a function of V nm. The two-compartmental system without an ACS (ωa = 0)
is bistable. The depolarized state vanishes if the volume fraction of the ACS ωa is
increased.

Thus, directly after a voltage step is applied, the ionic current
∑

j I
n
j is due to gated

sodium currents mainly. At the glial membrane, no fast gated currents are considered.

We set the voltage level V n
m static on values between V n

m = −80mV and V n
m = −20mV,

until the system evened out into this state. Thereby, to ensure, that the constraint

Eq. (2.47), which describes the dependency of the neuronal membrane potential from

the ion concentrations, holds, the rate equation of sodium is replaced by the constraint

Nan = Na(0)
n −Kn +K(0)

n + Cln − Cl(0)
n +

Cmγ

ωn

(
V n
m − V (0)

)
, (2.98)

Nae = Na(0)
e +

ωn
ωe

(
Na(0)

n −Nan
)

+
ωa
ωe

(
Na(0)

a −Naa
)
. (2.99)

Sodium is chosen, as it changes with V n
m without time-delay.

At time T , we apply a voltage step of ∆V n
m = 1mV. Then, the response directly

thereafter
∑

j I
n
j (t = T ) is measured. Varying the size or direction of the voltage step

∆V n
m by a constant factor K changes the response

∑
j I

n
j (t = T ) by the same factor K

if ∆V n
m is not to large. Thus,

∑
j I
n
j (t=T )

∆V nm
is independent of the size or direction of the

voltage step.

Be aware, that this method is not an accurate bifurcation analysis. First, it only shows

the fast current response of the system to changes in the membrane potential. Second,

it does not give any information about stability properties of the fixed points or possible

bifurcations under changes of parameter values. However, it is a good scheme to get

information about the existence and position of fixed points.
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Figure 2.8: Relaxation time τ in the three-compartmental model as function of Ca
and the relation ωa/ωn (with constant ωn); the system is initialized in the depolarized
state of the bistable two-compartmental model Eqs. (2.42)-(2.47); at time t = 0, the
astrocytic currents Eqs. (2.80)-(2.82) are switched on, what causes a relaxation to the
polarized state. The relaxation time τ is the first time with Ke < 20 mmol/l. In
the white region, the astrocytic currents are too weak to recover the system to the
polarized state. The membrane potentials V n,am are calculated with Eqs. (2.95),(2.96).
(a) Dynamic ion concentrations in ACS, caj calculated with Eq. (2.87), (b) ACS as a

bath, caj = c
a(0)
j .

We find that in the bistable two-compartmental model, the transmembrane currents∑
j I

n
j behave like a cubic function of the voltage V n

m, see Fig. 2.7, red curve. The

system has three fixed points, where the transmembrane currents sum up to zero. We

already know that they comprise two stable ones and, in between, an unstable one.

If we add the glial compartment, phase space structure changes, see Fig. 2.7. If the

volume fraction ωa is small (ωa 5 ωn), the system still has three fixed points. Due

to the composition of the model equations we know that the polarized state remains

stable. However, this scheme does not give us information about stability properties of

the depolarized state.

Next, we analyze, for which values of Ca and ωa a system once excited to the depolarized

state of the bistable two-compartmental model recovers to the polarized state. For

ωa 5 0.8 ·ωn, we find persistent depolarizations, see Fig. 2.8(a). Therefrom we conclude

that the depolarized state remains stable for ωa 5 0.8 · ωn. For large values of Ca,

the glial buffer nevertheless manages to recover the system to the polarized state, as

we did not initialize the system in the basin of attraction of the three-compartmental

model. We suppose that the basin of attraction of the depolarized state decreases with

increasing volume ωa.
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Figure 2.9: Projection of the phase space of the three-compartmental ion-based model
Eqs. (2.89)-(2.96) with ωa

ωn
= 1 on the V nm-space. (black) Trajectory during relaxation.

The trajectory spirals around the depolarized state, before the system recovers to the
polarized state, compare Fig. 2.10. (blue) Voltage clamp curve, compare Fig. 2.7. (a)
Ca = 0.5, (b) Ca = 0.1, (c) Ca = 1.

For a larger volume ωa, the depolarizations are not persistent, Fig. 2.8(a), although for

ωa ≈ ωn, the system has three fixed points, Fig. 2.7. Mapping the trajectory during

relaxation in the V n
m-space, we find that for small values of Ca it passes very close by the

depolarized state and spirals out slowly, Fig. 2.9. In the time course, this corresponds

to slight bursting during the relaxation process, see Fig. 2.10. For larger values of Ca,

the trajectory does not get so close to the depolarized state, what results in a much

shorter relaxation time τ , compare Fig. 2.8(a). From this results, we cannot make a

distinct statement concerning stability properties of the depolarized state. However, we

suppose that it has at least one unstable direction, as otherwise it is likely to end up in

the depolarized state for small values of Ca. But it also is possible that the depolarized

state is stable and has a very small basin of attraction.

For even larger values of ωa, the depolarized state vanishes, the system is monostable,

Fig. 2.7. In the monostable system, all excitations recover to the physiological polarized
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Figure 2.10: Temporal evolution during relaxation. The system is initialized in the de-
polarized state of the bistable two-compartmental model Eqs. (2.42)-(2.46) (Sect. 2.1),
and at t = 0, the astrocytic currents are switched on. The three-compartmental system
is described by Eqs. (2.89)-(2.96) with ωa = ωn and Ca = 0.5. The membrane poten-
tials at the neuron and the astrocyte are calculated with Eq. (2.111) V n,am ∼ (ρn,a−ρe).
(a) Neuronal and glial membrane potential; (b) inset at the back (neuronal membrane
potential); (c) ion concentration of K (blue), Na (red) and Cl (green), each in the NCS
(solid) and in the ECS (dashed); (d) ion concentration of K (blue), Na (red) and Cl
(green), each in the ACS (solid) and in the ECS (dashed).

equilibrium. Thereby, the relaxation time τ depends on the size of the glial compartment

ωa, and, in addition, strongly on Ca, see Fig. 2.8.

In the following, we choose the volume of the astrocyte to be equal the volume of the

neuron (ωa = ωn), as this approximately is the case in brain tissue.

2.4.3 Modeling glia cells as a bath

Excess ions in the glia cells are distributed within the glial syncytium by movement

through gap junctions. Furthermore, the glia cells are connected to the blood vessels,

what enables fast clearance of excess ions. Thus, it is reasonable to make the approxi-

mation that excess ions in the ACS are cleared instantaneously.

This can be modeled by the assumption that the ACS is a bath, what equals the limit

of an infinitely large glial compartment (ωa →∞). Then, ion concentrations in the glia

cells caj are not dynamic any more, but model parameters. They are fixed on the initial



36 2 Local dynamics of ion-based neuron model

concentrations, compare Eq. (2.85),

caj = c
a(0)
j . (2.100)

Thus, the rate equation for the ion concentrations in the astrocyte Eq. (2.91) can be

replaced by the constraint Eq. (2.100). In the open system, mass conservation constraint

Eq. (2.94) does not hold any more, the extracellular ion concentrations have to be

modeled using rate equation Eq. (2.88). The full set of rate equations reads

∂n

∂t
=

n∞ − n
τn

, (2.101)

∂cnj
∂t

= −zj
γ

ωn
Inj , (2.102)

∂cej
∂t

= zj
γ

ωa

(
Inj + Iaj

)
. (2.103)

These rate equations are complemented by the following constraints,

m = m∞(V ), (2.104)

h = 1− 1

1 + exp(−6.5(n− 0.35))
, (2.105)

V n
m =

1

2Cmγ
(ρn − ρe) , (2.106)

V a
m =

1

2Cmγ
(ρa − ρe) , (2.107)

with ρa being static.

Provided that the amount of each ionic species in the ICS and in the ECS is constant,

cej/ωe + cnj /ωn = const., the system is monostable. The single stable fixed point is the

polarized state, because the currents crossing the astrocytic membrane only vanish if

the ion concentration in the ECS is in the polarized equilibrium state. However, in the

open system, the amount of dynamic ions in the ECS and in the NCS, cej/ωe + cnj /ωn, is

not conserved. Phase space structure depends on the amount of each ionic species in the

system, thus due to changes in the amount of ions the number, position and stability of

the fixed points can change.

Analyzing, how fast the glial bath buffers the system from the depolarized state of

the two-compartmental model Eqs. (2.42)-(2.47) to the polarized state, we find that,

compared to the system where the ion concentration in a small glial compartment (e.g.,

ωa = ωn) is dynamic Eqs. (2.89)-(2.96), the relaxation is faster, Fig. 2.8(b). This is

due to the fact that in the glial bath, in contrast to a small glial compartment, excess

ions do not accumulate. Thus, ion buffering from the ECS to the ACS is facilitated and

perturbations recover faster.



2.4 Glial buffer 37

2.4.4 Examples of time course during relaxation

Here, some examples of the temporal evolution during the relaxation of the system from

a depolarized state with largely depleted ion gradients to the polarized physiological

state are presented. Examples are shown for two model descriptions, first for the three-

compartmental system (see Sect. 2.4.1) consisting of a NCS, an ECS and an ACS,

which is a closed system, and second for the two-compartmental system (see Sect. 2.4.3)

consisting of a NCS and an open ECS, excess ions are buffered by a glial bath.

In Sect. 2.3, we proposed three different mathematical formulations for the neuronal

and astrocytic membrane potential. Here, we pay special attention to the influence

of the mathematical description of the membrane potentials on the temporal evolu-

tion of the system. In detail, we initialize the particular system in the depolarized

state of the bistable two-compartmental model Eqs. (2.42)-(2.46) and analyze for differ-

ent mathematical descriptions of the membrane potentials, Eq. (2.66), Eq. (2.67) and

Eqs. (2.68),(2.69), if the system recovers to the polarized state and, in addition, if the

description provides electroneutrality in all considered compartments.

The closed three-compartmental model with convenient parameter values recovers to the

polarized physiological state after a period of depolarization for all analyzed descriptions

of the membrane potentials V n
m and V a

m, Fig. 2.11(a). Describing the membrane potential

with Eq. (2.67) (V n,a
m ∼ (ρn,a − ρe)) results in the longest relaxation time. The open

two-compartmental model recovers for two of the three analyzed descriptions of the

membrane potentials. The period of depolarization is much shorter than in the closed

three-compartmental model.

Next, we discuss with the help of the shown examples the influence of the mathematical

description of the membrane potentials on electroneutrality.

V n,a
m ∼ ρn,a Calculating the membrane potential of the neuron and of the astrocyte

with

V n,a
m =

1

Cmγ
ρn,a (2.108)

determines electroneutrality in the NCS and in the ACS,

ρn,a = CmγV
n,a
m ≈ 0, (2.109)

compare red curves in Fig. 2.11(a),(b).
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In a closed system, this implies electroneutrality in the ECS, as due to mass conservation

charge conservation is determined,

ρe = −ρn − ρa, (2.110)

compare Fig. 2.11(a).

In an open system, however, mass conservation does not hold. Thus, in the ECS,

electroneutrality is not determined, compare Fig. 2.11(b), red curves. In the analyzed

example, mass exchange with the bath results in a failure of recovery of the neuronal

membrane potential.

V n,a
m ∼ (ρn,a − ρe) Calculating the membrane potential of the neuron and of the

astrocyte with

V n,a
m =

1

2Cmγ
(ρn,a − ρe) (2.111)

determines an approximate equality of charges in the NCS, in the ECS and in the ACS,

ρn,a − ρe = 2CmγV
n,a
m ≈ 0, (2.112)

ρn,a ≈ ρe. (2.113)

In a closed system, this is only possible under electroneutral conditions in all compart-

ments, compare Fig. 2.11(a), green curve respectively.

However, in an open system, electroneutrality might be violated, e.g., if not-electroneutral

transmembrane currents or, in a spatially extended system, not-electroneutral lateral

currents occur and, as a consequence, the charges in all compartments change simul-

taneously. But in the example analyzed here, we fixed the charges in the bath elec-

troneutrally, thus electroneutrality holds in the NCS and in the ECS, see green curves

in Fig. 2.11(b).

V n,a
m ∼ (ρn,a −Gn,a · ρe) Next, we describe the membrane potential of the neuron

and of the astrocyte with

V n
m =

1

2Cmγ
(ρn −Gρe), (2.114)

V a
m =

1

2Cmγ
(ρa − (1−G)ρe), (2.115)

G ∈ [0, 1] is calculated with Eqs. (2.75)-(2.77).

In a closed system, this equals the description Eq. (2.108), as explained in Sect. 2.3.

Thus, in Fig. 2.11(a), the course of the blue curves equals the course of the red curves.
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In an open system,

ρn −Gρe = 2CmγV
n
m ≈ 0, (2.116)

ρa − (1−G)ρe = 2CmγV
a
m ≈ 0, (2.117)

ρn ≈ Gρe, (2.118)

ρa ≈ (1−G)ρe. (2.119)

With G � 0 and G � 1, this implies in the scale of 2Cmγ

ρn ≈ ρe ≈ ρa (2.120)

and thus, as in the last discussed description Eq. (2.111), electroneutrality only holds

necessarily if in one compartment charges are conserved.

If, however, G = 1,

ρn = ρe, (2.121)

ρa = 0 (2.122)

holds. This might cause not-electroneutral results in the NCS and in the ECS simulta-

neously.

If G = 0,

ρn = 0, (2.123)

ρa = ρe (2.124)

holds. This also might violate electroneutrality, in this case in the ACS and in the ECS.

But if in one compartment, in the ECS or in the ACS, charges are conserved, this con-

dition determines electroneutrality.

In the example shown in Fig. 2.11(b), however, G � 1 all the time during relaxation,

see Fig. 2.12, and, in addition, ρa is fixed, what implies electroneutrality for G = 0.

Concluding we found that the description of the membrane potentials Eq. (2.108) (V n,a
m ∼

ρn,a) only provides electroneutrality in closed systems, but fails in open systems. The

description Eqs. (2.114),(2.115) (V n,a
m ∼ (ρn,a − Gn,a · ρe)) is the physically most rea-

sonable one. In closed systems it equals the description V n,a
m ∼ ρn,a. However, in open

systems, for G = 1 it fails. The description Eq. (2.111) (V n,a
m ∼ (ρn,a−ρe)), which aver-

ages the compartments into single points, for open systems provides electroneutrality in

all compartments if the extra condition that in one compartment charge concentration

is fixed holds.
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(a) Closed system
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(b) Open system
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Figure 2.11: Temporal evolution during relaxation. The system is initialized in the de-
polarized state of the bistable two-compartmental model Eqs. (2.42)-(2.46) (Sect. 2.1),
and at t = 0, the astrocytic currents Eqs. (2.80)-(2.82) are switched on. The mem-
brane potentials at the neuron and the astrocyte are calculated with Eq. (2.108)
V n,am ∼ ρn,a (solid red curve), Eq. (2.111) V n,am ∼ (ρn,a − ρe) (solid green curve) and
Eqs. (2.114),(2.115) V nm ∼ (ρn,a − Gn,aρe) (dashed blue curve). You see the neuronal
membrane potential V nm, the astrocytic membrane potential V am and the sum over the
permeable charges in the NCS, in the ECS and in the ACS. In the closed system, the
dynamic ion concentrations in the ACS caj are calculated with Eq. (2.87) with ωa = ωn.
In the open system, the ACS is modeled as a bath, Eq. (2.100). Ca = 0.5.
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Figure 2.12: Temporal evolution of G Eqs. (2.75)-(2.77) during the relaxation process
shown in the blue dashed curve in Fig. 2.11(b).

2.5 Conclusion

In this chapter, we carefully introduced a local neuronal model for CSD. We start from a

two-compartmental HH-type model consisting of neurons surrounded by a closed extra-

cellular space [24]. The transmembrane currents considered are leak, gated and pump

currents. The model with time-dependent ion-concentrations is bistable, besides the

physiological state with polarized membrane potential a second stable state with depo-

larized membrane potential and largely depleted ion gradients exists. This pathological

state is associated with the depolarization during CSD. We reviewed this model and

showed that the bistability is quite robust under changes of strength and dynamics of

the gated currents.

The bistable system once excited in the depolarized state does not recover to the polar-

ized state any more [24]. During CSD, however, the depolarization is transient. Buffering

of excess ions in the extracellular space by astrocytes plays a crucial role in relaxation.

Thus, we introduced a third compartment, the glia cells. We found that in the three-

compartmental system in a wide parameter range the depolarized state is transient or

nonexistent. Then, every excitation recovers to the polarized state.

Furthermore, a simplified description of the buffer is proposed, namely to approximate

the glia cells as a bath. In this open system, the total amount of each ionic species is

dynamic. However, phase space structure depends on the amount of ions in the system.

If the amount of ions equals the initial values used throughout this thesis, the system

is monostable. Then, the astrocytic bath is a strong buffer, because there is no ion

accumulation in the astrocyte.

In addition, the problem of electroneutrality is addressed. We showed that, especially

in open systems, the mathematical description of the neuronal and glial membrane

potential plays a crucial role in charge distribution and discussed advantages and disad-

vantages of different descriptions.





Chapter 3

A biophysically detailed

reaction-diffusion model

In this chapter, we compose a spatially continuously extended neuronal model that

describes transport processes on a tissue level. For this purpose, the single-neuron

elements consisting of a NCS, an ECS and an ACS are spatially coupled in a 1D geometry.

