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Summary In this paper we consider the regularizing properties of fractional multistep methods 

for the stable solution of linear weakly singular Volterra integral equations of the first kind with 

perturbed right-hand sides. 

1 Introduction 

In this paper we consider linear weakly singular Volterra integral equations which are of the 

following form, 

(Anj(e) = Fey fey OMRe uly dy = fle) for OS e<L, (1A) 
with 0 < a < 1 and some real number L > 0, and with a sufficiently smooth kernel function 

k:[0, L]x[0, L] — R, and I denotes Euler’s gamma function. For applications see e.g. Durbin [5] 

and Lerche /Zeitler [13], where crossing probabilities for Brownian motions and the inversion of 

the two-dimensional Radon transform are considered, respectively. In the sequel we will suppose 

that the kernel function does not vanish on the diagonal 0 < « = y < LD, and without loss of 

generality we then may assume that 

k(a,vz) = 1 for O<a<L (1.2) 

holds. Moreover, the function f : [0, LZ] — R is supposed to be known approximately, and a 

function u:[0, L] — R satisfying equation (1.1) has to be determined. 

There exists many classes of methods for the approximate solution of equation (1.1) if the right— 

hand side f is exactly given, see e.g., Brunner /van der Houwen [2] and Hackbusch [8]. One of 

these classes are fractional multistep methods which are introduced by C. Lubich ([14], [15]). 

In the present paper we review these methods (cf. Sections 2 and 3) and then consider their 

regularizing properties when the right-hand side in equation (1.1) is only approximately given 

(cf. Section 4). Finally fractional BDF methods are considered in more detail and numerical 

illustrations are presented (cf. Section 5). 

* Supported by the DFG Research Center "Mathematics for key technologies" (FZT 86) in Berlin.
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2 Review of a class of convolution quadrature methods and the basic notations 

In this section we recall (with slight modifications occasionally) the basic notations and results 

from the paper [14]. 

2.1 Quadrature methods of convolution form 

As a first step we consider in (1.1) the special situation k = 1, with the corresponding integral 

operator being the classical Abel integral operator 

(Vau)(@) = ras | — yO uly) dy for O<a@< lL, (2.1) 

where u:[0, L] — R is supposed to be a continuous function. For the numerical approximation 

of the integral (V,u)(x) with 0 < x < L we consider convolution quadrature methods of the form 

n 

(Qnu)(z) = bh? So wn_ju(jh) for h = ax/n, n = 1,2,.... (2.2) 
j=0 

Here wo, w1,... denotes an infinite sequence of real coefficients which is assumed to be indepen- 

dent of the considered point x and the stepsize h. More conditions on these weights as well as 

examples will be considered later in this subsection. 

The error of the convolution quadrature method (2.2) at a point 0 < x < L is then given by 

(E_nu)(@) = (Qpu)(x) — (Vau)(2) for h = a/n, n= 1,2,.... (2.3) 

The convergence order of a quadrature method (2.2) is determined by the error of the method with 

respect to monomials, see the following definition. As a preparation we note that the considered 

quadrature method of course may be applied to functions u which are defined on other intervals 

than [0, L]. In addition, the approximation (2; u) (x) is independent of the right-hand endpoint 

L so that it is not necessary to refer to the particular choice of L, cf. Definition 1 below. 

Definition 1 The convolution quadrature method (2.2) for the numerical integration of (2.1) is 

called convergent of p > 1, if 

(Eny2) (1) = O(ntt) as h = 1/n = 0 (q = 0,1,...,p—1). (2.4) 

Note that in (2.4) the error is considered only at the point x = 1. For a given sufficiently smooth 

function u : [0, ZL] — R we next consider the error (F;,u)(x) of the convolution quadrature 

method (2.2). This error can be written as follows, 

  

Pl ow 0 

(Enu)(2) = Y- + \(Eny")(e) + (En Rp) (x) for h = x/n, (2.5) 
r=0 

for n = 1,2,..., with the remainder R,(y) = ool Sey — 2)P-tu®)(z) dz. For a convolution 

quadrature method (2.2) of convergence order p, subsequently for each point x = nh the weights 

for the starting values u(jh) for 7 = 0,1,...,p — 1 will be modified to eliminate the errors 

(Eny") (x) for r = 0,1,...,p — 1, cf. Section 2.3 for more details. It then basically remains to 

consider the quadrature error of the remainder, which will be done first (cf. Section 2.2).
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We conclude this subsection with some preparatory considerations. First, it turns out to be useful 

to extent the definition of the convolution quadrature method (2.2) to arbitrary step sizes h and 

points x as follows, 

|2/h | 
(Qru)(@) = h® S* wyu(a— jh) for h>0, O<a<L, (2.6) 

j=0 

where | z| denotes the largest integer < z. The error (F;,u) (x) considered in (2.3) then can easily 

be extended to arbitrary step sizes h by using the extended definition (2.6) of the considered 

quadrature method. For this extended definition of the considered quadrature method there holds 

