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Abstract
This dissertation contains three chapters on equilibrium selection, fair allocation

and voting.
The first paper in chapter 2 contains results that make it easier to use global

games for deriving equilibrium predictions in games of strategic complementarities.
Moreover in a second paper, we analyse the relationship between noise independence
of this global game selection and the property of equilibria to be robust to incomplete
information.

Chapter 3 considers the problem of achieving a fair and efficient allocation of
indivisible goods. Here we find that a number of fairness criteria are incompatible
with one another. Besides such impossibility results, we identify a new solution that
satisfies a maximal number of our fairness criteria as well as Pareto efficiency.

Chapter 4 analyses voting procedures with respect to their ability to aggregate
voters preferences despite the fact that voters may vote strategically. In particular
we characterize the Borda Rule and Approval Voting according to a small number
of intuitive axioms.

Zusammenfassung
Die vorliegende Dissertation umfasst drei Kapitel zur Gleichgewichtsauswahl,

fairer Allokation und Wahlverfahren.
Die erste Arbeit in Kapitel 2 beinhaltet Resultate, die eine Anwendung Glob-

aler Spiele zum Zweck der Herleitung von Vorhersagen zur Gleichgewichtsauswahl
in Spielen mit strategischen Komplementen erleichtern. Darüber hinaus analysieren
wir in einem zweiten Aufsatz die Beziehung zwischen der sogenannten Noise Inde-
pendence dieser Vorhersagen und der Eigenschaft von Gleichgewichten robust unter
unvollständiger Information zu sein.

Kapitel 3 widmet sich dem Problem unteilbare Güter fair und effizient zu al-
lozieren. Hier stoßen wir auf Unvereinbarkeiten zwischen verschiedenen Fairnesskri-
terien. Neben diesen Unmöglichkeitsresultaten beschreiben wir eine neue Lösung,
die eine maximale Anzahl der von uns identifizierten Fairnesskriterien erfüllt und
gleichzeitig Pareto-Effizienz garantiert.

Kapitel 4 untersucht Wahlverfahren mit Blick auf ihre Fähigkeit selbst dann
Wählerpräferenzen zu aggregieren, wenn Wähler sich strategisch verhalten. Ins-
besondere charakterisieren wir die Borda-Wahl und die Wahl durch Zustimmung
anhand einer kleinen Zahl intuitiver Axiome.
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1. INTRODUCTION

This dissertation considers three diverse economic problems that all study the re-
lationship – and potential conflict – between individual strategic decision-making
and the implementation of solutions that satisfy certain normative criteria such as
efficiency and equity. This conflict arises in particular where agents lack an effective
coordination device or where preferences are private information that agents reveal
only strategically.

Global Games and Equilibrium Selection

In Chapter 2 we focus on strategic uncertainty that arises in games of strategic
complementarities. In such games, agents’ strategies can be ordered in such a way
that a move by some agents to a ‘higher’ strategy increases the incentives of others to
also move to ‘higher’ strategies. Applications include speculative attacks, bank runs
or investment problems and typically feature multiple - Pareto ranked - equilibria.

Here, global games are widely used to predict behaviour by selecting a partic-
ular equilibrium. For that, the original complete information game is embedded in
a global game with a continuum of payoff relevant states on which players receive
a noisy signal. As the noise in signals goes to zero, the global game can be seen
as (locally) approximating the original complete information game and the unique
rationalizable strategy profile in the global game may serve as an equilibrium refine-
ment for the original game.

By changing payoff parameters of a complete information game and tracking
the changes in the global game selection that result, we arrive at recommendations
on how to achieve coordination on a Pareto efficient equilibrium. For example in a
model of banking crises, global games can be used to show how a partial deposit
insurance may be able to prevent the emergence of a bank run – the continued
existence of an inefficient bank run equilibrium notwithstanding.

Another approach to apply global games in achieving a desired equilibrium out-
come is given in Section 2.1.6. Here we consider the possibility of introducing new
strategies that are able to shift the global game selection from one pre-existing equi-
librium to another. For example in the refinancing game, we present a situation
where 3 lenders are unable to coordinate on an efficient investment project when
the only way to fund the project are unsecured loans – fearing that the unwillingness
of others to extend such loans jeopardizes the project. Then, as we introduce costly
secured loans as a third option, lenders will be willing to extend unsecured loans.
Intuitively, this shift between equilibria is due to reduced strategic uncertainty in
that now lenders expect others to at least extend secured loans and fund the project.
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Fair Solutions to the Random Assignment Problem

Chapter 3 studies the problem of assigning indivisible goods to agents where each
is to receive one good. To guarantee fairness in the absence of monetary compensa-
tion, we consider random assignments and formulate a number of equity criteria in
this context. Adherence to such formal equity criteria may be seen as particularly
important where the goods in question are publicly provided (or subsidised) private
goods – such as for example school seats. Here, neither individuals nor groups should
be discriminated against and receive less that their ‘fair share’.

Perhaps surprisingly, we find that while each of the identified equity criteria is
compatible with Pareto efficiency, some equity requirements are in conflict with one
another. Hence, no solution can be implemented that jointly satisfied these criteria
even if agents truthfully reveal their preferences.

To bridge this gap, we introduce a new solution based on Walrasian equilibria
from equal incomes that satisfies a maximal number of our identified equity criteria
and guarantees Pareto efficiency with respect to reported preferences. Since it is
based on Walrasian equilibria, the only way in which agents may gainfully misreport
their preferences, is if they can thereby influence prices. Moreover, any price changes
to ones’ advantage need to be sufficiently large to overcome the disadvantage that
arises from the fact that the market agent will now maximize another than the
true preference relation, subject to the budget constraint. Thus in applications –
in particular in large markets where the effect of ones’ own report on equilibrium
prices is small and hard to foresee – the new solution should be expected to elicit
agents’ true preferences.

Scoring Rules and Implementation in Iteratively Undominated
Strategies

Chapter 4 considers a classical mechanism design problem where the conflict between
individual strategic behaviour and the implementation of a desired social choice
correspondence that maps agents preferences to aggregate outcomes takes center
stage. Here, we characterize and compare voting procedures according to the social
choice correspondences that they implement in iteratively undominated strategies.
While this solution concept plays a prominent role in the literature on voting – where
it is also known as sophisticated voting – a complete characterization of social choice
correspondences that can be implement in this way, still outstanding. Restricting
attention to elections with three alternatives and a finite number of voters who have
strict preferences over alternatives we are able to derive 3 main characterization as
well as 2 impossibility results:

First, in the class of positional scoring rules (including among others Plurality-,
Antiplurality- and the Borda-Rule), the Borda Rule is the unique voting procedure
implementing a social choice correspondence that satisfies unanimity (U) (i.e., elects
an alternative whenever it is unanimously preferred) and is majoritarian after elimi-
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nating a worst alternative (MEW) (i.e., if there is a unanimously disliked alternative,
the majority-preferred alternative among the other two is elected).

Second, in the larger class of direct mechanism scoring rules (including e.g. all
positional scoring rules as well as Approval Voting), Approval Voting is characterized
by a single axiom – it is the unique voting procedure that is majoritarian after elim-
inating a Pareto-dominated alternative (MEPD) (i.e., if there is a Pareto-dominated
alternative, the majority-preferred alternative among the other two is elected).

Third, in the class of direct mechanism scoring rules, the Borda Rule is the
unique voting procedure implementing a social choice correspondence that satisfies
U, MEW and monotonicity (MON)(i.e., an alternative that is elected for some
preference profile should still be elected for a preference profile where every voter
ranks this alternative weakly higher).

Finally, there exists no direct mechanism scoring rule implementing a social
choice correspondence that satisfies bothMON andMEPD or Condorcet consistency
(CON) (i.e. an alternative that is majority preferred over the other two is elected).



2. GLOBAL GAMES AND EQUILIBRIUM SELECTION

2.1 Characterising Equilibrium Selection in Global Games with
Strategic Complementarities

Section 2.1 has been published as

Basteck, Christian and Daniëls, Tijmen and Heinemann, Frank, “Characterising
Equilibrium Selection in Global Games with Strategic Complementarities”, Journal
Economic Theory, 148.6 (2013), pp. 2620-2637.

2.1.1 Abstract

Global games are widely used to predict behaviour in games with strategic com-
plementarities and multiple equilibria. We establish two results on the global game
selection. First, we show that, for any supermodular complete information game, the
global game selection is independent of the payoff functions chosen for the gameÊĳs
global game embedding. Second, we give a simple sufficient criterion to derive the
selection and establish noise independence in many-action games by decomposing
them into games with smaller action sets, to which we may often apply simple cri-
teria. We also report in which small games noise independence may be established
by counting the number of players or actions.

2.1.2 Introduction

Games of strategic complementarities, for instance models of financial crises or net-
work externalities, often have multiple equilibria. An important issue, from a the-
oretical as well as a policy perspective, is how to predict the equilibrium that will
be played. One widely used approach to predict behaviour in such games is to turn
them into “global games”. A global game extends a complete information game to
an incomplete information game with a one-dimensional state space, such that the
original game can be viewed as one particular realisation of the random state. This
state is usually interpreted as an “economic fundamental”. Each player receives a
noisy private signal about the true state. Then, under certain supermodularity and
monotonicity conditions,1 Frankel, Morris and Pauzner [2003] (“FMP”) prove limit
uniqueness: as the noise in private signals vanishes, for almost all realisations of the

1 FMP assume that there exists an ordering on actions such that players’ incentive to switch to
a higher action is increasing in both the state and the actions of others; and that at sufficiently
low (high) states, each player’s lowest (highest) action is strictly dominant. See Section 2.1.3 for
precise definitions.

http://www.sciencedirect.com/science/article/pii/S0022053113001245
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state parameter, players coordinate on a Nash equilibrium of the complete informa-
tion game given by the payoffs at the true state. This global game selection (“GGS”)
may be used as a prediction and to derive comparative statics results. Applications
include models of speculative attacks (Morris and Shin [1998], Cukierman et al.
[2004], Guimaraes and Morris [2007], Corsetti et al. [2004], Corsetti et al. [2006]),
banking crises (Goldstein [2005], Rochet and Vives [2004]), and investment problems
(Sákovics and Steiner [2012]). Experiments by Heinemann et al. [2004, 2009] show
that the GGS is useful for predicting subjects’ behaviour.

Unfortunately, there are many ways to extend a complete information game
to a global game, and which equilibrium is selected may depend on the details of
the chosen extension. If multiple equilibria are replaced by multiple global game
selections, this reduces the value of the GGS as a selection criterion. For instance,
it is well-known that the GGS may depend on the distribution of the noisy private
signals. To circumvent this problem, FMP provide some conditions under which the
GGS is noise independent, that is, independent of this distribution.

Furthermore, most applications are limited to binary-action games. In symmetric
binary-action games, the GGS can be easily determined as a player’s best reply
to the belief that the fraction of other players choosing either action is uniformly
distributed (see FMP or Morris and Shin [2003]; Sákovics and Steiner [2012] give a
generalisation for a class of asymmetric binary-action games).

In this paper, we extend results on global games in two directions. First, we show
that for any supermodular complete information game, the GGS is independent of
the extended payoff function, as long as it satisfies the usual supermodularity as-
sumptions. Hence, the GGS does not depend, for example, on the choice of economic
fundamental used as a state parameter in the global game. Our result implies that
the distribution of private signals is the only source of multiplicity for the GGS.

Second, we provide a new and simple method to determine the GGS and check
its noise independence in games with many actions. The GGS is noise independent
if the game can be suitably decomposed into smaller noise independent games. For
example, we may split up an n-action game into many binary-action games and
apply simple known criteria for deriving the GGS. If the smaller games are noise
independent and their selections point in direction of the same action profile, then
this action profile is the noise independent selection of the larger game.

Our second result gives a new heuristic for the global game equilibrium prediction
that is useful in economic applications. For instance, introducing a third action in
a binary-action game may change the selection between the two original equilibria.
We give an example of a refinancing model where introducing collateralised loans
as a third action besides withdrawing and extending unsecured loans changes the
GGS from the inefficient withdrawal equilibrium to that of unsecured refinancing.
Other models of interest may have many actions and potentially a large number
of equilibria. As an example, we analyse a generalised version of Bryant’s [1983]
minimum effort game, to which none of the known easy heuristics may be applied.
By decomposing it into binary-action games, we may derive the GGS and establish
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its noise independence straightforwardly.
The decomposition of large games is particularly useful, because noise indepen-

dence is typically easier to establish for smaller games, often simply by counting
the number of players and actions. In their seminal paper introducing global games,
Carlsson and van Damme [1993] proved that all two-player two-action games with
multiple equilibria are noise independent. In another application of our methods, we
prove the same of all supermodular two-player games in which one player’s action
set is binary. Together with known results, this completes the characterisation of
supermodular games for which noise independence can be established by counting.

Our paper proceeds as follows. Section 2.1.3 contains preliminaries. The rest
of the paper is organised around a characterisation of the GGS given in Section
2.1.4. Instead of analysing a sequence of global games with vanishing noise, we show
that we may determine the GGS from a single incomplete information game with
simple payoffs. This game is independent of the state-dependent payoff function
that is chosen as an extension of the original game. We use the characterisation to
prove generic uniqueness of the GGS and extend it to discontinuous global games.
In Section 2.1.5 we discuss the decomposition method and establish our results
on noise independence. Section 2.1.6 contains applications. Section 2.1.7 concludes.
Proofs are in Appendix A.

2.1.3 Setting and Definitions

Throughout this paper we consider games played by a finite set of players I, who
have finite action sets Ai = {0,1, . . . ,mi}, i ∈ I, which we endow with the natural
ordering. We define the joint action set A as ∏i∈I Ai and write A−i for ∏j≠iAj.
For action profiles a = (ai)i∈I and a′ = (a′i)i∈I in A, we write a ≤ a′ if and only if
ai ≤ a′i for all i ∈ I. The lowest and highest action profiles in A are denoted by 0 and
m. A complete information game g is specified by its real-valued payoff functions
gi(ai, a−i), i ∈ I, where ai denotes i’s action and a−i ∈ A−i denotes the opposing action
profile. A game g is supermodular if for all i, ai ≤ a′i, and a−i ≤ a′−i,

(2.1) gi(ai, a−i) − gi(a
′
i, a−i) ≤ gi(ai, a

′
−i) − gi(a

′
i, a

′
−i).

This implies a player’s best reply is non-decreasing in the actions of her opponents
(see Topkis [1998]; note that property (2.1) is what FMP refer to as strategic com-
plementarities).

We define a global game G(v) as in FMP: consider payoff functions ui(ai, a−i, θ)
that depend on an additional state parameter θ ∈ R. For each θ, let the game given
by the ui(⋅, θ) be a supermodular game (Assumption A1). In addition, assume there
are dominance regions: there exist thresholds θ < θ such that the lowest and highest
actions in Ai are strictly dominant when payoffs are given by, respectively, ui(⋅, θ)
and ui(⋅, θ) (Assumption A2). Furthermore, each ui satisfies state monotonicity in
the sense that higher states make higher actions more appealing (Assumption A3):
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there exists K > 0 such that for all ai ≤ a′i and θ ≤ θ ≤ θ′ ≤ θ we have

0 ≤K(a′i − ai)(θ
′ − θ) ≤ (ui(a

′
i, a−i, θ

′) − ui(ai, a−i, θ
′))− (ui(a

′
i, a−i, θ) − ui(ai, a−i, θ)) .

Finally, each ui is continuous in θ (Assumption A4). In Section 2.1.4.3, we will relax
(A3) and (A4).

In the global game G(v), the state θ is realised according to a continuous density
with connected support that includes the thresholds θ and θ in its interior. Players
observe θ with some noise, and then act simultaneously. Formally, let f = (fi)i∈I
denote a tuple of probability densities, whose supports are subsets of [−1

2 ,
1
2]. Each

player i receives a private signal xi = θ + vηi, where each ηi is drawn independently
according to the density fi, and v ∈ (0,1] is a scale factor. Thus, a global game
G(v) is specified by the payoff functions ui, a prior distribution of states, a noise
distribution f , and a scale factor v, each of which is common knowledge among
players.

A strategy si is a function that maps a player’s signal onto an action.2 Joint
strategy profiles are denoted by s = (si)i∈I and s−i = (sj)j∈I−{i}. Slightly abusing
notation, denote by s(x) the joint action profile obtained when each player receives
the same signal xi = x. We write s ≤ s′ if and only if s(x) ≤ s′(x) for all x. A strategy
profile s is increasing, if each si is weakly increasing in xi; it is a (Bayes-Nash)
equilibrium if each si(xi) is a best reply against s−i, given ui and using Bayes’ rule
to derive the conditional densities of θ and x−i, given xi.

Following FMP, we also define the simplified global game G∗(v), differing from
the global gameG(v) in that its prior is uniform and payoffs are given by ui(ai, a−i, xi)
and thus depend directly on the signals. FMP prove that the equilibrium strategy
profile in G∗(v) is unique up to its points of discontinuity (Lemma A1 in FMP)
while G(v) may have multiple equilibrium strategy profiles. However, the key result
on global games says that as the scale factor v goes to zero, the equilibrium strategy
profiles of the games G(v) and G∗(v) all converge to the same limiting strategy
profile, which is increasing and unique up to its finitely many discontinuities.

Fact 1. Theorem 1 in FMP. The global games G(v) and G∗(v) have an essentially
unique, common limit equilibrium strategy profile as the scale factor v goes to zero.
More precisely, there exists an increasing pure limit strategy profile s such that, for
each v > 0, if sv is an equilibrium strategy profile of G(v) and s∗v is the unique
equilibrium strategy profile of G∗(v), then limv→0sv(x) = limv→0s∗v(x) = s(x) for all
x except possibly at the finitely many discontinuities of s.

Since a global game’s limit strategy profile s is well-defined up to its points of
discontinuity, we use s and s to denote its right and left continuous versions.

2 Focusing on pure strategies is without loss of generality and simplifies notation. Supermodu-
larity implies that highest and lowest equilibrium strategy profiles exist in pure strategies and are
bounds on any mixed strategy profile Since these two equilibria converge almost everywhere to a
common limit as the scale factor v goes to zero (Theorem 0), surviving strategies may only mix
on a null set of signals, which has no effect on other players’ incentives.
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Finally, we will use the following fact about supermodular incomplete infor-
mation games. For a given game and strategy profile s, let β(s) denote the joint
upperbest reply to s, i.e. the profile in which each player uses her highest best reply
to s−i. Then, β is monotonically increasing in s. Moreover, if s ≤ β(s), the upperbest
reply iteration s, β(s), β(β(s)), . . . converges monotonically to an equilibrium strat-
egy profile. This applies in particular to the global games G(v) and G∗(v).

2.1.4 Equilibrium Selection via Global Games

Let g be a given supermodular complete information game. Often, such a game
has multiple Nash equilibria. In that case, a global game gives a method to resolve
equilibrium indeterminacy. Consider a global game, in which payoffs depend on a
state parameter, and suppose that for some fixed state θ∗, these payoffs coincide
with those of g. We say that the global game embeds g at state θ∗. If – as the noise
in private signals vanishes – the global game’s limit equilibrium strategy profile is
continuous at θ∗, its value at that state determines a particular Nash equilibrium
of the complete information game.3 More generally, consider the left continuous
version s and right continuous version s of the limit equilibrium strategy profile.
These determine two (perhaps distinct) Nash equilibria: s(θ∗) and s(θ∗).4 We refer
to them as the lowest and, respectively, highest global game selection (GGS, following
Heinemann et al. [2009]). If they coincide, the GGS is unique.

In this section, we give a simple characterisation of the GGS, which shows that
it depends only on the payoff functions of the complete information game g and the
noise distribution of private signals f in the global game. The additional modelling
choices of the global game – its prior and its payoff functions at states other than θ∗
– do not affect the GGS. We also show that (for a given noise distribution) the lowest
GGS is identical to the highest GGS for almost all supermodular games. Thus, the
GGS is generically unique.

Let us first note that this approach applies to any supermodular complete infor-
mation game.

Lemma 1. For any supermodular game g, there is a global game that embeds it.

To see this, extend the payoff functions gi of the complete information game with a
state parameter θ by setting ui(ai, a−i, θ) = gi(ai, a−i) + θai. The payoff functions ui
satisfy the global game assumptions (A1)–(A4). Choose an appropriate prior with
sufficiently wide support and some noise distribution f for private signals, and our
claim is satisfied at θ = 0.

3 Theorem 2 in FMP implies that the limit strategy profile selects a Nash equilibrium of g if it
is continuous at θ.

4 Continuity of the payoff functions ui ensures that s(θ∗) and s(θ∗) are also Nash equilibria of
g.
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Fig. 2.1: The lower-f -elaboration E and the attained action ai

2.1.4.1 A Characterisation of the Global Game Selection

We now show that the GGS induced by the global game may be determined without
analysing the full global game under vanishing noise. Instead, we introduce a much
simpler game that allows us to establish the GGS more directly. Following FMP,
consider a new incomplete information game E, in which each agent i has a payoff
function ũi(ai, a−i, xi) that depends directly on her signal xi. The payoff functions
ũi are equal to the payoff functions gi of the complete information game g for high
signals, but for low signals they make the lowest action dominant (Figure 2.1):

(2.2) ũi(ai, a−i, xi) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−ai if xi < 0,
gi(ai, a−i) if xi ≥ 0.