In brain tissue, ions can move within the neuronal net, within the astrocytic syncytium

and within the extracellular space. According to Grafstein’s hypothesis from 1963 [25]

that propagation of CSD mainly is due to extracellular diffusing potassium, we model

ion movement in the extracellular space with porous media theory. The spatial coupling

among the single elements thus is given by extracellular diffusing ions. Thereby, diffusion

is treated as isotropic. To carefully compose the reaction-diffusion model, we first couple

the two-compartmental bistable elements (proposed in Sect. 2.1) consisting of a NCS

and an ECS by extracellular diffusing ions, Sect. 3.1. Thereby, we pay special attention

to electroneutrality, Sect. 3.1.1. In detail, we discuss, how to model electroneutral

transmembrane currents in the open elements, Sect. 3.1.1.1, and, in addition, we analyze,

how to describe electroneutral lateral currents, Sect. 3.1.1.2.

Then, the three-compartmental elements (proposed in Sect. 2.4) are spatially coupled,

Sect. 3.2. Thereby, we analyze whether lateral diffusion manages to maintain ionic

homeostasis. First, we investigate the role of extracellular diffusion on clearance of

excess ions, Sect. 3.2.1. Besides diffusing in the ECS, ions can move through glial

gap junctions. The gap-junctional coupling can be approximated by isotropic diffusion

[72, 73]. Thus, second we analyze the role of astrocytic gap junctions on clearance of

excess ions, Sect. 3.2.2. Then, as proposed in Sect. 2.4.3, the astrocytic compartment is

assumed to be a bath, Sect. 3.2.3. In addition, electroneutrality in this system is shortly

discussed, Sect. 3.2.4.

43
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In brain, signal transmission within the neuronal net is mostly due to chemical synapses.

However, action potentials occur on a much shorter timescale than CSD. Furthermore,

during the depolarization of CSD, no action potentials are generated. Thus, we argue

that in a model for CSD, spatial coupling among the neurons by chemical synapses can

be neglected. However, neuronal coupling is not solely given by chemical synapses, but

also few electrical synapses (gap junctions) can be found. We show, how propagation of

CSD is affected by neuronal gap junctions, Sect. 3.3.

3.1 Diffusive spatial coupling of bistable two-compartmental

elements

Here, a spatially continuously extended model consisting of bistable two-compartmental

elements Eqs. (2.42)-(2.46) is designed. Thereby, spatial coupling is modeled by extra-

cellular diffusing ions.

The single elements spatially coupled by diffusion are open systems, local mass con-

servation does not hold. Thus, in addition to the rate equations describing the ion

concentrations in the NCS, the concentration of each ionic species in the ECS has to

be calculated with a partial differential equation. The full set of rate equations of the

two-compartmental reaction-diffusion model reads

∂n

∂t
=

n∞ − n
τn

, (3.1)

∂cnj
∂t

= −zj
γ

ωn
Inj , (3.2)

∂cej
∂t

= zj
γ

ωe
Inj +De

j

∂2cej
∂x2

. (3.3)

The diffusion coefficient of each ion in brain tissue Dj is assumed to equal the diffusion

coefficient of the respective ion in aqueous solution. As the path in the ECS is increased

due to the tortuosity λe, the effective diffusion coefficient reads

De
j =

Dj

λ2
e

. (3.4)

The literature values for the diffusion coefficients of sodium, potassium and chloride

in aqueous solution are DNa = 1.3 · 10−5 cm2/s, DK = 1.96 · 10−5 cm2/s and DCl =

2.03 · 10−5 cm2/s. Here, the diffusion coefficients of potassium and chloride are approx-

imated with DK,Cl = 2.0 · 10−5 cm2/s, whereas the diffusion coefficient of sodium is

approximated with DNa = 0.66 · DK,Cl. The tortuosity of the ECS is chosen to be

λe = 1.6. The parameter values are listed in Tab. 2.1.
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Figure 3.1: Example of a propagating front solution as a function of time t calculated
with the spatially extended system Eqs. (3.1)-(3.3); (a) membrane potential V nm and
Nernst potentials Ej ; (b) inset at the rising front shows characteristic initial bursting;
(c) ion concentration of K (blue), Na (red) and Cl (green), each in the NCS (solid)
and in the ECS (dashed); (d) inset shows variation of ion concentrations at the front;
DNa = DK = DCl = 2.0 · 10−5 cm2/s.

The system consisting of bistable elements has two stable homogeneous solutions, the

polarized and the depolarized state, compare Fig. 2.1. In reaction-diffusion models, be-

sides homogeneous solutions, inhomogeneous solutions exist. We are interested in stable

stationary propagating solutions, i.e., waves that propagate with constant velocity and

constant shape. Here, the stationary propagating solution is a front solution, i.e., a so-

lution that connects the two stable homogeneous states, see Fig. 3.1. At the rising front,

bursting characteristic for CSD can be seen, Fig. 3.1(b). In the depolarized state, ion

gradients are largely depleted, Fig.3.1(c). The transition of the ion concentrations cn,ej

from the physiological to the pathological equilibrium lasts several seconds, Fig.3.1(d).

Initializing the system in the homogeneous polarized state, a localized excitation, that

is super-threshold in a combination of strength, duration and width, depolarizes the

membrane potential in the affected area. The depolarization then spreads with constant

propagation velocity c in both the positive and the negative x-direction. Thereby, area

once affected does not recover to the polarized state any more, but remains in the

depolarized state. Thus, lateral diffusion of ions in the ECS here is not sufficient for

ionic homeostasis.



46 3 Ion-based reaction-diffusion model

3.1.1 Electroneutrality

We propose to model ion movement in brain tissue by diffusive fluxes in the ECS. Positive

and negative charged particles are considered, Na+, K+ and Cl−. The strong electrical

forces between the charged particles thereby cannot be neglected. As charge separation

is not reasonable, local electroneutrality in the ECS is requested, i.e., at every location

the sum over the charges is zero.

Charge distribution depends on both, transmembrane and lateral currents. First, we

show, how electroneutrality of the transmembrane currents in this system composed of

open elements is affected by the mathematical description of the membrane potential

V n
m, Sect. 3.1.1.1. Then, we discuss, how electroneutral diffusion in the ECS can be

realized, Sect. 3.1.1.2.

Be aware that if the lateral diffusive currents are electroneutral, local charge conservation

holds and thus the local elements act like closed elements in matters of electroneutrality.

This implies that, independent of the description of the membrane potential, the sum

over the transmembrane currents at each element is electroneutral, compare Sect. 2.3.

3.1.1.1 Electroneutral transmembrane currents

In Sect. 2.4.4, we showed, how the charge distribution in open two-compartmental lo-

cal elements is determined by the particular mathematical description of the neuronal

membrane potential V n
m. Here, we discuss with the help of examples, how the charge

distribution due to transmembrane currents in open two-compartmental elements spa-

tially coupled by diffusion depends on the particular mathematical description of the

neuronal membrane potential V n
m. Therefore, we model the lateral diffusive currents

not-electroneutral. This theoretical construct is physically not reasonable, but helps to

understand the influence of the model description on the transmembrane currents, what

is of importance in open systems.

In Sect. 2.3, we proposed three different formulations for the neuronal membrane poten-

tial V n
m. In a closed system with charge conservation and convenient initial conditions

(ρn = −ρe), they are equivalent. However, in an open system, where charge conser-

vation is violated, they differ. Next, we shortly reconsider the three possibilities to

describe the membrane potential and discuss, how electroneutrality is affected in the

reaction-diffusion model.
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V n
m ∼ ρn Calculating the neuronal membrane potential with

V n
m =

1

Cmγ
ρn (3.5)

determines electroneutrality in the NCS,

ρn = CmγV
n
m ≈ 0, (3.6)

but not in the ECS, compare Fig. 3.2(a).

V n
m ∼ −ρe Calculating the neuronal membrane potential with

V n
m = − 1

Cmγ
ρe (3.7)

determines electroneutrality in the ECS,

ρe = −CmγV n
m ≈ 0. (3.8)

but not in the NCS, compare Fig. 3.2(b).

V n
m ∼ (ρn − ρe) Calculating the neuronal membrane potentials with

V n
m =

1

2Cmγ
(ρn − ρe) (3.9)

determines an approximate equality of charges in the NCS and in the ECS,

ρn − ρe = 2CmγV
n
m ≈ 0, (3.10)

ρn ≈ ρe, (3.11)

compare Fig. 3.2(c).

Not-electroneutral lateral diffusive currents here are realized by different diffusion coef-

ficients Dj for the ionic species. The diffusion coefficients of potassium and chloride are

approximated with DK,Cl = 2.0 ·10−5 cm2/s, whereas the diffusion coefficient of sodium

is approximated with DNa = 0.66 · DK,Cl. Varying the strength of DNa affects front

propagation. This can be seen in the bifurcation diagram Fig. 3.3. The propagation

velocity c of front solutions calculated with Eqs. (3.1)-(3.3) as a function of the diffusion

coefficient of sodium DNa (with constant DK and DCl) is shown for each description of

the membrane potential V n
m proposed here.
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Figure 3.2: (a) Temporal evolution of neuronal membrane potential V nm (black, solid)
and Nernst potential Ej of each ionic species (coloured dashed) of a propagating front
solution calculated with Eqs. (3.1)-(3.3). In addition, you see the sum over permeable
charges in the NCS and in the ECS. The lateral diffusive currents are not-electroneutral
(DK = DCl = 2.0 · 10−5 cm2/s, DNa = 0.66 · DK). (a) The membrane potential is
assumed to be proportional to the amount of charges in the NCS (V nm ∼ ρn), Eq. (3.5).
This description determines electroneutrality in the NCS, but not in the ECS. (b) The
membrane potential is assumed to be proportional to the amount of charges in the
ECS (V nm ∼ ρe), Eq. (3.7). This description determines electroneutrality in the ECS,
but not in the NCS. (c) The membrane potential is assumed to be proportional to the
difference between the amount of charges in the NCS and the amount of charges in the
ECS (V nm ∼ (ρn − ρe)), Eq. (3.9). This description determines charge equality in the
NCS and in the ECS.
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Figure 3.3: Propagation velocity c of propagating front solutions calculated with
Eqs. (3.1)-(3.3) as a function of the diffusion coefficient DNa; the membrane potential
V nm is described by Eq. (3.5) (V nm ∼ ρn) (a), Eq. 3.7 (V nm ∼ −ρe) (b) and Eq. (3.9)
(V nm ∼ (ρn − ρe)) (c). The black solid line shows the propagation velocity using the
locally electroneutral electrodiffusive description, Sect. 3.1.1.2. In this case, results
are independent from the description of the membrane potential V nm. DK = DCl =
2.0 · 10−5 cm2/s.

The formulation Eq. (3.5) (V n
m ∼ ρn) results in the fastest front solutions. This is due to

the fact that electroneutrality in the ECS is not determined, what is in accordance with

the chosen not-electroneutral lateral diffusion. As Eq. (3.5) determines electroneutrality

in the NCS, the transmembrane currents are electroneutral.

The formulation Eq. (3.7) (V n
m ∼ ρe) disturbes propagation massively. You can see

this first in the crude course of the membrane potential, Fig. 3.2(b) and second in the

comparatively slow propagation velocity, Fig. 3.3, which strongly depends on the relation

between the diffusion coefficients of sodium and potassium, DNa/DK . The disturbance

is caused by two contradicting constraints: on the one hand, electroneutrality in the ECS

is determined by Eq. (3.7), on the other hand, the lateral diffusive currents in the ECS

are chosen not-electroneutral. Thus, at every timestep, electroneutrality in the ECS has

to be ensured by transmembrane currents, what impedes propagation massively.

Using the formulation Eq. (3.9) (V n
m ∼ (ρn − ρe)) to calculate the membrane potential

determines charge equality in both, the NCS and the ECS. As the not-electroneutral

diffusion inhibits electroneutrality in the ECS, also the NCS is not electroneutral.

Electroneutral diffusive currents are required to get electroneutrality in both compart-

ments, the NCS and the ECS. How this can be achieved, is discussed in the following,

Sect. 3.1.1.2.
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3.1.1.2 Electroneutral lateral currents

Electrodiffusion treats a nonlinear transport process whose essence is diffusion of charged

particles. Basic equations for motion of ions in a self-consistent electrical field were al-

ready formulated by Nernst and Planck. Over 100 years later, in 1990, Rubinstein

proposed a formalism to describe electroneutral electrodiffusion [30]. In a first assump-

tion, this formalism is a good approximation for ion movement in brain tissue, as it

avoids charge separation due to diffusion.

In the two-compartmental model spatially coupled by diffusing ions in the ECS Eqs. (3.1)-

(3.3), changes of the extracellular ion concentration are due to transmembrane currents

and lateral diffusive currents,

∂cej
∂t

= zj
γzj
ωe

(
Inj + IDiffj

)
, (3.12)

with Inj being the transmembrane gated, leak and pump currents of species j and IDiffj

being the diffusive current of species j in the ECS. In [30], it is proposed to replace

IDiffj by the Nernst-Planck equation, which states that the forces causal for movement

of ions in an electrical field can be approximated by a superposition of forces due to the

chemical gradient and forces due to the electrical gradient,

IDiffj = zj
ωe
γ
De
j

(
∂

∂x

(
∂cej
∂x

+ zj
F

RT
cej
∂Φe

∂x

))
. (3.13)

Electroneutral electrodiffusion means that the sum over the diffusive currents equals

zero, thus

∑
j

IDiffj
!

= 0, (3.14)

and hence

0 =
∂

∂x

(
A+B

∂Φe

∂x

)
, (3.15)

with

A =
∑
j

(
zjD

e
j

∂cej
∂x

)
, (3.16)

B =
∑
j

(
z2
jD

e
j

F

RT
cej

)
. (3.17)
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With no-flux boundaries, therefrom follows

0 = A+B
∂Φe

∂x
(3.18)

and thus

∂Φe

∂x
= −A

B
. (3.19)

Be aware that the electroneutral electrodiffusive description only is valid if the sum over

the transmembrane currents equals zero,

∑
j

Inj = 0. (3.20)

As due to electroneutral diffusion local charge conservation holds, all descriptions of

the membrane potential V n
m proposed in Sect. 3.1.1.1 are equivalent (see Sect. 2.3) and

determine that Eq. (3.20) is valid. Thus, in the system described by Eqs. (3.1)-(3.3),

from electroneutral diffusion in the ECS follows electroneutrality in both compartments,

the NCS and the ECS. In models with

∑
j

Inj 6= 0, (3.21)

electroneutral diffusion is physically not reasonable, as charge gradients in the ECS

caused by transmembrane currents would be cleared due to electrical forces.

Modeling the spatial coupling with the electroneutral electrodiffusive description, elec-

troneutrality in both compartments, the NCS and the ECS, holds. This can be seen in

Fig. 3.4(a), where the profile of the membrane potential V n
m of a front and, in addition,

the corresponding time course of the sum over permeable charges in both compart-

ments, the NCS and the ECS, are shown. The propagation velocity c of the front

solution thereby only depends slightly on the relation between the diffusion coefficients

of sodium and potassium DNa/DK , see Fig. 3.3 (solid black line).

Electroneutrality in the ECS means that the sum over the charges in the ECS at each

location equals zero. This implies that the gradient of the charges ρe with respect to

space x is zero, ∂ρe
∂x = ωe

∑
j

(
zj
∂cej
∂x

)
= 0. Thus, with zero transmembrane currents∑

j I
n
j = 0 and electroneutral initial conditions, electroneutral diffusion can be achieved

by the approximation that the diffusion coefficients of all ions are equal, DNa = DK =

DCl. Then, A = 0 and thus the electrical gradient in the Nernst-Planck equation

vanishes.
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Figure 3.4: (a) Temporal evolution of neuronal membrane potential V nm (black, solid)
and Nernst potential Ej of each ionic species (coloured, dashed) of a propagating front
solution calculated with Eqs. (3.1)-(3.3). In addition, the corresponding sum over
permeable charges in the NCS and in the ECS is shown. (a) The diffusion in the ECS
is described by the electroneutral electrodiffusion formalism proposed by Rubinstein.
DK = DCl = 2.0 · 10−5 cm2/s, DNa = 0.66 · DK . (b) All diffusion coefficients in the
ECS are assumed to be equal, DNa = DK = DCl = 2.0 ·10−5 cm2/s. Both descriptions
provide electroneutrality in both compartments, the NCS and the ECS.

The deviation of the profile of a front solution, where the diffusive currents are calculated

with the approximation DNa = DK = DCl Fig. 3.4(b) from the profile of a front solu-

tion, where the diffusive currents are calculated with the electroneutral electrodiffusive

description Fig. 3.4(a) in the shown example are negligible. If DNa = DK = DCl, the dif-

fusive currents in the ECS are electroneutral and thus charge conservation holds. There-

from follows that the descriptions of the membrane potential V n
m Eq. (3.5), Eq. (3.7) and

Eq. (3.9) are identical, thus all curves drawn in Fig. 3.3 coincide at DNa/DK = 1.
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3.2 Diffusive spatial coupling of three-compartmental ele-

ments

In Sect. 3.1, we found that the reaction-diffusion model consisting of bistable elements

has propagating front solutions. A super-threshold perturbation excites the system to

a depolarized state, that propagates over space. Area once affected remains in the

depolarized state and does not recover to the polarized equilibrium any more. During

CSD, however, depolarizations usually recover after a time of at most 1000 s. To resolve

this, in Sect. 2.4, we proposed uptake of excess ions from the extracellular space by glia

cells as regulation mechanism.

Here, we want to identify the effect of lateral diffusive currents on ionic homeostasis.

Therefore, a spatial 1D reaction-diffusion model consisting of three-compartmental el-

ements is designed. We analyze, which lateral currents are decisive for existence and

type of inhomogeneous solutions, i.e., we vary the strength of the particular lateral cur-

rents and analyze whether the system has propagating front solutions, propagating pulse

solutions or no stable stationary propagating solution.

