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Abstract

Different music performances of the same score may significantly differ from
each other. It is obvious that not only the composer’s work, the score, defines
the listener’s music experience, but that the music performance itself is an
integral part of this experience. Music performers use the information contained
in the score, but interpret, transform or add to this information.

Four parameter classes can be used to describe a performance objectively:
tempo and timing, loudness, timbre and pitch. Each class contains a multitude
of individual parameters that are at the performers’ disposal to generate a
unique physical rendition of musical ideas.

The extraction of such objective parameters is one of the difficulties in music
performance research. This work presents an approach to the software-based
extraction of tempo and timing, loudness and timbre parameters from audio
files to provide a tool for the automatic parameter extraction from music
performances.

The system is applied to extract data from 21 string quartet performances and
a detailed analysis of the extracted data is presented.

The main contributions of this thesis are the adaptation and development of
signal processing approaches to performance parameter extraction and the
presentation and discussion of string quartet performances of a movement of
Beethoven’s late String Quartet op. 130.

music performance, music performance analysis, automatic tempo extraction,
loudness analysis, timbre analysis, string quartet performance, audio content
analysis, audio-to-score-matching






Zusammentassung

Verschiedene Auffithrungen des gleichen musikalischen Werkes unterscheiden
sich deutlich voneinander. Es ist offensichtlich, daf das Musikerlebnis des Horers
nicht nur durch die zugrundeliegende Partitur bestimmt wird, sondern auch
mafgeblich von der Interpretation dieser Partitur durch die auffithrenden Musi-
ker. Diese deuten, modifizieren oder erweitern die im Notenbild enthaltenen
Informationen im Zuge ihrer Darbietung.

Eine solche Musikauffiihrung lafst sich mit Parametern der Parameterkategorien
Tempo, Lautheit, Klangfarbe und Tonhohe objektiv beschreiben. Jede der vier
Kategorien stellt eine Vielzahl von Parametern bereit, die es den Musikern
ermoglicht, musikalische Ideen auf eine einmalige physikalische Art umzusetzen.
Die Extraktion solcher Parameter ist eine der typischen Problemstellungen
der Auffiihrungsanalyse. Diese Arbeit préasentiert ein Softwaresystem, das als
Werkzeug zur automatischen Extraktion von Tempo-, Lautheits- und Timbre-
merkmalen angewendet werden kann.

Dieses System wurde fiir eine systematische Analyse von 21 Streichquartettauf-
nahmen eingesetzt.

Die Arbeit widmet sich hauptséchlich zwei Thematiken, der Entwicklung und
Optimierung von Algorithmen der Audiosignalverarbeitung zur Parameterex-
traktion aus Audioaufnahmen musikalischer Auffiihrungen sowie der Analyse
und Diskussion von Streichquartrettauffithrungen eines Satzes aus Beethovens
spatem Streichquartett op. 130.

musikalische Interpretation, Auffithrungsanalyse, Tempoerkennung, Lautheits-
analyse, Klangfarbenanalyse, Streichquartettanalyse, Musikanalyse
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Chapter

Introduction

Music is a performing art. In most of its genres, it requires a performer or a
group of performers who “self-consciously enacts music for an audience” [Slo85].
In classical or traditional western music, the performer renders the composer’s
work, a score containing musical ideas and performance instructions, into a
physical realization.

Different performances of the same score may significantly differ from each
other, indicating that not only the score defines the listener’s music experience,
but also the performance itself. Performers can be identified by listeners with
regard to certain characteristics of their performances, and certain performers
can be as famous as composers. A performance is a unique physical rendition
or realization of musical ideas that is never just a reproduction but always
a (new) interpretation. The performer is expected to “animate the music, to
go beyond what is explicitly provided by the notation or aurally transmitted
standard - to be ‘expressive’ ” [Cla02b|. Bach explains [Bac94]

Worinn aber besteht der gute Vortrag? in nichts anderm als der
Fertigkeit, musikalische Gedancken nach ihrem wahren Inhalte und
Affeckt singend oder spielend dem Gehore empfindlich zu machen.

If different performances of the same piece of music are expected to represent
the underlying musical ideas, why do they differ so clearly from each other,
and what are the differences and commonalities between them?

For a better understanding of the role of music performances, it is helpful to
consider the performance as embedded into a chain of musical communication
starting at the composer and his score and ending with the listener, as shown in
Fig. 1.1. The model is loosely based on Kendall’s three-stage model featuring
Composer, Performer and Listener [KC90|]. The feedback paths indicate
possible interrelations with the performance.

Obviously, no direct communication takes place between composer and listener.
Instead, the composer translates his musical ideas into a score which is analyzed
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FIGURE 1.1: Chain of Musical Communication

by the performer to derive a performance concept or plan and finally to render
the acoustic realization — the performance — that is subsequently perceived
by the listener. Each of the communication stages allows or even enforces
interpretation, modification, addition and dismissal of information. Chapter 2
provides more in-depth analysis of several of the communication stages within
the context of music performance.

Music Performance Analysis (MPA) aims at obtaining a basic understanding
of music performances. A good example for applied MPA, although highly
subjective, are reviews of concerts and recordings that do not focus on the score
information but rather on a specific performance or rendition of this score.

First systematic studies of music performance date to the beginning of the
20th century, when mechanical and technical tools became available to record,
reproduce and eventually to analyze music performances that previously had
been unique, non-repeatable experiences. It was not only the reproducibility
but also the objectivity of the newly available data that motivated researchers
to discover music performances as a topic of scientific interest. Piano rolls
for example — used to record and reproduce performances on mechanic pi-
anos — proved to be excellent sources of detailed tempo and timing data for
the recorded performances. Mechanical sensors and cameras allowed to track
performance data such as hammer movements in pianos, and oscillographs and
similar devices allowed the frequency analysis of recorded performances. The
evolution of measurement devices, the introduction of MIDI (Musical Instru-
ment Digital Interface) as a standard for control and recording of electronic
musical instruments as well as the rise of digital approaches in signal recording,
storage and analysis contributed to the development of the research field Music
Performance Analysis. Especially during the last decade, new possibilities of
data extraction and data mining were introduced and helped to simplify and
speed up the process of analysis significantly. Despite all technical improve-
ments, the main difficulties in performance research appear to remain the same
as before:

e How to extract data that fulfills high demands on reliability, validity and
external validity, i.e. the significance of the gathered data set, to allow
general conclusions to be drawn?



e How to structure and interpret the extracted information in a musically,
musicologically or psychologically meaningful way?

The first difficulty is actually a combination of problems; although for many
pieces a nearly limitless number of recordings can be found, only the audio
recording of these performances is available instead of detailed and accurate
performance data provided by sensors frequently used in performance research.
Since the “manual” extraction of performance data from audio is time-consuming,
automated data extraction by a software system can be used for previously
impracticable large-scale analyses while providing objective and reproducible re-
sults. Recently, modern digital audio signal approaches have led to encouraging
results in the context of audio content analysis. For example, the accuracy and
reliability of high-level data extracted from audio signals increased significantly.

The aim of this work is to adapt and develop such approaches for the use in a
software system for the automatic acquisition of performance data from audio
recordings in a sufficiently robust and accurate way, and to make the extracted
data easily accessible to the analyst. This will be referred to as a descriptive
approach which presents characteristics and properties of musical performances,
as opposed to an interpretative approach that would attempt to explain the
results in their musical, psychological or other context. For example, it is
neither the goal of a descriptive approach to reveal a concept of interpretation
or a performance plan nor to assess performance quality or to develop models
of performance reception by listeners.

For this purpose, we restrict ourselves to the analysis of recordings from
professional music performances of pre-existent compositions, available in
classical score notation and do not aim at the analysis of improvisation, sight-
reading and rehearsals or music that does not stand in the western concert
tradition. There are no restrictions on instrumentation or genre, but the focus
lies on polyphonic or multi-voiced ensemble music performed by more than one
musician.

To demonstrate the suitability of the presented system, an analysis of string
quartet performances is undertaken. The analysis of chamber ensemble perfor-
mances is a rather neglected object of study, and the current understanding of
music performance is mainly gained from piano performances. The presented
results can be used to verify if and how these insights can be transfered to
ensemble music with non-keyboard instruments.

In summary, the main contributions of this work are the design and imple-
mentation of a software system dedicated to music performance analysis, the
presentation of optimized methods for audio content analysis, and the perfor-
mance analysis of string quartet recordings.

Chapter 2 is an introduction to music performance and its characteristics. Fur-
thermore, it summarizes past and present approaches to systematic performance
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research with a focus on the extraction, the properties and the interpretation
of the investigated performance data.

Chapter 3 describes the algorithmic design of the software library for automatic
tempo and timing extraction from an audio file utilizing a score representation
of the piece of music. The algorithm is based on a Dynamic Time Warping
approach that finds the optimal global match between discrete times of a
performed audio recording and the note events of a quantized MIDI file, given
a fitting similarity measure between audio and MIDI data.

Chapters 4 and 5 describe the selection, interpretation and implementation of
various low-level audio features for the analysis of both musical dynamics and
timbre variation in music performances.

Chapter 6 presents the implementation of the complete software system for
music performance analysis which is split into two parts, the performance data
extraction and sonification and visualization of the data.

A systematic study of 21 performances of a movement of Beethoven’s string
quartet No. 13 op. 130 can be found in Chap. 7. It investigates tempo, loudness
and timbre characteristics extracted from commercial recordings with recording
dates between 1911 and 1999. The final Chap. 8 summarizes and concludes
this thesis.



Chapter

Music Performance &
Performance Analysis

2.1 Music Performance

The chain of musical communication, depicted in Fig. 1.1, shows that the
composer communicates musical ideas or information via the score to the
performer. It should be clearly distinguished between the terms musical score
and music. According to Hill, the score is not the music itself, but sets down
musical information, together with indications on how this information may
be interpreted [Hil02]. Other authors describe the score as one of a number of
possible representations such as a Compact Disc (CD), recordings and written
descriptions or see the score as a “blueprint for a performance” [Cla02b].

A score that stands in the tradition of western music history always contains
information on pitch and (relative) duration of each note; almost always
instructions on musical dynamics appear in the score as well. Other instructions
for example on character, quality or specific ways to perform may also be found
in the score. Some of the contained information is available only implicitly
(e.g. information on the musical structure) or might be ambiguous or hidden,
complicating its description and quantification (compare [Dor42|, [Mey56|,
[Pal97], [BM99]).

All this information is subject to the performers’ interpretation — they detect
and evaluate implicit information, try to understand and explain performance
instructions, identify ways to convey their understanding of musical ideas to
the listener and transform the discrete score representation of pitch, duration
and dynamics to continuous scales.

It can be observed that later scores tend to be more explicit in terms of
performance instructions than earlier scores, indicating that composers tried to
eliminate the unspecified or ambiguous information in the score [Dor42|. This
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may be due to the increasing awareness of the fact that scores often take into
account performance rules that may seem “natural” at the time of composition
but may change over decades and centuries, possibly leading to unintended
performances.

Although the literature on musical performance frequently conveys the impres-
sion that imprecision and restriction of the score representation is undesirable,
the fact is that there can be no true or absolute interpretation. Music is a
living art and constant re-interpretation of music representations is the artistic
breath that gives music life.

Seashore introduced the idea of defining the expressive parts of a performance
as deviations from a “neutral”, mechanical score rendition [Sea38|. However,
the assumption that all information on such a “neutral” performance is already
contained explicitly in the score seems unlikely on second thought, as the
understanding and interpretation of a score might require cultural, historical
and musicological considerations as well.

Other authors defined a neutral performance as a performance that is perceived
as mechanic (which may not be necessarily a mechanical performance [Par03]).
A different suggestion had been that the required neutral reference performance
should be a performance with “perfectly normative rubato (and the equivalent
on all other relevant expressive parameters)” [Cla91], that is a performance
that matches all standard expectations of the listener.

Although controlled deviations from such a (normative or subjective) reference
are most definitely directly connected with the perception of musical expression,
they should not be confused with the expression or expressive deviations, as
these terms “usually refer to physical phenomena, that is, deviation in timing,
articulation, intonation, and so on in relation to a literal interpretation of
the score. This use should be distinguished from a more general meaning of
expression in music” as the expression’s domain is the mind of the listener or
the performer [Gab99].

Every performance requires a concept or plan which can be created by either
a rigorous or a rather intuitive and unsystematic analysis of the score (for
instance for sight-reading). This analysis should probably not be seen as an
independent process applied to the act of interpretation but as “an integral
part of the performing process” [Rin02].

The performance plan is a mental representation of the music [Gab99] that is
an abstract list of actions that may be realized in an indefinite number of ways
and is specified only relative to the context [Slo82]. Both authors stress the
importance of structural and other “musical” information for this performance
plan, but it also has to contain all intentions of the performer on what to
express or convey to the listener. Of course the performance plan is so closely
related to the performance itself that in many cases it does not make sense to
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treat them separately, and the following paragraphs will not always differentiate
between the plan and the performance itself.

Every music performance is highly individual in both its production and its
perception. Still, a list of parameters that the performance may depend on can
be compiled. The number of influencing parameters on the performance (and
the performance plan) itself is probably infinite; nevertheless, the following
list attempts to describe the main influences that may explicitly or implicitly
influence a musical performance (also compare [Dor42|, [Slo82], [Slo85], [Pal97],
[THO2|, [Wal02], [Cla02b], [Cla02a], [Par03], [Jus03a], [Jus03b]).

e general interpretative rules:
These are rules, conventions, or norms that every performance follows
because it would be perceived as uncommon or even unnatural otherwise.

e performance plan and expressive strategy:
A concept of interpretation as a list of actions that may be influenced by

— interpretation of musical structure or shape, e.g. the question of how
to successfully convey melody, phrases, etc. to the listener.

— addition of unexpectedness or deviation from expected conventions
or rules.

— stylistic and cultural context and rules that may vary over time
or between countries or follow “performance fashions” [Cla02b], in-
cluding instruments or instrument characteristics (such as timbre),
used tuning frequencies and temperaments, and typical performance
styles with respect to articulation, ornamentation, vibrato styles,
tempo, rubato styles, etc.

This may apply for both the historic context (the time the piece of
music was composed or premiered) as well as for the context at the
time of the performance.

— musical mood and emotional expression that the performer plans to
convey to the listener.

— performance context such as the expected audience, the style and
performance plan of other performances and works in the concert
program.

e the performers’ personal, social and cultural background:
A very broad category that includes e.g. previous performing and general
experiences, teachers and mentors, attitude, manners and mannerisms,
etc.

e physical influences:
The auditory and motorical or — more generally — physical abilities
of the performer, general human limitations (e.g. in timing precision,
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breathing) as well as attributes of the musical instrument that can impose
limitations on e.g. fingering, changing of hand positions etc. may lead to
forced or unintended deviations from the performance plan.

e rehearsal:
The rehearsal phase allows direct feedback on the performance plan and
may also train some specific motorical abilities of the performer. It should
be noted that a rehearsal can also be seen as a performance itself.

e immediate influences:
Influences that may change the performance at the time of performance
and may lead to a deviation from the performance concept such as

— runtime feedback control, i.e. the feedback that the performer directly
receives that may consist of auditory, visual, tactile, and other cues
[Tod93|]. This includes various parameters such as the instrument’s
sound and reaction, the performance of co-performers, the acoustics
of the environment, the reaction of the audience etc.

— external influences not directly related to the performance such as
humidity, temperature, distractions, etc.

— ‘“internal” influences such as the emotional and physical state of the
performers (stress, stage fright, fatigue, illness, etc.)

Expressive movements are sometimes also considered to be part of a performance,
since performers may move in ways that are not directly related to the generation
of sound but to the character of music. In the context of this dissertation, only
the acoustical properties of a performance will be taken into account.

Four classes of acoustical parameters that can be used for the description or
characterization of music performances have already been identified in the
1930s by Seashore [Sea3s]:

e tempo and timing: global or local tempo and its variation, rubato, or
expressive timing, subtle variation of note lengths in phrases, articulation
of tones, etc.

e velocity, loudness or intensity: musical dynamics, crescendo and
diminuendo, accents, tremolo, etc.

e pitch: temperament, tuning frequency, expressive intonation, vibrato,
glissando, etc.

e timbre: sound quality and its variation resulting from instrumenta-
tion and instrument-specific properties such as bow positioning (string
instruments).
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Recorded performances can differ significantly from the live performance, even in
the case of so-called live recordings (|Cla02a], [Joh02]). The reason is that more
persons than the performers themselves, e.g. the producer and sound engineer,
may influence the final result during this production stage. Furthermore,
mechanical and technological restrictions enforce differences between an original
and reproduced performance, but also open up new possibilities to improve
a recorded performance in the post-production process. For example, it is
established recording practice (at least in the context of classical music) to not
only record complete performances and finally choose the “best”; but instead to
record several or many so-called takes of passages of the musical piece. The
recording process can also involve repeated listening to the recorded takes and
discussions on the performance with influence on the following performances.
Afterward, it is decided which parts of these takes will finally be used on the
published CD and these will be edited in a way that the cuts are inaudible.
Having analyzed seven productions of Beethoven’s 9th Symphony, Weinzierl
und Franke found between 50 and 250 cuts between different recording takes
in each production; the average number of edits increased with the technical
evolution [WF02|. Nowadays, Digital Audio Workstations allow to edit music
signals at nearly any score position.

Microphones and their positioning as well as signal processing done by the sound
and mastering engineers may impact the loudness, the timbre, the reverberation
and other parameters of the recording. These “interventions” can also vary
over time to artificially increase or decrease acoustical or performance-based
effects (e.g. increase the loudness of a specific instrument for its solo part etc.).
Maempel et al. give an overview on processing options and typical objectives
in the post production context [MWKOS].

The musician’s and the producer team’s influences are not distinguishable
on the final product, for example the CD. Therefore, the resulting recording
including the (post) production stage will be referred to as performance in the
remainder of this text; this seems to be a valid approach as the artist usually
states his final agreement with the recording.

It should be kept in mind that it might not only be the editing and processing
that differentiate a recorded performance from a live performance, but also the
possible adaptation of the performer to a different reception and expectation in
the recording context [Cla02al. However, these recordings represent one of the
principal forms in which music has been available in the last and the current
century.

The listener, as the receiving end point of the communication chain, subjectively
interprets the music. He listens to a performance and conceives musical ideas
and other information that is conveyed by the performance. Since the recipient
is affected by the incoming information, at this point in the communication
chain the subjective effects of a performance can be analyzed. As Lundin points
out, the kinds of possible affective reactions are practically limitless [Lun53|.
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2.2 Music Performance Analysis

Music Performance Analysis (MPA) aims at studying the performance of
a musical score rather than the score itself. It deals with the observation,
extraction, description, interpretation and modeling of music performance
parameters as well as the analysis of attributes and characteristics of the
generation and perception of music performance. Three basic directions can be
roughly distinguished in the field of systematic performance analysis:

e to study the performance itself: to identify common and individual
characteristics in the performance data, general performance rules, or
differences between individual performances

e to study the generation or production of a performance: to understand
the underlying principles of performance plans, the relation of the per-
formers’ intention to objective performance parameters (see below), and
to investigate the performers’ motoric and memory skills

e to study the reception of a performance: to comprehend how performances
or the variation of specific parameters are perceived by a listener, and to
study how he is affected

MPA could on the one hand lead to more explicit formulations of the different
(objective) performance characteristics in the practice of music-teaching or
enable the development of teaching assisting systems that give the student
direct and objective feedback on the performance parameters. On the other
hand, it could assist the implementation of performance models that generate
computer renditions of human-like music performances. MPA also gains insights
that can be valuable for the investigation of music esthetics and music history.

One of the problems of MPA is to define a suitable reference that the extracted
performance data may be compared to. While a mechanical rendition seems to
be an obvious choice as reference, other reference renditions such as a (human)
performance that attempts a mechanical rendition, a rendition that is perceived
to be mechanical, a rendition that is perceived to be standard or common, or
an average rendition calculated from many performances could be considered
to be more meaningful reference renditions. However, in the latter cases the
reference renditions can only be valid in a specific context. This will usually
not be desirable from the analyst’s point of view.

As Clarke points out, “musical analysis is not an exact science and cannot be
relied upon to provide an unequivocal basis for distinguishing between errors
and intentions” [Cla04], emphasizing the challenge of meaningful interpretation
of extracted performance data. A related difficulty that music performance
analysis has to deal with is to distinguish between inherent performance at-
tributes and individual performance attributes. In the context of musical
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accents, Parncutt [Par03] distinguishes between immanent accents that are
assumed to be apparent from the score (structural, harmonic, melodic, metrical,
dynamic, instrumental) and performed accents that are “added” to the score by
the performer. This approach may be applied to nearly all extracted parameters,
and in the general case it might not be possible to distinguish score-inherent
and performer-induced characteristics.

The interpretation of importance and meaning of characteristics derived from
performance data is a difficult task. In the end, final conclusions can only be
drawn by taking into account subjective judgments. The methodology and
questionnaire or rating scale for such subjective tests and how they can be
taken into account, however, has only begun to evolve to systematic approaches
during the last centuries. The problem of extracting relevant characteristics is
apparent in the design of systems intended to automatically generate music
performances from a score. Clarke notes (in the context of parameters possibly
influencing performances): “Whatever the attitude and strategy of different
performers to this wealth of influence, it is clear that a theory of performance
which is presented as a set of rules relating structure to expression is too
abstract and cerebral, and that the reality is far more practical, tangible and
indeed messy” [Cla02b].

Different areas of research contribute to the field of MPA, including musicology,
(music) psychology and engineering. An introduction to the research field is
given by Clarke [Cla04]. Articles providing extensive overviews have been
compiled for example by Gabrielsson [Gab99|, Palmer [Pal97] and Goebl et al.
[GDP*05]. The following sections do not reiterate these but intend to give
an impression on the variety of different approaches to the analysis of music
performance.

There are several possibilities to structure the available literature on musical
performance analysis. The publications have been grouped depending on
different characteristics of method and methodology, although this may lead to
multiple citations of the same publications.

2.3 Analysis Data

2.3.1 Data Acquisition

The acquisition of empirical data is one of the crucial points in systematic music
performance analysis. Among the various methods that have been proposed
and used to acquire data, two general approaches can be identified: monitoring
performances (or performance parameters) by mechanical or technical devices,
or extracting the parameters from an audio recording of the performance. Both
concepts have inherent advantages and disadvantages.
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The monitoring approach usually provides accurate and detailed results since
the measurement devices can track the performance parameters more or less
directly, but the analysis is exclusively restricted to specific performances that
were produced under special conditions and with the specific performers that
were available.

The direct extraction of performance parameters from the audio — as opposed
to from the instrument with sensors — is difficult and most definitely results
in less accurate data. This is true for both the manual annotation of audio
(such as marking note onset times) and the fully automated extraction of data.
Additionally, some parameters of interest may be even impossible to extract
from the audio, such as information on piano pedaling or note-off times. Other
parameters of interest such as the performers’ movements are obviously not
extractable from the audio at all.

The advantage of extracting parameters directly from the audio signal is
the possibility to analyze an enormous and continuously growing heritage
of recordings, including outstanding and legendary performances recorded
throughout the last century and until now. Hence, audio-based approaches
allow to widen the empirical basis considerably with respect to the amount of
available sources and their significance.

Audio Content Analysis, an increasingly important branch of Music Informa-
tion Retrieval, deals with the automatic extraction and analysis of (musical)
information from digital audio signals. The majority of the published algo-
rithms work “blind”, meaning that they only have audio data available as input
information while any additional input such as the score representation of
the analyzed music is not available. Thus, most of these systems aim at the
extraction of score information from the audio rather than the extraction of
performance information (such as so-called transcription systems). This is
however not a technical necessity, so similar approaches can be utilized to
extract performance information directly from the audio signal. The increasing
accuracy and robustness of these systems will make such approaches more and
more important for MPA.

2.3.1.1 Piano or Keyboard Performance

The introduction of mechanical pianos at the end of the 19th century made
the acquisition of objective performance data possible through piano rolls. For
example, Hartmann [Har32| presented an early analysis of tempo and timing
of two piano performances based on their piano rolls. There are also later
approaches to the analysis of performance data from piano rolls [Dov95].

Other historic approaches used proprietary sensors that were built to extract
performance data. The most prominent example is the lowa Piano Camera
that was used by Seashore [Sea38| and his team at the University of lowa in the
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1930’s. For each piano key, this “camera” recorded onset and note-off times and
hammer velocity by optical means. Another example of a proprietary system
is Shaffer’s Bechstein grand piano [Sha84|, using photo cells to detect hammer
movements.

The introduction of the MIDI (Musical Instrument Digital Interface) specifica-
tion (latest revision see [MIDO1]) in the 1980’s resulted in an increasing number
of electronic instruments and MIDI sequencers as well as computer hardware
and software solutions that supported this specification and opened up new pos-
sibilities to measure, store and analyze pianists’ performance data. Partly, music
performance research has been done with the help of electronic instruments such
as synthesizer keyboards and electronic pianos (|Pal89|, [DH94|, [Rep96b]), but
the majority concentrated on using acoustic instruments with built-in sensors
that automatically output MIDI data such as the Yamaha Disklavier product
series or Bosendorfer grand pianos with the so-called SE-System ([Rep96al,
[Rep96d], [Rep96c|, [Rep97c|, [Rep97a], [Bre00|, [SLO1]|, [GoeOl], [WADT01],
[Sta01], [Wid02], [WT03], [Wol04], [WDPBO06], [TMCV06]).

As already pointed out, the analysis of performances that have not or cannot
be recorded on specifically equipped instruments has to be based on the audio
data itself. This is the case for the vast majority of available recordings.

To extract the tempo curve from an audio recording, the usual approach is
to either tap along with the performance (|[DG02|, [Hon06]) or to manually
annotate the onset times in a wave editor/display or a similar application
([Pov77], [Rep90], [Rep92], [Rep97b], [Rep98|, [Rep99a|, [Rep99b|, [Wid95a],
[Wid95b|, [Wid98a]). Both approaches have also been automated or partly
automated by the use of automatic beat tracking systems — followed by manual
correction of beat times — ([Wid98b|, [ZWO03]/ [WZ04], [Tim05], [DGCO06]) or
more recently by alignment algorithms using score or MIDI data as additional
input (|Ari02|, [MKRO4], [DW05]). The main difference between tap-along
and beat-tracking approaches as compared to manual onset time annotation
and alignment systems is that in the former case the resulting tempo curve
resolution is on beat level, meaning that between-beat timing variations cannot
be analyzed, while the latter usually takes into account each single note onset
time, whether this note lies on the beat or not.

A focus on piano performances can be observed in the literature. One of the
obvious reasons is that the piano is a very common instrument with a large
(solo) repertoire, but there are more reasons that make the piano an appealing
choice. The tones produced by a piano have a percussive character that makes
this instrument far more suitable for accurate timing analysis than for instance
string instruments. Its mechanics make it possible to measure data with sensors
less intrusive and probably easier than on other instruments that offer a more
direct interaction between performer and sound production. Furthermore,
the pianist is in some ways more restricted than other instrumentalists; he is
limited to fixed (and equal-tempered) pitch frequencies, which rules out key or
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harmony dependent intonation and other performance specifics such as vibrato.
He also has little influence on the timbre of a played note, and after hitting
a key, he is not able to control any of the typical note parameters such as
pitch, loudness or timbre except its duration. From a technical point of view,
these restrictions seem to make the piano a rather unattractive instrument with
limited degrees of freedom, but even with these limitations, piano performances
are an integral part of western cultural life, meaning that the mentioned
restrictions do not really impede the communication of musical expression
between pianist and audience. The reduction of possible parameter dimensions
is however beneficial in performance research because it simply keeps the
measurement dataset smaller. Last but not least, the (commercial) availability
of electronic and acoustic instruments using MIDI as a universal communication
protocol simplified the performance data acquisition significantly since custom-
built solutions were no longer necessary. While the recording of MIDI data
from other non-keyboard instruments is at least partly possible, the fact that
MIDI is a keyboard-focused protocol results in limited usefulness in many cases.
Despite the good reasons for the usage of piano as the main instrument for
performance analysis, it has not yet been conclusively shown that the insights
gained from piano performance analysis can be applied to performances with
other instruments and ensembles (although the not-so-many studies on other
instruments indicate that this might at least partly be the case).

2.3.1.2 Other Instruments or Instrumentations

Most non-piano instruments represented in the musical performance literature
are monophonic, meaning that never two or more notes can occur simultaneously.
In this case, common approaches to frequency analysis can be assumed to be
robust enough to extract the pitch variation over time. Proprietary as well as
commercially available systems have been applied to the task of pitch extraction
form the audio signal ([Sea38|, [Sch40], [Dil01], [FJP03]|, [Wal04], [Bow06],
[Orn07], [Rap07], [MAGO8|, [RPKO08]). Seashore invented the “Tonoscope” for
the pitch analysis of monophonic signals [Sea02|. It consists of a rotating
drum covered with a paper containing small dots, each representing a certain
frequency. The input signal is — by the means of a light-emitting gas tube —
projected on the rotating paper. If the input frequency matches one of the
frequencies a dot represents, this line of dots will stand still for the observer
and gives a clear indication of the frequency. The “Melograph” used in [Orn07|
appears to be basically of a similar design. Other studies work with spectrogram
visualizations, use commercially available software solutions for the detection
of monophonic pitches, or implemented their own software algorithms for the
pitch detection.

The majority of these systems are not able to extract note onset times, so
tempo and timing information is either not analyzed or is extracted by manual
annotation. However, to name two counter-examples, Kendall compared timing
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and dynamics of monophonic melodies performed on piano, clarinet, oboe,
violin, and trumpet [KC90] and Ramirez et al. used automatically extracted
timing data for the identification of performers of violin recordings [RPKO0S|.

The tempo and timing data for other, non-monophonic signals has usually
been extracted by tapping along (e.g. [Hon06|) or by manually setting onset
time labels (e.g. [Ras79], [Jer03al, [Jer04]). Clynes [CW86] did not analyze
the tempo on a beat or onset level but measured the overall duration of single
movements.

2.3.2 Instrumentation & Genre

The majority of musical performance research focuses on the piano as the
instrument of main interest.

Other individual instruments include the singing voice ([Sea38|, [Sch40],
[FJP03], [Rap07]), string instruments such as violin, viola, and violoncello
([Sea38], [KC90], [Dil01], [Bow06]|, [Orn07], [MAGOS|, [RPKO08]), wind instru-
ments such as flute, clarinet, oboe and trumpet ([KC90|, [Wal04], [Orn07]),
organ (|Jer03al, [Jer04]) and percussion instruments (|[Dah00]).

Publications researching chamber music performances show up less frequently

(e.g. [Ras79], [CW86], [Hon06]).

A large variety can be found in the style of musical pieces chosen for performance
research. The date of composition of the analyzed musical pieces ranges from
the 16th to the 20th century and a general focus on well-known and popular
composers such as Bach, Mozart, Beethoven, Schumann, and Chopin can be
observed.

2.3.3 Variety & Significance of Input Data

With respect to the question if and how reliably conclusions can be drawn from
the extracted data, it is important to verify how and from whose performance
this data has been generated.

For example, it could be argued that performance data gathered under “lab-
oratory conditions” is insignificant per se due to the unnatural recording
environment; however, these special conditions are also given for many (studio)
recording sessions that resulted in recordings that are in fact perceived as
convincing performances by the listeners, so we may disregard this point of
view.

Still, when the data is acquired under such laboratory conditions, it implies
that the number and possibly the skill of the available performers might be
restricted. For example, research had partly been done on student performances
(e.g. [Rep96al, [Rep96d]|, [Rep96¢|, [Rep97c|, [Rep97h|, [Bre00|, [SLO1|, [Goe01],



16 CHAPTER 2. MUSIC PERFORMANCE AND ITS ANALYSIS

[W6104], [Bow06]). This fact by itself is not too remarkable, but it nevertheless
emphasizes the question if and how research methods and conclusions take into
account the possible discrepancies between the performances of student pianists
(or just available pianists) and the performances of professional and famous
pianists. Under the assumption that fame is related to higher professional skills
of the performer this could be a noteworthy criterion.

Due to the difficulties of acquiring large sets of performance data described
above, the number of performers per study is usually small. The majority
of research in the presented paper database has been done with a number of
five or less performers per publication ([Har32|, [Pov77|, |[Ras79|, [Sha84],
[KC90], [DH94|, [HHF96|, [Rep96b|, [Bre00|, [Dah00]|, [LKSWO00], [Dil01],
[GDO01], [ShiO1], [Sta01], [WAD™01], [Wid02], [Wid98b], [FJP03], [WT03],
[Dilo4], [Jer04], [WDPBO6], [DGCO06|, [Hon06|, [Rap07]) or six to ten per-
formers ([Rep96a|, [Rep96d|, [Rep96¢|, [Rep97c|, [Rep97al, [Rep99d|, [ZWO03]/
[WZ04], [W6l04]). Examples of publications evaluating more performers are
[Orn07] with 15 performers, [Rep90] and [Rep97b| with 19 and 20 performers,
respectively, [Goe01] with 22 performers, [Rep92] (and using the same data
set [Wid95a|, [Wid95b|, [Wid98a|) with 24 performers and finally [Rep98|/
[Rep99a]/ [Rep99b] with an outstanding number of 108 performers (115 per-
formances). This raises the question if and how insights gained from a small
group of performers can be extrapolated to allow general assumptions on
performances.

Table 2.1 summarizes the characteristics of the analyzed data set for many of
the cited publications. Although the usefulness of such a summary is obviously
limited, it gives a quick overview of the data set properties.



Publication Title Instrument Composer #Performers # Pieces # Performances
[Bre00] Articulation Strategies in Expressive Piano Perfor- | Piano Mozart 5 1 (excerpt) 45
mance
[CW86] Music As Times Measure String Quartet | Beethoven, 1 5 39
Haydn, Ravel,
Bartok, Janacek
[DH94]| Does expressive timing in music performance scale | Keyboard Beethoven 2 1 6
proportionally with tempo? (harpsichord
sound)
[Dilo1] Extracting audio cues in real time to understand | Recorder Corelli 1 1 (excerpt) 5
musical expressiveness
[Dilo4] On the Recognition of Expressive Intention in Mu- | Piano Mozart 2 1 (excerpt) 2
sic Playing: A Computational Approach with Ex-
periments and Applications
[FIPO3| The Influence of the Practice of Basso Continuo | Voice Monteverdi 1 1 (excerpt) 8-3
on the intonation of a Professional Singer in the
Time of Monteverdi
[GDo1] Analysis of tempo classes in performances of | Piano Mozart 1/4 12/12 (excerpts) 12/48
Mozart sonatas
[Goe01] Melody lead in piano performance: Expressive de- | Piano Chopin 22 2 (excerpts) 44+44
vice or artifact?
[Har32] Untersuchungen {iber metrisches Verhalten in | Piano Beethoven 2 1 2
musikalischen Interpretationsvarianten
[Hon06| Motor Action in Performance - Rostropovich and | Violoncello & | Prokoviev 1 1 2
Richters Repeated Renditions of Prokofievs Cello | Piano
Sonata Op.119
[HTS02] Effects of Musical Tempo and Mode on Arousal, | Keyboard (Pi- | Mozart 1 1 4
Mood, and Spatial Abilities ano sound)
[Jer03a] Measurements and Models of Musical Articulation | Organ Bach 5 4 (excerpts) 14
[Jus00] Cue Utilization of Emotion in Music Performance: | Guitar - 3 3 (short melodies) 36
Relating Performance to Perception
[KC90] The Communication of Musical Expression Piano, Clar- | Purcell, Haydn, | 5 4  (melody ex- | 60
inet, Oboe, | Schubert, ‘We- cerpts)
Violin, Trum- | bern
pet

Continued on next page
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Publication Title Instrument Composer #Performers # Pieces # Performances

[LKSWO00] Realtime Analysis of Dynamic Shaping Piano Satie 2 1 2

[Orn07] An empirical study of intonation in performances | Flute, Violon- | Bach 15 2 15
of J.S. Bachs Sarabandes: temperament, “melodic | cello
charge” and “melodic intonation”

[Pal89] Mapping Musical Thoughts to Musical Perfor- | Keyboard (Pi- | Mozart/Brahms | 6/8 1/1 (excerpts) 2/8
mance ano Sound)

[Pov77] Temporal Structure of Performed Music. Some | Keyboard (Pi- | Bach 3 1 3
Preliminary Observations ano Sound)

[Rap07] The Marvels of the Human Voice: Poem-Melody- | Voice Berlioz, Schu- | 7 4 (excerpts) 8
Vocal Performance bert, Puccini,

Offenbach

[Rep90] Patterns of Expressive Timing in Performances of | Piano Beethoven 19 1 19
a Beethoven Minuet by Nineteen Famous Pianists

[Rep92] Diversity and commonality in music performance: | Piano Schumann 24 1 28

(also used | An analysis of timing microstructure in Schu-

in [Wid95a], | manns “Trdumerei”

[Wid95b],

[Wid98al])

[Rep96a| Patterns of note onset asynchronies in expressive | Piano Schumann, De- | 10 3 30-3
piano performance bussy, Chopin

[Rep96b] Pedal Timing and Tempo in Expressive Piano Per- | Keyboard (Pi- | Schumann 2 1 18
formance: A Preliminary Investigation ano sound)

[Rep96d] The dynamics of expressive piano performance: | Piano Schumann 10 1 10-3
Schumanns “Traumerei” revisited

[Rep96c| The Art of Inaccuracy: Why Pianists Errors are | Piano Schumann, De- | 10 4 40-3
Difficult to Hear bussy, Chopin,

Grieg

[Rep97c| The effect of tempo on pedal timing in piano per- | Piano Beethoven, 10 2 (excerpts) 20-3
formance Brahms

[Rep98], A microcosm of musical expression. I. & II. Piano Chopin 108 1 (excerpt) 115

[Rep99a]

[Sch40] The Psychology of Music Voice Bach-Gounod 5 1 5

Continued on next page

31

SISATVNY SLI ANV HONVINHOAYHd OISNIN "¢ HHLdVHD



Publication Title Instrument Composer #Performers # Pieces # Performances
[Sea38]| Psychology of Music Violin/ Piano/ | Bach, Schubert- | 9/ various/ 9 5/ various/ 7 12/ various/ 10
Voice Wilhelmj/  vari-
ous/ various
[Shag4] Timing in Solo and Duet Piano Performances Piano/Piano Chopin 1/1 1/1 3/2
Duet
[Shi01] Three expressive strategies of expert performance | Violoncello Bach 3 1 3
of an excerpt by J.S. Bach
[SLO1] Tracking Performance Correlates of Changes in | Piano Chopin 10 1 20
Perceived Intensity of Emotion During Different
Interpretation of a Chopin Piano Prelude
[Sta01] A Computational Model for Discriminating Music | Piano Mozart 2 7 (excerpts) 14
Performers
[TimO05] Predicting the similarity between expressive per- | Piano Chopin, Mozart 11 2 (excerpts) 11
formances of music from measurements of tempo
and dynamics
[TMCVO06] Listeners emotional engagement with perfor- | Piano Scriabin 1 1 3
mances of a Scriabin étude: an explorative case
study
[Wid02], Machine Discoveries: A Few Simple, Robust Local | Piano Mozart 1 13 13
[WT03] Expression Principles/Playing Mozart by Analogy:
Learning Multi-level Timing and Dynamics Strate-
gies
[WADT01] The timing of grace notes in skilled musical perfor- | Piano Beethoven 1 1 (excerpt) 9-5
mance at different tempi: a preliminary case study
[ZW03] Expressive Timing and intensity profiles in mental | Piano Beethoven 6 12 48

performances

TABLE 2.1: Overview over the analyzed data set in selected MPA publications
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2.3.4 Extracted Parameters

The basic classes of objective performance parameters have been identified
by Seashore in the 1930s as tempo and timing, pitch, dynamics, and timbre
[Sea3s|.