Players’ signals are given by xi = θ+ηi, where the common part θ is drawn uniformly
from a large interval5 and, for each player i, the idiosyncratic part ηi is drawn
according to a noise distribution fi, just like in a global game. We refer to E as the
(lower-f -)elaboration of g.

Standard results on supermodular games ensure that the elaboration E has a
highest equilibrium strategy profile s and ensure it is increasing. Therefore, s must
consist of monotonic step functions, where at each step at least one player switches
to a higher action. Since the joint action set is finite, s must reach a highest action
profile (see again Figure 2.1). We denote this profile by a and refer to it as the
action profile attained in E. Furthermore, s must be constant for signals above ∣A∣.
This is because the number of steps must be less than the size of the action space;
and a player with signal xi knows that all her opponents receive signals within
[xi −1, xi +1]. Therefore, the distance between the steps must be weakly less than 1
– otherwise the distance can be shortened without affecting expected payoffs at the
steps, contradicting the maximality of s. Thus, the attained action profile a is equal
to s(∣A∣).

Dually, define the upper-f -elaboration E∂ of the complete information game g,
similar to the lower-f -elaboration E, except that payoffs are given by gi if the signal

5 We assume this interval is a superset of [−∣A∣ − 1, ∣A∣ + 1], where ∣A∣ denotes the cardinality of
the joint action set.
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xi ≤ 0 and by ai if xi > 0. We consider the lowest equilibrium strategy profile in
E∂, and denote by a the lowest action profile that is attained in it. It is found by
evaluating the lowest equilibrium strategy profile at x = −∣A∣.

The following result gives (for the noise distribution f) the relation between the
GGS, the action profile a attained in the elaboration E, and the action profile a
attained in the elaboration E∂.

Theorem 1. Let G(v) be any global game with noise distribution f that embeds the
complete information game g at some state θ∗. Let s and s be the left and right
continuous versions of the essentially unique6 limit equilibrium strategy profile in
G(v). Then s(θ∗) = a and s(θ∗) = a.

Note the following implication. In any global game, at any state, as the noise in
private signals vanishes, the value taken by its essentially unique limit strategy
profile depends only on the complete information game given by the payoffs at this
state and the noise distribution f . This holds because our choice of the embedded
complete information game g at the start of the section was entirely arbitrary, and
g and f are the only ingredients of the global game appearing in E and E∂.

The irrelevance of the prior distribution in the global game for establishing its
limit equilibrium strategy profile was already shown by FMP. It may be surprising
that the extended payoff function is also irrelevant. If one thinks of the GGS as
determined by an infection process starting from the dominance regions, one might
imagine that if the complete information game g is embedded at some state θ∗ close
to the lower dominance region, this may influence the GGS in such a way that it
selects a lower equilibrium compared to a global game in which g is embedded near
the upper dominance region. However, Theorem 1 tells us this is not the case.

A practical way to think about Theorem 1 is the following. In economic applica-
tions, the state θ is typically interpreted as an economic fundamental affecting the
decision problem of players. But several economic variables may be candidates for
the state θ. Theorem 1 says that the choice of the fundamental used to perturb the
decision problem is irrelevant: the GGS will be the same.
We sketch the proof of Theorem 1, concentrating on the highest GGS. To this end, we
connect the elaboration E and its attained action profile a with the simplified global
game G∗(v) that determines the GGS. We do this by introducing two additional
parameters in E: the scale factor v and an explicit threshold signal y at which its
payoffs change (normalised to 0 in Equation (2.2)). Formally, let Ey(v) denote a
version of E in which agents receive scaled signals xi = θ + vηi, and in which payoffs
are given by gi for xi ≥ y and by −ai for xi < y. Note that due to the simple structure
of E, any equilibrium strategy profile of E has a scaled and shifted counterpart in
Ey(v). In particular, the highest equilibrium strategy profile s of E has a scaled
counterpart in Ey(v) where the distance between steps is scaled down by a factor
v and all steps are shifted to the right by y. Thus, it prescribes that player i plays
action ai for all signals higher than xi = y + v∣A∣.

6 Recall that the limit strategy profile is unique up to its (finitely many) points of discontinuity.
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Now, we compare the simplified global game G∗(v) and the elaboration Eθ∗(v)
(i.e., the threshold y is set to the state θ∗). For any signal xi and any opposing
strategy profile, the upper best reply in G∗(v) is weakly higher than in Eθ∗(v): for
signals below θ∗ the lowest action is strictly dominant in Eθ∗(v); for signals above
θ∗ a player’s incentive to increase her action increases with rising xi in G∗(v) but is
constant in Eθ∗(v). In particular, this means that any equilibrium in Eθ∗(v) must
be a lower bound on the unique equilibrium of G∗(v). Letting the scale factor v go
to zero, the fact that action ai is played at xi = θ∗+v∣A∣ in an equilibrium of Eθ∗(v),
together with the right-continuity of the limit profile s of G∗(v), establishes that the
attained action profile a is a lower bound on the highest GGS at θ∗. This argument
is also used in the proof of Theorem 4 in FMP.

The key observation behind Theorem 1 is that a converse result also holds: the
attained action profile a also determines an upper bound for the highest GGS. To see
this, compare the simplified global game G∗(v) with the elaboration Eθ(v), so that
the scale factor v and dominance regions of both games coincide (the threshold y is
set to the lower dominance threshold θ of G∗(v)). For signals xi ∈ [θ, θ∗], payoffs in
Eθ(v) are given by gi(⋅) = ui(⋅, θ∗), while payoffs in G∗(v) are given by ui(⋅, xi). State
monotonicity of payoff functions ui (Assumption A3) implies that for all signals up
to θ∗, best replies in Eθ(v) will be weakly higher than in G∗(v). This suggest that,
at least for small v, a can serve as an upper bound on the action profile played at
θ∗ in the unique equilibrium of G∗(v). In Appendix A, we prove this intuition to be
correct.

2.1.4.2 The Global Game Selection is Generically Unique

FMP define a global game as a family of supermodular games ordered along a
one-dimensional state space, and find that the GGS is unique at almost all states.
Theorem 1 says that for any given supermodular game, the lowest and highest GGS
depend only on the choice of the noise distribution f and can be determined without
reference to any particular global game embedding. We will complement FMP’s
observation by showing that (given f), if one picks an individual supermodular
game at random, the lowest GGS and highest GGS typically coincide.

More precisely, consider the set of games with player set I and joint action set
A, which may be identified with the Euclidean space R∣I×A∣. E.g., for two-player two-
action games, ∣I ×A∣ = 8, corresponding to the number of entries that characterise
the payoff matrix. Let S ⊆ R∣I×A∣ be the subset of supermodular games. For any
fixed noise distribution f , denote by Sf the subset of supermodular games in which
the GGS is unique; S−f denotes its complement in S, the set of games in which the
GGS is not unique. Then the set S−f is small relative to Sf , both in measure and
in a topological sense.
Theorem 2. For any noise distribution f , the set Sf of supermodular games with
a unique GGS is open and dense in S, while its complement S−f is closed and
nowhere dense in S. Moreover, Sf is of infinite Lebesgue measure, while S−f is of
zero Lebesgue measure.
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α > ξ α ≤ ξ

player i (“don’t attack”) 0 0 0
(“attack”) 1 −1 1

Recall that Sf is dense in S if each supermodular game g ∈ S−f can be approximated
by games in Sf . As jumps in the limit strategy profile of a global game are isolated,
we can approximate any g ∈ S−f if we embed it in a global game G(v) with noise
distribution f and choose a sequence of games in Sf along the one-dimensional state
space of G(v). In the proof, we also establish that Sf is open in S, and thus S−f is
closed and nowhere dense. We then show that S−f has Lebesgue measure zero, by
applying a result that connects its topological properties to its measure.

2.1.4.3 Global Game Selection in Discontinuous Global Games

Since Theorem 1 says that the GGS may be determined without reference to any
particular global game embedding, this suggests that the monotonicity (A3) and
continuity (A4) assumptions imposed on the embedding can be weakened. To see
why this may be important in an applied context, consider the following n-player
speculative attack game:
where α is the fraction of players who choose 0. It is an exemplary regime change
game, where players’ payoffs depend on whether they reach a critical mass ξ. In-
tuitively, there are at least two ways to embed the game in a global game: one
can perturb the payoffs as in Lemma 1, or one can perturb the critical mass by
setting ξ = θ. In the latter case, which is often considered in the applied literature
(e.g. Corsetti et al. [2004], Guimaraes and Morris [2007], Morris and Shin [1998],
Sákovics and Steiner [2012]), payoffs remain unchanged for most changes in the state,
and jump at the point where a change in the state leads to a regime change. Thus the
global game payoff functions violate state monotonicity (A3) and continuity (A4).
But even in this case, they satisfy the following assumption:

(A3∗) Weak state monotonicity. Higher states make higher actions weakly more
appealing:

(2.3) for all i, a−i and ai < a′i, ui(a′i, a−i, θ) − ui(ai, a−i, θ) is weakly increasing in θ.

We can show that, even if a global game embedding satisfies only these weakened
conditions, the GGS may be determined analogous to Theorem 1. As before, let g
be a given supermodular complete information game. Suppose it is embedded at
state θ∗ in a generalised global game, with payoffs differing from an ordinary global
game in that they satisfy (A3∗) but not necessarily (A3) or (A4). By standard
results on supermodular games, for each scale factor v > 0, the highest and lowest
equilibrium strategy profiles ŝv and šv exist nonetheless. We define their pointwise
limits ŝ = lim supv→0 ŝv and š = lim infv→0 šv. Also, for each state θ, consider the
complete information game with payoffs ui(⋅, θ). We may determine its attained
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action profiles aθ and aθ from the associated elaborations Eθ and E∂
θ ; these attained

action profiles may be regarded as functions of θ.7 Using these definitions, we obtain
the following result, parallel to Theorem 1:

Theorem 3. Let G̃(v) be a generalised global game with noise distribution f that
embeds the complete information game g at θ∗. Let ŝ and š be its highest and lowest
limit equilibrium strategy profiles. If (i) the attained equilibria a and a of the game
g coincide and (ii) the functions aθ and aθ are continuous at θ∗, then ŝ(θ∗) = a =

a = š(θ∗).

To prove this result, we “sandwich” the payoff function of the global game G̃(v)

between that of two “ordinary” global games that approximate it. Then, we use
Theorem 1 to show that their limit strategy profiles coincide at θ∗. This pins down
the limit strategy profile of G̃(v) at θ∗ as well.

The regulatory conditions (i) and (ii) are needed because of the weakening of
(A3) and (A4). Note that Theorem 2 guarantees that (i) is satisfied for almost all
supermodular games. As for (ii), (A3∗) implies that the attained profiles aθ and
aθ are increasing in θ and thus have only finitely many discontinuities, as the joint
action set is finite. But unlike in an ordinary global game, (i) does not imply (ii), as
aθ and aθ may jump because of a discontinuity in the payoff difference (2.3).

2.1.5 A Decomposition Approach to Noise Independence

A supermodular complete information game g, embedded in a global game at a state
θ∗, is called noise independent if, as the noise in private signals vanishes, the global
game’s limit strategy profile takes on the same value at θ∗ regardless of the choice of
the noise distribution f . Theorem 1 implies that noise independence is a well-defined
property of the game g: it is noise independent in one global game embedding if and
only if it is noise independent in every other.

Many small games, with few players or few actions, are noise independent. Typ-
ically, for such games there are also easy heuristics to find the GGS. For instance,
a well-known elementary condition to judge whether a game is noise independent is
the “p-dominance” criterion.

Definition. Given a tuple p = (pi)i∈I , an action profile a∗ is said to be p-dominant
if each player i who expects her opponents to play a∗−i with probability pi would
choose a∗i as a best reply.

If a supermodular game g has a p-dominant action profile a∗ with ∑i∈I pi < 1, then
a∗ is an equilibrium robust to incomplete information in the sense of Kajii and
Morris [1997]. Moreover, a∗ is robust in all games with payoffs close to those of g.
This implies that a∗ is the unique GGS in g, regardless of the noise distribution.8

7 We formally define these concepts by substituting ui(⋅, θ) for gi(⋅) in the definition of E, E∂ ,
a, and a.

8 See Oury and Tercieux Oury and Tercieux [2007] or our working paper version Basteck et al.
[2010]; Morris and Shin [2003] provide a heuristic argument.
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Symmetric Games Asymmetric Games

actions: 2 each 3 each 4 each actions: 2 each 2 by n 3 each

2 players �a �c ×b 2 players �a ���������g ×c

3 players �b ×d 3 players ×e n/a
n players �b n players ×f n/a

� Noise independent × Counterexample to noise independence exists.
a Carlsson and Van Damme. b FMP. c Basteck and Daniëls. d Basteck et al. e Carlsson.
f Corsetti et al. g This paper, Section 5.

Table 1. Noise (In)dependence

1

✓ Always noise independent. × Counterexample to noise independence exists. For empty
cells noise dependence follows from an example in smaller games. aCarlsson and van Damme
[1993]. b Frankel et al. [2003]. cBasteck and Daniëls [2011]. dBasteck et al. [2010]. eCarlsson
[1989]. f Corsetti et al. [2004]. gThis paper, see Section 2.1.6: Two-player games with 2 by n
actions.

Tab. 2.1: Noise (In)dependence in Supermodular Games

For some games, an even simpler way to determine noise independence is to count
the number of players and actions. Table 2.1 summarises when this is possible; for
supermodular games indicated with a “✓”, noise independence always holds.

Table 2.1 also shows that noise independence may fail quickly as we enlarge the
action sets of players. In this section, we will show that a game may nevertheless be
noise independent if we can suitably decompose it into smaller games. We start by
making a more basic observation: in certain games with large action sets, the GGS
may be determined by solving smaller games.

Definition. Consider a supermodular complete information game g with joint action
set A. For action profiles a ≤ a′, we define [a, a′] ∶= {ã ∈ A ∣ a ≤ ã ≤ a′}. The restricted
game g∣[a, a′] and elaboration E∣[a, a′] are given by restricting the joint action set
of g and its elaboration E to [a, a′].

Figure 2.2 now illustrates the idea. If certain action profiles a and a′ are played in
equilibrium strategy profiles of the restricted elaborations E∣[0, a] and E∣[a, a′], we
can “patch” these profiles together to obtain a strategy profile s in the elaboration
E, such that an upperbest reply iteration starting from s is weakly increasing. Hence
the attained action profile a in E must be weakly higher than a′. By Theorem 1, a′
provides a bound on the GGS. We may also do this iteratively:

Lemma 2. Fix a supermodular game g and noise distribution f . An action profile
an is the unique global game selection, if there is a sequence 0 = a0 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ an ≤

an+1 ≤ ⋅ ⋅ ⋅ ≤ am =m such that

(i) aj is the unique global game selection in g∣[aj−1, aj] for all j ≤ n, and

(ii) aj−1 is the unique global game selection in g∣[aj−1, aj] for all j > n.

A noise independence result follows as an immediate corollary. If the restricted
games in the hypothesis of Lemma 2 are noise independent, we can use the same
decomposition of the game g, regardless of the noise distribution f , and g must be
noise independent.

Theorem 4. Fix a supermodular game g. An action profile an is the unique noise
independent global game selection, if there is a sequence 0 = a0 ≤ a1 ≤ ⋅ ⋅ ⋅ ≤ an ≤ an+1 ≤

⋅ ⋅ ⋅ ≤ am =m such that



2. Global Games and Equilibrium Selection 16

si

|A| xi
0

0

ai

a′i

Ai

restricted game

1

Fig. 2.2: Exploiting the GGS of restricted games

(i) aj is the unique noise independent global game selection in g∣[aj−1, aj]

for all j ≤ n, and

(ii) aj−1 is the unique noise independent global game selection in g∣[aj−1, aj]

for all j > n.

In Section 2.1.6 we apply these results to derive the noise independent GGS in two
examples.

The concept of p-dominance reveals another connection between noise indepen-
dence and robustness to incomplete information. Together, Proposition 2.7 and 3.8
in Oyama and Tercieux Oyama and Tercieux [2009] imply that if a supermodular
game g can be decomposed – as above – into restricted games, all of which have a
strict p-dominant equilibrium with sufficiently small p, uniform across these games,
then an is also the unique robust equilibrium of g (and thus the unique GGS).

However, Theorem 4 establishes a more direct result about equilibrium selec-
tion in global games. First, its conclusion holds independently of whether the action
profile an is robust to incomplete information, which is a sufficient, but not a nec-
essary condition for noise independence (see the combined results of Basteck and
Daniëls [2011] and Oyama and Takahashi [2011]). Second, it allows application of
a range of known criteria for noise independence besides p-dominance; e.g., the fact
that symmetric three-player three-action games, symmetric n-player binary-action
games, and (as we show below) two-player 2-by-n-action games are noise indepen-
dent, none of which are equivalent to the p-dominance criterion. Indeed, we can
apply a different criterion to each restricted game. Thus, our theorem applies under
strictly more general conditions.

2.1.6 Applications

It remains to show that our results may be applied in economically interesting
settings. We report two examples. In addition, we use Theorem 1 to establish a new
noise independence result.

Refinancing Game

Consider a complete information game g in which 3 lenders decide whether or not
to refinance a firm invested in a long term project. Each lender can lend one unit of
cash. The firm promises to repay Rh at maturity. However, if the firm cannot fully
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lenders I − {i}

(0,0) (0,1), (0,2) or (1,1) (1,2) or (2,2)
(“don’t lend”) 0 1 1 1

lender i (“secured loan”) 1 c Rl + c Rm

(“unsecured loan”) 2 0 Rl Rh

refinance the project, it may not be able to repay in full. It may repay Rl < Rh, or
default outright and not repay at all.

The firm has the option to issue collateralised debt that gives lenders an addi-
tional payoff of c in both the partial and the complete default scenarios, but yields
a lower repayment Rm < Rh when the project succeeds, as the provision of collateral
reduces balance sheet flexibility and thus is costly for the firm. The following ma-
trix summarises the possible outcomes of the game, identifying the different lending
decisions with actions 0, 1, and 2 as indicated.

For Rl =
2
3 and Rh = 2, and in the absence of collateralised debt, the GGS implies that

lenders will not finance the project – recall that in symmetric binary-action games,
the GGS is the best reply to the belief assigning equal probability to opponents’
profiles (0,0), (0,2) and (2,2).

Introducing collateralised loans may change this result. For example, if c = 2
3 and

Rm = 3
2 , we find that in the restricted game g∣[0,1] (where lenders choose 0 or 1),

the GGS is 1,9 as it is the best reply to the belief assigning equal probability to
(0,0), (0,1) and (1,1). Similarly, the GGS in g∣[1,2] is 2. Thus, by Lemma 2, the
GGS in g is 2: lenders are willing to provide unsecured loans if we include option
1. Intuitively, this change occurs because the possibility of opponents extending
secured loans makes action 2 less risky. Note that all of this holds regardless of
the noise distribution, as noise independence is inherited from the two symmetric
binary-action games by Theorem 4, and despite the fact that 3-player 3-action games
are not in general noise independent.

Asymmetric Minimum Effort Game

Each player i ∈ I produces an intermediate good that is a necessary input for a
final good. Players choose their production level ai ∈ {0, . . . ,m} and production
of the final good is amin ∶= min{ai∣i ∈ I}. Players’ individual payoff functions are
given by gi(ai, a−i) = bi(amin)− ci(ai), where bi and ci are increasing benefit and cost
functions. This game typically has many equilibria. It generalises a model of Bryant
[1983] studied by Carlsson and Ganslandt [1998] and Van Huyck et al. [1990].10

To solve the game for the GGS, we decompose it into m restricted binary-action
games with joint action sets {k − 1, k}∣I ∣, 0 < k ≤ m. We will determine the GGS

9 In this section, for brevity we use n ∈ N to denote the action profile where all players use
action n.

10 Carlsson and Ganslandt [1998] consider a form of trembling hand perfection in a symmet-
ric version of this model; Van Huyck et al. [1990] experimentally test a variant with linear and
symmetric payoffs.
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in these restricted games. By Theorem 1, the GGS equals k if and only if in the
associated elaboration E∣[k − 1, k] we can construct an increasing strategy profile
such that players choose action k for sufficiently high signals, and from which a best
reply iteration leads upwards.

Consider a strategy profile for the elaboration E∣[k − 1, k], given by thresholds
z = (zi)i∈I such that each player i switches from action k − 1 to k at zi ∈ [0, ∣A∣]. Let
Pi(z) be the probability that player i attaches to all her opponents playing action
k, given their thresholds, when she gets signal zi. The highest GGS equals k if and
only if we can adjust the (zi)i∈I such that each individual player prefers to play k
at her threshold; it is unique if they can be made to strictly prefer this, i.e.