To carefully compose the spatially extended model, we first couple the three-compartmen-

tal elements by extracellular diffusing ions, Sect. 3.2.1. Then, in Sect. 3.2.2, we also allow

for diffusion within the astrocytic syncytium. We analyze, how the strength of the gap-

junctional coupling affects propagation of CSD. As proposed in Sect. 2.4.3, the ACS

can, due to vascular coupling, be approximated as a bath. We analyze, how this ap-

proximation affects propagation of CSD, Sect. 3.2.3. In addition, we shortly discuss

electroneutrality in this system, Sect. 3.2.4.

3.2.1 Ion movement in the extracellular space

We are interested in the question whether lateral diffusion of ions in the ECS facilitates

relaxation. Here, the three-compartmental elements proposed in Sect. 2.4.1 consisting

of a NCS, an ECS and an ACS are spatially coupled by extracellular diffusing ions.

As due to diffusion local mass conservation does not hold any more, the concentrations

cj of the considered ionic species have to be calculated by rate equations in all three

compartments.
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Including the equation for the gating variable n, the full set of rate equations then reads

∂n

∂t
=

n∞ − n
τn

, (3.22)

∂cnj
∂t

= −zj
γ

ωn
Inj , (3.23)

∂caj
∂t

= −zj
γ

ωa
Iaj , (3.24)

∂cej
∂t

= zj
γ

ωe

(
Inj + Iaj

)
+De

j

∂2cej
∂x2

. (3.25)

As electroneutral diffusion in the ECS is required, we set the diffusion coefficients of all

ions equal, compare Sect. 3.1.1.2.

To figure out whether diffusion contributes to ionic homeostasis, we analyze if we find

propagating pulse solutions in a parameter regime, where the astrocytic buffer does not

manage to recover a single-neuron element from the depolarized state to the polarized

state. This parameter regime is the white area in Fig. 3.5(a). We find that diffusion in the

ECS does not contribute to ionic homeostasis, compare Fig. 3.5(a) and Fig. 3.5(b). The

stationary propagating solution of a system consisting of single-neuron elements, whose

glial buffer is too weak to recover the system from a depolarized membrane potential,

spatially coupled by extracellular diffusing ions are front solutions.

In the parameter regime where the system is bistable, but the buffer manages to recover

the system from the depolarized state (ωa 5 0.8 ·ωn and large Ca, compare Sect. 2.4.2),

we find coexisting front and pulse solutions. This phenomen also was found in the

complex Ginzburg-Landau equation and in the bistable FHN model [74].

At few parameter combinations, where ionic homeostasis of the single-neuron element

holds, we find propagating front solutions in the spatially extended system. This devi-

ation is caused by the fact that the depolarized state of the propagating front solution

differs from the depolarized stat, in which the single-neuron element is initialized. How-

ever, in almost the whole parameter regime where the depolarized state of a single-neuron

element is buffered, we find propagating pulse solutions in the spatially extended system.

We measure the pulse duration τ as the time, during which at a particular location x

the extracellular potassium concentration Ke is larger than 20 mmol/l. We find that

the pulse duration approximately equals the relaxation time from the depolarized to the

polarized state in a single-neuron element, compare Fig. 3.5(a) and Fig. 3.5(b).
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Figure 3.5: (a) Relaxation time of three-compartmental single-neuron elements,
compare Fig. 2.8. (b) Duration of depolarization τ of propagating pulses computed
with three-compartmental elements spatially coupled by diffusing ions in the ECS,
Eqs. (3.22)-(3.25), as a function of Ca and ωa/ωn (with constant ωn). In the white
region, only propagating front solutions are found. τ = t2 − t1, with t1 being the first
time at a specific location x with Ke > 20 mmol/l, and t2 being the first time t2 > t1
at the same location x with Ke < 20 mmol/l. Dj = 2.0 · 10−5 cm2/s.

3.2.2 Glial gap junctions

In the astrocytic syncytium, ions can move through gap junctions. The volume frac-

tion of the glial syncytium is about three times larger than the volume fraction of the

extracellular space. Thus, in a model for CSD, ion movement in the ACS cannot be

neglected. As proposed in [72, 73], we model ion movement through glial gap junctions

by diffusing ions within the astrocytic compartment. The full set of rate equations then

reads

∂n

∂t
=

n∞ − n
τn

, (3.26)

∂cnj
∂t

= −zj
γ

ωn
Inj , (3.27)

∂caj
∂t

= −zj
γ

ωa
Iaj +Da

j

∂2caj
∂x2

, (3.28)

∂cej
∂t

= zj
γ

ωe

(
Inj + Iaj

)
+De

j

∂2cej
∂x2

. (3.29)

In [72], it is proposed to calculate the effective diffusion coefficients in the glial compart-

ment Da
j with

Da
j =

Dj

λ2
a

, (3.30)
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with λa = 3.2. The tortuosity in the ACS is two times larger than the tortuosity in

the ECS, see Tab. 2.1. Be aware that the tortuosity in the ACS is not a measure for

the convolution of the path, but summarizes the hindrance imposed by the cellular

structures. Dj is the diffusion coefficient of the respective ion in aqueous solution,

which here as in the ECS is approximated by the values listed in Tab. 2.1. To achieve

electroneutral diffusion in the ACS, we set the diffusion coefficients of all ions in the

ACS equal,

Da
Na = Da

K = Da
Cl. (3.31)

Clearance of excess charges in the ACS is not due to diffusion only, but supported by the

connection of the ACS with the vasculature. We approximate this by augmenting the

effective diffusion coefficients Da
j . We analyze, how relaxation depends on the strength

of the effective diffusion coefficient Da
j and, in addition, on the amount of ion channels at

the astrocytic membrane Ca, i.e., we measure the pulse duration τ at different parameter

values, see Fig. 3.6(a). We find that the pulse width decreases with increasing Da
j and

Ca. In addition, we measure the propagation velocity c of the respective pulse solutions,

see Fig. 3.6(b). For very strong buffer (large Da
j and large Ca), the pulses are very slow.

Surprisingly, we find the maximal propagation velocity for Ca 6= 0 and relatively large

diffusion strength Da
j . This might be caused by the fast spread of ions in the ACS, which

then, apart from the current position of the pulse, cross the astrocytic membrane and

get in the ECS and in the NCS, and there facilitate the propagation of the incoming

pulse.

The three-compartmental model spatially coupled by diffusion in the ECS and in the

ACS has propagating pulse solutions in the whole analyzed parameter regime. An ex-

ample of the profile of a propagating pulse solution is shown in Fig. 3.7. You see the

membrane potential at the neuron and the astrocyte and, in addition, the ion concen-

trations in all compartments as a function of time. The membrane potential of both,

the neuron and the astrocyte, is depolarized. This depolarization, which is caused by

a large depletion of ion gradients at the neuronal and at the astrocytic membrane,

Figs. 3.7(c),(d), propagates over space. Due to astrocytic ion uptake, excess ions in the

ECS are buffered, and thus the membrane potentials V n
m and V a

m recover after a period of

depolarization. At the rising front, the profiles exhibit short strong bursting, Fig. 3.7(b),

what is characteristic for CSD. At the back, you see a long period of weak bursting.
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Figure 3.6: Duration of depolarization τ (a) and propagation velocity (b) of pro-
pagating pulses computed with three-compartmental elements spatially coupled by dif-
fusing ions in the ECS and in the ACS, Eqs. (3.26)-(3.29), as a function of Ca and
ln(Da

j /DHAL) with DHAL being the diffusion coefficient proposed by Halnes, Eq. 3.30.

Dj = 2.0 · 10−5 cm2/s for all ionic species; τ = t2 − t1, with t1 being the first time at
a specific location x with Ke > 20 mmol/l, and t2 being the first time t2 > t1 at the
same location x with Ke < 20 mmol/l.

3.2.3 Glial bath in the reaction-diffusion model

In the limit of an infinitely large glial compartment (ωa → ∞), the ACS reduces to a

bath, compare Sect. 2.4.3. This is equivalent to the limit of infinitely strong diffusion

in the ACS (Da
j → ∞) if the medium is infinitely extended. The physical meaning of

modeling the ACS as a bath is that clearance of excess ions in the ACS is approximated

to happen instantaneously.

Approximating the glia compartment as a bath, the ion concentrations caj are not dy-

namic any more, but model parameters. They are fixed on the initial concentrations,

compare Eq. (2.100),

caj = c
a(0)
j . (3.32)
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Figure 3.7: Temporal evolution of a propagating pulse solution computed with three-
compartmental elements spatially coupled by diffusing ions in the ECS and in the ACS,
Eqs. (3.26)-(3.29). (a) Neuronal and glial membrane potential; (b) inset at the rising
front; (c) ion concentration of K (blue), Na (red) and Cl (green), each in the NCS
(solid) and in the ECS (dashed); (d) ion concentration of K (blue), Na (red) and Cl
(green), each in the ACS (solid) and in the ECS (dashed). Dj = 2.0 · 10−5 cm2/s,

De
j =

Dj

λ2
e

, Da
j =

Dj

λ2
a

, Ca = 0.5.

The rate equation for the ion concentrations in the astrocyte Eq. (3.28) is replaced by

the constraint Eq. (3.32). Thereby, the number of rate equations reduces from 10 to 7.

Modeling the glial compartment as a bath, the buffer mechanism is increased compared

to the model consisting of three-compartmental elements with Da
j =

Dj
λ2a

, as excess ions

from the ECS are absorbed by the bath, where ions do not accumulate. This can be

seen in the much shorter period of depolarization, compare Fig. 3.8(a) to Fig. 3.6(a).

However, strong diffusion in the ACS also shortens the period of depolarization, see

Fig. 3.6(a).

In a wide parameter regime, we find propagating pulse solutions. An example of a

propagating pulse solution is shown in Fig. 3.9. You see, that the astrocytic membrane

potential during CSD is hardly depolarized, Fig. 3.9(a). At the rising front and at the

back, the membrane potentials of both, the neuron and the astrocyte, exhibit bursting,

Fig. 3.9(c),(d). If Ca is increased, the pulsewidth decreases massively, and also the

propagation velocity c decreases, Fig. 3.8(b).
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Figure 3.8: Duration of depolarization τ (a) and propagation velocity c (b) of prop-
agating pulses computed with Eqs. (3.26),(3.27) and Eq. (3.29). The ACS is assumed

to be a bath, caj = c
a(0)
j , Eq. (3.32). (white area) Propagating pulses; (grey shaded

area) excess ions from the ECS are buffered, but the depolarization persists, because
in the NCS, the ion concentrations do not recover to physiological equilibrium values;
(black area) no propagating solution. τ = t2 − t1, with t1 being the first time at a
specific location x with Ke > 20 mmol/l, and t2 being the first time t2 > t1 at the same

location x with Ke < 20 mmol/l. Dj = 2.0 · 10−5 cm2/s, De
j =
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Figure 3.9: Temporal evolution of a propagating pulse solution calculated with

Eqs. (3.26),(3.27) and (3.29). The ACS is assumed to be a bath, caj = c
a(0)
j , Eq. (3.32).

(a) Neuronal and glial membrane potential; (b) ion concentration of K (blue), Na (red)
and Cl (green), each in the NCS (solid) and in the ECS (dashed); (c) neuronal and
glial membrane potential at the rising front; (d) neuronal and glial membrane potential

at the back; Dj = 2.0 · 10−5 cm2/s, De
j =

Dj

λ2
e

, Ca = 0.5.
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Figure 3.10: Temporal evolution of a propagating front solution calculated with

Eqs. (3.26),(3.27) and Eq. (3.29). The ACS is assumed to be a bath, caj = c
a(0)
j ,

Eq. (3.32). (a) Neuronal and glial membrane potential; (b) ion concentration of K
(blue), Na (red) and Cl (green), each in the NCS (solid) and in the ECS (dashed).

Dj = 2.0 · 10−5 cm2/s, De
j =

Dj

λ2
e

, Ca = 1.5.

If, however, Ca is to large, the very strong glial buffer does not succeed to recover

the depolarized system to the polarized state (grey shaded area in Figs. 3.8(a),(b)).

Because excess ions in the ECS are cleared very fast by the bath, they lack to restore

the equilibrium in the NCS, see Fig. 3.10. For even larger values of Ca, no propagating

solutions can be found (black area in Figs. 3.8(a),(b)).

3.2.4 Electroneutrality

In the three-compartmental reaction-diffusion model Sects. 3.2.1 and 3.2.2, the diffusive

currents in both compartments, the ECS and the ACS, are electroneutral. Thus due

to local charge conservation, the descriptions of the membrane potential Eq. (2.108),

Eq. (2.111) and Eqs. (2.114)-(2.115) are equivalent.

However, if the ACS is assumed to be a bath Sect. 3.2.3, charge conservation can be

violated and thus the choice of the membrane potential determines if electroneutrality

holds. Thereby, the argumentation of Sect. 2.4.4 still holds. Throughout this section,

we choose the description for the neuronal and glial membrane potential

V n,a
m =

1

2Cmγ
(ρn,a − ρe). (3.33)

3.3 Neuronal gap junctions

In recent years, neuronal gap junctions have been characterized to exist in several adult

brain regions, including the neocortex, thalamus, inferior olive, cerebellum and retina.

The role of neuronal gap junctions on CSD, however, is widely unknown.
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In our model, the neuronal gap junctions are as the glial gap junctions, see Sect. 3.2.2,

described by diffusing ions within the neuronal compartment. To figure out the effect of

neuronal gap junctions on CSD, first, the bistable two-compartmental elements consist-

ing of a NCS and an ECS, Sect. 2.1, are spatially coupled by diffusing ions in the ECS

and in the NCS. The rate equations then read

∂n

∂t
=

n∞ − n
τn

, (3.34)

∂cnj
∂t

= −zj
γ

ωn
Inj +Dn

j

∂2cnj
∂x2

, (3.35)

∂cej
∂t

= zj
γ

ωe
Inj +De

j

∂2cej
∂x2

, (3.36)

with Dn
j being the effective diffusion coefficient of the respective ionic species in the NCS.

As electroneutral diffusion also in the NCS is required, we set the diffusion coefficient

of each ionic species equal, Dn
Na = Dn

K = Dn
Cl. The size of Dn

j is a measure for the

permeability of the cellular structure. As the amount of neuronal gap junctions is very

low, Dn
j is much smaller than De

j .

Our model suggests, that neuronal gap junctions have a strong inhibitory effect on CSD,

Fig. 3.11. Already very small values of Dn
j massively decelerate propagating fronts. This

is accompied by an enhancement of the initial bursting, see Figs. 3.11(b),(c),(d). If the

diffusion strength in the NCS exceeds a critical value, no front propagation is possible.

Next, we analyze the three-compartmental model with diffusion in all compartments,

∂n

∂t
=

n∞ − n
τn

, (3.37)

∂cnj
∂t

= −zj
γ

ωn
Inj +Dn

j

∂2cnj
∂x2

, (3.38)

∂caj
∂t

= −zj
γ

ωa
Iaj +Da

j

∂2caj
∂x2

, (3.39)

∂cej
∂t

= zj
γ

ωe

(
Inj + Iaj

)
+De

j

∂2cej
∂x2

. (3.40)

The diffusion strength in the ACS thereby is chosen to be Da
j =

Dj
λ2a

with λa = 2 · λe.

Depending on the diffusion strength in the NCS Dn
j , the inhomogeneous solutions of

the system change. For small values of Dn
j , we find stable propagating pulses, white

area in Fig. 3.12. An example of the temporal evolution of such a pulse solution is

shown in Fig. 3.13(a),(b),(c). You see the potential at the neuronal and glial mem-

brane, Fig. 3.13(a), and the concentrations of each ionic species in the NCS, the ECS,

Fig. 3.13(b), and the ACS, Fig. 3.13(c). For larger values of Dn
j , the propagation velocity

c of the back of a depolarization is faster than the propagation velocity c of the front of a
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Figure 3.11: (a) Propagation velocity c of propagating front solutions computed with
bistable two-compartmental elements spatially coupled by diffusion in the ECS and in
the NCS, Eqs. (3.34)-(3.36), as a function of Dn

j /D
e
j , with constant De

j . In the black
area, no propagation is possible. In addition, the temporal evolution of propagating
front solutions at the rising front with Dn

j = 0 (b), Dn
j = 0.1 ·De

j (c) and Dn
j = 0.2 ·De

j

(d) is shown. Dj = 2.0 · 10−5 cm2/s, De
j =

Dj

λ2
e

.

depolarization, light grey area in Fig. 3.12. In this parameter regime, propagating depo-

larizations decrease in width and disappear. For even larger values of Dn
j , the stationary

propagating solution are hyperpolarizations, grey area in Fig. 3.12. An example of the

profile of a propagating hyperpolarization is shown in Fig. 3.13(d),(e),(f). In the black

area in Fig. 3.12, no propagating solution is found. Concluding, our model suggests

that diffusion in the NCS has a strong inhibitory effect on CSD. For Dn
j > 0.07 ·De

j , no

stable propagating pulse solution exists. For Dn
j > 0.13 ·De

j , we find no stable stationary

propagating solution.