(Ex(ux*xv))(z) = ((Enu) * v)(z) for h>0, O<a<L (2.7) 

for continuous functions u,v: [0, L] — R. We recall that the convolution » * w : [0, L] — R of 

two arbitrary continuous functions y, ~ : [0, L] — R is given by (p*«w)(x) = Jy y(a@—y) W(y) dy 

for 0 < x < L. Additionally for integers q = 0,1,... we have 

(Eny?)(@) = 2° *4(Eyyey) (1) for h>0, «> 0. (2.8) 

Both representations (2.7) and (2.8) follow from similar properties of the Abel integral operator 

and the quadrature method, respectively. 

We need some properties of the weights wo, w1,... considered in the convolution quadrature 

method (2.2), and for this purpose these weights are considered as the coefficients of a power 

series, 

wf) = So wn€”, (2.9) 
n=0 

which is called the generating function of the quadrature method (2.2). We suppose that this 

power series converges for |€| < 1, and in addition in this paper we restrict the considerations to 

those generating functions w(€) which can be represented as follows, 

w(€) = (1—€) °@(€),  @(€) holomorphic on Bye = {€ EC: |E]<1+e}, (2.10) 

w(£) £0 for €€ Bye, (2.11) 

with some real number ¢ > 0. The representation (2.10)—(2.11) has implications on the decay of 

the coefficients wy, 

wn = an2-%) 4 O(n~P-%) as m— oo (2.12) 

with some real constant a # 0. In fact, (2.12) is a stability property. Examples of generating 

functions satisfying (2.10)—(2.11) are given in Section 5. 

2.2 Application of the considered quadrature method to the Taylor expansion remainder: an 

error analysis 

We next present an error representation of the convolution quadrature method (2.2) applied to 

the Taylor expansion remainder considered in (2.5). This representation differs from the error 

expansion considered in [15] and requires in the subsequent proofs slightly less smoothness of 

the involved functions. For an integer r > 1, in the following C"[0, L] denotes the set of r—times 

continuously differentiable functions f : [0, L] — R.
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Proposition 1 Let the convolution quadrature method (2.2) be convergent of order p> 1 and be 

representable as in (2.10)-(2.11). Then for each function u € C?*"[0, L], the quadrature error 

of the remainder considered in (2.5) can be written as 

(E;,Rp)(x) = CphP? S~ wy ju) (jh) + O(hPt*) for x=nh, 

j=0 n=0,1,...,N (2.13) 

for h — 0 uniformly with respect to x, with some real constant cp. 

Proof As a first step one derives the following error representation for general step sizes, 

(Eny?')(1) = e(h)hP + O(nPt) for O<h <1, h—-O, (2.14) 

where the function c: [0, 1] — R is defined on subintervals as follows, 

P 
-1 1 1 

c(h) = 2 aul —n)* for net <h < a m= 1,2,.... 

s= 

Here ag, @1,...,@p) denote some coefficients which are independent of h. The verification of the 

representation (2.14) requires several simple technical computations which are omitted here. 

We now consider the error of the convolution quadrature method (2.2) applied to the Taylor 

expansion remainder considered in (2.5), 

(ERR) = ay | Ea) e)uP(e-2)dz = Ghylh + he), 
with the integrals (with 2 = nh) 

h 

= fo 2B yyy) (uP(e~ 2) de 
0 

= ["———, ——«. 
h 

where the identities (2.7) and (2.8) have been applied. It follows easily that I, = O(h?*) holds 

as h — 0, and we now consider the second integral Iz. Here we use the asymptotic behavior of 

the quadrature error (Ep,y?~')(1) considered in (2.14). The term O(h?*') appearing there is of 

sufficiently good accuracy, and the first term on the right-hand side of the identity (2.14) can 

be treated as follows, 

nh 

[ ZotPle(h)(hyPy) (x — z) dz = €yhPt > n— J) — (=e) ul?) (jh) + O(hPt*) 
j=l 

n 

= chPto S~ wn ju?) (jh) + O(nPt?) 

j=0 

with the constants e, = )~?_)as/(s +1) and c, = e,/a, where the number a corresponds to 

the asymptotic expansion (2.12). The constants in the two appearing Landau symbols depend 

on maxo<r<p |u?t)(a)| and maxo<r<z |u'?)(x)|, respectively, and they do not depend on the 

considered grid point « = nh. This completes the proof. Oo 

Remark 1 For the product-trapezoidal rule, in Eggermont [6] an error representation is given 

which is similar to the representation considered in Proposition 1. Some corresponding results 

considered in a more general context can be found in Cameron / McKee [4].