(2.4) pi ∶=
ci(k) − ci(k − 1)
bi(k) − bi(k − 1) < Pi(z),

To solve the restricted game, we use the following fact (proved in Appendix A): the
beliefs at the thresholds zi always satisfy the constraint ∑i∈I Pi(z) = 1. So, summing
(2.4) over all players gives

(2.5) ∑
i∈I

ci(k) − ci(k − 1)
bi(k) − bi(k − 1) < 1.

Therefore, a necessary condition for k to be the unique GGS is that players’ aggregate
marginal cost-benefit ratios, when everyone switches from k − 1 to k, are strictly
smaller than 1. This is also sufficient, since k is p-dominant with ∑pi < 1 when
(2.5) holds, implying noise independent selection. Conversely, if (2.5) holds with the
inequality reversed, k − 1 must (necessarily) be the unique GGS – though in this
case the restricted game is generally not p-dominant solvable.

Provided the left hand side of (2.5) crosses 1 at most once and from below
for increasing k = 1,2, . . . ,m, this decomposition yields a generically unique, noise
independent GGS. (A sufficient, but not necessary, condition is that the individual
ci are convex and bi are concave.)

Two-player games with 2 by n actions

To conclude, we will use Theorem 1 to prove a new noise independence result for
supermodular 2-by-n-action games. This completes the characterisation of super-
modular games for which noise independence follows from the size of individual
action sets (Table 2.1). Let g be a supermodular game with player set I = {1,2},
and action sets A1 = {0,1} and A2 = {0,1, . . . ,m2}. E.g., player 1 is a government
contemplating an infrastructure project and player 2 is a firm choosing a plant ca-
pacity, and their investments are complements.

For an arbitrary noise distribution f , consider the elaboration E of the game g
and its highest equilibrium strategy profile s, in which players jointly play a = (a1, a2)

at sufficiently high signals. If the attained action ai = 0 for some player i, she plays
0 for all signals in the elaboration E. Thus the attained action aj, j ≠ i, must be j’s
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highest best reply to 0. Then, the joint strategy profile given by si(xi) = 0 for all
xi, and sj(xj) = 0 if xj < 0 and sj(xj) = aj if xj ≥ 0 is the highest equilibrium in a
lower-f ′-elaboration under any other noise distribution f ′.

Alternatively, suppose attained action ā1 = 1 and ā2 = k > 0. Then the highest
strategy profile s may be identified with a threshold z1

1 and a tuple of thresholds
z1

2 , z
2
2 , . . . , z

k
2 , at which players 1 and 2 switch to higher actions. The opposing action

distribution faced by player 1 at signal x1 = z1
1 is given by the probabilities Qj =

P(x2 < z
j
2∣x1 = z1

1) that player 2 chooses an action below j = 1, ..., k given that x1 = z1
1 .

But the opposing action distribution that player 2 faces at each of her thresholds zj2
is also described by these probabilities, since for all j = 1, ..., k we find

P(x1 > z
1
1 ∣x2 = z

j
2) = P(x1 − x2 > z

1
1 − z

j
2∣x2 = z

j
2)

= P(x1 − x2 > z
1
1 − z

j
2∣x1 = z

1
1) = P(x2 < z

j
2∣x1 = z

1
1) = Qj,

where the second equality follows from the uniform prior distribution of θ. Now, if
we consider any other noise distribution f ′ and associated lower-f ′-elaboration E′,
we can always construct an increasing strategy profile s′ in which players jointly play
(1, a2) for sufficiently high signals, by putting z1

1 = 1 and arranging the remaining k
thresholds z1

2 , z
2
2 , . . . , z

k
2 such that the k independent equations that determine the

Qj, j = 1, ..., k, hold under the new noise distribution.
In this way, the action distributions that players face at their thresholds remain

unchanged. Since they are willing to switch to higher actions given these beliefs,
a best reply iteration in elaboration E′ starting at the profile s′ is monotonic and
leads to an equilibrium strategy profile s∗ ≥ s′ of E′. By Theorem 1, the highest GGS
under the noise distribution f ′, a′, is weakly higher than a, the highest GGS under
f . Since f and f ′ were arbitrary, we find that a′ = a. A dual argument establishes
that a′ = a, proving the noise independence of the game g.

2.1.7 Conclusion

We have shown how, for any supermodular complete information game, we may de-
duce its global game selection directly using solely the complete information game’s
payoffs and the global game’s noise distribution (Theorem 1). For almost all games
this gives a unique global game selection (Theorem 2). Our results may be used to
establish selection under weakened assumptions on the global game (Theorem 3),
which is useful from an applied perspective.

From a practical point of view, our most powerful result is Theorem 4. It implies
that the global game selection may be derived by decomposing a many-action game
into smaller games, for which existing heuristics and noise independence results can
be applied. As we showed in Section 2.1.6, simplified conditions for the global game
selection and a manageable heuristic to derive it in many-action games make it easier
to apply the theory of global games. That should facilitate new research on topics
where strategic complementarities are crucial.



2. Global Games and Equilibrium Selection 20

2.2 Every symmetric 3 × 3 global game of strategic
complementarities has noise-independent selection

Section 2.2 has been published as

Basteck, Christian and Daniëls, Tijmen, “Every symmetric 3 × 3 global game of
strategic complementarities has noise-independent selection”, Journal of Mathemat-
ical Economics, 47.6 (2011), pp. 749-754.

2.2.1 Abstract

We prove that the global game selection in all 3× 3 payoff-symmetric supermodular
games is independent of the noise structure. As far as we know, all other proofs
of noise-independent selection in such games rely on the existence of a so-called
monotone potential (MP) maximiser. Our result is more general, since some 3 × 3
symmetric supermodular games do not admit an MP maximiser. As a corollary,
noise-independent selection does not imply the existence of an MP maximiser, nor
the existence of an equilibrium robust to incomplete information.

2.2.2 Introduction

Global games are used to select a unique equilibrium in models that would typically
have multiple equilibria. A global game perturbs a complete information game by
supposing that payoffs depend on a state parameter that is only noisily observed by
its players. The resulting incomplete information game (generically) has a unique
equilibrium profile that may be used to determine a unique equilibrium in the origi-
nal game. There are many applications, particularly to the theory of financial crises
(Morris and Shin [2003] give an overview). In this paper, we prove that for two-
player, three-action, supermodular games with symmetric payoffs this global game
selection is independent of the imposed noise structure when the noise vanishes.
(Precise definitions are given in section 2.)

Theorem 5. Every symmetric 3×3 supermodular game has noise-independent global
game selection.

The significance of this result is in its implication that 3 × 3 games clarify the con-
nections between noise-independent selection, robustness to incomplete information
[Kajii and Morris, 1997], and the existence of a monotone potential (MP) max-
imiser [Morris and Ui, 2005]. As far as we know, all (subclasses of) supermodular
games for which noise-independent selection has been proved so far also admit an
MP maximiser. The xistence of an MP maximiser guarantees the existence of an
equilibrium robust to incomplete information [Morris and Ui, 2005], and a fortiori,
noise-independent selection [Oury and Tercieux, 2007, Basteck et al., 2010]. Noise-
independent selection in generic 3 × 3 symmetric supermodular games with three
pure Nash equilibria can be proved along these lines; see Oyama and Takahashi
[2009]. However, Honda [2011] has found a non-empty open set of 3 × 3 symmetric

http://www.sciencedirect.com/science/article/pii/S0304406811001121
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supermodular games, with two pure Nash equilibria, that have no MP maximiser.
Oyama and Takahashi [2011] show that these games have no equilibrium robust to
incomplete information either.

Our proof of noise-independent selection in 3 × 3 games does not rely on the
existence of an MP maximiser. Since it applies to all supermodular 3 × 3 games
with symmetric payoffs, it is necessarily more general. In particular, combined with
the results of Honda and Oyama and Takahashi, it shows that noise-independent
selection is not equivalent to the existence of an MP maximiser, nor to the existence
of an equilibrium robust to incomplete information.

Carlsson and Van Damme [1993], who introduced global games, established noise-
independent selection for all 2 × 2 games. Frankel et al. [2003] (“FMP”) examined
it for 3 × 3 symmetric supermodular games. The cases that they formally consider
rely on the existence of an MP maximiser.11 But they also give a heuristic argument
that selection is independent of the noise structure in 3 × 3 games with symmetric
payoffs when, in addition, the noise distributions of players’ signals are symmetric in
the mean. Unfortunately, in general it is not true12 that if the global game selection
is independent of the noise structure for all mean-symmetric noise distributions, the
global game selection is noise independent, as we show below by counterexample.

2.2.3 Preliminaries

Let I = {1,2} be a set of two players, both endowed with the same ordered action
set A = {0,1,2} equipped with the usual ordering. Consider a 3 × 3 game g with
payoff function gi ∶ A ×A → R for i ∈ I, where gi(ai, a−i) is i’s payoff if she chooses
ai and her opponent −i chooses a−i. (For n ∈ A, we will typically denote the action
profile (n,n) ∈ A ×A also by n, economising slightly on notation.)

Let ∆i
n
m(a−i) ∶= gi(n, a−i) − gi(m,a−i) denote the payoff difference of playing n

instead of m against an opposing action a−i and recall that g is called (weakly)
supermodular13 if each ∆i

n
m(a−i) is a monotonic function of a−i for all m < n. A

game g is called strictly supermodular if each ∆i
n
m(a−i) is strictly monotonic. The

dual game of g, denoted g∂, is obtained by reversing the ordering on A. Note that
g is supermodular if and only if g∂ is supermodular.

Like FMP, we define a global game G(v) in the following way. Extend each gi(ai, a−i)
to a payoff function ui(ai, a−i, θ) that depends continuously on a state parameter
θ ∈ R. For each fixed θ, let the game given by the ui(⋅, θ) be supermodular. In
addition, let the payoff differences ui(n, a−i, θ) − ui(m,a−i, θ) be strictly monotonic
in θ for each a−i and m < n.14 Furthermore, assume there exist θ ≤ 0 and θ ≥ 0 such

11 More specifically, they rely on the existence of a local potential (LP) maximiser, which implies
the existence of an MP maximiser in own-action concave games [Morris and Ui, 2005, Oyama and
Takahashi, 2009].

12 Nor, we should add, do FMP claim this is true.
13 FMP use the terminology “game of strategic complementarities”.
14 Strict monotonicity is slightly weaker than the conditions imposed by FMP. Continuity with

respect to θ may be weakened as well, see Basteck et al. [2010].
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that for both players, action 0 strictly dominates actions 1 and 2 in the game with
payoff functions ui(ai, a−i, θ) and action 2 dominates actions 0 and 1 in the game
with payoff functions ui(ai, a−i, θ).

Players all share a common prior belief about the true value of θ, given by a
continuous density φ with connected support that includes θ and θ in its interior.
Let f = (f1, f2) denote a pair of probability densities, whose supports are subsets of
[−1

2 ,
1
2]. Each player i also receives a private signal xi = θ+vηi, where each ηi is drawn

independently according to the density fi, and v > 0 is a scaling parameter. We also
define the simplified global game G∗(v), which differs from G(v) in that players’
payoffs are given by ui(ai, a−i, xi) (thus players’ payoffs depend directly on their
signal), and that the prior density of θ is uniform over a large interval U containing
[θ, θ] in its interior.

A strategy profile s is a function that associates an action for each player with
each pair of signals. The key result on global games states that in the limit as the
scaling parameter v → 0, the equilibrium strategy profiles of the games G(v) and
G∗(v) all converge to a limiting strategy profile s∗, which is increasing, and unique
up to its finitely many discontinuities (see theorem 1 and lemma A3 in FMP).

For brevity, let us write s∗(θ) instead of s∗(θ, θ). Evaluating s∗ at any point of
continuity θ selects a unique equilibrium of the complete information game g given
by the ui(⋅, θ), which we refer to as the global game selection. To extend the notion of
the global game selection to the points of discontinuity of s∗, we work with the left
and right continuous version of s∗, denoted s∗ and s∗. Then s∗(θ) and s∗(θ) select
two equilibria of g that we refer to as the least and greatest global game selection,
respectively. Generically, s∗(θ) and s∗(θ) coincide.

Suppose without loss of generality that g is such that gi(⋅) = ui(⋅,0). The selec-
tions s∗(0) and s∗(0) are always independent of φ (FMP) and also of the shape of
the ui(⋅, θ) for θ ≠ 0 [Basteck et al., 2010]. However, they may depend on the noise
structure given by f . If they are independent of f , then the complete information
game g has noise-independent selection.15

2.2.4 Proof Strategy

Consider a supermodular game g satisfying the definitions above, and a simplified
global game G∗(v) with payoff functions ui as above, with g embedded at θ = 0.
To avoid having to deal with sequences of increasingly precise noise structures, we
will define a new incomplete information game that allows us to establish the global
game selection more directly. Following FMP and Basteck et al. [2010], consider an

15 While FMP do not give an explicit definition of noise-independent selection, like us, they phrase
it in terms of the independence between f and the values of the left and right continuous versions
of s∗ in their theorem 4. A minor difference is that we will take explicit care of the non-generic
case where s∗ and s∗ differ.
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alternative incomplete information game Ev with payoff functions ũi as follows:

ũi(ai, a−i, xi) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ui(ai, a−i, θ) if xi < 0,
ui(ai, a−i,0) if xi ≥ 0,

where ui(⋅, θ) are payoff functions such that the least action strictly dominates all
others. The prior distribution of θ and the distribution of individual signals remain
unchanged. For any xi, the best reply under the payoff function ũi(⋅, xi) is weakly
smaller than under ui(⋅, xi)—for negative signals because the smallest action domi-
nates under ũi, and for positive signals since the payoff difference function increases
in xi under ui but is constant under ũi.

For this reason, Ev can be used to find a lower bound for the global game
selection. If for some fixed v and x > 0, there exists an equilibrium strategy profile
s̃v in Ev such that s̃v(vx) = n, then there must also be an equilibrium strategy profile
sv in the simplified global game G∗(v) such that sv(vx) ≥ n. Moreover, this holds
for all v′ < v, as changing v simply scales the equilibrium strategies in Ev. Thus,
letting v → 0, we find that for s∗ (the right continuous limiting strategy profile of all
equilibrium strategy profiles in G∗(v)), we must have s∗(0) ≥ n. Hence the greatest
global game selection in g must be weakly greater than n.

The above argument to establish a lower bound on the global game selection is used
in the proof of theorem 4 in FMP. Basteck et al. [2010] establish a converse result:
the greatest equilibrium strategy profile of Ev also determines an upper bound for
the greatest global game selection. In fact, one can show that the greatest global
game selection always equals s(R) for sufficiently large R, where s is the greatest
equilibrium strategy profile of E1 and (for 3×3 games) we may take R ≥ 6 (see figure
2.3). It is easy to see that the scale factor plays no essential role in the game Ev, so
we may as well fix v = 1 and drop the index.

In sum, we can completely pin down the greatest global game selection s∗(0) by
analysing the much simpler game E. This will be our proof strategy in the rest
of this text. As a matter of fact, all yet unknown cases of noise independence for
symmetric supermodular 3×3 games reduce to either finding an equilibrium strategy
profile for E in which both players play action 2 at sufficiently large signals, or to a
dual result that we obtain by order-theoretic duality.

2.2.5 Noise-Independent Selection in 3 × 3 Symmetric Supermodular Games

Let us now suppose g is an arbitrary symmetric game, so that we may write g ∶=
g1 = g2 and, for the payoff difference functions, ∆ ∶= ∆1 = ∆2. In the mixed extension
of g, a strategy µ = (w0,w1,w2) is a probability distribution that mixes over the
actions 0,1,2 with probabilities (“weights”) w0,w1,w2, respectively. By br(µ) we
denote the set of best replies to µ. Now, fix some arbitrary noise structure f and
suppose we wish to show that action 2 is a global game selection in g. As argued,
our task reduces to finding an equilibrium strategy profile in E where action 2 is
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π1
π2
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Fig. 2.3: The game E

played. When can we find such a strategy profile?
First, observe that any increasing strategy profile for E may be identified with

the threshold signals at which players switch to greater actions. Let zi denote the
signal where player i switches from 0 to 1, and zi where she switches from 1 to 2.
Given f , let the induced probability density of i’s opponent’s signal x−i, conditional
on i’s own signal xi, be denoted by πi(x−i∣xi). Without loss of generality, we may
assume that individual signals are unbiased, in the sense that P(x−i ≥ xi) = 1

2 .
Denote by µnm the strategy in the mixed extension of g that puts weight wm =

wn = 1
2 on actions {m,n} ⊆ {0,1,2} and zero on the remaining action. Consider a

strategy profile s for E in which both players use the same strategy, so that zi = z
and z = zi for each i, and such that they are far apart, as in figure 2.3. At the
threshold z, players face an opponent who plays µ1

0 and at z, they face an opponent
who plays µ2

1. Suppose players are willing to switch from action 1 to action 2 when
the opponent uses the strategy µ2

1. If players are also willing to switch from action 0
to action 1 when the opponent uses the strategy µ1

0, then we are done: by standard
results for supermodular games, a greatest best reply iteration starting from s must
converge to an equilibrium in which action 2 is played for all signals greater than z
(see Vives 1990, or Topkis 1998).

But now suppose players are not willing to switch from action 0 to 1 when
the opponent uses the strategy µ1

0. We can try and move the thresholds a little
closer together. Then, at the upper threshold z players will put some probability
on the opponent playing 0, and probability p < 1

2 on the opponent playing 1, but
nevertheless action 2 may still be a best reply. By contrast, at the lower threshold z
players put more probability on the opponent playing 2 and less on 1, so that action
1 may become a best reply.

Figure 2.4 considers the special case where f induces a distribution over signal
differences xi − x−i that is symmetric in the mean,16 which implies π1 = π2. Due to
the symmetry, the weight p that players put on their opponent playing 1 at the
threshold z exactly equals the weight they assign at the threshold z. In this case, if
we may arrange the thresholds as described above, then we may also arrange them
under any other mean-symmetric noise structure such that the weight that players
put on action 1 at the thresholds equals the same p. This argument suggests:

16 This is the case if f1 = f2, or if the individual fi are symmetric in their mean.



2. Global Games and Equilibrium Selection 25
2

z z

s

R
x

0
0

1

2

A

Fig. 2.4: Mean-symmetric noise distributions

Lemma 3. If there exists a weight p ∈ [0, 1
2] such that:

action 1 or 2 is a best reply when faced with w0 =
1
2 ,w1 = p,w2 =

1
2 − p, and(C2)

action 2 is a best reply when faced with w0 =
1
2 − p,w1 = p,w2 =

1
2 ,

then 2 is a global game selection.

For mean-symmetric noise structures, the lemma is almost self-evident, and this is
the core of the heuristic argument for noise-independent selection in 3×3 symmetric
supermodular games presented in FMP. Unfortunately, it is also easy to see that
this argument breaks down when the noise structure is not mean-symmetric. It is
in general not possible to adjust the difference z − z in order to satisfy P(z < x−i <
z∣xi = z) = p and P(z < x−i < z∣xi = z) = p simultaneously.

Remarkably, the lemma nevertheless holds, but its proof is a non-trivial exercise.
Symmetry of g is essential for the argument, as we show by counterexample in
section 2.2.6. Moreover, one has to rely on additional degrees of freedom by allowing
the zi and zi to differ, which makes the argument rather technical, and we delegate
it to the appendix (B). It is the main ingredient towards the proof of the theorem.
From the lemma, we obtain by order-theoretic duality:

Corollary 1. If there exists a weight p ∈ [0, 1
2] such that:

action 0 is a best reply when faced with w0 =
1
2 ,w1 = p,w2 =

1
2 − p, and(C0)

action 1 or 0 is a best reply when faced with w0 =
1
2 − p,w1 = p,w2 =

1
2 ,

then 0 is a global game selection.

Proof. In the dual game of g, the ordering on A is reversed. Replacing all the
occurrences of action 0 by action 2 and all occurrences of action 2 by action 0 in the
hypotheses and proof of lemma 3, we find that 0 is a global game selection in g∂,
for any f . Since g and g∂ differ only in their ordering, 0 is a global game selection
in g as well.

Finally, one can show that if lemma 3 and its corollary fail to hold, 1 must be a Nash
equilibrium and g must be ‘decomposable’ as in Basteck et al. [2010]. Alternatively,
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one can show that neither (C0) nor (C2) hold if and only if 1 is a p-dominant equilib-
rium for some p < 1

2 . Hence, our lemma and its dual deal with all yet unknown cases
of noise-independent selection in 3×3 symmetric supermodular games. Nevertheless,
in order to keep our exposition self-contained, we give a short explicit proof of the
remaining case, in which 1 is always a global game selection.

Lemma 4. (i) If either:

(a) action 1 is a best reply to µ1
0 and the greatest best reply to µ2

1, or(C1)
(b) action 1 is a best reply to µ2

1 and the least best reply to µ1
0,

then 1 is a global game selection. Moreover (ii), if hypotheses (C0) and (C2) do not
hold, then (C1) necessarily holds.

