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Abstract. The idea to simulate pedestrian flow by the application of fluid dynamics
equations has a certain history in that field. This approach is based on the application
of partial differential equations, which makes it a macroscopic method. The need to
simulate several different species of pedestrians is a need from the start, which has not
been matched very well by numerical simulations of the maroscopic type. The basis of
the description of non dense pedestrian movement by incompressible fluid flow models
consists in the introduction of an empty phase as a species of a multiphase system of
distinct phases. In this article we describe the mathematical model and modifications to
the multiphaseInterFoam-solver of the OpenFOAM library, which makes it applicable
in this field and present results that show capabilities and limitations of the modified
solver.
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1 Introduction

The simulation of pedestrians is an important issue in transport and emergency
applications. The current work in the field of pedestrian modelling and simula-
tion can be roughly divided into micro- and macroscopic models. An overview
of present results and models is given by Dogbe et al. [1].

One particular topic of interesst is the intersecting of pedestrian crowds,
which occurs when path of pedestrian groups cross. Mircoscopic simulations for
intersecting crowds are numberous and an example is the work by Helbing et al.
[2].

For the simulation of intersecting crowds we tried several approaches from
microscopic models (cf. Minjie Chen et al. [3]) to macroscopic models (cf. Berres
et al. [4]) at our own research group. For evaluation purposes, video recordings
of students crossing in a predefined area has been analysed by Plaue et al. [5].

The present article introduces a new technique for the simulation of sev-
eral sepecies in macroscopic simulation of pedestrian crowds. The focus is on the
modelling of several species with different destination and the ability to intersect
each other rather than on a precise reconstruction of known pedestrian phenom-
ena for prediction purposes. We proceed by first presenting the mathematical
model followed by a concrete implementantion and some results. Based on the
discussions in [6] and [7] we choose the incompressible Navier-Stokes equations
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as a starting point of our model and added boundary conditions and transport
equations to allow an intermixing and seperation of different species.

2 Mathematical Model

We use the non-stationary, incompressible Navier-Stokes equations

ρ
∂v

∂t
+ ρv · ∇ ⊗ v +∇p−

∇ · (µ(∇⊗ v) + µ(∇⊗ v)T ) = f (1)

∇ · v = 0

combined with a volume of fluid (VOF) method as a starting point to simulate
Np ∈ N different pedestrian species. Let P = {1, . . . , Np} be the set of indices of
pedestrian groups, then the VOF method keeps track of the species’ positions
by introducing one fraction function per species

αi(x) ∈ [0, 1],

that describes the fill level at position x ∈ Ω of species i ∈ P. The fraction
function can be discontinuous, espeacially when discretized for implementation
purposes. We demand the sum of all fraction functions to be one, i.e.∑

i∈P
αi = 1.

A standard VOF method uses the velocity computed by (1) with ρ =
∑

i∈P ρiαi,
µ =

∑
i∈P µiαi and changes every αi by solving the transport equation

∂αi

∂t
+ v · ∇αi = 0 for all i ∈ P. (2)

In the course of pedestrian simulation we tried to simulate group crossing.
Therefore, it was necessary to solve three modelling problems:

1. simulation of spaces without a pedestrian species
2. distinct species forces
3. seperation of species

2.1 Empty Spaces

An empty space is simulated by using a pedestrian group f ∈ P, Pwf = P\{f}.
This so-called fill-species is able to leave Ω by flowing through an additional di-
mension, i.e. for a two-dimensional Ω the third dimension or z-axis. It is therefore
necessary to simulate a three dimensional domain for a two dimensional problem.

The inflow and outflow over the third dimension is implemented using special
boundary conditions that are aware of the fill-species. We used a solver that
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is based on an operator splitting approach. Therefore, we have to choose two
boundary conditions; one for the velocity and one for the pressure variable.

The boundary condition for the velocity is defined as

n · v = 0, for n ·Φ ≥ 0, αf = 0 (3)

n · ∇(n · v) = 0 otherwise,

where Φ is the velocity value adjacent to the boundary condition face from the
last pressure correction step.

The pressure boundary condition is defined as

p =

{
p0 − 1

2ρ‖v‖
2, for n ·Φ < 0

p0, for n ·Φ ≥ 0, αf > 0
(4)

n · ∇p = 0, for n ·Φ ≥ 0, αf = 0

on the z-axis. The other sides of the domain can be chosen as slip boundary
conditions.

