
STOCHASTIC RESOURCE-CONSTRAINED

PROJECTSCHEDULING

vorgelegt von
Dipl.-Math. techn. Frederik Stork

aus M̈unchen

Vom Fachbereich Mathematik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

genehmigte Dissertation

Berichter: Prof. Dr. Rolf H. M̈ohring,
Technische Universität Berlin

Berichter: Prof. Dr. Peter Brucker,
Universiẗat Osnabr̈uck

Tag der wissenschaftlichen Aussprache: 09. April 2001

Berlin 2001
D 83

PREFACE

After having received my diploma from the Technische Universität Berlin in 1996,
Rolf Möhring, the supervisor of my diploma thesis, offered me a research position
in his group. At that time I was employed at a Berlin software company the
head of which, Gert Scheschonk, strongly encouraged me to accept the offer. I
accepted and in 1997 I began to work within a research initiative funded by the
Deutsche Forschungsgemeinschaft DFG. The members engaged in this initiative
belong to five research groups in Germany which are located at universities in
Bonn, Karlsruhe, Kiel, Osnabrück, and Berlin. In Berlin, the scope of the project
was to develop algorithms and theory for stochastic resource-constrained project
scheduling problems which is the main topic of this thesis.

I am thankful to Rolf M̈ohring for his support, his encouragement, and the su-
pervision of my thesis. In particular, I greatly benefited from his guidance during
my work onAND/OR precedence constraints and scheduling policies.

My special thanks go to my colleagues Martin Skutella and Marc Uetz. Martin
greatly helped to establish, generalize, and improve many of my original consider-
ations onAND/OR precedence constraints which finally led to the results presented
in Chapters 2 and 3. The continuous fruitful discussion with Marc led to new in-
sights in the field of deterministic resource-constrained project scheduling. The
results presented in Chapter 4 on different representations of resource constraints
are one example of this productive collaboration.

I am also very grateful to my colleagues Andreas Schulz and Matthias Müller-
Hannemann. I gained a lot from Andreas’ expertise and his co-authorship in pa-
pers on deterministic project scheduling (which are not part of this thesis). My
former roommate Matthias was always willing to interrupt his work in order to
discuss the questions I raised.

I would also like to mention the fruitful collaboration with the other members
of the DFG research initiative on resource-constrained project scheduling. In par-
ticular, I thank Peter Brucker for the willingness to serve as a member of my thesis
committee.

Some parts of this thesis rely on software implementations that would not have
reached the current quality without the support of Ewgenij Gawrilow. I thank
him for introducing me to the concept of generic programming; he had a great
share in establishing the basis of our programming environment, a collection of
fundamental scheduling algorithms and data structures.

iii

iv

Finally, I am grateful to Marc Uetz, Martin Skutella, Andreas Schulz, Marc
Pfetsch, Michael Naatz, Ekkehard Köhler, and Andreas Fest for their careful
proof-reading of different parts of the manuscript.

It has been a great pleasure to share both research and leisure activities with the
colleagues at the Technical University in the groups of Rolf Möhring and G̈unter
Ziegler. It is hard to imagine a better working environment.

Berlin, February 2001 Frederik Stork

CONTENTS

Introduction 1

1 Project Scheduling 7
1.1 Deterministic Resource-Constrained Project Scheduling 7
1.2 Stochastic Project Networks (PERT-Networks) 10
1.3 Stochastic Resource-Constrained Project Scheduling 12

2 AND/OR Precedence Constraints: Structural Issues 17
2.1 Motivation and Related Work. 17
2.2 Preliminaries . 19
2.3 Feasibility . .. 21
2.4 Detecting ImplicitAND/OR Precedence Constraints. 23

2.4.1 Problem Definition and Related Work 23
2.4.2 Result. 24
2.4.3 Correctness .. 25

2.5 Minimal Representation ofAND/OR Precedence Constraints . . . 27
2.6 An NP-Complete Generalization 30

3 AND/OR Precedence Constraints: Earliest Job Start Times 33
3.1 Problem Definition and Related Work 33
3.2 Arbitrary Arc Weights 35

3.2.1 Feasibility . .. 35
3.2.2 A Simple Pseudo-Polynomial Time Algorithm 37
3.2.3 A Game-Theoretic Application 38

3.3 Polynomial Algorithms 40
3.3.1 Positive Arc Weights. 41
3.3.2 Non-Negative Arc Weights 42

3.4 The Linear Time-Cost Tradeoff Problem 47

4 Representation of Resource Constraints in Project Scheduling 51
4.1 Introduction .. 51
4.2 Threshold and Forbidden Set Representations 53

4.2.1 Relations to Threshold (Hyper-)Graphs 53
4.2.2 From Thresholds to Minimal Forbidden Sets 54

v

vi Contents

4.2.3 Related Topics 55
4.3 Computing Minimal Forbidden Sets. 56

4.3.1 Counting Minimal Forbidden Sets 56
4.3.2 Description of the Algorithm. 57
4.3.3 Analysis of the Algorithm 58
4.3.4 Implementation and Fast Reduction Tests 59
4.3.5 Compact Representation of Forbidden Sets. 61

4.4 Computational Evaluation .. 62
4.4.1 Setup and Benchmark Instances 62
4.4.2 Computational Results 64

4.5 Further Remarks and Examples 68

5 Robust Scheduling Policies 71
5.1 Introduction .. 71
5.2 General Scheduling Policies. 73
5.3 Earliest Start Policies. 77
5.4 Preselective Policies. 79

5.4.1 Definition and Characteristics 79
5.4.2 Domination .. 82

5.5 Linear Preselective Policies .. 84
5.5.1 Definition and Characteristics 84
5.5.2 Domination .. 86
5.5.3 Acyclic Preselective Policies. 87

5.6 Job-Based Priority Policies .. 89
5.6.1 Definition and Characteristics 89
5.6.2 Domination .. 90

5.7 Relationship between Optimum Values 91

6 Branch-and-Bound Algorithms 95
6.1 Introduction and Related Work 95
6.2 Branch-and-Bound and Random Processing Times. 98
6.3 Dominance Rules . .. 103

6.3.1 Earliest Start Policies. 104
6.3.2 Preselective Policies. 104
6.3.3 Linear Preselective Policies via Forbidden Sets 106
6.3.4 Linear Preselective Policies via the Precedence-Tree . . . 107
6.3.5 Job-Based Priority Policies 108

6.4 Improving the Performance .. 110
6.4.1 Initial Upper Bound . 110
6.4.2 The Critical Path Lower Bound and Jensen’s Inequality . . 110
6.4.3 Single Machine Scheduling Relaxations 112

Contents vii

6.4.4 Sorting the Minimal Forbidden Sets. 113
6.4.5 Flexible Search Strategy 114

6.5 Computational Study. 114
6.5.1 Computational Setup. 114
6.5.2 The Test Sets. 115
6.5.3 Comparison of the Procedures 116
6.5.4 Impact of Additional Ingredients 121
6.5.5 Application to other Instances 127

Concluding Remarks 131

List of Algorithms 134

Bibliography 135

Symbol Index 147

Index 149

Zusammenfassung 151

Curriculum Vitae 153

INTRODUCTION

Motivation. Scheduling theory is an important and dynamic subject within com-
binatorial optimization and has attracted numerous researchers. Scheduling is
concerned with the planning of activities over time subject to various side con-
straints with the intention to minimize some objective function. Activities are
separate pieces of work and are commonly referred to asjobs. In this thesis we
consider a fairly general scheduling model that has numerous applications and
contains many other models as a special case. Let us sketch the characteristics of
the model. First,precedence constraintshave to be respected, that is, certain jobs
must be completed before others can be executed. During its execution, each job
requires capacity of different resources, and the resource availability is limited. In
addition, we assume that the processing time of each job is uncertain and follows a
given probability distribution. The outlined model, which is usually referred to as
stochastic resource-constrained project scheduling, integrates two different, clas-
sical scheduling models both of which have been extensively studied in the past
40 years. On the one hand, this is the deterministic resource-constrained project
scheduling problem where each job processing time is assumed to be fixed and
known in advance. One of the first papers which refers to this model was written
by Wiest (1963). Since then, a vast body of literature has been established; we here
only mention the recent publications (Brucker, Drexl, Möhring, Neumann, and
Pesch 1999; We¸glarz 1999) for reviews of different models and algorithms. On
the other hand, stochastic resource-constrained project scheduling generalizes so-
calledstochastic project networksor PERT-networkswhere job processing times
are assumed to be stochastic but the resource availability is unlimited. Adlakha
and Kulkarni (1989) have provided a bibliography that classifies the enormous
number of contributions up to 1987.

Scheduling models with stochastic job processing times are important because
many uncertain events within project execution may cause job interruptions and
delays. Weather conditions, unavailability of resources, and authorization pro-
cesses are only some examples. Already Fulkerson (1962) noted that the expected
completion of the last job in a stochastic project network, the expectedproject
makespan, is greater than or equal to the project makespan that is based on the
expected processing times of jobs.

The necessity to consider models with random job processing times is proba-
bly best motivated by the following quotation taken from the final report of a re-

1

2 Introduction

cent NASA project (Henrion, Fung, Cheung, Steele, and Basevich 1996). There,
space shuttle ground processing is modeled as a stochastic resource-constrained
project scheduling problem (we give details in Chapter 6 below).

“Shuttle ground processing is subject to many uncertainties and delays.
These uncertainties arise from many sources, including unexpected shuttle
maintenance requirements, failure of ground test equipment, unavailability
of resources or technical staff, manifest constraints, and delays in paper-
work.” (Henrion et al. 1996, Page 4)

Scheduling with policies. Due to the combination of random job processing
times and limited resources the stochastic resource-constrained project schedul-
ing problem is a stochastic dynamic optimization problem and, as such, belongs
to the field of stochastic dynamic programming. Scheduling is usually done by so-
calledpolicies. A policy may be seen as a dynamic decision process that defines
which jobs are started at certain decision timest, based on the observed past up to
t. Since it is commonly believed that the class of all policies is computationally
intractable, different subclasses of policies have been considered in the literature.
Möhring and Radermacher (1985) have contributed an illustrative survey. Our
work is based upon so-calledpreselective policieswhich have been introduced by
Radermacher (1981b). Let us briefly mention the basic concept of this structurally
appealing class. Preselective policies are defined via so-calledminimal forbidden
sets. A setF of jobs without a precedence constraint among them is calledfor-
bidden if the total resource consumption of the jobs inF exceeds the resource
availability. If no proper subset of a forbidden setF is forbidden, then we callF
minimal forbidden. A preselective policy defines for each minimal forbidden set
apreselectedjob j ∈ F which is postponed until at least one job fromF \{j} has
been completed.

Contribution. The purpose of this thesis is to provide new insights on how to
solve stochastic resource-constrained project scheduling problems. To this end,
we first study the combinatorial structure of preselective policies (and appropri-
ately defined subclasses thereof). Then, we develop, implement, and evaluate
solution techniques for stochastic resource-constrained project scheduling prob-
lems that are based on these classes of policies. We next outline the contributions
in more detail.

The obtained results on the combinatorial structure of preselective policies rely
on the concept of so-calledAND/ORprecedence constraintswhich are a general-
ization of traditional precedence constraints. For a given setV of jobs, anAND/OR

precedence constraint consists of a pair(X, j) with X ⊂ V andj ∈ V \ X with
the meaning that at least one job fromX must have been completed beforej

Introduction 3

can be executed.AND/OR precedence constraints are of relevance in its own due
to their appearance within, e. g., assembly or disassembly processes (Goldwasser
and Motwani 1999). We propose a new field of application which is based on
the fact that any preselective policy can be expressed as a set of such constraints.
To this end, we develop a number of basic algorithms for scheduling jobs subject
to AND/OR precedence constraints. For example, we give two different polyno-
mial time algorithms to compute earliest job start times as well as a linear time
algorithm to detect ‘transitive’AND/OR precedence constraints. These algorithms
later appear as important components within procedures to compute preselective
policies for stochastic resource-constrained project scheduling problems.

The results obtained forAND/OR precedence constraints give also rise to con-
sider particular subclasses of preselective policies. These classes differ with re-
spect to both their computational tractability and the optimum expected objective
function value that can be achieved within the respective class. We collect some
of the structural and algorithmic properties of these classes of policies and use
them to develop in total five branch-and-bound algorithms. Enhanced with many
additional ingredients to speed up the computations, the algorithms are rigorously
tested on 1440 instances created by the widely accepted instance generatorPro-
Gen(Kolisch and Sprecher 1996). In particular, for each of the considered classes
of policies, we establish results on the trade-off between computational efficiency
on the one hand and solution quality on the other hand. In order to deal with
the random job processing times we use standard simulation methods, i. e., we
generate a set ofscenariosthat mimics the random data.

Finally, to implement the branch-and-bound algorithms, we have to overcome
one more difficulty that is related to the forbidden set based definition of preselec-
tive policies. Usually, minimal forbidden sets are defined implicitly via resource
consumptions of jobs and resource availability. Since we require an explicit repre-
sentation of the minimal forbidden sets we develop a simple (yet powerful) back-
tracking algorithm to compute all minimal forbidden sets from a given implicit
representation. As a by-product the algorithm suggests a compact representation
of all minimal forbidden sets in a tree data structure. This is of particular impor-
tance since the number of minimal forbidden sets may be large when compared to
the number of jobs.

We already noted above that stochastic resource-constrained project schedul-
ing in general falls into the area of stochastic dynamic programming. However,
the focus of our research is the study of preselective policies which are of strong
combinatorial structure. As a consequence, the contents of this thesis is rather
related to combinatorial optimization than to stochastic dynamic programming.

4 Introduction

Outline of this thesis. The thesis is divided into six chapters the first of which
provides a brief introduction to the field ofproject scheduling, including different
models, basic solutions techniques, and their application.

In Chapter 2we study the combinatorial structure ofAND/OR precedence con-
straints. We first discuss the problem of whether a given set ofAND/OR prece-
dence constraints is feasible. A set is feasible if there exists an ordering of the
jobs in which they can be processed without violating any constraint. We propose
a greedy linear-time algorithm that constructs such an ordering if and only if the
given set ofAND/OR precedence constraints is feasible. Furthermore, we reveal
a close relationship to the HORN-SAT problem. We then show that the algorithm
to decide feasibility can also be used to find ‘transitive’AND/OR precedence con-
straints. In addition, we prove that there exists a unique minimal representation of
a set ofAND/OR precedence constraints and suggest a polynomial time algorithm
to compute it. We finally argue that the discussed problems are NP-complete for
a natural generalization of the model ofAND/OR precedence constraints.

In Chapter 3we discuss the problem of computing earliest job start times if
AND/OR precedence constraints are imposed among jobs. We here consider three
different cases: The arc weights of the digraph that can be associated to a given set
of AND/OR precedence constraints are (i) arbitrary, (ii) strictly positive, and (iii)
non-negative. For Case (i) we show that the problem is closely related to a class of
two-person perfect information games played on digraphs (so-called mean-payoff
games). Moreover, we extend the feasibility criterion established in the previous
chapter, which immediately implies that the decision problem is in NP∩ co-NP. In
fact this result was known for mean-payoff games. We then give polynomial time
algorithms for Cases (ii) and (iii). Finally, we study thetime-cost tradeoff problem
for the case ofAND/OR precedence constraints. In the time-cost tradeoff problem,
the jobs share a common resource which can be freely distributed among them, but
which affects their processing times. This dependency yields a tradeoff between
an early project completion and a low project cost. We discuss the analytical
properties of the time-cost tradeoff curve and show that it is NP-hard to compute
a single point of the curve.

In Chapter 4we study alternative representations of resource constraints. Tra-
ditionally, resource constraints are defined via a setK of different resources. Each
job j ∈ V requires capacity ofrjk units of resourcek ∈ K while being processed,
and the total resource availabilityRk of each resourcek ∈ K is limited. Let us
call this representation of resource constraints thethreshold representation. An-
other representation is by the previously mentioned minimal forbidden sets. We
first discuss the computational complexity of different problems that are related to
both the threshold representation of resource constraints and the representation by
minimal forbidden sets. We identify an interesting relation to so-called threshold

Introduction 5

(hyper-)graphs which shows that the problem of finding the minimal number of
resource typesk required in a threshold representation for a given system of min-
imal forbidden sets is NP-complete. If resource constraints are given in threshold
representation, we show that, given a jobj ∈ V , it is NP-complete to decide
whether there exists a minimal forbidden setF with j ∈ F . We propose a back-
tracking algorithm which computes the systemF of minimal forbidden sets for
an instance which is given by the usual threshold representation. We show that
the algorithm can be implemented to run in polynomial time with respect to the
in- and output for instances with only one resource type (that is,|K| = 1). The
algorithm immediately suggests a tree-like data structure to efficiently represent
all minimal forbidden sets. We finally report on a computational evaluation of the
algorithm. The results exhibit the benefits of the proposed algorithm in compari-
son to a previously suggested approach to compute all minimal forbidden sets by
Bartusch (1984).

In Chapter 5we study the class ofpreselective policiesas well as different
subclasses thereof. We first review Radermacher’s notion of a policy and discuss
popular classes of policies (so-calledpriority policiesandEarliest Start policies).
We then show that preselective policies can be expressed by a set ofAND/OR

precedence constraints and, with the results presented in Chapter 2, we estab-
lish a necessary and sufficient dominance criterion. In addition, we derive an
efficient algorithm that (approximately) computes the expected objective function
value that results from a project execution according to a specific preselective pol-
icy. The algorithm is based on the results of Chapter 3. We then introduce a
new subclass of preselective policies, so-calledlinear preselective policies. The
essential advantage is that algorithms for such policies operate on acyclic struc-
tures, which allows a simpler and more efficient computational handling. Next,
we study another subclass of preselective policies, the so-calledjob-based pri-
ority policies. In contrast to (linear) preselective policies and ES-policies, they
have the important advantage that the representation of resource constraints by
(possibly exponentially many) minimal forbidden sets is not required since the
threshold representation suffices. As a consequence, algorithms that are based on
job-based priority policies have the potential to be applicable to projects where
a large number of minimal forbidden sets makes the use of forbidden set based
policies computational inefficient. Finally, we relate the optimum expected objec-
tive function values that can be achieved within the above mentioned classes of
policies to each other.

The last chapter,Chapter 6, is concerned with the computational evaluation
of the theoretical results presented in Chapter 5. The objective function that we
consider is the minimization of the expected project makespan. We establish re-
sults on the trade-off between computational efficiency on the one hand and solu-

6 Introduction

tion quality on the other hand, for the classes of policies discussed in Chapter 5.
We utilize two different branching schemes as well as several additional ingredi-
ents such as dominance rules and lower bounds to speed up the computations. In
total, we have implemented two different branch-and-bound algorithms for lin-
ear preselective policies and one algorithm for preselective policies, ES-policies,
and job-based priority policies, respectively. We explore their computational ef-
ficiency on 1440 instances of different size. The experiments reveal that linear
preselective polices are computationally more tractable than preselective policies
and ES-polices. For projects that involve a moderate number of minimal forbid-
den sets it is possible to compute (near) optimal linear preselective policies with
truncated versions of the branch-and-bound algorithm. In addition, the experi-
ments exhibit that the optimum expected makespan among the class of job-based
priority policies is only slightly larger compared to the optimum makespan within
the class of preselective policies. As a consequence, since job-based priority poli-
cies do not require the forbidden set representation of resource constraints, they
are a good starting point to develop heuristic approaches to solve large-scaled
stochastic resource-constrained project scheduling problems.

We assume that the reader is familiar with the fundamental concepts of combi-
natorial optimization which can be found, e. g., in the books of Papadimitriou and
Steiglitz (1982), Cook, Cunnigham, Pulleyblank, and Schrijver (1998), and Korte
and Vygen (2000). Other books on combinatorial optimization have a more spe-
cific focus, for instance, flows in networks (Ahuja, Magnanti, and Orlin 1993) or
integer linear programming (Schrijver 1986). A comprehensive treatment of com-
plexity theory is given, e. g., in the books of Garey and Johnson (1979) and Pa-
padimitriou (1994). There are several books and survey articles on scheduling the-
ory with different points of emphasis. We want to mention the books of Brucker
(1998) and Pinedo (1995) and the surveys of Lawler, Lenstra, Rinnooy Kan, and
Shmoys (1993) and Brucker, Drexl, M̈ohring, Neumann, and Pesch (1999). The
prerequisites of probability theory are relatively few because we use standard sim-
ulation methods in order to deal with (arbitrary) job processing time distributions.
Finally, we sometimes make use of order-theoretic notation; for an introduction
to the theory of partially ordered sets we refer to (Trotter 1992).

Parts of this thesis have been published or pre-published in (Möhring, Skutella,
and Stork 2000a; M̈ohring, Skutella, and Stork 2000b; Stork and Uetz 2000;
Möhring and Stork 2000; Stork 2000).

CHAPTER 1

PROJECTSCHEDULING:
COMPLEXITY AND BASIC SOLUTION TECHNIQUES

The purpose of this brief introductory chapter is to classify the model of stochas-
tic resource-constrained project scheduling within the field of combinatorial op-
timization. We review the complexity status and classical solution techniques
of some popular special cases. These are thedeterministic resource-constrained
project scheduling problemand stochastic project networksor PERT-networks.
We also (briefly) touch the field ofstochastic machine scheduling.

1.1 Deterministic Resource-Constrained Project Scheduling

Problem definition. We first consider the deterministic resource-constrained
project scheduling problem. An instance (orproject) consists of a finite setV =
{1, . . . , n} of jobs together with apartial order G0 = (V,E0), E0 ⊂ V × V , on
the set of jobs. In order to perform a project, all jobs ofV have to be executed in
accordance with the precedence constraints that are defined by the partial order:
If (i, j) ∈ E0 then j cannot be started before the completion ofi. In addition
to that, jobs need different (renewable) resourcesk ∈ K while being processed.
A constant amount ofRk ∈ N units of each resource is available throughout the
project and each jobj requires0 6 rjk 6 Rk (rjk ∈ N) units of resourcek ∈ K
while in process. The processing timepj ∈ R> of each jobj ∈ V is deterministic
and known in advance (R> denotes the set of positive real numbers). Moreover,
it is assumed that each job is executednon-preemptively, that is, the execution of
jobs must not be interrupted. Ascheduleis a vectorS ∈ R

n
> of job start times

Sj ∈ R>, j ∈ V (R> denotes the set of non-negative real numbers).S is called
time-feasibleif S respects all precedence constraints, i. e.,Sj > Si + pi for all
(i, j) ∈ E0. S is calledresource-feasibleif, at any timet and for each resource
k, the sum of the resource consumption of all jobs which are in process att does
not exceed the availabilityRk. Together, we call a schedulefeasibleif it is both
time- and resource-feasible. For a given scheduleS, thecompletion timeCj of job
j ∈ V is defined asSj + pj. The objective is to find a feasible schedule such that
a given measure of performanceκ : R

n
> → R> which maps a vector of comple-

7

8 Project Scheduling

tion times to a (non-negative) real value, is minimized. Throughout the thesis we
assume thatκ is regular, that is,κ is non-decreasing. Many of the popular perfor-
mance measures have this property, e. g., themakespanCmax := maxj∈V Cj and
theweighted sum of completion times

∑
j∈V wjCj (the weightwj > 0 indicates

the importance of jobs). In the sequel, we callκ thecost functionof the project
and refer to the valueκ(C) with C = (C1, . . . , Cn) as theproject cost.

We next briefly review previous work on deterministic resource-constrained
project scheduling. In fact, since the number of contributions is enormous, we
only consider selected topics that are of relevance for this thesis. We refer to
(Brucker, Drexl, M̈ohring, Neumann, and Pesch 1999) and (We¸glarz 1999) for
surveys on different models, recent research directions as well as many references.

Complexity. As a generalization of many classical NP-hard machine scheduling
problems, the resource-constrained project scheduling problem is also NP-hard
(in the strong sense). But even more, it is among the most intractable combi-
natorial optimization problems, as is perhaps best underlined by the fact that the
vertex coloring problem in graphs can be expressed as a special case of a resource-
constrained project scheduling problem with makespan objective. The following
transformation is described in, e. g., (Schäffter 1997). For an instance of vertex
coloring, introduce a jobj with unit processing timepj = 1 for each vertex.
Then, add a resourcek for each edge, letRk = 1 and setrjk = 1 for the two
jobs which are incident to the edge, andrjk = 0, otherwise. The makespan of
the so-constructed scheduling instance equals the minimal number of colors re-
quired to color the vertices of the graph. Thus, as for vertex coloring, there is no
polynomial-time approximation algorithm with a performance guarantee less than
nε for someε > 0, unlessP = NP (Feige and Kilian 1998).

Exact procedures. A number of branch-and-bound procedures which compute
an optimal solution to the problem has been considered in the literature. Interest-
ingly, they are based upon quite different ideas on how the enumeration tree which
represents all feasible solutions is organized. A popular approach is to start with
the earliest start schedule (with respect to the precedence constraints) and then
systematically postpone sets of jobs (so-calleddelaying alternatives) in order to
obtain feasible schedules. In different variations this principle is used by, e. g.,
Stinson, Davis, and Khumawala (1978), Demeulemeester and Herroelen (1992,
1997), and Mingozzi, Maniezzo, Ricciardelli, and Bianco (1998). A constrained-
programming-based enumeration is studied by Dorndorf, Pesch, and Phan Huy
(2000a, 2000b): Starting from an interval of feasible start times for each job, the
branching process reduces the size of the intervals until all intervals consist of
only one value. Another approach is described in (Brucker, Knust, Schoo, and

1.1 Deterministic Resource-Constrained Project Scheduling 9

Thiele 1998). They systematically partition the setV ×V of pairs(i, j) into three
sets which indicate the position ofi andj relative to each other. For each such
triplet of sets a component-wise minimal schedule which satisfies the conditions
imposed by the triplet can be computed in polynomial time (if one exists). The
branching process iteratively assigns each job pair to one of the three groups such
that finally, all triplets (which represent at least one feasible schedule) are enumer-
ated. There are two other approaches, we call them the precedence-tree branching
scheme and the forbidden set branching scheme. The schemes, which are de-
scribed by Patterson, Słowiński, Talbot, and We¸glarz (1989) and Igelmund and
Radermacher (1983a), respectively, are discussed in detail in Chapter 6 below.

Lower bounds. There are numerous publications which deal with the compu-
tation of lower bounds on the minimal project makespan for resource-constrained
projects; we briefly review some of them. Various extensions of critical path anal-
ysis have been suggested, and perhaps the first reference in this direction is by
Stinson, Davis, and Khumawala (1978). Linear programming lower bounds are
analyzed by Christofides, Alvarez-Valdes, and Tamarit (1987), as well as Caval-
cante, de Souza, Savelsbergh, Wang, and Wolsey (1998) and Möhring, Schulz,
Stork, and Uetz (2000). Based on another integer programming formulation, sev-
eral linear programming lower bounds are studied by Mingozzi, Maniezzo, Ric-
ciardelli, and Bianco (1998). Klein and Scholl (1999) propose a destructive im-
provement approach, which is based on the idea to reject fictitious upper bounds
by proving infeasibility, just like in constraint propagation. Similar techniques
are used by Heilmann and Schwindt (1997). Based on the formulation by Min-
gozzi et al. (1998) and combined with constraint propagation techniques, Brucker
and Knust (2000) obtain the currently best known lower bounds on a widely used
benchmark test set. Finally, a Lagrangian relaxation based approach is suggested
by Christofides, Alvarez-Valdes, and Tamarit (1987). They solve the resulting
Lagrangian subproblem by branch-and-bound. Möhring, Schulz, Stork, and Uetz
(2000) reconsider the same Lagrangian relaxation and use a maximum-flow algo-
rithm to solve the subproblem.

Feasible solutions. Most relevant from a practical point of view is the com-
putation of feasible solutions (schedules). Not surprisingly, this topic has been
studied most frequently. Besides classical list scheduling heuristics, almost every
local search technique has been applied to the problem (with makespan objec-
tive, among others). Hartmann and Kolisch (1998) review and evaluate some of
the heuristics. This includes a genetic algorithm by Hartmann (1999), a simu-
lated annealing algorithm by Bouleimen and Lecocq (2000), as well as sampling-
based list-scheduling heuristics by Kolisch (1996). Other solution procedures are

10 Project Scheduling

based on (truncated) branch-and-bound algorithms, e. g., (Sprecher 2000; Dorn-
dorf, Pesch, and Phan Huy 2000a). Möhring, Schulz, Stork, and Uetz (2000)
study list scheduling heuristics that use dual information from solutions of the
earlier mentioned Lagrangian relaxation.

Test sets. Most of the above mentioned approaches have been implemented and
tested on different sets of benchmark instances that have been created over the
years. Many of the evaluations before 1996 have been performed on a test set
with 110 instances that were (randomly) generated by Patterson (1984). The sizes
of these instances, i. e., the numbern of jobs, varies from7 to 51 (26 on average).
Nowadays, solutions with minimum makespan can be computed for each of the
110 instances within very short time by branch-and-bound procedures, see, e. g.,
(Demeulemeester and Herroelen 1992). In order to test algorithms on larger and
harder instances, Kolisch and Sprecher (1996) develop a generator calledProGen
which allows to create instances of different size and with different character-
istics. They established the benchmark library PSPLIB (2000) which currently
contains instances with 30, 60, 90, and 120 jobs. In total, they created 480 in-
stances for each of the instance sizes 30, 60, and 90, and 600 instances with 120
jobs. Currently, state-of-the-art branch-and-bound algorithms can solve each of
the instances with 30 jobs optimally, however, already for many instances with 60
jobs, the minimal makespan is unknown (124 out of 480 instances). We give more
details on the test sets in Chapters 4 and 6 below.

1.2 Stochastic Project Networks (PERT-Networks)

As with the resource-constrained project scheduling problem, a stochastic
project network consists of a setV of jobs with precedence constraints among
pairs of jobs. However, in contrast to the previously discussed problems, no re-
source constraints are imposed. As a consequence, each job can be started as soon
as all its predecessors in the partial order defined by the precedence constraints
are completed. The difficulty arises from the additional assumption that the pro-
cessing time of each job is uncertain and is given by a random variablepj (as a
notational convention, throughout the thesis, we always use bold letters to denote
a random variable). For a given stochastic project network the objective is to de-
termine theproject makespan distributionor some characteristic thereof, e. g., its
expectation.

In the context of stochastic project networks, jobs are often calledactivities.
The set of precedence constraints is represented as a directed acyclic graph where
each job is identified with an arc of the digraph (activity-on-arcnetwork). In
the literature, stochastic project networks are often referred to asPERT-networks,

1.2 Stochastic Project Networks (PERT-Networks) 11

since PERT was one of the first techniques to analyze the stochastic behavior of
such networks. Malcom, Roseboom, Clark, and Fazar (1959) originally intro-
duced the term PERT as an abbreviation forProgram Evaluation Research Task
which was later renamed toProject Evaluation and Review Technique. Adlakha
and Kulkarni (1989) established a classified bibliography of the vast body of lit-
erature up to 1987.

We introduce the following notation. Letp = (p1, . . . ,pn) be the vector of
job processing times andp = (p1, . . . , pn) ∈ R

n
> be a particularscenariodrawn

from p. Then,S(p) andS(p) is the vector of random start times and the vector
of start times according to the scenariop, respectively. We equivalently define
C(p) = S(p) + p andC(p) = S(p) + p to be the vector of expected completion
times and the vector of completion times according to the scenariop, respectively.
Now, since the project makespan distribution is the maximum of the lengths of
each chainQ of G0, it can formally be written asCmax(p) := maxQ∈Q

∑
j∈Q pj.

Here,Q denotes the set of (maximal) chains ofG0.

Complexity. We next assume that all processing times are independent, discrete
random variables that may take two values. For a given deadlineT > 0 define DF

(=Distribution Function) to be the problem to determineProb(Cmax(p) 6 T). It
is maybe a surprising fact that DF is a #P-complete problem. The difficulty stems
from the fact that the (random) lengths of the chains are dependent in general,
even if job processing time distributions are independent (jobs usually belong to
more than one chain). Hagstrom (1988) established the result by adapting the
work of Provan and Ball (1983) on network reliability problems. The network
reliability problem is as follows. Given a directed acyclic graphD with a source
a and a sinkb and a failure probabilityqj for each arcj, determine the probability
that D is reliable, i. e., there exists a path betweena andb without arc failures.
We consider the special case that each path inD consists of three arcs and that the
failure probabilities are identical, i. e.,qj = q. The work of Provan and Ball (1983)
includes the fact that computing the probability that a so-structured digraphD is
reliable is a #P-complete problem. For a given instance of this network reliability
problem we construct a stochastic project network as follows. The digraphD is
interpreted as an activity-on-arc network which defines the set of jobs (one job for
each arc) and the set of precedence constraints. The (random) processing time of
each jobj is0 with probabilityq and1 with probability1−q. Then, the probability
thatD is reliable equals1 minus the probability that the project makespan is less
than or equal to2. This transformation as well as a proof that DF is in #P is due
to Hagstrom (1988).

However, if the given network isseries-parallel, the problem can be solved
more efficiently. In fact, in this case all required computations can be performed

12 Project Scheduling

in such a way that the involved distributions are independent. Based on this obser-
vation, various solution procedures have been suggested to heuristically compute
or bound the makespan distribution, e. g., (Martin 1965; Kleindorfer 1971; Dodin
1985). It should be noted, however, that the problem DF is still NP-hard in the
weak sense as is shown by Möhring and M̈uller (1998), see also (M̈ohring 2000a).

Simulation. A widely used technique to heuristically compute the project make-
span distribution (or some characteristic thereof) issimulation. The basic method-
ology (adapted to our application) is as follows: Iteratively generate a scenariop
from p. Then the makespan for each such scenariop is determined by a standard
longest path computation and the resulting valueCmax(p) together with the prob-
ability of p is stored. After a ‘sufficiently large’ number of iterations has been
performed, standard statistical methods can be used to estimate the distribution of
Cmax(p). Van Slyke (1963) was among the first who applied this framework to
stochastic project networks; the methodology and other references are collected
in (Adlakha and Kulkarni 1989, Cathegory IV). For the concept of simulation
in general and other fields of applications see, e. g., (Bratley, Fox, and Schrage
1987).

1.3 Stochastic Resource-Constrained Project Scheduling

Problem definition. Stochastic resource-constrained project scheduling com-
bines the features of the two previously described models. A set of jobs with
random processing times have to be executed subject to both precedence and re-
source constraints. There is, however, an important new aspect that comes into
play: What is asolution to a stochastic resource-constrained project scheduling
problem? Neither a schedule nor the project cost distribution contains enough in-
formation to make decisions during the execution of the project. Moreover, the
project cost distribution actually depends on the decision that are made during
project execution. Hence, a solution should define for each possible ‘event’ that
appears within the execution of the project an appropriate ‘action’. This ‘action’
typically is a decision which jobs should be executed next and an ‘event’ may be
the completion of some jobs. To make such a decision one may want to exploit
the information given by the current state of the project. Such a solution is called
a policy. For the moment, we leave the reader with this intuition; we provide a
formal definition of a policy as well as many details on particular classes of such
policies in Chapter 5 below.

Let us assume that we execute a given project according to some given policy
Π. Once the project is finished we know the processing timepj and the completion
time Cj of each jobj ∈ V . For a given cost functionκ we can now compute the

1.3 Stochastic Resource-Constrained Project Scheduling 13

costκ(C) of the project. Clearly, the completion timesC = CΠ(p) are dependent
on the chosen policyΠ and the random job processing timesp. In particular,
CΠ(p) and also the project costκ(CΠ(p)) is a random variable. The objective is
to optimize some characteristic of the corresponding distribution. In the thesis,
the objective is to minimize the project costsin expectation. Using the notation
of Sections 1.1 and 1.2, the stochastic resource-constrained project scheduling
problem can now be summarized as follows.

STOCHASTIC RESOURCE-CONSTRAINED PROJECT SCHEDULING

PROBLEM: Let V be a set of jobs with random processing timesp
and letE0 be a set of precedence constraints. Moreover, letK be a
set of resources with resource availabilitiesRk, k ∈ K, and resource
consumptionsrjk, j ∈ V , k ∈ K. For a given regular cost function
κ, find a policyΠ that minimizesκ in expectation and compute the
expected project costsκ(CΠ(p)).

For illustration, we will often use the following example of a stochastic resource-
constrained project scheduling problem. Except for the processing time distribu-
tions the example is taken from (Igelmund and Radermacher 1983b).

Example 1.3.1.Let G0 = (V,E0) be given byV = {1, 2, 3, 4, 5} and E0 =
{(1, 4), (3, 5)}. There are two resources with availabilityR1 = 1 andR2 = 2 and
the resource consumptions of jobs are defined asr1,1 = r5,1 = r2,2 = r3,2 = r4,2 =
r5,2 = 1 andrjk = 0, otherwise. Furthermore, expected job processing times are
E[p] = (3, 5, 3, 5, 6). The random variablespj are independent and uniformly
distributed with variance2 and the objective is to minimize the expected project
makespan.

Representation of processing time distributions and complexity. In princi-
ple, to construct an instance of the above defined stochastic resource-constrained
project scheduling problem, one requires sufficient information to derive a com-
plete probability distribution for each job processing time. From a practical point
of view, this is certainly a rather unrealistic assumption. However, one may es-
timate each job’s expected processing time as well as its variance, for instance,
based on historical data. Then, together with some typical type of distribution
(e. g., a uniform, normal, or exponential distribution), one can state the desired
probability distributions. Models that need fewer information on job process-
ing times have also been considered in the literature. For instance, in (Sotskov,
Tanaev, and Werner 1998; Bast 1998) it is assumed that only a lower and an upper
bound on each job processing time is known.

We next discuss the complexity status of the stochastic resource-constrained
project scheduling problem. Motivated by the above considerations, throughout

14 Project Scheduling

the thesis we assume that each processing time distributionpj is encoded by a
constant number of integers. This can be, e. g., an integer for the mean and the
variance, plus information on the type of the distribution (as outlined above). Al-
ternatively, an arbitrary continuous distribution can be represented by a piecewise
linear approximation with a constant number of supporting points. It then fol-
lows from the remarks on the deterministic resource-constrained project schedul-
ing problem that the stochastic counterpart is NP-hard as well.

Moreover, job processing timespj might in principle be (positive) real num-
bers. However, in the context of complexity theoretic matters (such as worst case
running times of algorithms), we assume that each job processing timepj is rep-
resented by a rational number. As a consequence, eachpj has a succinct encoding
and every basic operation can be executed in O(1) time.

Related work. The relevant literature on stochastic resource-constrained project
scheduling can be grouped into two categories. On the one hand, these are the-
oretical studies on general or particular classes of policies, and, on the other
hand, their computational application and evaluation. We give an elaborate re-
view on previous work in both categories in Chapters 5 and 6, respectively. Let
us however, list the relevant references here. The definition of a policy (in the
form we use it) is due to Radermacher (1981b). A number of results that are re-
lated to special classes of policies were established subsequently (Radermacher
1981a; Igelmund and Radermacher 1983b; Möhring, Radermacher, and Weiss
1984; Möhring, Radermacher, and Weiss 1985; Möhring and Radermacher 1985;
Radermacher 1986). Independently from the above mentioned work, scheduling
policies are also studied by Fernandez and Armacost (1996) and Fernandez, Ar-
macost, and Pet-Edwards (1998a, 1998b). There are only few computational pub-
lications on the stochastic resource-constrained project scheduling problem. Igel-
mund and Radermacher (1983a) report on experiments with a branch-and-bound
algorithm. Since then, Golenko-Ginzburg and Gonik (1997), Tsai and Gemmill
(1998), and Valls, Laguna, Lino, Pérez, and Quintanilla (1998) considered the
problem; they develop greedy and local search heuristics. Finally, the NASA
(Henrion et al. 1996) has set up a research project to improve efficiency within
Space Shuttle ground processing.

Stochastic machine scheduling. Variousstochastic machine schedulingprob-
lems that have been considered in the literature can be expressed as a special
case of the stochastic resource-constrained project scheduling problem. As an
example, parallel identical machines can be modeled by setting|K| = 1 and
rj1 = 1 for each jobj. There exist numerous contributions in which it is shown
that a particular policy is optimal for some particular machine scheduling setting.

1.3 Stochastic Resource-Constrained Project Scheduling 15

Unfortunately, the used techniques to establish these results do not generalize to
resource-constrained project scheduling problems. However, one interesting topic
should be mentioned. There exist deterministic machine scheduling problems that
are NP-hard while a stochastic counterpart is solvable in polynomial time. As an
example, consider the deterministic problem where jobs have to be assigned to
m parallel identical machines with the objective to minimize the makespan. This
problem is well known to be NP-hard. However, if the processing times of jobs are
independent and exponentially distributed it is an optimal policy to always start a
job with longest expected processing time whenever a machine becomes available
(Bruno, Downey, and Frederickson 1981). Notice that results of that type usually
do not include the computation of the expected cost of the respective policy in
polynomial time.

For more information on models, results, and references in stochastic machine
scheduling and also stochastic shop scheduling, we refer to the book of Pinedo
(1995, Part 2), to the survey (Lawler, Lenstra, Rinnooy Kan, and Shmoys 1993,
Section 16), as well as the book chapter (Righter 1994).

CHAPTER 2

AND/OR PRECEDENCECONSTRAINTS:
STRUCTURAL ISSUES

In many scheduling applications it is required that the processing of some job
must be postponed until some other job, which can be chosen from a pre-given
set of alternatives, has been completed. The traditional concept of precedence
constraints fails to model such restrictions. Therefore, the concept has been gen-
eralized to so-calledAND/OR precedence constraints. The model is of relevance
within the context of stochastic resource-constrained project scheduling because,
as we show later, it can be used to represent preselective policies.