The variation of tempo and timing over time is one of the most thoroughly
researched aspects in MPA. The extracted onset times are usually converted
into relative inter-onset-intervals (/O1) by calculating the discrete derivative.
Then, each data point is normed by the corresponding note duration from the
score in beat. The resulting curve of normed IOIs is an inverted representation
of the tempo with the unit s/Beat (as opposed to the usual musical tempo
definition in Beat/s compare Chap. 3). The analysis of the articulation is in
most cases restricted to keyboard performances that have been captured in
MIDI format. Articulation is then simply interpreted as a measure of performed
note overlap or note duration with respect to the score note duration.

In order to analyze the musical dynamics in a performance, the level or loudness
over time is extracted using sound intensity or psycho-acoustically motivated
loudness measurements. Strictly speaking, such measurements do not corre-
spond directly to musical dynamics as these would depend on the musical
context, on the instrument or instrumentation, on the timbre, etc. Nevertheless,
intensity and loudness measurements seem to be a good approximation to
dynamics (see e.g. [Nak87|, |Ger95], Chap. 4).

Pitch-related performance parameters such as vibrato and intonation can be
directly analyzed by extracting a fundamental frequency or pitch curve from the
audio signal. Due to technological restrictions of current analysis systems for
polyphonic music, this usually has been limited to monophonic input signals.

The analysis of timbre deviations in performances is probably one of the
least-researched parameters in MPA. This may be on the one hand due to
the multidimensional nature of timbre (compare Chap. 5), on the other hand
because it is assumed to be of least importance and partly of high correlation
with dynamics.

2.4 Research Results

2.4.1 Performance

Many studies focus on a rather descriptive approach to performance analysis by
just analyzing extracted data such as the tempo curve (|[Har32|, [Sea38|, [Pov77],
[Sha84], [Pal89], [Rep90|, [Rep92|, [Rep98|) or the loudness/intensity curve
([Sea38|, [Rep96d|, [Rep99al, [ShiO1]) to identify attributes of the extracted
parameters between different performances and performers.
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The relation of musical structure (melodic, metric, rhythmic, harmonic,
etc.) or the musical gestalt to tempo and loudness deviations has been in-
tensely researched (|Har32|, [Sha84], [Slo85], [DH93|, [Rep96d], [Kru96|, [Pal97],
[Rep99al, [LKSWO00], [TADHO00|, [Hon06], [WDPBO06]|). Most authors agree on
the close relationship between musical structure such as musical phrases or
accents and performance deviations mainly in tempo and timing. In particular,
larger tempo changes seem to be most common at phrase boundaries. There
is a general tendency to apply ritardandi or note lengthening at the end of a
phrase and moments of musical tension ([Pal89], [Rep90], [Rep92|, [Rep98|).
Shifres found indications that the loudness patterns are used to outline more
global structural levels while rubato patterns have been mostly used for local
structural information in his test set [Shi01l]. Some of these systematic devia-
tions, both in timing and dynamics, are apparently even applied — although
less prominent — if the performer is asked to deliver a “mechanical” rendition
(that is, with constant tempo and dynamics) of the musical piece (see [Sea3§],
[Pal89], [KC90]).

Repp found a coupling of timing and dynamic patterns [Rep96d|, but in a
later study, he only found weak relationships between timing and dynamics
[Rep99al.

Desain et al. and Repp report on the influence of overall tempo on expressive
timing strategies (|[DH94], [Rep95]). They find that the concept of relational
invariance cannot be simply applied to expressive timing at different tempi, a
result similar to Windsor’s [WAD101], who analyzed tempo-dependent grace
note timing. The overall tempo might also influence overall loudness [DP04],
an effect that they link to the increasing amplitude of pianists’ vertical finger
movements toward higher tempi.

Goebl [GDO1] investigated the relationship of the composer’s tempo indications
(andante, allegro, etc.) with the “real” tempo and was not able to separate
different tempo classes sufficiently with the tempo extracted from the perfor-
mance. The number of note events per minute, however, seemed to be easier
to map to the tempo indications.

Studies on the timing of pedaling in piano performance can be found in [Rep96b]|,
|[Rep97¢|. The observations seem to be hard to generalize, but a relationship
between pedal timing and overall tempo can be identified.

The articulation, or the amount of key (non-)overlap has been studied (in
the context of keyboard instruments) in [Har32|, [Pal89], [Rep97al, [Bre00]
and [Jer03a|/ [Jer03b|/ [Jer04]. In summary, key overlap times for legato
articulation seem to decrease with increasing Inter-Onset-Intervals (1015s).

The accuracy of timing synchronization of two and more performers has been
studied in [Ras79] and [Sha84|, with the result that performers are highly
capable of synchronizing onset times even when modulating the tempo over
time. Other publications deal with the timing synchronicity between both
hands or between the melody and the accompaniment in piano music [Har32|,
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[Sha84|. In many cases of piano performance, a lead of the melody before
accompanying voices can be observed [Pal89], but whether this represents a
performance concept or a consequence of the higher velocity of the melody
tones is subject of discussion (|[Rep96a], [GoeO01]).

The evaluation of the consistency of repeated performances of the same per-
formers has shown their ability to reproduce a rendition quite exactly in terms
of timing (|Sea38|, [Sha84|), dynamics ([Rep96d]), and pedal timing ([Rep96b]).
This seems to be the case for performances spaced by several years as well
([Rep99al, [Hon06|). Only measuring the overall movement durations of several
performances of the same ensemble over several years, Clynes found very stable
overall tempi [CW86].

Performance data from student and professional performances has been com-
pared in [Pal89] and [Rep97b|. While individual differences tended to be more
pronounced among the professionals, both groups seemed to share the same
general performance concepts.

Statistical and machine learning approaches have been tested to use the ex-
tracted tempo and loudness information for the purpose of classification, struc-
turing the data or extracting general rules from the data. Dovey tried to
extract general as well as individual rules from two of Rachmaninov’s piano
roll recordings by using Inductive Logic Programming [Dov95|. Supervised
learners can be used to assign representations of the extracted performance data
to the corresponding artists with promising results ([Sta0l], [ZWO03]|/ [WZ04],
[Dil04]). Other machine learning methods have been used to identify general
performance rules (|[Wid95a|, [Wid95b], [Wid98a|, [Wid98b|, [Wid02], [WT03])
and to determine individual differences between artists [Wid98b].

Repp [Rep98|, [Rep99a| investigated the (statistical) relationships between the
extracted performance data and sociocultural variables such as the artists’
gender, nationality, year of birth and recording date but, although some
significant correlations could be found, pointed out that these results should
be regarded with caution and that individual differences are likely to outweigh
any sociocultural correlations.

Walker showed that instrumental timbre may influence several performance
parameters such as timing, articulation, and dynamics [Wal04].

The analysis of vocal performances focuses frequently on the evaluation of
vibrato rates and depth and the change or stability of pitch over time ([Sea3§],
[Sch40], [Rap07], [Bow06]) or other intonation characteristics of the performance
(|[FJPO03], [Orn07]). Fletcher analyzed the vibrato (and other acoustical features)
of flute players [Fle75].
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2.4.2 Performer

While the publications listed above deal mainly with the analysis of the perfor-
mance itself, the second area of musical performance analysis tries to determine
the capabilities, goals, and characteristics of performers.

For example, Repp analyzed the kind of errors (i.e. pitch deviations from score)
pianists make during a performance [Rep96¢c| and checked if and how severe
they were perceived by listeners, coming to the conclusion that the errors
concentrated in less important parts of the score in which they were harder to
recognize.

The relationship between the performers’ intentions and the parameters ex-
tracted from performances has been studied in various ways. Palmer found
good correspondence between notated intentions with respect to melody and
phrasing and the extracted timing parameters [Pal89|. Also, systematic relation-
ships between intended emotionality of the performance and the performance
data (that is, representations of loudness and timing) can be detected ([Jus00],
[Dil01]/ [Dil03]/ [Dil04]).

Other studies investigate the importance of the feedback of the music instrument
to the performer (see e.g. [Slo82]); there have been studies that report on the
effect of deprivation of auditory feedback ([Rep99d]|, [W&l04]), investigated the
performers’ reaction to delayed or changed auditory feedback (|[PP02], [FP03],
[Pfo05]) or evaluated the role of tactile feedback in a piano performance |[GP0S|.

Publications on the nature of memorization and learning of a musical piece
(or its performance) tried to identify differences between novice and expert
performers [DP00], to learn more on the nature of performance memory itself
([Pal0o], [MPO03], [Pal06]), and to find out more on the relation between a real
and a virtual, imagined performance [W6104].

2.4.3 Recipient

It is the listener of a music performance who ultimately consumes, interprets and
probably judges a music performance. Overall judgment ratings of performance
data have been evaluated in various studies. In an early publication, Repp
reported some significant relations of ratings to measured timing patterns
[Rep90], while in a later study he had to conclude that “the aesthetic impression
of the original recordings rested primarily on aspects other than those measured
(such as texture, tone, or aspects of timing and dynamics (...))” [Rep99b].
Timmers did a similarity rating experiment and concluded that performances
are judged in other ways than generally used to represent performance data
[Tim05]. In [TimO01], she let listeners rate the goodness of fit of two succeeding
parts of different performance pairs. Kendall investigated the communication of
three levels of expressiveness: without expression, with appropriate expression,
and with exaggerated expression [KC90|. Listeners were in many cases able
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to identify these three levels. Thompson et al. investigated the variation of
listener ratings for a performance over time and found that the listening time
to reach a decision was typically in the short range of 15 — 20s [TWV07|.

The difficulties of studying emotional affection of the listener of a music perfor-
mance are discussed by Scherer [Sch03a|, who criticizes “the tendency to assume
that music evokes ’basic’ or 'fundamental’ emotions” such as anger, fear, etc.
Despite such difficulties in approach and methodology, many attempts have been
made to investigate the relationship between emotional affections and objective
performance data. For example, Juslin detected relationships between moods
and tempo and loudness cues [Jus00], and Kantor reported indications of associ-
ations of such cues and emotional reactivity [Kan06]. Similar conclusions have
been drawn in [SLO1| and [Sch04] from studying the time-varying emotional
valence or the arousal and its relationship with performance data. Timmers
found strong correlations between the dynamics and listener’s judgments of
emotionality [TMCVO06] and very good communication of emotional activity
between performer and listener [Tim07al. In another study, she examined the
influence of recording age and reproduction quality, observing that judgments
of age and quality changed strongly with the recording date, in contrast to
the perceived emotion that were mostly independent of the recording date;
the communication of emotional valence tended to be more restrained for old
recordings [Tim07b]. Husain varied the tempo and the mode (major, minor) of
a performance and found indications that tempo modifications had an effect on
arousal and mode modifications on mood [HTS02|. Krumhansl evaluated the
influences on timing and loudness variations on judgments of musical tension
and found a close relationship of musical structure with both the listeners’
musical tension rating and the performance data [Kru96].

The tempo perception of a music performance has been studied by Dixon,
who found listeners to prefer smoothed beat sequences over the performed
ones [DGCO06]. Lapidaki investigated the dependency of the initial tempo of
a performance on the preferred tempo of a musical piece [Lap00]; he found a
general dependency, but he also identified a group of listeners that were able to
come to very consistent tempo preferences. Repp found systematic deviations
between the tapping of listeners and metronomical time of music events, a
result that seems to correspond well with the performers’ inability to render a
performance mechanically [Rep99c|. Aarden reported dependencies between
tempo and “melodic expectancy” [Aar06].

Of course, there are many more research angles from which music performance
can be studied. For example, the impact of visual performance cues on judg-
ments of tension and musical phrasing can be found in [TCV03|, [DP06]|, and
the brain activation at listeners of music performances is measured in [NLSK02].
Furthermore, the design of computational models of music performances is a
closely related topic of research. Most prominent is the K'TH Model or the
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KTH rule system developed at KTH! over the last 30 years (compare [SAF83],
[FBS06]). Other models have been published by Todd (e.g. [Tod92], [Tod95|)
and Mazzola et al. (e.g. [MZ94]). More recently, Widmer et al. proposed an
automatically trained model for music performance [WTO03|.

2.5 Software Systems for Performance
Analysis

The number of complete software systems dedicated to music performance
analysis is limited. In most cases, research focuses on the extraction of single
performance parameters.

POCO [Hon90] is a software for the analysis and automatic generation of music
performances. It is a comparably old system that still is frequently used by a
group of researchers at the Music Cognition Group of Amsterdam. It seems
to have rather comprehensive analysis functions but is restricted to MIDI (or
other symbolic) input data.

An early approach to extract performance data from audio signals while uti-
lizing a MIDI representation of the score was proposed by Scheirer [Sch95|.
Scheirer, targeting the analysis of piano performances, used filter bank outputs
combined with an onset detection algorithm to extract timing and velocity
data. The system has apparently not been used for performance analysis in
later publications.

The work at the OFAI (Austrian Research Institute for Artificial Intelligence) by
Widmer, Goebl, Dixon et al. (see selected publications above) has introduced
a variety of tools to extract performance data from audio signals that in
combination probably comes closest to a complete state of the art system for
music performance analysis. Some of their individual tools are available online,
but they remain individual components for performance analysis rather than
an integrated system.

Dillon |Dil04] presented a software system for music performance analysis
that does work on audio input, but targets mainly at subjective aspects of
performance analysis such as the recognition of “expressive intentions” and
the “detection of arousal”. The audio processing itself is — as it is considered
to be only one small part of a bigger system — relatively simple; it aims at
monophonic input sources and is therefore probably not too suitable for the
analysis of polyphonic audio input.

'Royal Institute of Technology, Sweden






Chapter

Tempo Extraction

Tempo and Timing are among the most important performance parameters.
Musical tempo is usually given in the unit beats per minute (BPM), and can
be defined as the rate at which beats, i.e. perceived pulses with equal duration
units, occur [DH93|. From a more score-based point of view, two definitions of
the beat duration are common, either as the denominator of the time signature
of the musical score or simply as the length of a quarter note. Different
representations of tempo are of interest in performance analysis, e.g. the overall
tempo, the tempo variation over time, and its micro structure.

The measure of overall tempo is not in every case as simple as one would
imagine at first glance: by dividing the overall number of beats by the length
in minutes one receives a proper estimate of the mean tempo, but the result
does not necessarily match the perceived tempo a listener would indicate; there
is a difference between the mean tempo and the perceived tempo. Gabrielsson
[Gab99| distinguishes between the mean tempo and the main tempo, the latter
being a measure with slow beginnings or final ritardandi removed. Repp
[Rep94]| found good correlation of the mean value of a logarithmic Inter-Onset-
Interval distribution with the perceived tempo. Goebl [GDO01] proposes a mode
tempo that is computed by sweeping a window over the histogram displaying
occurrence of inter-beat intervals and selecting the maximum position as mode
tempo. In most cases, the result should be similar to the position of the
histogram maximum.

The tempo variation over time or the local tempo can be extracted by identifying
the event time of every beat t;, and calculating the local tempo between beats 7
and ¢+ 1 by

B 60s
(i + 1) — (i)
Alternatively, the time of every event ¢, may be extracted, disregarding whether
it is a beat or not, to calculate the local tempo between two events. In this case,

BPMlocal(i) (31)

27
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the distance in beats A7; ;11 between two events has to be known to calculate
the correct micro tempo.

60s

BPM,icr0(1) = - ~ - AT,
0= arn - Smn

(3.2)

The latter has the advantage of not being restricted to the beat resolution and
thus revealing the tempo micro-structure.

There have been many publications dealing with the automatic extraction
of tempo from a digital audio signal. One group of common approaches can
be summarized under the term “tempo tracking systems” or “beat tracking
systems”.

Scheirer [Sch98] presented a tempo extraction system using a bank of resonance
filters that process envelope differences. This has the advantage of not requiring
a dedicated onset detection, but leads to a quantized tempo histogram. A
similar approach is used by Klapuri [Kla03|.

In contrast to these systems, a frequently attempted approach is to extract
the onset times of all musical events in a first processing stage, followed by an
adaptive beat tracking engine to extract the tempo and the beat locations with
the information provided by the series of onsets. Examples can be found in
publications of Goto (|[GM95], [Got01]), Dixon [Dix99] and Meudic [Meu02].
In more recent publications, Laroche [Lar03| as well as Peeters [Pee05] use
dynamic programming techniques to determine the tempo curve from the onset
locations.

All of these approaches have in common that they are “blind” in the sense
that they do not have and do not require information on the analyzed audio
material such as the overall number of beats. In the context of this work, this
is not optimal because:

e these systems usually do not react very well to sudden tempo changes

e these systems usually try to find the best match between the resulting
beats (or beat grid) and the extracted onset times, which may not be a
correct assumption for frequent syncopations or rests

e additional information in form of MIDI (score) files is available and could
easily be utilized to improve the accuracy of the results.

Hence, we are interested in an algorithm for the automatic synchronization of
audio data with MIDI (or, more general, the score) data that associates each
symbolic (score) event with its actual time of occurrence in the audio signal.
In general, such approaches are usually called Performance-to-Score-Matching
systems.
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3.1 Performance to Score Matching

Performance-to-Score-Matching systems can be differentiated by their capa-
bilities of real-time matching. Real-time systems are usually called Score
Following systems, and non-real-time (or offline) implementations are referred
to as Audio-to-Score Alignment or Audio-Score Synchronization systems.

Possible applications of such alignment systems could be (compare e.g. [SRS03|):

e linking notation and performance in applications for musicologists to
enable to work on a symbolic notation while listening to a real performance

e using the alignment score as a distance measure for finding the best
matching document from a database

e musicological comparison of different performances

e construction of a new score describing a selected performance by adding
information as dynamics, mix information, or lyrics

e performance segmentation into note samples automatically labeled and
indexed in order to build a unit database

e musical tutoring or coaching where the timing of a recorded performance
is compared to a reference performance

3.1.1 Score Following

Historically, the research on matching a pre-defined score automatically with a
performance goes back to the year 1984. At that time, Dannenberg [Dan84| and
Vercoe [Ver84| independently presented systems for the automatic computer-
based accompaniment of a monophonic input source in real-time.

In the following years, Dannenberg and Bloch (|BD85|, [DM88]) enhanced
Dannenberg’s system by allowing polyphonic input sources and increasing its
robustness against musical ornaments and by using multiple agent systems. Ver-
coe [VP85] focused on the implementation of learning from the real performance
to improve the score follower’s accuracy.

Baird et al. ([BBZ90], [BBZ93]) proposed a score following system with MIDI
input (for the performance) that is based on the concept of musical segments as
opposed to single musical events; the tracking algorithm itself is not described
in detail.

Heijink [Hei96] and Desain et al. [DHH97| presented a score following system
that takes into account structural information as well. It uses a combina-
tion of strict pitch matching between performance and score and dynamic
programming.
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While many of previously presented publications focus on the score following
part rather than audio processing itself, Puckette and Lippe ([PL92], [Puc95])
worked on systems with audio-only input with monophonic input signals such
as clarinet, flute, or vocals.

Vantomme [Van95| presented a monophonic score following system that uses
temporal patterns from the performer as its primary information. From a
local tempo estimate he predicts the next event’s onset time and detects if the
expected onset time matches the measured onset time within a tolerance. In
the case of an 'emergency’, he falls back to the use of pitch information.

Grubb and Dannenberg (|GD97|, [GD98|) proposed, in the context of a mono-
phonic vocal performance, a system that uses fundamental frequency, spectral
features and amplitude changes as extracted features for the tracking process
to enhance the system’s robustness. The estimated score position is calculated
based on a probability density function conditioned on the distance computed
from the previous score event, from the current observation, and from a local
tempo estimate.

Raphael published several approaches that make use of probabilistic model-
ing and machine learning approaches incorporating Markov Models ([Rap99|,
[Rap01], [Rap04]).

Cano et al. [CLB99| presented a real-time score following system for monophonic
signals based on a Hidden Markov Model (HMM). They used the features zero
crossings, energy and its derivative, and three features based on fundamental
frequency.

Orio et al. (JODO01], [OLS03]) introduced a score-following system for polyphonic
music that utilizes a two-level HMM that models each event as a state in one
level, and models a signal model with attack sustain and rest phase in a lower
level. They use a so-called Peak Structure Distance (PSD) that represents the
energy sum of band pass filter outputs with the filters centered around the
harmonic series of the pitch of the score event under consideration.

Cont [Con06| presented a polyphonic score following system using hierarchical
HMDMs that uses learned pitch templates for multiple fundamental frequency
matching.

3.1.2 Audio to Score Alignment

The publications presented above deal with score-following as a real-time
application. The following publications deal with the related topic of non-real-
time audio to score alignment.

The importance of reliable pattern matching methods has already been rec-
ognized in early publications on score following and alignment; in most cases
dynamic programming approaches have been used, see for example Dannen-
berg’s publications on score-following mentioned above, and Large [Lar93|.
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Orio and Schwarz [OS01| presented an alignment algorithm for polyphonic
music based on dynamic time warping that uses a combination of local distances
(similarity measures). It uses the PSD [ODO01], a Delta of PSD (APSD) that
models a kind of onset probability, and a Silence Model for low energy frames.

Meron and Hirose [MHO1] proposed a similar approach with audio features
that are relatively simple to compute and added a post-processing step after
the dynamic time warping to refine the alignment.

Arifi et al. [Ari02|, [ACKMO04] proposed a system that attempts to extract
multiple pitches segmented into onsets and performs a dynamic programming
to align MIDI data to the extracted data. The algorithm has been tuned for
polyphonic piano music.

Turetsky and Ellis [TE03| avoided the problems of calculating a spectral
similarity measure between symbolic and audio representation by generating an
audio file from the (reference) MIDI data and aligning the two audio sequences.
For the alignment, a dynamic programming approach is being used as well.

Similarly, Dannenberg and Hu ([DH03|, [HDT03|) generated an audio file from
the MIDI file to align two audio sequences. They calculate the distance measure
based on 12-dimensional pitch chromagrams (each element representing a octave
independent pitch class). The alignment path is then calculated by a dynamic
programming approach.

Shalev-Shwartz et al. [SSKS04| presented a non-real-time system for audio to
score alignment that uses dynamic programming but additionally provides a
training stage. Here, they derived a confidence measure from audio and MIDI
similarity data and trained a weight vector for these features to optimize the
alignment accuracy over the training set. The audio feature set contains simple
pitch-style features extracted by band-pass filtering, derivatives in spectral
bands to measure onset probability, and a time deviation from the local tempo
estimate.

The alignment system of Miiller et al. [MKRO04] is also based on dynamic
programming. It is targeted at piano music, but they claim genre-independence.
For the pitch feature extraction, they used a (zero-phase) filter-bank based
approach, with each band pass’ center frequency located at a pitch of the
equal-tempered scale; the filter outputs are used to extract onset times per
pitch.

Dixon and Widmer [DWO05| presented an audio-to-audio alignment tool for
polyphonic music that works in pseudo-real-time with a modified dynamic
programming algorithm. As similarity measure, a Spectral Flux grouped into
semi-tone bands is used.

In summary, the standard approach to audio to score alignment consists of
three major processing steps: the audio feature extraction that in most cases
approximates a pitch-like representation, a similarity or distance measure that
computes the vector distance between audio and symbolic (score) features,
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and the actual alignment or path finding algorithm that is either based on a
dynamic programming/time-warping approach or on HMMs.

3.2 Proposed Algorithm

The implemented algorithm makes use of this three-stage processing model,
as there do not seem to be promising alternatives available. In the opinion of
the author, the emphasis of previous research on audio-score alignment was on
the evaluation and improvement of statistical models for path finding, while
less energy has been put into both the extraction of significant features from
the audio input and the computation of the similarity measure. Therefore,
the development of the presented system focused on the first two steps. As
path finding algorithm, a dynamic time warping approach has been chosen;
a HMM would also have been an option, but is — at least in the context of
a non-real-time system — a very similar approach that is not expected to be
superior for this application (compare e.g. [OS01], [DH03]).

The following main conditions had to be considered during the algorithm’s
design stage:

e Polyphony and multi-timbre: the input data contains multiple voices
that may play several different notes at the same time. A voice can be
either one instrument or a group of instruments. Each voice’s velocity
and timbre cannot be assumed constant over time.

e Intonation: Neither tuning frequency nor temperament or time varying
changes in intonation are known a priori.

e Robustness: The algorithm has to be robust against errors that are
likely to occur due to the complexity of the analyzed data and possible
performance errors.

e Target performances: emphasis should be on polyphonic chamber music
with the option to analyze larger ensemble and orchestra performances.

In multi-voiced or polyphonic music, one has to deal not only with varying
tempo, but possibly also with timing differences between voices, i.e. notes that
theoretically start simultaneously according to the score, but have different onset
times in reality. In this case, the question arises if one onset is more important
for tempo extraction or if one should average over all onsets. Desain and
Honing [DH94] argue that the onset that belongs to the melody note is the most
important (leading to the underlying problem of melody identification from the
score), while Repp [Rep90] simply takes the earliest onset as the most important
one. Both approaches can be challenged with good arguments (compare e.g.
|GPO01], [Goe02]). In the case of music with several instrumentalists such as
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chamber or symphonic music — the target input data for this algorithm —
the theoretical number of pseudo-simultaneous onsets may theoretically be
as large as the number of musicians in the ensemble, making it impossible to
discriminate the onsets between notes or instrument groups. This is, however,
probably not necessary, as intended deviations will only happen infrequently
(e.g. with soloists). Hence, it is assumed that simultaneous score onsets appear
approximately simultaneously in the analyzed audio as well, and that unintended
deviations simply lead to a less precisely extractable onset time.

Figure 3.1 shows a flow chart of the algorithm for the extraction of the tempo
curve. A complete audio file and the corresponding MIDI file are processed.
Since the tempo of the audio file is extracted with respect to the MIDI data
reference, the MIDI file should be quantized to a constant tempo and should
not include possible (performance-based) deviations from this constant tempo.

The presented algorithm is also able to extract the alignment information
between two audio signals or two signals, however, this functionality has not
been implemented.

As depicted in the flow chart, the algorithm can be structured into the three
processing blocks mentioned above, and an additional pre-processing block. The
Pre-Processing stage extracts information from the audio file that is required
at later processing stages, the Processing transforms audio and MIDI data
into meaningful internal representations for the computation of the similarity
matrix that represents a Similarity Measure between every pair of observations
of MIDI signal and audio signal. Finally, the most probable global alignment
path is computed through this similarity matrix in the Tempo Curve Extraction
stage to receive pairs of onset times, which can then be directly converted to a
tempo curve.

Each individual processing block is explained in detail in the following sections.

3.2.1 Definitions

The audio input signal is a series of samples x.(7) with C channels.The down-
mixed signal is computed by averaging over the channels:

#(0) = 5 S wli) (3.3)

In the case of block-based audio processing with the block length /C, the block
boundaries bsqrt stop are shifted by the hop size H (in samples), resulting in
overlapping blocks. This means

bstart<m + 1) = bstart (m) +H (34>
butop(m+1) = bop(m) + H (3.5)
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FIGURE 3.1: Flow chart of processing steps for the tempo extraction stage

The k' bin of the Discrete Fourier Transformation (DFT, compare Chap. A.1)
of the m!" block of signal z is then denoted X (k,m). The DFT has an overall
length of K bins. Since the DFT is calculated over a short block of data, it will
also be referred to as Short Time Fourier Transformation (STFT).

3.2.2 Pre-Processing

This stage extracts information that is required in later processing stages; the
overall maximum is required for audio file normalization (see Sect. 3.2.3.2), the
extracted onsets for the onset-based pitch segmentation (see Sect. 3.2.4.2) and
the overall tuning frequency for the correct frequency to pitch mapping (see
Sect. 3.2.4). The whole audio file has to be processed before the next processing
stage can be entered.
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3.2.2.1 Overall Maximum

In order to be able to normalize all input audio files to the same maximum
amplitude, the overall absolute amplitude maximum of the downmixed (and
resampled, see Sect. 3.2.3.2) audio file is extracted.

Lmaz = MaX |(2)] (3.6)

3.2.2.2 Onset Extraction

The audio input is assumed to represent a series of musical sound events such
as tones or the stroke on a percussive instrument. This assumption of a clear
segmentation of the audio stream into distinct events is simplifying in general.
Wright points out that musical meaning and even rhythm can be conveyed
by audio streams with no clear division into distinct events [Wri08|. In our
application where we only deal with western music we simply accept this
simplified point of view because it is assumed to be valid for the majority of
possible input signals, performances that are renditions of an event-based score
format.

The start of a (musical) sound event is its onset. The term onset is frequently
used as a synonym to onset time, but it should be more correct to state that
its time position (i.e. the onset time) is one (most likely the main) property of
the onset, while an onset can have other properties, e.g. its strength.

In most cases, the start of a musical sound is not an exact point in time,
but a time span, the rise time or initial transient time. This is basically the
time from the first instrument-induced measurable oscillation until either the
quasi-periodic state or a maximum amplitude is reached. Other definitions such
as the maximum envelope slope have also been used. The rise time can vary
significantly between different musical instruments or groups of instruments, e.g.
from about 5ms for some percussive instruments up to 200 ms for woodwind
instruments (flute) under certain circumstances [Reu95|.

Three different definitions of onset times can generally be distinguished as
pointed out by Repp [Rep96a]:

1. Note Onset Time (NOT): the time when the instrument is triggered to
make a sound. In the MIDI domain, the NOT is exactly the time of
the Note-On command. Depending on the instrument or sample used
for sound generation, this is not necessarily the time when the signal
becomes audible or detectable.

2. Acoustic Onset Time (AOT): the first time when a signal or an acoustic
event is theoretically measurable. Sometimes the AOT is called Physical
Onset Time.
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3. Perceptual Onset Time (POT): the first time when the event can be
perceived by the listener. The POT might also be distinguished from the
Perceptual Attack Time (PAT), the time that is relevant for the rhythmic
perception of the sound [Gor84]. While the PAT might occur later than
the POT, they will be equal in many cases. For the sake of simplicity,
there will be no distinction made between POT and PAT in the following.

The POT can never occur before the AOT, which never occurs before the NOT.
Due to the “perceptual” definition of the POT, the exact location cannot be
determined easily but has to be measured in a listening test. Gordon [Gor84]
and Zwicker found strong location drifts of the PAT (here: POT) depending
on the waveform properties during the rise time [ZF99).

Given the three definitions above, the question arises which of the three onset
times should be assumed to be the reference onset time for the evaluation
of the onset detection. Due to the symbolic nature of the NOT, it simply
cannot be detected from the audio signal. The choice between AOT and POT
might be application-dependent; assuming that musicians adapt their timing
to their sound perception and that most ACA-Systems are trying to analyze
the perceptible audio content, the POT is most likely the time that is wanted.

In order to estimate the required time accuracy of an onset detection system,
the human ability to exactly locate onset times and to distinguish succeeding
onsets is of great interest, since most algorithms are targeting to be at least as
accurate as the human perception.

Hirsh found that temporal discrimination of two succeeding onsets is possible
if the onset time difference is as little as 2ms [Hir59|. However, in order to
determine the order of the stimuli, their distance had to be about 20ms. The
measurements were done with synthetic signals with short rise times.

Gordon reported a standard deviation of 12 ms for the accuracy of onset times
specified by test listeners, using 16 real-world monophonic sounds of different
instruments played in an infinitely long loop pattern with Inter-Onset-Intervals
(I015s) of 600 ms [Gor84|. Friberg and Sundberg undertook a similar experiment
using tone stimuli [FS92]. For I0Is smaller than 240 ms, they reported a just
noticeable difference of about 10 ms, and increasing values for larger 1OIs.

Repp reported for the manual annotation of onset times by one listener in the
context of piano recordings a mean absolute measurement error of about 4.3 ms
and a maximum error of about 35 ms [Rep92]. In a recent investigation, Leveau
et al had three test subjects annotating the onset times in audio files of various
genres and instrumentations. [LDRO4|. The results showed a mean absolute
measurement error over all test data of about 10 ms; for one piece of classical
music, the mean absolute measurement error nearly reached 30 ms.

Rasch evaluated the onset time differences between instruments in three en-
semble performances [Ras79]. He found synchronization deviations in a range
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between 30ms and 50ms between the (string and woodwind) instruments,
while the mean onset time differences were in the range of 6 ms. However,
it is complicated to distinguish between the accuracy of measurement and
performance in this case.

For piano duet performance, Shaffer reported standard deviations within the
voices between 14 and 38 ms [Sha84].

It may be concluded that the measurement accuracy highly depends on the
used input data. Several publications imply that a reasonable demand for the
detection accuracy of an automatic onset detection system cannot be smaller
than in a range of 5 — 10ms and has to be as high as 50 ms or even higher
for instruments with long rise times. Multiple quasi-simultaneous onsets may
increase this range further.

Automatically extracted onset data can for example be used in applications for
the detection of tempo, beat locations, time signature, automatic transcription
as well as the segmentation of audio signals. Therefore, active research takes
place in this field.

A typical onset tracking system initially extracts the derivative of an envelope
representation of the audio signal. The resulting curve is smoothed over
time, and the negative values will be discarded (half-wave rectification), as
an “amplitude” increase is expected at the onset time. Finally, the locations
of significant maxima, picked by a peak picking algorithm, are regarded as
detected onset times. The following selection of publications gives an incomplete
overview on different approaches to onset tracking.

Schloss presented an onset detection algorithm that makes direct use of the
audio signal’s envelope slope, extracted in the time domain [Sch85]. Newer
publications usually make use of STFT-based techniques for the extraction
of onset curves, based on the differences between succeeding (overlapping)
STFT-blocks, sometimes grouped into frequency bands. While they can be
partly distinguished by the number of frequency bands they analyze, their main
difference is the used distance measure d(m) between succeeding STFTs.

