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Abstract

Different dynamics of the non-equilibrium canonical density operator, such as
Canonical Dynamics, Linear Projection Dynamics, Generalized Robertson Dynamics,
and Contact Time Dynamics, especially for time dependent work variables are derived.
For two discrete systems in contact the rate of entropy is non-negative, if the contact
time is short, and if one of the two discrete systems is in equilibrium and the compound
system composed of both is isolated. The contact temperature is identi®ed with one of
the Lagrange parameters of the non-equilibrium canonical density operator of the
compound system.

1. Introduction

As it is well known, quantum mechanics is a reversible theory [1]. Since quantum
states of a system are described by its microscopic density operator %, the fact of
reversibility is expressed by an identical vanishing of the microscopical entropy rate
in isolated systems

_S0 � 0; S0 :� ÿk Tr�% ln%�; Tr% � 1 �1�

(k is the Boltzmann constant).

An old question is how to obtain an irreversible description of quantum processes.
The answer is manifold. One possibility is to introduce dissipative terms into
SchroÈdinger's equation, or to postulate the existence of a microscopic entropy
operator, both procedures are invented for generating an irreversible microscopic
quantum theory. Another possibility of an irreversible description of systems is
quantum-thermodynamics [2], a theory which is using restricted macroscopic
information of the considered system, leaving its reversible microscopic background
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untouched. The information about the system is achieved by a so-called restricted set
of relevant self-adjoint observables

Gj 2 B :� fG1;G2; . . . ;Gng; �G1;G2; . . . ;Gn� � G; �2�

with Gj � G�j for all j 2 f1; 2; . . . ; ng: �3�

According to [3] we will denote this restricted set of relevant observables B shortly as
the beobachtungsebene (information level). Since the choice of this beobachtungse-
bene is equivalent to the choice of a state space in case of a macroscopic
thermodynamical system, this irreversible quantum theory is called quantum-
thermodynamics, because also observables appear describing entropy, entropy
production, and heat exchange.

In general the selfadjoint operators G of the beobachtungsebene depend on m work
variables a belonging to the system in consideration

a�t� � �a1; a2; . . . ; am��t� �4�
which are time-dependent in thermodynamics. A special example for such a work
variable is the system's volume V�t� on which the Hamiltonian depends: H�V�t��. In
general we have G�a�t��.
After having chosen the beobachtungsebene the microscopic density operator %�t� of
the system is not determined by the expectation values of this restricted set of
observables belonging to B

g�t� :�< G�a�t�� >� Tr�%�t�G�a�t���; �5�
because there are other different microscopic density operators %̂�t�;Tr%̂�t� � 1,
satisfying also the n relations (5)

g�t� � Tr�%̂�t�G�a�t��� � Tr�%�t�G�a�t���: �6�

Consequently, the different density operators %̂�t� and %�t� are equivalent for all times
with respect to B. An operator %̂ for which (6) holds is called an accompanying
density operator, because this concept is analogous to the de®nition of accompanying
processes in non-equilibrium thermodynamics [4].

Since % is not determined by the set of the expectation values g we need an additional
principle for choosing the density operator by which the system should be described
in accordance with the restricted knowledge we have according to (5). The well-
known procedure stems from Jaynes [5, 6]: we choose that density operator R which
maximizes the (macroscopic) entropy of the system

S :� ÿk min
%̂

Tr�%̂ ln %̂� � ÿk Tr�R ln R�; with �7�

g � Tr�RG� � Tr�%G�; TrR � 1: �8�
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The maximization (7), that takes into account the constraints (6), yields to the well-
known result, that R has the form of the generalized canonical operator [7]

R � Zÿ1exp�ÿk �G�; Z � Tr exp�ÿk �G�; or �9�

R � exp�ÿl �G0�; G0 � �1;G�; �10�

exp�ÿ�0� � Zÿ1; �j � �j; j � 1; 2; . . . ; n: �11�

Here the n quantities k have to be determined by the n constraints (6).

An important remark is the following: the maximization (7) of the entropy can be
executed at any instant, such that (9) is valid for all times

R�t� � Zÿ1�t�exp�ÿk�t� �G�a�t���; Tr R�t� � 1; �12�
or (9) is generated by a maximization only with respect to a ®xed, but arbitrary time
t0. During the process t0 ! t the initial density operator R�t0�, which is of canonical
form (9), changes its shape which may be different from (9). But during the process it
remains an accompanying density operator %̂�t� according to (6) which does not
maximize the entropy S�t� anymore. For these two cases the dynamics of the density
operators are different. Consequences with respect to these different dynamics are
investigated in the next sections.

The application of the maximum entropy principle does not imply that we restrict
ourselves to equilibrium states, because the beobachtungsebene contains beyond the
Hamiltonian and the particle number operator other operators not commuting with
them in general. The generalized canonical operator R therefore describes non-
equilibrium states and is different from the grand canonical equilibrium density
operator.