Proof. We prove (ii) first. Note that br(µ2
0) = {1} as any other value would immedi-

ately satisfy either lemma 3 or its corollary with p = 0. Hence, by supermodularity,
br(µ1

0) ⊆ {0,1} and br(µ2
1) ⊆ {1,2}. We will show that 2 /∈ br(µ2

1). Suppose the con-
trary. Then br(µ1

0) = {0}, as otherwise the conditions of lemma 3would be satisfied
for p = 1

2 . Hence we find that br(µ1
0) = {0}, br(µ2

0) = {1}, and 2 ∈ br(µ2
1). The first two

equations imply that there exists some p ∈ (0, 1
2), such that br((1

2 , p,
1
2 − p)) = {0,1}.

In order for lemma 3 not to hold, it must be that 2 /∈ br((1
2 − p, p,

1
2)), but that

would imply the corollary is satisfied. Thus, we conclude that 2 /∈ br(µ2
1). A similar

argument shows 0 /∈ br(µ1
0). So br(µ1

0) = br(µ
2
1) = {1} and (C1) is satisfied.

We sketch the proof of (i) for case (a). First note that (C1) implies that 1
is a Nash equilibrium. Let s be the strategy profile where players switch to 1 at
zi = 0. This is an equilibrium profile of E, and hence 1 is a lower bound for the
greatest global game selection. Next, since 2 is not a best reply to µ2

1, 2 cannot
be a best reply for i at zi ≤ z−i in any equilibrium strategy profile of E. After all,
any choice of zi ≤ z−i will imply that at threshold zi, player i attaches probability
P(x−i ≥ z−i∣xi = zi) ≤ P(x−i ≥ xi∣xi = zi) = 1

2 to her opponent playing 2. In view of our
argument in section 2.2.4, this implies that 1 is also an upper bound for the greatest
global game selection.

Our definition of the global game selection does not entail that it is unique, but
that is true generically. As a matter of fact, conditions (C0), (C1), and (C2) also
characterise when there is a unique global game selection: it is unique if and only if
exactly one of them is satisfied.

To see this, identify the set of 3×3 symmetric supermodular games with a subset
S ⊆ R9 endowed with the Euclidean subspace topology. Let C0 ⊆ S be the subset
where condition (C0) holds, and define C1 and C2 analogously. Note that C0 and C2

are closed sets, but C1 is not. Since the global game selection is generically unique,
it is easy to argue that if a game g is in the interior of any of these three sets, the
global game selection must be unique.

We will show that, by contrast, if g is a boundary point of C0, C1 or C2, the
global game selection is not unique. Suppose g is on the boundary of C0. (If, instead,
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we choose g on the boundary of C1 or C2, we may apply similar arguments.) As
S = C0 ∪C1 ∪C2, g has to be on the boundary of either C1 or the closed set C2. If
g ∈ C2, then 0 is the least and 2 the greatest global game selection. If g ∈ C1, then
1 is the greatest global game selection. If g /∈ C1 yet on the boundary of C1, then
{1,2} ⊆ br(µ2

1) and {0,1} ⊆ br(µ1
0) so that g ∈ C2 after all.

We have now shown conditions (C0), (C1) and (C2) characterise the global game
selection, are exhaustive, and none of them depends on the noise structure f . Hence,
the theorem is proved.

Remark. The sets C0, C1 and C2 can also be characterised in terms of the payoff
difference functions. For example, g ∈ C2 is equivalent to

(i) ∆2
1(0) +∆2

1(2) ≥ 0 and ∆2
0(0) +∆2

0(2) ≥ 0,
or (ii) ∆1

0(0) +∆1
0(2) ≥ 0 and ∆2

1(1) +∆2
1(2) ≥ 0 and

∆1
0(0) +∆1

0(2)
∆1

0(2) −∆1
0(1)

≥
∆1

2(2) +∆1
2(0)

∆1
2(0) −∆1

2(1)
.

In the subset of games with 3 strict Nash equilibria, these conditions (generically)
coincide with the payoff conditions for 2 being a (strict) MP-maximiser given in
Oyama and Takahashi [2009]. If one further restricts the set of games by assuming
that br(µ2

0) = {1}, (ii) is (generically) equivalent to the payoff conditions for 2 being
the global game selection given in FMP. (Note that both papers consider generic
games, requiring some inequalities to be strict.)

2.2.6 A Counterexample for Asymmetric 3 × 3 Games

To conclude our paper, we show that noise-independent selection may fail for aym-
metric supermodular 3×3 games. In fact, in such games a heuristic argument based
on mean-symmetric noise distributions may fail to provide the right intuition about
the global game selection. In an asymmetric 3×3 game, and under asymmetric noise
distributions, 0 (or 2) may not be a global game selection even though (C0) (or
(C2)) holds. Even if a game has the property that the global game selection is in-
dependent of the noise structure for all mean-symmetric f , the game may still not
satisfy noise-independent selection.

player 2
0 1 2

player 1
0 2, 1 0, 0 −3,−3
1 0,−1 0, 0 0, 0
2 −3,−1 0, 0 2, 2

Tab. 2.2: Asymmetric two-player three-action game
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Consider g as in the bimatrix in figure 2.2. Both players are indifferent between
0 and 1 when their opponent plays the mixed strategy (1

2 ,
1
6 ,

1
3), and indifferent

between 1 and 2 when their opponent plays the mixed strategy (1
3 ,

1
6 ,

1
2).

Mean-symmetric noise structures

Suppose f is such that the induced probability densities πi(x−i∣xi) are symmetric
in xi. Note that (C0) and (C2) are satisfied for p = 1

6 . For mean-symmetric noise
structures, this is sufficient to establish that 0 and 2 are the least and greatest global
game selection under f respectively, as the heuristic argument in section 2.2.5 shows.

Non-mean-symmetric noise structures

Assume the following asymmetric conditional probability density function of player
1 about player 2’s signal:

π1(x2∣x1) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 + x2 − x1 if x1 − 1 < x2 < x1,

x2 − x1 if x1 ≤ x2 < x1 + 1
.

Player 2 holds a mirrored function, namely

π2(x1∣x2) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

x2 − x1 if x2 − 1 < x1 ≤ x2,

1 + x2 − x1 if x2 < x1 < x2 + 1
.

Set z1 = z2 = 0. At z2, player 2 expects player 1 to play 0 with probability 1
2 and is

indifferent, irrespective of z1. By numerical methods we establish that the smallest
zi at which players are indifferent between actions 1 and 2 are z1 ≃ 0.2214 and
z2 ≃ 0.5224. At z1, player 1 assigns weight approximately equal to 0.5−0.5(0.5224)2 =

0.3635 > 1
3 to her opponent playing 2, while the weight attached to action 0 is 1

2 .
Therefore, player 1 strictly prefers to play 1.

Since player 1 has a unique best reply at z1, we may slightly increase z2, z1, z2,
so that both players have unique best replies at each of their thresholds. This leaves
us with a strategy profile in which both players use action 2, that must be preserved
by slight perturbations of the payoffs. In view of our argument in section 2.2.4, 2
must be a global game selection in g and in all games with payoffs close to that of
g, which implies the global game selection in g is unique.17

This contrasts with the case of mean-symmetric f , so g does not have noise-
independent selection. Perturbing the game slightly by setting g2(0,1) = g2(0,2) =
−1 + ε for small ε, it still satisfies (C0), but not (C2), so that 0 is the unique

17 It may be hard to generate the πi’s using two independently distributed error terms with
densities f1, f2. However, they can be approximated close enough for the numerical result to hold:
assume that player 1 receives a very precise signal, while player 2’s signal is distributed around θ
just like x2 is distributed around x1 according to π1.
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global game selection for any mean-symmetric noise structure. Under the non-mean-
symmetric f above, 2 still is the unique global game selection.

2.3 New results and own contributions

Section 2.1, Basteck et al. [2013]:
Theorem 1 and 4 were included in my diploma thesis Basteck [2009], supervised

by Tijmen Daniëls and Frank Heinemann. Theorem 2 and 3 are new results and
extend the previous work as follows.

We know that the global game selection in a complete information game g is
independent of the state dependent payoff functions of the global game embedding,
but only depends on the local payoff functions of g itself as well as the chosen noise
distribution f . In many applications, f is chosen as some specific noise distribution
– most often as the normal distribution. How often can we then expect the global
game selection to be unique for a given f? That was one of the questions that we
discussed collaboratively and that I was able to answer in Theorem 2.

Another point that we stumbled upon, was the fact that Frankel et al. [2003]
assume continuous global game embeddings while many applications use payoff func-
tions that are discontinuous in the state variable. So we asked, whether the results
of Frankel et al. [2003] could be extended to the these cases and found an answer in
the form of Theorem 3. Here Tijmen and I were most involved in the proof.

Finally, Basteck et al. [2013], includes two new examples to illustrate the eco-
nomic relevance of our results, of which I contributed the first one – the Refinancing
Game (see Section 2.1.6).

Section 2.2, Basteck and Daniëls [2011]:
In 2010, Jun Honda sent us an email, asking for comments on what became

his paper “Noise-independent selection in global games and monotone potential
maximizer: A symmetric 3×3 example” [Honda, 2011]. I had a look at the paper and,
among other things, noted that he claimed that the global game selection was noise
independent in all symmetric 3 × 3 games. I pointed out to him that to the best of
my knowledge this had not been proven, but that we had been able to sketch a proof
using our results. When he submitted his paper with the Journal for Mathematical
Economics he cited my claim, so that one of the Co-Editors, Atsushi Kajii, contacted
me and asked for our proof to be published alongside Jun Honda’s paper. Tijmen
and I eagerly complied and jointly produced the paper “Every symmetric 3×3 global
game of strategic complementarities has noise-independent selection.”



3. FAIR SOLUTIONS TO THE RANDOM ASSIGNMENT
PROBLEM

This Chapter has been submitted to the BDPEMS working paper series.

3.1 Abstract

We study the problem of assigning indivisible goods to individuals where each is to
receive one good. To guarantee fairness in the absence of monetary compensation,
we consider random assignments that individuals evaluate according to first order
stochastic dominance (sd). In particular, we find that solutions that guarantee sd-no-
envy (e.g. the Probabilistic Serial) are incompatible even with the weak sd-core from
equal division. Solutions on the other hand that produce assignments in the strong
sd-core from equal division (e.g. Hylland and Zeckhauser’s Walrasian Equilibria from
Equal Incomes) are incompatible with the strong sd-equal-division-lower-bound. As
an alternative, we present a Walrasian mechanism, whose outcomes are sd-efficient,
lie in the weak sd-core from equal division and satisfy the strong sd-equal-division-
lower-bound.

3.2 Introduction

In many allocation problems, we have to assign indivisible objects to individuals
where each is to receive at most one. Public housing associations assign apartments
to residents, school districts assign seats to students and childcare cooperatives as-
sign chores to its members.

If fairness is understood as equity, the indivisibility of assigned objects will often
render any eventual allocation unfair. In order to guarantee fairness at least from
an ex-ante perspective, many theorists as well as practitioners have considered lot-
teries.1 While the design of such lotteries has received a lot of attention in recent
years, most of the work concentrates on their efficiency and incentive properties (i.e.
what are the incentives for participants to reveal their true preferences) – see for
example [Erdil and Ergin, 2008], [Pathak and Sethuraman, 2011], [Abdulkadiroğlu
et al., 2015]. In this Chapter, we try to complement the literature by taking a closer
look at the original motivation for applying a lottery mechanism and ask “when is a
lottery fair?”. For this, we draw on the rich literature on fair allocation2 and adapt

1 For example, since 2010 Berlin assigns 30% of seats at overdemanded secondary schools through
a lottery, see Basteck et al. [2015].

2 See Thomson [2011] for an overview.
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various equity criteria to random assignments.
Adherence to formal equity criteria may be particularly important when dis-

tributing publicly funded (or subsidised) private goods such as school seats, where
no individual – or group of individuals – should be discriminated against. In the
following, we focus on equity criteria that compare each individual’s assignment to
the assignments of others or to the average over all assignments. In addition we con-
sider variants of the core from equal division, which can be seen as a group equity
criterion. Perhaps surprisingly, we find that all equity criteria are compatible with
Pareto-efficiency, while (some) equity criteria for individuals are in conflict with
(some) equity criteria for groups.

Since preferences over lotteries are often difficult to elicit, allocation mechanisms
typically use individuals’ preferences over sure objects. For example school choice
mechanisms typically ask students to submit a ranking of schools that they would
like to attend. To extend these preferences over sure objects to preferences over lot-
teries, we will follow Bogomolnaia and Moulin [2001] and rely on first order stochastic
dominance (sd). This extension can be seen as the most conservative possible ex-
tension, in the sense that an individual will sd-prefer one lottery over another only
if she prefers it for any von Neumann Morgenstern utility function compatible with
her preferences over sure objects.

The chapter is organised as follows. In Section 3.3, we formally define the set of
allocation problems under consideration. Section 3.4 lays out equity criteria; Section
3.5 describes which of these are satisfied by the most prominent existing solutions.
Section 3.6 contains our main results – we find that some equity criteria are incom-
patible with each other so that there exists no solution that is able to satisfy all of
them. To bridge this gap, we derive a new solution that satisfies a maximal number
of equity criteria while ensuring Pareto efficiency.

3.3 Technicalities

We consider the problem of allocatingnobjects a∈A among n individuals i∈I. Each
individual i is to receive one object3 and holds preferences over objects given by a
weak order ≿i. Let ≻i and ∼i denote the associated strict preference and indiffer-
ence relation, respectively. A preference profile is denoted as ≿= (≿i)i∈I . We restrict
preference profiles to cases of objective indifference, i.e. an individual may only be
indifferent between objects, if every other individual is indifferent as well.4 Formally,

∀a, b ∈ A, i, j ∈ I ∶ a ∼i b ⇐⇒ a ∼j b.

We will refer to the tuple (A, I,≿) as an assignment problem (of size n). Let pi,a
denote the probability that individual i is assigned object a. An individual (random)
assignment is a probability distribution over A, i.e. a vector pi = (pi,a)a∈A such

3 possibly a null-object
4 Objects that everyone is indifferent between may be interpreted as multiple copies of the same

object, such as for example multiple seats at a school.
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that ∑a∈A pi,a = 1. The set of probability distributions over A is denoted ∆(A).
A random assignment, p = (pi)i∈I , is a collection of individual assignments such that
∀a ∈ A ∶ ∑i∈I pi,a = 1.5 A solution S maps assignment problems to (sets of) random
assignments.

In order to analyse random assignments and solutions, we extend individuals
preferences over objects to preferences over individual assignments,6 using first order
stochastic dominance (sd): define an individual’s weak upper contour set of a as

Ui(a) = {b ∈ A ∣ b ≿i a}

and write pi ≿sdi p̃i if
∀a ∈ A ∶ ∑

b∈Ui(a)

pi,a ≥ ∑
b∈Ui(a)

p̃i,a.

In words, an individual weakly prefers individual assignment if it guarantees her a
weakly higher chance of receiving her most preferred object(s) and a weakly higher
chance of receiving the most or second most preferred object(s) and ... so on. If one
of the inequalities is strict write pi ≻sdi p̃i. Note that stochastic dominance induces
only a partial order over assignments.

At times, we will also evaluate individual assignments according to a vector of
weights wi = (wi,a)a∈A ∈ Rn, where wi is said to be compatible with ≿i if

∀a, b ∈ A ∶ wi,a > wi,b ⇐⇒ a ≻i b.

Analogously, a collection of weight vectors w = (wi)i∈I is compatible with preference
profile ≿, if the same can be said for each component. The set of all such collections
w is denotedW (≿). In some contexts – in particular where a social planner is able to
elicit them – wi may be interpreted as von Neumann–Morgenstern (vNM) utilities,
associating an expected utility of wi ⋅ pi with each individual assignment pi.7

Alternatively, the weights might constitute a value judgement on behalf of a
social planer, who tries to go beyond a reported preferences profile when choosing
between different random assignments. For example, a school board might find that
moving to a different random assignment where in expectation some additional k
students receive their first rather than their second choice school is preferable even
as another k students receive only their third rather than their second most preferred
school. Inevitably, such decisions have to be made and making them with respect to
fixed weight vectors may increase transparency and accountability.

Finally, a random assignment p is sd-efficient8 unless there exists another as-
5 The Birkhoff–von Neumann Theorem ensures that any random assignment can be implemented

as a convex combination of deterministic assignments where each individual receives one object.
6 We abstract from consumption externalities, so preferences over random assignments only

depend on the individual component.
7 We use wi ⋅ pi to denote the inner product of wi and pi.
8 Bogomolnaia and Moulin [2001] introduced this concept as ordinal efficiency, to highlight the

coarse informational underpinning of the preference relation ≿sd
i .
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signment p̃ such that

∀i ∈ I ∶ p̃i ≿
sd
i pi and ∃i ∈ I ∶ p̃i ≻

sd
i pi.

It is weakly sd-efficient unless there exists p̃ with p̃i ≻sdi pi, for all i ∈ I. A random
assignment p is efficient with respect to w unless there exists another assignment p̃
such that

∀i ∈ I ∶ wi ⋅ p̃i ≥ wi ⋅ pi and ∃i ∈ I ∶ wi ⋅ p̃i > wi ⋅ pi.

To familiarize ourself with the above definitions, observe that p is sd-efficient if there
exists a collection of compatible weight vectors w ∈W (≿) such that p is efficient with
respect to w.9

3.4 Equity Criteria

A minimal fairness requirement on random assignment demands equal treatment of
equals: two individuals with identical preferences should receive the same amount of
all objects that fall in the same indifference class. Formally,

∀ i, j ∈ I ∶ ≿i=≿j Ô⇒ (∀a ∈ A ∶ ∑
b∼ia

pi,b = ∑
b∼ia

pj,b).

Note that where preferences are strict, this reduces to ≿i=≿j ⇒ pi = pj. Equitable
treatment of individuals who differ in their preferences is harder to define. If one
refrains from interpersonal comparisons of utility (as we do here) envy-freeness is
arguably the most prominent such criterion. To check whether an allocation is envy-
free, we need to compare individuals’ individual assignments - each individual should
then prefer her own over anyone else’s assignment.

The criterion was introduced to economic theory by Tinbergen [1946] (p. 55 f.)10

and independently formulated in a dissertation by Foley [1967]. Both Tinbergen and
Foley view envy-freeness as a principle of ‘macrojustice’ and compare individual
positions that encompass most (if not all) aspects of individual well-being.11 In
contrast to these two early proponents of the criterion, we will treat envy-freeness
as a principle of ‘microjustice’, applicable to an isolated allocation problem and
make no amends for any inequities that originate or persist outside of the model.

Definition 1. Given an assignment problem (A, I,≿), a random assignment p is sd-
envy-free if for all i, j in I we have pi ≿sdi pj.

9 The converse holds as well, as proven (non-constructively) by McLennan [2002] and (construc-
tively) by Manea [2008]

10 Tinbergen credits his professor, Dutch physicist Paul Ehrenfest, to have formulated the crite-
rion in 1925 when they discussed the problem of interpersonal (non-)comparability.

11 Foley considers “material well-being” and includes not only private consumption goods and
leisure but also local public goods. Tinbergen goes further and wants us to consider all of “life’s
circumstances”, including for example health or social status. To make such comparisons viable,
Tinbergen suggests to compare representative individuals of different social or occupational groups.
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Bogomolnaia and Moulin [2001] are the first to formulate this property in the
context of random assignments and refer to it simply as ‘envy-free’. Observe that
sd-envy-freeness implies equal treatment of equals: if two individuals i, j share the
same preferences, sd-envy-freeness implies pi ≿sdi pj ≿sdi pi which is only possible if
pi = pj.

Sd-envy-freeness is satisfied whenever p is envy-free with respect to all compat-
ible weight vectors, i.e. if

∀w ∈W (≿), i, j ∈ I ∶ wi ⋅ pi ≥ wi ⋅ pj.

From the perspective of a social planer who assumes that individuals evaluate ran-
dom assignments in an expected utility framework, but who is informed only about
their respective rankings over sure objects, sd-envy-freeness allows her to ensure
envy-freeness with respect to individuals’ expected utilities despite her limited in-
formation on the latter.

Another natural yardstick to measure individuals’ assignments is equal division,
denoted as ( 1

n), i.e. the individual assignment that grants each object with proba-
bility 1

n .

Definition 2. Given an assignment problem (A, I,≿), a random assignment p satisfies
the

● strong sd-equal-division-lower-bound if ∀i ∈ I ∶ pi ≿sdi ( 1
n).

● weak sd-equal-division-lower-bound if ∄ i ∈ I ∶ ( 1
n) ≻

sd
i pi.

The weak notion is satisfied if the equal division lower bound is met for some
collection of weight vectors w ∈ W (≿),12 while the strong notion requires that it is
met for all such w. Hence, a social planer who only knows individual preferences over
objects but chooses a random assignment that meets the strong sd-equal-division-
lower-bound is able to ensure that the assignment also satisfies the equal-division-
lower-bound with respect to individuals expected utilities, whatever they might be.

