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Zusammenfassung

Relaiskonzepte werden in Zunkuft in drahtlosen Netzwerken eine zentrale Rolle spielen.
In dieser Dissertation wird ein Netzwerk mit drei Stationen betrachtet, in welchem zwei
Stationen mittels einer Relaisstation miteinander kommunizieren. Wir untersuchen ein
Zweiphasenprotokoll ohne Rückkopplung, in dem die Relaisstation die Nachrichten für
beide Richtungen gleichzeitig dekodiert und weiterleitet. Damit kann der spektrale Ver-
lust, verursacht durch halbduplexe Stationen in unidirektionalen Protokollen, kompensiert
werden.

Im ersten Abschnitt geht es um schichtübergreifende Konzepte für die bidirektionale Re-
laiskommunikation basierend auf dem Prinzip der Superpositionskodierung. Die Betrach-
tungen werden für die festgelegte und optimale Zeitaufteilung der Phasen durchgeführt. Eine
ausführliche Untersuchung der Kombinatorik der erreichbaren Ratenregion für Stationen mit
einer Antenne erlaubt es uns die Ratenpaare, bei denen die Summe der gewichteten Raten
maximiert wird, explizit zu bestimmen. Diese Untersuchungen werden am Beispiel der pa-
ritätischen und der optimalen Zeitaufteilung ausgeführt.
Die optimalen Ratenpaare werden im Weiteren für den Entwurf einer durchsatzoptimalen
Ressourcenallokationsstrategie und für ein Relaisauswahlkriterium in einem Netzwerk mit
N Relaisstationen verwendet. Dabei ist es vorteilhaft, die abwechselnde Nutzung ver-
schiedener Relaisstationen zu erlauben. Außerdem stellen wir fest, dass die Summe eines
jeden Ratenpaares auf dem Rand der ergodischen Ratenregion für unabhängige und identisch
rayleighverteilte Schwundkanäle asymptotisch mit log(log(N)) wächst.
Als nächstes betrachten wir den Fall, dass die Relaisstation eine Nachricht zusätzlich zur
bidirektionalen Relaiskommunikation an beide Stationen übeträgt. Es zeigt sich, dass es
immer optimal ist die Relaisnachricht zuerst zu dekodieren. Die gemeinsame Ressourcenal-
lokation verbessert die Gesamteffizienz und ermöglicht einen neuen Ratenabtausch. Darüber
hinaus charakterisieren und diskutieren wir das gemeinsame Summenratenmaximum beider
Routingaufgaben.
Anschließend untersuchen wir die erreichbaren Ratenregionen der bidirektionalen Re-
laiskommunikation zwischen Stationen mit mehreren Antennen. Wir spezifizieren die op-
timale Sendestrategie und zeigen, dass die Summe eines jeden Ratenpaares auf dem Rand
der erreichbaren Ratenregion linear gemäß der räumlichen Dimension des Vektorkanals und
der Zeitaufteilung der Phasen ansteigt.
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Zusammenfassung

Im zweiten Abschnitt beweisen wir eine optimale Kanalkodierungsstrategie für den bidirek-
tionalen Broadcastkanal mit einem endlichen Alphabet. Dabei werden erreichbare Raten
bezüglich der maximalen Fehlerwahrscheinlichkeit betrachtet. Beim Kodierungssatz folgen
wir der Philosophie der Netzwerkkodierung, die besagt, dass sich Informationsflüsse nicht
wie Flüssigkeiten verhalten.

Im abschließenden Resümee geben wir einen Ausblick auf zukünftige Forschungsarbeiten
und präsentieren Beispiele wie bidirektionale Relaiskommunikation in drahtlose Netzwerke
integriert werden kann.
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Abstract

Relaying concepts will play a central role in future wireless networks. In this thesis we
consider a three-node network where two nodes communicate with each other by the support
of a relay node. We study a two-phase decode-and-forward bidirectional relaying protocol
without feedback. Bidirectional relaying has the ability to compensate the spectral loss due
to the half-duplex constraint of nodes in wireless communications.

In the first part we study cross-layer design aspects of bidirectional relaying using super-
position encoding at the relay node. For the two phases we consider the fixed and optimal
time division case. For single-antenna nodes an intensive study of the combinatorial struc-
ture of the achievable rate region allows us to characterize the rate pairs which maximize the
weighted rate sum for the equal and fixed time division case in closed form. These are used
for the design of a throughput optimal resource allocation policy based on the backpressure
strategy and to derive a relay selection criterion for routing in network with N relay nodes.
It shows that it is beneficial to allow time-sharing between the usage of relay nodes. We see
that the sum of any rate pair on the boundary of the ergodic rate region for independent and
identical distributed Rayleigh fading channels grows asymptotically with log(log(N)).

Then we add a relay multicast to the bidirectional relay communication. The joint resource
allocation of two routing tasks improves the overall efficiency and enables new rate trade-
offs. It shows that it is always optimal to decode the relay message first. Furthermore,
we characterize and discuss the total sum-rate maximum of both routing tasks. After that
we study the achievable rate region of bidirectional relaying between nodes equipped with
multiple antennas. Therefore, we specify the optimal transmit strategy and show that the
achievable rate region scales linearly with respect to the spatial degrees of the vector channels
and time division.

In the second part we find an optimal channel coding strategy for the bidirectional broadcast
channel considering finite size alphabets. Thereby, we consider achievable rates with respect
to the maximal probability of error. For the coding theorem we follow the philosophy of
network coding and regard information flows not as “fluids”.

In the final conclusion we give an outlook on future research work and show how the bidi-
rectional relaying protocol can be integrated in wireless networks.
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Abbreviations, Notation, and Symbols

Abbreviations

AWGN additional white Gaussian noise
iid independent and identical distributed
pdf probability density function
cdf cumulative distribution function
eq equal time division
opt optimal time division
MAC multiple access channel
BC broadcast channel
BR bidirectional relaying
SISO single-input single-output
MIMO multiple-input multiple-output
TDMA time division multiple access
FDMA frequency-division multiple access
CDMA code-division multiple access
RS relay selection
RSTS relay selection with time-sharing between usage of relay nodes

NotationN set of all natural numbers {1, 2, 3, . . . }R set of real numbersR+ set of non-negative real numbersC set of complex numbers
[a, b] closed interval of real numbers where endpoints a to b are included
(a, b) open interval of real numbers where endpoints a to b are not included
[a, b), (a, b] half-closed intervals of real number where either a or b is included
lhs := rhs the value of the right hand side (rhs) is assigned to the left hand side (lhs)
lhs =: rhs the value of the left hand side (lhs) is assigned to the right hand side (rhs)
αR scaled set αR := {αR : R ∈ R} with α ∈ R and set R ⊂ Rn
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Abbreviations, Notation, and Symbols

f : D → C function f from domain D to codomain C
x 7→ f(x) mapping of x to f(x)
co(A) convex hull of set A
cl(A) closure of set A
int(A) interior of set A
|A| cardinality of set A
∃x ∈ A there exists an element x in set A
∅ empty set1E characteristic function which is 1 if event E is true and 0 else
[x]+ abbreviation for max(0, x)
log logarithm to the base two
ln natural logarithm
exp exponential function
∧, ∨ logical conjunction (AND), logical disjunction (OR)
∧N

n=1,
∨N

n=1 numerated logical conjunctions and disjunctions
||x||1 L1-norm of vector x

HH , HT hermitian resp. transpose of the matrix or vector H

rank(H) rank of the matrix H

tr(H),det(H) trace and determinant of the matrix H

I identity matrix where the dimension follows from the context
diag(a1, a2, . . . , an) diagonal matrix with diagonal elements a1, a2, . . . , an

X ∼ CN (m,σ2) X is complex Gaussian distributed with pdf fX(x) = 1
πσ2 e−

|z−m|2

σ2E{X} expectation of the random variable XP{E} probability of event E

X time-average of random process X

Θ(g(n)) f(n) is big-theta of g(n) if 0 < lim inf
n→∞

f(n)
g(n) ≤ lim sup

n→∞

f(n)
g(n) <∞.

o
(
g(x)

)
f(x) is small-o of g(x) if lim

x→∞

g(x)
f(x) = 0.

Symbols

In Chapter 2 we use boldface letters to denote vectors and matrices and calligraphic letters
denote sets. In Chapter 3 we use the information theoretic typical notation whereXn

1 denotes
the sequence X11, X12, . . . , X1n. We often choose a generic notation for the symbols which
gets at some point quite extensive. The index k enumerates the nodes 1,2, and R respectively,
while the index n enumerates the relay nodes in Section 2.4. The superscripts ∗ and ⋆ are
used for optimal values. The subscripts eq or opt specify the corresponding rate, rate pair,
or rate region for the equal or optimal time division case. The following tables list the most
important symbols.
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Abbreviations, Notation, and Symbols

Pk mean power constraint at node k ∈ {1, 2,R}
σ2 variance of Gaussian noise
γk signal-to-noise ratio Pk/σ

2

h1 flat fading SISO channel coefficient between node 1 and the relay node
h1,n flat fading SISO channel coefficient between node 1 and the nth relay node
h2 flat fading SISO channel coefficient between node 2 and the relay node
h2,n flat fading SISO channel coefficient between node 2 and the nth relay node
H1 flat fading MIMO channel matrix between node 1 and the relay node
H2 flat fading MIMO channel matrix between node 2 and the relay node
α fraction of time in the MAC phase, i.e. fraction 1 − α of the time in BC phase
α∗ optimal α to support a certain rate pair in MAC phase
B set of feasible power distribution vectors [β1, β2]
β1 proportion of PR spend for forwarding message m1 to node 2
β2 proportion of PR spend for forwarding message m2 to node 1
β relay power distribution with β1 = β and β2 = 1 − β
β∗ optimal β to support a certain rate pair in MAC phase
β⋆ optimal relay power distribution, cf. Proposition 2.2
γmin

R minimal necessary γR to support a certain rate pair in CMAC in the BC phase
γMAC

R minimal necessary γR to support any rate pair in CMAC in the BC phase

γΣMAC
R minimal necessary γR to support a rate pair [R1, R2] ∈ RMAC

Σ in the BC phase

γ†R characteristic signal-to-noise ratio for the broadcast phase, cf. Corollary 2.8
γΣ1

R minimal necessary γR to support the vertex νΣ1 ∈ CMAC in the BC phase
γ2Σ

R minimal necessary γR to support the vertex ν2Σ ∈ CMAC in the BC phase
γ̂ characteristic signal-to-noise ratio γR, cf. Lemma 2.46
νΣ1 vertex between R−→

1R
and RMAC

Σ of multiple access rate region, cf. (2.5a)
ν2Σ vertex between R−→

2R
and RMAC

Σ of multiple access rate region, cf. (2.5b)
R1 achievable rate form node 1 via relay node to node 2
R2 achievable rate from node 2 via relay node to node 1
RΣ bidirectional sum-rate R1 +R2 = RΣ

RR additional relay multicast rate
Rmax

R maximal achievable additional relay rate RR

R† characteristic rate, cf. Lemma 2.46
Rtot total sum-rate Rtot = R1 +R2 +RR

R∗
tot total sum-rate maximum of piggyback rate region RPiggy

R−→
1R

individual rate constraint from node 1 to the relay node in MAC phase
R−→

1R,n
R−→

1R
for the nth relay node

R−→
2R

individual rate constraint from node 1 to the relay node in MAC phase
R−→

2R,n
R−→

2R
for the nth relay node

RMAC
Σ sum-rate constraint of node 1 and 2 to the relay node in the MAC phase

RMAC
Σ,n RMAC

Σ for the nth relay node
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Abbreviations, Notation, and Symbols

R2Σ
1 maximal achievable rate R1 at vertex ν2Σ, cf. (2.5b)

RΣ1
2 maximal achievable rate R2 at vertex νΣ1, cf. (2.5a)

R−→
R1

individual rate constraint from the relay node to node 2 in BC phase
R−→

R1,n
R−→

R1
for the nth relay node

R−→
R2

individual rate constraint from the relay node to node 2 in BC phase
R−→

R2,n
R−→

R2
for the nth relay node

R∗
−→
1R

maximal unidirectional rate R1 achievable in CMIMO
MAC , cf. (2.6.1)

R∗
−→
2R

maximal unidirectional rate R2 achievable in CMIMO
MAC

R⋆
−→
R1

sum-rate optimal rate R1 in BC phase, cf. Proposition 2.2

R⋆
−→
R2

sum-rate optimal rate R2 in BC phase, cf. Proposition 2.2

Ropt
1 total sum-rate optimal rate R1, cf. Theorem (2.48)

Ropt
2 total sum-rate optimal rate R2, cf. Theorem (2.48)

R¬ proportion of rate R1 interchanged for relay rate RR, cf. Corollary 2.49
R­ proportion of rate R2 interchanged for relay rate RR, cf. Corollary 2.49
R⋆

1 BC sum-rate optimal rate R1, cf. Proposition 2.47
R⋆

2 BC sum-rate optimal rate R2, cf. Proposition 2.47
RBC

Σ sum-rate maximum of broadcast phase, cf. Proposition 2.2
RΣ bidirectional sum-rate optimal rate pair, cf. Corollary 2.8
RBC rate pair of parametrized boundary of RBC

Ropt rate pair of parametrized boundary of RBRopt, cf. Corollary 2.15
R⋆

BC BC sum-rate optimal rate pair, cf. Proposition 2.47
RMIMO

MAC weighted rate sum optimal rate pair of CMIMO
MAC , cf. (2.75)

RMIMO
BC weighted rate sum optimal rate pair of RMIMO

BC , cf. (2.79)
R∗

eq weighted rate sum optimal rate pair for α = 1/2, cf. Theorem 2.10
R∗

eq,n R∗
eq for the nth relay node

R∗
opt weighted rate sum optimal rate pair of RBRopt, cf. Theorem 2.16

R∗
opt,n R∗

opt for the nth relay node
R∗

1eq maximal unidirectional rate R1 achievable in RBReq, cf. (2.22a)
R∗

1eq,n R∗
1eq for the nth relay node

R∗
2eq maximal unidirectional rate R2 achievable in RBRopt, cf. (2.22b)

R∗
2eq,n R∗

2eq for the nth relay node
R∗

keq maximal unidirectional rate Rk, k = 1, 2, achievable in RBReq

R∗
keq,n R∗

keq for the nth relay node

R∗
kopt maximal unidirectional rate Rk, k = 1, 2, achievable in RBRopt

R∗
kopt,n R∗

kopt for the nth relay node

R∗
kRSeq maximal unidirectional rate Rk, k = 1, 2, achievable in RRSTSeq

R∗
kRSopt maximal unidirectional rate Rk, k = 1, 2, achievable in RRSTSopt

R∗
kRSeq maximal unidirectional ergodic rate Rk, k = 1, 2 achievable in RRSTSeq

R∗
kRSopt maximal unidirectional ergodic rate Rk, k = 1, 2 achievable in RRSTSopt
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Abbreviations, Notation, and Symbols

CBC capacity region in the BC phase
CMAC capacity region in the MAC phase
CMAC,n capacity region of the nth relay node in the MAC phase
CMIMO

MAC capacity region of MIMO MAC
R−→

1R
set of rate pairs in CMAC with R1 = R−→

1R
R−→

2R
set of rate pairs in CMAC with R2 = R−→

2R
RMAC

Σ set of rate pairs in CMAC with R1 +R2 = RMAC
Σ

RBC achievable rate region in the BC phase
RMIMO

BC achievable rate region of MIMO BC
RBC,n achievable rate region of the nth relay node in the BC phase
R1 set of transformed rate pairs for rate constraint R−→

1R
, Theorem 2.12

R2 set of transformed rate pairs for rate constraint R−→
2R

, Theorem 2.12
RΣ set of transformed rate pairs for rate constraint RMAC

Σ , Theorem 2.12
RBR bidirectional achievable rate region
RMIMO

BR MIMO bidirectional achievable rate region
RBR ergodic bidirectional rate region
RBReq bidirectional achievable rate region with equal time division
RBReq,n RBReq achievable with the nth relay node
RBRopt bidirectional achievable rate region with optimal time division
RBRopt,n RBRopt achievable with the nth relay node
RMIMO

BRopt MIMO bidirectional achievable rate region with optimal time division
RRSeq achievable rate region with relay selection for equal time division
RRSopt achievable rate region with relay selection for optimal time division
RRSTSeq RRSeq with time-sharing between the usage of relay nodes
RRSTSopt RRSopt with time-sharing between the usage of relay nodes
RRSTSeq ergodic achievable rate region of RRSTSeq

RRSTSopt ergodic achievable rate region of RRSTSopt

RPiggy achievable rate region with additional relay multicast
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1 Introduction

1.1 Trends and Motivations – Related Literature

Most of these days phenomenal technological advances base beside others on the continuous
progress in integrated circuit design which is described by the popular Moore’s law. In
1965 Moore [Moo65] observed that with continuous decreasing packages size the relative
manufacturing cost per component exponentially decreases while additionally the number of
components per integrated circuit exponentially increases. This trend has been observed until
now which has made the development of portable computation and communication devices
with an affordable price possible. With this we have an ever-growing number of wireless
applications and users – the technological vision of the WWRF1 expects “7 trillion wireless
devices serving 7 billion people by 2017”.

The broad consumer wireless telecommunications started with generations of cellular voice
networks with a rapidly increasing number of subscribers at the turn of the millennium.
With a growing demand for new high data services such as mobile Internet with video appli-
cations or interactive gaming the development of latest generations show a shift to cellular
data networks which also support the voice application. However, the network bandwidth
in favorable frequency bands is finite since the nowadays technically usable low frequencies
are limited. Future systems will operate at higher frequencies, but there the wireless com-
munication is more susceptible to radio propagation conditions. This will even worsen the
coverage problem service providers already have. Obviously, the providers are interested
to offer satisfactory services anywhere at any time, which is an engineering challenge es-
pecially where the direct link does not have the desired quality, e.g. due to shadowing or
distance. In a single point-to-point connection one could simply increase the transmit power,
which results in a higher interference level in the network and a higher energy consumption.
Both is unattractive, because a lower interference level often allows to accommodate more
users in the network and a reduced energy consumption results either in a longer battery
life or a smaller battery size, which is a crucial point for miniaturization. As a consequence
in traditional cellular network architectures the provider can only install more base-stations
to cover the whole area, but a higher density of base-stations leads to a notable increase in

1WWRF-Wireless World Research Forum - http://www.wireless-world-initiative.org
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1 Introduction

infrastructure costs. Katz discusses in [Kat94] many fundamental design issues of wireless
networks at that time which are still important these days.

On the other hand, wireless networks without any wired infrastructure are called ad hoc net-
works. Such networks utilize the broadcast nature of the wireless channel so that in principle
any node can communicate to any other. But due to the attenuation of a wireless channel a
reliable transmission is typically only possible to some neighboring nodes. Therefore, for
a successful transmission to a node that is not in its vicinity the nodes need to cooperate to
forward each others information, which is called a multi-hop communication. Ad hoc net-
works have some appealing properties because of this relay communication technique. First,
we see that any additional node added to the network increases the overall connectivity. Fur-
ther, if a node disappears due to bad channel conditions or power supply insufficiency other
nodes in its vicinity have the possibility to take over its routing responsibilities. This node
redundancy and its adaptability makes ad hoc networks highly robust. And since we do not
require a wired backbone, it is said that an ad hoc network is easily deployed. It follows
that there are many applications where an ad hoc topology is more appropriate than cellular
topology, e.g. sensor networks, home environments, or networks of automobiles.

Accordingly, the integration of multi-hop capability in traditional cellular systems has the
potential to improve the connectivity by closing internal gaps of a cell without installing
more base-stations. It could be also used as a “last mile” technology to extend the periphery
of a wireless cell. Thereby, the relay nodes may be mobile or fixed, but they do not have
access to the wired backbone network of the base-stations or access points. Theoretical and
measurement based radio propagation models indicate that the average received signal power
typically falls off with the n-th power of the distance between transmitter and receiver with
a path-loss coefficient n between 2 (free space) and 6 (obstructed in building) [Rap96, Table
4.2]. Since multi-hop transmission splits a long distance into several shorter distances, it
follows that the cumulative path loss is lower than the path loss of the direct transmission.
This leads to an additional reduction in power and therefore energy consumption and/or a
lower power level throughout the network.

That multi-hop or relay strategies are promising technological advancements of future wire-
less networks indicate for instance that for all network sizes there are IEEE 802 LAN/MAN
standardization working groups2 which are focused on the developing of mesh-enabled stan-
dards:

• For wireless personal area networks (WPAN) by the Task Group 5 of IEEE 802.15
standard.

• For wireless local area networks (WLAN) in the extension IEEE 802.11s.

2The IEEE 802 LAN/MAN Standards Committee develops Local Area Network standards and Metropolitan
Area Network standards. http://grouper.ieee.org/groups/802/
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• For wireless metropolitan area networks (WMAN) in the amendment IEEE 802.16j –
mobile multi-hop relay. Thereby, one allows every subscriber station to function as a
backhaul, forwarding traffic until it finally arrives at the intended destination.

• Such meshed network principles will be indispensable for a future wireless network,
which should realize broadband wireless access across the country (Mobile Broadband
Wireless Access) and should be someday specified in a IEEE 802.20 standard.

These standardizations are guided by industrial player forums like WiMAX for WMAN,
Wi-Fi for WLAN, ZigBee for low data rate WPAN which try to promote conformance and
interoperability of the devices. In addition to this, many companies are developing various
proprietary mesh network solutions. It is expected that relaying strategies should close the
gap between WLAN-type and cellular systems. For more details we refer to [LZKS06].

For the design and development of communication networks engineers successfully used
the concept of layered architecture to split the enormous complexity of modern communica-
tion networks communication. This allows the separate design of a protocol for each layer.
Among them the ISO-OSI3 reference model is still the most prominent. The IEEE 802 stan-
dards for wireless networks specify the two lower layers. However, an efficient design of a
multi-hop communication represents such a significant technical challenge that a cross-layer
design is imperative. This can be seen by a brief inspection of the three (media) layers at the
bottom of the stack. The Physical Layer is concerned with signal transmission aspects. The
Data Link Layer is concerned with the transfers of data between nodes. In IEEE 802.16, the
Data Link Layer is divided in a Logical Link Control Sublayer and Media Access Control
Sublayer. The Logical Link Control is concerned with the flow control, which means that
it multiplexes the service provided to the higher layer and is responsible for acknowledg-
ment and error recovery. The Media Access Control provides addressing and channel access
control mechanisms which means that it is responsible for the spectral resource allocation.
The Network Layer is responsible for the end-to-end transmission, which means that it is
responsible for routing the data from the source to the destination. Obviously, for an effi-
cient resource allocation for a multi-hop communication we have to route our messages via
nodes which have sufficient good channels. Otherwise, if higher layers fix the route, on the
Physical Layer the nodes may be coerced to use higher transmit powers to offer the desired
service to the Data Link Layer. This causes a higher energy consumption and a higher inter-
ference for other nodes which will make the medium access inefficient as well. Therefore,
for an efficient future wireless system a cross-layer design with an adaptive power control
and resource allocation will be necessary. A more detailed discussion about these motivat-
ing thoughts about adaptive power control, energy efficient cross-layer design aspects, and

3Open System Interconnection (OSI) protocol stack, which was developed as a reference model by the Inter-
national Standards Organizations (ISO)[Zim80]. From top to bottom the ISO-OSI reference model defines
seven layers in a stack: Application Layer, Presentation Layer, Session Layer, Transport Layer, Network
Layer, Data Link Layer, and Physical Layer.

3



1 Introduction

efficient methods of allocating network resources can be found in [Bam98], [GW02], and
[SRK03].

Wireless Communication: Cooperative Diversity

Wireless communications deals with the problem of reliable transmission of information
despite of impairments introduced by the wireless transmission. Propagation impairments
are usually collected in a time-varying fading channel model that collects phenomena like
multi-path, Doppler-shift, path-loss, and shadowing. Additionally, noise and interference
limit the communication. Diversity techniques reduce the probability that a transmission fails
due to a channel which is in a deep fade. We distinguish between time, frequency, and spatial
diversity according to the dimension where the robustness against fading is realized.

In a cellular network other users may receive the signal from the communication between
a user and a base-station due to the broadcast nature of the wireless channel. Then we will
gain spatial diversity if such a user additionally forwards the signal over an independent path
to the destination. In [SEA98] and [SEA03a, SEA03b] Sendonaris, Erkip, and Aazhang
introduced this concept where two users benefit by relaying their signals for each other and
called it user cooperative diversity. Basically, the diversity gain is achieved by implementing
an additional multi-hop communication.

The contribution [LTW01, LTW04] of Laneman, Tse, and Wornell is the next influential
work in the context of cooperative diversity in wireless networks. They studied the out-
age behavior of several cooperative diversity protocols named according to the cooperative
processing strategy: decode-and-forward, amplify-and-forward, selection, and incremental
relaying. It shows that except for the decode-and-forward strategy all strategies achieve the
full diversity order in the high SNR regime. Thereby, the reduced diversity order for the
decode-and-forward protocol is caused by the definition of the outage event. In a subsequent
work [LW03] Laneman and Wornell proposed distributed space-time codes, which also can
achieve the full spatial diversity given by the number of cooperating terminals.

Those works have sparked a growing interest in the design and analysis of cooperative and
therefore relay transmission protocols. Most of them focused on incorporation of vari-
ous types of channel codes, so called coded cooperation, e.g. [HZF04], [HN06], [SE04],
[LSS03], and [MMYZ06] to mention only a few. [NHH04] and [SHMX06] provide more
elaborate introductions.

Nearly all cooperative protocols assume half-duplex nodes, which means that a node cannot
transmit and receive at the same time using the same frequency. This is due to the fact that in
wireless communications it is technically difficult and often impossible to isolate sufficiently
the received signal from the transmit signal where the transmitter and receiver of the node use
the same bandwidth at the same time. For that reason the protocols require a medium access
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strategy in time or frequency domain which allocates exclusive resources for the reception
of the cooperative user signal and the transmission of its own and cooperative users signals,
which can be seen as time or frequency division duplex at the relay node. Accordingly,
Laneman et al. point out that for the benefits from user cooperative diversity we have a loss
in spectral efficiency due to half-duplex operation, which makes a diversity-vs-multiplexing
trade-off discussion necessary [LTW04, AGS05, YE06]. This concept was introduced by
Zheng and Tse in [ZT03] for wireless communication of nodes with multiple antennas and
can be applied if one considers the cooperative users as a distributed multi-antenna system.

The basic idea behind cooperative/multi-hop communication is that a cooperative node relays
the signal or message. Accordingly, to find the optimal respectively a good cooperative
strategy we should look at the results of information theory on the relay channel.

Information Theory: Relay Channel

Shannon stated the channel capacity theorem in 1948 in his seminal work “A Mathematical
Theory of Communication” [Sha48], which is usually seen as the birth of information the-
ory. In 1961 Shannon introduced in [Sha61] the two-way channel where two nodes want to
communicate as effectively as possible with each other. Therein, he obtained the capacity
region for the average error for the restricted two-way channel, this means that a feedback
between the encoders of the two nodes is not allowed. Nowadays this work is regarded as the
first work on multi-user information theory. Compared to the knowledge of the single-user
case we are still in the beginning of understanding multi-user information theory.

Recently, the relay channel is experiencing a revival because multi-hop communication for
meshed network architectures has the potential for a substantial coverage extension. The
relay channel problem was introduced by van der Meulen in [vdM71] in the early seventies.
A few years later, Cover and El Gamal established in [CG79] the capacities when the channel
is degraded, reversely degraded and when feedback is added from both receivers to the sender
and relay node. For the general relay channel they derived an upper bound to the capacity
and an achievable rate. Later, in [GA82] the capacity of the semideterminitic relay channel,
where the output of the relay is a deterministic function of the input of both senders, is found.
However, the capacity of the general relay channel is still unknown.

Since then one tried to get closer by the study of channel models with a simplifying assump-
tion. Zhang derived in [Zha88] a converse for a relay channel where he assumed a noiseless
channel with a certain rate between the relay and the destination. Cover and Kim showed in
[CK06] that this upper bound is actually achievable using alternatively a novel “hash-and-
forward” or “compress-and-forward” strategy. In [GH05] El Gamal and Hassanpour study
another simplified relay channel where the transmitted relay symbols are allowed to depend
additionally on the non-causally present received symbol. It shows that with “instantaneous
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relaying” in a Gaussian channel an amplify-and-forward strategy achieves the cut-set bound
under certain conditions.

Nonetheless, for the lower bound Cover and El Gamal established in [CG79] a coding strat-
egy which gives us an achievable rate. An equivalent but more regular coding scheme was
found by Williams in [Wil82]. Then in [SG00, GK03, XK04] the authors extend these results
to the multiple relay channel. Thereby, in [XK04] an even more practical coding strategy is
presented. In [KGG05] Kramer, Gastpar, and Gupta extend many cooperative strategies to
relay networks with many terminals, antennas, and sources and compare the performances
of the strategies under wireless communication aspects.

All works on the relay channel we considered so far assume full-duplex nodes. El Gamal
noted4 that nobody had wireless relay networks in mind when they started working on the
relay channel. Accordingly, in the last years some work on the relay channel is done which
considers wireless communication aspects. Firstly, in [KSA03] Khojastepour, Sabharwal,
and Aazhang transfered some results in a straightforward manner to the relay channel with
half-duplex nodes, which they called cheap relay nodes. They separate the transmission and
reception at the relay node in the time domain. Then El Gamal and Zahedi establish in
[GZ05] the capacity of the relay channels with orthogonal channels in the frequency domain
from the sender to the relay and from the sender and relay to the destination. In [LLG06]
Lai, Liu, and El Gamal consider cooperation strategies for a three-node wireless network. In
particular they propose a cooperation strategy for the relay channel with a noisy feedback
combining the decode-and-forward and compress-and-forward strategy.

In [DK04] Dawy and Kamoun determine relay regions where it is beneficial to use a relay
node. Therefore, they compare the power allocation for a multi-hop transmission with and
without cooperation as well as a single-hop transmission where the channel model includes
the path loss between nodes. Liang and Veeravalli derive in [LV05] the optimal distribu-
tion of the orthogonal resources in frequency domain in a Gaussian relay channel. Finally,
in [HMZ05] Host-Madsen and Zhang study the ergodic capacity of the relay channel in a
Rayleigh distributed fading environment. All authors recognized that in the case of half-
duplex nodes we need to allocate additional resources in time or frequency. This means that
the relay communication is only spectrally more efficient than the direct communication if
the spectral gain using the relay node compensates the “costs” of the additional resource
allocation.

4El Gamal noted this at his talk on the MSRI Workshop: Mathematics of Relaying and Cooperation in Com-
munication Networks, University of California, Berkeley, April 2006.
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Bidirectional Relaying and Network Coding

Cooperative protocols establish a separate route to realize diversity. Therefore, the cooper-
ating users have to split their resources which results in a loss in spectral efficiency. From
the half-duplex relay channel we know that this is only spectrally more efficient if the re-
lay route results in a sufficient large spectral gain. For instance in [SE05] we can find an
example in the context of cooperative space-time codes where a user with a sufficient weak
channel can even worsen the performance of the other user. Thereby, they even did not take
into account the extra allocated spectral resource for the cooperative protocol. Accordingly,
for a user with a good direct link it is inefficient to cooperate with a user which has a weak
direct link. On the other hand the user with the weak direct channel benefits a lot from co-
operation. It follows that in coverage problems only one user will benefit from a cooperative
protocol, which means that for the coverage problem a simple relay or multi-hop communi-
cation protocol is more suitable. Rankov and Wittneben must have had similar thoughts and
motivations when they had the ingenious idea to propose the bidirectional relaying5 concept
in [RW05a, RW05b, RW07].

In more detail, in [RW05a] two spectrally efficient amplify-and-forward protocols for uni-
directional and bidirectional relaying are studied. The unidirectional protocol bases on a
strategy where two relay nodes alternately forward messages from the source to the destina-
tion which we similarly proposed in [OS04]. They show that for a sufficiently bad inter-relay
channel the strategy achieves roughly the performance of a full-duplex amplify-and-forward
protocol. For the bidirectional amplify-and-forward protocol two nodes, namely node 1 and
node 2, want to communicate through the support of a common half-duplex relay node. In
the first time slot nodes 1 and 2 transmit their signal to the relay. The relay node scales
the received signal according to its transmit power constraint and retransmits the signal to
nodes 1 and 2 in the following time slot. Since nodes 1 and 2 know their own transmitted
signals they can subtract their contribution before decoding. Thereby, each unidirectional
link still suffers from the additional resource allocation due to the half-duplex node, but the
sum-rate is significantly increased since the relay transmission supports two communication
links at the same time. Note that for the bidirectional protocol between nodes 1 and 2 is
no direct link because both nodes simultaneously transmit in the first phase and receive in
the second phase. A similar strategy for a satellite communication is proposed in the patent
[DMM97].

In [RW05b] Rankov and Wittneben extend the previous spectrally efficient protocols to the
case where the relay nodes support the communication by a decode-and-forward strategy.
The unidirectional protocol with multiple relay nodes leads to an interference channel prob-
lem [CT91] so that this protocol works well for a weak and strong inter-relay channel. The
bidirectional decode-and-forward results in a multiple access channel when nodes 1 and 2

5The bidirectional relaying protocol is also known as the two-way relay channel.
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transmit their information for each other to the relay node. After the relay node successfully
decoded the messages it re-encodes them using superposition encoding and forwards the new
codeword to nodes 1 and 2. Again, both nodes use the knowledge about their own message
to improve their decoding capabilities. Thereby, it is important to notice that they do not
allow cooperation between the encoders of nodes 1 and 2 by feedback, which may improve
the performance. Nonetheless, their final sum-rate performance comparison of all proposed
half-duplex spectrally efficient protocols shows that the bidirectional decode-and-forward
protocol is the most efficient.

We see that if bidirectional communication between the nodes 1 and 2 is desired and the
direct link is sufficiently bad, the bidirectional protocol “trades” the direct links in two half-
duplex relay channels (same routing problem) for increased spectral efficiency. For that
reason, we think that this is conceptually a wise approach for coverage problems where we
have the problem of a weak direct link. In Chapter 2 we study cross-layer design aspects of
this bidirectional decode-and-forward protocol for half-duplex nodes.

In [RW06] Rankov and Wittneben study the achievable rate region for the restricted full-
duplex case. In all works they follow an analogy which Shannon phrased at his Kyoto lec-
ture6 in 1985 as follows “A basic idea in information theory is that information can be

treated very much like a physical quantity, such as mass or energy”. However, in the work
“Network information flow” from Ahlswede, Cai, Li, and Yeung [ACLY00] it is shown that
“it is in general not optimal to regard the information to be multicast as a “fluid” which can

simply be routed or replicated. Rather, by employing coding at the nodes, which [they] refer

to as network coding, bandwidth can in general be saved”. This seminal work establishes a
new direction in multiterminal source coding and is closely related to graph theory. The main
result is a Max-flow Min-cut Theorem for the information flow in a multi-terminal source
coding problem with one information source and error-free links. It says that the maximum
rate that a sender can multicast to a set of receivers is given by the minimum cut between
source and receivers. They also present a simple example from Yeung [Yeu95] which shows
that a multi-source problem is not a trivial extension. Finally they conclude that “coding

by superposition is not optimal in general.” These works have caused a paradigm shift and
have stimulated a new flourishing research area in information theory. The textbook [Yeu02,
Chap. 11 and 15] and the tutorial [Yeu05] are good introductions into this rapidly growing
research field and provide more extensive reference lists than we can give.

Ahlswede et al. do not restrict in their work the encoding functions at the terminals. Li,
Yeung, and Cai prove in [LYC03] that linear coding over a certain base field suffices for
a multicast problem. In [KM03], Koetter and Medard present an algebraic framework for
the design of linear network codes in a finite field. Today, linear encoding functions based
on the addition in finite fields, especially XOR-Operation in F2, have found formidable
prominence in the design of network codes. This may go back to the famous “butterfly

6Ahlswede cited this in his Shannon Lecture 2006 [Ahl06].
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network” [Yeu05, Ex. 1.1], [ACLY00, Fig.7] which shows with a striking simplicity the
potential of network coding. With a specific grouping of the terminals the “butterfly network”
describes a bidirectional communication network [Yeu05, Ex. 1.3] which suggests the relay
node to perform an XOR-operation. Then it is interesting to see that the relay node together
with the error-free channels to nodes 1 and 2 describes exactly the XOR-channel of Shannons
example for the two-way channel [Sha61, Fig. 4]. Without considering channel coding
aspects we find this XOR encoding example for bidirectional relaying in [Yeu05, Ex. 1.4], in
a multi-hop context with a simple acknowledgment protocol in [WCK05], and with a cyclic
redundancy check at the relay node in [LJS05]. Popovski and Yomo propose in [PY06] a
Denoise–and–Forward protocol, where the relay tries to eliminate the noise in the received
sum signal by estimation.

The proposed strategies based on network coding principles also show that bidirectional
communication can increase the achievable sum-rate. The channel coding strategy of Rankov
and Wittneben treats information as a physical entity, which is in a multi-terminal source cod-
ing problem in general not optimal. For that reason, in Chapter 3 we study bidirectional re-
laying with classical channel coding arguments following the philosophy of network coding.
We see that the bidirectional relaying with decode-and-forward is a channel where super-
position encoding is indeed not optimal. Unfortunately, we obtained these results after our
cross-layer design studies presented in Chapter 2, where we assume separated information
flows using superposition encoding.

There is lots of work ongoing to transfer the network coding idea to wireless network prob-
lems. The easiest way would be to separate channel-coding and network-coding, but this is in
general not optimal. In [EMH+03] it is shown that separation holds for some networks, but
they also provide networks where separation fails. Likewise in [RK06] it is shown for a relay
network with deterministic channels that channels separation does not hold in general. For
that reason, the design of joint network-channel codes is indispensable. In [HSOB05] Hausl,
Schreckenbach, Oikonomidis, and Bauch introduce a joint network-channel code based on a
distributed Low-Density Parity-Check code for the two-way relay channel, where encoders
and decoders are designed such that all the network coded parity bits send by the relay node
are useful for the decoding at both users. Then in [HH06] Hausl and Hagenauer extend the
concept to a turbo network code for the two-way relay channel. Finally in [HD06] we can
see for the multiple access relay channel that the joint network-channel coding approach
performs better than the separate network-channel coding or a distributed turbo code ap-
proach.
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1.2 Contribution and Outline of the Thesis

In Chapter 2 we study bidirectional relaying based on superposition encoding as proposed
in [RW05b], which means that we consider separated information flows. We study differ-
ent cross-layer design aspects to improve the efficiency and realize synergetic benefits. As
performance metric we consider the achievable rates assuming discrete-time memoryless
Gaussian channels. For that reason, we briefly review some information theoretic arguments
in between to introduce the achievable rates as performance metric.

• In Section 2.2 we intensively examine the achievable bidirectional rate region of a
fixed and optimal time division approach where the nodes are equipped with a single-
antenna element. For a complete understanding of the combinatorial properties we
discuss for different desired rate-pairs the minimal necessary signal-to-noise ratios
in the broadcast phase. Furthermore, we specify the sum-rate optimal rate pairs for
different rate regions. This allows us to characterize in closed form the achievable
rate pairs for the equal and optimal time division case where the weighted rate sum is
maximized, so called Pareto optimal rate pairs7. In the last subsection we characterize
the bidirectional achievable rate region for the optimal time division with scaled mean
power constraints, which corresponds to a different interpretation of the constraint for
a code word concerning its code word length. Parts of the results are published in
[OB06b, OB07a], and should be published in [OB06e] and [OB07b].

• In Section 2.3 we introduce and study a queueing model and consider a throughput
optimal resource allocation policy based on the maximum differential backlog algo-
rithm developed by Tassiulas and Ephrimedes [TE92]. We prove the stability region
of bidirectional relaying using standard arguments for the proof as done in [NMR03],
which base on a well-developed Lyapunov drift analysis of [MT93]. Additionally,
we present some numerical simulation results. Parts of the results are published in
[OB06d, OB07a], and should be published in [OB06e].

• In Section 2.4 we consider the routing problem of finding the best relay node in a
network where N nodes are willing to support the bidirectional communication be-
tween the nodes 1 and 2. We propose to do relay selection based on the achievable
rate region using the Pareto optimal rate pairs. Finally, we prove that for independent
and identical Rayleigh distributed fading channels the sum of the ergodic achievable
rate pairs on the boundary of the equal and optimal time division cases asymptotically
scale with Θ(log(log(N))). Parts of the results are published in [OB07a, OB07e], and
should be published in [OB06a].

7A feasible point of a vector optimization problem is Pareto optimal if and only if there is no feasible point
which is better in all entries of the vector-valued objective [BV04, Sect. 4.7.3.]. Accordingly, in our context
it means that rate pairs on the boundary in the first quadrant are Pareto optimal since we cannot increase one
rate without decreasing the other.
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• In Section 2.5 we add a multicast of the relay node to the bidirectional relaying pro-
tocol. We examine the joint resource allocation for both routing tasks. Furthermore,
we characterize the optimal decoding order and the total sum-rate optimum for any
fixed time division. Thereby, we identify a rate trade-off property which characterizes
the interchange of bidirectional rate with relay multicast rate while the total sum-rate
remains constant. After that we provide an extensive combinatorial discussion regard-
ing the trade-off, a desired relay rate, and the total sum-rate maximum with respect to
the time division. Parts of the results are published in [OB07a, OB07d], and should be
published in [OB06c].

• In Section 2.6 we consider bidirectional relaying between nodes equipped with mul-
tiple antennas. Therefore, we briefly review the information theoretic concepts for
vector-valued processing and examine the optimal resource allocation assuming per-
fect channel knowledge at the transmitters as well. The look at the high power behavior
shows a linear growth of the sum of any rate pair on the boundary of the achievable
rate region with respect to the spatial degree of the vector channels and time division.
Parts of the results are published in [OB07c].

• In Section 2.7 we sum up the main results of this chapter and discuss some connections
between them.

In Chapter 3 we derive an optimal coding strategy for the two-phase bidirectional decode-
and-forward relaying protocol without feedback. This means that we consider the two-phase
protocol where we require that the relay node has to decode the messages in the first phase
and forwards the re-encoded messages in the succeeding broadcast phase. Thereby, we do
not allow cooperation between the encoders of nodes 1 and 2. We derive the capacity region
with respect to the maximal error probability by proving a coding theorem and a weak con-
verse. For the illustration of the results we present an example based on the binary erasure
multiple access channel and the binary symmetric broadcast channel. After that we give a
brief discussion and refer to further results regarding a strong converse and practical coding
aspects. Parts of the results are published in [OSBB07, BOSB07, SOS07] and should be
published in [OBSB07].

Finally, we conclude the thesis in chapter 4 where we give an outlook on future research
directions and present examples how the bidirectional relaying protocol can be integrated in
wireless networks. A complete publication and reference list finalizes the thesis.

Further results which are not part of the Thesis

During my work at the Technical University of Berlin we obtained further interesting results
which are not part of this Thesis.
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• In [OB03a] and [OB03b] we characterize the optimal power allocation for an amplify-
and-forward cooperative system with and without a direct link between source and
destination respectively. The single-antenna transmit nodes form a distributed antenna
array, which results in a vector channel to the multi-antenna destination node. We
assume a sum-power constraint between all transmitters. In [OB03a] we show that
the asymptotic power distribution differs to the equal power distribution of a classical
MIMO channel. Furthermore, we see that the capacity saturates in the high power
regime due to the noise amplification. On the other hand, in [OB03b] we find a new
behavior for a scenario where a cooperative station has a larger channel gain than of
the direct link. If both channels are highly correlated it shows that it is optimal to use
the cooperative node only in the low power regime. This means that with increasing
sum-power it is optimal to turn off the cooperative relay node, which is again due to
the additional noise of the relay node.

• In [OS04, OB05, OSB06] we propose a cooperative transmission scheme which cir-
cumvents the spectral loss due to the pre-log factor from the half-duplex restriction.
Therefore, we need at least two cooperating nodes which alternatively either transmit
or receive so that at any time the signal from the source is retransmitted after a linear
processing by at least one relay node. It follows that we prevent the pre-log factor
by allocating additional resource in space. But the retransmission scheme could also
cause an unstable system. Accordingly, we find the condition for the linear processing
which ensures system stability. Moreover, we present a necessary and sufficient con-
dition so that the relay network has a finite impulse response, which limits the impact
of the noise added by the relay nodes. We end up with a system equation which is
equivalent to a transmission over a frequency-selective channel with additive colored
noise. For the evaluation of the relay network we study the frame error performance
of a proposed suboptimal Viterbi-decoder, a maximum likelihood sphere-decoder, the
performance of a detector based on the semidefinite relaxation method and the di-
versity order8. Furthermore, we derived the capacity with equal power distribution
between the nodes, which can be solved using Jensens formula [Rud66] and charac-
terize channel conditions where the relay network will always have a better pair-wise
error probability.

• In coauthored works with Aydin Sezgin we obtain results on the field of Space-Time
Block Codes. In [SO04a] we propose a transmit strategy which bases on regular block
Markov encoding. In [SO04b, SO04d, SO04c] we find and utilize spectral properties
of quasi-orthogonal Space-Time Block Codes.

8These discussions were made in the context of the supervised diploma theses: “Analysis of Sphere Decoding
in linear cooperative wireless Relay Networks" of Benjamin Schubert and “Diversity order analysis of com-
plexity efficient decoding techniques in linear cooperative wireless relay networks" of Rafael Wyrembelski.
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• In the coauthored work with Eduard Jorswieck [JOB05], we study the impact of chan-
nel correlation on diversity combiners in a flat fading single-input multiple-output sys-
tem using majorization theory [MO79].
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2 Bidirectional Relay Communication

using Superposition Encoding

2.1 Introduction

We consider a three-node network where two nodes communicate with each other using the
support of a half-duplex relay node. The inherent spectral loss of unidirectional protocols can
be significantly reduced through bidirectional relaying. In this chapter we study some cross-
layer design aspects of the bidirectional relaying decode-and-forward protocol which was
proposed by Rankov and Wittneben in [RW05b, RW07]. Therefore, we assume discrete-
time memoryless Gaussian channels between the nodes. At the relay node we apply the
superposition encoding technique so that we consider separated information flows.

System Model

The bidirectional two-hop communication is established in two phases, namely the multi-
ple access (MAC) phase and the broadcast (BC) phase, c.f. Figure 2.1. The protocol starts
with the multiple access phase where node 1 transmits a message with rate R1 and node 2
transmits a message with rate R2 to the relay node simultaneously. The relay node decodes
both messages. In the succeeding BC phase the relay broadcasts the re-encoded messages
where it uses superposition encoding technique. Since for each receiving node in the BC
phase one message originates from itself, each receiving node performs interference cancel-
lation before decoding the unknown message. This results in two separated interference-free
transmissions essentially.

R 21

1 2
h h

(a) MAC phase

1
h

2
h

R 21

(b) BC phase

Figure 2.1: A three-node network, where each node is equipped with one antenna element.
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2 Bidirectional Relay Communication using Superposition Encoding

In this thesis we do not allow cooperation between the two phases. This means that we
do not allow any feedback which could be used for cooperation between the encoders. For
Shannon’s two-way channel [Sha61] this is known as the restricted two-way channel. Fur-
thermore, we assume that the noise and information sources at nodes 1 and 2 are independent
and all nodes are perfectly synchronized.

Throughout the chapter we consider a baseband discrete-time system. We assume a multi-
plicative channel model which includes the physical channel, the shaping pulse at the trans-
mitter, and the whitening matched filter at the receiver. Unless otherwise stated, the channel
is considered to be a single-input single-output (SISO) linear time-invariant system, which
can be seen as a snapshot of a time-varying flat fading channel.

Let h1 ∈ C denote the channel gain between node 1 and the relay node and h2 ∈ C denotes
the channel gain between node 2 and the relay node. For notational simplicity we assume
reciprocal channels. Then after symbol-rate sampling the system equation for time instants
m in the MAC phase is given by

yR[m] = h1x1[m] + h2x2[m] + nR[m],

where yR[m] denotes the received signal at the relay node, x1[m] and x2[m] denote the
transmit signals of nodes 1 and 2, and nR[m] denotes the additive noise. Similarly, after
symbol-rate sampling the system equation for time instants m in the BC phase is given by

yk[m] = hkxR[m] + nk[m], k = 1, 2,

where yk[m] denotes the received signal at node k = 1, 2, xR[m] denotes the transmit signal
of the relay node, and nk[m] denotes the additive noise at node k = 1, 2. We assume that
the noise at each antenna is independent additive white Gaussian noise with zero mean and
power σ2. Due to the central limit theorem, the Gaussian noise assumption is reasonable for
a wide class of practical channel models, e.g. thermal noise is modeled by a Gaussian distri-
bution. For each node we have a mean transmit power constraint Pk, k ∈ {1, 2,R}, so that
we can define the signal-to-noise ratios γk := Pk/σ

2, k ∈ {1, 2,R}. Throughout the thesis
we consider normalized powers. Without further notification, we assume that |h1|, |h2|, and
Pk, k ∈ {1, 2, R} are strictly positive because otherwise bidirectional communication would
not be possible.

In this thesis we consider an orthogonal resource allocation for the two phases in the time
domain. Conceptually the results can be easily transfered to an orthogonal resource allo-
cation in the frequency domain, but then we have to consider the capacity of bandlimited
channels. We assume that all links are reciprocal. In practical systems this condition is ful-
filled if the round-trip time of both phases is shorter than the coherence time of the channel.
Similarly, if we allocate orthogonal resources in frequency domain the condition is fulfilled
if the frequency separation is smaller than the coherence bandwidth. However, in this thesis
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2.1 Introduction

we look at the rates which are achievable for a given channel realization. Therefore, channel
reciprocity and equal noise powers are not necessary assumptions since with an appropriate
substitution of the individual transmit power constraints we can include the general case.1

Finally, we want to remark that in most sections we assume a time-invariant channel model.
For the cases where we consider a time-variant channel model we are interested in the time
averages of the achievable rates. Therefore, we assume that the channel remains constant
long enough so that we can achieve the information theoretic rate. An optimization of the
resource allocation over the time-variance of the channels is out of the scope of the thesis.

Outline of this Chapter

In Section 2.2 we examine the achievable bidirectional rate region for a fixed and optimized
time division between the two phases. For a complete understanding of the combinatorial
properties we first study minimal necessary signal-noise ratios γR to support a certain rate
pair in the MAC phase and characterize the sum-rate optimal rate pairs of the rate region
of each phase and of the bidirectional protocol. After that, we characterize for any weight
vector the corresponding rate pair on the boundary of the rate region that maximizes the
weighted rate sum. Rate pairs on the boundary are Pareto optimal since they can be seen
as solutions of a multi-objective optimization problem where we want to maximize each
rate individually. We use these Pareto optimal rate pairs in the following two sections. In
Section 2.3 we discuss a throughput optimal resource allocation policy based on a back-
pressure strategy. In Section 2.4 we consider the problem of relay selection in a network
based on the achievable rate region. Furthermore, we look at the asymptotic growth of the
ergodic rate region assuming independent and identical Rayleigh distributed channels.

In Section 2.5 we examine the joint resource allocation for the bidirectional relaying and
an additional multicast of the relay node. We characterize the optimal decoding order and
the total sum-rate maximum. Furthermore, we characterize a rate trade-off property where
the total sum-rate remains constant. After that we present a combinatorial discussion of the
results. In Section 2.6 we consider the achievable rate region of bidirectional relaying be-
tween nodes equipped with multiple antennas. Therefore, we briefly review the information
theoretic concepts for vector-valued processing and present the optimal resource allocation
assuming perfect channel knowledge at the transmitters. Finally, we identify the linear scal-
ing law of the achievable rates in the high power regime.

For a clear presentation we illustrate many results by examples or numerical simulations. In

1Let hkl and σ2
k with k, l ∈ {1, 2, R} denote the channel coefficient of the channel from node k to node l and

the noise power at node k. Then with the substitution |hRk|2

σ2

k

= |hk|2

σ2 , and P̃k = Pk
|hkR|2σ2

k

|hRk|2σ2

R

, for k = 1, 2,

we can transfer our results to individual channel coefficients and noise powers.
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2 Bidirectional Relay Communication using Superposition Encoding

Section 2.7 we give a comprehensive discussion about the cross-layer design aspects consid-
ered in this chapter.

2.2 Achievable Rate Region of Bidirectional Relaying

Rankov and Wittneben only looked at the sum-rate performance assuming an equal time
division between the MAC and the BC phase. Since bidirectional communication is charac-
terized by a two-dimensional rate vector, for cross-layer design aspects we need to know the
whole achievable rate region in detail. Moreover, we notice that we can obviously enlarge
the achievable rate region if we optimize the time division between the phases.

In this chapter we regard information as a “fluid”, which means that multiple messages are
encoded by using the superposition encoding technique. Then the decoding of multiple mes-
sages is done successively. This means that when we decode the codeword of a message
we regard the codewords of the succeeding unknown messages as additional noise. After
the successful decoding of the message the interference of the corresponding codeword is
canceled, which reduces the noise level for the succeeding messages and therefore improves
the decoding capability. This decoding technique is known as successive interference can-

cellation. For the encoding of multiple messages it follows that we can apply the encoding
principles of the single-user point-to-point communication where the encoding has to factor
in the position in decoding sequence. For that reason we first briefly look at the results for
the simple single-input single-output (SISO) Gaussian channel. These can be found in most
textbooks on information theory or good books on wireless communications, e.g. [Gal68],
[CT91], or [TV05]2. Then we will briefly discuss the results regarding the capacity region
of the Gaussian multiple access channel for completeness. For the achievable rate region of
the broadcast phase we use the results of the Gaussian channel. In the rest of the section we
study the resulting achievable rate region of the bidirectional relaying protocol.

2.2.1 Gaussian Channel

We start with a simple single-input single-output discrete-time memoryless AWGN channel.
We assume complex signaling, which is motivated by the baseband processing. Furthermore,
we include a time-invariant multiplicative channel coefficient in this discussion. This results
in a linear channel model with a multiplicative and additive distortion of the transmit signal

2We have argued as for an additive channel model like the AWGN channel since this is the most interesting
channel for wireless communication. But the basic arguments also apply for more general settings, where we
translate noise or interference with uncertainty so that interference cancellation corresponds to a reduction in
uncertainty.

18



2.2 Achievable Rate Region

with a channel coefficient h, which is perfectly known at the receiver, and a complex Gaus-
sian noise random variable N ∼ CN (0, σ2) respectively. We consider a continuous-valued
input and output where the complex random variablesX and Y with support sets SY and SX

represent single letters of our transmit and receive signals. For the transmit signal we require
a transmit power constraint so that the second moment of the random variable is bounded
by some constant P , i.e. E{|X|2} ≤ P . We assume that the noise is independent of the
transmit signal. Then the single letter input-output relation can be expressed as follows

Y = hX +N.

A single letter description will be sufficient since we consider a memoryless channel.

In the seminal work [Sha48] Shannon studied the problem of how best to encode the in-
formation a sender wants to transmit. For that goal he introduced the concept of mutual
information which measures the amount of information one random variable reveals about
another. Twenty years before, Hartley introduced in communications the concept of entropy
as a measure of uncertainty about a random variable from thermodynamics. Then the mutual
information characterizes the reduction in uncertainty. It therefore measures the quantity of
transmitted information.

Since we consider a channel with continuous alphabets, we get the mutual information in
terms of differential entropies3 [CT91, Chapter 9],

I(X;Y ) := h(Y ) − h(Y |X) = h(Y ) − h(N).

The differential entropy h(Y ) of a continuous random variablesX defined on the support set
SY with the density fY (y) is defined as

h(X) := −
∫

SY

fY (y) log fY (y)dy.

Since the logarithm is to the base two, we measure the entropy in bits. The conditional

differential entropy h(Y |X) of the random variables (Y,X) defined on the support set SY ×
SX with the joint and conditional densities fY,X(y, x) and fY |X(y|x) is defined as

h(Y |X) := −
∫

SY ×SX

fY,X(y, x) log fY |X(y|x)d(y, x) = h(X,Y ) − h(Y ). (2.1)

3In the classical Gaussian channel there is no channel coefficient h. Therefore, for our channel model some
authors write I(X; Y, h) to indicate the channel knowledge at the receiver. Since we assume perfect channel
knowledge at the receivers throughout the thesis, we skip this entry to keep the notation simple. Furthermore,
often real-valued signaling is considered. Conceptually there is no difference between complex and real
processing since we can consider each use of a complex AWGN channel as two uses of a real AWGN
channel.
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2 Bidirectional Relay Communication using Superposition Encoding

Then the differential entropy of a complex Gaussian random variable Z with density φ(z) =
1

πσ2 exp(− |z−µ|2

σ2 ) is given by

h(Z) = −
∫

SZ

φ(z) log(φ(z))d z = −
∫

SZ

φ(z)

ln(2)

(
ln(

1

πσ2
) − |z − µ|2

σ2

)
d z

= log(πσ2) +
1

ln(2)
= log(eπσ2). (2.2)

Therewith, we get the differential entropy of the noise as h(N) = log(eπσ2).

The next important quantity is the relative entropy D(f ||g) :=
∫
f log f/g (with

0 log(0/0) := 0) between two densities f and g which are finite only if the support set
of f is contained in the support set of g. From Jensen’s Inequality4 we know that the relative
entropy between two densities f and g is always non-negative, D(f ||g) ≥ 0 [CT91, Theo-
rem 9.6.1]. It follows that for any complex random variable Z defined on the support set SZ

with density f(z) and E{|z|2} = σ2 we have h(Z) ≤ log(eπσ2). This can be easily seen
by the following: Let φ(z) be the density of a complex Gaussian random variable according
to CN (0, σ2), then

0 ≤ D(f ||φ) =

∫

SZ

f log(f/φ) =

∫

SZ

f log(f) −
∫

SZ

f log(φ)

= −h(Z) −
∫

SZ

f(z)

ln(2)

(

ln
( 1

πσ2

)
− |z|2

σ2

)

d z = −h(Z) + log(eπσ2).

It follows that the complex normal distribution CN (0, σ2) maximizes the entropy over all
complex distributions with the same second moment.

Since the noise N is independent of the input X , for the second moment of the output we
have E{|Y |2} = E{|hX +N |2} = |h|2E{|X|2} +E{|N |2} ≤ |h|2P + σ2.

Then it follows from the previous that the differential entropy of the output is maximized
with h(Y ) = log(eπ(|h|2P+σ2)) if the inputX is distributed according to complex normal
distribution CN (0, P ). This means that Gaussian distributed codebooks are optimal.

The information capacity C of the Gaussian channel is defined as the maximum mutual in-
formation between the input and output over all input distributions that satisfy the power

4Jensen’s Inequality can be formulated in different notations. In the notation of probability theory let X be a
random variable with support SX ⊆ R and let f : SX → R be a convex function, then we haveE{f(X)} ≥
f(E{X}).
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2.2 Achievable Rate Region

constraint [CT91, Chapter 10]. With the previous considerations we can express the infor-
mation capacity as follows

C := max
fX(x):E{|X|2}≤P

I(X;Y ) = max
fX(x):E{|X|2}≤P

h(Y ) − log(eπσ2)

= log
(
eπ(|h|2P + σ2)

)
− log(eπσ2) = log

(
1 +

|h|2P
σ2

)
.

(2.3)

Then the result of Shannon’s work says that one can construct a sequence of block codes
that satisfies the power constraint, has a rate smaller but arbitrary close to the information
capacity, and has a maximum probability of error which tends to zero with increasing block
code length. Therefore, the information capacity is also the supremum of the achievable
rates of the channel which means that the operational and information capacity are equal.
For more details we refer to any information theory text book that covers the channel coding
theorem for the Gaussian channel, e.g. [CT91].

2.2.2 Multiple Access Phase

In the multiple access phase of the bidirectional relaying protocol nodes 1 and 2 simultane-
ously transmit independent messages m1 and m2 with rates R1 and R2 to the relay node.
Thereby, the message m1 from node 1 is intended for node 2 and vice versa for message
m2. For the MAC phase we apply the capacity achieving coding strategy. The capacity
region for the discrete memoryless multiple access channel was independently derived by
Ahlswede [Ahl71a] and Liao [Lia72] using finite set alphabets and is now part of any in-
formation theory textbook that contains multiuser information theory, [Wol78], [CK81], and
[CT91]5. The result of the capacity region can be modified to apply to continuous input and
output alphabets with an additional mean input power constraints, which was independently
done by Wyner in [Wyn74] and Cover in [Cov75]. From wireless communication point of
view the multiple access channel with Gaussian channels is most important.

Since the channel is memoryless, it is sufficient to consider single-letters only. Then the
input-output relation of the discrete-time memoryless Gaussian multiple access channel is
given by

YR = h1X1 + h2X2 +NR.

The continuous random variable YR denotes the output at the relay node and the continuous
random variablesX1 andX2 denote the inputs from the nodes 1 and 2, which are all complex
since we consider baseband signaling. The complex coefficients h1 and h2 model the time-
invariant channel gains between the nodes. The received signal at the relay node is distorted

5We reproduce the theorem in Section 3.1.2 where we present a coding theorem for the BC phase of the
bidirectional relay channel using finite set alphabets. Here, we only present the result for the Gaussian
channel which we consider in this chapter.
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2 Bidirectional Relay Communication using Superposition Encoding

by complex additive white Gaussian noise NR ∼ CN (0, σ2). Then the multiple access
capacity region CMAC is given by the convex hull of the set of rate pairs satisfying

R1 ≤ I(X1;YR|X2),

R2 ≤ I(X2;YR|X1),

R1 +R2 ≤ I(X1, X2;YR),

for some input distribution fXk
(xk) which satisfies the input power constraintsE{|Xk|2} ≤

Pk, k = 1, 2. With the same arguments as in Section 2.2.1 it can easily be shown that com-
plex Gaussian input distributions withXk ∼ CN (0, Pk), k = 1, 2, maximize I(X1;YR|X2),
I(X2;YR|X1), and I(X1, X2;YR). Since in the scalar case all mutual informations are si-
multaneously maximized, it follows that the rate constraints are tight so that the capacity
region of the MAC phase is given by

CMAC :=
{

[R1, R2] ∈ R2
+ : R1 ≤ R−→

1R
, R2 ≤ R−→

2R
, R1 +R2 ≤ RMAC

Σ

}

with the individual and sum-rate constraints

R−→
1R

:= log
(
1 + γ1|h1|2

)
, (2.4a)

R−→
2R

:= log
(
1 + γ2|h2|2

)
, (2.4b)

RMAC
Σ := log

(
1 + γ1|h1|2 + γ2|h2|2

)
, (2.4c)

and signal-to-noise ratios γ1 = P1
σ2 and γ2 = P2

σ2 .

Similarly to the Gaussian channel it is possible to construct a sequence of block codes that
satisfies the power constraints and achieves a rate pair [R1, R2] ∈ CMAC arbitrary close
while the maximum probability of error tends to zero with increasing block length [CT91].
For that reason we assume error-free decoding in the MAC phase if [R1, R2] ∈ CMAC

6 for
the following cross-layer design.

Since CMAC is a pentagon, it can be completely described by five vertices. Thereby, the
vertices where the individual rate constraints intersect with the sum-rate constraint,

νΣ1 :=
[
R−→

1R
, RΣ1

2

]
with RΣ1

2 := RMAC
Σ −R−→

1R
= log

(

1 +
γ2|h2|2

1 + γ1|h1|2
)

, (2.5a)

ν2Σ :=
[
R2Σ

1 , R−→
2R

]
with R2Σ

1 := RMAC
Σ −R−→

2R
= log

(

1 +
γ1|h1|2

1 + γ2|h2|2
)

, (2.5b)

are most interesting for the combinatoric as seen in [TH98]. To achieve the vertices, we have
to apply successive interference cancellation. This means that in the first decoding step the

6If we can make the error of the MAC and of the BC phase arbitrary small, it follows from the union bound
that we can make the error of the bidirectional relay channel arbitrary small.
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2.2 Achievable Rate Region

codeword of the second message to decode is regarded as additional noise. After decoding
the first message the interference of the corresponding codeword is canceled so that we can
decode the second message without interference. Then each vertex corresponds to a specific
decoding order. To achieve νΣ1 we have to decode the messagem2 beforem1 and vice versa
for ν2Σ.

In the following we often consider the boundary of the rate region and therefore define the
interesting sections of the boundary as follows

R−→
1R

:=
{

[R−→
1R
, R2] ∈ R2

+ : 0 ≤ R2 ≤ RΣ1
2

}

, (2.6a)

R−→
2R

:=
{

[R1, R−→
2R

] ∈ R2
+ : 0 ≤ R1 ≤ R2Σ

1

}

, (2.6b)

RMAC
Σ :=

{

[R1, R
MAC
Σ −R1] ∈ R2

+ : R2Σ
1 ≤ R1 ≤ R−→

1R

}

. (2.6c)

The set RMAC
Σ specifies the dominant face of the pentagon and characterizes the sum-rate

optimal rate pairs in the MAC phase. We can achieve the rates on the dominant face by
time-sharing between νΣ1 and ν2Σ or by a rate splitting technique according to [RU95].

2.2.3 Broadcast Phase

In the succeeding BC phase the relay forwards the previously received message m1 to node
2 and message m2 to node 1. In this chapter we follow the superposition encoding strategy
as proposed in [RW05b]. Therefore, the messages m1 and m2 are separately encoded as for
the point-to-point Gaussian channel. Since we consider a memoryless channel, it is again
sufficient to consider single-letters only. Then the input random variable of the relay node
using superposition encoding is given by

XR = W1 +W2,

where the random variables W1 and W2 correspond to the codewords of the messages m1

for node 2 and m2 for node 1. Since the messages m1 and m2 are independent, the random
variables W1 and W2 are independent as well. From this we get the output at nodes 1 and 2
as follows

Yk = hk XR +N1 = hk W1 + hk W2 +Nk, k = 1, 2.

Since the messages m1 and m2 originate from nodes 1 and 2 respectively, at each receiving
node one message and therefore one codeword is known. This a priori knowledge allows the
receiving nodes to subtract the interference caused by the codeword of its own message. With
this interference cancellation technique we essentially have an interference-free reception at
each receiving node, which results in two equivalent single-user AWGN channels. It follows
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2 Bidirectional Relay Communication using Superposition Encoding

that the achievable rates in the BC phase using superposition encoding, i.e. XR = W1 +W2,
have to fulfill the constraints

R2 ≤ I(XR;Y1|W1) = I(W2;h1W2 +N1),

R1 ≤ I(XR;Y2|W2) = I(W1;h2W1 +N2),

for some input distribution fWk
(wk), k = 1, 2, satisfying the power constraint E{|XR|2} =E{|W1|2} +E{|W2|2} ≤ PR.