2. Dynamics

Time derivation of (7) yields to the entropy rate of the total system [8] at time t0 of
maximization

_S�t0� � ÿkTr� _R�t0� ln R�t0��; and Tr _R�t0� � 0 �13�
according to �8�2. Consequently in order to determine the entropy for all times we
need the dynamics of the considered system represented by the time derivative �%̂�t���
of the accompanying process and its initial conditions. By maximization (7) at time
t > t0 we obtain the generalized canonical density operator R�t� and the entropy S�t�
belonging to it

%̂�t0� � R�t0�; %̂�t� ! R�t� and S�t�: �14�
There are now different possibilities of introducing �%̂�t��� which are investigated in
the next sections.
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2.1. Canonical dynamics

The ®rst possibility, called canonical dynamics, CA, requires that the accompanying
process %̂�t� � R�t� has canonical form (9) for all times. Therefore �13�1 yields for
t0 � t by use of (12)

_SCA�t� � k Tr�k�t� �G�a�t�� _R�t��: �15�
_R is determined by the time rates of the k appearing in (12) and by the given time
rates of the work variables a on which the observables G in B depend. Consider for
example a compound system consisting of two sub-systems separated by a movable
piston. The Hamiltonians of the sub-systems clearly depend on the partial volumes
which change in time, if the piston moves from a non-equilibrium position to an
equilibrium one due to the different pressures in the sub-systems.

The independent rate variables are _a�t� and _k�t�, or _a�t� and _g�t�, if the _k are replaced
by the _g by differentiating �8�1. Consequently the time rate of R is [8]:

_R�t� � @R�t�
@a
� _a�t� � @R�t�

@k
� _k�t�: �16�

This type of dynamics is called canonical, if (12) is presupposed to be valid for all
times, or more precisely.

De®nition: A dynamics R�t� is said to be canonical, if there exist time-dependent real
parameters k�t� such that (12) holds for all time.

The coef®cients @R=@a and @R=@k can be calculated by differentiation of (12), [8].

For demonstration we discuss the simple, but important example of two discrete
systems1) in contact with each other. We consider the Hamiltonian of a closed (®rst)
discrete system, denoted by & , which is separated from its environment (the second
discrete system), denoted by �, by a partition @&. This partition determines the
interaction between the considered discrete system and its environment. The time-
independent Hamiltonian of the isolated compound system is

H �H&�a� �H��a� �H@&�a�; �17�

�H&�t�;H��t�� � 0; H� � 0: �18�
Here H&�t� is the Hamiltonian of the discrete system in consideration, H��t� the
Hamiltonian of its environment, and H@&�t� that of the interaction between the
system and its environment, represented by the partition between them. Because the
compound system is presupposed to be isolated, its energy is a constant

E :� Tr�HRdis� � const! Tr�H _Rdis� � 0: �19�
Here the second equation follows from �18�2. Rdis is given by (21).

1)A discrete system, often also called lumped system, is always described by quantities bel-

onging to the whole system. A ®eld formulation of the system is not possible, not available, or

not desirable.
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We now choose the beobachtungsebene of the isolated compound system in
consideration

Bdis � fH;H&�t�;H��t�g �20�
to which for all times, according to (3) and (12), the following generalized canonical
density operator belongs

Rdis � Zÿ1exp�ÿ��HH� �H&
H& � �H�H���: �21�

According to (12) the k�t� depend on time

�H � �H�t�; �H
& � �H&�t�; �H

� � �H��t�: �22�
According to (15) the rate of entropy of the compound system is for all times by use
of canonical dynamics

_Sdis
CA � kTr���HH� �H&

H& � �H�H�� _Rdis�: �23�

We now presuppose that the partition @& is inert [8], that means, the partition does
not absorb or emit heat,

0 � _E@& :� Tr�H@&Rdis��: �24�

If we presuppose, that the partial Hamilton of the partition is independent of the work
variables

_H@& � 0; �25�

we obtain from (24)

Tr�H@& _Rdis� � 0: �26�

We now de®ne the heat exchange (energy exchange at constant work variables)
between & and �, [8] by

_Q& :� Tr�H& _Rdis�; _Q� :� Tr�H� _Rdis� � ÿ _Q&: �27�

Here the last equation follows from �19�2, (18), and (26) by presupposing an inert
partition. Introducing (26) into (23) we obtain the following entropy rate

1

k
_Sdis

CA�t� � ��H
&�t� ÿ �H��t�� _Q&�t�; for _a�t� 6� 0 in general: �28�

Thus for this non-equilibrium example of an isolated compound system the rate of
entropy is proportional to the heat exchange between the sub-systems which in this
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case is the only source of entropy production. The interpretation of the factor
��H& ÿ �H�� in (28) will be discussed in Section 3.

The expression (28) is the special entropy rate for a discrete system in contact with its
environment. We now calculate the general entropy rate in canonical dynamics by
inserting (16) into (15). We obtain (Appendix 1)

1

k
_SCA � k �K � _kÿ k � �� _Gj�G� � k: �29�

Here the following abbreviations were introduced: K is the symmetric, positive
de®nite canonical correlation matrix

K :� ��Gj�G�; or Kij :� ��Gij�Gj� �30�
and �FjM� the generalized Mori product [9] by which the matrix elements of the
canonical correlation matrix are de®ned

�FjM� :�
�1

0

Tr�RF�RuMRÿu�du: �31�

The symbol � introduces the deviation operator de®ned by

�X :� X ÿ Tr�RX�: �32�
The dependence of the entropy rate in canonical dynamics of the _k and of the _a is
given by (29) for an unspeci®ed beobachtungsebene of observables which depend on
work variables. Its positivity will be discussed in Section 3.