Most of the DFT-based distances measures are fairly similar. For example,
Laroche [Lar03| used a Fluz-based distance (with an additional square root
function to increase lower signal amplitudes)

k(fmaz)
Q)= > VR - VREm =D, 67
k=k(fmin)

Duxbury et al. [DBDS03| proposed the distance between complex STFT bins

K/2—1
daur(m) = Y |X(k,m) = X (k,m — 1), (3.8)

k=0
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while Hainsworth and Macleod [HMO03| calculate a logarithmic distance

K/2—1

dpai (M Z log, (p(k—%) (3.9)

Goto and Muraoka [GM95]| proposed a distance that takes into account fre-
quency variation over time. To do so, they identify all indices k& with

a) higher power than the maximum of the four closest preceding bins
A = X(k,m—1)?
B = X(k—1,m—1)?
C = X(k+1,m—1)*
D = X(k,m—2)?
Epaz(k,m) = max(A,B,C, D) (3.10)

and

b) the same condition fulfilled for the maximum power of the three closest
succeeding bins

Epmn = max (X (k,m+1)%, X (k—1,m+1)?, X (k+1,m+1)*) (3.11)

The distance is then computed from the maximum of the current and succeeding
power value F;(k,n) = max (X (k,n)? X (k,n+1)?) by

Et(k? m) - Ema:r:(k,m), if (X<k7m)2 = Em‘m(l;;’m)) A

dgot(k, m) = (Bt > Epaz(k,m) (3.12)
0, otherwise
K/2-1
dgor(m) = > d(k,m) (3.13)
k=0

The Goto-distance appears to be somewhat heuristically tuned, and will vary
with changing ratio of DFT size and sample rate. However, pre-tests showed
promising results for this distance, and a DFT-based onset tracking system
has been implemented [K1i04] with a distance measure based on this Goto-
distance [GM95]. Not only one single distance measure is calculated, but several
measures per frequency band. The number of frequency bands is adaptively
determined with a Spectral Centroid measure (see below) from the input signal.
The peak picking algorithm, using a sliding threshold on the half-wave-rectified
signal, is applied per frequency band. The detected onsets for each band are
finally combined to one resulting series of onset times 7,(i).
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‘ Klich/Lerch Goto et al. Duxbury et al. Hainsworth et al.
DR | 73.1% 70.1% 62.1% 46.4%

TABLE 3.1: Detection Rate DR of the used onset tracking system compared
to other systems

Without going into detail on the evaluation methodology, database and metrics
(which can be found in the corresponding M.A. thesis [K1i04]), Table 3.1 shows
the summarized evaluation results of this onset tracking system compared to
three others.

The presented detection rate DR is calculated as

# correct detections

DR =

(3.14)

# correct detections # missing detections + # wrong detections

Additionally, a simpler onset measure is computed for later usage. The distance
of this second onset measure is based on a Spectral Flux

k?(fmax)

dp(m) =Y |X(k,;m)| —|X(k,m—1)|. (3.15)
k=k(fmin)

The result is computed by the difference to a smoothed version ds(m)

¢(m) =dg(m) — ds(m) (3.16)

and is normalized to its absolute maximum over all blocks. No half-wave
rectification has been applied in order to determine not only “onset probability”
but also “note-off probability”.

3.2.2.3 Tuning Frequency Detection

The concert pitch or standard (musical) pitch is used for tuning one or more
musical instruments and is defined to be the pitch A4. Its frequency, the tuning
frequency, is standardized internationally to 440 Hz [ISOT75|, but the exact
frequency used by musicians can vary due to various reasons such as the use of
historic instruments or timbre preferences, etc.

For pitch based applications in the field of musical content analysis, various
approaches to fundamental frequency detection have been proposed, but the
mapping of frequencies to pitches is frequently regarded to be trivial, assuming
the mid frequencies of the pitches to be tuned with reference to a standardized
tuning frequency of 440 Hz for the pitch A4. The author argues in |[Ler(6]
that for many applications of pitch extraction, a tuning frequency estimation
— preferably automatic — is recommended to ensure robust pitch results.

The following systems have been proposed to find the best tuning frequency
match automatically:
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Scheirer used a set of narrow bandpass filters with their mid frequencies
at particular bands that have been handpicked to match pitches from the
analyzed score [Sch95|. These filters are swept over a small frequency range.
The estimated tuning frequency is then determined by the frequency of the
maximum filter output sum.

Dixon proposed a peak detection algorithm in the DFT domain, calculating
the instantaneous frequency of the detected peaks, and adapting the equal-
tempered reference frequencies iteratively until the distance between detected
and reference frequencies is minimal [Dix96]. The adaptation amount is calcu-
lated by the low pass-filtered geometric mean of previous and current reference
frequency estimates.

Zhu et al. computed a constant Q transform (CQT) with the frequency spacing
of 10 cent over a range of 7 octaves [ZKGO05|. The detected peaks in the CQT
spectrum are grouped based on the modulus distance against the concert pitch.
If the maximum energy of the resulting 10-dimensional vector is above a certain
energy threshold, it is used for later processing. For the results of all processing
blocks (if not discarded), a 10-dimensional so-called tuning pitch histogram is
computed, and the tuning frequency is chosen corresponding to the bin with
the maximum count.

Using a CQT with 33 cent frequency spacing, Harte and Sandler estimate the
exact peak positions by interpolation [HS05|. A histogram of the peak positions
based on the modulus distance against the concert pitch is computed over
the length of the audio file, and the tuning frequency is set according to its
maximum.

In the context of single-voiced input signals, Ryynénen added the modulus
distance of detected base frequencies to a 10-dimensional histogram that is low
pass-filtered over time [Ryy04|. Then, a ‘histogram mass centre’ is computed
and the tuning frequency is adjusted according to this mass center.

A previous version of the following method for automatic tuning frequency
detection that is described below has been published in [Ler04]|. The input audio
samples are processed by a filter bank of steep resonance filters. In the range of
2 octaves around the pitch A4, there are 24 groups of filters in (equal-tempered)
semi-tone distance, with each group consisting of 3 filters. The mid frequencies
of each group are spaced with 12 cent and the mid frequency of the centered
filter is selected based on the current tuning frequency assumption. All filters
have the same quality factor ). The filter output energy per processing block
of length 20 ms is then grouped based on the modulus distance against the
concert, pitch, resulting in a 3-dimensional vector E for each block i.

The symmetry of the distribution of the three accumulated energies gives an
estimate on the deviation from the current tuning frequency compared to
the assumption. If the distribution is symmetric, e.g. F(0,7) equals E(2,1),
the assumption was correct. In the other case, all filter mid frequencies are
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adjusted with the objective to symmetrize the energy distribution in the
following processing blocks. The RPROP-algorithm is used as adaptation
rule because it allows fast and robust adaptation without the requirement of
specifically controlling the adaption step size [RB93]. The adaption rule for the
adjustment of the assumed tuning frequency fa4 of the following processing
block 7 + 1 is:

Faali+1) = ( 1417 sign <E(2,i) _ E(o,n))) - Faa(d) (3.17)

with n being scaled up if sign returns the same result as for the previous block,
and scaled down otherwise. To ensure high accuracy, 7 is initialized with a small
value. Figure 3.2 shows the adaptation from the initial tuning frequency 440 Hz
to the real frequency 452 Hz. Adaptation is parameterized for accuracy rather
than speed in this case, so it takes the algorithm more than 3s to converge to
the target frequency.

While this approach allows real-time processing and permanent adaptation to
possibly varying tuning frequencies, in the current context the overall tuning
frequency is computed by finding the maximum count in a histogram containing
the estimates of all processing blocks. The histogram classes are spaced by
one Hertz; while this is not completely consistent since, on the pitch scale, the
width of these classes decreases slightly with increasing tuning frequency, it
nevertheless was chosen considering that on the one hand, the deviations are
small compared to the expected accuracy, on the other hand these class labels
are the most transparent for the user when interpreting the result.

To verify the algorithm’s accuracy, a test with a small database of 29 input
files generated from MIDI content was performed. The files were generated
with equal temperament and pitched to a tuning frequency of 446 Hz and were
significantly longer than 10s.

Figure 3.3 shows the result for this test set. The result is correct in a range of
41 Hz around the reference. Coincidently, this range roughly corresponds to the
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just noticeable frequency difference humans are able to recognize (2 — 4 cent)
[ZF99]. A possible explanation for the asymmetry of the results might be
the deviations of the harmonics from the equal-tempered scale because all
harmonics are interpreted as fundamental frequencies during pitch chroma
computation.

The algorithm is expected to give slightly less accurate results when alternative
temperaments are used.

3.2.3 Processing

The purpose of the processing stage is to convert MIDI and audio data into
similar representations that can be utilized to calculate the similarity matrix
between all time positions of the audio and MIDI file.

3.2.3.1 Internal Score Format

The choice of MIDI as input format [MIDO01] is more or less obligatory not
because of superiority over other score formats (actually MIDI is relatively
limited compared to 'real’ score formats) but because of its popularity and
spread. The MIDI reference file is parsed and the MIDI input data is converted
to the internal score format. This score format contains, similar to the MIDI
format, a stream of events. The stored information per note is mainly the MIDI
pitch p and its velocity v. A MIDI pitch can be computed from its fundamental
frequency f by

o(f) —69+12-10g2< f) (3.18)

faa

Every increase of 1 then corresponds to a increase in pitch of one semi-tone on
the equal-tempered scale. p is usually given as integer value but is represented
here in floating point format to allow an accurate pitch representation. The
velocity v is standardized for MIDI as integer value between 0. ..127; for the
internal score format, it is mapped to a floating point value between 0. .. 1.

While the MIDI-format features each single note independently, the internal
score format combines simultaneous sounding notes into one entry, which will be
referenced as score event. Every note onset or note-off time leads to a new entry,
resulting in a sequence of score events that mark every change of polyphony and
pitch over time. This format has the advantage of allowing simple access for the
current use-case, e.g. for retrieving all sounding notes at a specific time. Still,
it is also limited by some disadvantages of the MIDI representation that might
have been useful in the context of performance analysis. These are mainly
the lack of performance instructions in the score (dynamics, ritardandi and
accelerandi, explanations, etc.) and the problem that ornaments and arpeggii
are either not present in the MIDI data, or conducted only in one specific way
of a nearly unlimited number of alternatives. More information on general
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requirements of a score format for performance to score alignment systems can

be found in [Sch03b].

The result of this processing step is a series of score events Sg(n) extracted
from the MIDI input data; the overall number of score events is A/. Each event
contains the start time tg(j) and end time as well as a list of notes. Each note
is defined by its pitch and its velocity.

3.2.3.2 Downmixing, Sample Rate Conversion and Normalization

Since all the required information for the tempo extraction process has to be
available in a mono audio channel as well, the input channels are downmixed
to a single audio channel, compare Eq. (3.3).

To ensure identical analysis time resolution for all kinds of audio input file
formats, the sample rate of the incoming audio is converted to an internal
processing sample rate. Currently, this internal processing sample rate is defined
to be fg = 48kHz. A so-called windowed sinc-based sample rate conversion
is used that was implemented based on a publication by Smith and Gossett

1SG84].

Level differences between different audio signals can be immense. These
differences do not change the musical content that is relevant for the extraction
of tempo information, but may influence the results of some of the later
processing stages. This is unwanted as the same audio input at different levels
should still lead to the same results. Therefore, the audio data is normalized:

(i)

xmax

Tnorm (1) = (3.19)
Dynamic differences between different sections of the audio file will remain, but
this normalization is a simple and efficient way to reduce inter-file loudness
differences.

3.2.3.3 Spectral Peak Picking

The objective of this processing step is to extract the tonal content in form of
peaks from the audio data. This is done in the frequency domain by calculating
a Short Time Fourier Transformation (STFT) of overlapping blocks of input
data. To deal with the inherent problem of insufficient frequency resolution at
low frequencies at a sufficient time resolution as defined by the DFT block-size,
the STF'T is calculated with the two different lengths Ky = 2048 samples and
KC; = 8192 samples to obtain usable time resolution for higher frequencies with
the shorter STF'T, and better frequency resolution for lower frequencies with
the longer STFT.

Each overlapping block of audio input data is processed as shown in Fig. 3.4.
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FIGURE 3.4: Flow chart of the Spectral Peak Picking Process

To qualify as peak, a spectral value has to have the following properties:

1. a bin frequency between pre-defined frequency thresholds

2. a prominent amplitude compared to the surrounding values to ensure it
is of relative importance

3. good correspondence of instantaneous frequency with bin frequency to
ensure tonality

4. a zero-crossing of the derivative to ensure it is a maximum

The first claim is addressed by restricting the search range, i.e. the start and
stop bin.

The second property is assured by applying a threshold to the magnitude
spectrum | X (k)|, with only values above this threshold are admitted as peak
candidates. The threshold T'(k) is computed with

| ke
T'(k) = 11 > IxX)
I=k—L/2
(k). T(k)>c. max |X(k)
¢ max |X(B)|, T'(R)<c max |[X(k)| O
0<k<K/2—-1 0<k<K/2—1

The threshold is calculated by a moving average filter of length £. The constant
¢ guarantees that the minimum threshold value depends on the maximum value
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F1GURE 3.5: Spectral Peak Picking for one block of audio data; the magni-
tude spectrum is drawn in black, the adaptive threshold in green, and the
detected peaks are highlighted in red

of spectrum |X (k)| (currently, the threshold is not allowed to drop more than
60 dB below the maximum). The implementation features also an absolute
threshold minimum to avoid unnecessary peak detection e.g. during pauses.
The resulting threshold can also be understood as a rudimentary approximation
to an psycho-acoustic masking threshold as used in perceptual audio coding
(compare [Ler08|).

The third claim is addressed by using a phase-based estimator for the frequency
of sinusoidal components (see [LM07]) and comparing the results with their
corresponding bin frequencies. Phase-based estimators make use of the fact that
the (instantaneous) frequency can be computed by the derivative of the phase.
This means that an instantaneous frequency w at bin k can be calculated by
utilizing the unwrapped phase difference of two succeeding STF'T blocks at this

bin.
K

wk,m) = [ﬁ

. (gb(k, m) — ¢(k,m — 1))] (3.21)

unwrap
The more this calculated instantaneous frequency deviates from the correspond-
ing bin’s frequency, the lower the likelihood will be that this is a tonal or
sinusoidal component, but either a noisy component or a side lobe compo-
nent due to DFT-windowing. Therefore, a bin will only considered to be a
peak candidate for small deviations between instantaneous frequency and bin
frequency.
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The fourth claim is addressed by selecting only those values that are true local
maxima, meaning that both neighboring bins have lower amplitudes than the
value under consideration.

Figure 3.5 shows an example of a magnitude spectrum, the corresponding
threshold, and the selected peaks.

The extracted peak frequencies are converted in a MIDI-pitch based format
with Eq. (3.18).

The result of this processing step is thus a series of peak observations O 4(m)
of length M. Each observation contains a list of tonal peaks extracted from
one STFT. The number of peaks may vary between observations.

3.2.4 Similarity Measure

The calculation of the similarity b(m,n) between each audio observation O 4(m)
and each score event Gg(n) is an important processing step of the tempo
extraction stage with significant influence on the resulting alignment path.
Since the similarity is computed between each observation and each event, the
results can be plot as a matrix B with dimension M x N (M: number of
observations, A: number of score events).

As Orio and Schwarz point out [OS01], it is a challenge to find a similarity
measure that matches feature vectors extracted from audio to feature vectors
extracted or generated from score. To make these formats comparable, basically
two different approaches can be chosen, either to transform the MIDI informa-
tion into a format similar to the extracted audio information, or to convert the
data extracted from the audio file into a more MIDI-like representation.

Here, two similarity measures have been implemented that attempt to represent
both approaches, the Spectral Similarity method that transforms the MIDI
data, and the Note Similarity method that transforms the extracted audio
data. Both of them are based on the previously extracted spectral peaks per
block. The resulting similarity matrix B is calculated by the weighted sum of
the spectral similarity matrix Bggs and the note similarity matrix 8 yg:

B = )\-‘Bss—'—(l—)\)-%]\/s (3.22

b(m,n) = X-bgs(m,n)+ (1 —2A)-bys(m,n) (3.23)
with A representing the relative weight (range 0...1) of the spectral similarity
in the overall similarity calculation that can be adjusted. This similarity can

also be interpreted as an estimation of the probability of observation O(m)
when the current score event is Sg(n):

b(m,n) = P(O4(m)|Ss(n)) (3.24)

Figure 3.6 shows an example of an overall similarity matrix. A path with high
similarity leads from the upper left corner to the lower right corner. A few



3.2. PROPOSED ALGORITHM 47

Similarity Matrix

o

20

40

60

80

Time [s]

100

120

160

100 200 300 400 500 600 700 800
Onsets

FIGURE 3.6: Example of a similarity matrix. Blue pixels indicate low
similarity, red pixels high similarity. The alignment path to be detected runs
from the upper left corner to the lower right corner

seconds silence can be easily identified at the end of the performance (lower
edge). The matrix also shows some structural information of the piece of music:
for example, diagonal lines running parallel indicate repetitions.

3.2.4.1 Spectral Similarity

This method works directly on the peaks extracted from the audio signal that
are stored in the observation series O4(m) and uses them without additional
processing. The disadvantage is that a model has to be applied to &g(n) to
transform the “symbolic” score event data into a representation similar to the
peaks extracted from the audio file. Since Sg(n) only contains the fundamental
frequency information (more accurately: the pitchof the fundamental frequency)
and no information on number and level of the harmonics, a simple model is
used to “generate” these harmonics: eight harmonics are synthesized with their
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amplitude A; decreasing;:

A
A== withi=1...7 (3.25)
]

Figure 3.7 plots the resulting amplitude of the generated harmonics.

Such simple models usually do not fit the reality well in the general case
since they are built only with rough assumptions on timbre or instrumentation
of the modeled data. Naturally, the harmonic template can be exchanged
with different templates to provide a better match with the real harmonic
distribution of the audio input. There have also been attempts of automatic
adaption of the harmonic structure to the analyzed audio material; for example,
Goto defines, in a different scope, several so called “tone models” that reflect
the harmonic structure and try to match a weighted combination of these
different models to the real harmonic structure [Got04]. Cont used previously
learned pitch templates as basis for learning an appropriate decomposition in a
real-time score following system [Con06].

But in the case of symphonic music or, more general, music played by several
instrumentalists, we face a combination of different instruments played at
different levels and with mixtures that can change rapidly, so it seems unlikely
that there is a general model we could adapt toward, even if the model is
time-dependent. Whatever model is chosen for the harmonic structure, the
majority of observed harmonics probably will not be accurately modeled, and
it seems unlikely that a more sophisticated model would prove to be superior
in this case.

Sg(n) is transformed with the presented harmonic model into a series of
observations Og(n) that includes — just as O4(m) — a list of peaks per
observation. This similar representation allows direct comparison of Og(n) and
O4(m) for the similarity measure.

This approach is by some means related to Orio and Schwarz’ Peak Structure
Distance (PSD), for which they apply rectangular band pass filters to the
spectrum at the locations of all harmonics of the expected MIDI pitch to
evaluate if the harmonic content of the audio block matches this harmonic

model well [OSO01].
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Peak Vectors

In order to be able to compute a similarity measure between the list of peaks
in each audio observation O4(m) and each score observation Og(m), they are
both converted into vectors with linear pitch spacing. Both resulting vectors,
¥ 4(m) and ¥¢(n), now contain all peak amplitudes arranged on a linear pitch
scale with a pitch resolution of 2 cent. The single peaks have been smoothed out
by convolution with a Gaussian window with a standard deviation of 50 cent.

Similarity Measure

The spectral similarity bgg(m, n) of the two vectors ¥ ,(m) and ¥dg¢(n) is calcu-
lated by a normalized correlation

ﬁA(m)T -Ug(n)
[Za(m)| - [[dg(n)]

bss(m,n) = (3.26)

The dimension of Bgg is M x N.

3.2.4.2 Note Similarity

For the calculation of the Note Similarity, the extracted audio peaks are
transformed into a score-like representation. With this approach, there is on
the one hand the danger to discard information from the audio that might be
useful and on the other hand to use information that might be wrong since
decisions have to be made during the conversion process which information will
be used and which will not. As this approach is related to the transcription
from audio to MIDI, a problem that remains unsolved in the general case,
conversion errors can be expected.

Calculate Pitch Hypotheses

Pitch hypotheses, or candidates for possible fundamental frequencies, are
selected per audio block m from the previously extracted peaks O4(m). The list
of a priori pitch hypotheses can be large, since only the following requirements
apply for a peak to be added to the list hypotheses:

1. the fundamental frequency f¢(p) has to lie within pre-defined pitch bound-
aries

2. the fundamental frequency f;(p) has to be found in the list of peaks

3. there has to be at least one other peak at frequency f,(p) in the list with

|fp(p) —i- fr(p)| <e ,withi=1...10, e = max. deviation  (3.27)

meaning that each pitch hypothesis p has to have at least two harmonics,
the fundamental frequency and a multiple of the fundamental. The
maximum deviation is limited to 12.5 cent (the range of an !/s tone) in
the current implementation.
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Pitch Detection Rules

The list of pitch hypotheses is then processed to discard “improbable” candidates.
This is done with a set of rules that each increase or decrease the likelihood of a
single hypothesis. For each rule, the weighting is done with a sigmoid function:

1
’QDT(U}) = 1+ e—sr-(wfm)

with s as steepness and x as neutral threshold being set rule dependent. The
overall likelihood per hypothesis is then computed by the geometric mean over

all rules
v= [T (3.29)
Vr

The following rules are applied to each hypothesis per block:

(3.28)

1. relative number of harmonics: the relation of the number of detected
harmonics hy and the number of harmonics that theoretically could have
been found in the search range h,

hq
w=3t (3.30)

2. absolute number of harmonics: the number of harmonics that have
been detected

3. absolute volume: salience of the mean RMS of all harmonic amplitudes

A of the current hypothesis
w= |~ > Az (3.32)
ha <

4. relative volume: relationship of mean RMS of all harmonic amplitudes
of the current hypothesis to the hypothesis with the highest RMS in this

block
NESr:
W= —- (3.33)

B RMSmax

5. energy distribution: relative distance from the centroid of the harmonic
energy to the fundamental frequency

> fir A
<

ff % Az

w



3.2. PROPOSED ALGORITHM 51

6. frequency deviation: distance from the fundamental frequency to the
equal-tempered mid frequency.

w = |p(fy) — round (p(fy))| (3.35)

Then, two more rules are applied to take into account inter-block dependencies

7. remove spurious entries: remove all results that are isolated and too
short to be considered as a note

8. remove discontinuities: remove pauses that are too short to be consid-
ered as a pause and are between to segments with similar pitch contents

Onset-based Segmentation

The accepted pitch hypotheses are still in a per-block representation. In this
segmentation step, their pitch p(f;) and velocity v are averaged over all blocks
between two succeeding onset times. The series of onset marks #,(I) that has
been extracted in the pre-processing step (see Sect. 3.2.2.2) is used to segment
the block data, but occasionally additional onsets are added if the pitch content
between two onset marks changes significantly. These additional onsets are
added if a new pitch occurs at a time that significantly deviates from the
nearest (already detected) onset time. This procedure, combined with the onset
detection form the pre-processing, has the tendency to insert an additional
onset mark instead of discarding it when in doubt. This behavior is desired in
the current context.

The result is a series of audio events & 4(I) in the internal score format. In the
optimal case, that is without any detection errors, this series of audio events
S 4(1) would equal the series of score events Sg(n).

Pitch Chromagram

The Pitch Chroma(-gram) (also called Pitch Class Profile) is an octave inde-
pendent representation of the pitch content in a predefined time interval. It is
a vector with twelve entries spaced in equal-tempered semi-tones, each entry
referring to a pitch class such as C, C#, D, ... In general, its advantage is
the robustness against octave errors, with the self-evident disadvantage that
the octave information is lost, so a note repetition is not distinguishable from
jumping an octave.

While such a pitch chroma representation has been frequently used in the past,
see e.g. Krumhans!’s tonal distributions [Kru90|, Bartsch and Wakefield were
probably the first to propose its use in the context of audio signal processing
[BWO1]. Nowadays, this representation can be frequently found in audio signal
processing publications e.g. on automatic key finding [Izm05] or as a feature
in a more general context of music information retrieval [TEC02|. The exact
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computation of the pitch chroma varies from publication to publication; in
all cases the spectrum is grouped into semi-tone bands, a measure of salience
is computed in each band, and the sum of all semi-tones per pitch class is
calculated. In the simplest case, the amplitude or energy per un-windowed
semi-tone band is integrated and added to the corresponding pitch class entry.
Here, we exclusively take into account the extracted fundamental frequencies
with their velocities to build up the pitch chroma, and construct a comparable
pitch chroma from the score events.

The pitch chroma v contains for each of the 12 pitch classes the sum of the
velocity of all occurrences of this pitch class of the octaves. It is computed for
each audio block m and for each score event n with all notes or their pitches p
and velocities v:

Vg = Z o]

Vp with mod(p,12)=0

vy = Z o]

Vp with mod(p,12)=1

VH‘ _ 3 b (3.36)

Vp with mod(p,11)=11

The pitch chromagrams for the audio events are replicated in a manner that
they are spaced equidistantly with the audio hop size H in order to match the
number of audio pitch chromagrams with the number of observations O4(m):
M the number of score pitch chromagrams remains A, as the number of score
events Sg(n).

Similarity Measure
The note similarity bys(m,n) is then calculated in a similar way as the Spectral
Similarity bgs(m,n)
va(m)” - vs(n)
bNS (m, TL) = A
lza(m)[| - [lzs(n)]]

The dimension of Byg is M x N.

(3.37)
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3.2.5 Tempo Curve Extraction
3.2.5.1 Alignment Path Finding

The problem of the optimal alignment of audio and MIDI signal can be stated
as finding and following the path with the highest similarity score through our
list of score events Sg(n) given the series of observations O 4(m), which means
through the similarity matrix 2. The resulting path P(q) is a series of matrix
indices (m, n) with length Q. In each row, it contains the matrix indices (m,n)
that define the path.

The path P(q) has the following properties for the current system:

1. path start: P(0) = (0,0),iie. m=0 A n=0
2. path end: P(Q—1)= M—-1,N—-1),ie m=M-1An=N-1
3. path length: Q = M

4. causality:

m|p(g+1) > mlp()

nlpg+1) 2 nlp(g
5. monotonicity:

m|pgr1) = (M +1)|p@)

n|pg+1) < (04 1)|p()

The latter two properties mean that it is not allowed to go back in time and
that every observation has to be assigned to one score event; while several
observations (row indices) can be assigned to one score event (column indices),
it is not allowed to assign one observation to several score events, meaning that
the row index is incremented for the path in any case. Therefore, there are
only two possible path transitions from P(q) to index P(q + 1): stay at the
same score event, or step to the next score event. This restriction is allowed
since — as the hop size H is much smaller than the minimum note length — it
is obvious that M > N.

A dynamic time warping algorithm is applied to compute the path with the
maximum overall score! through the matrix 9. This algorithm is similar to the
Viterbi Algorithm [Vit67], but works additive and has a special term, the onset
weight extracted in the pre-processing. A score matrix @ is defined containing
the accumulated score with the dimension M x N. The stages of the algorithm
are:

I'Note that in this context, the term score does not refer to the musical score but to a
measure of fit. The inverse score would be the so-called alignment cost.
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1. Initialization

9(0,0) = b(0,0)
D(m,—1) = —o0o 0<m<M-1
D(—1,n) = —o0 0<n<N-1
P(0) = (0,0) (3.38)

2. Recursion

D(m,n) = max (@(m—l,n)+§(m),@(m—l,n—l)—((m))—|—

+b(m,n) (3.39)
(-1,0) ifD(m—1,n)>D(m—1,n—1)
Yimn) = { (—1.—1) #D(m—1.n) <Dm-1.n—1) 4
3. Termination
m = M-1 (3.41)

4. Path Backtracking

P(m) = P(m+1)+¥Y(P(m+1)), m=M-2,M=3,...,0 (3.42)

The onset probability term ((m) is added to encourage a state transition if
the onset probability is high and to discourage it otherwise. ¥ is a provisional
result that contains the backtracking directions for each matrix element.

3.2.5.2 Alignment Path Post-Process

The length of the computed alignment path P is now M, but since one can
only align “real” musical events, and since only the alignment of the onset times
between audio and score is of interest, the path dimension can be reduced to
length N. This is done by discarding all path entries that do not contain a
state transition, resulting in exact one alignment time for each score event. The
series of resulting alignment times will be referred to as t4(n).

The presented path finding algorithm finds the best global path solution. This
is not necessarily the best local path at all possible locations. Furthermore,
detection inaccuracies can lead to deviations from the detected path. To
minimize these effects, the extracted alignment times have to be post-processed.

At this stage, two problems have to be faced:

1. How to identify regions that have to be corrected?
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2. How to correct the alignment times?

For the identification of regions to correct, a normalized tempo curve is com-
puted with

fig,pPv ts(n+1) — tg(n)) (3.43)

T =1
PO = 108 (utA,BPM ta(n+1) —ta(n)

to obtain a logarithmic tempo representation with the 0 dB-point referring to
a reference point that normalizes the extracted mean tempo p;, ppy to the
reference mean tempo ji;, gpar. This representation is symmetric in terms of
positive and negative tempo changes with each increase to the double tempo
resulting in an increase of 1.

Path indices are assumed to be incorrect if the absolute difference of the
logarithmic tempo difference between the current value and its preceding value
is larger than 1, as sudden tempo changes of factor two and higher are considered
unlikely to appear.

The onset times are adjusted within a time window (currently 0.75s) around
the erroneous tempo entry. The maximum amount of correction per onset time
decreases with its distance from the error location.

Additionally, there is the option to smooth out the tempo curve with a low pass
filter afterward. This filter cannot be applied to the tempo curve directly, as
smoothing the discrete derivative of the alignment times would most definitely
lead to a time offset with increasing time, so the filter has to be directly applied
to the alignment times. For the same reason, an infinite impulse response filter
cannot be used. The filtering process is further complicated by the fact that the
signal is not sampled at equidistant times; the samples are spaced as the onsets
occur in the score file. For these reasons, a moving average filter was selected
that is windowed by a Hanning window, taking into account only alignment
times within the window (finite impulse response) and allowing to compute the
window weight depending on the specific sample position within the window.

3.2.6 Evaluation
3.2.6.1 Goals and Constraints

In the evaluation of audio-to-score alignment systems, measuring the accuracy
and the robustness of the alignment is of interest. The accuracy as well as the
robustness are criteria for the fitting between a reference alignment path and
the extracted path. The average or overall distance is a measure of accuracy
and the maximum local path distance a measure of robustness.

The granularity of the evaluation measure varies in the literature from compar-
ison on onset level over beat level up to the bar level and is dependent on the
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available reference data set and the intended application. For the visualization
of the current score position, an accuracy on the bar level might be sufficient,
but here, measurement at the onset level is required. Lower granularities can
be thought of (such as ADSR? envelope granularity) but are technically not
feasible for polyphonic audio-to-score alignment systems within the foreseeable
future.

In the optimal case, a system would have similar or (slightly) better characteris-
tics than that of human listeners. Higher resolution would hardly be necessary
for MPA. The human onset detection accuracy has already been detailed in
Sect. 3.2.2.2. It can probably be assumed that human listeners are not able
to notice deviations of less than 50 ms in the case of several performers and
instruments without sharp attacks such as string or woodwind instruments.
The deviations can be assumed to be higher for highly polyphonic music and
large ensemble sizes.

Ornamentations like trills, grace notes and arpeggii are either not present
in the input MIDI file, or performed in one of many possible ways. As the
MIDI format offers no option to include score-like ornamentation instructions,
alignment of these passages is likely to fail. In the best case, these parts should
not be included in the evaluation, but this would require a preceding selection
of parts that are musically important for the alignment task and parts that are
not important. To avoid any arbitrary decisions, all parts of the test set have
been labeled as valid for evaluation, accepting possible inaccuracies.

Assembling a test set for the evaluation of audio-to-score alignment systems
is a difficult task; the ground truth has to be generated either manually by
annotating all onset times, a time-consuming task for longer pieces of audio, or
generated from MIDI data, potentially provoking criticism on how representative
the test set is for “real” input data. Only recently, there have been first attempts
to construct a database with performance data that could be used as a ground
truth for evaluation purposes [HMKO0S|.

3.2.6.2 Criteria

While the evaluation task is basically similar to the evaluation of onset tracking
systems (compare Sect. 3.2.2.2), one major difference is that the evaluated
system detects every onset, and does not detect additional onsets; in other words,
there are no false negatives or false positives. This simplifies the evaluation
as only the deviation between matching pairs of onset times has to be taken
into account. The pairwise difference or deviation between two sequences of
length NV, the reference onset times tz(n) and the extracted onset times t4(n),
is examined.

2ADSR envelope: used in synthesizers to describe the volume envelope of a sound in four
phases: attack, decay, sustain and release
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Mean

The mean deviation calculates the arithmetic average over all differences. It
is zero if the density distribution of the differences is symmetric around zero.
Otherwise, it shows that the algorithm has a tendency to detect onsets earlier
or later than they really are.

mean - Z tR - tA (344)

Median

The median of the differences is the value that separates the lower half of the
density distribution of differences from the higher half. The relation of mean and
median can help identify asymmetric density distributions. Furthermore, the
median provides a more reliable result if outliers obfuscate the mean calculation.

Manhattan Distance

The Manhattan or normalized 1-Norm Distance calculates the overall magnitude
difference of the extracted values from the reference values. This is a fitting
measure of overall accuracy.

L1 N Z |tR - tA )l (345)

Standard Deviation

The Standard Deviation (or the normalized 2-Norm) illustrates how the density
distribution is centered around its mean. The result is close to zero if all
differences are similar to the mean value and takes high values if the differences
are more scattered.

= \/N > (tr(n) —ta(n) — Omean)’ (3.46)

Maximum Difference

The Maximum Difference is an indication of the algorithm’s robustness as it
measures how far the result differs from the reference in the worst case. It is
also known as the Chebyshev Distance.

Omaz = max (|tr(n) —ta(n)]) (3.47)
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Mean Number of Matches

The mean number of matches is an intuitive measure of the algorithm’s accuracy.
It is the number of differences with a magnitude smaller than a reference interval
7 in relation to the overall number of onsets.

1 : 0 ifftg(n) —ta(n)| <7
o, = szx(n) with z(n) = { . Othgwise A (3.48)

3.2.6.3 Test Set

As pointed out above, the assembly of a representative test set is difficult.
Therefore, the used test set consists only of audio files that were generated
from MIDI files. However, some effort has been put into making the test
set as representative as possible. All audio sequences except the Mozart
excerpts (see below) were generated with a well-known sample library that comes
with the software sampler Kontakt 2 from the company Native Instruments.
The synthesis of orchestra instruments by sample library players is usually
supposed to produce more realistic sounds than “pure” synthesis. Furthermore,
reverberation was added to increase naturalness. The test set consists of five
sequences with the basic properties summarized in Table 3.2. All sequences
are polyphonic and contain orchestral instrumentation.

ID Composer  Piece Length (s/Ons/Beats) Contrib. %
brahms | Brahms Symphony No.3 F Major 278.3s/3592/678 49.63
I.Movement (1 — 109)
bach Bach Violin Concerto a minor  268.5s/1295/341 26.09
I.Movement
haydn Haydn Symphony No.90 C Ma- 149.1s/600/345 12.09
jor IIL.Movement (1 —
116)
moz 1 | Mozart Piano Concerto No.20 72.0s/319/156 6.43
- d minor I.Movement
(33 — 72)
moz 2 | Mozart Piano Concerto No.20  66.7s/286/124 5.76
- d minor I.Movement
(448 — 480)

TABLE 3.2: Properties of the test set for the evaluation of the automatic
tempo extraction and their relative contribution to the overall test set

The bach sequence is the first movement of the Violin Concerto BWV1041.
A tempo curve has been applied to the sequence to model increasing and
decreasing tempo as well as sudden tempo changes. In this case, the tempo
curve is not musically motivated but was rather applied in order to ensure
that the test set contains such tempo variations. The haydn sequence is the
beginning of the third movement of the 90th symphony. It does not, as the only
sequence in the test set, contain any tempo changes. Theoretically, the tempo
extraction algorithm should not perform better for sequences with constant
tempo as opposed to varying tempo, and this sequence has been included in the
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MIDI Tempo Curves [BPM]
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FiGURE 3.8: Tempo curves in BPM for every file of the test set

test set to verify this assumption. The two Mozart excerpts (moz_ 1, moz_2)
from the first movement of the piano concerto KV466 should be the most
representative samples in the test set. The audio signal was synthesized in the
context of a diploma thesis that evaluated how realistic a classical orchestral
score can be rendered by means of software instruments [Gsc04]. Unfortunately
for our evaluation, the resulting audio file was not solely generated from MIDI
but was mixed together with a separately recorded piano track; therefore, only
excerpts without piano from this sequence can be used. Two excerpts were
chosen from beginning and end of the movement. The brahms excerpt is the
beginning of the first movement of his third symphony and features the most
extensive instrumentation in the test set. The tempo curve was already part of
the MIDI file.?

Figure 3.8 plots the tempo curves for all files in the test set.

