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Abstract

Motivated from linear-quadratic optimal control problems for di�erential-algebraic
equations (DAEs), we study the functional analytic properties of the operator associated
with the necessary optimality boundary value problem and show that it is associated
with a self-conjugate operator and a self-adjoint pair of matrix functions. We then study
general self-adjoint pairs of matrix valued functions and derive condensed forms under
orthogonal congruence transformations that preserve the self-adjointness. We analyze the
relationship between self-adjoint DAEs and Hamiltonian systems with symplectic 
ows.
We also show how to extract self-adjoint and Hamiltonian reduced systems from derivative
arrays.

Keywords: Di�erential-algebraic equation, self-conjugate operator, self-adjoint pair, opti-
mal control, necessary optimality condition, strangeness index, condensed form, congruence
transformation, Hamiltonian system, symplectic 
ow.

AMS(MOS) subject classi�cation: 93C10, 93C15, 93B52, 65L80, 49K15, 34H05.

1 Introduction

In this paper we study a class of structured systems of di�erential-algebraic equations (DAEs).
The main motivation arises from the linear-quadratic optimal control problem of minimizing
a cost functional

J (x; u) =
1

2
x(t)TMex(t) +

1

2

Z t

t

�
xTWx+ xTSu+ uTSTx+ uTRu

�
dt; (1.1)

subject to the constraint

E _x = Ax+Bu+ f; x(t) = x 2 Rn; (1.2)

with E;A 2 C0(I;Rn;n), W 2 C0(I;Rn;n), B 2 C0(I;Rn;m), S 2 C0(I;Rn;m), R 2
C0(I;Rm;m), f 2 C0(I;Rn) and Me 2 R

n;n, where R = RT , W = W T and Me = MT
e .
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Furthermore, I = [t; t] is a real time-interval and C`(I;Rn;m) denotes the `-times continuously
di�erentiable functions from the interval I to the real n�m matrices. Note that for simplicity
we omit the argument t in all matrix and vector valued functions.

Typically in applications, the matrix function�
W S

ST R

�

and the weight matrixMe for the �nal state are pointwise positive semide�nite, but problems
where these are inde�nite also arise in applications from robust control [4, 24].

If the di�erential-algebraic equation (1.2) has some further properties, (i. e., if it is
strangeness-free as a behavior system and if the coe�cients are su�ciently smooth), then
it has been shown in [20] that the necessary optimality condition is given by the boundary
value problem2

4 0 E 0
�ET 0 0
0 0 0

3
5 d

dt

2
4 �

x

u

3
5 =

2
4 0 A B

AT + d
dt
ET W S

BT ST R

3
5
2
4 �

x

u

3
5+

2
4 f

0
0

3
5 ; (1.3)

with boundary conditions x(t) = x, E(t)T�(t)�Mex(t) = 0. Note that compared to [20] here
� is replaced by ��. Since (1.3) is again a di�erential-algebraic equation, these boundary
conditions may not be consistent, which means that there may be restrictions to the value x
and the weighting matrix Me that need to be satis�ed to guarantee the existence of solutions
[20].

If we denote the associated di�erential-algebraic equation (1.3) as E _z = Az + ~f , then
it is an easy calculation to show that the pair (E ;A) of matrix functions has the property
that ET = �E and AT = A + _E . We call pairs of matrix functions with this property self-

adjoint pairs, since, as we will show below, this is a property that is associated with a linear
self-conjugate di�erential-algebraic operator.

Formal adjoint equations (or dual systems) and their role for the solvability of optimal
control problems have also been considered in [21], and observability as well as controllability
of linear descriptor systems has been previously studied in [9]. Furthermore, self-adjoint
di�erential-algebraic systems and the underlying Hamiltonian subsystem have been studied
in [3].

In this paper we will �rst introduce some preliminary results in Section 2, and then in
Section 3 discuss self-conjugate di�erential-algebraic operators arising in optimal control in
an abstract setting. In Section 4 we analyze the structure of the resulting self-adjoint pairs of
matrix functions and the associated boundary value problems via condensed forms under con-
gruence transformations using certain constant rank assumptions. Based on these condensed
forms we can characterize the consistency of boundary values, as well as the consistency and
smoothness requirements for the inhomogeneities, and thus derive altogether the conditions
for unique solvability of the system. In Section 5 we then show that the underlying ordinary
di�erential equation of the di�erential-algebraic equation associated with a self-adjoint pair
of matrix functions is a Hamiltonian system and generates a symplectic 
ow. A global con-
densed form for self-adjoint DAEs with symplectic 
ow is derived in Section 6. In Section 7
we then discuss the structure preserving construction of the symplectic 
ow from derivative
arrays. Finally, in Section 8 we show that these results also hold locally for nonlinear optimal
control problems and close with some conclusions in Section 9.
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2 Preliminaries

In order to treat general linear DAEs and the constraint equation (1.2) in the same framework
we introduce the so-called behavior formulation (see [28]) by setting

E =
�
E 0

�
; A =

�
A B

�
; z =

�
x

u

�
; (2.1)

such that equations (1.2) can be written as

E _z = Az + f: (2.2)

with su�ciently smooth E ;A 2 C0(I;Rn;n+m) and f 2 C0(I;Rn). It is well known [5, 11, 19]
that the solution of the general di�erential-algebraic equation (2.2) may depend on derivatives
of the coe�cient functions E ;A and the inhomogeneity f .

Since it is generally di�cult or even impossible to di�erentiate data that are numerically
computed, an idea due to [8] is to di�erentiate (2.2) and consider the equation together with
its derivatives. In this way, we get so-called derivative arrays

M` _z` = N`z` + g`; (2.3)

where the coe�cient functions form an in
ated pair of block matrix functions

(M`)i;j =
�
i
j

�
E(i�j) �

�
i

j+1

�
A(i�j�1); i; j = 0; : : : ; `;

(N`)i;j =

�
A(i) for i = 0; : : : ; `; j = 0;
0 otherwise,

(z`)j = z(j); j = 0; : : : ; `;

(g`)i = f (i); i = 0; : : : ; `:

(2.4)

Here we have used the convention that
�
i
j

�
= 0 for i < 0, j < 0 or j > i.

It is then known, [17, 19], that the following hypothesis is su�cient to characterize the
solution behavior.

Hypothesis 2.1 Consider the system of di�erential-algebraic equations (2.3). There exist

integers �, a, d, v such that the following properties hold.

1. For all t 2 I we have rankM�(t) = (� + 1)n � a � v. This implies the existence of a

smooth matrix function Z with orthonormal columns and size ((�+1)n; a+v) satisfying
ZTM� = 0.

2. For all t 2 I we have rankZ(t)TN�(t)[In+m 0 � � � 0]T = a and without loss of generality

Z can be partitioned as [Z2; Z3], with Z2 of size ((�+1)n; a) and Z3 of size ((�+1)n; v),
such that Â2 = ZT

2 N�[In+m 0 � � � 0]T has full row rank a and ZT
3 N�[In+m 0 � � � 0]T = 0.

Furthermore, there exists a smooth matrix function T2 with orthonormal columns and

size (n+m; d), d = n+m� a satisfying Â2T2 = 0.