2.2 Linear projection dynamics

Because R can be represented by a projection of % [10] we are able to perform a
different approach not using (16)

R�t� � P�t��%�t��; P2�t� � P�t�; P�t� linear on its domain: �33�

Time differentiation yields

_R�t� � �P�t��%�t���� � _P�t��%�t�� � P�t�� _%�t��; �34�

and the dynamics of R is determined by _P and by _%. If the microscopic dynamics is
given by the von Neumann equation (reversible microscopic dynamics)

_%�t� � ÿiL%�t�; �35�

and L is the Liouville operator de®ned by

L� :� �1=�h��H; ��; �36�
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we obtain from (34) the following dynamics (Appendix 2):

_RLP�t� � ÿi�PL� i _P��t�R�t�

ÿ
�t

t0

�PL� i _P��t�T�t; s��QLÿ i _P��s�R�s�R�s�ds:
�37�

Here Q�t� and T�t; s� are de®ned as follows:

Q�t���� :� 1ÿ P�t���� �38�
@

@s
T�t; s� � iT�t; s��QLÿ i _P��s�; with the condition �39�

T�t; t� � 1: �40�
Furthermore the initial preparation

%�t0� � R�t0� �41�
was used which is essential to get rid of the initial conditions in (37).

De®nition: A dynamics (37) induced by P�t� in (33) is called a linear projection
dynamics.

Special cases of this dynamics are treated in the next sections.

Calculating the rate of entropy in linear projection dynamics according to (15) and
(37) we obtain

_SLP � ÿik Tr�k �GPLR� � kTr�k �G _PR�

ÿ k

�t

t0

Tr��k �G��t��PL� i _P��t�T�t; s��QLÿ i _P��s�R�s��ds: �42�

2.3 Robertson dynamics

In linear projection dynamics R�t� was represented by (33). There is another type of
dynamics which connects the time derivatives of R and % by a projector P�t� instead
of �33�1 which is connecting the statistical operators themselves [8]

_R�t� � P�t�� _%�t��; P2�t� � P�t�: �43�

De®nition: A type of dynamics induced by (43) is called a Robertson dynamics [12].

Often the projection operator in �33�1 is especially identi®ed with the so-called
Kawasaki-Gunton operator [11]

P�t���� � K�t���� :� R�t�Tr��� � @R

@g
� �Tr�G�� ÿ gTr���� �44�
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which has according to (8) the following properties

K�t��%� � R�t�; K�t��R� � R�t�: �45�

Hence we obtain for time-independent work variables

_a � 0 : K�t�� _%� � _R�t�; K�t�� _R� � _R�t�; �46�
K�t��K�t����� � K�t����: �47�

The projection properties for the time rates of the statistical operators (46) are only
valid for time independent work variables. From this follows, that Robertson
dynamics according to (44) can be performed only for work variables which are
constant in time. In more detail we obtain from (44) by use of (8)

K�t�� _%� � @R

@g
� Tr�G _%� � @R

@g
� � _gÿ Tr� _G%��: �48�

Introducing canonical dynamics (16) this results in

K�t�� _%� � _Rÿ @R

@a
� @R

@g
� Tr

@G

@a
%

� �� �
� _a: �49�

A comparison with (46) shows, that the use of Kawasaki-Gunton operator in
Robertson dynamics presupposes work variables which are constant in time. In the
next section we will look for dynamics which are consistent with time-dependent
work variables, a standard situation in thermodynamics.

Equation (43) looks like (34), if formally _P�t� is set to zero. Thus we obtain from (37)
for Robertson dynamics

_RRO�t� � ÿi�PL��t�R�t� ÿ
�t

t0

�PL��t�T�t; s��QL��s�R�s�ds; �50�

with

@

@s
T0�t; s� � iT0�t; s��QL��s�: �51�

Replacing the projector P�t� in (42) by the Kawasaki-Gunton operator (44) the
entropy rate becomes (Appendix 3)

_SLP � ÿk

�t

t0

Tr��k �G��t��KL� i _K��t�T�t; s��QLÿ i _K��s�R�s��ds: �52�
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According to (43) _K has to be formally set to zero. Thus we obtain from (52) the rate
of entropy in Robertson dynamics (43) by use of the Kawasaki-Gunton operator (44)

_SRO � ÿk

�t

t0

Tr �k �G��t��KL��t�T0�t; s��QL��s�R�s�ÿ �
ds: �53�

2.4 Generalized Robertson dynamics

For including canonical dynamics into the formalism of projection dynamics we start
out with a family of non-linear mappings F de®ned on normalized operators (we
omit the family parameter a in the symbol F for the family of mappings), and we use
the beobachtungsebene in the form of (10), [10]

F�X� :� exp�ÿl�X; a� �G0�a��; TrX � 1: �54�

Here the parameters l�X; a� are determined by the constraints (6)

Tr�G0X� �: g�X; a��! Tr�G0F�X�� � Tr�G0exp�ÿl�X; a� �G0�� �55�

from which

l � l�g�X; a�; a� �56�

follows. According to (10) the identity 1 is enclosed in the extended beobachtungse-
bene fG0�a�g. Consequently we obtain from (55) and �54�2

TrF�X� � 1; Tr�F�X��� � 0: �57�

According to (55), F�%� generates the expectation values of the observables which
belong to the beobachtungsebene. Because F�X� has always canonical form
according to (54), we have

R�t� �F�%�t�� �58�

instead of (33). Then (43) can be interpreted as the local mapping P�X� of the family
F in (58)

�F�X��� � P�X�� _X� ! _R�t� � P�%�� _%�t��; �59�

connecting the time derivatives of R and %.