3available at www.kunstderfuge.com/brahms.htm
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3.2.6.4 Results

Table 3.3 and Fig. 3.9 summarize the evaluation results.

brahms bach haydn moz 1 moz 2 | Owverall
Omean -0.0259  -0.0487 -0.0744  -0.0228 -0.0332 -0.0379
Omed -0.0950  -0.0227 -0.0580  -0.0047 -0.0083 -0.0533

o1, 0.2864 0.0642 0.0993 0.0580 0.0669 0.1785
0o 0.4902 0.1285 0.1409 0.0852 0.1324 0.3573
Omax 2.4965 1.4309 0.8555 0.3667 1.4190 2.4965
025 0.0824 0.4695 0.2150 0.4326 0.3741 0.2388
650 0.1616 0.6927 0.3833 0.6176 0.6014 0.3816
675 0.2728 0.7876 0.5933 0.7304 0.7448 0.5025

4100 0.3841 0.8386 0.7100 0.7868 0.8671 0.5958
d125 0.4641 0.8826 0.7900 0.8339 0.8986 0.6615
0150 0.5173 0.9104 0.8333 0.9091 0.9161 0.7062
0175 0.5566 0.9259 0.8617 0.9373 0.9336 0.7360
4200 0.5981 0.9367 0.8950 0.9498 0.9441 0.7649
0250 0.6654 0.9560 0.9233 0.9843 0.9510 0.8094
0300 0.7276 0.9683 0.9283 0.9906 0.9650 0.8453

TABLE 3.3: Evaluation results in seconds

The overall results are calculated over all onset deviations from all files. Thus,
files in the test set with a higher number of onsets influence the overall result
more than shorter excerpts. The contribution of each piece in percent is shown
in the last column of Table 3.2; the brahms excerpt nearly constitutes half of
the test set. In general, the accuracy tends to decrease with the complexity
of the tracked score and instrumentation, a result that was to be expected.
Thus, the brahms excerpt shows the worst accuracy which in turn influences the
overall result significantly. In the following, the brahms results will partly be
discussed separately from the results for the rest of the test set. The mean and
median of the detected difference are between 5 ms and 100 ms after the MIDI
onset, as is the average absolute difference between reference and extracted
onset times for all pieces except brahms. The standard deviation is between
80ms and 150 ms, but as high as 500 ms for the brahms example.

Except for very complex scores, approximately 90% of the onsets are correctly
detected within a tolerance window of 150 — 200 ms, but single outliers with
differences with more than a second do occur occasionally.

3.2.6.5 Discussion

The system offset is to be expected as the perceptual onset time cannot appear
before and is not likely to appear at the MIDI onset time that constituted the
ground truth. This is because the used instrument samples will include the
initial transient phase. Standard deviations smaller than 200 ms are in a range
that can probably be considered as acceptable for ensemble or orchestra music,
however, the standard deviation results for the large orchestra score indicate
that the system does not provide sufficient accuracy for the analysis of such
large instrumentations. Another possible, although less likely interpretation



3.2. PROPOSED ALGORITHM 61

Evaluation Results
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FIGURE 3.9: Box plot of the tempo extraction results presented in Table 3.3

of the inferior results for the brahms example would be that the deviations
depend on the length of the test files, as larger deviations are more likely to
occur in longer test sequences. As expected, the system does not appear to be
susceptible to sudden tempo changes.

Typical positions of larger deviations are repetitions of single notes and chords
as the system has difficulties to detect which event should be assigned to the
corresponding score positions, ornamentations like timpani rolls that produce a
large number of onsets in a short time and might mask the tonal content for
short time frames, and passages with very low relative amplitude.

Due to the multi-voiced test set with orchestra instrumentation used in this
evaluation we have to be cautious in comparing the presented results with
other evaluation results. A good example for a related evaluation is the score-
following evaluation that has been done in the context of MIREX (Music
Information Retrieval Evaluation eXchange).? The MIREX results are not
directly comparable because on the one hand, real-time score followers were
evaluated that may also report false negatives and positives and have to work
within considerable constraints compared to a non-real time algorithms, on the
other hand only monophonic audio excerpts were aligned. They used a large
test set of short excerpts, and reported standard deviations between reference
and extracted data in the range between 10 ms and 4s.

Overall, it can be concluded from the presented results that automatic tempo
extraction is possible within reasonable tolerances, but it still requires human
interaction for the correction of certain outliers as these will limit the usefulness
of the results.

4www.music-ir.org/mirex/2006/index.php/Score_Following_Result
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Chapter

Dynamics Feature Extraction

Performance instructions for the variation of dynamics are relatively vague
in the score; usually only 5 — 8 dynamic steps are used in the instructions,
complemented by indications for smooth loudness transitions and dynamic
accents. Additionally, properties such as instrumentation, number of voices
or musical tension will influence the performance and perception of musical
dynamics.

Musical dynamics are closely related to loudness, a fact that is not surprising
since the performance instructions are loudness-related. But absolute loud-
ness cannot be the only cue to understand musical dynamics; for example,
while listening to a piano-passage on a hi-fi system, the reproduction volume
can be manipulated without loosing the piano or fortissimo character of the
performance. Therefore, the communication of musical dynamics has to use
additional properties besides the absolute loudness. This has also been shown
by Nakamura, who found that listeners’ abilities to comprehend musical dy-
namics as intended by the performer outperform predictions of these dynamics
based on measurements of acoustic intensity [Nak87|. The additional cues that
enable listeners to do so are most likely related to timbre and (musical) context.
However, the intensity or loudness is probably the attribute with the strongest
correlation to dynamics and remains the most representative way of measuring
musical dynamics objectively.

In the analysis of musical dynamics, the performance researcher has to deal
with a number of possible representations:

e musical or score-like indications of dynamics: e.g. pp (pianissimo), p (pi-
ano), mf (mezzoforte), f (forte), ff (fortissimo), crescendo or decrescendo,
sf (sforzando)

e mechanical measurements on instruments such as the hammer velocity of
a piano key: unit m/s

63
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e representations of mechanical measurements such as MIDI velocity: unit-
less scale 0,1,2...126,127

e acoustical measurements such as sound pressure level: unit usually Deci-
bels, ranging from —oo...0dBgg

e algorithmic approximations to perceived loudness: measured either in
weighted decibels, for example dB4, or other units such as sone

e subjective measurements of perceived loudness: on any appropriate scale

e subjective measurements of perceived music dynamics indications: see
score-based indications above

All of these different representations can be found in the performance analysis
literature. The problem behind this multitude of different representations is
that, although they are similar in a way that their values can be ordered on a
monotonically increasing scale from low to high or quiet to loud, a mapping
between those scales is either not fixed or can be found only approximately.
The relationship between hammer velocity and MIDI velocity is not standardized
and instrument dependent. For the Yamaha Disklavier, Goebl and Bresin were
able to fit a logarithmic curve into the relationship of hammer and MIDI velocity
[GBO1]. They also found that for the Yamaha Disklavier and the Bosendorfer
SE System, the relationship between MIDI velocity and sound pressure level is
nearly linear when disregarding very low and high values [GB03]. Dannenberg
investigated the RMS peak level of various synthesizers and software instruments
and found great differences among different synthesizers [Dan06|. He identified
a general trend for the velocity to be related to the square root of the RMS peak
instead of its logarithm. Using one electronic instrument, Taguti measured
the A-weighted sound pressure level [Tag03| dependent on velocity and key.
The results, displayed over various keys for different input velocities, showed
non-systematic deviations of up to 10dB from a constant level among keys.
Palmer and Brown found linear relationships between hammer velocity and
peak amplitude for a Bosendorfer SE-System [PB91].

Modeling perceived loudness with objective measurement methods is an old
and lively field of psycho-acoustic research. Proposed models range from the
measurement of intensity or sound pressure with a previously applied weighting
filter (such as A, B, or C-weighting to approximate the human level sensitivity
in different frequency regions at different loudness ranges) to relatively complex
psycho-acoustic models for loudness calculation (compare [MGBI7], [ZF99]).
In a recording studio environment, more devices for the monitoring of level and
loudness can be found (Peak Meter, VU Meter).
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4.1 Implemented Features

The decision of what might be the appropriate algorithm to apply to the extrac-
tion of dynamics features from music performances is hard to make, facing the
diversity of different approaches. The vast majority of performance researchers
use simple intensity measurements, but several studies make also use of an
implementation of Zwicker’s loudness model (e.g. [DGW02]). Nakamura’s study
has shown that intensity is of relevance in the analysis of musical dynamics
[Nak87] and Geringer found a high correlation between intensity values and the
corresponding (continuously recorded) loudness judgments of listeners to classi-
cal music [Ger95|. Benjamin found comparably small differences between the
Zwicker loudness and an A-weighted intensity measure for broadcast streams,
suggesting that the latter might be used as a reasonable approximation [Ben02].
Although these are indications that (frequency weighted) intensity measure-
ments might be sufficient or appropriate to analyze musical dynamics, a con-
cluding selection of the most suitable loudness measure is difficult. Therefore,
a group of various algorithms representing different approaches to the problem
has been selected for implementation: measures used during the recording and
mastering sessions, (weighted) intensity or RMS measures, and two variations
of a comparably complex psycho-acoustic model for loudness measurement.

All implemented loudness measurements that will be referred to as loudness
features in the following and are converted to Decibel (dBgs) after their com-
putation. Since the signal amplitude is normalized to £1, this conversion can
simply be done by applying the following operation to the extracted feature
value v;,.

v =20 - logyo(vin, + €) (4.1)

with the small constant € to avoid the calculation of log(0).

4.1.1 Peak Meter

A Peak Meter (also PPM for Peak Programme Meter) is one of the standard
ways to control the level of audio signals in recording studio environments.
It is not really a measure of loudness, but rather an envelope measure that
reacts fast on rising amplitudes (short attack time AT') and slow on decreasing
amplitudes (long release time RT'). This feature is somewhat similar to the
peak amplitude measure for which Palmer found a quasi-linear relationship
with hammer velocity on a Bosendorfer piano [PB91].

The implementation is based on the peak meter described in Zodlzer |Z6197| and
is depicted in the block diagram shown in Fig. 4.1. The output is computed
sample per sample.
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|z(n)] | AT vppm(n)

FIGURE 4.1: Block diagram of the implemented peak meter

The time constants have been adjusted to standard recording studio equipment
times (compare [DIN94]):

e attack time (compare coefficient AT): 10 ms

e release time (compare coefficient RT'): 1500 ms

4.1.2 VU Meter

The VU Meter or volume indicator is a frequently used equipment in recording
studios to display the signal level in Volume Units. In contrast to the Peak
Meter, it averages out short level variations in order to approximate perceived
loudness. The VU is calculated by smoothing the absolute value of the input
sample with a second order IIR low pass filter.

4.1.3 Root Mean Square Based Features

4.1.3.1 RMS

The RM S (Root Mean Square) is the intensity of a signal. It is the equivalent
of the sound pressure level in the digital domain and is the most frequently
used measure in music performance analysis. It can be calculated for a time
frame of length IC samples by

n+K/2—1

vras(n) = | = > a(k)? (4.2)

k=n—IC/2
or can be approximated with a single-pole low pass filter

Vans(n) = (1= ) - vgys(n — 1) +a - z(n)” (4.3)

with a being computed from the integration time 7' = K/, with

a=elsT, (4.4)
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Transfer Functions for Frequency Weighting
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FIGURE 4.2: Frequency Weighting Transfer Functions: A-Weighting and
frequency weighting for ITU-R BS.1770

4.1.3.2 A-weighted RMS

The A-weighted RMS measure is a frequently used loudness measurement.
The A-weighting filter is applied before the RMS calculation and models the
frequency-dependent sensitivity of the human ear at low levels. Its transfer
function is depicted in Fig. 4.2.

4.1.3.3 ITU-R BS.1770

This loudness measurement has been recently standardized in ITU recom-
mendation BS.1770 [ITUO06]|, and should offer high correlation with subjective
loudness ratings [SNO3]. It is also an RMS measurement, but two filters are
applied in a pre-processing stage: a high pass and a high shelving filter (the
latter only being used for multichannel processing). The combined pre-filter
curve is displayed in Fig. 4.2.

4.1.4 Zwicker Loudness Features

Based on the results of psycho-acoustic experiments, Zwicker proposed a
functional model for the computation of loudness (compare [ZF99]).

Outer Ear Excitation Specific Overall

— > —

. Transfer Function Patterns Loudness Loudness
Stimulus

F1GURE 4.3: Flow Chart of Zwicker’s model for loudness computation

In contrast to other models, masking phenomena are taken into account in
order to calculate the excitation patterns. Two approaches have been selected
from the literature to represent Zwicker’s loudness model here. The loudness is
extracted in overlapping blocks at equidistant time steps.
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4.1.4.1 DIN 45631

This norm standardizes the calculation of loudness as proposed by Zwicker for
an input signal that is already available in third band levels [DIN91|. These
third band levels are partly combined to approximate a Bark scale that models
the frequency grouping in the human ear. The outer ear transfer function,
defined by a table, is applied to these bands that are afterward subjected to
a simple masking model. This model only takes into account the masking of
higher frequencies. The resulting specific loudness per band is finally summed
up in order to compute the overall loudness.

The used implementation of this norm does not in any way normalize the audio
data as this is neither required in the current context nor possible without a pre-
defined listening level. Therefore, the results are incorrect when attempted to be
used as a standardized sone measure, but remain correct in their interrelations.

4.1.4.2 ITU-R BS.1387

This ITU document is not a recommendation for loudness calculation, but
for the objective measurement of quality impairment of coded audio signals
[ITUO1]. However, it includes an STFT-based loudness measure based on
Zwicker’s model which has been implemented here with minor modifications.

The magnitude spectrum, calculated from the STFT, is weighted by an outer
ear transfer function W (k) derived from a model of the absolute threshold of
hearing introduced by Terhardt [Ter79]:

1000 Hz
(RN
107 <1000Hz) [dB]

Then, the frequency bins are grouped into critical bands (Bark scale) with a
resulting resolution of approximately four bands per Bark. The frequency-to-
bark transformation is based on a model by Schroeder [SAH79]:

_ - f
z =T -arcsinh (650 i (4.6)

In order to compute the excitation patterns in the bark domain, a level depen-
dent triangular spreading function is applied to the bark spectrum to model
masking effects. The spreading function, as depicted in Fig. 4.4, computes
masking toward both lower and high frequencies, but only the higher frequency
part is level dependent.

—-0.8 2
W (k) = —0.6 - 3.64 - ( S () ) +6.5- ¢ 06(mhom—33)
(4.5)
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FIGURE 4.4: Unnormalized level-dependent spreading function for the
computation of the masking threshold in I'TU-R recommendation BS.1387

The resulting excitation patterns F(z) are then used to compute the specific
loudness N’(z) with a formula introduced by Zwicker that additionally applies
nonlinear weighting.

N'(z) = (S;ES))M' ((1 — s(2) + s(2) - i(é)))m _ 1) (4.7)

Sn(z) models the excitation at the absolute threshold of hearing, and s(z) the
so-called masking index for the band with bark index z.

The sum over all specific loudness bands is then the resulting loudness.

Corresponding to the implementation of the DIN norm, the implementation
of this recommendation does not normalize the audio data as this is neither
required nor possible (no listening level) in the current context.

4.2 Example Results

Figure 4.5 displays the extracted feature values for an example file that consists
of a string quartet movement.

For all extracted features for this example file, a string quartet movement
composed by Beethoven, the pairwise correlation has been calculated (see Table
4.1). The correlation between features vy, v, is calculated by

5 (0a(n) — pn) - (02(n) — o)
= (4.8)

N - 0v - 0u2
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with p being the arithmetic mean, o the standard deviation and N the number
of values per features.

Each feature vector consists of more than 18000 observations. High correlations
between several pairs of extracted features can be observed.

YZw(DIN) YZw(1387) VRMS V1770 VdBA UPPM vvy

Vzw(pIn) | 1.000 0.784 0.935 0.964 0.938 0.879 0.921
Vzw(iasry | 0.784 1.000 0.836 0.821 0.803 0.834 0.838
VRMS 0.935 0.836 1.000 0.960 0.996 0.969 0.987
V1770 0.964 0.821 0.960 1.000 0.961 0.911 0.939
VaBA 0.938 0.803 0.996 0.961 1.000 0.963 0.980
vpPM 0.879 0.834 0.969 0.911 0.963 1.000 0.942
vy 0.921 0.838 0.987 0.939 0.980 0.942 1.000

TABLE 4.1: Correlation between all pairs of loudness features for the whole
string quartet movement displayed in Fig. 4.5

All correlations are significant with a p-value p < 107'% (two-tailed test). The

p-value is computed with
r-vVN—2
= tedf | ——— 4.9
p ot (Z 22 (1.9)
with tcdf being Student’s t cumulative distribution function.

The mean and standard deviation of a feature set — and thus the result of the
computed correlation — may be influenced by extreme feature results at signal
pauses at the beginning and end of the audio file. In order to evaluate these
dependencies, the same calculation was carried out on the same data set but
omitting features from start and end of the file, resulting in an overall number
of 14000 observations. Table 4.2 shows the resulting correlation between pairs
of features where the same tendencies as in the table above can be observed.

VZw(DIN) YZw(1387) VRMS v1770 VdBA VPPM wu

Vzw(pIN) | 1.000 0.969 0.898 0.915 0.871 0.878 0.895
Vzw(13s7) | 0.969 1.000 0.877 0.899 0.847 0.865 0.866
VRMS 0.898 0.877 1.000 0.941 0.993 0.983 0.978
V1770 0.915 0.899 0.941 1.000 0.930 0.927 0.905
VaBA 0.871 0.847 0.993 0.930 1.000 0.976 0.971
VPPM 0.878 0.865 0.983 0.927 0.976 1.000 0.939
vy U 0.895 0.866 0.978 0.905 0.971 0.939 1.000

TABLE 4.2: Correlation between all pairs of loudness features for an excerpt
of the string quartet movement displayed in Fig. 4.5

The high values for the correlation indicate that many of the extracted features
could probably be omitted without losing information. The ultimate goal
should be to select the most relevant features, but this selection has to be
psycho-acoustically motivated and is unknown for the current context. In order
to reduce the number of features, a principal component analysis (PCA) has
been applied to the loudness and timbre features for the example analysis (see
Chap. 7).
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FIGURE 4.5: Input audio and loudness features for one example audio file
(string quartet)






Chapter

Timbre Feature Extraction

The timbre of a sound is its sound color, its quality or its texture. Besides pitch
and loudness, timbre is considered as “the third attribute of the subjective
experience of musical tones” [RP82]. Timbre can be explained by two closely
related phenomena, which will be referred to as timbre quality and timbre
wdentity.

The timbre quality allows humans to group together different sounds originating
from the same source such as two recordings made with the same instrument.
Timbre identity enables the differentiation of two sounds with the same tone
characteristics (loudness, pitch if available) played on two instruments. Thus,
the quality represents general timbre properties of a sound (“sounds like a
violin”) while the timbre identity refers to instrument specifics (“one violin
sounds better than the other”).

In performance analysis, timbre is one of the least researched parameters. One
of the reasons is that specific performance instructions do not exist concerning
the specification of timbre, while for example for the specification of loudness
various symbols and terms have been established. Instructions on timbre
variations are usually given only implicitly either by describing the mood or by
requiring specific playing techniques.

A study by Stolla is one of the rare examples of studying timbre characteristics
in the context of music performances [Sto04]|. He approached this topic by
computing an overall octave band spectrum per recording and found only
small differences between the analyzed recordings. Walker investigated the
influence of instrumental timbre on several performance parameters such as
timing, articulation, and dynamics [Wal04].

Loudness and pitch are unidimensional properties, as sounds with different
loudness or pitch can be ordered on a single scale from quiet to loud and low
to high, respectively. Timbre is a multidimensional property ([ZF67], [M0097]);
this complicates its definition. A good summary over the various attempts of
the definition of the term timbre can be found in [San08]. The most prominent

73



74 CHAPTER 5. TIMBRE FEATURE EXTRACTION

example is probably the definition of the American Standards Association from
1960 that defined timbre as “that attribute of auditory sensation in terms of
which a listener can judge that two sounds similarly presented and having the
same loudness and pitch are dissimilar” [ASA60]. This definition has been
criticized repeatedly by researchers mainly because it [Bre94]:

e does not attempt to explain what timbre is, but only what timbre is not,
i.e. loudness and pitch,

e implies that timbre only exists for sounds with a pitch, implicating that
for example percussive instruments do not have a timbre.

Helmholtz was probably the first to detect the dependency between the timbre
of a sound and the relative amplitudes of the harmonics during the second half
of the 19th century [Hel70|. Although he noted other influences that play a
role in defining the quality of a tone such as the “beginning” and “ending” of
a sound, he restricted his definition of timbre (“Klangfarbe”) to the harmonic
amplitude distribution only.

Stumpf extended the definition of timbre by two more attributes [Stu90]. He
named the relative amplitude of harmonics, the form and length of the initial
transient time and note endings, and added sounds and noise as the third
timbre-determining component.

Seashore restricted the term timbre to the harmonic structure that “is expressed
in terms of the number, distribution, and relative intensity of its partials”,
but he additionally introduced the term sonance, referring to “the successive
changes and fusions which take place within a tone from moment to moment”
[Sea38|. This distinction did, however, not find broad acceptance by researchers.
Instead, timbre is nowadays understood as phenomenon that takes into account
both spectral patterns and temporal patterns (|[Reu95|, [Moo97]).

To investigate the number and characteristics of timbre dimensions, usually
semantic differentials (SD) or multidimensional scaling (MDS) techniques are
used. For the SD method, sounds are rated on scales that are characterized
by pairs of opposite verbal attributes. For MDS, a group of listeners adjusts
the timbre distance (or similarity) between pairs of stimuli and the result is
mapped or fitted into a geometric space that has the number of dimensions
specified by the investigator.

In the search of verbal attributes for the timbre of steady sounds, von Bismarck
found that the timbre of his test set could be almost completely described by a
rating on four scales: dull—sharp, compact—scattered, full—empty, colorful—
colorless |Bis74b]. In a more detailed study on sharpness, he comes to the
conclusion that the sharpness is determined by the position of energy concen-
tration in the sound’s spectrum |Bis74a).
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Grey found three salient dimensions that correlated well to the spectral energy
distribution, the low amplitude high frequency energy in the initial attack
segment, and the synchronicity of the attack of higher harmonics combined
with the level of spectral fluctuation |Gre77|.

Wessel found two dimensions that could be represented by the spectral energy
distribution and the nature of the onset transient [Wes78|.

Iverson and Krumhansl found two dimensions as well with high correlation to
the results of the Spectral Centroid (see below) and the amplitude envelope
[TK93].

McAdams et al. identified three dimensions that correlated well with Spectral
Centroid, logarithmic attack time, and Spectral Flux (see below) [MWD*95].

Lakatos also found three dimensions and was able to find high correlation with
the Spectral Centroid and the logarithmic attack time, but he failed to find a
fitting acoustic correlate to the third dimension [Lak00].

Marozeau et al. found four dimensions, three of them with high correlation to
Spectral Centroid, attack time and Spectral Spread (see below), and the fourth,
less salient dimension, correlated with fundamental frequency in some cases

[MCMWO03].

Caclin et al. confirmed the high correlation of two dimensions of the timbre
space with Spectral Centroid and logarithmic attack time; furthermore, they
sometimes found — context dependent — the Spectral Flux to be correlated
with a third dimension [CMSWO05].

Apparently, there is an agreement on two dimensions of timbre that can be
referred to as brightness and impulsiveness. The brightness (also: sharpness)
represents spectral, the impulsiveness temporal aspects of timbre. Timbre is
most definitely higher-dimensional, but the identification of more dimensions is
difficult; the number and the nature of these higher dimensions can probably
be assumed to be context-dependent.

A high correlation of the brightness dimension with the Spectral Centroid has
been reported (compare also [SW06]) and the attack time or similar measures
seem to correlate well with the impulsiveness. There is no agreement on the
usability of the Spectral Flux as an acoustical correlate for one of the higher
dimensions, however, there are indications that it may be useful in a specific
context.

The research on timbre and its dimensions has been done almost exclusively
on isolated (synthesized or instrumental) tones. The identification of the
dimensions of the timbre space is even more complex for music recordings;
timbre dimensions and possible acoustic correlates for complex input signals
have yet to be identified. Furthermore, a parameter such as the attack time of
a single tone (“impulsiveness”) cannot be extracted from a complex mixture of
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instruments and tones in recordings of polyphonic music — at least not in the
general case.

Therefore, the choice of the implemented timbre features has been based on
the following considerations:

e The feature can be extracted from a polyphonic music signal and its
calculation does not require the availability of individual time signals for
each single tone or the amplitudes of each harmonic of this single tone,

e the feature is related to the acoustic features that show good correlation
with the identified timbre dimensions for single tones, and/or

e the feature has shown to be of relevance in a related context. For example,
many features that describe the spectral shape of a signal block (Spectral
Centroid, Spectral Rolloff, Spectral Spread, MFCCs, etc.) have been
successfully used for audio genre classification [BL04| or music similarity
calculations [PFWO05]. If these timbre-related features are reliable enough
to be used for such tasks, they can be assumed to be of some significance
in our application.

5.1 Implemented Features

All timbre features are extracted from overlapping blocks of the audio signal
and are calculated via the STFT X (k,n) of each block.

5.1.1 Spectral Rolloff

The Spectral Rolloff is a measure of the bandwidth of the audio signal. It is
defined as the frequency bin below which the accumulated magnitudes of the
STFT reaches 85 % of the overall sum:

K/2—1

ver(n) =i |y |X(k,n)| =085 > |X(k,n) (5.1)

Optionally, both sums could also start from a higher frequency bin than 0 to
avoid the clustering of the results at low values, for example due to DC offset
problems.

Low values indicate a low audio bandwidth.
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5.1.2 Spectral Flux

The Spectral Flux measures the rate of change of the spectral shape:

K/2—1

vse(n) = 4| Y (X (kn)| =X (kn— 1)) (5.2)

k=0

It can be interpreted as a simplified approximation to the sensation roughness
that is modeled by Zwicker and Fastl as quasi-periodic changes in the excitation
pattern levels [ZF99].

Low values indicate steady-state input signals and low roughness.

5.1.3 Spectral Centroid

The Spectral Centroid describes the gravity center of spectral energy. As has
been shown above, it is closely related to the brightness (or: sharpness) of
a single tone. Zwicker and Fastl presented a model of sharpness that uses
the excitation patterns to compute the sharpness: it is the integral of the
specific loudness values in each critical band weighted with the bark frequency
of this band and divided by the overall loudness, i.e. the unweighted integral of
all specific loudness results [ZF99|. They also apply an additional weighting
function to increase the influence of high critical bands.

For the Spectral Centroid, no excitation patterns but only the spectral power
spectrum is used. The critical band scale is approximated by applying a
logarithm to the frequencies with a reference point of 1kHz:

K/2—1 n
%; )logg (1000Hz> - X (k,n)?
vso(n) = N1 (5.3)
>, X(k,n)?

In this specific implementation, all bins corresponding to frequencies below
62.5 Hz are combined to one band with a mid frequency of 31.25 Hz. Various
definitions of the Spectral Centroid can be found in the literature: the magnitude
spectrum or the excitation patterns are alternatives to the power spectrum;
also a linear frequency scale or a bark scale can be used. The usage of the
spectral power instead of the spectral magnitude results in less contribution
from spectral components with low volume to the Spectral Centroid. The
presented definition is similar to the AudioSpectrumCentroid Type as defined in
the MPEG-7 standard [ISO02].

Low values correspond to low brightness.
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5.1.4 Spectral Spread

The Spectral Spread, sometimes also referred to as instantaneous bandwidth,
describes how the spectrum is concentrated around the Spectral Centroid

and represents a more technical description of spectral shape. The following
definition is also based on the MPEG-7 standard [ISO02].

K/2—1 2
> (tog (0 ) — vsc(n) - X(k,n)?
1)55<7”L) = K/2—1 (54)
>, X(k,n)?

If the spectral power is concentrated closely around the Spectral Centroid, the
Spectral Spread computation will yield low values.

5.1.5 Mel Frequency Cepstral Coefficients

The Mel Frequency Cepstral Coefficients (M FCC's) are a compact representa-
tion of the shape of the spectral envelope of an audio signal. Their calculation
takes into account the nonlinear human perception of pitch by utilizing the
Mel-Scale. The MFCCs have been introduced in the field of speech signal
processing [RJ93] and have been found to be useful in music signal processing

as well ([TCO00|, [PDWO03], [BL03|, [JCMJO06]).

The implementation of MFCC calculation is based on Slaney’s Matlab Auditory
Toolbox and consists of the following basic steps [S1a9d8]:

e map the magnitude spectrum X (k,n) to the Mel scale with a set of
overlapping triangular windows

e compute the logarithm of each resulting Mel band

e compute a Discrete Cosine Transform (DCT) to the Mel bands

It has been shown that a small subset of the resulting MFCCs already contains
the principal information in the context of audio signal classification ([TC02],
[MBO03]), so for our purpose we restrict ourselves to the first four coefficients to
keep the number of features small.
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USF USR vsc vss UVMFCO0 UMFC1 UMFC2 UMFC3
VSF 1.000* -0.042 0.168 0.014 0.660* 0.071 0.057 -0.071
VSR -0.042 1.000%* -0.062 0.428 -0.282 -0.327 0.117 -0.102
vsc 0.168 -0.062 1.000* -0.043 0.428 -0.303 -0.165 -0.006
vss 0.014 0.428 -0.043 1.000* 0.038 -0.084 0.167 0.028
vprco | 0.660% -0.282 0.428 0.038 1.000* 0.345 0.109 -0.181
vprcl | 0.071 -0.327 -0.303 -0.084 0.345 1.000* 0.427 -0.183
vpmrce | 0.057 0.117 -0.165 0.167 0.109 0.427 1.000* 0.550*
vpmrces | -0.071 -0.102 -0.006 0.028 -0.181 -0.183 0.550* 1.000*

TABLE 5.1: Correlation between all pairs of spectral features for the whole
string quartet movement displayed in Fig. 5.1

USF VSR vsc vss UMFCO VMFC1 VMFC2 VMFC3
VSF 1.000* 0.081 -0.040 -0.020 0.660* 0.134 0.082 -0.078
VSR 0.081 1.000%* 0.633* 0.398 0.157 -0.405 0.053 -0.072
vsc -0.040 0.633* 1.000* 0.023 0.021 -0.382 -0.124 -0.051
vsS -0.020 0.398 0.023 1.000* 0.138 -0.013 0.170 0.067
vyprco | 0.660% 0.157 0.021 0.138 1.000* 0.508* 0.206 -0.273
vpmrcl | 0.134 -0.405 -0.382 -0.013 0.508* 1.000* 0.431 -0.185
vprce | 0.082 0.053 -0.124 0.170 0.206 0.431 1.000* 0.596*
vpmrces | -0.078 -0.072 -0.051 0.067 -0.273 -0.185 0.596* 1.000*

TABLE 5.2: Correlation between all pairs of spectral features for an excerpt
of the string quartet movement displayed in Fig. 5.1

5.2 Example Results

Fig. 5.1 displays the extracted feature values for an example file that consists
of string quartet movement.

As for the loudness features, the normalized covariance between all pairs of
features has been computed with Eq. (4.8), first with all observations and
then omitting observations from start and end of the audio file (which was the
same as used to display the loudness features). No pair of features is highly
correlated, neither for the complete set nor for the truncated set of observations
(see Tables 5.1 and 5.2). Results marked with an asterisk have an absolute
correlation |r| > 0.5 and are at the same time significantly correlated with a
p-value p < 0.01 (two-tailed test).

As already mentioned in the previous Chap. 4, a PCA over the whole feature
set including the dynamics features can be found in Chap. 7 to analyze the
dimensionality of the complete feature space.
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FIGURE 5.1: Spectral features for one example audio file (string quartet)



Chapter

Software Implementation

The presented algorithms have been implemented in the programming language
C++ [ISO03]. The resulting source code is able to compile cross-platform
(Windows, MacOS X, Linux) and was thoroughly tested on 32-bit Microsoft
Windows operating systems. To decrease development time, three open source
libraries have been made use of: FLTK [ST08| as GUI (Graphical User Interface)
toolkit library, PortAudio [BT08] for sound IO, and SndLib [Sta08| for wave
file parsing. An additional library has been used for performance optimization
(see Sect. 6.1.2).

The software consists of two binary executables as depicted in Fig. 6.1; one to
deal with the performance data extraction and the second to provide means
for the qualitative analysis of the extracted performance data.

wave file Data Performance
midi file Extraction |[text files Player

FIGURE 6.1: Two processing stages of the implemented software

The main advantage of having two software solutions instead of one is the
openness of the resulting system. One the one hand, the extracted data can be
easily visualized and analyzed with any other software solution, on the other
hand separate programs can be used to extract data that can be played and
visualized with the Performance Player. The text file format used for the
extracted data allows easy import, export, and parsing with other applications.
While the implementation of such options in a monolithic software application
would of course be possible, the handling of the application might become more
complicated for the user and requires more in-depth thought of user interface
design.
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While this chapter is focused on implementation details, Chap. B describes the
usage of the software.

6.1 Data Extraction

The data extraction stage consists of two independent parts - the tempo
extraction and the low level feature extraction. The first part deals with the
calculation of the audio-score synchronization while the second part extracts all
timbre and loudness features. Both processes are implemented as non-real-time
processes — as this is required by the audio-to-score alignment algorithm —
and are combined in a single command line application.

The tempo extraction requires two input files, the audio and the MIDI file.
The audio file, representing the performance, should contain audio data in
any file format supported by the used library SndLib (e.g. .wav, .aiff, etc.);
it should provide good technical quality (reasonable audio bandwidth at a
sample rate higher than 32kHz and a relatively low background noise level)
and a performance being reasonably free of errors. The MIDI file should be of
MIDI formats 0, 1, or 2 and should contain a quantized form of the score, as
opposed to a MIDI performance of the score. Furthermore, it is assumed that
the MIDI file contains the same structure as the performance, meaning that
e.g. repetitions appear equally in both score (MIDI) and performance (audio)
representation.

An optional text file input allows to set reference synchronization points (audio
time at a specific MIDI tick) to force the alignment path to go through these
points. This gives the user the possibility to set predefined points either to fix the
alignment at points where a previous calculation yielded inaccuracies or to set
obvious synchronization points a priori. Defining one or more synchronization
points results also in a significant performance increase (for example, setting a
synchronization point at the middle of the performance will practically halve
the runtime of the tempo extraction).

All output data is written to text files in a user-defined directory. The alignment
result text file contains a list of the computed synchronization points between
audio and MIDI, i.e. seconds and MIDI beats.

The timbre and loudness feature extraction requires only the input audio file
and outputs a text file with an ordered list of time stamps and feature values.
To enable easy and fast addition of new low level features, a plugin interface
for low level feature extraction has been designed and implemented: FEAPI
(Feature Extraction Application Programmer’s Interface).
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6.1.1 FEAPI

Many of the features to be extracted for music performance analysis, especially
the ones for dynamics and timbre analysis, are similar or even identical to
features that are used in Audio Content Analysis (ACA) as so-called low level
features. These low level features can serve as building blocks for constructing
higher level, more semantically meaningful properties of the music derived from
the audio signal. A low level feature can thus be defined as one or more values
extracted from the audio signal that can be used to describe a property of
the signal but is not necessarily musically or musicologically meaningful all by
itself.

Many applications in the ACA field require a large number of these features to
be extracted from the audio signal. Different applications or research projects
need similar or identical low level features, utilizing their own implementation of
well-known and often algorithmically not too complex features. Redundant work
is being done to “reinvent the wheel” each time. Furthermore, the integration
of already implemented features in a new application is usually time-consuming
even if the source code is available, and almost impossible if this is not the
case.

A commonly accepted plugin Application Programmer’s Interface (API) for low
level features would enable the reuse of already implemented features without
additional effort. Furthermore, feature extraction plugins could be exchanged
between projects, researchers and companies, if required also in binary format
to protect the intellectual property of the development party. A well-defined
API can also speed up the development process, since the implementation can
focus more on the algorithmic aspects and less on implementation issues such as
API design. Therefore, a joint effort has been initiated with participants from
four institutions (Ghent University, Belgium, IRCAM, Paris, France, Technical
University of Berlin, Germany and zplane.development, Berlin, Germany) to
define and implement such an API with the name FEAPI — Feature Extraction
API |[LETO05].

A plugin is considered to be a library that can be linked dynamically at runtime
utilizing a previously defined interface. For the host application, using a plugin
means to load the library and to use the exported functions during runtime.

6.1.1.1 Related Work

At the time of development and publication of this API, there was no widely
accepted audio feature extraction plugin API in use by the ACA community.

Marsyas is an audio analysis and synthesis framework with emphasis on ACA
which allows a user to extend the framework by deriving from a base class
tightly integrated in the framework |[TCO00]. As such, it does not define a
true feature extraction plugin API. Maaate! is an audio analysis toolkit that
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provides a plugin interface, but has a strong focus on processing sound files
in MPEG format [PP01]. The source code of both is published under the
GNU General Public License (GPL, [Fre08]), thus enforcing the publication of
source code for all plugin or host implementations, which may prevent them
from being used in a commercial context where source code distribution is not
appropriate.

More recently and after the initial publication of FEAPI, another plugin API
dedicated to feature extraction was published that provides similar functionality
and properties as FEAPI: Vamp [CLSBO06].

Besides these ACA-related APIs, several plugin APIs are commonly used in the
world of audio signal processing and virtual instruments. These APIs are mainly
designed for transforming an audio stream into a new audio stream (effect
processing) or for generating an audio stream in reaction to incoming MIDI
events (virtual instruments). They are not easily adaptable to the demands of
audio feature extraction. Examples of such APIs are LADSPA (Linux Audio
Developer’s Simple Plugin API, [Fur08|), VST (Virtual Studio Technology by
Steinberg, [Ste08]) and AU (Audio Units by Apple, [App08]). Some influences
from these API designs can be found in FEAPI.

