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Upscaling the shallow water model with a novel roughness
formulation

Ilhan Özgen1 Katharina Teuber1 Franz Simons2 Dongfang Liang3 Reinhard Hinkelmann1

Abstract This study presents a novel roughness formu-

lation to conceptually account for microtopography and

compares it to four existing roughness models from lit-

erature. The aim is to increase the grid size for compu-

tational efficiency, while capturing subgrid scale effects

with the roughness formulation to prevent the loss in

accuracy associated with coarse grids. All roughness

approaches are implemented in the Hydroinformatics

Modeling System and compared with results of a high

resolution shallow water model in three test cases: rain-

fall-runoff on an inclined plane with sine-wave shaped

microtopography, flow over an inclined plane with ran-

dom microtopography and rainfall-runoff in a small nat-

ural catchment. Although the high resolution results can

not be reproduced exactly by the coarse grid model, e.g.

local details of flow processes can not be resolved, overall

good agreement between the upscaled models and the high

resolution model has been achieved. It is concluded that

the accuracy increases with the number of calibration

parameters available, however the calibration process

becomes more difficult. Using coarser grids results in

significant speedup in comparison with the high resolution

simulation. In the presented test cases the speedup varies

from 20 up to 2520, depending on the size and complexity

of the test case and the difference in cell sizes. The pro-

posed roughness formulation generally shows the best

agreement with the reference solution, compared to the

other models investigated in this study.

Keywords Upscaling � Roughness formulation � Shallow

water equations � Overland flow

Introduction

Recent developments in survey technology such as light

detection and ranging (LIDAR) and laser scanning are able

to provide high-resolution elevation data sets, e.g. in Fu

et al. (2015), Zhao et al. (2015), Pradhan and Kim (2015),

yet the integration of these data into numerical models is

often challenging because of finite computer resources

(Gourbesville 2009; McMillan and Brasington 2007; Dot-

tori et al. 2013). The use of high-resolution elevation data

is generally desirable, because it allows a better represen-

tation of spatial heterogeneity and localized flow processes.

However, high-resolution simulations of practical interest,

e.g. across catchment or city scales, are often unfeasible

without supercomputers because they are computationally

very demanding (Smith and Liang 2013; Lacasta et al.

2015). Therefore, high-resolution elevation data is usually

averaged over relatively coarse grid cells (Jain and Singh

2005) which results in loss of model accuracy (Yu and

Lane 2006).

The accuracy of coarse grid models can be improved by

conceptually accounting for subgrid-scale effects by cali-

brating the roughness coefficient (Néelz and Pender 2007).

This is a valid natural approach because by definition, a

roughness coefficient expresses a parameterization of

subgrid topography (Smith 2014). In principle, the
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Governing equations

Shallow water equations

The depth-averaged shallow water equations can be written

in a conservative form as:

oq

ot
þ

of

ox
þ
og
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¼ S; ð1Þ

where t is time, x and y are the Cartesian coordinates, q, f g

and denote the vectors of conserved flow variables, fluxes

in the x- and y-directions, respectively. S is the source

vector including bed slope source Sb and friction source

term Sf . q, f and g are usually expressed as:
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Here, h, u, v are the water depth and depth-averaged

velocity in x- and y-directions, respectively; qx and qy are

the unit-width discharges in x- and y-directions, and

qx ¼ uh, qy ¼ vh; g represents the gravity acceleration. The

source vector S can be split into

S ¼ Sb þ Sf þ So: ð3Þ

Here So accounts for additional source terms, e.g. rainfall,

wind shear on the free surface, Coriolis-force. It is noted

that the first entry of the vector S is the mass source, the

second entry and third entry are momentum source terms in

x- and y-direction, respectively. Writing out the vectors

leads to:
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zb stands for bottom elevation; v ¼ fu; vg is the vector of

velocity; j � j denotes the vector norm and C is the so-called

Chézy coefficient accounting for flow resistance and i is the

rainfall intensity. As shown in, e.g. Simons et al. (2014),

Smith et al. (2007), every friction law coefficient can be

transformed into the Chézy coefficient and therefore can be

incorporated in Eq. 1. Viscosity of the fluid, turbulence,

wind shear stress on the free surface and Coriolis-force are

neglected in this study. The incorporation of these effects

into the shallow water equations can be found in, e.g.

Hinkelmann (2005).

roughness coefficient in shallow water models represents

the shear stress at the bottom of a water column but it is

often used to account for all unresolved processes, e.g.

turbulence, depth-averaging effects, and therefore may lose

its physical meaning (Morvan et al. 2008). The value of the

calibrated roughness coefficient is usually heavily depen-

dent on the calibration conditions, e.g. water depth, grid

size, and can not be transferred easily to different condi-

tions (Hughes et al. 2011; Yörük 2009).

Upscaling is the approximation of a system of partial

differential equations by another system of partial differ-

ential equations that can be solved with fewer computing

resources (Farmer 2002). The upscaling process usually

requires the determination of a set of coefficients, which

conceptually account for properties of the original system.

The main advantage of using roughness formulations

instead of more sophisticated upscaling approaches for

shallow water models, e.g. Guinot and Soares-Frazão

(2006), Volp et al. (2013), Hughes et al. (2011), McMil-

lan and Brasington (2007), Liang et al. (2007), is their

easy implementation into existing models without the

need to modifiy the governing equations or numerical

methods.

This study presents a novel roughness formulation to

account for the effects of microtopography and investi-

gates limits and capabilities of upscaling shallow water

equations based overland flow models using roughness

formulations. The proposed new formulation uses the

experimental studies in Lawrence (1997), Souchere et al.