As it is proved in Appendix 4, the local mapping P�%� of F is for time dependent
work variables

P�%���� � @R

@g
� Tr�G0�� � @R

@g
� Tr� _G0%� � @R

@a
� _a; �60�
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with

@R

@g
:� ÿR

�1

0

d�Rÿ�G0�a� � @l
@g

R�; �61�

@R

@a
:� ÿR

�1

0

d�Rÿ� G0�a� � @l
@a
� l�g; a� � @G0

@a

� �
R�: �62�

From (60) follows immediately

P�%�� _%� � _R � @R

@g
� _g� @R

@a
� _a � P�R�� _R� �63�

which results in

Tr _R � 0 � Tr
@R

@g
� _g� Tr

@R

@a
� _a: �64�

Because @R=@g and @R=@a are independent of _g and _a which are also independent of
each other, we obtain

Tr
@R

@g
� 0; Tr

@R

@a
� 0: �65�

Consequently, the traces of (61) and (62) results in

g � @l
@g
� 0; g � @l

@a
� l � Tr R

@G0

@a

� �
� 0: �66�

De®nition: The dynamics de®ned by �59�2 and (60) is called Generalized Robertson
Dynamics.

From (60) we are able to write down the generalized Kawasaki-Gunton operator
which generalizes (44) to time dependent work variables

M�Y���� : � R�t�Tr��� � @R

@g
� �Tr�G0�� ÿ gTr����

� @R

@g
� Tr� _G0Y� � @R

@a
� _a

� �
�1ÿ Tr����: �67�

The generalized Kawasaki-Gunton operator M�%���� is different from the local
mapping P�%���� in (60), but applied to _% we obtain

M�Y��%� � R; M�Y��R� � R; for all Y ; �68�

M�%�� _%� � _R; M�R�� _R� � _R; �69�
M�Y��M�Y����� 6� M�Y����: �70�

These equations are analogous to (45) and (46). Different from (47) we have (70).
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Although �59�2 is also satis®ed by M�Y����, the generalized Kawasaki-Gunton
operator (67), as well as the original one in (44), is not a local mapping of F in (54).
Because of (58) and �54�1 canonical dynamics is a generalized Robertson dynamics.

As it is proved in Appendix 5, the generalized Robertson dynamics by use of P�%� in
(60) is

_RGR�t� � P�%��ÿiLR��t� �
�t

t0

dsP�%��t��ÿiLT�t; s�W�s��

ÿ @R

@g
� Tr _G0

�t

t0

dsT�t; s�W�s�
� �

ÿ @R

@g
� Tr� _G0R� ÿ @R

@a
� _a: �71�

Here W is de®ned by (see (126))

W�s� :� @R

@g
� Tr� _G0R��s� � @R

@a
� _a�s� � Q�%��ÿiLR��s�; �72�

and T�t; s� satis®es the following differential equation (see (125))

ÿ @

@s
T�t; s�� � T�t; s� @R

@g
� Tr� _G0���s� � Q�%��ÿiL���s�

� �
: �73�

We will not write down here the generalized Robertson dynamics induced by
M�Y����. Also the entropy rates belonging to P�%���� and M�Y���� will be woked out
elsewhere.

2.5 Contact time dynamics

If the considered system is in contact with an environment, and if the contact time
between them is suf®ciently short (so that conduction problems are out of scope, and
only the contact problem is considered), linear projection dynamics transforms into
the special case of contact time dynamics [13]. In this context we de®ne the following
expressions

v :� ÿiTr�GLR� �74�

which are called quantum-mechanical drift terms. If all these quantum-mechanical
drift terms vanish for a chosen beobachtungsebene of the considered compound
system (e.g. (20)), we obtain from linear projection dynamics (37) an approximation
for small contact times �t :� t ÿ t0 between the parts of the compound system
(Appendix 6) by use of the Kawasaki-Gunton operator (44)

_R � _KRÿ �KL� i _K��Lÿ i _K�R�t; �75�

with the corresponding rate of entropy

_SCT � k�tTr�k �G�ÿKLLR� KLi _KRÿ i _KLRÿ _K _KR��: �76�
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In the next section we will discuss the time rates of entropy in the four dynamics (29),
(52), (53), and (76) especially with respect to their positive de®niteness.