Obviously, the mutual informations are only coupled by the relay input power constraint,
which means that we have to distribute the power PR on both codewords. Let β1 and β2

denote the proportion of relay transmit power PR spend for the codewords W1 and W2

respectively. Then the simplex

B := {[β1, β2] ∈ [0, 1] × [0, 1] : β1 + β2 ≤ 1}

characterizes the set of feasible relay power distributions that satisfy the relay transmit
power constraint. For a given feasible relay power distribution [β1, β2] ∈ B we know
from Section 2.2.1 that complex Gaussian distributed inputs W1 ∼ CN (0, β1PR) and
W2 ∼ CN (0, β2PR) maximize the mutual informations. It follows that with the super-
position encoding in the BC phase we can achieve any rate pair within the rate region

RBC :=
{

[R1, R2] ∈ R2
+ : R1 ≤ R−→

R2
(β1), R2 ≤ R−→

R1
(β2), with [β1, β2] ∈ B

}

with rate constraints

R−→
R2

:[0, 1] → R+, β1 7→ log
(
1 + γRβ1|h2|2

)
, (2.7a)

R−→
R1

:[0, 1] → R+, β2 7→ log
(
1 + γRβ2|h1|2

)
, (2.7b)

and signal-to-noise ratio γR = PR
σ2 .

In next proposition we show that in the BC phase we do not need the convex hull operation
as in the MAC phase since RBC is already convex, which means that in the BC phase time-
sharing is not necessary.

Proposition 2.1. RBC is convex.

Proof. The proof can be found in Appendix 2.8.1.

Similarly to the Gaussian channel it is possible to construct a sequence of block codes that
satisfies the power constraint and achieves a rate pair [R1, R2] ∈ RBC arbitrary close while
the maximum probability of error tends to zero with increasing block length. For that reason
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2.2 Achievable Rate Region

we assume error-free decoding in the BC phase if [R1, R2] ∈ RBC for the following cross-
layer design.

For any rate pair on the boundary of the BC region we obviously have β1 +β2 = 1. Accord-
ingly, the boundary of RBC can be parametrized by the rate pair function

RBC : [0, 1] → R2
+, β 7→

[

R−→
R2

(β), R−→
R1

(1 − β)
]

, (2.8)

where we have β1 = β and β2 = 1 − β. This allows us to characterize the sum-rate optimal
rate pair in the BC phase.

Proposition 2.2. The maximum sum-rate RBC
Σ := max

[R1,R2]∈RBC

R1 + R1 of the broadcast

rate region RBC is given by

RBC
Σ =







log(1 + γR|h1|2), if β⋆ < 0, (2.9a)

log
(

1
4(1 + γR|h1|2 + |h1|2

|h2|2
)(1 + γR|h2|2 + |h2|2

|h1|2
)
)
, if 0 ≤ β⋆ ≤ 1,(2.9b)

log(1 + γR|h2|2), if β⋆ > 1, (2.9c)

with β⋆ := 1
2 + 1

2γR

(
1

|h1|2
− 1

|h2|2

)
and is attained at the rate pair

[R⋆
−→
R2
, R⋆

−→
R1

] :=







[0, R−→
R1

(1)], if β⋆ < 0, (2.10a)

[R−→
R2

(β⋆), R−→
R1

(1 − β⋆)], if 0 ≤ β⋆ ≤ 1, (2.10b)

[R−→
R2

(1), 0], if β⋆ > 1, (2.10c)

with R−→
R2

(β⋆) = log
(

1
2(1 + γR|h2|2 + |h2|2

|h1|2
) and R−→

R1
(β⋆) = log

(
1
2(1 + γR|h1|2 + |h1|2

|h2|2
).

Proof. The proof can be found in Appendix 2.8.2.

Furthermore, for any fixed relay power distribution β ∈ [0, 1] with β1 = β and β2 = 1 − β
in the BC phase we can achieve any rate pair in the rate region

RBC(β) :=
{

[R1, R2] : R1 ≤ R−→
R2

(β), R2 ≤ R−→
R1

(1 − β)
}

(2.11)

so that obviously RBC =
⋃

β∈[0,1] RBC(β) holds. Finally, we want to remark that RBC is
larger than the rate region of the degraded broadcast channel, where for the encoding and
decoding for one receiving node the own message is regarded as interference.
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2 Bidirectional Relay Communication using Superposition Encoding

2.2.4 Bidirectional Achievable Rate Region

For the bidirectional relaying protocol we are in the MAC and BC phases for fraction of
time only so that we have to scale the achievable rate pairs according to the time division.
This means that for a time division parameter α ∈ [0, 1] we can achieve rate pairs R within
the rate regions αCMAC in the MAC phase and (1 − α)RBC(β) in the BC phase with a
relay power distribution β ∈ [0, 1]. For a successful bidirectional relay transmission of the
message m1 with rate R1 from node 1 to node 2 and message m2 with rate R2 from node 2
to node 1 the rate pair R = [R1, R2] has to be within the scaled MAC rate region αCMAC

as well as within the scaled BC rate region (1 − α)RBC(β). This means that for any given
time division parameter α ∈ [0, 1] and relay power distribution β ∈ [0, 1] the achievable rate
region of the bidirectional relaying RBR(α, β) is given by the intersection

RBR(α, β) := αCMAC ∩ (1 − α)RBC(β).

In the following we will call R1 and R2 unidirectional rates.

Since this applies to any relay power distribution β ∈ [0, 1], the achievable rate region of
the bidirectional relaying with the optimal relay power distribution for a fixed time division
parameter α ∈ [0, 1] is given by the union over all possible relay power distributions

RBR(α) :=
⋃

β∈[0,1]

RBR(α, β) = αCMAC ∩ (1 − α)
⋃

β∈[0,1]

RBC(β)

= αCMAC ∩ (1 − α)RBC.
(2.12)

The set RBR(α) is convex since the intersection of convex sets, αCMAC and (1−α)RBC, is
itself convex.

We are now interested which relay power PR respectively signal-to-noise ratio γR is neces-
sary to support a rate pair [RM

1 , R
M
2 ] ∈ CMAC for a given time division parameter α ∈ [0, 1].

From (2.7a) and (2.7b) we can conclude

αRM
1 = (1 − α) log(1 + β1γR|h2|2) ⇒ β1 =

2
α

1−α
RM

1 − 1

|h2|2γR
,

αRM
2 = (1 − α) log(1 + β2γR|h1|2) ⇒ β2 =

2
α

1−α
RM

2 − 1

|h1|2γR
.

It can be easily seen by contradiction that for the minimum relay power we have 1 = β1 +
β2. From this we get the minimum γR which is necessary to support a MAC rate pair
[RM

1 , R
M
2 ] ∈ CMAC for a time division parameter α as follows

γmin
R (RM

1 , R
M
2 , α) :=

2
α

1−α
RM

1 − 1

|h2|2
+

2
α

1−α
RM

2 − 1

|h1|2
. (2.13)
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2.2 Achievable Rate Region

This allows us to characterize the minimum relay power PR respectively signal-to-noise
ratio γR which is necessary to support any rate pair in MAC rate region CMAC in the next
proposition.

Proposition 2.3. Given a MAC rate region CMAC and a time division parameter α where

γΣ1
R (α) := γmin

R (R−→
1R
, RΣ1

2 , α) and γ2Σ
R (α) := γmin

R (R2Σ
1 , R−→

2R
, α) denote the minimum γR

necessary to support the vertices νΣ1 and ν2Σ. Then the minimum γR which is necessary to

support any rate pair [RM
1 , R

M
2 ] ∈ CMAC is given by

γMAC
R (α) := max

{
γΣ1

R (α), γ2Σ
R (α)

}
.

In the case of equal time division, α = 1/2, we have

γΣ1
R (1/2) =

γ1|h1|2
|h2|2

+
γ2|h2|2

(1 + γ1|h1|2)|h1|2
,

γ2Σ
R (1/2) =

γ2|h2|2
|h1|2

+
γ1|h1|2

(1 + γ2|h2|2)|h2|2
.

Proof. Since RBC is a convex set which increases with increasing γR, any rate pair
[RM

1 , R
M
2 ] ∈ CMAC can be supported if γR is that large that both vertices of αCMAC are

in (1 − α)RBC.

For the equal time division case we get for the vertex νΣ1 = [R−→
1R
, RMAC

Σ −R−→
1R

] = [log(1+

γ1|h1|2), log(1 + γ2|h2|2

1+γ1|h2|2
)] the minimum relay power γΣ1

R (1/2) and for the vertex ν2Σ =

[RMAC
Σ − R−→

2R
, R−→

2R
] = [log(1 + γ1|h1|2

1+γ2|h1|2
), log(1 + γ2|h2|2)] the minimum relay power

γ2Σ
R (1/2) using (2.13).

Using γR = γMAC
R allows to support all possible rate pairs from the MAC phase, but in

general it is the minimal necessary γR for one vertex only. This leads to the idea that the
relay node can use the remaining power to sent an own message additionally. In Section 2.5
we study a scenario where the relay node adds a multicast communication to the bidirectional
relay communication.

Remark 2.4. For the equal time division case, α = 1/2, we have α
1−α = 1 so that we can

explicitly calculate γΣ1
R (1/2) and γ2Σ

R (1/2) in terms of |h1|2, |h2|2, γ1, and γ2. For the same

reason some following closed-form results can be obtained for α = 1/2 only. For other

time division parameter such an explicit solution is not possible, but the behavior is similar.

Therefore, we often consider the equal time division case exemplarily.
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Figure 2.2: Bidirectional achievable rate region of an example scenario

The next natural extension is to look at the achievable rate region where we additionally
allow to optimize the time division between the MAC and the BC phase. This rate region is
obviously given by the union over all possible time division parameters α as follows

RBRopt :=
⋃

α∈[0,1]

RBR(α) =
⋃

α∈[0,1]

(αCMAC ∩ (1 − α)RBC). (2.14)

As a union of convex sets the rate region RBRopt need not be convex. Convexity can be
achieved if we allow time-sharing between bidirectional rate pairs with different time divi-
sion parameters, but from the following Corollary 2.13 we will see that RBRopt is already
convex. This means that for any rate pair in RBRopt there exists a time division parameters
α for which this rate pair is achievable.

In Figure 2.2 we depicted the achievable rate regions of an example. In the left figure
we see the bidirectional achievable rate region RBR(1/2) for the equal time division case,
which is given by the intersection of the scaled achievable rate regions of the MAC and
BC phases. In the right figure we show the achievable rate region RBRopt of the optimal
time division case. Additionally, the rate regions RBR(α) for some fixed time division pa-
rameters α are depicted. The bullets (•) mark the rate pairs where rate pairs of RBR(α)
achieve the boundary of RBRopt. We see that we have RBR(α) = αCMAC ⊂ RBRopt or
RBR(α) = (1−α)RBC ⊂ RBRopt if the time division parameter is too small or too large re-
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2.2 Achievable Rate Region

spectively. Furthermore, we see that for the time division parameter α = 0.436 two rate pairs
achieve the boundary. Note that the marked rate pairs on the boundary RBRopt correspond
to intersection points of the boundaries of the scaled MAC and BC regions. Lemma 2.11 ex-
plains this observation and leads to an equivalent characterization of the bidirectional achiev-
able rate region RBRopt in Theorem 2.12. The simple description of the boundary allows us
to identify for any given weight vector the rate pair which maximize the weighted rate sum
in Theorem 2.16.

In the following we study the properties of the bidirectional achievable rate region for the
fixed and optimal time division. For the fixed time division we focus on the equal time
division case7. For other fixed time division cases the behavior is similar, but often it cannot
be calculated explicitly. After that, we identify the optimal time division and relay power
distribution for an optimal rate allocation. From this we can deduce an equivalent description
of RBRopt. The previous studies allow us to characterize in details the boundaries of the
bidirectional achievable rate regions. In particular we are able to specify in closed form the
rate pairs which maximize the weighted rate sum for any weight vector.

For notationally simplicity we will use the abbreviations

RBReq := RBR(1/2) and RBReq(β) := RBR(1/2, β).

Equal time division

With the first theorem and its corollaries we explore the combinatorial structure of the achiev-
able rate region RBReq. In Theorem 2.5 we derive the maximal bidirectional sum-rateRΣ(β)
for any relay power distribution β ∈ [0, 1]. As a direct consequence of the theorem we can
characterize the achievable rate region RBR(β) in Corollary 2.6. But we can also use the
result of Theorem 2.5 to characterize the minimal relay power which is necessary to support
in the BC phase a rate pair [RM

1 , R
M
2 ] ∈ CMAC which achieves the maximal sum-rate in the

MAC phase, i.e. RM
1 + RM

2 = RMAC
Σ . Finally in Corollary 2.8 we identify the sum-rate

optimal rate pair of RBReq. For the equal time division case the whole discussion leads to
explicit expressions, but the combinatoric of RBR(α) is the same for any α ∈ [0, 1], cf.
Remark 2.4.

In Theorem 2.19 we use the explicit knowledge about the combinatoric to characterize in
closed form the rate pairs on the boundary of RBReq which maximize the weighted rate
sum, so called Paretto optimal rate pairs. The Pareto optimal rate pairs play a crucial role for
the throughput optimal resource allocation policy in Section 2.3 and for the relay selection
problem in Section 2.4.

7In the following the subscript eq or opt specify the corresponding rate, rate pair, or rate region for the equal
time division or the optimal time division case.
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2 Bidirectional Relay Communication using Superposition Encoding

Theorem 2.5. For bidirectional relaying with equal time division the maximal sum-rate

RΣ(β) := max
R∈RBReq(β)

R1 + R2 of the bidirectional rate region RBReq(β) for a given relay

power distribution parameter β ∈ [0, 1] is given by

RΣ(β) = 1
2 min

{
RMAC

Σ , R−→
1R

+R−→
R1

(1 − β), R−→
R2

(β) +R−→
2R
, R−→

R2
(β) +R−→

R1
(1 − β)

}

=
1

2







R−→
1R

+R−→
R1

(1 − β), if β ∈ I1, (2.15a)

R−→
R2

(β) +R−→
2R
, if β ∈ I2, (2.15b)

R−→
R2

(β) +R−→
R1

(1 − β), if β ∈ IBC, (2.15c)

RMAC
Σ , if β ∈ IΣ, (2.15d)

with sets

I1 := [βΣ1, 1] ∩ [βB1, β1B] ,

I2 := [0, β2Σ] ∩ [βB2, β2B] ,

IΣ := (β2Σ, βΣ1) ∩
{

(βBΣ, βΣB) , if β⋆2 ≥ ∆β,

∅, else,

IBC := [0, 1] \ (I1 ∪ I2 ∪ IΣ),

and characteristic values8

βΣ1 := 1 − γ2|h2|2
γR|h1|2(1 + γ1|h1|2)

, βB1 :=
γ1|h1|2
γR|h2|2

,

β1B := 1 +
1

γR|h1|2
, β2Σ :=

γ1|h1|2
γR|h2|2(1 + γ2|h2|2)

,

βB2 := − 1

γR|h2|2
, β2B := 1 − γ2|h2|2

γR|h1|2
,

βBΣ := β⋆ −
√

β⋆2 − ∆β, βΣB := β⋆ +

√

β⋆2 − ∆β,

β⋆ =
1

2
+

1

2γR

(
1

|h1|2
− 1

|h2|2
)

, and ∆β :=
1

γ2
R

(
γ2

|h1|2
− γR − γ1

|h2|2
)

.

Proof. The proof can be found in Appendix 2.8.3.

The sets I1, I2, IΣ, and IBC characterize the active restriction for a given power distribution
β. If β ∈ I1, then the unidirectional rate R1 is limited by 1/2R−→

1R
and R2 is limited by

1/2R−→
R1

(1 − β). Accordingly, if β ∈ I2 then the unidirectional rate R2 is limited by 1/2R−→
2R

8The indices of the points of intersections of f1, f2, fΣ, and fBC, which are used in the proof, indicate the
minimal function for smaller β by the first index and for larger β by the second index.
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2.2 Achievable Rate Region

and R1 is limited by 1/2R−→
R2

(β). For β ∈ IΣ the MAC sum-rate restriction limits the sum-

rate R1 + R2 ≤ 1/2RMAC
Σ . If β ∈ IBC, the unidirectional rates R1 and R2 are limited by

1/2R−→
R2

(β) and 1/2R−→
R1

(1− β), i.e. the broadcast is the limiting phase. Finally, RBReq is not
restricted by a certain constraint if the corresponding set is empty, e.g. if IBC = ∅ the whole
MAC region can be supported in the BC phase, i.e. RBReq = 1/2CMAC.

Thus, as a direct consequence of the theorem, the following corollary characterizes the
achievable rate region for a given relay power distribution parameter β ∈ [0, 1].

Corollary 2.6. For bidirectional relaying with equal time division the achievable bidirec-

tional rate region RBReq(β) for a given relay power distribution parameter β ∈ [0, 1] is

given by

RBReq(β) =
1

2







{
R ∈ R2

+ : R1 ≤ R−→
1R
, R2 ≤ R−→

R1
(1 − β)

}
, if β ∈ I1,

{
R ∈ R2

+ : R1 ≤ R−→
R2

(β), R2 ≤ R−→
2R

}
, if β ∈ I2,

{
R ∈ R2

+ : R1 ≤ R−→
R2

(β), R2 ≤ R−→
R1

(1 − β)
}
, if β ∈ IBC,{

R ∈ R2
+ :

R1 ≤ R−→
R2

(β), R2 ≤ R−→
R1

(1 − β),

R1 +R2 ≤ RMAC
Σ

}

, if β ∈ IΣ.

For β ∈ I1 ∪ I2 ∪ IBC the rate region RBReq(β) is a rectangular, which is characterized by
two individual rate constraints. For those relay power distributions the upper right vertex of
the rate region characterizes a boundary rate pair of RBReq. If β ∈ IΣ, the MAC sum-rate
constraint has additionally to be satisfied. For those relay power distributions the sum-rate
constraint of the MAC phase restricts the achievable rate region RBReq.

In the next corollary we characterize the minimal relay power respectively signal-to-noise
ratio which is necessary to support a rate pair [RM

1 , R
M
2 ] ∈ CMAC that achieves the maximal

MAC sum-rate, i.e. RM
1 +RM

2 = RMAC
Σ .

Corollary 2.7. For bidirectional relaying with equal time division the minimal signal-to-

noise ratio to support in the BC phase a rate pair [RM
1 , R

M
2 ] ∈ CMAC that achieves the

maximal possible sum-rate RMAC
Σ is given by

γΣMAC
R = max

{
γ⋆

R,min{γ̂Σ1
R , γΣ1

R (1/2)},min{γ̂2Σ
R , γ2Σ

R (1/2)}
}

(2.16)

with γ2Σ
R (1/2) and γΣ1

R (1/2) according to Proposition 2.3. and

γ⋆
R := 2

√

1 + γ1|h1|2 + γ2|h2|2
|h1|2|h2|2

− 1

|h1|2
− 1

|h2|2
,

γ̂Σ1
R :=

2γ2|h2|2
(1 + γ1|h1|2)|h1|2

+
1

|h1|2
− 1

|h2|2
,

γ̂2Σ
R :=

2γ1|h1|2
(1 + γ2|h2|2)|h2|2

+
1

|h2|2
− 1

|h1|2
.
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2 Bidirectional Relay Communication using Superposition Encoding

Proof. The proof can be found in Appendix 2.8.4.

The case where γΣMAC
R is equal to min{γ̂Σ1

R , γΣ1
R (1/2)} or min{γ̂2Σ

R , γ2Σ
R (1/2)} corresponds

to the case when the vertex νΣ1 or ν2Σ is the rate pair where the sum-rate RMAC
Σ is achieved

with the minimal γR. This is only the case when either the sum-rate optimal rate pair of the
broadcast phase [R⋆

−→
R2
, R⋆

−→
R1

] coincides with the vertex itself or it cannot be supported in the

MAC phase, i.e. 1/2[R⋆
−→
R2
, R⋆

−→
R1

] /∈ RBReq.

If γR ≥ γΣMAC
R , the maximal achievable bidirectional sum-rate is limited by the MAC

sum-rate constraint. Accordingly, the maximal achievable bidirectional sum-rate is equal
to 1/2RMAC

Σ . The set of sum-rate optimal bidirectional rate pairs is given by

R∗
Σeq :=

{

[R1, R2] ∈ 1
2RMAC

Σ : ∃β ∈ IΣ so that R1 ≤ 1
2R−→

R2
(β), R2 ≤ 1

2R−→
R1

(β)
}

=
{

[R1,
1
2R

MAC
Σ −R1] : 1

2R−→
R2

(βmin
Sum) ≤ R1 ≤ 1

2R−→
R2

(βmax
Sum)

}

(2.17)

with βmin
Sum := minβ∈IΣ

β and βmax
Sum := maxβ∈IΣ

β. In the next corollary we characterize

the rate pairs where the maximal achievable sum-rate is attained if we have γR < γΣMAC
R .

Corollary 2.8. For bidirectional relaying with equal time division and γR < γΣMAC
R the rate

pair which achieves the bidirectional sum-rate maximum is given by

RΣ := arg max
[R1,R2]∈RBReq

R1 +R2 =







RBC(0), if γR ≤ min{γ†R, γ2B
R }, (2.18a)

RBC(β2B), if γR > γ2B
R ∧ γR ≥ γ⋆1

R , (2.18b)

RBC(β⋆), if |γ†R| < γR < min{γ⋆1
R , γ

2⋆
R }, (2.18c)

RBC(βB1), if γR > γB1
R ∧ γR ≥ γ2⋆

R , (2.18d)

RBC(1), if γR ≤ min{−γ†R, γB1
R } (2.18e)

with characteristic parameters

γ†R :=
1

|h2|2
− 1

|h1|2
, γB1

R : =
γ1|h1|2
|h2|2

, γ2B
R :=

γ2|h2|2
|h1|2

,

γ⋆1
R :=

2γ2|h2|2
|h1|2

+
1

|h1|2
− 1

|h2|2
, and γ2⋆

R :=
2γ1|h1|2
|h2|2

+
1

|h2|2
− 1

|h1|2
.

Proof. The proof can be found in Appendix 2.8.5.

In the following remark we just restate the interesting observation where it is sum-rate opti-
mal not to apply the bidirectional protocol.
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Remark 2.9. If we have γR ≤ min{−γ†R, γB1
R }, it is sum-rate optimal to communicate only

from node 1 to node 2. Therefore, for −γ†R ≥ 0 it is necessary that we have |h2|2 ≥ |h1|2.

Similarly, if we have γR ≤ min{γ†R, γ2B
R }, it is sum-rate optimal to communicate only from

node 2 to node 1. For this case it is necessary that we have |h1|2 ≥ |h2|2.

The knowledge about the combinatoric allows us to characterize the boundary of the achiev-
able rate region RBReq directly. Let R∗

eq(q) denote the rate pair where the weighted rate
sum with weight vector q = [q1, q2] ∈ R2

+ \ {0} is maximized,

R∗
eq(q) = arg max

R∈RBReq

q1R1 + q2R2. (2.19)

The rate pair R∗
eq(q) plays a crucial role for the throughput optimal resource allocation

policy in Section 2.3 and for the relay selection problem in Section 2.4. For a convex set like
RBReq the rate pair R∗

eq(q) characterizes the rate pair on the boundary of RBReq where the
tangential hyperplane with normal vector q intersects the boundary of RBReq, i.e. the rate
pairs with the maximal weighted rate sum characterize the boundary of RBReq. This gives
us an equivalent description of the achievable rate region using the convex hull operator

RBReq = co
({

R∗
eq(q) : q = [q1, q2] ∈ R2

+ \ {0}
}
∪
{
0
})

.

In the next theorem we give a closed form solution of the optimization problem given in
equation (2.19).

Theorem 2.10. For bidirectional relaying with equal time division the weighted rate sum

maximum R∗
eq(q) for a weight vector q = [q1, q2] ∈ R2

+ \ {0} is given by

R∗
eq(q) =

1

2







RBC(1), if βB1 > 1 ∧ q2 ≤ q1ϑ(1), (2.20a)

RBC(0), if β2B < 0 ∧ q2 ≥ q1ϑ(0), (2.20b)

νΣ1, if βΣ1 ≥ βB1 ∧ q2 ≤ q1, (2.20c)

ν2Σ, if β2Σ ≤ β2B ∧ q2 ≥ q1, (2.20d)

RBC(βB1), if βΣ1 < βB1 ≤ 1 ∧ q2 ≤ q1ϑ(βB1), (2.20e)

RBC(β2B), if 0 ≤ β2B < β2Σ ∧ q2 ≥ q1ϑ(β2B), (2.20f)

RBC(βBΣ),
if β⋆2 > ∆β ∧ β2Σ < βBΣ < βΣ1

∧ q1ϑ(βBΣ) ≤ q2 ≤ q1,
(2.20g)

RBC(βΣB),
if β⋆2 > ∆β ∧ β2Σ < βΣB < βΣ1

∧ q1ϑ(βΣB) ≥ q2 ≥ q1,
(2.20h)

RBC(βBC), else, (2.20i)
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2 Bidirectional Relay Communication using Superposition Encoding

with

ϑ : [0, 1] → R, β 7→ |h2|2(1 + (1 − β)γR|h1|2)
|h1|2(1 + βγR|h2|2)

, and (2.21a)

βBC : R2
+ \ {0} → R, q 7→ q1|h2|2(1 + γR|h1|2) − q2|h1|2

|h2|2|h1|2γR(q1 + q2)
. (2.21b)

Proof. The proof can be found in Appendix 2.8.6.

The function ϑ(β) denotes the arctan of the angle of the normal vector of the rate pair on the
boundary RBC(β) for the relay power distribution β ∈ [0, 1]. Further, βBC(q) is the relay
power distribution where the angle of the normal vector of the rate pair on the boundary of
RBC has the same angle as the weight vector q. Since the optimization problem depends on
the direction of the normal vector only, the weighted rate sum maximum is attained at the
same rate pair for any weight vector with the same ratio q1/q2. This means that only the
angle of the weight vector is important. The cases (2.20a) to (2.20h) denote the rate pairs
where on the boundary two restrictions apply simultaneously. Such rate pairs correspond
to intersection points which have multiple tangents so that they are optimal for a range of
weight vector angles. In contrast, the rate pair of the case (2.20i) is optimal for one weight
vector angle only.

In more detail, the cases (2.20a) and (2.20b) characterize the intersection of the boundary of
1
2RBC with the R1-axis and R2-axis respectively. The individual MAC rate constraint R−→

1R
limits the achievable rate region RBReq in the cases (2.20e) and (2.20c), while for the latter
we additionally have νΣ1 ∈ RBC. Similarly, R−→

2R
limits RBReq in the cases (2.20f) and

(2.20d), while for the latter we additionally have ν2Σ ∈ RBC. We have the cases (2.20g)
and (2.20h) if the MAC sum-rate constraint RMAC

Σ limits RBReq and the boundary of RBC

intersects the section between the vertices νΣ1 and ν2Σ.

The theorem also covers some special cases. If we choose q1 = q2 = 1, we have the
sum-rate maximum maxR∈RBReq

R1 + R2 case, which we also studied in Corollary 2.8 for

γR ≤ γΣMAC
R . From this the question arises if the sum-rate maximum is Schur-convex or

Schur-concave with respect to the receive signal-to-noise ratios [γ1|h1|2, γ2|h2|2]. But from
the examples of Figure 2.3 we see that there is no such behavior. If the sum-rate maximum
is determined by the individual rate constraints of the MAC phase, R−→

1R
or R−→

2R
, i.e. at βB1

or β2B, the sum-rate increases with more balanced receive signal-to-noise ratios, which is a
Schur-concave behavior. But if the maximum sum-rate is restricted by the broadcast phase
or MAC sum-rate constraint, i.e. at βBC or βSum, and the receive signal-to-noise ratios are
relatively balanced, we see an oppositional behavior. Nevertheless, this shows that more or
less balanced receive signal-to-noise ratios result in large sum-rates.
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Figure 2.3: Contour plot of sum-rate maximum with optimal relay power distribution regions
(βSum denotes the case where the MAC sum-rate constraint limits the maximal
sum-rate). The cases of the sum-rate optimal relay power distribution are due to
the combinatoric of the boundary of RBReq.

On the other hand, if we choose either q1 > 0, q2 = 0 or q1 = 0, q2 > 0, we get the maximal
unidirectional rates R∗

1eq and R∗
2eq, i.e. we maximize R1 or R2 only. This is obviously

achieved if we choose β1 = 1 or β2 = 1 respectively:

R∗
1eq := max

[R1,R2]∈RBReq

R1 = 1
2 log

(
1 + min{γ1|h1|2, γR|h2|2}

)
, (2.22a)

R∗
2eq := max

[R1,R2]∈RBReq

R2 = 1
2 log

(
1 + min{γ2|h2|2, γR|h1|2}

)
. (2.22b)

If we maximize R1, the rate R2 need not be zero. In more detail, if R−→
1R

< R−→
R2

(1), all

rate pairs in R∗
1eq := {[R∗

1eq, R2] : 0 ≤ R2 ≤ 1
2R−→

R1
(1 − β1B)} achieve the maximal

unidirectional rate R∗
1eq. Similarly, if we maximize R2, the rate R1 need not be zero. If

R−→
2R
< R−→

R1
(1), all rate pairs in R∗

2eq := {[R1, R
∗
2eq] : 0 ≤ R1 ≤ 1

2R−→
R2

(βB2)} achieve the
maximal unidirectional rate R∗

2eq.

Optimal time division

We now study bidirectional relaying with optimal time division between the phases. There-
fore, we identify the optimal time division and relay power distribution for an optimal rate
allocation, which allows us to characterize the boundary of the bidirectional achievable rate
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2 Bidirectional Relay Communication using Superposition Encoding

region RBRopt. For that goal, we first specify the optimal time division and relay power
distribution for a fixed operating rate pair in the MAC phase. After that we use this to derive
an equivalent description of the set RBRopt.

In the next lemma, we characterize for any operating rate pair [RM
1 , R

M
2 ] ∈ CMAC in the

MAC phase the corresponding optimal rate pair in the BC phase and the optimal time division
α∗. It shows that the optimal rate pair is on the boundary of (1−α∗)RBC. Since for any rate
pair on the boundary of RBC we have β1 + β2 = 1, we have to find the optimal relay power
distribution β∗ ∈ [0, 1] with β1 = β∗ and β2 = 1 − β∗.

Lemma 2.11. For an arbitrary but fixed rate pair [RM
1 , R

M
2 ] ∈ CMAC the feasible set of

time division parameters, where operating at the rate pair [RM
1 , R

M
2 ] in the MAC phase is

possible, is given by

A =
{
α ∈[0, 1] : there exists a relay power distribution [β1, β2] ∈ B with

αRM
1 ≤ (1 − α)R−→

R2
(β1), αR

M
2 ≤ (1 − α)R−→

R1
(β2)

}

with simplex B = {[β1, β2] ∈ [0, 1] × [0, 1] : β1 + β2 ≤ 1}. For a time division parameter

α ∈ A we achieve the bidirectional rate pair [R1, R2] = α[RM
1 , R

M
2 ]. Then the optimal

time division parameter α∗ := max
α∈A

α is uniquely characterized by the equations

α∗RM
1 = (1 − α∗)R−→

R2
(β∗), (2.23a)

α∗RM
2 = (1 − α∗)R−→

R1
(1 − β∗), (2.23b)

which also characterizes the optimal relay power distribution [β∗1 , β
∗
2 ] ∈ B with β∗1 = β∗

and β∗2 = 1 − β∗.

Proof. The proof can be found in Appendix 2.8.7.

The equations (2.23a) and (2.23b) characterize the optimal time division and relay power
distribution for any rate pair [RM

1 , R
M
2 ] ∈ CMAC. Obviously, β⋆ = 1 is optimal if RM

2 is
equal to zero. For any positive rate RM

2 the ratio

RM
1

RM
2

=
R−→

R2
(β∗)

R−→
R1

(1 − β∗)
(2.24)

implicitly defines the optimal relay power distribution β∗ ∈ [0, 1) with β∗1 = β∗ and β∗2 =
1 − β∗ so that [β∗1 , β

∗
2 ] ∈ B. With the optimal relay power distribution we can calculate the

optimal time division coefficient

α∗ =
R−→

R2
(β∗)

RM
1 +R−→

R2
(β∗)

=
R−→

R1
(1 − β∗)

RM
2 +R−→

R1
(1 − β∗)

.
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2.2 Achievable Rate Region

If we do not have RM
1 = 0 and RM

2 = 0 at the same time, the system of equations (2.23a)
and (2.23b) has only one solution. It follows that the optimal parameters are unique.

Equation (2.24) shows that for any [RM
1 , R

M
2 ] ∈ CMAC with the same ratio we have the

same optimal relay power distribution. Furthermore, the resulting bidirectional rate pair
[R1, R2] ∈ RBRopt has the same ratio as the rate pair [RM

1 , R
M
2 ] ∈ CMAC. This means that

all lie on the same radial line. Then it is clear that for the optimal time division the bound-
aries of the scaled MAC and BC regions intersect, which we can observe in Figure 2.2 (b).
Furthermore, it follows that the largest bidirectional rates with a certain ratio are achieved by
the rate pairs on the boundaries of the MAC and of the BC region with the same ratio. This
holds for any ratio and therefore for any rate pair on the boundary. With this we can find an
equivalent characterization of RBRopt by transforming the rate pairs of sum and individual
rate constraints of the MAC region using Lemma 2.11.

Theorem 2.12. The bidirectional achievable rate region with optimal time division RBRopt

is given by

RBRopt = R1 ∩R2 ∩RΣ (2.25)

with rate regions

R1 :=
{
R ∈ R2

+ : R1 ≤ R11(β), R2 ≤ R12(β), β ∈ [0, 1]
}
,

R2 :=
{
R ∈ R2

+ : R1 ≤ R21(β), R2 ≤ R22(β), β ∈ [0, 1]
}
,

RΣ :=
{
R ∈ R2

+ : R1 ≤ RΣ1(β), R2 ≤ RΣ2(β), β ∈ [0, 1]
}
,

rate constraints R11, R12, R21, R22, RΣ1, RΣ2 : [0, 1] → R+ with

R11 : β 7→
(
1 − α⋆

1(β)
)
R−→

R2
(β) =

R−→
1R
R−→

R2
(β)

R−→
1R

+R−→
R2

(β)
, (2.26a)

R12 : β 7→
(
1 − α⋆

1(β)
)
R−→

R1
(1 − β) =

R−→
1R
R−→

R1
(1 − β)

R−→
1R

+R−→
R2

(β)
, (2.26b)

R21 : β 7→
(
1 − α⋆

2(β)
)
R−→

R2
(β) =

R−→
2R
R−→

R2
(β)

R−→
2R

+R−→
R1

(1 − β)
, (2.26c)

R22 : β 7→
(
1 − α⋆

2(β)
)
R−→

R1
(1 − β) =

R−→
2R
R−→

R1
(1 − β)

R−→
2R

+R−→
R1

(1 − β)
, (2.26d)

RΣ1 : β 7→
(
1 − α⋆

Σ(β)
)
R−→

R2
(β) =

RMAC
Σ R−→

R2
(β)

RMAC
Σ +R−→

R1
(1 − β) +R−→

R2
(β)

, (2.26e)

RΣ2 : β 7→
(
1 − α⋆

Σ(β)
)
R−→

R1
(1 − β) =

RMAC
Σ R−→

R1
(1 − β)

RMAC
Σ +R−→

R1
(1 − β) +R−→

R2
(β)

, (2.26f)
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2 Bidirectional Relay Communication using Superposition Encoding

and optimal time division parameters

α∗
1 : [0, 1] → R+, β 7→

R−→
R2

(β)

R−→
1R

+R−→
R2

(β)
, (2.27a)

α∗
2 : [0, 1] → R+, β 7→

R−→
R1

(1 − β)

R−→
2R

+R−→
R1

(1 − β)
, (2.27b)

α∗
Σ : [0, 1] → R+, β 7→

R−→
R1

(1 − β) +R−→
R2

(β)

RMAC
Σ +R−→

R1
(1 − β) +R−→

R2
(β)

. (2.27c)

Proof. The proof can be found in Appendix 2.8.8.

From the inspection of the equivalent characterization of the rate region we find that the
information flows show a similar behavior as Kirchhoff’s first law (the principle of con-
servation of electric charge). Here, the conservation of the information flows is due to the
superposition encoding approach. In Figure 2.4 (a) we illustrate the regions RΣ, 1/2RBC,
and 1/2RMAC. We see that the intersection point of 1/2RΣ and 1/2RBC represents the bound-
ary rate pair on RΣ for the equal time division case. It is easy to conceive that for other time
division parameters α the intersection point moves on the boundary according to the scaled
rate region (1 − α)RBC and sum-rate constraint αRΣ of αRMAC. Similar arguments apply
to R1 and R2. Then in Figure 2.4 (b) we illustrate the construction of RBRopt using the
intersection of the sets R1, R2, and RΣ according to Theorem 2.12.

For the throughput optimal resource allocation policy in Section 2.3 and for the relay selec-
tion problem in Section 2.4 we need to identify the angle of the normal vector of any Pareto
optimal rate pair on the boundary of RBRopt. In the next corollary we characterize the bound-
aries of R1, R2, and RΣ. Since the boundaries on the axis are obvious, we parametrized the
boundaries in the first quadrant only. This also characterizes for each boundary rate pair on
RBRopt the optimal relay power distribution with β⋆

1 = β and β⋆
2 = 1−β. The parametriza-

tion of the boundary allows us to identify properties of the normal vectors on the boundaries
from which we can conclude that R1, R2, and RΣ are convex. Then it follows that RBRopt

is convex as well. Hence, the next corollary is essential for the discussion of the weighted
rate sum maximization problem considered in Theorem 2.16.

Corollary 2.13. We can parametrize the boundaries of R1, R2, RΣ by the rate pair func-

tions

R1 : [0, 1] → R2
+, β 7→ [R11(β), R12(β)],

R2 : [0, 1] → R2
+, β 7→ [R21(β), R22(β)],

RΣ : [0, 1] → R2
+, β 7→ [RΣ1(β), RΣ2(β)],
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2.2 Achievable Rate Region
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Figure 2.4: Equivalent characterization of the bidirectional achievable rate region RBRopt

for the optimal time division case using R1, R2, and RΣ.

respectively. Therewith, the angles of the normal vectors for any boundary rate pair of R1,

R2, and RΣ are given by the strictly decreasing functions

ϕ1 : [0, 1] → [0, π/2], β 7→ arctan
(

− dR11(β)
/
dβ

dR12(β)
/
dβ

)

,

ϕ2 : [0, 1] → [0, π/2], β 7→ arctan
(

− dR21(β)
/
dβ

dR22(β)
/
dβ

)

,

ϕΣ : [0, 1] → [0, π/2], β 7→ arctan
(

− dRΣ1(β)
/
dβ

dRΣ2(β)
/
dβ

)

,

respectively. It follows that RBRopt is convex.

Proof. The proof can be found in Appendix 2.8.9.

Since ϕ1, ϕ2, and ϕΣ are continuous and strictly decreasing for each function, there exists
an inverse function ϕ−1

1 : [ϕ1(1), ϕ1(0)] → [0, 1], ϕ−1
2 : [ϕ2(1), ϕ2(0)] → [0, 1], and

ϕ−1
Σ : [ϕΣ(1), ϕΣ(0)] → [0, 1] respectively. Unfortunately, ϕ−1

1 , ϕ−2
2 , and ϕ−1

Σ have no
explicit representation.
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2 Bidirectional Relay Communication using Superposition Encoding

For a complete characterization of the boundary of RBRopt we need to understand the com-
binatoric of the intersection (2.25). In the next proposition we see that also the combinatoric
of the MAC region carries over to RBRopt.

Proposition 2.14. In the first quadrant there is exactly one intersection between the bound-

aries of R1 and R2, R1 and RΣ, and R2 and RΣ. In particular, for each intersection

there exists exactly one relay power distributions β12, β1Σ, βΣ2 ∈ [0, 1] where we have

R1(β12) = R2(β12) /∈ RBRopt, R1(β1Σ) = RΣ(β1Σ) ∈ RBRopt, and R2(βΣ2) =
RΣ(βΣ2) ∈ RBRopt, where the last two rate pairs are the transformed vertices ν1Σ and

νΣ2 respectively. Furthermore, we have

R11(1) ≤ RΣ1(1) ≤ R21(1), (2.28a)

R12(0) ≤ RΣ2(0) ≤ R22(0). (2.28b)

Proof. The proof can be found in Appendix 2.8.10.

With the equivalent description of the rate region and the knowledge about the combinatoric
it is finally easy to characterize the boundary of RBRopt.

Corollary 2.15. The section-wise defined rate pair function Ropt : [0, 1] → R2
+ with

Ropt : β 7→







R2(β), for βΣ2 ≥ β ≥ 0,

RΣ(β), for β1Σ > β > βΣ2,

R1(β), for 1 ≥ β ≥ β1Σ.

(2.29)

characterizes the boundary of the bidirectional achievable rate region RBRopt for the opti-

mal time division case.

Proof. The proof can be found in Appendix 2.8.11.

We are now ready to characterize in closed form the rate pair where the weighted rate sum
is maximized. For that goal we make use of all previously introduced functions and char-
acteristic parameters for the rate region RBRopt in the next theorem. Remember that for an
optimal relay power distribution we have β∗1 = 1 − β∗2 = β∗.

Theorem 2.16. Let q = [q1, q2] ∈ R2
+ \ {0} denote a weight vector with nonnegative

elements and angle θq := arccos
(

q1√
q2
1+q2

2

)

, then the rate pair where the weighted rate sum

is maximized is given as

R∗
opt(q) = arg max

R∈RBRopt

q1R1 + q2R2 = Ropt(β
∗(q)) (2.30)
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Figure 2.5: Bidirectional achievable rate regions with Pareto optimal rate pairs.

with the optimal power distribution parameter β∗(q) defined by

β∗ : R2
+ → [0, 1], q 7→







1, if θq < ϕ1(1),

ϕ−1
1 (θq), if ϕ1(1) ≤ θq ≤ ϕ1(β1Σ),

β1Σ, if ϕ1(β1Σ) < θq < ϕΣ(β1Σ),

ϕ−1
Σ (θq), if ϕΣ(β1Σ) ≤ θq ≤ ϕΣ(βΣ2),

βΣ2, if ϕΣ(βΣ2) < θq < ϕ2(βΣ2),

ϕ−1
2 (θq), if ϕ2(βΣ2) ≤ θq ≤ ϕ2(0),

0, if ϕ2(0) < θq.

Then the corresponding optimal time division parameter α∗(q) is given by

α∗ : R2
+ → [0, 1], q 7→







α1(β
∗(q)), if 1 ≥ β∗(q) ≥ β1Σ,

αΣ(β∗(q)), if β1Σ > β∗(q) > βΣ2,

α2(β
∗(q)), if βΣ2 ≥ β∗(q) ≥ 0.

Proof. The proof can be found in Appendix 2.8.12.

In Figure 2.5 we depicted the bidirectional rate regions with equal (a) and optimal (b) time
division. The marked boundary rate pairs (bullets) denote the weighted rate sum optimal rate
pairs for the corresponding vector (arrows). We see that the intersection points are optimal
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2 Bidirectional Relay Communication using Superposition Encoding

for a range of weight vectors, while the rate pairs between intersection points correspond to
exactly one orthonormal vector.

As for the equal time division the theorem covers some special cases. If we choose q1 = q2 =
1, we get the sum-rate optimal rate pair. On the other hand, we maximize the unidirectional
rate R1 if we choose q1 > 0 and q2 = 0 so that we have θq = 0. Obviously, β∗ =
1 is the optimal power distribution with the corresponding optimal rate pair Ropt(1) =
R1(1) = [R11(1), R12(1)]. This means that the maximal unidirectional rate for the optimal
time division case is given by

R∗
1opt := max

[R1,R2]∈RBRopt

R1 = R11(1) =
R−→

1R
R−→

R2
(1)

R−→
1R

+R−→
R2

(1)
. (2.31a)

Similarly, if we choose q1 = 0 and q2 > 0, we have θq = π/2 so that β∗ = 0 is optimal.
From the corresponding optimal rate pair Ropt(0) = R2(0) = [R21(0), R22(0)] we get the
other maximal unidirectional rate as follows

R∗
2opt := max

[R1,R2]∈RBRopt

R2 = R22(0) =
R−→

2R
R−→

R1
(1)

R−→
2R

+R−→
R1

(1)
. (2.31b)

Since we have R12(1) = R22(0) = 0, for the optimal time division the maximal unidirec-
tional rate pairs are always on the R1-axis and R2-axis.

In the next section we will derive the achievable rate region with an optimal time-division but
with a different interpretation of the block length of a code word which result in a different
individual power constraint which depends on the time-division parameter.

2.2.5 Achievable Rate Regions with Power Scaling

In this section we briefly want to discuss a different interpretation of the mean power con-
straint assumed in the remaining sections. A more detailed discussion on the fundamentals
of the following discussion can be found in [Gal68], but it is also addressed in other text-
books like [Ash65] or [CT91]. In this chapter we consider Gaussian channels, which are
continuous-alphabet channels. In order to have useful results it is necessary to consider an
input constraint, which is usually characterized by a real-valued function f(x) on the input
letters.

The most common and physically meaningful constraint is an energy constraint per transmit-
ted symbol, i.e. f(x) = |x|2. It is common to consider an equivalent power constraint, where
one has normalized the energy constraint by the time duration of a symbol. This means that
we are usually faced with a mean power constraint P .
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2.2 Achievable Rate Region

But we still have to interpret the constraint per input symbol from a coding point of view.
Let xm = [xm,1, xm,2, . . . , xm,N ] denote a code word of length N , then it is common and
reasonable to insist that each code word xm satisfies the condition

N∑

n=1

f(xm,n) =

N∑

n=1

|xm,n|2 ≤ NP. (2.32)

Using the random coding arguments we consider the input as a random variable X . Accord-
ingly, it is usual to bound the expected value of f(X) so that (2.32) results in the commonly
used mean power constraint E{|X|2} ≤ P.

The difference between the results obtained in this section and the remaining ones of this
chapter is the interpretation of the definition of a code word. Since the relay node cannot
transmit and receive at the same time using the same frequency we require orthogonal chan-
nels for the transmission and reception. As a consequence the communication is performed
in two phases. In this work we consider orthogonal channels in the time domain, but the
concepts and the results of this section also hold for orthogonal channels in the frequency
domain where we split the total bandwidth into two channels. The time division between the
two phases mean that in the firstNMAC time slots we are in the MAC phase. In the following
NBC time slots we are in the BC phase.

In the remaining of this chapter we have defined input power constraints per transmitted
symbol for each phase individually, which means that the code word in the MAC phase
has the length NMAC and the codeword in the BC phase has the length NBC. However, in
this section we will assume that the code words in the MAC and BC phase have the length
NBC + NMAC. To be conform to the time division between the phases we have to assume
that in the MAC phase the last NBC letters of the code words are equal to zero and in the
BC phase the first NMAC letters of the code words are equal to zero. Accordingly, for a code
word in the MAC phase we have

NMAC+NBC∑

n=1

|xm,n|2 =

NMAC∑

n=1

|xm,n|2 ≤ (NMAC +NBC)P.

which results in the scaled power constraint E{|X|2} ≤ NMAC+NBC
NMAC

P . Similarly, for a
codeword in the BC phase we have

NMAC+NBC∑

n=1

|xm,n|2 =

NMAC+NBC∑

n=NMAC+1

|xm,n|2 ≤ (NMAC +NBC)P.

which results in the scaled power constraintE{|X|2} ≤ NMAC+NBC
NBC

P . We see that we scale
the power constraints with respect to the time division. Let α denote the ratio of NMAC
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2 Bidirectional Relay Communication using Superposition Encoding

to NMAC + NBC = N as N gets large. Then we end up with the individual mean power
constraints

P̃1 :=
P1

α
, P̃2 :=

P2

α
, and P̃R :=

PR

1 − α
(2.33)

of the nodes 1 and 2 in the MAC phase and the relay node in the BC phase. For that reason
we consider this as bidirectional relaying with scaled powers. From (2.33) we see that this
model has the property that for each phase the mean transmit power constraint gets arbitrary
large if the time period of the phase is correspondingly short. However, the provided energy
for each node is independent of the duration of the phases, i.e. the energy remains constant
for different time division parameters.

This interpretation of the code word length is often assumed for the multiple access chan-
nel with orthogonal access (TDMA or FDMA) [CT91] and for Gaussian orthogonal relay
channels in [LV05]. In the following we derive the achievable rate region of bidirectional re-
laying with optimal time division and scaled powers. Fortunately, we can principally follow
the same ideas as before, although the proofs get more involved because of the non-linear
dependence of the time division parameter on the achievable rate constraints. This also ham-
pers closed form solutions. Accordingly, in the next sections we specify the achievable rate
region of the MAC phase, the BC phase, and the achievable rate region obtained with optimal
time division between the two phases.

Since all concepts of the previous section can be transfered, the symbols will have the same
meaning but in a different context. For that reason we only added a tilde to the previously
defined symbols to distinguish the variables and results of this section from the results of the
remaining chapter. To avoid distracting case studies we exclude for notational convenience
the degenerate case where one channel or power is equal to zero. However, there is no
mathematical difficulty to extend the discussion for these cases.

Multiple Access Phase

In the multiple access phase node 1 and node 2 transmit their messages to the relay node.
We assume that for the fraction α ∈ (0, 1] we are in the MAC phase, which specifies the
effective block length of the code words. Then we assume that the relay node can decode
the message of node 1 with rate R1 and the message of node 2 with rate R2 if the rate pair is
within the capacity region

C̃MAC(α) :=
{

[R1, R2] ∈ R2
+ : R1 ≤ R̃−→

1R
(α), R2 ≤ R̃−→

2R
(α), R1 +R2 ≤ R̃MAC

Σ (α)
}
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2.2 Achievable Rate Region

with the individual and sum-rate constraints

R̃−→
1R

: (0, 1] → R+, α 7→ α log

(

1 +
γ1|h1|2
α

)

, (2.34a)

R̃−→
2R

: (0, 1] → R+, α 7→ α log

(

1 +
γ2|h2|2
α

)

, (2.34b)

R̃MAC
Σ : (0, 1] → R+, α 7→ α log

(

1 +
γ1|h1|2 + γ2|h2|2

α

)

, (2.34c)

and the continuously continuations R̃−→
kR

(0) := 0, k = 1, 2, and R̃MAC
Σ (0) := 0. The

difference to the rate constraints (2.4a), (2.4b), and (2.4c) of the previous model is that here
the powers, respectively signal-to-noise ratios γ1 and γ2, are divided by the time division
factor α. For α = 0 the protocol degenerates and there is no multiple access phase so that
we have C̃MAC(0) = ∅. It follows that for α = 0 no bidirectional communication will be
possible. Therefore, we exclude the case α = 0 to avoid distracting case studies caused by
divisions by α.

For any fixed time division parameter α ∈ (0, 1] the capacity region C̃MAC(α) describes a
pentagon, which is obviously convex. In the next lemma we prove monotony and concavity
properties of the rate constraints, which we will extensively use in the proofs for the results
on the bidirectional achievable rate region.

Lemma 2.17. The individual and sum-rate constraint functions R̃−→
1R

(α), R̃−→
2R

(α), and

R̃MAC
Σ (α) are strictly increasing and concave for α ∈ (0, 1].

Proof. The proof can be found in Appendix 2.8.13.

Broadcast Phase

In the broadcast phase the relay node re-encodes the decoded messages from the MAC phase.
Then the relay node scales the code word of the message of node 1 with rateR1 and the code
word of the message of node 2 with rate R2 according to the relay power constraint. Again
the parameter β ∈ [0, 1] denotes the fraction of the relay power spent for the message of node
1. Then the relay node transmits a superposition of the scaled codewords. Node 1 and node
2 subtract the interference caused by the code word of its own message before decoding
the unknown message. Therefore, we can assume that node 2 and node 1 can decode the
messages if the rate pair [R1, R2] is within the achievable rate region

R̃BC(α) :=
{

[R1, R2] ∈ R2
+ : there exists β ∈ [0, 1] such that

R1 ≤ R̃−→
R2

(α, β), R2 ≤ R̃−→
R1

(α, β)
}
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2 Bidirectional Relay Communication using Superposition Encoding

with rate constraints

R̃−→
R2

: [0, 1) × [0, 1] → R+, [α, β] 7→ (1 − α) log

(

1 +
γRβ|h2|2

1 − α

)

, (2.35a)

R̃−→
R1

: [0, 1) × [0, 1] → R+, [α, β] 7→ (1 − α) log

(

1 +
γR(1 − β)|h1|2

1 − α

)

, (2.35b)

and with the continuously continuation R̃−→
Rk

(1, β) := 0, k = 1, 2, for all β ∈ [0, 1]. The
difference to rate constraints (2.7a) and (2.7b) of the previous model is that here the power,
respectively signal-to-noise ratio γR, is divided by the time division factor (1−α). For α = 1
the protocol degenerates and there is no broadcast phase so that we have R̃BC(1) = ∅. It
follows that for α = 1 no bidirectional communication will be possible so that we exclude
the case α = 1 to avoid distracting case studies caused by divisions by 1 − α.

We will now introduce some notation which is needed for the following studies. First, we
define the following vector valued function

R̃BC : [0, 1) × [0, 1] → R2
+, [α, β] 7→

[

R̃−→
R2

(α, β), R̃−→
R1

(α, β)
]

which parametrizes the boundary of R̃BC(α) for any time division parameter α ∈ [0, 1) by
the power distribution β ∈ [0, 1]. Obviously, we can express any rate pair R̃BC(α, β) 6= 0

in its polar coordinates. Accordingly, the angle is given by

ϕ̃BC : [0, 1) × [0, 1] → [0, π
2 ], [α, β] 7→







arctan
R̃−→

R1
(α,β)

R̃−→
R2

(α,β)
, if β 6= 0

π
2 , if β = 0

and the radius can be calculated by

R̃BC : [0, 1) × [0, 1] → R+, [α, β] 7→
∣
∣
∣
∣R̃BC(α, β)

∣
∣
∣
∣
1

with
∣
∣
∣
∣R̃BC(α, β)

∣
∣
∣
∣
1

=
√
(
R̃−→

R1
(α, β)

)2
+
(
R̃−→

R2
(α, β)

)2
so that we can write

R̃BC(α, β) = R̃BC(α, β)
[
cos
(
ϕ̃BC(α, β)

)
, sin

(
ϕ̃BC(α, β)

)]
.

In the proofs for the results on the bidirectional achievable rate region we often use the polar
representation of a rate pair. Additionally, we extensively use the monotony and concavity
properties of the rate constraints, which we will prove in the next lemma.

Lemma 2.18. The rate functions R̃−→
R2

(α, β) and R̃−→
R1

(α, β) are concave for [α, β] ∈ [0, 1)×
[0, 1] and strictly decreasing for α ∈ [0, 1).

Proof. The proof can be found in Appendix 2.8.14.
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2.2 Achievable Rate Region

The concavity of the rate constraints allows us to derive convexity of the rate region in the
next proposition.

Proposition 2.19. For any α ∈ [0, 1) the set of rate pairs R̃BC(α) is convex.

Proof. The proof can be found in Appendix 2.8.15.

Proposition 2.20. For any arbitrary but fixed time division parameter α ∈ [0, 1) the function

of the angle ϕ̃BC(α, β) is continuously and strictly decreasing for β ∈ [0, 1]. It follows that

there exists an inverse mapping β̃BC : [0, 1) × [0, π
2 ] → [0, 1] which is implicitly defined by

ϕ̃BC(α, β̃BC(α,ϕ)) = ϕ.

Proof. For any non-degenerate fixed time factor α it is obvious that the rates R̃−→
R1

(α, β)

and R̃−→
R2

(α, β) are continuous and strictly decreasing and strictly increasing for β ∈ [0, 1].

Accordingly the ratio
R̃−→

R1
(α,β)

R̃−→
R2

(α,β)
is continuous and strictly decreasing. Since the trigonometric

function arctan is continuous and strictly increasing the angle ϕ̃BC(α, β) is continuous and
strictly decreasing for β ∈ [0, 1]. Then it follows that for fixed α ∈ [0, 1) there exists an
inverse mapping ϕ̃BC(α, β̃BC(α,ϕ)).

With this we can specify the radius R̃BC(α, β) with respect to the angle ϕ by a new defined
function as follows

R̃BC : [0, 1) × [0, π
2 ] → R+, [α,ϕ] 7→ R̃BC(α, β̃BC(α,ϕ)). (2.36)

Similarly, since R̃BC(α) is convex for any α ∈ [0, 1) we get an unique parametrization of
the boundary of R̃BC(α) in the first quadrant with respect to the angle ϕ ∈ [0, π

2 ] according
to

R̃BC : [0, 1) × [0, π
2 ] → R2

+, [α,ϕ] 7→
[

R̃−→
R2

(α, β̃BC(α,ϕ)), R̃−→
R1

(α, β̃BC(α,ϕ))
]

.

with the equality R̃BC(α,ϕ) = R̃BC(α, ϕ̃BC(α,ϕ)).

Bidirectional Achievable Rate Region

In this section we study the bidirectional achievable rate region using superposition encoding
and scaled powers. As in the case of non-scaled powers we first prove an equivalent charac-
terization of the achievable rate region which then allows us to prove its convexity. Besides
we can show that the combinatoric of the MAC rate region transfers for the scaled powers as
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2 Bidirectional Relay Communication using Superposition Encoding

well. This shows the conceptual parallelism of both interpretations of the power constraints.
However, the proofs here are more involved due to the non-linear dependence of the time
division parameter. This is also the reason that no closed-form solution of the weighted rate
sum maximum can be obtained. But with the equivalent characterization of the boundary,
including its combinatoric, and the knowledge of the convexity this can be easily obtained
algorithmically.

For a successful bidirectional transmission the rate pair [R1, R2] has to be achievable in the
MAC and BC phase simultaneously. It follows that the bidirectional achievable rate region
for a fixed time division parameter α ∈ [0, 1] is given by the intersection of the rate regions
of the MAC and BC phase, i.e.

R̃BR(α) := C̃MAC(α) ∩ R̃BC(α). (2.37)

Since C̃MAC(α) and R̃BC(α) are convex, it follows that the intersection R̃BR(α) is convex
as well. Notice, that for α = 0 or α = 1 we have R̃BC(α) = ∅.

The next natural extension is to look at the achievable rate region where we additionally
allow to optimize the time division between the MAC and the BC phase. This rate region is
obviously given by the union over all possible time division parameters α as follows

R̃BRopt :=
⋃

α∈[0,1]

R̃BR(α) =
⋃

α∈(0,1)

R̃BR(α) =
⋃

α∈(0,1)

C̃MAC(α) ∩ R̃BC(α) (2.38)

where we used the fact that R̃BC(α) = ∅ for α = 0 or α = 1. As a union of convex sets the
rate region R̃BRopt need not be convex. Convexity can be achieved if we allow time-sharing
between bidirectional rate pairs with different time division parameters, but in Theorem 2.26
we show that R̃BRopt is already convex. To this end we first prove in the next theorem an
equivalent representation of the achievable rate region R̃BRopt.

Theorem 2.21. The bidirectional achievable rate region with optimal time division R̃BRopt

is given by

R̃BRopt = R̃1 ∩ R̃2 ∩ R̃Σ (2.39)

with rate regions

R̃1 :=
{
R ∈ R2

+ : ∃ϕ ∈ [0, π
2 ] such that R1 ≤ R̃1(ϕ) cos(ϕ), R2 ≤ R̃1(ϕ) sin(ϕ)

}
,

R̃2 :=
{
R ∈ R2

+ : ∃ϕ ∈ [0, π
2 ] such that R1 ≤ R̃2(ϕ) cos(ϕ), R2 ≤ R̃2(ϕ) sin(ϕ)

}
,

R̃Σ :=
{
R ∈ R2

+ : ∃ϕ ∈ [0, π
2 ] such that R1 ≤ R̃Σ(ϕ) cos(ϕ), R2 ≤ R̃Σ(ϕ) sin(ϕ)

}
,
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2.2 Achievable Rate Region

R̃1 : [0, π
2 ] → R+, ϕ 7→ max

α∈[0,1]
min

{

R̃BC(α,ϕ),
R̃−→

1R
(α)

cos(ϕ)

}

, (2.40a)

R̃2 : [0, π
2 ] → R+, ϕ 7→ max

α∈[0,1]
min

{

R̃BC(α,ϕ),
R̃−→

2R
(α)

sin(ϕ)

}

, (2.40b)

R̃Σ : [0, π
2 ] → R+, ϕ 7→ max

α∈[0,1]
min

{

R̃BC(α,ϕ),
R̃MAC

Σ (α)

cos(ϕ)+sin(ϕ)

}

. (2.40c)

Before we refer on the proof of the theorem we will state two simple but important observa-
tions in the following remark and lemma.

Remark 2.22. The rate regions R̃1, R̃2, and R̃Σ are characterized by the boundaries in

the first quadrant in polar coordinates. This means that R̃1(ϕ), R̃2(ϕ), R̃Σ(ϕ) specify the

radius of the rate vectors on the boundaries of the rate regions for each ϕ ∈ [0, π
2 ].

Lemma 2.23. For any ϕ ∈ [0, π
2 ] the maximizing time division parameter α for the radii

given by (2.40a), (2.40b), and (2.40c) are uniquely characterized by an α where the first and

second arguments of the minima are equal. This allows us to define the optimal time division

parameters for any ϕ ∈ [0, π
2 ] as follows

α̃∗
1 : [0, π

2 ] → [0, 1], ϕ 7→ arg max
α∈[0,1]

min

{

R̃BC(α,ϕ),
R̃−→

1R
(α)

cos(ϕ)

}

, (2.41a)

α̃∗
2 : [0, π

2 ] → [0, 1], ϕ 7→ arg max
α∈[0,1]

min

{

R̃BC(α,ϕ),
R̃−→

2R
(α)

sin(ϕ)

}

, (2.41b)

α̃∗
Σ : [0, π

2 ] → [0, 1], ϕ 7→ arg max
α∈[0,1]

min
{

R̃BC(α,ϕ),
R̃MAC

Σ (α)

cos(ϕ)+sin(ϕ)

}

. (2.41c)

Proof. The proof of the Lemma 2.23 and the Theorem 2.21 can be found in Appendices
2.8.16 and 2.8.17 respectively.

In Figure 2.6 (a) we depicted the intersection of the achievable rate regions R̃1, R̃2, and
R̃Σ of an example. We see that for this example the rate regions are convex and that the
combinatoric of the MAC rate region transfers as well. In the following we will prove that
this holds in general. In addition, in Figure 2.6 (b) we depicted the achievable rate regions
RBRopt and R̃BRopt with the same power constraint values. However, we want to emphasize
that it is hardly possible to draw consequences from the comparison since different power
constraint models are assumed.

Theorem 2.24. In the first quadrant there is exactly one intersection between the bound-

aries R̃1, R̃2, and R̃Σ. The rate pairs of the intersections are transformed vertices of a

corresponding MAC rate region. Let ϕ̃12, ϕ̃Σ1, and ϕ̃2Σ denote the angles of the intersection
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Figure 2.6: Achievable rate region R̃BRopt (with scaled powers).

between the boundaries of R̃1 and R̃2, R̃Σ and R̃1, and R̃2 and R̃Σ respectively. Then we

have

R̃Σ(ϕ̃12) ≤ R̃1(ϕ̃12) = R̃2(ϕ̃12),

R̃2(ϕ̃Σ1) ≥ R̃Σ(ϕ̃Σ1) = R̃1(ϕ̃Σ1),

R̃1(ϕ̃2Σ) ≥ R̃2(ϕ̃2Σ) = R̃Σ(ϕ̃2Σ).

Furthermore, we have

R̃1(0) < R̃Σ(0) < R̃2(0) (2.42a)

R̃1(
π
2 ) > R̃Σ(π

2 ) > R̃2(
π
2 ) (2.42b)

Proof. The proof can be found in Appendix 2.8.18.

With the equivalent description of the rate region in Theorem 2.21 and the knowledge about
the combinatoric we can finally characterize the boundary of R̃BRopt.

Corollary 2.25. The section-wise defined rate pair function R̃opt : [0, π
2 ] → R2

+ with

R̃opt : ϕ 7→ [cos(ϕ), sin(ϕ)]







R̃1(ϕ), if ϕ ∈ [ϕ̃Σ1, 0]

R̃Σ(ϕ), if ϕ ∈ (ϕ̃2Σ, ϕ̃Σ1)

R̃2(ϕ), if ϕ ∈ [π
2 , ϕ̃2Σ]
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2.3 Throughput Optimal Resource Allocation

characterizes the boundary of the bidirectional achievable rate region R̃BRopt for the opti-

mal time division and power scaling.

Proof. The proof can be found in Appendix 2.8.19.

The next theorem proves that R̃BRopt is convex, which is an important property to solve
optimization problems.

Theorem 2.26. The rate regions R̃1, R̃2, and R̃Σ are convex. It follows that R̃BRopt is

convex as well.

Proof. The proof can be found in Appendix 2.8.20.

Since the rate constraints depend non-linearly on the time division parameter α closed-form
solutions are in general not possible. This includes the weighted rate sum maximum problem
as discussed in the previous sections. But since we know that R̃BRopt is convex, we know
that for a given weight vector [q1, q2] ∈ R2

+ the weighted rate sum maximum is on the

boundary of R̃BRopt. Then with the characterization of the boundary given in Corollary 2.25
we can easily implement an iterative algorithm which finds the optimum. For that reason for
the remaining sections of this chapter we will always consider the previous model without
scaled power constraints. However, there is no difficulty in transferring the following results
to the case of bidirectional relaying with optimal time division and power scaling.

2.3 Throughput Optimal Resource Allocation

In this section we are interested in a cross-layer design of the Data Link Layer and the Phys-
ical Layer, which includes the Medium Access Sublayer. We are interested in an efficient
power control and channel allocation strategy with respect to the higher layer traffic. Ac-
cordingly, we are concerned with an adaptive resource allocation policy which takes the
exogenous stochastic arrivals at nodes 1 and 2 from the higher layer into account. To this
end we look at time slotted queueing processes with ergodic arrival processes where the
information theoretic bidirectional achievable rates of the previous section serve as service
rates9.

9In other sections of the thesis we consider achievable rates measured in bits per channel use, which describe
the spectral efficiencies in [bits/s/Hz] for a given wireless system. In this section we consider service rates
which are measured in [bits/s]. For notational and conceptual simplicity and without loss of generality we use
the previous derived rates, which means that the system we consider has normalized band-limited channels
with 1 Hz bandwidth.
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2 Bidirectional Relay Communication using Superposition Encoding
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Figure 2.7: Service rate allocation by a centralized controller according to a rate allocation
policy based on the current queue and channel state for bidirectional relaying
with ergodic arrival processes and queues with infinite buffer size at nodes 1 and
2.

In Figure 2.7 we schematically depicted the considered queueing model. At random time
instants packets arrive at nodes 1 and 2 for the other node, which are stored in queueing
buffers with infinite buffer size until they are served. It is important to notice that the relay
node has no internal queue, which means that we do not allow that any message will be stored
at the relay node. Accordingly, any message received in the MAC phase has immediately to
be forwarded in the BC phase.

We assume independent time-variant flat fading channels, where the channels stay constant
for the duration of a time slot. Thereby, the duration of the time slot is long enough so that
the assumption of a reliable transmission per time slot is reasonable. From time slot to time
slot the channel coefficients change independently. The evolution of each channel coefficient
is modeled by an ergodic and stationary random process.