(1998), Tsihrintzis et al. (2001) as theoretical basis and is

to some extent inspired by the roughness models in

Razafison et al. (2012), Jain and Kothyari (2004). The

distribution function of the subgrid-scale bottom elevation

and the water depth are used to calculate a dimensionless

inundation ratio, which is then used to calculate a

roughness coefficient. Further, the bottom slope is taken

into account. The formulation is compared with four dif-

ferent roughness models: Manning’s model with constant

roughness coefficient; Lawrence’s model (1997); Man-

ning’s model with a waterdepth dependent roughness

coefficient (Mügler et al. 2011) and Razafison’s furrow

roughness model (Razafison et al. 2012). All approaches

are implemented in the Hydroinformatics Modeling Sys-

tem (hms), which is an in-house cell-centered finite-vol-

ume code developed at the Chair of Water Resources and

Modeling of Hydrosystems, Technische Universität Berlin

(Simons et al. 2014). Three test cases are presented to

evaluate the proposed approach: rainfall-runoff on an

inclined plane with sine-wave shaped microtopography;

surface flow over an inclined plane with random micro-

topography; and rainfall-runoff in a small Alpine

catchment.
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Existing roughness formulations

Friction laws can be written in a generalized form as:

Sf ¼ �Khajvjbv ð6Þ

where a and b are positive real numbers and K is the

proportionality constant. Well known friction laws such as,

e.g. Manning’s law and the Darcy-Weisbach law, can be

obtained by a certain choice for a and b. When formulating

a friction law, the choice of a and b is arbitrary (Razafison

et al. 2012), however the choice is usually related to

experimental data sets.

Manning’s law with constant roughness can be obtained

by choosing a ¼ �1=3 and b ¼ 1 in Eq. 6:

Sf ¼ � g n2 h�1=3jvjv ð7Þ

Here, n is the Manning roughness coefficient, which relates

to the Chézy coefficient as:

C ¼
h1=6

n
: ð8Þ

In Lawrence’s roughness model (Lawrence 1997), different

flow regimes associated with different roughness formu-

lations are identified for different inundation ratios. The

inundation ratio k is calculated as:

K ¼
h

k
ð9Þ

by using a characteristic roughness length k, which is

identified as the mean grain size of the river bed. For

increasing k, the influence of the subgrid-scale topography

decreases. The frictional resistance f is calculated for K\1

with a drag force approach

f ¼
8/Cd

p
min

p

4
;K

� �

; ð10Þ

where Cd stands for the drag coefficient for roughness

elements, and / is the fraction of the surface covered by

roughness elements. For the drag coefficient, Cd ¼ 1 is

assumed (Lawrence 1997). The operator min �ð Þ is the

minimum function, which outputs the smallest value of

all input values. For 1�K� 10, a power law in the form

of:

f ¼
10

K
2

ð11Þ

is suggested. For K[ 10, f is calculated with:

f ¼
1

1:64þ 0:803 lnKð Þ2
: ð12Þ

The suggested calibration parameters of this model are /

(cf. Eq. 10) and k (cf. Eq. 9) Mügler et al. (2011). f can be

transformed into the Chézy coefficient by using:

C ¼

ffiffiffiffiffiffi

8 g

f

s

: ð13Þ

The depth-dependent variable Manning’s coefficient has

been developed for rainfall-runoff models in Jain and

Kothyari (2004) and is calculated as follows:

n hð Þ ¼
n0

h

h0

� ���

for h\h0;

n0 for h� h0

8

<

:

ð14Þ

In this model, n0 is defined as the Manning’s roughness

occuring at flow depth h0 beyond which n is assumed

constant and � is a parameter accounting for vegetation.

The transformation into the Chézy coefficient is done

according to Eq. 8. The variable Manning’s coefficient

model has three calibration parameters: n0, h0 and �.
Finally, a roughness formulation to account for unre-

solved furrows is derived by Razafison et al. in (2012).

Here, Eq. 6 is rewritten as:

Sf ¼ � g n2 h�1=3jvjv�KRhv ð15Þ

where the first term is the classical Manning’s equation and

the second term is an additional friction term accounting

for the furrows. The coefficient KR in this model is cal-

culated as follows:

KR ¼ K0;R exp
�hþ hhFi

C � hhFi

� �

ð16Þ

Here, K0;R and C are unitless model parameters; and hhFi is

the average height of water trapped in furrows which may

be calculated with

hhFi ¼
V

LF � L
; ð17Þ

whereby V is the volume of trapped water in a furrow, LF is

its wavelength and L is the length of the domain. Razafison

suggests to approximate hhFi numerically (personal com-

munication, August 4, 2014). The model is calibrated with

C and K0;R.

In summary, common roughness formulations usually

express a relationship between water depth and roughness,

often in the form of a power law, e.g. Mügler et al. (2011),

Tsihrintzis et al. (2001), Jain and Kothyari (2004), Raza-

fison et al. (2012). In the authors’ opinion, a more general

approach can be obtained for free surface flows by using

the inundation ratio instead of the water depth and by

including the unitless bottom slope into the formulation.

Novel roughness formulation

a ¼ 0 and b ¼ 1 are chosen in Eq. 6, which allows to

rewrite the friction source term in Eq. 5 as
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Sf ¼ �
g

C2
0

þK

� �

jvjv: ð18Þ

Here, subgrid-scale topography is accounted for with the

parameter K from Eq. 6 which is here interpreted as a

variable dimensionless roughness value, which increases

the roughness of the model in dependency of the inun-

dation ratio, and the Chézy coefficient C0. The index 0

implies that the value of C0 differs from the value of the

Chézy coefficient in the classical formulation of Eq. 5.

C0 is a model calibration parameter. In this study, a

constant Manning formulation (Eq. 8) is used to calcu-

late C0.

Experimental results reported in Souchere et al. (1998)

show that the bottom slope I reduces the influence of tillage

significantly. This findings certainly can be extended to

microtopography in general, as increasing the slope is

associated with a loss of surface storage (Thompson et al.

2010).

Equation 18 is required to satisfy the following

requirements:

1. If K increases, the influence of the subgrid-scale

topography decreases significantly, hence K should

converge to 0.

2. If I increases, the influence of the subgrid-scale

topography should decrease, hence K should decrease.

3. For large K, only C0 should account for subgrid-scale

effects.

Based on preliminary numerical studies by the authors

(Teuber 2015), the following formulation for K is pro-

posed, which satisfies these requirements:

K ¼ a0 exp � a1 K� 1ð Þð Þ ð19Þ

Here, exp �ð Þ stands for the natural exponential function.