3. Positive Rate of Entropy

First of all we use a phenomenological argument to illustrate, that the rate of entropy
is non-negative. For that purpose we recall: temperature is only de®ned for
equilibrium states and therefore only for reversible processes [14]. Thus a rede®nition
of temperature with regard to non-equilibrium processes is necessary. This dynamical
analogue of the thermostatic temperature is the so-called contact temperature [15,
16]. The de®ning inequality of the contact temperature �& of a closed discrete
system whose partition @& is impervious to work and mass exchange, is as follows

lim
t!t0�0

1

�&�t� ÿ
1

T��t0�
� �

_Q&�t� � 0: �77�

Here T��t0� is the thermostatic temperature of the system's environment which is
supposed to be in equilibrium at time t � t0, when the system gets in contact with its
environment. The interpretation of the contact temperature is very easy: the de®ning
inequality (77) determines the contact temperature �&�t0� as that themostatic
temperature of the system's environment, which causes, that at the contact time t0 the
net heat exchange between the system and its equilibrium environment vanishes.

Thus we ®nd for arbitrary t0

�&�t0� � T��t0� ! _Q&�t0� � 0; �78�

�&�t0� � T��t0� ! _Q&�t0� � 0 �79�
which is the statement of (77).

An interpretation of (28) with regard to the Second Law is now possible [17, 18]: if
we identify

�H
&�t0� � ��t� � 1

k�&�t� ; �H
��t� � ��t� � 1

kT��t� ; �80�

then from (28) and (77)

_Sdis
CA � 0 �81�

follows by comparison. Therefore & represents a non-equilibrium system which is
separated by an inert, diathermal, mass- and work-isolating partition @& from its
surrounding environment �, the latter being always in equilibrium (reservoir). The
meaning of ��t� has been explained previously [8] and is of no interest here. The
result which we obtain is the following: the entropy rate (28) is valid for a special,
but suf®ciently general beobachtungsebene (20). By use of canonical dynamics it is
positive de®nite, if the heat exchange between parts of the compound system is
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interpreted by introducing the contact temperature which is de®ned by the inequality
(77).

But the interesting question is just the other way round: what are the preassumptions
to prove the positive de®niteness of the entropy rate without use of contact
temperature, and what is the quantum-thermodynamical interpretation of the contact
temperature in that case?

Until now there is no way to prove the positivity of _SCA in (29), of _SLP (52), or of _SRO in
(53). The conjecture is that these quantities are not de®nite unless additional pre-
assumptions are made. One assumption to enforce positivity of (29) is to demand without
any connection to microscopic dynamics a relaxation approach to equilibrium for the k in
case of an isolated system which has constant work variables [8]

_G � 0; _k � ÿ��k�k; � � 0: �82�
Then (29) yields

_SCA � �k �K � k � 0 �83�
because of the positivity of K and �. But ®rst of all there is no physical justi®cation
from the microscopic background for demanding the condition (82).

In case of contact time dynamics (75) and (76) we can prove the following

& Proposition (Appendix 7): If all quantum-mechanical drift terms (74) vanish for
the chosen beobachtungsebene, then we obtain by use of contact time dynamics for
the entropy rate of the isolated compound system

_SCT � k�ik � LG� k � ~Q _Gjik � LG� k � ~Q _G��t � 0 �84�

with ~Q :� 1ÿ ~P; ~P :� j�G� �Kÿ1 � ��Gj: &�85�
For deriving the positivity of the entropy production (81) the validity of the de®ning
inequality (77) was pre-assumed. The proposition (84) now allows to derive an
inequality which can be interpreted the other way round as the de®ning inequality
(77). In case of constant work variables contact time dynamics (75) and the cor-
responding rate of entropy (84) yield

_a � 0! _R � ÿKLLR�t; �86�
_SCT � k�ik � LGjik � LG��t � 0: �87�

We now consider the discrete compound system described by the Hamiltonian (17)
and by the beobachtungsebene (20). The partition between both subsystems is
assumed to be inert (24). Then (87) yields

_SCT � k��H&
iLH& � �H� iLH�jik � LG��t: �88�
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The heat exchanges (27) are in contact time dynamics (Appendix 8)

_Q& � �iLH&jik � LG��t; _Q
� � �iLH�jik � LG��t; �89�

so we can rediscover (28)

_Sdis
CT � k��H& ÿ �H�� _Q& � 0: �90�

This inequality is now compared with the de®ning inequality of the contact
temperature (77). After a short calculation we obtain the result

1=�& � ��H& � c; 1=T� � ��H� � c; �91�

with constant � > 0 and c. A comparison with (80) demonstrates that relations

� � k and c � k� �92�

are valid. Therefore the connection between contact time dynamics and the de®ning
inequality of contact temperature is evident.

4. Discussion

The choice of a state space for a thermodynamical discrete system is replaced in
quantum-thermodynamics by introducing the beobachtungsebene, which is de®ned as
a restricted set of relevant observables. By choosing the beobachtungsebene and by
maximization of the system's entropy with respect to the constraints, the microscopic
density operator is substituted by the generalized canonical (density) operator which
exactly describes all properties of the system with respect to the chosen
beobachtungsebene in non-equilibrium (Jaynes' procedure). As the construction of
the generalized canonical operator is here local in time (it belongs e.g. to the initial
time) the question arises, what dynamics the generalized canonical operator satis®es,
especially if the work variables are time-dependent. Throughout the paper we are
always investigating the in¯uence of the time-dependence of the work variables,
because this is the standard situation in thermodynamics.

Since the generalized canonical operator includes the work variables and the
Lagrange parameters due to the maximization, its dynamics is determined by the time
rates of the work variables and those of the Lagrange parameters. This kind of
dynamics which preserves the form of the generalized canonical operator for all times
is called canonical dynamics (Section 2.1).