At the beginning of each time slot the centralized controller adjusts the resource allocation
and therefore the service rates with respect to the bidirectional rate region according to the
rate allocation policy. Therefore, we assume that the centralized controller has access to the
current queue and channel state. For the rate allocation the controller decides for the coding
rates, which implies the power distribution factor β at the relay node and, if it is allowed, the
time division parameter α. The maximum throughput policy for the bidirectional relaying
protocol is an adaptation of the maximum differential backlog algorithm developed by Tas-
siulas and Ephrimedes in the landmark paper [TE92]. Thereby, we do not need the dynamic
routing capability of the differential backlog strategy since we have fixed routes.

As we saw in Section 2.2 the bidirectional achievable rate region depends on the time division
between the two phases. For the following maximum throughput policy we need to know the
weighted rate sum pair of the achievable rate region. Conceptually, it makes no difference if
we consider the fixed or optimal time division. Therefore, let RBR denotes the bidirectional
achievable rate region which stands for the bidirectional rate region RBR(α) or RBRopt

respectively. From the following discussion of the maximum throughput policy we see the
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2.3 Throughput Optimal Resource Allocation

importance of the complete knowledge of the achievable rate region and the Pareto optimal
rate pairs.

The design goal for a throughput optimal strategy in our queueing system is stability. The
stability is proved by the well-developed theory of drift analysis using a quadratic Lyapunov
function on the buffer levels [MT93, KM95, MLMN00, MMAW99, LMNM01]. It shows
that the policy establishes stability for all arrival rate vectors within the maximal stability
region, which is equal to the ergodic rate region. Our stability analysis is adapted from
the cross-layer design for a satellite broadcast scenario from Neely, Modiano, and Rhors in
[NMR03]. In [NMR05] they extend their policy to joint routing and power allocation for
wireless networks, which means that their cross-layer design approach includes the routing
problem of the Network Layer. These interesting techniques and results are also presented
more a more comprehensive fashion in [Nee03] and in a more tutorial fashion in [GNT06].

The work [TG95] from Telatar and Gallager is one of first works which combines an informa-
tion theoretic model with a queueing model. After that, several cross-layer design problems
have been studied. In [BJH03, BW06, BW07] Boche et al. study channel aware scheduling
for the MIMO multiple access channel and present an optimization-theoretic analysis of the
cross-layer design as well as an iterative optimization method. Recently, in [YB05] the sta-
bility analysis for the parallel Gaussian relay channel is presented. For more references of
related works we refer to reference lists of the previous mentioned works.

2.3.1 Stability Region

For this cross-layer design approach we first introduce the assumptions of the considered
queueing model. Then we present the ergodic achievable rate region, which is equal to the
maximal stability region; and finally, we discuss a maximum throughput policy. We consider
the scenario depicted in Figure 2.7, where at nodes 1 and 2 packets for the other node arrive at
random time instants. The packets are stored in queueing buffers with infinite size until they
are served. For simplicity we assume that we can continuously split the data. The service
of transmission to the other node is provided by bidirectional relaying protocol. Without
loss of generality, we consider a normalized system with band-limited channels with 1 Hz
bandwidth. Accordingly, the possible service rates are given by the bidirectional achievable
rate region with rates in [bits/s] and are chosen by a centralized controller according to the
rate allocation policy. Thereby, we assume that the controller does not optimize the resource
allocation over time.

For the rest of this section we assume a block-fading channel model, where the flat-fading
channel gains are assumed to be constant during a time period T . This allows us to consider
frames in a time slotted system model where the n-th slot denotes the time period [(n −
1)T, nT ]. We assume that the frame duration T is long enough that we can transmit a
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codeword with a sufficient block length, which means that assuming information theoretic
rates as service rates is a reasonable simplification. We model the evolution of the channel
from nodes 1 and 2 to the relay node by an independent stationary and ergodic process
h[n] =

[
h1[n], h2[n]

]
with finite state space H = H1 × H2 and steady-state distribution

πh = πh1πh2 . Accordingly, let RBR

(
h[n]

)
denote the bidirectional achievable rate region

for the channel state h[n]. The network controller adjusts the rates and therefore the resource
allocation at the beginning of each frame.

Further, we assume independent ergodic arrival processes A[n] =
[
A1[n], A2[n]]

]
at nodes

1 and 2 with bounded first and second moment. This includes homogeneous Poisson arrival
processes with negative exponential distributed inter-arrival times. Let λ = [λ1, λ2] denote
the average arrival rates at nodes 1 and 2. Then E{A} = λT specifies the mean number of
packet arrivals per time slot. Furthermore, we assume independent random packet lengths
Zi, i = 1, 2, with bounded first and second moments at each node. Thus, let Bi[n], i = 1, 2,
denote the processes of number of bits arriving in time slot n at nodes 1 and 2. Then the
bit arrival rate at node i is given by ρi = λiE{Zi}, i = 1, 2, in [bits/s]. Note that we haveE{B2

i } <∞, i = 1, 2, due to the previous assumptions.

In general, the bits of the data packets cannot be sent immediately after their arrival. There-
fore, at each node the arriving bits are stored in an internal queue with infinite buffer storage
space until they are transmitted. The controller observes the queue lengths at the end of
each time slot. Therefore, let Q[n] =

[
Q1[n], Q2[n]

]
represent the processes of number of

remaining bits in the queues after the n-th time slot, which is obviously the same as in the
beginning of the n+ 1-th time slot..

Finally, we assume a centralized controller which decides at the beginning of each time slot
for the service rates

[
R1[n+ 1], R2[n+ 1]

]
∈ RBR(h[n+ 1]) according to a rate allocation

policy based on the current queue state Q[n] and channel state h[n+1] of the new time slot.
Thereto, the controller adjusts the time division and relay power distribution parameters.
Hence, the slot-to-slot dynamics of the queue lengths are given by the equation

Qi[n] = max{Qi[n− 1] −Ri[n]T, 0} +Bi[n], i = 1, 2. (2.43)

Since the arrival processes are memoryless and the service rates R[n] depend on the queue
state Q(n−1) and the memoryless channel process h[n] only, the process Q[n] has Markov
property. Therefore, Q[n] describes a discrete-time Markov chain with state spaceR+.

In the following we are interested in a maximum throughput policy. The throughput is de-
fined as the mean number of bits transmitted from node 1 to 2 or vice versa in a unit of time.
From queueing theory we know that for stability the utilization of a queueing system cannot
be larger than one. This can be easily seen from the following. The utilization of a queueing
system specifies the fraction of time in which a server is busy and is defined by the ratio of
the mean bit arrival rate to the mean service rate. If the average number of bits that arrive
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is larger than the mean service rate, the queueing system is obviously unstable. Therefore,
the maximum throughput is obviously upper bounded by the mean service rates. Since the
information theoretic rates model the service rates, the upper bound is given by the ergodic
bidirectional rate region, which we consider next.

Ergodic Bidirectional Rate Region

Let the overbar in R = [R1, R2] and RBR denote an ergodic rate pair and the ergodic
bidirectional rate region respectively. Since RBR(h) is convex for any channel state h ∈ H,
the ergodic rate region RBR is convex as well. It follows that the ergodic rate region can
be characterized by the ergodic rate pairs on its boundary. Due to linearity the ergodic
boundary rate pair for the normal vector q ∈ R2

+ \ {0} is given by the mean of rate pairs
which maximize the weighted rate sum with weight vector q, i.e.

R⋆(q) = arg max
R∈RBR

q1R1 + q2R2

= Eh{ arg max
R∈RBR(h)

q1R1 + q2R2}

=
∑

h∈H

πh(h) arg max
R∈RBR(h)

q1R1 + q2R2,

which can be calculated using Theorem 2.16. Let R⋆
1(q) and R⋆

2(q) denote the components
of the rate pair R⋆(q). With this we get a characterization of the bidirectional ergodic rate
region as follows

RBR = co
({

R ∈ R2
+ : ∃q ∈ R2

+ \ {0} with R1 ≤ R⋆
1(q), R2 ≤ R⋆

2(q)
})

. (2.44)

Next, we study a resource allocation and scheduling policy for which queue stability is guar-
anteed for all arrival rate vectors ρ = [ρ1, ρ2] within the ergodic rate region RBR.

Maximum Throughput Policy

First we present a rate allocation policy derived from the maximum differential backlog
algorithm presented in [TE93]. The policy achieves the maximum throughput which we will
prove using the well-developed theory of drift analysis using a quadratic Lyapunov function
as done in [MT93, KM95, LMNM01, NMR03], et al.

Let fi(M) := lim sup
t→∞

1
t

∫ t
0 1[Qi(τ)>M ]dτ , i = 1, 2, denote the overflow functions as a mea-

sure of the fraction of time that the queue length Qi, i = 1, 2, is above a certain value M .
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2 Bidirectional Relay Communication using Superposition Encoding

This allows us to define the meaning of system stability from the notion of weak stability for
discrete-time Markov chains10 as follows.

Definition 2.27 ([NMR03]). For a given rate allocation policy a queueing system is stable

if for all i = 1, 2 we have fi(M) → 0 as M → ∞.

With this, we can define the stability region of a policy as the set of bit arrival rate vectors
ρ such that for any vector in the interior of the stability region system stability is achieved
[TE93]. Accordingly, a policy dominates another policy if the stability region of the one
contains the other. Further, the stability region of a system is the set of bit arrival rate vectors
ρ such that for any vector in the interior at least one resource allocation policy exists which
achieves system stability. Conversely, no stabilizing policy exists whenever ρ is outside. If ρ

lies on the boundary, the system may or may not be stable. A policy that dominates any other
policy is an optimal policy. Since the stability region of any policy is a subset of the maxi-
mum throughput region, a policy whose stability region is equal to the maximum throughput
region is optimal and is called a maximum throughput policy. The above definitions are
adopted from [TE93]11.

From the maximum differential backlog algorithm [TE93] we can deduce the following max-
imum throughput policy which determines the rate and resource allocation and basically tries
to equalize the queue length at nodes 1 and 2. It is noteworthy that the policy does not require
any knowledge about the arrival rates or channel statistics.

Maximum Throughput Policy 2.28. At the beginning of the n + 1-th time slot the cen-

tralized network controller observes the current queue states [q1, q2] := Q[n] and the new

channel states h := h[n + 1], and adjusts the relay power distribution and, if allowed,

the time division parameter on the physical layer so that we achieve the rate pair which

maximizes the weighted rate sum for the weight vector q in RBR(h),

R[n+ 1] = arg max
[R1,R2]∈RBR(h)

q1R1 + q2R2.

This policy is a maximum throughput policy if the stability region of the proposed policy is
equal to the ergodic bidirectional rate region. To show this we consider a positive quadratic
Lyapunov function on the buffer levels and show that for any arrival rate vector within the er-
godic rate region, the Lyapunov function has a negative drift whenever the mean queue length

10A Markov chain Q[n], n ∈ N, is weakly stable if for every ε > 0 there exists B ∈ R such
that lim

n→∞
P{||Q[n]|| > B} < ε holds almost surely and strongly stable if it is weakly stable and

lim sup
n→∞

E{||Q[n]||} < ∞ holds almost surely. If the Markov chain is positive recurrent, then it is weakly

stable.
11Some authors call the maximum throughput policy a stability optimal policy to emphasis that this strategy

stabilizes any arrival rate vector in the stability region of the system.
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2.3 Throughput Optimal Resource Allocation

is large. This allows us to deduce that the discrete-time Markov chain Q[n] is aperiodic,
irreducible, and positive recurrent, which means that there exists a unique steady-state distri-
bution (equilibrium) and the Markov chain is ergodic [MT93, KM95, LMNM01, NMR03].
Note that if the Markov chain Q[n] has a steady-state distribution it is positive recurrent and
therefore stable.

Theorem 2.29 ([NMR03]). Let be given the Lyapunov function L(q) =
∑2

i=1 q
2
i . If there

exists a compact region Λ ⊆ R2 and ǫ > 0 such that

1. E{L(Q[n+ 1]
)∣
∣Q[n] = q

}
<∞, ∀q ∈ R2

+,

2. E{L(Q[n+ 1]
)
− L

(
Q[n]

)∣
∣Q[n] = q

}
< −ǫ,∀q /∈ Λ,

3. whenever Q[n] = q ∈ Λ, there exists m ∈ N,m < ∞, such that the probabilityP(Q[n+m] = 0) > 0,

then there exists a steady-state distribution for the queue state Q and hence the system is

stable.

The first two conditions ensure that the mean recurrence time to the Λ region is finite. The
third condition ensures that the zero state is reached infinitely often with finite mean recur-
rence times and therefore the Markov chain reduces to a single ergodic class. It is a necessary
modification for queueing systems with uncountably infinite state space.

But an even stronger drift can be achieved which proves the stability-in-the-mean of the
queues and is called the strong stability of the Markov chain and implies weak stability.
In [NMR03], a corresponding stronger drift condition is presented. Thereto, the authors
generalize results from [LMNM01, KM96] to a Markov chain with uncountably infinite state
space. The fundamental idea is that the drift gets larger in magnitude as the queue lengths
increase, then the mean queue length is bounded.

Corollary 2.30 ([NMR03]). If condition three of the Theorem 2.29 holds and positive values

υ and ζ exist such thatE{L(Q[n+ 1]
)
− L

(
Q[n]

)∣
∣Q[n] = q

}
< υ − ζ

2∑

i=1

qi,

then there exists a steady-state distribution with bounded first moments E{Qi} < ∞ such

that ζ
∑2

i=1E{Qi} < υ.

Note that if the corollary holds then for any ǫ > 0, the negative drift condition of Theorem
2.29 is satisfied whenever we have

∑2
i=1 qi > (υ + ǫ)/ζ, i.e. the sum of the queue lengths

is sufficiently large. This means that we would have the compact region Λ = {q ∈ R2
+ :

∑2
i=1 qi ≤ υ+ǫ

ζ }.
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2 Bidirectional Relay Communication using Superposition Encoding

The policy here proposed is equivalent to the dynamic power allocation policy in [NMR03].
It is therefore possible to adapt the proof in [NMR03] with the following constant

υ := T 2 max
h∈H,R∈RBR(h)

(
R2

1 +R2
2

)
+

2∑

i=1

E{B2
i }.

Since the arrival rate vector ρ is assumed to be strictly in the interior of the ergodic rate
region, there exists a ζ̃ > 0 so that ζ̃[11] + ρ ∈ intRBR also holds. Then the proof works
analog with ζ = 2T ζ̃. In Appendix 2.8.21 we reproduce the proof for completeness.

The assumption of finite channel states and the power constraints ensure that the second mo-
ment of the service rates is bounded. The following remark extracts the necessary condition
which is necessary for the previous proof.

Remark 2.31. The finite channel state condition is used to bound in (2.107) the termE{∑2
k=1R

2
k[n]|Q[n] = q

}
. We can weaken this condition if υ̃ <∞ exists so thatE{ max

R∈RBR(h)

2∑

k=1

R2
k

}

≤ υ̃.

Then the proof works with υ := υ̃T 2 +
2∑

i=1
E{B2

i } since E{∑2
k=1R

2
k[n]|Q[n] = q

}
≤E{ max

R∈RBR(h)

∑2
k=1R

2
k

}
for any q ∈ R2

+.

Finally, let E{Di} denote the average bit delay at node i. With Little’s Theorem12 we haveE{Qi} = ρiE{Di}. Therefore, we have υ/ζ >
∑2

i=1E{Qi} =
∑2

i=1E{Di}ρi using the
boundedness of the first moment according to Corollary 2.30. This means that the bound
grows asymptotically like 1/ζ as the arrival rate vector ρ is pushed towards the boundary of
the ergodic rate region. A similar discussion is given in [NMR03].

2.3.2 Numerical Simulation

To clarify the previous results, we illustrate and discuss numerical simulation results of a
simple example in this section. For the simulations we assumed independent homogeneous
Poisson arrival processes. In order to indicate the performance gain, we present a comparison
between the proposed bidirectional relaying using the optimal relay power distribution (OpR)
with optimal time division (OpT) and equal time division (EqT), as well as Round-Robin

12Little’s Theorem states that for a queueing system with almost sure finite inter-renewal interval the expected
number of customers in a queueing system is equal to the expected time each customer waits in the system
times the rate of arrival [Gal96, Sect. 3.6].
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Figure 2.8: The solid, dashed, dotted, and dashed-dotted line denote OpR OpT, OpR EqT,
RR OpT, and RR EqT respectively with optimal/equal time division OpT/EqT
and bidirectional relaying with the optimal relay power distribution OpR and
round-robin RR for a normalized system with 1Hz bandwidth.

(RR) scheduling with optimal and equal time division (OpT/EqT). For the Round-Robin
strategy we only change the scheduling strategy so that for any communication between two
nodes the time slot is subdivided into two exclusive time intervals. Thereby, we still do
not allow any node to cooperate across the time intervals. For each protocol we apply the
throughput optimal resource allocation policy.

In Figure 2.8 (a) the achievable rate regions for a certain channel state are depicted. The
dotted line depicts 0.5RMAC and 0.5RBC so that its intersection denotes the correspond-
ing achievable rate region with equal time division RBIR(0.5). Furthermore, we present the
achievable rate regions for the corresponding round robin strategies. On the boundary of
RBRopt some orthogonal vectors which characterize the optimal rate pair for a weight vector
with the same angle are depicted, cf. Theorem 2.16. We see that several orthonormal vectors
with different angles belong to a rate pair of an intersection point, while a rate pair between
the intersection points corresponds to exactly one orthonormal vector. Similar arguments
apply for the other rate regions. For the round robin strategies it is optimal to select the in-
tersection points for any non-negative weight vector. In particular for the equal time division
case the upper right vertex is always optimal, which means that the bidirectional relaying
separates in two independent unidirectional relaying protocols.

Figure 2.8 (b) depicts the corresponding ergodic rate region assuming identically uniformly
distributed channel processes. Since it is hardly possible to observe, we want to note that the
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Figure 2.9: Comparison of the queue length evolutions of different resource allocation poli-
cies where OpT and EqT specify the optimal and equal time division case and
OpR and RR denote a bidirectional relaying with an optimal relay power distri-
bution and a round-robin strategy respectively.

ergodic rate region of the RR-OpT strategy is slightly bulged. For the throughput optimal
resource allocation policy the stability region is given by the ergodic rate region. For that
reason we also plotted the arrival rate vectors ρ of the simulated queue results in this figure.
We simulated arrival rates along the dotted radial line with an angle ∠ = 1.0081.

Figure 2.9 (a) shows the average queue length evolutions along the radial line after 106 time
slots with T = 1s. The vertical dotted lines denote the crossing of the stability region
boundaries, which correspond to the bullets on the radial line in Figure 2.8 (b). It can be
clearly seen that the average queue length strongly grows if ρ approaches the boundary of
the stability region.

In Figure 2.9 (b) we present the temporal queue length evolutions for the different protocols
with an arrival rate ρ = [0.16, 0.35] bit/s, which is marked in Figure 3 (b) by the cross (×).
Since the vertical axes are scaled in 106 bits, the random fluctuation of the queue lengths
are indistinguishable. As expected, it shows that the Round-Robin strategies cannot support
the bit-load. Thereby it is interesting to observe that for the equal time division case (RR-
EqT) the queue at node 1 remains stable while queue at node 2 overflows. The separated
queue evolutions can be explained with the separation of the bidirectional protocol in two
independent unidirectional protocols. At any time slot the rate allocation policy selects for
any channel and queue state the upper right vertex of the rectangular, as mentioned for Figure
2.8 (a). This results in the ergodic rate pair [0.178, 0.205] bit/s, which is the upper right vertex
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2.4 Relay Selection

of the corresponding ergodic rate region in Figure 2.8 (b) so that that queue evolution at node
1 will be stable and queue at node 2 will be unstable.

2.4 Relay Selection

In this section we consider the problem of relay selection in a network where N relay nodes
are willing to assist the bidirectional relay communication between the nodes 1 and 2. Ac-
cordingly, we look for the “best route” which is a problem of the Network Layer. Since
we propose to select a relay node based on the achievable rate region, which includes the
optimal resource allocation and channel state information, this is again a cross-layer design
approach.

The problem of relay selection is closely related to the question if the support of a relay
node is beneficial. Already in [LTW04] Laneman, Tse, and Wornell propose a selective user
strategy where the cooperative user decides based on the channel state if it either supports
the other user or retransmits its own data. In [OS04, OSB06] we derive a sufficient condi-
tion based on the pairwise error probability when it is advantageous to cooperate using an
amplify-and-forward strategy in a linear relay network. Dawy and Kamoun show in [DK04]
that the power consumption in multi-hop communication depends on the route selection and
derive a relay region where using the relay is better than the direct transmission. Generally,
we first have to decide if the support of a certain relay node is beneficial, which obviously
depends on the performance metric, the applied protocol, and the available information to
the controller. Then the controller decides for the “best relay node”.

In a network with N relays and independent time-variant fading channels there is the po-
tential for a high spatial diversity order. To exploit this Laneman and Wornell extend in
[LW03] the cooperation idea to larger networks where they introduced the distributed space-
time coding concept so that all relay nodes can participate for cooperation. They show that
distributed space-time coding achieves full spatial diversity in terms of the outage probabil-
ity. Other works follow this concept on distributed space-time coding or beamforming, e.g.
[NBK04, SO04a, LBC+05, DSG+03]. Thereby it is important to notice that the performance
improvement of multiple relay node diversity protocols is often boosted by an increasing sum
power, which means that each participating relay node adds it transmit power to the commu-
nication. Unfortunately, this often obscures the solely gain of the proposed diversity concept.
In [LBC+05] the authors compare different decode-and-forward schemes where one or mul-
tiple relay nodes are employed. They point out that the “effective coding gain” needs to be
considered and propose a distributed power allocation between the relay nodes. The same
conclusion is drawn in [ZAL06] for amplify-and-forward relay networks where the optimal
distributed power allocation is obtained by an extended water-filling solution. Furthermore,
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2 Bidirectional Relay Communication using Superposition Encoding

they show that a selection scheme where only one relay node is chosen achieves full diversity
order.

There are obvious analogies to classical receiver combining techniques as equal gain, max-
imum ratio, and selection combining [HM05]. Distributed beamforming and space-time
coding concepts are comparable to equal and maximum ratio combining concepts with an
equal and optimal power distribution among the relay nodes. Those strategies rely on coher-
ent addition at the receiver so that the relay nodes need to be phase synchronized. Therefore,
they are very sensitive to the channel state information which results for a practical system
in a non-negligible technical challenge. This problem is not so serious for relay selection
strategies. Relay selection is comparable to the selection combining concept. Moreover, if
all nodes participate and we do not optimize the power allocation, relay selection strategies
are more power efficient.

Recently, some advanced studies on relay selection for unidirectional cooperative protocols
are done. They study the relay selection problem with respect to the complexity, channel
state information, and energy consumption. Furthermore, distributed solutions are proposed.
In more detail, Lin, Erkip, and Stefanov consider in [LES06] coded user cooperation with
the pairwise error probability as performance metric. They introduce the concept of a user
cooperation decision parameter based on the user cooperation gain, which is used to define
user cooperative regions. Hunter and Nosratinia propose in [HN04] various distributed part-
ner allocation protocols where a certain number of cooperating users is selected according to
a random strategy, a strategy based on the receive SNR, and a strategy with a fixed priority
list of nodes in its neighborhood. Relay selection with respect to the energy consumption,
where the cost of acquiring the CSI is factored in, is considered in [MMMZ06]. Moreover,
in [BKRL06] opportunistic relay selection is presented, which is a distributed method based
on channel measurements at the relay nodes.

However, to the best of our knowledge, relay selection for bidirectional relaying has not
been considered yet. In this thesis we assume a centralized decision for a relay node based
on the achievable rate regions of all relay nodes. Since bidirectional communication is char-
acterized by two rates, the decision for a “best relay node” is a vector optimization problem.
Therefore, it is possible that we have several Pareto optima which may correspond to differ-
ent relay nodes. We will see in the next section that we can further improve the performance
if we allow time-sharing between the usage of different relay nodes. The decision for one
Pareto optimum and its corresponding relay node may depend on other design aspects like
the throughput optimal resource allocation policy of the previous section.

If we consider time-variant block-fading channels with sufficient block-length so that we can
apply relay selection based on the achievable rate region for each channel state, the average
achievable rate region grows with the number of relay nodes N . For that goal we con-
sider independent stationary and ergodic block-fading channel processes so that the average
achievable rates are given by the ergodic rate region. Thereby, we do not optimize the power
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allocation over the fading states. In Section 2.4.2 we show that in the iid Rayleigh fading
case the growth of both maximal unidirectional achievable rates for bidirectional relaying

with relay selection and equal time division is asymptotically equal to ln(ln(N))
2 ln(2) . We will see

that the scaling law can be used to asymptotically upper and lower bound the sum of any rate
pair on the ergodic achievable rate regions for the equal and optimal time division case since
we can upper and lower bound the sum-rate using the maximal unidirectional ergodic rates
of the equal time division case.

2.4.1 Relay Selection Criterion

Here, we improve the performance by choosing the “best relay node” in a network where N
relay nodes with possibly different relay power constraints offer support for the bidirectional
relay communication between the nodes 1 and 2. We will see that the “best relay node” need
not be optimal for all boundary rate pairs. Accordingly, the relay selection criterion has to be
subtle enough to identify the optimal relay node for each boundary rate pair. For this purpose
we generically extend for the n-th relay node the notation of the already introduced variables
by an additional subscript index, e.g. h1,n denotes the channel between node 1 and the n-th
relay node, etc.

We first argue the reasoning of the relay selection criterion by means of the equal time di-
vision case. After that we briefly discuss the corresponding formulas for the optimal time
division case, where exactly the same arguments apply. It shows that these concepts can be
easily generalized or applied to relay selection problems in other networks.

Equal Time Division

With the first proposition we want to raise awareness of a relay selection criterion based on
the two-dimensional rate pair R = [R1, R2].

Proposition 2.32. We consider a network with two relay nodes, N = 2, and signal-to-noise

ratios γ1 = γ2 and γR,1 = γR,2. Iff we have |h1,1| ≤ |h1,2| and |h2,1| ≤ |h2,2|, then

RBReq,1 ⊆ RBReq,2 with equality iff we have |h1,1| = |h1,2| and |h2,1| = |h2,2|.

Proof. Since R−→
1R,1

≤ R−→
1R,2

, R−→
2R,1

≤ R−→
2R,2

, RΣ,1 ≤ RΣ,2, R−→
R2,1

(β1) ≤ R−→
R2,2

(β1),

and R−→
R1,1

(β2) ≤ R−→
R2,2

(β2) for any β1, β2 ∈ [0, 1] it follows that CMAC,1 ⊆ CMAC,2 and

RBC,1 ⊆ RBC,2 and therefore RBReq,1 ⊆ RBReq,2. Equality follows immediately.

From the proposition we see that we have a “good channel state” if the corresponding rate
region contains the other; but if one channel gain is larger and the other one is smaller, none
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of both regions contains the other. Some rate pairs can be achieved with certain channel states
respectively relay nodes only. This implies that there need not be one relay node which is the
best for the whole two-dimensional achievable rate region. We conclude that for a reasonable
relay selection criterion we need to look at each achievable rate pair individually.

First it is easy to see that in a network of N relay nodes with arbitrary channels and indi-
vidual transmit power constraints we can achieve the union of all individual achievable rate
regions,

RRSeq :=
N⋃

n=1
RBReq,n (2.45)

by selecting the corresponding relay node that achieves a certain rate pair. Since the union
of convex regions need not be convex, the rate region using relay selection RRSeq need not
be convex. This is obtained if we additionally allow time-sharing between the usage of the
relay nodes. This means that one has to switch between two relay nodes. The time-sharing
method is exactly described by the convex hull operator so that the rate region using relay
selection with time-sharing is given by

RRSTSeq := co
(
RRSeq

)
. (2.46)

Since a convex set can be characterized by the convex hull of the rate pairs which maximize
the weighted rate sum, the set RRSTSeq can be expressed as

RRSTSeq = co
({

arg max
R∈RRSeq

RqT : q ∈ R2
+ \ {0}

}

∪
{
0
})

.

Let R∗
eq,n(q) denote the rate pair of the n-th relay node which maximizes the weighted rate

sum for the weight vector q according to Theorem 2.10. Obviously, for any weight vector
q ∈ R2

+ \ {0} we have

max
R∈RRSeq

RqT = max
n∈{1,2,...,N}

R∗
eq,n(q)qT .

From the previous considerations we can conclude on the following relay selection criterion
for bidirectional relaying with equal time division.

Relay Selection Criterion 2.33. For any weight vector q ∈ R2
+ \ {0} we have to select

the relay node whose boundary rate pair R∗
eq,n(q) maximizes the weighted rate sum, which

means that we have to do relay selection for each boundary rate pair individually. If there

are multiple relay nodes which all achieve the weighted rate sum maximum, we have to

apply time-sharing between the usage of the relay nodes with the corresponding rate pairs

to achieve all rate pairs on the boundary of RRSTSeq.
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Accordingly, let

Neq(q) :=
{

n ∈ {1, 2, . . . , N} : R∗
eq,n(q)qT = max

n∈{1,2,...,N}
R∗

eq,n(q)qT
}

(2.47)

denote the set of optimal relay nodes for a weight vector q ∈ R2
+ \ {0} with respect to the

achievable rate region RRSTSeq. If Neq(q) is a singleton, then there is only one optimal relay
node. Otherwise we have to apply time-sharing between the usage of the relay nodes with the
corresponding rate pairs to achieve all rate pairs on the boundary of RRSTSeq. Accordingly,
the set

R∗
RSTSeq(q) := co

(
{R∗

eq,n(q) : n ∈ Neq(q)}
)

(2.48)

denotes the set of all optimal rate pairs for the weight vector q. Note that if Neq(q) is not a
singleton, than time-sharing between two relay nodes will be sufficient. This is because the
elements of RRSTSeq are two-dimensional rate pairs so that time-sharing between the relay
node which has the largest R1 and the relay node which has the largest R2 can achieve any
rate pair in RRSTSeq.

For weight vectors q which characterize the sum-rate maximum (q1 = q2), the maximal
unidirectional rate R1 (q1 > 0 and q2 = 0), and the maximal unidirectional rate R2 (q1 = 0
and q2 > 0) it could be possible that multiple rate pairs on the boundary of RBReq,n with
n ∈ Neq(q) achieve the weighted rate sum maximum, cf. R∗

Σeq,n, R∗
1eq,n, and R∗

2eq,n. If
this is the case we have take for R∗

eq,n(q) in (2.48) any rate pair in R∗
Σeq,n, R∗

1eq,n, or R∗
2eq,n

respectively.

Figure 2.10 (a) illustrates the rate region using relay selection in a network with N = 3 relay
nodes and equal time division. Note that some rate pairs can be achieved by time-sharing
between two rate pairs of different relay nodes only. This means that one has to switch
between two relay nodes.

Optimal Time Division

For the optimal time division case the same arguments apply as for the equal time division
case. Some rate pairs can be achieved by certain relay nodes only. Therefore, the achiev-
able rate region using relay selection is given by the union of all individual bidirectional
achievable rate regions

RRSopt :=
N⋃

n=1
RBRopt,n.
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Figure 2.10: Achievable rate regions of relay selection with time-sharing for N = 3 relay
nodes. Note that some rate pairs can be only achieved by time-sharing between
two rate pairs of different relay nodes.

If we additionally allow time-sharing between the usage of the relay nodes, then the achiev-
able rate region is convex and can be expressed as

RRSTSopt :=co
(
RRSopt

)
(2.49)

=co
({

arg max
R∈RRSopt

RqT : q ∈ R2
+ \ {0}

}

∪
{
0
})

.

Let R∗
opt,n(q) denote the rate pair of the n-th relay node which maximizes the weighted rate

sum for the weight vector q = [q1, q2] according to Theorem 2.16. Then for any weight
vector q ∈ R2

+ \ {0} we have

max
R∈RRSopt

RqT = max
n∈{1,2,...,N}

R∗
opt,n(q)qT .

Again, we propose to do relay selection for each boundary rate pair individually.

Relay Selection Criterion 2.34. For any weight vector q ∈ R2
+ \ {0} we have to select

the relay node whose boundary rate pair R∗
opt,n(q) maximizes the weighted rate sum. If

there are multiple relay nodes which all achieve the weighted rate sum maximum, we have to

apply time-sharing between the usage of the relay nodes with the corresponding rate pairs

to achieve all rate pairs on the boundary of RRSTSopt.
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2.4 Relay Selection

Similarly, we can define for any weight vector q ∈ R2
+ \ {0} the set

Nopt(q) :=
{

n ∈ {1, 2, . . . , N} : R∗
opt,n(q)qT = max

n∈{1,2,...,N}
R∗

opt,n(q)qT
}

, (2.50)

which characterizes the optimal relay nodes with respect to the achievable rate region
RRSTSopt. As before, there is only one optimal relay node if Nopt(q) is a singleton. Oth-
erwise we have to apply time-sharing between the usage of the relay nodes with the corre-
sponding rate pairs to achieve all rate pairs on the boundary of RRSTSopt. Accordingly, the
set

R∗
RSTSopt(q) := co

(
{R∗

opt,n(q) : n ∈ Nopt(q)}
)

denotes the set of all optimal rate pairs for the weight vector q. Since the elements of
RRSTSopt are two-dimensional, there exist two relay nodes so that time-sharing between
those two relay nodes will be sufficient to achieve any rate pair in R∗

RSTSopt(q).

Figure 2.10 (b) illustrates the rate region using relay selection with time-sharing for a sce-
nario with N = 3 relay nodes and optimal time division. Thereby note that some rate pairs
can be achieved by time-sharing between two rate pairs of different relay nodes only.

In the next section, we study the scaling of the diversity gain in a time-variant fading con-
text.

2.4.2 Scaling Law of the Ergodic Rate Region

We now consider a network with N relay nodes in the presence of time-variant fading.
Therefore, we assume independent stationary and ergodic block-fading channel processes
{hk,n[m]}m, k = 1, 2, n = 1, 2, . . . , N . The channel remains constant over blocks con-
sisting of M symbol periods and changes independently from block to block. Thereby, we
assume a block length M so that the error-free coding assumption is reasonable. We do not
optimize the power allocation over time-varying channel states, which we regard as future
work. Accordingly, we are interested in the time average of the achievable rates obtained at
each fading instant, which is given by the ergodic achievable rate region. We first study the
ergodic rate region for the equal time division case. After that we will extend the results for
the ergodic rate region with the optimal time division between the phases.

Equal Time Division

Let RRSTSeq(h) denote the achievable rate region using relay selection with time-sharing for
the channel state h according to (2.46). Then let R∗

RSTSeq(q,h) denote the set of optimal
achievable rates for a weight vector q and channel state h. We characterize the ergodic rate
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2 Bidirectional Relay Communication using Superposition Encoding

region RRSTSeq by its boundary. To this end, we choose for any weight vector q and channel
state h a rate pair in R∗

RSTSeq(q,h). However, if R∗
RSTSeq(q,h) is not a singleton we have

to consider any possible rate allocation for this weight vector and channel state. We sum
this up with a definition of a rate allocation policy. For a weight vector q let Ξeq(q) denote
a rate allocation policy

{
R(h)

}

h
that decides for any channel realization h for a rate pair

R(h) ∈ R∗
RSTSeq(q,h). Then

R∗
RSTSeq(q) :=

{

R ∈ R2
+ : there exists a policy Ξeq(q) with R = E{R(h)

}}

denotes the set of ergodic rates we can achieve for a weight vector q ∈ R2
+ \{0}. Therewith

we can express the ergodic rate region as follows

RRSTSeq := co
({

[R1, R2] ∈ R2
+ : there exists q ∈ R2

+ \ {0} with

R1 ≤ R1, R2 ≤ R2, [R1, R2] ∈ R∗
RSTSeq(q)

})

.

In the following let R∗
RSTSeq(q) ∈ RRSTSeq denote a rate pair on the boundary that achieves

the weighted rate sum maximum with weight vector q ∈ R2
+ \ {0}, this means we have

R∗
RSTSeq(q)qT = maxR∈RRSTSeq

RqT . Due to the time-sharing operation (convex hull)
the rate pair need not be unique.

We now study how the ergodic rate region using relay selection increases with an increasing
number of relay nodes. To this end we look at the maximal unidirectional ergodic rates,
which allows us to upper and lower bound the sum of any ergodic rate pair on the boundary
of RRSTSeq. Then for iid Rayleigh fading channels we can conclude from a scaling law for
the maximal unidirectional ergodic rates how the rates of rate pairs on the boundary of the
ergodic rate region increase with increasing number of relay nodes.

According to (2.22a) and (2.22b) let R∗
1eq,n := 1/2 min{R−→

1R,n
, R−→

R2,n
(1)} and R∗

2eq,n :=
1/2 min{R−→

2R,n
, R−→

R1,n
(1)} denote the maximal unidirectional rate of the n-th relay node.

Therewith, we get the maximal unidirectional rates using relay selection as follows

R∗
kRSeq := max

n∈{1,2,...,N}
R∗

keq,n, k = 1, 2.

We first state a technical lemma where we do some algebra for random variables. After that,
we will use the lemma to characterize the statistics of the maximal unidirectional rates using
relay selection. The lemma is stated for arbitrary real channel distributions but most of the
succeeding results are obtained for the Rayleigh distributed fading channels.
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2.4 Relay Selection

Lemma 2.35. Let Xn and Yn, n = 1, 2, . . . , N , be pairwise independent non-negative real

random variables with probability density functions (pdf) fXn(xn) and fYn(yn). Further,

let FXn(xn) and FYn(yn) denote the corresponding cumulative distribution functions (cdf).

Then the random variable Zn := min{anXn, bnYn} with positive weights an and bn has the

pdf

fZn(zn) = 1
an
fxn( zn

an
)(1 − Fyn( zn

bn
)) + 1

bn
fyn( zn

bn
)(1 − Fxn( zn

an
))

and the cdf

FZn(zn) = 1 − (1 − Fxn( zn

an
))(1 − Fyn( zn

bn
)).

The maximum Z := max{Z1, Z2, . . . , ZN} has the pdf

fZ(z) =
N∑

n=1
fZn(z)

N∏

j=1,j 6=n

FZj
(z).

And finally,

fR(R) = 2 ln(2)22RfZ(22R − 1)

specifies the pdf of the random variable R = 1
2 log[1 + Z] as a function of the random

variable Z.

Proof. The proof can be found in Appendix 2.8.22.

Remark 2.36. It is interesting to observe that Z = min{aX, bY } in the case of exponential

distributions Fx(x) = 1 − e−x/σ2
x and Fy(y) = 1 − e−y/σ2

y is again exponential distributed

with Fz(z) = 1 − e−z/λ and λ = 1
aσ2

x
+ 1

bσ2
y

.

Before deriving the asymptote of the growth of the sum of the ergodic rates on the boundary
of the ergodic rate region using relay selection, we first look at the probability that the relay
selection can be drawn by Proposition 2.32. In other words, we are interested in the proba-
bility that there exists a relay node η whose rate region RBReq,η contains the regions of all
others, i.e. P(∃ η : RRSeq = RBReq,η). Such a relay node exists iff we have Neq(q) = {η}
for all q. The intuition says that with an increasing number of relay nodes it will be less
probable.

Proposition 2.37. For bidirectional relaying with relay selection and equal time division let

f|hk,n|(|hk,n|) and F|hk,n|(|hk,n|) denote the pdf and cdf of the absolute value of the channel

hk,n defined on the support set S|hk,n|. In a network with independent channels where each

relay node has the same power constraint γR, the probability that there exists a relay node
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2 Bidirectional Relay Communication using Superposition Encoding

η ∈ {1, 2, . . . , N} whose rate region contains the rate regions of all others is given byP(∃ η : RRSeq = RBR,η) =
N∑

η=1

P(RBReq,η ⊇
N⋃

n=1

RBReq,n

)

=
N∑

η=1

2∏

k=1

∫

S|hk,n|

N∏

n=1, n6=η

F|hk,n|(|hk,η|)f|hk,η |(|hk,η|) d|hk,η|.

In the case of iid Rayleigh fading hk,n ∼ CN (0, σ2
k) we haveP(∃ η : RRSeq = RBReq,η) =

1

N
.

Proof. The proof can be found in Appendix 2.8.23.

In the case of iid Rayleigh fading the intuition is proved. We see that with an increasing
number of relay nodes the Proposition 2.32 is more often not applicable. In the next theo-
rem we characterize the distributions of the maximal unidirectional rates in a network with
independent Rayleigh distributed fading channels.

Theorem 2.38. For bidirectional relaying with relay selection and equal time division, we

assume independently distributed channel coefficients hk,n ∼ CN (0, σ2
k,n) for all k = 1, 2

and n = 1, 2, . . . , N . Then the probability density function of the maximal unidirectional

rate using relay selection R∗
kRSeq, k = 1, 2, is given by

f(R∗
kRSeq) = 2 ln(2)

N∑

n=1
λk,n exp

(
(1 − 22R∗

kRSeq)λk,n

)
22R∗

kRSeq

N∏

m=1,m6=n

(

1 − exp
(
(1 − 22R∗

kRSeq)λk,m

))

with λ1,n = 1
γ1σ2

1,n

+ 1
γRσ2

2,n

and λ2,n = 1
γ2σ2

2,n

+ 1
γRσ2

1,n

.

Proof. The proof can be found in Appendix 2.8.24.

The theorem allows us to calculate the ergodic maximal unidirectional rates.
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2.4 Relay Selection

Corollary 2.39. The ergodic maximal unidirectional rate R∗
kRSeq = E{R∗

kRSeq

}
, k = 1, 2,

for bidirectional relaying with relay selection and equal time division in the case of indepen-

dent Rayleigh distributed fading is given by

R∗
kRSeq =

N∑

n=1

λk,n

2 ln(2)

[exp(λk,n)E1(λk,n)

λk,n

+

N−1∑

m=1

(−1)m
∑

L⊆Jn,|L|=m

exp(λk,n +
∑

l∈L

λk,l)E1(λk,n +
∑

l∈L

λk,l)

λk,n +
∑

l∈L

λk,l

]
(2.51)

with the exponential integral E1(x) =
∫∞
x

e−t

t dt. In the last sum we have to sum over all

subsets L of the index set Jn = {1, 2, . . . , N} \ {n} with cardinality |L| = m. If we have

λk,n = λk for all n = 1, 2, . . . N , then (2.51) results in

R∗
kRSeq = N

N−1∑

n=0

(
N − 1

n

)
exp((n+ 1)λk)E1((n+ 1)λk)

(−1)n(n+ 1)2 ln(2)
. (2.52)

Proof. The proof can be found in Appendix 2.8.25.

In Figure 2.11 (a) we illustrate the enlargement of the ergodic rate region due to relay selec-
tion for the equal time division case. Thereby, we assume equal relay transmit powers and
iid Rayleigh fading. We see that the gain decreases with increasing number of relays. In the
following we are interested in the scaling law of this growth. For its derivation, we need the
analytical expression for the maximal unidirectional ergodic rate of the previous corollary.

Since RRSTSeq is convex, we can upper and lower bound the sum-rate of any boundary rate

pair R∗
RSTSeq(q) of the ergodic rate region as follows

min{R∗
1RSeq, R

∗
2RSeq} ≤

∣
∣
∣
∣R∗

RSTSeq(q)
∣
∣
∣
∣
1
≤

2∑

k=1

R∗
kRSeq. (2.53)

The first inequality holds because RRSTSeq is convex and the sum of any rate pair from the
time-sharing between the rate pairs [R∗

1RSeq, 0] and [0, R∗
2RSeq] already fulfills the condition.

The second inequality follows from the fact that R∗
1RSeq and R∗

2RSeq are both the maximal

unidirectional ergodic rates so that the sum of any rate pair on the boundary of RRSTSeq has
to be smaller.

We now derive a scaling law for the growth of the sum-rate of any rate pair on the boundary
of the ergodic rate region RRSTSeq with increasing number of relay nodes in an iid Rayleigh
fading scenario. To this end, we present in the next theorem an upper and lower bound on
the maximal unidirectional ergodic rate R∗

kRSeq, k = 1, 2, which are asymptotically tight.
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Figure 2.11: Growth of the ergodic rate region with increasing number of relay nodes N =
1, 2, . . . , 12 for the equal and optimal time division case. In the left plot we
depicted the maximal unidirectional ergodic rates according to Corollary 2.39
for N = 12.

Theorem 2.40. For bidirectional relaying with relay selection and equal time division we

assume independently identical distributed channel coefficients hk,n ∼ CN (0, σ2), equal

signal-to-noise ratios γR,n = γR, and coefficients λk = γk+γR

σ2γkγR
for all k = 1, 2 and n =

1, 2, . . . , N . Then we can upper and lower bound the maximal unidirectional ergodic rate

R∗
kRSeq, k = 1, 2, as follows

R∗
kRSeq ≥ 1 − e−a

2
log
(

1 +
1

λk
ln
(N

a

))

,

R∗
kRSeq ≤ e−b +b

2
log
(

1 +
1

λk
ln(

N

b
)
)

+
b

2
log
(

1 +
1

λk + ln
(

N
b

)

)

with arbitrary a, b ∈ (0, N). The asymptotic upper and lower bound meet if we choose

a → ∞ and b → 0 when N → ∞. Therefore, the growth of the maximal unidirectional

ergodic rate is asymptotically equal 1
2 log(ln(N)).

Proof. The proof can be found in Appendix 2.8.26.

Note that the asymptote on the growth of the maximal ergodic unidirectional rate is indepen-
dent of λk and therefore independent of the the channel gain variance σ2 and signal-to-noise
ratios γR and γk.
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Figure 2.12: Growth of the maximal unidirectional ergodic rate R∗
1RSeq using relay selection
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1.3, γ1 = 1, and σ2 = 1.

Remark 2.41. Since the derivation applies to any AWGN achievable rate calculation of

a system where a selection combining technique between N independently exponentially

distributed SNRs is utilized, the scaling law of the growth of the ergodic rate of such a

system has always a log(ln(N)) asymptote.

Since we get the coefficients a and b from the analysis in the proof, they have no physical
meaning. Therefore, we can optimize the bounds for any fixed number of relay nodes N by
optimizing the coefficients a and b. In Figure 2.12 we plotted the growth of the maximal
unidirectional ergodic rate R∗

1RSeq using relay selection with the number of relay nodes N
(Monte Carlo Simulation) and the upper and lower bounds with optimized and fixed coeffi-
cients. The bounds are loose but they have the same growth rates. Furthermore, we see that
the bounds with the optimized coefficients (“slowly”) converge.

Finally, as a direct consequence of the previous theorem and the inequalities in (2.53) we can
conclude on the asymptotic growth of the ergodic rate region RRSTSeq.

Corollary 2.42. For bidirectional relaying using relay selection with time-sharing and equal

time division in an iid Rayleigh fading scenario with γR,n = γR the sum of any ergodic

rate pair on the boundary of the ergodic rate region RRSTSeq grows with Θ(log(log(N))).
In more detail, for any q ∈ R \ {0} we can asymptotically lower and upper bound the

asymptotic growth of the sum-rate of any boundary rate pair R∗
RSTSeq(q) as follows

lim inf
N→∞

∣
∣
∣
∣R∗

RSTSeq(q)
∣
∣
∣
∣
1

log(ln(N))
≥ 1

2
, lim sup

N→∞

∣
∣
∣
∣R∗

RSTSeq(q)
∣
∣
∣
∣
1

log(ln(N))
≤ 1.
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The difference between the asymptotic lower and upper bound is exactly the difference be-
tween a unidirectional protocol and the bidirectional protocol with an improved spectral effi-
ciency. As we see in Figure 2.10, the increase in spectral efficiency depends on the rate ratio
which vanishes in the case of maximal unidirectional ergodic rates. Finally, we want to re-
mark that the maximal unidirectional ergodic rates evolve according to the same asymptotic
scaling law as found in [DSG+03] using distributed beamforming approach with a two-phase
separation constraint.

Optimal Time Division

Let RRSTSopt(h) denote the bidirectional achievable rate region using relay selection with
time-sharing and optimal time division between the phases for the channel state h according
to (2.49). Then let R∗

RSTSopt(q,h) denote the set of optimal achievable rates for a weight
vector q and channel state h. As for the equal time division case, we characterize the ergodic
rate region by the rate pairs on its boundary. Therefore, we choose for any channel state h a
rate pair in R∗

RSTSopt(q,h). However, if R∗
RSTSopt(q,h) is not a singleton, we have to take

any possible rate allocation into account. Again, we sum this up with the definition of a rate
allocation policy. For a weight vector q let Ξopt(q) denote a rate allocation policy

{
R(h)

}

h

that decides for any channel realization h for a rate pair R(h) ∈ R∗
RSTSopt(q,h). Then

R∗
RSTSopt(q) :=

{

R ∈ R2
+ : there exists a policy Ξopt(q) with R = E{R(h)

}}

denotes the set of ergodic rates we can achieve for a weight vector q ∈ R2
+\{0}. Therewith,

we can express the ergodic rate region as follows

RRSTSopt := co
({

[R1, R2] ∈ R2
+ : there exists q ∈ R2

+ \ {0} with

R1 ≤ R1, R2 ≤ R2, [R1, R2] ∈ R∗
RSTSopt(q)

})

.

In the following let R∗
RSTSopt(q) ∈ RRSTSopt denote a rate pair on the boundary that

achieves the weighted rate sum maximum with weight vector q ∈ R2
+ \ {0}, this means

we have R∗
RSTSopt(q)qT = maxR∈RRSTSopt

RqT . Due to the time-sharing operation (con-
vex hull) the rate pair need not be unique.

Clearly, the ergodic rate region RRSTSopt of relay selection with time-sharing and optimal
time division grows as well with the number of relay nodes. In Figure 2.10 (b) we illustrate
the enlargement for iid Rayleigh fading channels and equal relay powers. We see a similar
behavior as for the equal time division case. For the derivation of the growth we can make
use of the asymptotic result of the maximal unidirectional ergodic rates for the equal time
division case. To this end, we upper and lower bound in the next proposition the sum of any
rate pair on the boundary of RRSTSopt in terms of the ergodic maximal unidirectional rates
for the equal time division case.
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Proposition 2.43. For bidirectional relaying using relay selection with time-sharing and

optimal time division we can upper and lower bound the sum-rate of any boundary rate pair

R∗
RSTSopt(q) of the ergodic rate region RRSTSopt as follows

min
{
R∗

1RSeq, R
∗
2RSeq

}
≤
∣
∣
∣
∣R∗

RSTSopt(q)
∣
∣
∣
∣
1
≤ 2

2∑

k=1

R∗
kRSeq. (2.54)

Proof. The proof can be found in Appendix 2.43.

With the upper and lower bound we can directly apply the asymptotic result for the ergodic
maximal unidirectional rates R∗

kRSeq of Theorem 2.40 as we did for Corollary 2.42.

For bidirectional relaying using relay selection with time-sharing and equal time division
in an iid Rayleigh fading scenario with γR,n = γR the sum of any ergodic rate pair on the
boundary of the ergodic rate region RRSTSeq grows with Θ(log(log(N))). In more detail, in
the next corollary we can lower and upper bound the asymptotic growth of the sum-rate of
any boundary rate pair R∗

RSTSeq(q) for any q ∈ R \ {0}.

Corollary 2.44. For bidirectional relaying using relay selection with time-sharing and equal

time division in an iid Rayleigh fading scenario with γR,n = γR the sum of any ergodic rate

pair on the boundary of the ergodic rate region RRSTSopt grows with Θ(log(log(N))). In

more detail, for any q ∈ R2
+ \{0} we can asymptotically lower and upper bound the growth

of the sum-rate of any boundary rate pair R∗
RSTSopt(q) as follows

lim inf
N→∞

∣
∣
∣
∣R∗

RSTSopt(q)
∣
∣
∣
∣
1

log(ln(N))
≥ 1

2
, lim sup

N→∞

∣
∣
∣
∣R∗

RSTSopt(q)
∣
∣
∣
∣
1

log(ln(N))
≤ 2.

It is interesting to see that although the ergodic rate region of the optimal time division case
is always larger than for the equal time division case, the sum of any ergodic rate pair has
the same asymptotic scaling law.

2.5 Piggyback a Common Relay Message

Nowadays, there is a trend to offer multiple wireless services at a single device, which is
known as the convergence of wireless services. Up to now this is realized by the coexistence
of multiple wireless transceiver chains each equipped with an own antenna. This requires a
careful radio segmentation with adequate transmit spectrum masks that allow a sufficient iso-
lation of the receivers to the transmitters with respect to the receivers sensitivity levels. With
a convergence on the Data Link Layer and Physical Layer we can overcome such practical
problems. The joint design on the Data Link Layer and Physical Layer allows the reduction
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of the number of transceiver chains in the device. Moreover, the reduction of RF front-ends
is interesting for further miniaturization of the devices. In addition it allows a more efficient
joint resource allocation, which results in a reduction of the energy consumption.

Accordingly, in this section we add a relay multicast communication to the bidirectional
relaying protocol. This means that we assume that the Network Layer assigns two routing
tasks to Data Link Layer. Accordingly, we are interested in an efficient joint resource allo-
cation design for both routing tasks across the Physical and Data Link Layer. We consider
again superposition encoding, which means that the relay node encodes its own message and
superimposes the codeword of the relay multicast message on the bidirectional broadcast
transmit signal. In accordance to this we say that the relay messages is piggybacked on the
bidirectional relaying.

In the seminal work [GK00] Gupta and Kumar introduce the concept of transport capacity,
which is a measure that factors in the distance between the source and destination pairs in
a wireless network. The mean feat is to use this measure to derive upper and lower bounds
of scaling laws which characterize the amount of information a network can transport in the
limit of large number of nodes. A weak point of the work is that they considered concurrent
transmissions as interference so that in [GK03, XK04] Gupta, Xie, and Kumar consider
interference as information and therewith improve the scaling laws by studying large relay
networks. In this context they raised the fundamental question “How should nodes cooperate

in maximizing information transfer in a wireless network?” In [OLT07] Özgür, Lévêque, and
Tse achieve a linear scaling law with a hierarchical cooperation scheme using distributed
MIMO communication. Recently, in [XK07] Xie and Kumar extend their coding scheme to
multi-source, multi-destination, multi-relay networks where they group nodes along multi-
relay routes. Thereby, they merge routes if they intersect at any relay node so that they can
apply a joint backward decoding scheme. They point out that the coding scheme depends on
the topology and note that such a coding scheme excludes two-way multi-relay networks.

The afore mentioned works study information theoretic coding strategies for large relay net-
works. Since it is a hard problem to find the optimal coding strategy for an arbitrary net-
work, for most networks the optimal communication strategy is not known. However, the
promising benefits of already proposed relaying concepts for wireless networks encourage
researcher to study routing, media access, and power control for such problems. Accord-
ingly, there is recently a vast growing literature on power control problems for wireless cel-
lular and multi-hop networks which considers the joint optimization of routing, scheduling,
and power control problems, which allows the development of efficient centralized and dis-
tributed resource allocation algorithms. In [Bam98] Bambos points out that general power
control design goals for wireless networks are to prolong battery life, mitigate interference,
and maintain link quality. For the design of resource allocation policies usually a network
flow model based on flow conservation is assumed. This means that separated information
flows are considered. Then the optimization is done using utility functions per user, which

76



2.5 Piggyback a Common Relay Message

are often assumed to be continuous, differentiable, concave, and increasing, e.g. the capacity
function of a Gaussian channel. Then the main goal is to maximize the sum of the user util-
ity functions, which is called the network utility maximization problem. In [XJB04], Xiao,
Johansson, and Boyd introduce a generic formulation of an optimization problem for the si-
multaneous routing and power allocation problem for wireless networks, which allows them
to derive efficient solution methods based on convex optimization theory. Algorithms which
compute distributed or centralized power control solution with respect to routing and/or link
scheduling for multi-hop networks can be found for instance, in [TE02, CS03, Chi04]. While
in [NMR05] Neely, Modiano, and Rohrs study a dynamic routing and power allocation pol-
icy for wireless networks with time-varying channels based on the maximum differential
backlog strategy of Tassiulas and Ephremides [TE93]. For an introduction in the theory and
algorithms of resource allocation in wireless networks with a more comprehensive literature
survey on this topic we refer on the textbook [SWB06].

However, our goal in this section is not to find another algorithm which solves efficiently a
power or rate allocation problem. We are interested in finding some properties of the achiev-
able rate region, which then could be used for improving the efficiency of a resource alloca-
tion policy according to some higher layer strategies. Moreover, we can identify the optimal
decoding order at nodes 1 and 2 in the BC phase. Since we consider two simple routing
tasks and single-antenna nodes, some of the following results can be astonishingly obtained
in closed form. But we see from the derivations that this is already a tedious combinato-
rial problem so that we suppose that for joint optimization of more or more complicated13

routing tasks the resource allocation problems can only be solved algorithmically.

In the following section we extend the bidirectional broadcast by an additional relay message.
We characterize the optimal decoding order and the total sum-rate maximum which can
be achieved with both routing tasks. Moreover, we identify bidirectional rate pairs which
result in the same total sum-rate so that we know how to interchange additional relay rate
with bidirectional rate. The explicit characterization leads to combinatorial problems which
we discuss for the equal time division and for |h1| > |h2|. This allows us to characterize
for a desired relay rate the bidirectional rate pair which results in the largest bidirectional
sum-rate. Throughout this section we illustrate the main results and the combinatoric with
representative examples for a clear presentation of the arguments.

Most closed form results are obtained for the equal time division case, cf. Remark 2.4.
However, the behavior will be similar for other fixed time division cases. According to this
we study in the latter part of the section the maximal sum-rates with respect to the time
division parameter. In the end we present for two examples the achievable rate regions for

13Already for the routing task where the relay node adds individual messages for nodes 1 and 2 to the bidi-
rectional relaying protocol we have 3! = 6 possible decoding orders at nodes 1 and 2, which results in 36
different cases to consider. For comparison, for the here considered common relay message we have 2! = 2
decoding orders each node, which results in 4 different cases where one is always optimal, c.f. Theorem 2.45.
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2 Bidirectional Relay Communication using Superposition Encoding

the equal and optimal time division case. For comparison we also depicted the achievable
rate region with a simple energy-equivalent TDMA approach which realizes the same routing
tasks. This illustrates the efficiency and the new established rate trade-off possibilities gained
from the joint resource allocation approach.

2.5.1 Broadcast Phase with Relay Multicast

In this section, we extend the bidirectional relaying protocol by an additional relay multicast
communication. This means that the relay node wants to transmit an independent common
message to nodes 1 and 2. The additional relay multicast and the bidirectional broadcast are
simultaneously performed in the BC phase of the bidirectional relay protocol. For the study
of the problem it is enough to consider a network with one relay node only and time-invariant
channels. In this subsection we assume an arbitrary but fixed time division parameter α ∈
[0, 1].

As described in Section 2.2.3, in the BC phase the relay node forwards the previously re-
ceived message m1 to node 2 and message m2 to node 1. In addition to this, the relay node
additionally encodes a relay message mR for nodes 1 and 2 with rate RR. For the trans-
mission, we again follow the superposition encoding strategy. Since we have a memoryless
Gaussian channel, it is sufficient to consider single-letters only. Accordingly, the random
input variable of the relay node can be expressed as

XR = W1 +W2 +WR

where the random variables W1, W2, and WR correspond to the codewords of messages m1,
m2, and mR respectively. Since the messages are assumed to be independent, we consider
independent random variables. From this we get the output at node k, k = 1, 2, as follows

Yk = hk XR +N1 = hk W1 + hk W2 + hk WR +Nk, k = 1, 2,

where Nk denotes the independent additive complex Gaussian distributed noise at node k,
k = 1, 2. Both nodes receive the signal of their own bidirectional message as interfer-
ence. Therefore, before decoding the unknown messages each node subtracts the interfer-
ence caused by its own message. This means that node 1 subtracts h1X1 and node 2 sub-
tracts h2X2 so that for each node it remains to decode the bidirectional message from the
other node and the common relay message. Accordingly, the non-negative achievable rates
for the unknown messages have to fulfill the constraints

R2 +RR ≤ (1 − α)I(XR;Y1|W1) = (1 − α)I(W2;h1W2 + h1WR +N1), (2.55a)

R1 +RR ≤ (1 − α)I(XR;Y2|W2) = (1 − α)I(W1;h2W1 + h2WR +N2), (2.55b)

RR ≤ min
{
(1 − α)I(XR;Y1|W1) −R2
︸ ︷︷ ︸

=:RR@1

, (1 − α)I(XR;Y2|W2) −R1
︸ ︷︷ ︸

=:RR@2

}
, (2.55c)
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for some input distributions fWk
(wk), k ∈ {1, 2,R}, satisfying the power constraintE{|XR|2} = E{|W1|2} + E{|W2|2} + E{|WR|2} ≤ PR. Thereby, the rates RR@1 and

RR@2 denote the achievable relay rates at nodes 1 and 2.

Again, the mutual informations are coupled by the relay power distribution. This time we
have to distribute the relay transmit powerPR among three messages. Therefore, as before let
β1 and β2 denote the proportion of relay transmit power PR spend for the codewordsW1 and
W2 and additionally let βR denote the proportion of relay transmit power PR spend for the
codewordWR. Now, the relay transmit power constraint requires that β1+β2+βR ≤ 1 holds.
For a feasible relay power distribution we know from Section 2.2.1 that complex Gaussian
distributed inputs W1 ∼ CN (0, β1PR), W2 ∼ CN (0, β2PR), and WR ∼ CN (0, βRPR)
maximize the mutual informations so that we have

I(XR;Y1|W1) = log
(
1 + γR|h1|2(β2 + βR)

)
,

I(XR;Y2|W2) = log
(
1 + γR|h2|2(β1 + βR)

)
.

In the following we look at the achievable rates R1, R2, and RR more explicitly. Therefore,
in the next theorem we identify an always optimal decoding order at nodes 1 and 2. On
that score, we first look at the case where each node decodes the additional relay message
first. After a successful decoding of the relay message and before decoding of the unknown
bidirectional message each node subtracts the interference caused by the additional relay
message. Effectively, this means that the bidirectional relay communication is essentially
interference-free. For that reason, for the bidirectional communication the rate constraints
(2.7a) and (2.7b) apply so that for a desired bidirectional rate pair [R1, R2] ∈ RBR(α) ⊆
(1 − α)RBC we need at least

β1 =
2

R1
1−α − 1

|h2|2γR
and β2 =

2
R2
1−α − 1

|h1|2γR
. (2.56)

With this the power fraction βR = 1 − β1 − β2 remains at most for the multicast communi-
cation. Accordingly, for a feasible bidirectional rate pair [R1, R2] ∈ RBR(α) the maximal
achievable rate of the additional relay multicast at nodes 1 and 2 is given by

RR@1(R1, R2) = (1 − α) log
(

1 +
βR|h1|2γR

1 + β2|h1|2γR

)

, (2.57a)

RR@2(R1, R2) = (1 − α) log
(

1 +
βR|h2|2γR

1 + β1|h2|2γR

)

. (2.57b)

Since for a multicast both nodes should be able to decode the relay message, the maximal
achievable relay rate is given by the minimum of (2.57a) and (2.57b). In the next theorem we
show that this is the optimal decoding order and power distribution if we desire to achieve a
certain feasible bidirectional rate pair.
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2 Bidirectional Relay Communication using Superposition Encoding

Theorem 2.45. For a given rate pair [R1, R2] ∈ RBR(α) the maximal achievable additional

relay rate RR is achieved if nodes 1 and 2 decode the additional relay message first. Then

the maximal achievable additional relay rate is given by

RR(R1, R2) = min
{
RR@1(R1, R2), RR@2(R1, R2)

}
. (2.58)

Proof. The proof can be found in Appendix 2.8.28.

Since it is optimal for any desired bidirectional rate pair that at each node the relay message
is decoded first, then its interference is canceled, and finally the unknown bidirectional mes-
sage is decoded without any interference of the relay message we say that the common relay
message is piggybacked on the bidirectional relay communication. Moreover, this implies
that potentially existing resources at the relay node are used to add a multicast communica-
tion on top of the bidirectional relaying.

The achievable rate region of the bidirectional relaying protocol with an additional relay
multicast for a fixed time division parameter α ∈ [0, 1] can be expressed as

RPiggy(α) :=
{
[R1, R2, RR] ∈ R3

+ : [R1, R2] ∈ RBR(α), RR ≤ RR(R1, R2)
}
.

Since this applies for any time division parameter, for the optimal time division case we can
achieve

Ropt
Piggy :=

⋃

α∈[0,1]

RPiggy(α).

We depicted the achievable rate region RPiggy(1/2) and Ropt
Piggy for two examples in Fig-

ure 2.18 and Figure 2.19 in the end of this section. But first we want to identify more
properties of the achievable rate region RPiggy(α). In particular in the next subsection we
characterize the sum-rate optimal rate tuple which achieves the total sum-rate maximum.

2.5.2 Total Sum-Rate Maximum

Let RΣ = R1 +R2 denote the bidirectional sum-rate and let Rtot = R1 +R2 +RR specify
the total sum-rate, which includes the additional relay rate. The optimization problem for
the total sum-rate maximum for a time division parameter α is given by

R∗
tot := max

[R1,R2,RR]∈RPiggy(α)
R1 +R2 +RR

= max
[R1,R2]∈RBR(α)

R1 +R2 +RR(R1, R2). (2.59)

For the characterization of the total sum-rate maximum R∗
tot in Theorem 2.48 we need the

following lemma and proposition. In Lemma 2.46 we first characterize the bidirectional
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rate pair [R1, R2] with a fixed bidirectional sum-rate RΣ = R1 + R2 which maximizes
the additional relay rate RR(R1, R2). Then with Proposition 2.47 we explicitly identify the
optimal rate pair. In the next subsection we present an explicit discussion and some helpful
illustrations of the following results for the equal time division case.

Lemma 2.46. Given a feasible bidirectional sum-rate RΣ, which means that at least one

feasible rate pair [R1, R2] ∈ RBR(α) with R1 +R2 = RΣ exists, then there are R⊲
1 and R⊳

1

so that for all R1 with R⊲
1 ≤ R1 ≤ R⊳

1 we have [R1, RΣ−R1] ∈ RBR(α). Furthermore, the

maximal achievable additional relay rate for the desired bidirectional sum-rate RΣ is given

by

Rmax
R (RΣ) := max

[R1,R2]∈RBR(α),
R1+R2=RΣ

RR(R1, R2)

=







(1 − α) log
(

|h1h2|γ̂ − 2
RΣ

2(1−α)

)

− 1
2RΣ, if R⊲

1 ≤ R⋆
1 ≤ R⊳

1, (2.60a)

(1 − α) log
(

|h2|2(γ̂ − 1
|h1|2

2
RΣ−R⊲

1
1−α )

)

−R⊲
1, if R⋆

1 < R⊲
1, (2.60b)

(1 − α) log
(

|h1|2(γ̂ − 1
|h2|2

2
R⊳

1
1−α )

)

−RΣ +R⊳
1, if R⋆

1 > R⊳
1 (2.60c)

with R⋆
1 := 1

2RΣ − 1−α
2 R†, R† := log |h1|2

|h2|2
, and γ̂ := γR + 1

|h1|2
+ 1

|h2|2
. The additional

relay rate maximum Rmax
R (RΣ) is attained at the bidirectional rate pair

[R1(RΣ), R2(RΣ)] =







[R⋆
1, RΣ −R⋆

1], if R⊲
1 ≤ R⋆

1 ≤ R⊳
1,

[R⊲
1, RΣ −R⊲

1], if R⋆
1 < R⊲

1,

[R⊳
1, RΣ −R⊳

1], if R⋆
1 > R⊳

1.