3. For all t 2 I we have that rank E(t)T2(t) = d. This implies the existence of a smooth

matrix function Z1 with orthonormal columns and size (n; d) so that Ê1 = ZT
1 E has

constant rank d.
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If the hypothesis holds, then system (2.2) has the same solution set as the so-called reduced
system 2

4 Ê1
0
0

3
5 _z =

2
4 Â1

Â2

0

3
5 z +

2
4 f̂1

f̂2

f̂3

3
5 ; (2.5)

where Ê1 = ZT
1 E , Â1 = ZT

1 A, Â2 = ZT
2 N�[In+m 0 � � � 0]T , f̂1 = ZT

1 f , and f̂i = ZT
i g� for

i = 2; 3. The block rows have dimensions d; a and v, respectively.
If v > 0 and f̂3 6= 0 then the system has no solution and if v = 0 and m = 0 (i. e., there

are as many equations as unknowns), then every consistent initial condition �xes a unique
solution. In the latter case we call the system regular. If the system is regular, then from
(2.5) we see that an initial condition z(t) = z for (2.2) is consistent if and only if

Â2(t)z + f̂2(t) = 0

holds or the second block is void.
The quantity � in Hypothesis 2.1 is called the strangeness index of the DAE system and

it is well known [19] that a system with m = 0 that satis�es Hypothesis 2.1 with v = 0 has a
well-de�ned di�erentiation index, [5]. The di�erentiation index is commonly used to classify
regular DAEs, except for the case of ordinary di�erential equations it is one less than the
strangeness index. Note that the reduced system (2.5) is strangeness-free in the sense that it
satis�es Hypothesis 2.1 with � = 0.

For the DAE (1.2) of the optimal control problem, we require that it satis�es Hypothe-
sis 2.1 with v = 0 such that the corresponding reduced system is given by

Ê _x = Âx+ B̂u+ f̂ ; (2.6)

where

Ê1 = ZT
1 E; Â1 = ZT

1 A; B̂1 = ZT
1 B; f̂1 = ZT

1 f;

Â2 = ZT
2 N�V

�
In
0

�
; B̂2 = ZT

2 N�V

�
0
Im

�
; f̂2 = ZT

2 g�;

with V =
�
In+m 0 : : : 0

�T
. Due to construction it satis�es the condition that�

Ê1 0

Â2 B̂2

�

has (pointwise) full row rank.

3 Self-conjugate di�erential-algebraic operators

In this section, we present an abstract setting that allows us to interpret the operator behind
the boundary value problem as a self-conjugate Banach space operator. We refer to [14] for
the general functional framework and the proofs of the following results.

The most general de�nition of a conjugate operator appears in the context of bilinear
systems.

De�nition 3.1 A pair hX;X�i of (real) vector spaces equipped with a bilinear form h�; �i is
called a bilinear system.
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De�nition 3.2 Let hX;X�i and hY;Y�i be two bilinear systems and let D : X ! Y be a

homomorphism. A homomorphism D� : Y� ! X
� is called conjugate to D if and only if

hDx; y�i = hx;D�y�i for all x 2 X, y� 2 Y�. (3.1)

In general, we cannot guarantee that a given homomorphism possesses a conjugate nor that it
is unique, if it exists. In order to have at least uniqueness for the conjugate, we need bilinear
systems with stronger properties.

De�nition 3.3 A bilinear system hX;X�i is called a dual system if and only if the bilinear

form satis�es
hx; x�i = 0 for all x 2 X () x� = 0;
hx; x�i = 0 for all x� 2 X� () x = 0:

(3.2)

Theorem 3.4 Let hX;X�i and hY;Y�i be two bilinear systems and let D : X ! Y be a

homomorphism. If hX;X�i is a dual system, then D possesses at most one conjugate.

Since we mainly deal with Banach spaces of continuous functions, the main tool to show
that a given bilinear system is a dual system is given by the following well-known result called
du Bois-Reymond Lemma, see, e. g., [12, Lemma 3.2], where C1

0 (I;Rn) denotes the set of
functions in C1(I;Rn) with compact support.

Theorem 3.5 Let f 2 C(I;Rn) with

hf; gi =

Z
I

fT g dt = 0 for all g 2 C1
0 (I;Rn). (3.3)

Then f � 0.

With these preparations, following [20], we now write the optimal control problem con-
sisting of (1.1) and (2.6), omitting hats for simplicity, as

1

2
Q(z; z) = min! s. t. L(z) = c; z =

�
x

u

�
; c =

�
f

E(t)+E(t)x

�
; (3.4)

where Q : Z� Z! R is a (symmetric) quadratic form and L : Z! Y is a linear submersion

(i. e., it is Fr�echet di�erentiable with a surjective Fr�echet derivative that has a kernel that is
continuously projectable), de�ned by

Q(v; z) = v(t)T
�
Me 0
0 0

�
z(t) +

Z
I

vT
�
W S

ST R

�
z dt;

L(z) = (E d
dt
(E+Ex)� (A+ E d

dt
(E+E))x�Bu; E(t)+E(t)x(t))

(3.5)

with the Banach spaces Z = X� U and

X = C1
E+E

(I;Rn) = fx 2 C(I;Rn); E+Ex 2 C1(I;Rn)g; U = C(I;Rm);
Y = C(I;Rn)� rangeE(t)T :

(3.6)

It should be noted that in contrast to usual convention Z is not the set of integers. Here E+

denotes the Moore-Penrose pseudo-inverse of the matrix function E, see [20] for details on
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the representation of the DAE operator and the choice of the spaces. In view of the results
in [20], we de�ne bilinear systems hZ;Z�i and hY;Y�i by introducing the Banach spaces

Z
� = C(I;Rn)� C(I;Rm)� rangeE(t)T � rangeE(t)T ;
Y
� = C1

EE+(I;R
n)� rangeE(t)T

(3.7)

and corresponding bilinear forms

hz; (�; #; �; ")i =

Z
I

(�Tx+ #Tu) dt+ �Tx(t) + "Tx(t);

h(g; r); (�; 
)i =

Z
I

�T g dt+ 
T r:
(3.8)

Theorem 3.6 The bilinear systems hZ;Z�i and hY;Y�i are dual systems.

Proof. Consider the bilinear system hY;Y�i with its bilinear form given in (3.8).
Let y� = (�; 
) 2 Y� be �xed and assume that hy; y�i = 0 for all y 2 Y, i. e.,Z

I

�T g dt+ 
T r = 0 for all (g; r) 2 Y.

Choosing (g; r) = (0; 
) gives 
T
 = 0, hence 
 = 0. Therefore,Z
I

�T g dt = 0 for all g 2 C1
0 (I;Rn) � C(I;Rn),

where � 2 C1
EE+(I;R

n) � C(I;Rn). Thus, by Theorem 3.5 we have � = 0.
Let y = (g; r) 2 Y be �xed and assume that hy; y�i = 0 for all y� 2 Y�, i. e.,Z

I

�T g dt+ 
T r = 0 for all (�; 
) 2 Y�.

Choosing (�; 
) = (0; r) gives rT r = 0, and hence r = 0. Therefore,Z
I

�T g dt = 0 for all � 2 C1
0 (I;Rn) � C1

EE+(I;R
n),

where g 2 C(I;Rn). Thus, again by Theorem 3.5 we have g = 0.
The proof for hZ;Z�i follows the same lines and is therefore omitted.

In order to bring the necessary conditions (1.3) into this abstract setting, we de�ne the
operator L� : Y� ! Z

� by

L�(�; 
) = (�ET d
dt
(EE+�)� (A+ EE+ _E)T�;�BT�; 
 � E(t)T�(t); E(t)T�(t)); (3.9)

compare again [20]. We can then show that L� is conjugate to L.