Two other alternative types of dynamics are generated by projecting the microscopic
density operator or by projecting its time rate to the accompanying process of maximal
entropy

R�t� �F�%�t��; _R�t� � P�%�t�� _%�t�: �93�
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Dynamics generated by �93�1 are called Projection Dynamics and those generated by
�93�2 Generalized Robertson Dynamics (Section 2.4). In any case the dynamics of
R�t� is induced by the microscopic density operator %�t�. If the mapping F is linear,
we obtain Linear Projection Dynamics (Section 2.2) which is different from
generalized Robertson dynamics according to a comparison of (34) with �93�2.
Especially for short contact times linear projection dynamics transforms to Contact
Time Dynamics (2.5). If the projector in generalized Robertson dynamics is linear, we
obtain Robertson Dynamics (Section 2.3). Often the linear projection operator in
Robertson dynamics is especially performed by the Kawasaki-Gunton operator
which requires time-independent work variables. In contrast to that, the correspond-
ing non-linear generalized Kawasaki-Gunton projector in generalized Robertson
dynamics (67) takes into account time-dependent work variables. As it is well-known
the generalized canonical operator R�t� can be generated by a non-linear projection of
the microscopic density operator %�t� (Section 2.4). Therefore canonical dynamics is
a special case of generalized Robertson dynamics.

We derive the rates of entropy for canonical dynamics, linear projection dynamics
and contact time dynamics, and ®nally for Robertson dynamics. The positivity of the
entropy rate can be proved in following cases: in contact time dynamics in case of
time-independent work variables and an unspeci®ed beobachtungsebene of vanishing
quantum-mechanical drift terms, and in case of a non-equilibrium system in contact
with an equilibrium environment for which the contact temperature and heat exchange
can be introduced for canonical and contact time dynamics. Here the macroscopic
contact temperature can be interpreted by the Lagrange parameters of the generalized
canonical operator, as well as the heat exchange between system and its equilibrium
environment. Thus a quantum-thermodynamical foundation of contact temperature is
possible.

Up to now the positivity of the entropy rate cannot be derived microscopically in full
generality. In canonical dynamics in case of constant work variables we can enforce
positivity of the entropy rate by a simple relaxation approach for the Lagrange
parameters. But there is no microscopic proof, that the Lagrange parameters obey
such a relaxation approach.
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5. Appendices

5.1 Appendix 1

The Kubo transformation of an observable X is de®ned by

�X :�
�1

0

Rÿu XRu du: �94�
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According to [10] we obtain for the derivation of the generalized canonical operator
(9) with respect to a parameter yi

@R

@yj

� ÿ 1

Z2

@Z

@yj

eÿk�G � 1

Z

@

@yj

eÿk�G

� ÿ 1

Z

@Z

@yj

Rÿ 1

Z

�1

0

e��ÿ1�k�G @�k �G�
@yj

eÿ�k�Gd�: �95�

Inserting

@Z

@yj

� Tr

�1

0

e��ÿ1�k�G @�ÿk �G�
@yj

eÿ�k�Gd�

� �
� Tr eÿk�G @�ÿk �G�

@yj

� �
�96�

into (95) we get by use of (32), (94), [10]

@R

@yj

� R Tr R
@�k �G�
@yj

� �
ÿ R

�1

0

Rÿ�
@�k �G�
@yj

R�d� � ÿR �
@�k �G�
@yj

� �
:

�97�

Therefore we can transform (16) into

_R � ÿR�G � _kÿ Rk �� _G �98�

because k and a are independent of each other. By using the relation between the
generalized Mori product (31) and the Kubo transformation (94)

�XjY� � Tr�X�YR�; �99�

(98) and the de®nition (30), (15) results in

_SCA � ÿk _k � ��Gjk �G� ÿ kk � �� _Gjk �G�
� ÿk _k �K � kÿ kk � �� _Gj�G� � k: �100�

5.2 Appendix 2

Starting out with the von Neumann equation (35), we write for (34):

_R � ÿiPL%� _P% � ÿi�PL� i _P�Rÿ i�PL� i _P��%ÿ R�: �101�
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In order to get a differential equation for R we have to remove % from this equation.
Therefore we calculate the following expression

_%ÿ _R � ÿiQL%ÿ _P% � ÿi�QLÿ i _P�Rÿ i�QLÿ i _P��%ÿ R� �102�

which we multiply by T�t; s� in (39) and integrate from the initial time t0 to t:�t

t0

T�t; s� d

ds
�%ÿ R��s�ds

� ÿi

�t

t0

T�t; s��QLÿ i _P��s�R�s�dsÿ
�t

t0

@

@s
T�t; s��%ÿ R��s�ds: �103�

Considering the initial preparation (41) we obtain for the difference between the
microscopic density operator and the generalized canonical operator

�%ÿ R��t� � ÿi

�t

t0

T�t; s��QLÿ i _P��s�R�s�ds �104�

which we put in equation (101), so that we ®nally get the differential equation (37).