(2.61)

Proof. The proof can be found in Appendix 2.8.29.

The lemma characterizes for any bidirectional sum-rate RΣ the maximal achievable addi-
tional relay rate Rmax

R (RΣ) and the corresponding rate pair [R1(RΣ), R2(RΣ)] ∈ RBR(α)
with R1(RΣ) + R2(RΣ) = RΣ. This allows us to rewrite the total sum-rate maximum
problem (2.59) as follows

R∗
tot = max

RΣ=R1+R2
[R1,R2]∈RBR(α)

Rmax
R (RΣ) +RΣ. (2.62)

This means that for the total sum-rate optimumR∗
tot we have to find the optimal bidirectional

sum-rateR∗
Σ which maximizes the function Rtot(RΣ) := Rmax

R (RΣ)+RΣ for feasible bidi-
rectional sum-rates. For the discussion ofRtot(RΣ) we need to know howR⋆

1 of Lemma 2.46
is related to the bidirectional rate region RBR(α).
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2 Bidirectional Relay Communication using Superposition Encoding

Let RBC(γR) denote the achievable broadcast rate region for a given signal-to-noise ra-
tio γR. Then let RBC

Σ (γR), R⋆
−→
R2

(γR), and R⋆
−→
R1

(γR) denote the maximum sum-rate and

the corresponding optimal rates of RBC(γR) according to Proposition 2.2. The function
RBC

Σ (γR) is obviously bijective on the domain of non-negative γR and the range of non-
negative bidirectional sum-rates. Thus, there exists a unique inverse function γBC

R (RΣ) with
RBC

Σ (γBC
R (RΣ)) = RΣ for all feasible bidirectional sum-rates. Accordingly, we can define

R⋆
−→
R2

(γR) and R⋆
−→
R1

(γR) in terms of RΣ as follows

R⋆
−→
R2

(RΣ) := R⋆
−→
R2

(γBC
R (RΣ)) and R⋆

−→
R1

(RΣ) := R⋆
−→
R1

(γBC
R (RΣ))

with R⋆
−→
R2

(RΣ) +R⋆
−→
R1

(RΣ) = RΣ as well as the corresponding broadcast rate region

RBC(RΣ) := RBC(γBC
R (RΣ)).

For a bidirectional rate pair [R1, R2] ∈ RBR(α) = αCMAC ∩ (1 − α)RBC with sum-rate
R1 +R2 = RΣ we have [ R1

1−α ,
R2

1−α ] ∈ RBC so that the relay signal-to-noise ratio γR has to

be larger or equal to γBC
R ( RΣ

1−α). The next proposition shows that R⋆
1 of Lemma 2.46 for a

feasible bidirectional sum-rateRΣ specifies the first sum-rate optimal rate (1−α)R⋆
−→
R2

(
RΣ
1−α

)

of a corresponding scaled BC rate region (1 − α)RBC

(
RΣ
1−α

)
according to (2.10b) if RΣ

(respectively γR) is large enough, which means that we have β⋆ ∈ [0, 1].

Proposition 2.47. The sum-rate optimal rate pair with sum-rate RΣ of the broadcast rate

region (1 − α)RBC( RΣ
1−α) is given by the vector-valued function

R⋆
BC : R+ → R2

+, RΣ 7→







[R⋆
1(RΣ), R⋆

2(RΣ)], if RΣ ≥ (1 − α)|R†|, (2.63a)

[RΣ, 0], if RΣ < −(1 − α)R†, (2.63b)

[0, RΣ], if RΣ < (1 − α)R†, (2.63c)

with R⋆
1(RΣ) = 1

2RΣ − 1−α
2 R†, R⋆

2(RΣ) := 1
2RΣ + 1−α

2 R†, and R† = log |h1|2

|h2|2
.

Proof. The proof can be found in Appendix 2.8.30.

The function RBC(RΣ) of Proposition 2.47 defines for any bidirectional sum-rate RΣ the
unique sum-rate optimal rate pair of the rate region (1−α)RBC( RΣ

1−α) of the BC phase. This
allows us to identify for a desired bidirectional sum-rate RΣ the rate pair where the maximal
additional relay rateRmax

R (RΣ) is attained, cf. (2.61) of Lemma 2.46, explicity. With this we
can characterize the total sum-rate maximum for a desired bidirectional sum-rate, Rtot(RΣ).
Let us assume that the sum-rate RΣ is feasible, which means that there exists at least one
bidirectional rate pair with the desired sum-rate so that the intersection of RBR(α) with the
graph GfRΣ

of the function fRΣ
: [0, RΣ] → [0, RΣ] with R1 7→ RΣ − R1 is non-empty.

Then, we have to distinguish between the following cases:

82



2.5 Piggyback a Common Relay Message

1. The maximal additional relay rate Rmax
R (RΣ) is attained at [R⋆

1(RΣ), R⋆
2(RΣ)]

if the intersection point between fRΣ
(R1) and R⋆

BC(RΣ) is achievable, i.e.
[R⋆

1(RΣ), R⋆
2(RΣ)] ∈ RBR(α). Then with (2.60a) the total sum-rate can be expressed

as

Rtot(RΣ) = Rmax
R (RΣ)+RΣ = (1−α) log

(

2
RΣ

2(1−α)
(
|h1h2|γ̂−2

RΣ
2(1−α)

))

. (2.64a)

2. Otherwise, if we have [R⋆
1(RΣ), R⋆

2(RΣ)] /∈ RBR(α) for a feasible bidirectional sum-
rate RΣ, we have to characterize R⊲

1 and R⊳
1 from the intersection of RBR(α) with the

graph GfRΣ
.

a) If RΣ < min{(1 − α)R†, αR−→
2R

}, we have R⊲
1 = 0 and R⋆

1(RΣ) < R⊲
1. There-

fore, the maximal additional relay rate Rmax
R (RΣ) is attained at R⋆

BC(RΣ) =
[0, RΣ] ∈ RBR(α). Then with (2.60b) the total sum-rate can be expressed as

Rtot(RΣ) = (1 − α) log
(
|h2|2

|h1|2
2

RΣ
1−α
(
γ̂|h1|2 − 2

RΣ
1−α
))

. (2.64b)

b) If RΣ > min{αR−→
2R
, 2αR−→

2R
− (1 − α)R†} ⇔ RΣ > αR−→

2R
∧ R⋆

1(RΣ) <
RΣ − αR−→

2R
, the line fRΣ

(R1) intersects the individual MAC rate constraint
αR−→

2R
so that we have R⊲

1 = RΣ − αR−→
2R

and R⋆
1(RΣ) < R⊲

1. Accordingly,
the maximal additional relay rate Rmax

R (RΣ) is attained at [R⊲
1, RΣ − R⊲

1] =
[RΣ − αR−→

2R
, αR−→

2R
] ∈ RBR(α). Then with (2.60b) the total sum-rate can be

expressed as

Rtot(RΣ) = (1 − α) log
(
|h2|2

|h1|2
2

α
1−α

R−→
2R
(
γ̂|h1|2 − 2

α
1−α

R−→
2R
))

. (2.64c)

c) If RΣ < min{−(1 − α)R†, αR−→
1R

}, we have R⊳
1 = RΣ and R⋆

1(RΣ) >
R⊳

1. Therefore, the maximum additional relay rate Rmax
R (RΣ) is attained at

R⋆
BC(RΣ) = [RΣ, 0] ∈ RBR(α). Then with (2.60c) the total sum-rate can

be expressed as

Rtot(RΣ) = (1 − α) log
(
|h1|2

|h2|2
2

RΣ
1−α
(
γ̂|h2|2 − 2

RΣ
1−α
))

. (2.64d)

d) If RΣ > min{αR−→
1R
, 2αR−→

1R
+ (1 − α)R†} ⇔ RΣ > αR−→

1R
∧ R⋆

2(RΣ) <
RΣ−αR−→

1R
, the line fRΣ

(R1) intersects the individual MAC rate constraint αR−→
1R

so that we haveR⊳
1 = RΣ−αR−→

1R
andR⋆

1(RΣ) > R⊳
1. Accordingly, the maximal

additional relay rate Rmax
R (RΣ) is attained at [R⊳

1, RΣ − R⊳
1] = [αR−→

1R
, RΣ −

αR−→
1R

] ∈ RBR(α). Then with (2.60c) the total sum-rate can be expressed as

Rtot(RΣ) = (1 − α) log
(
|h1|2

|h2|2
2

α
1−α

R−→
1R
(
γ̂|h2|2 − 2

α
1−α

R−→
1R
))

. (2.64e)
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Note that if we have R† < 0 ⇔ |h1|2 < |h2|2, the case 2. a) is not possible. If the other
cases occur depend on the scenario specific parameters. Similarly, we can a priori exclude
the case 2.c) if we have R† > 0 ⇔ |h1|2 < |h2|2.

We have now specified the total sum-rate for any feasible bidirectional sum-rate. There-
with, we can define section-wise a function Rtot(RΣ) on the range [0, Rmax

Σ ], where Rmax
Σ

denotes the maximal feasible bidirectional sum-rate. This allows us to characterize in the
next theorem the bidirectional rate pair [Ropt

1 , Ropt
2 ] where the total sum-rate maximum R∗

tot

according to (2.62) is achieved.

Theorem 2.48. For a given time division parameter α ∈ [0, 1] the total sum-rate maximum

R∗
tot of the rate region RPiggy(α) is attained at the bidirectional rate pair [Ropt

1 , Ropt
2 ] where

the function R⋆
BC(RΣ) intersects the boundary of the bidirectional rate region RBR(α).

Proof. The proof can be found in Appendix 2.8.31.

From the proof of the theorem and from the (2.64c) and (2.64e) we see that for the cases
2. b) and 2. d) the total sum-rate remains constant for a range of large bidirectional sum-
rates, Ropt

1 + Ropt
2 ≤ RΣ ≤ Rmax

Σ . This means that we can interchange additional relay
rate for bidirectional sum-rate without losing total sum-rate optimality. The next corollary
records this observation and states that such an interchange between additional relay rate and
bidirectional rate exists not only for the total sum-rate maximum.

Corollary 2.49. For any sum-rate RΣ ≤ Ropt
1 + Ropt

2 with the rate pair [R⋆
1, R

⋆
2] :=

[R⋆
1(RΣ), R⋆

2(RΣ)] = [12RΣ − 1−α
2 R†, 1

2RΣ + 1−α
2 R†] the rate tuples

[R1, R2, RR] = [R⋆
1 +R¬, R

⋆
2, RR(R⋆

1 +R¬, R
⋆
2)]

with R¬ ≥ 0 and [R⋆
1 +R¬, R

⋆
2] ∈ RBR(α) and

[R1, R2, RR] = [R⋆
1, R

⋆
2 +R­, RR(R⋆

1, R
⋆
2 +R­)]

with R­ ≥ 0 and [R⋆
1, R

⋆
2 +R­] ∈ RBR(α) achieve the same total sum-rate.

Proof. The proof can be found in Appendix 2.8.32.

The corollary characterizes the bidirectional rate pairs where the total sum-rate remains con-
stant. For a bidirectional sum-rate RΣ ≤ Ropt

1 + Ropt
2 there exists the rate pair [R⋆

1, R
⋆
2]

which determines the rate pairs where the total sum-rate remains constant. Then the corollary
states that we can either increase R1 or R2. For a constant total sum-rate this means that if
we increase one bidirectional rate, we equally decrease the relay multicast rate. Thereby, the
interchange range follows from the condition that the bidirectional rate pairs [R⋆

1 +R¬, R
⋆
2]
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or [R⋆
1, R

⋆
2 + R­] have to be within RBR(α) with appropriate R¬, R­ ≥ 0. However, if

we increase both bidirectional rates we know from Theorem 2.48 that we increase the total
sum-rate. At the total sum-rate optimum R∗

tot there may no interchange or interchange with
only one bidirectional rate possible. For a better understanding we briefly discuss the low
and high bidirectional sum-rate cases next.

For low sum-ratesRΣ where we haveR⋆
1(RΣ)+R⋆

2(RΣ) < |R†| we have a negativeR⋆
1(RΣ)

iff |h1|2 < |h2|2 and a negative R⋆
2(RΣ) iff |h2|2 < |h1|2. If R⋆

1(RΣ) < 0 we can only
interchange relay rate in the direction R1 since for any rate R­ ≥ 0 the rate pair [R⋆

1, R
⋆
2 +

R­] /∈ RBR(α). Furthermore, for a rate pair within the bidirectional rate region we need
R¬ ≥ R⋆

1. Similarly, we can interchange relay rate in the direction R2 only if R⋆
2(RΣ) is

negative.

If we have [R⋆
1(R

max
Σ ), R⋆

2(R
max
Σ )] ∈ RBR(α), the rate pair achieves the bidirectional sum-

rate maximum R⋆
1(R

max
Σ ) +R⋆

2(R
max
Σ ) = Rmax

Σ , which means that the rate pair is also bidi-
rectional sum-rate optimal. We see that this is the case iff the intersection point of the func-
tion RBC(RΣ) with the boundary of RBR(α) coincides with the intersection of RBC(RΣ)
with the boundary of (1 − α)RBC or the sum-rate constraint of the MAC region αRMAC.
Since the rate pair characterizes a sum-rate optimum of a BC rate region it follows that in
this case no interchange without loosing total sum-rate optimality is possible. In the next
subsection we elaborate the combinatorial discussion on the previous results.

2.5.3 Combinatorial Discussion and Working Examples

In this section we present some combinatorial discussions of the achievable rate region using
the previous results. We start with an explicit study of the equal time division case. After
that we fix the additional relay rate and look for achievable bidirectional rate pairs. Then we
discuss the total sum-rate maximum with respect to the time division parameter α. Finally,
we compare the achievable rate regions with the achievable rate region of a simple TDMA
approach which realizes the same routing tasks.

Equal Time Division

For the equal time division case we can explicitly express the total sum-rate optimal rate pairs
and describe the possible rate trade-offs. The explicit characterization of the combinatorial
results leads to simple arithmetical problems. Because of the symmetry we do the discussion
for case |h1|2 ≥ |h2|2. We first specify the combinatorial cases for which we characterize the
total sum-rate optimality ranges. If we interchange the indices 1 and 2 an analog discussion
gives the results for the case |h1|2 ≤ |h2|2.
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Figure 2.13: For |h1|2 ≥ |h2|2 we can distinguish between four possible cases where
R⋆

BC(γR) (solid line) intersects the boundary of 1/2CMAC (dashed line). Ad-
ditionally, we depicted broadcast rate regions of selected relay powers (dashed-
dotted line). The cases are specified by the intersection points �, �, ♦, and ◦,
where the function R⋆

BC(γR) intersects the two individual rate constraints and
the sum-rate constraint of the MAC region. For the intersection of the first in-
dividual rate constraint we additionally have to differentiate whether in the BC
phase the unidirectional communication is sum-rate optimal. This is the case
if the rate pair � is not achievable in the MAC phase, i.e. � /∈ 1/2CMAC. Fi-
nally, the rate pairs ▽ and △ denote the vertices of the MAC region 1/2CMAC

respectively.
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2.5 Piggyback a Common Relay Message

For |h1|2 ≥ |h2|2 we have R† ≥ 0 so that there are four cases where and how the function
R⋆

BC(RΣ) intersects the boundary of the MAC rate region 1
2CMAC. The four cases depend

on the channel realizations and power constraints of nodes 1 and 2. In Figure 2.13 we depict
the cases for four representative examples with some characteristic rate pairs. In accordance
to that we can characterize the four cases as follow:

UL (upper left): The function R⋆
BC(RΣ) intersects the individual rate constraint 1

2R−→
2R

for

the case (2.63c) ⇔ 1
2R−→

2R
< 1

2R
† ⇔ γ2 >

|h1|2

|h2|2
( 1
|h2|2

− 1
|h1|2

).

UR (upper right): The function R⋆
BC(RΣ) intersects the individual rate constraint 1

2R−→
2R

for the case (2.63a) ⇔ 1
2R−→

2R
≥ 1

2R
† ∧ 1

2R−→
2R

− 1
2R

† ≤ 1
2R

2Σ
1 = 1

2(RMAC
Σ −R−→

2R
).

LL (lower left): The function R⋆
BC(RΣ) intersects the individual rate constraint 1

2R−→
1R

for

the case (2.63a) ⇔ 1
2R−→

2R
≥ 1

2R
† ∧ 1

2R−→
1R

+ 1
2R

† ≤ 1
2R

Σ1
2 = 1

2(RMAC
Σ −R−→

1R
).

LR (lower right): The function R⋆
BC(RΣ) intersects the sum-rate constraint 1

2R
MAC
Σ for

the case (2.63a) ⇔ 1
2R−→

2R
≥ 1

2R
† ∧ RMAC

Σ < min{2R−→
2R

−R†, 2R−→
1R

+R†}.

For the identification of the rate pair where the total sum-rate optimum R∗
tot is achieved ac-

cording Theorem 2.48 we need to know the intersection point between R⋆
BC(RΣ) and the

boundary of RBReq. If the intersection point with the boundary of the MAC rate region
1
2CMAC is within 1

2RBC it coincides with the intersection point with the boundary of RBReq.
Otherwise, we find the intersection point on the boundary of the rate region 1

2RBC, which is
given by [12R

⋆
−→
R2
, 1

2R
⋆
−→
R1

] according to Proposition 2.2. As a consequence, we have to charac-

terize for each of the previous cases the condition that the intersection point is within the BC
rate region. This is the case iff

UL: 1
2R−→

R1
(1) ≥ 1

2R−→
2R

⇔ γR ≥ |h2|2

|h1|2
γ2,

UR: 1
2R−→

R1
(1 − β⋆) ≥ 1

2R−→
2R

⇔ γR ≥ γ2R
R with γ2R

R = γ1|h1|2

(1+γ2|h2|2)|h2|2
+ γ2

|h2|2

|h1|2
,

LL: 1
2R−→

R2
(β⋆) ≥ 1

2R−→
1R

⇔ γR ≥ γ1R
R with γ1R

R = γ2|h2|2

(1+γ1|h1|2)|h1|2
+ γ1

|h1|2

|h2|2
,

LR: 1
2R

BC
Σ ≥ 1

2R
MAC
Σ ⇔ γR ≥ γΣ

R with γΣ
R = 2

√
1+γ1|h1|2+γ2|h2|2

|h1|2|h2|2
− 1

|h1|2
− 1

|h2|2
,

where we solved the conditions for γR. To sum up the discussion on the intersection point
for the equal time division case with |h1|2 ≥ |h2|2 we now explicitly characterize the total
sum-rate optimal rate pair according to Theorem 2.48 using the previous case definitions as
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2 Bidirectional Relay Communication using Superposition Encoding

follows

[Ropt
1 , Ropt

2 ] =







[0, 1
2R−→

R1
(1)], UL with γR < |h2|2

|h1|2
γ2, (2.65a)

[0, 1
2R−→

2R
], UL with γR ≥ |h2|2

|h1|2
γ2, (2.65b)

[12R−→
2R

− 1
2R

†, 1
2R−→

2R
], UR with γR ≥ γ12

R , (2.65c)

[12R−→
1R
, 1

2R−→
2R

+ 1
2R

†], LL with γR ≥ γ21
R , (2.65d)

[12R
MAC
Σ − 1

4R
†, 1

2R
MAC
Σ + 1

4R
†], LR with γR ≥ γΣ

R , (2.65e)

[12R−→
R2

(β⋆), 1
2R−→

R1
(β⋆)], else. (2.65f)

Then the total sum-rate optimal relay rate RR results from (2.58) accordingly. Since UL is
the case where [R⋆

1(RΣ), R⋆
2(RΣ)] /∈ 1

2CMAC for any RΣ, for the cases (2.65a) and (2.65b)
we have a total sum-rate optimal bidirectional rate pair with R1 = 0. This means that for the
case UL there exists a unidirectional rate allocation which is total sum-rate optimal.

According to Corollary 2.49 in some cases we can increase one bidirectional rate by de-
creasing the relay rate. Therefore, we need that [Ropt

1 + R¬, R
opt
2 ] for any R¬ > 0 or

[Ropt
1 , Ropt

2 + R­] for any R­ > 0 is within RBReq. This is impossible if the intersection
point is on the boundary of the BC rate region, which corresponds to the cases (2.65a) and
(2.65f), or the intersection is specified by the sum-rate constraint 1/2RMAC

Σ of the MAC rate
region 1/2CMAC, which corresponds to the case (2.65e). In all these cases we cannot further
increase the bidirectional sum-rate, which obviously implies that we cannot increase one
bidirectional rate. As a consequence it follows that in the cases (2.65a), (2.65e), and (2.65f)
the total sum-rate rate pair is unique so that we can say that no interchange is possible without
loosing total sum-rate optimality.

Moreover, for the cases (2.65a) and (2.65f) the intersection point is on the boundary of the
BC rate region so that we have β1 +β2 = 1 and it follows that the additional relay rate RR is
equal to zero. This means that if γR is small enough the intersection point with the boundary
of RBReq coincides with the intersection of the boundary of the BC rate region 1

2RBC. For
that reason we can say that at low signal-to-noise ratios γR it is total sum-rate optimal not to
have an additional relay multicast communication. Furthermore, if the signal-to-noise ratio
γR is that small that the case (2.65a) applies, we can only achieve the total sum-rate with
rates R1 = 0 and RR = 0. This means in this case it is also necessary for total sum-rate
optimality to have a relay communication in one direction only.

In the case (2.65b) the unidirectional relay communication is total sum-rate optimal as well,
however we have a positive additional relay rate RR. From Corollary 2.49 we know that for
any interchange rateR¬ ≥ 0 with [R¬,

1
2R−→

2R
] ∈ RBReq we can interchange relay rateRR =

RR(R¬,
1
2R−→

2R
) with bidirectional rate R1 = R¬ without loosing total sum-rate optimality,

which means that we have R¬ + 1
2R−→

2R
+ RR(R¬,

1
2R−→

2R
) = R∗

tot = const. Obviously, we
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2.5 Piggyback a Common Relay Message

need that RR(R¬,
1
2R−→

2R
) ≥ 0 is satisfied. The maximum relay rate for the total sum-rate

optimum is attained at the bidirectional rate pair of the intersection point [0, 1
2R−→

2R
]. Since we

have RR(R¬,
1
2R−→

2R
) = RR(0, 1

2R−→
2R

) − R¬ it follows that we can increase R¬ at most up

to the maximum relay rate RR(0, 1
2R−→

2R
). Furthermore, since [R¬,

1
2R−→

2R
] has to be feasible,

we can increase R1 at most up to maximum rate 1
2R

2Σ
1 , if ν2Σ ∈ RBC. To sum this up,

for the case (2.65b) the total sum-rate optimality range with an interchange rate R¬ can be
expressed as

[R1, R2,RR] = [R¬,
1
2R−→

2R
, RR(R¬,

1
2R−→

2R
)]

R¬ ∈
[
0,min{RR(0, 1

2R−→
2R

),
1

2
R2Σ

1 }
]
.

(2.66)

In the case (2.65c) with R¬ ≥ 0 we can interchange relay rate RR = RR(1
2R−→

2R
− 1

2R
† +

R¬,
1
2R−→

2R
) with bidirectional rate R1 = 1

2R−→
2R

− 1
2R

† + R¬ as well. As before we need a

non-negative relay rate RR(1
2R−→

2R
− 1

2R
† + R¬,

1
2R−→

2R
) ≥ 0 and R1 ≤ 1

2R
2Σ
1 . Then with

similar arguments it follows that for the case (2.65c) the total sum-rate optimality range with
an interchange rate R¬ can be expressed as

[R1, R2, RR] =
[

1
2R−→

2R
− 1

2R
† +R¬,

1
2R−→

2R
, RR(1

2R−→
2R

− 1
2R

† +R¬,
1
2R−→

2R
)
]

R¬ ∈
[
0,min{RR(1

2R−→
2R

− 1
2R

†, 1
2R−→

2R
),

1

2
R2Σ

1 − 1
2R−→

2R
+ 1

2R
†}
]
.

(2.67)

Finally, in the case (2.65d) with R­ ≥ 0 we can interchange relay rate RR =
RR(1

2R−→
1R
, 1

2R−→
1R

+ 1
2R

† + R­) with bidirectional rate R2 = 1
2R−→

1R
+ 1

2R
† + R­. For

this case we need again RR(1
2R−→

1R
, 1

2R−→
1R

+ 1
2R

† +R­) ≥ 0 and R2 ≤ 1
2R

Σ1
2 . Similarly as

before, it follows that for the case (2.65d) the total sum-rate optimality range with arbitrary
interchange rate R­ can be expressed as

[R1, R2, RR] =
[

1
2R−→

1R
, 1

2R−→
1R

+ 1
2R

† +R­, RR(1
2R−→

1R
, 1

2R−→
1R

+ 1
2R

† +R­)
]

R­ ∈
[
0,min{RR(1

2R−→
1R
, 1

2R−→
1R

+ 1
2R

†), 1
2R

Σ1
2 − 1

2R−→
2R

− 1
2R

†}
]
.

(2.68)

In Figure 2.14 we illustrate the total sum-rate Rtot(R1, R2) with respect to the bidirectional
rate pairs [R1, R2] ∈ RBReq for the four different cases. The result of Corollary 2.49 is
shown by some contour lines. It shows that the total sum-rate optimum is attained at the
intersection of R⋆

BC(RΣ) with the boundary of RBReq. Furthermore, we see that if the inter-
section point lies on one individual rate constraint of the MAC region, there is an optimality
range where we can interchange relay rate with bidirectional rate in one direction without
loosing total sum-rate optimality.
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Figure 2.14: For |h1|2 ≥ |h2|2 and equal time division, α = 1/2, we see the total sum-rate
Rtot(R1, R2) for [R1, R2] ∈ RBReq for the four possible cases where R⋆

BC(γR)
intersects the boundary of 1

2CMAC. The total sum-rate contour lines illustrate
the interchange property between the additional relay rate and one bidirectional
rate. Moreover, we see that the total sum-rate optimum is unique in the lower
right figure only. In the upper figures we can interchangeRR withR1 and in the
lower left figure we can interchange RR with R2 without loosing total sum-rate
optimality.
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Desired Relay Rate

The explicit knowledge about the optimal rate pairs and the optimality ranges allows us to
change the point of view and characterize for a desired relay rate RR the bidirectional rate
pair [R1(RR), R2(RR)] ∈ RBR(α) which maximizes the bidirectional sum-rate,

RΣ(RR) := max
[R1,R2]∈RBR(α)
RR(R1,R2)=RR

R1 +R2.

This means we have RΣ(RR) = R1(RR) + R2(RR). Again we present the results for
the case |h1|2 ≥ |h2|2. For the case |h2|2 ≥ |h1|2 the optimal bidirectional rate pair in a
permuted order, i.e. [R2(RR), R1(RR)], follows immediately by interchanging the indices 1
and 2. However, this time we do the combinatorial discussion for an arbitrary but fixed time
division parameter α ∈ [0, 1].

With increasing bidirectional rates the parameter βR decreases. It follows that the relay
rate RR decreases with increasing bidirectional rates so that the desired relay rate is obvi-
ously bounded by the maximal possible relay rate Rmax

R := RR(0, 0). At high relay rates,
where we have RR ≥ RR(Ropt

1 , Ropt
2 ), the optimal bidirectional rate pairs are specified

by the function R⋆
BC(RΣ). For lower desired relay rates in some cases we can addition-

ally apply Corollary 2.49 to increase the bidirectional rate sum-rate of the intersection point
[Ropt

1 , Ropt
2 ] while the total sum-rate remains constant. In the following we discuss the cases

in more detail.

First we look at the case (2.63c) where the BC sum-rate optimal rate pair is on the R2-axis.
This means that we consider relay rates larger than RR(0,min{(1 − α)R†, αR−→

2R
}). Since

we have R1(RR) = 0 for such relay rates, it follows that RΣ = R2(RR) ≤ min{(1 −
α)R†, αR−→

2R
}. We get R2(RR) if we solve (2.60b) with R⊲

1 = 0 for RΣ. This gives us

[R1(RR), R2(RR)] =
[

0, (1 − α) log
(

|h1|2(γ̂ − 2
1

1−α
RR

|h2|2
)
)]

.

Next we consider relay rates for the case (2.63a) where the optimal bidirectional rate pair
[R⋆

1(RΣ), R⋆
2(RΣ)] is achievable, i.e. [R⋆

1(RΣ), R⋆
2(RΣ)] ∈ RBR(α). This means we con-

sider relay rates RR ∈ [RR(Ropt
1 , Ropt

2 ), RR(0, (1 − α)R†)). This interval may be empty if
the BC sum-rate optimal rate pair is on the R2-axis, i.e. Ropt

1 = 0. If the interval in non-
empty it follows from (2.63a) that [R1(RR), R2(RR)] = [12RΣ − 1−α

2 R†, 1
2RΣ + 1−α

2 R†]
where we get the sum-rate RΣ if we solve (2.60a) for RΣ. This gives us

[R1(RR), R2(RR)] =
[

(1 − α) log
(

|h2|2γ̂

2
RR

2(1−α) +1

)

, (1 − α) log
(

|h1|2γ̂

2
RR

2(1−α) +1

)]

.
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For a large signal-to-noise ratio γR we have (1 − α)[R⋆
−→
R2
, R⋆

−→
R1

] /∈ RBR(α) so that

[Ropt
1 , Ropt

2 ] is on the boundary of αCMAC. In some cases we can apply Corollary 2.49
to increase the bidirectional sum-rate for a certain range of relay rate until the MAC sum-
rate constraint restricts the interchange of relay rate with bidirectional rate. According to
Corollary 2.49 an interchange is possible with one bidirectional rate only. For the following
case study we again distinguish between the cases where R⋆

BC(RΣ) intersects the boundary
of αCMAC.

For the case (2.63c), where R⋆
BC(RΣ) intersects the boundary of RBR(α) at the rate pair

[Ropt
1 , Ropt

2 ] = [0, αR−→
2R

], we have αR−→
2R
< (1−α)R†. By the way if this holds, the previous

considered case does not occur, i.e. [R⋆
1(RΣ), R⋆

2(RΣ)] /∈ RBR(α) for all RΣ. In this case
we are looking for relay rates which are achievable with bidirectional rate pairs [R1, αR−→

2R
] ∈

RBR(α) where the total sum-rate remains constant according to the interchange property of
Corollary 2.49. The largest relay rate is achieved at R1 = 0 and the smallest relay rate is
either 0 or it is attained at the vertex αν2Σ. This means that we consider relay rates RR ∈
[max{0, RR(0, αR−→

2R
) − αR2Σ

1 }, RR(0, αR−→
2R

)). Then the corresponding bidirectional rate
pair with the largest bidirectional sum-rate for those relay rates RR is given by

[R1(RR), R2(RR)] = [RR(0, αR−→
2R

) −RR, αR−→
2R

].

If we have RR(0, αR−→
2R

) > αR2Σ
1 , the interchange of relay rate and bidirectional rate is

limited by the sum-rate constraint of the MAC phase. Therefore, for smaller relay rates
RR < RR(0, αR−→

2R
)−αR2Σ

1 at most a maximal bidirectional sum-rateαRMAC
Σ is achievable,

e.g. by the vertex αν2Σ.

Next we consider the case αR−→
2R

≥ (1 − α)R† so that the function R⋆
BC(RΣ) given by

(2.63a) intersects the boundary of RBR(α) at the rate pair [Ropt
1 , Ropt

2 ] = [αR−→
2R

− (1 −
α)R†, αR−→

2R
]. In this case we look for non-negative relay rates which are achievable with

bidirectional rate pairs given by [Ropt
1 , Ropt

2 ] and the vertex αν2Σ where the total sum-rate
remains constant according to the interchange property of Corollary 2.49. This means that we
consider relay rates RR ∈ [max{0, RR(Ropt

1 , Ropt
2 ) − (αR2Σ

1 − Ropt
1 )}, RR(Ropt

1 , Ropt
2 )).

Then the corresponding bidirectional rate pair with the largest bidirectional sum-rate for
those relay rates RR is given by

[R1(RR), R2(RR)] = [Ropt
1 + (RR(Ropt

1 , Ropt
2 ) −RR), Ropt

2 ].

If we have RR(Ropt
1 , Ropt

2 ) > αR2Σ
1 − Ropt

1 , the interchange of relay rate and bidirectional
rate is again limited by the sum-rate constraint of the MAC phase. It similarly follows that for
smaller relay rates RR < RR(Ropt

1 , Ropt
2 )− (αR2Σ

1 −Ropt
1 ) at most a maximal bidirectional

sum-rate αRMAC
Σ is achievable, e.g. by the vertex αν2Σ.

Similar arguments apply for the case where the function R⋆
BC(RΣ) given by (2.63a) inter-

sects the boundary of RBR(α) at a rate pair [Ropt
1 , Ropt

2 ] = [αR−→
1R
, αR−→

1R
+ (1 − α)R†]. In
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this case we look for non-negative relay rates which are achievable with bidirectional rate
pairs [Ropt

1 , Ropt
2 ] and the vertex ανΣ1 where the total sum-rate remains constant accord-

ing to the interchange property of Corollary 2.49. This means that we consider relay rates
RR ∈ [max{0, RR(Ropt

1 , Ropt
2 )− (αRΣ1

2 −Ropt
2 )}, RR(Ropt

1 , Ropt
2 )). Then the correspond-

ing bidirectional rate pair with the largest bidirectional sum-rate for those relay rates RR is
given by

[R1(RR), R2(RR)] = [Ropt
1 , Ropt

2 + (RR(Ropt
1 , Ropt

2 ) −RR)].

If we have RR(Ropt
1 , Ropt

2 ) > αRΣ1
2 − Ropt

2 , the interchange of relay rate and bidirectional
rate is again limited by the sum-rate constraint of the MAC phase. It similarly follows that for
smaller relay rates RR < RR(Ropt

1 , Ropt
2 )− (αRΣ1

2 −Ropt
2 ) at most a maximal bidirectional

sum-rate αRMAC
Σ is achievable, e.g. by the vertex ανΣ1.

Finally, if R⋆
BC(RΣ) intersects the boundary of RBR(α) defined by the MAC sum-rate con-

straint, i.e. we have [Ropt
1 , Ropt

2 ] = [R⋆
1(R

MAC
Σ ), R⋆

2(R
MAC
Σ )], there is no interchange of re-

lay rate and bidirectional rate possible. It follows that for relay rates RR < RR(Ropt
1 , Ropt

2 )
bidirectional rate pairs with a sum-rate at most αRMAC

Σ are achievable, e.g. by the rate pair
[R⋆

1(R
MAC
Σ ), R⋆

2(R
MAC
Σ )].

Total Sum-Rate Maximum Discussion

Theorem 2.48 characterizes for any time division parameter α ∈ [0, 1] the rate-pair where
the total sum-rate maximum is attained. We are now interested how the total sum-rate max-
imum depends on the time division parameter α. For that goal, in this subsection we need
to extend the notation of some symbols by an additional argument to specify the time divi-
sion. Accordingly, let the function R⋆

BC(RΣ, α) denote the sum-rate optimal rate pair of a
broadcast region (1 − α)RBC( RΣ

1−α) with sum-rate equal RΣ according to Proposition 2.47.

Similarly, let R∗
tot(α) and [Ropt

1 (α), Ropt
2 (α)] denote the total sum-rate maximum and the

corresponding rate pair where the maximum is attained for a time division parameter α ac-
cording to Theorem 2.48. Since the discussion of the total sum-rate with respect to the time
division parameter α leads again to a case study, we restrict our discussion without loss of
generality to the case where we have |h1|2 ≥ |h2|2.

First we distinguish between the cases β⋆ < 0 and β⋆ ≥ 0 according to Proposition
2.2. If β⋆ < 0 we always have [R⋆

−→
R2
, R⋆

−→
R1

] = [0, R−→
R1

(1)] from which it follows that

the function R⋆
BC(RΣ, α) always intersects the boundary of RBR(α) on the R2-axis, i.e.

[Ropt
1 (α), Ropt

2 (α)] = [0,min{αR−→
2R
, (1 − α)R−→

R1
(1)}]. This means that it is always sum-

rate optimal to have a relay communication only in one direction. If we have a time di-

vision parameter α ≥ α0 :=
R−→

R1
(1)

R−→
2R

+R−→
R1

(1) , we have αR−→
2R

≥ (1 − α)R−→
R1

(1) which

means that the total sum-rate maximum achieving rate pair is on the boundary of the BC
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2 Bidirectional Relay Communication using Superposition Encoding

rate region (1 − α)RBC. This is equivalent to the fact that the broadcast sum-rate op-
timal rate pair (1 − α)[R⋆

−→
R2
, R⋆

−→
R1

] is within αCMAC. Accordingly, if α < α0 we have

(1 − α)[R⋆
−→
R2
, R⋆

−→
R1

] /∈ αCMAC so that the total sum-rate optimal rate pair is given by

[Ropt
1 (α), Ropt

2 (α)] = [0, αR−→
2R

].

On the other hand, if β⋆ ≥ 0 holds, we have [R⋆
−→
R2
, R⋆

−→
R1

] = [R−→
R2

(β⋆), R−→
R1

(1 − β⋆)] so

that it is sum-rate optimal to communicate in both directions. With an increasing time di-
vision parameter α ∈ [0, 1] we enlarge the MAC rate region αCMAC and reduce the BC
rate region (1 − α)RBC. Accordingly, for some α the broadcast sum-rate optimal rate
pair (1 − α)[R−→

R2
(β⋆), R−→

R1
(1 − β⋆)] is within αCMAC. As before, we denote the cor-

responding time division parameter by α0. For the explicit characterization we need to
distinguish between the boundary sections of αCMAC where we find a rate pair which is
equal to the sum-rate optimal rate pair of (1 − α)RBC. For α ∈ [0, 1] the rate pairs
(1 − α)[R−→

R2
(β⋆), R−→

R1
(1 − β⋆)] specify a line from the origin in the first quadrant with

an angle

φBC := arctan
R−→

R1
(1 − β⋆)

R−→
R2

(β⋆)
= arctan

log(1
2 γ̂|h1|2)

log(1
2 γ̂|h2|2)

. (2.69a)

Accordingly, for α ∈ [0, 1] the vertices ανΣ1 = [αR−→
1R
, α(RMAC

Σ − R−→
1R

)] and αν2Σ =

[α(RMAC
Σ −R−→

2R
), αR−→

2R
] specify lines from the origin in the first quadrant with angles

φΣ1 : = arctan
RMAC

Σ −R−→
1R

R−→
1R

, (2.69b)

φ2Σ : = arctan
R−→

2R

RMAC
Σ −R−→

2R

(2.69c)

respectively. The growing MAC rate regions αCMAC and shrinking BC rate regions (1 −
α)RBC with increasing α and the corresponding lines of the vertices and broadcast sum-rate
optimal rate pairs are illustrated in Figure 2.15. Since the angles φΣ1, φ2Σ, and φBC do not
depend on the time division parameter, we can use the angles to identify the section of the
MAC boundary where we find the broadcast sum-rate optimal rate pair for α0.

Thus, if we have φBC ≥ φ2Σ there exists a time division parameter α0 where the sum-rate
optimal rate pair (1 − α0)[R

⋆
−→
R2
, R⋆

−→
R1

] of the BC rate region (1 − α0)RBC is on the section

of the boundary of α0CMAC which is characterized by the individual rate constraint R−→
2R

, i.e.

(1 − α0)[R
⋆
−→
R2
, R⋆

−→
R1

] ∈ {α0[R1, R−→
2R

] ∈ R2
+ : 0 ≤ R1 ≤ RMAC

Σ − R−→
2R

}. Accordingly, if

we solve (1 − α0)R
⋆
−→
R1

= α0R−→
2R

for α0 we get the time division parameter α0 =
R⋆

−→
R1

R⋆
−→
R1

+R−→
2R

for the case φBC ≥ φ2Σ.

Similarly, if we have φBC ≤ φΣ1 there exists a time division parameter α0 where the sum-
rate optimal rate pair (1−α0)[R

⋆
−→
R2
, R⋆

−→
R1

] is on the section of the boundary of αCMAC which is
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2.5 Piggyback a Common Relay Message
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Figure 2.15: The left and right figures show the increasing MAC rate regions αCMAC and
decreasing BC rate regions (1 − α)RBC for increasing α. Furthermore, we de-
picted the lines characterized by the vertices and the broadcast sum-rate optimal
rate pairs. In the right figure the function R⋆

BC(RΣ, α) for α = 0, 0.2, 0.4, 0.6,
and 0.8 (dashed lines) are additionally depicted.

characterized by the individual rate constraintR−→
1R

. Accordingly, if we solve (1−α0)R
⋆
−→
R2

=

α0R−→
1R

for α0 we get α0 =
R⋆

−→
R2

R⋆
−→
R2

+R−→
1R

for the case φBC ≤ φΣ1.

Finally, if we have φ2Σ > φBC > φΣ1 there exists a time division parameter α0 where
the sum-rate optimal rate pair of (1 − α0)RBC is also sum-rate optimal with respect to the
MAC rate region α0CMAC, i.e. the rate pair is on the section of the boundary of α0CMAC

which is characterized by the sum-rate constraint RMAC
Σ . Accordingly, if we solve (1 −

α0)(R
⋆
−→
R2

+R⋆
−→
R1

) = (1 − α0)R
BC
Σ = α0R

MAC
Σ for α0 we get α0 =

RBC
Σ

RBC
Σ +RMAC

Σ

for the case

φ2Σ > φBC > φΣ1.

In the next proposition we summarize the previous considerations and characterize the total
sum-rate optimal rate pair according to Theorem 2.48. Since φBC is greater than π

2 for
β⋆ < 0, we can merge the case β⋆ < 0 with the case β⋆ ≥ 0 and φBC > φ2Σ according to
the definition of [R⋆

−→
R2
, R⋆

−→
R1

] in Proposition 2.2.

Proposition 2.50. The sum-rate optimal rate pair (1−α)[R⋆
−→
R2
, R⋆

−→
R1

] of the broadcast region

(1 − α)RBC is within the scaled MAC rate region αCMAC and therefore within RBR(α) if
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2 Bidirectional Relay Communication using Superposition Encoding

we have a time division parameter α ∈ ABC := [α0, 1] with

α0 :=







R⋆
−→
R1

R⋆
−→
R1

+R−→
2R
, if φBC ≥ φ2Σ,

RBC
Σ

RBC
Σ +RMAC

Σ

, if φ2Σ > φBC > φΣ1,
R⋆

−→
R2

R⋆
−→
R2

+R−→
1R
, if φΣ1 ≥ φBC.

(2.70)

Then the BC sum-rate optimal pair is also sum-rate optimal with respect to the total sum-rate

R∗
tot(α). This means for α ≥ α0 that we have

[Ropt
1 (α), Ropt

2 (α)] = (1 − α)[R⋆
−→
R2
, R⋆

−→
R1

] (2.71)

with total sum-rate R∗
tot(α) = (1 − α)RBC

Σ = (1 − α)(R⋆
−→
R1

+R⋆
−→
R2

).

The total sum-rate R∗
tot(α) follows from the fact that for α ≥ α0 the total sum-rate optimal

rate pair is equal to the sum-rate optimal rate pair of (1 − α)RBC so that βR and therefore
the additional relay rate RR are equal to zero.

The set ABC = [α0, 1] denotes the set of time division parameters α where the sum-rate
optimal rate pair of the BC phase (1 − α)[R⋆

−→
R2
, R⋆

−→
R1

] is achievable in the MAC phase. Ac-

cordingly, for α ∈ A0 := [0, α0) the rate pair (1 − α)[R⋆
−→
R1
, R⋆

−→
R2

] is not achievable in the

MAC phase. Then it follows from Theorem 2.48 that the total sum-rate optimal rate pair
is attained at the rate pair where R⋆

BC(RΣ, α) intersects the boundary of RBR(α). As in
Section 2.5.3 we can distinguish between four possible intersections for |h1|2 ≥ |h2|2. For
the following characterization of the cases we first ignore the feasibility of the time division
parameters. In the proposition after it we take the feasibility into account.

1. For small time division parameters α < α1 := R†

R†+R−→
2R

the function R⋆
BC(RΣ, α)

intersects the boundary of αCMAC on theR2-axis, this means at the rate pair [0, αR−→
2R

].
Accordingly, α1 characterizes the time division parameter where we have α1R−→

2R
=

(1 − α1)R
†.

2. For time division parameters α1 ≤ α < α2 := R†

2R−→
2R

−RMAC
Σ +R† the function

R⋆
BC(RΣ, α) intersects the boundary of αCMAC characterized by the individual rate

constraint αR−→
2R

, this means at a rate pair in αR−→
2R

= {α[R1, R−→
2R

] : 0 ≤ R1 < R2Σ
1 }.

Thereby, α2 characterizes the time division parameter where R⋆
BC(RΣ, α) intersects

the boundary of αCMAC in its vertex αν2Σ. Accordingly, we get α2 if we solve
R⋆

1(α2R
MAC
Σ ) = α2

2 R
MAC
Σ − 1−α2

2 R† = α2(R
MAC
Σ −R−→

2R
) for α2.
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2.5 Piggyback a Common Relay Message

3. For time division parameters α2 ≤ α ≤ α3 := R†

RMAC
Σ −2R−→

1R
+R† the function

R⋆
BC(RΣ, α) intersects the boundary of αCMAC characterized by the sum-rate con-

straint αRMAC
Σ , this means at a rate pair in αRMAC

Σ = {α[R1, R
MAC
Σ − R1] :

R2Σ
1 ≤ R1 ≤ R−→

1R
}. Thereby, α3 characterizes the time division parameter where

R⋆
BC(RΣ, α) intersects the boundary of αCMAC in its vertex ανΣ1. Accordingly, we

get α3 if we solve R⋆
1(α3R

MAC
Σ ) = α3

2 R
MAC
Σ − 1−α3

2 R† = α3R−→
1R

for α3.

4. Finally, for large time division parameters α > α3 the function R⋆
BC(RΣ, α) intersects

the boundary of αCMAC characterized by the individual rate constraint αR−→
1R

, this

means at a rate pair in αR−→
1R

= {α[R−→
1R
, R2] : 0 ≤ R2 < RΣ1

2 }.

Since for |h1|2 ≥ |h2|2 we have R† ≥ 0. Then the parameters α2 or α3 are negative if we
have R−→

2R
+R† < R2Σ

1 or RΣ1
2 < R−→

1R
−R† respectively. Such time division parameters are

obviously not feasible. The feasible time division parameters are given by the set A0. Then
in the following proposition we show that the feasible cases are again specified by the angles
φBC, φΣ1, and φ2Σ.

Proposition 2.51. With A0 := [0, α0) let A1 := [0, α1) ∩ A0, A2 := [α1, α2) ∩ A0,

A3 := [α2, α3) ∩ A0, and A4 := A0 \
(
A1 ∪ A2 ∪ A3

)
denote the sets of feasible time

division parameters of the previous cases. Then we have

A1 6= ∅, A2,A3,A4 = ∅, if φBC > π
2 ,

A1,A2 6= ∅, A3,A4 = ∅, if π
2 ≥ φBC > φ2Σ,

A1,A2,A3 6= ∅, A4 = ∅, if φ2Σ ≥ φBC > φΣ1,

A1,A2,A3,A4 6= ∅, if φΣ1 ≥ φBC.

For a time division parameter α ∈ A0 the total sum-rate optimal rate pair

[Ropt
1 (α), Ropt

2 (α)] on the boundary of the scaled MAC region αCMAC is given by

[Ropt
1 (α), Ropt

2 (α)] =







[0, αR−→
2R

], if α ∈ A1,

[αR−→
2R

− (1 − α)R†, αR−→
2R

], if α ∈ A2,

[α
2R

MAC
Σ − 1−α

2 R†, α
2R

MAC
Σ + 1−α

2 R†], if α ∈ A3,

[αR−→
1R
, αR−→

2R
+ (1 − α)R†], if α ∈ A4,

so that we have the total sum-rate maximum

R∗
tot(α) =







(1 − α) log
(
|h2|2

|h1|2
2

α
1−α

R−→
2R
(
γ̂|h1|2 − 2

α
1−α

R−→
2R
))

, if α ∈ A1 ∪ A2,

(1 − α) log
(

2
α

2(1−α)
RMAC

Σ
(
|h1h2|γ̂ − 2

α
2(1−α)

RMAC
Σ

))

, if α ∈ A3,

(1 − α) log
(
|h1|2

|h2|2
2

α
1−α

R−→
1R
(
γ̂|h2|2 − 2

α
1−α

R−→
1R
))

, if α ∈ A4.
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Figure 2.16: The figures show parametrized curves of the total sum-rate optimal rate pairs
[Ropt

1 (α), Ropt
2 (α)] for α ∈ [0, 1] according to the four different cases for

|h1|2 ≥ |h2|2. For the upper left figure we have φBC > π
2 , for the up-

per right figure we have π
2 ≥ φBC > φ2Σ, for the lower left figure we have

φ2Σ ≥ φBC > φΣ1, and for the lower right figure we have φΣ1 ≥ φBC. Fur-
thermore, we depicted in parts αCMAC, αRBC, and R⋆

BC(RΣ, α) for α = 0.2
(solid), α = 0.4 (dashed-dotted), α = 0.6 (dashed), and α = 0.8 (dotted)
with gray lines. Additionally, we marked some characteristic optimal rate pairs
specified by (� : α = 0.2), (� : α = 0.4), (△: α = 0.6), (▽ : α = 0.8), (◦:
α = α0), (�: α = α1), (♦ : α = α2), and (I: α = α3).

98



2.5 Piggyback a Common Relay Message

Proof. The proof can be found in Appendix 2.8.33.

The parametrized curves in Figure 2.16 illustrate the optimal rate pairs [Ropt
1 (α), Ropt

2 (α)]
for time division parameters α ∈ [0, 1] for the four possible cases for |h1|2 ≥ |h2|2. For
comparison between the cases the optimal rate pairs and in parts the broadcast and multiple
access rate regions for time division parameters α = 0.2, 0.4, 0.6, and 0.8 are depicted.
Furthermore, the optimal rate pairs of the characteristic time division parameters α0, α1, α2,
and α3 are marked. In more detail, in the upper left we have the case where R† > R−→

2R
so

that we have ABC ∪ A1 = [0, 1]. It follows that we have only two sections. For α ≥ α0 we
have [Ropt

1 (α), Ropt
2 (α)] = [0, (1−α)R−→

R1
(1)] ∈ RBR(α) according to Proposition 2.50 and

for α < α0 we have [Ropt
1 (α), Ropt

2 (α)] = [0, αR−→
2R

] ∈ RBR(α) according to Proposition
2.51. In the upper right, we have A2 6= ∅ so that we additionally have the case α1 ≤ α < α0

where the optimal rate pair is given by [Ropt
1 (α), Ropt

2 (α)] = [αR−→
2R

− (1 − α)R†, αR−→
2R

]
according to Proposition 2.51. Similarly in the lower left and lower right we first additionally
have A3 6= ∅ and then A4 6= ∅ as well.

The Propositions 2.50 and 2.51 characterize for each time division parameter the correspond-
ing total sum-rateR∗

tot(α). Since the parametrized curves [Ropt
1 (α), Ropt

2 (α)] are continuous
for each case, the section-wise defined functionR∗

tot(α) is continuous as well. For α ∈ ABC

we know from Proposition 2.50 that with increasing α the total sum-rate Rtot(α) decreases
linearly. This means that for this section the total sum-rate is always maximized at α0. But
for time division parameters α ∈ A0 a closed form discussion of the total sum-rate is no
longer possible, c.f. Remark 2.4. Moreover, from numerical examples there is unfortunately
no clear behavior observable. In Figure 2.17 we depicted some representative numerical ex-
amples which should give some idea how the total sum-rate behaves with respect to the time
division parameter α. In the upper left we see that the total sum-rate maximum is attained
at α0. In the upper right the total sum-rate is attained at some α within the interval (0, α0)
and in the lower left and right it is optimal with respect to the total sum-rate to have a relay
multicast only.

From Theorem 2.48 we know that for a given time division parameter α the total sum-rate is
maximized at the bidirectional rate pair R⋆

BC(RΣ, α) ∈ RBR(α) of the largest possible bidi-
rectional sum-rate RΣ. This means that we first allocate relay power to support an efficient
bidirectional rate pair then the remaining transmit power can be used for the additional relay
communication. But since we a priori fixed the time division parameter we do not factor in
the costs of transmitting the messages to the relay node in the previous MAC phase. In the
lower left and right figure, we see that the resource costs (large fraction of time) of the MAC
phase are higher than the spectral efficiency of the bidirectional broadcast phase so that it
is total sum-rate optimal to have no bidirectional communication. However, since it was
the aim to have two routing tasks, it is questionable if such a solution is desired. Neverthe-
less, it shows that for a spectrally efficient bidirectional relaying we need enough resources
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2 Bidirectional Relay Communication using Superposition Encoding

(transmit power at nodes 1 and 2) in the MAC phase as well.

Comparison with a TDMA protocol

To demonstrate the efficiency of the proposed protocol we compare the achievable rate re-
gions of the piggyback on bidirectional relaying protocol with equal time division with a
straightforward Round Robin TDMA approach. Thereby, we assume a TDMA protocol with
five time slots of equal duration. For a fair comparison, we adapt the power constraints in the
TDMA protocol so that both protocols consume the same amount of energy. Accordingly,
in the first time slot node 1 transmits its message to the relay node with transmit power 5

2P1.
Similarly, in the second time slot node 2 transmits its message to the relay node with transmit
power 5

2P2. In the third and fourth time slot the relay node separately forwards the messages
with power 5

6PR. With the same power the relay message is transmitted to nodes 1 and 2 in
the last time slot. This give us the achievable rates for a comparable TDMA protocol

RTDMA
1 = 1

5 log
(
1 + min{5

2γ1|h1|2, 5
6γR|h2|2}

)
,

RTDMA
2 = 1

5 log
(
1 + min{5

2γ2|h2|2, 5
6γR|h1|2}

)
,

RTDMA
R = 1

5 log
(
1 + 5

6γR min{|h1|2, |h2|2}
)
.

Figure 2.18 illustrates for two scenarios the dominance of the bidirectional relaying protocol
with an additional relay multicast for the equal time division case. For both cases we see that
the achievable rate region RPiggy(1/2) is significantly larger in any direction than the achiev-
able rate region of the TDMA protocol (cuboid), which means that the entire achievable rate
region of the TDMA protocol (cuboid) is within the piggyback rate region. Accordingly,
the piggyback approach achieves higher weighted total sum-rates, which is important for
service adapted network operations. Moreover, it illustrates that the joint resource allocation
allows new advantageous rate trade-offs so that we conclude that the synergy from the joint
resource allocation of two routing tasks, multicast and bidirectional relaying, improves the
performance significantly.

Finally, for completeness we present the achievable rate regions of bidirectional relaying
with an additional relay multicast and optimal time division Ropt

Piggy of two representative
examples in Figure 2.19. Since the optimal decoding order holds for any fixed time division
parameter, it is also optimal to decode the relay message first for the optimal time division.
Unfortunately, a closed form discussion as for the fixed time division case is not possible, cf.
Remark 2.4, but we can use the equivalent characterization of the bidirectional achievable
rate region RBRopt according to Theorem 2.12 to illustrate the rate region Ropt

Piggy.
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Figure 2.17: The figures show the total sum-rate maximum R∗
tot(α) with respect to the time

division parameter α ∈ [0, 1] for the four cases for |h1|2 ≥ |h2|2. For the
upper left figure we have φBC > π

2 , for the upper right figure we have π
2 ≥

φBC > φ2Σ, for the lower left figure we have φ2Σ ≥ φBC > φΣ1, and for
the lower right figure we have φΣ1 ≥ φBC. (∗) specifies the maximum for
each case. Additionally, we marked the total sum-rates of some characteristic
time division parameters (◦: α = α0), (�: α = α1), (♦ : α = α2), and (I:
α = α3).
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Figure 2.18: Comparison of achievable rate region RPiggy(1/2) of piggyback a common relay
message on bidirectional relaying with equal time division and a TDMA proto-
col realizing the same routing task (cuboid) with the same energy consumption.
In the left figure we have at the bullet (•) a unique total sum-rate optimum; in
the right figure we can interchange rateR1 withRR along the bold line between
the the bullets without loosing total sum-rate optimality. On the contour lines
for equal additional relay rates the bidirectional sum-rate optimum is marked
by a cross (×).
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Figure 2.19: Achievable rate region Ropt
Piggy of piggyback a common message on bidirec-

tional relaying with optimal time division with the same system parameters
as in Figure 2.18. The contour lines denote achievable rate pairs for fixed
βR = 1

15 ,
2
15 , . . . , 1. The contrasting colors characterize the three sections ac-

cording to Therorem 2.12.
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2.6 Extension to Multi-Antenna Bidirectional Relaying

2.6 Extension to Multi-Antenna Bidirectional Relaying

In this section we extend the bidirectional relaying protocol with superposition encoding
to nodes equipped with multiple antennas. The leads to a multiple-input multiple-output
(MIMO) wireless system as depicted in Figure 2.20. The Gaussian vector channel was stud-
ied first by Tsybakov in [Tsy65] in 1965. The work of Teletar, Foschini and Gans have shown
in [Tel99] and [FG98] that multiple-antenna systems have the ability to reach higher trans-
mission rates than single-antenna systems. The basic idea is to exploit the spatial dimension
offered by the MIMO channel. With an appropriate processing at the transmitter and receiver
we obtain multiple subchannels, also called the channel eigenmodes, which allow data mul-
tiplexing on several substreams and lead therefore to a linear increase in capacity. On the
other hand the spatial degrees of freedom can be utilized to transmit the data signal over
multiple fading paths to increase the robustness of the transmission through diversity. Both
works have sparked an active and flourishing research area. For a comprehensive discussion
on recent results on MIMO wireless communications with large reference lists we refer to
the book [BCC+07] and the overview paper [GJJV03].

In [WZHM05] Wang, Zhang, and Host-Madsen can calculate upper and lower bounds for
the Gaussian MIMO relay channel with a full-duplex relay node by simplifying the opti-
mization over the joint distribution of the source and relay node input. Then they present
sufficient conditions when the upper and lower bound on the ergodic capacity meet in the
case of Rayleigh fading. But the spatial MIMO gains can be also obtained using multiple
relay nodes. Wittneben and Rankov propose in [WR03] the relay assisted MIMO link where
amplify-and-forward relays ensure the rich scattering requirement of MIMO systems. In
[BNOP06] Bölcskei, Nabar, Oyman, and Paulraj derive scaling laws of the network capacity
with different processing strategies at the relay nodes depending on its channel state infor-
mation. The source and destination are equipped withM antennas so that the capacity scales
linearly with M/2 in the limit of the number of half-duplex relay nodes. Moreover, there
are some other interesting works which address other important MIMO relaying aspects like
coverage extension in cellular networks [HKW06], linear processing for a multiuser MIMO
system [TCHC06], etc.

N
R

N
2

R 21
N

1

1
H

2
H

(a) MAC phase

N
R

N
2

2

T
H1

T
H

R 21
N

1

(b) BC phase

Figure 2.20: A three-node network, where the relay node, node 1, and node 2 are equipped
with NR, N1, and N2 antennas respectively.
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2 Bidirectional Relay Communication using Superposition Encoding

As before, we consider a two-phase bidirectional decode-and-forward relaying protocol
without feedback. In the multiple access phase the nodes 1 and 2 transmit their messages
with rateR1 andR2 to the relay node. We assume that the relay node decodes both messages
successfully if the rates are within the capacity region of the MAC phase. In the succeeding
broadcast phase the relay separately re-encodes the messages and transmits the superposi-
tion of the codewords. In [OB07c] we have studied the achievable rate region of such a
multi-antenna bidirectional relaying protocol. Recently, in [HKE+07] Hammerström et. al.
compare the sum-rate performance of superposition encoding and XOR precoding at the re-
lay node based on the concept of [WCK05] and [LJS05]. Since the XOR coding approach
is more power efficient, it leads to a better performance. We expect another improvement if
one uses the coding idea of Chapter 3 for the Gaussian MIMO bidirectional relay channel.

The MIMO system model is similar to the SISO case considered in Section 2.1. However,
in this section we require perfect channel knowledge available at each node. As before,
we assume a perfectly synchronized three-node network as depicted in Figure 2.20. The
relay node, nodes 1 and 2 are equipped with NR, N1, and N2 antennas respectively. Let
H1 ∈ CNR×N1 and H2 ∈ CNR×N2 characterize the discrete-time time-invariant multi-
plicative MIMO channels between the relay node and nodes 1 and 2 respectively. For sim-
plicity we assume reciprocal channels. The rank r1 = rank(H1) ≤ min{N1, NR} and
r2 = rank(H2) ≤ min{NR, N2} denote the number of spatial degree of the channels,
i.e. each non-zero eigenmode of the channel can support a data stream. The mean transmit
powers of each node are restricted by power constraints Pk, k ∈ {1, 2, R}, respectively.
Furthermore, the reception at each antenna of every node is distorted by independent addi-
tive white Gaussian noise n1,n2, and nR with equal covariance matrices σ2I = ρ−1I . A
generalization to individual and more general noise covariance matrices is straightforward.
Then after symbol-rate sampling the system equation in the MAC phase for time instants m
is given by

yR[m] = H1x1[m] + H2x2[m] + nR[m],

where yR[m] ∈ CNR denotes the received signal vector at the relay node, x1[m] ∈ CN1

and x2[m] ∈ CN2 denote the transmit signal vector of nodes 1 and 2, and nR[m] ∈ CNR

denotes the additive noise vector. Similarly, after symbol-rate sampling the system equation
in the BC phase for time instants m is given by

yk[m] = HT
k xR[m] + nk[m], k = 1, 2,

where yk[m] ∈ CNk denotes the received signal vector at node k, k = 1, 2, xR[m] ∈ CNR

denotes the transmit signal vector of the relay node, and nk[m] ∈ CNk denotes the additive
noise vector at node k, k = 1, 2.

In the following we first briefly review the optimal transmit strategies of the Gaussian MIMO
channel with CSI at the transmitter and receiver. In the next sections we summarize the
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2.6 Extension to Multi-Antenna Bidirectional Relaying

known capacity results on the Gaussian MIMO multiple access channel and present the opti-
mal transmit strategy for the Gaussian MIMO channels in the BC phase using superposition
encoding. Due to the complicated structure of the rate regions in the MIMO case the com-
binatoric cannot be given in closed form. Nevertheless, with the results presented here it
is possible to characterize the optimal transmit strategies for any rate pair using standard
methods of convex optimization. Furthermore, we will see that the achievable rate in the
high power regime scales linearly with the minimum of the fraction of time weighted spatial
degree of both MIMO channels.

MIMO Gaussian Channel

We first look at a Nt × Nr multiple-input multiple-output (MIMO) wireless point-to-point
connection where we consider a linear time-invariant multiplicative channel with additive
white Gaussian noise. We assume that the transmitter and receiver have perfect channel
knowledge for encoding and decoding. In the following, we briefly reproduce the deriva-
tion of the information capacity of the MIMO Gaussian channel as done in [Tel99, TV05].
Therefore, the vector-valued linear input-output relation can be expressed as follows

Y = HX + N

where H ∈ CNr×Nt denotes the channel matrix and the random vectors X ∈ CNt×1,
Y ∈ CNr×1, and N ∼ CN (0, σ2INr) denote the input, the output, and the complex Gaus-
sian noise of the channel respectively. As in the scalar case we assume that the noise is
independent of the input. Furthermore, we require that the input has to fulfill a mean trans-
mit power constraint E{XHX} ≤ P .

Similar to the scalar case we can define the mutual information for the vector-valued channel
as follows

I(X; Y ) := h(Y ) − h(Y |X) = h(Y ) − h(N)

where h(Y ) and h(Y |X) denote the differential entropy and conditional differential en-
tropy. The differential entropy for a continuous random vector Y defined on the support SY

with density fY (y) is defined as

h(Y ) := −
∫

SY

fY (y) log fY (y)dy.

The conditional differential entropy for continuous random vectors (Y ,X) defined on SY ×
SX with joint and conditional densities fY ,X(y,x) and fY |X(x|y) is defined as

h(Y |X) := −
∫

SY ×SX

fY ,X(y,x) log fY |X(y|x)d(y,x).
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2 Bidirectional Relay Communication using Superposition Encoding

Then Lemma 2 in [Tel99] shows that a circularly symmetric complex Gaussian14 distribu-
tion X ∼ CN (0,Q) maximizes the differential entropy with h(X) = log det(π e Q) of
complex random vectors with zero mean and covariance matrix Q. Since the noise vector
N is independent of the the input vector X we haveE{Y Y H} = HE{XXH}HH +E{NNH} = HQHH + σ2INr ,

where Q := E{XXH}. It follows that a circularly symmetric complex Gaussian distributed
input vector X ∼ CN (0,Q) maximizes the entropy h(Y ) as well.

The information capacityC is again defined as the maximal mutual information over all input
distributions. With a circularly symmetric complex Gaussian input vector X ∼ CN (0,Q)
we have

C = max
fX (x):tr(Q)≤P

I(X; Y ) = max
fX (x):tr(Q)≤P

h(Y ) − log det(π e INrσ
2)

= max
tr(Q)≤P

log det
(
π e(HQHH + INrσ

2)
)
− log det(π e INrσ

2)

= max
tr(Q)≤P

log det(INr + 1
σ2 HQHH).

Therefore, it remains to find the optimal covariance matrix Q∗ which satisfies the power
constraint tr(Q∗) ≤ P .

This convex optimization problem of finding the optimal covariance matrix can be explicitly
solved using the Lagrangian method [Tel99, BV04]. This leads to the so called water-filling

solution. In the following we briefly describe the procedure to calculate the optimal transmit
covariance matrix Q∗ according to the water-filling solution. Let

HHH = V ΣV H , with Σ := diag(λ1, λ2, . . . , λNt)

and unitary matrix V be the eigenvalue decomposition of HHH with eigenvalues sorted in
decreasing order, i.e. λ1 ≥ · · · ≥ λNt ≥ 0. Then

Q∗ = V diag(ξ1, ξ2, . . . , ξNt)V
H

with eigenvalues

ξn :=

{

max
{
ν − σ2

λn
, 0
}
, if λn 6= 0,

0, if λn = 0,

14The probability density function of a complex valued circularly symmetric (or spherically invariant) Gaussian
random vector X ∼ CN (µ, Q) of dimension N with mean µ and covariance matrix Q is given by

fX (x) =
1

πN det(Q)
e−(x−µ)HQ−1(x−µ), (2.72)

where additionally E{(X − µ)(X − µ)T } = 0 ∈ CN×N holds. This circularity condition ensures that
uncorrelated jointly Gaussian random variables are also independent[KSH00, App 3.C],[Doo53, Sec. II.3].