Observe that any random assignment that is sd-envy-free also meets the strong
sd-equal-division-lower-bound: as each individual’s assignment stochastically domi-
nates all other individual assignments, it also dominates the average of all individual
assignments that is to say ( 1

n). Formally:

∀ i ∈ I, a ∈ A ∶ ∑
b∈Ui(a)

pi,b ≥ ∑
b∈Ui(a)

( 1
n∑
j∈I

pj,b) = ∑
b∈Ui(a)

1
n .

In addition, there are various equity criteria for groups of individuals. Such crite-
ria might be especially important in allocating school seats and other publicly pro-
vided goods where we would want to ensure that no group – for example students of
a particular neighbourhood or some demographic or ethnic group – is discriminated

12 I.e. for all i ∈ I, wi ⋅ pi ≥ wi ⋅ (
1
n).
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against and receives less than their ‘fair share’. Perhaps the most notable group
equity criterion is the core from equal division.

Definition 3. Consider an assignment problem (A, I,≿). A group of individuals G ⊂ I

may object to a random assignment p̃ if there is an alternative assignment p such
that

● ∀a ∈ A ∶ ∑i∈G pi,a =
∣G∣
n and

● ∀ i ∈ G ∶ pi ≻sdi p̃i.

If there is no such objection that can be raised against a random assignment, the
assignment is said to be in the weak sd-core (from equal division).

The core from equal division extends the equal-division-lower-bound, allowing
us to asses the assignments that a group of individuals receives with respect to
the (aggregate) share that the group receives under equal division. In particular,
a random assignment in the weak sd-core will satisfy the weak sd-equal-division-
lower-bound, as can be easily verified by restricting attention to cases G = {i} in
Definition 3.

Observe that any element of the weak sd-core is weakly sd-efficient as any random
assignment where everyone could be made strictly better of would be blocked by the
grand coalition.

Still, the weak sd-core is comparatively large. Any objection by a blocking coali-
tion would also entail a higher expected utility for each member. Thus, for any
compatible weights w ∈W (≿), the associated weak w-core13 is included in the weak
sd-core. Moreover, the weak sd-core is strictly larger than the union over all weak
w-cores – see Appendix, Example 5.

To narrow down the weak sd-core, we consider a prominent subset – the strong sd-
core – where coalitions can lean on indifferent members to formulate valid objections.

Definition 4. Consider an assignment problem (A, I,≿). A group of individuals G ⊂ I

may object to a random assignment p̃ if there is an alternative assignment p such
that

● ∀a ∈ A ∶ ∑i∈G pi,a =
∣G∣
n and

● ∀ i ∈ G ∶ pi ≿sdi p̃i and ∃ j ∈ G ∶ pj ≻sdj p̃j.

If there is no such objection that can be raised against a random assignment, the
assignment is said to be in the strong sd-core (from equal division).

A fortiori, a random assignment in the strong sd-core will satisfy the weak
sd-equal-division-lower-bound. However, it may still violate the strong sd-equal-
division-lower-bound – and equal treatment of equals:

13 A random assignment p̃ lies in the w-core, unless there exist G ⊂ I and assignment p, such that
for all a ∈ A we have ∑G pi,a =

∣G∣
n

and for each member i of G we have wi ⋅ pi > wi ⋅ p̃i.
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Example 1. Suppose that there are three individuals where preferences of individual
1 and 2 are given as a ≻ b ≻ c while individual 3 prefers c over a and b. Then the
random assignment given by p1,a = 1, p2,b = 1 and p3,c = 1 lies in the strong sd-core –
individual 2 does not receive an assignment that sd-dominates equal division but an
objection by G = {2} is invalid, as ( 1

n) /≻
sd
2 p2. Also, there is no objection involving

either individuals 1 or 3 who both receive their most preferred object, and could
not be made as well off by any two-individual coalition. Also, in a blocking coalition
involving all three individuals, 1 and 3 would still have to receive their most preferred
object, so that 2 could not be made better off. Thus, p is an element of the strong
sd-core.

Conversely, equal division necessarily satisfies the strong sd-equal-division-lower-
bound and equal treatment of equals, but will typically not be an element of the
strong sd-core.14 In fact, any inefficient random assignment would be blocked by the
grand coalition, so that all elements of the strong sd-core are sd-efficient.

Figure 3.4 provides a summary of all equity concepts discussed thus far, including
their logical relations. In the center column, there are two independent and compar-
atively weak equity criteria. The weak sd-equal-division-lower-bound in particular
can be strengthened in different ways by either allowing for group comparisons (see
the right hand side) or by replacing ‘not strictly worse’ by a stronger ‘weakly better’
(left hand side). Also note that sd-envy-freeness implies all other individual equity
criteria.

The absence of any connecting arrow(s) between two properties marks their
logical independence. To be explicit,

● (strong sd-equal-division-lower-bound + strong sd-core)
/Ô⇒ equal treatment of equals (see Appendix, Example 4).

● equal treatment of equals
/Ô⇒ weak sd-equal-division-lower-bound.15

● sd-envy-freeness
/Ô⇒ weak sd-core (follows from Theorem 6).

● (strong sd-core + equal treatment of equals)
/Ô⇒ sd-equal-division-lower-bound (follows from Theorem 7).

3.5 Prominent Solutions

So far, we have discussed efficiency and equity criteria for particular assignment
problems. Let us extend these criteria to solutions, i.e. set valued mappings, defined

14 Nor would it constitute an element of the weak sd-core – consider the case n = 2 where a ≻1 b
and b ≻2 a.

15 For example, consider the case n = 3 where a ≻1,2 b ≻1,2 c and b ≻3 a ≻3 c, individuals 1 and 2
receive the same assignment pi = (pi,a, pi,b, pi,c) = (1/2, 1/2,0) and 3 receives object c.
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Fig. 3.1: Logical relations between equity criteria and 2 prominent solutions
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on a domain of assignment problems that map a particular assignment problem to
a set of random assignments.

Definition 5. We say that a solution S satisfies criterion X (where X could stand for
sd-efficiency, equal treatment of equals, sd-envy-freeness etc.) if for any assignment
problem e in the domain of S, all random assignments in S(e) satisfy X.

We now take a look at three existing solutions to the random assignment problem,
to see which of the criteria they satisfy. As we will see, all three solutions can be
interpreted as taking equal division for a starting point and differ only in the manner
in which trades towards the efficiency frontier are conducted.

3.5.1 Random Serial Dictatorship

A frequently used approach towards an equitable solution of assignment problems,
is Random Serial Dictatorship (RSD). It requires us to order our n individuals
randomly (where all n! orderings are equally likely). The first in line may then choose
her most preferred object, while the second chooses the most preferred among the
n−1 remaining objects.16 The third individual chooses among n−2 available objects
and so it continues, until the last in line receives the last object available. From
an ex-ante perspective that is before we have decided on a particular ordering of
individuals, this procedure generates a random assignment.17

16 If an individual is indifferent between multiple objects, this tie can be broken in any way –
since under our assumption of objective indifference all others will similarly be indifferent between
the same objects, her choice does not affect any individual that has to choose at a later stage.

17 Typically, once we have found a random assignment p, we need to construct a Birkhoff–von
Neumann decomposition and represent p as a convex combination of deterministic assignments –
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With respect to the equity criteria analysed in Section 3.4, let us first point out
that a random assignment generated via RSD satisfies equal treatment of equals and
meets the strong sd-equal-division-lower-bound: each individual has a chance of k

n

to be among the first k individuals to choose, in which case she is guaranteed one of
her k-most preferred objects. However, for some preference profiles, RSD falls short
of sd-envy-freeness [Bogomolnaia and Moulin, 2001].

The main weakness of RSD lies in the fact that it fails to ensure even weak
sd-efficiency [Bogomolnaia and Moulin, 2001]:

Example 2. Consider the case n = 4 with a preference profile where a ≻1,2 b ≻1,2 c ≻1,2 d

and b ≻3,4 a ≻3,4 d ≻3,4 c. Then RSD produces the following random assignment

a b c d

p1: 5
12

1
12

5
12

1
12

p2: 5
12

1
12

5
12

1
12

p3: 1
12

5
12

1
12

5
12

p4: 1
12

5
12

1
12

5
12

which (from an ex-ante perspective) is Pareto inferior to the random assignment
p̃1,2 = (1

2 ,0,
1
2 ,0), p̃3,4 = (0, 1

2 ,0,
1
2).

Morover, since RSD may return random assignments that not weakly sd-efficient,
it also returns random asisgnment that are not in the weak sd-core from equal divi-
sion. This contrasts with an alternative description of RSD by Abdulkadiroğlu and
Sönmez [1998], who characterize it on the domain of strict preferences as “core from
random endowments”. More precisely, they consider random initial allocations of
goods to individuals where each of the n! deterministic allocations is equally likely.
Given their endowments, individuals then trade towards the unique core allocation.
From an ex-ante perspective, the convex combination of these core allocations coin-
cides with the convex combination of allocations generated by a fixed pecking order
described above.

3.5.2 Probabilistic Serial

To overcome RSD’s lack of efficiency from an ex-ante perspective, Bogomolnaia
and Moulin [2001] introduce the Probabilistic Serial (PS) mechanism. It generates
random assignments via “simultaneous eating” where individuals accumulate prob-
ability shares, starting with their most preferred object until it is exhausted, before
moving down to their second most preferred object and so on.18

only then can we implement p by taking a lottery over all elements of the decomposition. One of
the practical advantages of RSD, is that the randomization occurs in the very first step where we
choose an ordering of individuals. Once this order is fixed, the algorithm returns a deterministic
assignment, obviating any appeal to the Birkhoff–von Neumann–Theorem.

18 Bogomolnaia and Moulin [2001] consider the case of strict preferences. Their mechanism can
be easily generalized to accomodate objective indifferences, i.e. multiple copies of objects – see for
example Hashimoto et al. [2014].
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Not only does PS generate sd-efficient random assignments, it also ensures sd-
envy-freeness [Bogomolnaia and Moulin, 2001]. However, as follows from our The-
orem 6, these assignments will not in general lie in the weak sd-core from equal
division.

Again, if we think of the core as the set of allocations that might be reached
from an initial allocation through trade among individuals, this is in contrast with
an alternative description of PS by Kesten [2009], who characterizes PS on the
domain of strict preferences as “Top Trading Cycles from Equal Division”. For each
individual i, her initial assignment ( 1

n) is managed by n “pseudo-agents” ia, a ∈ A.
Each ia controls an initial probability share 1

n of object a and shares i’s preferences
over goods. In the first round, pseudo-agents ia will offer shares of a in exchange
for an equal share of the most preferred of i′s objects that are still available in
the market. Wherever there is a double coincidence of wants, probability shares are
exchanged and withdrawn from the market. Over time ia will have exchanged the
whole of her initial share of object a, or she finds that object a is the most preferred
among all remaining objects. In both cases, ia exits the market. After at most n
steps, this trading algorithm terminates and the sum of probability shares acquired
by i’s pseudo-agents is found to coincide with the individual assignment pi generated
by PS.

3.5.3 Walrasian equilibrium from equal incomes

A third prominent solution is offered by Hylland and Zeckhauser [1979], who adapt
the familiar concept of a Walrasian equilibrium from equal incomes (WEEI) to
assignment problems.19 In contrast to our setting, individuals report vNM utilities
wi. Nevertheless, as maximisation of expected utilities implies maximisation with
respect to stochastic dominance, we find that their solution not only satisfies sd-
efficiency, but also many of the equity criteria formulated in Section 3.4.

Formally, define the set of price vectors as Q = {q = (qa)a∈A ∈ Rn ∣∀a ∈ A ∶ qa ≥ 0}.
Individuals purchase probability shares, maximizing their expected utility wi ⋅ pi
subject to a constrained budget B ∈ R+ and the constraint ∑A pi,a = 1.

Fact 2. Hylland and Zeckhauser [1979]. Consider an assignment problem (A, I,≻).
For any collection of compatible weights w ∈W (≿), their exists a Walrasian equilib-
rium from equal incomes, i.e. a tupel (p, q,B) ∈ ∆(A)n ×Q ×R+ such that both

∀ i ∈ I, p̃i ∈ ∆(A) ∶ q ⋅ pi ≤ B and (wi ⋅ p̃i > wi ⋅ pi ⇒ q ⋅ p̃i > B)

(preference maximisation),
and ∀a ∈ A ∶ ∑

i∈I

pia = 1 (feasibility)

Not surprisingly, such a WEEI will be efficient and in the strong core with re-
19 Hylland and Zeckhauser [1979] also allow for differences in income, justified for example by

the seniority of committee members that need to be assigned to tasks. In the spirit of our equity
criteria identified in Section 3.4, we will concentrate on the case of equal incomes.
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Fig. 3.2: Three Results on Fair Solutions
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spect to w. Moreover, the associated random assignment will also be sd-efficient and
an element of the strong sd-core from equal division: any trade (resp. objection) that
would make everyone (resp. members of G) weakly better of with respect to first
order stochastic dominance would also yield an increase in individuals expected util-
ity. Similarly, preference maximisation and equal budgets guarantee envy-freeness
with respect to w, i.e. for all i, j we have wi ⋅ pi ≥ wi ⋅ pj.

One condition that is not automatically satisfied, is equal treatment of equals.
If however, we chose wi = wj whenever ≿i=≿j, and constrain these individuals to
consume the same probability shares (whenever they are indifferent and might choose
different shares), this will guarantee equal treatment without violating preference
maximisation or feasibility. Hence, using appropriately chosen weights w, there exists
a (sub)solution of WEEI’s that selects from the strong sd-core from equal division
and satisfies equal treatment of equals.

However, in contrast to both RSD and PS, Hylland and Zeckhauser’s solution
(and any subsolution) will necessarily violate the strong sd-equal-division-lower-
bound, at least for some preference profiles - see Theorem 7.

Figure 3.4 relates the two sd-efficient solutions discussed so far to the equity
criteria that they satisfy.

3.6 Main Results

In light of Figure 3.4, we may ask whether there exists a solution that is able to
satisfy all of our equity criteria. The following Theorem answers that question in
the negative.
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Theorem 6. Consider a solution S whose domain includes all assignment problems
of some size n, n ≥ 4. If S selects from the weak sd-core, it will violate sd-envy-
freeness; for every n ≥ 4 there exist assignment problems of size n, for which no
random assignment simultaneously satisfies sd-envy-freeness and lies in the weak
sd-core from equal division.

Proof of Theorem 6. Consider an assignment problem (A, I,≻) of size n ≥ 4, label
objects as a, b, c, d and o5, o6, . . . on and let preferences be given as

● b ≻1 a ≻1 c ≻1 d ≻1 o5 ≻1 o6 ≻1 ⋅ ⋅ ⋅ ≻1 on,

● a ≻2 c ≻2 b ≻2 d ≻2 o5 ≻2 o6 ≻2 ⋅ ⋅ ⋅ ≻2 on,

● a ≻3 b ≻3 d ≻3 c ≻3 o5 ≻3 o6 ≻3 ⋅ ⋅ ⋅ ≻3 on,

● a ≻j b ≻j c ≻j d ≻j o5 ≻j o6 ≻j ⋅ ⋅ ⋅ ≻j on, ∀j = 4,5 . . . , n.

Intuitively, preferences of individuals j ≥ 4 could be described as ‘mainstream pref-
erences’ while in the preferences of the first 3 individuals there are reversals in the
ranking of objects a, b, c, d that create opportunities for welfare improving trade.

We will proceed by analysing an arbitrary sd-envy-free random assignment p and
show that it is no element of the weak sd-core as there exists a valid objection by
G = {1,2,3} who are better of trading only amongst themselves. As p is assumed to
be sd-envy-free, and all individuals agree on the ranking of alternatives o5, o6, . . . on,
we know that pi,ok

= 1
n for all i ∈ I, k ≥ 5. As p also satisfies equal treatment of equals,

we can express the individual assignment of individuals j ≥ 4 can be expressed as

pj = (pj,a, pj,b, pj,c, pj,d, ...pj,ok
...) = (1/n + α, 1/n − α + β, 1/n − β + γ, 1/n − γ, ...1/n...)

with α,β, γ ≥ 0. Sd-envy-freeness then implies that p takes the form

a b c d ok

p1: 1/n − (n − 1)α 1/n + (n − 1)α + β 1/n − β + γ 1/n − γ 1/n

p2: 1/n + α 1/n − α − (n − 1)β 1/n + (n − 1)β + γ 1/n − γ 1/n

p3: 1/n + α 1/n − α + β 1/n − β − (n − 1)γ 1/4 + (n − 1)γ 1/n

pj: 1/n + α 1/n − α + β 1/n − β + γ 1/n − γ 1/n

Individuals 2 and 3 agree with j ≥ 4 on the most preferred object and hence receive
it with probability p2,a = p3,a = pj,a = 1/n + α. Individual 1 receives object a with
remaining probability p1,a = 1/n − (n − 1)α. Similarly, individuals i ≠ 2 agree on the
upper contour set Ui(c) = {a, b} and hence receive a or b with probability pi,a +pi,b =
2/n + β - leaving individual 2 with the remaining probability p2,b = 1/n −α − (n − 1)β.
Finally, individuals i ≠ 3 agree on the upper contour set Ui(d) = {a, b, c} and hence
receive a, b or c with probability pi,a + pi,b + pi,c = 3/n + γ - leaving individual 3 with
the remaining probability p3,c = 1/n − β − (n − 1)γ. The entries pi,d then follow from
the condition ∑x∈A pi,x = 1.

As all entries are non-negative, we find three additional constraints on α,β, γ:
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(I) α ≤ 1
n(n−1) (⇔ p1,a = 1/n − (n − 1)α ≥ 0)

(II) β ≤ 1
n(n−1) −

1
n−1α (⇔ p2,b = 1/n − α − (n − 1)β ≥ 0)

(III) γ ≤ 1
n(n−1) −

1
n−1β (⇔ p3,c = 1/n − β − (n − 1)γ ≥ 0)

We claim that the following random assignment p̃ constitutes a valid objection
by group G = {1,2,3}, who can do better by trading exclusively amongst themselves:

a b c d ok

1: 0 3/n − α − β α + β + γ 1/n − γ 1/n

2: 1/n + α 0 3/n − α − β − γ β + γ 1/n

3: 2/n − α α + β 0 1/2 − β 1/n

j: 1/n 1/n 1/n 1/n 1/n

The random assignment is well defined, as all sums ∑x∈A p̃i,x = 1 = ∑i∈I p̃i,x and
all entries are non-negative, given that α,β, γ ≤ 1/n - see (I)-(III). Moreover, G’s
resource constraint is met, as ∑i∈G p̃i,x =

3
n , for all x ∈ A.

It remains to show that for all i ∈ G, p̃i ≻sdi pi. First, consider individual 1. Here
we find that she receives her most preferred object with strictly greater probability

p̃1,b − p1,b =
2
n
− nα − 2β >

2
n
−

1
n − 1 − 2 1

n(n − 1) =
n − 4

n(n − 1) ≥ 0

where (I) and (II) are used in the inequality. Moreover, she also receives her first or
second object with greater probability than before:

(p̃1,b + p̃1,a) − (p1,b + p1,a) =
1
n
− α − 2β >

1
n
−

3
n(n − 1) =

n − 4
n(n − 1) ≥ 0.

As she receives her least preferred object d with the same probability as before
(p̃1,d = p1,d =

1
4 − γ), we conclude that p̃2 ≻

sd
1 p2.

Next, consider individual 2. She receives her most preferred object a with the
same probability as before (p̃2,a = p2,a =

1
n +α) but receives her second most preferred

object with higher probability:

p̃2,c−p2,c =
2
n
−α−nβ−2γ ≥ 2

n
−α−

1
n − 1+

nα

n − 1−2γ ≥ 2
n
−

1
n − 1−

2
n(n − 1) =

n − 4
n(n − 1) ≥ 0,

where we use (II) in the first and (III) in the second inequality. For the probability
of receiving her least preferred object, we find (using (III))

p̃2,d − p2,d = β −
1
n
< 0

so that in conclusion p̃2 ≻sd2 p3. Finally, consider individual 3. Her most preferred
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object is a, which she now receives with strictly greater probability:

p̃3,a − p3,a =
1
n
− 2α ≥

1
n
−

2
n(n − 1) =

n − 3
n(n − 1) > 0.

As the probability of receiving one of her two most preferred objects remains un-
changed (p̃3,a + p̃3,b = p3,a + p3,b =

2
n + β) and as she now receives her least preferred

object with zero probability, she too strictly prefers p̃ over p, rendering p̃ a valid
objection by group G = {1,2,3}.

According to Theorem 6, the Probabilistic Serial can be seen as a maximally
fair solution with respect to our identified equity criteria - no other solution that is
similarly sd-envy-free, can in addition select from the weak (or strong) sd-core from
equal division.

That raises the question, whether there exist other maximally fair solution – can
we satisfy all remaining equity criteria once we give up sd-envy-freeness? Again, the
answer is no.

Theorem 7. Consider a solution S whose domain includes all assignment problems
of some size n, n ≥ 3. If S selects from the strong sd-core it will violate the strong
sd-equal-division-lower-bound; for every n ≥ 3 there exist assignment problems of
size n, for which no random assignment simultaneously satisfies the strong sd-equal-
division-lower-bound and lies in the strong sd-core from equal division.