5.3 Apendix 3

Using the time derivative of the Kawasaki-Gunton operator (44)

_K��� � _R Tr��� � @R

@g

� ��
��Tr�G�� ÿ gTr���� � @R

@g
� �Tr� _G�� ÿ _g Tr����

�105�

and (8) we obtain

_KR � _R� @R

@g
� Tr� _GR� ÿ @R

@g
� _g � _Rÿ @R

@g
� Tr�G _R�: �106�

By taking Tr�@ � =@gk� � @�Tr��=@gk into account

Tr�Gj
_KR� � Tr�Gj

_R� ÿ Tr
@�GjR�
@gk

� �
Tr�Gk

_R� � 0; �107�

and

Tr�GjKX� � Tr�GjR�TrX � @gj

@gk

Tr�GkX� ÿ @gj

@gk

gkTrX � Tr�GjX� �108�

are valid, and therefore the two ®rst terms in (42) vanish, because of �k �G;R� � 0,
and we obtain (52).
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5.4 Appendix 4

If we replace in (55) X by F�X�, we obtain

Tr�G0F�X�� � g�F�X�; a� � Tr�G0F�F�X��� � g�X; a�: �109�
Therefore l is invariant under this replacement

l�g�X; a�; a� � l�g�F�X�; a�; a�; �110�
and F is a projector

F�F�X�� � exp�ÿl�F�X�; a� �G0� � exp�ÿl�X; a� �G0� �F�X�: �111�
Further we have

�F�X��� � fexp�ÿl�X; a� �G0�g�

� ÿF�X�
�1

0

d��F�X��ÿ��l�X; a� �G0�a����F�X���: �112�

Performing the time derivative, taking (56) and �59�1 into account we obtain

P�X����� ÿF�X�
�1

0

d��F�X��ÿ� G0�a� � @l
@g
� Tr�G0�a���

�
� G0�a�� @l

@g
� Tr

@G0

@a
X

� �
� @l
@a

� �
�l�X; a� � @G0

@a

� �
� _a

�
�F�X���:

�113�
Replacing X by %, (113) results in

P�%���� � ÿR

�1

0

d�Rÿ� G0�a� � @l
@g
� Tr�G0�a���

�
� G0�a� � @l

@g
� Tr

@G0

@a
%

� �
� @l
@a

� �
� l � @G0

@a

� �
� _a

�
R� �114�

which satis®es �59�2, by which we can read off (61), (62), and (60).

5.5 Appendix 5

From (60) we obtain

P�%�� _%� ÿ P�%��X� � @R

@g
� Tr�G0� _%ÿ X��; �115�

P�%�� _%ÿ X� � @R

@g
� Tr�G0� _%ÿ X�� � @R

@g
� Tr� _G0%� � @R

@a
� _a �116�
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which results in

P�%�� _%ÿ X� � P�%�� _%� ÿ P�%��X� � @R

@g
� Tr� _G0%� � @R

@a
� _a: �117�

Consider

_R � P�%�� _%� � P�%�� _%� ÿ P�%��ÿiLR� � P�%��ÿiLR�: �118�

From (117) we have

P�%��ÿiL%� ÿ P�%��ÿiLR�
� P�%��ÿiL�%ÿ R�� ÿ @R

@g
� Tr� _G0%� ÿ @R

@a
� _a

� P�%��ÿiL�%ÿ R�� ÿ @R

@g
� Tr� _G0�%ÿ R�� ÿ @R

@g
� Tr� _G0R� ÿ @R

@a
� _a: �119�

Consequently we obtain

_R�t� � P�%��ÿiLR� � P�%��ÿiL�%ÿ R�� ÿ @R

@g
� Tr� _G0�%ÿ R��

ÿ @R

@g
� Tr� _G0R� ÿ @R

@a
� _a: �120�

Analogously to (117) we obtain for the projector (38)

Q�%�� _%ÿ X� � Q�%�� _%� ÿ Q�%��X� ÿ @R

@g
� Tr� _G0%� ÿ @R

@a
� _a: �121�

Consider

_%ÿ _R � Q�%�� _%� ÿ Q�%��ÿiLR� � Q�%��ÿiLR�
� Q�%�� _%� iLR� � @R

@g
� Tr� _G0%� � @R

@a
� _a� Q�%��ÿiLR�: �122�

Here (121) was taken into account. Consequently (122) becomes

_%ÿ _R � Q�%��ÿiL�%ÿ R�� � @R

@g
� Tr� _G0�%ÿ R��

� @R

@g
� Tr� _G0R� � @R

@a
� _a� Q�%��ÿiLR�: �123�
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Multiplication with T�t; s� and integration yields�t

t0

dsT�t; s�� _%ÿ _R��s�

�
�t

t0

dsT�t; s� Q�%��ÿiL�%ÿ R���s� � @R

@g
� Tr� _G0�%ÿ R���s�

� �
�
�t

t0

dsT�t; s� @R

@g
� Tr� _G0R��s� � @R

@a
� _a�s� � Q�%��ÿiLR��s�

� �
: �124�

We now demand that T�t; s� satis®es the following differential equation

T�t; s� Q�%��ÿiL���s� � @R

@g
� Tr� _G0���s�

� �
�%ÿ R��s�

� ÿ @

@s
T�t; s��%ÿ R��s�: �125�

Introducing the abbreviation

W�s� :� @R

@g
� Tr� _G0R��s� � @R

@a
� _a�s� � Q�%��ÿiLR��s� �126�

(124) results in�t

t0

ds T�t; s�� _%ÿ _R��s� � @

@s
T�t; s��%ÿ R��s�

� �
�
�t

t0

dsT�t; s�W�s� �127�

by taking (125) into account. Integration and taking (40) and (41) into consideration
(127) results in

�%ÿ R��t� �
�t

t0

dsT�t; s�W�s�: �128�

Inserting this into (120) we obtain (71). The operator W�s� in (72) is de®ned by (126),
and the differential equation (73) is given by (125).