106



2.6 Extension to Multi-Antenna Bidirectional Relaying

where the so called water-level ν follows from the transmit power constraint

P =

Nt∑

n=1

ξn = tr(Q∗),

which is obviously fulfilled with equality for the optimal transmit covariance matrix. For the
water-filling procedure we introduce the short notation Q(HHH, P ) so that for the MIMO
Gaussian channel the optimal transmit covariance is given by

Q∗ = Q(HHH, P ).

With the optimal transmit covariance matrix Q∗ the information capacity for the MIMO
channel is given as follows

C = log det(INr + 1
σ2 HQ∗HH) =

Nr∑

n=1

log

(

1 +
λnξn
σ2

)

.

It depends on the rank of the channel matrix H and the transmit power constraint how many
eigenmodes of the channel are used. In the so called low-power regime beamforming is
optimal. This means that only the strongest eigenmode of the channel is used. Furthermore,
the case where all eigenmodes of the channel are used is called the high-power regime.

2.6.1 MIMO Multiple Access Phase

In the first phase, nodes 1 and 2 transmit their information for each other to the relay node.
The encoding and the decoding are performed as in the classical discrete-time Gaussian
MIMO MAC channel. In principle the Gaussian MIMO MAC follows from the classical
result from Ahlswede [Ahl71a] and Liao [Lia72], but many researchers have explicitly stud-
ied various interesting aspects [CV93, YRBC01, BJ02, VJG03, BW06] to mention only a
few. Since we consider memoryless channels, it is sufficient to consider single letters only.
Therefore, the vector-valued linear input-output relation can be expressed as follows

Y R = H1X1 + H2X2 + NR

where the continuous random vector Y R ∈ CNR denotes the output at the relay node,
the continuous random vector Xk ∈ CNR denotes the input from node k, k = 1, 2, and
NR ∈ CNR denotes the complex additive white Gaussian noise distributed according to
CN (0, Iσ2) at the relay node.
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2 Bidirectional Relay Communication using Superposition Encoding

Again, we assume uncorrelated sources. Then the multiple access capacity region CMIMO
MAC is

given by the convex hull of the set of rate pairs which satisfy the following individual and
sum-rate constraints

R1 ≤ I(X1; Y R|X2) = h(Y R|X2) − h(Y R|X1,X2) = h(H1X1 + NR) − h(NR),

R2 ≤ I(X2; Y R|X1) = h(Y R|X1) − h(Y R|X1,X2) = h(H2X2 + NR) − h(NR),

R1 +R2 ≤ I(X1,X2; Y R) = h(Y R) − h(Y R|X1,X2) = h(Y R) − h(NR)

for some vector input distributions fX1(x1) and fX2(x2) which satisfy the power constraintE{XH
k Xk} ≤ Pk, k = 1, 2.

Since we assume that the inputs X1, X2 and noise NR are pairwise independent, the co-
variance matrix of the output Y R can be expressed asE{Y RY H

R } = H1E{X1X
H
1 }

︸ ︷︷ ︸

:=Q1

HH
1 + H2E{X2X

H
2

︸ ︷︷ ︸
}

:=Q2

HH
2 +E{NRNH

R }
︸ ︷︷ ︸

=σ2INR

with tr(Qk) ≤ Pk, k = 1, 2, to fulfill the power constraints. Since a circularly symmet-
ric complex Gaussian vector distributed according to CN (0,H1Q1H

H
1 + H2Q2H

H
2 +

σ2INR
) maximizes the differential entropy of a random vector Y with covariance matrix

H1Q1H
H
1 + H2Q2H

H
2 + σ2INR

we have

h(H1X1 + NR) ≤ log det
(
π e(H1Q1H

H
1 + σ2INR

)
)
,

h(H2X2 + NR) ≤ log det
(
π e(H2Q2H

H
2 + σ2INR

)
)
,

h(Y ) ≤ log det
(
π e(H1Q1H

H
1 + H2Q2H

H
2 + σ2INR

)
)

with equalities if we have circularly symmetric complex Gaussian inputs Xk ∼ CN (0,Qk),
k = 1, 2. It follows that the optimal input for given covariance matrix is distributed ac-
cording to zero mean circularly symmetric complex Gaussian distribution. With h(NR) =
log det

(
π eσ2INR

)
and the optimal input distributions Xk ∼ CN (0,Qk), k = 1, 2, the

individual and sum-rate constraints can be expressed as

R−→
1R

(Q1) := log det
(
INR

+ 1
σ2 H1Q1H

H
1

)
, (2.73a)

R−→
2R

(Q2) := log det
(
INR

+ 1
σ2 H2Q2H

H
2

)
, (2.73b)

RMAC
Σ (Q1,Q2) := log det

(
INR

+ 1
σ2 H1Q1H

H
1 + 1

σ2 H2Q2H
H
2

)
. (2.73c)

Accordingly, for covariance matrices Q1 and Q2 we can achieve rate pairs within the re-
gion

CMIMO
MAC (Q1,Q2) :=

{

[R1, R2] ∈ R2
+ : R1 +R2 ≤ RMAC

Σ (Q1,Q2),

R1 ≤ R−→
1R

(Q1), R2 ≤ R−→
2R

(Q2)
}

.
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2.6 Extension to Multi-Antenna Bidirectional Relaying

For each pair of covariance matrices the achievable region is described by a pentagon. As
in the scalar case, the encoding methods to achieve the vertices can be deduced from the
single-user MIMO Gaussian channel. For the decoding the relay node applies successive
interference cancellation so that each vertex corresponds to a certain decoding order. In
more detail, we can achieve the vertex νΣ1(Q1,Q2) := [R−→

1R
(Q1), R

Σ1
2 (Q1,Q2)] with

RΣ1
2 (Q1,Q2) :=RMAC

Σ (Q1,Q2) −R−→
1R

(Q1)

= log
det
(
σ2INR

+ H1Q1H
H
1 + H2Q2H

H
2

)

det
(
σ2INR

+ H1Q1H
H
1

) , (2.74)

if node 1 encodes as in single-user Gaussian MIMO channel to achieve the rate R−→
1R

(Q1).
It therefore uses a code with codewords distributed according to a circularly symmetric
complex Gaussian distribution CN (0,Q1). Node 2 encodes as in the single-user Gaussian
MIMO channel to achieve the rate RΣ1

2 (Q1,Q2). The relay node first decodes the message
of node 2 with high probability while it considers the interference of node 1 as additional
Gaussian noise with covariance H1Q1H

H
1 . After the message of node 2 is determined, the

relay can cancel the interference H2X2 from the receive vector Y R so that it can decode
the message of node 1 with high probability.

Similarly, we can achieve the vertex ν2Σ(Q1,Q2) := [R2Σ
1 (Q1,Q2), R−→

2R
(Q2)] with

R2Σ
1 (Q1,Q2) :=RMAC

Σ (Q1,Q2) −R−→
2R

(Q2)

= log
det
(
σ2INR

+ H1Q1H
H
1 + H2Q2H

H
2

)

det
(
σ2INR

+ H2Q2H
H
2

)

by interchanging the decoding order and the corresponding encoding at nodes 1 and 2. In
accordance, let πk, k = 1, 2, denote the decoding order where node k is decoded last.

However, in contrast to the scalar case there are in general no input distributions so that
the sum-rate and individual rate constraints are tight simultaneously. This means that the
pair of covariance matrices which maximize the individual rate constraints in general do not
maximize the sum-rate constraint as well. Therefore, the capacity region of the Gaussian
MIMO-MAC is given by the convex hull of the union over all circularly symmetric complex
Gaussian inputs that satisfy the power constraints, tr(Qk) ≤ Pk,

CMIMO
MAC := co




⋃

tr(Qk)≤Pk,k=1,2

CMIMO
MAC (Q1,Q2)



 .

This means that the capacity region CMIMO
MAC is the convex hull of the union over all pentagons

corresponding to a pair of covariance matrices. In general we will have two curved sections
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2 Bidirectional Relay Communication using Superposition Encoding

on the boundary, each corresponds to a certain decoding order. Thereby, each rate pair on
the curved section is achieved by an individual set of covariance matrices. The sum-rate
optimal section between the curved parts can only be achieved with time-sharing. Finally,
we will have sections where we achieve the single-user capacities. It can be easily seen by
contradiction that for any rate pair on the boundary the power constraints are satisfied with
equality. In [WB04] the discussion of the boundary is presented for an arbitrary number
of users, we briefly look at the sections of the boundary for our two user multiple access
channel.

Since the boundary of a convex set can be characterized by rate pairs that maximize the
weighted rate sum we consider the optimization problem

RMIMO
MAC (q) = arg max

[R1,R2]∈CMIMO
MAC

q1R1 + q2R2 (2.75)

for a weight vector q ∈ R2
+ \ {0}. There are multiple solutions if we have q1 = q2,

q1 = 0, q2 > 0, or q1 > 0, q2 = 0, which gets clearer from the following.

First, we consider weight vectors q with q1 > 0 and q2 = 0. This means, we want to
maximize the unidirectional rate R1 which then corresponds to the single-user capacity.
Therefore, we have to maximize (2.73a) according to the water-filling procedure given in
the previous section which gives us

R∗
−→
1R

:= max
R∈CMAC

R1 = max
Q1 : tr(Q1)≤P1

R−→
1R

(Q1) = R−→
1R

(Q∗
1)

using the water-filling solution Q∗
1 := Q(HH

1 H1, P1). To achieve this we have to apply the
decoding order π1 which allows node 2 to transmit with rates RΣ1

2 (Q∗
1,Q2). Then with the

Cholesky-decomposition C1C
H
1 := (INR

+ 1
σ2 H1Q

∗
1H

H
1 )−1 we can define an equivalent

channel H̃2 := C1H2 so that we can rewrite (2.74) as follows

RΣ1
2 (Q∗

1,Q2) = log det
(

INR
+ 1

σ2 H̃2Q2H̃
H
2

)

.

Then the water-filling solution Q(H̃
H
2 H̃2, P2) maximizes the rate RΣ1

2 (Q∗
1,Q2). Both to-

gether gives us the first characteristic rate pair and section where node 1 achieves its single-
user capacity

E1 :=
[

R∗
−→
1R
, RΣ1

2

(
Q∗

1,Q(H̃
H
2 H̃2, P2)

)]

,

E1 :=
{

[R∗
−→
1R
, R2] : 0 ≤ R2 ≤ RΣ1

2

(
Q∗

1,Q(H̃
H
2 H̃2, P2)

)}

.

The same procedure applies to weight vectors q with q1 = 0 and q2 > 0 so that we get
the corresponding characteristic rate pair and section where node 2 achieves its single-user
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2.6 Extension to Multi-Antenna Bidirectional Relaying

capacity

E2 :=
[

RΣ1
2

(
Q∗

2,Q(H̃
H
1 H̃1, P1)

)
, R∗

−→
2R

]

,

E2 :=
{

[R1, R
∗
−→
2R

] : 0 ≤ R1 ≤ R2Σ
1

(
Q(H̃

H
1 H̃1, P1),Q

∗
2

)}

with the maximal unidirectional rate R∗
−→
2R

:= R−→
2R

(Q∗
2) achieved with the water-filling so-

lutions Q∗
2 := Q(HH

2 H2, P2) and Q(H̃
H
1 H̃1, P1) with the equivalent channel H̃1 :=

C2H1 using the Cholesky-decomposition C2C
H
2 := (INR

+ 1
σ2 H2Q

∗
2H

H
2 )−1.

For q1 ≥ q2 it is shown in [BW06] that the decoding order π1 is optimal. For that reason we
can rewrite (2.75) as follows

RMIMO
MAC (q) = arg max

[R1,R2]∈CMIMO
MAC

q1R−→
1R

(Q1) + q2R
Σ1
2 (Q1,Q2)

= arg max
[R1,R2]∈CMIMO

MAC

(q1 − q2)R−→
1R

(Q1) + q2R
MAC
Σ (Q1,Q2).

With q1 ≥ q2 the objective is a sum of concave functions and therefore the optimization
problem is convex [BW06]. Similarly, it is shown that the decoding order π2 is optimal for
weight vectors with q2 ≥ q1.

In the following we look at the Lagrangian function of the optimization problem for the case
q1 ≥ q2,

L(Q1,Q2,Ψ1,Ψ2, µ1, µ2) = −(q1 − q2)R−→
1R

(Q1) − q2R
MAC
Σ (Q1,Q2)

−
2∑

k=1

µk

(
Pk − tr(Qk)

)
−

2∑

k=1

tr(QkΨk).

Similarly to [WB04] the optimal transmit strategies Q1 and Q2 for a rate pair RMIMO
MAC (q)

are uniquely characterized by the Karush-Kuhn-Tucker (KKT) conditions

µ1IN1 + Ψ1 =HH
1

(
(q2 − q1)

[
σ2INR

+ H1Q1H
H
1

]−1

− q2
[
σ2INR

+ H1Q1H
H
1 + H2Q2H

H
2

]−1)
H1, (2.76a)

µ2IN2 + Ψ2 = − q2H
H
2

(
σ2INR

+ H1Q1H
H
1 + H2Q2H

H
2

)−1
H2, (2.76b)

tr(QkΨk) = 0, µk(Pk − tr(Qk)) = 0, k = 1, 2, (2.76c)

Ψk � 0Nk
, µk ≥ 0, k = 1, 2, (2.76d)

Qk � 0Nk
, Pk ≥ tr(Qk), k = 1, 2, (2.76e)

with complementary slackness, dual, and primal conditions (2.76c), (2.76d), and (2.76e)
respectively. Since the optimization problem is convex, efficient algorithms, like the interior-
point method, exist to calculate the optimal covariance matrices [BV04]. This allows us
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2 Bidirectional Relay Communication using Superposition Encoding

to specify the curved section on the boundary corresponding to the decoding order π1 as
follows

D1 :=
{
RMIMO

MAC (q) : q ∈ R2
+, q1 ≥ q2 > 0

}
.

Furthermore, we denote by D1 the sum-rate maximum RMIMO
MAC ([1, 1]) ∈ D1.

Similarly, in the case q1 ≤ q2 the decoding order π2 is optimal. Then the Lagrange function
and KKT conditions follow by interchanging the indices 1 and 2 so that the set

D2 :=
{
RMIMO

MAC (q) : q ∈ R2
+, q1 ≤ q2 > 0

}

denotes the curved section on the boundary corresponding to the decoding order π2. Accord-
ingly, let D2 = RMIMO

MAC ([1, 1]) ∈ D2 denote its sum-rate maximum.

The last section on the boundary is given by the connecting line between the sum-rate max-
ima D1 and D2,

T :=
{
R : R = τD1 + (1 − τ)D2, τ ∈ [0, 1]

}

and can be reached by time-sharing between the corresponding strategies of D1 and D2

only. If one is interested in sum-rate optimal rate pairs only, one can also use an iterative
water-filling algorithm presented in [YRBC01].

In Figure 2.21 we depicted the characteristic sections and rate pairs of the capacity region
CMIMO

MAC for an example where each node is equipped with two antennas.

2.6.2 MIMO Broadcast Phase

As in the scalar case in the BC phase the relay forwards the messagesm1 andm2 which it has
received in the previous MIMO MAC phase. Since we consider in this chapter superposition
encoding, the messages are separately encoded and afterwards the superposition of both
is transmitted. Again, since we assume a memoryless channel, it is sufficient to consider
vector-valued single-letters only. To this end, let W 1 ∈ CNR denote a single-letters of the
codeword for message m1 for node 2 and W 2 ∈ CNR a single-letter of the codeword m2

for node 1 so that the input of the relay node in the broadcast channel is given by the sum

XR = W 1 + W 2.

We assume that the messages m1 and m2 are independent so that the random vectors W 1

and W 2 are independent as well. From this we get the vector-valued output at node k,
k = 1, 2, as follows

Y k = HH
k XR + Nk = HH

k W 1 + HH
k W 2 + Nk, k = 1, 2.
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2.6 Extension to Multi-Antenna Bidirectional Relaying

As in the scalar case, the receiving nodes perform interference cancellation so that we essen-
tially have two interference-free MIMO Gaussian channels between the relay node and the
nodes 1 and 2. It follows that the achievable rates for transmitting the unknown messages
have to fulfill the constraints

R2 ≤ I(XR; Y 1|W 1) = I(W 2; H
H
1 W 2 + N1),

R1 ≤ I(XR; Y 2|W 2) = I(W 1; H
H
2 W 1 + N2)

for some input distributions fW1(w1) and fW2(w2) which satisfy the power constraintE{XH
R XR} = E{W H

1 W 1} +E{W H
2 W 2} ≤ PR.

Obviously, the mutual informations are only coupled by the relay power distribution. As in
the scalar case, we denote by β1 and β2 the proportion of relay transmit power PR spend for
the codewords W 1 and W 2 respectively. Then the simplex

B = {[β1, β2] ∈ [0, 1] × [0, 1] : β1 + β2 ≤ 1}

characterizes the set of feasible relay power distributions that satisfy the relay transmit power
constraint.

For any feasible relay power distribution [β1, β2] ∈ B we have two separated MIMO Gaus-
sian channels so that circularly symmetric complex Gaussian distributed inputs

W 1 ∼ CN (0,QR,1(β1)) with QR,1(β1) := Q(H2H
H
2 , β1PR),

W 2 ∼ CN (0,QR,2(β2)) with QR,2(β2) := Q(H1H
H
1 , β2PR)

maximize the mutual informations. Thereby, the optimal covariance matrices QR,1(β1) and
QR,2(β2) are given by the water-filling solution as described for the Gaussian MIMO chan-
nel in Section 2.6. Therefore, in the MIMO BC phase we can achieve rate pairs within the
rate region

RMIMO
BC =

{

[R1, R2] ∈ R2
+ : R1 ≤ R−→

R2
(β1), R2 ≤ R−→

R1
(β2), [β1, β2] ∈ B

}

with rate constraints

R−→
R2

(β1) := log det
(
IN2 + 1

σ2 HH
2 QR,1(β1)H2

)
, (2.77)

R−→
R1

(β2) := log det
(
IN1 + 1

σ2 HH
1 QR,2(β2)H1

)
(2.78)

for the MIMO broadcast channel. It can be easily seen by contradiction that for any rate pair
on the boundary of the achievable rate region we have β1 + β2 = 1.

From the water-filling solution we see that with increasing power it is optimal to increase the
number of the used eigenmodes if the power exceeds certain thresholds. In the low-power
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2 Bidirectional Relay Communication using Superposition Encoding

regime we use the strongest eigenmode of the channel only, which is known as beamform-
ing. In the high-power regime it is optimal to use all eigenmodes. The maximal number of
eigenmodes is given by the rank of the channel matrix. In the next proposition we specify
the threshold values which also characterize the so-called beamforming optimality range and
high-power regime. To this end, let

HkH
H
k = V kΣkV

H
k , with Σk := diag(λk,1, λk,2, . . . , λk,NR

)

with unitary matrix V k ∈ CNR×R be the eigenvalue decomposition of HkH
H
k ∈ CNR×R,

k = 1, 2 with eigenvalues sorted in decreasing order, i.e. λk,1 ≥ · · · ≥ λk,NR
≥ 0. Further-

more, we define the coefficients

Lk,m :=
m∑

i=1

1

λk,i
, k = 1, 2

for m = 1, 2, . . . , r2 for k = 1 and m = 1, 2, . . . , r1 for k = 2 respectively and Lk,0 := 0
for k = 1, 2.

Proposition 2.52. For k = 1 with r2 = rank(H2) maximal possible eigenmodes it is

optimal to use







r2 eigenmodes, if β1PR > σ2
(

r2−1
λ2,r2

− L2,r2−1

)
,

1 eigenmode, if β1PR ≤ σ2
(

1
λ2,2

− L2,1

)
, or

m eigenmodes, if σ2
(

m
λ2,m

− L2,m−1

)
< β1PR ≤ σ2

(
m

λ2,m+1
− L2,m

)
.

Similarly, for k = 2 with r1 = rank(H1) maximal possible eigenmodes it is optimal to use







r1 eigenmodes, if β2PR > σ2
(

r1−1
λ1,r1

− L1,r1−1

)
,

1 eigenmode, if β2PR ≤ σ2
(

1
λ1,2

− L1,1

)
, or

m eigenmodes, if σ2
(

n
λ1,m

− L1,m−1

)
< β2PR ≤ σ2

(
m

λ1,m+1
− L1,m

)
.

Proof. The proof can be found in Appendix 2.8.34.

Next, we are interested in the weighted rate sum maximum

RMIMO
BC (q) := arg max

[R1,R2]∈RMIMO
BC

q1R1 + q2R2. (2.79)

Since RMIMO
BC is convex, the strategy is similar to the previous derivations where we look for

the rate pair on the boundary whose normal vector has the same angle than the weight vector
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2.6 Extension to Multi-Antenna Bidirectional Relaying

q. Therefore, we have to identify for each rate pair on the boundary RMIMO
BC the number of

used eigenmodes of the channels Hk, k = 1, 2.

Proposition 2.52 characterizes the number of eigenmodes with respect to the power β1PR

and β2PR. We will look at a parametrization of the boundary in terms of β = β1 = 1 − β2.
Therefore, we solve the power threshold values for β1 and β2 so that we can express the
threshold values in terms of the power fraction as follows

β1,m :=
1

γR

( m

λ2,m+1
− L2,m

)
, m = 1, 2, . . . , r2 − 1,

β2,m :=
1

γR

( m

λ1,m+1
− L1,m

)
, m = 1, 2, . . . , r1 − 1.

Additionally, we define the value βk,0 := 0, k = 1, 2, as the value where no eigenmode is
used. In order to identify the number of eigenmodes used for a given relay power fraction β1

or β2 we define the intervals

B1,m := (β1,m−1, β1,m], m = 1, 2, . . . , r2 − 1,

B2,m := (β2,m−1, β2,m], m = 1, 2, . . . , r1 − 1

with B1,r2 := (β1,r2−1,∞), B2,r1 := (β1,r1−1,∞), and Bk,0 := {0}, k = 1, 2. Therewith,
we can define the following indicator functions

m1 : [0, 1] → {0, 1, 2, . . . , r2}, β1 7→ m where we have β1 ∈ B1,m,

m2 : [0, 1] → {0, 1, 2, . . . , r1}, β2 7→ m where we have β2 ∈ B2,m,

which specify the numbers of used eigenmodes for a power fraction β1 or β2. Obviously, for
β1 = 0 we have R−→

R2
(β1) = 0 and for β2 = 0 we have R−→

R1
(β2) = 0. For β1, β2 > 0 the

characterization of the used eigenmodes allows us to state in the next proposition a closed
form solution of the rates R−→

R2
(β1) and R−→

R1
(β2), which we use for the derivation of the

weighted rate sum optimal rate pair.

Proposition 2.53. The rates R−→
R2

(β1) or R−→
R1

(β2) are zero if β1 or β2 are equal to zero. For

β1, β2 > 0 we have

R−→
R2

(β1) =

m1(β1)
∑

n=1

log
( λ2,n

m1(β1)
(β1γR + L2,m1(β1))

)

,

R−→
R1

(β2) =

m2(β2)
∑

n=1

log
( λ1,n

m2(β2)
(β2γR + L1,m2(β2))

)

.

Proof. The proof can be found in Appendix 2.8.35.
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2 Bidirectional Relay Communication using Superposition Encoding

Then

M1 :=
∣
∣
{
β1,m : β1,m ≤ 1 for m = 0, 1, 2, . . . , r2 − 1

}∣
∣ and

M2 :=
∣
∣
{
β2,m : β2,m ≤ 1 for m = 0, 1, 2, . . . , r1 − 1

}∣
∣

denote the numbers of maximal used eigenmodes. Next we define M := M1 + M2.
Then let [β̃1, β̃2, . . . β̃M ] denote the sorted vector of [β1,0, β1,1, . . . , β1,M1−1, 1 − β2,0, 1 −
β2,1, . . . , β2,M2−1] in increasing order, i.e. we have 0 = β̃1 ≤ β̃2 ≤ · · · ≤ β̃M = 1.

We are now prepared to characterize in closed form the rate pair which maximizes the
weighted rate sum according to (2.79).

Theorem 2.54. Let q = [q1, q2] ∈ R2
+ \ {0} denote a weight vector with nonnegative ele-

ments and angle θq := arccos
(

q1√
q2
1+q2

2

)

, then the rate pair RMIMO
BC (q) where the weighted

rate sum is maximized is given by

RMIMO
BC (q) =







[0, R2,BC([0, 1])], if θq ≥ ϕ1,

[R1,BC(q), R2,BC(q)], if ϕ1 > θq > ϕM ,

[R1,BC([1, 0]), 0], if ϕM ≥ θq,

with characteristic angles where the number of allocated eigenmodes changes

ϕn :=







arctan
γR+L1,M1

M1L2,1
, if n = 1,

arctan
m1(β̃n)

“

(1−β̃n)γR+L1,m2(1−β̃n)

”

m2(1−β̃n)
“

β̃nγR+L2,m1(β̃n)

” , if 1 < n < M,

arctan
M2L1,1

γR+L2,M2
, if n = M,

which are given for a weight vector q by

η1(q) :=







0, if θq ≥ ϕ1,

m1(β̃n+1), if ϕn > θq ≥ ϕn+1,

M1, if ϕM > θq,

η2(q) :=







M2, if θq > ϕ1,

m2(β̃n), if ϕn ≥ θq > ϕn+1,

0, if ϕM ≥ θq,
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2.6 Extension to Multi-Antenna Bidirectional Relaying

so that the rates are given by

R1,BC(q) :=

η1(q)
∑

i=1

log
(γR + L1,η2(q) + L2,η1(q)

q1η1(q) + q2η2(q)
q1λ2,i

)

,

R2,BC(q) :=

η2(q)
∑

i=1

log
(γR + L1,η2(q) + L2,η1(q)

q1η1(q) + q2η2(q)
q2λ1,i

)

.

Proof. The proof can be found in Appendix 2.8.36.

With this theorem we can identify for any non-negative weight vector q ∈ R2
+ \ {0} the

Pareto optimal rate pair on the boundary of the BC phase. In Figure 2.21 we depicted the
characteristic sections and rate pairs of the achievable rate region RMIMO

BC for an example
where each node is equipped with two antennas.

2.6.3 MIMO Bidirectional Achievable Rate Region

As in the scalar case we use the MAC and BC phases for a fraction of time only. Let the
time division parameter α ∈ [0, 1] denote the fraction of time in the MAC phase so that
1 − α characterizes the fraction of time in the BC phase. Therefore, we have to scale the
rate regions according to the time fraction. This means for a successful bidirectional relay
transmission of a message m1 with rate R1 from node 1 to node 2 and message m2 with rate
R2 from node 2 to node 1 the rate pair R = [R1, R2] has to be within αCMIMO

MAC as well as
within (1− α)RMIMO

BC . This means that for any given time division parameter α ∈ [0, 1] the
bidirectional achievable rate pairs are given by the intersection of the scaled rate regions

RMIMO
BR (α) := αCMIMO

MAC ∩ (1 − α)RMIMO
BC ,

which is convex since the intersection of convex sets is itself convex. Accordingly, the
boundary is characterized by the rate pairs which maximize the weighted rate sum for weight
vectors q ∈ R2

+ \ {0},

RMIMO
BR (α, q) := arg max

[R1,R2]∈RMIMO
BR (α)

q1R1 + q2R2.

Because of the difficult MIMO MAC capacity region the optimization problem cannot be
solved in closed form as in the SISO case. However, for the solution we can distinguish
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Figure 2.21: MIMO achievable rate regions RMIMO
BR (1/2) with N1 = N2 = NR = 2.

between the following cases. First we consider the cases where the optimal rate pair is also
the optimal rate pair of the MAC or BC phase. Accordingly, we can conclude as follows

αRMIMO
MAC (q) ∈ RMIMO

BR (α) ⇒ RMIMO
BR (α, q) = αRMIMO

MAC (q),

(1 − α)RMIMO
BC (q) ∈ RMIMO

BR (α) ⇒ RMIMO
BR (α, q) = (1 − α)RMIMO

BC (q).

If both cases do not apply the boundaries have to intersect at least once. From the previous
we know that a rate pair where the boundaries intersect is optimal for a range of weight
vector angles. In the case where αRMIMO

MAC (q), (1−α)RMIMO
BC (q) /∈ RMIMO

BR (α) the optimal
rate pair RMIMO

BR (α, q) is given by a rate pair where the boundaries intersect. Since multiple
intersections may possible it remains to determine the intersection point which is optimal for
the weight vector q. Unfortunately the characterization of the intersection points is much
more involved than in the SISO case and cannot be solved in closed form.

As in the scalar case we can define the rate region and the weighted rate sum optimal rate
pair for the optimal time division case as follows

RMIMO
BRopt := co

(

⋃

α∈[0,1]

(
αCMIMO

MAC ∩ (1 − α)RMIMO
BC

)

)

,

RMIMO
BRopt(q) := arg max

[R1,R2]∈RMIMO
BRopt

q1R1 + q2R2,

which we use to study the high-power behavior in the following.
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2.6 Extension to Multi-Antenna Bidirectional Relaying

High Power Behavior

We can deduce the high power behavior from the asymptotic behavior of the maximal unidi-
rectional rates for a fixed time division parameter α,

R∗MIMO
1 (α) := min

{

αR∗
−→
1R
, (1 − α)R−→

R2
(1)
}

,

R∗MIMO
2 (α) := min

{

αR∗
−→
2R
, (1 − α)R−→

R1
(1)
}

,

and for the optimal time division,

R∗MIMO
1opt :=

R∗
−→
1R
R−→

R2
(1)

R∗
−→
1R

+R−→
R2

(1)
, and R∗MIMO

2opt :=
R∗

−→
2R
R−→

R1
(1)

R∗
−→
2R

+R−→
R1

(1)
,

where R∗
−→
1R

and R∗
−→
2R

denote the maximal unidirectional rates in the MAC phase as defined

in Section 2.6.1 and R−→
R2

(1) and R−→
R1

(1) denote the maximal unidirectional rates in the BC
phase as defined in Section 2.6.2.

In the high power regime it is asymptotically optimal to allocate equal proportions of power
for each non-zero eigenmode. This means at high powers P1, P2, and PR we can approxi-
mate R∗

−→
kR

and R−→
Rk

(1), k = 1, 2, by

R∗
−→
kR

≈
rk∑

n=1

log
(

1 +
Pk

rk

λk,n

σ2

)

≈
rk∑

n=1

log
(Pk

rk

λk,n

σ2

)

,

R−→
Rk

(1) ≈
rk∑

n=1

log
(

1 +
PR

rk

λk,n

σ2

)

≈
rk∑

n=1

log
(PR

rk

λk,n

σ2

)

.

For conceptual clarity we set P1 = P2 = PR = P . Then in the high power regime the rates
scale linearly with the number of eigenmodes of the corresponding MIMO channel

R∗
−→
kR

≈ rk log(P ) + ck, and R∗
−→
Rk

(1) ≈ rk log(P ) + dk,

with constants ck and dk for k = 1, 2.

Therewith, we get the asymptotic of the maximal unidirectional rates as follows15

R∗MIMO
1 = min{αr1, (1 − α)r2} log(P ) + o

(
log(P )

)
,

R∗MIMO
2 = min{αr2, (1 − α)r1} log(P ) + o

(
log(P )

)
,

R∗MIMO
kopt =

r1r2
r1 + r2

log(P ) + o
(
log(P )

)
for k = 1, 2.

15The little-o notation collects asymptotically insignificant terms of an expression. This means, if g(x) ∈

o(f(x)) it follows that we have lim
x→∞

g(x)
f(x)

= 0.
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This means that the maximal unidirectional rates for the fixed time division case scale with
the minimum of the fraction of time weighted number of eigenmodes and for the optimal
time division case scale with r1r2

r1+r2
.

Since the rate regions RMIMO
BR (α), α ∈ [0, 1], and RMIMO

BRopt are convex, for the sum of any
rate pair on the boundaries we have

min{R∗MIMO
1 , R∗MIMO

2 } ≤
∣
∣
∣
∣RMIMO

BR (α, q)
∣
∣
∣
∣
1

≤
(
R∗MIMO

1 +R∗MIMO
2

)
,

min{R∗MIMO
1opt , R∗MIMO

2opt } ≤
∣
∣
∣
∣RMIMO

BRopt(q)
∣
∣
∣
∣
1

≤
(
R∗MIMO

1opt +R∗MIMO
2opt

)
.

It follows that the asymptotics of the maximal unidirectional rates give us a lower and upper
bound on the asymptotics of the sum-rate of the rate pairs on the boundary which we sum up
in the following proposition.

Proposition 2.55. Let r1 = rank(H1) and r2 = rank(H2) denote the spatial degree

offered by the channel between the relay node and the nodes 1 and 2 respectively. Then

the asymptotic scaling of the sum of any rate pair on the boundary of the achievable rate

regions RMIMO
BR (α) and RMIMO

BRopt with increasing power P can be upper and lower bounded

as follows

∣
∣
∣
∣RMIMO

BR (α, q)
∣
∣
∣
∣
1
≤ (s1 + s2) log(P ) + o

(
log(P )

)
,

∣
∣
∣
∣RMIMO

BR (α, q)
∣
∣
∣
∣
1
≥ min{s1, s2} log(P ) + o

(
log(P )

)
,

∣
∣
∣
∣RMIMO

BRopt(q)
∣
∣
∣
∣
1
≤ 2

r1r2
r1 + r2

log(P ) + o
(
log(P )

)
,

∣
∣
∣
∣RMIMO

BRopt(q)
∣
∣
∣
∣
1
≥ r1r2

r1 + r2
log(P ) + o

(
log(P )

)
.

with s1 := min{αr1, (1 − α)r2} and s2 := min{αr2, (1 − α)r1}.

We see that as for the point-to-point MIMO channel the spatial degree results in a pre-log
factor in the high power regime, which depends on the spatial degree of both MIMO channels
as well as on the time division between the phases.

2.7 Discussion

We considered various cross-layer design aspects for a two-phase bidirectional decode-and-
forward relaying protocol using superposition encoding in the broadcast phase which was
proposed first by Rankov and Wittneben in [RW05b, RW07]. In their work they propose
half-duplex relaying protocols with increased spectral efficiency and show by comparing
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the maximal achievable ergodic sum-rates of the proposed bidirectional protocols and the
achievable ergodic rates of the proposed unidirectional protocols that the bidirectional ap-
proaches can “recover a large portion of the half-duplex loss.” After that they did not carry
on research to explore further properties of their bidirectional protocols.

On that score in Section 2.2 we have extensively studied the bidirectional decode-and-
forward protocol for a three-node network assuming single-antenna nodes. First, it is im-
portant to realize that a bidirectional relaying protocol is characterized by two achievable
rates. This means that we have to examine a two-dimensional achievable rate region. Then
it easily follows that the achievable rate region is given by the intersection of the scaled rate
regions of the multiple access and broadcast phases. In this chapter, the relay node applies
superposition encoding technique to forward the messages in the broadcast phase as pro-
posed by Rankov and Wittneben. The characterization of the intersection of achievable rate
regions usually results in a combinatorial problem. Theorem 2.5 and its corollaries reveal the
combinatorial structure of the bidirectional achievable rate region for the equal time division
case. In particular it allows us to characterize the sum-rate maximum in Corollary 2.8, which
Rankov and Wittneben characterize with some simplifying assumptions only. Since the in-
tersection of convex sets is itself convex, we know from convex theory that the boundary of
the achievable rate region is characterized by the rate pairs which maximize the weighted
rate sum. Theorem 2.10 characterizes in closed form the optimal rate pairs for any positive
weight vector using the knowledge of the combinatorics.

Another simple extension is to relax their equal time division assumption from which it
is natural to ask for the optimal time division. The achievable rate region of the optimal
time division case is given by the union over all time division parameters and therefore
need not be convex. However, in Corollary 2.13 we have concluded that the region is indeed
convex using the equivalent description of the achievable rate region proved in Theorem 2.12.
From Proposition 2.14 we see that the combinatoric of the MAC capacity region transfers
to the bidirectional rate region. Again, in Theorem 2.16 we characterize the boundary of
the achievable rate region with the optimal time division by the rate pairs that maximize the
weighted rate sum. Since the boundary rate pairs of a convex set are Pareto optimal in the
sense that we cannot increase one rate without decreasing the other, its characterization is
crucial for the succeeding cross-layer designs.

For the two phase protocol there are two possibilities to interpret the mean power input con-
straint of a Gaussian continuous-alphabet channel with respect to a code word. We can either
consider each phase separately, which means that we average over all actually transmitted
symbols of each phase, or we average over both phases so that we scale the mean power
constraints according to the inverse of the time division parameter. While for the equal time
division case the results for both models can be obtained by an appropriate substitution, for
the optimal time division case the non-linear dependence on the time division case makes
a reconsideration for the second model necessary. Accordingly, in Theorem 2.39 we find
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2 Bidirectional Relay Communication using Superposition Encoding

an equivalent characterization of the achievable rate region. Furthermore, in Theorem 2.24
we show that the combinatoric of the MAC capacity region transfers to bidirectional achiev-
able rate region as well. And finally, in Theorem 2.26 we establish the convexity of the rate
region. The non-linear dependence of the rate constraints on the time division hinders the
derivation of closed-form results. However, the obtained results makes efficient algorithmic
optimization solutions feasible.

In Section 2.3 we use the results for a cross-layer design across the Data Link Layer and
Physical Layer, where we are interested in an efficient resource allocation with respect to
the traffic generated at higher layers. Therefore, we assume stationary and ergodic time-
variant block-fading channel processes. At nodes 1 and 2 we consider queues with infinite
buffer length and a centralized controller which slot-wise adapts the service rates according
to the maximum weighted rate sum with weights equal to the buffer length. Since this pol-
icy is based on the maximum differential backlog algorithm of Tassiulas and Ephrimedes
[TE93], we can use ”standard” Lyapunov drift techniques to characterize the arrival rates
under which the policy guarantees queue stability. In Corollary 2.30 we adapt the proof from
[NMR03] to show that the stability region is equal to the bidirectional ergodic rate region by
proving a negative drift of a quadratic Lyapunov function on the buffer levels whenever the
mean number of unfinished work is large. Moreover, it follows that the mean delay behaves
asymptotically to the inverse of the distance of the bit arrival rate vector to the boundary of
the stability region. The following numerical simulations confirm the stability results and
illustrate the efficiency of the bidirectional relay protocol for the equal and optimal time
division case compared to classical Round-Robin strategies.

In a network where N relay nodes are willing to support the bidirectional communication
it is a fundamental problem to identify the best relay node. But again, since bidirectional
communication is characterized by two rates, this problem is a vector optimization problem
so that relay selection for a bidirectional protocol is more involved than for unidirectional
relaying protocols. In Section 2.4 we derive a relay selection criterion based on the achiev-
able rate region of each relay node. From the Propositions 2.32 and 2.37 we can conclude
that the probability that the achievable rate region of one relay node contains the rate region
of all others decreases with an increasing number of relay nodes N , which means that there
is more often no over-all best relay node. For that reason we propose to select the optimal
relay node individually for any Pareto optimal rate pair on the boundary of the achievable
rate region. Moreover, from Figure 2.10 we see that if two relay nodes achieve the same
weighted rate sum for a certain weight vector, we can enlarge the achievable rate region if
we allow time-sharing between the usage of the corresponding relay nodes.

For iid Rayleigh fading channels and for the equal time division case in Theorem 2.40 we
show that the growth of the maximal unidirectional ergodic rates is asymptotically equal to
1/2 log(ln(N)), which is the same scaling law achieved with the separation based relaying
approach in [DSG+03]. Since the sum-rate of any ergodic rate pair on the boundary of the
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ergodic rate region for the equal and optimal time division cases can be upper and lower
bounded by the maximal unidirectional rates of the equal time division case, in the Corol-
laries 2.42 and 2.44 we conclude that the ergodic sum-rate of any boundary rate pair scales
with Θ

(
log(log(N))

)
as well.

Relay selection is obviously a routing problem, which belongs to the Network Layer. Then
for relay selection in a wireless system it remains to decide for a weight vector. We can
again look at this problem from a cross-layer design perspective. This means that if we
use the buffer levels as the weight vector we tie together relay selection with the maximum
throughput policy of Section 2.3. It follows that we end up with a load adaptive routing
protocol where the routing policy takes the resource allocation, the channel states as well as
the queue states into account.

In Section 2.5 we consider the next cross-layer design approach where we study the joint
resource allocation of two routing tasks. For this purpose, we add in the broadcast phase
a multicast communication from the relay node to the nodes 1 and 2 to the bidirectional
relaying protocol. The goal is to realize synergistic efficiency and enable rate trade-offs by
converging two routing schemes. Moreover, if the relay does not fully exploit its transmit
power constraint for the bidirectional communication, the relay can add the relay multicast
communication without worsening the bidirectional communication. For that reason and in
dependence to piggyback communication on higher layer protocols, we call this approach
piggyback on bidirectional communication. We see this as the first step in integrating bidi-
rectional relay communication in a wireless network.

In Theorem 2.45 we show that for the receiving decode-and-forward nodes 1 and 2 it is
always optimal to decode the relay message first. This fixed decoding order simplifies fol-
lowing case studies, but the explicit characterization is still exhaustive. Then Theorem 2.48
specifies the total sum-rate maximum of the bidirectional rates and the additional relay mul-
ticast rate. We see that the total sum-rate behavior is dominated by the function which char-
acterizes the rate pairs where the sum-rate maximum of a broadcast rate region is attained
for a certain relay power. In Corollary 2.49 we identify a rate trade-off between additional
relay rate and one bidirectional rate where the total sum-rate remains constant. In the follow-
ing combinatorial discussion we look at some examples and work out some further aspects,
which are interesting for the design and operation of service adapted network protocols. In
particular we change the point of view and optimize the bidirectional communication while
we desire a certain relay rate for a multicast application or we discuss the total sum-rate
maximum with respect to the time division parameter. Most of the closed form results can
be obtained for the equal time division case only, but the behavior for any fixed time division
will be similar.

In Section 2.6 we extend the bidirectional decode-and-forward relaying protocol using super-
position encoding to vector-valued processing. For this purpose, we assume that each node is
equipped with multiple antennas and that each transmitter has perfect channel knowledge as
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2 Bidirectional Relay Communication using Superposition Encoding

well. Accordingly, we present the optimal transmit strategies at each node for both phases.
In the BC phase the optimal transmit strategy is given by two point-to-point water-filling so-
lutions which are only coupled by the relay power distribution. This allows us to characterize
the rate pair which maximizes the weighted rate sum in Theorem 2.54. A combinatorial dis-
cussion of the achievable rate region as in the SISO case is not possible in the MIMO case
because of the complicated structure of the MIMO-MAC capacity region. However, from
the maximal unidirectional rates in the high power regime we find a scaling law for the max-
imal unidirectional rates, which depends on spatial degrees of the MIMO channels as well
as on the time division between the phases. In Proposition 2.55 we use the scaling law for
the maximal unidirectional rates to upper and lower bound the sum-rate of any rate pair on
the boundary of the achievable rate regions for the fixed and optimal time division case.

Nevertheless, one can directly apply the ideas of the previous sections to the MIMO case,
which means that for an optimal throughput in a system the rates should be allocated accord-
ing to the queue states, the relay selection should be performed with respect to the achievable
rate region, and the resource efficiency can be improved if we consider the joint resource al-
location of multiple routing tasks.
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2.8 Appendix: Proofs

2.8.1 Proof of Proposition 2.2.3

Let [R1i, R2i] ∈ RBC, i = 1, 2 denote two arbitrary achievable rate pairs. It follows that
there exist feasible relay power distributions [β1i, β2i] ∈ B with R1i = R−→

R2
(β1i) and R2i =

R−→
R1

(β2i) for i = 1, 2. From the concavity of the logarithm we can conclude that for any
t ∈ [0, 1] we have

tR11 + (1 − t)R12 = tR−→
R2

(β11) + (1 − t)R−→
R2

(β12) ≤ R−→
R2

(β1(t)),

tR21 + (1 − t)R22 = tR−→
R1

(β21) + (1 − t)R−→
R1

(β22) ≤ R−→
R1

(β2(t))

with βk(t) := tβk1 + (1 − t)βk2, k = 1, 2. Since [β1i, β2i] ∈ B, we have β1i + β2i ≤ 1 for
i = 1, 2 so that for any t ∈ [0, 1] we have

2∑

k=1

βk(t) = tβ11 + (1 − t)β12 + tβ21 + (1 − t)β22 ≤ t+ (1 − t) = 1.

This means that for any t ∈ [0, 1] we have [β1(t), β2(t)] ∈ B and therefore
[R−→

R2
(β1(t)), R−→

R1
(β2(t))] ∈ RBC. It follows that any convex combination of achievable

rate pairs is achievable, which proves that RBC is convex.

2.8.2 Proof of Proposition 2.2

The sum-rate maximum is obviously attained on the boundary of RBC. The boundary is
parametrized by (2.8). Therefore, we consider the sum-rate

R−→
R2

(β) +R−→
R1

(1 − β) = log
(
(1 − β|h2|2γR)(1 − (1 − β)|h1|2γR)
︸ ︷︷ ︸

:=fBC(β)

)
,

which is maximized for the same β as the concave parabola fBC(β). The concave parabola
f(β) is maximized at its vertex

[β⋆, fBC(β⋆)] =
[

1
2 + 1

2γR

(
1

|h1|2
− 1

|h2|2

)
, 1

4(1 + γR|h1|2 + |h1|2

|h2|2
)(1 + γR|h2|2 + |h2|2

|h1|2
)
]

.

This characterizes the maximum sum-rate if β⋆ is a feasible relay power distribution, i.e.
β⋆ ∈ [0, 1]. If we have β⋆ < 0, the function fBC(β) is strictly decreasing on [0, 1] so that
the maximum sum-rate is attained at RBC(0). On the other hand, if we have β⋆ > 1, the
function fBC(β) is strictly increasing on [0, 1] so that the maximum sum-rate is attained at
RBC(1).
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2.8.3 Proof of Theorem 2.5

For a given relay power distribution β = β1 = 1 − β2 ∈ [0, 1] the maximal sum-rate has to
satisfy

RΣ(β) = max
R∈RBReq(β)

R1 +R2 < 1/2RMAC
Σ ,

because of the MAC sum-rate constraint (2.4c). Furthermore, the unidirectional rate R1 has
to satisfy the individual rate constraint (2.4a) of the MAC phase and (2.7a) of the BC phase
and similarly the unidirectional rate R2 has to satisfy (2.4b) and (2.7b) so that we have

R1 ≤ 1/2 min{R−→
1R
, R−→

R2
(β)} and R2 ≤ 1/2 min{R−→

2R
, R−→

R1
(1 − β)}.

The combination of all constraints gives us the maximum sum-rate

RΣ(β) = 1/2 min
{

min{R−→
1R
, R−→

R2
(β)} + min{R−→

2R
, R−→

R1
(1 − β)}, RMAC

Σ

}

= 1/2 min
{
R−→

1R
+R−→

R1
(1 − β), R−→

R2
(β) +R−→

2R
, R−→

R2
(β) +R−→

R1
(1 − β),

R−→
1R

+R−→
2R
, RMAC

Σ

}

= 1/2 min
{
R−→

1R
+R−→

R1
(1 − β), R−→

R2
(β) +R−→

2R
, R−→

R2
(β) +R−→

R1
(1 − β), RMAC

Σ

}

(2.80)

usingR−→
1R

+R−→
2R

= log
(
(1+γ1|h1|2)(1+γ2|h2|2)

)
≥ log(1+γ1|h1|2+γ2|h2|2) = RMAC

Σ

in the last equality.

For the next equality we have to examine the combinatorics of (2.80). This becomes clearer
if we discuss the geometry of the arguments of the logarithms of the rates. Accordingly, we
define the following functions

fΣ(β) := 2RMAC
Σ = 1 + γ1|h1|2 + γ2|h2|2,

f1(β) := 2R−→
1R

+R−→
R1

(1−β) = (1 + γ1|h1|2)(1 + (1 − β)γR|h1|2),
f2(β) := 2R−→

2R
+R−→

2R
(β) = (1 + γ2|h2|2)(1 + βγR|h2|2),

fBC(β) := 2R−→
R1

(1−β)+R−→
R2

(β) = (1 + (1 − β)γR|h1|2)(1 + βγR|h2|2),

where we easily see that fΣ(β) is a constant function, f1(β) is a linearly decreasing function,
f2(β) is a linearly increasing function, and fBC(β) is a concave parabola, which we already
know from the Proof of Proposition 2.2. To solve (2.80) we will study the function

min{f1(β), f2(β), fΣ(β), fBC(β)} (2.81)

for β ∈ [0, 1] in the following. In Figure 2.22 we depicted two representative examples.

The intersection points characterize the combinatorics of the rate region and identify the
active restriction for each feasible power distribution β ∈ [0, 1]. In the following derivation
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Figure 2.22: Exemplary plots for the discussion of f1(β), f2(β), fΣ(β), and fBC(β) for β⋆2 <
∆β in the left figure and β⋆2 ≥ ∆β in the right figure.

of the combinatorics we first neglect the feasibility, but later we will take the feasibility into
account. With simple calculations of the intersection points between f1(β), fΣ(β), f2(β), and
fBC(β) it is easily seen that we have

f1(β) ≤ fΣ(β) for β ∈ [βΣ1,∞) and f1(β) ≥ fΣ(β) for β ∈ (−∞, βΣ1], (2.82a)

f2(β) ≤ fΣ(β) for β ∈ (−∞, β2Σ] and f2(β) ≥ fΣ(β) for β ∈ [β2Σ,∞), (2.82b)

f1(β) ≤ fBC(β) for β ∈ [βB1, β1B] and f1(β) ≥ fBC(β) for β ∈ (−∞, βB1] ∪ [β1B,∞),
(2.82c)

f2(β) ≤ fBC(β) for β ∈ [βB2, β2B] and f2(β) ≥ fBC(β) for β ∈ (−∞, βB2] ∪ [β2B,∞),
(2.82d)

f2(β) ≤ f1(β) for β ∈ (−∞, β21] and f2(β) ≥ f1(β) for β ∈ [β21,∞) (2.82e)

with βΣ1, β2Σ, βB1, β1B, βB2, and β2B as given in the theorem and β21 :=
(1+γ1|h1|2)(1+γR|h1|2)−(1+γ2|h2|2)

(1+γ1|h1|2)γR|h1|2+(1+γ2|h2|2)γR|h2|2
. Furthermore, we have

f1(β21) = f2(β21) =
(1+γ1|h1|2)(1+γ2|h2|2)(γR|h1|2+γR|h2|2+γ2

R|h1|2|h2|2)

(1+γ1|h1|2)γR|h1|2+(1+γ2|h2|2)γR|h2|2
> 0. (2.83)

It follows that we have βB2 < β21 < β1B since we have f1(β1B) = f2(βB2) = 0 and the
linear functions f1(β) and f2(β) are strictly decreasing and increasing.

If we multiply the left and the right hand side of f1(β21) = (1+γ1|h1|2)(1+(1−β21)γR|h1|2)
to the left and right hand side of f1(β21) = f2(β21) = (1 + γ2|h2|2)(1 + β21γR|h2|2) we
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get

(

f1(β21)
)2

= (1 + γ2|h2|2)(1 + γ1|h1|2)
︸ ︷︷ ︸

:=c21

(1 + βγR|h2|2)(1 + (1 − β21)γR|h1|2)
︸ ︷︷ ︸

=fBC(β21)

(2.84)

with c21 = (1+γ2|h2|2)(1+γ1|h1|2) > (1+γ1|h1|2+γ2|h2|2) = fΣ(β) for all β. Therewith,
we will prove

f1(β21) = f2(β21) > min{fΣ(β21), fBC(β21)} (2.85)

next. First, we consider the case fΣ(β21) ≤ fBC(β21) so that we can conclude

fΣ(β21)
2 < fΣ(β21)c21 ≤ fBC(β21)c21 = f1(β21)

2

using (2.84). Since we know from (2.83) that f1(β21) > 0 and fΣ(β) > 0 for all β, it follows
that we have f1(β21) = f2(β21) > fΣ(β21) so that (2.85) is fulfilled for this case. Otherwise,
if fΣ(β21) > fBC(β21) we have fBC(β21) < c21 since fΣ(β21) < c21 holds. Then from (2.84)
it follows that

fBC(β21)
2 < c21fBC(β21) = f1(β21)

2

so that f1(β21) = f2(β21) > fBC(β21) since we have f1(β21), fBC(β21) > 0. This proves the
other case so that (2.85) holds.

We are now ready to derive I1. From (2.82a), (2.82c), and (2.82e) we have

f1(β) ≤ min{fΣ(β), fBC(β), f2(β)} for β ∈ [βΣ1,∞) ∩ [βB1, β1B] ∩ [β21,∞).

We now claim that [βΣ1,∞)∩ [βB1, β1B]∩ [β21,∞) = [βΣ1,∞)∩ [βB1, β1B] holds. To see
this we first look at the case that the set on the left hand side is empty, which is equivalent
to the condition that max{βΣ1, βB1, β21} > β1B holds. Since we have βB1, β21 < β1B, it
follows that βΣ1 > β1B has to hold so that the set on the right hand side is empty as well.
On the other hand, if we have βΣ1 ≤ β1B both sets are non-empty. Then both sets are equal
if we have max{βΣ1, βB1, β21} = max{βΣ1, βB1}, which is equivalent to the condition that
β21 ≤ max{βΣ1, βB1} holds. We will prove the last condition by contradiction. Therefore,
let us assume that β21 > max{βΣ1, βB1} is true. This is equivalent to the condition that
β21 > βΣ1 and β21 > βB1 holds simultaneously. Since we have β21 < β1B, it follows from
(2.82a) that f1(β21) < fΣ(β21) and from (2.82c) that f1(β21) < fBC(β21). Both together
gives us f1(β21) < min{fΣ(β21), fBC(β21)} which is a contradiction to (2.85). Accordingly,
the set I1 = [βΣ1, 1] ∩ [βB1, β1B] denotes the set of feasible β ∈ [0, 1] where the minimum
of (2.81) is equal to f1(β).

Similarly, from (2.82b), (2.82d), and (2.82e) we have

f2(β) ≤ min{fΣ(β), fBC(β), f1(β)} for β ∈ (−∞, β2Σ] ∩ [βB2, β2B] ∩ (−∞, β21].
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We now claim that (−∞, β2Σ]∩[βB2, β2B]∩(−∞, β21] = (−∞, β2Σ]∩[βB2, β2B] holds. As
before, we first look at the case that the set on the left hand side is empty, which is equivalent
to the condition that min{β2Σ, β2B, β21} < βB2 holds. Since we have β2B, β21 > βB2, it
follows that β2Σ < βB2 has to hold so that the right hand side is empty as well. On the
other hand, if we have β2Σ ≥ βB2 both sets are non-empty. Then both sets are equal if we
have min{β2Σ, β2B, β21} = min{β2Σ, β2B}, which is equivalent to the condition that β21 ≥
min{β2Σ, β2B} holds. Again, we will prove the last condition by contradiction. Therefore,
let us assume that β21 < min{βΣ1, βB1} is true. This is equivalent to the condition that
β21 < βΣ1 and β21 < βB1 holds simultaneously. Since we have β21 > βB2, if follows from
(2.82b) that f2(β21) < fΣ(β21) and from (2.82c) that f2(β21) < fBC(β21). Both together
gives us f2(β21) < min{fΣ(β21), fBC(β21)} which is a contradiction to (2.85). Accordingly,
the set I2 = [0, β2Σ] ∩ [βB2, β2B] denotes the set of feasible β ∈ [0, 1] where the minimum
of (2.81) is equal to f2(β).

The MAC sum-rate constraint is only active if the concave parabola fBC(β) intersects fΣ(β).
This is the case if and only if we have β⋆2 ≥ ∆β. Then the corresponding intersection
points are characterized by βBΣ and βΣB as in the theorem so that we have fΣ(β) ≤ fBC(β)
if β ∈ [βBΣ, βΣB]. Furthermore, from (2.82a) and (2.82b) we know that

fΣ(β) < min{f1(β), f2(β)} for β ∈ (−∞, βΣ1) ∩ (β2Σ,∞)

so that for feasible β ∈ IΣ as in the theorem the minimum of (2.81) is equal to fΣ(β).

Finally, for all other feasible power distributions β ∈ IBC = [0, 1] \ (I1 ∪ I2 ∪ IΣ) we have
fBC(β) ≤ min{f1(β), f2(β), fΣ(β)} and therefore the BC phase is more restrictive than any
restriction of the MAC phase.

2.8.4 Proof of Corollary 2.7

For the proof of the corollary we use the definitions of the proof of Theorem 2.5. Accord-
ingly, the right plot in Figure 2.22 is a helpful illustration.

A rate pair [RM
1 , R

M
2 ] ∈ CMAC with the sum-rate RMAC

Σ can be supported in the BC phase
iff the set IΣ is non-empty. If one solves (β⋆)2 = ∆β for γR we get γ⋆

R as given in the
corollary. It follows that for IΣ 6= ∅ we have to have (β⋆)2 ≥ ∆β so that it is necessary that
γR ≥ γ⋆

R.

Since RBC increases with increasing γR for the minimal γR the set IΣ has to be a singleton,
this means that for γΣMAC

R we have max{β2Σ, βBΣ} = min{βΣ1, βΣB}. This is equivalent
to the conditions

β2Σ ≤ βΣB ∧ βBΣ ≤ βΣ1 ∧ βBΣ ≤ βΣB ∧ β2Σ ≤ βΣ1, (2.86)
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where we have at least one equality. Since we require γR ≥ γ⋆
R the condition βBΣ ≤ βΣB is

already fulfilled.

Next, we consider the case βBΣ ≤ βΣ1, which is equivalent to the condition β⋆ − βΣ1 ≤√

β⋆2 − ∆β. Since we already require γR ≥ γ⋆
R we have β⋆2−∆β ≥ 0 so that the condition

is fulfilled if β⋆ −βΣ1 ≤ 0 holds, which is easily seen the case if we have γR ≥ γ̂Σ1
R . On the

other hand, if β⋆ > βΣ1 we have βBΣ ≤ βΣ1 if we have γR ≥ γΣ1
R (1/2). Both together gives

us that βBΣ ≤ βΣ1 is fulfilled if we have γR ≥ min{γ̂Σ1
R , γΣ1

R (1/2)}.

Similarly, the case β2Σ ≤ βΣB is equivalent to the condition β2Σ−β⋆ ≤
√

β⋆2 − ∆β. Since
we have β⋆2−∆β ≥ 0 the condition is fulfilled if β2Σ−β⋆ ≤ 0 holds, which is the case if we
have γR ≥ γ̂2Σ

R . On the hand, if β⋆ > β2Σ we have β2Σ ≤ βΣB if we have γR ≥ γ2Σ
R (1/2).

Both together gives us that β2Σ ≤ βΣB is fulfilled if we have γR ≥ min{γ̂2Σ
R , γ2Σ

R (1/2)}.

Finally, we prove by contradiction that the following holds

β2Σ ≤ βΣB ∧ βBΣ ≤ βΣ1 ∧ βBΣ ≤ βΣB ⇒ β2Σ ≤ βΣ1.

Therefore, let us assume that we have β2Σ > βΣ1. Then using the first and second inequality
gives us βΣB ≥ β2Σ > βΣ1 ≥ βBΣ which is a contradiction to the inequality βBΣ ≤ βΣB.
Accordingly, the minimum necessary relay power has to satisfy the first three conditions of
(2.86) and therefore is given by (2.16).

2.8.5 Proof of Corollary 2.8

For the proof of the corollary we use the definitions of the proof of Theorem 2.5. Accord-
ingly, the left plot in Figure 2.22 is a helpful illustration. We prove the corollary by further
investigation of the combinatorial structure of the geometry of f1, f2, and fBC. Therefore, let
us define the function

r(β) := min{f1(β), f2(β), fBC(β)}.

Since we assume γR < γΣMAC
R , we have r(β) < fΣ(β) for all β ∈ [0, 1]. Remember

that f1(β) and f2(β) are strictly decreasing and increasing. Furthermore, since fBC(β) is a
concave parabola which has its vertex at β⋆, it is strictly increasing for β < β⋆ and strictly
decreasing for β > β⋆. Therefore, the sum-rate maximum is given by the combinatoric of
the vertex of the parabola at β⋆ and the intersection points at βB1 and β2B.

Since we have IΣ = ∅, β1B > 1, and βB1 < 0, the set of feasible power distributions where
fBC(β) < r(β) is given by

IB = [0, 1] \
(
I1 ∪ I2

)
= [0, 1] ∩ (β2B, βB1).
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Since fBC(β) is a concave parabola, we have fBC(β⋆) = r(β⋆) ≥ r(β) for all β ∈ [0, 1].
Accordingly, if we have

β⋆ ∈ IB ⇔ β⋆ ≥ 0 ∧ β⋆ ≤ 1 ∧ β⋆ > β2B ∧ β⋆ < βB1, (2.87)

then the sum-rate maximum is given by 1
2RBC(β⋆). If we solve the conditions in (2.87) for

γR we get

β⋆ = 1
2 + 1

2γR

(
1

|h1|2
− 1

|h2|2

)
≥ 0 ⇔ γR ≥ γ†R = 1

|h2|2
− 1

|h1|2
,

β⋆ = 1
2 + 1

2γR

(
1

|h1|2
− 1

|h2|2

)
≤ 1 ⇔ γR ≥ −γ†R = 1

|h1|2
− 1

|h2|2
,

β⋆ > β2B = 1 − γ2|h2|2

γR|h1|2
⇔ γR < γ⋆1

R = 2γ2|h2|2

|h1|2
+ 1

|h1|2
− 1

|h2|2
,

β⋆ < βB1 = γ1|h1|2

γR|h2|2
⇔ γR < γ2⋆

R = 2γ1|h1|2

|h2|2
+ 1

|h2|2
− 1

|h1|2
.

Therefore, we have β⋆ ∈ IB with the sum-rate optimum 1
2RBC(β⋆) if we have |γ†R| < γR <

min{γ⋆1
R , γ

2⋆
R }, which proves the case (2.18c).

If we have β⋆ ≤ max{β2B, 0}, then fBC(β) is decreasing for all β ∈ IB . Since f2(β) and
f1(β) are strictly increasing and decreasing, the rate pair 1

2RBC(max{β2B, 0}) is sum-rate
optimal. Then the sum-rate optimal rate pair is on the R2-axis if we additionally have

β2B ≤ 0 ⇔ γR ≤ γ2B
R = γ2|h2|2

|h1|2
.

Then it follows that for 1
2RBC(0) to be sum-rate optimal we require β2B ≤ 0 and β⋆ ≤ 0,

which is equivalent to γR ≤ min{γ†R, γ2B
R }. This proves the case (2.18a). Accordingly, if

we have β2B > 0 and β⋆ ≤ β2B the rate pair 1
2RBC(β2B) is sum-rate optimal. This is case

if γR > γ2B
R and γR ≥ γ⋆1

R , which proves the case (2.18b).

Similarly, if we have β⋆ ≥ min{βB1, 1}, then fBC(β) is increasing for all β ∈ IB . Again,
since f2(β) and f1(β) are strictly increasing and decreasing the rate pair 1

2RBC(min{βB1, 1})
is sum-rate optimal. Then the sum-rate optimal rate pair is on the R1-axis if we additionally
have

βB1 ≥ 1 ⇔ γR ≤ γB1
R = γ1|h1|2

|h2|2
.

Then it follows that for 1
2RBC(1) to be sum-rate optimal we require βB1 ≥ 1 and β⋆ ≥ 1,

which is equivalent to γR ≤ min{−γ†R, γB1
R }. This proves the case (2.18e). Accordingly, if

we have βB1 < 1 and β⋆ ≥ the rate pair 1
2RBC(βB1) is sum-rate optimal. This is case if

γR > γB1
R and γR ≥ γ2⋆

R , which proves the case (2.18d).
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2.8.6 Proof of Theorem 2.10

We first separate a simple calculation in the following lemma, which also justifies ϑ(β).

Lemma 2.56. The normal angle of the supporting hyperplane of the rate region RBC

for a relay power distribution β1 = 1 − β2 = β is given by ϕ(β) = tanϑ(β) =

tan |h2|2(1+(1−β)γR|h1|2)
|h1|2(1+βγR|h2|2)

.

Proof of Lemma 2.56. The normal vector of the parametrized boundary [R−→
R2

(β), R−→
R1

(1 −
β)] is given by

[−R′
−→
R1

(β),R′
−→
R2

(β)]

||[R−→
R2

(β),R−→
R1

(1−β)]|| with R′
−→
R1

(β) =
d R−→

R1
(1−β)

d β = −γR|h1|2

1+γR(1−β)|h1|2
and

R′
−→
R2

(β) =
d R−→

R2
(β)

d β = γR|h2|2

1+γRβ|h2|2
. Thus the angle ϕ(β) is given by tan

R′
−→
R2

(β)

−R′
−→
R1

(β)
.

Proof of Theorem 2.10. The weighted rate sum maximum in Theorem 2.10 is given by the
boundary rate pair of RBReq where the angle of the normal vector of the supporting hyper-
plane is equal to the angle of the weight vector, i.e. tan q2/q1. Furthermore, two restrictions
apply simultaneously at boundary intersection rate pairs. Those rate pairs are also optimal
for weight vectors with an angle inbetween the angles of the normal vectors of the restric-
tions at this rate pair. Since for all weight vectors with non-negative elements, i.e. angles
inbetween [0, π/2], the tan is a strictly increasing function. For that reason, we prefer to
characterize the different cases by the argument of the tan. From Theorem 2.5 and its corol-
laries we know the combinatorial structure of the rate region and its boundary. Therefore, in
the following we determine for any weight vector q ∈ R2

+\{0} the corresponding boundary
rate pair.

First we characterize all intersection rate pairs. If I1 = ∅ ⇔ βB1 > 1, the MAC single user
bound 1

2R−→
1R

is not achievable in the BC phase, therefore the boundary rate pair 1
2RBC(1) is

optimal for all weight vectors ϑ(1) > q2/q1. Similarly, (2.20b) follows from I2 = ∅. The
MAC single user bound 1

2R−→
1R

is active for some weight vectors q if I1 6= ∅ ⇔ βB1 ≤ 1.

Next we have to distinguish if γR is large enough so that the MAC vertex 1
2νΣ1 can be

reached, i.e. βΣ1 ≥ βB1. Then 1
2νΣ1 is optimal for all weight vectors with q2/q1 ≤ 1. If

βΣ1 < βB1 ≤ 1 the vertex νΣ1 cannot be supported but the MAC single user bound 1
2R−→

1R

is active for β > βB1. Therefore, the intersection rate pair 1
2RBC(βB1) is optimal for weight

vectors q2/q1 ≤ ϑ(βB1). Similarly, if β2Σ ≤ β2B the vertex 1
2ν2Σ is optimal for q2/q1 ≥ 1

and the case (2.20f) if not.

Finally, two possible intersection rate pairs of the MAC sum-rate 1
2RΣ with RBC are left.