Proof. Consider the assignment problem (A, I,≻) where I = {1,2,3} and preferences
over A are given as a ≻1,2 b ≻1,2 c and b ≻3 a ≻3 c.

Any random assignment p that satisfies the strong sd-equal-division-lower-bound
will assign object c with probabilities pi,c ≤ 1

3 . But then, pi,c =
1
3 and p takes the form

a b c

p1: 1/3 + α 1/3 − α 1/3

p2: 1/3 + β 1/3 − β 1/3

p3: 1/3 − α − β 1/3 + α + β 1/3

with α,β ≥ 0 and α+β ≤ 1
3 . For p to lie in the strong sd-core it has to be sd-efficient,

i.e. α + β = 1
3 . Either α or β will then be less than 1

3 - assume w.l.o.g. that α < 1
3 .

But then, individual 3 could exclusively trade with 1 instead of 2 and arrive at the
following alternative random assignment p′

a b c

p1: 1/3 + α + β 1/3 − α − β 1/3

p3: 1/3 1/3 1/3

p3: 1/3 − α − β 1/3 + α + β 1/3
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While this is a matter of indifference for individual 3, it is strictly preferred by 1.
Thus, p′ is a valid objection to p by the group of individuals {1,3} and goes to
show that p is not in the strong sd-core from equal division. As p was chosen as an
arbitrary random assignment satisfying the strong sd-equal-division-lower-bound.
The counterexample can be extended straightforwardly to the case n > 3 by choosing
preferences as a ≻i b ≻i c ≻i o4 ≻i ⋅ ⋅ ⋅ ≻i on for i ∈ {1,2..., n− 1} and b ≻n a ≻n c ≻n o4 ≻n

⋅ ⋅ ⋅ ≻n on.

Just as Theorem 6, Theorem 7 can be seen as a result on maximally fair solutions.
In particular, (the subsolution of) Hylland and Zeckhauser’s Walrasian Equilibria
from Equal Incomes, as described in Section 3.5.3, is maximally fair with respect
to the identified equity criteria - no other solution that similarly selects from the
strong sd-core can in addition satisfy the strong sd-equal-division-lower-bound.

However, our two impossibility results leave space for a potential third class of
maximally fair solutions. Can we give up on sd-envy-freeness and the restriction to
the strong sd-core but satisfy all remaining equity criteria? Here, the answer is yes.

Theorem 8. For all n and all assignment problems (A, I,≿) of size n, there exist
random assignments that satisfy equal treatment of equals, meet the strong sd-equal-
division-lower-bound, are in the weak sd-core from equal division and sd-efficient.

We will proof Theorem 8 by constructing a sequence of Walrasian equilibria with
equal incomes. The limit of this sequence will then inherit many desirable properties,
even if it is not itself a Walrasian equilibrium.

Our setting raises a number of problems for the existence of Walrasian equilibria.
For one, individuals may be satiated and hence leave some of their income unspent,
leading to a violation of Walras’ law.

Second, if we restrict individuals’ consumption sets to random assignments that
meet the sd-equal-division-lower-bound, an equal division endowment lies on the
boundary of individuals’ consumption sets. Then, depending on the price vector, it
may be that there is no random assignment that costs less than the initial endow-
ment. This violates the so called strong survival assumption which is typically used
to show that any quasi-equilibrium (whose existence may be establish more easily)
is in fact a Walrasian equilibrium.

Third, the preference relation given by first order stochastic dominance is not
continuous. For example an individual with preference a ≻i b ≻i c would (strictly)
prefer pi = (pi,a, pi,b, pi,c) = (1/3, 2/3,0) over (1/3, 1/3, 1/3) but not over (1/3+ε, 1/3−ε, 1/3).

To overcome the third problem, we will let individuals act as expected utility
maximizers whose vNM utilities are compatible with their strict ordering of objects –
preference maximization with respect to these vNM utilities then implies preference
maximization with respect to first order stochastic dominance. The second problem
can be overcome by relaxing consumption sets to be ε-close to the sd-equal-division-
lower-bound – letting ε go to zero will then yield a limit allocation that satisfisfies
all our desired criteria. To overcome the problem of satiated individuals, we have
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to allow for some ‘slack’ or a ‘dividend’ that increases the income of unsatiated
individuals. In that, we follow Mas-Colell [1992].20

Let individuals’ consumption sets Xi ⊂ Rn be closed, bounded and convex and
let each individuals’ endowment yi be in the interior of of Xi. Let the set of possible
price vectors be given as Q = {q = (qa)a∈A ∈ Rn∣∥q∥ = ∑∣qa∣ ≤ 1} and the state space be
denoted as Z =X1×X2× ...×Xn×Q. Individuals’ demand is guided by a (set-valued)
preference map Pi ∶Xi ⇉Xi and constrained by a budget q ⋅yi+ 1−∥q∥

∥q∥ where the term
1−∥q∥
∥q∥ may be used by the Walrasian auctioneer to increase budgets beyond the value
of endowments.

If Pi is irreflexive (i.e. xi /∈ Pi(xi) for every xi ∈Xi), convex-valued (i.e. Pi(xi) is
convex for every xi ∈ Xi) and has an open graph (i.e. if xi ∈ Pi(x′i), the same holds
for all ṽi, w̃i in some small neighbourhood of vi and wi) we have the following.

Fact 3. Theorem 1 in Mas-Colell [1992].
There exists a Walrasian equilibrium with slack, i.e. a state z = (x, q) such that

● ∀ i ∈ I ∶ q ⋅ xi ≤ q ⋅ yi +
1−∥q∥
∥q∥ and (x̃i ∈ Pi(xi) Ô⇒ q ⋅ x̃i > q ⋅ yi +

1−∥q∥
∥q∥ )

(preference maximisation),

● ∀a ∈ A ∶ ∑i∈I xi,a = ∑i∈I yi,a (feasibility).

Proof of Theorem 8. Consider an assignment problem (A, I,≿) and a compatible
collection of weight vectors w ∈W (≿). Define individuals’ consumption sets as

Xε
i =

⎧⎪⎪
⎨
⎪⎪⎩

xi = (xi,a)a∈A ∈ Rn∣∑
a∈A

xi,a ≤ 1 + ε, ∀a ∈ A ∶ xi,a ≥ 0 and ∑
b∈Ui(a)

xi,b ≥
∣Ui(a)∣

n
− ε

⎫⎪⎪
⎬
⎪⎪⎭

and endow each individual with a share of 1
n of each object, i.e. yi = ( 1

n). Note that
consumption sets are closed, bounded and convex and that for ε > 0 endowments
lie in the interior of the consumption set. Moreover, note that while for positive ε
the consumption sets include bundles that cannot be interpreted as lotteries (∑A xi,a
may not be equal to 1), in the limit as we let ε go to zero, individuals are restricted to
consume bundles that can be interpreted in this way and that (weakly) stochastically
dominate ( 1

n). Let the set of possible price vectors be given as

Q = {q = (qa)a∈A ∈ Rn∣∥q∥ = ∑∣qa∣ ≤ 1} ,

and the state space as Zε = Xε
1 × X

ε
2 × ⋅ ⋅ ⋅ × X

ε
n × Q. To provide individuals with

continuous (strict) preferences, we define

Pi ∶X
ε
i ⇉Xε

i ∶ Pi(xi) = {x̃i ∈X
ε
i ∣wi ⋅ x̃i > wi ⋅ xi}.

Intuitively, under Pi a consumption bundle is preferred over another if it yields
a higher expected utility with respect to vNM utilities wi – except that bundles

20 See also Dreze and Müller [1980] and Kajii [1996] for other pioneers of this approach.
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only approximate lotteries in that 1 − ε ≤ ∑A xi,a ≤ 1 + ε. Clearly, Pi is irreflexive,
convex-valued and has an open graph.

By Fact 3, for any ε, there exists a Walrasian equilibrium with slack. Moreover, if
we assume that all individuals with the same ordinal preferences, i ∈ G, share the
same weight vector wi, there exists a Walrasian equilibrium with xi = x for all i ∈ G
– for any other equilibrium, replacing individuals consumption bundles with

xi =
∑G x

′
j

∣G∣

restores equal treatment of equals without violating preference maximisation or
feasibility.

Consider a sequence (εk)k∈N with εk↘0 and a sequence of associated equilibria
ek = (xk, qk) satisfying equal treatment of equals. As the sequence of equilibria is
bounded by Xε1

1 ×Xε1
2 ×⋅ ⋅ ⋅×Xε1

n ×Q, it has a convergent subsequence – and hence we
may assume w.l.o.g. that (ek) is convergent itself. Denote the limit of that sequence
as e⋆ = (x⋆, q⋆). Then x⋆ satisfies equal treatment of equals and, by construction
of our consumption sets, is a random assignment that satisfies the strong sd-equal-
division-lower-bound.

Claim 1. The random assignment x⋆ is in the weak sd-core from equal division.

Proof of Claim: Towards a contradiction, assume there exists a group G ⊂ I and
another random assignment p such that ∑i∈G pi = ∣G∣ ( 1

n) and, for all i ∈ G, pi ≻sdi x⋆j .
The latter implies

∀i ∈ G,ε > 0 ∶ pi ∈X
ε
i ,

and for some sufficiently large k̄ we have

∀i ∈ G,k > k̄ ∶ wi ⋅ pi > wi ⋅ x
εk
i .

Then by preference maximization we have

∀i ∈ G,k > k̄ ∶ qεk ⋅ pi > q
εk ⋅ (

1
n
) +

1 −∥qεk∥

∥qεk∥
≥ qεk ⋅ (

1
n
) .

But this contradicts ∑G q
εk ⋅ pi = qεk ∑G pi = q

εk ∣G∣ ( 1
n).

◇

Claim 2. The random assignment x⋆ is sd-efficient.

Proof of Claim: Towards a contradiction, assume there exists another random as-
signment p and a group G ⊂ I such that pi ≻sdi x⋆i for all i ∈ G and ∑G(pi − x

⋆
i ) = 0.

As the trade (pi − x⋆i ) sd-improves individual assignments, we know that

∀i ∈ G ∶ wi ⋅ (pi − x
⋆
i ) > 0.
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Nevertheless, the bundle xεi +(pi−x⋆i ) may not be in the consumption set Xε
i if there

is a good a such that xεi,a+(pi,a−x⋆i,a) < 0. Only as xεi approaches x⋆i , a (scaled down)
trade can always be executed:

∃k̄ ∶ ∀i ∈ G,k > k̄ ∶ xεk
i + 1/2(pi − x

⋆
i ) ∈X

εk
i .

Then by preference maximization we have

∀i ∈ G,k > k̄ ∶ qεk ⋅ 1/2(pi − x
⋆
i ) > 0.

But this contradicts ∑G(pi − x
⋆
i ) = 0. ◇

This completes the proof.

3.7 Concluding Remarks

We end this chapter with two remarks.
First, our impossibility results Theorem 6 and 7 illuminate the difference between

two of the most prominent efficient solutions to the random assignment problem,
namely the Probabilistic Serial (which is sd-envy-free) and Hylland and Zeckhauser’s
WEEI (which selects from the strong sd-core) and show that no assignment mecha-
nism may satisfy all equity criteria satisfied by either of the two. Such impossibility
results may also be of practical importance where an assignment mechanism is chal-
lenged in court by individuals who are unsatisfied with their eventual assignment –
again, (overly) ambitious parents and the allocation of school seats comes to mind.
For example, if the mechanism fails to be sd-envy-free this could be used as an argu-
ment by claimants to either void the whole assignment produced by the mechanism
or receive special treatment as an individual and be admitted to one’s school of
choice. In such a situation, impossibility results such as ours would allow the school
board to argue that the violation of some equity concept is unavoidable and hence,
cannot be used as an argument against the assignment mechanism.

Second, we have not considered the issue of strategic reports by participants.
Neither the Probabilistic Serial or Hylland and Zeckhauser’s WEEI are strategy-
proof. However for the Probabilistic Serial Kojima and Manea [2010] show that in
large markets, with many participants and sufficiently many copies of each object,
reporting truthfully becomes a weakly dominant strategy. Hylland and Zeckhauser
argue that individuals can only gain from misrepresenting their preferences if that
influences prices and that, in large markets “no individual can have a foreseeable
effect on price[s]” [Hylland and Zeckhauser, 1979]. Since our solution also rests on
Walrasian equilibria, it is similarly hard for participants to foresee the effect that
any misreport would have on prices. Hence, at least in large markets, our solution
should not lead to strategic misrepresentation of preferences.



4. SCORING RULES AND IMPLEMENTATION IN
ITERATIVELY UNDOMINATED STRATEGIES

This Chapter has been submitted to the BDPEMS working paper series.

4.1 Abstract

We analyse voting games with three candidates and characterize voting procedures
according to the solution that they implement in iteratively undominated strategies.
Among all positional scoring rules, the Borda Rule is the unique procedure that
satisfies (i) unanimity (U) and is (ii)majoritarian after eliminating a worst candidate
(MEW). In the larger class of direct mechanism scoring rules, Approval Voting is
characterised as the only procedure that is majoritarian after eliminating a Pareto
dominated candidate (MEPD). However, it fails a desirable monotonicity property:
a candidate that is the unique solution for some preference profile, may lose the
election once she gains further in popularity. In contrast, the Borda Rule is the
unique direct mechanism scoring rule that satisfies (i) U, (ii) MEW and satisfies (iii)
monotonicity (MON). Finally, the exist no direct mechanism scoring rules satisfying
both MEPD and MON or Condorcet consistency.

4.2 Introduction

Voting procedures allow individual voters to cast ballots that are aggregated to
arrive at a collective choice from a set of available alternatives. To compare voting
procedures, we ask which alternatives may arise as the outcome of an election when
voters cast their ballots strategically, potentially misrepresenting their preferences.
Then, for any solution concept that describes voters behaviour in voting games, we
can map voters preferences to possible election outcomes and thus arrive at a social
choice correspondence said to be implemented by the voting procedure.

Ideally, our voting procedure should implement a normatively appealing so-
cial choice correspondence under mild assumptions restricting voters’ behaviour.
Arguably the mildest such restriction is to assume that voters play undominated
strategies. Unfortunately, for all finite voting procedures,1 we face the following im-
possibility result: with at least three alternatives, any social choice function2 that
can be implemented in undominated strategies is either dictatorial or rules out the

1 A finite voting procedure allows each voter to choose from a finite set of admissible ballots, as
envisioned by both Gibbard [1973] and Satterthwaite [1975]

2 i.e. a single valued social choice correspondence
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election of some candidate a priori. The original result is due to Gibbard [1973] and
Satterthwaite [1975] who are concerned with implementation in dominant strategies;
Jackson [1992] shows that if we consider finite voting procedures,3 any social choice
function that can be implemented in dominant strategies can be implemented in
undominated strategies and vice versa.

In this chapter, we will focus on the case of three alternatives where these negative
results first arise. Moreover, in light of these results, we content ourselves with
implementing social choice correspondences and move to a stronger solution concept,
considering implementation in iteratively undominated strategies.

Here we are able to derive three main characterisation results. First, in the class
of positional scoring rules (including among others Plurality-, Antiplurality- and the
Borda-Rule), the Borda Rule is the unique voting procedure implementing a social
choice correspondence that satisfies unanimity (U) (i.e., uniquely selects an alter-
native whenever it is unanimously preferred) and is majoritarian after eliminating
a worst alternative (MEW) (i.e., if there is a unanimously disliked alternative, the
majority-preferred alternative among the other two is uniquely selected).

Second, in the larger class of direct mechanism scoring rules (including e.g. all
positional scoring rules as well as Approval Voting), Approval Voting is charac-
terized by a single axiom – it is the unique voting procedure that is majoritarian
after eliminating a Pareto-dominated alternative (MEPD) (i.e., if there is a Pareto-
dominated alternative, the majority-preferred alternative among the other two is
uniquely selected).

Third, in the class of direct mechanism scoring rules, the Borda Rule is the
unique voting procedure implementing a social choice correspondence that satisfies
U, MEW and monotonicity (MON)(i.e., an alternative that is uniquely selected for
some preference profile should still be uniquely selected for a preference profile where
every voter ranks this alternative weakly higher).

Three recent papers most closely related to our results are [Dhillon and Lock-
wood, 2004], [Buenrostro et al., 2013] and [Núñez and Courtin, 2013] who all identify
conditions for preferences profiles under which particular scoring rules yield a unique
solution in iteratively undominated strategies. Dhillon and Lockwood [2004] consider
the Plurality Rule with an arbitrary number of alternatives and provide sufficient
and necessary conditions. Buenrostro et al. [2013] consider so called general scor-
ing rules – a set that overlaps with the set of direct mechanism scoring rules that
we consider – and provide sufficient conditions. Núñez and Courtin [2013] consider
Approval Voting and provide sufficient-and-necessary conditions.

The use of iteratively undominated strategies as solution concept has a long
tradition in the theory of voting where it was introduced by Farquharson [1969] under
the name of sophisticated voting. It is particularly well suited to model strategic
behaviour in elections where the number of voters is large relative to the number of
available alternatives, as under these conditions voters typically find themselves in a
position where they are not pivotal. As a result, it is easy to sustain any strategy as a

3 Jackson’s equivalence result is even more general in that he considers bounded mechanism.
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best response so that the alternative solution concept of rationalizability has no bite.
Similarly, under many intuitive voting procedures, if all voters vote ‘in favour’ of
some arbitrary alternative, it should be elected and an individual deviation should be
of no effect. But then, all alternatives are implemented in (some) Nash-equilibrium.

To restrict the set of alternatives implemented in Nash-equilibrium, we could con-
sider refinements, such as undominated [Palfrey and Srivastava, 1991] or trembling-
hand perfect equilibrium. However, these refinements leave a second problem of
(pure strategy) Nash-implementation unaddressed. To illustrate this, consider two
voters who both prefer a over b over c and who have to choose an alternative us-
ing the Antiplurality Rule where each voter votes against one alternative and the
alternative with the least number of votes is chosen. Then, subject to specifying a
tiebreaking procedure, it is easy to see that in any Nash-equilibrium one voter will
vote for b while the other votes for c, so that the commonly preferred alternative a is
chosen. However, both voters face a coordination problem in that it is unclear who
should vote for b and who should vote for c. Hence, while a is the unique outcome
in any Nash-equilibrium, it remains doubtful whether miscoordination may not in
the end help b or c to arrive at tie with a and hence be potentially chosen.4

Many authors have studied the implementation in iteratively undominated strate-
gies. If in each iteration only strictly dominated strategies are removed, Börgers
[1995] shows that only dictatorial social choice functions can be implemented, un-
less we restrict the set of possible preference profiles to exclude cases where voters
preferences are identical. If weakly dominated strategies are removed as well (as we
will assume throughout this chapter), Moulin [1979] shows that there exist voting
procedures that implement anonymous and Pareto efficient social choice functions.
Abreu and Matsushima [1994] show that any social choice function may be imple-
mented, when voters can be fined for what are identified as misrepresentations of
preferences. For that, they require a large strategy space where each voter reports
not just her own preferences and the preferences of some ‘neighbour’, but also in
total K preference profiles, i.e. tupel of all voters’ preferences, where K has to be
chosen arbitrarily large in order to allow fines to become arbitrarily small. While
this allows them to derive a remarkably permissive implementation result, the sheer
size of the strategy space (as well as the introduction of fines) rules out the use of
their mechanism for elections with many voters.

In order to restrict attention to voting procedures that can be readily applied
in practice, we limit our analysis to rules where the size of the strategy space is
no larger than the number of possible preference relations that a voter may hold;
that is, we consider voting procedures that can be interpreted as direct mechanisms.
Moreover, we will consider scoring rules, for which Myerson [1995] provides an ax-
iomatisation based on reinforcement and overwhelming majority: Consider a voting

4 To rule out examples such as this, we could consider mixed-strategy equilibria and demand
that any outcome sustained by such an equilibrium, is contained in the set of alternatives chosen
by the social choice correspondence. However, such an analysis requires that voters’ preferences
over lotteries of alternatives are common knowledge, which constitutes an additional, strong, as-
sumption.
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procedure where each voter has access to the same set of strategies, i.e. can cast
the same admissible ballots, and where the set of such strategies is independent
of the number of voters participating in the election. Reinforcement then demands
that if ballots are evaluated for two separate districts and in each district the same
alternative is elected, then in a joint district, this alternative should be elected as
well. Overwhelming majority demands that if some group of voters, or rather the
ballots that they cast, are replicated sufficiently often, the election outcome in the
general election has to agree with the outcome of an election where only ballots of
the overwhelmingly large, replicated group are considered.5

Together with the requirement that a voting procedure be neutral (with respect
to a relabelling of alternatives) and anonymous (with respect to a relabelling of
voters), these axioms uniquely characterize scoring rules in the class of all voting
procedures. Hence, unless one is willing to give up on any of these desirable proper-
ties, restricting our attention to scoring rules comes at no further loss of generality.