Theorem 3.7 The operator L� : Y� ! Z
� de�ned by (3.9) is the (unique) conjugate of

L : Z! Y de�ned by (3.5).
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Proof. Let z = (x; u) 2 Z and � = (�; 
) 2 Y�. Using that E(t)+E(t)
 = 
 and

E = EE+E; EE+ _E = EE+ _EE+E + E d
dt
(E+E)

we have

hL(z); �i =
R
I

�
�T

�
E d

dt
(E+Ex)� (A+ E d

dt
(E+E))x�Bu

��
dt+ 
T (E+Ex)(t)

= �TExjtt +
R
I

�
� d

dt
(�TEE+E)E+Ex� �T

�
(A+ E d

dt
(E+E))x�Bu

��
dt+ 
T (E+Ex)(t)

= (�TEx)(t)� (�TEx)(t) + 
Tx(t)

+
R
I

�
� d

dt
(�TEE+)Ex � �TEE+ _EE+Ex ��T

�
(A+ E d

dt
(E+E))x�Bu

��
dt

= (�TEx)(t)� (�TEx)(t) + 
Tx(t)

+
R
I

�
� d

dt
(�TEE+)Ex � �T (A+ EE+ _E)x ��TBu)

�
dt = hz;L�(�)i:

Finally, de�ning

T : Y� � Z! Y� Z�; T (�; z) = (L(z);L�(�)�R(z)); (3.10)

with R : Z! Z
� given by

R(z) = (Wx+ Su; STx+Ru; 0;Mex(t))

for z = (x; u) 2 Z and � = (�; 
) 2 Y�, we have that

T (�; z) =
�
E d

dt
(E+Ex)� (A+ E d

dt
(E+E))x�Bu;E(t)+E(t)x(t);

� ET d
dt
(EE+�)� (A+ EE+ _E)T��Wx� Su;

�BT�� STx�Ru; 
 � E(t)T�(t); E(t)T�(t)�Mex(t)
�

and the necessary conditions given by (1.3) and the stated boundary conditions can be written
as

T (�; z) = (c; 0): (3.11)

We now show that the operator T is self-conjugate with respect to suitably chosen dual
systems. For this purpose, we introduce the abbreviations

V = Y
� � Z; W = Y� Z�;

set
V
� =W; W

� = V

and introduce the so-called canonical bilinear forms

h(y�; z); (y; z�)i = hy; y�i+ hz; z�i = h(y; z�); (y�; z)i:

Obviously, the pairs hV;V�i and hW;W�i become dual systems. By construction, we then
not only have T : V!W but also T :W� ! V

�.

Theorem 3.8 The operator T as de�ned in (3.10) is self-conjugate, i. e., we have

hT (v); ~vi = hv; T (~v)i for all v; ~v 2 V. (3.12)
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Proof. Let v = (�; z) 2 V and ~v = ( ~�; ~z) 2 V. Then

hT (�; z); ( ~�; ~z)i = h(L(z);L�(�)�R(z)); ( ~�; ~z)i = hL(z); ~�i � h~z;R(z)i+ h~z;L�(�)i

as well as

h(�; z); T ( ~�; ~z)i = h(�; z); (L(~z);L�( ~�)�R(~z))i = hL(~z); �i � hz;R(~z)i+ hz;L�( ~�)i:

The claim then follows because of

h~z;R(z)i = Q(z; ~z) = Q(~z; z) = hz;R(~z)i;

using the symmetry of Q.

Note that the boundary value problem (3.11) coincides with (1.3) together with the stated
boundary conditions if we assume su�cient smoothness of the data, see again [20]. In partic-
ular, we get the DAE for the Lagrange multiplier � as

�ET _�= � d
dt
(ET�) + _ET� = � d

dt
(ETEE+�) + _ET�

= �ET d
dt
(EE+�)� _ETEE+�+ _ET�

= AT�+ _ETEE+�+Wx+ Su� _ETEE+�+ _ET�

= (A+ _E)T�+Wx+ Su:

In view of the observations from the abstract analysis, we introduce the following de�ni-
tion.

De�nition 3.9 A pair (E ;A) of matrix functions, A 2 C0(I;Rn;n), E 2 C1(I;Rn;n), is called
self-adjoint if and only if the following conditions are satis�ed

1. ET = �E,

2. AT = A+ _E.

Consider now a self-adjoint pair of su�ciently smooth matrix functions E ;A 2 C0(I;Rn;n)
and an associated DAE

E _z = Az + f; (3.13)

cf. (2.2), with an inhomogeneity f 2 C0(I;Rn) that is also assumed to be su�ciently smooth.
Then we can scale the equation with a pointwise nonsingular matrix function P 2 C0(I;Rn;n)
and perform a change of variables z = Qy with a pointwise nonsingular matrix function
Q 2 C1(I;Rn;n) which gives

PEQ _y = PAQy � PE _Qy + Pf: (3.14)

We want to discuss transformations that preserve the self-adjointness of the pair. For this,
we have to preserve the skew-symmetry of E and hence we have to require that P = QT , i. e.,
that the transformation is a congruence transformation. We then have the following lemma.

Lemma 3.10 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions

E ;A 2 C0(I;Rn;n) and apply a congruence transformation with a pointwise nonsingular

Q 2 C1(I;Rn;n), leading to the pair

( ~E ; ~A) = (QTEQ;QTAQ�QTE _Q):

Then the pair ( ~E ; ~A) is again self-adjoint.
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Proof. The condition for ~E is trivially satis�ed and for ~A we get

~A+ _~E = QTAQ�QTE _Q+ _QTEQ+QT _EQ+QTE _Q = QTAQ+ _QTEQ+QT _EQ

and

~AT = (QTAQ�QTE _Q)T = QTATQ� _QTETQ = QTAQ+QT _EQ+ _QTEQ:

4 Condensed forms for self-adjoint pairs of matrix functions

For matrix pairs (E ;A), with E ;A 2 Rn;n, E = �ET and A = AT , the canonical form under
congruence, i. e., (QTEQ;QTAQ) is well known, see e. g. [29, 30]. If the transformation
matrices are restricted to be real orthogonal matrices, then the resulting staircase form has
been developed in [7], modifying the staircase form of [31].

We will now extend these results to self-adjoint pairs of matrix functions. To achieve a
staircase form, we always have to assume that certain matrix functions have constant rank
in the given interval I. If this is not the case, then one can restrict the problem to a smaller
interval where this condition holds, and consider the problem piecewise. In the following, we
therefore assume that the desired ranks are constant in the complete interval I. Then we can
make use of the following theorem which is an extended real version of Theorem 3.9 in [19]
originating to [10].

Theorem 4.1 Let E 2 C`(I;Rm;n), ` 2 N0 [ f1g, with rank E(t) = r for all t 2 I. Then

there exist pointwise real orthogonal matrix functions U 2 C`(I;Rm;m) and V 2 C`(I;Rn;n),
such that

UTEV =

�
� 0
0 0

�
(4.1)

with pointwise nonsingular � 2 C`(I;Rr;r).
If E 2 C`(I;Rn;n) is symmetric (skew-symmetric), with rankE(t) = r for all t 2 I, then

there exists a pointwise real orthogonal matrix function U 2 C`(I;Rn;n) such that

UTEU =

�
� 0
0 0

�
(4.2)

with pointwise nonsingular and symmetric (skew-symmetric) � 2 C`(I;Rr;r).

Based on sequences of factorizations as in Theorem 4.1 we then have the following staircase
form.

Theorem 4.2 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions
E ;A 2 C0(I;Rn;n). Then, under appropriate constant rank conditions, there exists a con-
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gruence transformation with a pointwise orthogonal U 2 C1(I;Rn;n), leading to the pair

UT
EU =2
6666666666666664

E11 : : : : : : E1;m E1;m+1 E1;m+2 : : : E1;2m 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Em�1;m+2 .

.

.

�ET1;m � � � � � � Em;m Em;m+1 0

�ET1;m+1 : : : : : : �ETm;m+1 Em+1;m+1

�ET1;m+2 � � � �ETm�1;m+2 0
.

.

.
.

.

.

.

.

.

�ET1;2m .

.

.

0

3
7777777777777775

n1
.

.

.

.

.

.

nm
l

qm
.

.