Modeling the glial cells as a bath,

caj = c
a(0)
j , (3.41)

the width τ and the propagation velocity c of the pulse solutions only slightly depend on

the strength of the diffusion in the NCS, see Fig. 3.14. However, the inhibitory effect of
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Figure 3.12: Duration τ (a) and propagation velocity c of pulse front (green, solid) and
pulse back (red, dashed) (b) of propagating pulses computed with three-compartmental
elements spatially coupled by diffusion in all compartments, Eqs. (3.37)-(3.40), as a
function of Dn

j /D
e
j , with constant De

j . τ = t2 − t1, with t1 being the first time at a
specific location x with Ke > 20 mmol/l, and t2 being the first time t2 > t1 at the same

location x with Ke < 20 mmol/l. Dj = 2.0 · 10−5 cm2/s, De
j =

Dj

λ2
e

, Da
j =

Dj

λ2
a

. (white

area) Stable propagating pulse solutions; (light grey area) pulse back is faster than
pulse front, pulses decrease in breath and disappear; (grey area) stable propagating
hyperpolarizations.

neuronal gap junctions remains. If Dn
j exceeds a small critical value, no stable stationary

propagating solution is found.

3.4 Conclusion

In this chapter, we designed a biophysically detailed reaction-diffusion model. In detail,

we coupled local ion-based neuronal elements by ion diffusion in the extracellular space

and by ion diffusion through neuronal and glial gap junctions in a 1D geometry.

Addressing the problem of electroneutral diffusion, we showed that the so-called elec-

troneutral electrodiffusive description proposed in [30] here can be approximated by

setting the diffusion coefficients of all ionic species within one compartment equal.

Then, we analyzed, which mechanisms are relevant for ionic homeostasis. In detail, we

investigated, how existence and type of inhomogenious solutions depends on the particu-

lar lateral currents. First, we coupled bistable two-compartmental elements consisting of

a neuron surrounded by an extracellular space by diffusion in the extrcellular space. We

found that the system has propagating front solutions, i.e., solutions that connect the

two stable states and propagate over space. Thus, lateral diffusion in the extracellular

space is not sufficient for ionic homeostasis, an area once depolarized does not recover to

the polarized equilibrium. This behaviour is found during anoxic depolarization. During

CSD, however, the depolarized state is not stable.
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Figure 3.13: Temporal evolution of a propagating pulse solution with Dn
j /D

e
j = 0.04

(a),(b),(c) and of a propagating hyperpolarization with Dn
j /D

e
j = 0.1 (d),(e),(f) com-

puted with three-compartmental elements spatially coupled by diffusion in all compart-
ments, Eqs. (3.37)-(3.40). (a),(d) Neuronal and glial membrane potential; (b),(e) ion
concentration of K (blue), Na (red) and Cl (green), each in the NCS (solid) and in the
ECS (dashed); (c),(f) ion concentration of K (blue), Na (red) and Cl (green), each in

the ACS (solid) and in the ECS (dashed). Dj = 2.0 · 10−5 cm2/s, De
j =

Dj

λ2
e

, Da
j =

Dj

λ2
a

.

Next, the role of lateral diffusion was analyzed in the three-compartmental system.

First, only diffusion in the extracellular space was considered, neuronal and glial gap

junctions were neglected. The inhomogeneous solutions we found confirm that lateral

diffusion in the extracellular space does not contribute to relaxation. In detail, in the

parameter regime, in which the local elements are bistable (small astrocytic compart-

ment, Sect. 2.4.2) and the glial buffer fails, the spatially extended system has propa-

gating front solutions. In the parameter regime, in which the bistable elements after

and excitation recover due to a large amount of ion channels at the glial membrane, the
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Figure 3.14: Duration of depolarization τ (a) and propagation velocity c (b) of
propagating pulses computed with Eqs. (3.37),(3.38) and Eq. (3.40), the ACS is as-

sumed to be a bath, caj = c
a(0)
j , Eq. (3.32), as a function of Dn

j /D
e
j , with constant De

j .
τ = t2 − t1, with t1 being the first time at a specific location x with Ke > 20 mmol/l,
and t2 being the first time t2 > t1 at the same location x with Ke > 20 mmol/l.

Dj = 2.0 · 10−5 cm2/s, De
j =

Dj

λ2
e

. (black area) No propagating solution is found.

reaction-diffusion model has coexisting front and pulse solutions. If the local elements

are monostable (large astrocytic compartment), only pulse solutions exist.

Adding glial gap junctions, i.e., allowing for diffusion within the glial compartment, we

found that the width of propagating pulses decreases with increasing diffusion strength

in the glial compartment. Thus, our model suggests that glial gap junctions facilitate

relaxation. However, in the whole analyzed parameter regime pulse solutions exist, the

glial gap junctions hence do not prevent CSD.

A medium consisting of monostable two-compartmental elements, i.e., single neurons

surrounded by an open extracellular space connected to a glial bath spatially coupled

by extracellular diffusing ions, has propagating pulse solutions. As the glial bath due to

infinite capacity buffers very strong, the pulse width is small. The assumption of a glial

bath can be interpreted as making the approximation that excess ions in the astrocyte

are cleared by the vasculature instantaneously. The model suggests that this shortens

the period of CSD, but does not avoid it.

Furthermore, the role of neuronal gap junctions on propagating solutions was discussed.

As between neurons only few gap junctions exist, small diffusion coefficients Dn
j are

assumed. Our model suggests that neuronal gap junctions have a strong inhibitory ef-

fect on propagating solutions. Propagating front solutions computed with the bistable

two-compartmental model decelerate massively already at small values of Dn
j . Pulse so-

lutions modeled with the three-compartmental model become transient. If the diffusion

coefficient Dn
j is slightly increased, in all analyzed model compositions, no stationary

propagating solution was found.





Chapter 4

A generic neuronal model

We want to analyze the influence of external forces such as the geometry of the brain or

an externally applied electrical field on CSD. To describe CSD with a mathematically

tractable model of activator-inhibitor type, we use FHN dynamics.

The FHN model originally is a two-variable simplification of the four-variable HH model,

which describes the conduction of voltage pulses along the membrane of nerve cell axons

[10]. In this context, the FHN model describes the response of an excitable nerve mem-

brane to external current stimulation. Although the approximate equations lose some

of the physical meaning of the more complete biophysical model, they allow for analyt-

ical manipulations and therefore provide more insight into the mathematical processes

involved.

In this chapter, the FHN equations are introduced, Sect. (4.1). Then, in Sect. (4.2), we

discuss whether the FHN model is a reasonable simplification of the ion-based neuron

model for CSD proposed in Chapt. 2.

4.1 FitzHugh-Nagumo equations

Cortical tissue has been shown to be weakly excitable for pulse propagation [75–77].

As an excitable medium, it can be described by reaction-diffusion models. A simple

one-variable reaction-diffusion model is the Schlögl model, whose kinetics are given by

a cubic reaction part,

∂u

∂t
= 3u− u3 − v0 +D∇2u, (4.1)

(4.2)

67
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whith the variable u(~x, t) and the diffusion coefficient D. ∇2 is the Laplace operator∑n
i=1

∂2

∂x2i
in a n-dimensional medium. The Schlögl model is bistable, it has two spatially

homogeneous solutions separated by an unstable one. In addition, the system has a

stationary propagating solution, that connects the two stable states. The parameter v0

determines whether the stationary propagating solution is a front or a back solution.

For v0 = 0, the propagation velocity of the stationary propagating solution is zero.

For the mathematical description of pulses, stationary propagating solutions that start

and end in the same stable state, at least two dynamical variables are needed. FitzHugh

and Nagumo proposed to use a second slow inhibiting variable with linear dynamics [4, 5].

This simple mathematical description covers the requirement of changing homogeneous

system dynamics from bistable to excitable,

∂u

∂t
= 3u− u3 − v +D∇2u, (4.3)

∂v

∂t
= ε(u+ β − γv). (4.4)

The original interpretation of the FHN model Eqs. (4.3), (4.4) is based on a single neuron.

The variable u models fast changes of the electrical potential across the membrane of

a nerve cell axon (occurring as spikes in the time series), and v is the recovery variable

related to the gating mechanism of the membrane channels [4]. The small parameter

ε � 1 represents the time scale ratio of the two variables. The fast variable u is called

the activator variable, whereas the slow variable v is referred to as inhibitor variable.

The diffusion constant of the activator is D, which can simply be interpreted as a

scaling of space, and inhibitor diffusion is assumed to be slow and hence negligible. In

the following, the parameter γ is set at zero. The excitability parameter β determines

whether the systems is excitable (β > 1) or exhibits self-sustained perodic oscillations

(β < 1). In the following, we consider β in the excitable regime.

Fig. 4.1 shows a schematic phase portrait of a spatially homogeneous system in the

excitable regime (β > 1) with the cubic activator nullcline (solid red line) and the vertical

inhibitor nullcline (solid green line). The system has a single fixed point (us, vs), which

is stable for β > 1 and located on the left branch of the cubic nullcline. At β = 1, a

limit cycle occurs in a supercritical Hopf bifurcation, the fixed point becomes unstable

and is shifted to the middle branch of the nullcline for β < 1.

The excitable behaviour of the system is crucially determined by the cubic nonlinearity of

the activator equation and the separation of time-scales between the two variables. When

the system is perturbed by a sufficiently large (super-threshold) external stimulus, which

can be regarded as setting the initial conditions, the system undergoes a large excursion

in phase space (spiking). Starting from its initial condition, the system performs, due
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Figure 4.1: The nullclines u̇ = 0 (solid red) and v̇ = 0 (solid green) in the phase
space of the homogeneous FHN system with β = 1.4. Their intersection at (us, vs)
is a stable fixed point. Three trajectories are drawn for ε = 0.04: one canard-like
trajectory (dotted) passing through the maximum of the nullcline u̇ = 0, and two tra-
jectories starting at v = vs nearby but on opposite sides of the canard trajectory. They
diverge sharply, producing threshold-like behaviour: the dashed and the dash-dotted
trajectories represent super-threshold and sub-threshold stimulation, respectively.

to the strong timescale separation ε� 1, a fast transition to the stable right branch of

the activator nullcline. After that, it travels slowly upwards approximately along this

nullcline, until the phase point jumps back to the left branch, and returns, along the left

branch of the nullcline, slowly downwards to the fixed point (recovery phase). Without

further external stimulation, the system remains in the stable fixed point (rest state).

The threshold-like behaviour of the FHN system is associated with the canard-like tra-

jectory (dotted black line in Fig. 4.1), which is the trajectory passing through the local

maximum of the cubic nullcline, and which is often referred to as the threshold of the

FHN system. The region around the canard-like trajectory is extremely sensitive to

initial conditions. For initial conditions only slightly below the canard-like trajectory,

the systems will perform a large excursion in phase space, whereas for initial conditions

only slightly above the canard-like trajectory, the excursion will be small. In principle,

the transition from small to large amplitude excitation is continuous; in fact, however,

phase space excursions of intermediate amplitude are very rare. Correspondingly, small

sub-threshold stimulations (dash-dotted black line in Fig. 4.1) will result in fast relax-

ation, while super-threshold stimulations (dashed black line in Fig. 4.1) induce a full

excursion in phase space, corresponding to a characteristic spike in the time evolution

of the u-variable.
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Figure 4.2: (a) Projection of the phase space of the voltage-clamped two-
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homogeneous Schlögl model Eq. (4.1). You see the cubic reaction part 3u − u3 as a
function of u (red) and the variable v0 (green). Both systems (a) and (b) have two
stable fixed points (black dots), and in between one unstable fixed point (hollow dot).

4.2 Comparing the FitzHugh-Nagumo model and the bio-

physically detailed model

As described by Casten, Cohen and Lagerstrom [78], the approximations made to reduce

the HH model to the FHN model are based on a separation of timescales. In HH model,

the voltage changes and the turning on of the sodium inflow are much faster than the

recovery process that is due to turning on the potassium outflow and to turning off the

sodium inflow. In FHN model, the activator variable is related to the fast changes of the

electrical membrane potential, and the inhibitor variable is related to the slow gating

mechanisms of the HH model.

Here, we discuss whether the FHN system is a reasonable approximation of the ion-based

model for CSD proposed in Chapt. 2. The local two-compartmental ion-based model

consisting of a NCS and a closed ECS is bistable, it has, besides the physiological state,

a second stable state. This can be seen in Fig. 4.2(a), where the fast current response

to a voltage step in the voltage-clamped system is shown, compare Sect. 2.4.2. Also

the Schlögl model Fig. 4.2(b) has two homogeneous stable states. Spatially coupled by

diffusion, in both systems, the ion-based biophysical model and the Schlögl model, fronts

that connect the two stable states are the single stationary propagating solution.

However, Fig. 4.2(a) is a projection of the 4-dimensional phasespace of the ion-based

system on the Vm-space, whereas the phasespace of the homogeneous Schlögl model

only has one dimension. After a super-threshold excitation, the trajectory of the ion-

based model exhibits extreme oscillations, Fig. 4.3, that correspond to the bursting at
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Figure 4.3: (black) Trajectory of a bursting rising front calculated with the two-
compartmental ion-based model Eqs. (2.42)-(2.47) in the Vm-space. (red) Voltage-
clamped curve, compare Fig. 4.2(a).

the rising front, before it arrives in the depolarized state. The Schlögl model doesn’t

capture this behaviour.

To change homogeneous dynamics from bistable to excitable, a buffer mechanism is

needed in both systems, the Schlögl model and the ion-based model. In the FHN model,

the activator u, whose dynamics are described by a rate equation identical to the Schlögl

model, is buffered by a second dynamical variable, the slow inhibitor v Eq. (4.4). A

simplified buffer mechanism for the ion-based model that has a similar structure as

the inhibitor mechanism of the FHN model was proposed in [79]. If the extracellular

potassium concentration deviates from a specific value, it is buffered by a bath with a

linear dependency. Then, in the local two-compartmental system Eqs. (2.42)-(2.47), the

potassium concentration in the ECS is calculated with

∂Ke

∂t
=

γ

ωe
(IK − 2IP )−D (Ke −Kbath) . (4.5)

The buffer strength D is in the unit 1/s. This buffer scheme can be translated in

the inhibitor mechanism of the FHN model if we use the description for the neuronal

membrane potential Eq. (2.63) V n
m = 1

2Cmγ
(ρn − ρe). The derivation of the membrane

potential V n
m with respect to time then reads

∂V n
m

∂t
=

ωn
2Cmγ

(
∂Nan
∂t

+
∂Kn

∂t
− ∂Cln

∂t

)
− ωe

2Cmγ

(
∂Nae
∂t

+
∂Ke

∂t
− ∂Cle

∂t

)
. (4.6)
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With Eq. (4.5), we obtain

∂V n
m

∂t
= − 1

Cm

∑
j

Inj −
1

2

ωe
γ
D (Ke −Kbath)

 . (4.7)

As the FHN system, this system has an activator V n
m Eq. (4.7), which at the rising front

is increased by the fast sodium currents and inhibited by Ke. For small buffer strength

D, dynamics of the inhibitor Ke occur on a much slower timescale. The potassium

concentration of the bath Kbath determines the size of the threshold.

Excitability can be categorized in systems of type I or type II [80]. These differ in

the transition to the oscillating regime: systems of type I start oscillating in a SNIPER

bifurcation, systems of type II in a Hopf bifurcation. The excitable regime lies below the

SNIPER and the Hopf bifurcation, respectively. As shown in [79], the ion-based model,

with a buffer scheme according to Eq. (4.5), is monostable for values of Kbath around

4mmol/l, which is the physiological potassium concentration in the extracellular space. If

KBath is increased, the fixed point changes from stable to unstable in a supercritical Hopf

bifurcation (for ωe
γ D = 10−5 µm A/mmol at Kbath ≈ 7 mmol/l). Thus, the excitability

of the system is of type II. This is analogous to the FHN model, where the transition

from excitable to oscillating also occurs in a supercritical Hopf bifurcation, when the

threshold parameter β is varied.

Throughout this thesis, another description for the buffer mechanism in the ion-based

model was used, namely excess ions from the ECS are buffered into a third compartment,

the ACS, see Sect. 2.4.1. This buffer also causes monostability if the volume fraction of

the ACS isn’t too small, see Fig. 2.7. However, this detailed buffer description cannot be

translated in terms of the generic inhibitor equation of the FHN model, and we didn’t

investigate this scheme in a bifurcation analysis.

4.3 Inhomogeneous solutions in the FitzHugh-Nagumo model

In the following, we consider spatially inhomogeneous solutions, i.e., waves or wave

segments in one (Chapt. 5) or two (Chapt. 6) spatial dimensions. As we are interested

in stationary propagating solutions, i.e., waves that propagate with constant velocity c
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and constant shape, Eqs. ( 4.3),(4.4) can be written as

c
∂u

∂ξ
= 3u− u3 − v +D∇2

ξu, (4.8)

c
∂v

∂ξ
= ε(u+ β), (4.9)

with ξ = x+ ct being the co-moving coordinate. Thereby, without loss of generality, we

only consider waves propagating in negative x-direction.





Chapter 5

Critical properties of

reaction-diffusion waves in one

spatial dimension

In this Chapter, we investigate the effect of advection on the propagation and, in par-

ticular, on the critical minimal speed of traveling waves. To this end, we introduce FHN

model in one spatial dimension with additional differential advection, Sect. 5.1.

Several properties of waves propagating in a spatial 2D medium are captured by an

effective 1D description. E.g., a wave infinitely extended orthogonal to its propagation

direction can be described in 1D, and, in addition, an effective 1D description is useful

to calculate properties of curved 2D wave segments.

In the excitable regime, i.e., β > 1 and ε and β below a critical value, the system has,

besides the homogeneous steady state, two spatially inhomogeneous solutions, an unsta-

ble slow traveling wave and a stable fast traveling wave, that propagate with constant

velocity c and constant wave profile u(x, t), v(x, t), see Fig. 5.1. Affected by differential

advection, the propagation velocities of the fast and slow traveling wave converge and

annihiliate at a critical value.