The chapter is organised as follows. Section 4.3 defines voting games and their
solution by iterative elimination of dominated strategies. Section 4.4 defines norma-
tive criteria for social choice correspondences. Section 4.5 characterizes scoring rules
with respect to the social choice correspondences that they implement. Section 4.6
concludes.

4.3 Technicalities

4.3.1 Candidates and voters

Throughout this chapter, we consider a set of three candidates (or alternatives) A =

{a, b, c} and a finite set of voters I with generic element i. Each voter’s preferences
are assumed to be given by a strict linear order ≻i on A. In consequence, there
are six distinct sets of voters, characterized by their preferences that we denote
Ixyz = {i ∈ I ∣x, y, z ∈ A,x ≻i y ≻i z} and whose generic element we refer to as ixyz. A
preference profile is denoted as ≻I= (≻i)i∈I .

4.3.2 Scoring rules

Scoring rules allow each voter i to cast a ballot vi = (vai , v
b
i , v

c
i ) from the same set

of admissible ballots V ⊂ R3. We assume that ballots are neutral with respect to a
relabelling of candidates; formally, for any admissible ballot vi = (k, l,m) ∈ V , each
permutation of vi is also an admissible ballot. A ballot is called an abstention if it
takes the form vi = (k, k, k).

Using Cartesian products, we define V 0 = ∏i∈I V and V 0
−i = ∏j≠i V and denote

generic elements as v and v−i. We refer to v ∈ V 0 as a ballot profile and denote the
associated score of some candidate x as ∣vx∣ = ∑ vxi . For an opposing ballot profile
v−i ∈ V 0

−i we define ∣vx−i∣ = ∑ v
x
j≠i.

5 For a detailed description of both axioms, see [Myerson, 1995].
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A candidate wins the election if her score is higher than any other candidate’s
score. To deal with ties, we rely on the report of a tiebreaker, labelled t, who has to
chose a strict linear order ▷ on A, where ▷ denotes the set of such orders.6 Then,
for given v and ▷, candidate x wins the election whenever she has a weakly higher
score than all other candidates and, in case of a tie, is ranked first according to ▷.
Formally, x wins if and only if

∀y ≠ x ∶ ∣vx∣ ≥ ∣vy ∣ and ∣vx∣ = ∣vy ∣x▷ y.

Note that for any reported ballot profile v and a report by the tiebreaker ▷, there
exists a unique winner. If we would refrain from breaking ties in a deterministic
manner, outcomes would either be set-valued or take the form of a lottery over
alternatives. To analyse voting games induced by a scoring rule, we would then
have to amend voters preferences, for example to include preferences over sets of
candidates7 or by specifying von Neumann - Morgenstern utility functions. Instead
we opt for deterministic tiebreaking which allows us to base our analysis exclusively
on ordinal preferences over candidates.

We will consider scoring rules that can be interpreted as direct mechanisms, i.e.
rules where the size of voters’ strategy space is bounded by the number of voters’
types. A scoring rule as described above is a direct mechanism scoring rule if, after
the removal of abstentions,8 we have ∣V ∣ ≤ 6. For positional scoring rules, V is taken
to be the set of permutation of (1, s,0), where s ∈ [0,1] is a fixed parameter that
characterizes the rule. The most notable positional scoring rules are the Plurality
Rule, corresponding to s = 0, the Antiplurality Rule (s = 1) and the Borda Rule
(s = 1

2).
Other direct mechanism scoring rules, are rules that allow voters to either vote

for one candidate or split their vote between two – we refer to such rules as vote-
splitting scoring rules. Formally, for a vote-splitting scoring rule, V consists of all
permutations of (s, s,0) and (1 − s,0,0), s ∈ [0,1]. If s = 1

3 , voters have a fixed
budget of points that they can award to one candidate or split between two. If
s ≠ 1

3 , splitting is either rewarded or punished by changes in the budget. The most
notable such rule is Approval Voting, where s = 1

2 . Note that s = 1 is equivalent
to the Antiplurality rule, while s = 0 corresponds to the Plurality Rule. Hence,

6 If one objects to the introduction of an additional player, another option would be to break ties
by a multiplayer version of “matching pennies”: ask each voter to report a number ti ∈ {0,1, ..,5},
set t = ∑ ti mod 6 and let each of the 6 possible outcomes t = {0,1, ...,5} correspond to one of the 6
possible linear orders▷ ∈▷. For our purposes, the two approaches are essentially equivalent, as the
tiebreaker will be assumed to be indifferent, so that neither the tiebreaker’s set of possible reports,
nor the voters’ set of possible reports ti can be reduced using elimination of weakly dominated
strategies.

7 Equivalently to the approach followed here, we could refrain from breaking ties and extend
each preference relation ≻i to pairs of subsets of A, by defining for all A′,A′′ ⊂ A

A′
≻i A

′′ ∶⇐⇒ A′
≠ A′′ and ∀x ∈ A′

/A′′, y ∈ A′′ ∶ x ≻i y and ∀x ∈ A′, y ∈ A′′
/A′ ∶ x ≻i y.

8 Since abstentions represent dominated strategies, removing them will not affect our analysis.
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both Approval Voting and the Borda Rule can be thought of as ‘half-way’ between
the Plurality and Antiplurality Rule. Our first result will show that positional and
vote-splitting scoring rules are essentially the only direct mechanism scoring rules.

In a slight abuse of notation, we will at times identify a scoring rule and the set
of admissible ballots and denote both by V .

4.3.3 Voting games

Together, the set of candidates, voters’ preferences, a scoring rule and a tiebreaker -
assumed to be indifferent between candidates - give rise to a complete information
voting game Γ(≻I , V 0) with a set of players I∪{t}. In each game Γ(≻I , V 0), a strategy
profile (v,▷) ∈ V 0 ×▷ determines a unique outcome g(v,▷) ∈ A.

We will also consider restricted games Γ(≻I , V ′), where each voter’s strategies are
restricted to some set V ′

i ⊆ V and the space of ballot profiles is denoted V ′ =∏i∈I V
′
i .

Accordingly, the space of opponents’ ballot profiles is denoted V ′
−i∏j≠i V

′
j . Where all

voters i ∈ Ixyz have the same (restricted) strategy set, we denote it V ′
xyz = V

′
i .

4.3.4 Iteratively Undominated Strategies

In particular, we will focus on restricted games where weakly dominated strategies
have been removed.

Definition 6. A strategy vi ∈ V ′
i is weakly dominated in Γ(≻I , V ′) if there exists

wi ∈ V ′
i such that for all v−i ∈ V ′

−i, ▷ ∈▷

g(wi, v−i,▷) ≻i g(vi, v−i,▷) or g(wi, v−i,▷) = g(vi, v−i,▷)

with g(wi, v−i,▷) ≻i g(vi, v−i,▷) for at least one v−i ∈ V ′
−i and ▷ ∈▷.

Strategies ▷ ∈▷ are never dominated, as the tiebreaker is assumed to be indif-
ferent between all outcomes g(v,▷) ∈ A. Hence, in iteratively removing dominated
strategies, we can focus on voters i ∈ I. First, we define the set of undominated
strategies as V 1

i = V /{vi ∈ V ∣vi is weakly dominated in Γ(≻I , V 0)}. We will make
use of the following useful fact.

Fact 4. In approval voting games, the set of undominated strategies V 1
i for a voter of

type ixyz consists of all ballots vi ∈ V such that vxi = 1
2 and vzi = 0 [Brams and Fish-

burn, 1978]. For positional scoring rule voting games, ixyz’s undominated strategies
are all ballots vi ∈ V , such that vxi ≥ s and vzi ≤ s (see Proposition 1 in [Buenrostro
et al., 2013]).

Next, we move to the iterative elimination of dominated strategies and define

V m+1
i = V m

i /{vi ∈ V
m
i ∣vi is weakly dominated in Γ(≻I , V

m)}, for m ∈ N.
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Clearly, V m+1
i ≠ ∅, as it is impossible for all strategies in V m

i to be dominated by one
another.9 Also, as V is finite, there exists some m, such that no further restrictions
are possible; V m = V m, for all m ≥ m. This leads us to the following solution of a
voting game.

Definition 7. For a voting game Γ(≻I , V 0) we define its solution in iteratively un-
dominated strategies as the set of possible outcomes after iteratively eliminating all
weakly dominated strategies, and denote it as

S(≻I , V ) = {x ∈ A∣∃v ∈ V m ∶ ∀y ∈ A ∶ ∣vx∣ ≥ ∣vy ∣}.

We say that V implements the social choice correspondence S(⋅, V ) that maps pref-
erence profiles onto subsets of A.

4.3.5 Order independence and elimination of duplicate strategies

In defining dominance solvability, we followed Moulin [1979] in that we eliminated
all weakly dominated strategies when moving from V m to V m+1.10 This raises the
question, whether a different order of elimination, where only some individuals’
dominated strategies are eliminated at each step, might yield a different solution.

Fortunately, Marx and Swinkels [1997] assure us that this is not the case. More
precisely, their Theorem 1 ensures that once we reach a restricted game Γ(≻I , V ′)

such that no further strategy can be eliminated based on weak dominance, Γ(≻I , V ′)

will be equivalent to Γ(≻I , V m) up to the elimination of duplicate strategies and the
renaming of strategies. In particular, the set of possible outcomes of both games will
be the same.

This is because, in our voting games, the elimination of dominated strategies
satisfies what Marx and Swinkels [1997] call ‘transference of decisionmaker indiffer-
ence’: whenever a voter i, for a given opposing strategy profile, is indifferent between
outcomes g(vi, v−i,▷) and g(v′i, v−i,▷), then so is every other player. This is of course
satisfied, as i will only be indifferent if both outcomes coincide.11

Moreover, whether in the process of iterative elimination, we chooses at some
point to eliminate a single (of multiple) duplicate strategies, will be of no effect; the
game Γ(≻I , V ′) that we reach eventually will be equivalent to Γ(≻I , V m) up to the
elimination of duplicate strategies and the renaming of strategies.

To see this, suppose that in the game Γ(≻I , V m) there are two duplicate but
undominated strategies vi, ṽi ∈ V m

i , of which we choose to eliminate only ṽi when
moving to the next restricted game. If ṽi could at some step be instrumental in
eliminating another strategy vj based on weak dominance, the remaining duplicate

9 Recall that ≻i is a strict linear order.
10 Other authors in the context of voting theory, most notably Farquharson [1969], have used the

same solution concept under the name of ‘sophisticated voting’.
11 Indifference of the tiebreaker does not transfer to indifference of other voters. However, this is

unproblematic, as the principle of ‘transference of decisionmaker indifference’ is only required to
hold for players whose strategies are eliminated (see Definition 2 in [Marx and Swinkels, 1997]).
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vi will suffice to eliminate vj. If vi was eliminated based on weak dominance before
it becomes instrumental in eliminating vj, ṽi would have been eliminated as well.

4.4 Axioms

We want to compare and characterize scoring rules according to the social choice
correspondences that they implement. In particular, we ask for which preference
profiles the induced voting games have a unique solution in iteratively undominated
strategies – and which outcomes are selected in that case. A minimal and prominent
requirement is unanimity.

Definition 8. A scoring rule V is said to satisfy Unanimity (U), if for any preference
profile ≻I such that I = Iabc ∪ Iacb, we have S(≻I , V ) = {a}.

Where there is no universal agreement, we have to weigh some voters’ preferences
against others’, in order to choose an alternative. In the case of two alternatives,
fairness and efficiency force us to accept simple majority as the guiding principle,12

but when the number of alternatives grows, it is unclear how this principle should
be adjusted.

However, if one of three alternatives is unanimously agreed to be the worst, we
are essentially in a situation with just two relevant alternatives, so that a simple
majority should suffice to determine the optimal alternative. We can formalize this
idea as follows.

Definition 9. Consider an arbitrary preference profile ≻I such that I = Iabc ∪ Ibac.
A scoring rule V is said to be Majoritarian after Eliminating a Worst Alternative
(MEW), if ∣Iabc∣ > ∣Ibac∣ implies S(≻I , V ) = {a}.

A similar situation arises, when one of three alternatives is unanimously agreed
to be worse than some other alternative. Again, one might think that the former,
Pareto dominated, alternative should be disregarded and the decision between the
remaining two alternatives should be made by simple majority.

Definition 10. Consider an arbitrary preference profile ≻I such that I = Iabc∪Iacb∪Ibac.
A scoring rule V is said to be Majoritarian after Eliminating a Pareto Dominated
Alternative (MEPD), if for ∣Iabc∣ + ∣Iacb∣ > ∣Ibac∣, we have S(≻I , V ) = {a}, while for
∣Iabc∣ + ∣Iacb∣ < ∣Ibac∣, we have S(≻I , V ) = {b}.

The formal definition reveals what might be a controversial property of MEPD:
some alternative b might be chosen by the social choice correspondence S(⋅, V ) based
on its majority support over another alternative a, even though it may only be a
that, according to MEPD, forces us to eliminate c, based on Pareto dominance.

12 See May [1952] who provides an axiomatization of the Majority Rule. His symmetry axioms
can be seen as an embodiment of fairness, while the positive responsiveness axiom may be seen as
a requirement of efficiency.
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CON Ô⇒ MEPD Ô
⇒

Ô
⇒

U

MEW
Fig. 4.1: Logical relations between intra-profile axioms

In defence of MEPD, observe that it unifies both preceding axioms, i.e. MEPD im-
plies both MEW and U. Moreover, it is implied by another, well known requirement,
formulated by the Marquis de Condorcet, according to which an alternative should
be chosen whenever it is supported by a majority against any other alternative.13

Definition 11. Consider an arbitrary preference profile ≻I . A scoring rule V is said
to be Condorcet consistent (CON), if S(≻I , V ) = {a} whenever

∣Iabc∣+ ∣Iacb∣+ ∣Ibac∣ > ∣Ibca∣+ ∣Icab∣+ ∣Icba∣ and ∣Iabc∣+ ∣Iacb∣+ ∣Icab∣ > ∣Icba∣+ ∣Ibac∣+ ∣Ibca∣.

To see that CON implies MEPD, observe that whenever b is supported by a
majority against a, and a Pareto dominates c, b will also be supported by a majority
against c and should therefore be chosen according to CON.

Figure 4.1 presents the logical relations between the axioms described so far. Note
that they are all intra-profile axioms, i.e. they all concern the behaviour of a social
choice correspondence within given preference profiles. The next axiom concerns its
behaviour across profiles. For that, consider an arbitrary profile ≻I= (≻i)i∈I . Another
profile ≻′I= (≻′i)i∈I is said to be an a-monotonic transformation of ≻I , iff

∀i ∈ I ∶ a ≻i b, c Ô⇒ a ≻′i b, c and b ≻i c ⇐⇒ b ≻′i c,

i.e. such that a is more popular under ≻′I , while the ordering of b and c remains
unchanged.14 Then, if a is the unique solution under ≻I , it should remain so under
≻′I .

Definition 12. A scoring rule V is said to satisfy Monotonicity (MON), if for any
preference profile ≻I and an a-monotonic transformation ≻′I we have

S(≻I , V ) = {a} Ô⇒ S(≻′I , V ) = {a}.

Monotonicity is particularly important where candidates are engaged in electoral
competition, i.e. where they can choose a policy platform and thereby affect their
position in voters’ rankings of candidates. A violation of monotonicity could create
perverse incentives for candidates – a candidate may then increase her chance of
election by adjusting her platform with the only effect to hurt some group within

13 Note that Condorcet famously pointed out that such an alternative may not exist when pairwise
majority comparisons yield a cycle, cf. de Condorcet [1785] p. lxi.

14 The requirement that the ranking between b and c remains unchanged, makes the following no-
tion of monotonicity weaker than Maskin-monotonicity, which is required for Nash-implementation.
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the electorate, moving her down in that groups’ rankings of candidates (while leaving
everyone’s ranking of the other candidates unchanged). Then, under a violation of
monotonicity, it could be that the candidate is uniquely selected by only after the
change in platform, i.e. after she has lost in popularity.

4.5 Results

Our first result maps out the class of scoring rules under consideration, by showing
that positional and vote-splitting scoring rules are essentially the only direct mech-
anism scoring rules; the only other scoring rules are slight variations of the Plurality
and Antiplurality Rule. For that, we normalize ballots in a way that exchanges some
strategies for duplicate counterparts.

Theorem 9. Consider a direct mechanism scoring rule V . Then up to the elimination
of abstentions and a normalization of ballots, one of the following four cases applies.
The set of admissible ballots V consists of

all permutations of (1, s,0), s ∈ [0,1].(1)
all permutations of (s, s,0) and (1 − s,0,0), s ∈ [0,1].(2)
all permutations of (1,0,0) and (s,0,0), s ∈ [0,1].(3)
all permutations of (1,1,0) and (s, s,0), s ∈ [0,1].(4)

The intuition behind Theorem 9 is straightforward. Suppose V contains an ad-
missible ballot b with three distinct entries. Since V is neutral with respect to a
relabelling of candidates, the corresponding 6 permutations of b are also included
in, and exhaust, V . Normalizing then yields case (1). If V contains a ballot b with
two identical entries, it also contains all 3 of its permutations. This leaves room for
another ballot b′ which can have only 3 permutations itself, i.e. must contain two
identical entries as well. Normalizing b and b′, as well as their permutations yields
one of the cases (2)-(4). A slightly more formal proof is found in the Appendix.

Within the class of direct mechanism scoring rules, we will show that the Borda
Rule, and the social choice correspondence implemented by it, occupy a particularly
prominent position. For that, the next two results establish sufficient-and-necessary
conditions on preference profiles for the associated Borda Rule voting games to have
a unique solution in iteratively undominated strategies.

Theorem 10. Consider a Borda Rule voting game Γ(≻I , V 0). A candidate x ∈ A, is
the unique solution, i.e. S(≻I , V ) = {x}, if we can label candidates so that one of the
following three conditions is satisfied:

∣Ixyz ∣ > ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣,(1)
or ∣Ixyz ∣ > ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ − 1 and ∣Izxy ∣ > ∣Iyxz ∣,(2)
or ∣Ixyz ∣ > ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ − 2 and ∣Ixzy ∣ > 0.(3)
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The proof for all three cases proceeds as follows. We first show that either y or
z can be ruled out as an element of S(≻I , V ), as after a few rounds of eliminating
dominated strategies we have ∣vx∣ > ∣vy ∣ or ∣vx∣ > ∣vz ∣. Then, the election is effectively
over x and one remaining alternative candidate, and x wins, as it is supported by a
majority. We present the proof for case (1) here, and relegate cases (2) and (3) to
the Appendix.

Assume (1) holds. After eliminating dominated strategies, we know by Fact 4
that

min
v∈V 1

∣vx∣ − ∣vz ∣ = 1/2∣Ixyz ∣ − 1/2∣Ixzy ∣ − 1/2∣Iyxz ∣ − ∣Iyzx∣ − ∣Izxy ∣ − ∣Izyx∣ > 0,

so that z is ruled out as an outcome. But then, in the game Γ(≻I , V 1), for any
voter i who prefers x over y, vi = (vxi , v

y
i , v

z
i ) = (1,0, 1

2) is a best reply for every
opposing strategy profile (v−i,▷) ∈ V 1

−i ×▷ as it maximizes the impact that i has
on ∣vx∣− ∣vy ∣. If another ballot ṽi ≠ vi is also a best reply against every (v−i,▷), then
ṽi is a duplicate strategy. If on the other hand ṽi is a worse reply than vi against
some (v−i,▷), it is dominated and hence eliminated as we move to V 2.

To determine the possible outcomes in Γ(≻I , V 2), we can assume that all i ∈
Ixyz ∪Ixzy ∪Izxy cast ballot vi = (1,0, 1/2) - any other remaining strategy in V 2

i would
be a duplicate strategy and produce the same outcome. But then, x is the unique
outcome after two rounds of eliminating dominated strategies, as by condition (1)

∣vx∣ ≥ ∣Ixyz ∣ + ∣Ixzy ∣ + ∣Izxy ∣ > ∣Iyxz ∣ + ∣Iyzx∣ + ∣Izyx∣ ≥ ∣vy ∣.

This completes the proof for case (1); the proof for cases (2) and (3) is found in
the appendix. The next Theorem shows that the conditions of Theorem 10 are also
necessary.

Theorem 11. Consider a Borda Rule voting game Γ(≻I , V 0). No candidate can be
excluded as a winner, i.e. S(≻I , V ) = A, if for any labelling of candidates x, y, z ∈ A
the following three conditions are satisfied:

∣Ixyz ∣ ≤ ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣(1)
and ∣Ixyz ∣ = ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ Ô⇒ ∣Izxy ∣ ≤ ∣Iyxz ∣(2)
and ∣Ixyz ∣ ≥ ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ − 1 Ô⇒ ∣Ixzy ∣ = 0.(3)

Intuitively, under the conditions of Theorem 11, each group of voters Ixyz is small
relative to the other groups, bringing us close to a balanced profile where each group
is of the same size. For such a balanced profile, it is clear that no outcome can be
ruled out.