.

q2
q1

UT
AU � UT

E _U =2
66666666666666664

A11 � � � � � � A1;m A1;m+1 A1;m+2 : : : : : : A1;2m+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

Am;1 : : : : : : Am;m Am;m+1 Am;m+2

Am+1;1 : : : : : : Am+1;m Am+1;m+1

Am+2;1 : : : : : : Am+2;m

.

.

.
.

.

.

.

.

.
.

.

.

A2m+1;1

3
77777777777777775

n1
.

.

.

.

.

.

nm
l

qm
.

.

.

.

.

.

q1

;

(4.3)

where q1 � n1 � q2 � n2 � : : : � qm � nm,

Ej;2m+1�j 2 C0(I;Rnj ;qj+1); 1 � j � m� 1;

Em+1;m+1 =

�
� 0
0 0

�
; � = ��T 2 C0(I;R2p;2p);

Ej;j = �ETj;j ; j = 1; : : : ;m;

Aj;2m+2�j = AT
2m+2�j;j =

�
�j 0

�
2 C0(I;Rnj ;qj ); �j 2 C0(I;Rnj ;nj ); 1 � j � m;

Am+1;m+1 =

�
�11 �12

�T
12 �22

�
; �11 = �T

11 + _�T 2 C0(I;R2p;2p);

�22 = �T
22 2 C0(I;Rl�2p;l�2p);

and the blocks �22 and � and �j, j = 1; : : : ;m are pointwise nonsingular. Furthermore, each

of the �rst m block columns (block rows) of the matrix UTEU has full column rank (full row

rank).

Proof. The proof is an extension of the proof for the matrix case given in [7]. It is described
by an explicit, but recursive procedure. Note that some blocks may be void, i. e., they may
have zero rows or zero columns or both.

Let (E ;A) be self-adjoint. If E = A = 0, or if E is nonsingular, then the pair is trivially
in staircase form.

10



If E is singular and of constant rank, then determine via Theorem 4.1 a factorization

UT
1 EU1 =

�
� 0
0 0

�
;

with U1 pointwise orthogonal and � = ��T pointwise nonsingular. Perform a congruence
transformation with U1 to form

UT
1 EU1 =

�
� 0
0 0

�
; UT

1 AU1 � UT
1 E _U1 =

�
Â11 Â12

Â21 Â22

�
: (4.4)

If Â22 is pointwise nonsingular, then the staircase form is complete.
If Â22 is globally singular and has constant rank, then determine via Theorem 4.1 a

factorization

UT
2 Â22U2 =

�
� 0
0 0

�

with U2 orthogonal and � pointwise nonsingular. This leads to the congruence transformation

�
I 0
0 U2

�T �
� 0
0 0

� �
I 0
0 U2

�
=

2
4 � 0 0

0 0 0
0 0 0

3
5

�
I 0
0 U2

�T �
Â11 Â12

Â21 Â22

� �
I 0
0 U2

�
�

�
I 0
0 U2

�T �
� 0
0 0

� �
0 0

0 _U2

�
(4.5)

=

2
4 ~A11

~A12
~A13

~A21 � 0
~A31 0 0

3
5 ;

with ~A21 = ~AT
12 and

~A31 = ~AT
13. Under a constant rank assumption for ~A13, we determine a

factorization

UT
3
~A13V3 =

�
� 0
0 0

�

with U3 and V3 pointwise orthogonal and � pointwise nonsingular, and perform a congruence

11



transformation

2
4 U3 0 0

0 I 0
0 0 V3

3
5
T 2
4 � 0 0

0 0 0
0 0 0

3
5
2
4 U3 0 0

0 I 0
0 0 V3

3
5 =

2
66664

E11 E12 E13 0 0
�ET12 E22 0 0 0
�ET13 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3
77775

2
4 U3 0 0

0 I 0
0 0 V3

3
5
T 2
4 ~A11

~A12
~A13

~A21 � 0
~A31 0 0

3
5
2
4 U3 0 0

0 I 0
0 0 V3

3
5 (4.6)

�

2
4 U3 0 0

0 I 0
0 0 V3

3
5
T 2
4 � 0 0

0 0 0
0 0 0

3
5
2
4 _U3 0 0

0 0 0

0 0 _V3

3
5

=

2
66664
A11 A12 A13 � 0
A21 A22 A23 0 0
A31 A32 � 0 0
� T 0 0 0 0
0 0 0 0 0

3
77775 ;

where UT
3 �U3 =

�
E11 E12
�ET12 E22

�
is skew-symmetric and E13 = 0. The block E13 may �ll with

nonzero entries later in the process, so we do not distinguish it from other blocks that may
be nonzero.

We then recursively apply the same reduction to the central self-adjoint pair��
E22 0
0 0

�
;

�
A22 A23

A32 �

��
:

This corresponds to performing another congruence transformation to (4.6) that modi�es
block rows and columns 2 and 3, typically changing E12, E13, A12, A21, A13, and A31 along
with the central pair. After a �nite number of steps of congruence transformations then the
pair is still self-adjoint and in the desired staircase form.

The property that each of the �rst m block columns (block rows) has full rank follows by
our construction.

The orthogonal staircase form allows to characterize many of the properties of the self-
adjoint pair and associated di�erential-algebraic systems. With nonsingular congruence trans-
formations it is possible to reduce the system even further.

Corollary 4.3 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions
E ;A 2 C0(I;Rn;n) . Then, under appropriate constant rank conditions, there exists a congru-

12



ence transformation with a pointwise nonsingular T 2 C1(I;Rn;n), leading to the pair

TT
ET =2
6666666666666664

E11 : : : : : : E1;m E1;m+1 E1;m+2 : : : E1;2m 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Em�1;m+2 .

.

.

�ET1;m � � � � � � Em;m Em;m+1 0

�ET1;m+1 : : : : : : �ETm;m+1 Em+1;m+1

�ET1;m+2 � � � �ETm�1;m+2 0
.

.

.
.

.

.

.

.

.

�ET1;2m .

.

.

0

3
7777777777777775

n1
.

.

.

.

.

.

nm
l

qm
.

.

.

q2
q1

TT
AT � TT

E _T =
2
6666666666666664

A1;1 � � � � � � A1;m A1;m+1 A1;m+2 : : : : : : A1;2m+1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

Am;1 : : : : : : Am;m Am;m+1 Am;m+2

Am+1;1 : : : : : : Am+1;m Am+1;m+1

0 : : : 0 Am+2;m

.

.

.
.

.

.

0 .

.

.

A2m+1;1

3
7777777777777775

n1
.

.

.

.

.

.

nm
l

qm
.

.

.

.

.

.

q1

;

(4.7)

where q1 � n1 � q2 � n2 � : : : � qm � nm,

Ej;2m+1�j 2 C0(I;Rnj ;qj+1); 1 � j � m� 1;

Em+1;m+1 =

�
Jp 0
0 0

�
; Jp :=

�
0 Ip
�Ip 0

�
;

Aj;2m+2�j = AT
2m+2�j;j =

�
Inj 0

�
2 C0(I;Rnj ;qj ); 1 � j � m;

Ai;j = � _Ei;j ; i = 1; : : : ;m� 1; j = m+ 2; : : : ; 2m+ 1� i;

Am+1;m+1 =

�
�11 0
0 �22

�
; �11 = �T

11 2 C0(I;R2p;2p); �22 = �T
22 2 C0(I;Rl�2p;l�2p);

and the block �22 is pointwise nonsingular. Furthermore, each of the �rst m block columns

(block rows) of the matrix T TET has full column rank (full row rank).