To derive an analytical approximation for this critical velocity and the correspond-

ing critical advection strength, Sect. 5.4, we first define the propagation boundary,

Sect. 5.2, and then we calculate the advection-velocity relation for the unstable slow

wave, Sect. 5.3. We also analyze the two-variable reaction-diffusion-advection model

numerically in a wide parameter range and compare theoretical predictions to numerical

results, Sect. 5.5.

Parts of this chapter are published in [81].
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Figure 5.1: Snapshots of the profile of activator u as a function of space x of a stable
fast wave (solid red line) and an unstable slow wave (dotted blue line) propagating to
negative x-direction numerically computed from Eqs. (5.1),(5.2). ε = 0.022, β = 1.6.

5.1 Differential Advection

In one spatial dimension, Eqs. (4.3),(4.4) reduce to

∂u

∂t
= 3u− u3 − v +D

∂2u

∂x2
, (5.1)

∂v

∂t
= ε(u+ β), (5.2)

with D 6= 0. Traveling waves are stationary solutions in the co-moving system, which in

one spatial dimension reads

c
∂u

∂ξ
= 3u− u3 − v +D

∂2u

∂ξ2
, (5.3)

c
∂v

∂ξ
= ε(u+ β), (5.4)

with ξ = x+ ct.

An advection term added to Eq. (5.1) or Eq. (5.3) may arise through different mecha-

nisms.

First, an advection term in an 1D medium is an approximation of curved reaction

diffusion waves in spatially 2D media [51]. Propagating curved wave segments with

L� R, where L is the width of the wave segment and R is the curvature radius of the

front, can be locally approximated by

c(A)
∂u

∂ξ
= 3u− u3 − v +D

∂2u

∂ξ2
+A

∂u

∂ξ
, (5.5)

c(A)
∂v

∂ξ
= ε(u+ β), (5.6)
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with A = D
R , see Appendix. This effective 1D description is useful to calculate properties

of curved 2D wave segments, e.g., the dependency of the propagation velocity on the

curvature or the maximal possible curvature of a wave front. Examples of stable curved

reaction diffusion waves are target pattern, spiral waves [82] or ring-shaped autowaves,

that propagate on a torus and thus exhibit positive and negative Gaussian curvature

[83, 84]. It has been shown that the ring-shaped autowaves break up, when the negative

Gaussian curvature exceeds a critical value.

Second, the same set of equations, i.e., Eqs. (5.5),(5.6), can be obtained if advection due

to a constant external driving force is considered. Both, activator u and inhibitor v can

be associated with particles of different mobilities µu and µv. Particle motion can then

be affected by a homogeneous external field, which is applied parallel to the propagation

direction, e.g., ions or charged macromolecules are influenced by an homogeneous exter-

nal electric field of strength E. This has been experimentally studied in the chemical

BZ reaction with spiral waves [85], and Turing patterns influenced by external electrical

fields have been studied in the chlorine dioxide-iodine-malonic acid reaction [86]. Then,

Eqs. (5.3),(5.4) read

c
∂u

∂ξ
= 3u− u3 − v +D

∂2u

∂ξ2
+ µuF

∂u

∂ξ
, (5.7)

c
∂v

∂ξ
= ε(u+ β) + µvF

∂v

∂ξ
, (5.8)

where F is the strength of the field and zE = −F with the valence z of the ion.

Thereby, it is assumed that the force on the inhibitor v due to the electrical gradient is

much stronger than the force due to the chemical gradient (inhibitor diffusion).

In [52] it is proposed to change the velocity of the co-moving frame to c̃ = c− µvF . For

c̃ = c(A), this yields

c(A)
∂u

∂ξ
= 3u− u3 − v +D

∂2u

∂ξ2
+A

∂u

∂ξ
, (5.9)

c(A)
∂v

∂ξ
= ε(u+ β), (5.10)

where ξ = x−(c−µvF )t and A = F (µu−µv). Now, Eqs. (5.9),(5.10) and Eqs. (5.5),(5.6)

are equal. In stationary coordinates, this reads

∂u

∂t
= 3u− u3 − v +D

∂2u

∂x2
+A

∂u

∂x
, (5.11)

∂v

∂t
= ε(u+ β). (5.12)

Varying D accords to scaling x and A. In the remainder, D is set to unity.
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Figure 5.2: Propagation velocity c as a function of threshold β. The blue solid
line shows the results from Eqs. (5.1),(5.2) computed with AUTO [69] by continuation
of homoclinic solutions. The fast wave branch and the slow wave branch coalesce
at a critical velocity (ccr|A=0). The grey dash-dotted lines show the fast wave velocity
calculated with Eq. (5.17). The grey dashed lines show the slow wave velocity calculated
with Eq. (5.18).

Let us briefly remark that in the excitable parameter regime, Eqs. (5.11),(5.12) have

four wave solutions (two stable fast and two unstable slow ones) propagating in opposite

direction. In the following, we only consider the two waves propagating in negative x-

direction. This can be done without loosing information, as the two waves propagating

in positive x-direction influenced by advection of strength A show the same behaviour

as the two waves propagating in negative x-direction influenced by advection of strength

−A.

5.2 Propagation boundary

FHN system without advection in the excitable parameter regime, Eqs. (5.1),(5.2) with

1 < β <
√

3 and ε sufficiently small, has a stable fast wave solution and an unstable

slow wave solution, Fig. 5.1, which correspond to homoclinic orbits of the related ODE

problem Eqs. (5.3),(5.4), see [87]. There exists a critical line ∂P in the (ε, β) space,

at which the fast wave branch coalesces with the slow wave branch, see Fig. 5.2. For

values of β and ε above this critical line, propagation of traveling waves cannot be

obtained. These properties carry over to the case of finite advection of strength A.

Thus, it is reasonable to take into account the slow wave solution when calculating the

critical properties, i.e., the critical surface in the (ε, β,A) space, which separates the

excitable and the non-excitable parameter regime, and a critical velocity ccr depending

on advection of strength A.
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5.3 Advection-velocity relation of the fast and slow wave

solution

The advection-velocity relation of the slow wave can be derived in the same way as the

known advection-velocity relation of the fast wave (nonlinear Eikonal equation [51]).

Introducing c∗ and ε∗

c∗ = c(A)−A, (5.13)

ε∗ = ε
c∗

c(A)
(5.14)

in Eqs. (5.9),(5.10) yields

c∗
∂u

∂ξ
= 3u− u3 − v +D

∂2u

∂ξ2
, (5.15)

c∗
∂v

∂ξ
= ε∗(u+ β), (5.16)

which has the same form as the FHN model without advection Eqs. (5.3),(5.4). Thus, c∗

has the same dependency on ε∗ and β as the propagation velocity c|A=0 (see Eqs. (5.3)-

(5.4)) on ε and β. The velocity c|A=0 for the fast and the slow wave can then be

calculated approximately using a singular perturbation theory [78]. The propagation

velocity of the fast cf |A=0 and the slow cs|A=0 wave is then obtained by

cf |A=0 = c0 + εcf1 , (5.17)

cs|A=0 =
√
εcs1, (5.18)

see Fig. 5.2. The expressions for c0, cf1 and cs1 and their deviations are provided in the

Appendix.

For c∗ (see Eqs. (5.15),(5.16)), we therefore obtain the expressions

cf∗ = c0 + ε∗cf1 , (5.19)

cs∗ =
√
ε∗cs1. (5.20)

Inserting c∗ and ε∗ Eqs.(5.13),(5.14) and solving Eq. (5.19) for cf (A), we obtain the

so-called nonlinear Eikonal equation

cf±(A) =
1

2
((A+ c0 + εc1)±

√
(A+ c0 + εc1)2 − 4εAc1), (5.21)

where cf+(A) is the valid advection-velocity relation, see [51].
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Figure 5.3: Critical advection strength Acr as a function of threshold size β. The grey
dashed line shows the results from Eq. (9), which was derived from the nonlinear Eikonal
equation. The blue solid line shows the results computed from Eqs. (5.11),(5.12); the
propagation boundary ∂PA=0 is computed from Eqs. (5.1),(5.2). ε = 0.022 in each case.
The blue solid line separates the excitable from the non-excitable parameter regime.

To get the advection-velocity relation of the slow wave, we solve Eq. (5.20) for cs(A).

The three solutions are

cs+(A) =
1

2
(A+

√
A2 + 4εcs21 ), (5.22)

cs−(A) =
1

2
(A−

√
A2 + 4εcs21 ), (5.23)

cs3(A) = A. (5.24)

The valid advection-velocity relation for the slow wave (with cs(A) > 0) is cs+(A) because

cs|A=0 ≡
√
εcs1.

5.4 Critical velocity and critical advection strength

In the (ε, β,A) parameter space, there exists a critical surface (εcr, βcr, Acr) of co-

dimension one, that separates the excitable and the non-excitable parameter regime.

At (εcr, βcr, Acr), the single homoclinic solution of Eqs. (5.9),(5.10) corresponds to the

connection between the fast wave branch and the slow wave branch, and the propagation

velocity of the stable fast wave is minimal (ccr(Acr)). This critical velocity (ccr(Acr)) is

calculated here. Also an expression for Acr is captured.

We want to mention that in [51] an analytical expression for the critical velocity and

the critical advection strength derived from the nonlinear Eikonal equation Eq. (5.21)

is proposed (see Appendix, Eq. (9)). This mathematical framework provides a good

approximation for A < 0, but fails for A > 0, see Fig. 5.3.
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To calculate ccr(Acr) andAcr, we start from the FHN model without advection Eqs. (5.1)-

(5.2). The critical surface of co-dimension one is a line in the (ε, β) parameter space. At

this critical line (εcr, βcr), the propagation velocity of the fast wave is minimal (ccr|A=0).

The critical time scale ratio εcr as a function of β can be approximated by solving

cs|A=0 = cf |A=0 (5.25)

for εcr, where cf |A=0 and cs|A=0 are calculated using a singular perturbation theory

Eqs. (5.17),(5.18). This yields

ε±cr(β) =
−2c0c

f
1 + cs21 ±

√
−4c0c

f
1c
s2
1 + cs41

2cf2
1

, (5.26)

where ε−cr < ε+
cr and thus εcr = ε−cr.

For the critical velocity ccr|A=0 as a function of β we obtain from Eqs. (5.17),(5.18)

ccr|A=0 = c0 + εcrc
f
1 =
√
εcrc

s
1. (5.27)

Advection changes the critical velocity. To obtain an analytical expression for ccr(Acr),

we again start from Eqs. (5.15),(5.16), which have the same form as FHN model without

advection Eqs. (5.3),(5.4). Substituting c∗ for ccr|A=0 and ε∗ for εcr, the homoclinic

solution of Eqs. (5.15),(5.16) ceases to exist at the connection between the fast wave

branch and the slow wave branch. Thus, the critical velocity ccr(Acr) in systems affected

by advection can be derived from Eqs. (5.13),(5.14) by setting c∗ = ccr|A=0 and ε∗ = εcr.

With c∗ = c(A)−A and ε∗ = ε c∗

c(A) it follows that

ccr|A=0 = ccr(Acr)−Acr, (5.28)

εcr = ε
ccr|A=0

ccr(Acr)
, (5.29)

where ccr|A=0 is the minimal propagation velocity of the fast wave for A = 0 Eq. (5.27),

and ccr(Acr) is the minimal propagation velocity of the fast wave, that can be achieved

by influencing the system with critical advection of strength Acr.

Solving Eq. (5.29) for ccr(Acr) and Eq. (5.28) for Acr, we finally obtain

ccr(Acr) =
ε

εcr
ccr|A=0, (5.30)

Acr = ccr(Acr)− ccr|A=0 = ccr|A=0(
ε

εcr
− 1). (5.31)
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Figure 5.4: The critical surface in the (ε, β,A) parameter space derived from
Eq. (5.32) separates the excitable (below) and the non-excitable (above) parameter
regime. The colour code indicates the size of the time scale ratio ε.

The critical values ccr|A=0 Eq. (5.27) as well as εcr Eq. (5.26) are fully determined by β.

Thus Eq. (5.31) is an approximation for the critical surface in the (ε, β,A) space, above

which propagating waves are not supported. As a function of A and β, it reads

ε =
(A+ ccr|A=0)εcr

ccr|A=0
, (5.32)

see Fig. 5.4. For values of ε above this critical surface, wave propagation is impossible.

5.5 Numerical validation

Here, the analytically calculated advection-velocity relation for the slow wave Eq. (5.22)

as well as the nonlinear Eikonal equation Eq. (5.21), which provides the advection-

velocity relation for the fast wave, are compared to the propagation velocity of the fast

cf (A) and slow wave cs(A) numerically obtained from Eqs. (5.11),(5.12) as a function

of A, Fig. 5.5 a,b.

Referring to systems without advection, the propagation velocity c(A) is decelerated for

negative advection A < 0 and accelerated for positive advection A > 0. We find that

Eq. (5.22) is in good accordance with numerical results. Close to the point where the fast

wave branch and the slow wave branch meet, the advection-velocity relation for the slow

wave deviates from numerical results because perturbation theory does not capture the

bifurcation behaviour. The deviation of the fast wave velocity calculated from Eq. (5.21)

from the numerically obtained results is relatively large. This deviation is a consequence
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Figure 5.5: Propagation velocity c as a function of advection strength A. The grey
dash-dotted lines show the velocity of the fast wave calculated from the nonlinear
Eikonal equation (cf+(A) of Eq. (5.21)). The grey dashed lines show the slow wave ve-
locity derived from Eq.(5.22) (cs+(A)). The blue solid lines show the results numerically
computed from Eqs. (5.11),(5.12). a) ε = 0.022, b) β = 1.59.

of the inaccuracy of the fast wave velocity cf |A=0 calculated from Eq. (5.17), which is a

singular perturbation approximation up to first order of ε, see Fig. 5.2.

Furthermore, in Sect. 5.4, we found an analytical expression for the critical propagation

velocity ccr(Acr) Eq. (5.30), which predicts an acceleration of the critical propagation

velocity ccr(Acr) at larger threshold value β, see Fig. 5.6. For comparison, the propa-

gation velocity of the fast cf (A) and slow wave cs(A) affected by advection of different

strength A are numerically calculated as a function of β from Eqs. (5.11),(5.12), see

Fig. 5.6. The fast and the slow wave branch meet at a critical velocity ccr(Acr). We find

that Eq. (5.30) provides the same characteristic trend as numerical results.

Besides, numerical results in Fig. 5.6 show a shift of the propagation boundary ∂P

(connection between fast and slow wave branch) to smaller threshold β for negative

advection A < 0 and to larger threshold β for positive advection A > 0. This behaviour
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Figure 5.6: Critical propagation velocity ccr(Acr) as a function of threshold β
(grey dashed line) derived from Eq. (5.30) with εcr from Eq. (5.26) and ccr|A=0 from
Eq. (5.27). The coloured solid lines show the propagation velocity c(A) of the fast and
the slow wave numerically computed from Eqs. (5.11),(5.12) with varying advection
strength A (A = −0.5,−0.4,−0.3,−0.2,−0.1, 0.0, 0.1, 0.2). ε = 0.022 in each case.

is predicted by Eq. (5.31), see Fig. 5.7. The critical line in the (β,A) parameter space

separates the excitable (A > Acr) and the non-excitable (A < Acr) parameter regime.

We find that Eq. (5.31) provides the same characteristic trend as numerical results, but

deviates strongly from the numerical line for large negative advection strength A < 0.

This is due to the fact that in this case, ε∗ = ε(1 − A
c(A)) Eq. (5.14) is very large, and

thus the singular perturbation theory is inaccurate.

A theoretical explanation of the stabilizing effect of positive advection has been found:

every parameter point in the (ε, β) space can be allocated to a critical velocity Eq. (5.30).

Media without advection are excitable if the propagation velocity of the fast wave

is larger than this critical velocity (parameter regime above the critical line εcr(β)

Eq. (5.26)), and non-excitable if the propagation velocity of the fast wave is smaller

than this critical velocity (parameter regime below the critical line εcr(β)). Negative

advection A < 0 causes a deceleration of traveling waves, which in turn can induce

a destabilization of an originally stable wave if the fast wave is decelerated below the

critical velocity ccr(Acr) [51]. On the contrary, positive advection A > 0 causes an ac-

celeration of traveling waves, which in fact can induce stable wave propagation in the

former non-excitable parameter regime if the fast wave is accelerated above the critical

velocity ccr(Acr).
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Figure 5.7: Critical advection strength Acr as a function of threshold β for two differ-
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the results derived from Eq. (5.31) with εcr from Eq. (5.26) and ccr(Acr) from Eq. (5.27);
the blue solid lines show the results numerically computed from Eqs. (5.11),(5.12). The
propagation boundary ∂PA=0 is numerically computed from Eqs. (5.1),(5.2).

5.6 Conclusion

In this chapter, we described the dependency of the propagation velocity of an unstable

slow traveling wave cs(A) on advection of strength A analytically Eq. (5.22) and numer-

ically. Furthermore, we have shown that positive advection A > 0, corresponding to a

constant field externally applied parallel to the propagation direction or, respectively,

corresponding to small positive curvature of a wave front (V-shaped pattern), can in-

duce stable propagation of traveling waves in the non-excitable parameter regime. This

behaviour is explained analytically: Every point in the (ε, β) space, where ε is the time

scale ratio and β is a measure for the threshold of the system, is related to a critical

velocity ccr(Acr) Eq. (5.30). ccr(Acr) is the propagation velocity at a saddle-node bifur-

cation of an unstable slow and a stable fast traveling wave solution, thus the minimal

possible velocity of the fast wave solution. Stable wave propagation in the non-excitable

parameter regime now is induced by accelerating the fast wave velocity above the crit-

ical velocity by affecting it with advection larger than a critical advection strength Acr

Eq. (5.31). We derived an analytical approximation of a critical surface in the (ε, β,A)

space Eq. (5.32), above which wave propagation is impossible. Finally, we confirmed

numerically that the calculated dependencies of the critical velocity ccr(Acr) and the

critical advection strength Acr on β and ε are valid.