2.2 Species Forces

Each species of the intersection of pedestrians needs to have a distinct destina-
tion. Therefore the need to implement species specific forces and velocities arises.
Each pedestrian species i ∈ Pwf has a desired velocity vd

i , that is the velocity a
pedestrian species has without the influences of other pedestrian species.

The desired velocity gets transformed into a resulting force for the right hand
side in the Navier-Stokes equation (1). Following the nomenclature by Helbing
et al. for microscopic models (cf. [8], [9]), we introduce a so-called behavioural
force

f := C2(αbil)
(
C1(αbil)

∑
i∈Pwf

αiv
d
i − v

)
, (5)

with
αbil :=

∑
i∈Pwf

αi

and add it to the right hand side of the Navier-Stokes equations (1). The func-
tions C1 and C2 control the pedestrian behaviour, e.g. a choice of

C1(αbil) := (1− αbil)

C2(αbil) := αbil

approximates the pedestrian fundamental diagram.
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2.3 Seperation of Species

The seperation of species is not naturally given by the discretized VOF method.
Equation (2) does not provide a mean of seperation of once mixed cells due to
the fact we compute until now only a global velocity v out of the Navier-Stokes
equations (1). Thus, we introduce an additional transport equation

∂αi

∂t
−∇ ·

(
C3(αf )

vdi
‖vdi ‖

αi

)
= 0 (6)

for all i ∈ Pwb followed by

αf = 1−
∑
i∈Pwf

αi (7)

with C3 defining the magnitude of the seperation velocity with a typical value
of

C3(αf ) =

{
0.01, for αf > 0

0, for αf = 0.

3 Implementation

We implemented the model by modifying the already available multiphaseInter-
Foam solver in OpenFOAM [10]. The multiphaseInterFoam solver uses the finite
volume method (see for a reference of finite volume methods [11]) for the incom-
pressible Navier-Stokes equations and further implements the VOF method for
multiphase simulations. The Navier-Stokes equation is solved using the so-called
Pressure Implicit with Splitting Operators (PISO) algorithm [12]. The solver
consists mainly of three distinct steps. The velocity predictor step, the pressure
correction loop and the fraction function adjustments. It further implements a
surface tension force, which has been disabled for our experiments, but might
be used in combination with our model, too.

We need to introduce some notation to proceed. We will call E the set of
all velocity nodes and N (i), i ∈ E the set of all neighbor nodes of i, that is the
nodes whose cell share a face with the cell of i. Let us denote by Vi the volume
of a cell for node i ∈ E .

3.1 The velocity predictor step

Let ρg and µg be defined as

ρg =
∑
i∈P

ρiαi, µg =
∑
i∈P

µiαi,
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where µi and ρi are species dependend and f be computed by (5). For the most
simple case we use the explicit Euler method, so equation (1) becomes∫

Vi

ρg
vn+1 − vn

∆t
dx+

∫
∂Vi

(n · ρgΦn)vn ds+∫
Vi

∇pn dx−
∫
Vi

∇ · (µg(∇⊗ vn) + µg(∇⊗ vn)T ) dx

=

∫
Vi

fn dx (8)

in a finite volume context, where Φ is the velocity interpolated to the faces
using the values from neighbor cells and n symbolizes the current time step.
OpenFOAM is using a kind of Rhie-Chow interpolation for flux fields, which we
will symbolize by Π.

Then the algebraic equation for a single cell i ∈ E of (8) becomes

aivi +
∑

n∈N (i)

anvn = bi −∇pi (9)

in discretized form, where ai ∈ R are the coefficients for vi and b represents the
right hand side of the algebraic equation without the pressure.

3.2 The pressure correction loop

Let A be the diagonal matrix containing all ai from equation (9), that is for
k = bj/3c let (A)jj = ak and (A)ij = 0 for i 6= j and further let H be the vector
containing all anvn and the right hand side bi, that is

H3i+j = (−
∑

n∈N (i)

anvn + bi)j for j ∈ {1, 2, 3}.

This H-operator is common for OpenFOAM based implementations. We then
compute a Jacobi step for v with

vjac = A−1H

Next, we compute Φ = Π(vjac +A−1f) followed by

∇ · (A−1∇pn+1) = ∇ ·Φ (10)

to compute the new pn+1.
The face flux Φ is then corrected by

Φn+1 = Π(A−1H −A−1∇p)

followed by the correction of the velocity

vn+1 = vjac −∇p.
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The boundary conditions (3) and (4) are used for the z-axis in equations
(1) and (10), respectively. The velocity’s boundary conditions have been set to
slip at non-penetratable walls and boundary conditions for the pressure have
been chosen as zero gradient. The pressure correction loop is repeated until the
pressure converges or a maximum number of rounds is reached.