Proof. Starting from the staircase form (4.3) we can �rst perform a congruence transforma-
tion

( ~E ; ~A) = (T T
1 U

TEUT1; T
T
1 U

TAUT1 � T T
1 U

TE d
dt
(UT1))

with T T
1 = diag(��1

1 ; : : : ; ��1
m ; L; Iqm ; : : : ; Iq1) where

L =

�
I2p ��12�

�1
22

0 I2p

�
:

Then, with block-Gauss congruence transformations, we can eliminate all elements above the
block anti-diagonal of ~A in block-columns 1; : : : ;m.

13



Finally, we perform a congruence transformation to the nonsingular �rst diagonal block
� in Em+1;m+1. Let

QT
1�Q1 =

�
�11 �12

�21 0

�

be a block anti-triangular decomposition of �, where �12; �21 are invertible. This can be
constructed just as in the constant coe�cient case, see [6]. Then let

QT
2 =

�
I �1

2�11�
�1
21

0 ���1
21

�

be partitioned analogously, such that

QT
2Q

T
1�Q1Q2 =

�
0 Ip
�Ip 0

�
= Jp:

Note that neither the orthogonal staircase form (4.3) nor the condensed form (4.7) is a normal
from in the algebraic sense, since there is still further re�nement possible using congruence
transformations. For the purpose of analyzing systems of di�erential-algebraic equations,
however, these condensed forms are su�cient.

Corollary 4.4 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions

E ;A 2 C0(I;Rn;n) and suppose that appropriate constant rank assumptions hold so that there

exists a congruence transformation with a pointwise orthogonal U 2 C1(I;Rn;n) to the stair-

case form (4.3).

i) The di�erential-algebraic equation (3.13) is regular if and only if in the staircase form

nj = qj for all j = 1; : : : ;m.

ii) If m = 0 then the DAE is regular and strangeness-free.

iii) If m > 0 then � � 2m�1 di�erentiations will be necessary to solve the system if 2p = `

and � � 2m di�erentiations will be necessary otherwise. If the system is regular, then

the inequalities become equalities.

Proof. i) If q1 > n1 then it is clear that the DAE is nonregular, because then it has
a zero row and hence the problem is not solvable for every smooth right hand side. If
ni = qi for i = 1; : : : ; ` � 1 but q` > n`, then we can successively solve the equation from
the bottom up in a unique way, until we reach the remaining system with a nonsquare block

A2m+2�`;` = AT
`;2m+2�` =

�
�` 0

�T
. Then again, the last q` � n` equations associated with

this block are not solvable for every smooth right hand side and hence the problem is not
regular.

ii) If m = 0, then the associated staircase form has the form (4.4) with Â22 pointwise
nonsingular and it is well known already from the unstructured case, see [17, 19], that the
associated DAE is regular and strangeness-free.

iii) Using the condensed form (4.7), we can apply backward substitution starting with the
last block row. Then we have to di�erentiate the right hand side at most m times until we
reach the middle block. If after backward substitution the middle block contains an algebraic

14



part, then we continue with at most m further di�erentiations. If the middle block has no
algebraic part, then at most m� 1 further di�erentiations are necessary.

In the regular case, using the fact that the �rst m block columns (block rows) have full
rank makes sure that all derivatives actually occur.

Example 4.5 Consider the DAE2
66664

0 0 1 1 0

0 0 �1 0 0
�1 1 0 0 0

�1 0 0 0 0

0 0 0 0 0

3
77775

2
66664

_x1
_x2
_x3
_x4
_x5

3
77775 =

2
66664

0 0 0 0 1

0 1 0 0 0
0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

3
77775

2
66664
x1
x2
x3
x4
x5

3
77775+

2
66664
f1
f2
f3
f4
f5

3
77775 ;

which is in the condensed form (4.7) with m = 2, q1 = n1 = 1, q2 = 1, n2 = 0, l = 2, p = 1.
Since q2 6= n2 the system is non-regular. To solve the system we �rst get x1 = �f5, and by
substituting _x1 = � _f5 the solution for x2; x3 can be determined from the Hamiltonian system�

0 �1
1 0

� �
_x2
_x3

�
=

�
x2
x3

�
+

�
f2

f3 � _f5

�
:

Finally we can solve the di�erential system

_x4 = x2 + x5 + f1 + f2

to obtain a solution for x4. Thus, � = 1 < 3 di�erentiations are necessary to solve the system.
The component x5 is undetermined and we have the consistency condition f4� _f5 = 0 for the
inhomogeneity.

Example 4.6 Consider the DAE2
66664

0 �1 0 �1 0

1 0 1 0 0
0 �1 0 0 0
1 0 0 0 0

0 0 0 0 0

3
77775

2
66664

_x1
_x2
_x3
_x4
_x5

3
77775 =

2
66664

0 0 0 0 1

0 0 0 0 0
0 0 1 0 0
0 0 0 1 0

1 0 0 0 0

3
77775

2
66664
x1
x2
x3
x4
x5

3
77775+

2
66664
f1
f2
f3
f4
f5

3
77775 ;

which again is in the condensed form (4.7) with m = 1, q1 = n1 = 1, l = 3, p = 1. For the
solution we get x1 = �f5, and by substituting _x1 = � _f5 we get x4 = �f4 � _f5. The solution
for x2; x3 can be determined from the Hamiltonian system�

0 1
�1 0

� �
_x2
_x3

�
=

�
0 0
0 1

� �
x2
x3

�
+

�
f2 + _f5
f3

�
:

and by substituting _x4 = � _f4 � �f5 we get

x5 = x3 � f1 + f3 + _f4 + �f5:

Here, � = 2 = 2m di�erentiations are necessary to solve the system.
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When the pair (E ;A) is in the condensed form (4.7) and the associated DAE (3.13) is
regular, then we can permute and re-arrange the condensed form to the form0

BBB@
2
664

~E11 ~E12 ~E13 ~E14
� ~ET12

~E22 0 0

� ~ET13 0 0 0

� ~ET14 0 0 0

3
775 ;

2
6664

~A11
~A12 �

_~E12 ~A13 �
_~E13 Ir �

_~E14
~AT
12

~A22 0 0
~AT
13 0 ~A33 0
Ir 0 0 0

3
7775
1
CCCA ; (4.8)

where ~E22 = Jp and ~A33 are invertible, and ~E14 is block upper-triangular with square diagonal
blocks, which are zero matrices. Performing some further block-Gauss elimination congruence
transformation we can eliminate all blocks above ~A33 and above and to the left of ~E22 = Jp
and obtain the form0

BBB@
2
664

Ê11 0 Ê13 Ê14
0 Jp 0 0

�ÊT13 0 0 0

�ÊT14 0 0 0

3
775 ;

2
6664
Â11 Â12 �

_̂
E12 �

_̂
E13 Ir �

_̂
E14

ÂT
12 Â22 0 0

0 0 Â33 0
Ir 0 0 0

3
7775
1
CCCA : (4.9)

One further block permutation (exchanging the �rst two block rows and columns), partitioning
the blocks further, and renaming the blocks, we �nally obtain the form0

BBBB@

2
66664

0 Ip 0 0 0
�Ip 0 0 0 0
0 0 E33 E34 E35
0 0 �ET34 0 0
0 0 �ET35 0 0

3
77775 ;

2
66664
A11 A12 A13 0 0
AT

12 A22 A23 0 0

AT
13 AT

23 A33 � _E34 Ir � _E35
0 0 0 A44 0
0 0 Ir 0 0

3
77775

1
CCCCA ; (4.10)

with A44 invertible, and E35 block upper-triangular with square diagonal blocks, which are
zero matrices.

If we consider the DAE corresponding to the pair (4.10), then we obtain the following
equations.