The VST-SDK additionally provides an offline extension allowing audio data
analysis. This extension could basically be used for feature extraction. While
this had the advantage of compatibility with some already available hosts, the
VST-offline interface has the following disadvantages that make the definition
of a dedicated feature extraction plugin API reasonable:

e restriction of capabilities: the offline interface is per definition not able
to handle audio streams, only audio files. Furthermore, the handling and
storage of large and complex features sets is laborious.

o complexity of plugin implementation: the API requires working with
audio file handles, and there is a bidirectional communication between
plugin and host.

e non-open license: the definition of the future capabilities and extensions
is under control of a company and therefore cannot easily be influenced
by the requirements of researchers. Open source projects are not allowed
to distribute the source files of the SDK with their code, so in the case of
source code distribution every possible user theoretically has to sign an
individual license agreement with the license holder.

6.1.1.2 Requirements and Considerations

Every attempt to specify an application programming interface demands careful
consideration of the required functionality and capabilities as well as of usability
and simplicity. Usually, a compromise between capabilities and ease of use has
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to be found since they may contradict each other. The (non-trivial) technical
requirements for the capabilities of the feature extraction plugin API were

defined as:

e support for different and possibly varying sample rates of the extracted
features,

e support for multiple independent instances of each plugin,
e support for multidimensional features,

e high probability of unique plugin identification by the host without a
registration process,

e support for the calculation of multiple features in one plugin if required
by the developer,

e support for sufficient timing information to allow synchronization of
features with different sample rates and

e push-style processing of audio buffers (data source can be anything: files,
live streams, etc.).

The following restrictions were agreed upon to allow for simple usage and
implementation of the API. They may have both technical and usability reasons:

e memory allocated internally by the plugin is never used outside the plugin,
and shared memory has to be allocated by the host,

e the plugin cannot call host functions meaning that the host has to poll
for status requests etc.,

e 1o file handles are used in the API,

e no developer-specified graphical user interface (GUI) is required to run
the plugin,

e only one data type (namely float) is allowed for inputs, outputs and
parameters,

e no thread safety of the API: the host has to ensure that e.g. the request
for results does not interfere with a running process call.

To allow cross-platform compatibility and integration in as many programming
languages as possible, the plugin interface was chosen to be defined in the
programming language C. C and C++ are commonly used by researchers and
companies in the audio signal processing context and compilers are available for
practically all possible target platforms. Besides the API itself, a software de-
velopment kit (SDK) providing C'+ wrapper classes is available. These classes
allow easy access to a plugin from the host side as well as easy implementation
of plugins by inheriting from a base class plugin on the plugin side.
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6.1.1.3 Design and Architecture

Basically, the API provides two types of data inputs/outputs, called signal and
parameter. Both have to be of the data type float. A signal can be both an
input or a result. Input signals, which are usually thought to be audio signals,
are restricted to a constant sample rate. Parameters are used to change the
plugin properties. Signal and parameter properties are defined by means of
structures that are displayed in Fig. 6.2. Both structures provide extensive
plain text information, information about range and quantization as well as
other useful data.

typedef struct
{
typedef struct char acName [1024];
{ char acUnit [1024];
char acName [1024] ; char acDescription[4096];
char acUnit [1024]; float fRangeMin,
char acDescription [4096]; fRangeMax ,
float fRangeMin; fDefaultValue;
float fRangeMax; float fQuantizedTo;
float fQuantizedTo; int
float fSampleRate; bIsChangeableInRealTime;
} FEAPI_SignalDescription_t; } FEAPI_ParameterDescription_t;

FIGURE 6.2: Structures for the description of FEAPI signal and parameter
properties

The input signal is passed to the plugin by simply pushing new buffers of data
to the process function. The host can poll for new results at any time, taking
into account the thread safety issues mentioned above.

Plugins can be distinguished by a quintuple of information: the library name
itself, the plugin name string, the plugin vendor (implementor, manufacturer)
string, the vendor-specific plugin ID and the vendor-specific plugin version info.

6.1.1.4 Usage

The plugin function FEAPI_CreatePluginInstance has to be called to create
a new instance of the plugin and let it do some basic internal initialization.

The functions FEAPI_GetPluginAPIVersion and FEAPI_GetPluginCanDo al-
low the host to retrieve some plugin-specific information including API version,
supported number of channels or supported sample rates. This information
can be used by the host to decide whether it supports this type of plugin or
not, and if it does, to address the plugin in the correct way.

The call of FEAPI_InitializePlugin is required to initialize the plugin with
the non-varying parameters, the input sample rate and the number of audio
channels. CPU-intensive calculations necessary for internal initialization of
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buffers, filters, etc. should be done here too. Furthermore, some vendor-specific
user data can be handed over to the plugin. If initialization fails, the plugin
can not be used and the host has to destroy the plugin instance.

To retrieve information about the available plugin parameters and the cal-
culated features, the functions FEAPI_GetPluginResultDescription and
FEAPI_GetPluginParameterDescription can be used. Figure 6.2 provides
some insight into the available information.

FEAPI_ProcessPlugin is the function that performs the actual processing. The
host simply needs to maintain a continuous stream of audio data blocks that
are handed over to the plugin by calling this function. Additionally, a time
stamp for the input data is passed adjoins the data.

The host can then check whether a result is available or not. If so, it can check
its size and the function FEAPI_GetPluginResult can be called to obtain the
result. A time stamp for the result is returned as well.

FEAPI_ProcessPluginDone has to be called when no more audio data is avail-
able to signal to the plugin that all processing is done and allow it to do some
final processing based on what it has left in its internal buffers if needed.

Finally, FEAPI_DestroyPluginInstance destroys the plugin instance.

Besides these, a few additional interface functions are available; these are
explained on the FEAPI web site together with additional documentation
[LETO8].

6.1.1.5 Software Development Kit (SDK)

The API itself consists of a C header file containing type definitions of all
data types that are passed through the interface and all functions which a
plugin must provide. Together with the actual API, a C't+ SDK has been
developed which wraps all the functions of the plugins and the API in C++
classes. With these wrappers, a FEAPI plugin instance can be handled as
a Ct1 object. The specific plugin class is derived from a plugin base class
(FEAPI_CPluginBaseClass). The methods provided by the base class, directly
representing the functions specified by the API, are re-implemented by the
specific plugin class. This structure is similar to VST and allows an easy and
fast plugin development process. The methods of the plugin object are called
by C-style stub functions which are also provided by the SDK. These stub
functions do nothing more than translating the C' function calls into C'++
method calls.

To ensure that the API and the related source code are easily available, a
project has been started on SourceForge.net! [LET08]. SourceForge provides
several useful software management services such as the revision control SVN,

Lyww . sourceforge.net
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bug tracking, mailing lists etc. Source code and in-depth information on the
presented API is publicly available for download. The source code is licensed
under a BSD-style license [Ope08|, which is a simple, permissive and widely
spread license. At the same time, the BSD license is compatible with the
GNU GPL [Fre08] and the sources can be used — although under some minor
restrictions — in commercial applications as well.

In summary, the presented API offers a solution for the technical requirements of
low level feature extraction in an ACA context, as well as platform independence,
a simple interface and an open license. The API provides a push-style interface
allowing live streams as well as file streams. It supports multidimensional
features to be extracted with constant as well as varying sample rates and
provides sufficient information for the time synchronization of audio and features.
The provided SDK, including example plugins and a simple command-line-based
host, should allow a steep learning curve.

6.1.2 Performance Optimizations

In order to achieve reasonable application runtime for the rather complex and
workload-consuming algorithms implemented, the signal processing parts of
the application have been optimized for performance, i.e. for low workload.
This was done in a fast and simple way by using a commercially available
cross-platform vector optimization library by the company zplane.development?.
This library contains Altivec and SSE, SSE2, and SSE3 optimizations for vector
operations with complex and real (floating point) data, an optimized Fast
Fourier Transformation (FFT) as well as several trigonometric and logarithmic
functions that can be applied to data vectors. It ensures optimal performance
on various systems due to CPU runtime detection that allows to dispatch each
function call to its appropriate CPU-optimized implementation. Furthermore,
the library also offers a generic C'+ implementation of all functions to ensure
compatibility with platforms without SIMD instruction set.

6.2 Performance Player

The Performance Player software loads the previously extracted data of multiple
performances of the same piece from the text files and provides the means
for qualitative performance analysis. In the literature, different approaches to
the analysis and the comparison of several performances can be found. One
of the simplest solutions is to plot the data (tempo, loudness, or timbre) over
time, with the disadvantage of not being able to visually align the data of
different performances. Hence, the “standard” visualization that is used in
nearly all performance studies dating from the 1930s ([Har32], [Sea38]) until

2www.zplane.de
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today is to plot the data over beats or bars, or in general over a score-inherent
pulse. This allows to compare different performance data values with respect
to their score position instead of their point in time and was also chosen as
data visualization for the Performance Player, where the performance data
is plotted with reference to the beats extracted from the MIDI file to ensure
identical length and easy comparison of all performances.

An alternative display method would have been to plot the data as deviations
from a mechanic rendition ([KC90|, [Pal89]), however, this poses the problem
of identifying an appropriate “mean” value for tempo, loudness, or specific
timbre features of the mechanic rendition. It also assumes that the analysis of
timing can be independent of the overall performance tempo, an assumption
with questionable validity (compare Chap. 2.2).

Other approaches attempt to visualize both the short- and the long-term
structure of loudness and timbre variations. Langner et al. presented a pseudo-
three-dimensional loudness plot with the abscissa representing the time, the
ordinate representing the integration time of a smoothing filter and the color
of each plot point the corresponding loudness level [LKSWO00|. The smoothing
filter integration time dimension visualizes the loudness rendition on different
levels ranging from short term to long term variation.

Segnini proposed the “Timbrescape” for the visualization of timbre variations
[Seg06]. He defined the timbre to consist of three dimensions, the fundamental
amplitude, the harmonics amplitude, and the sum of the remaining spectral
components and assigns a base color (RGB: red, green and blue) to each of these
dimensions. The value of a timbre parameter is then mapped to the intensity
of the corresponding color. Every signal excerpt can thus be represented by
one color composed of its components red, green and blue. The first row of the
Timbrescape contains only one single colored dot that represents the average
(timbre) intensities for the whole file. The next rows contain increasingly more
color dots with each representing a shorter signal excerpt. The final shape of
the Timbrescape is triangular and provides the highest time resolution at the
lowest row.

Dixon et al. introduced the “Performance Worm” for the real-time performance
visualization in the tempo-loudness plane (|[DGWO02], [LG02]). For each obser-
vation point in time, the corresponding tempo and loudness values are plotted
on this plane with the abscissa representing the tempo axis and the ordinate
the loudness axis. The transparency of the plotted dots increases with time,
resulting in a worm shape with recent dots representing more recent events
being dark and preceding dots slowly fading away.

The tempo-loudness plane has also been used in other publications of the same
Austrian research group. Widmer used performance-worm-like representations
of phrases with the length of four beats to generate a so-called performance
alphabet that consists of prototype gestures or shapes to represent typical
phrasing of individual artists [WZ04].
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Other representations are more suited for specific research questions. For
example, histograms can be used for a statistical analysis of the tempo data

(Goebl et al. [GDO1]).

Sapp proposed a “Scape Plot” to visualize correlations between performances
[Sap07]. Similar to the Timbrescape, it has a triangular shape and increasing
time resolution from top to bottom. However, the Scape Plot is used to
analyze the correlations between a single performance and a large data set of
performances; here, one color represents one specific performance. The single
dot in the first row is then colored in the specific color of the performance from
the data set that yields the highest correlation to the analyzed performance.
The dots of the following rows are also colored according the performance with
the highest correlation, but the correlation length decreases as the number of
dots per line increase, i.e. only parts of the pairs of performances are correlated.
The more a Scape Plot consists of a single color, the more similar are the
analyzed performance and the performance corresponding to this dominant
color. In a later publication, Sapp argues for the suitability of this Scape
Plot and the calculated correlation results, respectively, for more detailed
inter-performance similarity measurements [Sap08|.

The Performance Player presented here offers the following features:

e display of one selected performance parameter (tempo, loudness or timbre
features, ...) for multiple performances plotted on a MIDI beat axis,

e possibility to zoom in and out of the displayed graphs,

e optional and adjustable smoothing of the feature results for the better
visualization of various levels of long term and short term variations of
cach feature (see Sect. 6.2.1),

e calculation of overall features to support the identification of interesting
overall properties or differences between different performances (see Sect.
6.2.2),

e play-back engine that allows to play the audio performances to permit
subjective perceptual comparisons. The engine plays the files on a linear
time-scale but keeps track of the corresponding beat position, allowing to
switch instantly between different performances while remaining at the
same corresponding score position.

6.2.1 Smoothing Filter

A smoothing filter is (optionally) applied to the feature data. The smoothing
filter is a zero-phase filter that is based on a single-pole IIR filter but imple-
mented in an anti-causal way by processing the input data in both forward and
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reverse direction. Since the single-pole filter is therefore applied to the feature
curve two times, it provides the steepness of a two-pole filter. The single pole
filter equation is:

v'im)=a-v'(m—1)+(1—a)-v(m) (6.1)

with a being a value between 0...1 adjustable by the user.

The filter implementation requires an input signal that is sampled at equidistant
intervals. Although the feature values are displayed in a non-equidistant fashion,
i.e. over beats instead of over time, the computation of the filter output is
carried out assuming a linear time scale. Alternatively, it would have been
possible to estimate the features values v(n) at beat positions with appropriate
interpolation approaches; this had the advantage of computing the filter on
sampling intervals more meaningful from a musical point of view. A short
informal evaluation resulted in only minor differences between the results
calculated by these two approaches (the second one implemented with a simple
linear interpolation), so for the sake of simplicity, the first approach without
interpolation has been selected.

6.2.2 Overall Results for each Feature

For each extracted parameter or feature, overall values are computed to describe
properties of the extracted feature curve. Many of these features are known
to be useful for statistical signal description. The length of the feature curve
is M, its discrete derivative is vp(m). As for the smoothing filter, the overall
feature calculation in the Performance Player is carried out on the linear time
scale rather than on the beat scale.

6.2.2.1 Overall Maximum

The overall maximum is the highest feature value over the whole performance.

Max =  max wv(m) (6.2)
0<m<M-—1
Mazxp = o BX vp(m) (6.3)

6.2.2.2 Overall Minimum

The overall minimum is the lowest feature value over the whole performance.

Min = min v(m) (6.4)
0<m<M-1
Minp =  min wvp(m) (6.5)

0<m<M—2
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6.2.2.3 Overall Range
The overall range shows the amplitude range that is covered by the feature.

Range = Max — Min (6.6)
Rangep = Maxp — Minp (6.7)

6.2.2.4 Overall Histogram Maximum

The overall histogram maximum represents the most frequent feature value,
or more exactly the mean of the range of feature values that occurs most
frequently. This could for example be used as a simple approximation of the
“modal tempo”, as proposed by Goebl et al. [GDO1].

From the extracted features over time v(m) (and their derivative vp(m), re-
spectively), a histogram h — similar to a discrete amplitude density function —
is calculated. The number of histogram classes G is

G = min {50,%] (6.8)

to ensure that the number of histogram classes is always significantly smaller
than the number of feature values. Each class represents the number of
occurrences of feature values in a specified range, and the range is computed
by k = (Maz—Min)/g The sum of all histogram classes equals the overall number
of feature values M. The result is then

Mazxgee = Min+ il + Kk - argmax (h(g)), (6.9)
2 0<g<G-1

which is the feature value representing the class with the maximum number of
occurrences.

6.2.2.5 Overall Arithmetic Mean

This is the overall arithmetic mean value.

| Ml

AMean = ﬂmzzov(m) (6.10)
) -2

AMeanp = M1 vp(m) (6.11)

m=0
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6.2.2.6 Overall Geometric Mean
This is the overall geometric mean value.
GMean = (6.12)
GMeanp = (6.13)
6.2.2.7 Overall Harmonic Mean
This is the overall harmonic mean value.
HMean = M_'/l\/l (6.14)
1
ey v(m)
-1
HMeanp = Mj:l (6.15)
1
m=0 vp(m)
6.2.2.8 Overall RMS
The root mean square value is related to the power of the feature curve.
] Mol
RMS = |+ n;) v(m)? (6.16)
] M2
RMSp = 6.17
P M—1 n;) vp (6.17)

6.2.2.9 Overall Standard Deviation

The standard deviation is a measure for the variation of the feature signal

around its (arithmetic) mean value.

| Ml 2
SID = \ i 2 (v(m) - AMean)
| M2 2
SIDp = \ M1 2 (UD(m) - A]WeanD)

(6.18)

(6.19)
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6.2.2.10 Overall Skewness

The skewness, also referred to as third central moment of a variable divided by
the cube of its standard deviation, is a measure of asymmetry of the probability
density function. If the feature values are distributed symmetrically around
their mean, the skewness will be zero. If the data is more spread out to the left
it will be negative while the results will positive for data that is spread out to
values above the mean value.

<

1 3
Skew = STD3 Z( AMecm) (6.20)

m=0

M=2 3
Skewp = T ( AMeanD> (6.21)

m=0

6.2.2.11 Overall Kurtosis

The Kurtosis is a measure of 'non-gaussianity’ of a random variable and is also
referred to as its fourth central moment divided by the fourth power of the
standard deviation.

1 4
Kurt = STDT M Z( AMecm) (6.22)

M2 4
Kurtp = STDT (M= 1) Z( A]WecmD> (6.23)
—0

A Kurtosis result higher than 3 indicates a density distribution with a more
acute peak around the mean than a Gaussian distribution, a result lower than
3 indicates a smaller peak.

6.2.3 Graphical User Interface

Figures 6.3, 6.4, and 6.5 present the Graphical User Interface of the Performance
Player while displaying the tempo curve, the smoothed Zwicker-Loudness and
the smoothed Spectral Flux, respectively. The calculated overall values for one
selected file are being displayed in the bar below the graph. This bar can be
hidden or collapsed to provide a larger interface area for the curve display; in
all three examples the file open section on the left hand side of the interface
has already been collapsed.
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FIGURE 6.3: Performance Player Graphical User Interface with the tempo
curve of three string quartet performances
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FIGURE 6.4: Performance Player Graphical User Interface with the smoothed
Zwicker-Loudness curve of three string quartet performances
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FIGURE 6.5: Performance Player Graphical User Interface with the smoothed
Spectral Flux curve of three string quartet performances



Chapter

String Quartet Performance Analysis

Analyses of music performances have for several reasons been focused on either
piano performances or performances with monophonic instruments. These
reasons are mostly of a technical nature, e.g. the availability of the MIDI
protocol for keyboard instruments and robust procedures to extract pitch
information from single-voiced recordings (compare Sect. 2.2).

Ensemble performance is a rather neglected object of study. Therefore, it
has been decided to apply the presented software system to string quartet
performances. String quartets take a prominent position in the chamber music
genre. Furthermore, a string quartet performance has some characteristics
that differentiate it clearly from a keyboard performance. In contrast to solo
keyboard performances, ensemble performances require interaction between
performers. Also, each string instrument can vary its timbre and loudness even
after the note begins. Finally, different playing techniques offer a wide range of
tone articulation and tone quality.

Although a thorough study of all these various aspects will not be possible
in the following sections, various properties of string quartet performance are
investigated in the hope that other studies will follow and contribute to this
fascinating field.

7.1 Musical Score

Ludwig van Beethoven’s string quartet No. 13 op. 130 in B-flat major is one
of his late string quartets, compositions that are regarded as masterpieces of
this genre. The five late string quartets have been composed during the years
1822 — 26, overlapping with the composition of the Missa Solemnis (1819 — 23)
and the 9th Symphony (1822 — 24). The string quartet op. 130 was premiered
on March 218t, 1826. Later that year the last movement (the Great Fugue) was
replaced by a new finale that was Beethoven’s very last completed composition.

97
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1 9 17 25 49 73 81 89 121 129 143 150
A B A’ C
|:a:] ﬂ |:b ﬂ a: c | < | d a | b’ | a e ﬂ | a’
0 72 108 144 156 168 216 228 249 261

FIGURE 7.1: Structural Analysis of the fourth movement of Beethoven’s
string quartet No. 13 op. 130 B-Flat major; the numbers above the plot
indicate the bars, the numbers below the plot the beats

Two of the work’s six movements, the second and the fourth, had to be repeated
at their premiere because they were favorably received by the audience. This
study focuses on performances of the fourth movement which is labeled Allegro
Assai. Alla danza tedesca, the latter meaning “German Dance”. It is in the
key G major, its time signature is 3/s and it contains 150 bars of which the
Bars 1 — 8 and 9 — 24 are repeated. Its musical character is generally described
as “lighthearted” and “charming”. As with many dance forms, it has a very
clear musical structure as shown in Fig. 7.1. This formal structure is built on
phrases with a length of eight bars that usually consist of two four-bar phrases.
The only deviation from this underlying eight-bar grid can be found at the end
(part C') with the section e being of 12 + 2 bars length.

The overall count of onsets (note events) in the piece is 812, and the shortest
note values are /16 notes.

A pulse of 1/s notes carries throughout the whole piece except in section e, where
the momentum seems to stop as the instruments have a quiet conversation,
completing each others’ phrases.

The piece starts and stops with the following eight-bar main theme (section a,
different continuation at the end):

FIGURE 7.2: Main theme of the fourth movement of string quartet No. 13:
bars 1 — 8

For the remainder of this chapter, it is recommended to the interested reader
to have the score of the piece available. Although not mandatory, it will help
to follow the structural aspects of the analysis.
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ID Artist Active Country Rec Year Label & No. Pub Year
ABQ | Alban Berg Qu. 1971-08 AT 1989 EMI 5736062 1999
AQ Amadeus Qu. 1947-87 UK 1962 DGG 4631432 1963
BQ Busch Qu. 1913-52 AT/USA 1941 Sony 1991
MPK47687
BSQ | Budapest 1917-67 HU 1926-30 Electrola 1926-30
Streichqu. DB1549
EQ Emerson Qu. 1976-now  USA 1994 DGG 4470752 1997
GQ Guarneri Qu. 1964-now  USA 1987 Decca 4429402 2007
HSQ | Hollywood String 1939-61 USA 1957 Testament 1996
Qu. SBT3082
JQ Juilliard Qu. 1947-now  USA 1970 Sony S8K87889 2002
KQ Karl Klingler 1905-407 DE 1911 Odeon Record 1911
Streichqu. Rxx76282
LEQ | Léner String Qu. 1918-307 HU 1918-20 Columbia 1918-20
L1931
LQ Lindsay Qu. 1965-05 UK 19907 ASV 602 1991
LSQ Lasalle String Qu. 1946-88 USA 1972 DGG 4537682 1997
MQ Melos Qu. 1965-05 DE 1985 DGG 4156762 1986
PQ Petersen Qu. 1979-now  DE 1999 Capriccio 1999
10851
QI Quartetto Italiano 1945-85 IT 1969 Philips 1996
4540622
RQ Rosé Qu. 1882-38 AT 1923-24 Homocord 1923-24
B8216
SQ Smetana Qu. 1945-89 CZ 1982 Denon COCO- 2004
79681
TQ Tokyo String Qu. 1969-now J 1990-91 RCA 1992
RD609753
QV1 Quatuor Vegh 1940-80 HU 1952 Music & Arts 2001
CD-10847
QVv2 Quatuor Vegh 1940-80 HU 1973 Valois Auvidis 1986
V4400
YQ Yale Qu. 19657-787  USA 1971 Brilliant Clas- 19987
sics 99127

TABLE 7.1: Summary of the analyzed string quartet performances

7.2 Recordings

Table 7.1 summarizes the set of analyzed performances. It contains 21 recordings
made during the 20th century between the years 1911 and 1999. The four oldest
performances were recorded from shellac discs at the “Deutsches Musikarchiv’!
(DMA), the remaining performances were copied from CDs.

The Quatuor Vegh ensemble is present with two recordings spaced approximately
20 years apart. The remainder of the recordings has been performed by different
string quartet ensembles.

The majority of the ensembles are (or have been) well-known and several of
them have received awards for their performances of Beethoven string quartets.

http://www.d-nb.de/wir/ueber_dnb/dma.htm
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7.3 Procedure

7.3.1 Audio Treatment

The recordings that were copied from CDs remained unprocessed, but the
sonic quality of the four historic recordings copied from shellac was very poor
with lots of crackles and noise. Since this is a problem for the alignment
algorithm, these four recordings were processed several times by de-crackling
and de-noising software. This processing has been done at the DMA with the
software package Magiz Samplitude. Since such software not only removes the
unwanted audio components but also degrades the quality of the musical signal,
a compromise had to be made between the level of crackles and noise and the
remaining sonic quality of the recordings. The resulting recordings contained
passages where fast notes could not be discriminated by ear and where the
sound quality makes it difficult to recognize instruments, e.g. the violin truly
as a violin. Therefore, the individual results for these recordings should be
regarded with caution. This applies especially to the “Rosé Quartett™recording
(RQ), but to the other three historic recordings (BSQ, KQ and LEQ) as well.
These problems are present for nearly all extracted parameters:

e timing: due to difficulties to identify specific note onsets,
e timbre: due to shellac reproduction quality and processing,

e [oudness: due to remaining crackles and noise and due to some resonances
at specific frequencies,

e tuning frequency: due to possible differences between recording and
reproduction speed.

7.3.2 Analysis Data

The onset times, the loudness and timbre features have been extracted from
the audio files as discussed in Chaps. 3, 4 and 5. The validity of the onset time
extraction has been verified by sonification: a MIDI file of the piece has been
modified to match the extracted onset times. This file has then been rendered
to audio (using a piano sound) and played along with the performance. Where
necessary, onset times have been corrected manually.?

The extracted onset times ¢,(7) have been converted to a series of normalized
Inter-Onset-Intervals (IOIs) by calculating the discrete derivative and normal-

2The identification of note onsets by ear and eye was not in all cases simple: many notes
tend to be “faded-in” by the instrumentalists making it hard to identify discrete onset times,
and shorter note values sometimes get masked by their surrounding context.
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izing them to their corresponding length in beats A7, which is the length in
quarter note values (see also Eq. (3.2)):

to(i + 1) — t,(7)
AT@+1,2‘ .

[01(i) = (7.1)

The resulting series of /OI-observations is of length 811 per performance.

For the analysis of tempo, Inter-Bar-Intervals (IBIs) have been computed by
calculating the discrete derivative of the onset times at the downbeats, resulting
in 173 observations® per performance. The bar level has been selected because
it is assumed to be the tactus that would usually be perceived (or tapped
along) by listeners. An onset is present at the beginning of every bar so that
the resulting IBI series has equidistant sampling intervals. The series has been
normalized by the factor 1.5, the distance in beats between two succeeding bar
lines.

The loudness and timbre features have been extracted on a linear time scale.
To be able to compare them across performances, they have to be mapped
to a linear beat scale utilizing the extracted onset times. This mapping, an
interpolation that could also be referred to as sample rate conversion, has
been done by cubic spline interpolation. The (equidistant) beat resolution
has been chosen to be the length of a 1/32 note, resulting in four observations
per feature per 1/8 note. Overall, this results in 2084 observations per feature
per performance when discarding the very last 1/s note because of the missing
tempo information.

Wherever the feature series had to be compared directly to the series of 1017,
the (unconverted) features have been mapped to the non-equidistant sampling
intervals of the onset times. This mapping has been done by cubic spline
interpolation as well.

The beat count starts with index 0 (as are practically all indices throughout
this thesis), but the bar count starts with index 1 as this is the usual practice
in bar numbering. Each beat has the length of two 1/s notes, each bar the
length of three /s notes.

For the remainder of this chapter, significant correlations will be marked with
an asterisk in tables. The applied threshold for significance is p < 0.01 if not
stated otherwise.

7.3.3 Feature Space Dimensionality Reduction

The number of loudness and timbre features is too large for detailed analysis.
Without further knowledge on the psycho-acoustic and musical relevance of the
extracted features — a topic that requires further research — any selection seems

3150 bars plus two repetitions 4 8 and 16 bars
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PClp PC2r PC3p PCip
PC Var (%) | 5059  16.06  9.56 7.01
VZw(DIN) —0.341  40.096 40.035  —0.002
VZw(1387) —0.335 40.119 +0.022 —0.012
VRMS —0.354 —0.032 —0.019 +40.131
v1770 —0.349 —0.034 —0.022 +0.103
VapA —0.349  —0.069 —0.037 +0.145
vppM —0.353 —0.020 —0.019 +40.125
vyu —0.344  —0.028 —0.006 +0.134
ver —0.270 —0.011 —0.059 —0.172
vsR —0.017  40.535 40252 —0.147
vee —0.029 40501 +0.035 +0.039
vss —0.018 +0.322 +0.339 —0.436
VAMFCO —0.281 40.027 40.007 —0.421
vMFCL —0.071 —0.472 40.004 —0.533
VMFC2 —0.034 —0.291 +0.626 —0.148
VMFC3 4+0.004 —0.137 40.648 +0.438

TABLE 7.2: Variance (first row) and loadings (second to last row) of the
first four principal components of the feature set

to be arbitrary. To reduce the number of feature dimensions without directly
discarding features, the complete feature set (consisting of seven loudness
features and eight timbre features for all files of the test set) has been subjected
to Principal Component Analysis (PCA, compare Chap. A.2). PCA transforms
the feature data to a new orthogonal coordinate system and orders the resulting
components according to their amount of variance. This allows selection of the
components that contribute most to the variance of the feature set (low order
components) and to discard higher order components.

Each feature is an input variable of the PCA and the corresponding feature
results extracted from all performances are the observations of this variable.
The number of remaining principal components has been chosen as the number
of components with an eigenvalue higher than 1. The more similar different
input variables or features are, the smaller will be the number of the resulting
components.

Prior to this operation, each feature has been normalized in order to have
a mean of zero and a standard deviation of 1. Table 7.2 shows the relative
amount of variance of the selected first four principal components as well as
the PCA loadings per component and feature.

Together, these four components explain more than 80% of the variance of
the feature set as shown in the first row of Table 7.2. Each column repre-
sents the PCA loadings for one component. The first component PC1p is
obviously related to loudness. All loudness features — the Zwicker loudness
Vzw(DIN)s Vzw(1387), the RMS based measurements vgass, vi770, V4 and the
studio monitoring device measurments vppys, vy — contribute nearly equally
to this component, as does the first Mel Frequency Cepstral Coefficient (vysrco)
which can be argued to be loudness related as well. The other features have
only low loadings except for the Spectral Flux vgr that also shows a higher
loading. The three remaining components are clearly timbre dimensions. The
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r(I0I,PClp) v(IOI,PC2p) r(IOI,PC3r) v(IOI,PCif)
ABQ +0.14% 10.02 ~0.03 ~0.05
AQ +0.09% —0.04 +0.02 —0.10%
BQ +0.05 ~0.08 ~0.06 —0.05
BSQ +0.07 —0.09* —0.03 —0.04
EQ +0.12% +0.01 +0.03 —0.10%
GQ +0.08 —0.00 +0.04 —0.14%
HSQ —0.01 —0.05 +0.07 —0.06
jQ +0.05 —0.07 +0.07 —0.08*
KQ 40.03 —0.05 +0.02 —0.06
LEQ —0.05 —0.06 ~0.05 +0.04
LQ 40.04 —0.03 —0.05 —0.02
LSQ +0.09% —0.07 —0.01 —0.05
MQ —0.01 —0.01 —0.04 —0.01
PQ +0.02 —0.03 +0.07 —0.08*
QI +0.04 +0.05 +0.01 —0.06
QVvi1 +0.06 +0.02 +0.06 —0.11%
QV2 +0.09* ~0.05 +0.04 ~0.05
RQ —0.09* —0.03 +0.04 —0.03
sQ —0.01 —0.07 ~0.00 ~0.02
TQ +0.06 —0.01 +0.04 —0.10%
YQ +0.06 +0.01 +0.03 —0.09*
Overall | +0.04* —0.03* +0.01 —0.06*

TABLE 7.3: Correlation between the series of IOIs and the four components
PClp — PC4p

features contributing to the second component are mainly the Spectral Rolloff
vsr and the Spectral Centroid vgs, although the MFCCs contribute as well.
This component can probably be interpreted as brightness or sharpness. The
third and fourth components show a mixture of different MFCCs that cannot
easily be interpreted psycho-acoustically but as a measure of shape of the spec-
tral envelope. The Spectral Spread contributes to all three timbre components
equally high.

In the following, the selected four principal components PC'1p — PC'4p will be
referred to as features.

The features PC1p — PC4p are — thanks to the properties of the PCA — not
correlated, but in order to check for a relationship between them and the tempo
(or more specifically the series of 1OIs), a correlation is computed for each
performance and over the whole data set, respectively. The more the tempo
variation is related to the variation of other features, the higher will be the
absolute correlation result. Table 7.3 displays the results.

Several of the resulting correlations are significant, but their values are so small
that it is probably safe to conclude that there are practically no loudness and
timbre features to tempo interrelations, meaning that these are independent
performance dimensions. The few significant results hint at the possibility of
the following tendencies: loudness and brightness tend to increase with tempo
increases or to decrease with tempo decreases*, and there is a tendency of
PC4F to decrease with increasing tempo or vice versa.

4Note that the series of IO is an inverse tempo representation and the loadings of PC1g
are negative.
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7.4 Overall Performance Profiles

In order to investigate common attributes, the performances were subjected
to PCA for each individual feature (/OI, IBI and PClp — PC4F). In this
case, the performances are the variables, and the extracted feature values per
file are the observations. If there are high correlations between IOI, IBI or
PC1p — PC4fr components among the performances, there will only be few
principal components (to be called Profiles) that will account for most of the
variance. If many performances have high loadings on a profile, this profile
can be interpreted as a prototypical performance. Otherwise, that is if all
performances are highly individual, all components will approximately account
for the same amount of variance.

The resulting PCA components will be referred to as UPCn(Feature). PCAs
were computed for three different excerpts of the piece: all bars, Bars 1 — 128
(excluding the final part C') and Bars 1 — 24 including the two repetitions. The
following sections provide a more detailed analysis per feature. The detailed
overview on the selected principal components and their relative amount of
variance can be found in the Appendix in Tables C.1, C.2 and C.3.

As the feature input had to be normalized to a mean of 0 and a standard
deviation of 1, the following analysis concerns only the relative changes of the
extracted features. It cannot be interpreted in terms of absolute quantities.

7.4.1 Tempo

For the tempo analysis, the Inter-Bar-Intervals I BI have been investigated.
High I BI values correspond to slow tempi in relation to the mean tempo, while
low values refer to tempi faster than the mean tempo.

Figure 7.3 depicts the first component of the overall tempo profile for the whole
movement.

It is the only selected main component accounting for 87% of the variance
to which all performances are correlated significantly (r > 0.7, p < 0.01, see

Overall Tempo Profile
T T T T T T T T T T

1 1 I | | 1 | 1
0 24 48 72 96 120 144 168 192 216 240
Beats

FIGURE 7.3: Grand Overall Tempo Profile UPC1(IBI): the main compo-
nent of the overall tempo profile, computed over the whole piece
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Tempo Profile (Bars 1-128)
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FIGURE 7.4: Tempo Components UPC1 — 3(IBlj23): the main tempo
profile components for the first 128 bars

Table C.4). The conclusion that all performances use a very similar underlying
tempo strategy can, however, be misleading since the fermata that ends section
e (Beat 245.5) dominates the profile. Therefore, we focus on the first 128 bars
(parts A, B and A’, Beats 0 — 228) for the tempo analysis. Here, three main
components can be identified as depicted in Fig. 7.4. These three components
account for 56%, 6% and 5% of the variance, respectively.

The first component UPC1(IB1;5g) is significantly correlated to all perfor-
mances with correlations —0.88 < r < —0.37 (compare Table C.5). Because of
the negative correlation, low values correspond to low tempi and vice versa for
this first component. The component shows the general tendency to play part B
(Bars 25 — 80, Beats 72 — 156) faster than the surrounding parts. The following
part A’ (Bars 81 — 128, Beats 156 — 228) is played in a relatively constant
tempo. Individual parts and sections are clearly separated by ritardandi, in
many cases preceded by small accelerandi (see begin and end of part B but also
the local minima in part A in a distance of eight bars (12 beats) as well as the
local minima in part A" that clearly separate section b’ from the surrounding

sections a).
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FIGURE 7.5: Tempo components UPC1 — 3(IBlj23) (column 1) and the
individual tempo profiles with the highest correlation to them (column 2)
and the lowest correlation to them (column 3)

The second component UPC?2(IB13g) is significantly correlated to only ap-
proximately half the performances with correlations between —0.3 < r < 0.4
(compare Table C.5). The change in the sign may indicate that some perfor-
mances follow contradictive tempo strategies.

The third component U PC3(IB1sg) is significantly correlated to eight perfor-
mances of the test set with correlations —0.44 < r < 0.5, four of them correlated
positively. The component shows the tendency to change the tempo slowly
over time. Those performances that correlate negatively with the component
tend to increase the tempo, while the others tend to end at a slower tempo.

Figure 7.5 shows the discussed three main components together with the
performances that show the highest and lowest correlation to them.
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FIGURE 7.6: Timing components UPC1 — 2(1O1l24) (column 1) and the
individual timing profiles with the highest correlation to them (column 2)
and the lowest correlation to them (column 3)

7.4.2 Timing

A more detailed analysis of timing or microtempo has been approached by
investigating the normalized /O/s for the first 24 bars including both repetitions.
Figure 7.6 displays the two selected components and the normalized timing
profiles of the performances that correlate highest and lowest to the components.