The inundation ratio is calculated by a modified expression

of Eq. 9 to take the effect of bottom slope into account:

K ¼
h

1� Ið Þ k
ð20Þ

The inundation ratio has been used before in literature to

derive friction laws, e.g. Lawrence (1997). It stands for the

ratio of the water depth h to the characteristic roughness

length k. If the inundation ratio is smaller than 1, the water

depth is smaller than the characteristic roughness length,

which indicates a partially dry area. in this case the flow

will be influenced significantly by the subgrid-scale

topography. Consequently, a high inundation ratio states

that the water depth is relatively high when related to the

characteristic roughness length and the flow will not be

influenced strongly by the subgrid-scale topography. Both

cases are illustrated in Fig. 1. The choice which value

should be used as characteristic roughness is not trivial.

Suggestions in literature range from standard deviation of

elevations to grain size percentiles (Smith and Liang 2013).

In this study, the standard deviation of microtopography,

hereinafter referred to as r, is used as the characteristic

roughness length k. r represents a summary of topographic

irregularity and is often used as a roughness indicating

parameter (Smith et al. 2007; Smith 2014), hence it is

reasonable to use it as the characteristic roughness length.

The relationship between r and the maximum value of the

distribution ar can be approximated by ar ¼ 2 r (Defina

2000), which means that K ¼ 1 does not indicate full

inundation but marks the point, where the majority of the

subgrid-scale topography has been inundated. For the

derivation of the depth-averaged shallow water equations,

I is required to be very small. In shallow water flow sim-

ulations, I is usually in the range of 0–0.1.

Equations 18, 19 and 20 together represent the proposed

roughness formulation. To provide some physical inter-

pretation on the calibration parameters, a0 can be regarded

as a dimensionless friction coefficient. a1 can be inter-

preted as a geometric conveyance parameter. It accounts

for the influence of the spatial distribution of the subgrid-

scale elevations, e.g. blockade effects due to clustering

mentioned in Yu and Lane (2006). A large a1 indicates that

the conveyance of the spatial distribution is high, so K

decreases faster. In the applications presented in this work,

a0 and a1 are model calibration parameters. Thus, in total

three parameters are used for model calibration; C0, a0, and

a1. However, as C0 is calculated via Eq. 8, the model is

actually calibrated using a Manning’s coefficient n.

Fig. 1 Illustration of the

concept of the inundation

ratio K
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Numerical implementation

The shallow water equations, shown in Eq. 1, are dis-

cretized with cell-centered finite volumes. The discretized

equations are solved numerically with a second order

monotonic-upstream-centered scheme for conservation

laws (MUSCL). The implementation is applicable to both

structured and triangular meshes, however in this work

structured grids with square-shaped cells were used. A

brief overview of the implementation is given below. For

more detailed information, the reader is referred to Simons

et al. (2014).

Interface flux calculation

The fluxes at cell interfaces, given by the vectors f and g in

Eq. 2, are functions of the state variables h and v. Appro-

priate values for the state variables are calculated by

solving the Riemann problem on the interface via a Harten,

Lax and van Leer approximate Riemann solver with the

contact wave restored (HLLC) (Toro et al. 1994). The

Riemann states at the left and right side of the interface,

namely hL, hR and vL, vR where L and R stand for the left

and right side of the interface, respectively, are extrapo-

lated from the cell center with a three-point-stencil with

slope limiters, shown in Hou et al. (2012, 2013b). In this

study, the min-mod limiter is used to suppress spurious

oscillations.

To well preserve the C-property, non-negative hydro-

static reconstruction of the bottom elevation at the interface

is used (Audusse et al. 2004). The water depth and bottom

elevation are modified prior to the Riemann solution (Hou

et al. 2013a). Discussion of the non-negative hydrostatic

reconstruction method is given in Hou et al. (2014),

Delestre et al. (2012).

Slope and friction source term treatment

The bottom slope source term Sb of a cell (cf. Eq. 3) is

transformed into fluxes through the cell faces (Hou et al.

2013a).

The friction source term is discretized with the splitting

point-implicit method derived in Liang and Marche (2009),

which allows a fully implicit integration of the friction

source term.

In order to avoid numerical instabilites caused by too

high friction source terms, the entries sf ;x and sf ;y of the

vector Sf (cf. Eq. 5) are limited as shown in Liang and

Marche (2009):

sf ;i
� � qni Dt if qni � 0

� � qni Dt if qni\0

�

ð21Þ

Here, the subscript i stands for either x or y, denoting the

direction in cartesian coordinates. With this limitation,

friction no longer changes the direction of the flow (Hou

et al. 2013a).

Computational examples

All simulations were carried out with the Hydroinformatics

Modeling System (hms). The proposed roughness approach

is compared with different roughness models. Results of

high-resolution simulations with explicitly discretized

microtopography (HR) are used as reference solutions. All

models use the same numerical scheme. The parameters of

all models are optimized with the SciPy library van der

Walt et al. (2011) by minimizing the root mean square

deviation (RMSD) of the model results in regard to the HR

model, using either Brent’s method (Brent 1973) for one

free parameter or the Limited-memory Broyden, Fletcher,

Goldfarb and Shanno algorithm (L-BFGS-B) (Byrd et al.

1995; Zhu et al. 1997) for more parameters.

The RMSD is calculated as:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
t¼1 q̂t � qtð Þ2

n

s

ð22Þ

Here, q̂t is the unit discharge obtained by the roughness

model, qt stands for the unit discharge of the reference

solution of a HR model; t is a sample index and n is the

number of samples. The normalized root mean square

deviation NRMSD is calculated as

NRMSD ¼
RMSD

qmax � qmin

; ð23Þ

where qmax and qmin are the maximum and minimum values

of the reference solution calculated by the HR model,

respectively.

The computational benefit gained by the coarse grids is

quantified with the speedup, which is calculated as

SPEEDUP ¼
T

T̂
; ð24Þ

whereby T is the walltime duration of the HR model and T̂

is the walltime duration of the upscaled model.