Chapter 6

Nucleation of reaction-diffusion

waves on curved surfaces

In this Chapter, we study reaction-diffusion waves on curved 2D surfaces, and determine

the influence of curvature upon the nucleation and propagation of spatially localized

waves in an excitable medium modeled by the FHN system. In Sect. 6.1, we present

the internal feedback control used to stabilize unstable localized waves and introduce

the modeling of a curved medium. In Sect. 6.2, we discuss wave solutions on a torus,

which represents a curved surface on which locally both positive and negative Gaussian

curvature occurs. We consider ring waves, wave segments and particle-like waves (critical

nuclei) stabilized by feedback control. Then, we specifically study ring wave break-up,

Sect. 6.3, curvature-induced changes of nucleation, Sect. 6.4, and curvature-induced

stabilization of wave-segments, Sect. 6.5. So far, the restriction is made that the center

of mass of the critical nuclei is pinned on the torus inside and outside respectively. In

Sect. 6.6, we analyze, how localized wave segments without this restriction evolve.

Parts of this chapter are published in [84].

6.1 Methods

In a spatial 2D medium, depending upon the set of parameters (ε, β), there exist different

wave solutions [3, 88]. Here, we focus on localized wave segments, which may either

shrink or expand, as they propagate, or, in the limit case, remain unchanged in size and

shape, in which case they are called particle-like waves [31].

87
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For each set of parameters (ε, β) with β < β∂R∞ (or ε < ε∂R∞ , respectively) there exists

a localized wave solution (wave segment), which represents a critical spatio-temporal

structure, i.e., a particle-like wave.

In a co-moving frame Eqs. (4.8),(4.9), the localized critical structure is related to a

saddle-point with a single unstable eigenvector (one-dimensional unstable manifold) in

phase space. The curve representing this solution in a parameter plane of the bifurcation

diagram is called the rotor boundary ∂R. In phase space, the stable manifold of states

on ∂R separates the attractor of a spiral wave (spatially non-confined) and the stable,

spatially uniform steady state. Thus, when the form of this particle-like wave is per-

turbed, it either grows to a spiral wave or shrinks and disappears. Perturbations above

the critical size of the particle-like wave grow, while perturbations below that critical

nucleus shrink to the stable uniform state, i.e., the wave segments retracts. The internal

cortical control of such particle-like waves may be viewed as a strategy of the cortex

to avoid re-entrant spiral waves, e.g., in migraine. Changing the nucleation size of this

critical structure changes the susceptibility to pathological conditions such as spreading

depression.

In Fig. 6.1, we show the rotor boundary ∂R (black dashed) in a schematic bifurca-

tion diagram of wavesize S as a function of the threshold parameter β. It separates

the weakly excitable parameter regime (perturbations grow to a spiral wave) from the

subexcitable parameter regime (wave segments in 2D shrink in length, while in spatially

1D systems wave propagation is stable). There exists another boundary ∂R∞ (dash-

dotted vertical line), independent of size S, to the right of which all wave segments

retract (corresponding to infinitely large critical size). Furthermore, the propagation

boundary ∂P1D is shown, which separates the subexcitable parameter regime from the

nonexcitable regime. In the nonexcitable parameter regime, perturbations shrink also in

width and wave segments collapse, i.e., even in spatially 1D systems no wave propagation

is possible.

At this point, we would like to remark that the critical nucleus (particle-like wave), which

has the dynamic signature of a saddle-point, can be stabilized by an internal feedback

control loop, which controls the excitation threshold β in Eq. (4.4), that is,

β = β0 +KS(t), (6.1)

where K is the control strength, and the size of the wave segment

S(t) =

∫
R2

Θ (u (r, t)− ue) d2r (6.2)
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Figure 6.1: Schematic phase diagram of different regimes of the FithHugh-Nagumo
model in the plane of wavesize S and threshold β for fixed ε: weakly excitable (perturba-
tions grow to spiral waves); subexcitable (perturbations shrink in length); nonexcitable
(perturbations shrink in width, no propagation in one dimension). The respective
boundaries are marked by ∂R∞ and ∂P1D. ∂R denotes the boundary of the critical
nucleus of size S below which perturbations shrink. The red solid line marks the control
loop, which stabilizes the critical nucleus (S∗, β∗) indicated by a red dot.

is defined by the Heavyside function Θ. S represents a measure of the active area

occupied by the wave segment, where u is larger than a defined threshold ue. Here, ue

is chosen to be zero, compare Fig. 4.1.

Eq. (6.1) defines a control line (red solid line with arrows) in the (β, S) phase diagram

Fig. 6.1. As the temporal evolution of a perturbation in a controlled system is confined to

the control line, it asymptotically approaches a stable wave segment (β∗, S∗) if perturbed

with convenient initial conditions. This follows from Fig. 6.1 since wave segments above

∂R, i.e., β < β∗, grow in size, while wave segments below ∂R, i.e., β > β∗, shrink.

In the following simulations we will apply the internal feedback mechanism Eq. (6.1) to

stabilize the critical nucleus. Furthermore, we will study the influence of the curvature

of the excitable medium on the stability of localized waves. Hence the Laplace operator

∇2 must be replaced by the Laplace-Beltrami operator ∆LB [89] for surfaces given in

curvilinear coordinates αi with i = 1, 2,

∆LB =

2∑
i,j=1

g−
1
2
∂

∂αi

(
g

1
2 gij

∂

∂αj

)
, (6.3)

where g = Det G and G with the matrix elements gij is the metric tensor of the

parametrization, see Appendix.
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Figure 6.2: Parametrization of a torus by coordinates (θ, ϕ).

The surface of a torus in the Euclidian space R3 can be described by the parametrization

(θ, ϕ) of the position vectors

(θ, ϕ) 7→


(R+ r cos θ) cosϕ

(R+ r cos θ) sinϕ

r sin θ

 =


x

y

z

 . (6.4)

The geometrical meaning of the major curvature radius R and the minor curvature

radius r and of the angles θ and ϕ is visualized in Fig. 6.2.

The Laplace-Beltrami operator in torus coordinates reads

∆LB = − sin θ

r(R+ r cos θ)

∂

∂θ
+

1

r2

∂2

∂θ2
+

1

(R+ r cos θ)2

∂2

∂ϕ2
. (6.5)

We investigate sections of a torus with Neumann boundary conditions (no flux boundary)

on the equatorial section (at θ = 0 and θ = π) and periodic boundary conditions in the

direction of the azimuthal angle ϕ. This restricts all traveling wave solutions, as they

have to obey the symmetries defined by these boundary conditions, i.e., the center of

mass of the critical nuclei is pinned either on the outside or inside of the torus.

6.2 Overview of wave solutions on a torus

The main results are twofold. First, by investigating excitation waves on a torus, we show

that the Gaussian curvature of the excitable medium changes the nucleation threshold

systematically. Second and more surprisingly, we observe that a curved medium can

even induce a change of stability. Unstable critical nuclei are transformed into stable

propagating localized wave segments.



6.2 Overview of wave solutions on a torus 91

We analyze the nucleation of excitation waves in reaction-diffusion media on curved

2D surfaces, specifically on tori. A torus has positive Gaussian curvature on the outside

(θ=0) and negative Gaussian curvature on the inside (θ=π) and a continuous transition

in between, with vanishing Gaussian curvature on the top (θ= π
2 ) and bottom (θ= 3π

2 ),

see Fig. 6.2. In general, a torus has, in contrast to a sphere, not only locally varying

and even negative Gaussian curvature, but a torus also admits a global isothermal

coordinate system, called toroidal coordinates, that is, coordinates, where the metric

is locally conformal to the Euclidean metric, see Appendix. Therefore, an intuitive

understanding of some of our results can be based on the particularly simple form of the

Laplace-Beltrami operator in these coordinates.

On tori, a stable solution besides the spatially homogeneous steady state are ring-shaped

propagating wave solutions (autowaves). The stable manifold of states on the curve of

the critical nucleus separates the attractor of a ring-shaped autowave and the spatially

uniform steady state. Ring-shaped autowaves have been analyzed and, in particular,

their critical properties have been discussed, namely autowave fronts with sufficiently

large geodesic curvature break up on the torus inside [83]. We reconsider these autowaves

in order to compare them with the dynamics of critical nuclei.

We restrict our study to nucleation of waves propagating strictly in the direction of the

azimuthal angle ϕ (see Sect. 6.1) and, furthermore, the center of mass of the nucleation

is pinned either on the outside or inside of the torus, i.e., the locations where the

extreme values of the Gaussian curvature occur. In the following, we will simply refer

to these solutions as inside or outside critical nuclei or, if stabilized, inside or outside

traveling wave solutions. These solutions are the symmetric solutions with respect to

the equatorial section of the torus. Examples of solutions on the torus without this

restriction are shown in Sect. 6.6.

Note that the open ends of the two symmetric critical nuclei on the outside and inside

extend in the direction of θ (perpendicular to the propagation direction), that is, into

regions of decreasing and increasing Gaussian curvature, respectively. Our results are

mainly explained by this gradient in the Gaussian curvature and not by the absolute

value of the Gaussian curvature.

The results are displayed in two bifurcation diagrams. First, the same bifurcation di-

agram as already introduced in Sect. 6.1 to define the regimes of excitability (weakly,

sub-, and nonexcitable, see Fig. 6.1) is shown in Fig. 6.3. The size S of the critical

nucleus Eq. (6.2) is plotted versus the threshold parameter β of the local dynamics of

the FHN system Eqs. (4.3),(4.4). The reference branch of the critical nucleus from sim-

ulation on a flat medium (black dashed), now labeled “flat” in Fig. 6.3, separates the



92 6 Nucleation of reaction-diffusion waves on curved surfaces

0

10

20

30

40

50

60

 1.3  1.32  1.34  1.36  1.38  1.4

w
av

es
iz

e 
S

threshold β

torus outside

flat
torus inside

2
21

1

ring wave

1

2

✽

✽

∂P1D∂R
∞

∂R

Figure 6.3: Bifurcation diagram of wavesize S as a function of threshold parameter
β computed from Eqs. (4.3),(4.4) with D = 0.12 and ε = 0.36; critical nucleus on a flat
surface (black dashed line); 1) solutions on a torus with minor curvature radius r = 20

2π
and major curvature radius R = 80

2π ; 2) solutions on a torus with minor curvature radius
r = 20

2π and major curvature radius R = 40
2π ; stable ring wave solutions (red solid lines)

with points of excitation block, i.e., propagation suppression (red asterisks); unstable
inside critical nucleus (blue dash-dotted lines); unstable outside critical nucleus (green
dashed lines); stable stationary and maximum and minimum size of stable oscillating
localized wave segment on the torus outside (green solid lines). Feedback Eq. (6.1) is
applied to stabilize the states on the dashed and dash-dotted curves.

weakly excitable regime (to the left, decreasing β) from the subexcitable regime (to the

right, increasing β), which ends at β = ∂P1D, where the nonexcitable regime is reached.

In Fig. 6.3, we show further solution branches simulated on two different tori. The torus

labeled 1 has lower absolute values of Gaussian curvature than the torus labeled 2, since

the latter torus has a twice smaller value of major curvature radius R. For each torus,

we show the branch of the ring-shaped autowave solutions (red solid). Furthermore,

for each torus, we show the branch of the inside (blue dash-dotted) and outside (green

dashed) critical nucleus. The states on the curves of the critical nucleus (dashed or

dash-dotted) are stabilized by applying an appropriate global feedback Eq. (6.1) with

suitably chosen β0 and K such that the respective state (β∗, S∗) is at the intersection

with the line given by Eq. (6.1). In addition, on the torus outside, we find stable wave

segments and stable oscillating waves (green solid), see Sect. 6.5.

Second, Fig. 6.4 is a bifurcation diagram, where the propagation velocity c,

see Eqs. (4.8),(4.9), is plotted versus the threshold parameter β. The reference branches

are on the one hand the propagation velocities of the stable fast and the unstable slow

wave solutions in spatially 1D systems (grey dashed), and, on the other hand, a critical

velocity ccr (black solid), below which stable wave propagation cannot be obtained,

compare Sect. 5.4.
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(green dashed line) on torus inside; critical propagation velocity ccr here denoted as
cmin (black solid line) calculated from Eq. (5.30) with ccr|A=0 and εcr computed from
Eqs.( 4.3),(4.4) in one spatial dimension; propagation velocity of the stable and unstable
wave solution in 1D (grey dashed). Feedback Eq. (6.1) is applied to stabilize the states
on the blue dash-dotted curves.

Further, we show solution branches simulated on the less curved torus (torus 1). Two

branches show the propagation velocity c in azimuthal (ϕ) direction of the ring-shaped

autowave solution (red solid), the lower one is the propagation velocity on the torus

inside, the upper one is the propagation velocity on the torus outside. Furthermore,

for the inside critical nucleus (blue dash-dotted), we display the propagation velocity in

azimuthal (ϕ) direction at the center of mass (lower line) and at the open ends (upper

line), where the open ends are defined as the most distant lateral location where the

activator concentration u equals zero.

For the outside stable wave segments, we show the propagation velocity c at the center

of mass (green solid) and, after the bifurcation to the oscillating parameter regime with

decreasing threshold parameter β, the maximum and minimum propagation velocity of

the stable oscillating wave segments. In addition, for the outside critical nucleus (with

propagation velocity co), we plot a “hypothetical” branch (green dashed) that shows the

propagation velocity ci = co
R−r
R+r , which a point of this wave segment would have on the

torus inside if it would exist there.
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Figure 6.5: Snapshots of ring waves propagating counter-clockwise on a torus with
minor curvature radius r = 20

2π and major curvature radius R = 80
2π computed from

Eqs. (4.3),(4.4) with D = 0.12 and ε = 0.36. (a) Stable ring wave, β = 1.378. (b)
Ring wave break-up, β = 1.379. (red) u > 0, (white) us < u < 0, (light grey)
us − 0.01 < u < us + 0.01, (dark grey) u < us − 0.01.

6.3 Ring wave break-up at saddle-node bifurcation

First, we focus on the break-up of ring-shaped autowaves on tori. The ring-shaped

autowave solution shown in Fig. 6.5 is a stable solution of Eqs. (4.3),(4.4). Thus the

ring waves can be conceived as homoclinic solutions of the related ordinary differential

Eqs. (4.8),(4.9) in a co-moving frame with ξ = ϕ+ ct.

Ring waves have negative geodesic curvature on the torus inside and positive geodesic

curvature on the torus outside, see Fig. 6.5(a). Thus, compared to 1D pulses (or infinitely

extended wavefronts on a flat surface, respectively), ring waves propagate slower on the

torus inside and faster on the torus outside, see Fig. 6.4 (red solid).

If the propagation velocity falls below the critical value ccr, the ring waves break up

on the torus inside [83], see Fig. 6.5(b). This excitation block is marked by an asterisk

in Figs. 6.3 and 6.4. Below the critical velocity ccr, stable wave propagation cannot be

obtained.

For 1D waves, it is known that the excitation block is due to the coalescence of the

homoclinic orbits of the fast and the slow wave (pulse) solution of the ODE problem

Eqs. (4.8),(4.9) [87]. In the related PDE problem Eqs. (4.3),(4.4), the propagation

boundary is a saddle-node bifurcation point of the stable fast wave branch and the

unstable slow wave branch.
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Figure 6.6: Excitation block of ring-shaped autowaves computed from Eqs. (4.3),(4.4)
with D = 0.12 and ε = 0.36 on tori in the (R, β) parameter space. No propagation
is possible above the critical curves for different r; ∂P1D denotes the 1D propagation
boundary.

In Fig. 6.4, the fast wave branch and the slow wave branch of 1D traveling wave solutions

are shown (upper and lower dashed grey lines). At the propagation boundary ∂P1D, they

meet in a saddle-node bifurcation.

Also in curved 2D media, the excitation block is due to a saddle-node bifurcation, where

the fast wave branch coincides with the slow wave branch in a saddle-node bifurcation.

In the 1D limit R −→∞, the threshold β, at which the ring waves break up, converges

to the propagation boundary ∂P1D. This is shown in Fig. 6.6, where the lines show

the excitation block in the (R, β) parameter space on two different tori; the upper line

(dashed blue) is computed on a less curved torus with lower absolute values of Gaussian

curvature compared to the lower line (dash-dotted green).

As shown in Sect. 5.4, the critical velocity ccr, below which stable wave propagation is

not possible, can be calculated with Eq. (5.30),

ccr =
ε

εcr
ccr|A=0, (6.6)

with εcr being the critical time separation parameter, where the homoclinic orbits of the

1D fast and slow wave (pulse) solution of the ODE Eqs. (4.8),(4.9) coincide, and ccr|A=0

is the corresponding critical velocity. For the line ccr shown in Fig. 6.4, εcr and ccr|A=0

are computed with AUTO from Eqs. (4.3),(4.4) in one spatial dimension.

The propagation velocity c of ring waves is affected by both the parameters of the

local dynamics (ε and β) and the Gaussian curvature Γ of the torus. An increase of

β or ε causes a deceleration of the ring wave on the torus inside. Also an increase of

the Gaussian curvature Γ of the torus causes an increase of the absolute values of the

geodesic curvature of the ring wave, what results in a deceleration of the ring wave on
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the torus inside. Thus, on stronger curved tori (smaller R), the ring wave breaks up at

smaller threshold β, see Fig. 6.6.

6.4 Curvature-induced changes of nucleation

Next, we analyze the nucleation of excitation waves on the torus inside (Sect. 6.4.1) and

outside (Sect. 6.4.2), respectively.