Fractional multistep methods for weakly singular Volterra equations of the first kind with noisy data 5 

2.8 Starting weights 

In the sequel the convolution quadrature method (Q,u) (x) given by (2.2) is considered at uni- 

formly distributed grid points « = nh for n = 1, 2,...,.N, where the integer N and the step size 

h are related as follows, 

h = LIN. 

In addition we suppose that the convolution quadrature method (2), u) (x) has convergence order 

p and consider then the modification 

  

= (,u) (2) 
-1 

(Qnu) (a) := h® x Wn—ju(jh) + h® S Wn j U(jh) for z=nh (2.15) 
j=0 

as approximations to the fractional integral (V,u)(x) for «= nh with n = 1,2,...,N, respec- 

tively. Here, wy; for 7 = 0,1,...,p —1 are certain correction weights for the starting values to 

be specified. Due to the form of the second sum in (2.15) it is necessary to impose the technical 

condition h(p— 1) < L. 

In the modified quadrature method (2.15), for each n = 1, 2,...,.N a reasonable approach is to 

choose starting weights such that (2.15) is exact at x = nh for all polynomials of degree < p—1, 

Le., 

(Qny?)(z) = (Vay?)(zx) for q = 0,1,...,p—1. (2.16) 

This means 

Y wng dt = nese at - Lee ijt for q = 0,1,...,p—1, (2.17) 

which in fact is a linear system of p equations for the unknowns w,j, j = 0,1,...,p—1 with a 

Vandermonde matrix which does not depend on n. Since the right-hand side of the identity in 

(2.17) is O(n~@-%), there holds the estimate 

Ung = O(n") as noo for j = 0,1,...,p—1. (2.18) 

Note that the considered approach for determining the starting weights cannot be applied in the 

case x = 0. In that case one obtains (2, y7)(0) = 0 for g=0,1,...,p—1 which cannot be used 

in the subsequent considerations on the numerical solution of integral equations of the first kind. 

We now consider the error of the modified quadrature method, 

(Epu)(x) = (Qpu)(x) — (Vau)(z) for h = a/n, n= 1,2,.... 

For fixed step size fh this error can be written as 

~ pol 
(Enu)(2) = (EnRp)() + h* Swng Reh). (2.19) 

j=0 

With the same assumptions as in Proposition 1, the first term on the right-hand side of (2.19) 

can be written in the form cph? 6° S09 wn—; ul?) (jh) + O(hP+®). In addition, the sum in (2.19)
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is of the form O(h?*') which follows from (2.18). As an immediate result we obtain the following 

representation of the error of the modified quadrature method: 

(Epu) (x) = cph?*? > wp_ju®) (jh) + O(hP*?) for x =nh, 
j=0 n=0,1,...,N, (2.20) 

for h — 0 uniformly with respect to x, with some real constant cp. 

3 Numerical solution of weakly Volterra integral equations of the first kind by the 

modified quadrature method 

8.1 Introductory remarks and the basic algorithm 

In this section we recall the basic result of the paper [15]. For this purpose we again consider the 

weakly singular Volterra integral equation of the first kind (1.1) and suppose that it has a unique 

solution u: [0, L] — R (sufficient conditions are given at the end of Section 4). Additionally we 

suppose that the values of the right-hand side of equation (1.1) are exactly given at uniformly 

distributed grid points 

In = nh for n=1,2,...,N, (3.1) 

respectively. In the sequel we consider a convolution quadrature method of the form (2.2) which 

has convergence order p. In addition modified starting weights as in (2.15) are used to determine 

approximations u, ~ u(x,) for n = 1,2,...,N. This means that for a given starting value 

ug © u(0), approximations uy, u2,...,unN have to be determined such that the identities 

n p-1 

he S> Wn—jk(an, aj )Uuj + he S> Wn k(@n,2;)U; = flan) (3.2) 
j=0 j=0 

are satisfied for n = 1,2,...,N. Note that the assumption k = 1 is now omitted, and the 

general situation for the kernel k is considered in the sequel. The procedure for determining 

these approximations is as follows: 

(a) First determine a starting value up ~ u(0). One of the reasonable algorithms is considered 

at the end of Section 4. 

(b) Then solve (3.2) for n = 1, 2,...,p—1. This leads to a linear system of p — 1 equations for 

the p— 1 unknowns wy, u2,...,Up-1- 

(c) The identities (3.2) then are used successively for n = p,p+1,...,N to determine the 

approximations Up, Up+1,---,UN, respectively. 