Rainfall-runoff over an inclined plane with sine-

wave shaped microtopography

One-dimensional rainfall-runoff over an inclined plane

with sine-wave shaped microtopography is simulated.

Although synthetic, this test case is suitable to study the

capability of roughness models because in the limit, any

theory for complex microtopography has to converge to the
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solution of this idealized set up (Thompson et al. 2010).

The domain is 4 m long and its topography is described by

zb ¼ �0:05 xþ 0:01 sin 20p xþ
p

2

� �

ð25Þ

for a high-resolution model with explicitly discretized

microtopography (HR) on a 0:01m grid. The standard

deviation of the microtopography is r ¼ 0:01m. If the

microtopography is not explicitly discretized, which is the

case in the upscaled models, the bottom elevation is

described by

zb ¼ �0:05 x: ð26Þ

The side-view of the domain with microtopography (HR)

and without (other) is plotted in Fig. 2. Simulation

parameters, initial and boundary conditions for this simu-

lation are summarized in Table 1.

Results for the proposed roughness model (RM), Law-

rence’s model (LAW), constant Manning’s coefficient

model (CM), variable Manning’s coefficient model (VM)

and Razafison’s furrow roughness model (RA) using a grid

size of 0:1m are calculated.

Optimization was carried out regarding the discharge at

the outlet of the domain. The optimized parameters for

each model together with the resulting RMSDs are given in

Table 2. The optimal parameters of the RA model for this

test case were taken from the literature (Razafison et al.

2012).

The unit discharges at the outlet of the domain divided

by the total unit discharge of the rain qrain ¼ 3:2 �

10�3 m2=s are plotted in Fig. 3. The CM model poorly

reproduces the HR model result by overshooting it in the

early stage of the simulation and undershooting it in the

later stage. The VM model with three free parameters

shows very good agreement. The RM model shows the best

agreement. At the beginning, the RM model slightly

overshoots the solution of the HR model, however in the

later stages the curves show very good agreement. The

LAW model with two calibration parameters shows good

agreement with the HR model. The discharge in the early

stages of the simulation is overshot by the LAW model,

however the later stages are captured well. The discharge

calculated by the RA model rises later than all other

models and keeps undershooting the HR model results. A

discontinuity occurs at about t ¼ 20 s, which marks the

time for hhFi\h. At the end of the simulation, the RA

model catches up with the HR model.

All models can be calibrated to match the HR results to

some extent. However, it could be argued that the VM

model parameter h0 and the LAW model parameter k are

geometric parameters and should not be used for calibra-

tion. From their conceptual point of view, h0 and k should

either be set to the standard deviation of microtopography,

i.e. 0:01m, or the amplitude of the microtopography, i.e.

0:02m. It was found out that using these values for h0 and k

significantly reduces these models accuracy. Especially the

LAW model can not be calibrated to satisfactory accuracy

using only /, because / represents a fraction and therefore

is bounded between 0 and 1 and is not very sensitive. The

Fig. 2 Rainfall-runoff over an inclined plane with sine-wave shaped

microtopography: computational domain of different models: HR

(black), all other models (blue)

Table 1 Rainfall-runoff over an inclined plane with sine-wave

shaped microtopography: simulation parameters, initial and boundary

conditions

Parameter Meaning Value

r Standard deviation 0:01m

I Slope 0.05

n Manning’s coefficient in reference

simulation (HR)
0:04 sm�1=3

i Rainfall intensity 8� 10�4 m=s

T Simulation time 22:5 s

BC0 Boundary condition at x ¼ 0 Closed boundary

BC4 Boundary condition at x ¼ 4m Open boundary

h0 Initial water depth inside the domain 0

Table 2 Rainfall-runoff over an inclined plane with sine-wave

shaped microtopography: calibrated parameter values and corre-

sponding RMSD for each model

Model Calibrated parameter(s) RMSD

CM n ¼ 0:22 sm�1=3 0.081

VM n0 ¼ 0:018 sm�1=3, h0 ¼ 0:04m, � ¼ 2:4 0.014

LAW / ¼ 5:6%, k ¼ 0:06m 0.040

RA C ¼ 0:4, K0; R ¼ 0:02 0.058

RM n ¼ 0:15 sm�1=3, a0 ¼ 28:57, a1 ¼ 7:26 0.007

CM constant manning, VM variable manning, LAW Lawrence, RA

Razafison, RM proposed approach)
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simulation of the coarse models runs on a mesh with 40

cells in average 50 times faster than the HR model simu-

lation, which runs on a mesh with 400 cells.

Flow over an inclined plane with random

microtopography

Study area

The following example simulates a run-dry process of an

inclined surface with random microtopography. The study

area is a 4m� 1m inclined plane (cf. Fig. 4 (top)).

Random microtopography is generated as square blocks

with a horizontal length of 0:05 m and a vertical elevation

according to a Gaußian distribution with a standard

deviation of r ¼ 0:02 m (cf. Fig. 4 (bottom)). The maxi-

mum value of the microtopography is about 0:07 m and

the minimum value about �0:08 m. The domain is ini-

tially ponded with water which is then discharged during

the simulation at the outlet of the domain. Several simu-

lations with different slope and initial water depth are

carried out.

The slope I and the initial water depth h0 are varied for

different simulation runs. For each different slope and each

different water depth, different simulation runs. The slope is

increased in steps of 0.01 and the water depth is increased in

steps of 0:005m. For example, for I ¼ �0:01, simulation

runs with h0 ¼ 0:005m, h0 ¼ 0:01m, h0 ¼ 0:015m until

h0 ¼ 0:08m are carried out, and after that the slope is set to

I ¼ �0:02 and again simulation runs with varying h0 are

carried out. Table 3 shows the simulation parameters, initial

and boundary conditions for this simulation.

Four different roughness models are compared for every

possible combination of I and h0 with results of a high-

resolution model explicitly discretizing the microtopogra-

phy (HR): a model using a calibrated constant Manning’s

coefficient (CM); a model using a variable Manning’s

coefficient (VM), Lawrence’s model (LAW); and the pro-

posed roughness approach (RM). The HR model uses

quadratic grid cells with an edge length of 0:01m, all other

models use grids with coarser cells.