For both it is necessary that β⋆2 > ∆β. If β2Σ < βBΣ < βΣ1, i.e. the MAC vertex
1
2ν2Σ cannot be supported, the intersection rate pair 1

2RBC(βBΣ) is optimal for all weight
vectors with ϑ(βBΣ) ≤ q2/q1 ≤ 1. On the other hand, the MAC vertex 1

2νΣ1 cannot be
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supported if β2Σ < βΣB < βΣ1. Therefore 1
2RBC(βΣB) is optimal for weight vectors with

ϑ(βΣB) ≥ q2/q1 ≥ 1.

For all other weight vectors RBReq is bounded by the rate region of the BC phase. Therefore,
the optimal rate vector 1

2RBC(βBC) is given by the boundary rate pair with the corresponding
normal vector, where the optimal power distribution βBC follows if one solves ϑ(βBC) =
q2/q1 for βBC.

2.8.7 Proof of Lemma 2.11

Since for any α ∈ A a power distribution [β1, β2] ∈ B with αRM
1 ≤ (1 − α)R−→

R2
(β1) and

αRM
2 ≤ (1 − α)R−→

R1
(β2) exists, it is possible for the relay node to broadcast the messages

from nodes 1 and 2 with rates αRM
1 and αRM

2 . Accordingly, for any α ∈ A we achieve
the bidirectional rate pair [R1, R2] = α[RM

1 , R
M
2 ] so that the largest α∗ ∈ A maximizes the

bidirectional rate pair in each component. Next we prove by contradiction that α∗ is uniquely
characterized by (2.23a) and (2.23b). Therefore, we need that R−→

R2
(β1) and R−→

R1
(β2) are

continuous and increasing in β1 and β2.

Let us assume that for the largest element α∗ of the set A at least one equality is not fulfilled.
Since α∗ ∈ A, a relay power distribution [β1, β2] ∈ B exists so that either α∗RM

1 < (1 −
α∗)R−→

R2
(β1) or α∗RM

2 < (1 − α∗)R−→
R1

(β2).

If α∗RM
1 < (1−α∗)R−→

R2
(β1), we can find a β̃1 < β1 where still α∗RM

1 < (1−α∗)R−→
R2

(β̃1)

holds. With β̃2 = 1 − β̃1 > β2 we get α∗RM
2 < (1 − α∗)R−→

R1
(β̃2). Since in both cases we

have a strict inequality, we can find an α̃ > α∗ while both inequalities are still fulfilled, this
means α̃ ∈ A. This contradicts the assumption that α∗ is the largest element in A.

Accordingly, if α∗RM
2 < (1−α∗)R−→

R1
(β2), we can find a β̃2 < β2 and a β̃1 = 1−β̃2 > β1 so

that we have α∗RM
1 < (1− α∗)R−→

R2
(β̃1) and α∗RM

2 < (1− α∗)R−→
R1

(β̃2). This allows us to
increase αwhile both inequalities are still fulfilled, what again contradicts the assumption.

Finally, we assume that for the largest element α∗ of the set A we have β1 + β2 < 1.
Therefore, we can find β̃1 > β1 and β̃2 > β2 with [β̃1, β̃2] ∈ A so that we have α∗RM

1 <
(1 − α∗)R−→

R2
(β̃1) and α∗RM

2 < (1 − α∗)R−→
R1

(β̃2). This allows us to increase α while both
inequalities are still fulfilled, which contradicts the assumption β1 + β2 < 1.

2.8.8 Proof of Theorem 2.12

The equivalent description follows from a transformation of rate pairs [RM
1 , R

M
2 ] on the

boundary of the MAC rate region using Lemma 2.11. We get the sets R1, R2, and RΣ with
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time division parameters α⋆
1(β), α⋆

2(β), and α⋆
Σ(β) if we solve (2.23a) and (2.23b) for α⋆

with RM
1 = R−→

1R
, RM

2 = R−→
2R

, and RM
1 +RM

2 = RMAC
Σ respectively.

For an arbitrary rate pair R ∈ R1∩R2∩RΣ we will show in the following that R ∈ RBRopt

holds. Since R has to be within R1 there exists β̃1 ∈ [0, 1] so that R1 ≤ R11(β̃1) =
(
1−α⋆

1(β̃1)
)
R−→

R2
(β̃1) andR2 ≤ R12(β̃1) =

(
1−α⋆

1(β̃1)
)
R−→

R1
(1−β̃1) hold. This means that

we have R ∈
(
1 − α⋆

1(β̃1)
)
RBC. Similarly, from R ∈ R2 and R ∈ RΣ we know that there

exist β̃2, β̃Σ ∈ [0, 1] so that we have R ∈
(
1 − α⋆

2(β̃2)
)
RBC and R ∈

(
1 − α⋆

Σ(β̃Σ)
)
RBC

respectively. With α̃ = max{α⋆
1(β̃1), α

⋆
2(β̃2), α

⋆
Σ(β̃Σ)} we still have R ∈ (1 − α̃)RBC.

Furthermore, we see from

R1 ≤ R11(β̃1) = α⋆
1(β̃1)R−→

1R
≤ α̃R−→

1R
,

R2 ≤ R22(β̃2) = α⋆
2(β̃2)R−→

2R
≤ α̃R−→

2R
,

R1 +R2 ≤ RΣ1(β̃Σ) +RΣ2(β̃Σ) = α⋆
Σ(β̃Σ)RMAC

Σ ≤ α̃RMAC
Σ

that we have R ∈ α̃CMAC. It follows that R ∈ RBRopt(α̃) ⊆ RBRopt so that we conclude
that R1 ∩R2 ∩RΣ ⊆ RBRopt.

For the reverse inclusion we show that for any rate pair R ∈ RBRopt we also have R ∈ R1∩
R2∩RΣ. For any R ∈ RBRopt there exists an α̃ ∈ [0, 1] so that R ∈ α̃CMAC∩ (1− α̃)RBC

holds. From R ∈ α̃CMAC it follows thatR1 ≤ α̃R−→
1R

,R2 ≤ α̃R−→
2R

, andR1+R2 ≤ α̃RMAC
Σ ,

which is equivalent to (1− α̃) ≥ R−→
1R

−R1

R−→
1R

, (1− α̃) ≥ R−→
2R

−R2

R−→
2R

, and (1− α̃) ≥ RMAC
Σ −R1−R2

RMAC
Σ

respectively. Likewise, from (1 − α̃)RBC we know that there exists a β̃ ∈ [0, 1] where we

haveR1 ≤ (1−α̃)R−→
R2

(β̃) andR2 ≤ (1−α̃)R−→
R1

(1− β̃). If we solve (1−α̃) ≥ R−→
1R

−R1

R−→
1R

and

R1 ≤ (1 − α̃)R−→
R2

(β̃) for R1 we get R1 ≤ R−→
1R

R−→
R2

(β̃)

R−→
1R

+R−→
R2

(β̃)
=
(
1 − α⋆

1(β̃)
)
R−→

R2
(β̃) = R11(β̃).

We can use the previous inequalities to bound R2 as follows

R2 ≤ (1−α̃)R−→
R1

(1− β̃) =
R−→

1R
−R1

R−→
1R

R−→
R1

(1− β̃) ≤
(

1−R11(β̃)

R−→
1R

)

R−→
R1

(1− β̃) = R12(β̃).

It follows that R ∈ R1. If we use (1 − α̃) ≥ R−→
2R

−R2

R−→
2R

and (1 − α̃) ≥ RMAC
Σ −R1−R2

RMAC
Σ

we

can similarly conclude with R1 ≤ (1 − α̃)R−→
R2

(β̃) and R2 ≤ (1 − α̃)R−→
R1

(1 − β̃) that

R1 ≤ R21(β̃) and R2 ≤ R22(β̃) so that R ∈ R2 and that R1 ≤ RΣ1(β̃) and R2 ≤ RΣ2(β̃)
so that R ∈ RΣ respectively. This means that we have R ∈ R1 ∩R2 ∩RΣ from which we
conclude that RBRopt ⊆ R1 ∩ R2 ∩ RΣ holds. Hence, we proved the equality RBRopt =
R1 ∩R2 ∩RΣ.
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2.8.9 Proof of Corollary 2.13

For the proof of the results we basically look at the derivatives of some rate functions. For
notational simplicity we omit the arguments; but we note the subtle particularities, which
however do not change the main results.

For a specific but arbitrary β ∈ [0, 1], letR−→
R1

,R−→
R2

,R′
−→
R1

,R′
−→
R2

,R′′
−→
R1

, andR′′
−→
R2

denoteR−→
R1

(β)

and R−→
R2

(1 − β) and its first and second derivatives with respect to β. It can be easily seen
that we have R−→

R1
, R−→

R2
, R′

−→
R2

> 0 and R′
−→
R1

, R′′
−→
R1

, R′′
−→
R2

< 0 for all β ∈ [0, 1] except for

β = 0, where we have R−→
R2

= 0, and for β = 1, where we have R−→
R1

= 0. Later, we will still
achieve strict monotony since we never have equality for both simultaneously.

From this we get the inequalities for the first derivatives

dR11(β)

dβ
=

R2
−→
1R
R′

−→
R2

(R−→
1R

+R−→
R2

)2
≥ 0,

dR21(β)

dβ
=
R−→

2R
(R′

−→
R2

(R−→
2R

+R−→
R1

) −R−→
R2
R′

−→
R1

)

(R−→
2R

+R−→
R1

)2
> 0,

dRΣ1(β)

dβ
=
RMAC

Σ (R′
−→
R2

(RMAC
Σ +R−→

R1
) −R−→

R2
R′

−→
R1

))

(RMAC
Σ +R−→

R1
+R−→

R2
)2

> 0.

Therefore, R11(β) is increasing and R21(β) and RΣ1(β) are strictly increasing with β. Ac-
cordingly, from

dR12(β)

dβ
=
R−→

1R
(R′

−→
R1

(R−→
1R

+R−→
R2

) −R−→
R1
R′

−→
R2

)

(R−→
1R

+R−→
R2

)2
< 0,

dR22(β)

dβ
=

R2
−→
2R
R′

−→
R1

(R−→
2R

+R−→
R1

)2
≤ 0,

dRΣ2(β)

dβ
=
RMAC

Σ (R′
−→
R1

(RMAC
Σ +R−→

R2
) −R−→

R1
R′

−→
R2

))

(RMAC
Σ +R−→

R1
+R−→

R2
)2

< 0

we see that R22(β) is decreasing and R12(β) and RΣ2(β) are strictly decreasing with β.
Therefore, the functions R1(β), R2(β), and RΣ(β) are parameterizations of the boundaries
of R1, R2, and RΣ in the first quadrant.

The normalized normal vector for the parametrized curve R1(β) is given by
[
−

dR12(β)
dβ , dR11(β)

dβ

]/
||R1(β)|| with the angle ϕ1(β) = arctan−q1(β) where q1(β) =

dR11(β)
dβ

/dR12(β)
dβ . Since both components of the normal vector are nonnegative, the function
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ϕ1 has a range [0, π/2]. Since R′′
−→
R2
R′

−→
R1

−R′′
−→
R1
R′

−→
R2
> 0 for all β ∈ [0, 1] the derivative

dq1(β)

dβ
=
R−→

1R
(R′′

−→
R2
R′

−→
R1

−R′′
−→
R1
R′

−→
R2

)(R−→
1R

+R−→
R2

)

((R′
−→
R1

(R−→
1R

+R−→
R2

) −R−→
R1
R′

−→
R2

))2

is positive. Since arctan is strictly increasing, it follows that ϕ1(β) is strictly decreasing.
Since R11(β) is increasing and R12(β) and ϕ1(β) are strictly decreasing it follows that R1

is convex.

Similarly, we get the angles ϕ2(β) = arctan−q2(β) and ϕΣ(β) = arctan−qΣ(β) with

q2(β) = dR21(β)
dβ

/dR22(β)
dβ and qΣ(β) = dRΣ1(β)

dβ

/dRΣ2(β)
dβ for the normal vectors of rate pairs

on the parametrized curves R2(β) and RΣ(β) respectively. Again, ϕ2(β) and ϕΣ(β) are
strictly decreasing for all β since the derivatives

dq2(β)

dβ
=
R−→

2R
(R′′

−→
R2
R′

−→
R1

−R′′
−→
R1
R′

−→
R2

)(R−→
2R

+R−→
R1

)

((R′
−→
R2

(R−→
2R

+R−→
R1

) −R−→
R2
R′

−→
R1

))2
,

dqΣ(β)

dβ
=
RMAC

Σ (R′′
−→
R2
R′

−→
R1

−R′′
−→
R1
R′

−→
R2

)(RMAC
Σ +R−→

R2
+R−→

R1
)

((R′
−→
R1

(RMAC
Σ +R−→

R2
) −R−→

R1
R′

−→
R2

))2

are positive. Therefore, R2 and RΣ are convex.

Finally, RBRopt is convex since the intersection of convex sets is itself convex.

2.8.10 Proof of Proposition 2.14

We have an intersection between R1(β) and RΣ(β) if there exist β̂, β̌ ∈ [0, 1] with
[R11(β̂), R12(β̂)] = [RΣ1(β̌), RΣ2(β̌)]. First we consider the case that the intersection point
is not on the axes. Then from

R11(β̂)

R12(β̂)
=

R−→
R2

(β̂)

R−→
R1

(1 − β̂)
=

R−→
R2

(β̌)

R−→
R1

(1 − β̌)
=
R11(β̌)

R12(β̌)

and the fact that R−→
R2

(β) and R−→
R1

(1 − β) are strictly increasing and decreasing in β we

conclude that for an intersection point we have β̂ = β̌. Since α⋆
1(β), α⋆

Σ(β) < 1 holds

for any β, for an intersection point on the axes we either need R−→
R2

(β̂) = R−→
R2

(β̌) = 0 or

R−→
R1

(1 − β̂) = R−→
R1

(1 − β̌) = 0 so that we have either β̂ = β̌ = 0 or β̂ = β̌ = 1. It

follows that for an intersection point between R1(β) and RΣ(β) we always have β̂ = β̌.
The same arguments apply for an intersection point between R2(β) and RΣ(β) and R1(β)
and R2(β).
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Accordingly, we have an intersection point between R1(β) and RΣ(β) iff there exists a
β1Σ ∈ [0, 1] with R11(β1Σ) = R1Σ(β1Σ) and R21(β1Σ) = R2Σ(β1Σ). This is fulfilled iff
we have

R−→
1R

R−→
1R

+R−→
R2

(β1Σ)
=

RMAC
Σ

RMAC
Σ +R−→

R1
(1 − β1Σ) +R−→

R2
(β1Σ)

,

which is equivalent to the equation
R−→

1R

RMAC
Σ −R−→

1R

=
R−→

R2
(β1Σ)

R−→
R1

(1−β1Σ) . Since this is exactly equation

(2.24) we see that β1Σ corresponds to the unique optimal relay power distribution of the
MAC rate pair [RM

1 , R
M
2 ] = [R−→

1R
, RMAC

Σ −R−→
1R

] = ν1Σ ∈ CMAC, cf. (2.5a).

With similar arguments we see that the unique intersection between R1(β) and RΣ(β) at
βΣ2 ∈ [0, 1] corresponds to [RM

1 , R
M
2 ] = [RMAC

Σ −R−→
2R
, R−→

2R
] = νΣ2 ∈ CMAC.

Finally, we have an intersection of R1(β) and R2(β) iff there exists a β12 ∈ [0, 1] with
R11(β12) = R12(β12) and R11(β12) = R12(β12). This is fulfilled iff we have

R−→
1R

R−→
1R

+R−→
R2

(β12)
=

R−→
2R

R−→
2R

+R−→
R1

(1 − β12) +R−→
R2

(β12)
,

which is equivalent to the equation
R−→

1R
R−→

2R
=

R−→
R2

(β12)

R−→
R1

(1−β12) . Let us assume that the rate pair

R1(β12) ∈ RBRopt. From Lemma 2.11 we know that [R−→
1R
, R−→

2R
] is the corresponding rate

pair in the MAC phase. But since R−→
1R

+ R−→
2R

> RMAC
Σ , this rate pair is not achievable so

that we have R1(β12) /∈ RBRopt.

The inequalities (2.28a) and (2.28b) follow after simple calculations using the relations
1

R−→
R2

(1) ≤ 1
RMAC

Σ

+ 1
R−→

R2
(1) ≤ 1

R−→
1R

+ 1
R−→

R2
(1) and 1

R−→
R1

(1) ≤ 1
RMAC

Σ

+ 1
R−→

R1
(1) ≤ 1

R−→
2R

+

1
R−→

R1
(1) .

2.8.11 Proof of Corollary 2.15

Since RBRopt is given by the intersection (2.25), the boundary is characterized by the rate
pairs on the boundaries of R1, R2, and RΣ which are most restrictive. For β = 0 we have
R−→

R2
(0) = 0 ⇒ R11(0) = R21(0) = RΣ1(0) = 0. From (2.28b) we see that the rate pair

R2(0) is most restrictive for rate pairs on the ordinate [0, R2]. For small β > 0 the boundary
R2(β) is still most restrictive until RΣ(β) intersects the boundary at βΣ2. Until the next
intersection, the boundary RΣ(β) is most restrictive, i.e. for β1Σ < β < βΣ2. And finally,
for the last section R1(β) with β ≥ β1Σ is most restrictive.
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2.8.12 Proof of Theorem 2.16

For a convex set it is well-known that the weighted rate sum is attained at the boundary rate
pair where the direction of the normal vector is equal to the direction of the weight vector.
This can be easily seen by the following geometrical interpretation. Consider a hyperplane
inR2 with a normal vector q which intersects the feasible set RBRopt. Due to orthogonality,
any rate pair of this intersection leads to the same weighted rate sum. In order to maximize
the weighted rate sum we have to shift the hyperplane in the direction of the normal vector
as far as possible until the hyperplane is finally tangential to the boundary of RBRopt. Such a
tangential hyperplane is called a supporting hyperplane. The rate pair where the supporting
hyperplane with normal vector q intersects the boundary is the rate pair with the largest
weighted rate sum for this weight vector.

Accordingly, the procedure to find the optimum is obvious. First we have to find the opti-
mal relay power distribution β∗ corresponding to the weight vector q. Therefore, we have
to find the rate pair on the boundary where the angle of the normal vector is equal to the
angle of the weight vector, i.e. θq. Since the boundary is defined section-wise, we have
to distinguish between the following cases: If θq ∈ [ϕ1(1), ϕ1(β1Σ)], the optimal rate pair
is on the boundary of R1. Therefore, for those angles we can calculate the optimal relay
power distribution using the inverse function ϕ−1

1 . Similarly, if θq ∈ [ϕΣ(β1Σ), ϕΣ(βΣ2)] or
θq ∈ [ϕ2(βΣ2), ϕ2(0)] the optimal rate pair is on the boundary of RΣ or R2 respectively. For
weight vectors with an angle θq ∈ [0, ϕ1(1)), (ϕ1(β1Σ), ϕΣ(β1Σ)), (ϕΣ(βΣ2), ϕ2(βΣ2)), or
(ϕ2(0), π/2), the rate pairs R1(1), RΣ(β1Σ), RΣ(βΣ2), or R2(0) at the intersections of
R1(β), RΣ(β), and R2(β) with β∗ = 1, β1Σ, βΣ2, or 0 respectively are optimal. This char-
acterizes the optimal rate pair on the boundary R∗

opt(β
∗(q)) and the corresponding optimal

time division parameter α∗(q) for any weight vector q ∈ R2
+ \ {0}.

2.8.13 Proof of Lemma 2.17

From [AS64, 4.1.33] we have x
1+x < ln(1 + x) for x > −1, x 6= 0. Therewith, we get for a

constant a > 0 the inequality ln(1 + a/x) > a/x
1+a/x , for x > 0. We can use this inequality
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to see that the first derivatives

dR̃−→
1R

(α)

dα
=

1

ln(2)

(

ln

(

1 +
γ1|h1|2
α

)

−
γ1|h1|2

α

1 + γ1|h1|2

α

)

> 0

dR̃−→
2R

(α)

dα
=

1

ln(2)

(

ln

(

1 +
γ2|h2|2
α

)

−
γ2|h2|2

α

1 + γ2|h2|2

α

)

> 0

dR̃MAC
Σ (α)

dα
=

1

ln(2)

(

ln

(

1 +
γ1|h1|2 + γ2|h2|2

α

)

−
γ1|h1|2+γ2|h2|2

α

1 + γ1|h1|2+γ2|h2|2

α

)

> 0

are positive so that R̃−→
1R

(α), R̃−→
2R

(α), and R̃MAC
Σ (α) are strictly increasing for α ∈ (0, 1).

The second derivatives of R̃−→
1R

(α), R̃−→
2R

(α), and R̃MAC
Σ (α) are given by

d2R̃−→
1R

(α)

dα2
= −

(
γ1|h1|2

)2

α3
(

1 + γ1|h1|2

α

)2
ln(2)

≤ 0

d2R̃−→
2R

(α)

dα2
= −

(
γ2|h2|2

)2

α3
(

1 + γ2|h2|2

α

)2
ln(2)

≤ 0

d2R̃MAC
Σ (α)

dα2
= −

(
γ1|h1|2 + γ2|h2|2

)2

α3
(

1 + γ1|h1|2+γ2|h2|2

α

)2
ln(2)

≤ 0.

Since R̃−→
1R

(α), R̃−→
2R

(α), and R̃MAC
Σ (α) are non-positive for all α ∈ (0, 1) it follows that they

are concave.

2.8.14 Proof of Lemma 2.18

From [AS64, 4.1.33] we have x
1+x < ln(1 + x) for x > −1, x 6= 0. Therewith, we get

for a constant a > 0 the inequality ln(1 + a
1−x) >

a
1−x

1+ a
1−x

, for x ∈ [0, 1). We can use this

inequality to see that for an arbitrary but fixed β the first partial derivatives with respect to
α

∂R̃−→
R2

(α, β)

∂α
=

1

ln(2)

(
γR|h2|2β

1−α

1 + γR|h2|2β
1−α

− ln

(

1 +
γR|h2|2β

1 − α

))

< 0

∂R̃−→
R1

(α, β)

∂α
=

1

ln(2)

(
γR|h1|2(1−β)

1−α

1 + γR|h1|2(1−β)
1−α

− ln

(

1 +
γR|h1|2(1 − β)

1 − α

))

< 0
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are negative so that R̃−→
R2

(α, β) is strictly decreasing for α ∈ (0, 1]. The Hessian matrix of

R̃−→
R2

for α ∈ (0, 1] and β ∈ [0, 1] can be easily calculated as follows

H(R̃−→
R2

) =





∂2R̃−→
R2

∂α ∂α

∂2R̃−→
R2

∂α ∂β
∂2R̃−→

R2
∂β ∂α

∂2R̃−→
R2

∂β ∂β



 =
−
(
γR|h2|2

)2

(
1 + γRβ|h2|2

1−α

)2
ln(2)

[
β2

(1−α)3
β

(1−α)2
β

(1−α)2
1

(1−α)

]

.

From
∏2

i=1 λi(R̃−→
R2

) = det
(

H(R̃−→
R2

)
)

= 0 it follows that at least one eigenvalue

λi(R̃−→
R2

), i = 1, 2 is zero. Furthermore, from
∑2

i=1 λi(R̃−→
R2

) = tr
(

H(R̃−→
R2

)
)

=

−(γR|h2|2)
2
(β2+(1−α)2)

(
1+

γRβ|h2|
2

1−α

)2
ln(2)(1−α)3

≤ 0 it additionally follows that the other eigenvalue is non-positive.

Therefore, both eigenvalues λi(R̃−→
R2

), i = 1, 2, are non-positive so that the rate function

R̃−→
R2

(α, β) is concave on [0, 1) × [0, 1].

Similarly, the Hessian matrix of R̃−→
R1

for α ∈ [0, 1) and β ∈ [0, 1] is given by

H(R̃−→
R1

) =





∂2R̃−→
R1

∂α ∂α

∂2R̃−→
R1

∂α ∂β
∂2R̃−→

R1
∂β ∂α

∂2R̃−→
R1

∂β ∂β .



 =
−
(
γR|h1|2

)2

(
1 + γR(1−β)|h1|2

1−α

)2
ln(2)

[
(1−β)2

(1−α)3
1−β

(1−α)2
1−β

(1−α)2
1

(1−α)

]

.

Again from
∏2

i=1 λi(R̃−→
R1

) = det
(

H(R̃−→
R1

)
)

= 0 and
∑2

i=1 λi(R̃−→
R1

) = tr
(

H(R̃−→
R1

)
)

=

−(γR|h2|2)
2
(β2+(1−α)2)

(
1+

γRβ|h2|
2

1−α

)2
ln(2)(1−α)3

≤ 0 it follows that both eigenvalues λi(R̃−→
R1

), i = 1, 2, are non-

positive so that the rate function R̃−→
R1

(α, β) is concave on [0, 1) × [0, 1] as well.

2.8.15 Proof of Proposition 2.19

For any arbitrary but fixed time-division parameter α ∈ [0, 1) and rate pairs R(1),R(2) ∈
R̃BC(α) we have to show that for any t ∈ [0, 1] we have R(t) := tR(1) + (1 − t)R(2) ∈
R̃BC(α). Then R̃BC(α) is convex.

Let Ri(t) := tR
(1)
i + (1 − t)R

(2)
i , i = 1, 2, denote the components of R(t). For each rate

pair R(k), k = 1, 2, there exists a β(k) ∈ [0, 1] such that we have R
(k)
1 ≤ R̃−→

R2
(α, β(k)) and

R
(k)
2 ≤ R̃−→

R1
(α, β(k)). For t ∈ [0, 1] we define β(t) := tβ(1) + (1− t)β(2). Then we have

R1(t) = tR
(1)
1 + (1 − t)R

(2)
1 ≤ tR̃−→

R2
(α, β(1)) + (1 − t)R̃−→

R2
(α, β(2)) ≤ R̃−→

R2
(α, β(t))

R2(t) = tR
(1)
2 + (1 − t)R

(2)
2 ≤ tR̃−→

R1
(α, β(1)) + (1 − t)R̃−→

R1
(α, β(2)) ≤ R̃−→

R1
(α, β(t))
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where the last inequalities follow from concavity of R̃−→
R2

(α, β) and R̃−→
R1

(α, β) for β ∈ [0, 1].

This means that for all t ∈ [0, 1] we have β(t) ∈ [0, 1] and R1(t) ≤ R̃−→
R2

(α, β(t)) and

R1(t) ≤ R̃−→
R2

(α, β(t)) so that R(t) ∈ R̃BC(α) follows. For α = 0 we have R̃BC(0) = ∅,
which is convex by definition.

2.8.16 Proof of Lemma 2.23

Since R̃−→
R1

(α, β) and R̃−→
R2

(α, β) are continuous, positive, and strictly decreasing for α ∈
[0, 1) and a fixed β the absolute value of the rate pair R̃BC(α, β) is strictly decreas-
ing as well. Likewise, R̃−→

1R
(α), R̃−→

2R
(α), and R̃MAC

Σ (α) are continuous, positive, and
strictly increasing for α ∈ (0, 1]. Furthermore, for the continuous continuation we have
R̃−→

R1
(1, β) = R̃−→

R2
(1, β) = R̃−→

1R
(0) = R̃−→

2R
(0) = R̃MAC

Σ (0) = 0 for all β ∈ [0, 1]. Since
both arguments of the minima are continuous and one is strictly increasing while the other is
strictly decreasing it follows that for the maximizing time-division parameter both arguments
are equal and the maximizing time-division parameter is unique.

2.8.17 Proof of Theorem 2.21

First, we will prove the inclusion R̃1 ∩ R̃2 ∩ R̃Σ ⊆ R̃BRopt. To this end we have to show
that for any arbitrary rate pair R ∈ R̃1 ∩ R̃2 ∩ R̃Σ it follows that R ∈ R̃BRopt. Let ϕR and
RR denote the angle and the radius of the rate pair R, i.e. the rate pair in polar coordinates
is given by R = [RR cos(ϕR), RR sin(ϕR)]. If R ∈ R̃1 ∩ R̃2 ∩ R̃Σ we have R ∈ R̃1,
R ∈ R̃2, and R ∈ R̃Σ so that we have

RR ≤ min
{

R̃1(ϕR), R̃2(ϕR), R̃Σ(ϕR)
}

.

From Lemma 2.23 we know that for each R̃1(ϕR), R̃2(ϕR), R̃Σ(ϕR) there exist unique
maximizing time-division parameters α̃∗

1(ϕR), α̃∗
2(ϕR), and α̃∗

Σ(ϕR) ∈ [0, 1] where we
have

R̃BC(α̃∗
1(ϕR), ϕR) =

R̃−→
1R

(α̃∗
1(ϕR))

cos(ϕR)

R̃BC(α̃∗
2(ϕR), ϕR) =

R̃−→
2R

(α̃∗
2(ϕR))

sin(ϕR)

R̃BC(α̃∗
Σ(ϕR), ϕR) =

R̃MAC
Σ (α̃∗

Σ(ϕR))

cos(ϕR) + sin(ϕR)

respectively. Let α̃∗ := max{α̃∗
1(ϕR), α̃∗

2(ϕR), α̃∗
Σ(ϕR)} denote the maximum, which cor-

responds to the shortest broadcast phase. With the power distribution β̃∗ := β̃BC(α̃∗, ϕR),
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which is the power distribution of the rate pair on the boundary of R̃BC(α̃∗) with angle ϕR,
we have RR ≤ R̃BC(α̃∗, β̃∗) so that R ∈ R̃BC(α̃∗) follows. Moreover, since R̃−→

1R
(α),

R̃−→
2R

(α), and R̃MAC
Σ (α) are increasing for α ∈ [0, 1] we have for the individual rate con-

straints

R1 = RR cos(ϕR) ≤ R̃1(ϕR) cos(ϕR) =
R̃−→

1R
(α̃1(ϕR))

cos(ϕR)
cos(ϕR) ≤ R̃−→

1R
(α̃∗)

R2 = RR sin(ϕR) ≤ R̃2(ϕR) sin(ϕR) =
R̃−→

2R
(α̃2(ϕR))

sin(ϕR)
sin(ϕR) ≤ R̃−→

2R
(α̃∗)

and for the sum-rate constraint

R1 +R2 = RR(cos(ϕR) + sin(ϕR)) ≤ R̃Σ(ϕR)(cos(ϕR) + sin(ϕR))

=
R̃MAC

Σ (α̃Σ(ϕR))

cos(ϕR) + sin(ϕR)
(cos(ϕR) + sin(ϕR)) = R̃MAC

Σ (α̃Σ(ϕR)) ≤ R̃MAC
Σ (α̃∗)

so that R ∈ C̃MAC(α̃∗). It follows that R ∈ R̃BC(α̃∗) ∪ C̃MAC(α̃∗) ⊆ ⋃

α∈[0,1]R̃BC(α) ∪
C̃MAC(α) = R̃BRopt.

For the reverse inclusion we show that for any R ∈ R̃BRopt it follows that R ∈ R̃1 ∩ R̃2 ∩
R̃Σ. For any R = [RR cos(ϕR), RR sin(ϕR)] ∈ R̃BRopt there exists an α̃∗ ∈ [0, 1] such
that R ∈ C̃MAC(α̃∗) and R ∈ R̃BC(α̃∗). This implies that we have

R1 = RR cos(ϕR) ≤ R̃−→
1R

(α̃∗) ⇒ RR ≤
R̃−→

1R
(α̃∗)

cos(ϕR)
, (2.88a)

R2 = RR sin(ϕR) ≤ R̃−→
2R

(α̃∗) ⇒ RR ≤
R̃−→

2R
(α̃∗)

sin(ϕR)
, (2.88b)

R1 +R2 = RR

(
cos(ϕR) + sin(ϕR)

)
≤ R̃MAC

Σ (α̃∗) ⇒ RR ≤ R̃MAC
Σ (α̃∗)

cos(ϕR) + sin(ϕR)
.

(2.88c)

For a given time-division α̃∗ the rate pair with largest radius with the same angle as the rate
pair R has the relay power distribution β̃∗ := β(α̃∗, ϕR). This implies ϕR = ϕBC(α̃∗, β̃∗).
Then it follows from R ∈ R̃BC(α̃) that

R1 = RR cos(ϕR) ≤ R̃−→
R2

(α̃∗, β̃∗),

R2 = RR sin(ϕR) ≤ R̃−→
R1

(α̃∗, β̃∗).

Furthermore, we have
[

R̃−→
R2

(α̃∗, β̃∗), R̃−→
R1

(α̃∗, β̃∗)
]

=
[

R̃−→
R2

(
α̃∗, β(α̃∗, ϕR)

)
, R̃−→

R1

(
α̃∗, β(α̃∗, ϕR)

)]

= R̃BC(α̃∗, ϕR) = R̃BC(α̃∗, ϕR)[cos(ϕR), sin(ϕR)].

142



2.8 Appendix: Proofs

Therefore, we have RR ≤ R̃BC(α̃∗, ϕR). This together with (2.88a), (2.88b), and (2.88c)
gives us

RR ≤ min

{

R̃BC(α̃∗, ϕR),
R̃−→

1R
(α̃∗)

cos(ϕR)

}

≤ max
α∈[0,1]

min

{

R̃BC(α,ϕR),
R̃−→

1R
(α)

cos(ϕR)

}

= R̃1(ϕR)

RR ≤ min

{

R̃BC(α̃∗, ϕR),
R̃−→

2R
(α̃∗)

sin(ϕR)

}

≤ max
α∈[0,1]

min

{

R̃BC(α,ϕR),
R̃−→

2R
(α)

sin(ϕR)

}

= R̃2(ϕR)

RR ≤ min

{

R̃BC(α̃∗, ϕR),
R̃MAC

Σ (α̃∗)

cos(ϕR) + sin(ϕR)

}

≤ max
α∈[0,1]

min

{

R̃BC(α,ϕR),
R̃MAC

Σ (α)

cos(ϕR) + sin(ϕR)

}

= R̃Σ(ϕR)

This let us conclude that

R1 = RR cos(ϕR) ≤ R̃1(ϕR) cos(ϕR)

R2 = RR sin(ϕR) ≤ R̃1(ϕR) sin(ϕR)

}

⇒ R = [R1, R2] ∈ R̃1,

R1 = RR cos(ϕR) ≤ R̃2(ϕR) cos(ϕR)

R2 = RR sin(ϕR) ≤ R̃2(ϕR) sin(ϕR)

}

⇒ R = [R1, R2] ∈ R̃2,

R1 = RR cos(ϕR) ≤ R̃Σ(ϕR) cos(ϕR)

R2 = RR sin(ϕR) ≤ R̃Σ(ϕR) sin(ϕR)

}

⇒ R = [R1, R2] ∈ R̃Σ.

Accordingly, we have R ∈ R̃1 ∩ R̃2 ∩ R̃Σ finally. Therewith, we have proved R̃BRopt =
R̃1 ∩ R̃2 ∩ R̃Σ.
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2.8.18 Proof of Theorem 2.24

We first prove (2.42a) and (2.42b). For ϕ = 0 and ϕ = π
2 we have R̃BC(α, 0) = R̃−→

R2
(α, 1)

and R̃BC(α, π
2 ) = R̃−→

R1
(α, 0) respectively. Therewith, we have

R̃1(0) = max
α∈[0,1]

min
{
R̃−→

R2
(α, 1), R̃−→

1R
(α)
}
,

R̃Σ(0) = max
α∈[0,1]

min
{
R̃−→

R2
(α, 1), R̃MAC

Σ (α)
}
,

R̃2(0) = lim
ϕ→0

max
α∈[0,1]

min

{

R̃BC(α,ϕ),
R̃−→

2R
(α)

sin(φ)

}

= max
α∈[0,1]

R̃−→
R2

(α, 1) = R̃−→
R2

(0, 1).

We know that R̃−→
R2

(1, 1) = 0 and R̃−→
R2

(α, 1) > 0 for α < 1 and R̃−→
1R

(0) = R̃MAC
Σ (0) =

0 and R̃−→
1R

(α), R̃MAC
Σ (α) > 0 for α ∈ (0, 1]. It follows that the optimal time-division

parameters α̃1(0), α̃Σ(0) are in the open interval (0, 1). Since R̃−→
1R

(α) < R̃MAC
Σ (α) for all

α ∈ (0, 1) it follows that R̃1(0) < R̃Σ(0). Furthermore, since R̃−→
R2

(α, 1) < R̃−→
R2

(0, 1) for

all α ∈ (0, 1) we have R̃Σ(0) < R̃2(0) so that (2.42a) follows. Similarly, for ϕ = π
2 we

have

R̃2(
π
2 ) = max

α∈[0,1]
min

{
R̃−→

R1
(α, 0), R̃−→

2R
(α)
}
,

R̃Σ(π
2 ) = max

α∈[0,1]
min

{
R̃−→

R1
(α, 0), R̃MAC

Σ (α)
}
,

R̃1(
π
2 ) = lim

ϕ→
π
2

max
α∈[0,1]

min

{

R̃BC(α,ϕ),
R̃−→

1R
(α)

cos(φ)

}

= max
α∈[0,1]

R̃−→
R1

(α, 0) = R̃−→
R1

(0, 0).

As before, we can conclude with R̃−→
2R

(α) ≤ R̃MAC
Σ (α) and R̃−→

R1
(α, 0) ≤ R̃−→

R2
(0, 0) for all

α ∈ (0, 1) that (2.42b) holds.

Since the boundaries are continuous curves in the first quadrant we see from (2.42a) and
(2.42b) that boundaries of R̃1, R̃2, and R̃Σ have to intersect at least once. In the following
we will see that they intersect at one boundary rate pair only.

For an intersection rate pair between the boundaries R̃1 and R̃2 there must exist an angle
ϕ̃12 ∈ (0, π

2 ) where the radii are equal, i.e. we have R̃1(ϕ̃12) = R̃2(ϕ̃12). From Lemma 2.23
we additionally know that

R̃1(ϕ̃12) = R̃BC(α∗
1(ϕ̃12), ϕ̃12) =

R̃−→
1R

(α̃1(ϕ̃12))

cos(ϕ̃12)

R̃2(ϕ̃12) = R̃BC(α∗
2(ϕ̃12), ϕ̃12) =

R̃−→
2R

(α̃2(ϕ̃12))

sin(ϕ̃12)
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so that we have R̃BC(α∗
1(ϕ̃12), ϕ̃12) = R̃BC(α∗

2(ϕ̃12), ϕ̃12) > 0. Since R̃BC(α,ϕ) is
continuous and strictly decreasing for α ∈ [0, 1) and a fixed ϕ ∈ [0, π

2 ] it follows that
α̃∗

1(ϕ̃12) = α̃∗
2(ϕ̃12) =: α̃12.

The equality
R̃−→

1R
(α̃12)

cos(ϕ̃12) =
R̃−→

2R
(α̃12)

sin(ϕ̃12) characterizes the radius of the intersection rate pair of the

individual rate constraints of C̃MAC(α̃12). For any α the rate region C̃MAC(α) has only one
intersection rate pair of the individual rate constraints, which angle we denote by ϕ̃12(α).
Since both rate constraints strictly increase with α, also the radius of the intersection strictly
increases. Since R̃BC(α,ϕ) strictly decreases, we can conclude that there is only one time-
division parameter where the intersection rate pair is on the boundary of R̃BC(α,ϕ) as well.
It follows that ϕ̃12 is unique.

From the equality of R̃1(ϕ̃12) = R̃2(ϕ̃12) we can conclude

R̃MAC
Σ (α̃12) < R̃−→

1R
(α̃12) + R̃−→

2R
(α̃12) = R̃BC(α̃12, ϕ̃12)(sin(ϕ̃12) + cos(ϕ̃12)).

Since R̃MAC
Σ (α) and R̃BC(α,ϕ) are strictly increasing and decreasing for α and fixed ϕ, it

follows that for the optimal time-division parameter we have α̃∗
Σ(ϕ̃12) < α̃12 so that

R̃1(ϕ̃12) = R̃2(ϕ̃12) = R̃BC(α̃12, ϕ̃12) > R̃BC(α̃∗
Σ(ϕ̃12), ϕ̃12) = R̃Σ(ϕ̃).

Since R̃−→
2R

(α,ϕ) and R̃BC(α,ϕ) are strictly increasing and decreasing for α and fixed ϕ, it
follows that for the optimal time-division parameter we have α̃∗

2(ϕ̃Σ1) < α̃Σ1 so that

R̃1(ϕ̃Σ1) = R̃Σ(ϕ̃Σ1) = R̃BC(α̃Σ1, ϕ̃Σ1) < R̃BC(α̃∗
2(ϕ̃Σ1), ϕ̃Σ1) = R̃2(ϕ̃).

The discussion for the intersections between the boundaries of R̃Σ and R̃1 or R̃2 is similar,
which we will present here for completeness. For an intersection of the boundaries R̃Σ

and R̃1 there must exist an angle ϕ̃Σ1 ∈ (0, π
2 ) where the radii are equal, i.e. we have

R̃Σ(ϕ̃Σ1) = R̃1(ϕ̃Σ1). From Lemma 2.23 we additionally know that

R̃1(ϕ̃Σ1) = R̃BC(α∗
1(ϕ̃Σ1), ϕ̃Σ1) =

R̃−→
1R

(α̃1(ϕ̃Σ1))

cos(ϕ̃Σ1)

R̃Σ(ϕ̃Σ1) = R̃BC(α∗
Σ(ϕ̃Σ1), ϕ̃Σ1) =

R̃MAC
Σ (α̃Σ(ϕ̃Σ1))

sin(ϕ̃Σ1) + cos(ϕ̃Σ1)

so that we have R̃BC(α∗
1(ϕ̃Σ1), ϕ̃Σ1) = R̃BC(α∗

Σ(ϕ̃Σ1), ϕ̃Σ1) > 0. Since R̃BC(α,ϕ) is
continuous and strictly decreasing for α ∈ [0, 1) and a fixed ϕ ∈ [0, π

2 ] it follows that
α̃∗

Σ(ϕ̃Σ1) = α̃∗
2(ϕ̃Σ1) =: α̃Σ1.

The equality
R̃−→

1R
(α̃Σ1)

cos(ϕ̃Σ1) =
R̃MAC

Σ (α̃Σ1)

sin(ϕ̃Σ1)+cos(ϕ̃Σ1) characterizes the radius of the intersection rate

pair of the individual rate constraint and the sum-rate constraint of C̃MAC(α̃Σ1). For any
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α the rate region C̃MAC(α) has only one intersection rate pair, which angle we will denote
by ϕ̃Σ1(α). Since the individual and sum-rate constraints strictly increase with α, also the
radius of the intersection strictly increases. Since R̃BC(α,ϕ) strictly decreases, we can con-
clude that there is only one time-division parameter where the intersection rate pair is on the
boundary of R̃BC(α,ϕ) as well. It follows that ϕ̃Σ1 is unique.

From the equality of R̃1(ϕ̃Σ1) = R̃Σ(ϕ̃Σ1) we can conclude

R̃−→
2R

(α̃Σ1) > R̃MAC
Σ (α̃Σ1) − R̃−→

1R
(α̃Σ1) = R̃BC(α̃Σ1, ϕ̃Σ1) sin(ϕ̃Σ1).

Since R̃−→
2R

(α) and R̃BC(α,ϕ) are strictly increasing and decreasing for α and fixed ϕ, it
follows that for the optimal time-division parameter we have α̃∗

2(ϕ̃Σ1) < α̃Σ1 so that

R̃1(ϕ̃Σ1) = R̃Σ(ϕ̃Σ1) = R̃BC(α̃Σ1, ϕ̃Σ1) < R̃BC(α̃∗
2(ϕ̃Σ1), ϕ̃Σ1) = R̃2(ϕ̃).

Finally, for an intersection of the boundaries R̃2 and R̃Σ there must exist an angle ϕ̃2Σ ∈
(0, π

2 ) where the radii are equal, i.e. we have R̃Σ(ϕ̃2Σ) = R̃2(ϕ̃2Σ). From Lemma 2.23 we
additionally know that

R̃2(ϕ̃2Σ) = R̃BC(α∗
1(ϕ̃2Σ), ϕ̃2Σ) =

R̃−→
2R

(α̃1(ϕ̃2Σ))

sin(ϕ̃2Σ)

R̃Σ(ϕ̃2Σ) = R̃BC(α∗
Σ(ϕ̃2Σ), ϕ̃2Σ) =

R̃MAC
Σ (α̃Σ(ϕ̃2Σ))

sin(ϕ̃2Σ) + cos(ϕ̃2Σ)

so that we have R̃BC(α∗
1(ϕ̃2Σ), ϕ̃2Σ) = R̃BC(α∗

Σ(ϕ̃2Σ), ϕ̃2Σ) > 0. Since R̃BC(α,ϕ) is
continuous and strictly decreasing for α ∈ [0, 1) and a fixed ϕ ∈ [0, π

2 ] it follows that
α̃∗

2(ϕ̃2Σ) = α̃∗
Σ(ϕ̃2Σ) =: α̃2Σ.

The equality
R̃−→

2R
(α̃2Σ)

sin(ϕ̃2Σ) =
R̃MAC

Σ (α̃2Σ)

sin(ϕ̃2Σ)+cos(ϕ̃2Σ) characterizes the radius of the intersection rate

pair of the individual rate constraint and the sum-rate constraint of C̃MAC(α̃2Σ). For any
α the rate region C̃MAC(α) has only one intersection rate pair, which angle we will denote
by ϕ̃2Σ(α). Since the individual and sum-rate constraints strictly increase with α, also the
radius of the intersection strictly increases. Since R̃BC(α,ϕ) strictly decreases, we can con-
clude that there is only one time-division parameter where the intersection rate pair is on the
boundary of R̃BC(α,ϕ) as well. It follows that ϕ̃2Σ is unique.

From the equality of R̃2(ϕ̃2Σ) = R̃Σ(ϕ̃2Σ) we can conclude

R̃−→
1R

(α̃2Σ) > R̃MAC
Σ (α̃2Σ) − R̃−→

2R
(α̃2Σ) = R̃BC(α̃2Σ, ϕ̃2Σ) cos(ϕ̃2Σ).

Since R̃−→
1R

(α) and R̃BC(α,ϕ) are strictly increasing and decreasing for α and fixed ϕ, it
follows that for the optimal time-division parameter we have α̃∗

1(ϕ̃2Σ) < α̃2Σ so that

R̃2(ϕ̃2Σ) = R̃Σ(ϕ̃2Σ) = R̃BC(α̃2Σ, ϕ̃2Σ) < R̃BC(α̃∗
1(ϕ̃2Σ), ϕ̃2Σ) = R̃1(ϕ̃).

This finishes the proof.
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2.8.19 Proof of Corollary 2.25

Since R̃BRopt is given by the intersection (2.39), the boundary is characterized by the rate
pairs on the boundaries of R̃1, R̃2, and R̃Σ which are most restrictive. For ϕ = 0 we
know from (2.42a) that radius R̃1(0) is most restrictive for rate pairs on the abscissa [R1, 0].
This remains the case until the boundary of R̃Σ intersects the boundary of R̃1, i.e. for
ϕ ≤ ϕ̃1Σ. Then the radius R̃Σ(ϕ) is most restrictive until the boundary of R̃2 intersects the
boundary of R̃Σ, i.e. for ϕ ∈ (ϕ̃2Σ, ϕ̃Σ1). Finally, for ϕ ∈ [π

2 , ϕ̃2Σ] the radius R̃2(ϕ) is most
restrictive.

2.8.20 Proof of Theorem 2.26

We first prove that R̃1 is convex. Therefore, we have to show that for any two rate pairs

R(k) = [R
(k)
1 , R

(k)
2 ] ∈ R̃1, k = 1, 2, we have R(t) = [R1(t), R2(t)] := tR(1) + (1 −

t)R(2) ∈ R̃1 for all t ∈ [0, 1]. Therefore, let ϕ
R(k) and R

R(k) denote the angle and radius of

the rate vector R(k), k = 1, 2.

From R(k) ∈ R̃1 it follows that R
R(k) ≤ R̃1(ϕR(k)), k = 1, 2. According to Lemma 2.23

there exist time-division parameters α̃
(k)
1 := α∗

1(ϕR(k)) with R
R(k) ≤ R̃−→

1R
(α̃

(k)
1 )

cos(ϕ
R(k) )

so that we

have
R

(k)
1 = R

R(k) cos(ϕ
R(k)) ≤ R̃−→

1R
(α̃

(k)
1 ), k = 1, 2. (2.89)

Then from Proposition 2.20 we additionally get the relay distribution factors β̃
(k)
1 :=

β̃BC(α̃
(k)
1 , ϕ

R(k)) so that we have R
R(k) ≤ R̃BC(α̃

(k)
1 , β̃

(k)
1 ), k = 1, 2, which is equivalent

to
R

(k)
1 ≤ R̃−→

R2
(α̃

(k)
1 , β̃

(k)
1 ), R

(k)
2 ≤ R̃−→

R1
(α̃

(k)
1 , β̃

(k)
1 ). (2.90)

For t ∈ [0, 1] let us define α̃1(t) := tα̃
(1)
1 +(1−t)α̃(2)

1 and β̃1(t) := tβ̃
(1)
1 +(1−t)β̃(2)

1 . From
Lemma 2.17 and 2.18 we know that R̃−→

1R
(α), R̃−→

R2
(α, β), and R̃−→

R1
(α, β) are concave.

Then let ϕ̃1(t) be the angle of [min{R̃−→
R2

(α̃1(t), β̃1(t)), R̃−→
1R

(α̃1(t))}, R̃−→
R1

(α̃1(t), β̃1(t))],
which is given by

ϕ̃1(t) :=







arctan
R̃−→

R1
(α̃1(t),β̃1(t))

min{R̃−→
R2

(α̃1(t),β̃1(t)),R̃−→
1R

(α̃1(t))}
, if β̃1(t) 6= 0

π
2 , if β̃1(t) = 0.

Note that if R̃−→
R2

(α̃1(t), β̃1(t)) ≤ R̃−→
1R

(α̃1(t)) we have ϕ̃1(t) = ϕ̃BC(α̃1(t), β̃1(t)), else

we have ϕ̃1(t) > ϕ̃BC(α̃1(t), β̃1(t)) because the inverse function of the tangent is strictly
increasing.
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In the following, we show that the boundary rate pair on R̃1 with angle ϕ̃1(t) is component-
wise larger than R(t). To this end for the radius for this boundary rate pair we have

R̃1(ϕ̃1(t)) = max
α∈[0,1]

min

{

R̃BC(α, ϕ̃1(t)),
R̃−→

1R
(α)

cos(ϕ̃1(t))

}

= R̃BC(α̃∗
1(ϕ̃1(t)), ϕ̃1(t)) =

R̃−→
1R

(α̃∗
1(ϕ̃1(t)))

cos(ϕ̃1(t))
(2.91)

≥ min

{

R̃BC(α̃1(t), ϕ̃1(t)),
R̃−→

1R
(α̃1(t))

cos(ϕ̃1(t))

}

. (2.92)

We will now show that R1(t) ≤ R̃1(α̃1(t)) cos(ϕ̃1(t)) and R2(t) ≤ R̃1(ϕ̃1(t)) sin(ϕ̃1(t)).
Therefore, we have to distinguish between two cases of the minimization in (2.92).

First, if R̃BC(α̃1(t), ϕ̃1(t)) >
R̃−→

1R
(α̃1(t))

cos(ϕ̃1(t)) , which implies that ϕ̃1(t) <
π
2 , we have

cos(ϕ̃1(t))R̃1(ϕ̃1(t)) = R̃−→
1R

(α̃∗
1(ϕ̃1(t))) ≥ R̃−→

1R
(α̃1(t))

≥ tR̃−→
1R

(α̃
(1)
1 ) + (1 − t)R̃−→

1R
(α̃

(2)
1 ) ≥ tR

(1)
1 + (1 − t)R

(2)
1 = R1(t)

where the first equality comes from (2.91) and the inequalities follow from (2.92), from the

concavity of R̃−→
1R

(α), and from the definition of α̃
(k)
1 , k = 1, 2, respectively. Further, we can

conclude

sin(ϕ̃1(t))R̃1(ϕ̃1(t)) = tan(ϕ̃1(t))R̃−→
1R

(α̃∗
1(ϕ̃1(t))) ≥ tan(ϕ̃1(t))R̃−→

1R
(α̃1(t))

=
R̃−→

R1
(α̃1(t), β̃1(t))R̃−→

1R
(α̃1(t))

min{R̃−→
R2

(α̃1(t), β̃1(t)), R̃−→
1R

(α̃1(t))}

≥
R̃−→

R1
(α̃1(t), β̃1(t))R̃−→

1R
(α̃1(t))

R̃−→
1R

(α̃1(t))
= R̃−→

R1
(α̃1(t), β̃1(t))

≥ tR̃−→
R1

(α̃
(1)
1 , β̃

(1)
1 ) + (1 − t)R̃−→

R1
(α̃

(2)
1 , β̃

(2)
1 ) ≥ tR

(1)
2 + (1 − t)R

(2)
2 = R2(t)

where the first equality and inequality are consequences of (2.91) and (2.92), the next follow
from the definition of ϕ̃1(t), from the concavity of R̃−→

R1
(α, β), and from the definition of

α̃
(k)
1 , k = 1, 2, respectively.

For the case R̃BC(α̃1(t), ϕ̃1(t)) ≤
R̃−→

1R
(α̃1(t))

cos(ϕ̃1(t)) , which is equivalent to

R̃−→
1R

(α̃1(t)) ≥ R̃BC(α̃1(t), ϕ̃1(t)) cos(ϕ̃1(t)) = R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))), (2.93)

we first prove the following claim.
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Claim 2.57. From (2.93) it follows that R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) =

R̃−→
R2

(α̃1(t), β̃1(t)).

Proof. If ϕ̃1(t) = π
2 then we have β̃BC(α̃1(t),

π
2 ) = 0 = β̃1(t) so that the claim

holds. For ϕ̃1(t) < π
2 the claim will be proved by contradiction. To this end we as-

sume that from (2.93) it follows that R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) 6= R̃−→
R2

(α̃1(t), β̃1(t)).
Then we have to distinguish between two cases. First, we assume that we have
R̃−→

R2
(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) > R̃−→

R2
(α̃1(t), β̃1(t)). Since R̃−→

R2
(α, β) is strictly increas-

ing for β we have β̃BC(α̃1(t), ϕ̃1(t)) > β̃1(t). This implies

R̃−→
R1

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) < R̃−→
R1

(α̃1(t), β̃1(t))

since R̃−→
R1

(α, β) is strictly decreasing for β. Further, with (2.93) we have

R̃−→
1R

(α̃1(t)) ≥ R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) > R̃−→
R2

(α̃1(t), β̃1(t))

so that we get the contradiction for the first case

tan ϕ̃1(t) =
R̃−→

R1
(α̃1(t), β̃1(t))

R̃−→
R2

(α̃1(t), β̃1(t))
>
R̃−→

R1
(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t)))

R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t)))
= tan ϕ̃1(t).

Now we assume R̃−→
R2

(α̃1(t), β̃1(t)) > R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) so that β̃1(t) >

β̃BC(α̃1(t), ϕ̃1(t)) and R̃−→
R1

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))) > R̃−→
R1

(α̃1(t), β̃1(t)) follow imme-
diately. Then we get a contradiction for the second case from the following

tan ϕ̃1(t) =
R̃−→

R1
(α̃1(t), β̃1(t))

min{R̃−→
R2

(α̃1(t), β̃1(t)), R̃−→
1R

(α̃1(t))}

≤
R̃−→

R1
(α̃1(t), β̃1(t))

min{R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))), R̃−→
1R

(α̃1(t))}

=
R̃−→

R1
(α̃1(t), β̃1(t))

R̃−→
R2

(α̃1(t), β̃1(t))
<
R̃−→

R1
(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t)))

R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t)))
= tan ϕ̃1(t)

where we used the fact that for a < b, a, c 6= 0 we have 1
min{b,c} ≤ 1

min{a,c} , (2.93), and the

monotony of R̃−→
R2

(α, β) and R̃−→
R1

(α, β) for β.

Note that the claim implies β̃1(t) = β̃BC(α̃1(t), ϕ̃1(t)). From Claim 2.57 with (2.93)
we conclude that R̃−→

1R
(α̃1(t)) ≥ R̃−→

R2
(α̃1(t), β̃1(t)) holds so that we have ϕ̃1(t) =
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ϕ̃BC(α̃1(t), β̃1(t)). Accordingly, we get

cos(ϕ̃1(t))R̃1(ϕ̃1(t)) = cos(ϕ̃1(t))R̃BC(α̃1(t), ϕ̃1(t)) = R̃−→
R2

(α̃1(t), β̃1(t))

≥tR̃−→
R2

(α̃
(1)
1 , β̃

(1)
1 ) + (1 − t)R̃−→

R2
(α̃

(2)
1 , β̃

(2)
1 ) ≥ tR

(1)
1 + (1 − t)R

(2)
1 = R1(t)

where we used (2.93), Claim 2.57 and the concavity of R̃−→
R2

(α̃1(t), β̃1(t)). For the rateR2(t)
we have

sin(ϕ̃1(t))R̃1(ϕ̃1(t)) = sin(ϕ̃1(t))R̃BC(α̃1(t), ϕ̃1(t)) = tan(ϕ̃1(t))R̃−→
R2

(α̃1(t), β̃1(t))

=
R̃−→

R1
(α̃1(t), β̃1(t))R̃−→

R2
(α̃1(t), β̃1(t))

min{R̃−→
R2

(α̃1(t), β̃1(t)), R̃−→
1R

(α̃1(t))}

=
R̃−→

R1
(α̃1(t), β̃1(t))R̃−→

R2
(α̃1(t), β̃1(t))

min{R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t))), R̃−→
1R

(α̃1(t))}

=
R̃−→

R1
(α̃1(t), β̃1(t))R̃−→

R2
(α̃1(t), β̃1(t))

R̃−→
R2

(α̃1(t), β̃BC(α̃1(t), ϕ̃1(t)))
=
R̃−→

R1
(α̃1(t), β̃1(t))R̃−→

R2
(α̃1(t), β̃1(t))

R̃−→
R2

(α̃1(t), β̃1(t))

=R̃−→
R1

(α̃1(t), β̃1(t)) ≥ tR̃−→
R1

(α̃
(1)
1 , β̃

(1)
1 ) + (1 − t)R̃−→

R1
(α̃

(2)
1 , β̃

(2)
1 )

≥tR(1)
2 + (1 − t)R

(2)
2 = R2(t)

where we have used (2.93) and Claim 2.57, the definition of ϕ̃1(t), and the concavity of
R̃−→

R1
(α̃1(t), β̃1(t)). It follows that R(t) ∈ R̃1 for all t ∈ [0, 1] so that we conclude that R̃1

is convex!

The proof of convexity of R̃2 is similar, but differs at some points so that we will present
it here for completeness. Again we have to show that for any two rate pairs R(k) =

[R
(k)
1 , R

(k)
2 ] ∈ R̃2, k = 1, 2, we have R(t) = [R1(t), R2(t)] := tR(1) + (1 − t)R(2) ∈ R̃2

for all t ∈ [0, 1]. Therefore, let ϕ
R(k) and R

R(k) denote the angle and radius of the rate

vector R(k), k = 1, 2.

From R(k) ∈ R̃2 it follows that R
R(k) ≤ R̃2(ϕR(k)), k = 1, 2. According to Lemma 2.23

there exist time-division parameters α̃
(k)
2 := α∗

2(ϕR(k)) with R
R(k) ≤ R̃−→

2R
(α̃

(k)
2 )

sin(ϕ
R(k) )

so that we

have

R
(k)
2 = R

R(k) sin(ϕ
R(k)) ≤ R̃−→

2R
(α̃

(k)
2 ), k = 1, 2. (2.94)

Then from Proposition 2.20 we additionally get the relay distribution factors β̃
(k)
2 :=

β̃BC(α̃
(k)
2 , ϕ

R(k)) so that we have R
R(k) ≤ R̃BC(α̃

(k)
2 , β̃

(k)
2 ), k = 1, 2, which is equivalent

to

R
(k)
1 ≤ R̃−→

R2
(α̃

(k)
2 , β̃

(k)
2 ), R

(k)
2 ≤ R̃−→

R1
(α̃

(k)
2 , β̃

(k)
2 ). (2.95)
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For t ∈ [0, 1] let us define α̃2(t) := tα̃
(1)
2 +(1−t)α̃(2)

2 and β̃2(t) := tβ̃
(1)
2 +(1−t)β̃(2)

2 . From
Lemma 2.17 and 2.18 we know that R̃−→

2R
(α), R̃−→

R2
(α, β), and R̃−→

R1
(α, β) are concave.

Then let ϕ̃2(t) be the angle of [R̃−→
R2

(α̃2(t), β̃2(t)),min{R̃−→
R1

(α̃2(t), β̃2(t)), R̃−→
2R

(α̃2(t))}],
which is given by

ϕ̃2(t) :=







arctan
min{R̃−→

R1
(α̃2(t),β̃2(t)),R̃−→

2R
(α̃2(t))}

R̃−→
R2

(α̃2(t),β̃2(t))
, if β̃2(t) 6= 0

π
2 , if β̃2(t) = 0.

Note that if R̃−→
R2

(α̃2(t), β̃2(t)) ≤ R̃−→
2R

(α̃2(t)) we have ϕ̃2(t) = ϕ̃BC(α̃2(t), β̃2(t)), else

we have ϕ̃2(t) > ϕ̃BC(α̃1(t), β̃1(t)) because the inverse function of the tangent is strictly
increasing.

In the following, we show that the boundary rate pair on R̃2 with angle ϕ̃2(t) is component-
wise larger than R(t). To this end for the radius for this boundary rate pair we have

R̃2(ϕ̃2(t)) = max
α∈[0,1]

min

{

R̃BC(α, ϕ̃2(t)),
R̃−→

2R
(α)

sin(ϕ̃2(t))

}

= R̃BC(α̃∗
2(ϕ̃2(t)), ϕ̃2(t)) =

R̃−→
2R

(α̃∗
2(ϕ̃2(t)))

sin(ϕ̃2(t))
(2.96)

≥ min

{

R̃BC(α̃2(t), ϕ̃2(t)),
R̃−→

2R
(α̃2(t))

sin(ϕ̃2(t))

}

. (2.97)

We will now show that R1(t) ≤ R̃2(ϕ̃2(t)) cos(ϕ̃2(t)) and R2(t) ≤ R̃2(ϕ̃2(t)) sin(ϕ̃2(t)).
Therefore, we have to distinguish between two cases of the minimization in (2.97).

First, if R̃BC(α̃2(t), ϕ̃2(t)) >
R̃−→

2R
(α̃2(t))

sin(ϕ̃2(t)) , which implies that ϕ̃2(t) > 0, we have

cos(ϕ̃2(t))R̃2(ϕ̃2(t)) =
R̃−→

2R
(α̃∗

2(ϕ̃2(t)))

tan(ϕ̃2(t))
≥
R̃−→

2R
(α̃2(t))

tan(ϕ̃2(t))

=
R̃−→

R2
(α̃2(t), β̃2(t))R̃−→

2R
(α̃2(t))

min{R̃−→
R1

(α̃2(t), β̃2(t)), R̃−→
2R

(α̃2(t))}

≥
R̃−→

R2
(α̃2(t), β̃2(t))R̃−→

2R
(α̃2(t))

R̃−→
2R

(α̃2(t))
= R̃−→

R2
(α̃2(t), β̃2(t))

≥ tR̃−→
R2

(α̃
(1)
2 , β̃

(1)
2 ) + (1 − t)R̃−→

R2
(α̃

(2)
2 , β̃

(2)
2 ) ≥ tR

(1)
1 + (1 − t)R

(2)
1 = R1(t)

where the first equality and inequality are consequences of (2.96) and (2.97), the next follow
from the definition of ϕ̃2(t), from the concavity of R̃−→

R2
(α, β), and from the definition of
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α̃
(k)
2 , k = 1, 2, respectively. Further, we can conclude

sin(ϕ̃2(t))R̃2(ϕ̃2(t)) = R̃−→
2R

(α̃∗
2(ϕ̃2(t))) ≥ R̃−→

2R
(α̃2(t))

≥ tR̃−→
2R

(α̃
(1)
2 ) + (1 − t)R̃−→

2R
(α̃

(2)
2 ) ≥ tR

(1)
2 + (1 − t)R

(2)
2 = R2(t)

where the first equality comes from (2.96) and the inequalities follow from (2.97), from the

concavity of R̃−→
2R

(α), and from the definition of α̃
(k)
2 , k = 1, 2, respectively.

For the case R̃BC(α̃2(t), ϕ̃2(t)) ≤
R̃−→

2R
(α̃2(t))

sin(ϕ̃2(t)) , which is equivalent to

R̃−→
2R

(α̃2(t)) ≥ R̃BC(α̃2(t), ϕ̃2(t)) sin(ϕ̃2(t)) = R̃−→
R1

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))), (2.98)

we first prove the following claim.

Claim 2.58. From (2.98) it follows that R̃−→
R1

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) =

R̃−→
R1

(α̃2(t), β̃2(t)).

Proof. If ϕ̃2(t) = 0 then we have β̃BC(α̃2(t), 0) = 1 = β̃2(t) so that the claim
holds. For ϕ̃2(t) > 0 the claim will be proved by contradiction. To this end we as-
sume that from (2.98) it follows that R̃−→

R1
(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) 6= R̃−→

R1
(α̃2(t), β̃2(t)).

Then we have to distinguish between two cases. First, we assume that we have
R̃−→

R1
(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) > R̃−→

R1
(α̃2(t), β̃2(t)). Since R̃−→

R2
(α, β) is strictly increas-

ing for β we have β̃BC(α̃2(t), ϕ̃2(t)) < β̃2(t). This implies

R̃−→
R2

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) < R̃−→
R2

(α̃2(t), β̃2(t))

since R̃−→
R2

(α, β) is strictly increasing for β. Further, with (2.98) we have

R̃−→
2R

(α̃2(t)) ≥ R̃−→
R1

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) > R̃−→
R1

(α̃2(t), β̃2(t))

so that we get the contradiction for the first case

tan ϕ̃2(t) =
R̃−→

R1
(α̃2(t), β̃2(t))

R̃−→
R2

(α̃2(t), β̃2(t))
<
R̃−→

R1
(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t)))

R̃−→
R2

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t)))
= tan ϕ̃2(t).

Now we assume R̃−→
R1

(α̃2(t), β̃2(t)) > R̃−→
R1

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) so that β̃2(t) <

β̃BC(α̃2(t), ϕ̃2(t)) and R̃−→
R2

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))) > R̃−→
R2

(α̃2(t), β̃2(t)) follow imme-
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diately. Then we get a contradiction for the second case from the following

tan ϕ̃2(t) =
min{R̃−→

R1
(α̃2(t), β̃2(t)), R̃−→

2R
(α̃2(t))}

R̃−→
R2

(α̃2(t), β̃2(t))

≥
min{R̃−→

R1
(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))), R̃−→

2R
(α̃2(t))}

R̃−→
R2

(α̃2(t), β̃2(t))

=
R̃−→

R1
(α̃2(t), β̃2(t))

R̃−→
R2

(α̃2(t), β̃2(t))
>
R̃−→

R1
(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t)))

R̃−→
R2

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t)))
= tan ϕ̃2(t)

where we used the fact that for a < b we have min{b, c} ≥ min{a, c}, (2.98), and the
monotony of R̃−→

R1
(α, β) and R̃−→

R2
(α, β) for β and fixed α.