We next present the approximation properties of the scheme (3.2). As a preparation we formulate 

the basic assumptions. 

Assumption 1 (a) The convolution quadrature method (2.2) is convergent of order p > 1, 

(b) the corresponding generating function w(€) considered in (2.9) can be represented as in 

(2.10)-(2.11), 

(c) the starting weights are determined according to the conditions in (2.16), 

(d) the kernel function k in the integral operator (1.1) has continuous partial derivatives up to the 

order p+1 on [0, L] x[0, L], and the solution u of the integral equation (1.1) is (p+1)-times 

continuously differentiable on the interval |0, L},
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(e) and k(x,x) =1 holds for eachO < x < L. 

At the end of Section 4, conditions on the right-hand side of the considered weakly singular 

Volterra integral equation of the first kind are given which guarantee the existence of a solution 

u satisfying (d) in Assumption 1. 

As another preparation we present a useful result on the quadrature error for general kernels k. 

For this we introduce notations for the error of the scheme (3.2), 

Cn = U(Ln) — Un for n = 0,1,...,N. (3.3) 

If the conditions in Assumption 1 are satisfied, then there holds 

n p-1 

he S> wn—j k(n, xj )ej + h° SO wry k(n, xj) ej 
j=0 j=0 

n 

= oh?" YS wn_j p(aj) + OPT) for n = 1,2,...,N (3.4) 
j=0 

uniformly with respect to n, with the function p(x) = aoe { h(a, y)uly) yao forO <a < L. 

For each n the representation (3.4) follows from the representation (2.20), with the function u 

replaced by the function y +> k(x, y)u(y) considered on the interval [0, x,,] there. 

3.2 Uniqueness, existence and approximation properties of the starting values 

We now consider uniqueness, existence and approximation properties of the starting values uy, 

U2,-.-,Up—1- As a first step we consider in more detail the linear system of equations 

p-l 

h° So (Wn—j + Wn yj) Kan, 2j)uj =  f (xn) for n = 1,2,...,p—1, (3.5) 

j=0 ————— 

with the notation w,, = 0 for n < 0. The linear system of equations (3.5) can be written in the 

  

  

form 

= § 

Dy rki1 Wyoki2 + Wi p-1kip-1 

W21 ko Wooke9 +++ Wap-1kapy-1 
a }| h (3.6) 

Up—1 

Dp—1,1kp—1,1 Op—1,2kp—12 -** Gp-1,p-1kp-1,p-1 

f (71) @1,0 ko,0 

f (2) o 2,0 k1,0 
= — A uo 

f(Xp-1) Wp-1,0 kp-1,0
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with the notation 

kngj = kan, 25) for 0 < j,n < pl. 

It turns out that the matrix S = S(h) € R®-))*(@—) in (3.6) is non-singular for sufficiently 

small values h, and ||S~'||,, = O(h~®) holds for h — 0 where || - ||, denotes the matrix norm 

induced by the maximum norm for vectors. This estimate for the matrix S~' is obtained by 

considering first the case k = 1 and applying the representation (2.17), and the general case is 

then obtained by using a perturbation argument. 

We now present the approximation properties of the considered starting values ui, u2,...,Up-1- 

Proposition 2 Let Assumption 1 be satisfied, let uo be a starting value with ug — u(x) = O(h”) 

as h — 0, and let the other starting values uy, U2,...,Up—1 be determined by (3.2) for n = 1, 2, 

..,p—1. Then there holds 

|Un —U(an)| = O(h?) as h—0. (3.7) max 
n=1,2,....p—1 

Proof We repeat from [15] the basic steps of the proof since some of these steps are also needed 

in the proof of the main result in the present paper (cf. Section 4). The error representation (3.4) 

and the assumptions on the approximation properties of the starting value ug yield 

p-l 

h° S°Gnrgk(an,xj)ey = O(hP**) for n = 1,2,...,p—1. (3.8) 
j=l 

A matrix-vector formulation of (3.8) gives 

SEn|lo = O(hPto as h—0O, with Ep, := (e, €2,...,€p-1)! P 

with the matrix S from (3.6) which is non-singular for sufficiently small values h, with ||S~"||.o = 

O(h~“) as h — 0, see the statements above. Here and in the sequel, || -||,. denotes the maximum 

norm for vectors as well as the induced matrix norm, respectively. From this the estimate (3.7) 

follows. u 

3.3 The approximation properties of the values Up, Up+1,-.-,UN 

We now present the main result on the convergence order of the approximations obtained by the 

scheme (3.2). As a preparation consider the reciprocal 

1 (Den 
a = Rens 

of the generating function w(€) = \7?? 9 wné”. It is an immediate consequence of the represen- 

tation (2.10)—(2.11) that the coefficients of the reciprocal function 1/w(&) satisfy 

wD) = O(n) as n> Oo. (3.9) 