_z2 = A11z1 +A12z2 +A13z3 + ~f1;

� _z1 = AT
12z1 +A22z2 +A23z3 + ~f2;

E33 _z3 + E34 _z4 + E35 _z5 = AT
13z1 +A

T
23z2 +A33z3 � _E34z4 + (Ir � _E35)z5 + ~f3; (4.11)

�ET34 _z3 = A44z4 + ~f4;

�ET35 _z3 = z3 + ~f5:

From (4.11) we can directly obtain the algebraic constraints that are included in the system
which are in the third to �fth equation. These equations determine the consistency conditions
for initial or boundary conditions and the smoothness requirements for the inhomogeneities.

5 Self-adjoint DAEs and Hamiltonian systems

It is well known that for the optimal control of ordinary di�erential equations, i. e., E = In,
with an invertible weight function R, the optimality boundary value problem is associated
with a Hamiltonian system of di�erential equations�

_x
_�

�
=

�
A�BR�1ST �BR�1BT

SR�1ST �W �(A�BR�1ST )T

� �
x

�

�
+

�
f

0

�
; (5.1)
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that is obtained by inserting u = �R�1(BT�+ STx) and multiplying with J�1
n from the left

see [1, 13, 15, 25].
This Hamiltonian system generates a symplectic 
ow, i. e., the fundamental solution �

satis�es �TJn� = Jn, see [13].
On the other hand, even in the case of ordinary di�erential equations, when R is singular,

this reduction to a Hamiltonian system is not possible and one typically uses the theory of
singular perturbations [26].

In the following, we will analyze whether there is nevertheless a symplectic 
ow describing
the dynamic part of a di�erential-algebraic equation of the form (3.13).

Lemma 5.1 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions E ;A 2
C0(I;Rn;n) and the associated DAE (3.13), where

E =

2
4 0 Ip 0
�Ip 0 0
0 0 0

3
5 ; A =

2
4 A11 A12 A13

A21 A22 A23

A31 A32 A33

3
5 : (5.2)

Suppose that there exists a symmetric matrix Me =MT
e 2 R

p;p such that the Riccati di�er-

ential equation
_P + PA22P �A12P � PAT

12 +A11 = 0; P (t) =Me

has a symmetric solution P 2 C1(I;Rp;p). Then there exists a congruence transformation

with a pointwise nonsingular Q 2 C1(I;Rn;n), leading to a pair

( ~E ; ~A) = (QTEQ;QTAQ�QTE _Q);

with

( ~E ; ~A) =

0
@
2
4 0 Ip 0
�Ip 0 0
0 0 0

3
5 ;
2
4 0 ~A12

~A13
~A21

~A22
~A23

~A31
~A32

~A33

3
5
1
A : (5.3)

Proof. With

QT =

2
4 Ip �P 0

0 Ip 0
0 0 I

3
5

we obtain

QTEQ =

2
4 0 Ip 0
�Ip 0 0
0 0 0

3
5 ; QTAQ�QTE _Q =

2
4 ~A11

~A12
~A13

~A21
~A22

~A23
~A31

~A32
~A33

3
5

with ~A11 = _P + PA22P �A12P � PAT
12 +A11 = 0.

If the self-adjoint pair is in the form (5.3), then it has exactly the structure of the self-
adjoint pair arising from the linear quadratic optimal control problem. If E has constant rank
r = 2p (r has to be even since E is skew-symmetric), then the form (5.2) is easily achieved
as we have seen in the �rst step of the construction of the condensed form (4.3) which yields
the form (4.4). Since in this form the matrix � is nonsingular and skew-symmetric, it is
congruent to Jp as we have seen in the proof of Corollary 4.3. But in the form (5.3), we
cannot decide whether the 
ow is symplectic, since the matrix ~A33 may be singular.

Based on the condensed form this decision is possible.
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Theorem 5.2 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions

E ;A 2 C0(I;Rn;n), and an associated DAE system of the form (3.13). If the constant rank

conditions that allow the construction of the condensed form (4.3) hold, and the DAE (3.13)

is regular then the underlying 
ow is symplectic.

Proof. We may assume w.l.o.g. that the pair is in the condensed form (4.10) with the
equations (4.11). Then the equations for z3; z4; z5 are the algebraic constraints which can be
solved by backward substitution (including di�erentiation).

The resulting ordinary di�erential equation can be rewritten as a linear Hamiltonian
system �

_z1
_z2

�
= �Jp

�
A11 A12

A21 A22

� �
z1
z2

�
+

�
f1
f2

�
;

that clearly generates a symplectic 
ow since the coe�cient matrix on the right hand side is
Hamiltonian.

Applying Theorem 5.2 to the boundary value problem associated with the linear-quadratic
optimal control problem, we thus immediately obtain that the underlying 
ow (if there is
such a 
ow) is symplectic.

Example 5.3 [7] Consider the optimal control problem to minimize 1
2

R 1
0 x(t)

2 dt subject to
_x = u; x(0) = 1. Then the necessary optimality condition is given by the boundary value
problem 2

4 0 1 0
�1 0 0
0 0 0

3
5
2
4 _�

_x
_u

3
5 =

2
4 0 0 1

0 �1 0
1 0 0

3
5
2
4 �

x

u

3
5 ; x(0) = 1; �(1) = 0; (5.4)

which is a boundary value problem with a self-adjoint pair associated with a di�erentiation
index 3 DAE which is already in the condensed form (4.8), where the second equation for x2
is missing and hence there is no 
ow at all.

Example 5.4 [2] Consider the linear-quadratic control problem (1.1),(1.2) on I = [0; 1] with
coe�cients

E =

2
4 1 0 0

0 1 0
0 0 0

3
5 ; A =

2
4 0 0 0

0 0 �1
0 1 0

3
5 ; B =

2
4 0

1
0

3
5 ; f =

2
4 0

0
0

3
5 ;

Me =

2
4 1 0 0

0 0 0
0 0 0

3
5 ; W =

2
4 0 0 0

0 0 0
0 0 1

3
5 ; S =

2
4 0

0
0

3
5 ; R = 0;

and the initial condition x1(0) = �; x2(0) = 0.
A simple calculation yields that u = x2 = �2 = x3 = �3 = 0 combined with the Hamilto-

nian system _x1 = 0; � _�1 = 0; x1(0) = �; ��1(1) = x1(1).

6 A global condensed form for self-adjoint DAEs

The staircase forms for self-adjoint pairs of matrix function as developed in Section 4 are
based on series of constant rank assumptions. Similar to [19, Corollary 3.26], these results
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are local in the sense that we may have restricted the interval I. In the following we develop
a global condensed form for self-adjoint pairs similar to that of [8] in the unstructured case.
To derive this we need the following lemma.

Lemma 6.1 Let E 2 R2p;2p with E = �ET . Then there exists an orthogonal symplectic matrix

U 2 R2p;2p such that

UTEU =

�
0 E12

�ET12 E22

�

with E12 2 R
p;p, E22 2 R

p;p.

Proof. The proof is an immediate consequence of a corresponding factorization for skew-
Hamiltonian matrices in [27].

Theorem 6.2 Consider a self-adjoint pair (E ;A) of su�ciently smooth matrix functions

E ;A 2 C0(I;Rn;n), and an associated DAE system of the form (3.13). Suppose that (3.13)

has a well-de�ned di�erentiation index, and that the underlying 
ow associated with 2p dif-

ferential equations is symplectic. Then there exists a matrix function L 2 C1(I;Rn;n) such
that

~E = LTEL =

2
4 0 E12 0
�ET12 E22 0
0 0 E33

3
5 ; ~A = LTAL� LTE _L =

2
4 0 � _E12 0

0 A22 A23

0 A32 A33

3
5 ; (6.1)

with E12 pointwise nonsingular, so that z2 is uniquely determined from

d

dt
(E12z2) = f1;

and, furthermore,

E33 _z3 = A32z2 +A33z3 + f3

has a unique solution z3 for every su�ciently smooth inhomogeneity f3 and given z2.