Notice that neither resource limitations nor stochastic job processing times are
considered in the chapter. The material is taken from a joint publication with Rolf
Möhring and Martin Skutella (M̈ohring, Skutella, and Stork 2000b).

2.1 Motivation and Related Work

For a given setV of jobs, a traditional precedence relation usually compre-
hends the requirement that a jobj cannot be started before another jobi has been
completed since, e. g., the execution ofj requires (parts of) the output of jobi.
In this case, precedence constraints are given by a setE0 of ordered pairs(i, j),
i 6= j ∈ V , inducing a partially ordered setG0 = (V,E0). In a feasible im-
plementation of the project, the jobs have to be executed in accordance withG0.
Since, in this setting, each jobj can only start after the completion ofall its direct
predecessors inG0, we call these precedence constraintsAND-constraints. (A job
i is a direct predecessor ofj with respect toG0 if there exists a non-transitive pair
(i, j) ∈ E0.)

However, there are many applications where a job can be executed as soon as
anyof its direct predecessors has been completed; we refer to such temporal re-
strictions asOR-constraints. Traditional precedence constraints fail to model this
requirement. Consequently, the model has been generalized to so-calledAND/OR

precedence constraintswhich can be represented by a setW of pairs(X, j) with
the meaning that jobj ∈ V cannot be executed before some jobi ∈ X ⊆ (V \{j})
has been completed. Alternatively to the termAND/OR precedence constraint we

17

18 AND/OR Precedence Constraints: Structural Issues

call a pair(X, j) a waiting condition. Moreover, we callX thepredecessor set,
and jobj the waiting job of (X, j). Notice that for a singletonX = {i}, the
constraint(X, j) is a traditionalAND-constraint(i, j).

An intuitive motivation forAND/OR precedence constraints is noted in (Gillies
and Liu 1995). An engine head has to be fixed by four bolts. However, one of
the bolts may secure the engine head well enough to allow further work on it. If
the setX consists of the four jobs to secure the bolts andj represents the further
work on the engine head, then the waiting condition(X, j) obviously models the
desired temporal dependencies among the jobs. Another motivation is studied by
Goldwasser and Motwani (1999). They consider the problem of partially disas-
sembling a given product to reach a single part (or component). In order to remove
a certain part, one previously may have to remove other parts which can be mod-
eled by traditional (AND) precedence constraints. However, one may choose to
remove that same part of the product from another geometric direction, in which
case some other parts must be removed previously. This freedom of choice can be
modeled byAND/OR precedence constraints.

The combinatorial structure of a systemW of waiting conditions occurs in
different fields of discrete mathematics and theoretical computer science. In the
context ofdirected hypergraphseach(X, j) ∈ W represents a hyperarc with a
setX of source nodes and a single target nodej. Ausiello, d’Atri, and Sacc̀a
(1983) (see also Ausiello, d’Atri, and Saccà (1986)) generalize transitive closure
and reduction algorithms from directed graphs to directed hypergraphs. Another
related class of combinatorial objects areantimatroids(special greedoids) which
can be defined via a set of waiting conditions, see, e. g., (Korte, Lovász, and
Schrader 1991, Page 22). Furthermore, many problems stemming from artifi-
cial intelligence can be formulated by hierarchies of subproblems where different
alternatives exist to solve these subproblems, see, e. g., (Nilsson 1980). There, a
graphical representation of such hierarchies is calledAND/OR graph.

In the context of scheduling, Goldwasser and Motwani (1999) derive inap-
proximability results for two particular single-machine scheduling problems with
AND/OR precedence constraints. Gillies and Liu (1995) consider single and paral-
lel machine scheduling problems with different structures ofAND/OR precedence
constraints; they prove NP-completeness of finding feasible schedules in some
settings that are polynomially solvable with traditional precedence constraints.
Moreover, they give approximation algorithms for some makespan minimization
problems.

For AND-constraints, fundamental problems such as deciding feasibility, find-
ing transitiveAND-constraints, and computing earliest start times of jobs can be
solved efficiently by applying classical graph algorithms. Most important for the
algorithmic treatment is the fact thatAND-constraints define acyclic structures on
the setV of jobs such that many problems can be solved by considering jobs in

2.2 Preliminaries 19

the order of a topological sort. Since this is generally not the case forAND/OR

precedence constraints, the algorithms forAND-constraints cannot be applied in
that setting. In this chapter we introduce efficient algorithms and structural results
for the more general and complex model ofAND/OR precedence constraints. We
show that feasibility as well as questions related to generalized transitivity can
be solved by applying essentially the same linear-time algorithm. Moreover, we
discuss a natural generalization ofAND/OR precedence constraints and prove that
the same problems become NP-complete in this setting. The topic of computing
earliest job start times for given temporal distances between jobs is deferred to
Chapter 3.

The chapter is organized as follows. After stating some basic requirements
in Section 2.2, we discuss feasibility of a set ofAND/OR precedence constraints
and a relation to the HORN-SAT problem in Section 2.3. Problems that are related
to generalized transitive closure and reduction are considered in the Sections 2.4
and 2.5. Finally, the above mentioned generalization ofAND/OR precedence con-
straints is studied in Section 2.6.

2.2 Preliminaries

In order to illustrate the presentation in this chapter as well as in Chapter 3 we
use the following example.

Example 2.2.1.Let V := {1, . . . , 7} be the set of jobs andW := {w1, w2, w3,
w4, w5} be the set of waiting conditions wherew1 = ({1, 5}, 4), w2 = ({2, 6}, 4),
w3 = ({4, 3}, 6), w4 = ({4}, 5), andw5 = ({4, 5, 6}, 7).

Graph-representation. We use a natural representation ofAND/OR precedence
constraints by a directed graphD on the setV = V ∪W of nodes. Thus,D has one
node for each job and one node for each waiting condition. The setA of arcs is
constructed in the following way: For every waiting conditionw = (X, j) ∈ W,
we introduce arcs(i, w), for eachi ∈ X, and one additional arc(w, j). The size
of the resulting digraphD is linear in the input size of the problem. The setsV
andW form a bipartition ofD. Similar digraphs are used to represent directed
hypergraphs, see, e. g., (Gallo, Longo, Pallottino, and Nguyen 1993) and (Gallo,
Gentile, Pretolani, and Rago 1998). In general,D may contain cycles. For a node
j ∈ V ∪W, we usein(j) andout(j) to denote the sets{i ∈ V ∪W|(i, j) ∈ A}
and{i ∈ V ∪ W|(j, i) ∈ A}, respectively. We also sometimes use the notation
inD(j) andoutD(j) to stress the underlying digraphD.

The digraph resulting from Example 2.2.1 is depicted in Figure 2.1. For the
moment, the numbers associated with the arcs can be ignored; they come into

20 AND/OR Precedence Constraints: Structural Issues

w1

w2 w3

w4

w5

1

2 3

4

5

6

7

2

1

1

1

2

1

1

1

1

2

Figure 2.1: The digraph resulting from Example 2.2.1. Circular nodes correspond
to jobs (AND-nodes) while square nodes represent waiting conditions (OR-nodes).
Numbers associated with arcs define time lags used in Chapter 3 below (the time
lags of arcs without a number are0).

play in Chapter 3 when earliest job start times are computed. As usual, a cycle
in D is a sequence(v0, v1, v2, . . . , vk, v0), v` ∈ V, where(v0, v1, v2, . . . , vk) is a
directed path and there exists an arc fromvk to v0. We also considergeneralized
cycleswhich are induced subgraphsD′ of D that consist of node setsV ′ ⊆ V and
W ′ ⊆ W such thatinD(j) ∩W ′ 6= ∅ for eachj ∈ V ′ and∅ 6= inD(w) ⊆ V ′ for
eachw ∈ W ′.

Realizations. Given a setV of jobs and a setW of waiting conditions, an im-
plementation of the corresponding project requires a decision for each waiting
condition(X, j): One has to determine a jobi ∈ X job j should wait for. The
entirety of these decisions, i. e., a setE of ordered pairs must define a partial or-
der R = (V,E) on the setV of jobs (the introduction of a cycle would lead to
infeasibility) such that,

for each(X, j) ∈ W, there exists ani ∈ X with (i, j) ∈ E. (*)

Conversely, every partial orderR with property (*) defines an implementation of
the project and is therefore called arealizationfor the setW of waiting conditions.
In what follows, a setW of waiting conditions is calledfeasibleif and only if
there exists a realization forW. If a partial orderR′ = (V,E ′) is an extension of
R, i. e., E is a subset ofE ′, R′ is also a realization because it obviously fulfills
property (*). In particular, a set ofAND/OR precedence constraints is feasible if

2.3 Feasibility 21

Algorithm 1: Feasibility check of a set of waiting conditions
Input : A setV of jobs and waiting conditionsW.
Output : A list L of jobs fromV .

Q := ∅; L := ∅;
for jobsj ∈ V do

a(j) := |{(X, j) ∈ W}|;
if a(j) = 0 then addj to Q;

while Q 6= ∅ do
remove a jobi from Q;
inserti at the end ofL;

1 for waiting conditions(X, j) ∈ W with i ∈ X do
decreasea(j) by 1;
if a(j) = 0 then addj to Q;
remove(X, j) fromW;

return L;

and only if there exists a total order of the jobs which is a realization; we call such
a realizationlinear.

Possible linear realizations of Example 2.2.1 are for instance1 ≺ . . . ≺ 7 and
3 ≺ 6 ≺ 7 ≺ 2 ≺ 1 ≺ 4 ≺ 5.

2.3 Feasibility

In order to check whether a given setW of AND/OR precedence constraints
is feasible we try to construct a linear realizationL in a greedy way: While there
exists a jobi ∈ V that is not a waiting job of any of the waiting conditions inW, it
is inserted at the end ofL. Whenever a waiting condition(X, j) becomes satisfied
(which is the case if somei ∈ X is being added toL), (X, j) is deleted fromW.
Computational details are provided in Algorithm 1. We use a data structureQ to
temporarily store jobs fromV . ImplementingQ as a stack or a queue leads to a
linear time algorithm.

Theorem 2.3.1.A set ofAND/OR precedence constraints is feasible if and only if
the listL obtained from Algorithm 1 contains all jobs ofV .

Proof. If L contains all jobs, it follows from the construction of Algorithm 1 that,
for each waiting condition(X, j) ∈ W, there is at least one jobi ∈ X with
i ≺L j; therefore, according to (*),L is a linear realization. Suppose now that
the algorithm returns an incomplete listL although the set of waiting conditions

22 AND/OR Precedence Constraints: Structural Issues

is feasible. Consider a linear realizationR = (V,E) and letj ∈ V \L be minimal
with respect to the total orderE. Since the algorithm was not able to addj to L,
there is a waiting condition(X, j) ∈ W with X ⊆ V \L. SinceR is a realization,
there exists a jobi ∈ X with (i, j) ∈ E which contradicts the minimal choice
of j.

As a consequence of Theorem 2.3.1 we can formulate the following structural
characterization of feasible waiting conditions which appears implicitly already in
the work of Igelmund and Radermacher (1983a) within the context of stochastic
resource-constrained project scheduling.

Lemma 2.3.2. A set ofAND/OR precedence constraints is feasible if and only if
there exists no generalized cycle in the associated digraphD.

Note that Example 2.2.1 is feasible (recall that we already stated two linear
realizations). However, ifw1 = ({1, 5}, 4) is replaced by({5}, 4) the instance
becomes infeasible becauseV ′ = {4, 5} andW ′ = {({5}, 4), ({4}, 5)} form a
generalized cycle.

The following corollary states an algorithmic consequence of Lemma 2.3.2.

Corollary 2.3.3. Jobj ∈ V is not contained in the listL returned by Algorithm 1
if and only if j is contained in a setV ′ ⊆ V such that for alli ∈ V ′ there is a
waiting condition(X, i) ∈ W with X ⊆ V ′.

In particular,L as asetdoes not depend on the individual jobs chosen fromQ
in the while-loop of Algorithm 1.

In the proof of Theorem 2.3.1 we have shown that, for a feasible set ofAND/OR

precedence constraintsW, the listL returned by Algorithm 1 is a linear realization
of W. In fact, it is an easy observation that Algorithm 1 can generate every linear
realization ofW through an appropriate choice of jobs fromQ in the while-loop.

Relationship to HORN-SAT. An alternative view of the problem of checking
feasibility ofW is to solve a satisfiability problem (SAT) where each clause is of
Horn type. It can be decided in linear time if such an instance of SAT is satisfiable,
see (Dowling and Gallier 1984).

In order to check feasibility, we must decide whether there is a generalized
cycle in the digraphD; see Lemma 2.3.2. We assume that there is a dummy jobt
in V which has to wait for all other jobs inV . Notice thatW is infeasible if and
only if t is contained in a generalized cycle. We introduce Boolean variablesxj

for everyj ∈ V andyw for every waiting conditionw ∈ W with the meaning that
xj = false (yw = false) implies thatj (w) is contained in a generalized cycle.
Thus,xj can only be set totrue if yw = true for all w = (X, j) ∈ W. Contrarily,

2.4 Detecting ImplicitAND/OR Precedence Constraints 23

yw = true if there is at least onei ∈ X with xi = true. These requirements form
a set ofimplications ∧

i∈X

(xi ⇒ yw) w = (X, j) ∈ W,

(
∧

w=(X,j)

yw) ⇒ xj j ∈ V,
(2.1)

where, if transformed to its conjunctive normal form, each clause has at most one
positive literal, and is thus of Horn type. Moreover, if we fixxt := false and
xj := true for all j ∈ V with no incoming arcs inD, we obtain the following
lemma.

Lemma 2.3.4. The instance ofHORN-SAT defined by(2.1)with xt := false and
xj := true for all j ∈ V with no incoming arcs inD is satisfiable if and only if
W is infeasible.

Proof. Let ((xj)j∈V , (yw)w∈W) be a satisfying assignment; setV ′ := {j ∈ V |
xj = false} andW ′ := {w ∈ W | yw = false}. It follows from (2.1) that the
subgraphD′ of D induced by the setV ′ ∪W ′ of nodes forms a generalized cycle.

On the other hand, ifW is infeasible, denote byV ′∪W ′ the set of nodes ofD
that are contained in some generalized cycle containingt. It is easy to check that

xj :=

{
false if j ∈ V ′,

true if j 6∈ V ′,
yj :=

{
false if j ∈ W ′,

true if j 6∈ W ′,

is a satisfying assignment.

2.4 Detecting Implicit AND/OR Precedence Constraints

2.4.1 Problem Definition and Related Work

We now focus on detecting ‘new’ waiting conditions that can be deduced from
the given setW of constraints. ForU ⊂ V andj ∈ V \U , we say that the waiting
condition(U, j) is impliedbyW if and only if,

for every realizationR = (V,E) of W,
there exists somei ∈ U with (i, j) ∈ E.

(**)

By property (*), this is equivalent to the requirement that adding the waiting
condition(U, j) toW does not change the set of realizations forW. Notice that it
is sufficient to claim property (**) for everylinear realization ofW.

24 AND/OR Precedence Constraints: Structural Issues

For traditional precedence constraints the detection of implied waiting con-
ditions is an easy task because the transitive closure which represents all such
implicit constraints can be efficiently computed by standard graph algorithms.
However, in general, the total number of implicitAND/OR precedence constraints
is exponential in the input size ofV andW. In particular, it is not possible to
compute all implicit constraints efficiently. For the restricted case ofAND/OR

precedence constraints where the associated digraphD is acyclic, Gillies (1993)
proposes an algorithm to determine jobs that have to wait for a single jobi.

In the context of directed hypergraphs, Ausiello, d’Atri, and Saccà (1983) (see
also Ausiello, d’Atri, and Sacc̀a (1986)) consider problems similar to those dis-
cussed in this section and in Section 2.5 below. However, the results we present
are not contained in their work because their definition of implicit hyperarcs dif-
fers from our definition of implicit waiting conditions. Their definition is based
on three rules which are known as ‘Armstrong’s Axioms’ within the context of
functional dependencies in relational databases (see, e. g., (Ullman 1982)). In
particular, the definition of Ausiello, d’Atri, and Saccà (1983, Definition 4) does
not cover implications that can be deduced from the requirement of feasibility. For
instance, in Example 2.2.1, the waiting condition({1}, 4) is implied byW but it
is not implied according to the definition of Ausiello, d’Atri, and Saccà (1983).

2.4.2 Result

For a given setU ⊆ V we show that Algorithm 1 can be used to detect all
implicit waiting conditions of the form(U, j). For an arbitrary subsetY ⊆ V the
setWY of inducedwaiting conditions is given byWY := {(X ∩ Y, j) | (X, j) ∈
W , j ∈ Y }. For (X, j) ∈ W with j ∈ Y andX ∩ Y = ∅, the resulting waiting
condition(∅, j) ∈ WY means that jobj cannot be planned at all with respect to
WY ; in particular,WY is infeasible in this case.

Theorem 2.4.1.For givenU ⊂ V let L be the output of Algorithm 1 with input
V \ U and WV \U . The set of waiting conditions of the form(U, j) which are
implied byW is precisely{(U, j) | j ∈ V \ (L ∪ U)}.

The proof is deferred to Section 2.4.3 below. For Example 2.2.1 andU :=
{2, 3}, the algorithm computesL = {1} while for U := {1, 2} we obtainL =
{3, 6, 7}. Thus, the waiting condition({2, 3}, 7) is implied byW while ({1, 2}, 7)
is not.

We can directly deduce the following corollary.

Corollary 2.4.2. GivenU ⊂ V , the set of waiting conditions of the form(U, j)
that are implied byW can be computed in linear time.

2.4 Detecting ImplicitAND/OR Precedence Constraints 25

2.4.3 Correctness

We next state some rather technical lemmas which directly show the validity
of Theorem 2.4.1. The theorem can alternatively be proved by a simpler argumen-
tation (similar to the proof of Theorem 2.3.1), but we need the lemmas to establish
other results in Section 2.5 below. In addition, with the extended argumentation,
we are able to slightly strengthen Theorem 2.4.1 (see Corollary 2.4.6). The fol-
lowing definition will be useful throughout the discussion. For a given feasible set
W of waiting conditions and a setU ⊆ V let

YU := {j ∈ V \ U | (U, j) is not implied byW} and

ZU := {j ∈ V \ U | (U, j) is implied byW} = V \ (U ∪ YU) .

Lemma 2.4.3. Let W be a feasible set of waiting conditions and letU ⊆ V .
Then, there exists a (linear) realizationR = (V,E) ofW such thatYU is an order
ideal ofR, i. e.,R ‘starts’ with the jobs inYU .

Proof. Let R′ = (V,E ′) be a linear realization ofW that maximizes the cardi-
nality of the largest order idealJ of R′ with J ⊆ YU . To show thatJ = YU , by
contradiction, we assume that there is a jobj′ ∈ YU \ J . Since, by definition of
YU , the waiting condition(U, j′) is not implied byW, there is a linear realization
R = (V,E) of W with j′ ≺E U (j′ precedes all elements inU). Let j ∈ YU \ J
be minimal with respect toR. By maximality ofJ , job j cannot be moved to the
position directly afterJ in R′ without violating a waiting condition. Thus, there
exists(X, j) ∈ W with X ⊆ V \ J . By (*), there exists ani ∈ X with (i, j) ∈ E.
Notice that we havei 6∈ U becausei ≺E j �E j′ ≺E U . Moreover, due to the
minimal choice ofj and the fact thati 6∈ J it follows that i 6∈ YU . As a conse-
quence we obtaini ∈ X \ (U ∪ YU). By definition ofZU , this yieldsi ∈ ZU .
Thus, the waiting condition(U, i) is implied byW which is a contradiction to
i ≺E j �E j′ ≺E U .

Let us call a setY ⊆ V feasible with respect toW if and only if the induced
setWY of waiting conditions is feasible. The result in Corollary 2.3.3 can then be
restated as follows.

Corollary 2.4.4. Algorithm 1 returns the unique maximal feasible subset ofV
with respect toW.

In conjunction with the following lemma, Corollary 2.4.4 provides an effi-
cient way of detecting waiting conditions implied byW. This concludes the
proof of Theorem 2.4.1 (in fact, the lemma essentially is a reformulation of The-
orem 2.4.1).

26 AND/OR Precedence Constraints: Structural Issues

Lemma 2.4.5. LetW be a feasible set ofAND/OR precedence constraints,U ⊂
V , andj ∈ V \ U . Then the waiting condition(U, j) is implied byW if and only
if j is not contained in the unique maximal feasible subset ofV \ U with respect
toWV \U .

Proof. We have to show thatYU is the unique maximal feasible subsetF of V \U
with respect toWV \U . By Lemma 2.4.3, there exists a linear realizationR of
W starting with the jobs inYU . This induces a linear realization ofWYU

and
consequently, by definition,YU is feasible with respect toW. Moreover, since
WYU

= (WV \U)YU
, YU is feasible with respect toWV \U which yieldsYU ⊆ F .

To show thatF ⊆ YU , by contradiction, assume thatF \ YU 6= ∅. Since
F ∩ U = ∅ we then haveF ∩ ZU 6= ∅. Let R′ = (F,E ′) be a linear realization
of WF and choosei ∈ F ∩ ZU minimal with respect toR′. Sincei ∈ ZU , by
definition ofZU , (U, i) is implied byW. Therefore, moving jobi to the position
directly afterYU in R violates a waiting condition(X, i) ∈ W with X ⊆ U ∪ZU .
Let us consider the induced waiting condition(X ∩ F, i) ∈ WF . It follows from
the minimal choice ofi thati′ 6∈ F∩ZU for all i′ with (i′, i) ∈ E ′. With F∩U = ∅,
this impliesi′ 6∈ X ∩ F which is a contradiction to the fact thatR′ is a realization
for WF .

Finally, notice that there may exist (implicit) waiting conditions(X, j) in-
side the considered setU , i. e., X ⊂ U andj ∈ U \ X. Theorem 2.4.1 can be
strengthened in the following way. Consider the situation after the execution of
Algorithm 1 with inputV \ U andWV \U and letL be the resulting list of jobs.
Furthermore, letU ′ ⊆ U denote the set of jobs fromU that can be added toL
without violating any waiting condition ofW.

Corollary 2.4.6. For givenU ⊆ V the set of waiting conditions(U ′, j) which is
implied byW is precisely{(U ′, j) | j ∈ V \ (L ∪ U ′)}.

Proof. We show that the maximal feasible subsetsF andF ′ of V \U andV \U ′,
respectively, coincide. The corollary then follows from Lemma 2.4.5. It is clear
thatF ⊆ F ′ sinceU ′ ⊆ U . Conversely, suppose by contradiction thatF ′ \F 6= ∅.
Denote byR = (V,E) andR′ = (V,E ′) linear realizations ofW whereF andF ′

are order ideals, respectively (the existence ofR andR′ follows from Lemma 2.4.3
and 2.4.5). Letj ∈ F ′ \ F be the smallest job inF ′ \ F with respect toR′. Since
j 6∈ F , moving job j in R to the position directly afterF violates a waiting
condition(X, j) with X ∩ F = ∅. SinceR′ is a realization there must exist some
i ∈ X with (i, j) ∈ E ′. But i ∈ F ′ \ F which contradicts the minimal choice
of j.

2.5 Minimal Representation ofAND/OR Precedence Constraints 27

2.5 Minimal Representation ofAND/OR Precedence Constraints

While for traditional precedence constraints a minimal representation without
redundancies is given by the transitive reduction and can be computed by sim-
ply removing redundant (i. e., transitive) constraints, the situation is slightly more
complicated forAND/OR precedence constraints. In order to obtain auniquemin-
imal representation, it is not sufficient to iteratively remove redundant waiting
conditions that are implied by the others.

Definition 2.5.1. A setW of waiting conditions is calledminimal if

i) no waiting condition(X, j) ∈ W is implied byW \ {(X, j)} and

ii) for each waiting condition(X, j) ∈ W, the setX is minimal with respect to
inclusion, i. e., for alli ∈ X, the waiting condition(X \ {i}, j) is not implied
byW.

Two setsW andW ′ of waiting conditions are calledequivalentif their sets of
(linear) realizations coincide. Moreover, ifW ′ is minimal, thenW ′ is called a
minimal reductionofW.

The setW from Example 2.2.1 is not minimal: If({4, 5, 6}, 7) is replaced
by ({4, 6}, 7) the resulting instance is equivalent to Example 2.2.1. This follows
from waiting condition({4}, 5) which ensures that whenever(5, 7) ∈ E in some
realizationR = (V,E) we also have(4, 5) ∈ E and(4, 7) ∈ E. Note that if we
additionally replace({1, 5}, 4) by ({1}, 4) the resulting set of waiting conditions
is minimal (and still equivalent to Example 2.2.1).

Theorem 2.5.2.Each feasible set of waiting conditions has a unique minimal
reduction.

To prove the theorem we need the following technical lemma.

Lemma 2.5.3. Let W be a feasible set of waiting conditions with(U, j) ∈ W.
(U, j) is implied byW ′ := W \ {(U, j)} if and only if there exists some(X, j) ∈
W ′ with X ⊆ U ∪ ZU .

Proof. If (U, j) is implied byW ′ then any ordering ofV whereYU is an ideal
and j is placed directly afterYU is not a realization ofW ′. Thus, there exists
some(X, j) ∈ W with X ⊆ U ∪ ZU . Contrarily, suppose that there exists
some(X, j) ∈ W ′ with X ⊆ U ∪ ZU but (U, j) is not implied byW ′. Then
there exists someh ∈ X \ U and a linear realizationR′ = (V,E ′) of W ′ with
YU ≺E′ h ≺E′ j ≺E′ U . SinceW is feasible, there exists somei ∈ U that can
be moved to the position directly afterh without violating a waiting condition of

28 AND/OR Precedence Constraints: Structural Issues

W ′ (this follows from Corollary 2.4.6). In addition, the resulting linear realization
R = (V,E) satisfies the waiting condition(U, j) and thus should be a realization
with respect toW. However, we haveh ≺E i ≺E j ≺E U \ {i} which is a
contradiction toh ∈ ZU .

Proof of Theorem 2.5.2. Let W andW ′ be equivalent and both minimal. It
suffices to show that(U, j) ∈ W implies (U, j) ∈ W ′. By Lemma 2.4.3, there
exists a linear realizationR of W starting withYU . Since the order obtained by
movingj to the position directly afterYU in R is not a realization, there exists a
waiting condition(X, j) ∈ W ′ with X ⊆ U ∪ ZU . We show next thatU ⊆ X.
By minimality ofW ′ this impliesX = U which concludes the proof.

Assume thatX 6⊇ U and leti ∈ U \ X. We obtain a linear realizationR′ by
moving i to the position directly afterYU in R; otherwise, there exists a waiting
condition(Z, i) ∈ W with Z ⊆ U ∪ ZU . Since all jobs inZU have to wait for a
job in U , the waiting condition(U \ {i}, i) and thus(U \ {i}, j) is implied byW
which is a contradiction to the minimality ofW.

Since movingj to the position directly afterYU ∪{i} in R′ violates the waiting
condition(X, j), there exists a waiting condition(Z, j) ∈ W with Z ⊆ (U \{i})∪
ZU . However, by Lemma 2.5.3, the setW\{(U, j)} implies the waiting condition
(U, j) which is a contradiction to the minimality ofW.

Let us next consider the following straightforward polynomial time algorithm
to compute a minimal reduction of a setW of waiting conditions. For each
(X, j) ∈ W, apply Algorithm 1 with inputV \ X andWV \X . If besides(X, j)
some other waiting condition prevents thatj can be added toL, then remove
(X, j) from W. Otherwise, remove alli from X which cannot be added toL
because some waiting condition ofW is violated. Finally, output the resulting set
of waiting conditions. An implementation of this rough scheme is given in Algo-
rithm 2. There,a(j), j ∈ V , denotes the number of waiting conditions of the form
(X, j) that are left inWV \U after Algorithm 1 was called with inputV \ U and
WV \U . Notice thata(j) is computed within the execution of Algorithm 1. In the
following theorem we prove the correctness of the algorithm (as defined earlier,
A is the set of arcs in the digraph induced byW).

Theorem 2.5.4.Algorithm 2 computes the minimal reduction of a setW of wait-
ing conditions inO(|W| · |A|) time.

Proof. We first show that, through the procedure, the transformed set of waiting
conditions is equivalent toW given as input. We then argue that, once the algo-
rithm has finished, the obtained set of waiting conditions is minimal.

Denote byWk, k ∈ {1, . . . , |W|}, the set of waiting conditions after thek-
th iteration of the outer for-loop of Algorithm 2. Furthermore, letW0 := W.

2.5 Minimal Representation ofAND/OR Precedence Constraints 29

Algorithm 2: Computation of a minimal reduction
Input : A setV of jobs and waiting conditionsW.
Output : A minimal reduction ofW
for each(U, j) ∈ W do

L := call Algorithm 1 with inputV \ U andWV \U and
computea(i) for eachi ∈ V ;

if a(j) > 1 then
delete(U, j) fromW;

else fori ∈ U do
if a(i) > 0 then deletei from U ;

return W;

Suppose that some(U, j) is removed fromWk−1 in the k-th iteration of the al-
gorithm. Sincea(j) > 1 in the k-th iteration there exists a waiting condition
(X, j) ∈ Wk−1 with X 6= U andX ⊂ U ∪ ZU . With Lemma 2.5.3,(U, j) is
implied byWk = Wk−1 \ {(U, j)} and can thus be deleted fromWk−1. Now
assume that, in(U, j), some jobi was deleted fromU in thek-th iteration. Then
a(i) > 0 and with Corollary 2.4.6 it follows that(U \ {i}, i) is implied byWk−1.
Together with(U, j) this shows that(U \ {i}, j) is implied byWk−1. Thus,Wk−1

is equivalent toWk for all k ∈ {1, . . . , |W|} which directly implies thatW and
W ′ := W |W| are equivalent.

We now show thatW ′ is minimal. Let us first suppose that some(U, j) ∈ W ′

is implied byW ′ \ {(U, j)}. Then, by Lemma 2.5.3, there exists another waiting
condition(X, j) ∈ W ′\{(U, j)} with X ⊆ U∪ZU . Notice thatZU in dependence
of W ′ \ {(U, j)} and allWk, k ∈ {0, . . . , |W|} is constant because the associated
sets of realizations coincide. The waiting conditions(U, j) and(X, j) have been
constructed in some iterationsk andk′, respectively, in which waiting conditions
(U ′, j) ∈ W with U ⊆ U ′ and (X ′, j) ∈ W with X ⊆ X ′ have been treated
by the algorithm. If(X, j) ∈ Wk−1 then, by Lemma 2.5.3,(U ′, j) would have
been removed fromWk−1. Consequently,k′ > k. SinceU was obtained from
U ′ (in thek-th iteration of the algorithm), by Corollary 2.4.6, there exists a linear
realizationR which starts withYU followed by first anarbitrary job i ∈ U and
then jobj. Since, by assumption,Wk−1 andW ′ \ {(U, j)} are equivalent,(X, j)
must be respected byR; henceU ⊆ X. But then(X ′, j) is deleted in iteration
k′ > k, a contradiction. Next, suppose thatW ′ contains a waiting condition
(U, j) such that, for somei ∈ U , the waiting condition(U \ {i}, j) is implied
by W ′. Sincei was not removed fromU ′ in thek-th iteration of the algorithm,
it follows from Corollary 2.4.6 that(U ′ \ {i}, j) is not implied byWk−1. Thus

30 AND/OR Precedence Constraints: Structural Issues

there exists a linear realizationR = (V,E) of Wk−1 with j ≺E (U ′ \ {i}) and
in particularj ≺E (U \ {i}). SinceR is also a realization forW ′ the waiting
condition(U \ {i}, j) is not implied byW ′ — a contradiction.

The above argumentation shows thatW ′ is minimal and thus, Algorithm 2
computes a minimal reduction ofW. Finally, the running time follows from the
fact that Algorithm 1 is called|W| times.

Notice that the cardinality of a minimal set of waiting conditions might still
be exponential in the number of jobs|V |: Let V = {1, 2, . . . , 2` + 1}; in order to
model the constraint that job2` + 1 can only be planned after at least` other jobs,
we need exactly

(
2`
`

)
waiting conditions.

2.6 An NP-Complete Generalization

Suppose that we generalize the definition of waiting conditions from(X, j),
X ⊂ V , j ∈ V \X to (X,X ′) with X,X ′ ⊂ V andX ∩X ′ = ∅. The generalized
waiting condition(X,X ′) is fulfilled if at least one jobj ∈ X ′ is waiting for at
least one jobi ∈ X. We show in the theorem below that the problems considered
in Sections 2.3 and 2.4 become NP-complete for this generalized setting.

Theorem 2.6.1.Given a set of jobs with generalized waiting conditions, it is al-
ready NP-complete to decide whether or not a waiting condition({i}, {j}) is
implied for two jobsi andj.

Proof. We construct a reduction from the satisfiability problem SAT. The con-
struction is depicted in Figure 2.2. Given an instance of SAT, we introduce for
each Boolean variablex two jobs which correspond to the two literalsx and x̄
(negation ofx); to keep notation simple, we denote these jobs also byx and x̄.
Moreover, for each clauseC we introduce a corresponding job (also denoted by
C) and a waiting condition(XC , {C}) whereXC denotes the set of literals in
clauseC; in other words, jobC may not be started before at least one job corre-
sponding to a literal of clauseC has been completed. Finally, we introduce two
additional jobsa andb together with the following waiting conditions: For each
variablex, at least one of the jobsx andx̄ has to wait fora, i. e., we have the wait-
ing condition({a}, {x, x̄}). For each clauseC, b has to wait for the corresponding
job, which is given by the waiting condition({C}, {b}).

It is easy to check that in the constructed scheduling instance jobb has to wait
for job a if and only if the underlying instance of SAT does not have a satisfying
truth assignment. If there is a satisfying truth assignment, then we can construct a
linear realization whereb precedesa in the following way: First we take all jobs
corresponding to literals with value ‘true’ in an arbitrary order, next we append

2.6 An NP-Complete Generalization 31

x1

x̄1

x2

x̄2

xn

x̄n

C1

C2

C3

Cm

a b

Figure 2.2: The figure shows the construction from an instance of SAT to a set
of generalized waiting conditions as described in the proof of Theorem 2.6.1. In
the figure, as usual, we have a node for each job and for each (generalized) wait-
ing condition. In extension to the graphical representation of waiting conditions
(X, j) we visualize each setX ′ of a generalized waiting conditionw = (X,X ′)
by |X ′| outgoing arcs(w, j), j ∈ X ′, of w. As an example, according to the
figure, the clauseC1 is x̄1 ∨ x2 ∨ xn.

all jobs corresponding to clauses in some order, afterwards we addb, thena, and
finally all remaining jobs corresponding to literals with the value ‘false’. On the
other hand, if there is a linear realization whereb precedesa, we can define a
corresponding satisfying truth assignment in the following way: For each variable
x, assignx the value true (false) if the job corresponding tox (x̄) precedesa;
notice that at most one of the two cases can happen, if neither jobx nor x̄ precedes
a, we assign an arbitrary value to the variablex.

As a consequence of Theorem 2.6.1, we obtain that the problem of deciding
feasibility is also NP-complete for this generalized model.

CHAPTER 3

AND/OR PRECEDENCECONSTRAINTS:
COMPUTING EARLIEST JOB START TIMES

The chapter is concerned with the computation of earliest start times of jobs that
have to be scheduled with respect toAND/OR precedence constraints. Like the
results of the previous chapter, some part of the developed theory will later turn
out to be a fundamental component of our approach to solve stochastic resource-
constrained project scheduling problems.

We consider different ranges of minimaltime distances(or time lags) between
the start times of two jobsi andj that are coupled within anAND/OR precedence
constraint. For the cases that such time lags are strictly positive or non-negative,
we propose polynomial time algorithms of different time complexity. Generally,
the problem is to find a solution to a system ofmin-max-inequalitieswhich has
a number of applications in other fields of research. As an example, we discuss
a strong relationship to finding optimal strategies for a class of 2-person games
played on directed graphs.

Finally, we study the time-cost tradeoff problem for the case ofAND/OR prece-
dence constraints. We discuss the analytical properties of the time-cost tradeoff
curve and show the NP-hardness of computing a single point of the curve. Except
for the study of the time-cost tradeoff problem, the chapter is based on the second
part of the paper (M̈ohring, Skutella, and Stork 2000b).

3.1 Problem Definition and Related Work

For this chapter we assume that together with each waiting conditionw =
(X, j) ∈ W and each jobi ∈ X we are given an integral time lag−M < diw <
M , M > 0. We aim at finding a vector of earliest start timesS = (S1, . . . , Sn)
such that for each waiting condition(X, j) ∈ W the constraint

Sj > min
i∈X

(Si + diw) (3.1)

is satisfied. Notice that job processing timespi can be modeled by settingdiw :=
pi for all w = (X, j) andi ∈ X. Negative valuesdiw represent so-calledmaximal

33

34 AND/OR Precedence Constraints: Earliest Job Start Times

time lagsthat define latest possible start times of jobsi ∈ X relative toj. Such
negative time lags allow to model, e. g., job overlappings or job synchronizations.

In order to simplify the presentation, we sometimes interpret nodes of the
digraphD that represent waiting conditions as dummy jobs. We then assume that
the vectorS also contains start times of these dummy jobs and constraint (3.1) is
replaced by

Sw > min
i∈X

(Si + diw) and Sj > Sw .

We call the jobs inV AND-nodesand the jobs inW OR-nodesof the digraph
D. We assume that a dummyAND-nodea precedes all otherAND-nodes, i. e.,
we introduce a waiting condition({a}, j) for all j ∈ V . In D, time lags can
easily be integrated by associating eachdiw as a weight to the arc(i, w), see
Figure 2.1. Moreover, we always associate the weightdwj = 0 to all arcs(w, j),
w = (X, j) ∈ W, i. e., the time lag between a dummy jobw and its successorj
is 0. The case ofdwj 6= 0 can be handled by replacingdwj 6= 0 by 0 anddiw by
diw + dwj for all i ∈ in(w).

The problem of finding earliest start times can then be formulated onD as
follows: Find a component-wise minimal scheduleS ∈ Z

|V| fulfilling Sa > 0 and

Sj > max
(w,j)∈A

(Sw + dwj) j ∈ V ,

Sw > min
(j,w)∈A

(Sj + djw) w ∈ W .
(ES)

As we noted above, in the sequel we assume thatdwj = 0. Besides schedules
S ∈ Z

|V| we also considerpartial schedulesS ∈ (Z ∪ {∞})|V| where the start
time of a job may be infinite with the meaning that the job is not planned. As
usual, a (partial) schedule fulfilling the constraints of (ES) is calledfeasible. In
particular, the partial scheduleS = (∞, . . . ,∞) fulfills all inequalities of (ES)
and is thus feasible. Moreover, it is easy to see that, ifS ′ andS ′′ are feasible
partial schedules, then their component-wise minimumS := min{S ′, S ′′} is also
feasible. In particular, there always exists a (unique) component-wise minimal
partial scheduleS∗, called theoptimalpartial schedule (notice thatS∗ > 0 for all
AND-nodes). It follows that, instead of considering the above system of inequali-
ties, we alternatively may consider the corresponding system of equations (which
is obtained from (ES) by replacing each ‘>’ by a ‘=’).

Presuming different restrictions on the range of arc weights, several algorithms
have been suggested to solve (ES). Note that all restrictions on arc weights are
meant to refer to arcs(j, w) betweenAND-nodesj and OR-nodesw, only. For
the case of positive arc weights, a modification of Dijkstra’s shortest path algo-
rithm can be applied. An algorithm suggested by Knuth (1977) has running time

3.2 Arbitrary Arc Weights 35

O(|V| log |V| + |A|). Other approaches are proposed by Dinic (1990), Gallo,
Longo, Pallottino, and Nguyen (1993), and, in the context of resource-constrained
project scheduling, by Igelmund and Radermacher (1983a) (see also Chapter 5 be-
low). Levner, Sung, and Vlach (1999) consider a generalized model ofAND/OR

precedence constraints where a so-calledthreshold value1 6 `w 6 |X| is as-
sociated with each waiting conditionw = (X, j), indicating thatj may start if
at least̀ w jobs fromX have been completed. They show that Dijkstra’s short-
est path algorithm can also be generalized to solve their model (with positive arc
weights). The general case−M < djw < M is a frequently studied problem
with applications in many different areas, e. g.,game theory(Zwick and Paterson
1996) andinterface timing verification(see (Schwiegelshohn and Thiele 1999)
and (McMillan and Dill 1992)). Moreover, there are applications stemming from
online optimization, see (Zwick and Paterson 1996, Section 7) for a collection
of examples. Interestingly, although a pseudo-polynomial algorithm to solve this
case of (ES) is easily obtained, no algorithm polynomial in|V| and log(M) is
currently known.

3.2 Arbitrary Arc Weights

In this section we study the case of arbitrary arc weights−M < djw < M .

3.2.1 Feasibility

For arbitrary arc weights the feasibility results stated in Section 2.3 are not
valid anymore. They are based on the requirement that alldjw = pj > 0, and
consequently, anAND-nodej can start if and only if for all(X, j) ∈ W at least
onei ∈ X has previously been started (compare to condition (*) in Section 2.2).
However, if we allowdjw 6 0, this is no longer the case. We demonstrate this
on the well-studied model ofAND-constraints with arbitrary time lags. Consider
two jobs with AND-constraintsw1 = ({1}, 2) andw2 = ({2}, 1) with d1w1 >
0 andd1w1 + d2w2 6 0. According to Lemma 2.3.2 the instance is infeasible,
however,S1 = 0 andS2 = d1w1 obviously is a feasible schedule. In the sequel
we derive a necessary and sufficient feasibility criterion for (ES) with arbitrary
arc weights which generalizes the feasibility criterion given in Lemma 2.3.2. For
the remainder of the chapter we call a setW of waiting conditionsfeasibleif and
only if there exists a feasible schedule for (ES).