The first component accounts for approximately 60% of the variance, the second
component for about 6%. All performances are significantly correlated to the
first component with correlations 0.5 < r < 0.9 (compare Table C.6). This
means that for this component, higher values correspond to lower tempi. Only
11 performances are significantly correlated with the second component, some
of them negatively and some of them positively.

The first component UPC1(1OIy4) shows a prominent ritardando at the end.
This was to be expected according to the tempo profile analysis, as was the
slightly lower tempo at the very beginning. Very prominent in the first timing
component are the eight local minima (meaning a sudden tempo increase)
which appear at all places where two 1/16 notes appear: at Bars 3 and 7 (Beats
3,9, 15 and 21) and at Bars 19 and 23 (Beats 39, 45, 63 and 69), meaning
that all 1/16 notes are played faster than the average tempo. Section b (Bars
9 — 16 or Beats 24 — 36/48 — 60) shows a timing profile without sudden changes;
there seems to be a tendency to play with a higher tempo at Bars 13 — 15
(Beats 30 — 36/54 — 60) before the ritardando that announces the main theme
reappearing in Bar 16.
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Dynamics Profile (whole piece)
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FIGURE 7.7: Loudness Components UPC1—2(PC1pq): the main loudness
profile components computed over the whole piece

The second component UPC2(I01,4) is hard to interpret; prominent are four
local minima appearing at the last eighth note of each phrase (Beats 11.5, 23.5,
47.5 and 71.5).

The first timing component accounts for 60% of the variance and all investigated
performances seem to follow the same basic timing strategy. This might be
due to the character of the piece of music that possibly offers no alternative
approaches to timing strategies.

7.4.3 Loudness

Applying a PCA to the (inverse) loudness feature PC'1, two main components
can be identified accounting for approximately 76% and 5% of the overall
variance. They are depicted in Fig. 7.7. The first component seems to reflect
the general loudness strategy very well as the correlation to all performances is
significant and its magnitude is higher than 0.7 (compare Table C.7), except for
one historic recording (RQ). Although the correlations are negative, increasing
profile values correspond to increasing loudness values because PC1p had
negative loadings for all initial loudness features.

The first component UPC1(PC1p ;) mirrors the musical structure at least
as clearly as did the main tempo profile. It begins with the repeated Bars
1 — 8 (section a, Beats 0 — 12/12 — 24), followed by the repetition of Bars
9 — 24 (sections b and a, Beats 24 — 48/48 — 72). Section ¢ in Bars 25 — 56
(Beats 72 — 120) can be easily identified by the periodic crescendo/decrescendo
pattern. The following Bars 57 — 80 (Beats 120 — 156) are marked as p in
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FIGURE 7.8: Loudness components UPC1 — 2(PC1lpgq;) (column 1) and
the loudness profiles with the highest correlation to them (column 2) and
the lowest correlation to them (column 3); note that the PC1g-profiles show
the inverse loudness due to the negative loadings for this component

the score, reflected by the lower volume in UPC1(PC1pqy;). The single-voiced
section e starting from Bar 129 (Beat 246) can also be easily identified as can
the following crescendo toward the end.

Every part seems to have a very characteristic shape that can be distinguished
from others. For example, the eight bars of section a (Beats 0 — 12) that are
repeated in the beginning show a characteristic pattern of four peaks (every
second bar) that appears in a similar fashion every time when this main theme
is played: Bars 17 — 24 (Beats 36 —48/60 — 72), Bars 81 — 88 (Beats 156 — 168),
Bars 121 — 128 (Beats 216 — 228), and less obvious the finishing eight bars (12
beats). Section b is dominated by the crescendo from Bars 13 — 16 before the
main theme reappears and section ¢ periodically increases and decreases the
volume with a periodicity of four bars. It can be observed that section b’ (Bars
89 — 120, Beats 168 — 216) consists of two similar parts with increasing volume.
The absolute minimum of the loudness component can be found before Beat
246 where a tacit with fermata can be found in the score.

In contrast to the first component, the second component UPC2(PC1lp q) is
not clearly interpretable. Figure 7.8 shows the most similar and dissimilar
performances with respect to the loudness profile.
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FIGURE 7.9: Brightness components UPC1 — 2(PC2p q) (column 1) and
the brightness profiles with the highest correlation to them (column 2) and
the lowest correlation to them (column 3)
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FIGURE 7.10: PC3f components UPC1 — 2(PC3pqy) (column 1) and the
profiles with the highest correlation to them (column 2) and the lowest
correlation to them (column 3)

7.4.4 Timbre

Figures 7.9, 7.10 and 7.11 show the main components for the timbre-related
features. Although some structural properties can be identified with the
knowledge that was gained from interpreting the loudness and tempo profiles,
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FIGURE 7.11: PC4fp components UPC1 — 3(PC4pqu) (column 1) and the
profiles with the highest correlation to them (column 2) and the lowest
correlation to them (column 3)

it is very difficult to extract general characteristics or to find explanations for
the specific form of the profile such as the relation to musical structure.

The PCA tended to separate those recordings copied from shellac from the
others: for all three U PC'1 timbre profiles, the four historic recordings (BSQ),
LEQ, KQ, RQ) have the lowest correlation, but are highly correlated to the
corresponding U PC2 profiles. The audio quality may not only impact the
overall (or average) timbre quality but its variation over time as well.

7.5 Performance Similarity

7.5.1 Repetition Similarity

For the two repeated passages (Repetition 1: Bars 1 — 8, Repetition 2: Bars
9 — 24), the similarity is investigated by calculating the correlation between
the first and the second rendition for each feature. The results are displayed
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Rep. 1 Rep. 2

Bars 1 —8 Bars 9 — 24

101 PClp PC2p PC3p PC4p 101 PClp PC2p PC3p PC4p
ABQ +0.76* +0.83* +0.92* +0.72* +0.51% +0.68* +0.91%* +0.83% +0.80* +0.73*
AQ +0.71* +0.94* +0.13 +0.48* +0.56* +0.90* +0.91%* +0.84* +0.81%* +0.83*
BQ +0.75* +0.78* +0.54* +0.82* +0.83* +0.92* +0.90* +0.66* +0.61* +0.75*
BSQ +0.58* +0.66* +0.67* +0.73* +0.38* +0.72* +0.91* +0.80* +0.66* +0.63*
EQ +0.70* +0.92* +0.70* +0.68* +0.71* +0.87* +0.97* +0.81* +0.72* +0.72*
GQ +0.84* +0.93* +0.57* +0.84* +0.82* +0.70* +0.93* +0.87* +0.72* +0.79*
HSQ +0.88* +0.94* +0.56* +0.72* +0.69* +0.93* +0.95% +0.91* +0.38% +0.77*
JQ +0.84* +0.76* +0.65% +0.63* +0.49%* +0.70* +0.95% +0.79* +0.75% +0.76*
KQ +0.80* +0.84* +0.72* +0.84* +0.77* +0.86* +0.78* +0.72* +0.33* +0.53*
LEQ +0.53* +0.39* +0.47* +0.67* +0.60* +0.56* +0.59* +0.39* +0.54* +0.46*
LQ +0.73* +0.82* +0.40* +0.60* +0.57* +0.67* +0.90* +0.60* +0.62* +0.74*
LSQ +0.84* +0.95* +0.39* +0.80* +0.85* +0.85* +0.96* +0.85* +0.82* +0.78*
MQ +0.42 +0.94* +0.71* +0.51%* +0.57* +0.67* +0.92* +0.75* +0.83* +0.85*
PQ +0.44 +0.91%* +0.15 +0.73* +0.65* +0.57* +0.92* +0.80* +0.70* +0.72*
QI +0.84* +0.86* +0.20 +0.77* +0.67* +0.54* +0.91%* +0.76* +0.78* +0.72*
QV1i +0.81* +0.93* +0.35* +0.69* +0.69* +0.92* +0.84* +0.65* +0.75* +0.64*
QVv2 +0.62* +0.86* +0.46* +0.66* +0.65* +0.81* +0.96* +0.74* +0.41* +0.63*
RQ +0.82* +0.73* +0.68* +0.69* +0.77* +0.69* +0.66* +0.74* +0.77* +0.74*
SQ +0.80* +0.66* +0.30* +0.82* +0.52* +0.60* +0.93* +0.84* +0.77* +0.58*
TQ +0.70* +0.92* +0.41* +0.70* +0.68* +0.66* +0.92* +0.83* +0.69* +0.74*
YQ +0.73* +0.86* +0.59* +0.65* +0.69* +0.75* +0.92* +0.79* +0.44* +0.70*

TABLE 7.4: Correlation results between repeated parts (Repetition 1: Bars
1 — 8, Repetition 2: Bars 9 — 24) per feature per performance performance

in Table 7.4. Because of the relatively short series of observations to compare,
these results should only be interpreted as tendencies; some of the extracted
features may show more detection inaccuracies in this passage than in others.
This could possibly impact the results as these inaccuracies most likely will not
be averaged out in such a short series of observations. This problem may be
indicated by the generally higher correlation results for the second repetition
that is twice as long as repetition 1.

The HSQ performance shows the highest similarity between the two renditions
for the IOI series for both repeated passages with correlations of » = 0.88 and
r = 0.93, respectively. The lowest [OI correlations can be observed for M(Q
(repetition 1, r = 0.42) and QI (repetition 2, r = 0.54); PQ shows comparably
low correlations for both the first and the second repetition (r = 0.44,r = 0.57).

The loudness variation is very similar between the repetitions as conveyed by
the results of the correlation of PC'1r. Most of the results are significant and
in the range of r = 0.9, with the main exception of some historic recordings
that show lower correlation results: LEQ with values of r = 0.4 and r = 0.6
and for the second repetition RQ and K@ with correlations of » = 0.66 and
r = 0.78, respectively.

The timbre dimensions PC2—4p results show larger variations of the correlation
results, for example in the range of 0.1 < r < 0.9 for PC2f in repetition 1.

Figures 7.12, 7.13, 7.14 and 7.15 show examples of similar and dissimilar
performances for both repetitions and the features IOl and PC1p.
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FIGURE 7.12: Repetition 1 in the timing (/OI) domain: Examples for a
very similar (above) and dissimilar (below) repetition
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FIGURE 7.13: Repetition 2 in the timing (IOI) domain: Examples for a
very similar (above) and dissimilar (below) repetition
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FIGURE 7.14: Repetition 1 in the Loudness (PC1p) domain: Examples for
a very similar (above) and dissimilar (below) repetition
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FIGURE 7.15: Repetition 2 in the Loudness (PC1p) domain: Examples for
a very similar (above) and dissimilar (below) repetition
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7.5.2 Overall Similarity

Similar to the computation of the repetition similarity, the correlation between
all performances is calculated per feature for the whole file (only Bars 1 — 128
for IBI and IOI features). The detailed results can be inspected in tables
C.14, C.15, C.16, C.17, C.18 and C.19.

As expected, the same general tendencies can be identified as could be for the
correlation between the U PC-components and the individual performances.
The loudness profiles show high similarity to each other, the tempo and timing
profiles are relatively highly correlated as well, and the correlation seems to
decrease with features PC2 — 4p.

The two recordings performed by the same ensemble QV'1 and QV2 show high
correlation results for nearly all features, but more similar pairs of performances
can be found within the other performances.

7.6 Overall Observations

For the analysis and visualization of absolute results, the components PC'1 — 4
are meaningless due to their normalization. Hence, a set of four features has
been selected to represent the feature set: the BS.1770 loudness vy779, the
Spectral Rolloff vgg, the Spectral Centroid vge, and the MFCC3 vyrre3. These
features have been selected by trying to find a reasonable compromise between
the following conditions:

e good representation of one of the first three components in Table 7.2,
e comparably high absolute loadings in Table 7.2 and

e good psycho-acoustic relevance and interpretability.

Table 7.5 summarizes the overall results for each performance. Overlined values
stand for arithmetic averages, o for the standard deviation of a feature and
the indices p25, p75 for the boundaries of the lower and upper quartiles which
separate the lowest and highest 25% of the data from the middle 50% around
the median. The tempo computation has been done in the I BI domain but
has been converted to BPM values where appropriate to allow a more intuitive
understanding. Both the Spectral Centroid and the Spectral Rolloff have been
converted to the unit kHz for easier interpretation.

The mean tempo BP M, representing the first row of the table, is consistently
lower than the maximum of the tempo histogram (second row). This verifies
other observations (compare [Rep98|, [GDO01]) indicating that deviations from
the most frequently used tempo to slower tempi occur more often or are more
prominent than deviations to higher tempi. For example, the fermata at
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section e will have large impact on the arithmetic mean value of the tempo.
The maximum of the tempo histogram BPMpy;s (which will be referred to
as overall tempo) varies over performances from below 80 BPM (QV1) up to
more than 110 BPM (BQ). Most performances have tempi between 85 BPM
and 95 BPM. The quartile boundaries BP M,y5, BP M,75 show the tendency to
vary the tempo more toward lower tempi than toward higher tempi. For some
performances, the upper boundary is below the overall tempo, indicating that
the histogram maximum is not always at the same position as the median. Repp
proposed a measure of relative tempo modulation depth where the standard
deviation is divided by the mean IOI, as he observed a dependency of tempo
and standard deviations. More specifically, he noted that slow performances
tended to vary the tempo more than fast performances [Rep98|. This relative
modulation depth can be found in the table as ¢(/BI)/7B1. The results vary
between 0.13 (RQ) and 0.29 (GQ, QI) and are difficult to interpret.

The tuning frequencies fa4 vary between 436 Hz (AQ, LEQ, RQ) and 452 Hz
(KQ), corresponding to deviations of approximately —16 cent and +46 cent
from 440 Hz. The large deviations occurring in the historic recordings may
originate from a difference between the recording and reproduction speed.

The average volume level v777¢ of the recordings is — ignoring the four historic
recordings (BSQ, KQ, LEQ, RQ) that have been leveled manually — in a
range of —35dBrs (EQ) to —26 dBps (HSQ) with standard deviations o(vi77)
around 4dB to 5dB (EQ).

The average bandwidth (roll-off) vsg and the brightness (centroid) vg vary
between 2.1kHz/0.3kHz (LEQ) and 4.1kHz/0.9kHz (BQ). A quick qualitative
verification by ear can confirm this fact; although both recordings are very
old, the LEQ recording suffers from both the shellac sound quality and the
de-noising/de-crackling processing resulting in a rather muffled sound. The
BQ recording has been re-mastered for CD publication and sounds bright and
sharp. The modulation depth of the bandwidth o(vgg) lies between 0.5 kHz
(ABQ) and 1kHz (HSQ) and the brightness modulation o(vg:) between 0.1 kHz
(KQ) and 0.3kHz (ABQ).



BPM  BPMpyss BPMyas BPMyrs  o(UBD/TBT | fas | Uit70  o(virro) | sk o(vsr) Wsc  o(vsc) Umrcs  o(vmrcs)
ABQ | 92.23 92.72 89.06 99.28 0.17 443 -29.72  4.45 3.22 0.50 0.73 0.31 2.25 1.43
AQ 100.26  105.28 98.25 105.56 0.19 436 -29.84 4.73 3.18 0.76 0.50 0.16 1.48 1.56
BQ 111.48 113.77 107.49 118.76 0.16 447 | -27.89 3.65 4.09 0.62 0.85 0.29 1.47 1.21
BSQ 78.11 82.48 77.01 83.43 0.22 450 -30.25  4.11 3.00 0.63 0.37 0.16 2.00 1.17
EQ 76.82 78.73 74.66 85.47 0.26 442 -34.96 5.24 2.78 0.51 0.55 0.19 1.60 1.28
GQ 72.63 79.22 71.31 80.43 0.29 439 -28.24  4.60 2.92 0.69 0.43 0.22 2.19 1.35
HSQ 76.03 80.90 73.81 82.30 0.24 444 -25.64 4.38 2.61 1.01 0.40 0.16 1.67 1.22
JQ 88.00 95.75 86.66 96.19 0.26 443 -28.64 3.98 2.81 0.57 0.53 0.21 2.04 1.30
KQ 94.77 100.03 91.92 103.26 0.26 452 -26.46 3.51 3.54 0.73 0.49 0.11 1.66 1.22
LEQ 97.78 100.56 93.97 105.43 0.24 436 -32.60 6.28 2.08 0.82 0.29 0.10 1.86 1.12
LQ 78.96 88.01 77.10 86.64 0.24 440 -28.77 4.05 2.83 0.61 0.56  0.17 2.13 1.34
LSQ 78.39 85.83 76.86 85.44 0.21 440 -28.10 4.32 2.77  0.66 0.54 0.17 1.51 1.46
MQ 86.42 89.25 84.49 93.01 0.28 446 -28.46  4.32 3.06 0.75 0.52  0.20 1.70 1.29
PQ 95.88 95.04 93.07 102.89 0.21 443 -31.80 4.70 3.13  0.72 0.54 0.23 1.89 1.45
QI 84.76 92.72 83.97 91.71 0.29 444 -28.48  4.06 2.89 0.68 0.56 0.18 1.67 1.33
QV1 76.57 77.14 74.57 82.06 0.24 441 -28.60 4.18 3.56 0.91 0.61 0.26 1.85 1.48
Qv2 79.16 84.68 77.50 87.48 0.28 447 | -32.12 5.17 3.08 1.00 0.43 0.21 2.08 1.15
RQ 80.71 86.22 76.77 86.69 0.13 436 -35.86  4.80 2.82 0.85 0.38 0.12 1.79 1.19
SQ 80.96 84.87 79.14 86.15 0.17 444 | -30.97 4.01 3.07  0.72 0.45 0.20 2.07 1.21
TQ 81.61 87.20 78.48 87.93 0.23 443 -32.87 4.64 3.40 0.95 0.51 0.19 1.55 1.34
YQ 90.41 95.75 87.83 96.24 0.18 440 -27.23  4.69 2.83 0.56 0.48 0.18 2.05 1.63

TABLE 7.5: Overall Results for all Performances; 4 classes from left to right: tempo

observations, tuning frequency, loudness observations, timbre observations

SNOLLVAHHSHO TIVHHIAO 94

LTT



118 CHAPTER 7. STRING QUARTET PERFORMANCE ANALYSIS
Tempo Loudness
£EQ 8 1EQ
11 £Q 61
e ABQ I
A0 R g 55
a TR 9Q > £Q Q2
@ g €Q S
wn
= HsQ LSQAMQ  yq Z Aa TQPQ  AQ sova
a 8 a 4.5 ABQuawq  HSQ
vt AQ 4t sa38Q iﬁ%
7r 8Q 5
8SQ 35¢ Q KQ
80 90 100 110 -36 -34 -32 -30 -28 -26
BPM it Viz70
Brigthness Spectral Env
1 +HsQv2 ABQ
22} GQ
TQ 1Q
QV1 21¢
0.9 ¥a e%m
RQ 2t BSQ
—~ 08 1EQ "\8
o : L
R Q < 19 1{EQ Fa QV1
= saK >
© 07 soTe Z 18f  Ra
18 1.7} MQ
0.6 8sQ e 8Q ' KQ  Hsa@l
: 1.6+ £Q
¥QUQ ng
05} ‘ Q- ABQ. 150 AdSe ] 8Q
03 04 0.5 06 07 0.8 0.1 0.15 0.2 0.25 0.3
Ysc VmFc3

FIGURE 7.16: Location of every analyzed performance in the tempo, loud-
ness, brightness and “spectral envelope” space (from upper left to lower
right); for each component, the abscissa represents the overall value and the
ordinate the modulation depth

Figure 7.16 visualizes the locations of the performances in scatter plots of
selected features from the tempo, loudness and timbre domains. Performances
with a close distance can considered to be similar in the corresponding domain
and performances clearly separated from the others can be considered to be
dissimilar.

Most notable in the tempo domain is the BQ performance that is both very fast
and has strong tempo modulations, which is however not a general relationship
as there are other performances that are fast with weak modulations (AQ),
slow with strong modulations (EQ) and slow with weak modulations (QV1,

BSQ).

When ignoring the historical recordings, the loudness domain is marked by EQ
(low loudness, high modulation), BQ (lowest modulation) and HSQ (highest
loudness).

The BQ performance has the highest brightness, followed by the ABQ perfor-
mance that additionally features the lowest bandwidth modulation. EQ has
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also low bandwidth modulation, as opposed to QV2 and HSQ, the latter also
being the performance with the lowest brightness when ignoring the historic
recordings.

In the domain of the spectral envelope, BQ represents again an outlier, as do
ABQ and AQ.

7.6.1 Dimensionality of Overall Observations

The presented set of 13 overall features has been subjected to PCA in order
to investigate which features account for the highest variance between perfor-
mances. In this case, the overall features represent the PCA variables and the
performances their observations (i.e. 21 observations per variable). By some
means, this PCA is similar to the PCA done for the feature space dimensionality
reduction (see Sect. 7.3.3), but here, only overall observations per performance
(such as the mean tempo) are transformed instead of their variation over the
whole piece (such as the series of IO1s.

25}
20
151
10

Variance [%)]

2 4 6 8 10 12
Components
FIGURE 7.17: Relative variance of each component (OPC) resulting from a
PCA applied to the overall observations

Figure 7.17 visualizes the relative amount of variance of the components O PCn.
There is no obvious discontinuity detectable, and the first five components
comply with the previously used relevance criterion of an eigenvalue higher
than 1 and have been selected. Combined, they account for approximately 75%
of the variance.

No obvious relation between the component loadings and individual features
can be identified (see Table C.11 for the loadings of each component). Therefore,
varimax rotation has been applied to the five components to check whether
more clear relationships can be identified between features and the components.
The resulting loadings of the rotated components RPCn can be seen in Table
7.6.

While the loadings matrix of the rotated principal components still shows no
obvious relationships, some tendencies can be identified. The first rotated
component contains relatively high loadings for the three timbre features
Spectral Rolloff, Spectral Centroid and the modulation of the Spectral Centroid
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RPC1 RPC2 RPC3 RPC), RPC5
BPM —0.05 —058  +0.01 4002  +0.02
BP M5t +0.04  —0.62  4+0.02  +0.01  —0.06
ABPMpos,p75 | —0.05  —0.33  —0.43  —0.20  +0.30
o(IBI)/TBT +0.25  +0.11  —0.34  —0.18  —0.32
faa —0.15  +0.04  —0.51  4+0.05  —0.34
V1770 +0.14 —-0.13 +0.09 —0.10 —0.65
o(v1770) +0.22  —0.04  40.03 —0.08  +0.48
TSR -0.51  —0.01  —0.08 4030  —0.09
o(vsr) +0.07  +0.20  —0.10  +0.61  +0.09
5o -0.50  —0.12  +0.04  —0.08  —0.03
o(vsc) —0.57  +0.16  +0.01  —0.21  +0.06
UMFC3 -0.03  +0.23  —-0.07 —0.62  +0.06
o(varrcs) —0.06 —0.03  +0.64 —0.10 —0.14

TABLE 7.6: Loadings of the five rotated PCA components for each overall
observations

and thus seems to be brightness related, while the second component has the
highest loadings for the overall tempo. The third rotated component represents
a combination of tuning frequency, deviation of the spectral envelope, and
tempo modulation, and the fourth component shows the highest loadings for
vpre2 and bandwidth modulation. The highest loadings of the fifth component
are both loudness related components (mean and standard deviation). Note
that in the rotated domain, the order of the components is not related anymore
to their importance or salience.

Although the components are difficult to interpret, it can be concluded that
practically all extracted overall features contribute to the variance between
the analyzed performances. Especially the features brightness, tempo, tempo
modulation, loudness and tuning frequency contribute to the salient five dimen-
sions.

7.6.2 Relationships between Overall Observations

Correlations between the overall observations, computed over all performances,
showed only a few relationships (compare Table C.20, with the indices explained
in the following Table C.21). The positive correlation of quartet foundation
year and timbre features can most likely be explained by the evolving recording
quality over years; alternative explanations are the impact of the four shellac
recordings on the correlation results or the change of recording esthetics over
time. The negative correlation between the mean loudness and the loudness
modulation indicates that loudness variation decreases for louder recordings.
The loudness modulation has also a significant negative correlation to the
mean Spectral Centroid and the mean vy pce, a relationship that is hard
to explain. Surprising and without explanation is the significant negative
correlation of loudness modulation and tuning frequency, as these two values
had been expected to be independent from each other.
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FIGURE 7.18: Distribution (relative occurrence) of feature results per per-
formance, the performances are sorted with respect to their median values

Figure 7.18 displays the relative number of occurrences (density function) of
four features for all performances with the performances being sorted according
to their feature median to exemplify that there are no obvious relationships
between the median value and the deviation from it.

Table 7.7 shows that there are no significant relationships between the continent
of origin and the overall observations or between recording date and the variables
(the data set has been split only into two groups for this analysis, before 1960
and after 1960). The only significant dependencies that could be detected by
this ANOVA analysis are the trivial relationships between the recording date
group and the exact recording year as well as the year of foundation.
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Feature Rel. to Cont. of origin Rel. to rec. year
Rec.Y. F=0.66, p=0.43 F=51.72, p=0.00*
Fo.Y. F=0.69, p=0.42 F=27.67, p=0.00*
BPM F=0.14, p=0.71 F=1.83, p=0.19
BPMp,;s¢ | F=0.02, p=0.88 F=1.35, p=0.26
Appnm F=0.45, p=0.51 F=0.01, p=0.91
o101/10T F=0.05, p=0.82 F=1.71, p=0.21
faa F=0.14, p=0.72 F=0.00, p=0.95
v1770 F=1.80, p=0.20 F=0.10, p=0.76
1770 F=0.07, p=0.79 F=0.01, p=0.93
UsC F=0.10, p=0.76 F=0.46, p=0.50
Ovso F=1.63, p=0.22 F=2.56, p=0.13
UMFC2 F=0.54, p=0.47 F=0.52, p=0.48
Cvprres F=0.44, p=0.52 F=2.16, p=0.16
VMECS F=0.59, p=0.45 F=2.84, p=0.11
Ovyres F=0.52, p=0.48 F=1.76, p=0.20

TABLE 7.7: ANOVA results for dependencies between overall observations
and two groups (first column: continent of origin, second column: recorded
before or after the year 1960)

7.7 Summary

The variation of the tempo, timing and loudness profiles is closely related to
the musical structure, indicated by sudden changes at phrase boundaries and
typical shapes corresponding to specific parts. This is to be expected as it
verifies the results of several previous studies, e.g. [Pal89], [Rep90], [Rep92],
[Rep9s].

In the strategy of applying dynamic variations, but also for the variation of
tempo and timing, all ensembles seemed to follow similar approaches, as the
analysis revealed high similarity between loudness and timing profiles, respec-
tively. In general, the study revealed high correlations between performances.
Although the correlation measure cannot be assumed to be of high perceptual
relevance, it may indicate that the analyzed performances show more com-
monalities than individualities. One possible explanation could be the piece of
music that has been analyzed, as it might offer only limited degrees of freedom
for different approaches to performance because of its dance-form character.

The timing, loudness and timbre profiles have only weak correlations to each
other and only for some of the analyzed recordings. This indicates that they
are unrelated, independent performance dimensions, a result that supports
Repp’s findings for tempo and loudness features [Rep99al.

The presented analysis of timbre features yielded inconsistent results. Although
the author could verify by ear that the mean Spectral Centroid is indeed a
fitting measure for the brightness or sharpness of a complete recording, the
general problem of timbre feature interpretation in a musical context still
remains unsolved. The computed timbre profiles showed no obvious tendencies
that could be used as an impetus for a more detailed timbre analysis. The
results of the Principal Component Analysis applied to both the features (PCr)
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and the overall results (OPC, RPC') showed that timbre features cannot be
neglected and account for variance between performances. There can be hope
that other approaches to timbre analysis of performances might prove to be
more successful.

The missing clear relationship between timbre features and musical structure
that can be observed for timing and loudness features is an indication that the
variation of timbre features is — in contrast to tempo and loudness features —
not well suited to represent formal musical (macro-)structure. This result could
be helpful in the context of feature selection for algorithms that segment music
files into their structural components.

No interrelations between overall performance parameters and other parameters
such as recording year and country of origin could be detected; it seems that
the cultural background of the musicians has no real impact on tempo, loudness
or timbre characteristics of the recording. This confirms findings by Repp
(|[Rep98], [Rep99a]) and Stolla [Sto04].

The PCA analysis of the overall features showed that all overall performance
parameters contributed significantly to the variance between performances.






Chapter

Conclusion

8.1 Summary

Music performance is the substantial link in the chain of musical communication
between composer and listener. It is the performance that renders the musical
ideas contained within the score into a physical realization that can be perceived
by the listener, making the performance an appealing object of study for
musicologists, psychologists and other scientists. Four objective parameter
classes that define a performance can be summarized to be: tempo and timing,
loudness, timbre and pitch. Each of these classes contains a multitude of
single parameters which can be varied by the performers. For example, they
choose their main performance tempo, may perform different parts of a piece
in different tempi, can apply rubati to specific passages, are able to extend or
reduce the length of tacits and notes, and control the articulation of notes.

Three facets of music performance research can be identified in the literature;
namely, to study the performance, the performer or the listener. All of them
have to deal with some typical difficulties that complicate the analysis process.
These difficulties include the identification and interpretation of performance
characteristics. However, the process of performance data acquisition probably
poses one of the most serious immediate problems. This seems also to be the
main reason for performance studies to focus on the analysis of performances
with piano or monophonic instruments, because the technical possibilities to
extract analysis data from such performances can considered to be mature and
exact, as opposed to the data acquisition from performances with multiple
instruments.

In order to provide the means for the analysis of ensemble performances,
a software system has been designed to enable the automatic extraction of
performance parameters from audio recordings by means of audio content
analysis algorithms extracting parameters of three classes: tempo, loudness
and timbre.

125
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Extraction of Tempo & Timing

The timing is the most important parameter to extract, not only because it can
be considered to be the most salient performance attribute. The timing data is
also required to convert loudness and timbre features from the time scale to
a score-representing beat scale. This is necessary to compare a repertory of
several performances at specific score positions.

The timing information is extracted by synchronization (or alignment) of the
audio file with a score representation in MIDI format. Dynamic Time Warping
(DTW) was used for the path extraction as a standard approach to this problem.
DTW is a method that finds an optimal match between two sequences, in this
case the audio and the MIDI file. The final result of the warping is the time of
each note onset in the score.

The development of the matching algorithm was focused on the design of an
appropriate similarity measure between audio and MIDI sequences as this is
crucial for the success of the synchronization procedure. The first step, the
identification of tonal content in the audio signal, has been accomplished by
combining several known approaches: the usage of two STFTs of different
lengths for low and higher frequency analysis, the computation of the mag-
nitude spectrum’s derivative to pick only components with peak magnitudes,
the calculation of the instantaneous frequency to pick only components with
matching phase derivatives and the use of a simplified masking threshold to
discard irrelevant components.

Since the initial representations of audio and MIDI are quite different, two
similarity measures have been developed: one to transform the MIDI data into a
representation similar to the internal audio format and the other to convert the
audio data in a more score-like representation. The overall similarity measure
is computed by superposition of both measures. The latter similarity measure
implements methods for polyphonic audio transcription. A rule-based fuzzy
model has been developed that computes the probability of a tonal component
to be a fundamental frequency, given a set of rules that assign a probability to
each base frequency candidate depending on the detected harmonic distribution.

To further improve the accuracy of fundamental frequencies, a new approach
has been presented to estimate the tuning frequency of a music recording using
a filter bank with constantly adapting mid frequencies. The algorithm is able
to detect tuning frequencies in a range of 0.5 semi-tones with a comparably
high resolution of 1 Hz. The correct determination of the underlying tuning
frequency allows pitch-based analysis systems to work more accurately on
recordings of instruments tuned to other tuning frequencies than 440 Hz. The
algorithm has been published in [Ler06].

The score (or cost) computation of the dynamic time warping algorithm has
been extended by the usage of a signal-adaptive onset probability measure to
encourage path transitions to a new score event for high onset probabilities
and vice versa.
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Extraction of Dynamics & Timbre

A set of 15 accepted loudness and timbre features that have shown psycho-
acoustic and practical relevance in different contexts has been selected and
implemented to investigate their relevance in the context of music performance
analysis. In order to reduce the dimensionality of this feature space, the
features were subjected to principal component analysis (PCA) which revealed
one principal loudness-related component and three principal timbre-related
components.

To enable fast and easy extensibility toward new and additional features, a
plugin interface for the extraction of low level features from audio signals has
been introduced. FEAPI (Feature Extraction Plugin API) offers platform
independence and is available as full source code [LET08]. The main technical
features are a push style interface that allows the processing of live streams
as well as file streams, support for the extraction of multidimensional features,
variable output sample rates and time stamp handling for the proper syn-
chronization of audio and features. The plugin approach enables the reuse of
already implemented features without additional effort. Furthermore, feature
extraction plugins could easily be exchanged between projects, researchers and
companies, if required also in binary format to protect the intellectual property
of the development party. The FEAPI concept has been published in [LETO05].

Performance Player

For the visualization of the extracted features (tempo, loudness and timbre)
as well as to allow the qualitative comparison of the analyzed performances,
the “Performance Player” has been presented. It is a software application that
displays the extracted features on a beat scale and allows switching between
the performances during play-back to enable comparison by ear at specific score
positions.

String Quartet Performance Analysis

A detailed and systematic performance analysis of 21 string quartet perfor-
mances of a movement of Beethoven’s string quartet No. 13 op. 130 has been
carried out. To the best knowledge of the author, such a study has not been
previously approached. Although the performances had quite different overall
tempi, the timing and especially loudness variation yielded high correlation
results between performances. This has been shown by calculating both inter-
performance correlations and a PCA of the extracted parameters. But as long
as the perceptual relevance of such measures remains unclear, it is difficult
to draw any conclusions with respect to performance similarity. The formal
musical structure is closely matched in the variation of timing and loudness
patterns and appears to be the most salient determinant of the performance
strategy, a result that corresponds well to the research literature.
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The ability of performers to reproduce the performance of a score accurately in
the case of repetitions has also been confirmed by this study.

This study is one of the first attempts to the systematic analysis of timbre
variation in performances. However, the timbre variations showed no close
resemblance to the musical structure like the variations of the other features
and were particularly difficult to interpret. Nevertheless, it has been shown that
timbre dimensions contribute to the variance between performances. Other
approaches to analysis of the timbre parameters might prove more successful
in interpreting the result.

No significant relationships between the performance data and socio-cultural
parameters such as the country of origin or the recording date could be found.

8.2 Potential Algorithmic Improvements

The implemented algorithms offer several possibilities for improvements as does
any machine recognition system. The most promising points for improvements
can be found at the tonal peak picking processing stage, the fundamental
frequency detection and the onset tracking.

The picking of tonal components could possibly be improved by using a more
sophisticated model for the computed masking threshold such as used in
perceptual audio coding. The tonality estimation might be improved by utilizing
time and frequency domain prediction for the identification of non-tonal (non-
predictable) components.

The fundamental frequency detection stage offers many possible ways of im-
provements. For example, the amplitude of a specific harmonic that at the
moment might be fully assigned to two or even more base frequency hypotheses
should only be partially assigned to each base frequency, taking into account
its relative harmonic position. The pitch detection could be enhanced by
additional rules that take into account more information of the voicing of the
pitch hypotheses over time. Ultimately, the implementation of a model of
established voice leading rules could be used to adjust the likelihood of the
extracted fundamental frequency hypotheses. Furthermore, information from
the input score file could be used to discard less probable hypotheses (compare
[WPDO06)).

One idea to improve the onset detection accuracy in the context of audio-
to-score-matching systems could be to iteratively adjust the onset tracker’s
detection sensitivity until the number of detected onsets matches the number
of events from the score closely.

An extension of the system toward intonation analysis would add the missing
fourth class (pitch) of objective performance parameters that has been — except
for the tuning frequency — neglected in the current implementation. The best
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way to integrate such a component would be after the dynamic time warping
stage when the assignment of each score event to a certain passage of the audio
file has already been done. Then, each note of the score could be matched
with the extracted base frequencies for this time frame, resulting in detailed
intonation information per STFT block for that note.

8.3 Future Directions

The field of music performance research has produced a wealth of data in
terms of tempo and loudness information from piano performances, in many
cases gathered via MIDI. The presented system allows extension of this data
set toward data extracted from audio recordings of both piano and ensemble
performances. This will hopefully enable a better understanding of music
performance, for example by studying large data sets with respect to general
interpretative rules, expressive strategies, historic influences etc. and by ana-
lyzing ensemble performances and genres that hitherto have been neglected in
performance research.

In the foreseeable future, the rise of optimized and new signal processing
approaches will increase robustness and accuracy of the data acquired from
audio further, allowing the performance analysis of practically every recording
with any ensemble size.

As mentioned previously, this work puts emphasis on the data extraction
stage. However, data extraction is only the first requirement necessary in
clearing the way for extensive performance analysis. The final instance for
the description, interpretation and judgment of a performance is always the
listener, but the (subjective) criteria used during this process are only partially
known. The identification of perceptually relevant performance dimensions
is required to be able to distinguish the substantial data characteristics from
negligible characteristics.