We now present a special version of the main result of the paper by Lubich [15]:
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Theorem 2 Let the conditions of Proposition 2 be satisfied. Then the approximations up, Up+1, 

...,un (determined by (3.2) forn=p,p+1,...,N, respectively) can be estimated as follows, 

max |Up,—U(r%p)| = O(h?) as h—-0. 
n=p, p+l,...,N 

Proof Again some of the steps in this proof are needed also in Section 4, therefore we repeat 

from [15] the basic steps of the proof. Moving the second sum on the left-hand side of the error 

representation (3.4) to the right-hand side gives the following error representation, 

n n 

h° S* wn—jk(@n,2j)ej = CphPF? S~ wn_j (aj) + O(APT*) for n=0,1,...,N (3.10) 
j=0 j=0 

for h > 0 uniformly with respect to n. We next consider a matrix-vector formulation of (3.10). 

As a preparation we consider the matrix A® ¢ RAtD)*x(A+) with 

  

  

wokoo 0 0 

| Wy k10 Wo kia 0 0 | 

a a | > wy kat woke,2 | 
nah | 

P| m | 
wnkno --: reese Wr ky N-1 WokNnN | 

with the notation 

knj = k(an,2;) for O<j<n<QN. 

Additionally we consider the matrix B? € R(N+)*(N+) given by 

wo Ores cee eee 0 

Wy Wo 0 0 

mem ye ee i 

og 

WN eee eee W9 Wy Wo 

and the vectors 

En, = (€0,€1,--- ,en)|, Ge= Cph” (v(x), P(41), «+ ,y(an))'. 

Using all these notations, the linear system (3.10) becomes 

ASE, = B&G + F®, withsome Fee RN+, | Fe] = O(nPt?) as h— 0. (3.11)



10 R. Plato 

For a further treatment of the identity (3.11) we now consider the inverse matrix of By, this is 
De E RW+))x (N+) with 

om 0 0 | 

| we) wD 9 0 | 

(-1) (1) : wW wW : 
De = he ° : . (3.12) 

p 0 | 
La? ee yD gD | 

We now apply the matrix D? to both sides of (3.11) and obtain 

|| DRAREn\lo = O(h?) as h—0, (3.13) 

where the estimates 

|Dillo = O(h™), IGlloo = O(h?) as h-0 (3.14) 

have been used, and the first estimate in (3.14) follows from the decay (3.9) of the coefficients of 

the reciprocal of the generating function w. It then turns out (cf. Eggermont [6] for more details) 

that the lower triangular matrix Dj A? can be written as follows 

Dy Ay = I+ hk, with Ky, = (knej) Ee RON+DX(N+) strictly lower triangular, 

kpe;| = O11 h 0. 1a! hil, | (1) as h— 

This representation and the discrete version of Gronwall’s inequality now yields 

\|(DP AS) Yoo = O(1) as h—0. (3.15) 

The statement of the theorem now follows from the estimates (3.13) and (3.15). O 

Remark 2(a) For the product-trapezoidal rule, a similar approach as in the proof of Theorem 

2 is considered in Eggermont [6]. 

(b) It follows from the proof of Theorem 2 that in the situation of Assumption 1 the scheme 

(3.2) can be applied for n = p, p+1,...,.N with starting values uj, u2,...,Up—1 that are obtained 

by other approaches. The only requirement is that estimate (3.7) is satisfied. 

4 Perturbed data 

We now start with the main purpose of the present paper, this is, the consideration of the 

regularizing properties of the scheme (3.2). Here we consider the situation that only perturbed 

data f°? are available at the grid points x,,, respectively, with 

\f> —f(an)| < 6 for n = 1,2,...,N, (4.1)
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where 6 > 0 is a known noise level. In that situation the discrete equations (3.2) are modified 

as follows: For some given starting value ud ~ u(0) determine approximations u® ~ u(x,) for 
n 

n=1,2,...,N such that the identities 

n p-1 

h° S> wn—jk(Ln, xj)ud + AS? wn yg k(2n, aj)ud = fe (4.2) 
j=0 j=0 

are satisfied for n = 1, 2,...,.N. The procedure for determining these approximations is similar 

to the procedure for exactly given right-hand sides, cf. Section 3.1. 

We are now in a position to formulate the main results of this paper. As a preparation we consider 

the following assumptions: 

Assumption 3 (a) The conditions in Assumption 1 are satisfied, 

(b) the conditions (4.1) on the noise are satisfied, 

(c) and ud is a starting value with ud — u(ao) = O(h? +5/h%) as (h, 5) > 0. 