Before we can derive the criterion, we discuss how a given instance can be
simplified without changing the optimal partial scheduleS∗. First, we make the
problem more restrictive by removing all but one incoming arc of eachOR-node
w. If the remaining arc(j, w) fulfills S∗

j + djw 6 S∗
w, clearly, all inequalities of

36 AND/OR Precedence Constraints: Earliest Job Start Times

(ES) are still satisfied. Consequently,S∗ and the optimal (partial) schedule of the
more restrictive instance coincide. In a similar fashion we can remove all but one
incoming arc(w, j) of eachAND-nodej without changing the earliest start times.
However, removing such arcs means relaxing the problem and some more work
has to be done in order to obtain the wanted result.

Lemma 3.2.1. For each digraphD representing a set ofAND/OR precedence con-
straints, there exists a sub-digraph̄D on the same setV of nodes with|inD̄(j)| 6 1
for all AND-nodesj ∈ V such thatS∗ = S̄∗, whereS̄∗ denotes the optimal (par-
tial) schedule ofD̄.

Proof. We constructD̄ by iteratively removing arcs(w, j) from D that do not
affect the earliest start time of theAND-nodej. By contradiction, assume that,
once all such arcs have been removed, there is someAND-nodej with |inD̄(j)| >
1. Thus, removing any incoming arc ofj reduces the earliest start time ofj.
Denote byS1 and S2 the optimal (partial) schedules obtained if two different
incoming arcs(w1, j) and(w2, j) are removed from̄D; then,S∗

j > S1
j andS∗

j >
S2

j . Without loss of generality letS1
j 6 S2

j ; we define a new (partial) scheduleS
through

Si := min{S1
i + S2

j − S1
j , S

2
i } for all i ∈ V.

By definition,S 6 S2 andSj = S2
j . For each arc(w, j) with w 6= w2 we have

S2
j > S2

w which yieldsSj = S2
j > S2

w > Sw. Forw = w2 we getSj = S1
j + S2

j −
S1

j > S1
w + S2

j −S1
j > Sw. We obtainSj > max(w,j)∈A(Sw). Furthermore,S also

fulfills all other inequalities of (ES), because bothS1 + S2
j − S1

j andS2 fulfill the
inequalities and so does its minimumS. Consequently,S is a feasible (partial)
schedule which is a contradiction to the minimality ofS∗ sinceSj < S∗

j .

For the subsequent presentation, recall the definition of a (generalized) cycle
from Section 2.2. Note that we assume all cycles to be directed cycles.

Corollary 3.2.2. Let D̄ be as in Lemma 3.2.1. Then, all cycles inD̄ have strictly
positive length.

Proof. Assume that there is a cycle(w1, j1, w2, j2, . . . , wk, jk, w1) of non-positive
length inD̄. By definition of D̄, (w`, j`) is the only incoming arc for nodej`,
` = 1, . . . , k. Thus, one can construct a feasible partial schedule forD̄ satisfying

Sw1 = Sj1 = −1 and Sw`
= Sj`

= −1 +
∑̀
q=2

djq−1wq for ` = 2, . . . , k.

With Lemma 3.2.1, this is also possible for the original digraphD which yields a
contradiction to the requirementS∗

j1
> 0.

3.2 Arbitrary Arc Weights 37

Lemma 3.2.3. A set ofAND/OR precedence constraints with arbitrary arc weights
is feasible if and only if each generalized cycle inD contains a cycle of non-
positive length.

Proof. Let C be a generalized cycle which contains only cycles of positive length
and suppose that some nodev ∈ C can be scheduled atSv < ∞. Sincev has
at least one incoming arc there must exist a nodeu ∈ in(v) with Sv > Su + duv

(notice that this is also the case forSv = 0). Iterating this argument, since|C| is
finite, we obtain a cycle inC with non-positive length — a contradiction.

Conversely, suppose that the given instance is infeasible. LetZ 6= ∅ denote
the set of nodes whose earliest start times are∞. By Lemma 3.2.1, we can relax
the problem by removing all but one incoming arc of eachAND-node such that
the earliest start times remain unchanged for the resulting digraphD̄. Remove all
OR-nodes fromZ whose out-degree is0 in D̄ and denote the resulting set of nodes
by Z ′. ThenZ ′ induces a generalized cycleC in D. Moreover, by definition of
Z ′, every cycle inC is also contained in̄D and has therefore positive length by
Corollary 3.2.2.

Lemma 3.2.3 reduces to Lemma 2.3.2 if all arc weightsdjw are strictly posi-
tive. Lemma 3.2.3 enables us to show that the decision problem of (ES) is in both
NP and co-NP. The decision problem corresponding to (ES) is to decide whether
or not a feasible scheduleS < ∞ for (ES) exists.

Lemma 3.2.4. The decision problem corresponding to (ES) is in NP∩ co-NP.

Proof. It is clear that the decision problem corresponding to (ES) is in NP be-
cause, for a given feasible scheduleS of some instanceI, it is easy to verify all
constraints ofW. Moreover, it follows from Lemma 3.2.3 that the decision prob-
lem corresponding to (ES) is in co-NP. We can guess a generalized cycle violating
the condition in Lemma 3.2.3, which can be verified in polynomial time by, e. g.,
some standard minimum mean weight cycle algorithm.

3.2.2 A Simple Pseudo-Polynomial Time Algorithm

For the case of (ES) with arbitrary arc weights several pseudo-polynomial al-
gorithms (partly independent of each other) have been proposed, see, e. g., (Chau-
vet and Proth 1999) and (Schwindt 1998) as well as (Schwiegelshohn and Thiele
1999), and (Zwick and Paterson 1996). A very simple (pseudo-polynomial) al-
gorithm is as follows. First, initializeSj := 0 for all j ∈ V . Then, whileS
violates some waiting conditionw = (X, j) ∈ W, setSj := mini∈X(Si + diw).
If Sj becomes larger than a given time horizonT , then stop and return that
the given instance is infeasible. The time horizonT can be chosen asT :=

38 AND/OR Precedence Constraints: Earliest Job Start Times

∑
j∈V (maxw∈out(j) |djw|). One can show straightforwardly by induction thatS 6

S∗ in each iteration of the algorithm. If the recurrence is exited in proper form,
all constraints are obviously fulfilled (S > S∗) and thusS = S∗. Moreover, at
least one start time of a job is increased by 1 in each iteration. Thus the num-
ber of iterations is O(|V | · T). Finding a violated waiting condition obviously
requires at most O(|A|) time and thus the total complexity is O(|V | · |A| · T).
Note that for the special case thatD is acyclic, earliest job start times can easily
be computed in linear time along a topological sort. Moreover, if eachAND-node
(OR-node) has at most one incoming arc, node start times can be computed by,
e. g., the Bellman-Ford shortest (longest) path algorithm in time O(|V | · |A|).

3.2.3 A Game-Theoretic Application

We next consider a class of 2-player games played on bipartite directed graphs
which are directly related to the problem (ES). There exists substantial literature
on different variations of this game, see, e. g., (Zwick and Paterson 1996; Ehren-
feucht and Mycielski 1979; Jurdziński 1998; V̈oge and Jurdziński 2000), as well
as references therein. Each player is identified with one of the node partitions
of the graph. The game starts at a fixed nodej0 and the player associated with
that node chooses an arc(w0, j0). Then the other player chooses an arc(j1, w0)
and so on. The objective and the stopping criterion depends on the considered
variation of the game. One variation is the so-calledmean payoff game(MPG)
where an integer weight is associated to each arc of the digraph. Furthermore, it
is assumed that each node has at least one incoming arc. The mean payoff game
is finished as soon as the pathP resulting from the game contains a cycle and the
outcomeν of the game is the mean weight of the arcs of that cycle. One player
wants to maximize the outcome while the other player wants to minimize it. It
has been shown by Ehrenfeucht and Mycielski (1979) that both players have po-
sitional optimal strategies, that is, the decisions of both players do neither depend
on previous choices nor on the start nodej0. In the following we always assume
thatj0 is associated with the maximization player.

The decision problem corresponding to (MPG) is to decide whether the out-
come of the game is positive. Zwick and Paterson (1996) have noted that this
problem is in NP∩ co-NP. Even more, Jurdziński (1998) showed that the problem
is in UP∩ co-UP. It seems to be intuitively clear that the problems (MPG) and
(ES) are closely related. We next show that this is indeed the case.

Lemma 3.2.5. The decision problems corresponding to (MPG) and (ES) are poly-
nomially equivalent.

Proof. Given an instance of (ES), we construct an instance of (MPG) in the fol-
lowing way. First, we add an additional jobb and a waiting conditionwj =

3.2 Arbitrary Arc Weights 39

({j}, b) with djwj
= 0 for every jobj ∈ V ; moreover, we add a waiting con-

dition w = ({b}, a) with dbw = −T , whereT is the time-horizon discussed in
Section 3.2.2. Notice that there exists a feasible schedule for the original instance
of (ES) if and only if the earliest start time of the new jobb is finite. The game
digraphD is now the digraph representing the new scheduling instance. The start-
ing node isj0 := b and the maximization player starts. We show that the set of
AND/OR precedence constraints is feasible if and only ifν 6 0.

Only if : Based on an optimal scheduleS∗ < ∞, we give a strategy for the
minimization player which ensuresν 6 0: In eachOR-nodew, choose an incom-
ing arc(j, w) with S∗

j + djw = S∗
w. Then, for two verticesv1 andv2 on the path

formed by the game, the weight of the (directed) sub-path fromv1 to v2 is at most
S∗

v2
− S∗

v1
(for each arc(w, j) on the path we haveS∗

j > S∗
w and for each arc

(j, w) on the path we haveS∗
w = S∗

j + djw). In particular, the length of the cycle
terminating the game is at most0 (choosev1 = v2).

If : For an infeasible scheduling instance it follows from Lemma 3.2.3 that
there exists a generalized cycleC in D which only contains cycles of positive
length. Without loss of generality,C contains the nodeb. We give a strategy for
the maximization player which ensuresν > 0: In each step, choose an arc which
starts at a node inC. Such an arc always exists by the definition of generalized
cycles. Moreover, again by the definition of generalized cycles, the minimization
player is not able to leaveC. This yieldsν > 0.

Given a digraphD representing an instance of (MPG), we construct an in-
stanceI of (ES) in the following way. First, we assume without loss of generality
that every node inD associated to the minimization player has out-degree one —
it is an easy observation that a node with out-degreeq > 1 can be replaced byq
copies with out-degree one without changing the outcome of the game. Moreover,
we assume that the weight of the only arc(w, j) leaving a nodew associated to the
minimization player has weight0. The case ofdwj 6= 0 can be handled by replac-
ing dwj 6= 0 by 0 anddiw by diw + dwj for all i ∈ in(w), recall the transformation
in the second paragraph of Section 3.1.

The setV of jobs in the instanceI of (ES) is the set of nodes associated to the
maximization player. For each nodew of the minimization player, we introduce a
waiting conditionw = (inD(w), j) whereoutD(w) = {j}. The time lagdiw for
i ∈ inD(w) is given by the corresponding arc weight inD. Moreover, we add a
dummy start nodea preceding all otherAND-nodes. We refer to this scheduling
instance asI ′. Finally, in order to obtain the instanceI, we modify every waiting
conditionw = (X, j) with j 6= j0 andj0 6∈ X by addingj0 to X and setting
dj0w = T + 1; in other words, if jobj0 can be planned, then all other jobs can
be planned, too. In particular, instanceI is feasible if and only if the earliest start
timeS∗

j0
of job j0 in instanceI ′ is finite. Thus, it remains to show thatS∗

j0
< ∞ if

and only ifν 6 0.

40 AND/OR Precedence Constraints: Earliest Job Start Times

Only if : Consider instanceI ′. Based on the optimal partial scheduleS∗ of
instanceI ′ (Sj0 < ∞), we give a strategy for the minimization player which
ensuresν 6 0: In eachOR-nodew with S∗

w < ∞, choose an incoming arc(j, w)
with S∗

j +djw = S∗
w. As a consequence,S∗

i < ∞ for all nodesi visited during the
game. Moreover, for two verticesv1 andv2 on the path formed by the game, the
weight of the (directed) sub-path fromv1 to v2 is at mostS∗

v2
− S∗

v1
. In particular,

the length of the cycle terminating the game is at most0.

If : For an infeasible scheduling instanceI, by Lemma 3.2.3, there exists a
generalized cycleC in the corresponding digraphDI which only contains cycles
of positive length. Without loss of generality,C contains the nodej0. Notice that
C also forms a generalized cycle for the digraphD. We give a strategy for the
maximization player which ensuresν > 0: In each step, choose an arc which
starts at a node inC. Such an arc always exists by the definition of generalized
cycles. Moreover, again by the definition of generalized cycles, the minimization
player is not able to leaveC. This yieldsν > 0.

With Lemma 3.2.5, it follows from the work of Jurdziński (1998) that the
decision problem corresponding to the scheduling problem (ES) is in UP∩ co-UP.
Moreover, (MPG) and hence also (ES) can be computed in sub-exponential time:
Zwick and Paterson (1996) have shown that so-calledsimple stochastic games
are at least as hard as mean payoff games. The outcome of simple stochastic
games can be computed in sub-exponential time, as has been shown by Ludwig
(1995). Despite these observations, there is no polynomial time algorithm for
(ES) with arbitrary arc weights known and thus, the problem has currently a very
rare complexity status, like, the problem PRIMES (decide whether a given natural
number is prime).

3.3 Polynomial Algorithms

In the following we give strongly polynomial algorithms of different complex-
ity for the casesdjw > 0 anddjw > 0. We propose an O(|V |+ |A|+ |W| log |W|)
algorithm for the restricted model with positive arc weights (see also (Gallo,
Longo, Pallottino, and Nguyen 1993)). For the casedjw > 0, which has to
be treated in a completely different way, we derive an algorithm of complexity
O(|V | + |A| · |W|). Throughout the discussion of these algorithms we call a job
plannedas soon as its start time has been fixed by the considered algorithm.

3.3 Polynomial Algorithms 41

3.3.1 Positive Arc Weights

In this section we restrict to the case of positive arc weights or, more general,
non-negative arc weights without cycles of length0 in D. Like Knuth (1977) and
Dinic (1990) we basically obtain a slight generalization of Dijkstra’s shortest path
algorithm.

The algorithm maintains a partial scheduleS ∈ N
|V|
0 where initiallySw = ∞

for all OR-nodesw. All currently not plannedOR-nodes are maintained in a heap
where the sorting key for nodew is its tentative start timeSw.

Having setSa = 0 (and alsoSw = 0 for all w ∈ out(a)) we proceed over
time by always choosing anOR-nodew = (X, j) with minimum start time from
the heap and planw at its tentative start timeSw. If all other OR-nodes(X ′, j)
precedingj have already been planned, we also planj at the current time. In
this case, the start times of allOR-nodesw′ with w′ ∈ out(j) are updated to
Sw′ := min{Sw′ , Sj + djw′}. If after termination someOR-nodew is started at
Sw = ∞ the considered instance is infeasible. Implementational details are given
in Algorithm 3.

If we apply Algorithm 3 to Example 2.2.1 (arc weights are as in Figure 2.1),
we obtain the start times(0, 0, 0, 2, 3, 2, 3) for AND-nodes and(2, 1, 2, 3, 3) for
OR-nodes. One possible order in which start times get fixed is1 ≺ 2 ≺ 3 ≺ w2 ≺
w1 ≺ 4 ≺ w3 ≺ 6 ≺ w5 ≺ 7 ≺ w4 ≺ 5.

Theorem 3.3.1.For a given set ofAND/OR precedence constraints represented
by a digraphD = (V ∪W, A) with non-negative arc weights and without cycles
of length0, Algorithm 3 computes an optimal partial scheduleS. In particular,
the instance is infeasible if and only ifSw = ∞ for someOR-nodew.

Proof. In this proof we say that anAND-node isplannedif its start time is fixed
(Lines 1 and 3) while anOR-node is planned if it is removed from the heap
(Line 2).

By construction of Algorithm 3,S is a feasible partial schedule. Assume that
S is not optimal and letv be a node withSv > S∗

v andS∗
v minimal. If v is anAND-

node, then there must exist anOR-nodew = (X, v) with Sw = Sv > S∗
v > S∗

w

and we setv := w. Otherwise, ifv is anOR-node(X, j), then there must exist
an AND-nodei ∈ X with S∗

v = S∗
i + div andSi > S∗

i . The latter inequality
follows from the fact that start times (in the order in which nodes are planned) are
non-decreasing. Thus, the choice ofv yieldsdiv = 0 and we setv := i. Iterating
this argument, we can construct a cycle (since there are only finitely many nodes),
which has length0 — a contradiction.

Lemma 3.3.2. Algorithm 3 can be implemented to run inO(|W| log |W|+ |A|+
|V |) time.

42 AND/OR Precedence Constraints: Earliest Job Start Times

Algorithm 3: Computation of earliest job start times for digraphs without
cycles of length0

Input : A directed graphD representing a setV of jobs and waiting con-
ditionsW with positive arc weights on the arcs inV ×W.

Output : A feasible (partial) scheduleS ∈ N
|V|
0 .

Heap := ∅;
for AND-nodesj ∈ V do a(j) := |in(j)|;

1 Sa := 0; // AND-nodea is planned at time0
for OR-nodesw ∈ W do

if w ∈ out(a) then insertw in Heap with keySw := 0;
elseinsertw in Heap with keySw := ∞;

while Heap 6= ∅ do
2 remove nextOR-nodew0 = (X, j) from Heap; // OR-node is planned

reducea(j) by 1;
if a(j) = 0 then

3 Sj := maxw∈in(j) Sw; // AND-node is planned
for OR-nodesw ∈ out(j) do

Sw := min{Sw, Sj + djw};
decrease key ofw in Heap to Sw;

delete nodew0 and all incident arcs fromD;

return S;

Proof. Since eachOR-node enters the heap precisely once the while-loop is ex-
ecuted|W| times. EachAND-node is planned only once and therefore the inner
for-loop is executed at most|A| times. If we choose a Fibonacci-heap for main-
taining theOR-nodes, the cost of Line 2 islog |W| and we obtain the claimed
running time.

In contrast to previously proposed algorithms, the heap data structure only
maintainsOR-nodes which leads to the improved running time O(|W| log |W| +
|A| + |V |) instead of O((|V | + |W|) log(|V | + |W|) + |A|).

3.3.2 Non-Negative Arc Weights

In extension of the case discussed in Section 3.3.1 we present an O(|V |+ |A| ·
|W|) algorithm that is capable to deal with arbitrary arc weightsdjw > 0 and thus
with cycles of length 0 inD. The problem has independently been considered
by Levner, Sung, and Vlach (2000) who observed that the algorithm proposed

3.3 Polynomial Algorithms 43

by Knuth (1977) fails to compute earliest job start times, when cycles of length
0 occur. Coincidently, and also independently from our work, Adelson-Velsky
and Levner (1999) discovered an O(|A|2) algorithm for the problem. Their basic
approach is closely related to our algorithm which is presented next. However,
due to an appropriate update of (tentative) start times ofOR-jobs we obtain the
running time of O(|V | + |A| · |W|).

Our algorithm is based on the observation that, according to the general feasi-
bility criterion (Lemma 3.2.3), we need to find cyclesC in D where each arc of
C has weight0.

A rough scheme of the algorithm is as follows. Analogously to Algorithm 3 we
maintain allOR-nodesw in a heap where the sorting key is its tentative start time
Sw (initially Sw = ∞). Furthermore, whenever anAND-nodej is planned, the
start times of allOR-nodesw ∈ out(j) are updated toSw = min{Sw, Sj + djw}.
We proceed over time starting att = 0. For the current timet we compute a set
U of (non-started) nodes that can be started att. U is computed by maintaining
the induced subgraphD0 of D where all planned nodes and all arcs of positive
weight have been deleted. InD0, U is computed as a set of nodes such that
for eachAND-nodej all predecessorsw ∈ inD0(j) are also inU and for each
OR-nodew, at least one predecessorj ∈ inD0(w) is also inU . Then, as we
will prove in Theorem 3.3.3 below, all nodes ofU can be started at the current
time t. Next we remove a newOR-nodew from the heap and increaset to Sw.
If t = ∞ the algorithm stops. Then, either noOR-node was left in the heap
(and we have computed a feasible schedule) or allOR-nodesw in the heap fulfill
Sw = ∞ (indicating that the given instance is infeasible). Details are provided in
Algorithm 4.

If we apply Algorithm 4 to Example 2.2.1 with arc weights as in Figure 2.1
exceptd5w1 = 0 andd4w4 = 0 we get:

Iteration 1: U = {1, 2, 3}, w = w2, t := 1

Iteration 2: U = {4, 5, w1, w4}, w = w3, t := 2

Iteration 3: U = {6}, w = w5, t := 2

Iteration 4: U = {7}, Heap = ∅, t := ∞
Thus, we obtain start times(0, 0, 0, 1, 1, 2, 2) for AND-nodes and(1, 1, 2, 1, 2) for
OR-nodes.

Theorem 3.3.3.For a given set ofAND/OR precedence constraints represented by
a digraphD = (V ∪ W, A) with non-negative weights on the arcs, Algorithm 4
computes an optimal partial scheduleS. In particular, the instance is infeasible if
and only ifSw = ∞ for someOR-nodew.

44 AND/OR Precedence Constraints: Earliest Job Start Times

Algorithm 4: Computation of earliest job start times for non-neg. time lags
Input : A directed graphD representing a setV of jobs and waiting con-

ditionsW with non-negative arc weights on the arcs inV ×W.

Output : A feasible (partial) scheduleS ∈ N
|V|
0 .

setD0 := D and remove all arcs with positive weight fromD0;
t := 0;
Heap := ∅;
for OR-nodesw ∈ W do

Sw := ∞;
insertw in Heap with keySw;

while t < ∞ do
computeU ⊆ V(D0) maximal with

1 (inD0(j) ⊆ U ∀ j ∈ U∩V) and(inD0(w)∩U 6= ∅ ∀w ∈ U∩W);
for AND-nodesj ∈ U (j ∈ U ∩ V) do

Sj := t; // nodej is planned at timet
for OR-nodesw ∈ outD(j) do

2 Sw := min{Sw, Sj + djw};
3 decrease key ofw in Heap to Sw;

for OR-nodesw ∈ U (w ∈ U ∩W) do
4 Sw := t; // nodew is planned at timet

removew from Heap;

Delete all nodes fromU in D andD0;
if Heap 6= ∅ then

5 remove the nextOR-nodew from Heap;
6 t := Sw;
7 removew from D andD0; // nodew is planned at timet

else t := ∞;
return S;

Proof. We first prove that the variablet never decreases, i. e., the algorithm pro-
ceeds over time and tries to plan the jobs (and remove them fromD andD0) as
early as possible in order of non-decreasing start times. Assume thatt decreases
in Line 6 of the algorithm and lett0 denote its value before the decrease. Since the
OR-nodew determiningt was not chosen in Line 5 during the last iteration of the
while-loop (whent was set tot0), Sw has decreased during the current iteration in
lines 2 and 3. This is a contradiction toSj = t0 anddjw > 0.

Observe that the start timeSi of any nodei ∈ V is never changed after the
node is planned (and thus deleted from the graphsD andD0).

3.3 Polynomial Algorithms 45

We can now prove that the partial scheduleS returned by Algorithm 4 is fea-
sible by verifying all constraints of (ES). By construction of the algorithm, for an
AND-nodej ∈ V , everyOR-nodew ∈ in(j) has either been planned before or is
planned together withj in the same iteration of the while-loop; this follows from
the first property ofU in Line 1. Thus, the constraint in (ES) corresponding toj
is fulfilled.

Consider now an arbitraryOR-nodew ∈ W. If w is planned as part of a subset
U in Line 4, it follows from the second property ofU in Line 1 that there is a job
j ∈ in(w) with djw = 0, andj is planned at the same time asw. Otherwise, ifw is
planned in Line 7 andSw < ∞, the start timeSw of w must have been decreased
in some iteration of the while-loop in Line 2; since the start timeSj of the node
j ∈ V causing the last decrease ofSw has not changed since then,Sw = Sj + djw

in the final partial scheduleS. Thus, the constraint in (ES) corresponding tow is
fulfilled.

Next we prove that the partial scheduleS returned by Algorithm 4 is optimal.
Let S∗ be the optimal partial schedule and assume that there are nodesi ∈ V
with S∗

i < Si; we choose such ani′ with minimum S∗
i′ and sett0 := S∗

i′ ; let
U0 = {i ∈ V | t0 = S∗

i < Si}. We distinguish two cases.

First case: In some iteration of Algorithm 4,t adopts the valuet0. We consider
the iteration of the while-loop in whicht is increased abovet0 in Line 6. LetD0

be the digraph at the beginning of the iteration andU the set computed at the start
of this iteration. ThenU ∩ U0 = ∅ and, by maximality ofU , the setU ∪ U0

cannot satisfy the conditions in Line 1. SinceS∗ is a feasible partial schedule,
the first condition of Line 1 is valid forU ∪ U0, i. e., inD0(j) ⊆ U ∪ U0 for all
j ∈ (U ∪ U0) ∩ V . Thus, the second condition is violated: there exists a node
w ∈ U0 ∩ W with inD0(w) ∩ (U ∪ U0) = ∅. Moreover, by optimality ofS∗,
there exists a nodej ∈ inD(w) with S∗

w = S∗
j + djw, in particularS∗

j 6 t0. We
next show thatSj = S∗

j . If S∗
j < t0 the claim follows from the minimality oft0.

Otherwise, observe thatj 6∈ U0 (if j ∈ U0 we havej ∈ inD0(w) which contradicts
inD0(w) ∩ (U ∪ U0) = ∅). Then, withS∗

j = t0 andj 6∈ U0 it follows from the
definition ofU0 thatSj = S∗

j . In particular,Sw has been set toSj + djw = S∗
w in

Line 2 afterj was planned. SinceSw is never increased in Algorithm 4, we get a
contradiction toSw > S∗

w.

Second case:t never adopts the valuet0 in Algorithm 4; in particular,t0 > 0
andU0 = {i ∈ V | S∗

i = t0}. SinceS∗ is optimal, decreasing all start times
S∗

j for j ∈ U0 to t0 − 1 violates a constraint of (ES). Thus, there exists a node
w ∈ U0∩W such thatS∗

w = S∗
j +djw for somej ∈ V with djw > 0, i. e.,S∗

j < t0.
Therefore,Sj = S∗

j andSw has been set toSj + djw = S∗
w in Line 2 afterj was

planned. SinceSw is never increased in Algorithm 4, we get a contradiction to
Sw > S∗

w.

46 AND/OR Precedence Constraints: Earliest Job Start Times

The bottleneck for the running time of Algorithm 4 is the computation of the
setU in each iteration of the while-loop. In fact, it turns out that the linear time
algorithm for checking feasibility of a set ofAND/OR precedence constraints (for
the case of positive arc weights) provides an elegant and fast solution for this
problem.

Lemma 3.3.4. Given a bipartite digraphD with node setN ∪ M and arc setA,
the (unique) maximal setU ⊆ N ∪M with inD(w) ⊆ U , for all w ∈ U ∩N , and
inD(j) ∩ U 6= ∅, for all j ∈ U ∩ M can be computed in linear time.

Proof. First, forU andU ′ fulfilling the conditions given in the lemma, also their
unionU ∪ U ′ fulfills those conditions. Therefore, such a unique maximal subset
U exists.

We show thatU can be computed by applying essentially Algorithm 1 to an
appropriately constructed instance. Define the setV = M of jobs and the fol-
lowing setW of waiting conditions: For eachw ∈ N and eachj ∈ outD(w),
introduce a waiting condition(inD(w), j). Notice that the input size of this in-
stance is not necessarily linear in the input size of the given digraphD since the
setinD(w) is stored once for everyj ∈ outD(w). We can avoid this undesired
increase in the input size by storing, for eachw ∈ N , the corresponding wait-
ing conditions as(inD(w), outD(w)) with the interpretation that every job in the
second set is a waiting job for the first set. Algorithm 1 can easily be adapted to
handle this compactified input in linear time by replacing the for-loop starting in
Line 1 with

for waiting conditions(X,Y) ∈ W with i ∈ X do
for j ∈ Y do

decreasea(j) by 1;
if a(j) = 0 then addj to Q;

remove(X,Y) fromW;

By Corollary 2.3.3, Algorithm 1 computes a setL ⊆ V such thatV ′ := V \L
is a maximal subset ofV with the following property: For allj ∈ V ′ there exists
a waiting condition(X, j) ∈ W with X ⊆ V ′. Thus, the set

U =
({w ∈ N | in(w) ⊆ V ′} ∪ V ′) ⊆ N ∪ M

fulfills the conditions given in the lemma, i. e.,inD(w) ⊆ U , for all w ∈ U ∩ N ,
and inD(j) ∩ U 6= ∅, for all j ∈ U ∩ M . Assume that there is a bigger set
U∗ ⊃ U that also fulfills these conditions. By construction ofU , there exists a
nodej ∈ M ∩ (U∗ \ U). Since the setU∗ ∩M of jobs has the property described
in Corollary 2.3.3, we get a contradiction to the maximality ofV ′.

3.4 The Linear Time-Cost Tradeoff Problem 47

With the help of this lemma, we can now give a bound on the running time of
Algorithm 4.

Corollary 3.3.5. Algorithm 4 can be implemented to run inO(|W| · |A| + |V |)
time.

Proof. First, all isolatedAND-nodes are planned and thus removed fromD0 in the
first iteration of the while-loop. Moreover, in each iteration, at least oneOR-node
is removed fromD0 and the number of iterations is thus bounded by|W|. Finally,
the running time of each iteration is dominated by the computation ofU which
can be done in O(|A|) time.

Notice that, in the sense of Lemma 3.3.4, Algorithm 4 and its worst case com-
plexity (Corollary 3.3.5) are both valid for digraphsD whereOR-jobs have multi-
ple outgoing arcs (of length0).

3.4 The Linear Time-Cost Tradeoff Problem

We conclude the chapter by studying thelinear time-cost tradeoff problem
with AND/OR precedence constraints imposed among jobs. In the time-cost trade-
off problem the processing times of jobs depend on the amount of money (or gen-
eral resource) that is paid for it. For each jobj, this dependence is described by a
non-increasing, non-negative, affine linearcost functioncj : [pmin

j , pmax
j] → R>,

wherepmin
j > 0 refers to the smallest possible processing time ofj andpmax

j >
pmin

j is the largest possible processing time ofj. The valuecj(pj) is the amount
of money one has to pay to runj with processing timepj.

The linear time-cost tradeoff problem was formulated more than 40 years ago
by Kelley and Walker (1959): The problem is to find for all deadlinesT > 0
the minimal total costc(p) =

∑
j∈V cj(pj) of the jobs such thatCmax(p) 6 T .

Recall thatCmax(p) denotes the project makespan with respect to some vector
p of processing times. The solution thus consists of a function (the so-called
time-cost tradeoff curve) B(T) := min{c(p)|pmin 6 p 6 pmax, Cmax(p) 6 T}.
For traditional precedence constraints,B(T) is piecewise linear, convex, non-
increasing, and continuous, as was discovered independently by Fulkerson (1961)
and Kelley (1961). They showed thatB(T) can be constructed by a series of
minimum cut computations. Later, Phillips and Dessouky (1977) suggested an
improved version of their algorithms.

Let us discuss the curveB(T) whenAND/OR precedence constraints are im-
posed among jobs. Throughout the discussion we assume that the given set of
constraints is feasible in the sense of Lemma 2.3.2. We show thatB(T) is still
non-increasing and piecewise linear, but not continuous (and hence not convex)

48 AND/OR Precedence Constraints: Earliest Job Start Times

anymore. Recall that each realization defines a time-cost tradeoff curve for a set of
traditional precedence constraints. Since we may choose any realizationR of W,
B(T) is the minimum of a set of traditional time-cost tradeoff curves. As such,
it is no longer continuous but fulfills the other above mentioned properties. We
next present an alternative argumentation that is based on a polyhedral view to the
problem. We here follow an idea of Skutella (1998, Lemma 1.2.1). He gave a new
proof for the original result of Fulkerson (1961) and Kelley (1961) on the above
mentioned properties ofB(T) for traditional precedence constraints. Consider the
setP ⊂ R

2n+2
> defined by the points(T ∈ R>, B ∈ R>, p ∈ R

n
>, S ∈ R

n
>) that

fulfill Sj > 0, pmin
j 6 pj 6 pmax

j for all j ∈ V , and

∨
i∈X

(Sj > Si + pi) (X, j) ∈ W,

T > Sj + pj j ∈ V,

B >
∑

j∈V
cj(pj) .

Sincec(p) is affine linear,P is the union of finitely many polyhedra, one for
each realization. If we projectP on the coordinates(T,B) we obtain the set
P ′ ⊂ R

2
> with P ′ := {(T,B)| there exists(T,B, p, S) ∈ P}. Clearly, P ′ is

again the union of finitely many polyhedra. By definition ofB(T) it follows that
P ′ = {(T,B)|B > B(T)}. Hence, the border ofP ′ definesB(T). Consequently,
B(T) is piecewise linear. We next explain the above argumentation by an example
which also shows thatB(T) is not continuous.

Example 3.4.1.Let V = {1, 2, 3} and let({1, 2}, 3) be the only waiting condi-
tion. Furthermore, letpmin

1 = 0, pmax
1 = 3, pmin

2 = 1, pmax
2 = 2, pmin

3 = 3,
and pmax

3 = 3. The cost functions for the jobs1 and 2 are defined byc1(p1) =
−2

3
p1 + 2, c2(p2) = −p2 + 2, andc3(p3) = 0. Notice thatp3 is fixed.

Figure 3.1 showsP ′ for Example 3.4.1.P ′ is the union of two polyhedra
each of which corresponds to one realization. The time-cost tradeoff curveB(T)
equals the highlighted (bold) part of the border ofP ′. We see thatB(T) is not
continuous atT = 4. The reason is that job2, which precedes job3 for T ∈ [4, 6],
cannot be further shortened. We therefore change to the realization where job3
waits for job1 (T ∈ [3, 4)).

Let us summarize the outcome of Example 3.4.1 and the above argumentation
in the following lemma.

Lemma 3.4.2. If AND/OR precedence constraints are imposed among jobs, then
the time-cost tradeoff curveB(T) is non-increasing and piecewise linear. In gen-
eral, it is not continuous (and thus not convex).

3.4 The Linear Time-Cost Tradeoff Problem 49

0

1

2

2

3 4 5 6

B(T)

T

S3 > S1 + p1

S3 > S2 + p2

Figure 3.1: The figure shows the setP ′ and the time-cost tradeoff curveB(T)
(bold) for Example 3.4.1.

As a consequence, one may guess that computingB(T) is much harder in the
presence ofAND/OR precedence constraints when compared to traditional prece-
dence constraints. In the following we show that the linear time-cost tradeoff
problem is strongly NP-hard forAND/OR precedence constraints. In fact, for the
reduction which is presented next, it suffices to consider a special case of the linear
time-cost tradeoff problem, namely the so-called

DEADLINE PROBLEM: For a given deadlineT > 0 and an integer
budgetb, do there exist processing timesp satisfyingCmax(p) 6 T
andc(p) 6 b.

We show the NP-completeness of the DEADLINE PROBLEM with AND/OR

precedence constraints by a reduction from HITTING SET.

HITTING SET: Let V be a finite set,F be a collection of subsets of
V , and letb be a positive integer. Does there exist a subsetV ′ ⊆ V
that contains at least one element from each set inF and|V ′| 6 b.

Recall that the HITTING SET problem is NP-complete in the strong sense, see,
e. g., (Garey and Johnson 1979, SP8). We obtain the following theorem.

Theorem 3.4.3.TheDEADLINE PROBLEM with AND/OR precedence constraints
is NP-complete in the strong sense.

50 AND/OR Precedence Constraints: Earliest Job Start Times

Proof. The problem is obviously in NP; a polynomially checkable proof isp itself.
Algorithm 4 (which was formulated forpj ∈ N but also works forpj ∈ R>)
delivers the project makespanCmax(p).

Given an instance of HITTING SET, we introduce a job for each element of the
ground set and one additional jobj. The processing time ofj is fixed topj = 1,
and all other jobsi 6= j havepmin

i = 0 andpmax
i = 1. Moreover, all cost functions

are defined byci(pi) = −pi + 1. Now, for each subsetX ∈ F of the HITTING

SET problem, introduce a waiting condition(X, j). We then ask whether there
exist processing timesp such that the project is completed at timeT = 1 and the
total cost is less than or equal tob. We show that the so-defined special case of
the DEADLINE PROBLEM is equivalent to the HITTING SET problem. To keep
notation simple we use the same notation for both problems. Suppose that the
answer to the instance of the HITTING SET problem is ‘yes’. Then, there exists a
setV ′ ⊆ V with cardinality less than or equal tob such thatV ′ contains at least
one element from each set inF . If we set the processing time of each job inV ′ to
0 and all others to1, by construction of the instance of the DEADLINE PROBLEM,
Sj = 0 is feasible and the costc(p) = |V ′|. Thus, the answer to the DEADLINE

PROBLEM is ‘yes’. Now suppose that the answer to an instance of the special case
of the DEADLINE PROBLEM is ‘yes’. Then, by definition of the cost functionscj,
the setV ′ of jobs which have processing time0 is of cardinality|V ′| 6 b. Sincej
can be started atSj = 0 we have thatV ′ contains at least one job from each of the
setsX ∈ F . Consequently, the answer to the HITTING SET problem is ‘yes’.

We finally consider the minimization problems that correspond to the DEAD-
LINE PROBLEM and the HITTING SET problem. The minimization problem
which corresponds to the DEADLINE PROBLEM is to find, for givenT > 0, pro-
cessing timesp such thatCmax(p) 6 T andc(p) is minimal. The minimization
problem which corresponds to the HITTING SET problem is to find a setV ′ ⊆ V
of minimum cardinality such thatV ′ contains at least one element from each set
in F . It is NP-hard to approximate the latter problem withinε log |V | for some
ε > 0. This fact follows from the polynomial equivalence of the HITTING SET

problem and the SET COVERING problem (Ausiello, d’Atri, and Protasi 1980).
The above mentioned inapproximability result was established for the SET COV-
ERING problem by Raz and Safra (1997); one may alternatively choose other inap-
proximability results for SET COVERING or HITTING SET. We have shown that
each instance of the above defined special case of the DEADLINE PROBLEM with
costc(p) = b can be transformed into an instance of the hitting set problem with
cost|V ′| = b and vice versa. As a consequence, the inapproximability results for
SET COVERING and HITTING SET carry over to the minimization problem which
corresponds to the DEADLINE PROBLEM with AND/OR precedence constraints.

CHAPTER 4

REPRESENTATION OFRESOURCECONSTRAINTS IN

PROJECTSCHEDULING

Already in Chapter 1 we noted that, in project scheduling, resource constraints
are usually defined via resource consumption and availability. Many algorith-
mic approaches, however, are based on a different concept, the so-calledmini-
mal forbidden setsto represent the resource constraints. Our interest in minimal
forbidden sets relies on the fact that they play an important role in the context
of scheduling policiesfor stochastic resource-constrained project scheduling; we
extensively study this topic in Chapter 5 below. In this chapter, we discuss the
connection between both representations of resource constraints which reveals a
close relation tothreshold hypergraphs. In addition, for given resource consump-
tion and availability, we propose a simple backtracking algorithm to efficiently
compute and represent all minimal forbidden sets. We computationally evaluate
the algorithm on test sets of the project scheduling problem library PSPLIB. The
chapter is based on joint work with Marc Uetz (Stork and Uetz 2000).

4.1 Introduction

In the previous two chapters we established results that are related toprece-
dence constraintsamong jobs. As another step towards the stochastic resource-
constrained project scheduling problem we now focus onresource constraintsand
their representation. To this end, we consider a model where both precedence con-
straints and resource constraints have to be respected. The results presented are
completely independent of job processing times, and are thus applicable to both
deterministic and stochastic models.

Let us briefly recall the classical representation of resource constraints. Jobs
need different (renewable) resource typesk ∈ K while being processed. A con-
stant amount ofRk ∈ N units of each resource type is available throughout the
project and each jobj consumes0 6 rjk 6 Rk (rjk ∈ N) units of resource
k ∈ K while in process. We call this representation thethreshold representa-
tion (the motivation for this notation will become clear in Section 4.2). The other
representation of resource constraints, which we call the(minimal) forbidden set

51

52 Representation of Resource Constraints in Project Scheduling

representation, is as follows. A subsetF ⊆ V of jobs is calledforbiddenif the
jobs in F are an anti-chain of the partial order defined by the precedence con-
straintsE0, and the total resource consumption

∑
j∈F rjk exceeds the resource

availability Rk for somek ∈ K. F is calledminimal forbiddenif any proper
subsetF ′ ⊂ F is resource-feasible, that is,

∑
j∈F ′ rjk 6 Rk for all k ∈ K. Let

us denote byF the system of minimal forbidden sets. To give an example, recall
Example 1.3.1 and observe thatF consists of the three sets{1, 5}, {2, 3, 4} and
{2, 4, 5}.