Only after determining these perceptual dimensions of music performance is
it possible to find valid representations of the extracted data that allow us
to characterize specific performances, to identify the perceptually important
differences and commonalities between performances and to interpret the results
in a meaningful way. However, to come to valid conclusions, this research has to
be based on reliable data sets, a fact that emphasizes the importance of robust
and accurate parameter extraction. By approaching this topic, the presented
work can hopefully serve as a basis for further contributions to the intriguing
field of music performance research.
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|Appendix A

Standard Transformations

This appendix provides a short introduction to some transformations that are
used in the thesis but could not be introduced properly. It is not the aim of the
following section to explain the algorithmic details but mainly to summarize
some of their properties and provide definitions where appropriate.

A.1 Discrete Fourier Transformation

The Discrete Fourier Transformation (DFT) of the input audio signal x(n) is
defined as

1 N-1 o
X(k) = 57 > w(n) - 7% (A1)

Here, the Short Time Fourier Transformation (STFT) over an excerpt of K
samples is calculated for each block index m with a hop size of length H.

1=
K

n

—_

X(k,m) = win) - z(n+m-H) e 2% (A.2)

I
o

The window function w(n) is applied to decrease the amount of windowing
artifacts. The most frequently used window function in this thesis is the

Hanning window:
1 2m-n
w(n)—i-(l—cos(lc_i_l)) (A.3)

The result X (k,m) is a vector of complex numbers with the length £/2 for block
m. Each bin k represents a specific frequency f =k - fs/k.
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A.2 Principal Component Analysis

Principal Component Analysis (PCA) is an orthogonal transformation that is
frequently used for dimensionality reduction. It computes a transformation
matrix that maps the input variables into an orthogonal space. The axes of the
resulting coordinate system point into the directions of the highest variance.
PCA tries to concentrate the main variance in as few transformed variables, the
components, as possible. Components with low variance are often considered
to be of no importance and are omitted, resulting in a lower dimensional space.

Figure A.1 shows the original and rotated axes for two variables z; and x5.

Variable Axes LI

Component Axes PC1 . PC2

FIGURE A.l: Scatter Plot of a two-dimensional data set with variables
1,9, and the rotated coordinate system after PCA with the component

axes PCq, PCy

The component matrix PC can be computed by multiplication of the variable
matrix V with the transformation matrix C:

PC=C".Vv (A.4)

Each row of the input variable matrix V contains the observations of one
variable; with N variables and M observations per variable, the dimensions of
matrix V is N x M. The coefficient matrix C has the dimensions N x N with
each column representing the transformation coefficients for one component.
The resulting component matrix PC has the same dimensions as the input
variable matrix. When the number of dimensions is reduced to N’, the coefficient
matrix will have the dimensions N’ x V.

In the course of the process, the eigenvalues of each component is being
computed. This value can be used to select the principal components. A
typical threshold for omission is an eigenvalue lower than one. This equals the
criterion of a threshold of !/n for the relative variance a component accounts
for.
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Software Documentation

B.1 Parameter Extraction

The software for the performance data extraction is a command line application.
That means that on Windows operating systems, a command prompt has to
be opened to start the software. The executable is at the moment still named
with its development name: AudioMidiSyncTestCL.exe.

The following processing steps are being displayed in the course of a program
run:

e Audio Feature Extraction: loudness and timbre feature extraction

e Audio Pre-Processing: pre-processing stage of the tempo extraction (onset
and tuning frequency detection)

e Audio Processing: computation of the internal series of audio observations

e MIDI Processing: conversion of the MIDI data to the internal score
format

e Similarity Matrix Calculation: computation of the similarity measure
between score and audio observations

e Alignment Path Extraction: dynamic time warping computation to find
the path with the highest overall similarity

e Result File Writing: storing the results in text files

e Memory Deallocation: internal cleanup before the program quits
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B.1.1 Command Line

Since the application does not integrate a “normal” command line parser, the
order of input arguments must not be changed. The synopsis is

AudioMidiSyncTestCL.exe audiofile midifile outdir [synctxtfilel

where audiofile is the input audio file containing the performance, midifile is
the quantized midi file containing the score information, outdir is the directory
where the extracted information is stored into (it is strongly recommended to
use "outdir.analyviz" as directory name to ensure compatibility with the
Performance Player) and synctxtfile is a text file containing manual sync
point annotations.

B.1.2 Input and Output Files
B.1.2.1 Audio File Format

The widely used .wav and .aif file formats are supported. The input files are
expected to be of reasonable quality in terms of both recording and performance
quality.

B.1.2.2 MIDI File Format

MIDI files in formats 0, 1, and 2 are being supported. The input MIDI file
should contain a quantized version of the score because it is important that
MIDI beats correspond to score events. The input file may contain tempo curve
information as this is ignored by the file parser.

The MIDI file has to match the score the performance is based on exactly; e.g.
the number of repetitions has to be identical in audio and MIDI file.

B.1.2.3 Sync Text File Format

The optional input text file allows the user to specify a list synchronization
points. This allows on the one hand to correct wrong alignment path cal-
culations, on the other hand to speed up the similarity matrix calculation
significantly since the number of similarity measures to calculate decreases.

The synchronization points can be specified in a text file as two columns that
are separated by a tabulator. The first column contains the time in seconds
and the second column the corresponding MIDI tick. Note that the first MIDI
tick starts with 0.
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An example of a text file with two synchronization points would be

52.907 88.5
85.304 145

Both columns have to be monotonically increasing with increasing row number.
The text file has to be concluded with exactly one empty line.

B.1.2.4 Output Files

Low Level Features

The output files can be found in the directory specified as outdir in the
command line. The files that contain the low level features follow the fol-
lowing naming scheme: audiofile. PluginName.Featurelndex .feapi.res, e.g.
abqg.wav.Loudness.0.feapi.res. Each file consists of two tabulator-separated
columns; the first column contains the time stamp, and the second column
contains the corresponding feature value.

Tuning Frequency

The tuning frequency of the performance is stored in a file named
audiofile.tf.res, e.g. abq.wav.tf.res. This text file contains nothing but
a single value, the tuning frequency in Hz.

Timing

The timing information can be found in a file named audiofile.timeproc.res,
e.g. abq.wav.timeproc.res. It contains four columns separated by tabulator.
Of these columns, only the first and the fourth are of real interest to the analyst:
the first column contains the time in s and the fourth column the corresponding
MIDI tick. The second column contains some interpolated tick information,
and the third column the onset times extracted from the MIDI file.

B.2 Performance Player

The Performance Player is a software that allows you to play back the analyzed
performances while displaying the extracted data. Note that the data extraction
stage has to be successfully finished for all performances before loading them.
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B.2.1 Loading Performances

To be able to load a performance, the Performance Player requires the extracted
data in a subdirectory relative to the input files directory. The subdirectory
has to be named as the audio file and has to have an additional extension
.analyviz. For example the analyzed audio file can be found in the directory
c:\perf\ under the name abq.wav then the Performance Player expects to
find a directory c:\perflabqg.wav.analyviz\ that contains all output files
(compare Sect. B.1.2.4).

To load the performance data, simply choose one or more audio files (of the
same piece of music).

B.2.2 Visualize Parameters

The tempo profile for each file is automatically being displayed upon loading
the corresponding audio files. Other features can be selected for display with
the Drop-Down box labeled Show: on the left-hand side.

Several descriptive values (sub-features like different mean values etc.) are
being computed from the selected feature for one file. This file can be selected
via a Drop-Down Box in the Performance Values section below the feature
display.

B.2.3 Play Performances

Playback of the performances is possible by hitting the Play-button on the
left hand side of the interface. The performance that is currently selected for
sub-feature calculation is played back. To switch between performances choose
a different performance from the Drop-Down menu. This can be also done
during playback to switch instantly to a different performance. The switching
is done at the same score position (not at the same time position) to allow easy
qualitative comparisons between various performances.
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Result Tables - String Quartet
Analysis

1By 1014y PClpau  PC2pau  PC3paun  PClpau

UPC1 +87.62*%  +75.94*%  475.87* +60.64* +50.16* +45.39*
UPC2 +2.70 +3.63 +5.03* +8.39* +5.60* +7.26*
UPC3 +1.56 +2.52 +2.51 +3.18 +4.37 +5.23*
UPC4 +1.17 +2.30 +2.15 +2.88 +3.70 +3.87
UPC5 +1.06 +1.98 +1.63 +2.66 +3.34 +3.52
UPCeé6 +0.75 +1.63 +1.57 +2.40 +3.15 +3.40
UPC7 +0.72 +1.57 +1.27 +2.21 +2.96 +3.27
UPCS8 +0.66 +1.39 +1.25 +1.82 +2.68 +3.03
UPC9 +0.52 +1.24 +1.08 +1.65 +2.67 +2.96
UPC10 +0.46 +1.12 +0.97 +1.55 +2.49 +2.56
UPC11 +0.42 +0.99 +0.84 +1.49 +2.25 +2.30
UPC12 | +0.39 +0.93 +0.78 +1.35 +2.20 +2.21
UPC13 | +0.34 +0.87 +0.76 +1.30 +2.10 +2.10
UPC14 | +0.31 +0.67 +0.65 +1.27 +1.85 +2.01
UPC15 | +0.26 +0.63 +0.62 +1.21 +1.79 +1.98
UPC16 | +0.23 +0.59 +0.61 +1.16 +1.69 +1.72
UPC17 | +0.21 +0.54 +0.55 +1.14 +1.63 +1.65
UPC18 | +0.20 +0.45 +0.53 +1.07 +1.56 +1.57
UPC19 +0.15 +0.40 +0.51 +0.93 +1.38 +1.37
UPC20 +0.15 +0.31 +0.47 +0.88 +1.23 +1.34
UPC21 +0.13 +0.30 +0.33 +0.83 +1.20 +1.24

TABLE C.1: Amount of variance accounted for by each PCA component
UPC for the analysis over the whole piece (rows: principal components,
columns: observation labels); the components marked with an asterisk have
been selected to be the relevant main components
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IBlios  IOIips  PClpjiss  PC2p128  PC3pi2s  PC4p12s

UPC1 +56.06%  +43.20%  469.88* +51.03* +45.24* +40.26*
UPC2 +5.92% +5.14* +5.88* +8.99* +6.03* +6.15%
UPC3 +5.24* +5.07* +3.21 +4.22 +4.59 +5.51*
UPC4 +3.94 +4.25 +2.77 +3.97 +4.10 +4.26
UPC5 +3.50 +4.13 +2.38 +3.61 +3.71 +4.06
UPCe6 +3.21 +4.01 +2.15 +3.09 +3.46 +3.76
UPC7 +2.72 +3.59 +1.67 +2.56 +3.13 +3.59
UPCS8 +2.58 +3.33 +1.48 +2.33 +3.02 +3.42
UPC9 +2.20 +2.96 +1.37 +2.17 +2.84 +3.04
UPC10 | +2.06 +2.92 +1.26 +2.13 +2.74 +2.97
UPC11 +1.96 +2.69 +1.10 +1.95 +2.52 +2.66
UPC12 | +1.67 +2.56 +0.97 +1.72 +2.47 +2.54
UPC13 | +1.54 +2.47 +0.91 +1.66 +2.32 +2.32
UPC14 | +1.44 +2.35 +0.84 +1.61 +2.15 +2.23
UPC15 +1.20 +2.24 +0.75 +1.56 +2.02 +2.21
UPCi16 | +1.14 +1.95 +0.73 +1.50 +1.90 +2.10
UPC17 | +0.95 +1.74 +0.65 +1.39 +1.77 +1.91
UPC18 | +0.90 +1.57 +0.61 +1.31 +1.72 +1.86
UPC19 | +0.66 +1.47 +0.51 +1.17 +1.50 +1.84
UPC20 | +0.61 +1.25 +0.49 +1.04 +1.45 +1.74
UPC21 +0.49 +1.10 +0.38 +1.01 +1.31 +1.57

TABLE C.2: Amount of variance accounted for by each PCA component
UPC for the analysis over bars 1 —128 (rows: principal components, columns:
observation labels); the components marked with * have been selected to be
the relevant main components

1By 10124 PClpoy  PC2p34 PC3pos  PC4poy

UPC1 +51.51%  +59.73*  4+67.66* +42.69* +36.91* +35.10*
UPC2 +9.80* +6.35% +6.11%* +10.52* +7.88* +8.91%*
UPC3 +6.00* +4.55 +5.18* +5.99* +6.75* +7.57*
UPC4 +5.14%* +4.04 +3.52 +5.04* +5.98* +6.04%*
UPC5 +4.45 +3.49 +2.46 +4.50 +5.20%* +5.00%*
UPCe6 +3.67 +2.67 +2.24 +3.70 +4.51 +4.32
UuPC7 +3.12 +2.51 +1.97 +3.25 +3.90 +3.78
UPCS8 +2.98 +2.18 +1.62 +3.05 +3.65 +3.73
UPC9 +2.53 +2.12 +1.35 +2.84 +3.32 +3.28
UPC10 | +2.01 +1.88 +1.30 +2.49 +2.83 +2.84
UPC11 | +1.76 +1.69 +1.08 +2.29 +2.76 +2.67
UPC12 | +1.41 +1.44 +0.91 +1.89 +2.44 +2.58
UPC13 | +1.24 +1.30 +0.80 +1.86 +2.20 +2.25
UPC14 | 40.99 +1.12 +0.74 +1.73 +1.92 +1.92
UPC15 | 4+0.88 +0.92 +0.66 +1.59 +1.79 +1.76
UPC16 | +0.74 +0.83 +0.55 +1.50 +1.55 +1.71
UPC17 | 40.50 +0.82 +0.47 +1.41 +1.53 +1.54
UPC18 | +0.38 +0.74 +0.44 +1.16 +1.43 +1.41
UPC19 | 40.36 +0.60 +0.36 +0.97 +1.31 +1.31
UPC20 | +0.31 +0.53 +0.30 +0.92 +1.16 +1.20
UPC21 | 40.23 +0.50 +0.29 +0.62 +0.98 +1.08

TABLE C.3: Amount of variance accounted for by each PCA component
UPC for the analysis over bars 1 — 24 (rows: principal components, columns:
observation labels); the components marked with * have been selected to be
the relevant main components
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UPC1(IBlI,y;), UPC1(IOI4y), UPCL(PClp a11), UPCL(PC2p q11), UPCL(PC3p a11), UPCL(PCAp q11),
P P

IBIq. Tani Clp.all PC2p aul C3p.all PC4p qul
ABQ | +0.92% +0.86% —0.86* +0.76% F0.72% —0.72*%
AQ +0.95% +0.91% —0.91* +0.76* +0.79% —0.62%
BQ +0.90* +0.77* —0.83* +0.81* +0.72% —0.66*
BSQ | +0.95% +0.85% —0.84% +0.75% +0.60% —0.51%
EQ +0.95% +0.93% —0.95% +0.82% +0.81% —0.76%
GQ +0.96% +0.95% —0.91* +0.84% +0.78% —0.82%
HSQ | +0.97* +0.95% —0.92% +0.85% +0.72% —0.74%
JQ +0.93% +0.88% —0.92% +0.82% +0.71% —0.69%
KQ +0.95% +0.89% —0.78% +0.49% +0.52% —0.40%
LEQ | +0.86* +0.72% —0.74* +0.58% +0.54% —0.15%
LQ +0.96* +0.93* —0.89* +0.79* +0.74% —0.73*
LSQ +0.90* +0.87* —0.88%* +0.80* +0.76* —0.79*
MQ +0.95% +0.90% —0.91% +0.80* +0.72% —0.78%
PQ +0.93% +0.83% —0.90% +0.86* +0.72% —0.67*
QI +0.96* +0.93% —0.93% +0.82* +0.73% —0.74*
QVv1 | 40.97* +0.96% —0.87* +0.82* +0.78% —0.73%
Qv2 | 40.96% +0.94% —0.91* +0.88* +0.75% —0.72%
RQ +0.73% +0.53% —0.50% +0.45% +0.44* —0.29%
sQ +0.94% +0.76% —0.91* +0.85% +0.71% —0.75%
TQ +0.95% +0.92% —0.91% +0.84% +0.76% —0.80%
YQ +0.94% +0.88% —0.90* +0.79* +0.73% —0.63%

TABLE C.4: Correlation between the first principal component U PC'1 and
the corresponding feature values for each performance over the whole piece

r(UPC1(IBli2s), [Bl12g) r(UPC2(IBli2g), [Bl1ag) r(UPC3(IBl12g), Bl12s)
ABQ | —0.69% —0.18 10.33%
AQ | —0.73% +0.35* +0.02
BQ —0.67* +0.37* —0.35%
BSQ | —0.71* —0.10 —0.02
EQ —0.86* —0.29% +0.04
GQ | —0.88* —0.25% —0.04
HSQ | —0.83* —0.00 +0.01
JjQ —0.73* —0.27% —0.08
KQ | —0.76* —0.03 +0.08
LEQ | —0.37* +0.57* +0.39*
LQ —0.82* —0.06 +0.12
LSQ | —0.73* —0.13 —0.44%
MQ | —0.69* 40.04 —-0.17
PQ —0.67* +0.07 +0.51*
QI —0.78* 40.22* 40.09
QV1 | —0.85* —0.02 +0.20%
QV2 | —0.86* —0.25% +0.07
RQ | —0.64* +0.26* —0.23*
sQ —0.76* —0.10 —0.14
TQ —0.77* —0.06 —0.06
YQ | —0.66* +0.40% —0.23*
TaBLE C.5: Correlation between the selected principal components

UPCn(IBI23) and the corresponding feature values I BI 98 for each per-

formance over the first 128 bars
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r(UPC1(I0I24),10I24)  r(UPC2(I0I24),10124)
ABQ | 10.81% —0.17
AQ +0.80* +0.15
BQ +0.74* +0.27%
BSQ | +0.79* 40.09
EQ +0.83* —0.22%
GQ | +0.79* —0.41%
HSQ | +0.89* +0.11
JQ +0.82* —0.07
KQ | +0.84* —0.00
LEQ | +0.64% +0.47*
LQ +0.70* —0.21%
LSQ | +0.76* —0.46*
MQ | +0.64% —0.09
PQ +0.53* +0.28%
QI +0.79* +0.34*
QV1 | +0.89% +0.08
QV2 | +0.83* —0.26*
RQ +0.52% —0.15
sSQ +0.81% —0.17
TQ +0.75* +0.29*
YQ | +0.83* +0.22%

TABLE C.6: Correlation between the selected principal components
UPCn(10Iy4) and the corresponding feature values 10l for each per-
formance over the first 24 bars

r(UPC1(PClpan), PClpau) r(UPC2(PClpau), PClrau)
ABQ —0.86* —0.07*
AQ | —0.91% 10.12%
BQ | —0.83* +0.11*
BSQ | —0.84* —0.17*
EQ | —0.95* +0.12%
GQ | —0.91* —0.07*
HSQ | —0.92* 10.12%
JQ | —0.92¢ 40.04
KQ —0.78%* —0.39*
LEQ | —0.74* ~0.30%
LQ —0.89%* +0.08*
LSQ —0.88* +0.19*
MQ | —0.91* 10.05*
PQ —0.90* +0.08*
QI —0.93* 10.09*
QV1 | —0.87* 40.01
QVv2 —0.91* +0.10*
RQ —0.50%* —0.79*
SQ | —0.91* ~0.00
TQ | —0.91% 10.14*
YQ —0.90* +0.06*

TaBLE C.7: Correlation between the selected principal components
UPCn(PClpqy) and the corresponding feature values PC1lpy for each
performance over the whole piece
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r(UPC1(PC2Fp au), PC2F a11)

r(UPC2(PC2F au), PC2F.a11)

ABQ | 10.76*
AQ | +0.76%
BQ | +0.81*
BSQ | +0.75*
EQ +0.82*
GQ | +0.84*
HSQ | +0.85*
JQ +0.82*
KQ | +0.49*
LEQ | +0.58*
LQ +0.79*
LSQ | +0.80%
MQ | +0.80%
PQ +0.86*
QI +0.82%*
QV1 | +0.82*
QV2 | +0.88*
RQ | +0.45*
SQ +0.85*
TQ +0.84*
YQ | 40.79%

—0.24%*
+0.04

—0.16*
—+0.39*
—0.25%
—0.04

+0.15*
—0.18%*
—+0.72%
+0.57*
—0.13*
+0.01

—0.20%*
—0.07*
—0.12%*
—0.00

—0.05%*
+0.66*
—0.11%*
—0.14*
—0.08*

TABLE C.8: Correlation between the
UPCn(PC2pqy) and the corresponding
performance over the whole piece

r(UPC1(PC3Fan1), PO3F au)

selected principal components
feature values PC2p 4 for each

r(UPC2(PC3F an), PC3F,q11)

ABQ | +0.72%
AQ | +0.79%
BQ | +0.72%
BSQ | +0.60*
EQ +0.81*
GQ | +0.78%
HSQ | +0.72*
JjQ +0.71%
KQ | +0.52%
LEQ | +0.54%
LQ +0.74%
LSQ | +0.76*
MQ | +0.72%
PQ +0.72*
QI +0.73%
QV1 | +0.78%
QV2 | 40.75%
RQ | +0.44%
sQ +0.71%
TQ +0.76*
YQ | 40.73%

—0.09*
+0.10%*
+0.05

—+0.32%
—0.09*
—0.16*
—-0.03

—0.12%*
+0.52%
+0.39*
+0.04

—0.17*
—0.13*
—0.17*
—0.03

—0.06*
+0.03

+0.64*
—0.23*
—0.04

—0.19*

TABLE C.9: Correlation between the

selected principal components

UPCn(PC3Fq) and the corresponding feature values PC3py for each

performance over the whole piece
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r(UPC1(PC4p ), PCapay)  m(UPC2(PChp ay), PChpay) r(UPC3(PChp ai1), PChp air)
ABQ | —0.72% 10.28% —0.21%
AQ | —0.62% —0.15% —0.15%
BQ | —0.66* +0.05 40.14*
BSQ | —0.51% —0.43* +0.36*
EQ —0.76* —0.08* 40.06*
GQ | —0.82% +0.04 +0.06*
HSQ | —0.74* —0.00 +0.02
JjQ —0.69% —0.18* —0.03
KQ | —0.40% —0.44* +0.57*
LEQ | —0.15% —0.65* —0.37*
LQ —0.73* +0.11* —0.22*
LSQ | —0.79* 40.15% —0.24%
MQ | —0.78% 40.22* 40.01
PQ —0.67* 40.11% +0.13*
QI —0.74* +0.01 +0.01
QV1 | —0.73* —0.03 —0.28*
QV2 | —0.72% —0.00 40.09*
RQ | —0.29* —0.62* —0.38*
sQ —0.75% +0.24* —0.01
TQ —0.80* +0.15% +0.09*
YQ | —0.63* —0.10% +0.22%
TABLE C.10: Correlation between the selected principal components

UPCn(PC4Fqu) and the corresponding feature values PC4py for each
performance over the whole piece

OPC1 OPC2 OPC3 OPC4 OPC5
BPM —0.32 —044  —0.09  +0.09  —0.17
BPMprist -0.30  —043  —0.11  +0.16  —0.27
ABPMposp75 | —0.06  —0.39  —0.25  —045  —0.11
o(IBI)/TBT +0.13 4029  —0.29  —0.10  —0.37
faa —0.21  +029  —049  -0.16  —0.06
1770 -0.24 4030  —0.06  +0.33  —0.47
a(v1770) +0.34  —035  40.12 —0.16  +0.04
TSR —0.42 4010  —0.14  40.00  +0.40
o(vsr) 4+0.21  40.03  —0.32  +0.28  +0.46
5o —046 4001 4012  —0.17  40.15
o(vse) -0.33  +0.18 4023  —0.37  +0.24
VMFC3 +0.10  +0.20  4+0.28  —0.50  —0.27
o(vares) —-0.15  40.05  +0.55 4033  —0.07

TABLE C.11: Loadings for the five selected components resulting from the
PCA over the overall features (OPC)



ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ  PQ QI QvVi QVv2 RQ s5Q TQ YQ
ABQ 1.00%* 0.86* 0.80%* 0.89%* 0.91% 0.90% 0.89%* 0.86% 0.89% 0.80* 0.89%* 0.82% 0.87% 0.86* 0.87% 0.90* 0.89% 0.63* 0.89% 0.87% 0.85%*
AQ 0.86* 1.00%* 0.85* 0.89* 0.87* 0.89% 0.94% 0.89* 0.90* 0.82% 0.90* 0.83* 0.92% 0.89* 0.94%* 0.94%* 0.91* 0.67* 0.88* 0.92% 0.93*
BQ 0.80* 0.85% 1.00%* 0.84* 0.86* 0.85* 0.87* 0.82%* 0.85* 0.80* 0.86* 0.85% 0.87* 0.82% 0.84%* 0.86* 0.83* 0.72% 0.86* 0.86* 0.88*
BSQ 0.89* 0.89* 0.84* 1.00* 0.89% 0.92% 0.93* 0.88* 0.91* 0.82%* 0.92%* 0.86* 0.93* 0.88* 0.91* 0.92% 0.90* 0.66* 0.88* 0.91% 0.90*
EQ 0.91%* 0.87* 0.86* 0.89* 1.00* 0.96* 0.93* 0.90%* 0.90%* 0.77* 0.92* 0.90* 0.90%* 0.88%* 0.89* 0.92%* 0.93* 0.71* 0.91%* 0.91%* 0.86*
GQ 0.90%* 0.89%* 0.85% 0.92* 0.96* 1.00* 0.93* 0.93* 0.91%* 0.79* 0.93* 0.90* 0.91* 0.88%* 0.91%* 0.93* 0.93* 0.71* 0.91%* 0.93* 0.87*
HSQ 0.89* 0.94* 0.87* 0.93* 0.93* 0.93* 1.00* 0.91%* 0.93* 0.83* 0.94* 0.89%* 0.95% 0.92% 0.94%* 0.96* 0.94* 0.70* 0.91%* 0.94% 0.92%*
JQ 0.86* 0.89* 0.82* 0.88* 0.90* 0.93* 0.91* 1.00%* 0.91%* 0.77* 0.89* 0.84* 0.89* 0.85%* 0.91%* 0.91%* 0.91%* 0.66* 0.87* 0.91* 0.88*
KQ 0.89%* 0.90* 0.85* 0.91%* 0.90* 0.91* 0.93* 0.91%* 1.00* 0.84* 0.92% 0.83* 0.91* 0.90* 0.94%* 0.94* 0.93* 0.68%* 0.89% 0.91* 0.90*
LEQ 0.80* 0.82% 0.80%* 0.82% 0.77* 0.79* 0.83* 0.77* 0.84%* 1.00%* 0.84%* 0.73* 0.83* 0.83* 0.86* 0.84%* 0.83%* 0.57* 0.80* 0.83* 0.82%
LQ 0.89%* 0.90* 0.86* 0.92% 0.92* 0.93* 0.94% 0.89%* 0.92%* 0.84%* 1.00%* 0.87* 0.92% 0.92% 0.92% 0.94%* 0.93* 0.69% 0.89* 0.91* 0.89*
LSQ 0.82% 0.83* 0.85% 0.86%* 0.90%* 0.90* 0.89* 0.84%* 0.83* 0.73* 0.87* 1.00%* 0.88* 0.78* 0.83* 0.86* 0.87* 0.71% 0.86* 0.86* 0.85*
MQ 0.87* 0.92% 0.87* 0.93* 0.90* 0.91* 0.95%* 0.89%* 0.91%* 0.83* 0.92% 0.88* 1.00%* 0.90* 0.94%* 0.93* 0.91%* 0.65% 0.90* 0.91* 0.93*
PQ 0.86* 0.89* 0.82% 0.88%* 0.88%* 0.88* 0.92% 0.85% 0.90* 0.83* 0.92% 0.78* 0.90* 1.00%* 0.91%* 0.93* 0.91%* 0.64%* 0.86* 0.89% 0.88*
QI 0.87* 0.94%* 0.84%* 0.91%* 0.89* 0.91% 0.94% 0.91%* 0.94%* 0.86* 0.92% 0.83* 0.94% 0.91* 1.00%* 0.94%* 0.94%* 0.64%* 0.89* 0.92% 0.91%
QV1 0.90%* 0.94%* 0.86* 0.92% 0.92% 0.93* 0.96* 0.91%* 0.94%* 0.84%* 0.94%* 0.86* 0.93* 0.93* 0.94%* 1.00%* 0.95%* 0.67* 0.90* 0.94% 0.92%
QVv2 0.89* 0.91* 0.83* 0.90* 0.93* 0.93* 0.94% 0.91* 0.93* 0.83* 0.93* 0.87* 0.91% 0.91% 0.94%* 0.95% 1.00%* 0.65* 0.89% 0.92% 0.89*
RQ 0.63* 0.67* 0.72% 0.66* 0.71% 0.71% 0.70* 0.66* 0.68* 0.57* 0.69* 0.71% 0.65* 0.64* 0.64* 0.67* 0.65* 1.00%* 0.70* 0.69* 0.68*
sQ 0.89* 0.88* 0.86* 0.88* 0.91% 0.91% 0.91% 0.87* 0.89* 0.80* 0.89* 0.86* 0.90* 0.86* 0.89* 0.90* 0.89* 0.70%* 1.00* 0.91% 0.88*
TQ 0.87* 0.92% 0.86* 0.91* 0.91% 0.93* 0.94% 0.91%* 0.91* 0.83* 0.91%* 0.86* 0.91% 0.89* 0.92% 0.94%* 0.92%* 0.69* 0.91% 1.00* 0.91%
YQ 0.85* 0.93* 0.88* 0.90* 0.86* 0.87* 0.92% 0.88* 0.90* 0.82* 0.89* 0.85% 0.93* 0.88* 0.91* 0.92* 0.89* 0.68* 0.88* 0.91% 1.00*
TABLE C.12: IBI Profile correlation between all performances (whole piece)
ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ PQ QI QV1 QV2 RQ SQ TQ YQ
ABQ 1.00* 0.79% 0.66* 0.73% 0.81% 0.81% 0.79%* 0.76% 0.74% 0.58% 0.79% 0.69* 0.75% 0.71% 0.78% 0.80%* 0.81% 0.45% 0.68* 0.77% 0.75%
AQ 0.79%* 1.00%* 0.70%* 0.76* 0.84* 0.85* 0.88* 0.80* 0.80%* 0.65% 0.84%* 0.78* 0.82% 0.75% 0.86* 0.89%* 0.83%* 0.47%* 0.67* 0.84% 0.82%
BQ 0.66* 0.70* 1.00%* 0.65% 0.72% 0.70* 0.71%* 0.68* 0.67* 0.59%* 0.71% 0.66* 0.70* 0.60* 0.71% 0.72% 0.68* 0.40%* 0.54* 0.68* 0.69*
BSQ 0.73* 0.76* 0.65% 1.00%* 0.79% 0.82% 0.80* 0.73% 0.74% 0.60* 0.79% 0.73* 0.77* 0.69* 0.78% 0.82% 0.78% 0.41%* 0.64* 0.79* 0.70%*
EQ 0.81%* 0.84%* 0.72% 0.79% 1.00* 0.92% 0.88* 0.83* 0.80* 0.65% 0.88%* 0.82% 0.84% 0.79* 0.86* 0.89%* 0.89%* 0.47%* 0.69* 0.84% 0.79%*
GQ 0.81%* 0.85% 0.70%* 0.82% 0.92% 1.00%* 0.89* 0.85% 0.80* 0.65% 0.90%* 0.83* 0.85% 0.78* 0.88* 0.91%* 0.90* 0.48%* 0.70* 0.88* 0.80*
HSQ 0.79*% 0.88* 0.71% 0.80%* 0.88* 0.89% 1.00%* 0.83* 0.85%* 0.69* 0.87* 0.83* 0.86* 0.79%* 0.89%* 0.93* 0.89* 0.50%* 0.69* 0.87* 0.83*
JQ 0.76* 0.80* 0.68* 0.73* 0.83* 0.85% 0.83* 1.00%* 0.75% 0.58* 0.81%* 0.72% 0.80* 0.71% 0.83* 0.83* 0.82% 0.44%* 0.61* 0.81% 0.82%
KQ 0.74%* 0.80* 0.67* 0.74%* 0.80* 0.80* 0.85* 0.75% 1.00%* 0.61* 0.80* 0.76* 0.78* 0.72% 0.81%* 0.86* 0.84* 0.53* 0.69* 0.79* 0.80*
LEQ 0.58* 0.65* 0.59* 0.60* 0.65* 0.65* 0.69* 0.58* 0.61* 1.00%* 0.66* 0.63* 0.62* 0.59* 0.69* 0.69* 0.64* 0.36* 0.53* 0.66* 0.61*
LQ 0.79* 0.84%* 0.71% 0.79* 0.88* 0.90* 0.87* 0.81* 0.80* 0.66* 1.00* 0.79* 0.85* 0.78* 0.86* 0.88* 0.87* 0.45* 0.68* 0.84% 0.78*
LSQ 0.69* 0.78* 0.66* 0.73* 0.82% 0.83* 0.83* 0.72% 0.76* 0.63* 0.79%* 1.00* 0.77% 0.68* 0.77* 0.83* 0.81%* 0.49* 0.63* 0.77* 0.77*
MQ 0.75% 0.82%* 0.70* 0.77* 0.84* 0.85* 0.86* 0.80* 0.78% 0.62* 0.85* 0.77* 1.00* 0.74%* 0.85% 0.86* 0.85% 0.42* 0.64* 0.81%* 0.79%*
PQ 0.71%* 0.75% 0.60* 0.69* 0.79%* 0.78% 0.79%* 0.71% 0.72% 0.59%* 0.78% 0.68* 0.74% 1.00* 0.79%* 0.79%* 0.80* 0.41%* 0.60%* 0.74% 0.71%
QI 0.78% 0.86* 0.71%* 0.78% 0.86* 0.88* 0.89%* 0.83* 0.81%* 0.69* 0.86* 0.77* 0.85% 0.79* 1.00* 0.89* 0.88%* 0.44* 0.69%* 0.85%* 0.81%*
QV1 0.80* 0.89* 0.72* 0.82* 0.89* 0.91* 0.93* 0.83* 0.86* 0.69* 0.88* 0.83* 0.86* 0.79%* 0.89* 1.00* 0.91%* 0.48* 0.72% 0.89% 0.85%*
QVv2 0.81* 0.83* 0.68* 0.78% 0.89* 0.90* 0.89* 0.82% 0.84* 0.64* 0.87* 0.81* 0.85* 0.80* 0.88* 0.91%* 1.00* 0.47% 0.70* 0.85* 0.82%
RQ 0.45%* 0.47* 0.40%* 0.41%* 0.47* 0.48* 0.50%* 0.44%* 0.53* 0.36* 0.45% 0.49* 0.42* 0.41%* 0.44%* 0.48%* 0.47* 1.00%* 0.41* 0.43* 0.45%*
sSQ 0.68* 0.67* 0.54%* 0.64%* 0.69* 0.70* 0.69* 0.61* 0.69* 0.53* 0.68%* 0.63* 0.64* 0.60* 0.69* 0.72% 0.70%* 0.41% 1.00%* 0.72%* 0.67*
TQ 0.77* 0.84%* 0.68* 0.79% 0.84%* 0.88* 0.87* 0.81%* 0.79* 0.66* 0.84%* 0.77* 0.81% 0.74%* 0.85%* 0.89%* 0.85% 0.43%* 0.72% 1.00* 0.80*
YQ 0.75%* 0.82%* 0.69* 0.70%* 0.79* 0.80* 0.83* 0.82% 0.80* 0.61%* 0.78% 0.77* 0.79* 0.71%* 0.81%* 0.85%* 0.82%* 0.45% 0.67* 0.80* 1.00%*

TABLE C.13: IOI Profile correlation between all performances (whole piece)