The following proposition provides an error estimate for the starting values. 

Proposition 3 Let the conditions of Assumption 8 be satisfied, and let starting values ul, ud, 

Wy be given by (4.2) forn =1, 2,...,p—1, respectively. Then there holds 

a _ Dp 6 nex ju, — u(an)| O(hP + 7a ) as (h,d) > 0. 

Proof Due to the results in [15] which are recalled in the present paper it is sufficient to estimate 

the differences between the perturbed and the unperturbed approximations, 

A> = us — Un for n = 1,2,...,p—1. 

Here the approximations w1, u2,...,Up—1 satisfy the unperturbed discrete equations (3.2), and 

uo denotes an arbitrary starting value with uo — u(x) = O(h?) as h — 0. A comparison of the 

identities (4.2) and (3.2) gives 

p-l 

h° S>Gngk(tn,2j)A? = O(hP** +6) for n = 1,2,...,p—1, (4.3) 
j=l 

where the weights ©,,; are introduced in (3.5). Note that the summation in (4.3) begins with 

j =1. A matrix—vector formulation of (4.3) yields 

|SERllo = O(nPt* +5) as (h,d) 0, with ER = (Af, Ad,...,A9_4)', 

with the matrix S from (3.6) which is non-singular for sufficiently small values h and satisfies 

|S" loo = O(h-*) as h — 0, cf. Section 3. From this the statement of the proposition follows. 0 

The following theorem provides an error estimate for the approximations ud, ue ayes uy. 

Theorem 4 Let the conditions of Poposition 3 be satisfied. Then the error for the approrimations 

given by (4.2) forn=p,p+l1,...,N can be estimated as follows: 

5 ) —ulen)| = O(n + & h, . 44 sopBBX. lsh Mer] = OCH + Ge) as (8) +0 (44)
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Proof Again it is sufficient to estimate the differences 

Ae := ud — Un for n = 0,1,...,N, 

where the approximations ui, u2,...,un satisfy the unperturbed discrete equations (3.2) for 

n=1,2,...,N, and uo denotes an arbitrary starting value with ug — u(ap) = O(h”) as h > 0. 

From that we obtain 

n 

h° SY wn—jk(@n,2j)A? = O(hPt* +6) as (h, 5) 30 for n = 0,1,...,N (45) 
j=0 

uniformly with respect to n. Here the assumptions on the approximation properties of the start- 

ing values and the boundedness of the starting weights are used, cf. (2.18). A matrix—vector 

formulation of (4.5) is as follows, 

ACE? |.o = O(hP** +5) as (hd) 0, with E>? = (Ad, Ad,...,AX)', (4.6) 

(N+1)x(N+)) as in the proof of Theorem 2 on the with the same notations for the matrix A} ¢ R 

error of the considered scheme (3.2) with unperturbed data. From the estimate ||(A?)~1||. = 

O(h~®) as h — 0 (cf. estimates (3.14) and (3.15) in the proof of Theorem 2) we finally obtain 

the estimate (4.4). O 

As an immediate consequence of Proposition 3 and Theorem 4 we obtain the following main 

result of this paper. 

Corollary 1 Let Assumption 3 be satisfied, and let h = h(6) be step sizes with h ~ di/(Pt+e) as 

6 — 0. Then the error for the approximations (given by (4.2) for n = 1, 2,...,N, respectively) 

can be estimated as follows: 

max |ud — u(an)| = O(6P/(+e)) as 6-0. 
n=0,1,...,.N 

Here h ~ 6!/(®+@) means that there exist real constants c2 > cy > 0 such that cyh < 51 (pte) < 

coh as 6 — 0. 

We conclude this section with some important remarks. 

Remark 3(a) It follows from the considered proofs that also starting values uf, u3,... Uy 

obtained by other schemes than (4.2) can be used. In the situation of Corollary 1 the only 

requirement is u? — u(ap) = O(6?/@+%) as 6 > 0 for n=1,2,...,p—1. 

(b) The smoothness conditions on the solution u considered in Assumption 1 are satisfied (and 

additionally, the existence of the solution u can be guaranteed then), if the exact right-hand side 

f can be written in the form f(x) = x%g(x) with a function g € C?*?[0, L] and if in addition 

the kernel k(x, y) has for 0 < y < x < L continuous partial derivatives up to the order p + 3, cf. 

Atkinson [1] for the details. 