Minimal forbidden sets are an important concept to represent resource con-
straints. In fact, they form the basis of numerous algorithmic approaches to
resource-constrained project scheduling. Probably the most important field of
application is stochastic scheduling, the topic of the thesis. We discuss this topic
in the following Chapters 5 and 6. Minimal forbidden sets also play a role in algo-
rithmic approaches to deterministic project scheduling problems, e. g. in (Rader-
macher 1985; Bartusch, M̈ohring, and Radermacher 1988). In addition, forbidden
sets are useful to derive cutting planes within integer programming approaches,
e. g. in (Alvarez-Vald́es Olagúibel and Tamarit Goerlich 1993; M̈ohring, Schulz,
Stork, and Uetz 2000). Recall from Chapter 1 that Schäffter (1997) discusses in-
approximability results for resource-constrained project scheduling problems by
means of the forbidden set representation of resource constraints. (He argued
that vertex coloring in undirected graphs reduces to scheduling subject to forbid-
den sets). Finally, forbidden sets can be seen as a generalization of thedisjunc-
tive graphconcept known from shop scheduling, as pointed out by Radermacher
(1985); see also (Balas 1971). In shop scheduling problems, each minimal forbid-
den set consists of exactly two jobs.

This chapter is organized as follows. In Section 4.2, we start by discussing the-
oretical issues related to the threshold and minimal forbidden set representations
of resource constraints, revealing a close relation to threshold (hyper-)graphs. In
Section 4.3, we propose a backtracking algorithm which computes the systemF
of minimal forbidden sets for a scheduling instance which is given by the usual
threshold representation. We show that, for instances with only one resource type
(|K| = 1), the algorithm can be implemented to run in polynomial time with
respect to the in- and output. A computational evaluation of the algorithm is pre-
sented in Section 4.4, based on the instances from the project scheduling library
PSPLIB (2000). The results exhibit the benefits of the proposed algorithm in com-
parison to an approach to computeF previously suggested by Bartusch (1984).
Our results also provide further insights in the structure of the instances of the
library. We conclude with some remarks and examples in Section 4.5.

4.2 Threshold and Forbidden Set Representations 53

4.2 Threshold and Forbidden Set Representations

In this section, we address several questions which are related to the transfor-
mation between the two above mentioned representations of resource constraints.

4.2.1 Relations to Threshold (Hyper-)Graphs

One can think of the system of minimal forbidden sets(V,F) as an undirected
hypergraph where jobs of the scheduling instance correspond to the vertices of
the hypergraph and the minimal forbidden sets correspond to hyperedges. Let
us first address the question if these hypergraphs have any particular property.
To start with, consider the following problem: Given a problem instance with
a minimal forbidden set representation of the resource constraints, what is the
minimal number of resource typesk required in a threshold representation that
representsF? Obviously,|F| different resource types suffice, because one may
introduce one resource typek for each minimal forbidden setF ∈ F with Rk =
|F | − 1 andrjk = 1 for eachj ∈ F andrjk = 0, otherwise. Moreover, it is
easy to see that one resource type does not suffice in general, e. g. withV =
{1, 2, 3, 4}, E0 = ∅, andF = {{1, 2}, {3, 4}}. In fact, as will be demonstrated in
Example 4.5.1 in Section 4.5, the number of resource types required in a threshold
representation can be exponential inn, the number of jobs.

It turns out that a related problem has been studied in the context ofthres-
hold (hyper-)graphs: According to Golumbic (1980), a threshold hypergraph is
an undirected hypergraph(V,F), F ⊆ 2V , with the following property: A non-
negative integer valuerj can be assigned to each vertexj ∈ V such that there
is an integerthresholdR with the property that a subsetB ⊆ V is stableif and
only if

∑
j∈B rj 6 R. Here, astable setof a hypergraph is a subsetB ⊆ V

which does not contain any hyperedge, that is,F 6⊆ B for all F ∈ F ; see, e. g.,
(Duchet 1995). In other words, the system of stable sets of a threshold hypergraph
can be represented by only one linear inequality, namely

∑
j∈V rj xj 6 R. Here,

x = (x1, . . . , xn) is the characteristic vector of a subsetX of V , wherexj = 1
if j ∈ X andxj = 0 otherwise. Notice that the stable sets exactly correspond to
the resource-feasible sets in our application, hence(V,F) defines a threshold hy-
pergraph exactly if one resource type suffices to represent the resource constraints
(andE = ∅). In analogy with the definitions for ordinary graphs, thethreshold
dimensiont of a hypergraph(V,F) can be defined as the minimum number of
inequalities which are required to represent the system of stable sets; see (Chvátal
and Hammer 1977). More precisely, there existt inequalities

∑
j∈V rjk xj 6 Rk,

k = 1, . . . , t, such thatX is a stable set in(V,F) if and only if all t inequalities are
fulfilled. But even for ordinary graphs, the determination of the threshold dimen-
sion is NP-hard (Chv́atal and Hammer 1977). According to Yannakakis (1982),

54 Representation of Resource Constraints in Project Scheduling

already the decision problem if the threshold dimension of a graph is bounded by
3 is NP-complete (the decision problem if the threshold dimension of a graph is
bounded by2 can be solved in polynomial time). We refer to the surveys by Ma-
hadev and Peled (1995) and Brandstädt, Le, and Spinrad (1999) for more details
and references. From the above discussion we obtain the following theorem.

Theorem 4.2.1.Given a project scheduling problem with minimal forbidden set
representationF of resource constraints, and given that the number of minimal
forbidden setsF is polynomial inn, it is NP-hard to determine the minimum
number of resource types required in a threshold representation.

Proof. The claim even holds if all minimal forbidden setsF ∈ F have cardi-
nality 2. Then(V,F) is an ordinary graph, and the problem corresponds to the
determination of the threshold dimension of that graph, which is NP-hard.

4.2.2 From Thresholds to Minimal Forbidden Sets

We now discuss the complexity of the computation ofF , given the (usual)
threshold representation of resource constraints. Clearly, sinceF can be expo-
nential inn, the number of jobs, there is no algorithm with polynomial running
time with respect ton. However, if only one resource type is present (|K| = 1),
the following will be proved in Section 4.3.3.

Theorem 4.2.2.Given a project scheduling problem with threshold representa-
tion of resource constraints, and given that the number of resource types|K|
equals1, the minimal forbidden setsF can be computed in time polynomial in
|F| andn.

Let us next consider the following three related problems that are important if
an instance with threshold representation is given. For a given subsetW ⊆ V of
jobs, which is an anti-chain ofG0 = (V,E0), we ask whether

(i) W is minimal forbidden,

(ii) W is contained in a (not necessarily minimal) forbidden setF ⊇ W , and

(iii) W is contained in a minimal forbidden setF ⊇ W .

It is trivial to decide Problem (i):W must be a forbidden set, that is,
∑

j∈W rjk >
Rk + 1 for somek ∈ K, andW is minimal forbidden if and only ifW \ {j}
is resource-feasible for eachj ∈ W and allk. This can obviously be verified in
O(|K||W |) time. We can also decide Problem (ii) in polynomial time: Denote
by N ⊆ V all jobs inV which are unrelated to all jobs inW (with respect to the

4.2 Threshold and Forbidden Set Representations 55

precedence constraints). Obviously, if there is a forbidden setF with W ⊆ F ,
thenF ⊆ W ∪ N . In addition, there must be at least one resource typek ∈ K
such that the weight of a maximum weight anti-chain in the partially ordered set
that is induced fromG0 on the jobsW ∪ N exceedsRk. A maximum weight
anti-chain of a partially ordered set equals a maximum weight stable set in the
underlying comparability graph. For each resource typek, this problem can be
solved in time polynomial inn as a minimum flow problem; see (M̈ohring 1985).
Finally, Problem (iii) turns out to be NP-complete, since already the following,
restricted problem is NP-complete.

Theorem 4.2.3.Given a project scheduling problem (even without precedence
constraints) with threshold representation of the resource constraints, and given
that the number of resource types is polynomial inn, it is NP-complete to deter-
mine if a given job is contained in some minimal forbidden setF ∈ F or not.

Proof. The problem is obviously in NP; according to the preceding remarks, a
polynomially checkable proof is the setF itself. We will use a simple reduction
of the NP-complete problem PARTITION (see, e. g., (Garey and Johnson 1979)).
The problem PARTITION is the following: We are givenn items of integral weight
rj > 0 with

∑n
j=1 rj even, and the question is if there exists a partition of the items

into two subsets of equal total weight. Now define a project scheduling problem
as follows. We have no precedence constraints and one job per item, each with
resource requirementrj. The resource availability isR = 1

2

∑n
j=1 rj. In addition,

we have one more job, sayi, with resource requirementri = 1. Now, if i is
contained in a minimal forbidden setF , we have

∑
j∈F\{i} rj = R, sinceF is

minimal forbidden and sincei requires only one resource unit. On the other hand,
if i is not contained in a minimal forbidden set, there is no subsetF of the original
items with total weightR. This completes the proof.

4.2.3 Related Topics

Interestingly, threshold graphs and related questions have been considered also
in the context of the so-calledPV-chunk synchronizing primitive, which general-
izes the classicalsemaphoreconcept for synchronization of parallel processing. In
fact, apparently prior to Chvátal and Hammer (1977), threshold graphs have been
defined and characterized in this context by Henderson and Zalcstein (1977); see
also (Ordman 1987).

In the form ofminimal covers, minimal forbidden sets also arise in the context
of theknapsack polytope, or more generally knapsack inequalities in0–1 integer
programming. Given a0–1–polytopeP = {x ∈ {0, 1}|V | | ∑

j∈V rjxj 6 R}, a
coveris a setC ⊆ V with

∑
j∈C rj > R, andC is calledminimal if it is minimal

56 Representation of Resource Constraints in Project Scheduling

with respect to this property. In other words, minimal covers exactly correspond to
minimal forbidden sets in our application. In the context of integer programming,
minimal covers play an important role, since they give rise to cover inequalities
of the form

∑
j∈C xj 6 |C| − 1, which are valid forP , and also to lifted cover

inequalities, which are even facet-inducing forP . We refer to (Balas and Zemel
1978) for more details.

4.3 Computing Minimal Forbidden Sets

In this section, we propose an algorithm which computes the minimal forbid-
den set representationF for an instance which is given in threshold representation.
Notice that exponentially many minimal forbidden sets may exist, hence the out-
put of such an algorithm may be exponential with respect ton, the number of
jobs. Before we describe the algorithm to enumerate all minimal forbidden sets
we discuss the related problem of determining the number of minimal forbidden
sets (without writing them down explicitly).

4.3.1 Counting Minimal Forbidden Sets

Let Σ∗ be the set of all finite strings over the alphabetΣ. A function f :
Σ∗ → N is in #P if there is a non-deterministic polynomial-time bounded Turing
machineM that decides some language overΣ∗ such that the number of accepting
computations ofM on inputx is f(x), for all x ∈ Σ∗. A counting problem, i.e.,
a functionf : Σ∗ → N, is said to be #P-complete iff ∈ #P and every function
in #P is polynomial-time reducible tof . For background information on #P we
refer to one of the standard texts, e. g., (Garey and Johnson 1979; Papadimitriou
1994). The following theorem is a direct consequence of the work of Provan and
Ball (1983).

Theorem 4.3.1.Given a project scheduling problem with threshold representa-
tion of resource constraints, the problem of determining the number of minimal
forbidden sets is #P-complete.

Proof. The problem is easily seen to be in #P since every minimal forbidden set
can be recognized in time polynomial inn (see Section 4.2.2). We next give a
(parsimonious) reduction from the problem MAX AC. MAX AC is the problem to
determine the number of maximum cardinality anti-chains of a partially ordered
set. MAX AC was shown to be #P-complete by Provan and Ball (1983).

Given an instance of MAX AC we construct a project scheduling problem with
resource constraints as follows. First, compute the cardinalitym of a maximum
cardinality anti-chain (this can be done in polynomial time, see Section 4.2.2).

4.3 Computing Minimal Forbidden Sets 57

Then introduce for each elementj of the partially ordered set a jobj, and for each
ordered pair(i, j) of the partially ordered set a precedence constraint between
the jobsi andj. To keep notation simple, we use the same identifiers for jobs
and for elements of the partially ordered set. The scheduling instance has one
resource type with availabilityR = m − 1. Each jobj requires one unit of that
resource type (rj = 1). Obviously, there is a one-to-one correspondence between
the minimal forbidden sets in the so-constructed scheduling instance and the anti-
chains of cardinalitym.

4.3.2 Description of the Algorithm

We now describe our algorithm to compute all minimal forbidden sets for
an instance which is given in threshold representation. The basic approach is to
enumerate subsets ofV in a treeT where each nodew of T , except the root node,
is associated to exactly one jobj ∈ V (however, the mapping of nodes to jobs is
not an injection). If nodew is associated to some jobj, w has a child node for
each jobi = j + 1, . . . , n. The root node has a child node for each jobi ∈ V .
Each nodew of the tree defines a subsetW ⊆ V of jobs withj ∈ W by traversing
the tree fromw to the root node, and collecting the associated jobs on that path. In
fact, a node of the tree only consists of its associated jobj, a pointer to its father,
and, for technical reasons, the (current) number of child nodes. With these basic
definitions, there is a one-to-one correspondence between the set of nodes ofT
and the power set2V of all subsets ofV .

To build a treeT (F) which exactly represents all minimal forbidden setsF ,
the treeT is pruned during this generic process: A nodew is discarded as soon
as it can be proved that neitherW nor any superset ofW that is located in the
subtree rooted atw is a minimal forbidden set.T (F) is constructed in a DFS
fashion. For each nodew that is to be added within the construction ofT (F),
it is tested whetherW is a minimal forbidden set. This is done in two steps.
First, we check whether the associated setW is an anti-chain with respect to the
(transitively implicit) precedence constrains. If this is not the case, by definition
of minimal forbidden sets, the subtree rooted atw can be discarded (includingw
itself). Otherwise, ifW is forbidden, that is,

∑
j∈W rjk > Rk for somek ∈ K,

we test whetherW is minimal forbidden. This is done by verifying whether each
setW \ {j}, j ∈ W , is resource-feasible; see Problem (i) in Section 4.2.2. If
this is the case thenW is minimal forbidden andw is stored as a leaf of the tree
T (F). Otherwise,W is not minimal forbidden and the subtree rooted atw can be
discarded (includingw itself). If W is resource-feasible, there may exist minimal
forbidden setsF ⊃ W that are located in the subtree rooted atw; hence branching
is required onw. Finally, if some node does not represent a minimal forbidden

58 Representation of Resource Constraints in Project Scheduling

set, and does not have any further descendants, it is deleted from the tree. Notice
that deletion of nodes is meant recursively, that is, if a deleted nodew was the
only child of its fatheru in T (F) thenu is deleted as well. Upon termination, the
constructed treeT (F) has precisely|F| leaves. Figure 4.1 depicts the treesT and
T (F) that result from Example 1.3.1.

∅∅

11 2

2

2

3

3

33

3

4

4

4

444

444

4

5

5

5

5555

555555

5555

5

T T (F)

Figure 4.1: The treesT andT (F) for Example 1.3.1.

4.3.3 Analysis of the Algorithm

Let us now discuss the computational complexity of the proposed algorithm.
We prove that the algorithm can be implemented to run polynomial inn and|F|,
the size of the in- and output, if there is only one resource type (see Theorem 4.2.2
above). Note that, for practical purposes, our implementation differs from the
algorithm described next; this will be discussed in Section 4.3.4 below.

We first assume that|K| = 1, let rj := rj,1 be the resource consumption of
job j ∈ V . To make the above generic procedure polynomial in the size of the
in- and output, we consider the jobs in a non-increasing order of their resource
consumptionrj; so assume w.l.o.g. thatr1 > r2 > · · · > rn. Then the following
observation is immediate.

Lemma 4.3.2. If |K| = 1 and if the jobs are considered in non-increasing order
of rj, i. e., in the order1 ≺ 2 ≺ · · · ≺ n in T (F), then each forbidden setF found
by the generic procedure described in Section 4.3.2 is already minimal forbidden.

4.3 Computing Minimal Forbidden Sets 59

Proof. Say a forbidden setF = {j1, j2 . . . , jt} is found, wherej1 < j2 < · · · <
jt. Then, by construction, the setF \ {jt} is resource-feasible, and sincerj1 >
rj2 > · · · > rjt, also all setsF \ {ji} are resource-feasible for alli = 1, . . . , t −
1.

Hence, the above described procedure only generates nodesw which correspond
to anti-chainsW which are either resource-feasible or minimal forbidden. Now
recall that for any given resource-feasible subset of jobsW ⊆ V , which is an
anti-chain with respect to the precedence constraints, one can decide in time poly-
nomial inn if W is contained in some (not necessarily minimal) forbidden set or
not; this is Problem (ii) mentioned in Section 4.2.2. In particular, at any nodew
considered in the generic procedure described in Section 4.3.2, associated to some
job j, one can decide in time polynomial inn if the corresponding anti-chainW
is contained in some forbidden setF with F ⊆ W ∪ {j + 1, . . . , n} or not. In
other words, one can decide in time polynomial inn if nodew will eventually lead
to some forbidden set or not. Combined with Lemma 4.3.2, we now obtain the
following.

Lemma 4.3.3. If |K| = 1 and if the jobs are considered in non-increasing order
of rj, i. e., in the order1 ≺ 2 ≺ · · · ≺ n in T (F), at any nodew considered in the
generic procedure described in Section 4.3.2, one can decide in time polynomial
in n if w will eventually lead to some minimal forbidden set or not.

Since the number of nodes inT (F) is obviously polynomial in|F|, this shows
that for|K| = 1, the time required to compute the treeT (F) is in fact polynomial
in n and|F|, which concludes the proof for Theorem 4.2.2.

For |K| > 1, however, the described algorithm is not polynomial inF . The
reason is that, given a nodew considered in the generic procedure described in
Section 4.3.2, we can no longer decide in polynomial time whether the associated
anti-chainW is contained in aminimalforbidden set or not (recall Theorem 4.2.3).
This was possible for the case|K| = 1 only due to Lemma 4.3.2, which does no
longer hold if|K| > 1. Consequently, if|K| > 1, one possibly ends at nodesw
such that the associated set of jobsW is forbidden, but not minimal forbidden. In
fact, the number of such nodes may be exponential in|F| for our algorithm, as is
demonstrated by Example 4.5.2 given in Section 4.5.

4.3.4 Implementation and Fast Reduction Tests

Contrary to what was described in Section 4.3.3, in our actual implementation
we only considered heuristic but very efficient ‘reduction tests’ in order to decide
if a node of the tree potentially leads to a minimal forbidden set or not. These
simple tests greatly improved the performance of the simple generic procedure

60 Representation of Resource Constraints in Project Scheduling

described in Section 4.3.2; they will be described in this section. To simplify
notation, we omit the resource indexk. Resource requirementsrj and supplyR
are treated as vectors and any inequality involvingrj or R is meant component-
wise. Moreover,rW denotes the vector of total resource consumption ofW .

First, motivated by the results of Section 4.3.3, also for instances with more
than one resource type it showed to be computationally more effective to consider
the jobs in a suitable ordering: Therefore we identify a resourcek∗ ∈ K that is
scarcest, defined as a resource with smallest ratioRk/

∑
j∈V rjk, and assume that

jobs are numbered in non-increasing order of their consumption of this resource
typek∗. Although this does not help theoretically, it helps to heuristically close
the gap betweenrW andR in as many nodesw as soon as possible. Notice that
this is particularly important since for any nodew of the generic treeT , the subtree
rooted atw is extremely unbalanced: Ifs(j) denotes the size of a subtree rooted at
some nodew associated to jobj, thens(j) = 1+

∑n
k=j+1 s(k), hences(j) = 2n−j.

Next, two jobsi andj cannot be in a common forbidden set if there is a (tran-
sitively implicit) precedence constraint betweeni andj. In addition, we imple-
mented two other heuristic tests to determine if no minimal forbidden set contains
both i andj. First, if the resources required byi andj aredisjoint in the sense
that rik · rjk = 0 for eachk ∈ K, theni and j together do not belong to any
minimal forbidden set. Second, letU be the set of jobs that are unrelated to both
i andj with respect to the (transitively implicit) precedence constraints. Then, if
rj + ri + rU 6 R, theni andj are not contained in a common minimal forbidden
set, either. All above tests are performed as preprocessing, and the resulting infor-
mation is stored in a Boolean matrixM of sizen × n in order to provide access
in O(1) time.

Finally, we implemented another heuristic test which is particularly useful to
keep the tree small if resource constraints are weak; it is a heuristic test in order
to detect nodesw which cannot lead to any forbidden set: For a given nodew,
associated to some jobj and a setW of jobs, j ∈ W , we simply sum up the
resource requirements of all jobs out of{j + 1, . . . , n} that are not precedence-
related to any of the jobs ofW ; denote this set byN . Then, if rW + rN 6 R,
the subtree rooted atw can be discarded because each of the subsets of jobs in
that subtree is resource-feasible. We also experimented with the exact method
which decides if a given node of the tree leads to a forbidden set or not; see
Problem (ii) of Section 4.2.2 for details. However, for the test sets we considered,
the computational overhead was too large due to the time required to solve the
associated minimum-flow problems.

Algorithm 5 shows further details of the proposed procedure. For a given
nodew of the tree, associated to some jobj, and some jobi > j, Algorithm 5
calls the subroutinesEvaluateNode(i, w) and possibly alsoCreateNode(i, w). The
subroutineEvaluateNodecomputes the status of the setW ∪ {i}, i. e., it decides

4.3 Computing Minimal Forbidden Sets 61

whetherW ∪{i} is (minimal) forbidden or resource-feasible. Algorithmic details
are given in Algorithm 6.CreateNode(i, w) generates a new node of the tree which
is a child ofw and associated to jobi.

Algorithm 5: Compute all minimal forbidden sets
Input : JobsV , precedence constraintsE0, resource constraintsrj, R.

Output : The set of minimal forbidden sets represented by the treeT (F).

Find suitablek ∈ K and create orderingL of jobs with non-increasingrjk;
Compute Boolean matrixM which indicates whether∃F with i, j ∈ F ;
F := ∅; // stores the forbidden sets
root := root node of treeT ; Stack := ∅;
for all jobs j ∈ V do

w := CreateNode(j, root);
pushw onStack;

while Stack 6= ∅ do
remove nodew from Stack;
j := job associated tow; W := set of jobs associated tow;
for all jobs i >L j do

EvaluateNode(i, w);
if W ∪ {i} is a minimal forbidden setthen

u := CreateNode(i, w);
Add u toF ;

if W ∪ {i} is resource-feasiblethen
u := CreateNode(i, w);
Add u to Stack;

(Recursively) deletew if it is not minimal forbidden and has no chil-
dren;

return F ;

4.3.5 Compact Representation of Forbidden Sets

Algorithm 5 immediately suggests to store all minimal forbidden sets in a data
structure given by the treeT (F). The jobs of the forbidden sets are represented
as nodes in the tree, and upon building the tree as described before, a vector of
pointers to the leaves ofT (F) is generated. To access (or loop over) all jobs of
a forbidden setF , one simply traversesT (F) from the leaf which corresponds to
F to the root node, obviously in O(|F |) time. In comparison to a representation
as a vector of lists of the corresponding job numbers (which would certainly be

62 Representation of Resource Constraints in Project Scheduling

Algorithm 6: EvaluateNode (subroutine of Algorithm 5)
Input : A resource-feasible setW of jobs (represented by nodew) and a

new jobi.

Output : Status of the setW ∪ {i}
(resource-feasible / minimal forbidden / can be discarded).

if i and somej ∈ W cannot be in a minimal forbidden set w. r. t.M then
return (W ∪ {i} can be discarded);

if rWk + rik > Rk for somek then
for j ∈ W do

if rWk + rik − rjk > Rk for somek then
return (W ∪ {i} can be discarded);

return (W ∪ {i} is minimal forbidden);

N := jobs of{j|V 3 j >L i} that potentially can be in some minimal
forbidden setF with (W ∪ {i}) ⊂ F (according to MatrixM);

if rW + rN 6 R then return (W ∪ {i} can be discarded);
else return (W ∪ {i} is resource-feasible);

the simplest data structure that provides fast access to traverse all minimal forbid-
den sets), this reduces memory requirement considerably (empirically analyzed in
Section 4.4.2 below).

4.4 Computational Evaluation

We first describe the computational setup and the benchmark instances, and
then analyze the performance of the proposed algorithm in dependence on differ-
ent parameters which have been used to generate the instances.

4.4.1 Setup and Benchmark Instances

Our experiments were conducted on a Sun Ultra 1 with 143 MHz clock pulse
operating under Solaris 2.7. The code is written in C++ and has been compiled
with the GNU g++ compiler version 2.91.66 using the -O3 optimization option.
The memory limit was set to 50 MB.

We have tested the proposed algorithm on instances of the library PSPLIB
(2000) that was generated by Kolisch and Sprecher with the help of the instance
generator ProGen (Kolisch and Sprecher 1996). The library contains instances

4.4 Computational Evaluation 63

with 30, 60, 90, and 120 jobs, respectively. The instances have been generated
by modifying three parameters, (i) thenetwork complexity(NC) which is the av-
erage number of direct successors of a job, (ii) theresource factor(RF) which
describes the average number of different resource types required in order to pro-
cess a job divided by the total number of resource types, and (iii) theresource
strength(RS), which is a measure of the scarcity of the resources (see (Kolisch
and Sprecher 1996) for details). The parameters have been chosen out of the
setsNC ∈ {1.5, 1.8, 2.1} andRF ∈ {0.25, 0.5, 0.75, 1.0}. For the benchmark
sets with 30, 60 and 90 jobs the resource strengthRS has been chosen from the
values{0.2, 0.5, 0.7, 1.0}, while for instances with 120 jobs it was chosen from
{0.1, 0.2, 0.3, 0.4, 0.5}. The smaller the parameterRS, the scarcer are the re-
sources; hence, on average, the resource capacities are scarcer for the instances
with 120 jobs. For each combination of the parameters, 10 instances have been
generated at random. This results in 480 instances for each of instance sizes 30,
60, and 90, and 600 instances with 120 jobs. The number of resource types per
instance is4.

Before we turn to our computational experiences with these instances, let us
briefly comment on the relationship between the systems of minimal forbidden
sets and the above mentioned parametersRF andNC. According to Raderma-
cher (1985, p. 237), instances areessentially equalif both precedence constraints
and the systems of minimal forbidden sets coincide. In this respect, the varia-
tion of the resource factorRF does not necessarily lead to essentially different
instances: Although two instances have a different resource factor, they can be
identical in the sense that they have identical precedence constraints and systems
of minimal forbidden sets. For example, if the threshold representation of the
resource constraints defines a threshold hypergraph without isolated nodes (that
is, one resource type suffices and for eachj ∈ V we haverj,1 > 0), the re-
source factor is obviously1. However, the same system of minimal forbidden
sets can be represented by|F| different resource types, which generally leads to
a resource factor strictly smaller than1. Another remark addresses the above
definition of network complexity. Since the definition as the average number
of direct successors disregards transitive precedence constraints, instances with
identical network complexity may have an essentially different topology, hence
also essentially different systems of minimal forbidden sets. For example, for
V = {1, . . . , 4}, the precedence constraintsE0 := {(1, 2), (1, 4), (3, 4)} and
E ′

0 := {(1, 2), (2, 3), (3, 4)} both have a network complexityNC = 3/4. While
(V,E ′

0) is a chain, and hence has no non-trivial anti-chain,(V,E0) has three non-
trivial anti-chains.

However, our computational results with the PSPLIB instances show that, on
average, there is a meaningful correlation between all three parameters and the
system of minimal forbidden sets.

64 Representation of Resource Constraints in Project Scheduling

4.4.2 Computational Results

Table 4.1 shows for each test set the number of solved instances (#solved), that
is, all minimal forbidden sets could be computed within the memory restriction of
50 MB, as well as the average and maximum number of minimal forbidden sets
(∅ |F| and max.|F|) and required computation times (∅ CPU and max. CPU). As
the table suggests, the algorithm easily computes all minimal forbidden sets for the
instances with 30 jobs; the computation time is negligible. Most of the instances
with 60 jobs can also be solved in short time, however, there already exist few (17)
instances for which not all minimal forbidden sets could be determined within the
memory restriction of 50 MB (even with a limit 500 MB, 7 instances remain
unsolved).

#jobs #inst. #solved ∅ |F| max.|F| ∅ CPU max. CPU

30 480 480 326 4,411 0.01 0.2
60 480 463 101,773 2,163,692 7 167
90 480 309 255,476 1,867,239 23 490

120 600 340 243,871 1,996,505 13 200

Table 4.1: For each set of instances the table displays the number of instances
in the test set (#inst.), the number of solved instances (#solved), the average and
the maximum number of minimal forbidden sets (∅ |F| and max.|F|), and the
average and the maximum computation time in seconds (∅ CPU and max. CPU).

Although for larger instances the average memory requirement strongly increases,
the algorithm still solves more than a half of the instances with 90 and 120 jobs
with no more than 50 MB memory requirement. Note that, even for instances with
120 jobs, for all instances with scarce resources (RS = 0.1) or small resource
factor (RF = 0.25, that is, each job requires only one resource type on average),
the algorithm computes all minimal forbidden sets at an average running time of
less than5 seconds. Instances with scarce resources are known to be particularly
hard with respect to makespan minimization and lower bound computations.

Forbidden set statistics. Figures 4.2 and 4.3 show how the average number
and cardinality of minimal forbidden sets depend on the instance parametersRS,
RF , andNC. Since we did not observe that these parameters were significantly
correlated, all figures are based on average values with respect to the whole set of
instances (with 30 jobs). As expected, both the number and cardinality of minimal
forbidden sets heavily depend on the instance parametersRS, RF , andNC; let
us briefly analyze the outcome of this evaluation.

4.4 Computational Evaluation 65

average|F|

RS
0.2 0.5 0.7 1

100

200

300

400

average|F|

RF
0.25 0.5 0.75 1

100

300

500

700

average|F|

NC
1.5 1.8 2.1

100

300

500

700

Figure 4.2: The plots display the average number of minimal forbidden sets de-
pending on the instance parametersRS (left), RF (middle), andNC (right). The
data is based on the test set with 30 jobs per instance.
average|F |

RS
0.2 0.5 0.7 1

1

2

3

4

average|F |

RF
0.25 0.5 0.75 1

1

2

3

4

average|F |

NC

1

2

3

4

1.5 1.8 2.1

Figure 4.3: The plots display the average cardinality of minimal forbidden sets
depending on the instance parametersRS (left), RF (middle), andNC (right).
The data is based on the test set with 30 jobs per instance.

The dependence of the average cardinality of minimal forbidden sets on the
resource strengthRS as shown in Figure 4.3 is intuitive: If resources are scarce
then the average cardinality is small and vice versa. With respect to the average
number of minimal forbidden sets in dependence of the resource strengthRS, it
is noticeable that this figure is small either if the resource strengthRS is very low
(0.2; scarce resource capacity) or very high (1.0; loose resource capacity). For
scarce resources, this is due to the fact that the minimal forbidden sets tend to
be of small cardinality, as also suggested by Figure 4.3. For loose resources this
is due to the fact that if there are hardly any resource constraints, already many
anti-chains tend to be resource-feasible, hence there are fewer forbidden sets at all
(with larger cardinality on average, as can be seen in Figure 4.3).

The behavior of the average cardinality of minimal forbidden sets in depen-
dence of the resource factorRF in Figure 4.3 can be explained as follows. If
each job requires only one or few resource types on average, that is, the resource
factorRF is small, it is very likely that in a given anti-chain, there are pairs(i, j)
of jobs with disjoint resource requirements (rik · rjk = 0 for all resource types
k), hence minimal forbidden sets tend to be smaller on average the smaller the
resource factorRF . (Consequently, there are also fewer of them, as can be seen
in Figure 4.2.)

With respect to the network complexityNC, our results show that both num-
ber and cardinality of minimal forbidden sets trends down whenNC increases.

66 Representation of Resource Constraints in Project Scheduling

The reason is that, for the considered instances, the total number of precedence
constraints (including transitive ones) increases with the network complexity. Re-
call, however, that the network complexity is not a measure for the total number
of precedence constraints in general (see Section 4.4.1).

We finally observed that the average cardinality of the minimal forbidden sets
increases with the number of jobs. The respective average values (based on the
number of solved instances as given in Table 4.1) are 3.5 (maximum 10) for 30
jobs, 4.9 (maximum 16) for 60 jobs, 5.1 (maximum 13) for 90 jobs, and 4.5
(maximum 12) for 120 jobs. Notice that the average and maximum cardinality
is comparatively small for the test set with 120 jobs, which is due to the fact that
the resource strength parameters are smaller for these instances (and perhaps also
since quite some (260) of the 600 instances could not be solved within the 50 MB
memory limitation).

Computational performance. Let us next analyze the computational perfor-
mance with respect to running times, and compare the proposed algorithm (with
and without reduction tests) to a variation of the earlier mentioned divide-and-
conquer approach by Bartusch (1984); see Section 4.3. Table 4.2 first shows the
average and maximal computation times for the algorithm proposed in this chap-
ter, both with and without reduction tests.

#jobs #solved ∅ CPU max. CPU

with reduction tests 30 480 0.01 0.2
no reduction tests 30 480 0.04 0.5

with reduction tests 60 463 7 167
no reduction tests 60 446 145 6,280

Table 4.2: For both variations of the algorithm, the table displays the number of
solved instances (#solved) and the respective average and the maximum compu-
tation time in seconds (∅ CPU and max. CPU); based on instances with 30 and
60 jobs, respectively.

The results obviously confirm that the additional reduction tests proposed in
Section 4.3.4 are worthwhile, reducing the average required computation time by a
factor of almost4 for the instances with 30 jobs. The importance of the additional
reduction tests is even more apparent for the instances with 60 jobs. There, the
average computation time decreases from 145 seconds (without reduction tests)
to 7 seconds (with reduction tests); a factor of more than 20.

Figure 4.4 shows more details with respect to the computation times, based
on the test set with 30 jobs. It is intuitive that the computation times are small

4.4 Computational Evaluation 67

whenever there are only few, and small minimal forbidden sets, and large if there
are many and large minimal forbidden sets. This is indeed validated by Figure 4.4.
There is however, one more remark on the computation times which concerns the
reduction tests proposed in Section 4.3.4 (see also Table 4.2): If the reduction tests
are not performed, the dependence of computation time on the resource factorRF
gives a picture which is exactly reverse, showing that these tests are extremely
effective particularly for instances where the resource factorRF is small. In fact,
for RF = 0.25, the computation time increases from 1.4 ms (Figure 4.4; with
reduction tests) to 41 ms (without reduction tests).

CPU(ms)

RS
0.2 0.5 0.7 1

5

10

15

20

CPU(ms)

RF
0.25 0.5 0.75 1

5

10

15

20

CPU(ms)

NC
1.5 1.8 2.1

5

10

15

20

Figure 4.4: The plots display the average running time (in milliseconds) depend-
ing on the instance parametersRS (left), RF (middle), andNC (right). The data
is based on the test set with 30 jobs per instance.

We have also experimented with a divide-and-conquer approach, based on a
previously proposed approach by Bartusch (1984). The basic idea is to partition
the given instance, sayI, into |K| partial instancesI1, . . . , I|K| where eachIk only
consists of jobs which require a positive amount of resourcek. Then, for eachIk,
the set of minimal forbidden setsFk is calculated with respect to resourcek only.
This has the major advantage that each of the subproblems can be solved in poly-
nomial time with respect to its in- and output, which isn and |Fk|, respectively
(see Theorem 4.2.2 and Section 4.3.3). On the other hand, it is obvious that the
systems of minimal forbidden setsFk for the subproblemsIk may be exponential
with respect toF itself, and the efficient computation of the inclusion-minimal
subsets of

⋃
k Fk constitutes a non-trivial problem in its own.

Based on the instances from the PSPLIB, we have compared the time required
to computeF using the algorithm proposed in this chapter with the overall time
required time to compute all minimal forbidden setsFk for all partial instancesIk,
k = 1, . . . , |K|. It turned out that these computation times are in fact comparable
on average, however, for only few instances the divide-and-conquer approach was
more efficient. In particular, notice that this comparison does not even take into ac-
count the additional overhead required to compute the inclusion-minimal subsets
of

⋃
k Fk. In fact, using a straightforward implementation, this overhead turned

out to be a major bottleneck of the divide-and-conquer approach; it required by
far more computation time than the computation of the minimal forbidden sets

68 Representation of Resource Constraints in Project Scheduling

⋃
k Fk itself. Hence, a divide-and-conquer approach seems to be beneficial only

for instances with very particular structure (e. g. Example 4.5.2 in Section 4.5).

Memory requirements. Finally, we analyze the memory required to store the
minimal forbidden sets in the data structure given by the treeT (F), in comparison
to the ordinary list representation, where each minimal forbidden set is stored as
a list of job numbers. For the instances with 30 jobs, the average sum

∑
F∈F |F |

is roughly 1400, while the average number of nodes inT is only 600. Despite of
the fact that we have to maintain some overhead in order to generate (and delete)
the treeT (F), namely an integer which counts the number of children of each
node in the tree, the memory requirement is reduced by a factor of roughly 1.5
in comparison to the list representation. For instances with 60, 90, and 120 jobs,
the memory requirements are reduced by a factor of roughly 2.5. (This value only
refers to instances for which all minimal forbidden sets could be computed within
the given memory limitation of 50 MB.) Consequently, compared to the ordinary
list representation, the proposed data structure given byT (F) allows a much more
efficient representation of minimal forbidden sets.

4.5 Further Remarks and Examples

There are some open questions which remain for future research: The ques-
tion if some given jobi is contained in some minimal forbidden set or not (given a
threshold representation of the resource constraints) was proved to be NP-complete,
even for the case without precedence constraints using a reduction from PARTI-
TION (Theorem 4.2.3). In fact, it is not hard to see that this problem can be solved
in pseudo-polynomial time by iteratively solving SUBSETSUM problems. How-
ever, it is open whether the problem becomes strongly NP-hard if also precedence
constraints are present. Another interesting open problem is the question whether
minimal forbidden sets can be computed in time polynomial in the in- and the out-
put size of the problem if the number of resource types is greater than one, which
would generalize Theorem 4.2.2.

We finally present two examples that have been referenced in the text. Exam-
ple 4.5.1 exposes that the number of resource types that are required to model a
system of minimal forbidden sets may be exponential inn, the number of jobs (see
Section 4.2.1). Example 4.5.2 shows that the number of nodes in the search tree
that are produced with Algorithm 5 may be exponential in|F| (see Section 4.3.3).

Example 4.5.1.Let V = {1, . . . , 4n}, E0 = ∅, and letV1 = {1, . . . , 2n} and
V2 = {2n + 1, . . . , 4n} be a partition ofV . Now, for eachU1 ⊆ V1 define a
correspondingU2 := {u+2n | u ∈ U1}, and letF := {U1∪U2 | U1 ⊂ V1, |U1| =
n} be the minimal forbidden sets.

4.5 Further Remarks and Examples 69

Here, the number of minimal forbidden sets is
(
2n
n

) ∈ Ω(2n). Now, for any two
distinct minimal forbidden sets, sayU1 ∪ U2 andW1 ∪ W2, whereU1,W1 ∈ V1

andU2,W2 ∈ V2 according to the above definition, two different resource types
are required. Otherwise at least one of the setsU1 ∪ W1, U2 ∪ W2, U1 ∪ W2,
or U2 ∪ W1 would not be resource-feasible. Hence,Ω(2n) resource types are
required to representF . In other words, the threshold dimension of(V,F) is
Ω(2n).

Example 4.5.2.Let V = {1, . . . , n}, E0 = ∅, |K| = 2, R1 = R2 = 2n − 4,
r1,1 = r2,1 = rn−1,2 = rn,2 = n, andrjk = 1 otherwise.

ThenF consists of exactly six sets, namely{1, 2}, {n−1, n}, and{i, 3, 4, . . . , n−
3, n − 2, j} for i = 1, 2 andj = n − 1, n. Hence|F| ∈ O(1) for anyn ∈ N,
but the number of nodes which are examined within our algorithm is exponential
in n. Notice that this is an example where the divide-and-conquer approach by
Bartusch (see Section 4.3) is beneficial, since it runs polynomial inn.

CHAPTER 5

ROBUST SCHEDULING POLICIES

At a first glance, the material that we have presented in the Chapters 2–4 shows
no direct relationship to the main issue of this thesis, the stochastic resource-
constrained project scheduling problem. In this chapter, we discover the con-
necting link between stochastic resource-constrained project scheduling and the
previous results onAND/OR precedence constraints. The link is a particular class
of scheduling policies, the class ofpreselective policies. Based on the observa-
tion that a preselective policy can be expressed as a set ofAND/OR precedence
constraints, we present results on domination of policies as well as on the com-
putation of earliest job start times. We also study different subclasses of the class
of preselective policies. In fact, the results presented in this chapter are the key to
a successful computation of ‘optimal’ policies for stochastic resource-constrained
projects; we computationally apply the results in Chapter 6 below.

Most of the material that is presented in this chapter has been published in
(Möhring and Stork 2000).