6.4.1 Nucleation on the torus inside

The inside branches of the critical nucleus (blue dashed) in Fig. 6.3 are to the right

(at larger threshold β) of the reference curve ∂R (rotor boundary on flat surfaces).

The larger the size S of the critical nucleus is, the stronger is the shift towards larger

threshold β. On the stronger curved torus (torus 2), the branch of the critical nucleus

is shifted further. Thus, on the torus inside, critical nuclei exist in a parameter regime

that is subexcitable on flat surfaces, compare Fig. 6.1.

A qualitiative explanation for this behaviour can be given by the relation of the Gaussian

curvature Γ at the center of mass of the critical nucleus (θ = π) and at the open ends of

the critical nucleus. Mathematically, the Gaussian curvature is described by the Laplace-

Beltrami operator Eq. (6.3) in torus coordinates [89]. A torus admits a global isothermal

coordinate system, so-called toroidal coordinates (θi, ϕ̃), i.e., orthogonal coordinates

where the metric is locally conformal to the Euclidean metric. The Laplace-Beltrami

operator Eq. (6.3) given in toroidal coordinates reads

∆LB =
(cosh η − cos θi)

2

a2

(
∂2u

∂θ2
i

+
∂2u

∂ϕ̃2

)
, (6.7)

where

a = (R2 − r2)
1
2 (6.8)

is a measure for the scaling of the space,

η = arcoth
(
R/
(
R2 − r2

) 1
2

)
(6.9)

is a measure for the relation between the major radius R and the minor radius r and

ϕ̃ = ϕ sinh η. (6.10)
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The derivation can be found in the Appendix.

Introducing an effective coupling strength C(θi) = (cosh η − cos θi)
2/a2, a torus can

mathematically be interpreted as a flat medium with diffusion being a function of the

location θ (θi can be expressed in terms of θ, see Appendix), i.e., D̃(θ) = DC(θ). The

coupling strength C(θ) is strictly monotonically increasing from the torus outside (θ = 0)

to the torus inside (θ = π), see Fig. 6.7. For stronger curved tori, the gradient of C(θ)

is larger.

The effective coupling strength C(θ) of the inside critical nucleus is larger at the center

of mass than at the open ends. Thus, the resultant diffusion perpendicular to the

propagation direction is directed towards the open ends. This counteracts the retraction

of the open ends in the parameter regime which is subexcitable in a flat medium. Larger

critical nuclei reach over a region of larger difference in effective coupling strength, thus

the shift towards larger threshold β is stronger.

The propagation velocity c at the center of mass of the inside critical nucleus is similar

to the propagation velocity of the ring-shaped autowaves at the torus inside, see Fig. 6.4.

6.4.2 Nucleation on the torus outside

On the torus outside, we find that, under certain conditions, unstable critical nuclei

bifurcate into stable propagating wave segments (green solid line in Fig. 6.3). Further-

more, we find stable oscillating wave segments, whose size oscillates periodically in a

self-sustained way. This striking bifurcation pattern will be explained in Sect. 6.5.

The outside branches (green) in Fig. 6.3 are to the left (at smaller threshold β) of the

flat reference branch ∂R (black dashed). On more strongly curved tori, the branch of

the critical nucleus is further shifted.

The coupling strength relation between the torus inside and outside also explains this

behaviour. As the coupling strength C(θ) at the center of mass of the outside criti-

cal nucleus is smaller than at the open ends, the resultant diffusion perpendicular to

the propagation direction is directed towards the center of mass, what enhances the

retraction of the open ends.

On the torus outside, critical nuclei with increasing size S are found at decreasing

threshold β. This is distinct from the inside nucleation branch and the flat reference

branch: the larger the size S of the critical nucleus is, the larger is the difference between

the coupling strength at the center of mass and the coupling strength at the open ends.

Thus, larger critical nuclei at the torus outside are shifted to smaller threshold β, whereas

on the torus inside larger critical nuclei are shifted to larger threshold β.
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Figure 6.7: Coupling strength C as a function of common toroidal angular variable
θ for two tori with different Gaussian curvature Γ with n = R/r and r = 1.

Critical nuclei with small size S extend over an area with almost constant coupling

strength C, see Fig. 6.7. This supports the assumption that the branches of the inside

and outside critical nuclei with small wavesize S (not shown in Fig. 6.3) lie close to the

flat reference branch. They probably are shifted parallel with respect to size S, as a

constant coupling strength C equals a scaling of space. On the torus inside, they are

shifted up to larger size S, on the torus outside down to smaller size S. This implies that

at large threshold β the stable outside branch (green solid line in Fig. 6.3) terminates in

a saddle-node bifurcation, and an unstable outside nucleation branch parallel to the flat

reference branch exists at small wavesize S; this was, however, not resolved numerically.

6.5 Curvature-induced stabilisation

Depending upon the excitation parameter β, different space-time patterns occur, Fig. 6.8.

Localized wave segments either may grow towards stable ring waves, Fig. 6.8(a), or they

may shrink and vanish, Fig. 6.8(d). Additionally, as an effect of the curved surface, on

the torus outside, we find stable propagating localized wave segments, see Fig. 6.8(c).

Furthermore, we find stable oscillating wave segments, whose size oscillates periodically,

see Fig. 6.8(b).

In Fig. 6.9, we show the activator profile of a stable wave segment propagating with a

stationary profile, and in Figs. 6.10(a),(b), we show snapshots of the activator profile

of an oscillating wave segment at its minimum size S and at its maximum size S,

respectively.

The existence of stable wave segments on surfaces with positive Gaussian curvature

can qualitatively be explained with the help of the space-dependent effective coupling
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Figure 6.8: Snapshots of wave segments propagating counter-clockwise on a torus
with minor curvature radius r = 20

2π and major curvature radius R = 80
2π computed

from Eqs.( 4.3),(4.4) with D = 0.12 and ε = 0.36. (a) Wave segment growing towards
ring-shaped autowave, β = 1.315. (b) Oscillating wave segment, β = 1.321476. (c)
Stable propagating wave segment, β = 1.325. (d) Wave segment shrinking towards
homogeneous steady state, β = 1.33. (red) u > 0, (white) us < u < 0, (light grey)
us − 0.01 < u < us + 0.01, (dark grey) u < us − 0.01.
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Figure 6.9: Snapshot of a stable propagating wave segment on the torus outside:
activator concentration u(ϕ, θ) on a torus with minor curvature radius r = 20

2π and major
curvature radius R = 80

2π computed from Eqs.( 4.3),(4.4) with β = 1.324, D = 0.12 and
ε = 0.36.
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Figure 6.10: Snapshots of oscillating wave segment on the torus outside: same system
as in Fig. 6.9 with β = 1.321476. (a) Minimum size, (b) maximum size. Time between
minimum and maximum size ∆t = 14.

strength C, as discussed in Sect. 6.4. The open ends of a stable wave segment on the

torus outside lie in an area of the torus where the coupling strength C is larger than

the coupling strength at θ = 0, where the center of mass of the wave segment is located.

Thus, the resultant effective diffusion perpendicular to the propagation direction caused

by curvature is directed towards the center of mass of the wave segment. The larger

the size S of the perturbation is, the stronger is this effect. At the same time, in the

excitable parameter regime (see Fig. 6.1), small perturbations grow in length. If these

two effects are balanced, we find stable propagating wave segments. In Fig. 6.3, we

show the branch of stable wave segments (green solid). Perturbations with size S larger

than the stable wave segments (and smaller than ring waves) shrink, as the difference

in effective coupling strength between the center of mass and the open ends is large.

Perturbations with size S smaller than the stable wave segments and larger than the

small outside critical nucleus (which is not shown in Fig. 6.3 but supposed to lie close

to the flat reference branch, see Sect. 6.4) grow, as the difference in coupling strength
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Figure 6.11: Snapshots over one cycle (∆t = 8) of wave segments on a section of
a torus with minor curvature radius r = 20

2π and major curvature radius R = 80
2π

computed from Eqs.( 4.3),(4.4) with (cyan) and without (red) feedback control Eq. (6.1).
D = 0.12, ε = 0.36. Left → right: ϕ = 0 → 7/6π, up → down: θ = −π → π.
(red/cyan) u > 0, (white) us < u < 0, (light grey) us − 0.01 < u < us + 0.01, (dark
grey) u < us − 0.01. Areal distortions due to projection.

between the center of mass and the open ends is small.

In Fig. 6.4, we show the branch of the propagation velocity c at the center of mass

of the stable wave segments and the stable oscillating wave segments (green solid).

Furthermore, we show a hypothetical branch, the related propagation velocity at the

torus inside (green dashed).

It is impossible that the stable wave segments grow to ring-shaped autowaves (without

enlarging their geodesic curvature), as the hypothetical propagation velocity at the torus

inside is smaller than the critical velocity ccr (black solid line in Fig. 6.4).

For decreasing threshold β, the hypothetical propagation velocity at the torus inside of

the stable outside wave solution (green dashed) accelerates, whereas the critical velocity

ccr (black solid) slows down. At the intersection point of these two branches, the stable

wave solution bifurcates into a stable oscillating wave segment and an unstable critical

nucleus. The stable oscillating wave segments grow in length, until the propagation

velocity c of the open ends falls below the critical velocity ccr. The open ends become

unstable and decrease in width. Even if they continue growing in length, after the critical

velocity ccr is reached, the open ends asymptotically vanish.

6.6 Asymmetric solutions on a torus

In the previous sections (Sect. 6.4 and Sect. 6.5), we analyzed waves on tori propagating

strictly in the direction of the azimuthal angle ϕ, with the center of mass being pinned

either on the outside or on the inside of the torus. Here, we show examples of solutions

on a torus without these restrictions. A symmetric perturbation on a torus that is not

pinned does not propagate strictly in the direction of the azimuthal angle ϕ, but starts

spiraling around the torus due to spontaneous symmetry breaking, see Fig. 6.11.
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Figure 6.12: Evolution of wave segments on a torus with minor curvature radius
r = 20

2π and major curvature radius R = 80
2π computed from Eqs. (4.3),(4.4) with and

without feedback control Eq. (6.1). D = 0.12, ε = 0.36. (a) Evolution of wave segments
in the (S, β)-bifurcation diagram Fig. 6.3. (b) Temporal evolution of wave size S on
flat and curved surfaces.

In the FHN system with feedback control Eq. 6.1, the evolution of wave segments is

determined by the control line, see Fig. 6.12(a). According to Eq. 6.1, a small wave

segment has a small threshold β, the wave segment is in the excitable parameter regime

and hence grows. Thereby, the threshold β is increased, until the wave segment is in

the subexcitable parameter regime and starts shrinking on the torus inside. Spiraling

around the torus, the wave segment remains oscillating in size, see Fig. 6.12(b).

In the FHN system without control, on flat surfaces, subthreshold excitations shrink and

disappear very fast, see Fig. 6.12(b) (black line). On a torus, however, such localized

wave segments can have a much longer lifetime, Fig. 6.12(b) (red line). This is due to

the fact that the excitability of a medium depends on its curvature. On the torus inside,

a comparatively small wave segment is in the weakly excitable parameter regime and

thus grows. Meanwhile it propagates to the torus outside and now is in the subexcitable

parameter regime and thus shrinks again, compare Fig. 6.12(a) (solid red line).
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6.7 Conclusion

Here, we study the influence of the curvature of the cortex on CSD. For this purpose, nu-

cleation and propagation of spatially localized reaction-diffusion waves are investigated

on the surface of tori. These unstable structures, here denoted as critical nuclei, are

stabilized by an internal feedback control Eq. (6.1). The restriction is made that the

center of mass of the critical nuclei is pinned on the torus inside and outside respectively.

We showed that negative Gaussian curvature (torus inside) causes a shift of the nucle-

ation branch to larger threshold β, i.e., superthreshold excitations grow in a parameter

regime that is subexcitable on flat surfaces. On the torus outside with positive Gaussian

curvature, the opposite effect is found, namely that in a parameter regime that is ex-

citable on flat surfaces each excitation shrinks. In view of SD waves on the cortex, this

might indicate, that SD is more likely to initiate and propagate in negative Gaussian

curved areas. In addition, we made the surprising finding that curvature can induce a

change of stability, i.e., on the torus outside, we found localized wave segments and wave

segments periodically oscillating in size, that are stable propagating in systems without

feedback control. The numerically calculated results are qualitatively explained with a

so-called effective coupling strength, that can be found as a mathematical description of

the Gaussian curvature on surfaces that admit isothermal coordinates.

Furthermore, we reinvestigated the behaviour of ring-shaped wave solutions (autowaves),

which were first described by Davydov in 2003 [83]. Putting special remark on critical

propagation effects, we confirmed that the propagation boundary of ring-shaped waves,

constituting in a break-up on the torus inside, is caused by a saddle node bifurcation,

where the fast wave branch coalesces with the slow wave branch. Thereby, the propa-

gation velocity of ring-shaped waves is compared to the analytically calculated critical

velocity ccr Eq. 5.30 derived in Sect. 5.4.

Finally, we analyzed the evolution of wave segments on tori without pinning them on the

torus inside or outside. We found that the lifetime of unstable wave segments spiraling

around the torus is elongated due to curvature effects.
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Discussion

Knowledge about cellular processes involved in CSD and interference of CSD with ex-

ternal forces is of great relevance, not only for comprising the functionality of the human

brain, but also for developing novel future therapies for this pathological states. In this

thesis, we help to get a better understanding of the mechanisms that are causal for CSD

by investigating both, cellular processes involved in CSD and interference of CSD with

external forces.

Composing a biophysical neuronal model for CSD, we could evaluate the importance of

specific cellular processes such as the ability of ion movement across the neuronal and

glial membrane and clearance of excess ions by the vasculature and by lateral diffusion in

the extracellular space and through glial and neuronal gap junctions. This has enabled

us to develop hypotheses about when and why ionic homeostasis fails.

In detail, in Chapt. 2, we showed in a local system consisting of a neuronal, a glial and

an extracellular compartment that uptake of excess ions from the extracellular space by

astrocytes is crucial for ionic homeostasis. If the currents crossing the glial membrane

are too weak or if the astrocytic reservoir is too small, ionic homeostasis fails. Then,

after a super-threshold excitation, the system ends up in a pathological state, that is

the second stable state of the system besides the physiological state. The pathological

state with a depolarized neuronal membrane potential is close to Donnan equilibrium,

i.e., the thermodynamic equilibrium of the system. The neuron cannot fire action po-

tentials, because the electric energy that is usually stored in the ion gradients is almost

fully dissipated. We showed that recovery succeeds if the astrocytic buffer mechanism

is enhanced by increasing the strength of the glial transmembrane currents and, in par-

ticular, by enlarging the volume of the astrocyte. Depending on the parameter values,

the pathological state becomes transient or disappears. In a parameter exploration, we

identified the respective parameter regime.

105
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However, we did not investigate the transition of the system from bistable to mono-

stable in a bifurcation analysis. Especially knowledge about stability properties of the

pathological state in the parameter regime, in which it is transient with a long relax-

ation time would be of interest, as we suppose that this state represents the temporary

depolarization, that occurs during CSD.

In addition, we approximated the glial compartment as a bath. In this open system, we

addressed the problem of electroneutrality and identified a model description, that en-

sures electroneutrality in all compartments. Furthermore, we found that in this monos-

table system the buffer mechanism is very strong, as the bath has infinite capacity to

absorb excess ions from the extracellular space.

It is known that an increased potassium concentration in brain tissue can trigger CSD.

Thus, it would be of interest, how variations of the ion concentration of the glial bath

affect system dynamics. In detail, it could be analyzed by numerical trials, or better

still, in a bifurcation analysis, whether increasing the potassium concentration of the

bath changes system dynamics, e.g., as in the FHN model, from excitable to oscillatory.

To analyze whether lateral diffusion of ions in the extracellular space and through glial

and neuronal gap junctions contributes to ionic homeostasis, we composed a spatially

one-dimensional reaction-diffusion model consisting of three-compartmental neuronal

elements, Chapt. 3. Thereby, we paid attention to electroneutral lateral diffusion. We

investigated the stable propagating solutions of the system, i.e., excitation pattern, that

propagate with constant shape and velocity. The system has, depending on the pa-

rameter values of the local elements and on the diffusion strength within the respective

compartments, propagating front solutions, i.e., the buffer fails completely, or propagat-

ing pulse solutions, i.e., the system recovers after a transient period of depolarization. In

addition, we identified a parameter regime, where no propagating solution exists. This

behaviour is expected in healthy brain, where the buffer works regularly.

Our results in the ion-based reaction-diffusion model are won by numerical trials. We

stimulated the medium by switching of the ion pumps at the neuronal membrane in an

area of varying size for different durations. Then, we analyzed, which inhomogeneous

solutions are triggered. However, we did not prove the uniqueness of the found solutions.

This could be done in a bifurcation analysis, e.g., using the continuation software AUTO.

However, this is not trivial for systems consisting of partial differential equations.

Another issue that was neglected throughout this thesis is the spatial coupling among

the neurons by chemical synapses. We argued that the influence of chemical synapses on

CSD is small, as action potentials occur on a much shorter timescale and, in addition,

during the depolarization of CSD, no action potentials are generated. However, during
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the initial bursting of CSD, fast signal transmission through chemical synapses affects

the tissue surrounding the current depolarization. That changes the properties of the

medium for the incoming wave.

Nevertheless, our model provides a good overview of the neuronal mechanisms respon-

sible for CSD. In future, it can be used to analyze effects of further cellular processes

involved in CSD by including or leaving out specific currents.