Uncalibrated model on coarse grid

First, an uncalibrated simulation on a coarse grid is carried

out to show the effects of increasing the grid size without

using an upscaling approach. The simulation is run on a

0:05m� 0:05m grid using the same roughness coefficient

as the HR model (n ¼ 0:02 sm�1=3) for I ¼ �0:02,

h0 ¼ 0:04m. Results for the unit discharge at the outlet for

the uncalibrated model (UCM) are plotted in Fig. 5 (top).

The peak of the discharge curve of the UCM model is

about 20 times higher than the HR model. After the peak is

reached, the UCM model discharge decreases too quickly

which indicates that the roughness is overall underesti-

mated. A NRMSD of 1.0 is calculated.

Application to different hydraulic conditions

In this section, the applicability of the roughness models to

different hydraulic conditions is tested. In a first step, the

models are calibrated for a fixed I-K0 combination and in a

second step these calibrated models are applied to different

I-K0 combination.

All models were calibrated on a 0:05m� 0:05m-grid

with regard to the unit discharge calculated by the HR

Fig. 3 Rainfall-runoff over an inclined plane with sine-wave shaped

microtopography: unit discharges compared at the outlet (HR high-

resolution, CM constant manning, VM variable manning, LAW

Lawrence, RA Razafison, RM proposed approach

Fig. 4 Flow over an inclined plane with random microtopography:

global topography for I ¼ 0:05 (top); microtopography (bottom)

7



calibrated values in Table 4 effect only the stage of the

simulation when the inundation ratio becomes smaller than

1. Calibrating the LAW model for smaller K0 might deliver

better results, however the calibration difficulties regarding

the LAW model mentioned in the test case before still

remain.

To study the transferability of the calibrated parameters

to different hydraulic conditions, the calibrated parameters

Table 3 Flow over an inclined

plane with random

microtopography: simulation

parameters, initial and boundary

conditions

Parameter Meaning Value

r Standard deviation 0:02m

I Slope 0.01, 0:02; . . ., 0.14

n Manning’s coefficient in reference simulation (HR) 0:04 sm�1=3

i Rainfall intensity 0

T Simulation time 60 s

BC0 Boundary condition at x ¼ 0 Closed boundary

BC4 Boundary condition at x ¼ 4m Open boundary

BCk Boundary conditions at y ¼ 0 and y ¼ 1 Closed boundary

h0 Initial water depth inside the domain 0:005; 0:01; 0:015; . . ., 0:08m

Fig. 5 Flow over an inclined plane with random microtopography,

0:05m grid size: unit discharges of the uncalibrated model (UCM)

and HR models (top) and model comparison at the outlet for h0 ¼
0:04 m and I ¼ 0:02 (bottom) (HR high-resolution, CM constant

manning, VM variable manning, LAW Lawrence, RM proposed

approach)

Table 4 Flow over an inclined plane with random microtopography,

0:05m grid size: calibrated parameter values and corresponding

NRMSD for h0 ¼ 0:04 m and I ¼ 0:02 for each model

Model Calibrated parameter(s) NRMSD

CM n ¼ 0:18 sm�1=3 0.120

VM n0 ¼ 0:14 sm�1=3, h0 ¼ 0:045m, � ¼ 1:4 0.026

LAW / ¼ 50%, k ¼ 0:023m 0.173

RM n ¼ 0:112 sm�1=3, a0 ¼ 5:52, a1 ¼ 2:61 0.030

CM constant manning, VM variable manning, LAW Lawrence, RM

proposed approach

model at the outlet of the domain for a slope of I ¼ �0:02
and an initial water depth of h0 ¼ 0:04m, i.e. an initial

inundation ratio of K0 ¼ h0=r ¼ 2. The calibrated param-

eters of all models with the corresponding NRMSDs are

given in Table 4. The unit discharges at the outlet are

plotted in Fig. 5 (bottom). While the LAW model is

showing the worst agreement with the HR model, the VM

model agrees the best, followed by the RMmodel. Although

the first peak of the HR model can not be captured by any of

the models, overall the VM and RM models capture the HR

model results very well. The CMmodel undershoots the HR

solution significantly at the beginning of the simulation and

starts to overshoot it after about t ¼ 12 s. The overall

agreement is not satisfactory. Additional calibrations which

were carried out with different initial conditions suggest

that all models except the LAW model should be calibrated

for K0 � 2, because for K0\2 the calibration may fail to

deliver good results. One reason for this may be, that for

K0\2 the blockade effects of the microtopgraphy outweigh

its roughness effects, i.e. the flow depends on the spatial

configuration and geometric properties of single microto-

pography elements. Then, spatial heterogeneity signifi-

cantly influences the flow and therefore the roughness

effects can not be averaged over the domain. For

h0 ¼ 0:04m, the LAW model uses Eq. 11 to calculate the

roughness and therefore has no calibration parameters. The

8



in Table 4 are used to simulate the unit discharge for every

I-K0 combination. The grid cell size used by the models is

0:05m. Results are compared with HR model results. Fig-

ure 6 shows the NRMSD of all models in dependency of I

and K0, where each cell is the result of a simulation run of a

certain I-K0 combination. The main focus of Fig. 6 is the

change of the NRMSD in dependency of I and K0 within

one model. Because of this reason and the significant dif-

ferences in the NRMSDs of different models, the range of

the legends are not set equal. The I-K0 combination used for

the calibration is denoted with a black rectangle. High

NRMSD in the CM model results occur for small K0

combined with small I. As K0 or I increase, the NRMSD

decreases as the influence of the microtopography decrea-

ses. The minimum NRMSD occurs for the calibration

conditions, i.e. K0 ¼ 2 and I ¼ �0:02. Except for the

region around K0 ¼ 0:75 and I ¼ �0:01, which is the

location of the maximum NRMSD, the transfer of the cal-

ibrated parameters to different I and K0 does not signifi-

cantly alter the NRMSD. It stays almost constant around the

mean value of 0.133. The NRMSD distributions of the VM

model and the RM model are qualitatively very similar.