5.1 Introduction

We consider the stochastic resource-constrained project scheduling problem
as defined in Chapter 1. Recall from the introduction and Chapter 1 that, due
to the combination of random job processing times and resource constraints, a
project is executed according to a so-calledpolicy (sometimes also calledstrat-
egy). A scheduling policy (orpolicy, for short) may be seen as a dynamic decision
process that defines which jobs are started at certain decision timest, based on the
knowledge of the observed past up tot. The best-known class of such schedul-
ing policies is certainly the class ofpriority policies. A policy is called apriority
policy if at any timet a maximal number of available jobs is scheduled according
to a given priority order on the set of jobs. Here, a job is calledavailableat time
t if it is not yet started and all its predecessors have already been completed by
time t. While priority policies are easy to define and implement, they have several
well known drawbacks. For example, there are instances (even with deterministic
processing times) where no priority policy yields an optimal schedule. Moreover,
a change in the job processing times may lead to anomalies such as an increase

71

72 Robust Scheduling Policies

of the project duration although job processing times have been decreased, see
(Graham 1966); we also give an example in Section 5.2 below. Such effects are
sometimes calledGraham anomalies. As a consequence of the Graham anoma-
lies, we think that priority policies are not the first choice to execute stochastic
resource-constrained projects. Instead, our work is based on so-calledpreselec-
tive policiesthat have been introduced by Radermacher (1981b) and were later
studied by Igelmund and Radermacher (1983b, 1983a). Such policies define for
each minimal forbidden set apreselectedjob j ∈ F which is postponed until at
least one job fromF \ {j} has been completed. In contrast to priority policies,
preselective policies do not show the undesired Graham anomalies. In this sense,
they are more ‘robust’ compared to priority policies.

In this chapter we show that preselective policies can be expressed as a set of
AND/OR precedence constraints. This interpretation yields new insights into the
combinatorial structure of preselective policies and allows to derive a necessary
and sufficient dominance criterion. In addition, we employ the results of Chap-
ter 3 to derive an efficient, scenario-based algorithm that (approximately) com-
putes the expected cost when a project is executed according to a specific prese-
lective policy. Next, to further simplify the computational treatment, we introduce
a new subclass of the class of preselective policies, the so-calledlinear preselec-
tive policies. They combine the simplicity of priority policies with the structural
attractiveness of preselective policies by defining the preselective jobs according
to priority lists. Linear preselective policies inherit all the favorable properties
of preselective policies but are considerably better tractable from a computational
point of view. Unfortunately, like preselective policies, linear preselective policies
also require the representation of resource-constraints by (possibly exponentially
many) minimal forbidden sets. We therefore study another subclass of preselec-
tive policies, we call themjob-based priority policies. They do not require the
forbidden set representation of resource constraints; the usual threshold represen-
tation suffices. As a consequence, algorithms that are based on job-based priority
policies have the potential to be applicable to projects where a large number of
minimal forbidden sets makes the use of forbidden set based policies computa-
tional inefficient. The computational simplifications, however, are not without
pay: The optimum (expected cost) values that can be achieved within the classes
of linear preselective policies and job-based priority policies are generally worse
in comparison to preselective policies. However, the gap usually seems to be
rather small, as our computational results presented in Chapter 6 below expose.

The chapter is organized as follows. In the next section we briefly review pre-
vious work on scheduling policies and discuss the class of priority policies. Next,
in Section 5.3, we define the class ofEarliest start policies. For this class, we do
not establish new insights, however, we report on a branch-and-bound algorithm
based on ES-policies in Chapter 6 below. Sections 5.4–5.6 are concerned with a

5.2 General Scheduling Policies 73

0

jobs completed byt

jobs started att

p = ?

p = ?

p = ?

job in process att

past future
current timet tnext

Figure 5.1: The picture shows the action that is performed at the current timet.
Two jobs are started, and a new tentative decision timetnext is defined. At time
t, three jobs have already been completed and one job was started beforet and is
still in process.

discussion of the classes of preselective policies, linear preselective policies, and
job-based priority policies. In Section 5.7 we relate the classes of policies to each
other with respect to the optimum value that can be achieved within the respective
class.

5.2 General Scheduling Policies

In the context of resource-constrained project scheduling, policies have been
introduced by Radermacher (1981b). He adapts the theory ofstochastic dynamic
programmingto the specific scheduling application and studies various classes of
policies and their properties. Generally, stochastic dynamic programming is con-
cerned with random processes that change their state over time. To control a pro-
cess, actions may be chosen at some timet; and based on the state of the process
at t and the action chosen, the probability distribution of the next state is deter-
mined. Actions have to be chosen such that some given goal is met or some cost
function is optimized. Let us refer to the work of Kaerkes, Möhring, Oberschelp,
Radermacher, and Richter (1981) who discuss additional details how Raderma-
cher’s concept of a scheduling policy is embedded into the theory of stochastic
dynamic programming. There exist several textbooks that give an introduction to
stochastic dynamic programming, we refer to (Ross 1983).

There are several alternative views on scheduling policies. The view of a
policy as a dynamic decision process is probably most intuitive. Independent
from Radermacher’s work, this viewpoint has been taken by Fernandez, Arma-

74 Robust Scheduling Policies

cost, and Pet-Edwards (1998a, 1998b) to establish a definition of policies for
stochastic resource-constrained project scheduling. A policy definesactionsat
decision times. In our case an action consists of a setBt ⊆ V of jobs to be started
at the current decision timet and the definition of a tentative next decision time
tnext > t. The situation at some decision timet is illustrated in Figure 5.1. Once
the jobs fromBt are started, the processing of the jobs is observed over time un-
til either tnext is reached or some job completes. The event which occurs earlier
defines the next decision time. Throughout the text, we always assume that the
first decision time ist = 0, i. e., the project starts at time0. Clearly, the setBt

must be defined appropriately. This is, on the one hand, the requirement thatBt

contains no job that has been started at a previous decision time, and no prece-
dence or resource constraint is violated once the jobs ofBt are started att. On the
other hand, to define the setBt, a policy may only use information that is available
at timet. This information includes the input data (set of jobs, precedence con-
straints, resource constraints, processing time distributions) and the conditional
distributions of job processing times that result fromp and the observed past up to
time t. This requirement is often callednon-anticipativity constraintand appears
in various publications on stochastic optimization problems, mostly in conjunc-
tion with the analysis of a set of scenarios. For more details we refer to (Wets
1989; Rockafellar and Wets 1991; Escudero, Kamesam, King, and Wets 1993;
Mulvey, Vanderbei, and Zenios 1995; Birge and Dempster 1996). In the context
of resource-constrained project scheduling, Fernandez and Armacost (1996) note
that various commercial software packages violate this important requirement and
hence produce misleading results.

Once every job has been completed, the above described dynamic decision
process stops. At that time we know the processing times of each job and thus
have a scenariop of job processing times. In fact, every policyΠ may alternatively
be interpreted as a functionΠ : R

n
> → R

n
> that maps given scenariosp of job

processing times to vectorsS(p) ∈ R
n
> of feasible job start times (schedules). We

denote the start time of a jobj ∈ V for a given policyΠ and a given scenariop by
SΠ

j (p) and its completion time byCΠ
j (p) := SΠ

j (p) + pj (recall Chapter 1). If no
misinterpretation is possible we omit the policy superscriptΠ.

The discussion so far suggests that there are two different views on a policy,
namely the view as adynamic decision processand afunction. In fact, there is
another view which is particularly important for computational issues. A policy
can often be represented by a pair which consists of a combinatorial object (e. g.,
an ordering of the jobs) and an algorithm which transforms, for a given scenario
p of processing times, the combinatorial object into a scheduleS(p). Hence, the
pair implicitly defines for each possible scenario and each decision pointt the set
Bt of jobs to be started. Each of the three views on policies is useful for different
purposes. Radermacher (1981b) used the view as a function to formally define

5.2 General Scheduling Policies 75

the termpolicy, which was later used in many other publications (co-authored)
by Radermacher, we refer to (Radermacher 1981a; Igelmund and Radermacher
1983b; Igelmund and Radermacher 1983a; Möhring, Radermacher, and Weiss
1984; Möhring, Radermacher, and Weiss 1985; Möhring and Radermacher 1985;
Radermacher 1986) for a comprehensive characterization of policies and the dis-
cussion of special classes of policies.

Definition 5.2.1. (Radermacher 1981a) A functionΠ : R
n
> → R

n
>, p

Π−→ SΠ(p),
is called apolicy if the following four conditions hold.

(i) CΠ
i (p) 6 SΠ

j (p) for all (i, j) ∈ E0 andp ∈ R
n
> (CΠ

i (p) := SΠ
i (p) + pi),

(ii) F 6⊆ {j ∈ V |SΠ
j (p) 6 t < CΠ

j (p)} for all t ∈ R>, F ∈ F , andp ∈ R
n
>,

(iii) If SΠ
j (p) = t for some arbitraryj ∈ V , p ∈ R

n
>, andt ∈ R>, thenSΠ

j (p′) = t
for all p′ ∈ R

n
> with the two following properties: ifCΠ

i (p) 6 t thenpi = p′i
and ifSΠ

i (p) 6 t < CΠ
i (p) thenp′i > t − SΠ

i (p),

(iv) Π is universally measurable and avoids total idle times (a total idle time is a
time period where no job is in process but the project has not been completed
at the beginning of that time period).

Let us briefly explain the definition. Properties (i) and (ii) simply mean that
for each scenariop of job processing timesSΠ is a feasible schedule with respect
to G0, F , andp: Property (i) ensures that all precedence constraints are respected,
while Property (ii) avoids the simultaneous processing of a forbidden set. The re-
quirement ofnon-anticipativityis formulated in Property (iii), i. e., the decision at
any timet is only based on information that is available by timet. In fact, Rader-
macher (1981b, Theorem 1.5) has shown that Property (iii) exactly expresses the
possibility of using the maximal amount of available information for eacht (see
also (Möhring, Radermacher, and Weiss 1984, Theorem A)). Finally, Property (iv)
is necessary to guarantee the existence of the project cost distribution (associated
with Π) and ensures that the expected project cost of a policy is finite. Kaerkes,
Möhring, Oberschelp, Radermacher, and Richter (1981, Example 12.4) gave an
example which demonstrates thatκ(CΠ(p)) as a function ofp (whereΠ fulfills
Properties (i)–(iii)) needs not necessarily be universally measurable. For each
class of policies that is considered in the Sections 5.3– 5.6 below, Property (iv) is
redundant: it follows from Properties (i)–(iii) and the definition of the respective
policy. For a more detailed discussion of Definition 5.2.1 we refer to (Raderma-
cher 1981b; M̈ohring, Radermacher, and Weiss 1984; Möhring and Radermacher
1985).

Next, we define what is meant by anoptimalpolicy.

76 Robust Scheduling Policies

Definition 5.2.2. Let τ be a class of policies. We define a policyΠ∗ to be op-
timal with respect toτ if Π∗ minimizes the expected project costs withinτ , i. e.,
E[κ(CΠ∗

(p))] = inf{E[κ(CΠ(p))] : Π ∈ τ}. We denote the cost of an optimum
policy of classτ byρτ .

The generality of Definition 5.2.1 suggests that, for the model of resource-
constrained project scheduling, there is no hope that the class of allall poli-
cies is computationally tractable. One therefore usually restricts to subclasses
which have a simple combinatorial representation and where decision points are
restricted to bet = 0 (project start) and job completions, only. Policies with the
latter property are sometimes calledelementary, in fact, we only consider ele-
mentary policies. However, tentative decision points are sometimes useful, e. g.,
in (Skutella and Uetz 2001) where an approximation algorithm for precedence-
constrained parallel machine scheduling is derived which is based on a non-elemen-
tary class of policies. This is the only currently known approximation algorithm
with constant performance guarantee for that model.

As an example for a class of elementary policies, let us consider the class of
priority policies which is certainly the best-known class of policies. There is a
considerable amount of literature in which priority policies are analyzed for par-
ticular machine scheduling models. A priority policyΠ is characterized by an
orderingL of the jobs. For each decision timet (t = 0 or a job completion), all
jobs j not yet started are considered in the order ofL. Π schedulesj at time t
if this does neither violate a precedence constraint nor a resource constraint. In
deterministic scheduling this is well-known asGraham’s List Scheduling(Gra-
ham 1966), it is sometimes also called theparallel list scheduling scheme, e. g., in
(Kolisch 1996). However, due to their greedy usage of resources, priority policies
have several drawbacks when applied to precedence-constrained models. In par-
ticular, there exist instances (even with deterministic processing times) in which
no priority policy yields an optimal schedule. Moreover, the change of job pro-
cessing times may lead to so-called Graham anomalies such as an increase of the
project duration although job processing times have been decreased, see (Gra-
ham 1966). Thus, if we think of a policy as a function that maps a scenario of
job processing times to feasible start times, priority policies are neither monotone
nor continuous. The following example, which is taken from (Möhring 2000b)
demonstrates this undesired property.

Example 5.2.3.LetG0 = (V,E0) be given byV = {1, . . . , 7} andE0 = {(1, 4),
(1, 5), (2, 3), (3, 4), (3, 5), (3, 7), (4, 6), (5, 6)} and let the set{4, 5, 7} be minimal
forbidden. Moreover, job processing times are given byp = (4, 2, 2, 5, 5, 10, 10).

For the orderingL = 1 ≺ · · · ≺ 7 Graham’s list scheduling yields a makespan
of 19. If each processing time is decreased by1, the same orderingL yields a

5.3 Earliest Start Policies 77

0

0

1

1

1

2

2

2

2

3

3

3

4

4

4

5

5

6

6

7

7

7

9 19

11 20

Figure 5.2: The figure shows two schedules that result from Example 5.2.3 and
the scenariosp = (4, 2, 2, 5, 5, 10, 10) andp′ = (3, 1, 1, 4, 4, 9, 9), respectively.

makespan of20. The start time of jobs5 and7 jump discontinuously ifp changes
continuously top′ = (3, 1, 1, 4, 4, 9, 9). The schedules which result from the two
scenarios are depicted in Figure 5.2. Note that with respect top′ no priority policy
as defined above yields an optimal schedule.

As a consequence of the above discussion, priority policies are considered in-
adequate for planning stochastic resource-constrained projects. Extending a def-
inition in (Möhring 2000b), a minimal requirement for arobustpolicy is mono-
tonicity and continuity (in view of policies as functions). Hence, in the sequel,
we are going to focus on ES-policies, (linear) preselective policies, and job-based
priority policies. Each such policy is monotone and continuous and consequently,
Graham anomalies do not occur within project execution.

Finally, recall that we sometimes make use of dummy jobsa andb which mark
the project start and the project completion, respectively, i. e., there are precedence
constraints(a, j) and(j, b) for eachj ∈ V . The dummy jobs have fixed processing
time0 and consume no resources.

5.3 Earliest Start Policies

The first robust class we consider are so-calledEarliest Start policies, or ES-
policies, for short. Within the context of stochastic resource-constrained project
scheduling, the class was introduced by Radermacher (1981b) and further studied
in (Radermacher 1981a). We do not establish new theoretical insights for ES-
policies, however, they are of interest for the following reasons. First, the class
of ES-policies is closely related to the class of preselective policies; it is in fact
a subclass thereof. Second, we included ES-policies into our computational con-
siderations that are presented in Chapter 6 below. The simple and intuitive idea
is to extend the given partially ordered setG0 = (V,E0) to a partially ordered set

78 Robust Scheduling Policies

G = (V,E), E0 ⊆ E, such that no minimal forbidden set is an anti-chain inG.
Then, in order to obtain a feasible scheduleS(p) for a given scenariop of job pro-
cessing times, an ES-policy simply computes earliest job start times with respect
to G, i. e.,Sa(p) := 0 and

Sj(p) := max
(i,j)∈E

(Si(p) + pi) j ∈ V . (5.1)

This concept is quite common in deterministic scheduling theory, e. g., within
the disjunctive graph model for shop-scheduling problems (where each minimal
forbidden set is of cardinality2).

The above description of an ES-policy follows the view of a policy as a pair
of a combinatorial object and an algorithm. Here, the combinatorial object is
the extensionG of G0 in which no minimal forbidden set is an anti-chain. The
algorithm to transform a given scenariop ∈ R

n
> to a schedule is a classical longest

path algorithm defined by (5.1). With this discussion we obtain the following
definition of an ES-policy.

Definition 5.3.1. (Radermacher 1981b) A policyΠ (as in Definition 5.2.1) is
called ES-policy if there is a partially ordered setG = (V,E) such that, for
all j ∈ V andp ∈ R

n
>, SΠ

j (p) equals the start times obtained from(5.1).

To give an example, consider the ES-policy for Example 1.3.1 defined byE =
E0 ∪ {(1, 5), (2, 3), (4, 5)}. Obviously, non of the minimal forbidden sets{1, 5},
{2, 3, 4} and{2, 4, 5} of Example 1.3.1 is an anti-chain inE. For the scenario
p = E[p] the recursive Formula (5.1) yields start timesS(p) = (0, 0, 5, 3, 8).

Definition 5.3.1 immediately suggests that ES-policies are elementary. More-
over, notice that job start times are defined by a composition ofsumsandmax-
ima of processing times. Consequently, if ES-policies are viewed as functions
Π : p → S(p), the definition implies that ES-policies are monotone, continuous,
and convex. In fact, Radermacher (1981b, Theorem 2.19) also established the
following, opposite result: Any convex policy is an ES-policy (see also (Rader-
macher 1986)).

Let us next discussdominationproperties of ES-policies. Generally, we call
a policy Π dominatedif there exists another policyΠ′ 6= Π such thatSΠ

j (p) >
SΠ′

j (p) for all scenariosp ∈ R
n
> and all jobsj ∈ V . We here assume thatΠ and

Π′ belong to the same class of policies. For ES-policies, the following lemma is
easy to show.

Lemma 5.3.2. (Radermacher 1981b) Let the partially ordered sets(V,E) and
(V,E ′) be extensions of(V,E0) that represent ES-policesΠ and Π′, Π 6= Π′,
respectively.Π is dominated byΠ′ if and only ifE ′ ⊆ E.

5.4 Preselective Policies 79

A proof of this observation is given in Section 5.4.2 below where a general-
ization of the lemma is discussed (see Lemma 5.4.4). In Chapter 6 we see that the
concept of domination is in fact a key to effective branch-and-bound algorithms.

5.4 Preselective Policies

The class ofpreselective policieswas introduced by Radermacher (1981b)
and further studied by Igelmund and Radermacher (1983b, 1983a). They give
two different combinatorial representations of preselective policies and develop a
branch-and-bound algorithm which computes an optimal policy in the class. In
contrast to ES-policies, preselective policies choose for each minimal forbidden
setF one jobj ∈ F and never executej before at least onei ∈ F \ {j} has
been completed. Under the namedelaying alternative, a related approach of solv-
ing resource conflicts became later a very popular tool in deterministic resource-
constrained project scheduling (see, e. g., (Demeulemeester and Herroelen 1992;
Schwindt 1998; Fest, M̈ohring, Stork, and Uetz 1998)).

5.4.1 Definition and Characteristics

Let us start by describing one of the combinatorial representations of a pres-
elective policy that have been suggested by Igelmund and Radermacher (1983b).
For a systemF = {F1, . . . , Ff} of minimal forbidden sets, aselectionis a se-
quences = (s1, . . . , sf) such thats` ∈ F` for all ` ∈ {1, . . . , f}. The intended
meaning is that the start ofs` is postponed until at least one jobi ∈ F` \ {s`} has
been completed, within other wordsSs`

(p) > mini∈F`\{s`}(Si(p) + pi) is valid for
all scenariosp ∈ R

n
>. We call the jobss` preselectedjobs.

Next, in order to define a preselective policy, we need an algorithm that de-
scribes how a scheduleS(p) is computed from a given selections and a given
scenariop ∈ R

n
>. However, for the moment, assume that we start each job as

early as possible subject to the constraints given byE0 and the selections. We
will see below that this is in fact well defined. Before, let us consider an alter-
native characterization of a preselective policy that was studied by Igelmund and
Radermacher (1983b). A preselective policy with selections can be represented
by a collection of partially ordered setsG = (V,E) each of which extends the
given partial orderG0 of precedence constraints andrespectsthe selections. That
is, E0 ⊆ E and for each minimal forbidden setF` with preselected jobj` ∈ F`,
E contains an ordered pair(i, j`) with i ∈ F` \ {j`}. Consider Example 1.3.1
where the minimal forbidden sets are ordered asF1 = {1, 5}, F2 = {2, 3, 4}, and
F3 = {2, 4, 5} (we keep this ordering for the rest of the thesis). For selection
s = (5, 4, 2) the construction of a set of extensions ofG0 thatrespects is depicted

80 Robust Scheduling Policies

111

11

1

22
2

22

2

333

33

3

44

4

44

4

55
5

55

5

(2, 4) (3, 4)

(5, 2)(5, 2) (4, 2)

Figure 5.3: The leaves of the (rooted) tree represent three possible extensions
of G0 that respect the selections = (5, 4, 2). The pairs on the arcs denote the
precedence constraints that are added toE0.

in Figure 5.3.
Now, notice that this characterization is closely related to the definition of a

realizationfor a set of waiting conditions; recall the discussion in Section 2.2. In
fact, the concept ofAND/OR precedence constraints suggests another, very use-
ful representation of preselective policies. Each restriction induced by a minimal
forbidden setF and its preselected jobj can be represented by the waiting con-
dition (F \ {j}, j). Moreover, each given precedence constraint(i, j) ∈ E0 can
obviously be represented by the waiting condition({i}, j). Thus, instead of con-
sidering precedence constraints, minimal forbidden sets and a selection, it suffices
to consider a setW of waiting conditions. We say that the so-defined setW of
waiting conditions isinducedby s andE0. Let us carry over the notion of a real-
ization from Chapter 2: We call a partially ordered setG = (V,E) a realization
of G = (V,E) ands if G extendsG0 and respects the selections.

Recall from Chapter 2 that a set of waiting conditions induces a digraphD
which has a node for each job and for each waiting condition. There is a directed
arc from a node representing a jobi to a node representing a waiting condition
(X, j) if i ∈ X. Furthermore, each node representing a waiting condition(X, j)

5.4 Preselective Policies 81

w1

w2

w3

w4

w5

1 2 3

4

5

Figure 5.4: The digraph resulting from Example 1.3.1 and selections = (5, 4, 2).
Circular nodes correspond to jobs while square nodes represent waiting condi-
tions. Nodesw1, w2, andw3 are induced by minimal forbidden sets and the re-
spective preselected job. Precedence constraints are represented byw4 andw5.

is connected to the node representingj.
The set of waiting conditions which is induced by Example 1.3.1 with selec-

tion s = (5, 4, 2) is W = {w1 = ({1}, 5), w2 = ({2, 3}, 4), w3 = ({4, 5}, 2),
w4 = ({1}, 4), w5 = ({3}, 5)}. The associated digraphD which representsW is
depicted in Figure 5.4. AlthoughD contains cycles, there is a possible ordering
in which jobs can be executed (e. g.,1 ≺ 3 ≺ 4 ≺ 5 ≺ 2). However, like with sets
of waiting conditions, selections may beinfeasible. This is the case if and only if
there exists a generalized cycle in the associated digraphD of waiting conditions
(see Lemma 2.3.2 and also Igelmund and Radermacher (1983a, Theorem 1.1)).
By Theorem 2.3.1 and Algorithm 1, the question if a given selection is feasible or
not can be decided in linear time (in the encoding ofW). Consider Example 1.3.1
with selections = (1, 3, 2). The associated digraph of waiting conditions is a
generalized cycle, hence,s is infeasible.

For a given feasible selections and resulting system of waiting conditionsW
we can construct a feasible schedule for each possible scenariop ∈ R

n
> by setting

Sa(p) := 0 and

Sj(p) := max
(X,j)∈W

(min
i∈X

(Si(p) + pi)) j ∈ V . (5.2)

Recall from the discussion in Section 3.1 that (5.2) defines unique, component-
wise minimal job start times. To compute start times according to (5.2), Igelmund
and Radermacher (1983a) propose an algorithm with a running time O(mn2),
where,m is the number of arcs in the digraph which representsW. However, the
insight to represent a preselective policy by a set of waiting conditions suggests
a more efficient alternative: We can apply Algorithm 3, which results into a run-
ning time of O(n + m + f log f) wheref = |F|. Note that, sincef ∈ O(2n),
the algorithm has a lower worst case running time than the one proposed by
Igelmund and Radermacher (1983a). Let us re-consider Example 1.3.1. For

82 Robust Scheduling Policies

the selections = (5, 4, 2) and the scenariop = E[p], Formula (5.2) yields
S(E[p]) = (0, 8, 0, 3, 3).

With the above formulation of how a given scenariop is transformed into a
schedule, we obtain the following notion of a preselective policy.

Definition 5.4.1. A policyΠ (as in Definition 5.2.1) is calledpreselective policy
if there is a setW of waiting conditions such that, for allj ∈ V and p ∈ R

n
>,

SΠ
j (p) equals the start times obtained from(5.2). Moreover,Π is preselectivewith

selections if W is induced bys (andE0).

Notice that the definition differs slightly from the original definition of a pre-
selective policy of Radermacher (1981b, Section II, 2.), see also (Igelmund and
Radermacher 1983b, Section IV). Radermacher defined a policy to be preselective
with selections = (s1, . . . , sf), if Ss`

(p) > mini∈F`\{s`}(Si(p) + pi) is valid for
all scenariosp ∈ R

n
> and all` ∈ {1, . . . , f}. He did not specify a particular algo-

rithm that defines how job start times are computed fromG0, s, andp. However,
it is not hard to see that Definition 5.4.1 only restricts Radermacher’s definition
to policies that are minimal in the sense that they are not dominated by another
preselective policy with the same selection. In fact, Definition 5.4.1 is equivalent
to the definition of so-calledMES-policies, see, e. g., (Igelmund and Radermacher
1983b, Section III); we do not go into details.

If we interpret a preselective policyΠ as a functionp → S(p) as defined by
(5.2),Π is a composition of minima, maxima, and sums of job processing times.
As a direct consequence,Π is monotone and continuous. In fact, Radermacher
(1981b) has additionally shown the following, related results.

Theorem 5.4.2. (Radermacher 1981b, Section II, 3.) 1. Every monotone policy
is dominated by a preselective policy. 2. Every continuous and elementary policy
is a preselective policy (in the sense of Definition 5.4.1).

It follows that undesirable effects such as the Graham anomalies do not exist
for preselective policies. Moreover, the class of preselective policies is in fact
inclusion-maximal with respect to the requirements of a robust policy.

5.4.2 Domination

We next derive a necessary and sufficient dominance criterion for preselective
policies. The domination criterion is based on the property that preselected jobs
defined for some minimal forbidden sets may additionally solve the conflict on
other minimal forbidden sets. We need the following notation. Equivalently to
selections we definepartial selectionss` := (s1, . . . , s`), ` ∈ {1, . . . , f}, which

5.4 Preselective Policies 83

can be seen as selections for the reduced systemF ` := {F1, . . . , F`} of minimal
forbidden sets.

Suppose that for a partial selections`−1 = (s1, . . . , s`−1) there exists some
j ∈ F` such that each realizationG = (V,E) of G0 and s`−1 contains a pair
(i, j) ∈ E with i ∈ F` \ {j}. Then the resource conflict given byF` never occurs.
We say thatF` is implicitly resolvedby j. The intuition of the dominance criterion
is that every extension of the partial selections`−1 to a selections is dominated if
not j but some other jobi ∈ F` \ {j} is chosen as the preselected job forF`.

Theorem 5.4.3.A preselected policyΠ with selections = (s1, . . . , sf) is domi-
nated if and only if the resource conflict given by some minimal forbidden setF`

(` = {1, . . . , f}) is implicitly resolved by some jobj ∈ F` \ {s`}.

In order to prove Theorem 5.4.3, we again use the concept of waiting condi-
tions. Equivalently to policies we say that a setW ′ of waiting conditions domi-
nates another setW if, for all scenariosp ∈ R

n
>, the corresponding earliest start

schedulesS ′(p) andS(p) obtained from (5.2) fulfillS ′(p) 6 S(p). Moreover,
recall the following definition from Chapter 2. If for some(U, j) with j 6∈ U there
exists for each realization ofW a pair(i, j) with i ∈ U we say that(U, j) is im-
pliedbyW. Note that this is particularly the case ifU ⊇ X for some(X, j) ∈ W
(see Section 2.5). For the proof of Theorem 5.4.3 we require the following obser-
vations.

Lemma 5.4.4. LetW andW ′ be feasible sets of waiting conditions.W is domi-
nated byW ′ if and only if each(X, j) ∈ W ′ is implied byW.

Proof. For an arbitrary scenariop ∈ R
n
> let S(p) andS ′(p) denote the earliest

start schedules obtained by applying (5.2) toW andW ′, respectively. If each
(X, j) ∈ W ′ is implied byW thenS(p) must respect at least as many constraints
asS ′(p) and thereforeS ′(p) 6 S(p).

Let (X, j) ∈ W ′ and suppose that(X, j) is not implied byW. We construct a
scenariop as follows. Setpi := 1 if i ∈ X andpi := 0, otherwise and recall that
each(X ′, j) with X ′ ⊆ X implies(X, j). We obtainS ′

j(p) = 1 while Sj(p) = 0,
and consequently,W is not dominated byW ′.

Lemma 5.4.5. If (U ∪ {h}, j) is implied by a given systemW of waiting condi-
tions with(U ∪ {j}, h) ∈ W, then(U ∪ {h}, j) is also implied by the reduced
systemW ′ := W \ {(U ∪ {j}, h)}.

Proof. Suppose that there exists a realizationG = (V,E) of W ′ containing no
pair (i, j) ∈ E with i ∈ U ∪ {h}. We add the pair(j, h) (and transitive pairs)
to E. Notice that the resulting relationE ′ is antisymmetric, since(h, j) 6∈ E and
consequently,(V,E ′) is a realization ofW. However, there exists no pair(i, j)

84 Robust Scheduling Policies

with i ∈ U ∪ {h} which is a contradiction to the fact that(U ∪ {h}, j) is implied
byW.

Proof of Theorem 5.4.3.Suppose that the resource conflict given by some minimal
forbidden setF` is implicitly resolved byj ∈ F` \ {s`}. Define the selections′ by
s′r := sr for r ∈ {1, . . . , f} \ {`} ands′` := j. LetW andW ′ denote the sets of
waiting conditions induced bys ands′. By assumption,(F` \ {j}, j) is implied
by W. By Lemma 5.4.5 this is also the case forW \ {(F` \ {s`}, s`)}. Since
W ′ = W \ {(F` \ {s`}, s`)} ∪ {(F` \ {j}, j)} it follows that each(X, j) ∈ W ′

is implied byW. Therefore, with Lemma 5.4.4,W is dominated byW ′ and it
directly follows thatΠ is dominated by the policyΠ′ induced bys′.

For the converse, consider a policyΠ′ with selections′ that dominatesΠ. For
the induced sets of waiting conditions it follows by definition of dominance that
W ′ dominatesW. By Lemma 5.4.4, all(F` \ {s′`}, s′`) ∈ W ′ (` ∈ {1, . . . , f}) are
implied byW. It thus follows forΠ that for all` ∈ {1, . . . , f} with s` 6= s′` the
resource conflict given byF` is implicitly resolved bys′` .

With the results of Section 2.4, it follows that one can decide in O(f · (n+m))
time whether a given preselective policy is dominated or not. This can be done by
executing Algorithm 1 for eachF ∈ F with inputV \F andWV \F . The corollary
below follows from Corollary 2.4.6.

Corollary 5.4.6. A minimal forbidden setF is implicitly resolved if and only if,
after the execution of Algorithm 1 with inputV \ F andWV \F , there exists a job
j ∈ F which cannot be added to the listL without violating a waiting condition of
W. In this case,j is not executed before at least oneF \ {j} has been completed.

5.5 Linear Preselective Policies

In this section we introduce the class oflinear preselective policieswhich
combine the list-oriented features of priority policies with the selection-oriented
character of preselective policies. The idea is to define the selection via a priority
ordering of the jobs. IfL is this ordering, then the preselected job of a minimal
forbidden setF is the ‘last’ job ofF in L.

5.5.1 Definition and Characteristics

Definition 5.5.1. Let Π be a preselective policy with selections = (s1, . . . , sf).
Π is calledlinear preselectiveif there exists a linear extensionL of G0 such that
for each minimal forbidden setF`, ` ∈ {1, . . . , f}, the preselected jobs` fulfills
F` \ {s`} ≺L s`, i. e.,s` succeeds all elements ofF` \ {s`} in L.

5.5 Linear Preselective Policies 85

Since each linear preselective policy is also a preselective policy, linear prese-
lective policies inherit the analytic properties of being monotone and continuous.
We obtain the following characterization of a linear preselective policy.

Theorem 5.5.2.LetG0 be a partially ordered set of jobs with an associated sys-
temF of minimal forbidden sets{F1, . . . , Ff}.

(1) Every linear extension ofG0 induces a linear preselective policy.

(2) A preselective policyΠ with selections = (s1, . . . , sf) is linear preselective
if and only if the digraphD defined by the setW of waiting conditions that
are induced bys andE0 is acyclic.

Proof. We only give a proof of claim (2), (1) follows immediately from the defini-
tion of linear preselective policies. Let an orderingL represent a linear preselec-
tive policy. We extend the ordering to an ordering of all nodes ofD by inserting
the OR-node which represents a minimal forbidden setF directly before the last
job of F . ThenL defines a topological ordering of the nodes ofD and thusD is
acyclic. Conversely, letD be acyclic and letL be an ordering of the jobs obtained
from a topological sort of the nodes ofD by ignoring theOR-nodes that represent
minimal forbidden sets. It follows from the definition ofD thatX \ {j} ≺L j for
all waiting conditions(X, j) represented byD. Consequently, the preselected job
j of each minimal forbidden setF fulfills F \ {j} ≺L j. Furthermore, since each
precedence constraint(i, j) is modeled by a waiting condition({i}, j), L is an
extension ofG0. Therefore, the preselective policy corresponding toD is linear
preselective.

Let us consider Example 1.3.1 and the linear preselective policy defined by
the sequenceL = 3 ≺ 1 ≺ 5 ≺ 2 ≺ 4. The resulting selection iss = (5, 4, 4) and
for the scenariop = E[p] we obtainS(p) = (0, 0, 0, 5, 3).

Next, we discuss several aspects that are direct consequences of the definition
of linear preselective policies.

Computing Earliest Job Starting Times. In Section 5.4.1 we noted that, for a
preselective policy and a given scenariop, earliest job start times can be computed
in O(n + m + f log f) by Algorithm 3. For linear preselective policies, we can
compute earliest job start times more efficiently in O(n+m) time. We exploit the
fact that the selections of such a policy can be represented by a linear extension
L of the underlying partial order of precedence constraints by calculating the start
times in the order ofL. Thus, no heap is required which yields the improved
running time. A pseudo-code of this simple procedure is given in Algorithm 7.

86 Robust Scheduling Policies

Algorithm 7: Computing earliest start times for a linear preselective policy
Input : A directed acyclic graphD representing a setV of jobs and wait-

ing conditionsW with positive arc weights on the arcs inV ×W.

Output : A minimal scheduleS ∈ R
|V|
> .

for j ∈ V along a topological ordering inD do
if j is anAND-nodethen

Sj := maxi∈in(j) Si;

elseSj := mini∈in(j)(Si + pi);

return S;

Memory Requirements. Another computational benefit of linear preselective
policies is their compact representation. In contrast to preselective policies, every
linear preselective policy can be stored within O(n) space by the linear ordering
L of the jobs which defines the policy. This is particularly helpful in the context
of branch-and-bound approaches where typically a large number of policies has
to be maintained for the same setF of minimal forbidden sets.

5.5.2 Domination

We now show that ‘quite a few’ preselective policies that are dominated are
not linear preselective. Thus, if we deal with linear preselective policies, all these
dominated policies are discarded from consideration beforehand. To make this
intuition more precise, consider a partial selections`−1 = (s1, . . . , s`−1) inducing
a setW of waiting conditions which imply the waiting condition(F` \ {j}, j).
Definingj as the preselected job forF` thus creates no further restrictions. Con-
trarily, if we choose a jobi ∈ F` to be preselected forF` but (F` \ {i}, i) is not
implied byW, we obtain an additional waiting condition(F` \ {i}, i). Thus, any
such preselective policy is dominated.

Corollary 5.5.3. Let s`−1, W, andj ∈ F` be as above. Denote byU ⊆ F` \ {j}
the set of jobsi such that there exists a directed path fromi to some other job
h ∈ F` \ {i} in the digraphD resulting fromW. Then all preselective policies
that are induced by extendings`−1 to a selections with s` ∈ U are dominated and
not linear preselective.

Proof. It follows from Theorem 5.4.3 thatΠ is dominated ifs` 6= j. This particu-
larly holds for alls` ∈ U . However, choosings` from U would induce a cycle in
D and thus, by Theorem 5.5.2,Π is not linear preselective.

5.5 Linear Preselective Policies 87

1

1

2

2

3

3

4

4

5

5

Figure 5.5: The figure shows the digraphs of waiting conditions which results
from Example 1.3.1 and the preselection of job3 with respect to the minimal
forbidden set{2, 3, 4} (black components only). The additional (grey) waiting
conditions represent the minimal forbidden set{2, 4, 5} with preselected jobs4
and2, respectively. Both choices yield a dominated policy because{2, 4, 5} is
implicitly resolved by job5. In the linear preselective case, in all orderingsL of
jobs which allow job3 to be preselected with respect to{2, 3, 4} we have2 ≺L 5
and4 ≺L 5 and thus, preselecting job5 for {2, 4, 5} is the only possible choice.

In Example 1.3.1, there exist2 · 3 · 3 = 18 selections, including one infeasible
selection, see (Igelmund and Radermacher 1983b, Figure 5) for details. As it
can easily be verified, 11 of the 17 policies that are induced from the feasible
selections are dominated. Among these dominated policies, only one is a linear
preselective policy while all non-dominated policies are linear preselective. The
example is further discussed in Figure 5.5.

5.5.3 Acyclic Preselective Policies

We next define the class ofacyclic preselective policieswhich extends the
class of linear preselective policies. Lets`−1 be a partial selection which yields an
acyclic digraph of waiting conditions. As in the previous section, let the minimal
forbidden setF` be implicitly resolved by the waiting condition(F` \ {j}, j) with
respect tos`−1. Then, a preselective policy which is induced by extendings`−1 to
a selections with s` = j is not necessarily linear preselective. We demonstrate
this observation by the following example.

Example 5.5.4.Let G0 = (V,E0) be given byV = {1, 2, 3, 4, 5} and E0 = ∅
and let the setsF1 := {1, 2}, F2 := {2, 3}, F3 := {3, 4, 5}, andF4 := {1, 3, 5}
be minimal forbidden.

88 Robust Scheduling Policies

1
2 3

4

5F1 F2 F3

F4

Figure 5.6: The figure shows the digraphs of waiting conditions which results
from Example 5.5.4 and the selectionss = (2, 3, 5) (black components only) and
s′ = (2, 3, 5, 3) (black and grey components), respectively. While the digraph
representings is acyclic, we obtain a cyclic digraph fors′.

Consider the (linear preselective) partial selections = (2, 3, 5); the resulting
digraph of waiting conditions is given in Figure 5.6. Then the minimal forbidden
setF4 is implicitly resolved because job3 never starts before job1 has been com-
pleted. If job3 is explicitly chosen as the preselected job forF4, we obtain a cycle
in the associated digraph of waiting conditions and consequently, the resulting se-
lection is not linear preselective. The only extension ofs which leads to a linear
preselective policy is to choose job5 as the preselected job forF4. But this results
in the superfluous waiting condition({1, 3}, 5).

The above observation suggests to consider an alternative class of scheduling
policies which is closely related to the class of linear preselective policies.

Definition 5.5.5. A preselective policyΠ is an acyclic preselective policyif the
setW of waiting conditions that definesΠ yields an acyclic digraph.

On a first glance, the classes of acyclic preselective policies and linear pres-
elective policies appear to coincide, however, this in not the case. Clearly, each
linear preselective policy is also an acyclic preselective policy. To see that the
reverse is not valid, observe that, by definition, a linear preselective policy has a
preselected job for each minimal forbidden setF , even ifF is implicitly resolved.
This is not the case for an acyclic preselective policy. Moreover, in a linear pre-
selective policy, the preselected job uniquely determines the waiting condition
(F \{j}, j) which guarantees that the jobs inF are not processed simultaneously.
For an acyclic preselective policy, if it explicitly resolvesF , every subsetX of
F \ {j} may be the predecessor set of the waiting condition. Clearly, a larger
predecessor set yields more flexibility in general, henceF \ {j} is the most ap-
propriate predecessor set. However, as Example 5.5.4 demonstrates, if we restrict
to sets of waiting conditions that yieldacyclicdigraphs this needs not necessarily
be the case.

5.6 Job-Based Priority Policies 89

We further discuss the relationship of linear preselective policies and acyclic
preselective policies in Sections 5.7 and 6.3.3 below.

5.6 Job-Based Priority Policies

We next study a subclass of the class of preselective policies that has an im-
portant benefit compared to the classes of policies discussed in Sections 5.3–5.5:
They do not require the representation of resource constraints by (possibly ex-
ponentially many) minimal forbidden sets. Like linear preselective policies,job-
based priority policiescan be represented by an ordering of the jobs. However,
the algorithm to transform a given scenariop ∈ R

n
> into a schedule is different.

In the order ofL, they start every job as early as possible with the side constraint
that Si(p) 6 Sj(p) if i ≺L j. This ‘job-based’ view instead of the (greedy)
‘resource-based’ view for priority policies based on Graham’s list scheduling is
the reason for their name. Job-based priority policies have previously been used
within different stochastic and deterministic scheduling models. For instance,
they have been applied to derive approximation algorithms for stochastic machine
scheduling problems (M̈ohring, Schulz, and Uetz 1999) and also within branch-
and-bound procedures for deterministic resource-constrained project scheduling
(Sprecher 2000).

5.6.1 Definition and Characteristics

Before we give a definition of a job-based priority policy, let us formulate
the algorithm that maps a given scenariop to a schedule. For a given ordering
L and given scenariop, we start each job in the order ofL as early as possible
(with respect to precedence and resource constraints) but not before the start time
of some previously started job. Consequently, for somej ∈ V , we traverse the
schedule constructed so far over time and setSj to the smallest time that is both
precedence- and resource-feasible. The traversal is started at the start time of the
direct predecessor ofj in L. An implementation of this coarse description is given
in Algorithm 8 which runs in O(n|K|+ |E0|+ n log n) time. The definition of a
job-based priority policy now reads as follows.