3.3 Adjustment of the Fraction Function

The computation of vn+1 allows the adjustment of the fraction function via
(2). It follows the seperation of the species by solving (6) and (7). Usually a
downwind scheme should be used for the evaluation of C3, so it is set depending
on the αf value in the target cell.

When the fraction function has been adjusted, the velocity predictor step
continues with the next time step.

4 Numerical Results

We produced simulation results for quadratic geometries with an orthogonal
mesh and on a more complex geometry inspired by real world experiments in
the Technical University of Berlin [5].

Table 1 shows the results for a quadratic area with two species crossing in
180 degrees.

As can be seen from table 1 the species cross each other, show stripe forma-
tion, create lanes and reach their desination on opposite walls. At the end of the
simulation the species are completely seperated. It should, however, be noted,
there are several effects originating in the impuls conservation, which are rather
unnatural for crowd simulation. For example the the occurence of a splash at the
moment the species hit a wall with larger values of v, which is due to the impuls
conservation and can be seen at time T = 20.0 in table 1. There, one is able to
see species one splashing back at the bottom wall. Further, the masses have a
non-neglectable acceleration time, which is in contrast to pedetrians behaviour.

Table 2 shows the results for a quadratic area with two species crossing in 90
degrees. As for the 180 degrees example both species cross, seperate and reach
their destination. Impuls effects again play a big role in the simulation, since
generally the bigger mass wins and squeezes the smaller mass out of their way.
Another effect is the acceleration of a small mass due to squeezing by a much
larger mass, which is also unnatural for pedestrians.

We made real world experiments, that can be used to test parameters and
validate the numerical results. In 2010 and 2011 we performed several exper-
iments with up to four crowd groups that were crossing in a predefined area.
The experiments have been recorded on video and we were able to observe com-
mon crowd phenomena like lane formation and isolated groups (c.f. [5]). It also
allowed us to get quantitative results for evaluation purposes by video analysis
[5].
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T = 0.00 T = 3.33

T = 13.32 T = 16.65

T = 20.00 T = 30.00

Table 1. Simulation of 180 degress crossing with max(u) = 10.0, vps = 0.04,
max(Fbil) = 1000 as parameters.
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T = 0.00 T = 2.78

T = 5.56 T = 8.34

T = 11.12 T = 13.89

Table 2. Simulation of 90 degress crossing with max(u) = 1.0, vps = 0.1, max(Fbil) =
1000 as parameters.
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Therefore, we made numerical simulation on a mesh with a geometry similar
to the control area in the real world experiments. The simulation in the control
area shows lane formation and congestions before an entrance, see picture 1. The
origin of the congestions lays in the very static desired velocities we are currently
using. A more dynamical desired velocity that better models pedestrian long and
short sight behaviour is subject of future work.

Experiments showed the fill-species and the pedestrian species should have
the same density ρ. Otherwise, we may create artificial impulses through the
seperation step that could move heavier species to a place with higher velocity.
Although different ρ values for different species will work, the impuls bilance
should be kept in mind.

Fig. 1. Simulation done with a complex geometry inspired by real world experiments.

We were also able to implement very basic in- and outlet boundary condi-
tions for multiple species, i.e. the fill-species and a pedestrian species. For inlet
boundaries we use a fixed value condition for the velocity together with the
pressure boundary condition 4. For outlet boundary conditions we use 4 and 3
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for the pressure and velocity, respectively. Further research should be put in in-
and outlet boundary conditions for more complex in- and outflow scenarios of
pedestrian, e.g. the rate of flow should be controlable depending on the fill rate
of cells next to the inlet boundary.

5 Discussion

We presented a new ansatz for the simulation of pedestrian crossing and multi-
species simulation. The implementation is based on the incompressible Navier-
Stokes equations with a volume of fluid ansatz that has been altered by spe-
cial boundary conditions for the pressure and the velocity as well as an added
transport equation for the seperation of intermixed species. The proposed model
allowed us to reproduce common pedestrian crossing effects like stripe and lane
formation. It also allows us to simulate higher numbers (more than two) of
pedestrian species.

The model showed impuls effects originating from the Navier-Stokes equa-
tions, which are unnatural for pedestrian behaviour. Therefore, it is the subject
of future work to use a different set of equations and to study the stability and
conservation properties of the solver in more detail. Another topic is the im-
plementation of open boundaries for the in- and outflow of pedestrians in the
simulation.
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