Proof. The proof partly follows the lines of the proof of the corresponding result for unstruc-
tured pairs of matrix functions given in [8].

If the homogeneous equation
E _z = Az

has only the trivial solution, then the �rst two blocks are missing and the claim holds trivially
by assumption. In any case, the solution space is �nite dimensional. Let f�1; : : : ; �2pg be a
basis of the solution space and � =

�
�1 � � � �2p

�
. Then

rank�(t) = 2p for all t 2 I:

Hence, there exists a smooth, pointwise nonsingular matrix function U with

UT� =

�
I2p
0

�
for all t 2 I:
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De�ning

�0 = U

�
0
Ia

�

with a = n � 2p yields a pointwise nonsingular matrix function Q =
�
� �0

�
. Since

E _� = A�, we obtain
( ~E ; ~A) = (QTEQ;QTAQ�QTE _Q)

with

~E =

�
�TE� �TE�0

(�0)TE� (�0)TE�0

�
=

�
E11 E12
�ET12 E22

�
;

~A =

�
�T (A�� E _�) �T (A�0 � E _�0)

(�0)T (A�� E _�) (�0)T (A�0 � E _�0)

�
=

�
0 A12

0 A22

�
;

and E11 = �ET11 2 C(I;R2p;2p). Here, E1 :=

�
E11
�ET12

�
has full column rank 2p. To see this,

suppose that rank E1(t̂) < 2p for some t̂ 2 I. In this case, there would exist a vector w 6= 0
with E1(t̂)w = 0. De�ning then

~f(t) =

(
1

t�t̂
E1(t)w for t 6= t̂;

d
dt
(E1(t)w) for t = t̂;

we have a smooth inhomogeneity ~f . The function z given by

z(t) =

�
log(jt� t̂j)w

0

�

then solves
~E(t) _z = ~A(t)z + ~f(t)

on Inft̂g in contradiction to the assumption of a well-de�ned di�erentiation index, which
implies that local solutions can always be extended to a global solution on the entire interval I.

Since ~E and ~A are obtained by a congruence transformation, the self-adjoint structure of
the pair (E ;A) is preserved which directly yields the conditions

_E11 = 0 and A12 = � _E12;

i. e., the block E11 is constant. Hence, by Lemma 6.1, applied to E11, there exists an orthogonal
symplectic ~U 2 R2p;2p such that

Ê =

�
~UT 0
0 I

�
~E

�
~U 0
0 I

�
=

2
4 0 Ê12 Ê13
�ÊT12 Ê22 Ê23
�ÊT13 �ÊT23 Ê33

3
5 ;

Â =

�
~UT 0
0 I

�
~A

�
~U 0
0 I

�
=

2
4 0 0 Â13

0 0 Â23

0 0 Â33

3
5 ;

with the conditions

Â13 = �
_̂
E13; Â23 = �

_̂
E23;

_̂
E12 = 0;

_̂
E22 = 0;
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and
�
Ê12 Ê13

�
has full row rank d. By Theorem 4.1 there exists a smooth, pointwise

nonsingular matrix function V such that�
Ê12 Ê13

�
V =

�
�E12 0

�
and thus �

I 0
0 V T

�
Ê

�
I 0
0 V

�
=

2
4 0 �E12 0
� �ET12

�E22 �E23
0 � �ET23

�E33

3
5

as well as �
I 0
0 V T

�
Â

�
I 0
0 V

�
�

�
I 0
0 V T

�
Ê

�
0 0

0 _V

�
=

2
4 0 �A12

�A13

0 �A22
�A23

0 �A32
�A33

3
5

where the block

�
0 �E12

� �ET12
�E22

�
is invertible. >From the self-adjoint structure we have the

condition 2
4 0 0 0

�AT
12

�AT
22

�AT
32

�AT
13

�AT
23

�AT
33

3
5 =

2
4 0 �A12

�A13

0 �A22
�A23

0 �A32
�A33

3
5+

2
64 0 _�E12 0

� _�ET12
_�E22

_�E23

0 � _�ET23
_�E33

3
75

yielding that
�A12 = � _�E12 and �A13 = 0:

Finally, de�ning the matrix

W T =

2
4 I 0 0

0 I 0
�ET23

�E�1
12 0 I

3
5

we get

W T

2
4 0 �E12 0
� �ET12

�E22 �E23
0 � �ET23

�E33

3
5W =

2
4 0 ~E12 0

� ~ET12
~E22 0

0 0 ~E33

3
5 ;

and

W T

2
4 0 � _�E12 0

0 �A22
�A23

0 �A32
�A33

3
5W �W T

2
4 0 �E12 0
� �ET12

�E22 �E23
0 � �ET23

�E33

3
5 _W =

2
64 0 � _~E12 0

0 ~A22
~A23

0 ~A32
~A33

3
75 :

Thus, with

L = Q

�
U 0
0 I

� �
I 0
0 V

�
W

we have the form (6.1).
The associated di�erential-algebraic system can be written as

~E12 _z2 +
_~E12z2 =

d

dt
( ~E12z2) = ~f1;

� ~ET12 _z1 + ~E22 _z2 = ~A22z2 + ~A23z3 + ~f2;

~E33 _z3 = ~A32z2 + ~A33z3 + ~f3:
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If the claim for the third equation does not hold then there exists a su�ciently smooth ~f3
and z2 such that the third equation possesses more than one solution. Consequently, the
corresponding homogeneous equation ~E33 _z3 = ~A33z3 possesses a non-trivial solution space.
Together with the 2p degrees of freedom for the other two equations which are equivalent to
ODEs due to the pointwise nonsingularity of ~E12 gives a solution space for the homogeneous
DAE of dimension at least 2p + 1. But this contradicts the assumption on the dimension of
the 
ow.

7 Self-adjoint DAEs and derivative arrays

So far we have used global staircase forms to analyze DAE boundary value problems, but
this is merely a theoretical result that is used for the analysis. In practice, to avoid the
di�erentiation of numerically computed quantities, one applies a derivative array approach,
see [8, 19], and determines a strangeness-free system of equations with the same solution set,
where the equations describing the algebraic equations and those describing the dynamical
system are separated.

But if one does this for a self-adjoint pair of matrix functions, then unfortunately the
self-adjoint structure is destroyed, since the transformations are only applied from the left.
It is the purpose of this section to discuss necessary modi�cations and their numerical costs
if we want to retrieve self-adjointness.

Ignoring the structure, from the derivative array of the system (3.13) using Hypothesis 2.1
we obtain matrix functions Z1, Z2 and T2 such that

Â2 = ZT
2 N� [ I 0 � � � 0 ]T

has full row rank a and Â2T2 = 0. We now consider the overdetermined system

E _z = Az + f;

0 = Â2z + f̂2;

where f̂2 = ZT
2 g�. Choosing T

0
2 such that the matrix T =

�
T2 T 0

2

�
is orthogonal we get

T TET _~z = T TAT ~z � T TE _T ~z + T T f;

0 = T T Â2T ~z + T T f̂2;

with z = T ~z, which yields2
4 E11 E12
�ET12 E22
0 0

3
5� _~z1

_~z2

�
=

2
4 A11 A12

A21 A22

0 Â22

3
5� ~z1

~z2

�
+

2
4 ~f1

~f2
~f3

3
5 ;

with

T TET =

�
E11 E12
�ET12 E22

�
; T TAT � T TE _T =

�
A11 A12

A21 A22

�
; T T

�
f

f̂2

�
=

2
4 ~f1

~f2
~f3

3
5
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and E11 and Â22 nonsingular. Removing the second block row and eliminating the entries
belonging to ~z2 yields�

E11 0
0 0

� �
_~z1
_~z2

�
=

�
A11 0

0 Â22

� �
~z1
~z2

�
+

�
�f1
�f2

�
;

where �
�f1
�f2

�
=

�
~f1 �A12Â

�1
22

~f3 + E12
d
dt
(Â�1

22
~f3)

~f3

�
:

Note that the values of �f1; ~z2 can be obtained pointwise by solving the corresponding algebraic
equations. To obtain the derivatives of ~z2, we can di�erentiate the third equation and solve
for ~z2 pointwise. Further, note that Â22 can be computed in such a way that the matrix
function is smooth, see [16].