Definition 5.6.1. A policyΠ (as in Definition 5.2.1) is calledjob-based priority
policy if there is an orderingL of the jobs which extendsE0 such that, for all
j ∈ V andp ∈ R

n
>, SΠ

j (p) equals the start times obtained from Algorithm 8.

Notice that neither the combinatorial representation of a job-based priority as a
job ordering nor Algorithm 8 requires the forbidden set representation of resource
constraints. This particularly allows to apply such policies to (large) projects

90 Robust Scheduling Policies

Algorithm 8: Computing earliest start times for a job-based priority policy
Input : SetV of jobs, precedence constraintsE0, resource-constraints in

threshold representation, job orderingL which extendsE0.
Output : A feasible scheduleS.

ES := 0; // ES is a vector of size|V |
t := 0;
CurrR := 0; // CurrR, R, andrj are vectors of size|K|
for j ∈ V in the order ofL do

CurrR := CurrR + rj;
while (t < ESj) or (CurrRk > Rk for somek) do

t := smallest completion timeCh of some jobh with Ch > t;
for i ∈ V with Ci = t do

CurrR := CurrR − ri;

Sj := t;
for all successorsi of j in G0 do

ESi := t + pj;

return S;

where the (possibly exponential) number of minimal forbidden sets makes the
use of forbidden set based policies computationally inefficient. When the job-
based priority policyL = 3 ≺ 1 ≺ 5 ≺ 2 ≺ 4 is applied to Example 1.3.1 with
p = E[p] we obtainS(p) = (0, 3, 0, 8, 3). Note that this schedule differs from the
schedule that is obtained if the orderingL is interpreted as a linear preselective
policy whereS(p) = (0, 0, 0, 5, 3).

5.6.2 Domination

We next study the relationship between a job-based priority policy and a linear
preselective policy that are induced by the same ordering.

Theorem 5.6.2. If a job-based priority policyΠ and a linear preselective policy
Π′ are induced by the same linear orderingL of jobs, thenΠ′ dominatesΠ.

Proof. Consider a minimal forbidden setF and letj be its preselected job with
respect toΠ′, i. e., F \ {j} ≺L j. Let p ∈ R

n
> be an arbitrary scenario. Since

SΠ
i (p) 6 SΠ

j (p) for all i ≺L j this also holds for alli ∈ F \ {j}. Consequently,
sinceSΠ is feasible, we haveSΠ

j (p) > mini∈F\{j}(SΠ
i (p) + pi). It follows thatΠ

induces at least as many constraints asΠ′ and thus,Π′ dominatesΠ.

5.7 Relationship between Optimum Values 91

We next argue that job-based priority policies fulfill the requirements of a
robust policy of being monotone and continuous. We show that any job-based
priority policy can be expressed as a set of waiting conditions. LetΠ andΠ′ be
as in Theorem 5.6.2 and consider the setW ′ of waiting conditions resulting from
Π′. We iteratively construct a setW ⊇ W ′ such that the preselective policy that is
induced fromW and the job-based priority policyΠ coincide. First, setW := W ′.
Then, for eachj in the order ofL add all(X, j) to W with (X, i) ∈ W (where
i denotes the job which immediately precedesj in L). It is not hard to see that,
for eachp, the earliest start schedule obtained fromW according to (5.2) and the
scheduleS resulting fromΠ coincide. Hence, we obtain the following result.

Theorem 5.6.3.LetG0 be a partially ordered set of jobs with an associated sys-
temF of forbidden sets. IfΠ is a job-based priority policy forG0 andF thenΠ
is linear preselective forG0 and a larger systemF ′ ⊇ F of forbidden sets.

As a direct consequence of Theorem 5.6.3, if we interpret a job-based priority
policy Π as a functionp → SΠ(p), Π is monotone and continuous and conse-
quently, Graham-anomalies do not occur within the class of job-based priority
policies.

5.7 Relationship between Optimum Values

We now relate the different classes of policies with respect to their optimum
expected project costρ. To simplify notation we introduce the following identi-
fiers for the classes of policies that have been mentioned in this chapter. We denote
the classes of preselective, acyclic preselective, and linear preselective policies by
PRS, ACY, andLIN , respectively. The class of ES-policies is abbreviated byES.
The (resource-based) priority policies based on Graham’s list scheduling are re-
ferred to asRBP and the class of job-based priority policies is denoted byJBP.

If processing times are deterministic then, except for priority policies (RBP),
each of the above classes of policies achieves the deterministic optimum value,
i. e., ρPRS = ρACY = ρLIN = ρES = ρJBP. To see this, construct an appropriate
policy Π from an optimal scheduleS∗ and show thatΠ yields a scheduleS with
no larger cost.

In the stochastic case, however, the behavior is quite different. According
to the definitions and results presented in the previous sections we immediately
obtainρPRS 6 ρACY 6 ρLIN 6 ρJBP. Moreover, the class of acyclic preselective
policies always contains a policy that performs as good as an optimal ES-policy.
To see this, observe, that an extensionG = (V,E) which represents an optimal
ES-policy can directly be transformed into a set of waiting conditions which can
be represented by an acyclic digraph. Hence we obtainρACY 6 ρES. Note that this

92 Robust Scheduling Policies

construction is not valid for linear preselective policies. In fact, the classes of ES-
policies and linear preselective policies are incomparable. It is easy to construct
an instance withρLIN < ρES; for instance, Example 1.3.1 is appropriate. An
instance withρLIN > ρES is given next. It is based on the observation that linear
preselective policies explicitly define a preselected job for all minimal forbidden
sets although some of them may be implicitly resolved. This may result into
superfluous waiting conditions (recall Section 5.5.2).

Example 5.7.1.Let V = {1, . . . , 8} and E0 = {(2, 6), (3, 7), (4, 8)}. Minimal
forbidden sets are given byF1 = {1, 6}, F2 = {6, 7}, F3 = {5, 7, 8}, andF4 =
{1, 7, 8}. The job processing times are as follows:p1 ∈ {1, 15}, p2 = 8, p3 = 12,
p4 = 14, p5 = 14, p6 = 4, p7 = 2, p8 ∈ {1, 15}. Only the processing times of jobs
1 and8 are random, each value appears with probability1

2
. The distributions are

assumed to be independent.

The unique optimal ES-policy has expected makespan23.5 while the value
of the best linear preselective policys = (6, 7, 8, 8) is 23.75. We obtainρES =
23.5 < 23.75 = ρLIN . The difference is due to the waiting condition({1, 7}, 8).
This waiting condition is superfluous sinceF4 is implicitly resolved due to the
choices of preselected jobs forF1 andF2. Note that Example 5.7.1 particularly
implies thatρACY < ρLIN is possible.

Let us next compare the classes of preselective policies and acyclic preselec-
tive policies. In fact, there are instances withρPRS < ρACY, however, each of
the two instances we present next is rather artificial. The first instance has depen-
dent processing time distributions. For the second instance we use the objective to
minimize the total weighted completion time of jobs. There, job weightswj must
be chosen carefully in order to achieve the desired property (ρPRS < ρACY). It is
an open question whether there are instances with this property and less degrees
of freedom, such as independent processing time distributions in conjunction with
the cost functionsCmax or

∑
j Cj.

Example 5.7.2.LetV = {1, 2, 3, 4}, E0 = ∅, F1 = {1, 2, 3}, andF2 = {1, 2, 4}.
Furthermore, the following four scenarios of processing times are possible, each
with probability 1

4
. p1 = (2, 2, 1, 5), p2 = (2, 2, 5, 1), p3 = (6, 2, 1, 5) andp4 =

(2, 6, 5, 1).

A straightforward case analysis shows that the non-linear preselective selec-
tion s = (1, 2) is the unique optimal solution in the class of preselective policies.
We obtainρPRS = 6 < 6.25 = ρACY. Note that this instance involves stochas-
tically dependent job processing times. We next provide another counterexample
where job processing times are independent and where the objective is to mini-
mize the weighted sum of completion times.

5.7 Relationship between Optimum Values 93

Example 5.7.3.LetV = {1, 2, 3, 4}, E0 = ∅, andF1 = {1, 2, 3}, F2 = {1, 2, 4},
F3 = {1, 3, 4}, andF4 = {2, 3, 4}. Each job processing time is exponentially
distributed with ratesλ1 = 106, λ2 = 1, λ3 = 10, andλ4 = 1, respectively. The
job weights arew1 = 106, w2 = 106, w3 = 2, w4 = 10.

Kämpke (1985) has shown that the unique optimal scheduling policy for this
2-machine instance is to first schedule jobs 1 and 2 and then, if job 1 completes
before job 2, plan according to priority ordering3 ≺ 4, otherwise use the priority
ordering4 ≺ 3. Observe that this scheduling policy is equivalent to a preselective
policy Π with selections = (3, 4, 3, 4). SinceΠ is not acyclic preselective, it
follows thatρPRS < ρACY.

We next discuss the relation between the classes of ES-policies and job-based
priority policies. In fact, it can verified by simple counter-examples that the
classesES andJBP are not comparable in terms of their optimum value. An anal-
ysis of Example 1.3.1 yieldsρES < ρJBP. An instance withρES > ρJBP is as
follows.

Example 5.7.4.Let V = {1, 2, 3}, E0 = ∅, andF = V . Each job processing
time ispi ∈ {1, 2}, i ∈ {1, 2, 3}; each value appears with probability1

2
. The

distributions are assumed to be independent.

Then, the pair(2, 3) defines an optimal ES-policy with expected makespan3.
On the other hand, the job-based priority policy that is defined by the ordering
L = 1 ≺ 2 ≺ 3 yields a value of2.75.

To summarize the analysis of Example 1.3.1 we obtain the orderingρPRS =
ρACY = ρLIN < ρES < ρJBP. In fact, as will be shown in the computational study
in Chapter 6 below, we empirically obtain the same ordering for the entire test set
we used within our computational experiments.

It remains to discuss the relation of optimum values of the above discussed,
monotone and continuous classes of policies with the class of traditional priority
policies. Here, it is easy to see that each of the classes is incomparable to the class
RBP. For Example 5.2.3 with deterministicp′ = (3, 1, 1, 4, 4, 9, 9), there exists
no priority policy which yields the optimal deterministic makespan. Hence, we
obtainρJBP < ρRBP. On the other hand, it is trivial to construct an instance with
ρRBP < ρPRS. For Example 5.7.5 below we obtainρPRS = ρLIN = ρES = ρJBP =
3.5 while ρRBP = 3.25.

Example 5.7.5.Let V = {1, 2, 3, 4}, E0 = {(1, 3)(2, 4)}, andF = {3, 4}. Job
processing times arep1 ∈ {1, 2}, p2 ∈ {1, 2}, p3 = p4 = 1; Only the processing
times of jobs1 and 2 are random, each value appears with probability1

2
. The

distributions are assumed to be independent.

94 Robust Scheduling Policies

Job-based priority Resource-based priorityEarliest start
policies policies

Linear preselective policies

Acyclic preselective policies

Preselective policies

(Set policies)

Elementary policies

policies

Figure 5.7: The graph indicates the relationship of different classes of scheduling
policies with respect to their optimum valueρ. A directed path from classA to
B indicatesρA 6 ρB. To be complete, we have included the class ofset policies
which has not been mentioned in the chapter. For a definition of set policies
as well as various related results we refer to (Möhring, Radermacher, and Weiss
1985).

In Figure 5.7, we summarize the discussion on the optimum values by a graphic
representation of the different classes of policies. Figure 5.7 complements a sim-
ilar figure given in (M̈ohring and Radermacher 1985; Radermacher 1986).

CHAPTER 6

BRANCH-AND-BOUND ALGORITHMS FOR

STOCHASTIC RESOURCE-CONSTRAINED PROJECT

SCHEDULING

In this chapter we address computational issues for solving stochastic resource-
constrained project scheduling problems. We apply the results of the previous
chapter and develop different branch-and-bound algorithms for the problem. The
objective function we want to minimize is the project makespan in expectation.
The purpose of the study is twofold. First, we establish results on the trade-off
between computational efficiency and solution quality for the classes of prese-
lective and linear preselective policies as well as for job-based priority policies
and ES-policies. Second, we develop and apply various ingredients such as domi-
nance rules and lower bounds that turn out to be useful within the computation. In
order to comprehensively study these issues we have implemented five different
branch-and-bound algorithms and explore their computational behavior on 1440
test instances.

6.1 Introduction and Related Work

We already noted in Chapter 1 that the literature is extensive in regard to
computational issues related to both PERT problems and deterministic resource-
constrained project scheduling problems. However, their combination, the stochas-
tic resource-constrained project scheduling problem has been largely ignored.
Most relevant for our study is the work of Igelmund and Radermacher (1983a)
who develop a branch-and-bound algorithm in order to compute optimal prese-
lective policies. To the best of our knowledge, this is the only reference in the
direction of computing a policy which is optimal within a particular class. Their
branch-and-bound algorithm is based on systematically resolving minimal forbid-
den sets in order to enumerate all selections of a given instance. We give more
details on the branching process in Section 6.2 below. Their computational exper-
iments are limited to few small instances which comprise16 jobs and7 minimal
forbidden sets.

All other computational contributions have been established very recently;

95

96 Branch-and-Bound Algorithms

none of them is based on the concepts that were developed by Igelmund and Ra-
dermacher (1983a, 1983b). Instead, they all consider (resource-based) priority
policies. Let us briefly review the recent work.

The NASA (Henrion, Fung, Cheung, Steele, and Basevich 1996) has set up a
research project on stochastic resource-constrained project scheduling. The main
intention was to develop a software for supporting an integrated schedule and cost
risk analysis for space shuttle ground processing (the resulting tool became later
known as ‘SCRAM’). Most relevant from the theoretical perspective is a heuristic
method to computecritical jobs. If no resource constraints have to be respected
and job processing times are deterministic, jobs are calledcritical if they have
a slackof 0. For given earliest and latest possible start timeESj andLSj of a
job j ∈ V , respectively, theslackof j is defined asLSj − ESj (here, eachLSj

results from the fictive deadlineESb). Recall thatb is a dummy job which marks
the project completion. Following an early work of Wiest (1963), Henrion et al.
(1996) formulate a generalization of the notion ofslackwhich covers the presence
of limited resources. For a given scenariop their approach basically is to first
compute job start timesSj(p) with respect to some priority-driven heuristicA.
(They refer toA as ‘the typical heuristic resource leveling algorithm’). Then they
define new job priorities according to decreasingCj(p) and, with these priorities,
applyA to the instance that is obtained from reversing all pairs ofE0. This yields
another scheduleS ′. Then,Sj(p) andSb(p) − S ′

j(p) − pj are interpreted as the
earliest start and the latest start of jobj, respectively andSb(p)−S ′

j(p)−pj−Sj(p)
is defined as the slack ofj. Henrion et al. (1996) use simulation in order to
generate a set of400 scenariosp from given job distributions (we noted the basic
methodology of simulation in Section 1.2). Then, the above method is applied to
each scenario. Based on the resulting data, a distribution for the slack is created.
We like to point out that, if the used algorithmA is a resource-based priority
policy, i. e., Graham’s list scheduling, then the greedy behavior ofA may force
some jobs to start early (late) with respect tobothschedulesS(p) andS ′(p). This
may yield even negative slack values (for appropriately constructed instances)
which is certainly not a desired output.

Golenko-Ginzburg and Gonik (1997) suggest a dynamic (resource-based) pri-
ority policy in order to compute a feasible solution to the stochastic resource-
constrained project scheduling problem. Here,dynamicmeans that the job priori-
ties are not constant; for a given decision time they may depend on the past. The
cost function which Golenko-Ginzburg and Gonik (1997) consider is to minimize
the expected makespan. At each job completion timet (initially t = 0), their al-
gorithm first computes for each jobj that is not yet scheduled the probabilityqj

that j is on a critical path when all resource conflicts after timet are neglected.
The qj are approximated by simulation. Next, among the set of jobsB that are
precedence-feasible att, a subsetB′ ⊆ B of jobs is started att with the prop-

6.1 Introduction and Related Work 97

erty that
∑

j∈B′ rjk 6 Rk for all k and
∑

j∈B′ qj is maximized. Notice that, for
|K| = 1, this is the classical Knapsack problem, hence, to obtainB′, Golenko
and Gonik solved an NP-hard optimization problem at each job completion. They
also suggest to heuristically compute the setB′. The approach is tested on a single
instance (though different processing time distributions are considered). We give
results of our algorithms on that instance in Section 6.5.5 below.

Tsai and Gemmill (1998) have implemented a Tabu-Search heuristic in order
to compute (resource-based) priority policies for the problem of minimizing the
expected makespan. The neighborhood they use is based on interchanging two
randomly chosen jobs in the listL which represents the priority policy. Then,
each generated policy is evaluated by 100 scenarios that were drawn from the
job processing time distributions by simulation. To evaluate the behavior of their
algorithm, Tsai and Gemmill consider the classical 110 instances collected by
Patterson (1984) and generated a beta distributionpj for each job. On average,
their results are roughly 2.5% larger than the deterministic makespan (with respect
to E[p]). They allowed a computation time of roughly 10 seconds per instance on
a Pentium-166 computer. The paper also contains results for three instances that
were adopted from an aircraft maintenance facility, however, according to Gemmil
(2000), they are not allowed to circulate these instances.

Valls, Laguna, Lino, Ṕerez, and Quintanilla (1998) consider resource-con-
strained project scheduling problems with stochastic job interruptions. That is,
it may happen that jobs are interrupted for an uncertain amount of time. In their
model, each job consists of three parts: The processing time of the first part is
deterministic, the second part models the job interruption for a time period of
uncertain length, and the third part represents the job after the interruption (the
processing time of the third part is assumed to be random as well). The model
allows only one interruption per job. While jobs are interrupted, the allocated re-
sources are freed and may be used to process other jobs. However, notice that for
some jobj, this characteristic can be modeled by three jobsh ≺E0 i ≺E0 ` that
represent the three parts ofj. The processing timeph of h is deterministic and
pi andp` are random according to the distributions of the second and the third
part of j. Finally, setrh := r` := rj andri := 0. Valls et al. (1998) consider
the objective of minimizing the total weighted tardiness in expectation. Based
on (resource-based) priority policies, they develop a local search heuristic which
basically follows the framework of a genetic algorithm. Before the local search
is applied, as a starting point, an initial set of policies is computed by different
construction schemes. Like Tsai and Gemmill (1998) they modify job orderings
(which represent the priority policies) in order to find new solutions. The cost of
each policy is approximately computed by simulation. For their computational
testings they generate324 instances with50 − 150 jobs and use30 scenarios of
job processing times. The cost of the best policy they found by the local search

98 Branch-and-Bound Algorithms

is considerably lower when compared to the best solution within the initial set of
solutions. The required computation times vary from roughly ten minutes up to
two hours on a Pentium-166 computer.

The major drawback of each of the discussed attempts to solve stochastic
resource-constrained project scheduling problems is that they are based on a class
of priority policies that show Graham-anomalies. We therefore do not follow
their line of research. Instead, based on the work of Igelmund and Raderma-
cher (1983a), we develop a branch-and-bound procedure to compute an optimal
preselective policy (based on the set of scenarios we consider). In contrast to Igel-
mund and Radermacher (1983a), however, we employ the results of the previous
chapters to improve the performance of our algorithm. In particular, we make
use of the efficient algorithm to estimate the expected makespan of preselective
policies (see Section 5.4). Moreover, we apply dominance rules that may prune
large portions of the search tree (see Section 5.4.2 and Section 6.3 below). In
addition, featuring two different branching schemes, we have implemented two
branch-and-bound algorithms for linear preselective policies and one algorithm
for each of the classes of ES-policies and job-based priority policies. We explore
their computational efficiency on 1440 instances of different size that have been
generated with the instance generator ProGen (Kolisch and Sprecher 1996).

The chapter is organized as follows. In Section 6.2 we motivate the useful-
ness of studying branch-and-bound algorithms for stochastic resource-constrained
project scheduling and describe the used branching schemes. We then state a
dominance rule for each of the branch-and-bound algorithms in Section 6.3. Sec-
tion 6.4 gives a more detailed account of some ingredients that helped to speed up
the computations. Our computational study is presented in Section 6.5.

6.2 Branch-and-Bound and Random Processing Times

In Chapter 1.1 we mentioned several alternatives how the search for an optimal
solution by a branch-and-bound can be organized for a deterministic resource-
constrained project scheduling problem. In this section we describe two such
approaches that we use to compute an optimal policy within the stochastic setting.
In addition to that we note how we compute the expected makespan for partial
solutions that are constructed within the branch-and-bound algorithms. Before,
however, let us briefly emphasize that preselective policiesΠ which are optimal
with respect to the expected job processing timesE[p], do not yield an optimum
policy for the stochastic problem with processing timesp in general. This is
shown by the following example.

Example 6.2.1.Let G0 = (V,E0) be given byV = {1, 2, 3, 4, 5, 6} and E0 =
{(1, 4), (1, 5), (2, 5), (3, 5), (3, 6)} and let the setF = {1, 2, 3} be minimal for-

6.2 Branch-and-Bound and Random Processing Times 99

1

2

3

4

5

6

1

1

2

2

3

3

44

44

5

5

66

66

10

10

20

21

30

31

35

s = (2)

s = (3)

Figure 6.1: The instance given in Example 6.2.1 together with Gantt charts for the
selectionss = (2) ands = (3) (the selections = (1) is symmetric tos = (3)).
Both Gantt charts show the different processing times of the jobs4 and6. While
E[Cmax(p)] = 31 for s = (2) we obtainE[Cmax(p)] = 32.5 for s = (1) and
s = (3). For deterministic processing timesE[p] we obtainCmax(E[p]) = 31 for
s = (2) andCmax(E[p]) = 30 for s = (1) ands = (3).

bidden. The following processing times are deterministic:p1 = 10, p2 = 11, p3 =
10, p5 = 10. The processing times of jobs4 and6 are independently distributed
with Pr(p4 = 5) = Pr(p4 = 15) = 1

2
andPr(p6 = 5) = Pr(p6 = 15) = 1

2
.

The distributions of job processing times yield4 different scenarios. It can
easily be evaluated that the selectionss = (1) ands = (3) lead to an optimal
policy for the deterministic problem with processing timesE[p] and s = (2)
is the unique optimal policy in the stochastic case (see Figure 6.1). Thus, if the
objective is to find anoptimalpreselective policy, it is not sufficient to compute all
policies which are optimal with respect to the expected job processing timesE[p]
and then, among these policies, choose one with smallest expected makespan.

Branching schemes. For a given instanceI a branch-and-bound algorithm (im-
plicitly) enumerates a setS of feasible solutions which contains at least one op-
timal solution ofI. The setS is usually organized in a rooted tree (the so-called
search-tree) where the root node represents the given instanceI and the set of
leaves representsS. Each internal node of the tree represents an appropriately
constructed sub-instance ofI. The most essential characteristic of a branch-
and-bound algorithm is certainly thebranching schemethat defines how a given
(sub)instance is split into a set of sub-instances.

We employ two different branching schemes that have previously been pro-
posed in the literature, we call them theforbidden set branching schemeand the

100 Branch-and-Bound Algorithms

precedence-tree branching scheme. In the latter scheme all linear extensions of
G0 are enumerated. In theforbidden set branching scheme, for eachF ∈ F ,
all alternatives to resolveF are enumerated. We apply the forbidden set branch-
ing scheme to preselective policies, linear preselective policies, and ES-policies
and the precedence-tree branching scheme to linear preselective policies and job-
based priority policies. Since, for linear preselective policies, it is not a priori
clear which branching scheme is superior we have implemented both alternatives
which in total leads to five different branch-and-bound algorithms.

We first describe theforbidden set branching scheme. We assume that the
minimal forbidden sets are given in a fixed order (we discuss appropriate orders in
Section 6.4.4 below). Each nodev in the search tree is associated with a minimal
forbidden setF and branching onv systematically resolvesF . For ES-policies
we create a child nodeuij of v for each ordered pair(i, j), i, j ∈ F, i 6= j. For
preselective and linear preselective policies we create a child nodeuj of v for each
j ∈ F . Then, each leafv of the search tree represents a policy which is defined by
resolving each minimal forbidden set according to the decisions made on the path
from v to the root of the tree. Notice that each nodev in the tree with distance
d(v) from the root node represents a scheduling policy for the reduced system
{F1, . . . , Fd(v)} of minimal forbidden sets (for preselective policies, this equals a
partial selections = (s1, . . . , sd(v))). Moreover, notice that within the enumera-
tion of linear preselective policies, a nodev is deleted from the tree if the partial
selections induced byv cannot be completed to a linear preselective selection.
Recall that this can be tested in O(n + m + f) time by checking whether the
digraphD of waiting conditions which result fromG0 ands is acyclic, see Sec-
tion 5.5. According to the above definition of the branching process, for (linear)
preselective policies, the number of children of a nodev is linear in the number
of jobs contained in the associated minimal forbidden set whereas the number
of children is quadratic for ES-policies. Moreover, since the number of minimal
forbidden sets may be exponential in the number of jobs, the depth of the search
tree may be exponential inn for (linear) preselective policies. However, for ES-
policies, the maximal depth can be bounded byn(n − 1)/2 (see Section 6.3.2
below). Figure 6.2 shows the complete search tree of Example 1.3.1 for the case
that preselective policies are enumerated. Each nodev of the tree contains a letter
which indicates whether the partial selection represented byv is linear preselec-
tive. For instance, the left most leaf of the tree represents the (linear preselective)
selection(1, 2, 2). (The line style of the nodes refers to domination properties
which are discussed later.)

We next consider theprecedence-tree branching schemewhich is described in,
e. g., Patterson, Słowiński, Talbot, and We¸glarz (1989). Here, linear extensions of
the partially ordered setE0 are enumerated. Each node in the search tree defines
an orderingL of some ideal ofG0, that is,j ∈ L implies thati ∈ L andi ≺L j

6.2 Branch-and-Bound and Random Processing Times 101

L

L
L

L
P

L
L

L
L

L
P

P
I

P
P

P
L

P
L

P
L

P
P

L
P

L
L

1

2
2

2
2

2
2

2
2

3
3

4
4

4
4

4
4

4
4

5
5

5
5

5
5

5
F

1
=

{1
,5
}

F
2

=
{2

,3
,4
}

F
3

=
{2

,4
,5
}

Figure 6.2: The figure shows the complete enumeration tree for Example 1.3.1
based on the forbidden set branching scheme in the preselective case. Arc labels
define the preselected job that is chosen to resolve a minimal forbidden set. A
node label ‘L’ indicates that the node represents a linear preselective selection (or
a partial selection that can be extended to a linear preselective selection). The node
labeled ‘I’ is infeasible. Nodes with a dashed line style are pruned from the tree
because they are dominated according to the algorithm outlined in Section 6.3.2.

102 Branch-and-Bound Algorithms

1

1

1

1
1

1

2

2

2

2

2

2

2
2

2

2
2

3

3

3
3

3

3

4

4

4

4

4

4
4

4

5

5

5

5
5

5

5

5

(5
,4

,5
)

(5
,4

,4
)

(5
,3

,5
)

(5
,2

,5
)

(5
,2

,2
)

(1
,4

,4
)

(1
,2

,2
)

d:
12

35

d:
12

3
d:

12
3

d:
12

4
d:

13
4d:

12
d:

13
d:

23

d:
23

5

d:
23

51
d:

13
45

Figure 6.3: The figure shows a part of the enumeration tree for Example 1.3.1
based on the precedence tree branching scheme in the linear preselective case.
Arc labels define the job that is appended to the initial segment associated with the
parent node. Nodes with a dashed line style are pruned from the tree because they
are dominated according to the algorithm outlined in Section 6.3.4. In this case,
the node label indicates the ordering which dominates the ordering associated with
the node. For instance, the orderingL = 3 ≺ 5 ≺ 1 ≺ 2 with node label ‘d:2351’
is dominated byL′ = 2 ≺ 3 ≺ 5 ≺ 1. The node labels with solid line style
indicate the associated selection.

6.3 Dominance Rules 103

for all (i, j) ∈ E0. We call such orderingsL initial segmentsof G0 (notice that
we sometimes viewL as asetof jobs). For a given nodev and associated initial
segmentL we create child nodes for all jobsj ∈ V \ L that are precedence-
feasible, i. e., all predecessors ofj are already contained inL. Hence, the set of
leaves of the complete tree and the set of linear extensions ofE0 coincide. Notice
that the depth of the tree isn, the number of jobs, however, the number of children
that are generated for a given node is also in the order ofn. Figure 6.3 shows a part
of the search tree of Example 1.3.1. For instance, the right most leaf represents
the orderingL = 3 ≺ 5 ≺ 1 ≺ 4 ≺ 2.

So far, the precedence-tree branching scheme has not been applied to stochas-
tic resource-constrained project scheduling problems. A recent reference of its
application in the deterministic case is (Sprecher 2000).

Computing the expected makespan. For a given node in the search tree, lower
bounds on the expected makespan are computed in order to potentially delete the
node from the tree. (A node can be discarded if the computed lower bound is
greater than or equal to the current global upper bound.) The lower bound is
computed by disregarding all resource conflicts that have not been resolved so
far, i. e., we make use of the classicalcritical path lower boundCP . Unfortu-
nately, already for precedence-constrained jobs without any resource restrictions,
the computation of the expected makespan is #P-complete if each job processing
time distribution has two values (see Section 1.2). We therefore only compute an
approximation of the expected makespan with the help of simulation techniques
(we noted the basic methodology of simulation in Section 1.2). We then obtain a
setP of scenarios forp, that can be used to approximately calculateE[CP (p)],
the expected critical path lower bound for a given node in the search tree. This is
done by computing the average critical path lower bound over all scenariosp ∈ P ,
i. e.,E[CP (p)] ≈ 1

|P |
∑

p∈P CP (p). As a consequence, we cannot guarantee that
we compute an optimal policy for the original input data but instead only for
processing time distribution that is induced by the set of scenarios. However, it
is known that for|P | → ∞ the optimum value that results from the simulated
data converges to the optimum value of the original instance with probability1.
Among other topics, this is proven in (Kleywegt and Shapiro 1999).

6.3 Dominance Rules

In this section we describe five so-calleddominance rules(one for each branch-
and-bound algorithm) that often help to prune large portions of the search trees.
For a given nodev of some search tree denote byτv the set of policies that are
defined by the leaves of the subtree rooted atv. We call another nodeu 6= v dom-

104 Branch-and-Bound Algorithms

inatedby v if for each policyΠ ∈ τu there exists another policyΠ′ ∈ τv such that
Π′ dominatesΠ (recall the definition from the previous chapter). Adominance
rule is a method that (usually heuristically) identifies dominated nodes. If such a
node is detected, clearly, we can disregardu from further consideration. Notice
that we must take care of what might be calledcross pruning: Suppose thatu
andv dominate each other; then, pruning bothu andv could possibly cut off all
optimal solutions.

6.3.1 Earliest Start Policies

We begin the discussion with the class of ES-policies. Letv be a node in
the search tree that is constructed by the forbidden set branching scheme. Then
v represents an extensionG = (V,E) of G0 that is defined by the pairs that
have been chosen on the ancestors ofv in order to resolve some of the minimal
forbidden sets. Denote byF the minimal forbidden set which is considered for
branching atv and suppose that for some pair(i, j) ∈ E we havei ∈ F and
j ∈ F . Then it is obvious that the child nodeuij of v where(i, j) is chosen
to resolveF dominates all other child nodes ofv. This essentially follows from
Lemma 5.3.2. Consider Example 1.3.1 and suppose that the minimal forbidden
setF1 = {1, 5} has been resolved by the pair(5, 1). Then, if we next branch on
the minimal forbidden setF2 = {2, 3, 4}, the branch where(3, 4) is chosen to
resolveF2 dominates all other alternatives.

With respect to an implementation of the above outlined dominance rule, Ra-
dermacher (1985) and Bartusch (1984) suggest to use a data structure which they
call destruction matrix. A destruction matrix stores for each pair(i, j), i 6= j, a
Boolean array of sizef that indicates for each minimal forbidden setF whether
{i, j} ⊆ F . However, this data structure requires O(n2f) space, which may eas-
ily exceed memory limitations isf is large. We therefore implemented an appro-
priate algorithm which does not need the memory-expensive destruction matrix.
The algorithm was originally developed for preselective policies and is described
in the following Section 6.3.2.

6.3.2 Preselective Policies

If preselective policies are enumerated by the forbidden set branching scheme,
a nodev of the search tree is associated with a partial selections = (s1, . . . , sd(v))
(d(v) was defined as the distance ofv from the root of the tree). Recall that
together with the initial setE0 of precedence constraints,s defines a setW of
waiting conditions. We know from Chapter 2 and Section 5.4.2 thatW may im-
plicitly resolve other minimal forbidden sets that have not been considered for

6.3 Dominance Rules 105

Algorithm 9: Dominance rule within the forbidden set based branch-and-
bound algorithms

Input : A setV of jobs, a setF of minimal forbidden sets, and a set of
waiting conditionsW induced byE0 ands = (s1, . . . , sd(v)).

Output : An extended selections and the smallest index of a minimal for-
bidden set that is not resolved byW.

for ` ∈ {d(v) + 1, . . . , f} do
call Algorithm 1 with inputV \ F` andWV \F`

and
computea(j) for eachj ∈ F ;

if a(j) > 0 for somej ∈ F then
1 s` := j; // or: s` := −1; (to indicate thatF` is ignored)

else return (s, `);

return (s, f + 1);

branching so far. In particular, following the result of Corollary 5.4.6, we may
apply Algorithm 1 to decide whether the minimal forbidden setF which is con-
sidered for branching atv is implicitly resolved or not. IfF is implicitly resolved
thenW implies a waiting condition(F \ {j}, j) for somej ∈ V . It is a direct
consequence of Theorem 5.4.3 that the branch ofv wherej is the preselected job
for F dominates all other child nodes ofv.

We have implemented the following variation of the dominance criterion which
is applied in each nodev of the search tree. In the initially fixed order of the min-
imal forbidden sets, we check for each currently not resolved minimal forbidden
setF , whetherF is implicitly resolved byW. If this is the case, we appropri-
ately labelF in s and proceed with the next minimal forbidden set. IfF is not
implicitly resolved we stop the dominance test. For each minimal forbidden set
F this test takes O(n + m + f) time. Branching is then performed on the next
minimal forbidden set that is neither explicitly resolved by a previous branching,
nor labeled to be implicitly resolved. An implementation of the dominance rule is
given by Algorithm 9.

Recall the full branch-and-bound tree of Example 1.3.1 as depicted in Fig-
ure 6.2. All nodes with a dashed line style are deleted from the tree if Algorithm 9
is included into the branch-and-bound procedure.

The test can equivalently be applied to ES-policies since each partially ordered
setG = (V,E) representing an ES-policy can also be expressed as a setW of
waiting conditions. There may be at mostn(n − 1)/2 pairs (i, j) in E, hence
the number ofOR-nodes required to representE is |E|. Thus the running time of
the dominance test reduces to O(n + |E|). In addition, if the dominance test is
employed, the maximal depth of the search tree is bounded byn(n − 1)/2.

106 Branch-and-Bound Algorithms

6.3.3 Linear Preselective Policies via the Forbidden Set Enumeration

The dominance rule as described in the previous section also applies to the
enumeration of linear preselective policies via the forbidden set branching scheme.
Consequently, we may use the same algorithm to prune the search tree in this case.
However, this causes a problem which requires some explanation. Let the mini-
mal forbidden setF` be implicitly resolved by the waiting condition(F` \ {j}, j)
with respect to a given partial selections`−1. Then, a preselective policy which is
induced by extendings`−1 to a selections with s` = j is not necessarily linear pre-
selective (we discussed this topic in Section 5.5.3). Hence, the resulting digraph
of waiting conditions is not acyclic in general. This causes different drawbacks, in
particular, we may no longer use Algorithm 7 to compute earliest job start times;
instead, we have to use Algorithm 3 which is of larger worst case complexity. We
overcome this difficulty as follows. Instead of choosingj as the preselected job
for F` we simply ignoreF` in all nodes of the search tree that are located in the
subtree rooted at the node which inducess`−1. This is done by assigning an ap-
propriate flag tos` (instead ofs` := j), as indicated in the comment of Line 1 of
Algorithm 9. Consequently, at the leaves of the search tree, all minimal forbidden
sets are resolved and the induced selection yields an acyclic digraph of waiting
conditions.

However, with this feature the branch-and-bound algorithm may output a pol-
icy that has a smaller optimum value than all linear preselective policies. For
instance, if the dominance rule is enabled, the algorithm outputs a minimum
makespan of23.5 for Example 5.7.1 whileρLIN = 23.75. Now recall the def-
inition of an acyclic preselective policy from Section 5.5.3 and observe that the
algorithm always outputs a feasible acyclic preselective policyΠ∗; in particular,
ρACY 6 κ(CΠ∗

(p)) 6 ρLIN .
Let us briefly account for our decision to employ the dominance rule as out-

lined above by a discussion of alternatives. First, one may implement a branch-
and-bound algorithm that is based on acyclic preselective policies. This, however,
allows a lot more freedom of choice because the waiting condition to resolve some
minimal forbidden setF is not uniquely determined by the preselected jobj ∈ F .
The alternative choices for the predecessor set yields additional branches which
certainly leads to enormous computation times. In fact, for almost all instances we
considered, we obtainρPRS = ρLIN which directly yieldsρPRS = ρACY = ρLIN .
Second, suppose that we only ignore a minimal forbidden set if we know that it
is implicitly resolved by a waiting condition that does not induce a cycle in the
resulting graph of waiting conditions. Then the computed policy is linear pres-
elective. However, this additional test results into a considerable computational
overhead and, if no such waiting job exists, we have to branch over a minimal for-
bidden set from that we know that the associated resource conflict will not occur.

6.3 Dominance Rules 107

This makes no sense from a practical point of view. In fact, for all instances we
considered, the use of the dominance criterion as formulated in Section 6.3.2 does
not yield an optimum expected makespan that is smaller than the value obtained
without the dominance rule.

6.3.4 Linear Preselective Policies via the Precedence-Tree Enumeration

In this section and the following Section 6.3.5 we present dominance rules for
the branch-and-bound algorithms that are based on the precedence-tree branching
scheme. Each node in the precedence tree is identified with an initial segmentL
of G0. According to the definition of linear preselective policies we construct a
(partial) selections from L by fixing s` := j ∈ F` if j is uniquely determined to
be the last element ofF` in every initial segment that is obtained ifL is extended
by the jobsV \ L. This is clearly the case if at least|F`| − 1 jobs fromF` are
contained inL.

The dominance criterion is based on the observation that different initial seg-
mentsL andL′ of the same ideal may define identical (partial) selectionss. It is
then easy to see that, ifL andL′ are extended by the same job (or by the same
ordering of jobs) they still yield the same (partial) selections̄. Clearly,s̄ also ex-
tendss in the sense that each minimal forbidden set that has been resolved bys
is also resolved bȳs and the corresponding preselected jobs coincide. We call an
orderingL dominatedby some other orderingL′ 6= L if the policy Π defined by
L is dominated by the policyΠ′ defined byL′. Moreover, denote byi ≺id j that
job i has a smaller numbering (or identifier) than jobj (we assume without loss
of generality that(i, j) ∈ E0 impliesi ≺id j).

In the sequel we describe a simple algorithm with the purpose to construct for
a given orderingL a lexicographically smaller orderingL′ <lex L such that both
orderings define the same selection. Then, whenever such an orderingL′ exists
we deleteL from the search tree because it is dominated byL′. Notice that the
effect of cross pruning does not occur in this case since for each selections the
lexicographically smallest ordering that inducess is not deleted. Consider now
some jobi in the orderingL. We traverseL backwards until a predecessorj ∈
Predi or some jobj with j �id i is found (Pred i denotes the set of predecessors
of job i with respect toG0). Notice thatj �id i implies thatj 6∈ Pred i andj ≺L i
implies thati 6∈ Pred j, hencei andj are unrelated with respect to the precedence
constraints. In the first case (j ∈ Pred i) we stop the dominance test. Otherwise,
we check for all minimal forbidden setsF` with s` = i whetherF`∩B = ∅. Here,
B is defined as the set of jobsh with i �L h �L j. If this is not the case we
stop the dominance test. Otherwise we deleteL from the search process, since the
orderingL′ which is obtained fromL by movingi to the position directly before

108 Branch-and-Bound Algorithms

j is lexicographically smaller thanL and yields the same selection.

Lemma 6.3.1. Let s be a selection and letL∗ be the lexicographically smallest
ordering which representss. The above outlined algorithm deletes all orderings
L >lex L∗ from the search tree that yield selections.

Proof. Suppose thatL >lex L∗ is not deleted within the course of the above out-
lined algorithm and letj andi be the jobs at the left-most position inL andL∗,
respectively, withj 6= i. It follows thati ≺id j, i �L j and thatPred i ∩ B = ∅,
whereB is the set of jobsi �L h �L j. Moreover, sinceL andL∗ define the same
selections there exists no minimal forbidden setF` with s` = i andF` ∩ B 6= ∅.
Let h ∈ B be the last job inL with i ≺id h (h exists becausej fulfills the required
properties). Denote byL′ the ordering which is obtained fromL by moving i
to the position directly beforeh. ThenL′ <lex L andL′ yields the selections.
Thus,L is deleted within the course of the above outlined algorithm — a contra-
diction.