Note that the claim implies β̃2(t) = β̃BC(α̃2(t), ϕ̃2(t)). From Claim 2.58 with (2.98)
we conclude that R̃−→

2R
(α̃2(t)) ≥ R̃−→

R2
(α̃2(t), β̃2(t)) holds so that we have ϕ̃2(t) =

ϕ̃BC(α̃2(t), β̃2(t)). Accordingly, we get

cos(ϕ̃2(t))R̃2(ϕ̃2(t)) = cos(ϕ̃2(t))R̃BC(α̃2(t), ϕ̃2(t))

=
R̃−→

R1
(α̃2(t), β̃2(t))

tan(ϕ̃2(t))
=

R̃−→
R1

(α̃2(t), β̃2(t))R̃−→
R2

(α̃2(t), β̃2(t))

min{R̃−→
R1

(α̃2(t), β̃2(t)), R̃−→
2R

(α̃2(t))}

=
R̃−→

R1
(α̃2(t), β̃2(t))R̃−→

R2
(α̃2(t), β̃2(t))

min{R̃−→
R1

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t))), R̃−→
2R

(α̃2(t))}

=
R̃−→

R1
(α̃2(t), β̃2(t))R̃−→

R2
(α̃2(t), β̃2(t))

R̃−→
R1

(α̃2(t), β̃BC(α̃2(t), ϕ̃2(t)))
=
R̃−→

R1
(α̃2(t), β̃2(t))R̃−→

R2
(α̃2(t), β̃2(t))

R̃−→
R1

(α̃2(t), β̃2(t))

=R̃−→
R2

(α̃2(t), β̃2(t)) ≥ tR̃−→
R2

(α̃
(1)
2 , β̃

(1)
2 ) + (1 − t)R̃−→

R2
(α̃

(2)
2 , β̃

(2)
2 )

≥ tR
(1)
1 + (1 − t)R

(2)
1 = R1(t)

where we have used (2.98) and Claim 2.58, the definition of ϕ̃2(t), and the concavity of
R̃−→

R2
(α̃2(t), β̃2(t)). For the rate R2(t) we have

sin(ϕ̃2(t))R̃2(ϕ̃2(t)) = sin(ϕ̃2(t))R̃BC(α̃2(t), ϕ̃2(t)) = R̃−→
R1

(α̃2(t), β̃2(t))

≥tR̃−→
R1

(α̃
(1)
2 , β̃

(1)
2 ) + (1 − t)R̃−→

R1
(α̃

(2)
2 , β̃

(2)
2 ) ≥ tR

(1)
2 + (1 − t)R

(2)
2 = R2(t)

where we used (2.98), Claim 2.58 and the concavity of R̃−→
R1

(α̃2(t), β̃2(t)). It follows that

R(t) ∈ R̃2 for all t ∈ [0, 1] so that we conclude that R̃2 is convex!

Finally, we have to prove that R̃Σ is convex. Therefore, we have to show that for any

two rate pairs R(k) = [R
(k)
1 , R

(k)
2 ] ∈ R̃Σ, k = 1, 2, we have R(t) = [R1(t), R2(t)] :=
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tR(1) +(1− t)R(2) ∈ R̃Σ for all t ∈ [0, 1]. Therefore, let ϕ
R(k) and R

R(k) denote the angle

and radius of the rate vector R(k), k = 1, 2.

From R(k) ∈ R̃Σ it follows that R
R(k) ≤ R̃Σ(ϕ

R(k)), k = 1, 2. According to Lemma 2.23

there exist time-division parameters α̃
(k)
Σ := α∗

Σ(ϕ
R(k)) with R

R(k) ≤ R̃MAC
Σ (α̃

(k)
Σ )

cos(ϕ
R(k) )+sin(ϕ

R(k) )

so that we have

R
(k)
1 +R

(k)
2 = R

R(k)(cos(ϕ
R(k)) + sin(ϕ

R(k))) ≤ R̃MAC
Σ (α̃

(k)
Σ ), k = 1, 2. (2.99)

Then from Proposition 2.20 we additionally get the relay distribution factors β̃
(k)
Σ :=

β̃BC(α̃
(k)
Σ , ϕ

R(k)) so that we have R
R(k) ≤ R̃BC(α̃

(k)
Σ , β̃

(k)
Σ ), k = 1, 2, which is equivalent

to

R
(k)
1 ≤ R̃−→

R2
(α̃

(k)
Σ , β̃

(k)
Σ ), R

(k)
2 ≤ R̃−→

R1
(α̃

(k)
Σ , β̃

(k)
Σ ). (2.100)

For t ∈ [0, 1] let us define α̃Σ(t) := tα̃
(1)
Σ +(1−t)α̃(2)

Σ and β̃Σ(t) := tβ̃
(1)
Σ +(1−t)β̃(2)

Σ . From
Lemma 2.17 and 2.18 we know that R̃MAC

Σ (α), R̃−→
R2

(α, β), and R̃−→
R1

(α, β) are concave.

We define the rate vector RBC(α̃Σ(t),β̃Σ(t)) := [R̃−→
R2

(α̃Σ(t), β̃Σ(t)), R̃−→
R1

(α̃Σ(t), β̃Σ(t))] with

angle ϕ̃BC(α̃Σ(t), β̃Σ(t)) of the polar coordinates. Furthermore, ϕR(t) specifies the angle of
the rate pair R(t) = [R1(t), R2(t)]. Then the angle ϕ̃Σ(t) of the component-wise dominant
rate pair is given by

ϕ̃Σ(t) :=

{

ϕR(t), if R̃BC
Σ (α̃Σ(t), β̃Σ(t)) > R̃MAC

Σ (α̃Σ(t))

ϕ̃BC(α̃Σ(t), β̃Σ(t)), if R̃BC
Σ (α̃Σ(t), β̃Σ(t)) ≤ R̃MAC

Σ (α̃Σ(t)).
(2.101)

with RBC(α̃Σ(t), β̃Σ(t)) = [R̃−→
R2

(α̃Σ(t), β̃Σ(t)), R̃−→
R1

(α̃Σ(t), β̃Σ(t))].

In the following, we show that the boundary rate pair on R̃Σ with angle ϕ̃Σ(t) is component-
wise larger than R(t). To this end for the radius for this boundary rate pair we have

R̃Σ(ϕ̃Σ(t)) = max
α∈[0,1]

min

{

R̃BC(α, ϕ̃Σ(t)),
R̃MAC

Σ (α)

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))

}

= R̃BC(α̃∗
Σ(ϕ̃Σ(t)), ϕ̃Σ(t)) =

R̃MAC
Σ (α̃∗

Σ(ϕ̃Σ(t)))

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))
(2.102)

≥ min

{

R̃BC(α̃Σ(t), ϕ̃Σ(t)),
R̃MAC

Σ (α̃Σ(t))

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))

}

. (2.103)

We will now show that R1(t) ≤ R̃Σ(ϕ̃Σ(t)) cos(ϕ̃Σ(t)) and RΣ(t) ≤
R̃Σ(ϕ̃Σ(t)) sin(ϕ̃Σ(t)). Therefore, we have to distinguish between two cases of the
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minimization in (2.103) for the two cases of possible angles ϕ̃Σ(t) of (2.101). To this end
we will use the concavity of R̃MAC

Σ (α̃Σ(t)), i.e.

R̃MAC
Σ (α̃Σ(t)) ≥ tR̃

MAC(1)
Σ + (1 − t)R̃

MAC(2)
Σ ≥ t(R

(1)
1 +R

(1)
2 ) + (1 − t)(R

(2)
1 +R

(2)
2 )

≥ (tR
(1)
1 + (1 − t)R

(2)
1 ) + (tR

(1)
2 + (1 − t)R

(2)
2 ) = R1(t) +R2(t).

(2.104)

First we consider the case R̃BC(α̃Σ(t), ϕ̃Σ(t)) >
R̃MAC

Σ (α̃Σ(t))

cos(ϕ̃Σ(t))+sin(ϕ̃Σ(t)) . Then we have to

distinguish between the two cases of (2.103). Since for R̃MAC
Σ (α̃Σ(t)) ≥ R̃BC

Σ (α̃Σ(t), β̃Σ(t))
we have ϕ̃Σ(t) = ϕ̃BC(α̃Σ(t), β̃Σ(t)) which implies that we have R̃BC(α̃Σ(t), ϕ̃Σ(t)) =
R̃BC(α̃Σ(t), β̃Σ(t)) it follows that this case is not possible. Furthermore, it follows that we
have R̃MAC

Σ (α̃Σ(t)) < R̃BC
Σ (α̃Σ(t), β̃Σ(t)) with ϕ̃Σ(t) = ϕR(t). Therewith, we get

cos(ϕ̃Σ(t))R̃Σ(ϕ̃Σ(t)) =
cos(ϕ̃Σ(t))R̃MAC

Σ (α̃∗
Σ(ϕ̃Σ(t)))

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))
≥ R̃MAC

Σ (α̃Σ(t)) cos(ϕ̃Σ(t))

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))

=
R̃MAC

Σ (α̃Σ(t))

1 + tan(ϕ̃Σ(t))
=

R̃MAC
Σ (α̃Σ(t))

1 + tan(ϕR(t))

≥ R1(t) +R2(t)

1 + tan(ϕR(t))
=

R1(t) +R2(t)

1 +R2(t)/R1(t)
= R1(t)

where the first equality and inequality are consequences of (2.102) and (2.103), then we
used (2.104), the fact ϕ̃Σ(t) = ϕR(t), and finally the definition of ϕ̃Σ(t). Similarly, we can
conclude that

sin(ϕ̃Σ(t))R̃Σ(ϕ̃Σ(t)) =
sin(ϕ̃Σ(t))R̃MAC

Σ (α̃∗
Σ(ϕ̃Σ(t)))

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))
≥ R̃MAC

Σ (α̃Σ(t)) sin(ϕ̃Σ(t))

cos(ϕ̃Σ(t)) + sin(ϕ̃Σ(t))

=
R̃MAC

Σ (α̃Σ(t))

1 + 1/ tan(ϕ̃Σ(t))
=

R̃MAC
Σ (α̃Σ(t))

1 + 1/ tan(ϕR(t))

≥ R1(t) +R2(t)

1 + 1/ tan(ϕR(t))
=

R1(t) +R2(t)

1 +R1(t)/R2(t)
= R2(t)

so that it follows that [R1(t), R2(t)] ∈ R̃Σ for this case.

We now consider the case R̃BC(α̃Σ(t), ϕ̃Σ(t)) ≤ R̃MAC
Σ (α̃Σ(t))

cos(ϕ̃Σ(t))+sin(ϕ̃Σ(t)) . Again we have
to distinguish between the two cases of (2.103). First, we assume that we have
R̃BC

Σ (α̃Σ(t), β̃Σ(t)) ≤ R̃MAC
Σ (α̃Σ(t)) so that we have ϕ̃Σ(t) = ϕ̃BC(α̃Σ(t), β̃Σ(t)) which

implies that we have β̃Σ(t) = β̃BC(α̃Σ(t), ϕ̃Σ(t)) or equivalently R̃BC(α̃Σ(t), ϕ̃Σ(t)) =
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R̃BC(α̃Σ(t), β̃Σ(t)). Therewith, we have

cos(ϕ̃Σ(t))R̃Σ(ϕ̃Σ(t)) = cos(ϕ̃Σ(t))R̃BC(α̃∗
Σ(ϕ̃Σ(t)), ϕ̃Σ(t))

≥ cos(ϕ̃Σ(t))R̃BC(α̃Σ(t), ϕ̃Σ(t)) = cos(ϕ̃Σ(t))R̃BC(α̃Σ(t), β̃Σ(t))

= R̃−→
R2

(α̃Σ(t), β̃Σ(t)) ≥ tR̃−→
R2

(α̃
(1)
Σ , β̃

(1)
Σ ) + (1 − t)R̃−→

R2
(α̃

(2)
Σ , β̃

(2)
Σ )

≥ tR
(1)
1 + (1 − t)R

(2)
1 = R1(t)

where the first equality and inequality are consequences of (2.102) and (2.103), then we
used the fact R̃BC(α̃Σ(t), ϕ̃Σ(t)) = R̃BC(α̃Σ(t), β̃Σ(t)) and the concavity of R̃−→

R2
(α, β).

Similarly, with the concavity of R̃−→
R1

(α, β) we get

sin(ϕ̃Σ(t))R̃Σ(ϕ̃Σ(t)) = sin(ϕ̃Σ(t))R̃BC(α̃∗
Σ(ϕ̃Σ(t)), ϕ̃Σ(t))

≥ sin(ϕ̃Σ(t))R̃BC(α̃Σ(t), ϕ̃Σ(t)) = sin(ϕ̃Σ(t))R̃BC(α̃Σ(t), β̃Σ(t))

= R̃−→
R1

(α̃Σ(t), β̃Σ(t)) ≥ tR̃−→
R1

(α̃
(1)
Σ , β̃

(1)
Σ ) + (1 − t)R̃−→

R1
(α̃

(2)
Σ , β̃

(2)
Σ )

≥ tR
(1)
2 + (1 − t)R

(2)
2 = R2(t)

so that [R1(t), R2(t)] ∈ R̃Σ for this case as well.

Finally, we assume that we have R̃BC(α̃Σ(t), ϕ̃Σ(t)) ≤ R̃MAC
Σ (α̃Σ(t))

cos(ϕ̃Σ(t))+sin(ϕ̃Σ(t)) and

R̃BC
Σ (α̃Σ(t), β̃Σ(t)) > R̃MAC

Σ (α̃Σ(t)) which implies that we have ϕ̃Σ(t) = ϕR(t). First note

that R̃BC(α̃Σ(t), ϕ̃Σ(t)) denotes the radius of the rate pair on the boundary of R̃BC(α̃Σ(t))
with angle ϕ̃Σ(t), i.e.

R̃BC(α̃Σ(t), ϕ̃Σ(t)) = max
[R1,R2]∈R̃BC(α̃Σ(t))

R1 sin ϕ̃Σ(t)=R2 cos ϕ̃Σ(t)

√

R2
1 +R2

2.

To prove the component-wise dominance of R̃BC(α̃Σ(t), ϕ̃Σ(t))[cos(ϕ̃Σ(t)), sin(ϕ̃Σ(t))] we
define the downward comprehensive hull16 R̂(t) := dch(RBC(α̃Σ(t), β̃Σ(t))) of the rate
pair RBC(α̃Σ(t), β̃Σ(t)). Then, let

RR̂(t)(ϕ̃Σ(t)) := max
[R1,R2]∈R̂(t)

R1 sin ϕ̃Σ(t)=R2 cos ϕ̃Σ(t)

√

R2
1 +R2

2

denote the radius of the rate pair on the boundary of the downward comprehensive hull
of the vector RBC(α̃Σ(t), β̃Σ(t)) = [R̃−→

R2
(α̃Σ(t), β̃Σ(t)), R̃−→

R1
(α̃Σ(t), β̃Σ(t))] with angle

16A set A is downward comprehensive inR2
+, if for any x = [x1, x2] ∈ A it follows that for any y = [y1, y2] ∈R2

+ with xi ≤ yi, i = 1, 2, we have y ∈ A. Then we define the downward comprehensive hull of the vector
x ∈ R2

+ by the set dch(x) := {y ∈ R2
+ : yi ≤ xi, i = 1, 2}.
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ϕ̃Σ(t). Since we have RBC(α̃Σ(t), β̃Σ(t)) ∈ R̃BC(α̃Σ(t)), it follows the inclusion R̂(t) ⊆
R̃BC(α̃Σ(t)). Therefrom, we can conclude that RR̂(t)(ϕ̃Σ(t)) ≤ R̃BC(α̃Σ(t), ϕ̃Σ(t)) holds.

Furthermore, from the concavity of R̃−→
R2

(α, β) and R̃−→
R1

(α, β) we know

R1(t) ≤ R̃−→
R2

(α̃Σ(t), β̃Σ(t)), R2(t) ≤ R̃−→
R1

(α̃Σ(t), β̃Σ(t)).

It follows that R(t) = [R1(t), R2(t)] ∈ R̂(t). Since we have ϕ̃Σ(t) = ϕR(t), we can

conclude that ||R(t)||1 =
√

(R1(t))2 + (R2(t))2 ≤ RR̂(t)(ϕ̃Σ(t)). Altogether, we have

R̃Σ(ϕ̃Σ(t)) = R̃BC(α̃∗
Σ(ϕ̃Σ(t)), ϕ̃Σ(t)) ≥ R̃BC(α̃Σ(t), ϕ̃Σ(t))

= R̃BC(α̃Σ(t), ϕR(t)) ≥ RR̂(t)(ϕR(t)) ≥ ||R(t)||1

so that we have

cos(ϕ̃Σ(t))R̃Σ(ϕ̃Σ(t)) ≥ cos(ϕR(t))||R(t)||1 = R1

sin(ϕ̃Σ(t))R̃Σ(ϕ̃Σ(t)) ≥ sin(ϕR(t))||R(t)||1 = R2.

This was the last case where we have shown that [R1(t), R2(t)] ∈ R̃Σ for all t ∈ [0, 1] so
that we can conclude that R̃Σ is convex as well.

Finally, since the intersection of convex sets is convex it follows that R̃BRopt = R̃1∩R̃2∩R̃Σ

is convex as well.

2.8.21 Proof of Corollary 2.30

From the queue evolution equation (2.43) we have

Q2
k[n+ 1] ≤

(
Qk[n] −Rk[n]T

)2
+B2

k[n] + 2Bk[n]
[
Qk[n] −Rk[n]T

]

+

≤
(
Qk[n] −Rk[n]T

)2
+B2

k[n] + 2Bk[n]Qk[n]

≤ Q2
k[n] − 2TQk[n]

(
Rk[n] − Bk[n]

T

)
+
(
Rk[n]T

)2
+B2

k[n]
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for k = 1, 2. Using this inequality the one-step drift gives usE{L(Q[n+ 1]
)
− L

(
Q[n]

)∣
∣Q[n] = q

}
= E{ 2∑

k=1

Q2
k[n+ 1] −Q2

k[n]
∣
∣Q[n] = q

}

≤ E{ 2∑

k=1

−2TQk[n]
(
Rk[n] − Bk[n]

T

)
+
(
Rk[n]T

)2
+B2

k[n]
∣
∣Q[n] = q

}

=
2∑

k=1

T 2E{R2
k[n]|Q[n] = q

}
+E{B2

k[n]
}

(2.105)

− 2T
2∑

k=1

qk
(E{Rk[n]|Q[n] = q

}
−E{Bk[n]

T

}

︸ ︷︷ ︸

=λk

)
(2.106)

≤ υ − 2T
2∑

k=1

qk
(E{Rk[n]|Q[n] = q

}
−E{Bk[n]

T

})
,

where we used for the first term of the sum (2.105) the inequality

T 2E{ 2∑

k=1

R2
k[n]|Q[n] = q

}
≤ T 2 max

h∈H,R∈RBR(h)

(
R2

1 +R2
2

)
= υ −E{B2

k[n]
}
. (2.107)

For the second term of the sum (2.106) we have

2∑

k=1

qkE{Rk[n]|Q[n] = q
}

= max
R∈RBR

2∑

k=1

qkRk > λ1 + λ2,

since we require [λ1, λ2] to be strictly in the interior of RBR. Accordingly, there exists ζ̃ > 0
so that the vector [λ1 + ζ̃, λ2 + ζ̃] is still in RBR. Therefore, we get for the second term of
the sum (2.106) the inequality

2T
2∑

k=1

qk
(E{Rk[n]|Q[n] = q

}
− λk

)
≥ 2T ζ̃

2∑

k=1

qk.

All together we haveE{L(Q[n+ 1]
)
− L

(
Q[n]

)∣
∣Q[n] = q

}
≤ υ − ζ

2∑

k=1

qk

with ζ = 2T ζ̃. For any arbitrary ε > 0 we can define the compact region Λ :=
{

q ∈R2
+

∣
∣
∣

2∑

k=1

qk ≤ υ+ε
ζ

}

. Whenever q /∈ Λ we have
2∑

k=1

qk > υ+ε
ζ and therefore we have a

negative one-step Lyapunov drift E{L(Q[n+ 1]
)
− L

(
Q[n]

)∣
∣Q[n] = q

}
< −ε.
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2.8.22 Proof of Lemma 2.35

The cdf of Zn follows from

FZn(zn) = P{min{anxn, bnyn} ≤ zn
}

= 1 −P{min{anxn, bnyn} > zn
}

= 1 −P{anxn > zn
}P{bnyn > zn

}

= 1 − (1 − FXn(zn/an))(1 − FYn(zn/bn))

and the pdf is given by its derivation. Accordingly, fZ(z) is the derivation of the cdf

FZ(z) = P{max
n

{zn} ≤ z
}

=
∏

n

P{z ≥ zn
}

=
∏

n

FZn(zn),

since we assume that the random variables Zn are pairwise independent. Finally, R =
g(Z) = log(1 + Z)/2 is the function of the random variable Z where g(Z) is strictly in-
creasing and differentiable in Z [PP02, Chap. 5]. For that reason the pdf is given by

fR(R) =
fZ(g−1(R))

|g′(g−1(R))| = 2 ln(2)22RfZ(22R − 1),

where g′(Z) = 1
2 ln(2)(1+Z) and g−1(R) = 22R−1 denote the derivative and inverse of g(Z)

respectively.

2.8.23 Proof of Proposition 2.37

For independent channel realizations the achievable rate region of the η-th relay node con-
tains the regions of all others iff we have |hk,η| ≥ maxn=1,...,N{|hk,n|} for k = 1, 2 simul-
taneously. With P{|hk,η| ≥ |hk,n|

∣
∣|hk,η|

}
= F|hk,n|(|hk,η|) it follows thatP{RBReq,η ⊇

⋃

n

RBReq,n

}

=

2∏

k=1

P{|hk,η| ≥ max
n=1,...,N

{|hk,n|}
}

=
2∏

k=1

∫ P{|hk,η| ≥ max
n=1,...,N

{|hk,n|}
∣
∣
∣|hk,η|

}

f|hk,η |(|hk,η|) d|hk,η|

=
2∏

k=1

∫ N∏

n=1
n6=η

P{|hk,η| ≥ |hk,n|
∣
∣
∣|hk,η|

}

f|hk,η |(|hk,η|) d|hk,η|.
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Then the probability that there exists one relay node η ∈ {1, . . . , N} which rate region
contains the others is given by the disjoint disjunctionP{∃η : RRSeq = RBReq,η

}
= P{ N∨

η=1

(RBReq,η ⊇
⋃

n

RBReq,n)
}

=
N∑

η=1

P{RBReq,η ⊇
⋃

n

RBReq,n

}

.

In the case of iid Rayleigh fading we haveP{|hk,η| ≥ max
n=1,...,N

{|hk,n|}
}

=

∞∫

0

(

1 − exp
(

− |hk,η|2
σ2

k

))N−1 2|hk,η|
σ2

k

exp
(

− |hk,η|2
σ2

k

)

d|hk,η|

=
1

σ2
k

N−1∑

n=0

(
N − 1

n

)

(−1)n

∞∫

0

exp
(

− |hk,η|2(n+ 1)

σ2
k

)

d|hk,η|2

=
N−1∑

n=0

(
N − 1

n

)
(−1)n

n+ 1
=

1

N
.

Finally, this gives usP{ N∨

η=1

(
RBReq,η ⊇

⋃

n

RBReq,n

)}

=
N∑

η=1

2∏

k=1

P{|hk,η| ≥ max
n=1,...,N

{
|hk,n|

}}

=
1

N
.

2.8.24 Proof of Theorem 2.38

Since |hk,n| is Rayleigh distributed, |hk,n|2 is exponential distributed with pdf

f|hk,n|2(|hk,n|2) = 1
σ2

k,n

exp
(
− |hk,n|

2

σ2
k,n

)
for k = 1, 2 and n = 1, . . . , N . According to

(2.22a) and (2.22b) the maximal unidirectional relay rates are given by

R∗
1RSeq = 1

2 log
(
1 + max

n
{min{γ1|h1,n|2, γR|h2,n|2}}

)
,

R∗
2RSeq = 1

2 log
(
1 + max

n
{min{γ2|h2,n|2, γR|h1,n|2}}

)
.
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Therefore, we can apply Lemma 2.35 to derive the pdf of R∗
kRSeq, k = 1, 2. For a given k

we consider Xn := |h1,n|2 and Yn := |h2,n|2. To be in terms of Lemma 2.35, we define
Zn := min{γ1Xn, γRYn}. Then according to Remark 2.36 the random variable Zn is again
exponential distributed with pdf fZn(zn) = λk,n exp(−znλk,n). with λ1,n = 1

γ1σ2
1,n

+

1
γRσ2

2,n

and λ2,n = 1
γ2σ2

2,n

+ 1
γRσ2

1,n

respectively. We consider next the random variable

Z := maxn{Zn} for which we can calculate the pdf as follows

fZ(z) =
N∑

n=1
fZn(z)

N∏

j=1,j 6=n

FZj
(z) =

N∑

n=1

λk,n e−zλk,n

N∏

m=1,m6=n

(1 − e−zλk,m) (2.108)

according to Lemma 2.35. Finally, we can again apply Lemma 2.35 to calculate the pdf
of the random variable R∗

kRSeq = log(1 + Z) as stated in the theorem which finishes the
proof.

2.8.25 Proof of Corollary 2.39

In a scenario with independent Rayleigh distributed fading channels and for a given k we
can define a random variable Z as in the proof of Theorem 2.38 with a pdf according to
(2.108)

fz(z) =
N∑

n=1

λk,n e−zλk,n

N∏

m=1,m6=n

(1 − e−zλk,m)

=

N∑

n=1

λk,n e−zλk,n
(
1 +

N−1∑

m=1

(−1)m
∑

L⊆Jn,|L|=m

exp(−z
∑

l∈L

λk,l)
)

=
N∑

n=1

λk,n

(
exp(−zλk,n) +

N−1∑

m=1

(−1)m
∑

L⊆Jn,|L|=m

exp
(
− z(λk,n +

∑

l∈L

λk,l)
))
.

Then the ergodic unidirectional rate is given by

R∗
kRSeq =

1

2

∫ ∞

0
log(1 + z)fz(z) dz =

N∑

n=1

λk,n

2 ln(2)

[exp(λk,n)E1(λk,n)

λk,n

+
N−1∑

m=1

(−1)m
∑

L⊆Jn,|L|=m

exp(λk,n +
∑

l∈L

λk,l)E1(λk,n +
∑

l∈L

λk,l)

λk,n +
∑

l∈L

λk,l

]

using the identity
∫∞
0 log(1 + t) exp(−ta)dt = ea E1(a)

ln(2)a for a ≥ 0.
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In the case of iid Rayleigh fading, we have λk,n = λk for all n so that we get the pdf

fz(z) = Nλk e−λkz(1 − e−λkz)N−1 = Nλk

N−1∑

n=0

(
N − 1

n

)

(−1)n exp(−(n+ 1)λkz)

(2.109)
using the binomial theorem (x+ y)n =

∑n
k=0

(
n
k

)
xn−kyk. Then (2.52) follows using again

the identity
∫∞
0 log(1 + t) exp(−ta)dt = ea E1(a)

ln(2)a for a ≥ 0.

2.8.26 Proof of Theorem 2.40

In the case of iid Rayleigh fading, we have fz(z) = Nλk e−λkz(1 − e−λkz)N−1 according
to (2.109). By substitution of τ = 1 − e−λkz we get

R∗
kRSeq =

1

2

∫ ∞

0
log(1 + z)fz(z) dz

=
N

2 ln(2)

∫ 1

0
ln
(
1 − 1/λk ln(1 − τ)

)
τN−1 dτ.

Therewith, we get for any x ∈ (0, 1)

R∗
kRSeq ≥ N

2 ln(2)

∫ 1

x
ln
(
1 − 1/λk ln(1 − τ)

)
τN−1 dτ

≥ N

2 ln(2)
ln
(
1 − 1/λk ln(1 − x)

)
∫ 1

x
τN−1 dτ

=
1

2 ln(2)
ln
(
1 − 1/λk ln(1 − x)

)
(1 − xN ),

where we used in the first inequality that the integrand is positive and in the second that
ln
(
1 − 1/λk ln(1 − τ)

)
is increasing with τ . If we set x = 1 − a/N with a ∈ (0, N) we

have

R∗
kRSeq ≥ 1

2 ln(2)
ln
(
1 − 1/λk ln(a/N)

)
(1 − (1 − a/N)N ). (2.110)

From [AS64, 4.2.36] we have the inequality e
wy

w+y <
(
1 + w

y

)y
for w, y > 0. Therefrom, we

get with z := wy
w+y > 0 the following inequality

ez = e
wy

w+y <
(

1 +
w

y

)y
=
( y

y + w

)−y
=
(

1 − w

y + w

)−y
=
(

1 − z

y

)−y

so that we have e−z >
(
1− z

y

)y
finally. With this inequality we can finally bound (2.110) so

that we have

R∗
kRSeq >

1

2 ln(2)
ln
(
1 − 1/λk ln(a/N)

)
(1 − e−a),
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which is the proposed lower bound.

For the upper bound, accordingly for any x ∈ (0, 1) we have

R∗
kRSeq ≤ ln(1 − 1/λ ln(1 − x))

2 ln(2)
N

∫ x

0
τN−1 dτ +

N

2 ln(2)

∫ 1

x
ln
(
1− 1/λk ln(1− τ)

)
dτ,

where we used the fact that τN−1 takes it maximum at one. If we set x = 1 − b/N with
b ∈ (0, N) we get for the first integral

N

∫ x

0
τN−1 dτ = xN = (1 − b

N
)N < e−b

and for the second integral (integration by parts technique)

N

∫ 1

1−b/N
ln
(
1−1/λk ln(1−τ)

)
dτ =

1

b
ln
(
1+1/λk ln(N/b)

)
+N eλk E1(λk+ln(N/b)).

Let λk + ln(N/b) =: ξ, then

N eλk E1(λk + ln(N/b)) = b eξ E1(ξ) < b ln(1 + 1/(λk + ln(N/b)))

using the inequality eξ E1(ξ) < ln(1 + 1/ξ) [AS64, 5.1.20]. Combining all terms leads to
the upper bound.

For the asymptotic lower and upper bound we have

lim inf
N→∞

R∗
kRSeq

1
2 log(ln(N))

≥ lim inf
N→∞

log(1 + 1
λk

ln(N
a ))1−e−a

2
1
2 log(ln(N))

= 1 − e−a > 0,

lim sup
N→∞

R∗
kRSeq

1
2 log(ln(N))

≤ lim sup
N→∞

log(1 + 1
λk

ln(N
b )) e−b +b

2 + b
2 log(1 + 1

λk+ln( N
b

)
)

1
2 log(ln(N))

= e−b +b <∞,

which meet if we choose a → ∞ and b → 0, i.e. lim
N→∞

R∗
kRSeq

1
2

log(ln(N))
= 1. This means that

R∗
kRSeq is asymptotically equal to 1

2 log(ln(N)).

Since any ergodic sum-rate on the boundary of the ergodic rate region is larger than
mink{R∗

kRSeq} and smaller than the sum
∑2

k=1R
∗
kRSeq the ergodic rate region grows asymp-

totically with Θ
(
log(log(N))

)
as concluded in Corollary 2.42.
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2.8.27 Proof of Proposition 2.43

The maximal unidirectional rates of the n-th relay node for the optimal time division case
are given by

R∗
1opt,n :=

R−→
1R,n

R−→
R2,n

R−→
1R,n

+R−→
R2,n

, and R∗
2opt,n :=

R−→
2R,n

R−→
R1,n

R−→
2R,n

+R−→
R1,n

according to (2.31a) and (2.31b). Then the maximal unidirectional rate using relay selection
is given by

R∗
kRSopt := max

n∈{1,2,...,N}
R∗

kopt,n k = 1, 2. (2.111)

With the maximal unidirectional rates of the equal time division case R∗
1eq,n =

1/2 min{R−→
1R,n

, R−→
R2,n

} and R∗
2eq,n = 1/2 min{R−→

2R,n
, R−→

R1,n
} for the n-th relay node ac-

cording to (2.22a) and (2.22b) we get

R∗
keq,n ≤ R∗

kopt,n ≤ 2R∗
keq,n (2.112)

using the inequalities 1/2 min{x, y} ≤ xy
x+y ≤ min{x, y} for x, y > 0, which can be easily

seen from the following

1/2 min{x, y} =
1

2 max{ 1
x ,

1
y}

≤ 1
1
x + 1

y

≤ 1

max{ 1
x ,

1
y}

= min{x, y}.

Since (2.112) holds for any n, we get R∗
kRSeq ≤ R∗

kRSopt ≤ 2R∗
kRSeq, k = 1, 2, for (2.111).

Furthermore, since the inequalities hold for any channel realization, we get an upper and
lower bound for the maximal unidirectional ergodic rates as follows

R∗
kRSeq ≤ R∗

kRSopt ≤ 2R∗
kRSeq, k = 1, 2. (2.113)

Similar to (2.53), since RRSTSopt is convex, we can bound the sum of any ergodic rate pair

R∗
RSTSopt(q) on the boundary of the ergodic rate region RRSTSopt as follows

min
{
R∗

1RSopt, R
∗
2RSopt

}
≤
∣
∣
∣
∣R∗

RSTSopt(q)
∣
∣
∣
∣
1
≤

2∑

k=1

R∗
kRSopt. (2.114)

Then (2.54) obviously follows from (2.113) and (2.114).
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2.8.28 Proof of Theorem 2.45

Since nodes 1 and 2 cancel the interference caused by their own message before decoding
the unknown messages, for the proof we have to distinguish between four possible decoding
orders at nodes 1 and 2. Therefore, let the superscript R2 and R1 denote the decoding order of
the unknown messages where the relay message at nodes 1 and 2 is decoded first and accord-
ingly 2R and 1R where the relay messages is decoded last. For decoding the first unknown
message the received signal of the second unknown message is regarded as interference.
After successful decoding the nodes apply interference cancellation so that the nodes are
interference-free in the second decoding step. Since [R1, R2] ∈ RBR(α), there exists a fea-
sible power distribution for each decoding order. Since the relay rate strictly increases with
βR for any decoding order, we have βR = 1 − β1 + β2.

We start with the decoding order R2,R1 where the relay message is decoded first, i.e. the
bidirectional messages are decoded last. Since the second decoding step is interference-
free we achieve the bidirectional rate R1 = (1 − α)R−→

R2
(β1) and R2 = (1 − α)R−→

R1
(β2).

Accordingly, we need for the bidirectional relay communication the relay power distribution
parameters

βR2,R1
1 := r1q2 and βR2,R1

2 := r2q1

with r1 := 2
R1
1−α − 1 ≥ 0, r2 := 2

R2
1−α − 1 ≥ 0, q1 := 1

γR|h1|2
> 0, and q2 := 1

γR|h2|2
> 0

to achieve a certain rate pair [R1, R2] ∈ RBR(α). In the first decoding step at node 1 the
message m2 is unknown. Therefore, node 1 can successfully decode a relay message mR

with a rate at most

RR2,R1
R@1 := (1 − α) log

(

1 +
βR2,R1

R |h1|2γR

1 + βR2,R1
2 |h1|2γR

)

= (1 − α) log
(

1 +
1 − r1q2 − r2q1

q1 + r2q1

)

with βR2,R1
R = 1 − βR2,R1

1 − βR2,R1
2 . Similarly, the message m1 is unknown at node 2 so

that node 2 can successfully decode a relay message mR with a rate at most

RR2,R1
R@2 := (1 − α) log

(

1 +
βR2,R1

R |h2|2γR

1 + βR2,R1
1 |h2|2γR

)

= (1 − α) log
(

1 +
1 − r1q2 − r2q1

q2 + r1q2

)

.

Since both nodes have to decode the relay message only the minimum of both rates can be
achieved, this means that with the decoding order R2,R1 the maximal achievable additional
relay rate is given by

RR2,R1
R := (1 − α) log

(

1 +
1 − r1q2 − r2q1

max{q1(1 + r2), q2(1 + r1)}
)

. (2.115)

For the decoding order 2R, 1R nodes 1 and 2 decode the relay message last. Since [R1, R2] ∈
RBR(α) there exists a feasible relay power distribution. Since the relay message mR is
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unknown at nodes 1 and 2 in the first decoding step, the received signal of the relay message
is regarded as interference. Therefore, for the desired bidirectional rate R1 at node 2 we
have

R1 = (1 − α) log
(

1 +
β2R,1R

1 |h2|2γR

1 + β2R,1R
R |h2|2γR

)

= (1 − α) log
(

1 +
β2R,1R

1

q2 + β2R,1R
R

)

⇒ r1 = 2
R1
1−α − 1 =

β2R,1R
1

q2 + βR
=

1 − β2R,1R
R − β2

q2 + β2R,1R
R

(2.116)

⇒ β2R,1R
2 = 1 − q2r1 − β2R,1R

R (1 + r1), (2.117)

where we used β2R,1R
1 = 1 − β2R,1R

2 − β2R,1R
R in the last equation of (2.116). Accordingly,

for the bidirectional rate R2 at node 1 we have

R2 = (1 − α) log
(

1 +
β2R,1R

2 |h1|2γR

1 + β2R,1R
R |h1|2γR

)

= (1 − α) log
(

1 +
β2R,1R

2

q1 + β2R,1R
R

)

⇒ r2 = 2
R2
1−α − 1 =

β2R,1R
2

q1 + β2R,1R
R

=
1 − q2r1 − β2R,1R

R (1 + r1)

q1 + β2R,1R
R

(2.118)

⇒ β2R,1R
R =

1 − r1q2 − r2q1
1 + r1 + r2

, (2.119)

where we used (2.117) in the last equation of (2.118). At both nodes the relay message mR

is decoded in the second decoding step, which is interference-free due to the interference
cancellation. Therefore, node 1 can decode the relay message if the rate is at most

R2R,1R
R@1 := (1 − α) log(1 + β2R,1R

R γR|h1|2).

Similarly, node 2 can decode the relay message if the rate is at most

R2R,1R
R@2 := (1 − α) log(1 + β2R,1R

R γR|h2|2).

Since both nodes should decode the relay message the largest possible relay rate for the
decoding order 2R, 1R is given by

R2R,1R
R := min

{
R2R,1R

R@1 , R2R,1R
R@2

}
= (1 − α) log(1 + β2R,1R

R min{γR|h1|2, γR|h2|2})

=(1 − α) log
(
1 + β2R,1R

R min{ 1
q1
, 1

q2
}
)

= (1 − α) log
(

1 +
β2R,1R

R

max{q1, q2}
)

=(1 − α) log
(

1 +
1 − r1q2 − r2q1

max{q1(1 + r1 + r2), q2(1 + r1 + r2)}
)

, (2.120)

where we used in the last equation (2.119).
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Next, we study the decoding order 2R,R1 where at node 1 the relay message is decoded last
and at node 2 the relay message is decoded first. Therefore, for the interference-free second
decoding step at node 2 we have

R1 = (1 − α)R−→
R2

(β2R,R1
1 ) ⇒ β2R,R1

1 = r1q2. (2.121)

For the decoding of messagem2 at node 1 we regard the received signal of the relay message
as the interference. Thus we have

R2 = (1 − α) log
(

1 +
β2R,R1

2 |h1|2γR

1 + β2R,R1
R |h1|2γR

)

= (1 − α) log
(

1 +
β2R,R1

2

q1 + β2R,R1
R

)

⇒ r2 =
β2R,R1

2

q1 + β2R,1R
R

=
1 − β2R,R1

1 − β2R,R1
R

q1 + β2R,1R
R

=
1 − r1q2 − β2R,R1

R

q1 + β2R,1R
R

(2.122)

⇒ β2R,R1
R =

1 − r1q2 − r2q1
1 + r2

,

where we used β2R,R1
1 = 1 − β2R,R1

2 − β2R,R1
R and (2.121) in (2.122). At node 1 the relay

message is decoded in the second interference-free decoding step so that the rate

R2R,R1
R@1 := (1 − α) log(1 + β2R,R1

R γR|h1|2) = (1 − α) log
(

1 +
1 − r1q2 − r2q1
q1(1 + r2)

)

is achievable. In the first decoding step at node 2 the message m1 is unknown, therefore at
node 2 we can achieve the relay rate

R2R,R1
R@2 := (1−α) log

(

1+
βR2,R1

R |h2|2γR

1 + βR2,R1
1 |h2|2γR

)

= (1−α) log
(

1+
1 − r1q2 − r2q1
q2(1 + r1)(1 + r2)

)

.

Since the message mR should be decoded at both nodes, for the decoding order 2R,R1 we
have the maximal relay rate

R2R,R1
R := min

{
R2R,R1

R@1 , R2R,R1
R@2

}

=(1 − α) log
(

1 +
1 − r1q2 − r2q1

max{q1(1 + r2), q2(1 + r1)(1 + r2)}
)

.
(2.123)

Finally, we look at the decoding order R2, 1R, which is similar to the previous one. Form
the bidirectional achievable rates R1 and R2 we have

R2 = (1 − α)R−→
R1

(βR2,1R
2 ) ⇒ βR2,1R

2 = r2q1,

R1 = (1 − α) log
(

1 +
βR2,1R

1 |h2|2γR

1 + βR2,1R
R |h2|2γR

)

= (1 − α) log
(

1 +
βR2,1R

1

q2 + βR2,1R
R

)

⇒ r1 =
βR2,1R

1

q2 + βR2,R1
R

=
1 − βR2,1R

2 − βR2,1R
R

q2 + βR2,R1
R

=
1 − r2q1 − βR2,1R

R

q2 + βR2,R1
R

⇒ βR2,1R
R =

1 − r1q2 − r2q1
1 + r1
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Accordingly, at nodes 1 and 2 we can achieve the relay rates

RR2,1R
R@1 := (1 − α) log

(

1 +
β2R,1R

R |h1|2γR

1 + β2R,1R
2 |h1|2γR

)

= (1 − α) log
(

1 +
1 − r1q2 − r2q1
q1(1 + r1)(1 + r2)

)

,

RR2,1R
R@2 := (1 − α) log(1 + βR2,1R

R γR|h2|2) = (1 − α) log
(

1 +
1 − r1q2 − r2q1
q2(1 + r1)

)

.

This gives us the maximal achievable relay rate for the decoding order R2, 1R

RR2,1R
R :=min

{
RR2,1R

R@1 , RR2,1R
R@2

}

=(1 − α) log
(

1 +
1 − r1q2 − r2q1

max{q1(1 + r1)(1 + r2), q2(1 + r1)}
)

.
(2.124)

Since q1, q2, r1, and r2 are non-negative we have

max{q1(1 + r2), q2(1 + r1)} ≤ min
{

max{q1(1 + r1 + r2), q2(1 + r1 + r2)},
max{q1(1 + r2), q2(1 + r1)(1 + r2)},
max{q1(1 + r1)(1 + r2), q2(1 + r1)}

}
.

These are the differing denominators from (2.115), (2.120), (2.123), and (2.124) so that it
directly follows that

RR(R1, R2) := max
{
RR2,R1

R , R2R,1R
R , R2R,R1

R , RR2,1R
R

}
= RR2,R1

R .

This means that the maximal achievable additional relay rate is always achieved with the
decoding order where the relay message is decoded first.

2.8.29 Proof of Lemma 2.46

The graph GfRΣ
of the function fRΣ

: [0, RΣ] → [0, RΣ] with R1 7→ RΣ − R1 denotes
the set of non-negative rate pairs with a sum-rate equal to RΣ. Then the intersection of
GfRΣ

∩RBR(α) characterizes the set of rate pairs in RBR(α) with the desired sum-rate RΣ

and is non-empty since we assume that a rate pair [R1, R2] ∈ RBR(α) with the desired
sum-rate RΣ = R1 +R2 exists. Since RBR(α) is convex there exist R⊲

1 and R⊳
1 so that

GfRΣ
∩RBR(α) =

{
[R1, fRΣ

(R1)] : R⊲
1 ≤ R1 ≤ R⊳

1

}
.

This means that the interval [R⊲
1, R

⊳
1] characterizes all bidirectional rate pair in RBR(α) with

a sum-rate equal to RΣ. For any R1 ∈ [R⊲
1, R

⊳
1] we can achieve the relay rate RR(R1, RΣ −

R1) according to Theorem 2.45. From (2.56) we have

β1 =
2

R1
1−α − 1

|h2|2γR
and β2 =

2
RΣ−R1

1−α − 1

|h1|2γR
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and therefore βR = 1 − β1 − β2 = 1 − 2
R1
1−α −1
|h2|2γR

− 2
RΣ−R1

1−α −1
|h1|2γR

. This allows us to write

RR(R1, RΣ −R1) as follows

RR(R1, RΣ −R1)

= min
{

(1 − α) log
(

1 +
βR|h1|2γR

1 + β2|h1|2γR

)

, (1 − α) log
(

1 +
βR|h2|2γR

1 + β1|h2|2γR

)}

= (1 − α) log
(

1 +
(
1 − 2

R1
1−α − 1

|h2|2γR
− 2

RΣ−R1
1−α − 1

|h1|2γR

)
min

{ |h1|2γR

2
RΣ−R1

1−α

,
|h2|2γR

2
R1
1−α

})

= (1 − α) log
(

min
{ |h1|2

2
RΣ
1−α
︸ ︷︷ ︸

:=ξ

((
γR +

1

|h1|2
+

1

|h2|2
︸ ︷︷ ︸

:=γ̂

)
2

R1
1−α
︸︷︷︸
:=x

−
(
2

R1
1−α )2

|h2|2
︸ ︷︷ ︸

=x2/ζ

)

,

|h2|2
︸︷︷︸

:=ζ

((
γR +

1

|h1|2
+

1

|h2|2
︸ ︷︷ ︸

=γ̂

) 1

2
R1
1−α
︸ ︷︷ ︸

=1/x

− 2
RΣ
1−α

|h1|2
︸ ︷︷ ︸

=1/ξ

( 1

2
R1
1−α

)2

︸ ︷︷ ︸

=1/x2

)})

= (1 − α) log
(

min
{

ξ
(
γ̂x− x2

ζ

)

︸ ︷︷ ︸

:=p(x)

, ζ
(
γ̂

1

x
− 1

ξx2

)

︸ ︷︷ ︸

:=q(x)

})

= (1 − α) log
(
min

{
p(x), q(x)

})
=: RR(x),

where the new defined function RR(x) has the domain [xmin, xmax] with xmin := 2
R⊲

1
1−α

and xmax := 2
R⊳

1
1−α . The rate RR(x) is non-negative for any x ∈ [xmin, xmax], since

we assume that a feasible bidirectional rate pair with the desired sum-rate exists. Thus
min{p(x), q(x)} ≥ 1 for any x ∈ [xmin, xmax].

In Figure 2.23 we illustrate the functions p(x) and q(x) to make the following discussion
clear. Since ξ and ζ are non-negative p(x) = ξ/ζ(γ̂ζ − x)x is a concave parabola with roots
0, γ̂ζ and vertex [γ̂ζ/2, γ̂2ξζ/4]. Similarly, q(1/x) = ζ/ξ(γ̂ξ − x)x is a concave parabola
for the inverse argument with roots 0, γ̂ξ and vertex [γ̂ξ/2, γ̂2ξζ/4]. Therefore, q(x) has a
negative pole at 0, a root at 1/γ̂ξ, and a vertex at [2/γ̂ξ, γ̂2ξζ/4]. Furthermore, q(x) is strictly
increasing on the interval (0, 2/γ̂ξ) and strictly decreasing on the interval (2/γ̂ξ,∞).

Since p(x), q(x) ≤ γ̂2ξζ/4 for any x ∈ (0,∞) and min{p(x), q(1/x)} ≥ 1 for any x ∈
[xmin, xmax] 6= ∅, we have 1 ≤ γ̂2ξζ/4 and therefore γ̂ζ/2 ≥ 2/γ̂ξ. This means that vertex
of q(x) is always to the left of the vertex of p(x). From a simple calculation it follows that
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γ̂2ξ ζ
4

γ̂
√
ξ ζ−1

x
pq

x
qp1

x
qp2

γ̂ζ γ̂ξ

x0

1

← p(x)

↑ q(x)

← q(1/x)

p(x), q(1/x), q(x)

Figure 2.23: Discussion of p(x), q(1/x), q(x) with vertexes [ γ̂ζ
2 ,

γ̂2ξζ
4 ], [ γ̂ξ

2 ,
γ̂2ξζ

4 ], [ 2
ξγ̂ ,

γ̂2ξζ
4 ]

respectively (not explicitly depicted).

the graphs of p(x) and q(x) intersect at the following intersection points

[xqp1, p(xqp1)] = [γ̂ζ/2 −
√

(γ̂ζ/2)2 − ζ/ξ, 1],

[xqp2, p(xqp2)] = [γ̂ζ/2 +
√

(γ̂ζ/2)2 − ζ/ξ, 1],

[xpq, p(xpq)] = [
√

ζ/ξ, γ̂
√

ξζ − 1].

Obviously, the first two points coincide if we have (γ̂ζ/2)2 = ζ/ξ which is equivalent to
γ̂ζ/2 = 2/γ̂ξ, i.e. the vertexes of p(x) and q(x) coincide as well. From the intersection
points and the vertexes it follows that p(x), q(x) ≥ 1 for x ∈ [xqp1, xqp2] only and therefore
we have [xmin, xmax] ⊆ [xqp1, xqp2] because rates are always non-negative. Finally it follows
that for x ∈ [xmin, xmax] we have

min
{
p(x), q(x)

}
=

{

q(x), if x ≤ xpq,

p(x), if x > xpq.

Moreover, min
{
p(x), q(x)

}
is increasing for x ∈ [xqp1, xpq] and decreasing for x ∈

[xpq, xqp2].

Therefore, if xpg ∈ [xmin, xmax] ⇔R⊲
1 ≤ R⋆

1 ≤ R⊳
1 the maximal additional relay rateRR(x)

is attained at xpg ⇔ at the rate pair [R⋆
1, RΣ −R⋆

1] with

RR(RΣ) = RR(xpg) = (1 − α) log
(
p(xpg)

)
= (1 − α) log

(
γ̂
√

ξζ − 1
)

= (1 − α) log
(

|h1h2|γ̂ − 2
RΣ

2(1−α)

)

− 1
2RΣ,
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otherwise if xpg < xmin ⇔ R⋆
1 < R⊲

1 the maximal additional relay rate RR(x) is attained at
xmin ⇔ at the rate pair [R⊳

1, RΣ −R⊳
1] with

RR(RΣ) = RR(xmin) = (1 − α) log
(
q(xmin)

)
= (1 − α) log

(

ζ
(
γ̂

1

xmin
− 1

ξx2
min

))

= (1 − α) log
(

|h2|2(γ̂ − 1
|h1|2

2
RΣ−R⊲

1
1−α )

)

−R⊲
1,

or if xpg > xmax ⇔ R⋆
1 > R⊲

1 the maximal additional relay rate RR(x) is attained at xmax

⇔ at the rate pair [R⊲
1, RΣ −R⊲

1] with

RR(RΣ) = RR(xmax) = (1 − α) log
(
p(xmax)

)
(1 − α) log

(

ξ
(
γ̂xmax −

x2
max

ζ

))

= (1 − α) log
(

|h1|2(γ̂ − 1
|h2|2

2
R⊳

1
1−α )

)

−RΣ +R⊳
1.

This finishes the proof.

2.8.30 Proof of Proposition 2.47

For a given time division parameter αwe have the broadcast rate region (1−α)RBC

(
RΣ
1−α

)
=

(1 − α)RBC

(
γBC

R ( RΣ
1−α)

)
with the sum-rate maximum (1 − α) RΣ

1−α = RΣ. It follows that

for the broadcast region (1 − α)RBC(γR) with γR = γBC
R

(
RΣ
1−α

)
the sum-rate maximum

is attained at the rate pair (1 − α)
[
R⋆

−→
R2

(γR), R⋆
−→
R1

(γR)
]

according to Proposition 2.2 with a

maximum sum-rate RΣ. Therefore, we have to distinguish for β⋆ between three cases with
respect to γR respectively RΣ.

If β⋆ ∈ [0, 1], we have

(1 − α)R⋆
−→
R1

(γR) = (1 − α)R−→
R1

(1 − β⋆)

= (1 − α) log
(

1
2(1 + γR|h1|2 + |h1|2

|h2|2
)
)

= (1 − α) log
(

1
2( |h2|2

|h1|2
+ γR|h2|2 + 1) |h1|2

|h2|2

)

= (1 − α) log
(

1
2( |h2|2

|h1|2
+ γR|h2|2 + 1)

)
+ (1 − α) log

( |h1|2

|h2|2

)

= (1 − α)R−→
R2

(β⋆) + (1 − α)R†

= (1 − α)R⋆
−→
R2

(γR) + (1 − α)R†.

From the definitions of R⋆
1(RΣ) and R⋆

2(RΣ) it follows that

R⋆
1(RΣ) +R⋆

2(RΣ) =RΣ = (1 − α)R−→
R2

(β⋆) + (1 − α)R−→
R1

(β⋆)

R⋆
1(RΣ) −R⋆

2(RΣ) = −(1−α)R† = (1 − α)R−→
R2

(β⋆) − (1 − α)R−→
R1

(β⋆).
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If we solve the equation system for R⋆
1(RΣ) and R⋆

2(RΣ) we have R⋆
1(RΣ) = (1 −

α)R−→
R2

(β⋆) and R⋆
2(RΣ) = (1 − α)R−→

R1
(1 − β⋆), which means that [R⋆

1(RΣ), R⋆
2(RΣ)]

characterizes the sum-rate optimal rate pair of (1 − α)RBC

(
RΣ
1−α

)
.

For the characterization of the case β⋆ ∈ [0, 1] we consider the now simple equivalences

β⋆ ≥ 0 ⇔ R−→
R2

(β⋆) ≥ 0 ⇔ RΣ ≥ (1 − α)R†,

β⋆ ≤ 1 ⇔ R−→
R1

(1 − β⋆) ≥ 0 ⇔ RΣ ≥ −(1 − α)R†.

It follows that the case β⋆ ∈ [0, 1] is equivalent to RΣ ≥ (1 − α)|R†|.

Finally, it follows that if RΣ < (1 − α)R† we have β⋆ < 0 so that the sum-rate optimal rate
pair is on the R2-axis with [0, RΣ] and if RΣ < −(1 − α)R† we have β⋆ > 1 so that the
sum-rate optimal rate pair is on the R1-axis with [0, RΣ].

2.8.31 Proof of Theorem 2.48

We prove the theorem for the case |h1|2 ≥ |h2|2. The case |h2|2 ≥ |h1|2 follows accordingly
by interchanging the indices one and two. To identify the bidirectional rate pair where the
total sum-rate maximum is attained we consider for any feasible bidirectional sum-rateRΣ ∈
[0, Rmax

Σ ] the corresponding total sum-rate Rtot(RΣ). Thereby, let γB := γBC
R (RΣ) ≤ γR

denote the necessary relay signal-to-noise ratio for a bidirectional sum-rate RΣ ≤ Rmax
Σ .

Effectively, this means that we have a bidirectional relay communication with reduced relay
power and a relay power distribution parameter β = γR

γB
β1 = 1 − γR

γB
β2. Accordingly, we

can define γP := γR−γP ≥ 0 which denotes the relay signal-to-noise ratio of the piggyback
communication. In the following we will discuss the different cases of Rtot(RΣ).

At low sum-rates RΣ, where we have RΣ < min{αR−→
2R
, (1−α)R†}, we have R⋆

1(RΣ) < 0
so that the bidirectional sum-rate maximum is attained at [0, RΣ] = [0, (1 − α) log(1 +
γB|h1|2)] with γB = γBC

R (RΣ). For those bidirectional sum-rates the total sum-rate is given

by (2.64b). Since the argument of the logarithm is a concave parabola in 2
RΣ
1−α , which is

maximized at its vertex, the functionRtot(RΣ) is maximized at (1−α) log
(

1
2 |h1|2γ̂

)
. From

R⋆
1(RΣ) < 0 it follows that β⋆ = 1

2 − 1
2γB

(
1

|h2|2
− 1

|h1|2

)
< 0 ⇔ γB + 1

|h1|2
< 1

|h2|2
.

Therefore, we have

(1 − α) log
(

1
2 |h1|2γ̂

)
= (1 − α) log

( |h1|2

2

(
γR + 1

|h1|2
+ 1

|h2|2

))

> (1 − α) log
( |h1|2

2

(
γB + 1

|h1|2
+ 1

|h2|2

))

> (1 − α) log
(
1 + γB|h1|2

)
= RΣ.
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Since the vertex of the parabola is attained at a rate larger than RΣ it follows that Rtot(RΣ)
is strictly increasing on [0, RΣ]. This implies that for this section the largest total sum-rate is
attained at the largest possible bidirectional sum-rate RΣ.

At higher sum-rates RΣ, where we have RΣ ≥ R†, we possibly have [R⋆
1(RΣ), R⋆

2(RΣ)] ∈
RBR(α) so that (2.64a) applies for Rtot(RΣ). Now, the argument of the logarithm is a

concave parabola in 2
RΣ

2(1−α) which maximizes at R⋆
Σ := 2(1−α) log

(
1
2 |h1h2|γ̂

)
. It follows

that the function Rtot(RΣ) is increasing on the interval [|R†|, R⋆
Σ]. For the vertex at R⋆

Σ we
have

Rtot(R
⋆
Σ) = R⋆

Σ+Rmax
R (R⋆

Σ) = (1−α)(log
[
|h1h2|γ̂− 1

2 |h1h2|γ̂
]
+log[12 |h1h2|γ̂]) = R⋆

Σ,

so that we obviously have Rmax
R (R⋆

Σ) = 0. If we have [R⋆
1(R

⋆
Σ), R⋆

2(R
⋆
Σ)] ∈ RBR(α) it

follows that the largest total sum-rate is attained at R⋆
Σ, which is also the largest feasible

bidirectional sum-rate at all. Otherwise, if we have [R⋆
1(R

⋆
Σ), R⋆

2(R
⋆
Σ)] /∈ RBR(α), the

largest total sum-rate Rtot(RΣ) for this section is attained at the largest bidirectional sum-
rate RΣ where we have [R⋆

1(RΣ), R⋆
2(RΣ)] ∈ RBR(α). Again it follows that the largest

feasible bidirectional sum-rate for this section maximizes Rtot(RΣ).

If we further increase the sum-rate RΣ we have R⋆
BC(RΣ) /∈ RBR(α). This means that the

total sum-rate Rtot(RΣ) is given by (2.64c) if R⋆
1(RΣ) < R⊲

1 = RΣ − αR−→
2R

or (2.64d) if
R⋆

1(RΣ) > R⊳
1 = RΣ − αR−→

1R
. In both cases the total sum-rate is independent of RΣ and

therefore constant.

Since the section-wise defined function Rtot(RΣ) is continuous and increasing for rate pairs
RBC(RΣ) ∈ RBR(α) and constant for rate pairs RBC(RΣ) /∈ RBR(α) we achieve the max-
imum total sum-rate R∗

tot at the largest sum-rate RΣ where we have R⋆
BC(RΣ) ∈ RBR(α),

which is given by the intersection point of RBC(RΣ) with the boundary of RBR(α).

2.8.32 Proof of Corollary 2.49

In the following we prove the interchange of RR with R1 only. The interchange with R2

follows accordingly.

If we can prove the equality RR(R⋆
1 + R¬, R

⋆
2) = Rmax

R (R⋆
1 + R⋆

2) − R¬ for non-negative
R¬, it would follow from

Rtot(R
⋆
1 +R⋆

2) = R⋆
1 +R⋆

2 +Rmax
R (R⋆

1 +R⋆
2)

= R⋆
1 +R¬ +R⋆

2 +Rmax
R (R⋆

1 +R¬, R
⋆
2)

(2.125)

that the total sum-rate remains constant. From Lemma 2.46 we know thatRmax
R (R⋆

1 +R⋆
2) =

RR(R⋆
1, R

⋆
2) with R⋆

1 = 1
2RΣ − 1−α

2 R†, R⋆
2 = 1

2RΣ + 1−α
2 R†, and R† = log

( |h1|2

|h2|2

)
.
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Therewith, it follows that

2
1

1−α
RR@1(R⋆

1+R¬,R⋆
2) − 1 =

βR|h1|2γR

1 + β2|h1|2γR
=

(

1 − 2
R⋆

1+R
¬

1−α −1
|h2|2γR

− 2
R⋆

2
1−α −1
|h1|2γR

)

|h1|2γR

1 + 2
R⋆

2
1−α −1
|h1|2γR

|h1|2γR

=
|h1|2γR − |h1|2

|h2|2

(
2

1
2(1−α)

RΣ− 1
2
R†+ 1

1−α
R¬ − 1

)
−
(
2

1
2(1−α)

RΣ+ 1
2
R†

− 1
)

2
1

2(1−α)
RΣ+ 1

2
R†

· 2−R†

2−R†

=
|h2|2γR −

(
2

1
2(1−α)

RΣ− 1
2
R†+ 1

1−α
R¬ − 1

)
− |h2|2

|h1|2

(
2

1
2(1−α)

RΣ+ 1
2
R†

− 1
)

2
1

2(1−α)
RΣ− 1

2
R†

· 2
1

1−α
R¬

2
1

1−α
R¬

= 2
1

1−α
R¬

(

1 − 2
R⋆

1+R
¬

1−α −1
|h2|2γR

− 2
R⋆

2
1−α −1
|h1|2γR

)

|h2|2γR

1 + 2
R⋆

1+R
¬

1−α −1
|h2|2γR

|h2|2γR

= 2
1

1−α
R¬

βR|h2|2γR

1 + β1|h2|2γR

= 2
1

1−α
R¬
(
2

1
1−α

RR@2(R⋆
1+R¬,R⋆

2) − 1), (2.126)

where we used βR = 1 − β1 − β2 and (2.56). Similarly, we can follow

2
1

1−α
RR@2(R⋆

1+R¬,R⋆
2) = 1 +

(

1 − 2
R⋆

1+R
¬

1−α −1
|h2|2γR

− 2
R⋆

2
1−α −1
|h2|2γR

)

|h2|2γR

1 + 2
R⋆

1+R
¬

1−α −1
|h2|2γR

|h2|2γR

=
1 +

(

1 − 2
R⋆

2
1−α −1
|h2|2γR

)

|h2|2γR

2
R⋆

1+R
¬

1−α

= 2−
R

¬

1−α ·
1 +

(

1 − 2
R⋆

2
1−α −1
|h2|2γR

)

|h2|2γR

1 + 2
R⋆

1
1−α −1
|h2|2γR

|h2|2γR

= 2−
R

¬

1−α ·







1 +

(

1 − 2
R⋆

1
1−α −1
|h2|2γR

− 2
R⋆

2
1−α −1
|h2|2γR

)

|h2|2γR

1 + 2
R⋆

1
1−α −1
|h2|2γR

|h2|2γR







= 2−
R

¬

1−α 2
1

1−α
RR@2(R⋆

1 ,R⋆
2). (2.127)

Then for R¬ = 0 it follows from (2.126) that

RR@1(R
⋆
1, R

⋆
2) = RR@2(R

⋆
1, R

⋆
2) = RR(R⋆

1, R
⋆
2). (2.128)

Furthermore, for R¬ ≥ 0 we have RR@1(R
⋆
1 +R¬, R

⋆
2) ≥ RR@2(R

⋆
1 +R¬, R

⋆
2) so that we
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can conclude

RR(R⋆
1 +R¬, R

⋆
2) = min{RR@1(R

⋆
1 +R¬, R

⋆
2), RR@2(R

⋆
1 +R¬, R

⋆
2)}

= RR@2(R
⋆
1 +R¬, R

⋆
2)

(2.127)
= RR@2(R

⋆
1, R

⋆
2) −R¬

(2.128)
= RR(R⋆

1, R
⋆
2) −R¬.

This means that (2.125) holds and therefore the total sum-rate remains constant for R¬ ≥ 0.
Similar arguments apply for R­ ≥ 0.

2.8.33 Proof of Proposition 2.51

For φBC > π
2 we have R−→

R2
(β⋆) < 0 as well as β⋆ < 0. This is equivalent to γR <

1
|h2|2

− 1
|h1|2

from which it follows that R⋆
−→
R1

= R−→
R1

(1) = log(1 + γR|h1|2) < log(1 +

( 1
|h2|2

− 1
|h1|2

)|h1|2) = R†. Therefore, we have α1 = 1
R−→

2R
/R†+1

> 1
R−→

2R
/R⋆

−→
R1

+1 = α0 so that

we have A1 = [0, α0) and A2 = A3 = A4 = ∅.

For π
2 ≥ φBC we have β⋆ ≥ 0 ⇒ γR ≥ 1

|h2|2
− 1

|h1|2
⇒ R−→

R1
(1) ≥ R† ⇒ α0 ≥ α1 so that

we additionally have A1 = [0, α1).

Further, for π
2 ≥ φBC > φ2Σ we have

R−→
2R

RMAC
Σ −R−→

2R

<
R⋆

−→
R1

R⋆
−→
R2

=
R⋆

−→
R1

R⋆
−→
R1

−R† where we used

R⋆
−→
R2

= R−→
R2

(β⋆) = R−→
R1

(β⋆) − R† = R⋆
−→
R1

− R†, which is equivalent to 2R−→
2R
R⋆

−→
R1

−
R⋆

−→
R1
RMAC

Σ < R⋆
−→
2R
R†. If we add on both sides R−→

R1
R† and divide both sides by (R⋆

−→
R1

+

R−→
2R

)(2R−→
2R

−RMAC
Σ +R†) we get α0 =

R⋆
−→
R1

R⋆
−→
R1

+R−→
2R
< R†

2R−→
2R

−RMAC
Σ +R† = α2 so that we have

A2 = [α1, α0) and A3 = A4 = ∅.

On the other hand, if we have φ2Σ ≥ φBC we have α0 ≥ α2 using the same arguments with
the opposite relations. It follows that A2 = [α1, α2).

Then, for φ2Σ ≥ φBC > φΣ1 we have
RMAC

Σ −R−→
1R

R−→
1R

<
R⋆

−→
R1

R⋆
−→
R2

from which we get 2(R⋆
−→
R1

+

R⋆
−→
R2

)R−→
1R
> 2R⋆

−→
R2
RMAC

Σ = (R⋆
−→
R1

+ R⋆
−→
R2

− R†)RMAC
Σ ⇔ (R⋆

−→
R1

+ R⋆
−→
R2

)(RMAC
Σ − 2R−→

1R
+

R†) < R†(R⋆
−→
R1

+R⋆
−→
R2

+RMAC
Σ ). If we divide both side with (R⋆

−→
R1

+R⋆
−→
R2

+RMAC
Σ )(RMAC

Σ −

2R−→
1R

+R†) we get α0 =
R⋆

−→
R1

R⋆
−→
R1

+R−→
2R
< R†

RMAC
Σ −2R−→

1R
+R† = α3 so that we have A3 = [α2, α0)

and A4 = ∅.