The �rst equation, which has the form

T T
2

d
dt
(ET2~z1) = T T

2 AT2~z1 +
�f1

then gives the subsystem which can be reformulated as a Hamiltonian system and which
has a symplectic 
ow. All quantities can be obtained from the derivative array and by
di�erentiation. Note that the formulation of �f1 requires the computation of the derivative _T
of the transformation matrix T , for example by means according to [19, Corollary 3.10].

8 Nonlinear DAEs with self-adjoint linearization

In this section we consider the optimality system arising in nonlinear optimal control problems

J (x; u) =M(x(t)) +

Z t

t

K(t; x(t); u(t)) dt = min! (8.1)

subject to a constraint
F (t; x; u; _x) = 0 (8.2)

and
x(t) = x: (8.3)

We assume that F 2 C0(I� Dx � Du � D _x;R
l) is su�ciently smooth, that I = [t; t] � R is a

(compact) interval, and that Dx;D _x � R
n, Du � R

m are open sets.
We will analyze, whether some of the self-adjointness properties can be found in this case

as well. We brie
y recall the structure of the necessary optimality conditions from [20]. We
again use derivative arrays, which take the form

F`(t; z; _z; : : : ; z
(`+1)) = 0; (8.4)

with z = [xT ; uT ]T , which stacks the original equation and all its derivatives up to level ` in
one large system.

Here, partial derivatives of F` with respect to selected variables p from (t; z; _z; : : : ; z(`+1))
are denoted by F`;p. The solution set of the nonlinear algebraic equation associated with the
derivative array F� for some integer � is denoted by

L� = fz� 2 I� R
n+m � Rn+m � : : :� Rn+m j F�(z�) = 0g (8.5)

and the hypothesis takes the following form, see [19].
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Hypothesis 8.1 Consider the general system of nonlinear di�erential-algebraic equations

(8.2). There exist integers �, r, a, d, and v such that L� is not empty and such that for every

z0� = (t0; z0; _z0; : : : ; z
(�+1)
0 ) 2 L� there exists a (su�ciently small) neighborhood in which the

following properties hold:

1. The set L� � R
(�+2)(n+m)+1 forms a manifold of dimension (�+ 2)(n+m) + 1� r.

2. We have rankF�;z; _z;:::;z(�+1) = r on L�.

3. We have corankF�;z; _z;:::;z(�+1)�corankF��1;z; _z;:::;z(�) = v on L�, where the corank is the

dimension of the corange and the convention is used that corankF�1;z = 0.

4. We have rankF�; _z;:::;z(�+1) = r � a on L� such that there exist smooth full rank matrix

functions Z2 and T2 of size (�+1)l�a and (n+m)�(n+m�a), respectively, satisfying

ZT
2 F�; _z;:::;z(�+1) = 0; rankZT

2 F�;z = a; ZT
2 F�;zT2 = 0 (8.6)

on L�.

5. We have rankF _zT2 = d = l � a � v on L� such that there exists a smooth full rank

matrix function Z1 of size (n+m)� d satisfying rankZT
1 F _zT2 = d.

Again, the smallest possible � for which Hypothesis 8.1 is valid is called the strangeness
index of (8.2). It has been shown in [18] that Hypothesis 8.1 implies locally (via the implicit
function theorem) the existence of a reduced system given by

(a) F̂1(t; z1; z2; z3; _z1; _z2; _z3) = 0;

(b) F̂2(t; z1; z2; z3) = 0;
(8.7)

with F̂1 = ZT
1 F , where (z1; z2; z3) 2 R

d � R
n+m�a�d � R

a is a suitable splitting of the
unknown z. Part 4 of Hypothesis 8.1 guarantees that equation (8.7b) can be solved for z3
according to z3 = R(t; z1; z2). Eliminating z3 and _z3 in (8.7a) with the help of this relation
and its derivative then leads to

F̂1(t; z1; z2;R(t; z1; z2); _z1; _z2;Rt(t; z1; z2) +Rz1(t; z1; z2) _z1 +Rz2(t; z1; z2) _z2) = 0:

By part 5 of Hypothesis 8.1 we may assume without loss of generality that this system can
(locally) be solved for _z1 leading to the system

_z1 = L(t; z1; z2; _z2);
z3 = R(t; z1; z2):

(8.8)

Obviously, in this system, interpreted as a DAE, z2 2 C1(I;Rn+m�a�d) can be chosen arbi-
trarily (at least when staying in the domain of de�nition of R and L), while the resulting
system has locally a unique solution for z1 and z3, provided a consistent initial condition is
given. This means that z2 can be interpreted as a control. The quantity v, which has not
been addressed yet, measures the number of equations in the original system that give rise to
trivial equations 0 = 0, i. e., it counts the number of redundancies in the system. Together
with a and d it gives a complete classi�cation of the l equations into d di�erential equations,
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a algebraic equations and v trivial equations. Of course, trivial equations can be simply
removed without altering the solution set.

If the variable z is a combined vector of states and controls, then, since (8.7) consists of
original variables, these can again be split into parts stemming from x and from u. It has
been shown in [18, 22], see also [19], how this system then can be treated.

With this preliminaries, it has then been shown in [20] that the necessary optimality
conditions are given by the following boundary value problem

(a) _x1 = L(t; x1; u); x1(t) = x1;

(b) x2 = R(t; x1; u);

(c) _�1 = Kx1(t; x1; x2; u)
T � Lx1(t; x1; x2; u)

T�1 �Rx1(t; x1; u)
T�1;

�1(t) = �Mx1(x1(t); x2(t))
T ;

(d) 0 = Kx2(t; x1; x2; u)
T + �2;

(e) 0 = Ku(t; x1; x2; u)
T � Lu(t; x1; u)

T�1 �Ru(t; x1; u)
T�2;

(f) 
 = �1(t):

(8.9)

Note that the necessary equations are linear with respect to �. This follows from the general
result of Ljusternik [23] where the Lagrangian is a linear form appearing additively in the
necessary conditions. Linearizing with respect to the other unknowns yields a linear DAE of
the form (1.3) with the replacements

E =

�
Id 0
0 0

�
;

A =

�
Lx1(t; x1; u) 0
Rx1(t; x1; u) �I

�
; B =

�
Lu(t; x1; u)
Ru(t; x1; u)

�
;

W =

�
Kx1;x1(t; x1; x2; u) Kx1;x2(t; x1; x2; u)
Kx2;x1(t; x1; x2; u) Kx2;x2(t; x1; x2; u)

�
; S =

�
Kx1;u(t; x1; x2; u)
Kx2;u(t; x1; x2; u)

�
;

R = Ku;u(t; x1; x2; u):

Hence, linearization gives a self-adjoint DAE possessing a Hamiltonian subsystem as in the
linear time-varying case.

9 Conclusion

We have studied the properties of the necessary optimality systems arising from optimal
control problems for di�erential-algebraic systems. We have shown that the system is self-
conjugate with the coe�cients forming a self-adjoint pair of matrix functions. We have derived
(under some constant rank assumptions) condensed forms under congruence transformations
with orthogonal matrix functions and also shown that then there always exists a Hamiltonian
subsystem with a symplectic 
ow. We have discussed that the Hamiltonian subsystem also
can be obtained from the derivative array and that similar structures can be achieved locally
in the nonlinear case.
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