We employ the above dominance rule for each generated nodev of the search
tree. The jobi in the above description is the last job in the initial segmentL
defined byv (it is not hard to see that the above argumentation is also valid for
incomplete orderingsL ⊂ V). The dominance rule can be implemented to run in
O(nf) time. Recall the branch-and-bound tree of Example 1.3.1 as depicted in
Figure 6.2. All nodes with a dashed line style (and also the not shown subtrees
rooted at these nodes) are deleted from the tree if the dominance rule is included
into the branch-and-bound procedure.

6.3.5 Job-Based Priority Policies

Similar to linear preselective policies, for a given orderingL of jobs, we aim at
constructing another orderingL′ by moving a single jobi to another position such
thatL′ dominatesL. Notice that we assume in this section that a given ordering
is evaluated according to Algorithm 8. Sprecher (2000) reports on various dom-
inance rules for the case of deterministic processing times, however, each of the
rules described there requires fixed job processing times and is thus not applicable
in the stochastic case. Instead, we make use of the following, simple dominance
criterion. For a given orderingL andi ∈ L we denote byLi the ordering induced
by L on the elements{h ∈ L|h � i}.

Lemma 6.3.2. Let L be an ordering of the jobs and leti and j be jobs with the
propertiesj ≺L i andPred i ⊆ Pred j. Denote byL′ the ordering obtained fromL
by movingi directly to the position beforej. Moreover, letB = Li \{h ∈ Li|∀p ∈
R

n
> holdsCh(p) 6 Sj(p)}. If i is contained in no minimal forbidden setF with

F ⊆ B thenL is dominated byL′.

6.3 Dominance Rules 109

Proof. SinceL is an extension ofG0 andPred i ⊆ Pred j we have thati is not
related to any jobh with i �L h �L j. Consequently,L′ is an extension of
G0. For an arbitrary scenariop ∈ R

n
> let S(p) andS ′(p) denote the schedules

resulting from Algorithm 8 with inputp andL andL′, respectively. In the order
of L′ we show for each jobh thatS ′

h(p) 6 Sh(p). Forh ≺L′ i this is trivial, since
S ′

h(p) = Sh(p). For i we obtainS ′
i(p) 6 Sj(p) 6 Si(p). To see this, we show that

t := Sj is a feasible start time fori after the jobsh ≺L′ i have been scheduled by
Algorithm 8. SincePred i ⊆ Pred j, startingi at t is time-feasible. Consider now
the setB′ of jobs that are in process att. It follows from the feasibility ofS(p)
thatB′ ∪ {j} is resource-feasible and thatB′ ∪ {j} ⊆ B. Sincei is contained in
no minimal forbidden setF with F ⊆ B, startingi at t is resource-feasible and
thus feasible. As a consequence,S ′

i(p) 6 Sj(p); Sj(p) 6 Si(p) follows from the
definition of Algorithm 8. By essentially the same argumentation we have that
S ′

h(p) = Sh(p) for all i �L h �L j. Finally, recall that the orderingsL andL′ on
the remaining jobsh �L i coincide, henceS ′

h(p) 6 Sh(p) is also valid for these
jobs.

A dominance rule based on Lemma 6.3.2 may now be implemented as follows.
For each node in the search tree with associated initial segmentL of some jobs
we let jobi (as in the lemma) be the last job inL. Notice thatL needs not contain
all jobs ofV . Jobj is identified by traversingL backwards starting fromi until j
fulfills Pred i ⊆ Pred j (or j ∈ Pred i in which case the dominance test is aborted).
Then, we computeB (as defined in Lemma 6.3.2) and test whether there is a
minimal forbidden setF with i ∈ F andF ⊆ B. If there is no such set, we know
thatL is dominated and hence we delete the associated node in the search tree.

However, there are some difficulties that should be discussed. First, recall that
the reason why we consider job-based priority policies is to avoid the handling of
exponentially many minimal forbidden sets. We have the threshold-representation
of resource constraints only and consequently, we lose some structural informa-
tion which we can access within the computation of optimum (linear) preselec-
tive policies and ES-polices. In particular, as we have shown in Theorem 4.2.3
we cannot decide efficiently whether a given jobi is contained in some minimal
forbidden set or not, unless P=NP. However, recall from the discussion in Sec-
tion 4.2.2 that it can be answered in polynomial time whetheri is contained in
some forbidden, but not necessarily minimal forbidden set together with the jobs
in B. We employ this algorithm and ifi is not contained in a forbidden setF with
F ⊆ B then it is not contained in a minimal such forbidden set. Hence we know
thatL is dominated. Contrarily, ifi is contained in a forbidden setF ⊆ B, we
stop the dominance test. Another topic that has to be addressed is cross pruning.
As an example, consider an instance withV = {1, 2}, E0 = ∅, andF = ∅. Then
1 ≺ 2 and2 ≺ 1 are the resulting linear extensions which clearly dominate each

110 Branch-and-Bound Algorithms

other. To handle the difficulty of cross pruning we only discarded an ordering
from the search process if the involved jobsi andj (as in Lemma 6.3.2) fulfill
j �id i. Then, among a set of orderings that pairwise dominate each other, the
lexicographically smallest ordering is not discarded from the search process.

6.4 Improving the Performance

As usual for branch-and-bound procedures we make use of several additional
features in order to speed up the computations. In the sequel we briefly explain
how we compute initial upper bounds, several lower bounds, a flexible tree traver-
sal strategy as well as in which order minimal forbidden sets should be consid-
ered for branching. The computational impact of these ingredients are presented
in Section 6.5.4 below.

6.4.1 Initial Upper Bound

In order to obtain an initial valid upper bound to start with, we use list schedul-
ing algorithms applied to ten standard priority rules, such as, e. g.,shortest/longest
processing time firstand minimum slack, see, e. g., (Kolisch 1996) for details.
They clearly require deterministic processing times; we have chosen the expected
job processing timesE[p]. From the resulting schedules we choose one schedule
S with minimum makespan. Notice that we may additionally choose any other
heuristic for the deterministic resource-constrained project scheduling problem to
generate a feasible schedule (see Section 1.1). The orderingL of jobs obtained
from non-decreasing start timesSj clearly respects the precedence constraints,
hence,L directly yields a linear preselective and a job-based priority policy. Their
expected makespans are taken as initial upper bounds, respectively. Moreover,
for the preselective approach we use the linear preselective upper bound as well.
Finally, an earliest start policy is constructed by choosing for each minimal for-
bidden set a pair(i, j), i, j ∈ F in such a way thati has minimum completion
time in S andj has maximum start time inS. Its expected makespan is taken as
initial bound for ES-policies.

6.4.2 The Critical Path Lower Bound and Jensen’s Inequality

Recall that the computation of the critical path lower bound is time consum-
ing in the stochastic case because we have to compute the deterministic equivalent
for each scenariop ∈ P . As a consequence, we additionally employ a variation
of this bound which can be computed more efficiently. The bound is based on
Jensen’s inequality and is applied before the expensive simulation-based compu-

6.4 Improving the Performance 111

1

1

1

12

2 2

2

3

3 3

34

4 4

4
5

5

5

5

10.5

2.5 2.5

2.5

p = (1, 0.5, 1, 1, 1)

p = (9, 0.5, 1, 1, 1)

p = (1, 0.5, 9, 1, 1)

p = (9, 0.5, 9, 1, 1)

Figure 6.4: The figure shows a Gantt chart for each of the four possible scenarios
resulting from Example 6.4.1.

tation. Then, if it is greater than or equal to the current global upper bound, the
expected critical path length needs not to be computed.

In the case ofES-policieswe can simply calculate the deterministic critical
path lower bound with respect toE[p] which is a lower bound for each convex
cost function, hence also forCmax. This is immediate with Jensen’s inequality
and due to the fact that the earliest start computation is a convex function of the
job processing times. However, the computation of job start times is not convex
for (linear) preselective policies and job-based priority policies (since jobs can be
started at theminimumof completion times of other jobs). In fact, for a given
minimal forbidden setF , the expected completion time of a preselected job may
even be less than the minimum of the expected start times of the other jobs inF .
The following example illustrates this effect.

Example 6.4.1.Let G0 = (V,E0) be given byV := {1, 2, 3, 4, 5} and E0 :=
{(1, 4), (3, 5)} and let the setF = {2, 4, 5} be minimal forbidden. The following
processing times are deterministic:p2 = 0.5, p4 = 1, p5 = 1. The processing
times of jobs1 and3 are independently distributed withPr(p1 = 1) = Pr(p1 =
9) = 1

2
and Pr(p3 = 1) = Pr(p3 = 9) = 1

2
. Furthermore, let job2 be the

preselected job in the minimal forbidden setF .

For the deterministic problem with expected job processing times we have
S2(E[p]) = 6 while E[S2(p)] = 4 (see Figure 6.4). Note that even the expected
completiontime E[C2(p)] = 4.5 is less than the minimum of the expectedstart
times of the other jobs in the minimal forbidden set (E[S4(p)] = E[S5(p)] = 5).

We handle this effect as follows. Whenever a minimum (of random variables)
has to be computed, we make use of the component-wise smallest processing
timespmin of the set of generated scenariosp. As for ES-policies, each maximum
computation is bounded by Jensen’s inequality. We adapt (5.2) by settingS ′

a := 0

112 Branch-and-Bound Algorithms

and

S ′
j := max{ max

(X,j)∈W,
|X|>2

(min
i∈X

(S ′
i + pmin

i)), max
({i},j)∈W

(S ′
i + E[pi])}

for all j ∈ V .

Lemma 6.4.2. S ′
j 6 E[Sj(p)] for all jobs j ∈ V .

The lemma follows directly from Jensen’s inequality and the monotonicity of
preselective policies. As a consequence, the start timeS ′

b of the dummy jobb
which indicates the project completion, is a lower bound forE[Cmax(p)] for both
preselective and linear preselective policies. By essentially the same technique we
can also derive a lower bound for job-based priority policies.

Finally, notice that different, more sophisticated procedures have been de-
vised in the literature in order to compute lower and/or upper bounds on the ex-
pected makespan when jobs are only precedence-constrained (PERT-networks).
We made experiments with an adaption of the approach as proposed by Devroye
(1979) (see also (Arnold 1988)), however, the results are of the same order of mag-
nitude as the lower bound based on Lemma 6.4.2. We therefore did not include
such bounds into our experiments.

6.4.3 Single Machine Scheduling Relaxations

Besides the above mentioned critical path based lower bound we employ a
well known lower bound which is based on a single machine relaxation of the
original problem. Variations of this bound are frequently used in determinis-
tic project scheduling, see, e. g., (Mingozzi, Maniezzo, Ricciardelli, and Bianco
1998; Sprecher 2000). For a given node in the search tree letheadj be a lower
bound on the expected start timeE[Sj(p)] of job j. Moreover, lettailj be a lower
bound on the expected makespan of the subproject that is induced by the succes-
sors ofj in G0. We obtain the following lemma.

Lemma 6.4.3. LetW ⊆ V be a subset of jobs that can pairwise not be scheduled
in parallel. Thenminj∈W (headj) +

∑
j∈W E[pj] + minj∈W (tailj) is a lower

bound on the expected makespan for all preselective policies.

Proof. Each preselective policy plans the jobs ofW in a fixed order, indepen-
dently of the job processing times. Leti andj be the first and the last job in that
order, respectively. Then,headi +

∑
h∈W E[ph] + tailj is a lower bound on the

expected makespan. Sincei andj are unknown we choose the smallest possible
values for the expected start ofi and the tail forj.

6.4 Improving the Performance 113

Since the bound is valid for preselective policies it also holds for linear prese-
lective, job-based, and ES-policies. Notice that the bound is not valid for arbitrary
policies. If the order in which the jobs ofW are scheduled is dependent on the
processing times of their predecessors, it is easy to construct a counter example:
Consider the jobsV = {1, 2, 3, 4} with E0 = {(1, 3), (2, 4)}, p3 = p4 = 3, and
p1 = p2 ∈ {1, 5} (each with probability1

2
). Suppose that the jobsW = {3, 4}

form a minimal forbidden set, i. e., they must be scheduled sequentially. Then the
formula of Lemma 6.4.3 yields a ‘lower bound’ of9 while the expected makespan
of any (resource-based) priority policy is8.5.

We have included the following implementation into our experiments. As
a preprocessing step we computetailj, j ∈ V , as the expected makespan of the
subproject that is induced by the successors ofj (resource constraints are ignored).
Moreover, we compute different setsW by simple priority-rule heuristics: we start
with W = ∅, and consider the jobs in the order defined by the priorities and add
job j to W if j cannot be processed simultaneously with any job that has been
previously added toW . This takes O(n2) time per computed set. Then, for
each node which is explored in the search tree we compute a lower bound on the
expected start time of the jobs according to Lemma 6.4.2, i. e., we setheadj := S ′

j.
The resulting single machine instance with heads and tails is fed into an algorithm
as proposed by Carlier (1982, Proposition 1). Carlier’s algorithm uses the fact that
for given setW of jobs, depending on the heads and tails of jobs, a subsetW ′ ⊂
W may result in a better lower bound. The algorithm computes the best lower
bound that can be achieved from any subset ofW by a preemptive relaxation in
O(|W | log |W |) time. Finally, we choose the maximum of the computed bounds
over all setsW which is a lower bound on the expected makespan of the project.

6.4.4 Sorting the Minimal Forbidden Sets

An important ingredient of branch-and-bound algorithms in general is to find
an appropriate ordering of the decisions that have to be made. It is of great advan-
tage to perform those branchings early that lead to a large increase of the overall
lower bound, i. e., the gap between lower and upper bound is reduced as early and
as much as possible. Furthermore, it often pays off to first perform such branch-
ings where only few alternatives have to be explored.

The forbidden set branching scheme easily allows to exploit these general
ideas: before starting the full branch-and-bound algorithm we explore for each
minimal forbidden setF the alternative whereF is selected for the first branch-
ing. For each such alternative we compute the setB of branches that cannot be
discarded because their lower bound is less than the initial global upper bound. In
the full branch-and-bound algorithm we then resolve the minimal forbidden sets in

114 Branch-and-Bound Algorithms

the order of increasing|B|. Notice that, if none of the branches can be pruned by
lower bound computation, the minimal forbidden sets are ordered by increasing
cardinality. As a tie-breaker we choose the average increase of the lower bound
taken over all branches that result from a single minimal forbidden set. More pre-
cisely, if LBb is the lower bound of a branchb ∈ B then the sorting key that we
have chosen is

∑
b∈B LBb.

6.4.5 Flexible Search Strategy

As another standard trick for branch-and-bound, we implemented a flexible
tree traversing strategy that simultaneously processes a parameter driven number
of DFS-like paths at a time. In contrast to simple backtracking procedures, such
search strategies usually do not waste too much time in useless parts of the search
tree. Moreover, in order to decide which node is chosen next for branching, we
assign a priority to each of the nodes in the tree. The priority is computed as a
combination of the lower bound on the expected makespan and the depth of that
node in the search tree.

6.5 Computational Study

The computational study is divided into five parts. In the first two parts we
describe the computational setup and the considered test set. We then study the
performance of each of the five branch-and-bound procedures relative to each
other and also in dependence from instance characteristics. In the fourth part we
analyze the impact of the additional ingredients described in Section 6.4. Finally,
we study the behavior of the algorithms on larger instances.

For ease of reference we use the following abbreviations for the five branch-
and-bound algorithms. The algorithms to compute optimum preselective policies
and ES-policies (both forbidden set branching scheme) are denoted byPRS-FS

and ES-FS, respectively. The enumeration of job-based priority policies via the
precedence tree branching scheme is abbreviated byJBP-PT and the two varia-
tions of computing linear preselective policies (forbidden set and precedence tree
branching scheme) are referred to asLIN -FS andLIN -PT, respectively.

6.5.1 Computational Setup

Our experiments were conducted on a Sun Ultra 1 with 143 MHz clock pulse
operating under Solaris 2.7. The code has been written in C++ and is compiled
with the GNU g++ compiler version 2.91.66 using the -O3 optimization option.
We allowed the algorithms to maximally use 50 MB of main memory and a time-

6.5 Computational Study 115

limit of 1000 seconds.
In order to establish a reference setting for the various parameters we have per-

formed different initial experiments. Based on the results of these experiments we
decided to set the parameter defaults as follows. The computation of an initial up-
per bound (Section 6.4.1) as well as the lower bounds described in Sections 6.4.2
and 6.4.3 are switched on. Furthermore we employ the search strategy as de-
scribed in Section 6.4.5 by considering threeDFS-like paths at a time. In each of
the branch-and-bound algorithms we have enabled the respected dominance rules
as described in Section 6.3. For the algorithms that are based on the forbidden set
branching scheme, we also performed the sorting of forbidden sets as introduced
in Section 6.4.4. The default type of the distribution of job processing times is
a Gamma distribution with a maximum variance of3. Finally, we generate 200
scenarios from the distributions, which turned out to provide a reasonable tradeoff
between the precision of the expected makespan on the one hand and the compu-
tational effort on the other hand.

Unless we mention explicitly that some parameter is modified we always re-
port on experiments that are based on the above defined parameter setting. The
impact of most of the parameter settings is documented in detail in Section 6.5.4
below.

6.5.2 The Test Sets

We have applied our algorithms to a test set which is created by the instance
generator ProGen (Kolisch and Sprecher 1996). The test set contains 480 in-
stances each of which consists of 20 jobs. Each job requires at most 4 different
resources and comes with an integral deterministic processing time which has
been chosen randomly between 1 and 10. The average number of minimal for-
bidden sets in this test set is roughly 70 (maximum 774). Equivalently to the
test sets described in Section 4.4.1, the instances have been generated by modi-
fying the instance parameters network complexity, resource factor, and resource
strength. The parameters have been chosen out of the setsNC ∈ {1.5, 1.8, 2.1},
RF ∈ {0.25, 0.5, 0.75, 1.0}, andRS ∈ {0.2, 0.5, 0.7, 1.0}, respectively. This
leads to 48 combinations and for each combination we have created 10 instances.
In Section 6.5.5 below we also report on instances with 30 and 60 jobs, respec-
tively (the generation of these test sets was described in Section 4.4.1).

We next explain how we generate the probability distributions of the job pro-
cessing times (which are not created by the ProGen instance generator). We take
the given deterministic processing time of each job as expectation. Then, together
with different, parameter driven values for the variance we construct uniform and
triangle, as well as approximate normal, Gamma, and exponential distributions.

116 Branch-and-Bound Algorithms

Time-limit (in seconds)

N
um

be
r

of
so

lv
ed

in
st

an
ce

s

600 800 1000

50

150

250

350

100

200

200

300

400

400

PRS-FS

LIN -FS

LIN -PT

ES-FS

JBP-PT

Figure 6.5: The number of optimally solved instances (out of 480 instances with
20 jobs each) depending on given time-limits. The ordering for the time limit of
1000 seconds is as follows (from top to bottom):LIN -FS, LIN -PT, ES-FS, PRS-FS,
JBP-PT.

By appropriate rounding we make sure thatProb(pj < 0) = 0. Finally, the
scenariosp from p are generated by standard simulation techniques, where job
processing times are assumed to be independent.

6.5.3 Comparison of the Procedures

We say that an algorithmA optimally solves(or optimizes) a given instances
(within a given time limit) if A finds an optimal solution and verifies the solu-
tion to be optimal. We characterize theperformanceof A by the number of opti-
mally solved instances in the considered test set and the average computation time
among the optimally solved instances.

Performance of the different procedures. We start the study by reporting on
the computational expenses that are required by the different algorithms. Fig-
ure 6.5 shows for each of the five algorithms how many of the 480 instances can
be solved optimally for different time limits. The plot indicates that, if linear
preselective policies are enumerated by the forbidden set branching scheme, con-
siderably more instances were solved when compared to the other algorithms. The
plot also demonstrates that the precedence tree enumeration works quite satisfac-
tory for linear preselective policies; it solved more instances to optimality than
preselective policies, ES-policies, and job-based priority policies for time limits
greater than300. It turns out that, for most of the considered instances,LIN -FS

6.5 Computational Study 117

works much faster thanLIN -PT, however, roughly 10% of the instances can be
solved faster by the precedence tree enumeration than by the forbidden set enu-
meration. On the shady side we observe that the enumeration of job-based priority
policies is extremely time intensive. Only 161 out of 480 instances were solved
optimally within a time limit of 1000 seconds. The dominance rule as proposed
in Section 6.3.5 is probably too weak and prunes not enough parts of the search
tree. In fact, the number of nodes that is evaluated fromJBP-PT within the search
exceeds the number of nodes ofLIN -PT by a factor of3 on average (among 155
instances solved by both procedures). However, we also observe that there are 12
instances that were optimally solved withJBP-PT but not withLIN -FS.

Finally, it should be noted that, except forES-FS, the limited memory was not
a critical resource (no experiment had to be aborted). ForES-FS, the allocated
memory has exceeded the limit of 50 MB for 87 instances. The reason probably
is that the number of children created at each branching is O(n2) compared to
O(n) for the other procedures (see Section 6.2).

Dependency on instance characteristics.Let us next discuss the performance
of the algorithms in dependence from different instance characteristics. Instead
of considering the parametersNC, RF , andRS, we first concentrate on a much
more important characteristic, namely the numberf := |F| of minimal forbidden
sets. It is not surprising thatf is a dominating parameter for the performance of
each of the forbidden set based procedures (PRS-FS, LIN -FS, ES-FS, and alsoLIN -
PT). Figure 6.6 displays the interrelations. The figure consists of six parts, the first
of which shows the number of instances in the test set depending on the number
of minimal forbidden sets. A peak of heighth at position` means that there are
h instances in the test set which have` minimal forbidden sets. The other charts
(2–6) display the number of instances that were optimally solved by the branch-
and-bound algorithms in dependence from the number of minimal forbidden sets
in the respective instance (h instances with̀ minimal forbidden sets were solved
optimally). Let us first exclude the procedureJBP-PT from the discussion. If the
number of forbidden sets is small (say, less than 50) we observe that (almost)
all instances in the test set can be solved optimally byPRS-FS, LIN -FS, ES-FS,
andLIN -PT. These procedures also optimize many of the instances with 50–100
minimal forbidden sets, however, we see thatLIN -FSperforms considerably better
thanPRS-FS, ES-FS, andLIN -PT. Finally, among the instances which comprise of
more than 100 minimal forbidden sets are relatively few that have been optimally
solved. With respect toJBP-PT, according to Chart 6 of Figure 6.6, we observe a
comparatively small dependency onf . Even among the instances with very few
minimal forbidden sets (f 6 50) there are quite many which cannot be solved
optimally. On the other hand, instances that are optimized byJBP-PT but not by

118 Branch-and-Bound Algorithms

one of the algorithmsPRS-FS, LIN -FS, or ES-FS, contain a comparatively large
number of minimal forbidden sets (there exist12 such instances and their average
number of minimal forbidden sets is157).

We next analyze the performance of the algorithms in dependence from the
instance parameters network complexityNC, resource factorRF , and resource
strengthRS. Again, let us start by discussing the algorithmsPRS-FS, LIN -FS, ES-
FS, andLIN -PT. As a consequence of the strong impact of the number of minimal
forbidden sets, the dependency of the algorithm’s performance onNC, RF , and
RS, is dominated by the impact of these parameters of the number of minimal
forbidden sets: If the combination ofNC, RF , andRS yield a small number of
minimal forbidden sets the performance is excellent and vice versa. As a con-
sequence, the impact ofNC, RF , andRS on the branch-and-bound algorithms
can directly be derived from the computational results presented in Chapter 4.
With respect toJBP-PT let us discuss the dependency of the performance on the
resource strength. We observe that, ifRS is small, only very few instances can be
solved to optimality and vice versa. The average computation time is393 seconds
among7 optimally solved instances withRS = 0.2 while 190 seconds on average
are needed to solve instances withRS = 1.0 to optimality (86 instances). The de-
pendency is depicted in Table 6.1, Row 2. In the same table (Row 3) we show the
number of instances that were solved optimally byLIN -FS. Finally, in Row 4 we
give the average number of minimal forbidden sets subject toRS. We observe the
above mentioned correlation between the number of minimal forbidden sets and
the performance ofLIN -FS. It is maybe an interesting observation that instances
with scarce resources, i. e.,RS = 0.2, seem to be solvable with reasonable ef-
fort by the forbidden set based algorithms: For instance,LIN -FS optimally solves
104 out of 120 instances within an average computation time of114 seconds. In-
stances with scarce resources (with low resource strength) often appear to be the
hardest instances in the PSPLIB. For the deterministic case, this was observed by
various authors, e. g., by Dorndorf, Pesch, and Phan Huy (2000a) in the context of
a branch-and-bound procedure and by Möhring, Schulz, Stork, and Uetz (2000)
in connection to lower bound computations.

Comparison of optimum costs. In extension to Section 5.7 we next discuss
how the different values of the optimal expected makespan of the considered
classes of policies are related to each other. Figure 6.7 shows the average and the
maximum of the optimum expected makespan taken over 107 instances that were
solved by all procedures. The values have been scaled such that they represent
the percental deviation from the deterministic optimum makespan (with respect to
E[p]). By definition, preselective policies yield the smallest expected makespan
among all considered classes of policies. However, surprisingly perhaps, the other

6.5 Computational Study 119
N

um
be

r
of

in
st

an
ce

s
(a

m
on

g
48

0
in

st
an

ce
s

in
to

ta
l)

Chart 1: Arrangement of minimal forbidden sets

0 100 200 30050 150 250 |F|
2

6

10

Chart 2:PRS-FS

0 100 200 30050 150 250 |F|
2

6

10

Chart 3:LIN -FS

0 100 200 30050 150 250 |F|
2

6

10

Chart 4:ES-FS

0 100 200 30050 150 250 |F|
2

6

10

Chart 5:LIN -PT

0 100 200 30050 150 250 |F|
2

6

10

Chart 6:JBP-PT

0 100 200 30050 150 250 |F|
2

6

10

Figure 6.6: The first chart shows the number of instances in the test set in depen-
dence from the number of minimal forbidden sets. The other charts (2–6) display
the number of instances that were optimally solved by the branch-and-bound algo-
rithms in dependence from the number of minimal forbidden sets in the respective
instance.

120 Branch-and-Bound Algorithms

Algorithm RS = 0.2 RS = 0.5 RS = 0.7 RS = 1.0
JBP-PT 7 24 44 86
LIN -FS 104 75 98 113
average|F| 62 91 78 47

Table 6.1: The table shows the dependency of the number of optimally solved
instances subject to the resource strengthRS (Rows 2 and 3). In addition, the
figures in Row 4, give the average number of minimal forbidden sets for each of
the subsets of instances with same resource strength.

Policy class

percental deviation from deterministic optimum

2

4

6

8

10

PRS LIN ES JBP

Figure 6.7: Average and maximum percental deviation of the expected makespan
from the deterministic optimum. The figures are based upon 107 instances that
were solved optimally by all algorithms.

6.5 Computational Study 121

classes of policies yield values that are at most 0.5% worse on average (maximal
2.1%). In particular, preselective policies and linear preselective policies yield
exactly the same optimum costs for all but 4 instances (among the 295 instances
that can be solved by bothPRS-FS andLIN -FS). Furthermore, for our test set, the
average optimum value of job-based priority policies is roughly 0.4% worse on
average (maximum 1.8%) when compared to ES-policies (recall that these classes
are incomparable with respect to the optimum expected makespan).

Notice that Figure 6.7 also exposes that a deterministic planning may yield
very optimistic estimates. We see that, on average, the expected makespan is
more than 3.5% larger than the deterministic makespan (with respect to processing
timesE[p]). Even more, the maximal percental deviation is occasionally greater
than 10%.

6.5.4 Impact of Additional Ingredients

In this section we test how the dominance rules as well as the various ingredi-
ents proposed in Section 6.4 help to reduce the computation times.

Impact of dominance rules. We next consider the impact of the dominance
rules on the performance of the algorithms. Table 6.2 shows the results for each
of the procedures. In the first column we show the used algorithm, the second
and the third column refer to the results for the standard parameter setting, i. e.,
the dominance rules are switched on. The forth and the fifth column document
the experiment where no dominance rule is employed. We see that the dominance
rules significantly improve the performance of the branch-and-bound procedures.
In particular, within the precedence tree enumeration (JBP-PT and LIN -PT), the
number of instances that can be solved to optimality when the dominance rules
are switched off is reduced to roughly one third. Hence, although the dominance
rules used inJBP-PT andLIN -PT are not strong enough to compete withLIN -FS,
they cut off quite large portions of the search tree.

Impact of lower bounds. All relevant data concerning the impact of the lower
bounds as described in Section 6.4 is displayed in Table 6.3. In the first column we
state the used algorithm, the second and the third column documents the results
for the standard parameter setting, i. e., the single machine bound and the critical
path bound based on Jensen’s inequality are enabled. The forth and the fifth col-
umn refer to the experiments where the single machine based bound is disabled.
Finally, Columns 6 and 7 document the case where both the machine-based bound
and the critical path bound based on Jensen’s inequality is switched off (recall that
the single machine relaxation requires the output of the critical path based bound).

122 Branch-and-Bound Algorithms

dominance on dominance off
Algorithm #inst. opt. ∅ CPU #inst. opt. ∅ CPU
PRS-FS 295 21 235 89
LIN -FS 390 29 348 74
ES-FS 309 9 188 69
LIN -PT 320 3 100 162
JBP-PT 161 70 57 394

Table 6.2: The impact of the dominance rule as described in Section 6.3. The
columns ‘#inst. opt.’ denote the number of instances for which an optimal policy
was found and proven to be optimal. The columns ‘∅ CPU’ refer to the required
computation times in seconds. Notice that computation times are only comparable
row by row. Within each row, they are based on the instances that can be optimized
by both variations (dominance on or dominance off).

For each variation of the parameters we show the number of solved instances as
well as the average computation times in seconds.

The figures indicate that both lower bounds result into improvements with
respect to the number of optimally solved instances as well as the associated com-
putation times. Notice that, for the single machine relaxation, one cannot expect
exceptional good results on average. The relaxation only considers minimal for-
bidden sets of cardinality2, which makes it rather weak for instances with only
few such minimal forbidden sets. However, for instances with many such for-
bidden sets the bound leads to a considerable improvement of computation time,
sometimes to more than 50% (21 instances forLIN -PT). The bound that is based
on Jensen’s inequality leads to remarkable improvement for the case ofES-FS.
Here, we do not have to make use of the minimal processing time of jobspmin.
Since the lower bound for all other procedure relies onpmin (recall Section 6.4.2)
its effect on the computation is weaker. However, computation times are reduced
considerably.

Impact of the search strategy. We document the impact of the used strategy
to traverse the search tree in comparison to a classical depth-first search (DFS)
procedure. The results are displayed in Table 6.4. In the first column we show
the used algorithm, the second and the third column refer to the results for the
standard parameter setting, i. e., the flexible search strategy is employed. The
forth and the fifth column document the case where depth-first search is used.
Again, for each variation we state the number of solved instances as well as the
average computation times in seconds. In all cases the number of instances that
can be solved optimally is considerably larger if the search strategy as described in

6.5 Computational Study 123

std. param. setting machine LB off mach./Jensen LB off
Algorithm #inst. opt. ∅ CPU #inst. opt. ∅ CPU #inst. opt. ∅ CPU
PRS-FS 295 57 291 62 290 73
LIN -FS 390 67 388 69 383 84
ES-FS 309 56 308 59 294 98
LIN -PT 320 90 302 96 297 109
JBP-PT 161 239 161 241 151 268

Table 6.3: The impact of the lower bounds as described in Section 6.4. The aver-
age computation times are only comparable row by row. Within each row, they are
based on the instances that can be optimized by all variations (all lower bounds
on, single machine lower bound off, both single machine lower bound and the
bound based on the Jensen inequality off).

flexible search depth-first search
Algorithm #inst. opt. ∅ CPU #inst. opt. ∅ CPU
PRS-FS 295 57 277 83
LIN -FS 390 60 372 83
ES-FS 309 69 287 92
LIN -PT 320 83 304 115
JBP-PT 161 151 111 358

Table 6.4: The impact of the search strategy as described in Section 6.4. The
average computation times are only comparable row by row. Within each row,
they are based on the instances that can be optimized by both variations (flexible
search or simple depth first search).

Section 6.4.5 is employed. Even more, the average computation time is drastically
smaller when compared to the depth-first search traversal.

Impact of stochastic parameters. We next analyze the impact of the stochastic
parameters, that is, the type and the variance of the processing time distributions.
Note that we only document the results obtained forLIN -FS, since the behavior
of each of the other algorithms is analogous (with respect to the conclusions we
draw). For the different types of distributions we observe that the performance of
the procedures is not significantly affected. Except for exponential distributions,
Algorithm LIN -FS optimizes for all considered types of distributions roughly 390
out of the 480 instances at an average computation time of 70 seconds per in-
stance. For exponential distributions the number of instances solved optimally is
only 379 and the required computation time is larger. For the 379 instances the

124 Branch-and-Bound Algorithms

Variance

Average computation time

1 3 5 7 9 11 13

10
20
30
40
50
60
70

Figure 6.8: Dependency of the computation time (in seconds) on the cho-
sen variance of the distributions (obtained withLIN -FS). The figures are
based upon 366 instances that were solved optimally for each variance setting
({1, 3, 5, 7, 9, 11, 13}) for the random job processing times. The used type of dis-
tribution was the Gamma distribution.

algorithm required 77 seconds on average while for other distributions only 55
seconds are required (for these instances). This is probably due to the fact that for
strongly varying processing times (which is the case for exponential distribution,
since we used a larger support when compared to the other types of distributions)
the computation time increases. Figure 6.8 displays the dependency of the compu-
tation time on the chosen variance of the distribution which shows a considerable
increase of the computational cost when the variance is increased. However, the
number of instances that can be solved optimally within the time limit of 1000
seconds only slightly decreases to 376 for the largest variance setting we consid-
ered.

Impact of the number of scenarios. The number of scenarios that are to be
considered is crucial for the performance of the branch-and-bound algorithms,
because for a given node in the search tree we must compute earliest job start
times for each scenario. In Figure 6.9 we show for different numbers of scenarios
the average and maximum percental deviation of the expected makespan from the
deterministic problem withp = E[p]. For 200 scenarios – which we have chosen
as default – the expected makespan varies only little when compared to larger
sampling sizes. On the other hand, the computation time drastically increases
with the number of scenarios. The average computation times depending on the
number of scenarios is displayed in Figure 6.10.

6.5 Computational Study 125

Number of scenarios

percental deviation from deterministic optimum

20 50 100 200 500 1000

2

4

6

8

10

12

Figure 6.9: Average and maximum percental deviation of the expected makespan
from the deterministic optimum (obtained withLIN -FS). The figures are based
upon 344 instances that were solved optimally by all variations of the number of
scenarios (|P | ∈ {20, 50, 100, 200, 500, 1000}).

Number of scenarios

Average computation time

1 20 50 100 200 5001000

20

40

60

60

100

Figure 6.10: Average computation times (in seconds) depending on the num-
ber of scenarios (obtained withLIN -FS). The figures are based upon 344 in-
stances that were solved optimally by all variations of the number of scenarios
(|P | ∈ {1, 20, 50, 100, 200, 500, 1000}). For |P | = 1 the instance has determinis-
tic processing times, we choseE[p].

126 Branch-and-Bound Algorithms

Factor of Truncation

average computation time

0.95 0.96 0.97 0.98 0.99 1

20

40

60

80

Figure 6.11: The computation time (in seconds) for different values of truncations,
averaged over 390 instances that can be ‘optimized’ by all variations of truncation
(α ∈ {1.00, 0.99, 0.98, 0.97, 0.96, 0.95}).

Sensitivity of the cost function and truncation. We have performed several
experiments where the branch-and-bound procedures are truncated. That is, for
givenα ∈ [0, 1] we remove nodes from the search if the lower bound computed
for that node is larger than or equal toα · ub, whereub denotes the current global
upper bound. We display the results for such truncated variations of the branch-
and-bound algorithms in Figure 6.11. The data refers to the enumeration of linear
preselective policies (LIN -FS). For different values ofα (1.00, 0.99, 0.98, 0.97,
0.96, 0.95) we display the computation time averaged over the instances that can
be ‘optimized’ by all variations ofα. If we accept an optimality gap of 5% com-
putation times can be reduced to one forth. In fact, for the 390 instances solved
for bothα = 1 andα = 0.95, the optimality gap was below 1% on average (3%
maximum). Interestingly, there is a notedly large reduction of computation time
betweenα = 1 andα = 0.99; it is almost halved when compared to the exact
procedure. The reason is related to the fact that the objective functionexpected
makespanis sensitive to minor (local) modifications of the considered scheduling
policy. There are less policies with the same expected makespan and thus it is
likely that more nodes in the search tree have to be evaluated. The impact of the
sensitivity in terms of the number of nodes in the search tree is demonstrated by
the following example. In the example we compare the cost functionexpected
makespanto the deterministic counterpart.

Example 6.5.1.Consider Example 2.2.1 and assume that all job processing times
are independently distributed as follows:Pr(pj = 7) = Pr(pj = 13) = 1

2
.

The processing time distributions of the jobs lead to 32 possible scenarios.
Suppose that the selections = (5, 4, 4) is determined by some constructive heuris-

6.5 Computational Study 127

tic and serves as an initial upper bound. The bound is20 for the deterministic
problem with expected processing timesE[p] and22.8125 in the stochastic case.
On the other hand, the critical path lower bound is20 and22.25, respectively.
Consequently, branching is not required in the deterministic case; only the root
node of the search tree is explored. In the stochastic case, however, eight nodes
must be evaluated in order to prove optimality ofs.

Sorting the forbidden sets. We finally report on the impact of ordering minimal
forbidden sets within preprocessing (as described in Section 6.4.4). This prepro-
cessing step turns out to be an important feature of the forbidden set branching
scheme: For each of the forbidden set based branch-and-bound algorithms we can
solve by far more instances to optimality within shorter computation times. For
LIN -FS without this preprocessing step we solved 295 (out of 480) instances to
optimality. This equals a loss of roughly 25% of optimized instances when com-
pared to the experiment where sorting of forbidden sets was enabled (there, 390
instances were solved optimally). Moreover, the average computation time re-
quired to solve these instances increases by a factor of roughly 4. The differences
for the other algorithms (PRS-FS andES-FS) are of the same order of magnitude.

6.5.5 Application to other Instances

The experiments performed so far were restricted to instances of small size,
i. e., the number of jobs in each instance was small. In this section we report on
results that were obtained by applying each of the branch-and-bound algorithms to
test sets of instances with 30 and 60 jobs, respectively. The test sets have already
been described in Section 4.4.1; in total, there are480 instances with30 jobs and
480 instances with60 jobs. In addition to the instances of the PSPLIB, we applied
the branch-and-bound algorithms to an instance taken from (Golenko-Ginzburg
and Gonik 1997).

For each of the experiments presented next we restricted the computation time
to a maximum of 100 seconds per instance. The results for the test sets of the
PSPLIB are displayed in Table 6.5. In the first column we state the used algo-
rithm and in the second column we give the size of the considered instances (in
terms of the number of jobs per instance). The third column shows the number of
instances where the size of the initial data (the instance, the minimal forbidden sets
and some additional data that is created within preprocessing) exceeded the limit
of 50 MB. The figures in Columns 4 and 5 display the number of instances where
the branch-and-bound was aborted due to the memory and time limit, respectively.
The sixth column finally gives the number of instances that were solved to opti-
mality. For instances with 30 jobs, although the number of minimal forbidden sets

128 Branch-and-Bound Algorithms

Algorithm #jobs pre-process memory limit time limit optimized
PRS-FS 30 0 0 338 142
LIN -FS 30 0 0 301 179
ES-FS 30 0 50 307 123
LIN -PT 30 0 0 379 101
JBP-PT 30 0 0 478 2
PRS-FS 60 71 127 280 2
LIN -FS 60 71 82 316 11
ES-FS 60 71 230 177 2
LIN -PT 60 71 2 394 7
JBP-PT 60 0 0 480 0

Table 6.5: Results of the algorithms applied to 480 instances with 30 and 60 jobs,
respectively. The figures show the number of instances that had to be aborted due
to the memory limit within preprocessing (Column 3), memory and time limit
within the branch-and-bound (Columns 4 and 5), and the number of optimally
solved instances (Column 6). We restricted the computation time to 100 seconds
and the memory limit to 50 MB per instance.

is considerably larger when compared to the instances with 20 jobs (326 on aver-
age, 4411 maximum), for each of the 480 instances a feasible solution was found.
LIN -FSsolved 179 out of 480 instances to optimality, which are considerably more
instances when compared to the other branch-and-bound algorithms. Moreover,
on average over all 480 instances,LIN -FS produced the best feasible solutions,
which are even slightly better than the solutions obtained from the preselective
algorithm (recall that, contrarily, for the optimum values we haveρPRS 6 ρLIN).
For the test set with 60 jobs per instance, we see that almost none of the instances
was solved to optimality. EvenLIN -FScan verify optimality for only 11 instances.
The reason is that due to the very many minimal forbidden sets (often more than
20,000) all algorithms except forJBP-PT can evaluate only few nodes of the search
tree. In particular, for110 instances with more than 20,000 minimal forbidden
sets each, the average number of nodes that are evaluated within a second is16
for LIN -FS. For instances with less than20, 000 minimal forbidden sets (299), 38
nodes are evaluated per second (these figures are based on 200 scenarios of job
processing times).JBP-PT evaluates roughly28 nodes per second, independently
of the number of minimal forbidden sets. Consequently, for instances with many
minimal forbidden sets the improvement of the expected makespan is negligible
when compared to the initial upper bound. Contrarily,JBP-PT improves the initial
upper bound by roughly2.5% on average (13% maximum).