5.6 Appendix 6

Since all quantum-mechanical drift terms (74) are pre-assumed to be vanishing, the
Kawasaki-Gunton operator (44) yields the following equations:

KLR � 0 and QLR � LR: �129�
We can now write (37) as

_R � _KRÿ
�t

t0

�KL� i _K��t�T�t; s��Lÿ i _K��s�R�s�ds: �130�
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As we consider short contact times �t :� t ÿ t0, we make a Taylor expansion of the
expression under the integral

M�t; s� :� �KL� i _K��t�T�t; s��Lÿ i _K��s�R�s� �131�

in s and neglect quadratic and higher terms:�t

t0

M�t; s�ds � M�t; t�
�t

t0

ds� @M�t; s�
@s

����
s�t

�t

t0

�sÿ t�ds�
�t

t0

o��sÿ t�2�ds

� M�t; t��t ÿ t0� ÿ 1

2

@M�t; s�
@s

����
s�t

�t ÿ t0�2 � o��t ÿ t0�3�

� M�t; t��t:

Considering (40), we ®nally obtain (75).

5.7 Appendix 7

The expression for the rate of entropy (76) can be split into four terms (traces). DUe
to (108) and (99) we can transform the ®rst expression to

Tr�ÿ�k �G�KLLR� � Tr��Lk �G��LR�� � �iLk �GjiLk �G�: �133�

Here the following identity is used in the last step [13]:

LR � ÿRLk �G; �134�

which can be derived from

�H; eÿk�G� �
�1

0

d

d�
�e�1ÿ���ÿk�G�He��ÿk�G��d�

�
�1

0

e�1ÿ���ÿk�G��k �G;H�e��ÿk�G�d�: �135�

Due to (108) we also transform the second term into

Tr�k �GKLi _KR� � ÿTr��iLk �G� _KR�: �136�

Since the observables G only depend on time-dependent work variables a we can
calculate (cf. (105))

_KR � @K

@t
R� @K

@a
R � _a � @R

@a
� _aÿ @R

@g
� Tr G
 @R

@a

� �
� _a: �137�
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Inserting (137) into (136), the second part vanishes because of the vanishing
quantum-mechanical drift terms

Tr �iLk �G� @R

@gi

� �
� ÿk � @

@gi

Tr�iGLR� � 0; �138�

so we obtain by use of (97) and (99)

ÿTr��iLk �G� _KR � ÿTr �iLk �G� @R

@a

� �
� _a

� @�k �G�
@a

� _a

����iLk �G
� �

� �k � _GjiLk �G�: �139�

In the last step (134) is used. According to (105), (134) and due to the vanishing
quantum-mechanical drift terms the third term results in

ÿTr�k �Gi _KLR� � ÿTr �k �G� @R

@g

� �
� Tr� _GiLR� � ÿk � Tr� _GiLR�

� �iLk �Gjk � _G� � �iLk �Gjk � ~Q _G�; �140�

if we use the de®nition (85). We see that the second and the third traces are identical.
From (105), (107) and (137) we get

_K� _KR� � @R

@g
� Tr� _G _KR�

� @R

@g
� Tr _G
 @R

@a

� ��
ÿ Tr _G
 @R

@g

� �
� Tr G
 @R

@a

� ��
� _a: �141�

Inserting this expression into the fourth trace we obtain by use of (97) and (99)

ÿ Tr��k �G� _K _KR�

� �
@�k �G�
@a

� _a

����k � _G

� �
ÿ Tr �k � _G� @R

@g

� �
: �

@�k �G�
@a

� _a

����G� �
: �142�

By using (97), (99), (3) and (30) we can show that

@g

@k
� Tr G

@R

@k

� �
� ÿTr�GR�G� � ÿ��GjG� � ÿK: �143�

By comparing (143) whith the following equality

1 � Tr G
@R

@g

� �
� Tr G

@R

@k

� �
� @k
@g
� @g

@k
� @k
@g

�144�
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we get the identity

@k

@g
� ÿKÿ1: �145�

Now we can calculate the derivative of R with respect to the expectation values by use
of (145) and (97):

@R

@g
� @R

@k
� @k
@g
� R�GKÿ1: �146�

From equations (146), (99) and the de®nition (85), (142) results in

ÿ Tr��k �G� _K _KR� � k � _G

����~Q�
@�k �G�
@a

� _a

� �
� �k � ~Q _Gjk � ~Q _G�;

because j~Q�G� � 0 is valid: �147�

After adding up the four terms (133), (139), (140) and (147) we obtain (84).

5.8 Appendix 8

If the work variables are constant in contact time dynamics, we can use (86) to
calculate

Tr�Gj
_R� � Tr��LGj��LR���t �148�

by taking (108) into account. From (134) we obtain (89).
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