Lyl



ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ PQ QI QVi QVve2 RQ 5Q TQ YQ
ABQ 1.00* 0.44* 0.35% 0.63* 0.66* 0.64* 0.49%* 0.47* 0.55% 0.32% 0.59* 0.40%* 0.39% 0.49%* 0.50* 0.60* 0.60* 0.32% 0.58% 0.47* 0.37*
AQ 0.44* 1.00* 0.63* 0.42* 0.56* 0.57* 0.62* 0.48% 0.50%* 0.33* 0.55* 0.42%* 0.46* 0.53* 0.65% 0.66* 0.58% 0.51%* 0.50%* 0.56* 0.61%*
BQ 0.35% 0.63* 1.00* 0.41%* 0.49%* 0.54%* 0.51% 0.39%* 0.44%* 0.27* 0.53* 0.58% 0.51% 0.34%* 0.54%* 0.55% 0.47* 0.52* 0.51% 0.48%* 0.58%
BSQ 0.63* 0.42%* 0.41%* 1.00* 0.55% 0.65* 0.60%* 0.49%* 0.55% 0.24* 0.55* 0.52% 0.56* 0.41%* 0.55% 0.51% 0.60* 0.41%* 0.55% 0.53* 0.49%*
EQ 0.66* 0.56* 0.49* 0.55* 1.00* 0.85% 0.70* 0.65* 0.62* 0.20* 0.73* 0.67* 0.55% 0.57* 0.58* 0.78* 0.83* 0.47* 0.68% 0.66* 0.44*
GQ 0.64* 0.57* 0.54* 0.65* 0.85% 1.00* 0.71% 0.73* 0.65* 0.23* 0.75* 0.71% 0.59%* 0.53* 0.62* 0.73* 0.82* 0.52* 0.65% 0.74%* 0.46*
HSQ 0.49* 0.62* 0.51* 0.60* 0.70%* 0.71% 1.00* 0.54* 0.59* 0.30* 0.72* 0.65% 0.65% 0.60* 0.64* 0.73* 0.72* 0.52* 0.58% 0.62%* 0.49*
JQ 0.47* 0.48* 0.39* 0.49* 0.65* 0.73* 0.54%* 1.00* 0.57* 0.12 0.60* 0.52%* 0.44%* 0.43% 0.52* 0.58* 0.67* 0.46* 0.57* 0.61%* 0.45%
KQ 0.55% 0.50* 0.44* 0.55* 0.62%* 0.65* 0.59%* 0.57* 1.00* 0.23* 0.60* 0.47* 0.48% 0.53% 0.66* 0.64* 0.63* 0.54* 0.58% 0.55% 0.49%*
LEQ 0.32%* 0.33* 0.27* 0.24* 0.20%* 0.23* 0.30%* 0.12 0.23% 1.00* 0.33* 0.19 0.23* 0.31%* 0.39%* 0.31%* 0.20%* 0.25% 0.22%* 0.26* 0.29%
LQ 0.59%* 0.55% 0.53* 0.55% 0.73* 0.75% 0.72% 0.60* 0.60* 0.33* 1.00* 0.59%* 0.54%* 0.60* 0.61%* 0.72% 0.70* 0.51%* 0.57* 0.58% 0.47*
LsSQ 0.40%* 0.42%* 0.58% 0.52* 0.67* 0.71% 0.65* 0.52%* 0.47* 0.19 0.59* 1.00* 0.55% 0.22% 0.50* 0.54%* 0.65% 0.48* 0.59%* 0.57* 0.46*
MQ 0.39%* 0.46* 0.51%* 0.56* 0.55* 0.59%* 0.65* 0.44%* 0.48%* 0.23* 0.54* 0.55* 1.00* 0.44%* 0.50%* 0.54* 0.56* 0.36* 0.52%* 0.44%* 0.50%*
PQ 0.49%* 0.53* 0.34* 0.41%* 0.57* 0.53* 0.60* 0.43* 0.53* 0.31%* 0.60* 0.22%* 0.44%* 1.00* 0.52% 0.69%* 0.59* 0.37* 0.41%* 0.48%* 0.40%*
QI 0.50* 0.65* 0.54* 0.55* 0.58% 0.62%* 0.64* 0.52% 0.66* 0.39* 0.61* 0.50%* 0.50* 0.52%* 1.00* 0.67* 0.63* 0.51%* 0.53* 0.59%* 0.53*
QV1 0.60* 0.66* 0.55% 0.51%* 0.78% 0.73* 0.73* 0.58% 0.64* 0.31%* 0.72* 0.54%* 0.54%* 0.69%* 0.67* 1.00* 0.80%* 0.52* 0.61%* 0.64* 0.47*
QVv2 0.60* 0.58% 0.47* 0.60* 0.83* 0.82%* 0.72% 0.67* 0.63* 0.20%* 0.70* 0.65* 0.56* 0.59%* 0.63* 0.80%* 1.00* 0.47* 0.59%* 0.69%* 0.46*
RQ 0.32%* 0.51% 0.52% 0.41%* 0.47* 0.52% 0.52% 0.46* 0.54%* 0.25% 0.51%* 0.48%* 0.36* 0.37* 0.51% 0.52% 0.47* 1.00* 0.50%* 0.49%* 0.50%*
sSQ 0.58% 0.50%* 0.51% 0.55% 0.68* 0.65* 0.58% 0.57* 0.58% 0.22% 0.57* 0.59%* 0.52%* 0.41%* 0.53* 0.61%* 0.59%* 0.50* 1.00* 0.60* 0.49%*
TQ 0.47* 0.56* 0.48% 0.53* 0.66* 0.74%* 0.62%* 0.61%* 0.55% 0.26* 0.58* 0.57* 0.44* 0.48% 0.59% 0.64* 0.69* 0.49* 0.60%* 1.00* 0.52%
YQ 0.37* 0.61% 0.58% 0.49* 0.44* 0.46* 0.49* 0.45% 0.49* 0.29%* 0.47* 0.46* 0.50%* 0.40* 0.53% 0.47* 0.46* 0.50* 0.49%* 0.52% 1.00*
TABLE C.14: IBI Profile correlation between all performances (128 bars)
ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ PQ QI QV1 QV2 RQ SQ TQ YQ
ABQ 1.00* 0.47% 0.32% 0.53% 0.52% 0.52% 0.42% 0.37% 0.41% 0.21% 0.47% 0.30* 0.31% 0.37%* 0.41% 0.50% 0.55% 0.21% 0.42% 0.45% 0.40%*
AQ 0.47* 1.00%* 0.42% 0.44%* 0.48* 0.48* 0.51% 0.36* 0.38* 0.21%* 0.46* 0.34* 0.33* 0.37* 0.47* 0.54%* 0.46* 0.26* 0.29* 0.47* 0.42%*
BQ 0.32%* 0.42%* 1.00* 0.40%* 0.41%* 0.41%* 0.39%* 0.36* 0.33* 0.27* 0.39* 0.34%* 0.35% 0.20%* 0.42% 0.46* 0.32* 0.16* 0.22%* 0.36* 0.38%
BSQ 0.53* 0.44%* 0.40%* 1.00* 0.52* 0.56* 0.49%* 0.39%* 0.43* 0.21%* 0.45* 0.46* 0.35% 0.32%* 0.48% 0.55% 0.52* 0.22* 0.39%* 0.51%* 0.39%*
EQ 0.52%* 0.48%* 0.41%* 0.52* 1.00* 0.74%* 0.54%* 0.49%* 0.42%* 0.22* 0.57* 0.48%* 0.39%* 0.45% 0.48% 0.67* 0.67* 0.22* 0.40%* 0.53* 0.36*
GQ 0.52%* 0.48%* 0.41%* 0.56* 0.74%* 1.00* 0.55% 0.54%* 0.44* 0.19* 0.61* 0.57* 0.41%* 0.43* 0.47* 0.66* 0.68* 0.27* 0.41%* 0.60* 0.40%*
HSQ 0.42% 0.51%* 0.39* 0.49* 0.54%* 0.55% 1.00* 0.40%* 0.51%* 0.28% 0.51%* 0.46* 0.40%* 0.43* 0.47* 0.63* 0.58% 0.29* 0.35% 0.47* 0.39%*
JQ 0.37* 0.36* 0.36* 0.39* 0.49%* 0.54%* 0.40%* 1.00* 0.33* 0.14* 0.46* 0.33* 0.35% 0.31%* 0.38% 0.47* 0.49%* 0.22* 0.23* 0.42%* 0.52%
KQ 0.41%* 0.38% 0.33* 0.43* 0.42%* 0.44%* 0.51% 0.33* 1.00* 0.22% 0.41%* 0.31%* 0.29%* 0.34* 0.39%* 0.44* 0.45% 0.40%* 0.33* 0.37* 0.30%*
LEQ 0.21%* 0.21%* 0.27* 0.21%* 0.22%* 0.19%* 0.28% 0.14* 0.22% 1.00* 0.21%* 0.19%* 0.16* 0.14%* 0.27* 0.28% 0.17* 0.14* 0.15% 0.24%* 0.24%*
LQ 0.47* 0.46* 0.39%* 0.45* 0.57* 0.61%* 0.51% 0.46%* 0.41%* 0.21%* 1.00* 0.45* 0.44* 0.40* 0.46* 0.59% 0.54* 0.22* 0.34%* 0.46* 0.36*
LSQ 0.30%* 0.34* 0.34* 0.46* 0.48%* 0.57* 0.46%* 0.33* 0.31%* 0.19* 0.45* 1.00* 0.31%* 0.23%* 0.32%* 0.41%* 0.49* 0.23* 0.32%* 0.34%* 0.34%*
MQ 0.31% 0.33* 0.35% 0.35* 0.39% 0.41%* 0.40%* 0.35% 0.29* 0.16* 0.44* 0.31% 1.00* 0.28% 0.40%* 0.42* 0.41* 0.13* 0.26* 0.30%* 0.31%
PQ 0.37* 0.37* 0.20* 0.32* 0.45% 0.43% 0.43* 0.31%* 0.34* 0.14* 0.40* 0.23% 0.28% 1.00* 0.35% 0.48* 0.44* 0.17* 0.24%* 0.37* 0.30*
QI 0.41%* 0.47* 0.42* 0.48* 0.48% 0.47* 0.47* 0.38* 0.39* 0.27* 0.46* 0.32% 0.40* 0.35% 1.00* 0.56* 0.45* 0.20* 0.35% 0.46* 0.44*
QV1i 0.50%* 0.54* 0.46* 0.55* 0.67* 0.66* 0.63* 0.47* 0.44* 0.28* 0.59* 0.41%* 0.42% 0.48% 0.56* 1.00* 0.66* 0.26* 0.40%* 0.56* 0.41%*
QVv2 0.55% 0.46* 0.32* 0.52* 0.67* 0.68%* 0.58% 0.49%* 0.45* 0.17* 0.54* 0.49%* 0.41%* 0.44%* 0.45% 0.66* 1.00* 0.24* 0.45%* 0.51%* 0.39%*
RQ 0.21%* 0.26* 0.16* 0.22% 0.22* 0.27* 0.29%* 0.22% 0.40%* 0.14%* 0.22% 0.23* 0.13* 0.17* 0.20* 0.26* 0.24%* 1.00%* 0.23* 0.21* 0.17*
sSQ 0.42% 0.29%* 0.22% 0.39* 0.40%* 0.41%* 0.35% 0.23* 0.33* 0.15% 0.34* 0.32%* 0.26* 0.24%* 0.35% 0.40%* 0.45% 0.23* 1.00* 0.47* 0.31%*
TQ 0.45% 0.47* 0.36* 0.51%* 0.53* 0.60%* 0.47* 0.42% 0.37* 0.24* 0.46* 0.34%* 0.30%* 0.37* 0.46* 0.56* 0.51%* 0.21%* 0.47* 1.00* 0.40%*
YQ 0.40%* 0.42%* 0.38* 0.39* 0.36* 0.40* 0.39* 0.52%* 0.30* 0.24* 0.36* 0.34%* 0.31%* 0.30* 0.44* 0.41%* 0.39* 0.17* 0.31%* 0.40%* 1.00*
TABLE C.15: 101 Profile correlation between all performances (128 bars)
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ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ  PQ QI QvVi QVv2 RQ s5Q TQ YQ
ABQ 1.00%* 0.76* 0.62% 0.72% 0.80% 0.79% 0.77% 0.76% 0.70% 0.62%* 0.78% 0.71% 0.76* 0.81% 0.77% 0.78% 0.77* 0.46* 0.76* 0.76* 0.74%
AQ 0.76* 1.00%* 0.78% 0.71% 0.90* 0.81% 0.84% 0.86* 0.66* 0.63* 0.80* 0.80* 0.81% 0.84% 0.85% 0.79* 0.82% 0.39% 0.81% 0.86* 0.83*
BQ 0.62* 0.78* 1.00%* 0.67* 0.78* 0.69* 0.73* 0.75% 0.64* 0.61* 0.75% 0.76* 0.80* 0.70* 0.79*% 0.64* 0.72% 0.34%* 0.74% 0.79* 0.75%
BSQ 0.72% 0.71% 0.67* 1.00* 0.74% 0.80* 0.76* 0.75% 0.70* 0.64* 0.75% 0.72% 0.77* 0.76* 0.76* 0.69* 0.75% 0.51%* 0.77* 0.72% 0.74%*
EQ 0.80* 0.90%* 0.78% 0.74* 1.00* 0.84* 0.87* 0.89%* 0.70%* 0.67* 0.84* 0.86* 0.83* 0.86* 0.88%* 0.82% 0.87* 0.40* 0.85% 0.90%* 0.85%
GQ 0.79%* 0.81%* 0.69* 0.80* 0.84* 1.00* 0.85% 0.84%* 0.71%* 0.67* 0.80* 0.81% 0.81* 0.83* 0.82%* 0.81%* 0.82* 0.51%* 0.81%* 0.81* 0.79%*
HSQ 0.77* 0.84* 0.73* 0.76* 0.87* 0.85% 1.00* 0.87* 0.62* 0.65* 0.81%* 0.81%* 0.83* 0.86* 0.84* 0.81%* 0.84* 0.39* 0.84* 0.84% 0.84*
JQ 0.76* 0.86* 0.75% 0.75% 0.89* 0.84% 0.87* 1.00%* 0.66* 0.66* 0.82* 0.80* 0.82% 0.85%* 0.85* 0.80%* 0.82* 0.46* 0.84* 0.84% 0.83*
KQ 0.70%* 0.66* 0.64* 0.70* 0.70* 0.71* 0.62* 0.66* 1.00* 0.65* 0.67* 0.62* 0.68* 0.64* 0.70* 0.65* 0.67* 0.61% 0.70* 0.68* 0.68*
LEQ 0.62%* 0.63* 0.61%* 0.64%* 0.67* 0.67* 0.65* 0.66* 0.65%* 1.00%* 0.56* 0.60* 0.63* 0.59%* 0.61%* 0.60* 0.65% 0.50%* 0.67* 0.64* 0.69*
LQ 0.78* 0.80%* 0.75% 0.75% 0.84* 0.80* 0.81% 0.82% 0.67* 0.56* 1.00%* 0.77* 0.80* 0.80* 0.84%* 0.77* 0.78% 0.41%* 0.78* 0.82% 0.76*
LSQ 0.71%* 0.80* 0.76* 0.72% 0.86* 0.81% 0.81% 0.80%* 0.62%* 0.60%* 0.77* 1.00%* 0.83* 0.77* 0.83* 0.74%* 0.81%* 0.32% 0.78* 0.86* 0.77*
MQ 0.76* 0.81%* 0.80%* 0.77* 0.83* 0.81% 0.83* 0.82% 0.68* 0.63* 0.80%* 0.83* 1.00%* 0.81% 0.85% 0.78% 0.82% 0.43%* 0.83* 0.81% 0.80%*
PQ 0.81% 0.84%* 0.70%* 0.76* 0.86* 0.83* 0.86* 0.85% 0.64* 0.59%* 0.80%* 0.77* 0.81% 1.00%* 0.83* 0.80* 0.82% 0.40%* 0.83* 0.80* 0.80*
QI 0.77% 0.85% 0.79* 0.76* 0.88* 0.82% 0.84% 0.85% 0.70* 0.61%* 0.84%* 0.83* 0.85% 0.83* 1.00%* 0.78% 0.84%* 0.41%* 0.82% 0.86* 0.82%
QV1 0.78*% 0.79* 0.64* 0.69%* 0.82% 0.81% 0.81% 0.80* 0.65* 0.60* 0.77* 0.74% 0.78* 0.80* 0.78*% 1.00%* 0.83* 0.44%* 0.78* 0.77* 0.77*
QVv2 0.77* 0.82% 0.72% 0.75% 0.87* 0.82% 0.84% 0.82% 0.67* 0.65* 0.78% 0.81% 0.82% 0.82% 0.84%* 0.83* 1.00%* 0.37* 0.84% 0.83* 0.83*
RQ 0.46* 0.39* 0.34%* 0.51% 0.40* 0.51% 0.39* 0.46* 0.61* 0.50%* 0.41%* 0.32% 0.43* 0.40%* 0.41%* 0.44* 0.37* 1.00%* 0.45% 0.37* 0.38*
sQ 0.76* 0.81%* 0.74%* 0.77* 0.85% 0.81% 0.84% 0.84%* 0.70* 0.67* 0.78% 0.78* 0.83* 0.83* 0.82% 0.78* 0.84* 0.45%* 1.00* 0.80* 0.83*
TQ 0.76* 0.86* 0.79* 0.72% 0.90* 0.81% 0.84% 0.84%* 0.68* 0.64* 0.82% 0.86* 0.81% 0.80* 0.86* 0.77* 0.83* 0.37* 0.80* 1.00* 0.81%
YQ 0.74%* 0.83* 0.75% 0.74%* 0.85% 0.79* 0.84% 0.83* 0.68* 0.69* 0.76* 0.77* 0.80* 0.80* 0.82% 0.77* 0.83* 0.38%* 0.83* 0.81% 1.00*
TABLE C.16: PC1p Profile correlation between all performances (whole piece)
ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ PQ QI QV1 QV2 RQ SQ TQ YQ
ABQ 1.00* 0.58% 0.68%* 0.50% 0.67* 0.57* 0.55% 0.61% 0.24%* 0.33% 0.61% 0.59% 0.60* 0.68* 0.65% 0.55% 0.63* 0.20% 0.68* 0.64%* 0.57%*
AQ 0.58* 1.00%* 0.65% 0.52% 0.62* 0.63* 0.59* 0.57* 0.38* 0.46* 0.57* 0.63* 0.54% 0.65* 0.63* 0.62%* 0.65%* 0.37% 0.57* 0.63* 0.53*
BQ 0.68* 0.65% 1.00%* 0.54%* 0.66* 0.62* 0.62* 0.69* 0.32% 0.37* 0.71% 0.66* 0.66* 0.67* 0.65% 0.65% 0.70%* 0.26* 0.68* 0.65* 0.57*
BSQ 0.50%* 0.52% 0.54%* 1.00%* 0.53% 0.61* 0.67* 0.52% 0.62* 0.61%* 0.52% 0.64* 0.50* 0.61* 0.52% 0.55% 0.66* 0.48%* 0.64* 0.53* 0.56*
EQ 0.67* 0.62* 0.66* 0.53%* 1.00* 0.69* 0.64* 0.68* 0.21%* 0.34%* 0.60%* 0.63* 0.70%* 0.71%* 0.69* 0.64* 0.71% 0.26* 0.68* 0.73* 0.67*
GQ 0.57*% 0.63* 0.62* 0.61%* 0.69* 1.00%* 0.70%* 0.75% 0.34%* 0.46* 0.63* 0.66* 0.65* 0.69* 0.66* 0.71% 0.72% 0.34%* 0.67* 0.71% 0.66*
HSQ 0.55% 0.59* 0.62* 0.67* 0.64* 0.70%* 1.00%* 0.67* 0.49* 0.56* 0.62% 0.64* 0.65* 0.72% 0.68* 0.71% 0.73* 0.44%* 0.68* 0.71% 0.69*
JQ 0.61* 0.57* 0.69* 0.52% 0.68* 0.75% 0.67* 1.00%* 0.27* 0.39* 0.64* 0.60* 0.72% 0.65%* 0.67* 0.71% 0.70%* 0.28%* 0.69* 0.71% 0.69*
KQ 0.24% 0.38* 0.32% 0.62* 0.21% 0.34% 0.49* 0.27*% 1.00%* 0.58* 0.35% 0.38* 0.27% 0.36* 0.32% 0.37* 0.40* 0.59%* 0.37% 0.27* 0.31%*
LEQ 0.33* 0.46* 0.37* 0.61%* 0.34% 0.46* 0.56* 0.39*% 0.58* 1.00%* 0.34%* 0.42% 0.32% 0.46* 0.45% 0.48* 0.47* 0.52% 0.42% 0.44% 0.40%*
LQ 0.61* 0.57* 0.71% 0.52% 0.60* 0.63* 0.62* 0.64%* 0.35% 0.34* 1.00* 0.65% 0.67* 0.66* 0.65% 0.64* 0.68* 0.28%* 0.68* 0.64* 0.59*
LSQ 0.59* 0.63* 0.66* 0.64* 0.63* 0.66* 0.64%* 0.60* 0.38* 0.42%* 0.65* 1.00* 0.61* 0.68* 0.60* 0.61* 0.71% 0.34%* 0.66* 0.66* 0.58*
MQ 0.60%* 0.54%* 0.66* 0.50* 0.70%* 0.65* 0.65* 0.72% 0.27* 0.32* 0.67* 0.61%* 1.00* 0.66* 0.62* 0.62* 0.71% 0.30* 0.71% 0.66* 0.69%*
PQ 0.68% 0.65% 0.67* 0.61* 0.71% 0.69%* 0.72% 0.65* 0.36* 0.46* 0.66* 0.68* 0.66* 1.00* 0.71%* 0.68* 0.78% 0.33* 0.71% 0.72% 0.66*
QI 0.65* 0.63* 0.65% 0.52* 0.69%* 0.66* 0.68* 0.67* 0.32* 0.45* 0.65* 0.60* 0.62* 0.71%* 1.00* 0.68% 0.70* 0.28* 0.69%* 0.72% 0.65*
QV1 0.55%* 0.62* 0.65* 0.55* 0.64* 0.71* 0.71%* 0.71%* 0.37* 0.48%* 0.64* 0.61* 0.62* 0.68* 0.68* 1.00* 0.70* 0.36* 0.62* 0.70* 0.59%*
QVv2 0.63* 0.65* 0.70* 0.66* 0.71* 0.72%* 0.73* 0.70* 0.40* 0.47* 0.68* 0.71* 0.71* 0.78* 0.70* 0.70* 1.00* 0.30%* 0.78* 0.72%* 0.68*
RQ 0.20%* 0.37* 0.26* 0.48%* 0.26* 0.34* 0.44* 0.28* 0.59%* 0.52% 0.28%* 0.34* 0.30* 0.33* 0.28* 0.36* 0.30%* 1.00%* 0.27* 0.32% 0.34%*
sSQ 0.68* 0.57* 0.68* 0.64%* 0.68* 0.67* 0.68* 0.69* 0.37* 0.42% 0.68%* 0.66* 0.71* 0.71%* 0.69* 0.62%* 0.78% 0.27% 1.00%* 0.71* 0.69*
TQ 0.64* 0.63* 0.65% 0.53%* 0.73% 0.71% 0.71%* 0.71% 0.27* 0.44%* 0.64%* 0.66* 0.66* 0.72% 0.72% 0.70%* 0.72% 0.32% 0.71% 1.00* 0.67*
YQ 0.57* 0.53* 0.57* 0.56* 0.67* 0.66* 0.69* 0.69* 0.31%* 0.40%* 0.59% 0.58* 0.69* 0.66* 0.65* 0.59* 0.68* 0.34%* 0.69* 0.67* 1.00%*

TABLE C.17: PC2p Profile correlation between all performances (whole piece)
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ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ  PQ QI QvVi QVv2 RQ s5Q TQ YQ
ABQ 1.00%* 0.54% 0.48%* 0.36* 0.57% 0.51% 0.45% 0.50% 0.32% 0.35% 0.58% 0.55% 0.50% 0.48* 0.51% 0.58% 0.53%* 0.27% 0.48% 0.53% 0.46*
AQ 0.54%* 1.00%* 0.51%* 0.42%* 0.65% 0.61* 0.51% 0.50* 0.47* 0.50* 0.59* 0.65* 0.50* 0.53* 0.54%* 0.60* 0.55%* 0.36* 0.51% 0.52% 0.57*
BQ 0.48* 0.51%* 1.00%* 0.49* 0.52% 0.53* 0.46* 0.52%* 0.41%* 0.34* 0.48* 0.53* 0.51% 0.51%* 0.54%* 0.51%* 0.55%* 0.26* 0.42% 0.56* 0.45%*
BSQ 0.36* 0.42% 0.49* 1.00* 0.41% 0.45% 0.43* 0.42% 0.43* 0.36* 0.39%* 0.34% 0.39% 0.42%* 0.36* 0.46* 0.40* 0.35% 0.41% 0.40* 0.42%*
EQ 0.57* 0.65% 0.52* 0.41%* 1.00* 0.64%* 0.54%* 0.52% 0.38% 0.39* 0.56* 0.60%* 0.56* 0.60* 0.53* 0.64* 0.59* 0.31%* 0.59* 0.63* 0.55%
GQ 0.51% 0.61%* 0.53* 0.45* 0.64* 1.00* 0.52% 0.54* 0.27* 0.37* 0.51%* 0.59%* 0.56* 0.57* 0.53* 0.56* 0.52* 0.31%* 0.58% 0.57* 0.64%*
HSQ 0.45%* 0.51%* 0.46* 0.43* 0.54%* 0.52% 1.00* 0.50%* 0.36* 0.32* 0.52* 0.54* 0.54% 0.46* 0.46* 0.58% 0.57* 0.29* 0.50%* 0.52% 0.47*
JQ 0.50%* 0.50%* 0.52* 0.42* 0.52* 0.54% 0.50* 1.00%* 0.30%* 0.35% 0.48* 0.51* 0.47* 0.44% 0.55% 0.54* 0.54* 0.22* 0.50* 0.47* 0.56*
KQ 0.32%* 0.47* 0.41%* 0.43* 0.38* 0.27* 0.36* 0.30* 1.00* 0.31%* 0.37% 0.37* 0.39* 0.34%* 0.35% 0.34* 0.42* 0.34%* 0.19* 0.39* 0.28*
LEQ 0.35%* 0.50* 0.34%* 0.36* 0.39* 0.37* 0.32%* 0.35% 0.31%* 1.00%* 0.39% 0.34* 0.31* 0.35%* 0.34%* 0.36* 0.37* 0.37% 0.36* 0.32* 0.37*
LQ 0.58* 0.59* 0.48%* 0.39% 0.56* 0.51% 0.52% 0.48* 0.37* 0.39%* 1.00%* 0.54* 0.51% 0.45%* 0.59* 0.55% 0.50%* 0.33%* 0.49* 0.53* 0.51%*
LSQ 0.55%* 0.65% 0.53* 0.34%* 0.60%* 0.59* 0.54% 0.51%* 0.37* 0.34%* 0.54%* 1.00%* 0.55* 0.55%* 0.53* 0.54%* 0.56* 0.23%* 0.52* 0.58* 0.54%*
MQ 0.50%* 0.50%* 0.51%* 0.39% 0.56* 0.56* 0.54%* 0.47* 0.39%* 0.31%* 0.51% 0.55* 1.00%* 0.45%* 0.47* 0.55% 0.52% 0.19%* 0.49* 0.59* 0.48*
PQ 0.48* 0.53* 0.51%* 0.42% 0.60%* 0.57* 0.46* 0.44%* 0.34%* 0.35% 0.45% 0.55% 0.45% 1.00%* 0.52% 0.55% 0.48%* 0.19%* 0.53* 0.53* 0.54%*
QI 0.51% 0.54%* 0.54%* 0.36* 0.53* 0.53* 0.46* 0.55% 0.35% 0.34%* 0.59%* 0.53* 0.47* 0.52% 1.00%* 0.54%* 0.53* 0.33* 0.47* 0.52% 0.54%
QV1 0.58* 0.60* 0.51%* 0.46* 0.64* 0.56* 0.58* 0.54% 0.34%* 0.36* 0.55% 0.54% 0.55% 0.55% 0.54%* 1.00%* 0.54%* 0.33* 0.54% 0.56* 0.52%
QVv2 0.53* 0.55% 0.55% 0.40%* 0.59* 0.52% 0.57* 0.54%* 0.42%* 0.37* 0.50%* 0.56* 0.52% 0.48* 0.53*% 0.54* 1.00%* 0.31% 0.49* 0.61* 0.45%*
RQ 0.27* 0.36* 0.26* 0.35% 0.31% 0.31% 0.29%* 0.22% 0.34%* 0.37* 0.33* 0.23* 0.19% 0.19%* 0.33* 0.33* 0.31%* 1.00%* 0.28* 0.34% 0.26*
sQ 0.48* 0.51%* 0.42% 0.41%* 0.59* 0.58* 0.50%* 0.50* 0.19* 0.36* 0.49* 0.52% 0.49* 0.53* 0.47* 0.54* 0.49* 0.28%* 1.00* 0.50* 0.63*
TQ 0.53* 0.52% 0.56* 0.40* 0.63* 0.57* 0.52% 0.47* 0.39* 0.32% 0.53* 0.58* 0.59* 0.53* 0.52% 0.56* 0.61* 0.34%* 0.50% 1.00* 0.51%*
YQ 0.46* 0.57* 0.45* 0.42%* 0.55% 0.64* 0.47* 0.56* 0.28* 0.37* 0.51%* 0.54% 0.48* 0.54%* 0.54% 0.52% 0.45* 0.26* 0.63* 0.51% 1.00*
TABLE C.18: PC3p Profile correlation between all performances (whole piece)
ABQ AQ BQ BSQ EQ GQ HSQ JQ KQ LEQ LQ LSQ MQ PQ QI QV1 QV2 RQ SQ TQ YQ
ABQ 1.00* 0.38% 0.47% 0.20% 0.51% 0.57* 0.48* 0.46%* 0.09% 0.01 0.51% 0.62* 0.57* 0.46* 0.50% 0.55% 0.47% 0.13% 0.56* 0.57% 0.43%*
AQ 0.38* 1.00%* 0.36* 0.32% 0.49* 0.46* 0.41%* 0.40%* 0.23* 0.18* 0.45% 0.51% 0.41* 0.42%* 0.45% 0.45%* 0.42% 0.21%* 0.37* 0.40* 0.36*
BQ 0.47* 0.36* 1.00%* 0.33%* 0.46* 0.51% 0.44% 0.42% 0.28* 0.04 0.44%* 0.50* 0.51% 0.42%* 0.49* 0.41%* 0.49%* 0.15% 0.44* 0.54% 0.38*
BSQ 0.20%* 0.32% 0.33* 1.00%* 0.35% 0.39* 0.40%* 0.36* 0.40%* 0.17* 0.33% 0.27* 0.31* 0.29%* 0.34%* 0.33* 0.40%* 0.23%* 0.31* 0.33* 0.37*
EQ 0.51%* 0.49* 0.46* 0.35% 1.00* 0.64* 0.51%* 0.52% 0.36* 0.10%* 0.49%* 0.59* 0.52% 0.45%* 0.50% 0.52% 0.52% 0.24%* 0.51% 0.59* 0.51%
GQ 0.57*% 0.46* 0.51%* 0.39% 0.64* 1.00%* 0.59%* 0.57*% 0.28* 0.09* 0.53* 0.61* 0.61* 0.56* 0.60* 0.55% 0.57* 0.18%* 0.59* 0.66* 0.54%
HSQ 0.48* 0.41%* 0.44%* 0.40%* 0.51% 0.59% 1.00%* 0.45% 0.29%* 0.10%* 0.54%* 0.52% 0.57* 0.47* 0.48* 0.57* 0.51%* 0.20%* 0.55% 0.56* 0.41%*
JQ 0.46* 0.40* 0.42% 0.36* 0.52% 0.57% 0.45%* 1.00%* 0.26* 0.19* 0.42% 0.47* 0.46* 0.39%* 0.51%* 0.47* 0.48* 0.27* 0.47* 0.47* 0.50%*
KQ 0.09* 0.23* 0.28* 0.40%* 0.36* 0.28* 0.29%* 0.26* 1.00%* 0.11%* 0.16* 0.19* 0.27% 0.27* 0.27*% 0.21%* 0.29* 0.22% 0.20* 0.33* 0.27*
LEQ 0.01 0.18* 0.04 0.17* 0.10* 0.09* 0.10* 0.19*% 0.11* 1.00%* 0.07* 0.10* 0.03 0.07* 0.08* 0.12%* 0.09* 0.31% 0.01 0.05 0.10*
LQ 0.51%* 0.45% 0.44* 0.33* 0.49* 0.53* 0.54% 0.42%* 0.16* 0.07* 1.00* 0.63* 0.58* 0.45* 0.54%* 0.58* 0.50* 0.20%* 0.53* 0.55% 0.36*
LSQ 0.62* 0.51% 0.50* 0.27* 0.59* 0.61* 0.52% 0.47* 0.19* 0.10* 0.63* 1.00* 0.65* 0.45* 0.51% 0.59* 0.56* 0.21%* 0.61* 0.66* 0.41%*
MQ 0.57* 0.41%* 0.51%* 0.31%* 0.52% 0.61%* 0.57* 0.46* 0.27* 0.03 0.58* 0.65* 1.00* 0.54* 0.55% 0.52% 0.49* 0.12* 0.67* 0.68* 0.41%*
PQ 0.46* 0.42%* 0.42%* 0.29* 0.45* 0.56%* 0.47* 0.39%* 0.27* 0.07* 0.45* 0.45%* 0.54% 1.00* 0.57* 0.43* 0.40%* 0.08* 0.47* 0.57* 0.39%*
QI 0.50%* 0.45% 0.49* 0.34* 0.50%* 0.60* 0.48* 0.51%* 0.27* 0.08* 0.54* 0.51% 0.55% 0.57* 1.00* 0.51%* 0.51%* 0.22* 0.51% 0.57* 0.43*
QV1 0.55%* 0.45% 0.41%* 0.33* 0.52* 0.55% 0.57* 0.47* 0.21%* 0.12* 0.58* 0.59* 0.52% 0.43* 0.51%* 1.00* 0.51%* 0.30* 0.51% 0.51% 0.33*
QVv2 0.47* 0.42* 0.49* 0.40%* 0.52* 0.57* 0.51% 0.48* 0.29%* 0.09* 0.50* 0.56* 0.49* 0.40%* 0.51%* 0.51%* 1.00* 0.12% 0.49* 0.53* 0.42%*
RQ 0.13* 0.21%* 0.15%* 0.23%* 0.24* 0.18* 0.20* 0.27* 0.22% 0.31%* 0.20%* 0.21* 0.12* 0.08* 0.22% 0.30%* 0.12% 1.00%* 0.11* 0.14* 0.14*
sSQ 0.56* 0.37* 0.44%* 0.31% 0.51* 0.59* 0.55%* 0.47* 0.20%* 0.01 0.53%* 0.61* 0.67* 0.47* 0.51%* 0.51%* 0.49%* 0.11% 1.00%* 0.62* 0.45%*
TQ 0.57* 0.40%* 0.54%* 0.33* 0.59% 0.66* 0.56* 0.47* 0.33* 0.05 0.55% 0.66* 0.68* 0.57* 0.57* 0.51%* 0.53* 0.14%* 0.62* 1.00* 0.46*
YQ 0.43* 0.36* 0.38* 0.37* 0.51* 0.54* 0.41* 0.50* 0.27* 0.10%* 0.36* 0.41* 0.41* 0.39* 0.43* 0.33* 0.42% 0.14%* 0.45* 0.46* 1.00%*

TABLE C.19: PC4p Profile correlation between all performances (whole piece)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 +1.00% +0.93*  —0.27 -0.30 —0.14 +0.18 —0.14 —0.05 +0.02 —0.01 —-0.23 +0.30 +0.50%*  +0.23 +0.45
2 +0.93* +1.00* —0.19 —-0.24 -0.13 +0.29 —0.12 +0.06 +0.11 —0.07 —0.29 +0.25 +0.43 +0.22 +0.56%*
3 —-0.27 -0.19 +1.00%  +0.96* +0.40 —0.36 +0.06 +0.12 —0.04 +0.36 —-0.23 +0.42 +0.14 —-0.29 +0.08
4 —-0.30 -0.24 +0.96* +1.00%* +0.38 —-0.31 +0.03 +0.19 —0.11 +0.30 —0.24 +0.37 +0.02 —-0.30 +0.07
5 -0.14 -0.13 +0.40 +0.38 +1.00*  40.03 +0.02 —0.23 +0.28 +0.04 —0.10 +0.20 —0.01 —0.08 —0.32
6 +0.18  40.29 —0.36 -0.31 +0.03 +1.00%  +0.29 +0.25 +0.03 -0.19 +0.13 -0.19 —-0.10 +0.05 —0.16
7 —-0.14 -0.12 +0.06 +0.03 +0.02 +0.29 +1.00%  +0.33 —0.57*  40.49 —0.03 +0.21 +0.20 —0.03 —0.38
8 —=0.05 +0.06 +0.12 +0.19 —0.23 +0.25 +0.33 +1.00* —0.61* +0.22 —0.11 +0.26 +0.18 +0.00 +0.28
9 +0.02 40.11 —0.04 -0.11 +0.28 +0.03 —0.57% —0.61* +1.00* —0.63* +0.24 —0.50 —0.32 +0.07 —0.09
10 | —-0.01 -0.07 +0.36 +0.30 +0.04 -0.19 +0.49 +0.22 —0.63*  +1.00* —0.01 +0.71*  +0.58* —0.25 +0.14
11 | -0.23 -0.29 —0.23 —-0.24 —-0.10 +0.13 —0.03 —0.11 +0.24 —0.01 +1.00%  —0.43 —0.27 —-0.23 —0.28
12 | +0.30 +0.25 +0.42 +0.37 +0.20 —-0.19 +0.21 +0.26 —0.50 +0.71%  —0.43 +1.00%  +0.79* —0.18 +0.33
13 | +0.50% +0.43 +0.14 +0.02 —0.01 -0.10 +0.20 +0.18 —0.32 +0.58%  —0.27 +0.79%  +1.00%  +0.23 +0.28
14 | +0.23 +0.22 —-0.29 —-0.30 —0.08 +0.05 —0.03 +0.00 +0.07 —0.25 —0.23 —0.18 +0.23 +1.00%* —0.01
15 | 40.45 40.56* 40.08 +0.07 —0.32 —0.16 —0.38 +0.28 —0.09 +0.14 —0.28 +0.33 +0.28 —0.01 +1.00%*

TABLE C.20: Correlations between overall observations
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TABLE C.21: Labels for Indices of Table C.20
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