High NRMSD occurs for small K0 combined with large I.

For the VM model, the minimum NRMSD occurs for the

calibration conditions, but for the RM model smaller

NRMSD is calculated for other simulation runs. For both

models, transfering the calibrated parameters to hydraulic

conditions with K0 [ 1:5 leads to increased NRMSDs, but

transfering the parameters to conditions with higher K0 has

not a significant influence on the NRMSD. The LAWmodel

has the highest NRMSD of all considered models. The

NRMSD increases significantly for K0\1, for K0 [ 1 the

NRMSD is about 0.15 and remains constant. With

increasing K0, the NRMSD decreases. The maximum

NRMSD, the minimum NRMSD and the mean NRMSD of

all simulations for each model are given in Table 5. Here it

is seen that the RM model calculates a smaller minimum,

maximum, and mean NRMSD than the VM model, but the

Fig. 6 Flow over an inclined plane with random microtopography, 0:05m grid size: normalized root mean square deviation in relation to initial

inundation ratio K0 and slope I
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Rainfall-runoff in a small alpine catchment

Study area and preliminary studies

Hortonian overland flow in a natural catchment, the Heu-

möser slope, Vorarlberg Alps, Austria, is simulated. The

study area is a 100; 000 m2 large subcatchment of the

Heumöser slope. Bottom elevation of the area is provided

in 1m� 1m resolution by a digital elevation model of the

Austrian department Torrent and Avalanche Control. This

bottom elevation is used for the high-resolution model.

Figure 7 (top) shows the topography of the domain and the

location of the outlet, where discharge was measured.

Rainfall is imposed according to a time series measured in

July 2008 with a resolution of 10min (Fig. 7 (middle)). The

simulation runs for t ¼ 120 h, i.e. 5 days.

Extensive numerical simulations of surface and subsur-

face runoff for this domain were carried out in Simons

et al. (2014), Stadler et al. (2012) within Research Unit

’Coupling of flow and deformation processes for modelling

the movement of natural slopes’ funded by the German

Research Foundation (Hinkelmann et al. 2011). During

these simulations, the model was calibrated with a runoff

coefficient W ¼ 0:3 in combination with a linear reservoir

model to account for the slower discharge component in

the subsurface, which was identified as a crucial contrib-

utor to the discharge at the outlet of the domain. The linear

reservoir is described by the following equations:

Table 5 Flow over an inclined plane with random microtopography,

0:05m grid size: Minimum (min), maximum (max) and mean

NRMSD values of all I-K0-combinations for different models

Model Min Max Mean

CM 0.095 0.468 0.133

VM 0.026 0.347 0.105

LAW 0.093 1.688 0.335

RM 0.022 0.304 0.091

Table 6 Flow over an inclined

plane with random microtopog-

raphy: mean NRMSD in

dependency of grid cell length

averaged over all I-K0-

combinations

Model 0:05m 0:1m 0:2m

CM 0.133 0.133 0.133

VM 0.105 0.105 0.105

LAW 0.336 0.336 0.335

RM 0.092 0.092 0.091

CM constant manning, VM

variable manning, LAW Lawr-

ence, RM proposed approach

Table 7 Flow over an inclined plane with random microtopography:

computational benefit for different grid sizes Dx

Model Dx (m) Cell number SPEEDUP

HR 0.01 40,000 1

Other 0.05 1600 20

Other 0.1 400 40

Other 0.2 100 70

HR high-resolution, other: all upscaled roughness models

CM constant manning, VM variable manning, LAW Lawrence, RM

proposed approach

VM model can be locally calibrated to show better agree-

ment (cf. Fig. 5 (bottom)).

Application to different cell size

Grid size is increased from 0.05 to 0:1m and to 0:2m to

study the transferability of the calibrated parameters to

different meshes. It is desirable, that the RMSD decreases

with decreasing cell size (also called grid convergence)

because this allows to efficiently calibrate the model on

coarser cells and then transfer the calibrated parameters to

a model with the desired spatial resolution (Horritt and

Bates 2001). If this can not be achieved, it is desirable that

at least the RMSD stays the same for different cell sizes.

Table 6 shows the NRMSD in dependency of grid cell

length averaged over all I-K0-combinations. For all mod-

els, the calibrated parameters were transferred between the

investigated scales with negligibly small change in the

NRMSD. Oddly, coarsening the grid size to 0:2m

improves the NRMSD. The reason for this negligibly small

improvement may be due to numerical round-off somehow

benefiting the accuracy of the solution, yet this has not

been further investigated. The inclined plane as a study

area is not very sensitive to grid size, because the geometry

is captured perfectly accurate by the second order dis-

cretization in combination with the non-negative hydro-

static reconstruction (cf. Simons et al. 2014). The plane has

no other spatial heterogeneities than the subgrid-scale

microtopography, which is accounted for by the roughness

formulation, i.e. the model domain is a smooth inclined

plane. Therefore, increasing grid size is not associated with

further loss of geometric information and only reduces

accuracy because of numerical diffusion. The HR model

simulation runs on a mesh with 40,000 cells. The speedup

(Eq. 24) in relation to the cell number is shown in Table 7.

As the cell number decreases, the speedup increases. The

speedup of the different upscaled roughness models did not

differ significantly (Table 7).
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dS tð Þ

dt
¼ I tð Þ � Q tð Þ ð27Þ

S tð Þ ¼ KQ tð Þ ð28Þ

Here, S tð Þ stands for the storage at time t; I tð Þ for the

inflow; and Q tð Þ for the outflow of the reservoir. K is the

constant of proportionality which can be obtained by cal-

ibration. A calibration in Simons et al. (2014) resulted in a

constant of proportionality K ¼ 6 h and a Manning coef-

ficient of n ¼ 0:067 sm�1=3. Because the same numerical

model (hms) as in Simons et al. (2014) is used in this

study, the same values for W and K are used in all models.