Finally, if we have φBC ≥ φ2Σ we have α0 ≥ α3 so that A3 = [α2, α3) and A4 =
[α3, α0).
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Then the total sum-rate optimal rate pairs follow immediately. If α ∈ A2 we have to solve
R⋆

2(RΣ) = 1
2RΣ + 1−α

2 R† = αR−→
2R

for RΣ and plug in the solution RΣ = 2αR−→
2R

− (1 −
α)R† in R⋆

1(RΣ), which gives us R1 = αR−→
2R

− (1 − α)R†. Similarly, if α ∈ A4 we
have to solve R⋆

1(RΣ) = αR−→
1R

for RΣ and plug in the solution in R⋆
2(RΣ), which gives us

R2 = αR−→
1R

+ (1 − α)R†. Finally, for α ∈ A3 we require R⋆
1(RΣ) + R⋆

2(RΣ) = αRMAC
Σ

so that we get RΣ = αRMAC
Σ . Then R⋆

BC(αRMAC
Σ , α) specifies the optimal rate pair.

With the optimal bidirectional rate pairs [Ropt
1 (α), Ropt

2 (α)] we get the maximal total sum-
rate R∗

tot(α) = Ropt
1 (α) + Ropt

2 (α) + Rmax
R (Ropt

1 (α) + Ropt
2 (α)) using Lemma 2.46. In

more detail, for time division parameters αA1 we have R⋆
1 = R−→

R2
(β⋆) < R⊲

1 = 0 so that
the maximum relay rate is given by (2.60b). Accordingly, we get the total sum-rate

Rtot(α) = αR−→
2R

+ (1 − α) log
(

|h2|2(γ̂ − 1
|h1|2

2
α

1−α
R−→

2R)
)

= (1 − α) log
(
|h2|2

|h1|2
2

α
1−α

R−→
2R
(
γ̂|h1|2 − 2

α
1−α

R−→
2R
))

for α ∈ A1.

If α ∈ A2 ∪ A3 ∪ A4 we have R⋆
1 = Ropt

1 (α). Since [Ropt
1 (α), Ropt

2 (α)] ∈ RBR(α) we
have R⊲

1 ≤ R⋆
1 ≤ R⊳

1 so that the case (2.60a) applies. This gives us in the case α ∈ A2 with
RΣ = 2αR−→

2R
− (1 − α)R†

Rtot(α) = αR−→
2R

− 1−α
2 R† + (1 − α) log

(

|h1h2|γ̂ − 2
α

1−α
R−→

2R
− 1

2
R†
)

= (1 − α) log
(

2
α

1−α
R−→

2R
− 1

2
R†(|h1h2|γ̂ − 2

α
1−α

R−→
2R

− 1
2
R†)
)

= (1 − α) log
(
|h2|2

|h1|2
2

α
1−α

R−→
2R
(
γ̂|h1|2 − 2

α
1−α

R−→
2R
))

,

where we used the equality 2−
1
2
R†

= |h2|
|h1|

. For α ∈ A3 we have to plug in RΣ = αRMAC
Σ in

(2.60a) which gives us

Rtot(α) = 1
2R

MAC
Σ + (1 − α) log

(

|h1h2|γ̂ − 2
RMAC

Σ
2(1−α)

)

= (1 − α) log
(

2
α

2(1−α)
RMAC

Σ
(
|h1h2|γ̂ − 2

α
2(1−α)

RMAC
Σ

))

.

Similarly, for α ∈ A4 we have to plug in RΣ = 2αR−→
1R

+(1−α)R† in (2.60a) which finally
gives us

Rtot(α) = αR−→
1R

+ 1−α
2 R† + (1 − α) log

(

|h1h2|γ̂ − 2
α

1−α
R−→

1R
+ 1

2
R†
)

= (1 − α) log
(
|h1|2

|h2|2
2

α
1−α

R−→
1R
(
γ̂|h2|2 − 2

α
1−α

R−→
1R
))

.

This finishes the proof.
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2.8.34 Proof of Proposition 2.52

For k = 1 we use all eigenmodes if for all λ2,n 6= 0 we have ξ1,n 6= 0. Therefore, we need

a water-level ν1 >
σ2

λ2,r2
. The condition follows if we look at the power constraint in the

high-power regime constraint

β1PR =

r2∑

n=1

(
ν1 −

σ2

λ2,n

)
= r2ν1 − σ2L2,r2 >

σ2r2
λ2,r2

− σ2L2,r2 = σ2
(r2 − 1

λ2,r2

− L2,r2−1

)
.

Similarly, beamforming is optimal if we have ξ2,2 = 0. Therefore, we need a water-level

ν1 ≤ σ2

λ2,2
. Again the condition follows from the power constraint

β1PR = ν1 −
σ2

λ2,1
≤ σ2

λ2,2
− σ2L2,1.

Finally, it is optimal to use m eigenmodes if we have ξ2,m 6= 0 and ξ2,m+1 = 0. Therefore,

we need a water-level within σ2

λ2,m
< ν1 ≤ σ2

λ2,m+1
. From the power constraint we get

mσ2

λ2,m
− σ2L2,m < β1PR =

m∑

n=1

(
ν1 −

σ2

λ2,n

)
≤ mσ2

λ2,m+1
− σ2L2,m.

The case k = 2 follows accordingly.

2.8.35 Proof of Proposition 2.53

From (2.77) we have

R−→
R2

(β1) = log det
(
IN2 + ρHH

2 QR,1H2

)
= log

r2∏

n=1

(
1 +

λ2,nξ2,n

σ2

)

=

m1(β1)
∑

n=1

log
(
1 +

λ2,n

σ2
(ν1 −

σ2

λ2,n
)
)

=

m1(β1)
∑

n=1

log
(λ2,nν1

σ2

)

=

m1(β1)
∑

n=1

log
(
λ2,n

β1γR + L2,m1(β1)

m1(β1)

)
,

where we used in the last equality the water-level ν1 =
β1PR+σ2L2,m1(β1)

m1(β1) which follows from

the power constraint β1PR =
∑r2

n=1 ξ2,n =
∑m1(β1)

n=1

(
ν1− σ2

λ2,n

)
= m1(β1)ν1−σ2L2,m1(β1).

The rate R−→
R1

(β2) follows accordingly.
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2.8.36 Proof of Theorem 2.54

For a rate pair on the boundary of RMIMO
BC we have β1 + β2 = 1. Therefore, the rate pair

[R−→
R2

(β), R−→
R1

(1−β)], β ∈ [0, 1] characterizes a parametrization of the boundary. Using the
representation ofR−→

R2
(β) for β > 0 given in Proposition 2.53 we can calculate the derivation

as follows

dR−→
R2

(β)

dβ
=

m1(β)
∑

n=1

γR

βγR + L2,m1(β)

1

ln(2)
=

m1(β)γR

βγR + L2,m1(β)

1

ln(2)
.

Since R−→
R2

(β1) is continuous in β1 = 0 we get the right hand side derivation

dR−→
R2

(β)

dβ

∣
∣
∣
β=0

= lim
β↓0

m1(β)γR

βγR + L2,m1(β)

1

ln(2)
=

γR

L2,1

1

ln(2)
.

Similarly, for R−→
R1

(1 − β) for β < 1 we can easily calculate the derivation as follows

dR−→
R1

(1 − β)

dβ
=

m2(1−β)
∑

n=1

−γR

(1 − β)γR + L1,m2(1−β)

1

ln(2)
=

−m2(1 − β)γR

(1 − β)γR + L1,m2(1−β)

1

ln(2)

as well as the left hand side derivation at β = 1

dR−→
R1

(1 − β)

dβ

∣
∣
∣
β=1

= lim
β↑1

m2(1 − β)γR

(1 − β)γR + L1,m2(1−β)

1

ln(2)
=

γR

L1,1

1

ln(2)
.

With this we get the angle of the normal vector ϕBC(β) of the parametrized boundary
[R−→

R2
(β), R−→

R1
(1 − β)], β ∈ [0, 1], from

tanϕBC(β) =
dR−→

R2
(β)
/
dβ

−dR−→
R1

(1 − β)
/
dβ

=







γR+L1,M2
M2L2,1

, if β = 0,

m1(β)((1−β)γR+L1,m2(1−β))
m2(1−β)(βγR+L2,m1(β))

, if 0 < β < 1,

M1L1,1

γR+L2,M
, if β = 1.

Obviously, θq denotes the angle of the weight vector q. Then we know from previous dis-
cussion, e.g. in the proof of Theorem 2.10 in Appendix 2.8.6, that the boundary rate pair
[R−→

R2
(β), R−→

R1
(1 − β)] with a normal angle ϕBC(β) is the weighted rate sum optimal rate

pair for weight vectors q where we have θq = ϕBC(β). Since RMIMO
BC is convex it follows

that ϕBC(β) decreases with increasing β.
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For weight vectors q with an angle θq ≥ ϕBC(0) = ϕBC(β̃1) = ϕ1 the intersection of the
boundary [R−→

R2
(β), R−→

R1
(1 − β)] with the R2-axis is optimal, this means we have β = 0.

Thus, for θq ≥ ϕ1 the weighted rate sum is attained at the rate pair

[R−→
R2

(0), R−→
R1

(1)] =
[

0,

M2∑

n=1

log
(λ1,n

M2
(γR + L1,M2)

)]

according to Proposition 2.53 with m2(1) = M2.

Similarly, for weight vectors q with an angle θq ≤ ϕBC(0) = ϕBC(β̃M ) = ϕM the intersec-
tion of the boundary [R−→

R2
(β), R−→

R1
(1− β)] with the R1-axis is optimal. Thus, for θq ≤ ϕM

the weighted rate sum is attained at the rate pair

[R−→
R2

(1), R−→
R1

(0)] =
[ M1∑

n=1

log
(λ2,n

M1
(γR + L2,M1)

)

, 0
]

according to Proposition 2.53 with m1(1) = M1.

For the characterization of the rate pair for a weight vector q with ϕM < θq < ϕ1 we need
to know the number of used eigenmodes for this weight vector. The functions m1(β1) and
m2(β2) characterize the number of eigenmodes for a given relay power fraction. Further-
more, we know that the number of used eigenmodes change at relay power fractions β̃n,
n = 1, 2, . . . ,M so that for all β ∈ (β̃n, β̃n+1] we have m1(β) = m1(β̃n+1) and simi-
larly for all β ∈ [β̃n, β̃n+1) we have m2(β) = m2(β̃n). Since ϕBC(β) is decreasing for β
we can characterize this property also in term of the angles. Therefore, let ϕn = ϕBC(β̃n)
denote the angle of the characteristic power fraction β̃n, n = 1, 2, . . . ,M . Accordingly,
for weight vectors q with angle θq ∈ [ϕn+1, ϕn) we use m1(β̃n+1) = η1(q) eigenmodes
of the channel H2 and similarly for weight vectors q with angle θq ∈ (ϕn+1, ϕn] we use
m2(β̃n) = η2(q) eigenmodes of the channel H1. And of course, for q ≥ ϕ1 we use
η1(q) = 0 and η2(q) = M2 as well as for q ≤ ϕM we have η1(q) = M1 and η2(q) = 0
eigenmodes of H1 and H2 respectively.

We are now able to characterize for a weight vector q with ϕM < θq < ϕ1 the rate pair on
the boundary RMIMO

BC explicitly. Therefore, we solve tanϕBC(β) = tan θq = q1

q2
for β with

0 < β < 1 which gives us the corresponding optimal power fraction β(q) as follows

β(q) =
q1η1(q)

(
γR + L1,η2(q)

)
− q2η2(q)L2,η1(q)

γR(q2η2(q) + q1η1(q))
.

Then a simple calculation shows that R−→
R2

(q) and R−→
R1

(q) are given by R−→
R2

(β(q)) and
R−→

R1
(1 − β(q)) using the representation of the rates given by Proposition 2.53. Finally,

we finish the proof with the observation that the identities R1,BC([1, 0]) = R−→
R2

(1) and
R2,BC([0, 1]) = R−→

R1
(1) hold because we defined Lk,0 = 0, k = 1, 2.
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3 Optimal Coding Strategy for the

Bidirectional Broadcast Channel

3.1 Introduction

We still consider a three-node network where two nodes want to communicate with each
other using the support of the third node as a relay, which we call the bidirectional relay

channel. Between the nodes we assume discrete memoryless channels with finite size input
and output alphabets. In this chapter we present an information theoretic optimal chan-
nel coding approach for the broadcast phase based on the philosophy of network coding
[ACLY00] which suggests that information should not be treated as a fluid.

In classical information theory often full-duplex nodes are assumed. However, in wireless
communication this assumption is hard to fulfill. Therefore, we assume half-duplex nodes
which means that a node contributes either an input or an output to the channel. A natu-
ral consequence of this assumption is that the relay communication is performed in phases.
Often the relay communication should be integrated in existing infrastructures and most pro-
tocol proposals base usually on orthogonal components which require exclusive resources
for each link. As a consequence they suffer from an inherent loss in spectral efficiency. As
we know from the previous, this loss can be significantly reduced if bidirectional relay com-
munication is desired, since bidirectional communication can be efficiently performed in two
phases. First, we have the multiple access phase where nodes 1 and 2 transmit their infor-
mation to the relay node. In the succeeding broadcast phase, the relay node simultaneously
forwards the information to its destinations.

Network coding is originally a distributed source coding problem. The bidirectional relaying
protocols proposed in [WCK05, LJS05, FBW06, PY06, HKE+07] apply an XOR operation
on the decoded data at the relay node so that they assume a source (network) and channel
coding separation. The separation of network and channel coding is in general suboptimal
[EMH+03, RK06]. In this thesis we consider a decode-and-forward protocol and find the
optimal channel coding strategy for the bidirectional broadcast channel which factors in
the distributed knowledge of the sources. But the decode-and-forward approach causes an
operational separation between the phases, which means that we require that the relay node
successfully decodes the messages of nodes 1 and 2 in the first phase. Furthermore, we do
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3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

not allow any feedback between the phases so that the encoders of nodes 1 and 2 cannot
cooperate. In the first phase we have, due to the operational separation, the classical multiple
access channel where the optimal coding strategy and capacity region are known. It remains
to find the optimal coding strategy for the succeeding broadcast phase, which we call the
bidirectional broadcast channel. It is important to notice that the proposed coding strategy
is only optimal for the bidirectional relay channel under the restriction of the operational
separation.

While for single-user channels it is of no importance whether we use vanishing average or
maximal probabilities of error in the definition of the achievable rate, in a multi-terminal
system the average and maximal error capacity region can be different, even in the case of
asymptotically vanishing errors as shown by Dueck in [Due78]. For this reason, in this chap-
ter we will pay attention to the consideration of the maximal and average error probabilities
and the relation between them.

In the following two subsections we more precisely introduce the considered two-phase bidi-
rectional relaying model and after that we briefly restate for completeness the multiple access
channel capacity region. In Section 3.2 we prove for the bidirectional broadcast channel an
optimal coding theorem and a weak converse for the maximum error probability. The proof
shows that the capacity region is independent of whether we use asymptotically vanishing
average or maximum probabilities of error. After we found the capacity region of the bidi-
rectional broadcast channel we got aware of the work of Tuncel [Tun06] where a joint source
and channel coding approach for a broadcast channel problem is studied. It seems that one
can deduce the achievable rate region with respect to the average error from this work, how-
ever for the bidirectional broadcast channel we do not need the Slepian-Wolf source coding
part since the relay node knows which side information is known at the nodes 1 and 2. For
that reason we can prove the achievable rate region for the average error probability with
classical channel coding arguments only. Moreover, this allows us to derive the capacity
region with respect to the maximum probability of error.

After we obtained the capacity region for each phase we optimize the time division be-
tween the MAC and the BC phases. This gives us the largest achievable rate region for the
discrete memoryless bidirectional relay channel using finite set alphabets with the simplifi-
cations of the operational separation of the two phases. Finally, we illustrate the bidirectional
achievable rate region by means of a binary channel example and finish this chapter with a
discussion as well as an outlook on further results.

3.1.1 Two-Phase Bidirectional Relay Channel

We consider a three-node network with two independent information sources W1 and W2 at
nodes 1 and 2. The random variablesWk, k = 1, 2, are uniformly distributed on the message
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Node 1 Node 2Relay

W2

Source 1 Source 2

W1

X
Node 1 Node 2Relay

Y

2

Source 1 Source 2

1 MAC BCW W

X1 X2 Y1 Y2

Figure 3.1: Multiple access (MAC) and broadcast (BC) phase of a two-phase decode-and-
forward bidirectional relay channel without feedback.

set Wk := {1, 2, . . . ,M (n)
k }, k = 1, 2. For the bidirectional channel we want the messages

w1 ∈ W1 and w2 ∈ W2 to be known at node 2 and node 1, respectively. For this goal,
the nodes 1 and 2 use the support of the relay node. Note, that we have no direct channel
between the nodes 1 and 2 due to the half-duplex assumption and the two-phase protocol.

We simplify the problem by assuming an a priori operational separation of the communi-
cation into two phases. In this thesis we consider the decode-and-forward approach, which
means that we require the relay node to decode the messages from nodes 1 and 2. Further-
more, we do not allow cooperation between the encoders at nodes 1 and 2. Otherwise, a
transmitted symbol could depend on previously received symbols. For a two-way channel
this is known as a restricted two-way channel. With this simplification we end up with a
multiple access phase, where the nodes 1 and 2 transmit their messages w1 and w2 to the
relay node, and a broadcast phase, where the relay node forwards the messages to the nodes
2 and 1, respectively. Then the operational separation allows us to look at the two phases
separately. After that we will briefly consider the optimal time division between the two
phases.

In the multiple access phase (MAC) we have a classical multiple access channel, where the
optimal coding strategy and capacity region CMAC is known [Ahl71a, Lia72]. We will restate
the capacity region in the next subsection. As before, let R−→

1R
and R−→

2R
denote the achievable

rates between the nodes 1 and 2 and the relay node in the MAC phase.

For the broadcast phase (BC) we assume that the relay node has successfully decoded the
messages w1 and w2 in the multiple access phase. From the union bound1 we know that the
error probability of the two-phase protocol is at most the sum of the error probabilities of
each phase. Therefore, an error-free MAC phase is reasonable if we assume rates within the
MAC capacity region and a sufficient coding length. From this we end up with a broadcast
channel where the message w1 is known at node 1 and the relay node and the message w2

1Let P˘

E1

¯

and P˘

E2

¯

denote the probabilities of event E1 and E2, then the union bound upper bounds the
probability that at least one of the events happens as follows P˘

E1 ∪ E2

¯

≤ P˘

E1

¯

+P˘

E2

¯

.
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3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

is known at node 2 and the relay node as depicted in Figure 3.1. Thereby, let x1, x2, and x
denote the input and y1, y2, and y the output symbols of node 1, node 2, and the relay node,
respectively. Furthermore, let R−→

R1
and R−→

R2
denote the achievable rates between the relay

node and the nodes 1 and 2 in the BC phase.

The mission of the relay node is to broadcast a message to the nodes 1 and 2 which allows
them to recover the unknown messages. This means that node 1 wants to recover messagew2

and node 2 wants to recover message w1. In Section 3.2 we present an information theoretic
optimal coding strategy, which gives us the capacity region of the bidirectional broadcast
channel.

3.1.2 Capacity Region of the Multiple Access Phase

In this subsection, we restate the capacity region of the multiple access channel, which was
independently found by Ahlswede [Ahl71a] and Liao [Lia72] and is nowadays part of any
textbook on multiuser information theory [Wol78, CK81, CT91].

Definition 3.1. A discrete memoryless multiple access channel is the family {p(n) : X n
1 ×

X n
2 → Yn}n∈N with finite input alphabets Xk, k = 1, 2, and a finite output alphabet Y where

the probability transition functions are given by p(n)(yn|xn
1 , x

n
2 ) :=

∏n
i=1 p(yi|xi1, xi2) for

a given probability transition function {p(y|x1, x2)}x1∈X1,x2∈X2,y∈Y .

Theorem 3.2. The capacity region CMAC with respect to a vanishing average and maximum

probability of error of the memoryless multiple access channel is the set of all rate pairs

[R−→
1R
, R−→

2R
] satisfying

R−→
1R

≤ I(X1;Y |X2, U),

R−→
2R

≤ I(X2;Y |X1, U), and

R−→
1R

+R−→
2R

≤ I(X1, X2;Y |U)

for random variables [U,X1, X2, Y ] with values in U×X1×X2×Y and the joint distribution

{q(u)q1(x1|u)q2(x2|u)p(y|x1, x2)}u∈U ,x1∈X1,x2∈X2,y∈Y . Furthermore, the range U of the

auxiliary random variable U has a cardinality bounded by |U| ≤ 2.

3.2 Capacity Region of the Broadcast Phase

In this section we present the capacity region of the bidirectional broadcast channel where
the receiving nodes have perfect knowledge about the message which should be transmitted
to the other node. This means that the independent uniformly distributed information sources

184
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W1 andW2 at the relay node are also known at node 2 and node 1 respectively. We prove the
capacity region by classical channel coding principles. To this end we first introduce some
standard notation.

Definition 3.3. Let X and Yk, k = 1, 2, be finite sets, which denote the input alphabet of

the relay node and the output alphabet of nodes 1 and 2. A discrete memoryless broadcast

channel is defined by a family {p(n) : X n → Yn
1 ×Yn

2 }n∈N of probability transition functions

given by p(n)(yn
1 , y

n
2 |xn) :=

∏n
i=1 p(yi1, yi2|xi) for a probability transition function p :

X → Y1 × Y2, i.e. {p(y1, y2|x)}x∈X ,y1∈Y1,y2∈Y2 is a stochastic matrix.

In what follows we will suppress the super-index n in the definition of the n-th extension of
the channel p, i.e. we will write simply p instead of p(n). This should cause no confusion
since it will always be clear from the context which block length is under consideration. In
addition, we will use the abbreviation V := W1×W2, where W1 and W2 denote the message
sets.

Definition 3.4. A (M
(n)
1 ,M

(n)
2 , n)-code for the bidirectional broadcast channel consists of

one encoder at the relay node

xn : V → X n

and decoders at nodes 1 and 2

g1 : Yn
1 ×W1 → W2 ∪ {0},

g2 : Yn
2 ×W2 → W1 ∪ {0}.

The element 0 in the definition of the decoders is included for convenience only and plays

the role of an erasure symbol.

From the definition we see that we allow the decoders at nodes 1 and 2 to utilize the knowl-
edge about its own message. When the relay node sends the message v = [w1, w2], the
receiver of node 1 is in error if g1(Y n

1 , w1) 6= w2. The probability of this event is denoted
by

λ1(v) := P{g1(Y n
1 , w1) 6= w2 |xn(v) has been sent

}
.

Accordingly, we denote the probability that the receiver of node 2 is in error by

λ2(v) := P{g2(Y n
2 , w2) 6= w1 |xn(v) has been sent

}
.

Hereby, Y n
1 and Y n

2 denote the random outputs at nodes 1 and 2 given that the sequence
xn(v) has been sent down the channel. This allows us to introduce the notation for the
maximum and average probabilities of error for the k-th node

λ
(n)
k := max

v∈V
λk(v), and µ

(n)
k := 1

|V|

∑

v∈V

λk(v).
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Definition 3.5. A rate pair [R−→
R2
, R−→

R1
] is said to be achievable for the bidirectional broad-

cast channel if for any δ > 0 there is an n(δ) ∈ N and a sequence of (M
(n)
1 ,M

(n)
2 , n)-codes

such that for all n ≥ n(δ) we have
log M

(n)
1

n ≥ R−→
R2

− δ and
log M

(n)
2

n ≥ R−→
R1

− δ while the

maximum probabilities of error λ
(n)
1 , λ

(n)
2 → 0 when n → ∞. The set of all achievable rate

pairs is the capacity region of the bidirectional broadcast channel and is denoted by CBC.

Remark 3.6. Achievable rate pairs and a capacity region can be similarly defined for aver-

age probability of error µ
(n)
1 , µ

(n)
2 → 0 when n→ ∞.

We are now ready to present the main result of this chapter.

Theorem 3.7. The capacity region CBC of the bidirectional memoryless broadcast channel

is the set of all rate pairs [R−→
R2
, R−→

R1
] satisfying

R−→
R2

≤ I(X;Y2|U),

R−→
R1

≤ I(X;Y1|U)
(3.1)

for random variables [U,X, Y1, Y2] with values in U ×X ×Y1×Y2 and the joint probability

distribution {q1(u)q2(x|u)p(y1, y2|x)}u∈U ,x∈X ,y1∈Y1,y2∈Y2 . The cardinality of the range of

U can be bounded by |U| ≤ 2.

The theorem is proved in the following three subsections. In the first subsection we prove the
achievability, i.e. a coding theorem. We prove a weak converse with respect to the maximum
probability of error in the second subsection. Then the theorem is proved with the third
subsection where we show that a cardinality of two is enough for the range of the auxiliary
random variable.

3.2.1 Proof of Achievability

Here, we adapt the random coding proof for the degraded broadcast channel of [Ber73] to
our context. First, we prove the achievability of all rate pairs [R−→

R2
, R−→

R1
] satisfying

R−→
R2

≤ I(X;Y2), and R−→
R1

≤ I(X;Y1), (3.2)

for some probability function p(x)p(y1, y2|x). Then, we extend this to prove that all points
in the closure of the convex hull of (3.2) are achievable, which we will see is exactly the
region stated in Theorem 3.7.
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Random codebook generation

For any δ > 0 we define for any R−→
Rk

, k = 1, 2, the rate of the code R̄−→
Rk

:=

max{ 1
n⌊n(R−→

Rk
− δ

2)⌋, 0}.2 Then we generate M
(n)
1 M

(n)
2 independent codewords Xn(v),

v = [w1, w2], of length n with M
(n)
1 := 2nR̄−→

R2 and M
(n)
2 := 2nR̄−→

R1 according to
∏n

i=1 p(xi).

Encoding

To send the pair v = [w1, w2] with wk ∈ Wk, k = 1, 2, the relay sends the corresponding
codeword xn(v).

Decoding

The receiving nodes use typical set decoding. First, we characterize the decoding sets. For
the decoder at node k = 1, 2 let

I(xn; yn
k ) := 1

n log2

p(yn
k |xn)

p(yn
k )

with average mutual information I(X;Yk) := Exn,yn
k

{
I(xn; yn

k )
}

. This gives the decoding
set

S(yn
k ) :=

{

xn ∈ X n : I(xn; yn
k ) ≥ R̄−→

Rk
+I(X;Yk)

2

}

and indicator function

d(xn, yn
k ) :=

{

1, if xn /∈ S(yn
k ),

0, otherwise.

When xn(v) with v = [w1, w2] has been sent, and yn
1 and yn

2 have been received we say
that the decoder at node k makes an error if either xn(v) is not in S(yn

k ) (occurring with

probability P
(1)
e,k (v)) or if at node 1 xn(w1, ŵ2) with ŵ2 6= w2 is in S(yn

1 ) or at node 2

xn(ŵ1, w2) with ŵ1 6= w1 is in S(yn
2 ) (occurring with P

(2)
e,k (v)). If there is no or more than

one codeword xn(w1, ·) ∈ S(yn
1 ) or xn(·, w2) ∈ S(yn

2 ), the decoders map on the erasure
symbol 0.

2We need not consider the trivial cases R̄−→
Rk

= 0 for any k because then the error probability is zero by
definition.
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Analysis of the probability of error

From the union bound we have λk(v) ≤ P
(1)
e,k (v) + P

(2)
e,k (v) with

P
(1)
e,k (v) :=

∑

yn
k
∈Yn

k

p(yn
k |xn(v)) d(xn(v), yn

k ) for k = 1, 2

and

P
(2)
e,1 (v) :=

∑

yn
1 ∈Y

n
1

p(yn
1 |xn(v))

|W2|∑

ŵ2=1
ŵ2 6=w2

(
1 − d(xn(w1, ŵ2), y

n
1 )
)
,

P
(2)
e,2 (v) :=

∑

yn
2 ∈Y

n
2

p(yn
2 |xn(v))

|W1|∑

ŵ1=1
ŵ1 6=w1

(
1 − d(xn(ŵ1, w2), y

n
2 )
)
.

For uniformly distributed messages W1 and W2 we define P
(m)
e,k :=

1
|W1| |W2|

∑

v∈W1×W2
P

(m)
e,k (v) for m = 1, 2 so that µ

(n)
k ≤ P

(1)
e,k + P

(2)
e,k .

Next, we average over all codebooks and show that Exn

{
µ

(n)
k

}
≤ Exn

{
P

(1)
e,k + P

(2)
e,k

}
→ 0

as n → ∞ if R−→
Rk

≤ I(X,Yk), k = 1, 2. Recall that R̄−→
Rk

≤ R−→
Rk

− δ
2 holds so that we

have Exn

{
P

(1)
e,k

}
=

1

|W1| |W2|
∑

v∈W1×W2

Exn

{
P

(1)
e,k (v)

}

for any
=

fixed v

∑

yn
k
∈Yn

k

Exn

{
p(yn

k |xn(v)) d(xn(v), yn
k )
}

=
∑

yn
k
∈Yn

k

∑

xn∈Xn

p(xn)p(yn
k |xn) d(xn, yn

k )

= Exn,yn
k

{
d(xn, yn

k )
}

= P{d(xn, yn
k ) = 1

}

= P{I(xn; yn
k ) ≤ R̄−→

Rk
+I(X;Yk)

2

}

≤ P{I(xn; yn
k ) ≤ I(X;Yk) −

δ

4

}

−→
n→∞

0

exponentially fast by the law of large numbers. For the calculation of Exn

{
P

(2)
e,k

}
we have

to distinguish between the receiving nodes. We present the analysis for k = 1, the case
k = 2 follows accordingly. Thereby, we use the fact that for v = [w1, w2] 6= [w1, ŵ2] the
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random variables p(yn
1 |Xn(v)) and d(Xn(w1, ŵ2), y

n
1 ) are independent for each choice of

yn
1 ∈ Yn

1 .Exn

{
P

(2)
e,1

}
=

1

|W1| |W2|
∑

v∈W1×W2

Exn

{
P

(2)
e,1 (v)

}

for any
=

fixed v

∑

yn
1 ∈Y

n
1

Exn

{

p(yn
1 |xn(v))

|W2|∑

ŵ2=1
ŵ2 6=w2

(
1 − d(xn(w1, ŵ2), y

n
1 )
)}

=
∑

yn
1 ∈Y

n
1

|W2|∑

ŵ2=1
ŵ2 6=w2

Exn

{
p(yn

1 |xn(v))
}Exn

{
1 − d(xn(w1, ŵ2), y

n
1 )
}

=
∑

yn
1 ∈Y

n
1

|W2|∑

ŵ2=1
ŵ2 6=w2

p(yn
1 )Exn

{
1 − d(xn(w1, ŵ2), y

n
1 )
}

=
∑

yn
1 ∈Y

n
1

|W2|∑

ŵ2=1
ŵ2 6=w2

p(yn
1 )

∑

xn∈Xn

p(xn)
(
1 − d(xn, yn

1 )
)

= (|W2| − 1)
∑

yn
1 ∈Y

n
1

∑

xn∈S(yn
1 )

p(xn)p(yn
1 ).

Whenever xn ∈ S(yn
1 ), we have I(xn; yn

1 ) = 1
n log2

p(yn
1 |x

n)
p(yn

1 ) > 1
2(R̄−→

R1
+ I(X;Y1)) or

p(yn
1 ) < p(yn

1 |xn)2−
n
2
(R̄−→

R1
+I(X;Y1)). Consequently,Exn

{
P

(2)
e,1

}
< |W2|

∑

yn
1 ∈Y

n
1

∑

xn∈S(yn
1 )

p(xn)p(yn
1 |xn)2−

n
2
(R̄−→

R1
+I(X;Y1))

≤ 2nR̄−→
R12−

n
2
(R̄−→

R1
+I(X;Y1))

= 2
n
2
(R̄−→

R1
−I(X;Y1))

≤ 2
n
2
(R−→

R1
− δ

2
−I(X;Y1))

≤ 2
−nδ

4 −→
n→∞

0

where the last inequality holds if we have R−→
R1

≤ I(X,Y1). Hence, if R−→
Rk

≤ I(X,Yk),
k = 1, 2, the average probability of error, averaged over codebooks and codewords, gets
arbitrary small for sufficiently large block length n.
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3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

Code construction with arbitrary small maximum probability of error

If R−→
R1

≤ I(X;Y1) and R−→
R2

≤ I(X;Y2) for any δ > 0 and its code rate R̄−→
Rk

, k = 1, 2, we

can choose ε > 0 and n ∈ N so that we have Exn

{
µ

(n)
1 + µ

(n)
2

}
< ε. Since the average

probabilities of error over the codebooks is small, there exists at least one codebook C⋆ with

a small average probabilities of error µ
(n)
1 + µ

(n)
2 < ε. This implies that we have µ

(n)
1 < ε

and µ
(n)
2 < ε. We define sets

Q := {v ∈ V : λ1(v) < 8ε and λ2(v) < 8ε},
Rk := {v ∈ V : λk(v) ≥ 8ε}, for k = 1, 2.

Since ε > 1
|V|

∑

v∈V λk(v) ≥ |Rk|
|V| 8ε, we can bound the cardinality |Rk| < |V|

8 for k = 1, 2.
Then from V = Q ∪R1 ∪R2 it follows

|Q| ≥ |V| − |R1| − |R2| > 3
4 |V|.

Now, let T be the set of w1 having the property that for each w1 there are at least 1
2M

(n)
2

choices of w2 so that [w1, w2] ∈ Q. Therefore, for w1 ∈ T there are at most M
(n)
2 choices

w2 ∈ W2 and for w1 /∈ T there are less than 1
2M

(n)
2 choices w2 ∈ W2 such that [w1, w2] ∈

Q. Accordingly, we have

|T |M (n)
2 + |W1 \ T |12M

(n)
2 > |Q| > 3

4M
(n)
1 M

(n)
2

so that it follows that |T | > 1
2M

(n)
1 using |W1 \ T | = M

(n)
1 − |T |. This means that there

exists an index set Q⋆
1 ⊂ W1 with 1

2M
(n)
1 indices w1, to each of which we can find an

index set Q⋆
2(w1) ⊂ W2 with 1

2M
(n)
2 indices w2 so that we have for each w1 ∈ Q⋆

1 and
w2 ∈ Q⋆

2(w1) a maximum error λk(w1, w2) < 8ε, k = 1, 2.

It follows that there exist one-to-one mappings Φ : V⋆ → Q⋆, Φ1 : W⋆
1 → Q⋆

1, Φw1
2 :

W⋆
2 → Q⋆

2(w1) for each w1 ∈ Q⋆
1 with Φ(w1, w2) := [Φ1(w1),Φ

w1
2 (w2)] with sets V⋆ :=

W⋆
1 ×W⋆

2 , W⋆
k := {1, 2 . . . , 1

2M
(n)
k } for k = 1, 2, Q⋆ := {[w1, w2] ∈ V : w1 ∈ Q⋆

1, w2 ∈
Q⋆

2(w1)} ⊂ Q. Accordingly, there exist mappings Ψk : Q⋆ → W⋆
k , k = 1, 2, with v =

[Ψ1(Φ(v)),Ψ2(Φ(v))].

This allows us finally to define a (1
2M

(n)
1 , 1

2M
(n)
2 , n)-code with an encoder x̃n : V⋆ → X n

with x̃n(v) := xn(Φ(v)) and decoders g̃1 : Yn
1 ×W⋆

1 → W⋆
2 and g̃2 : Yn

2 ×W⋆
2 → W⋆

1 with
g̃1(y

n
1 , w1) := Ψ̃2(w1, g1(y

n
1 , w1)) and g̃2(yn

2 , w2) := Ψ̃1(g2(y
n
2 , w2), w2) where we use the

mappings Ψ̃k : V →W ⋆
k given by

Ψ̃k(v) :=

{

Ψk(v), if v ∈ Q⋆,

0, if v /∈ Q⋆,

190



3.2 Capacity Region of the Broadcast Phase

for k = 1, 2. The idea is that the encoder uses only codewords xn(v) of the code C⋆ with an
index v ∈ Q⋆, which have a maximum error λk(v) < 8ε, k = 1, 2. Since the decoders use
the typical set decoder of the code C⋆, they could erroneously find an xn(v) with v ∈ V \Q⋆.
In this case, the mapping Ψ̃k decides on the erasure symbol 0. It was already a wrong
decision by the decoder gk, since the encoder chooses only codewords xn(v) with v ∈ Q⋆.
Therefore, this does not add any error to the decoding. The code has a rate pair

[

R̄−→
R2

− 1
n , R̄−→

R1
− 1

n

]

=
[

1
n⌊n(R−→

R2
− δ

2)⌋ − 1
n ,

1
n⌊n(R−→

R1
− δ

2)⌋ − 1
n

]

which is element-wise larger than [R−→
R2

− δ,R−→
R1

− δ] as n > 4
δ using ⌊x⌋ ≥ x − 1. This

proves the achievability of any rate pair satisfying the equation (3.2).

Closure of convex hull

Let R(p(x)) denote the set of rates which we can achieve with the input distribution p(x).

For k = 1, 2, we can rewrite the right hand side of (3.1) as follows

I(X;Yk|U) =
|U|∑

u=1
p(u)I(X;Yk|U = u) =

|U|∑

u=1
p(u)I(X;Yk)

∣
∣
p(x|u)

,

where in I(X;Yk)
∣
∣
p(x|u)

we choose a specific input distribution p(x|u) according to the

auxiliary random variable U . For the input distribution p(x|u) we know from the first part
of the proof that any rate pair Ru ∈ R(p(x|u)) ⊂ R2 is achievable. Therefore, for any
convex combination

∑m
u=1 αuRu we can regard the weights as a probability mass function

with p(u) := αu and u ∈ U := {1, 2, . . . ,m} and choose for any u an input distribution
p(x|u) that achieves the rate pair Ru. For that reason, the conditional mutual informations
given by the right hand sides of (3.1) are also achievable rates.

Finally, the set of achievable rate pairs is closed by definition of achievability since for any

sequence of achievable rate pairs with [R1, R2] = limm→∞[R
(m)
1 , R

(m)
2 ] the limit point itself

is achievable.

In general in multi-terminal systems the average and maximal error capacity region can
be different. Ahlswede has shown for the two-way channel in [Ahl71b] that “one cannot

reduce a code with average errors to a code with maximal errors without an essential loss

in code length or error probability, whereas for one-way channels it is unessential whether

one uses average or maximal errors.” The problem in the two-way channel is to find a
maximal error sub-code with a Cartesian product structure. This problem is equivalent to
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3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

a combinatorial problem by Zarankiewicz3 [Ahl71b] and arises since the transmitter and
receiver have disjoint partial knowledge only. Here, the relay node has full knowledge so
that for the code construction with arbitrarily small maximum probability of error we need
not require a sub-code with Cartesian product structure.

In the next subsection we prove the weak converse for the maximal error. Since Fano’s
inequalities apply for the average error as well, the weak converse for the average error
follows analogously.

3.2.2 Proof of weak converse

We have to show that any given sequence of (M
(n)
1 ,M

(n)
2 , n)-codes with λ

(n)
1 , λ

(n)
2 →

0 must satisfy 1
n logM

(n)
1 ≤ I(X;Y2|U) + o(n0) and 1

n logM
(n)
2 ≤ I(X;Y1|U) +

o(n0) for a joint probability distribution q1(u)q2(x|u) p(y1, y2|x). For a fixed block
length n we define the joint probability distribution p(w1, w2, x

n, yn
1 , y

n
2 ) := 1

|W1|
1

|W2|

q2(x
n|w1, w2)

∏n
i=1 p(y1i, y2i|xi) on W1 × W2 × X n × Yn

1 × Yn
2 where the conditional

distribution q2(xn|w1, w2) = 1 if xn is the codeword corresponding to w1, w2 or is equal to
0 else. In what follows we consider for k = 1, 2 uniformly distributed random variables Wk

with values in Wk.

Lemma 3.8. For our context we have the Fano’s inequality

H(W2|Y n
1 ,W1) ≤ λ

(n)
1 log |W2| + 1 = nε

(n)
1

(3.3)

with ε
(n)
1 = log |W2|

n λ
(n)
1 + 1

n → 0 for n→ ∞ as λ
(n)
1 → 0.

Proof. From Y n
1 and W1 node 1 estimates the index W2 from the sent codeword

Xn(W1,W2). We define the event of an error at node 1 as

E1 :=

{

1, if g1(Y n
1 ,W1) 6= W2,

0, if g1(Y n
1 ,W1) = W2,

so that we have for the mean probability of error µ
(n)
1 = P{E1 = 1

}
≤ λ

(n)
1 . From the

chain rule for entropies we have

H(E1,W2|Y n
1 ,W1) = H(W2|Y n

1 ,W1) +H(E1|Y n
1 ,W1,W2)

= H(E1|Y n
1 ,W1) +H(W2|E, Y n

1 ,W1).

3For an n×n matrix which contains zeros and ones only Zarankiewicz [Zar51] posed the combinatorial problem
to find the smallest natural number of ones, kj(n), which ensures that a n×n matrix contains a j × j minor
which consists entirely of ones. In [Ahl71b] Ahlswede generalizes the problem to find the smallest number
of ones, ki,j(m, n), which ensures that a m × n matrix contains a i × j submatrix entirely of ones.
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3.2 Capacity Region of the Broadcast Phase

Since E1 is a function of W1,W2, and Y n
1 , we have H(E1|Y n

1 ,W1,W2) = 0. Further, since
E1 is a binary-valued random variable, we getH(E1|Y n

1 ,W1) ≤ H(E1) ≤ 1. So that finally
with the next inequality

H(W2|Y n
1 ,W1, E1) = P{E1 = 0

}
H(W2|Y n

1 ,W1, E1 = 0)

+P{E1 = 1
}
H(W2|Y n

1 ,W1, E1 = 1)

≤ (1 − µ
(n)
1 )0 + µ

(n)
1 log(|W2| − 1) ≤ λ

(n)
1 log |W2|

we get Fano’s inequality for our context.

Therewith, we can bound the entropy H(W2) as follows

H(W2) = H(W2|W1)

= I(W2;Y
n
1 |W1) +H(W2|Y n

1 ,W1)

≤ I(W2;Y
n
1 |W1) + nε

(n)
1

≤ I(W1,W2;Y
n
1 ) + nε

(n)
1

≤ I(Xn;Y n
1 ) + nε

(n)
1

≤ H(Y n
1 ) −H(Y n

1 |Xn) + nε
(n)
1 ,

where the equations and inequalities follow from the independence of W1 and W2, the defi-
nition of mutual information, Lemma 1, the chain rule for mutual information, the positivity
of mutual information, and the data processing inequality. If we divide the inequality by n
we get the rate

1
nH(W2) = 1

n

(
H(Y n

1 ) −H(Y n
1 |Xn)

)
+ ε

(n)
1

≤ 1
n

n∑

i=1

(
H(Y1i|Y i−1

1 ) −H(Y1i|Y i−1
1 , Xn)

)
+ ε

(n)
1

≤ 1
n

n∑

i=1

(
H(Y1i)−H(Y1i|Xi)

)
+ε

(n)
1

= 1
n

n∑

i=1
I(Y1i;Xi) + ε

(n)
1

using the chain rule of mutual information, the memoryless property of the channel, and the
definition of mutual information. A similar derivation for the source rate 1

nH(W1) gives us

the bound 1
nH(W1) ≤ 1

n

n∑

i=1
I(Y2i;Xi) + ε

(n)
2 with ε

(n)
2 = log |W1|

n λ
(n)
2 + 1

n → 0 for n→ ∞

as λ
(n)
2 → 0.

This means that the entropies H(W1) and H(W2) are bounded by averages of the mutual
informations calculated at the empirical distribution in column i of the codebook. Therefore,

193



3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

we can rewrite these inequalities with an auxiliary random variable U , where U = i ∈ U =
{1, 2, . . . , n} with probability 1

n . We finish the proof of the converse with the following
inequalities

1
nH(W2) ≤ 1

n

n∑

i=1
I(Y1i;Xi) + ε

(n)
1

=
n∑

i=1
P{U = i

}
I(Y1i;Xi|U = i) + ε

(n)
1

= I(Y1U ;XU |U) + ε
(n)
1

= I(Y1;X|U) + ε
(n)
1

and 1
nH(W1) ≤ I(Y2;X|U) + ε

(n)
2 accordingly where ε

(n)
k → 0, k = 1, 2, when n → ∞.

Thereby, Yk := YkU and X := XU are new random variables whose distributions depend on
U in the same way as the distributions of Yki and Xi depend on i.

Up to now the auxiliary random variable U is defined on a set U with arbitrary cardinality.
Next, we will show that |U| = 2 is enough.

3.2.3 Cardinality of set U

With Fenchel–Bunt’s extension of Carathéodory’s theorem it follows that any rate pair in the
convex hull co

(⋃

p(x) R(p(x))
)

=
⋃

u∈U R(p(x|u)) is achievable by time-sharing between
two rate pairs from

⋃

p(x) R(p(x)), i.e. |U| = 2 is enough.

Theorem 3.9 ([HUL01, Theorem 1.3.7]). If S ⊂ Rn has no more than n connected com-

ponents (in particular, if S is connected), then any x ∈ co(S) can be expressed as a convex

combination of n elements of S.

Since for any x ∈ X we have [0, 0] ∈ R(p(x)), the set
⋃

p(x) R(p(x)) is connected. There-

fore, any rate pair in CBC = co
(⋃

p(x) R(p(x))
)

can be expressed as a convex combination
of n = 2 rate pairs of

⋃

p(x) R(p(x)).

This finishes the proof of the capacity region of the bidirectional broadcast channel.

Remark 3.10. Since the coding theorem includes the achievability of rate pairs in terms of

the average probability of error and the proof of the weak converse for the average error

works analogously, CBC is also the capacity region in terms of the average probability of

error.
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3.3 Achievable Bidirectional Rate Region

Remark 3.11. The characterization of the bidirectional broadcast capacity region for Gaus-

sian channels is analogous. We would have to deal with discrete channels with Gaussian

channel transfer distributions and would have to add an input power constraints but the

arguments are similar to the arguments considered here.

The coding principles of the bidirectional broadcast are similar to the network coding
approach with a bitwise XOR operation on the decoded messages at the relay node
[WCK05, LJS05, FBW06, PY06, HKE+07]. But since network coding is originally a multi-
terminal source coding problem, the achievable rates with network and channel code separa-
tion in the broadcast phase using the XOR coding approach are limited by the worst receiver.
This means that with a network coding approach using the XOR operation on the decoded
data we can achieve in our network the rates

R−→
R2
, R−→

R1
≤ min{I(X;Y1), I(X;Y2)}

for some common input distribution p(x). The achievable rates depend on the common input
distribution and both channel transfer distributions. For our coding scheme each achievable
rate depends on the common input distribution and its own channel transfer distribution
only. For each channel we can separately find the optimal input distribution which achieves
the maximal achievable rate for this link (equal to the single link capacity), but the optimal
input distribution for one channel need not be optimal for the other channel.

Accordingly, we see that the network coding approach using XOR on the decoded
messages at the relay node is in general inferior, but it achieves the capacity of the
bidirectional broadcast if and only if for the maximizing input distribution p⋆(x) =
arg maxp(x) max{I(X;Y1), I(X;Y2)} we have I(X;Y1) = I(X;Y2). In the following
we will look at the bidirectional achievable rate region.

3.3 Achievable Bidirectional Rate Region

We will now look at the achievable bidirectional rate region where we use in each phase
an optimal coding strategy. Thereby, we optimize the time division between the MAC phase
with memoryless multiple access channel p(y|x1, x2) and BC phase with memoryless broad-
cast channel p(y1, y2|x). Of course, due to the a priori separation into two phases, this strat-
egy need not be the optimal strategy for the bidirectional relay channel.

LetR1 andR2 denote the achievable rates for transmitting a messagew1 from node 1 to node
2 and a message w2 from node 2 to node 1 with the support of the relay node. In more detail,
node 1 wants to transmit message w1 with rate nR1 in n channel uses of the bidirectional
relay channel to node 2. Simultaneously, node 2 wants to transmit message w2 with rate
nR2 in n channel uses to node 1. Then let nMAC and nBC = n− nMAC denote the number
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3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

of channel uses in the MAC phase and BC phase with the property nMAC
n → α ∈ [0, 1] and

nBC
n → 1 − α when n → ∞, respectively. As before, we call α the time division parameter

the between multiple access and broadcast phase. With a sufficient block length n (respec-
tively nMAC and nBC) we can achieve a bidirectional transmission of messages w1 and w2

with arbitrary small decoding error if rate pairs [R−→
1R
, R−→

2R
] ∈ CMAC and [R−→

R2
, R−→

R1
] ∈ CBC

exist so that we have

nR1 ≤ min{nMACR−→
1R
, nBCR−→

R2
},

nR2 ≤ min{nMACR−→
2R
, nBCR−→

R1
}.

Thus, the achievable rate region of the bidirectional relay channel using the time division
is given by the set of all rate pairs [R1, R2] which are achievable with any time division
parameter α ∈ [0, 1] as n → ∞. We collect the previous consideration in the following
proposition.

Proposition 3.12. The achievable rate region RBRC of the two-phase bidirectional relay

channel is given by

RBRC =
{

[R1, R2] ∈ R2 : R1 ≤ min{αR−→
1R
, (1 − α)R−→

R2
},

R2 ≤ min{αR−→
2R
, (1 − α)R−→

R1
} with α ∈ (0, 1),

[R−→
1R
, R−→

2R
] ∈ CMAC, and [R−→

R2
, R−→

R1
] ∈ CBC

}

.

The region CBC is in general larger than the broadcast region using superposition encoding
where we additionally require separated information flows and XOR on the decoded data
at the relay node. It follows that the achievable bidirectional rate region RBRC is larger as
well.

3.4 Example with Binary Channels

Finally, we will briefly look at an example with binary channels. Therefore, we assume
to have a binary erasure multiple access channel [GW75],[CT91, Example 14.3.3] in the
MAC phase and two independent binary symmetric channels [Ash65, Section 3.3] in the BC
phase.

Binary Erasure Multiple Access Channel

We briefly reproduce the definitions and the resulting capacity region of the binary erasure
multiple access channel from [GW75] and [CT91, Example 14.3.3]. Therefore, we have
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3.4 Example with Binary Channels

binary input alphabets X1 = X2 = {0, 1}, an output alphabet YR = {0, 1, E}, and transition
probabilities

PYR|X1,X2
(0|0, 0) = 1, PYR|X1,X2

(1|1, 1) = 1,

PYR|X1,X2
(E|0, 1) = 1, PYR|X1,X2

(E|1, 0) = 1

so that we have a deterministic channel. We see that if the output of the channel is the erasure
symbol E the relay node cannot uniquely determine the input. With the input distribution
given by

PX1(0) = p1, and PX2(0) = p2,

it can be easily seen that the mutual informations I(X1;YR|X2) = H(X1), I(X2;YR|X1) =
H(X2) and I(X1, X2;YR) = H(YR) are simultaneously maximized when p1 = p2 = 1/2.
Then the capacity region is given by

CMAC =
{
[R1, R2] ∈ R2

+ : R1 ≤ 1, R2 ≤ 1, R1 +R2 ≤ 1.5
}

(3.4)

which is shown in Figure 3.2.

Remark 3.13. Gaarder and Wolf introduced this binary erasure multiple access channel in

[GW75] to show that a noiseless feedback for the binary erasure multiple access channel

can enlarge the capacity region. Accordingly, we can use this channel with a lossless broad-

cast channel to construct an example which shows that allowing cooperation between the

encoders enlarges the bidirectional achievable rate region.

Binary Symmetric Broadcast Channel

The binary symmetric broadcast channel consists of two independent binary symmetric chan-
nels [Ash65, Section 3.3]. For the binary symmetric broadcast channel we have binary input
and output alphabets X = Y1 = Y2 = {0, 1} and transition probabilities

PY1|X(0|0) = PY1|X(1|1) = q1, and PY2|X(0|0) = PY2|X(1|1) = q2,

so that we have a symmetric channel, i.e. H(Yk|X) does not depend on the input distribution.
Accordingly, the problem of maximizing I(Yk|X) = H(Yk) −H(Yk|X), k = 1, 2, reduces
to the problem of maximizing H(Yk), k = 1, 2. Then it is easy to see that if all input
symbols of a symmetric channel are equally likely, the output symbols are also equally likely.
Therefore, the uniform input distribution maximizes both channels simultaneously so that the
broadcast capacity region for the binary symmetric channel is given by

CBC = [0, 1 −H(p2)] × [0, 1 −H(p1)] (3.5)

with H(pk) = −pk log(pk) − (1 − pk) log(1 − pk), k = 1, 2. The capacity region CBC

is shown in Figure 3.2. Obviously, it includes the region [0, 1 − max{H(p1), H(p2)}] ×
[0, 1 − max{H(p1), H(p2)}] which is achievable using XOR on the decoded data at the
relay node.
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cMAC

cBC

R1RRR2

R2RRR1
R2

R1

BRCR

1/2

1/2

1/2

1

1/2 1

1/4

1/4

φ

Figure 3.2: The left figure shows the capacity regions CMAC (dotted line) and CBC (dashed
line), the right figure shows the corresponding achievable rate region RBRC

(solid line). The dashed-dotted line exemplarily shows for one angle φ the
achievable rate pair (•) on the boundary of RBRC with the optimal time divi-
sion between the two rate pairs (×) on the boundary of CMAC and CBC.

Achievable Bidirectional Rate Region

In Figure 3.2 we depicted the capacity regions CMAC and CBC and the achievable rate region
RBRC with a symmetric binary erasure multiple access channel, c.f. (3.4), and a binary
symmetric broadcast channel, cf. (3.5). The boundary of the achievable rate region can be
obtained geometrically if one takes for any angle φ ∈ [0, π/2] half of the arithmetical mean
between the boundary rate pairs of the capacity regions where we have tanφ = R−→

2R
/R−→

1R
=

R−→
R1
/R−→

R2
.

3.5 Discussion

The proposed coding scheme follows the network coding idea and treats information flows in
a network not as physical fluids. But since network coding assumes error-free links between
the nodes it does not consider channel coding aspects. Due to the half-duplex assumption
we will have a natural separation of the protocol into two phases. In this thesis we assume
that the encoders of nodes 1 and 2 cannot cooperate and that the relay node has to decode the
messages. Then the optimal coding strategy for the MAC phase is well-known. We prove an
optimal coding strategy for the remaining BC phase, which gives us the capacity region for a
network with the assumed simplifications. It follows that this strategy is superior to the prior
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coding strategies based on superposition encoding or XOR operation on the decoded data at
the relay node.

For a given broadcast input distribution we achieve on each link the corresponding discrete
memoryless channel rate. But it is important to notice that the achievable rates are coupled by
the common input distribution, which means that we cannot optimize the rates on each link
separately. Then it is curious to see that if we transfer the result to scalar Gaussian channels
with a mean power constraint, obviously the Gaussian input distribution will maximize both
links simultaneously. However, for the vector valued Gaussian channel this is no longer
the case. For the optimal input distribution we can apply the same arguments as for the
MIMO MAC in Section 2.6.1. For each MIMO channel there is an optimal input distribution.
This leads to two boundary rate pairs where at each rate pair one rate is maximal. Then
the boundary inbetween the two rate pairs will be curved and can be calculated by convex
optimization methods.

Further Results

Finally, we want briefly mention two further results which we derived in this context. The
the main contribution to the the strong converse result is due to Igor Bjelakovic and to the
practical coding aspects is due to Clemens Schnurr.

Strong Converse

In [BOSB07, OBSB07] we prove the strong converse for the maximum error probability and
show that this implies that [ε1, ε2]-capacity region in terms of average probability of error is
constant for small values of error parameters ε1 and ε2.

Let CBC,max(ε1, ε2) denote the set of all achievable rate pairs with maximum errors less
than ε1 and ε2 as n → ∞. Then we can prove the strong converse for the memoryless
bidirectional broadcast channel which means that we have CBC = CBC,max(ε1, ε2) for all
ε1, ε2 ∈ (0, 1). The proof is based on the blowing-up technique of Ahlswede, Gács, Körner
[AGK76]. Therefore, we "blow-up" the decoding sets and use the Blowing-up Lemma to
bound the error event in a variant of Fano’s inequality. Then we follow the line of the weak
converse.

Similarly, we define CBC,av(ε1, ε2) as the capacity region for the average errors. For suffi-
ciently small ε1, ε2 we can construct a sub-code with bounded maximum error probability
from which it follows from the strong converse for the maximum error that the corresponding
rate pair has to be within CBC. As a corollary we have that for the memoryless bidirectional
broadcast channel it holds that CBC = CBC,av(ε1, ε2) for all [ε1, ε2] ∈ (0, 1

2) × (0, 1
4) or

[ε1, ε2] ∈ (0, 1
4) × (0, 1

2).

199



3 Optimal Coding Strategy for the Bidirectional Broadcast Channel

Practical Coding Aspects

The coding theorem offers a hint how to design a good practical channel code. Accordingly,
in [SOS07] an interesting coset coding strategy for symmetric channels is discussed.

The coding theorem suggests to design for each receiving node and for each side information
one triplet a code, an encoder, and a decoder. Let {E1,w1(w2)}w2∈W2 denote the code for
node 1 with side information w1 ∈ W1 and similarly let {E2,w2(w1)}w1∈W1 denote the code
for node 2 with side information w2 ∈ W2. Then the coding theorem requires that the two
code families are interwoven so that we have E1,w1(w2) = E2,w2(w1) for each message pair
[w1, w2] ∈ W1 ×W2 the relay wants to transmit.

Then we make the observation that for symmetric channels ("channel distortion" is input
independent) the cosets of the code perform as good as the original code. This suggests that
we can construct the code families for each user as coset codes by simply shifting the base
codes. If the two single codes base on an Ablelian additive group this leads to a simple
superposition of the codewords in the group, i.e. ψ(w1, w2) = E1(w2) + E2(w1). Then
each code will perform as good as the base code. We also present a simple counter example
which shows that this construction rule does not extend to non-symmetric channels.
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4 Conclusion

Historically, information theory has played a crucial role in the development of one-way
point-to-point communication. With the development of the wireless networks and the Inter-
net the research focus has recently shifted to multi-terminal problems. A one-hop transmis-
sion over a long distance or of a shadowed node needs high transmit power which causes a
large interference for a wide range and results in a high energy consumption. Relaying pro-
tocols have the potential to enhance the coverage and the throughput in wireless networks by
utilizing the broadcast nature of the wireless medium. For that reason, it is common sense
that relaying concepts will play a central role in future wireless communication systems.

In this thesis we study bidirectional decode-and-forward relaying which has the ability to
reduce the spectral loss due to the half-duplex constraint of wireless nodes. From the half-
duplex constraint the relay communication is naturally separated into two phases where the
relay node either transmits or receives. The two-phase separation of the protocol has the
appealing property that the bidirectional relaying protocol can be easily integrated in a con-
ventional cellular network or extended to multi-hop communication as depicted in Figure 4.1
and Figure 4.2. Accordingly, we think that the study of the two-phase bidirectional decode-
and-forward protocol is of great interest. We consider the optimal and fixed time division
case. The optimal case is interesting on its own, while the fixed may be interesting if the
bidirectional protocol should be integrated in an existing wireless network.

The scarce of radio resources and the limited energy supply of mobile nodes in wireless
networks make efficient resource and power allocation strategies absolutely necessary. It is
widely known that a spectrally efficient wireless network cannot be designed with a layered
architecture where we optimize each layer separately. Furthermore, the performance can be
substantially enhanced if we allow interaction between layers, which leads to the cross-layer
design concept. In Chapter 2 we studied different cross-layer design aspects for bidirectional
relaying based on the achievable rates using the superposition encoding strategy at the relay
node.

From Section 2.3 we see that for the maximal throughput over a bidirectional relaying link,
the optimal resource allocation not just aims for the maximal sum-rate with respect to the
channel states. An optimal resource allocation policy depends on the achievable rate re-
gion and factors in the traffic of the higher layers. This means that a throughput optimal

201



4 Conclusion and Future Work

BS BC

M1

M2

M3

M4

MAC

(a) MAC phase/cellular downlink

BS
M1

M2

M3

M4

MAC

Bi−BC

(b) BC phase/cellular uplink

Figure 4.1: The integration of the bidirectional broadcast channel (Bi-BC) can be used for
coverage extension in a cellular network, where BS denotes the basestation and
Mi, i = 1, 2, 3, 4 denote the mobile terminals. Mobile M2 works as the relay
node. In the cellular downlink the bidirectional relay channel works in its MAC
phase, while M1 may cause interference at other nodes. In the cellular uplink the
bidirectional relay channel works is in its broadcast phase (Bi-BC).

M5M4M2M1 M3

Bi−BC MACMAC

M2M1 M3 M4 M5

MAC Bi−BCBi−BC

Figure 4.2: Bidirectional relaying can be easily extended to multi-hop communication. In
the upper figure, node M1, M3, and M5 transmit and M2 and M4 receive. The
signal of node M1 and M5 cause interference at nodes M4 and M2 respectively.
In the lower figure, node M2 and M4 transmit and M1, M3, and M5 receive. The
signal of node M2 and M4 cause interference at nodes M5 and M1 respectively.
(Chain topology as proposed in [KRH+06])
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resource allocation policy depends, of course, on the channel states but also on the load at
each node.

This insight has a direct consequence for the routing problem in a wireless network consid-
ered in Section 2.4. While for unidirectional relay protocols we select the relay node which
results in the largest achievable rate, for bidirectional protocols we have to select the relay
node with respect to the achievable rate pair at which we want to operate. It is therefore a
vector optimization problem. Moreover, this means that if we apply the throughput optimal
policy from Section 2.3 the route we choose depends again on the channel state as well as
on the load, which therefore leads to a load adaptive routing strategy. Furthermore, we see
that the performance can be improved if we allow time-sharing between the usage of relay
nodes.

However, the scaling law of the ergodic rate region for relay nodes with iid Rayleigh fad-
ing channels shows that the spatial diversity gain decreases with increasing number of relay
nodes. Since in real wireless networks the channels of the relay nodes are usually not iden-
tically distributed we conclude that for a practical implementation it will be sufficient to
decide between a small number of preselected relay nodes.

In Section 2.5 we see from the joint resource allocation for the bidirectional relaying and
an additional relay multicast communication that it is always optimal to decode the relay
message first. Although we specified the total sum-rate maximum for this simple problem,
we see that the closed form discussion is tedious and it is probably impossible for more or
more difficult routing problems. This lets us conclude that joint optimization of multiple
routing tasks always improves the overall performance and makes new trade-offs possible,
but it also increases the complexity of the problem.

The previous insights were obtained from the discussion of single-antenna nodes, but all
principles transfer to the multiple antenna case which we studied in Section 2.6. The diffi-
cult optimal transmit strategy for the vector valued processing in the MIMO-MAC prevents
a closed form discussion as in the scalar case. Nevertheless, multiple antennas improve
the achievable rate for each link in the usual manner so that it follows that the achievable
rates linearly scale in the high power regime according to the spatial degrees of the MIMO
channels and the time division between the phases.

In Chapter 3 we find the optimal channel coding strategy with respect to asymptotically
vanishing maximal probability of error for the bidirectional broadcast channel of the bidi-
rectional decode-and-forward protocol without feedback. The important improvement to the
superposition coding approach in Chapter 2 is that we do not treat information as a fluid,
which is in accordance with the philosophy of network coding [ACLY00]. Although we
obtained the results for discrete memoryless channels with finite-size alphabets, the coding
strategy can be easily transfered using standard arguments to continuous Gaussian channels
with an input mean power constraint.

203



4 Conclusion and Future Work

M4

BS

M1

M2

M3

MAC

(a) MAC phase/cellular uplink

M3
M4

BS

M1

M2

BC

Bi−BC

(b) BC phase/cellular downlink

Figure 4.3: If two nodes within one cell (here M1 and M2) want to communicate with each
other, the integration of the coding idea of the bidirectional broadcast channel
(Bi-BC) can improve the downlink performance. Thereby, the base-station works
as the relay node.

For multi-terminal channel coding problems it generally makes a difference if one considers
achievable rates with respect to the average or maximal probability of error. We follow the
classical strategy and extract a sub-code of essentially the same size with vanishing maxi-
mal error probability from the code which suffices the average error probability condition.
Thereby, we surprisingly do not rely on a Cartesian mapping of the message indexes at the
relay node. This is because of the special distribution of the knowledge about the messages
for the bidirectional broadcast channel. But this will cause a difference for the achievable
rates if one considers channel coding for other network problems, e.g. [Ahl71b].

A more explicit discussion of the obtained results is given in Sections 2.7 and 3.5.

Future Work

Unfortunately, we obtained the optimal coding result in Chapter 3 after we have studied the
cross-layer design aspects presented in Chapter 2. However, all insights, techniques, and
conclusions can be transfered to the optimal coding approach. In particular, all results based
on the maximal unidirectional rates will be the same. It will be future work to characterize
the results explicitly.

In Figure 4.3 we present an idea how bidirectional relaying can be used to improve the
performance in a cellular wireless network. If two nodes in one cell want to communicate
with each other we can use the broadcast coding techniques to improve the broadcast in the
downlink. In the future we will work out this example and similar networks as depicted in
Figure 4.1 and Figure 4.2.
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It follows that bidirectional relaying can be applied to cellular, ad-hoc, or hybrid networks in
order to enhance the coverage or increase the overall throughput and we are sure that there
are more situations where the bidirectional relaying protocol can be integrated in a meshed
wireless network architecture. Moreover, we see that this will again open up new possibilities
for further improvement. For example in Figure 4.1 the transmission of M1 interferes with
the broadcast of the basestation so that nodeM1 causes additional interference at other nodes
in the cell. If those regard the interference as additional information, it should be possible to
improve the overall performance again. This example illustrates the potential improvement
of the performance in a meshed architecture, which makes a careful study necessary. But we
also see that these concepts will increase the system‘s complexity. For that reason it will be
necessary to specify conditions where additional cooperation is still beneficial in a wireless
system.

A more closely related extension to our results is to find the optimal coding strategy if we
drop the assumptions we made in Chapter 3. In particular this means that we do not require
that the relay node has to decode the messages and we allow the encoders at nodes 1 and 2
to cooperate via a feedback.

In some situations in this thesis we considered the averages of the achievable rates with
a short-term (over a frame) average power constraint. Therefore, it would be interesting
to consider adaptive resource allocation policies which take advantage of a time-varying
channel as done in [KH95, GV97, TH98, BPS98]. Next, it would be interesting if we allow
queueing at the relay node. Additional queueing and adaptive resource allocation policies
are closely related to problems concerning the delay.

For an implementation we have to re-evaluate the performance where we take into account
the costs for providing the system state information at a centralized controller and/or other
nodes. In accordance, for adaptive resource allocation policies it would be interesting to find
decentralized decision strategies based on the local information or to develop new strategies
which base on partial knowledge only.

Of course, one has to answer many further questions before considering a practical imple-
mentation. However, we are absolutely convinced that further studies on bidirectional relay-
ing will pay off, because we think that bidirectional relaying is conceptually a wise approach.
It avoids the spectral loss of two separated unidirectional relaying protocols due to the half-
duplex constraint, and in addition to this it can fully exploit the network coding idea. All this
lets us finally conclude that bidirectional relaying is spectrally efficient and has the potential
to enhance the throughput and coverage in wireless networks.
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