(c) In the situation of part (b) of this remark there holds ag(0) = u(0) which follows by simple 

calculations. Thus, for general values of h a possible strategy for the determination of a starting 

value ud is to consider the interpolating polynomial P® of degree not larger than p — 1 which 

satisfies P°(x,) = f?(«,)/a® for r= 1, 2,...,p. The choice u? = aP*(0) = u(0) + O(h? + 6/h®) 

then gives a starting value of sufficiently good accuracy.
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(d) For other special regularization methods for the approximate solution of Volterra integral 

equations of the first kind with perturbed right-hand sides and with possibly weakly singular 

kernels, see e.g., Bughgeim [3], Gorenflo / Vessella [7], Lamm [12] and the references therein. 

(e) The presented propositions and theorems can be extended to Volterra integral equations of 

the first kind without weak singularities, this is the case a = 1 in the Volterra integral equation 

of the first kind (1.1). The corresponding proofs have to be modified at some places. For example, 

for the proof of estimate (3.15) we need (in the case a = 1) that the coefficients of the generating 

function w() and its reciprocal 1/w(€) can be written as follows, 

Wn = a + O(q"), wD) = O(q") as n— 0O (4.7) 

for some real number 0 < gq < 1 and a © R. The representations in (4.7) in fact follow from 

the representation (2.10)—(2.11). For the application of multistep methods to Volterra integral 

equations of the first kind without weak singularities and with exactly given right-hand sides see 

Wolkenfelt [17]. 

5 Examples of fractional multistep methods for weakly singular Volterra operators, 

and numerical experiments 

5.1 Multistep methods for initial value problems 

In this section we will consider special convolution quadrature methods of the form (2.2) for 

the numerical approximation of the Abel integral operator (2.1). As a preparation consider the 

simple initial value problem 

f(z) = u(x) for O<a< UJ, f(0) = 0, (5.1) 

where the function u : [0, L] — R is given, and the function f : [0, L] — R has to be determined. 

For the numerical solution of the initial value problem (5.1) we consider linear multistep methods 

which are of the following form, 

m m 

Soajfntg = RSS Bjunsy for n = 0,1,...,N—™m, (5.2) 
j=0 j=0 

with given real coefficients ag, Q1,...,Q@m and 0, 91,.--, 8m, with m EN and an, 40, Bm 4 0. 

For given starting values fo, fi,..-, fm—1, the identities (5.2) are used to determine successively 

forn =m,m-+1,...,N approximations f, to the numbers f(x,,), respectively. 

An important class of examples are BDF methods: 

Example 1 For m = 1, 2,...,6, the m-step BDF method for solving the initial value problem 

(5.1) is as follows, respectively: 

m 

Sl EV" frum = htinsm for n = 0,1,...,N—m, (5.3) 
k=1 

with the recursively defined backward differences. See e.g., Hairer / Norsett /Wanner [10] or [16] 

for an introduction to BDF methods. For m < 3, the BDF methods are of the following form, 

respectively: 

: foot — fa = htnss 

: $(3fn42 —Afnar + fr) = hunye; 

: $1 fne3s — 18fn42 + 9fny1 — 2fn) = hems. 

I| 
w
o
n
 

eR m 

m 

m  
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In particular, for m = 1 the implicit Euler scheme is obtained. 

For an arbitrary multistep method, the numbers fo, f),..., fy can be written in an explicit form. 

For this purpose we consider the associated generating polynomials 

  

Af) = Sraj€, o(€) = Be (5.4) 
j=0 j=0 

as well as the corresponding formal power series 

a(1/€) = 8 
= =: Ss . 5.5 1) = Say = ons (5.5) 

It turns out that the approximations fim, fmii,-.-.-,fn given by (5.2) can be written in the 

explicit form fy, = h 7!) Tr—sUs for n = m,m+1,...,N provided that the starting values fo, 

fi,---,;fm—1 are of similar form. As an example consider again the BDF methods. For each m 

there obviously holds o(€) = €™, and hence the corresponding formal power series is of the form 

r(é) = [é€™(1/é)]-t. (5.6) 

Examining the representation (5.3) in more detail shows that €™p(1/€) = 07", (1—£)* /k holds. 

5.2 Fractional multistep methods 

For a given multistep method (5.2) for solving the initial value problem (5.1) we now recall briefly 

the basic properties of the corresponding fractional multistep method. For this purpose we write 

the formal power series (5.5) as follows, 7(€) = 7(1 + q(&)) with the coefficient 7 = Bm/am 

which is assumed to be positive, 7) > 0. The binomial formula then gives for 0 <a<1 

rE) = 7 So (*)q(O" = Yrwnk® = wl6). (5.7) 
n=0 n=0 

The corresponding fractional multistep method (for the approximation of the Abel integral opera- 

tor (2.1)) is by definition of the form (2),u) (x) = h* 19 wn—ju(jh), with coefficients wo, w1,... 

as in (5.7). These coefficients can be computed in a stable way by Newton’s method for for- 

mal power series, which now will be described briefly for BDF methods, cf. Hairer / Lubich / 