For reference, the results of a high-resolution simulation

with these parameters on a 1m� 1m grid (HR) is plotted

in Fig. 7 (bottom).

In the simulations grids with cell sizes of 5, 10 and 20m

are used. The bottom elevation inside a cell is set to the

arithmetic average of all DEM points located inside the

cell. The discretized bottom elevation for the studied cases

is given in Fig. 8. As expected, the discretization with a cell

size of 5m (Fig. 8 (top)) has the most information about

local details in the topography. It also can be seen that the

discretization with a cell size of 10m (Fig. 8 (middle)) still

represents an acceptable amount of local heterogeneities

and even the discretization with a cell size of 20m (Fig. 8

(bottom)) is able to capture the main topologic character-

istics of the catchment. However, in the latter case the

watershed boundaries start to blur and the location of the

measurement weir is captured in a single cell. Small scale

Fig. 7 Rainfall-runoff in a small alpine catchment: bottom elevation,

watershed (blue) and location of the outlet (top); intensity of the

rainfall event plotted over time (middle); HR model results with

parameters from Simons et al. (2014) (bottom)

Fig. 8 Rainfall-runoff in a small alpine catchment: bottom elevation

discretization in dependency of mesh resolution

123

11



preferential flow paths in the domain as observed in

Simons et al. (2014) can not be represented by the coarse

resolution. Additionally, numerical diffusion increases due

to the mesh resolution effects (Yu and Lane 2006). All

these effects have to be captured to some extent by the

roughness formulations.

In order to calculate its standard deviation, the

microtopography is isolated by calculating the deviations

of each DEM point in a cell from the bottom elevation

of the cell. The standard deviation of the microtopog-

raphy is then calculated as r ¼ 0:19m for a grid cell

size of 5m and r ¼ 0:21m for a grid cell size of 10 and

20m.

Table 8 shows the simulation parameters, initial and

boundary conditions for this simulation.

The proposed roughness formulation (RM) and three

other roughness approaches are compared in this test

case: calibrated constant Manning’s coefficient (CM),

variable Manning’s coefficient (VM) and the model of

Lawrence (LAW). Model discharges at the outlet are

superposed with the interflow computed by the linear

reservoir (cf. Eqs. 27 and 28) and are compared with

measurement data.

Upscaling with roughness formulations

Models are calibrated for a quadratic grid with a cell size of

10m. Table 9 shows the calibrated model parameters and

the corresponding RMSD with regard to measurement data

for each model. All models have almost the same RMSD,

however the RM model and the CM model give the lowest

RMSD. The HR model results in a similar RMSD as the

coarse models. The reason is that due to computational

restraints, the HR model was calibrated manually with

fewer trials than an optimization algorithm would require

(Simons et al. 2014). The usage of numerical optimization

algorithms to calibrate the HR model would demand

unfeasibly high computational effort. The hydrograph

calculated by the HR model is compared with measurement

data in Fig. 7 (bottom). In the early stages of the rainfall

event, specifically for t\20 h, the interflow is overesti-

mated by the linear reservoir model and thus, the HR

model results overshoot the measured data significantly.

Reason for this deviation might be previous hydrological

events in the catchment, which can not be taken into

account. This can be seen in Fig. 7 (bottom), where at the

beginning of the simulation the interflow overshoots the

measured time series. Most likely, in the real event the

rainfall infiltrated into the groundwater instead of becom-

ing part of the interflow. Better results might be obtained

by using a more sophisticated approach than a constant

runoff coefficient to estimate the effective rainfall. At

around t ¼ 20 h the deviation between model and mea-

surement begins to decrease. After t ¼ 30 h, the hydro-

graph is captured quite accurately by the models. The

hydrographs of the CM, VM, LAW and RM model are

plotted in Fig. 9 (blue triangles). As the HR model, these

models also overshoot the measurement data for t\20 h.

The CM model shows good agreement for the calibrated

cell size. Both peaks are captured well. The VM model

captures both occuring peaks (at about t ¼ 35 h and

t ¼ 65 h) the best. The LAW model and the RM model

tend to undershoot both peaks. However, the RM model

captures the tails of both curves more accurately.

Application to different cell size

In order to investigate the transferability of calibrated

parameters to different resolutions, cell size is varied to 5

and 20m. Table 10 shows the RMSD for each model in

dependency of cell size. In Fig. 9, the hydrographs for a

cell edge length of 5m (red circle) and a cell edge length of

20m (black square) are plotted. For the CM model, varying

the cell size decreases both peaks and decreases the arrival

time of the first wave. In Table 10 it can be seen that the

Table 8 Rainfall-runoff in a small alpine catchment: simulation

parameters, initial and boundary conditions

Parameter Meaning Value

r Standard deviation 0:19m (Dx ¼ 5m), 0:21m
(Dx ¼ 10; 20m)

I Slope Locally varying

n Manning’s coefficient in

reference simulation (HR)
0:067 sm�1=3

i Rainfall intensity According to a time series

T Simulation time 120 h

BC Boundary condition Open boundary

h0 Initial water depth

inside the domain

0

Table 9 Rainfall-runoff in a small alpine catchment, 10m grid size:

calibrated parameter values and corresponding RMSD for each model

Model Calibrated parameter(s) RMSD

HR n ¼ 0:067 sm�1=3 0.011

CM n ¼ 0:115 sm�1=3 0.010

VM n0 ¼ 0:01 sm�1=3, h0 ¼ 0:058m, � ¼ 0:11 0.012

LAW / ¼ 10%, k ¼ 0:21m 0.012

RM n ¼ 0:035 sm�1=3, a0 ¼ 0:3, a1 ¼ 0:87 0.010

HR high-resolution, CM constant manning, VM variable manning,

LAW Lawrence, RM proposed approach
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RMSD increases with varying cell size. For the VM model,

increasing or decreasing the cell size lowers both peaks

(Fig. 9). For the LAW model, mesh refinement leads to an

overall increase in discharge and increasing the cell size

leads to an overall decrease in the discharge. Varying the

cell size for the RM model leads to a significant decrease in

both peaks. The arrival time of both waves is captured

accurately in all cases. In Table 10 it can be seen that the

VM model shows good transferability, while the calibra-

tion of the CM, LAW and RM model results show higher

RMSDs if the cell size is changed.