To investigate the role of external influences such as the curvature of the cortex or

an externally applied electrical field on CSD, we used the FHN model. This generic

reaction-diffusion model also allows for analytical approximations, what provides more

insight into the mathematical processes involved. In Chapt. 4, we showed that, although

the approximate equations lose some of the physical meaning of the more complete bio-

physical model, the basic structure of bistability still holds. With a convenient inhibitor

mechanism, both, the FHN model and the ion-based model, are excitable systems of

type II. However, some of the characteristic features of the biophysical model are not

captured by the FHN model, e.g., the bursting at the rising front.

With the FHN model, we studied the effect of advection in a one-dimensional medium,

Chapt. 5. The advection term can describe an electrical field externally applied parallel

to propagation direction and, in addition, advection in a one-dimensional medium is an

approximation of the effect of front curvature on wave propagation in a two-dimensional

medium. We derived an analytical expression for the advection-velocity relation of the

slow wave, i.e., an unstable stationary propagating solution of the FHN model. This

enabled us to calculate a critical advection strength, below which no stable wave propa-

gation is possible. The critical advection strength depends on the parameter values of the

system. This curve predicates, that negative advection can suppress wave propagation

in the excitable parameter regime, whereas positive advection can induce wave propa-

gation in the otherwise non-excitable parameter regime. We confirmed the calculated

dependencies numerically.

However, modeling a wave affected by an externally applied electrical field with this

reaction-diffusion-advection model implies that the wave consists of equally charged

particles. In brain, positive and negative charged ions contribute to CSD. Thus, inves-

tigating the influence of an externally applied electrical field on wave propagation using

the biophysical model would be of interest.

Last, to study the influence of the geometry of the brain on wave propagation, we studied

FHN waves on curved two-dimensional surfaces, i.e., on the surface of a torus, Chapt. 6.

We showed that negative Gaussian curvature (torus inside) can induce excitability in a

parameter regime that is subexcitable on flat surfaces. In addition, we detected that
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curvature can induce a change of stability, i.e., on the torus outside, we found stable

propagating localized wave segments, which are unstable structures on flat surfaces.

Furthermore, we reviewed the behaviour of ring-shaped wave solutions, which were first

described by Davydov in 2003 [83]. Using the results from Chapt. 5, we showed that

the propagation boundary of ring-shaped waves, constituting in a break-up on the torus

inside, is caused by a saddle-node bifurcation, where the fast wave branch coalesces with

the slow wave branch. The critical minimal propagation velocity of ring-shaped waves

hence can be calculated analytically.

In literature, the FHN system is frequently used to model several physiological systems.

In Chapt. 4, we shortly motivated the application of the FHN model as a simplification

of the ion-based model. However, there are many unanswered questions. E.g., a direct

interpretation of the FHN parameter values in terms of biophysical properties is not

possible. In addition, in spatially extended systems, it is still unknown whether the

FHN model reflects macroscopic properties such as nucleation and propagation of ion-

based models. Thus, thoroughly comparing the FHN model to biophysical more detailed

models would be an interesting future project.
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A.1 1D description of curved 2D waves

As described in [90], FHN system in two spatial dimensions

∂u

∂t
= f(u, v) +D

∂2u

∂x2
+D

∂2u

∂y2
, (1)

∂v

∂t
= εg(u, v), (2)

can be written in polar coordinates with the variables r and ϕ,

∂u

∂t
= f(u, v) +D

∂2u

∂r2
+
D

r

∂u

∂r
+
D

r2

∂2u

∂ϕ2
, (3)

∂v

∂t
= εg(u, v). (4)

The curvature of pulse segments can be approximated by a section of a circle. Then,

the front of the pulse segment lies at r = R, with R being the curvature radius. As the

pulse segment is locally symmetrical in ϕ, ∂2u
∂ϕ2 = 0 holds. The gradient of the activator

∂u
∂r only has considerable values at the location of the pulse segment, elsewhere ∂u

∂r is

negligible. If the width of the pulse L is much smaller than the curvature radius R, the

approximation D
r
∂u
∂r ≈

D
R
∂u
∂r is valid, and thus curved 2D wave segments can be described

by the 1D approximation

∂u

∂t
= f(u, v) +D

∂2u

∂r2
+
D

R

∂u

∂r
, (5)

∂v

∂t
= εg(u, v). (6)

A.2 Critical advection strength derived from nonlinear Eikonal

equation

The nonlinear Eikonal equation is given by (see Eq. (5.21))

cf±(A) =
1

2
((A+ c0 + εc1)±

√
(A+ c0 + εc1)2 − 4εAc1). (7)

The propagation velocity cf+(A) remains real only if the discriminant is larger than zero.

Hence the limiting allowable advection strength Acr is determined by

(Acr + c0 + εc1)2 − 4εAcrc1 = 0. (8)
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Solving Eq. (8) for Acr yields

A±cr = −(c0 − εc1 ± 2
√
−c0εc1). (9)

The critical advection strength Acr is A−cr, because |A+
cr| > |A−cr|.

A.3 Calculating cf |A=0 and cs|A=0 using a singular pertur-

bation theory

As propsed in [78], singular perturbation theory is used to find an approximation for the

propagation velocity of the fast wave cf |A = 0 and the slow wave cs|A = 0. Since ε is a

small parameter, the velocities cf |A = 0, cs|A = 0 and the profiles of the activator u(ξ)

and the inhibitor v(ξ) can be represented as power series in ε and
√
ε respectively.

A.3.1 Fast wave velocity cf |A=0

In power series of ε, cf |A=0,u(ξ) and v(ξ) read

cf |A=0 ≈ c0 + εcf1 + ε2cf2 +O(ε3), (10)

u(ξ) ≈ u0(ξ) + εu1(ξ) + ε2u2(ξ) +O(ε3), (11)

v(ξ) ≈ v0(ξ) + εv1(ξ) + ε2v2(ξ) +O(ε3). (12)

Substituting this expressions into Eqs. (5.3),(5.4) and equating terms with the same

power series of ε gives in zeroths and first order

D
∂2u0

∂ξ2
− c0

∂u0

∂ξ
+ f(u0) = v0, (13)

c0
∂v0

∂ξ
= 0, (14)

D
∂2u1

∂ξ2
− c0

∂u1

∂ξ
+
∂f

∂u
|u=u0u1 = v1 + cf1

∂u0

∂ξ
, (15)

c0
∂v1

∂ξ
= u0, (16)

with f(u) = 3u− u3.

For c0 6= 0, v(ξ) = const. Thus, Eq. (13) equals the so-called Schlögl-equation, which

has an exact analytical solution.

For u∗2 <
u∗1+u∗3

2 with u∗1, u∗2 and u∗3 being the intersection points of the u-nullcline

with the inhibitor fixpoint v0 = −3β + β3, u∗1 = −β, u∗2 = β
2 −

√
3− 3/4β2, and
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u∗3 = β
2 +

√
3− 3/4β2, and with the boundary conditions u0(−∞) = u∗1, u0(∞) = u∗3,

Eq. (13) describes a wave front that propagates to negative x-direction, with the profile

u0(ξ) =
u∗1 + u∗3

2
+
u∗1 − u∗3

2
tanh

(√
1

2D

(u∗1 − u∗3
2

)
ξ

)
. (17)

From multiplying Eq. (13) with ∂u0
∂ξ and integrating over ξ follows

c0 =

∫ u∗3
u∗1

f(u0)du0∫∞
−∞

(
∂u0
∂ξ

)2
dξ
. (18)

This yields

c0 =

√
D

2
(u∗1 + u∗3 − 2u∗2). (19)

To calculate cf1 , Eq. (15) is analyzed. The parameter c1 is an eigenvalue. Since ∂u0
∂ξ is an

eigensolution of the corresponding homogeneuos equation, the right hand side is subject

to the orthogonality condition

c1

∫ ∞
−∞

(∂u0

∂ξ

)2
e−c0ξdξ +

∫ ∞
−∞

v1
∂u0

∂ξ
e−c0ξdξ = 0. (20)

The correction to first order of ε of the propagation velocity of the inner stable fast wave

solution considering solitary waves thus is

cf1 = −
∫∞
−∞ v1

∂u0
∂ξ e

−c0ξdξ∫∞
−∞

(
∂u0
∂ξ

)2
e−c0ξdξ

. (21)

v1, the correction to first order of ε of the inhibitor concentration (inner solution) of the

fast wave, can be derived from Eq. (16),

v1(ξ) =
1

c0

∫ ξ

−∞
(u0(µ)− u0(−∞))dµ, (22)

v1(ξ) =
1

c0
(u3 − u1)

(
ξ +

( √
2

u3 − u1
ln(1 + e

−u3−u1√
2

ξ
)
))

. (23)
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A.3.2 Slow wave velocity cs|A=0

By checking various possibilities, one finds that the following assumptions yield reason-

able reults,

csA=0 ≈ cs0 +
√
εcs1 +O(ε), (24)

u(ξ) ≈ u0(ξ) +
√
εu1(ξ) +O(ε), (25)

v(ξ) ≈ v0(ξ) +
√
εv1(ξ) +O(ε). (26)

We know, that cs0 = 0 (critical nucleus solution of Schlögl model has velocity zero).

Substituting this expressions into Eqs. (5.3),(5.4) and equating terms with the same

power series of
√
ε gives

D
∂2u0

∂ξ2
+ f(u0) = v0, (27)

D
∂2u1

∂ξ2
+
∂f

∂u
|u=u0u1 = v1 + cs1

∂u0

∂ξ
, (28)

cs1
∂v1

∂ξ
= u0 + β. (29)

To solve this for cs1, an orthogonality condition on the right hand side of Eq. (28) has

to be imposed (this is possible, as the homogeneous equation corresponding to Eq. (28)

has ∂u0
∂ξ as a solution), and v1 has to be replaced by integration of Eq. (29). This yields

(cs1)2 =

∫∞
−∞ u

2
0dξ∫∞

−∞

(
∂u0
∂ξ

)2
dξ
. (30)

The positive value of the square root should be used, thus

cs1 =

√√√√ 2
√

2m− 2l lnα
(2m)(3/2)

3 − l2

2

√
2m+ l(l2−2m)

2 lnα
, (31)

where α =
√

l+
√

2m
l−
√

2m
and l = 2

3(−2u1 +u2 +u3) and m = (u2−u1)(u3−u1). For details,

see [78].
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A.4 Toroidal coordinates

A parametrization f : {αi} 7→ {xj} gives the Laplace-Beltrami operator in curvilinear

coordinates

∆LB =
∑
i,k

1
√
g

∂

∂αi

(
gik
√
g
∂

∂αk

)
, (32)

where G is the metric tensor with matrix elements gik, which is the product of the

transposed Jacobian matrix of f multiplied with the Jacobian matrix of f , and g =

Det G, see [89]. The single components of the metrical tensor thus are the scalar product

gik =
∑
j

∂fj
∂αi

∂fj
∂αk

=:

〈
∂f

∂αi
| ∂f
∂αk

〉
. (33)

A parametrization f is isothermal, if the derived coordinate system is orthogonal and

conformal. In two spatial dimensions, a parametrization

f : (α1, α2) 7→


x

y

z

 (34)

is orthogonal, if the scalar product of the basis vectors for i 6= k equals zero,〈
∂f

∂αi
| ∂f
∂αk

〉
= 0. (35)

The condition for conformal mapping is〈
∂f

∂αi
| ∂f
∂αi

〉
=

〈
∂f

∂αk
| ∂f
∂αk

〉
, (36)

see [89].

This yields the following form of the Laplace-Beltrami operator

∆LB =
∑
i,k

1
√
g

∂

∂αi
∂

∂αk
δik =

1
√
g
∇2. (37)

To derive a global isothermal coordinate system for the surface of a torus, we start from

the parametrization [91]

(θi, ϕ) 7→


a sinh η cosϕ
cosh η−cos θi
a sinh η sinϕ
cosh η−cos θi

a sin θi
cosh η−cos θi

 =


x

y

z

 , (38)
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where a > 0 is a scaling factor of space and η > 0 is a measure for the ratio of major

curvature radius R and minor curvature radius r. As can easily be proved, these are

orthogonal coordinates.

As

gθiθi =
a2

(cosh η − cos θi)2

and

gϕϕ =
a2 sinh2 η

(cosh η − cos θi)2
,

gθiθi 6= gϕϕ, thus the parametrization Eq. (38) is not conformal. Introducing the variable

ϕ̃ = ϕ sinh η

yields

gϕ̃ϕ̃ = gθiθi =
√
g =

a2

(cosh η − cos θi)2
. (39)

Thus the Laplace-Beltrami operator in isothermal torus coordinates reads

∆LB =
(cosh η − cos θi)

2

a2

(
∂2u

∂θ2
i

+
∂2u

∂ϕ̃2

)
. (40)

To obtain the dependencies of a and η upon the major curvature radius R and the minor

curvature radius r, which are parameters of the common parametrization

(θ, ϕ) 7→


(R+ r cos θ) cosϕ

(R+ r cos θ) sinϕ

r sin θ

 =


x

y

z

 , (41)

one needs to compare Eq. (41) with the isothermal parametrization

(θi, ϕ̃) 7→


a sinh η cos( ϕ̃

sinh η
)

cosh η−cos θi
a sinh η sin( ϕ̃

sinh η
)

cosh η−cos θi
a sin θi

cosh η−cos θi

 =


x

y

z

 . (42)

A necessary and sufficient condition that a point from the domain of definition of the

parametrization Eq. (41) lies on the twodimensional surface of a torus in the Euclidian

R3 is (√
x2 + y2 −R

)2
+ z2 − r2 = 0. (43)
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In toroidal coordinates, Eq. (42) yields

x2 + y2 + z2 − 2a
cosh η

sinh η

√
x2 + y2 + a2 = 0. (44)

By comparing the coefficients, one obtains from Eqs. (43) and (44)

R = a
cosh η

sinh η
= a coth η, (45)

r = a
1

sinh η
, (46)

and the inverse relations

a =
√
R2 − r2, (47)

η = arcoth
R√

R2 − r2
= arcoth

n√
n2 − 1

, (48)

where n = R
r .

As can be seen from the parametrizations Eqs. (41) and (42), the transformation ϕ̃(ϕ)

is

ϕ̃(ϕ) = ϕ sinh η. (49)

To derive the dependency between θi and θ, the expressions
√
x2 + y2 − R of both

coordinate systems are compared. This yields

r cos θ = a
sinh η

cosh η − cos θi
−R. (50)

Replacing R and r with Eqs. (45) and (46), this yields

θ = arccos
(

cosh η cos θi−1
cosh η−cos θi

)
·
{

+1 θi≥0
−1 θi<0. (51)

The inverse function is

θi = arccos
(
R
r −

R2−r2
r(R+r cos θ)

)
·
{

+1 θ≥0
−1 θ<0. (52)


	Title
	Acknowledgements
	Abstract (English)
	Abstract (Deutsch)
	List of Publications
	Contents
	1 Introduction
	1.1 Cortical Spreading Depression
	1.2 Motivation
	1.3 Overview of mathematical neuron models
	1.4 Cellular processes during Cortical Spreading Depression
	1.5 External influences on Cortical Spreading Depression
	1.6 Structure of the thesis

	2 Local dynamics of a biophysically detailed neuron model
	2.1 Bistable two-compartmental ion-based model
	2.2 Robustness of the phase space structure
	2.2.1 Varying strength of gated currents
	2.2.2 Varying dynamics of gated currents

	2.3 Membrane potential and electroneutrality 
	2.4 Glial buffer
	2.4.1 Three-compartmental ion-based model including glia cells 
	2.4.2 Dynamics of the three-compartmental model 
	2.4.3 Modeling glia cells as a bath 
	2.4.4 Examples of time course during relaxation 

	2.5 Conclusion

	3 A biophysically detailed reaction-diffusion model
	3.1 Diffusive spatial coupling of bistable two-compartmental elements 
	3.1.1 Electroneutrality
	3.1.1.1 Electroneutral transmembrane currents
	3.1.1.2 Electroneutral lateral currents 


	3.2 Diffusive spatial coupling of three-compartmental elements
	3.2.1 Ion movement in the extracellular space 
	3.2.2 Glial gap junctions 
	3.2.3 Glial bath in the reaction-diffusion model
	3.2.4 Electroneutrality

	3.3 Neuronal gap junctions
	3.4 Conclusion

	4 A generic neuronal model
	4.1 FitzHugh-Nagumo equations
	4.2 Comparing the FitzHugh-Nagumo and the biophysically detailed model
	4.3 Inhomogeneous solutions in the FitzHugh-Nagumo model 

	5 Critical properties of reaction-diffusion waves in one spatial dimension
	5.1 Differential Advection
	5.2 Propagation boundary
	5.3 Advection-velocity relation of the fast and slow wave solution
	5.4 Critical velocity and critical advection strength
	5.5 Numerical validation
	5.6 Conclusion

	6 Nucleation of reaction-diffusion waves on curved surfaces
	6.1 Methods
	6.2 Overview of wave solutions on a torus
	6.3 Ring wave break-up at saddle-node bifurcation
	6.4 Curvature-induced changes of nucleation
	6.4.1 Nucleation on the torus inside
	6.4.2 Nucleation on the torus outside

	6.5 Curvature-induced stabilisation
	6.6 Asymmetric solutions on a torus
	6.7 Conclusion

	7 Discussion
	Bibliography
	Appendix
	A.1 1D description of curved 2D waves
	A.2 Critical advection strength derived from nonlinear Eikonal equation
	A.3 Calculating cf|A=0 and cs|A=0 using a singular perturbation theory
	A.3.1 Fast wave velocity cf|A=0
	A.3.2 Slow wave velocity cs|A=0

	A.4 Toroidal coordinates