Finally, in addition to the above instances, we considered a project with36 jobs

6.5 Computational Study 129

taken from (Golenko-Ginzburg and Gonik 1997). In contrast to the instances of
the PSPLIB, this instance already includes information of random job processing
times, that is, for each jobj, a minimum and maximum processing timepmin

j and
pmax

j is given. We then assume that each processing time is uniformly distributed.
The uniform distribution was also considered in (Golenko-Ginzburg and Gonik
1997). The instance contains 3730 minimal forbidden sets. Moreover, assuming
fixed job processing timespj = (pmin

j + pmax
j)/2, a deterministic upper bound of

419 was computed by the algorithmJBP-PT.
Golenko-Ginzburg and Gonik (1997) compute a feasible solution for that in-

stance with expected makespan 448 (we rounded all reported values appropri-
ately). Recall from the introduction of the chapter that, at each job completion
time t, they solve an NP-hard knapsack type problem in order to define sets of
jobs to be started. They also suggest to heuristically compute the sets which re-
sulted in a solution of (rounded) 461. They do not report on computation times
of the heuristics. In fact, already the starting solutions of our algorithms (see
Section 6.4.1) are of comparable quality; in particular, the initial job-based pri-
ority policy has an expected makespan of (rounded) 445; computation time is
negligible. Moreover,JBP-PT constructs a solution with an expected makespan of
(rounded) 434 in less than 40 seconds. However, the other algorithms were not
able to improve their initial solution within a time limit of 100 seconds.

To conclude this section, althoughJBP-PT behaved poorly for verifying opti-
mality, for the considered instances, the algorithm works quite reasonable if the
goal is to compute feasible solutions of good quality.

CONCLUDING REMARKS

The purpose of this thesis was to develop theory and algorithms which lead to a
better understanding of stochastic resource-constrained project scheduling prob-
lems. Starting from the observation that the widely used class of priority policies
is not a good choice in terms of a ‘robust’ execution of projects, we focussed
on the structurally appealing class of preselective policies which does not show
the so-called Graham anomalies. We first studied the model ofAND/OR prece-
dence constraints which turned out to be the combinatorial core of a preselective
policy and we established various results that are useful within their theoretical
and computational treatment. We then focussed on the representation of resource
constraints by minimal forbidden sets which are necessary to define and handle
preselective policies. We developed an effective algorithm to construct all mini-
mal forbidden sets of a given instance which in addition suggests a considerably
compact representation.

The above summarized theory suggested to additionally study the subclasses
of linear preselective policies and job-based priority policies which are compu-
tationally more tractable in comparison to preselective policies. Based on these
classes of policies we developed branch-and-bound algorithms and established
results on the trade-off between computational efficiency on the one hand and
solution quality on the other hand. Moreover, we explored the practical limits
of forbidden set based policies. The implemented branch-and-bound algorithms
exposed that good feasible solutions for instances with less than 1,000 minimal
forbidden sets can easily be computed; for instances with less than 100 minimal
forbidden sets the algorithms even computed optimal solutions (in the considered
class) within short computation times. Notice that with additional truncation (or
rounding of expected cost values) the above mentioned limits on the number of
forbidden sets can be further increased. Moreover, by appropriate preprocessing,
the number of minimal forbidden sets in the instance can be reduced considerably
(e. g., by inserting additional precedence constraints). However, a very large num-
ber of minimal forbidden sets makes the use of forbidden set based solution pro-
cedures computationally inefficient. Then, the remaining alternative (among the
classes of policies considered in this thesis) is to use job-based priority policies
since they do not require the representation of resource-constraints by minimal
forbidden sets. Although the minimum expected cost that can be achieved in the
class of job-based priority policies may be considerably larger when compared to

131

132 Concluding Remarks

(linear) preselective policies, we have empirically demonstrated that for the con-
sidered instances the deviation was only marginal: the optimum makespan among
the class of job-based priority policies was only slightly larger (less than 1% on
average over 149 instances) when compared to the optimum makespan within the
class of preselective policies. Hence, the class of job-based priority policies (but
also the class of linear preselective policies) seems to be an attractive starting point
to develop heuristic algorithms for computing ‘robust’ solutions of good quality.

The contributions of this thesis not only seem to lead to a better understanding
of resource-constrained project scheduling problems, they also raise a number of
interesting questions and future research directions.

First, given a set ofAND/OR precedence constraints with arbitrary time lags
between the start times of jobs, does there exist a polynomial time algorithm to de-
cide whether there exists a feasible schedule? The problem has not only received
attention within the context of scheduling problems, it also occurs within other
fields such as, e. g., game theory and online optimization and is hence of strong
interest within a broader context. Since the problem is in NP∩ co-NP, and since
there exists a simple pseudo-polynomial time algorithm to solve the problem, we
believe that there exists a polynomial time algorithm. This opinion is shared by
Zwick and Paterson (1996) who conjecture in their concluding remarks that de-
ciding a mean payoff game is in P. We think that Lemma 3.2.3 may be a useful
starting point to derive new insights towards a polynomial time algorithm. It fol-
lows from the lemma that it suffices to decide in polynomial time whether there
exists a generalized cycle in a digraph ofAND/OR precedence constraints which
contains no (ordinary) cycle of non-positive length.

The second topic we want to address is related to resource-constrained project
scheduling instances with very scarce resources. Many previously studied algo-
rithms for deterministic resource-constrained project scheduling problems require
very large computation times for problems where resources are scarce. We ob-
served that there often exist surprisingly few minimal forbidden sets for instances
with very scarce resources. Moreover, the forbidden set based branch-and-bound
algorithms showed quite reasonable performance when applied to instances with
this property. Hence, it may be fruitful to develop algorithms which take advan-
tage of the structural benefits of minimal forbidden sets to solve instances with
very scarce resources.

Another interesting field of research is concerned with a more detailed anal-
ysis of a given policy. Suppose that it has already been decided that a project
is executed according to the policyΠ. For risk management purposes it is then
important to collect more detailed information on the expected start times of jobs
as well as on the evolution of project costs. Hence, methods are required to (ap-
proximately) compute the entireproject cost distribution. It is a strong benefit

Concluding Remarks 133

of ES-policies that they can be represented by a stochastic project network. For
such networks, the determination of the project cost distribution is a well studied
problem as we have noted in Chapter 1.2. IfΠ is a preselective policy, however,
then the results on stochastic project networks are not directly applicable. The
problem is to generalize methods developed for traditional precedence constraints
(ES-policies, stochastic project networks) toAND/OR precedence constraints (pre-
selective policies). In fact, this seems sometimes possible as the following exam-
ple demonstrates. To compute stochastic bounds on the makespan distribution
of a linear preselective policy, one can basically apply an algorithm for tradi-
tional precedence constraints proposed by Kleindorfer (1971). The core problem
is to compute the maximum of possibly dependent random variables. Based on
a topological ordering of the jobs, Kleindorfer (1971) computes stochastic (lower
and upper) bounds on the maximummaxi∈Predj

(Ci(p)) of job completion times
which yield bounds on the completion time distribution of each jobj. Using sim-
ilar stochastic bounds on theminimumof (possibly dependent) random variables
and the fact that a linear preselective policy can be expressed as a topological
ordering of the jobs, we obtain bounds on the makespan distribution of a linear
preselective policy by essentially the same approach.

LIST OF ALGORITHMS

1 Feasibility check of a set of waiting conditions 21
2 Computation of a minimal reduction. 29
3 Computation of earliest job start times for digraphs without cycles

of length0 . 42
4 Computation of earliest job start times for non-neg. time lags . . . 44
5 Compute all minimal forbidden sets. 61
6 EvaluateNode (subroutine of Algorithm 5) 62
7 Computing earliest start times for a linear preselective policy . . . 86
8 Computing earliest start times for a job-based priority policy . . . 90
9 Dominance rule within the forbidden set based branch-and-bound

algorithms . 105

134

BIBLIOGRAPHY

Adelson-Velsky, G. M. and E. Levner (1999, November). Project scheduling
in AND/OR graphs: A generalization of Dijkstra’s algorithm. Technical re-
port, Department of Computer Science, Holon Academic Institute of Tech-
nology, Holon, Israel.

Adlakha, V. G. and V. G. Kulkarni (1989). A classified bibliography of research
on stochastic PERT networks: 1966-1987.INFOR 27, 272–296.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993).Network Flows. Prentice
Hall.

Alvarez-Vald́es Olagúibel, R. and J. M. Tamarit Goerlich (1993). The project
scheduling polyhedron: Dimension, facets, and lifting theorems.European
Journal of Operational Research 67, 204–220.

Arnold, B. C. (1988). Bounds on the expected maximum.Communications in
Statistics, Theory and Methods 17, 2135–2150.

Ausiello, G., A. d’Atri, and M. Protasi (1980). Structure preserving reductions
among convex optimization problems.Journal of Computer and System
Science 21, 136–153.

Ausiello, G., A. d’Atri, and D. Sacc̀a (1983). Graph algorithms for functional
dependency manipulation.Journal of the ACM 30, 752–766.

Ausiello, G., A. d’Atri, and D. Sacc̀a (1986). Minimal representations of di-
rected hypergraphs.SIAM Journal on Computing 15, 418–431.

Balas, E. (1971). Project scheduling with resource constraints. In E. M. L.
Beale (Ed.),Applications of Mathematical Programming, pp. 187–200. The
English University Press, London.

Balas, E. and E. Zemel (1978). Facets of the knapsack polytope from minimal
covers.SIAM Journal on Applied Mathematics 34, 119–148.

Bartusch, M. (1984).Optimierung von Netzplänen mit Anordnungsbeziehun-
gen bei knappen Betriebsmitteln. Ph. D. thesis, Rheinisch-Westfälische
Technische Hochschule Aachen.

Bartusch, M., R. H. M̈ohring, and F. J. Radermacher (1988). Scheduling project
networks with resource constraints and time windows.Annals of Opera-
tions Research 16, 201–240.

135

136 Bibliography

Bast, H. (1998). Dynamic scheduling with incomplete information. InProc.
10th Annual Symposium on Parallel Algorithms and Architectures SPAA,
Puerto Vallerta, Mexico, pp. 182 – 191. ACM.

Birge, J. R. and M. A. H. Dempster (1996). Stochastic programming ap-
proaches to stochastic scheduling.Journal of Global Optimization 9, 383–
409.

Bouleimen, K. and H. Lecocq (2000). A new efficient simulated annealing al-
gorithm for the resource constrained project scheduling problem and its
multiple modes version. Preprint, Service de Robotique et Atomatisation,
Universit́e de Lìege, Lìege, Belgium.

Brandsẗadt, A., V. B. Le, and J. P. Spinrad (1999).Graph Classes: A Survey.
SIAM Monographs on Discrete Mathematics and Applications. Society for
Industrial and Applied Mathematics.

Bratley, P., B. L. Fox, and L. E. Schrage (1987).A Guide to Simulation(2nd
ed.). Springer-Verlag.

Brucker, P. (1998).Scheduling Algorithms. Springer-Verlag.

Brucker, P., A. Drexl, R. H. M̈ohring, K. Neumann, and E. Pesch (1999).
Resource-constrained project scheduling: Notation, classification, models,
and methods.European Journal of Operational Research 112, 3–41.

Brucker, P. and S. Knust (2000). A linear programming and constraint
propagation-based lower bound for the RCPSP.European Journal of Op-
erational Research 127, 355–362.

Brucker, P., S. Knust, A. Schoo, and O. Thiele (1998). A branch & bound algo-
rithm for the resource-constrained project scheduling problem.European
Journal of Operational Research 107, 272–288.

Bruno, J. L., P. J. Downey, and G. N. Frederickson (1981). Sequencing
tasks with exponential service times to minimize the expected flowtime or
makespan.Journal of the Association for Computing Machinery 28, 100–
113.

Carlier, J. (1982). The one–machine sequencing problem.European Journal of
Operational Research 11, 42–47.

Cavalcante, C. C. B., C. C. de Souza, M. W. P. Savelsbergh, Y. Wang, and
L. A. Wolsey (1998). Scheduling projects with labour constraints. Technical
Report 9859, CORE discussion paper.

Chauvet, F. and J.-M. Proth (1999). The PERT-problem with alternatives:
Modelisation and optimisation. Technical report, Institut National de
Recherche en Informatique et en Automatique (INRIA), France.

Bibliography 137

Christofides, N., R. Alvarez-Valdes, and J. M. Tamarit (1987). Project schedul-
ing with resource constraints: A branch-and-bound approach.European
Journal of Operational Research 29, 262–273.

Chvátal, V. and P. L. Hammer (1977). Aggregation of inequalities in integer
programming.Annals of Discrete Mathematics 1, 145–162.

Cook, W., W. Cunnigham, W. Pulleyblank, and A. Schrijver (1998).Combina-
torial Optimization. Wiley.

Demeulemeester, E. and W. Herroelen (1992). A branch-and-bound procedure
for the multiple resource-constrained project scheduling problem.Manage-
ment Science 38, 1803–1818.

Demeulemeester, E. and W. Herroelen (1997). New benchmark results for the
resource-constrained project scheduling problem.Management Science 43,
1485–1492.

Devroye, L. P. (1979). Inequalities for the completion times of stochastic PERT
networks.Mathematics of Operations Research 4, 441–447.

Dinic, E. A. (1990). The fastest algorithm for the PERT problem with AND-
and OR-nodes (the new-product-new technology problem). In R. Kannan
and W. R. Pulleyblank (Eds.),Integer Programming and Combinatorial
Optimization, Proceedings of a conference held at the University of Wa-
terloo, May 28-30, 1990, by the Mathematical Programming Society, pp.
185–187.

Dodin, B. (1985). Bounding the project completion time distribution in PERT
networks.Operations Research 33, 862–881.

Dorndorf, U., E. Pesch, and T. Phan Huy (2000a). A branch-and-bound algo-
rithm for the resource-constrained project scheduling problem.Mathemat-
ical Methods of Operations Research 52, 413–439.

Dorndorf, U., E. Pesch, and T. Phan Huy (2000b). A time oriented branch-and-
bound algorithm for resource-constrained project scheduling with gener-
alised precedence constraints.Management Science 46, 1365–1384.

Dowling, W. F. and J. H. Gallier (1984). Linear-time algorithms for testing
satisfiability of propositional Horn formulae.Journal on Logic Program-
ming 1, 267–284.

Duchet, P. (1995). Hypergraphs. In R. Graham, M. Grötschel, and L. Lov́asz
(Eds.),Handbook of Combinatorics, Chapter 7, pp. 381–432. Amsterdam:
Elsevier Science.

Ehrenfeucht, A. and J. Mycielski (1979). Positional strategies for Mean Payoff
Games.International Journal of Game Theory 8, 109–113.

138 Bibliography

Escudero, L. F., P. V. Kamesam, A. J. King, and R. J.-B. Wets (1993). Produc-
tion planning via scenario modelling.Annals of Operations Research 43,
311–335.

Feige, U. and J. Kilian (1998). Zero-knowledge and the chromatic number.
Journal of Computer and System Sciences 57, 187–199.

Fernandez, A. A. and R. L. Armacost (1996). The role of the non-anticipativity
constraint in commercial software for stochastic project scheduling.Com-
puters and industrial engineering 31, 233–236.

Fernandez, A. A., R. L. Armacost, and J. Pet-Edwards (1998a). A model for the
resource constrained project scheduling problem with stochastic task dura-
tions. In Proceedings of the 7th Annual Industrial Engineering Research
Conference, Banff, Alberta, Canada.

Fernandez, A. A., R. L. Armacost, and J. Pet-Edwards (1998b). Understanding
simulation solutions to resource constrained project scheduling problems
with stochastic task durations.Engineering Management Journal 10, 5–13.

Fest, A., R. H. M̈ohring, F. Stork, and M. Uetz (1998). Resource-constrained
project scheduling with time windows: A branching scheme based on dy-
namic release dates. Technical Report 596/1998, Technische Universität
Berlin, Department of Mathematics, Germany. Revised 1999.

Fulkerson, D. R. (1961). A network flow computation for project cost curves.
Management Science 7, 167 – 178.

Fulkerson, D. R. (1962). Expected critical path length in PERT networks.Op-
erations Research 10, 808–817.

Gallo, G., C. Gentile, D. Pretolani, and G. Rago (1998). Max Horn SAT and
the minimum cut problem in directed hypergraphs.Mathematical Program-
ming 80, 213–237.

Gallo, G., G. Longo, S. Pallottino, and S. Nguyen (1993). Directed hypergraphs
and applications.Discrete Applied Mathematics 42, 177–201.

Garey, M. J. and D. S. Johnson (1979).Computers and Intractibility: A Guide
to the Theory ofNP-Completeness. New York: Freemann.

Gemmil, D. D. (2000). Personal communication.

Gillies, D. W. (1993).Algorithms to schedule tasks with AND/OR precedence
constraints. Ph. D. thesis, University of Illinois at Urbana-Champaign, De-
partment of Computer Science, Urbana, Illinois, USA.

Gillies, D. W. and J. W.-S. Liu (1995). Scheduling tasks with AND/OR prece-
dence constraints.SIAM Journal on Computing 24, 797–810.

Bibliography 139

Goldwasser, M. H. and R. Motwani (1999). Complexity measures for assembly
sequences.International Journal of Computational Geometry and Applica-
tions 9, 371–418.

Golenko-Ginzburg, D. and A. Gonik (1997). Stochastic network project
scheduling with non-consumable limited resources.International Journal
of Production Economics 48, 29–37.

Golumbic, M. C. (1980).Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, New York.

Graham, R. L. (1966). Bounds on multiprocessing timing anomalies.Bell Sys-
tem Technical Journal 45, 1563–1581.

Hagstrom, J. N. (1988). Computational complexity of PERT problems.Net-
works 18, 139–147.

Hartmann, S. (1999). Self-adapting genetic algorithms with an application to
project scheduling. Manuskripte aus den Instituten für Betriebswirtschaft-
slehre der Universität Kiel 506, Christian-Albrechts-Universität zu Kiel,
Germany.

Hartmann, S. and R. Kolisch (1998). Heuristic algorithms for solving the
resource-constrained project scheduling problem: Classification and com-
putational analysis. In J. We¸glarz (Ed.),Handbook on Recent Advances in
Project Scheduling. Kluwer, Amsterdam.

Heilmann, R. and C. Schwindt (1997). Lower bounds for RCPSP/max. Tech-
nical Report 511, WIOR, University of Karlsruhe, Germany.

Henderson, P. B. and Y. Zalcstein (1977). A graph-theoretic characterization
of the PVchunk class of synchronizing primitives.SIAM Journal on Comput-
ing 6, 88–108.

Henrion, M., R. Fung, T. Cheung, M. Steele, and B. Basevich (1996). Inte-
grated risk analysis for schedule and cost. Technical Report NAS10-12116,
NASA/Kennedy Space Center, performing organization: Lumina Decision
Systems Inc.

Igelmund, G. and F. J. Radermacher (1983a). Algorithmic approaches to pres-
elective strategies for stochastic scheduling problems.Networks 13, 29–48.

Igelmund, G. and F. J. Radermacher (1983b). Preselective strategies for the op-
timization of stochastic project networks under resource constraints.Net-
works 13, 1–28.

Jurdzínski, M. (1998). Deciding the winner in parity games is in UP∩ co-UP.
Information Processing Letters 68, 119–124.

140 Bibliography

Kaerkes, R., R. H. M̈ohring, W. Oberschelp, F. J. Radermacher, and M. M.
Richter (1981). Mathematsche Untersuchungen zur stochastischen Ka-
paziẗatsoptimierung. Report on a research project at the RWTH Aachen,
Germany.

Kämpke, T. (1985).Optimalitätsaussagen für spezielle stochastische Schedul-
ingprobleme. Ph. D. thesis, RWTH Aachen, Germany.

Kelley, J. E. (1961). Critical path planning and scheduling: Mathematical basis.
Operations Research 9, 296 – 320.

Kelley, J. E. and M. R. Walker (1959). Critical path planning and scheduling:
An introduction. Mauchly Associates, Inc., Ambler, Pa.

Klein, R. and A. Scholl (1999). Computing lower bounds by destructive im-
provement: An application to resource–constrained project scheduling.Eu-
ropean Journal of Operational Research 112, 322–346.

Kleindorfer, G. B. (1971). Bounding distributions for a stochastic acyclic net-
work. Operations Research 19, 1586–1601.

Kleywegt, A. J. and A. Shapiro (1999). The sample average approximation
method for stochastic discrete optimization. Technical report, School of
Industrial and Systems Engineering, Georgia Institute of Technology.

Knuth, D. E. (1977). A generalization of Dijkstra’s algorithm.Information Pro-
cessing Letters 6, 1–5.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation.European Journal of Opera-
tional Research 90, 320–333.

Kolisch, R. and A. Sprecher (1996). PSPLIB - a project scheduling problem
library. European Journal of Operational Research 96, 205–216.

Korte, B., L. Lov́asz, and R. Schrader (1991).Greedoids. Springer-Verlag.

Korte, B. and J. Vygen (2000).Combinatorial Optimization: Theory and Com-
plexity. Springer-Verlag.

Lawler, E. L., J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (1993).
Sequencing and scheduling: Algorithms and complexity. InLogistics of
Production and Inventory, Volume 4 ofHandbooks in Operations Research
and Management Science, pp. 445–522. North-Holland, Amsterdam.

Levner, E., S. C. Sung, and M. Vlach (1999). Multiple-choice project schedul-
ing. Technical report, Japan Advanced Institute of Science and Technology,
Hokuriku.

Bibliography 141

Levner, E., S. C. Sung, and M. Vlach (2000). On Project Scheduling with al-
ternatives. InProceedings of the 7th International Workshop on Project
Management and Scheduling, Osnabr̈uck, Germany, pp. 197–198.

Ludwig, W. (1995). A subexponential randomized algorithm for the simple
stochastic game problem.Information and Computation 117, 151–155.

Mahadev, N. V. R. and U. N. Peled (1995).Threshold Graphs and Related
Topics, Volume 56 ofAnnals of Discrete Mathematics. North-Holland.

Malcom, D. G., J. H. Roseboom, C. E. Clark, and W. Fazar (1959). Appli-
cation of a technique for research and development program evaluation.
Operations Research 7, 646–669.

Martin, J. J. (1965). Distribution of the time through a directed acyclic network.
Operations Research 13, 46–66.

McMillan, K. L. and D. L. Dill (1992). Algorithms for interface timing veryfi-
cation. InIEEE International Conference on Computer Design, pp. 48–51.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, and L. Bianco (1998). An exact
algorithm for the multiple resource-constraint project scheduling problem
based on a new mathematical formulation.Management Science 44, 714–
729.

Möhring, R. H. (1985). Algorithmic aspects of comparability graphs and in-
terval graphs. In I. Rival (Ed.),Graphs and Order, pp. 41–101. D. Reidel
Publishing Company, Dordrecht.

Möhring, R. H. (2000a). Scheduling under uncertainty: Bounding the
makespan distribution. Technical Report 610/1998, Technische Universität
Berlin, Department of Mathematics, Germany. To appear in Springer Lec-
ture Notes in Computer Science.

Möhring, R. H. (2000b). Scheduling under uncertainty: Optimizing against a
randomizing adversary. InProceedings of the 3nd International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems,
Lecture Notes in Computer Science, Saarbrücken, Germany. Springer-
Verlag.

Möhring, R. H. and R. M̈uller (1998). A combinatorial approach to bound
the distribution function of the makespan in stochastic project networks.
Technical Report 610/1998, Technische Universität Berlin, Department of
Mathematics, Germany.

Möhring, R. H. and F. J. Radermacher (1985). Introduction to stochastic
scheduling problems. In K. Neumann and D. Pallaschke (Eds.),Contribu-
tions to Operations Research, Proceedings of the Oberwolfach Conference

142 Bibliography

on Operations Research, 1984, pp. 72–130. Springer-Verlag, Lecture Notes
in Economics and Mathematical Systems, vol. 240.

Möhring, R. H., F. J. Radermacher, and G. Weiss (1984). Stochastic schedul-
ing problems I: General strategies.ZOR – Zeitschrift f̈ur Operations Re-
search 28, 193–260.

Möhring, R. H., F. J. Radermacher, and G. Weiss (1985). Stochastic scheduling
problems II: Set strategies.ZOR – Zeitschrift f̈ur Operations Research 29,
65–104.

Möhring, R. H., A. S. Schulz, F. Stork, and M. Uetz (2000). Solving project
scheduling problems by minimum cut computations. Technical Report 680,
Technische Universität Berlin, Department of Mathematics. Submitted.

Möhring, R. H., A. S. Schulz, and M. Uetz (1999). Approximation in stochastic
scheduling: The power of LP-based priority policies.Journal of the Asso-
ciation for Computing Machinery 46, 924–942.

Möhring, R. H., M. Skutella, and F. Stork (2000a). Forcing relations for
AND/OR precedence constraints. InEleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’00), pp. 235–236.

Möhring, R. H., M. Skutella, and F. Stork (2000b). Scheduling with AND/OR
precedence constraints. Technical Report 689/2000, Technische Universität
Berlin, Department of Mathematics, Germany. A preliminary version of
this paper (Forcing Relations for AND/OR Precedence Constraints) ap-
peared in (M̈ohring, Skutella, and Stork 2000a).

Möhring, R. H. and F. Stork (2000). Linear preselective policies for stochas-
tic project scheduling.Mathematical Methods of Operations Research 52,
501–515.

Mulvey, J. M., R. J. Vanderbei, and S. A. Zenios (1995). Robust optimization
of large-scale systems.Operations Research 43, 264–281.

Nilsson, N. J. (1980).Principals of Artificial Intelligence. Palo Alto, USA:
Tioga Publishing Company.

Ordman, E. T. (1987). Dining philosophers and graph covering problems.The
Journal of Combinatorial Mathematics and Combinatorial Computing 1,
181–190.

Papadimitriou, C. H. (1994).Computational Complexity. Addison-Wesley
Publishing Company.

Papadimitriou, C. H. and K. Steiglitz (1982).Combinatorial Optimization; Al-
gorithms and Complexity. Prentice-Hall, Englewood Cliffs.

Bibliography 143

Patterson, J. H. (1984). A comparison of exact approaches for solving the mul-
tiple constrained resource project scheduling problem.Management Sci-
ence 30, 854–867.

Patterson, J. H., R. Słowiński, F. B. Talbot, and J. We¸glarz (1989). An algo-
rithm for a general class of precedence and resource constrained schedul-
ing problems. In R. Słowiński and J. We¸glarz (Eds.),Advances in Project
Scheduling, pp. 3–28. Elsevier.

Phillips, S. and M. I. Dessouky (1977). Solving the project time/cost tradeoff
problem using the minimal cut concept.Management Science 24, 393 –
400.

Pinedo, M. (1995).Scheduling: Theory, algorithms and systems. International
Series in Industrial and Systems. Prentice Hall.

Provan, J. S. and M. O. Ball (1983). The complexity of counting cuts and of
the probability that a graph is connected.SIAM J. Comput. 12, 777–788.

PSPLIB (2000).ftp://ftp.bwl.uni-kiel.de/pub/operations-
research/psplib/HTML/data.html .

Radermacher, F. J. (1981a). Cost-dependent essential systems of ES-strategies
for stochastic scheduling problems.Methods of Operations Research 42,
17–31.

Radermacher, F. J. (1981b). Optimale Strategien für stochastische Schedul-
ing Probleme. Habilitationsschrift, RWTH Aachen. In: Schriften zur In-
formatik und angewandten Mathematik 98, RWTH Aachen, 1984.

Radermacher, F. J. (1985). Scheduling of project networks.Annals of Opera-
tions Research 4, 227–252.

Radermacher, F. J. (1986). Analytical vs. combinatorial characterizations of
well-behaved strategies in stochastic scheduling.Methods of Operations
Research 53, 467–475.

Raz, R. and S. Safra (1997). A sub-constant error-probability low-degree test,
and sub-constant error-probability pcp characterization of np. InProceed-
ings of the 29th Annual ACM Symposium on the Theory of Computing, pp.
475–484.

Righter, R. (1994). Scheduling. InStochastic orders and their applications,
Chapter 13, pp. 381–432. Academic Press.

Rockafellar, R. T. and R. J.-B. Wets (1991). Scenarios and policy aggregation
in optimization under uncertainty.Mathematics of Operations Research 16,
119–147.

144 Bibliography

Ross, S. (1983).Inroduction to stochastic dynamic programming. Academic
Press.

Scḧaffter, M. (1997). Scheduling with respect to forbidden sets.Discrete Ap-
plied Mathematics 72, 141–154.

Schrijver, A. (1986).Theory of Linear and Integer Programming. John Wiley
& Sons.

Schwiegelshohn, U. and L. Thiele (1999). Dynamic min-max problems.Dis-
crete Event Dynamic Systems 9, 111–134.

Schwindt, C. (1998). A branch-and-bound algorithm for the resource-
constrained project duration problem subject to temporal constraints. Tech-
nical Report 544, WIOR, University of Karlsruhe, Germany.

Skutella, M. (1998).Approximation and Randomization in Scheduling. Ph. D.
thesis, Technische Universität Berlin, Germany.

Skutella, M. and M. Uetz (2001). Scheduling precedence-constrained jobs
with stochastic processing times on parallel machines. InProceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’01). to appear.

Sotskov, Y. N., V. S. Tanaev, and F. Werner (1998). On the stability radius of
an optimal schedule: a survey and recent developments. InIndustrial Ap-
plications of Combinatorial Optimization, Volume 16, pp. 72–108. Boston,
MA, USA: Kluwer Academic Publishers.

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at
modest memory requirements.Management Science 46, 710–723.

Stinson, J. P., E. W. Davis, and B. H. Khumawala (1978). Multiple resource
constrained scheduling using branch and bound.AIEE Transactions 10,
252–259.

Stork, F. (2000). Branch-and-bound algorithms for stochastic resource-
constrained project scheduling. Technical Report 702/2000, Technische
Universiẗat Berlin, Department of Mathematics, Germany.

Stork, F. and M. Uetz (2000). On the representation of resource constraints
in project scheduling. Technical Report 693/2000, Technische Universität
Berlin, Department of Mathematics.

Trotter, W. T. (1992).Combinatorics and Partially Ordered Sets: Dimension
Theory. John Hopkins University Press, Baltimore, ML.

Tsai, Y.-W. and D. D. Gemmill (1998). Using tabu search to schedule activities
of stochastic resource-constrained projects.European Journal of Opera-
tional Research 111, 129–141.

Bibliography 145

Ullman, J. D. (1982).Principles of database systems. Computer Science Press,
Inc.

Valls, V., M. Laguna, P. Lino, A. Ṕerez, and M. S. Quintanilla (1998). Project
scheduling with stochastic activity interruptions. In J. We¸glarz (Ed.),Hand-
book on Recent Advances in Project Scheduling, pp. 333–353. Kluwer, Am-
sterdam.

van Slyke, R. M. (1963). Monte Carlo methods and the PERT problem.Oper-
ations Research 11, 839–860.

Vöge, J. and M. Jurdziński (2000). A discrete strategy improvement algorithm
for solving parity games. In E. A. Emerson and A. P. Sistla (Eds.),Com-
puter Aided Verification, 12th International Conference, CAV 2000, Pro-
ceedings, Volume 1855 ofLecture Notes in Computer Science, Chicago,
Illinois, USA, pp. 202–215. Springer-Verlag.

Wȩglarz, J. (Ed.) (1999).Project Scheduling: Recent Models, Algorithms, and
Applications. Kluwer.

Wets, R. J.-B. (1989). The aggregation principle in scenario analysis and
stochastic optimization. In S. W. Wallace (Ed.),Algorithms and Model For-
mulations in Mathematical Programming, Volume F51 ofNato ASI Series,
pp. 91–113. Springer-Verlag.

Wiest, J. D. (1963). Some properties of schedules for large projects with limited
resources.Operations Research 12, 395–418.

Yannakakis, M. (1982). The complexity of the partial order dimension prob-
lem.SIAM Journal on Algebraic and Discrete Methods 3, 351–358.

Zwick, U. and M. Paterson (1996). The complexity of Mean Payoff Games on
graphs.Theoretical Computer Science 158, 343–359.

SYMBOL INDEX

CP the critical path lower bound, page 103
Cj the completion time of jobj, page 7
C a vector(C1, . . . , Cn) of job completion times, page 8
E0 the set of precedence constraints, page 7
E a set of precedence constraints withE0 ⊆ E

F the set of minimal forbidden sets, page 52
f the number of forbidden sets, page 79
F ∈ F a minimal forbidden set, page 52
G0 the partial order induced by the precedence constraintsE0, page 7
i, j, h ∈ V jobs
κ the cost function, page 7
K the set of different resources, page 7
k ∈ K a single resource, page 7
pj the processing time of jobj, page 7
p a scenario, a vector of job processing times, page 11
pj the random variable of the processing time of jobj, page 10
p the random vector of job processing times, page 11
P a set of scenariosp of the random vectorp, page 103
Π a policy, page 75
Predj the set of predecessors of jobj with respect toE0, page 107
ρτ the optimum expected cost value among the policy classτ , page 76
Rk availability of resourcek, page 7
rjk resource requirement of jobj w.r.t. resourcek, page 7
R> the set of non-negative real numbers, page 7
R> the set of positive real numbers, page 7
s a selections = (s1, . . . , sf), page 79
Sj the start time of jobj, page 7
S a vector(S1, . . . , Sn) of job start times, page 7
τ a particular class of scheduling policies , page 76
V the set of jobs, page 7
w = (X, j) a waiting condition with predecessor setX and waiting jobj, page 19
W the set of waiting conditions, page 17

147

INDEX

AND/OR graph, 18
AND/OR precedence constraints, 17
AND-constraint, 17
AND-node, 34

action, 74
acyclic preselective policy

definition, 88
antimatroid, 18

critical path lower bound, 103
cross pruning, 104
cycle, 20

generalized, 20

Deadline problem, 49
decision time, 74
delaying alternative, 79
destruction matrix, 104
dominance rule, 103

ES-policy
definition, 78

essentially equal, 63

forbidden set, 52
minimal, 52
representation, 52
branching scheme, 99

Graham anomalies, 72, 76
Graham’s List Scheduling, 76

Hitting Set, 49
Horn SAT, 22
hypergraph, 53

directed, 18

idle time, 75

initial segment, 103
interface timing verification, 35

Jensen inequality, 110
job, 1

preselected, 79
job-based priority policy, 72

definition, 89

knapsack inequality, 55

linear preselective policy, 72
definition, 84

mean payoff game, 38
min-max-inequalities, 33
minimal cover, 55

network complexity, 63
non-anticipativity constraint, 74, 75

optimal expected costs, 76, 91
OR-constraint, 17
OR-node, 34

parallel list scheduling scheme, 76
Partition Problem, 55
policy, 71

definition, 75
domination, 78

precedence-tree branching scheme, 100
predecessor set, 18
preselective policy, 72

definition, 82
priority policy, 71, 76
PV-chunk synchronizing primitive, 55

realization, 20, 80
linear, 21

149

150 Index

resource factor, 63
resource strength, 63

SAT, 30
schedule, 34

feasible, 7
partial, 34
resource-feasible, 7
time-feasible, 7

scheduling policy, 71
selection, 79

feasible, 81
semaphore, 55
Set Covering problem, 50
stable set, 53
stochastic dynamic programming, 73
strategy, 71

threshold hypergraph, 53
threshold representation, 51
time lag, 33

maximal, 34
time-cost tradeoff curve, 47
time-cost tradeoff problem, 47

waiting condition, 18
equivalent, 27
generalized, 30
implicit, 23
minimal, 27

waiting job, 18

ZUSAMMENFASSUNG

In der ressourcenbeschränkten Projektplanung m̈ussen Vorg̈ange (Jobs) unter Be-
rücksichtigung von Reihenfolgebeziehungen und Kapazitätsrestriktionen zeitlich
so eingeplant werden, dass eine gegebene Kostenfunktion minimiert wird. In
der vorliegenden Arbeit wird zusätzlich davon ausgegangen, dass die Dauer der
einzelnen Vorg̈ange nicht zu Beginn der Planung bekannt, sondern durch je ei-
ne Zufallsvariable gegeben ist. Auf diese Weise ist es möglich, unvorhersehba-
re Ereignisse wie zum Beispiel Wetterbedingungen, Krankheit von Mitarbeitern,
Rechtsfragen oder Genehmigungsverfahren in die Planung eines Projekts mit ein-
zubeziehen. Als Konsequenz hieraus kann das Risiko von Projekt-Verzögerungen
und damit verbundenen Kostensteigerungen (von denen im Rahmen von umfang-
reichen Projekten ḧaufig berichtet wird) reduziert werden. Dieses Modell wird
in der Literatur ḧaufig alsStochastic Resource-Constrained Project Scheduling
Problembezeichnet.

Ziel der vorliegenden Arbeit ist es, Algorithmen zu entwickeln, die die Be-
rechnung guter L̈osungen in akzeptabler Rechenzeit ermöglichen. Eine L̈osung
ist hier eine so genanntePolitik, eine Planungsvorschrift, die zu jedem möglichen
Entscheidungszeitpunktt während der Umsetzung des Projekts eine Menge von
Vorgängen definiert, deren Durchführung zum Zeitpunktt begonnen werden soll.
Basierend auf der Beobachtung, dass die häufig angewendetenPriorit äts-Politiken
nicht für eine

”
robuste“ Planung geeignet sind, liegt der Schwerpunkt der Unter-

suchungen auf der strukturell sehr attraktiven Klasse derpräselektive Politiken.
Solche Politiken selektieren für jedeminimal verbotene MengeF von Vorg̈angen
einen Vorgangj ∈ F , dessen Durchführung erst dann begonnen wird, wenn min-
destens ein anderer Vorgangi ∈ F \{j} beendet ist. Eine minimal verbotene Men-
ge ist eine minimale Teilmenge von Vorgängen, zwischen denen keine Reihenfol-
gebeziehungen vorliegen, die jedoch aufgrund der Ressourcen-Beschränkungen
nicht zur gleichen Zeit in Betrieb sein können.

Um ein bestm̈ogliches Versẗandnis von pr̈aselektiven Politiken zu erzielen, be-
trachten wir im ersten Teil der vorliegenden Arbeit eine Verallgemeinerung klas-
sischer Reihenfolgebeziehungen zwischen Vorgängen, die so genanntenAND/OR

Reihenfolgebeziehungen. Diese finden zum Beispiel im Rahmen von Montage-
oder Demontage-Prozessen Anwendung; der Zusammenhang zu dem oben be-
schriebenen ressourcenbeschränkten Scheduling-Modell besteht in der Tatsache,
dass pr̈aselektive Politiken durch eine Menge vonAND/OR Reihenfolgebeziehun-

151

152 Zusammenfassung

gen repr̈asentiert werden k̈onnen. Es werden Resultate im Zusammenhang mit
der Verallgemeinerung von Begriffen wietransitive Ḧulle und transitive Reduk-
tion erzielt. Dar̈uber hinaus werden für gegebene zeitliche Abstände zwischen
den Vorg̈angen Algorithmen zur Berechnung frühster Startzeiten von Vorgängen
entwickelt.

Da pr̈aselektive Politiken die explizite Angabe aller minimal verbotenen Men-
gen ben̈otigen, diese jedocḧublicherweise nur implizit durch den Ressourcen-
Bedarf der Vorg̈ange und die globale Ressourcen-Verfügbarkeit gegeben sind,
wird ein Algorithmus entwickelt, der aus dieser impliziten Repräsentation alle
minimal verbotenen Mengen errechnet. Es wird gezeigt, dass die Laufzeit dieses
Algorithmus polynomial in der Kodierungslänge der Ein- und Ausgabe ist, falls
die Ressourcen-Beschränkungen durcheinenRessource-Typ charakterisiert wer-
den. Dar̈uber hinaus wird ein Bezug zu so genanntenThreshold (Hyper-)Graphen
diskutiert.

Basierend auf den beschriebenen Ergebnissen werden Dominanzresultate für
präselektive Politiken abgeleitet, sowie zwei Teilklassen der präselektiven Politi-
ken definiert und untersucht, die vom algorithmischen Standpunkt gesehen besse-
re Eigenschaften als präselektive Politiken besitzen. Für diese Klassen von Politi-
ken (und eine weitere, aus der Literatur bekannte Klasse) werden insgesamt fünf
verschiedene Branch-and-Bound Verfahren entwickelt und implementiert sowie
auf Basis von 1440 Instanzen getestet und miteinander verglichen. Die empi-
rischen Ergebnisse zeigen, dass die entwickelten Resultate auf dem Gebiet der
AND/OR Reihenfolgebeziehungen die Leistung der Branch-and-Bound Verfahren
deutlich steigern und dass die vorgeschlagenen Teilklassen der präselektiven Po-
litiken gute Ausgangspunkte für den algorithmischen Zugang zur heuristischen
Lösung von Real-Life Instanzen darstellen.

CURRICULUM VITAE

14. Mai 1970 Geboren in M̈unchen

1976 – 1982 Besuch der Grundschule am Fließtal in Berlin, Bezirk
Reinickendorf

1982 – 1989 Besuch des Georg-Herwegh-Gymnasiums in Berlin,
Bezirk Reinickendorf

1989 Abitur

1989 – 1996 Mitarbeiter der Softwarefirma C.I.T. GmbH, Berlin

1989 – 1996 Studium der Techno- und Wirtschaftsmathematik
(Studienrichtung Technomathematik) an der Techni-
schen Universiẗat Berlin

1992 Vordiplom (Technomathematik)

1996 Diplom (Technomathematik)

1997 – 2001 Wissenschaftlicher Mitarbeiter an der Technischen
Universiẗat Berlin im Projekt “Projektplanung mit
variablen Vorgangsdauern”, gefördert durch die
Deutsche Forschungsgemeinschaft (DFG)