A manual calibration of the RM model was carried out

to further investigate this models parameters transferabil-

ity. It was found out that the transferability of the param-

eters of the RM model can be increased if accuracy is

sacrificed. For n ¼ 0:07 sm�1=3, a0 ¼ 0:51 and a1 ¼ 0:54,

which result in a RMSD ¼ 0:012, the RM model showed

good transferability of its parameters across the investi-

gated cell sizes.

The speedup, as calculated according to Eq. 24, in

dependency of grid cell size is shown in Table 11. As

expected, increasing the cell size reduces the cell number

and thus the computational effort significantly. The

speedup of the different roughness models is about the

same. Of course the computational time depends on the

hardware and the numerical code, however the speedup

certainly can be transferred with little variance to different

hardware and codes.

Fig. 9 Rainfall-runoff in a small alpine catchment: discharges of

different models

Table 10 Rainfall-runoff in a

small alpine catchment: RMSD

for each model in dependency

of cell size

Model 5m 10m 20m

CM 0.015 0.010 0.013

VM 0.012 0.012 0.012

LAW 0.013 0.012 0.014

RM 0.016 0.010 0.013

CM constant manning, VM

variable manning, LAW Lawr-

ence, RM proposed approach

Table 11 Rainfall-runoff in a small alpine catchment: Computational

benefit for different grid sizes Dx

Model Dx (m) Cell number SPEEDUP

HR 1 147,400 1

Other 5 5896 56

Other 10 1474 336

Other 20 374 2520

HR high-resolution, other all upscaled roughness models
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Discussion

The speedup in the presented examples varied in a wide

range between 20 to 2520 (cf. Tables 7, 11). The width of

the range can be explained with the way the cell size

influences the speedup. In fact, the two major influences on

the speedup are the number of cells and the Courant–

Friedrichs–Lewy stability criterion (CFL), which limits the

time step size (Kim et al. 2014). Both the number of cells

and the CFL criterion are dependent on the cell size. In

Kim et al. (2014), these effects have been taken into

account to express a relationship between computational

cost C with cell size Dx as

C� kDx�3; ð29Þ

Conclusions

A novel conceptual roughness formulation for shallow

water simulations on coarse grids was developed. The

formulation is dependent on the inundation ratio, which is

calculated using the standard deviation of the microto-

pography with regard to its mean value. A physical inter-

pretation of the free parameters was given: the parameter

C0 is an increased Chézy coefficient, a0 is an additional

dimensionless roughness coefficient accounting for the

microtopography and a1 is a geometric conveyance

parameter. The presented roughness formulation was then

compared to several existing roughness formulations from

literature. It was demonstrated in three computational

examples, that high-resolution results can be approximated

with satisfactory accuracy by calibrating the roughness

formulation parameters. The exact values of the calibration

parameters may vary in dependency of the numerical

methods used to solve the equations, hence the optimized

parameters reported in this study should be taken with

caution.

The first example studied one-dimensional rainfall-run-

off over a sine-wave shaped microtopography. The pre-

sented roughness approach returned the lowest root mean

square deviation from the high-resolution model results. In

the second example, calibrated parameters were transferred

to different hydraulic conditions with some success.

Varying the slope or the initial inundation increased the

error for all models. The presented roughness formulation,

together with the variable Manning’s coefficient, resulted

in the lowest root mean square deviations. It was shown

that the proposed roughness formulation can be calibrated

more accurately than the variable Manning’s coefficient

formulation, however, the latter showed a better calibration

stability. In the last example, the proposed roughness

approach was tested for a real case application. Here, again

the presented roughness formulation and the variable

Manning’s coefficient approach were shown to be good

trade-offs between accuracy and computational efficiency.

It was shown that it is possible to upscale shallow water

models using suitable roughness formulations. Due to mesh

resolution effects (Horritt and Bates 2001; Yu and Lane

2006), the coarse grid models are not able to reproduce the

high-resolution solutions exactly. In general, it can be

concluded that accuracy increases with the number of free

calibration parameters. However, as the number of

parameters increases, the calibration process becomes more

difficult. Using coarser grids resulted in a speedup between

20 and 2520. The reasons for the wide range of the speedup

have been discussed. Overall, the proposed roughness

approach is superior when compared to the other roughness

approaches with respect to accuracy.

where k is a factor which depends on the computational

scheme. The additional operations performed for the cal-

culation of the source terms have been found insignificant,

which is the reason why all models get the same speedup

for the same cell size, i.e. same number of cells. However,

in Table 7 the coarse grid has 400 times less cells than the

high-resolution grid causing a speedup of 70. In contrast,

the coarse grid of Table 11 has roughly the same factor of

decrease in cell numbers with respect to its high-resolution

grid, however the speedup is 2520. The variation in the

speedup might be related to the total duration of the sim-

ulation. As the decrease in cell numbers decreases the

number of floating point operations per time step, the

longer the simulation runs the higher the deviation between

the walltime durations of both models becomes.

Another issue to be discussed is the calibration effort.

While in general it can be assumed that the calibration

effort increases with increasing number of calibration

parameters, the calibration effort is very dependent on the

initial guess. The authors have shown in Özgen et al.
(2015), that due to this dependency, sometimes models

with three calibration parameters require less calibration

steps than models with two parameters. However, in this

work, the calibration of the constant Manning model with

one parameter required significantly less calibration steps.

This is also related to the optimization methods, because

scalar functions can be optimized very efficiently while

functions of higher dimension require more sophisticated

and computationally demanding optimization methods. In

the authors’ opinion, the additional accuracy of the variable

Manning or the proposed roughness approach outweighs

the higher calibration effort. It should also be mentioned,

that even if the calibration step is taken into account, the

coarse grid simulations are faster than the high-resolution

simulation in the investigated cases. Further, as seen in the

last example, the high-resolution simulation itself needs to

be calibrated for real case applications.
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