Schlichte [9]. In fact, for BDF methods the equation (5.7) can be written as 

F(w(€)) = w(Q)"* — E™p(1/é) = 0. (5.8) 
TT 

=: pl§) 

In the case a = 1/M with M > 2 being some integer, the equation (5.8) easily can be solved 

by Newton’s method for formal power series. This generates a sequence of formal power series 

w!!l(€), wl2](€),... which here takes the form 

wtHe) = (1+a)wil(g) — af [wl l(e) F/B) boos for s = 0,1,... . (5.9) 

Here, the notation {a(€)}, = }>)_ an€” is used as a truncation of a given formal power series 

a(€) = or 9 an€”. In addition it can be shown (Henrici [11]) that the first 2° coefficients of 

the formal power series w!*!(€) and the solution w(€) of the equation (5.8) coincide if w!°l(¢) = 

1/p(0)° is chosen in (5.9) as initial formal power series.
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5.3 Convergence order and stability of fractional multistep methods 

It is well-known (cf. [10]) that a multistep method (5.2) for solving the simple initial value 

problem (5.1) is consistent of order p if and only if 

hr(e") = 14+ O(h?) as h — 0 (5.10) 

holds for the corresponding generating function (5.5). It is supposed here that the generating 

function 7(€) converges for |€| < 1. For the fractional power series w(€) = 7(€)* we then have 

hew(e") = 1 + O(h?) as h- 0. (5.11) 

It is shown in Lubich [14] that a convolution quadrature method (2.2), with a generating function 

(2.9) that is representable as in (2.10)—(2.11) and satisfies (5.11), is convergent of order p. 

We next consider the condition (2.10)—(2.11) on the representation for generating functions of 

fractional multistep methods, and we restrict here the considerations to fractional BDF methods 

with m < 6. It can be shown that the denominator in (5.6) always has € = 1 as a simple root, 

and all other roots belong to the exterior of the closed unit disc. The corresponding function 

T(€)° can be written as 

rg = [e™ A/S)“ = (L—€) “a(€). 

From the binomial expansion it follows that the considered function W(€) is holomorphic and 

has no roots in the disk Bj,- = {€ € C: |€| < 1+e}, with some e > 0. This finally gives 

the required representation (2.10)—(2.11) for the generating function 7(£)° of the considered 

fractional BDF method. 

5.4 Numerical experiments 

As an illustration of the main result considered in Corollary 1, we next present the results of 

some numerical experiments. We consider the following linear weakly singular Volterra integral 

equation of the first kind, 

    

[ (x —y)7V/2e-@ uly) dy = e*(2® + 27? + 2°) for O<a<1, (5.12) 
0 

with exact solution 

_  o-yr 5! 9/2 6! 11/2 wm 13/2 
uy) = € (Fem + Tey + THY ) for OS yS1, 

and thus in particular u € C*[0, 1]. Here are some additional informations on the numerical 

tests: 

* the BDF method of order 3 is chosen; 

* numerical experiments with the step sizes N = 24 — 1 for q= 5, 6,...,11 are employed; 

- for each considered step size h, the noise level 6 = h?+* = h?° is considered; 

- in the numerical experiments, the perturbations are of the form f® = f(x) + An with 

uniformly distributed random values A, with | A,,| < 4; 

+ in each experiment, the starting value ud is determined by the strategy described in part (c) 

of Remark 3.
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Table 1. Numerical results 

Ts es Te oe Tee oO 
5.46 « 1074 —— 

4.56 * 107° 3.00 « 1074 

3.93 « 10-8 3.89 « 107° 

3.42 « 1077 4.85 « 10~° 

3.00 « 10-8 6.17 «1077 

2.65 « 10~° 7.69 «10-8 

2.33 « 1071° 9.69 « 10-9 

  

Experiments are employed using the interactive program system Octave (http://www.octave.org). 

The results are shown in Table 1, where ||f||,. denotes the maximum norm of the function f. 

We conclude this paper with some additional comments on the numerical experiments. 

(a) 
(b) 

(c) 

The relative errors presented in the third column of Table 1 are relatively small. 

Almost the same results as in Table 1 are obtained if all starting values are chosen to be zero, 

ud = uo = u3 = 0. This is no surprise since the exact solution of equation (5.12) satisfies 

u(0) = u’(0) = uw" (0) = 0. 

Similar numerical experiments were employed with an equation where the solution is of 

the form u(y) = e(ryy” + ras? + res”) for 0 < y < 1. Here the ratios 

max, |u — u(an)| /5°/7 deteriorate as N increases. This is no surprise since the solution u 

does not satisfy the required smoothness condition of Assumption 1. 
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