The proof rests on a Lemma, which shows that if each Ixyz is small enough,
no strategies beyond the initially dominated ones are eliminated in the process of
iterated elimination.
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Lemma 5. Suppose that for any labelling of candidates x, y, z ∈ A we have

∣Ixyz ∣ < ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ − 2.

Then for the Borda Rule voting game Γ(≻I , V 0), the elimination of dominated strate-
gies stops after one round so that Γ(≻I , V 1) = Γ(≻I , V m). Moreover, S(≻I , V ) = A.

The proof of Proposition 11 then delineates the remaining cases where some
Ixyz may be larger than assumed in Lemma 5 so that some initially undominated
strategies are eliminated, yet the process of elimination stops before any outcome
can be ruled out. Both the proof of Lemma 5 and remaining proof of Theorem 11
require a large number of case distinctions and are relegated to the appendix.

Corollary 2. The Borda Rule satisfies both U and MEW.

Proof. Assume that I = Iabc ∪ Iacb. Without loss of generality, we can assume ∣Iabc∣ ≥

∣Iacb∣. By Theorem 10, a is the unique solution as ∣Iabc∣ > ∣Iacb∣ − 1{∣Iacb∣>0} = ∣Ibac∣ +

∣Iacb∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣ − 1{∣Iacb∣>0}.
Assume on the other hand that I = Iabc∪ Ibac and ∣Iabc∣ > ∣Ibac∣. Then by Theorem

10, a is the unique solution, as ∣Iabc∣ > ∣Ibac∣ = ∣Ibac∣+ ∣Iacb∣+2∣Ibca∣+2∣Icab∣+2∣Icba∣.

The above corollary overlaps with results in Buenrostro et al. [2013] who provide
sufficient conditions for scoring rule voting games to be dominance solvable, i.e.
have a unique solution in iteratively undominated strategies. The corollary extends
beyond their Theorem 1 and Theorem 2, in that it includes the case I = Iabc ∪ Iacb,
∣Iabc∣ = ∣Iacb∣, i.e. we show that a unanimously preferred candidate a is the unique
solution even if the electorate is split in half. What might be more remarkable
though, is the exceptional position among positional scoring rules that Corollary 2
grants to the Borda Rule:

Theorem 12. The Borda Rule is the unique positional scoring rule that satisfies
U and MEW. In particular, positional scoring rules with s < 1

2 violate U, while
positional scoring rules with s > 1

2 violate MEW.

The proof can be found in the appendix. To understand the intuition behind
Theorem 12, assume that s > 1

2 and everyone agrees that c is the worst alternative.
Furthermore, if the groups Iabc and Ibac are roughly of the same size, it is possible
that a and b receive roughly the same score so that a single voter is pivotal. In such
a situation, awarding a score of s to the least preferred alternative c – and a score of
zero to the second best alternative a or b – may be undominated, or even a unique
best response, as it tips the election in favour of the most preferred alternative. Yet,
if awarding a score of s to c cannot be ruled out based on weak dominance, c may
win with an average score of s > 1

2 while a and b are tied with an average score of
about 1

2 .
Similarly, assume that that s < 1

2 and that alternative a is unanimously preferred.
If the electorate is split in half between the groups Iabc and Iacb and every voter
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supports their second best alternative by awarding it a score of one, a receives an
average score of at most s < 1

2 while b and c will be tied with an average score
of 1

2 . An individual who deviates and supports a would then hand the election
to their least preferred candidate. Hence, for each voter, supporting their second
best alternative is undominated – as long as everyone else may still support their
second best alternative. But then supporting the second best alternative can never
be eliminated based on weak dominance which establishes both b and c as element
of the solution S(≻I , V ).

In light of Theorem 12, it is natural to ask whether there exist other direct mech-
anism scoring rules, beyond the Borda Rule that simultaneously satisfy unanimity
and are majoritarian after eliminating a worst candidate. The most prominent di-
rect mechanism scoring rule not covered by Theorem 12 is Approval Voting, for
which Núñez and Courtin [2013] provide necessary-and-sufficient conditions for the
associated voting games to be dominance solvable, i.e. to have a unique solution in
iteratively undominated strategies. In fact, we find that Approval Voting satisfies
even the stronger axiom of being majoritarian after eliminating a Pareto dominated
candidate – and that it is the only direct mechanism scoring rule that satisfies it.

Theorem 13. Approval Voting is the unique direct mechanism scoring rule that sat-
isfies MEPD. In particular, vote-splitting scoring rules with s < 1

2 and scoring rules
where V consists of all permutations of (1,0,0) and (s,0,0) violate U, while vote-
splitting scoring rules with s > 1

2 and scoring rules where V consists of all permuta-
tions of (1,1,0) and (s, s,0) violate MEW.

The fact that the Borda Rule, while satisfying U and MEW, fails to satisfy
MEPD, follows from Theorem 11. For example, consider a preference profile ≻I where
I = Iabc∪Iacb∪Ibac and ∣Iabc∣ = ∣Iacb∣ = ∣Ibac∣ = n ≥ 2. Then by Theorem 11 S(≻I , V ) = A,
while MEPD requires a to be the unique solution. All other positional scoring rules
violate either U or MEW and hence also MEPD, see Theorem 12.

In order to show that Approval Voting satisfies MEPD consider a preference
profile where a Pareto dominates c, i.e. such that I = Iabc ∪ Iacb ∪ Ibac. Then after
eliminating dominated strategies, no voter awards a higher score to c than to a (see
Fact 4), so that for any, v ∈ V 1, the score of a is weakly larger than the score of c.

Moreover, if there exists a voter i ∈ Iabc, she will vote either (1
2 ,

1
2 ,0) or (1

2 ,0,0),
thereby ensuring that ∣va∣ > ∣vc∣ and ruling out outcome c after one round of elimina-
tion. In the next step, each voter will award a score s = 1

2 to her preferred among the
remaining candidates a and b and a score of zero to the other candidate. Then, the
candidate supported by a majority is the only remaining outcome after two rounds
of elimination of dominated strategies.

If on the other hand ∣Iabc∣ = 0, so that I = Iacb ∪ Ibac, we have to consider two
cases. First consider ∣Iacb∣ > ∣Ibac∣, where a is preferred by a majority over b. Then,
for any v ∈ V 1, we have ∣va∣ ≥ ∣Iacb∣

2 >
∣Ibac∣

2 = ∣vb∣ so that b is ruled out as an outcome.
In the next step, each voter will support a among the two remaining candidates, so
that a is the only remaining outcome after two rounds of elimination.
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Finally, if I = Iacb∪Ibac and ∣Ibac∣ > ∣Iacb∣, we know that for any v ∈ V 1, ∣vb∣ = ∣Ibac∣

2 >
∣Iacb∣

2 ≥ ∣vc∣, such that c is ruled out as an outcome. In the next step, every voter will
support either a or b over the other, so that the majority candidate b is the only
remaining outcome after two rounds of elimination of dominated strategies.

It remains to show that no other direct mechanism scoring rule satisfies MEPD.
For that, the reader is referred to the Appendix.

We are now left with only two direct mechanism scoring rules that satisfy U and
MEW, namely the Borda Rule and Approval Voting where only the latter satisfies
the even stronger axiom MEPD. However, Approval Voting fails monotonicity, as
can be seen in the following example.

Example 3. Consider a preference profile ≻I where I = Iabc ∪ Ibac ∪ Icab and

∣Iabc∣ = 2, ∣Ibac∣ = 4, ∣Icab∣ = 3.

After eliminating dominated strategies, it is clear that b will have a score of at
least ∣Ibac∣

2 = 2, while the score of c is equal to ∣Icab∣

2 < 2 (see Fact 4). This reduces
the game further, to an election between a and b, which a wins with a score of
∣va∣ = ∣Iabc∣+∣Icab∣

2 = 5
2 > 2 = ∣Ibac∣

2 = ∣vb∣. Hence a is the unique solution of Γ(≻I , V 0).
But, if a increases in popularity, so that we now have ≻′I with I = I ′abc ∪ I ′bac ∪ I ′cab

and ∣I ′abc∣ = ∣I ′bac∣ = ∣I ′cab∣ = 3, candidate c is not sure to lose against b so that the game
cannot be reduced to an election between a and b. No other candidate is sure to
lose either, so that by results in Núñez and Courtin [2013], we know that Γ(≻′I , V )

is not dominance solvable, i.e. has no unique solution in iteratively undominated
strategies.15

In contrast to Approval Voting, the Borda Rule satisfies monotonicity:

Theorem 14. The Borda Rule is the unique direct mechanism scoring rule that sat-
isfies U, MEW and MON.

Proof. In light of Theorem 12 and 13 as well as Example 3, it remains to show that
the Borda Rule satisfies monotonicity. For that, assume that some candidate, say a,
is the unique solution in Γ(≻I , V 0). Then we know from Theorem 10 and 11 that,
up to relabelling of candidates b and c, one of the three conditions are satisfied

∣Iabc∣ > ∣Iacb∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣,(1)
or ∣Iabc∣ > ∣Iacb∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣ − 1 and ∣Icab∣ > ∣Ibac∣,(2)
or ∣Iabc∣ > ∣Iacb∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣ − 2 and ∣Iacb∣ > 0.(3)

Note that as we move to an a-monotonic transformation of ≻I , this

● weakly increase ∣Iabc∣,
15 For an Approval Voting game to have a unique solution, there has to be an alternative that

is ranked first more often than some other alternative is ranked first or second, see Núñez and
Courtin [2013].
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● weakly decrease ∣Iacb∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣,

● and weakly relaxes the inequality ∣Iacb∣ > 0.

Hence, if initially conditions (1) or condition (3) were satisfied, they continue to hold,
so that a is still the unique solution. If initially only condition (2) was satisfied,
the inequality ∣Icab∣ > ∣Ibac∣ could cease to hold when moving to an a-monotonic
transformation of ≻I

● as ∣Ibac∣ increase (some i moves from Ibac to Iabc),

● or ∣Icab∣ shrinks (some i moves from Icab to Iacb).

However, then in both cases (1) will be satisfied, as ∣Iacb∣+ ∣Ibac∣+2∣Ibca∣+2∣Icab∣+2∣Icba∣
is decreased by one. In either case, a remains the unique solution.

We conclude this section with two impossibility results.

Corollary 3. No social choice correspondence that satisfies both MEPD and MON
can be implemented by a direct mechanism scoring rule.

Corollary 4. No social choice correspondence that satisfies CON can be implemented
by a direct mechanism scoring rule.

The first impossibility result is an immediate implication of Theorem 13 and Ex-
ample 3. The second impossibility follows from Theorem 13 and a result by Peress
[2008] who shows that even when a strict Condorcet winner exists, Approval Voting
allows for undominated Nash-equilibria where some other alternative is elected –
such equilibrium strategies are never eliminated in the process of iterative elimina-
tion of dominated strategies.

4.6 Conluding Remarks

While the analysis of social choice correspondences that can be implemented in
iteratively undominated strategies has occupied the minds of many social choice
theorists, a complete characterization has remained elusive.

This chapter hopes to contribute to such a characterization by a change in per-
spective. Instead of considering all mechanisms, we begin by concentrating on a
limited, yet comparatively large class of voting procedures that includes prominent
and intuitive rules. For that class, we are able to characterize voting procedures using
a small number of intuitive axioms that are based on simple majority and mono-
tonicity. In particular, Approval Voting and the Borda Rule stand out as optimal
voting procedures with respect to our axioms.

For a class of more general mechanisms, our results raise a number of questions.
Is Approval Voting still the unique scoring rule that is majoritarian after eliminat-
ing a Pareto dominated alternative (MEPD), once we drop the direct mechanism
restriction? Does there exist a scoring rule or a more general (bounded) mechanism
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that not only satisfies MEPD but is also monotonic? Such a new mechanism could
then be seen an improvement over both Approval Voting and the Borda Rule in
conducting elections involving three candidates. For elections involving more than
three candidates, one may ask whether our axioms, MEPD and Majoritarian after
Eliminating a Worst alternative (MEW), can be extended so as to yield analogous
characterisations of Approval Voting and the Borda Rule.

We hope that questions such as these will stimulate future research.
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A Appendix to Section 2.1

Proof of Theorem 1. The lower bound argument used in FMP and given in Section
2.1.4.1 yields s(θ∗) ≥ a. We now prove the converse: s(θ∗) ≤ a. By duality, s(θ∗) ≤ a
and s(θ∗) ≥ a also hold.

Consider a simplified global game G∗(v) with noise distribution f , and its right
continuous, increasing equilibrium strategy profile s∗v . As v → 0, s∗v converges to
the right continuous version s of the limit strategy profile of G∗(v) at all points of
continuity (Fact 1). For now, assume s is continuous at θ∗. Then there exist v and
δ > 0 such that for all v < v and x ∈ [θ∗ − δ, θ∗ + δ] we have that s∗v(x) equals the
(highest) GGS s(θ∗); an equilibrium a∗ of the game g. Now fix some v < min{δ, v}
and consider Eθ(v), the scaled and shifted version of elaboration E as defined at
the end of Section 2.1.4.1. The lower dominance regions, scale factors, and noise
distributions of Eθ(v) and G∗(v) coincide. Assume that in the game Eθ(v) players
use the strategy profile s′ given by:

s′(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

s∗v(x) if x ≤ θ∗,
s∗v(θ

∗) if x > θ∗.

For any player i, and any signal xi < 0, action 0 is dominant both in Eθ(v) and in
G∗(v), so for x < 0, the upper best reply in Eθ(v) is β(s′)(x) = 0 = s∗v(x) = s′(x). For
xi ∈ [θ, θ∗], i’s opponents receive signals smaller than θ∗+δ and follow s∗v,−i in Eθ(v).
Since the distributions of players’ signals are identical in G∗(v) and Eθ(v), but i’s
payoff is given by gi(⋅) = ui(⋅, θ∗) in Eθ(v) and by ui(⋅, xi) in G∗(v), supermodularity
implies that the upper best reply in Eθ(v) is β(s′)(x) = β(s∗v)(x) ≥ s∗v(x) = s′(x),
for θ ≤ x ≤ θ∗. For xi > θ∗, player i’s opponents receive signals higher than θ∗ − δ

and, following s′−i, play a∗−i. As a∗ is a Nash equilibrium of g, β(s′)(x) ≥ a∗ = s′(x).
In sum, in the elaboration Eθ(v), β(s′) ≥ s′. Hence, an upper best reply iteration

starting at s′ yields a monotonically increasing sequence of strategy profiles that
converges to an equilibrium profile s∗ ≥ s′. It follows that s∗(θ∗) ≥ s′(θ∗) = s∗v(θ∗) =
s(θ∗). As the attained action profile a is defined as the highest action profile attained
in any equilibrium strategy profile in E, and each equilibrium profile in Eθ(v) has
a scaled and shifted counterpart in E, we have a ≥ s∗(θ∗) ≥ s(θ∗).

If the limit strategy profile s is not continuous at θ∗, we may choose a decreasing
sequence θ0, θ1, θ2, . . . converging to θ∗ such that s is continuous at each θn. For each
game gn embedded at θn, consider the elaboration En, identical to E except that
payoffs are given by ui(⋅, θn) if xi ≥ 0. Let sn be the highest equilibrium profile of
En and recall sn(∣A∣) is the highest action profile played in sn. By the first part of
the proof, sn(∣A∣) ≥ s(θn). As sn is an equilibrium of En, we have

∀i ∈ I,∀ai ∈Ai,∀xi ≥ 0 ∶

∫
R∣I∣−1

(ui(s
n
i (xi), s

n
−i(x−i), θ

n) − ui(ai, s
n
−i(x−i), θ

n))πi(x−i∣xi) dx−i ≥ 0,
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where πi(⋅∣xi) is the conditional density over opponents’ signals. By state monotonic-
ity (A3), the sequence of equilibria sn converges to s∗ = inf{sn∣n ∈ N}. As payoffs
ui are bounded on the compact set A×[θ∗, θ0], the dominated convergence theorem
ensures expected payoffs also converge:

∀ i ∈ I, ai ∈Ai, xi ≥ 0 ∶

∫
R∣I∣−1

(ui(s
∗
i (xi), s

∗
−i(x−i), θ

∗) − ui(ai, s
∗
−i(x−i), θ

∗))πi(x−i∣xi) dx−i

= lim
n→∞

∫
R∣I∣−1

(ui(s
n
i (xi), s

n
−i(x−i), θ

n) − ui(ai, s
n
−i(x−i), θ

n))πi(x−i∣xi)dx−i ≥ 0

So s∗ is an equilibrium strategy profile in the elaboration E of the game g. Finally,
since s∗(∣A∣) = inf{sn(∣A∣)∣n ∈ N} ≥ inf{s(θn)∣n ∈ N} = s(θ∗), we conclude that the
attained profile a ≥ s(θ∗).

Proof of Theorem 2. Fix f . In this proof, for any game g ∈ S, denote its associated
upper- and lower-f -elaborations by E(g) and E∂(g) and their respective attained
action profiles by a(g) and a(g). Also, for any game g ∈ S (with payoffs gi) define
a global game embedding as in Lemma 1 by setting ug

i (ai, a−i, θ) = gi(ai, a−i) + θai.
Given this embedding, gθ denotes the complete information game embedded at θ.
For r > 0, let Br(g) be the open ball in R∣I×A∣ with radius r around g.

To prove that Sf is dense in S we may show that if g ∈ S−f , there is a game
arbitrarily close to g in which the GGS is unique. But this is always true, as the
limit equilibrium strategy profile of g’s embedding given by the payoffs ug

i is unique
up to its finitely many discontinuities (Theorem 0). To prove that Sf is open in S,
note that if g ∈ Sf , the limit equilibrium strategy profile of its embedding given by
ug
i is constant over some interval (−2ε,2ε), as the joint action set A is finite. Then,

by the following result, Sf is open in S (and hence S−f is closed and nowhere dense
in S):

Claim 3. If g ∈ Sf and, for some ε > 0 and a∗ ∈ A, a∗ = a(gθ) = a(gθ) for
all θ ∈ (−2ε,2ε), then a∗ = a(g′) = a(g′) for all supermodular games g′ in an ε-
neighbourhood of g.

Proof. Let g′ be a supermodular game in an ε-neighbourhood of g. Then for all i,
a−i, and a′i < ai,

ug
i (ai, a−i,−2ε) − ug

i (a
′
i, a−i,−2ε) = gi(ai, a−i) − gi(a′i, a−i) − 2ε(ai − a′i)

≤ gi(ai, a−i) − gi(a
′
i, a−i) − 2ε ≤ g′i(ai, a−i) − g′i(a′i, a−i),

where g′i denotes the payoffs of g′. Thus, for any opposing action distribution, the
upper best reply in the elaboration E(g′), is weakly higher than in E(g−2ε). But
then the same is true for their highest equilibrium strategy profiles, so that a(g′) ≥
a(g−2ε) = a∗. Using a symmetric argument, we establish that a(g′) ≤ a∗. Dually, we
may show that a(g′) = a∗, proving the claim. ◇

Now, we may establish measure theoretic genericity. A subset P of R∣I×A∣ is called
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porous if there are λ ∈ (0,1) and k > 0 such that for any g ∈ P and ε ∈ (0, k), there
exists g′ ∈ R∣I×A∣ such that Bλε(g′) ⊆ Bε(g) − P . Any porous subset of R∣I×A∣ is a
Lebesgue null set (Lucchetti [2006], p. 220–222). Let:

S−fk ∶= {g ∈ S−f ∣ gθ ∈ Sf ,∀θ ∈ (−k,0) ∪ (0, k)}.

We will prove that S−fk is porous. Assume g ∈ S−fk and choose ε ∈ (0, k). Setting
g′ ∶= g ε

2
, we know that the GGS will be unique and identical to that of g′ for all

games {g′θ ∈ S ∣ θ ∈ (− ε2 ,
ε
2)}. By Claim 3, we know that the GGS is unique for all

supermodular games in an ε
4 -neighbourhood of g′, thus B ε

4
(g′) ∩ S−fk = ∅. Setting

λ = 1
4 , we have for ε ∈ (0, k) that Bλε(g′) ⊆ Bε(g) − S−fk , i.e., S−fk is porous. Thus

S−f = ⋃{k∈Q ∣ k>0} S
−f
k is a countable union of Lebesgue null sets and hence a null set

itself. To see that, by contrast, S is of infinite Lebesgue measure, pick a game such
that the inequalities in (2.1) hold strictly, and note it is contained in an open ball
B ⊆ R∣I×A∣ of supermodular games. Moreover, for each open ball B in S, we find
another ball B′ ⊆ S of arbitrarily large measure, if we multiply the payoffs of all
games in B with a sufficiently large constant.

Proof of Theorem 3. For two different games write g1 ≺ g2 if for all i, a′i < ai and
a−i the corresponding payoffs satisfy g1

i (ai, a−i)− g
1
i (a

′
i, a−i) < g

2
i (ai, a−i)− g

2
i (a

′
i, a−i).

Given any opposing action distribution, the lowest best reply in g1 will then be
weakly lower than the lowest best reply in g2.

Now, consider a generalised global game G̃(v) with noise distribution f and
payoff functions ui. Write gθ for the complete information game with payoffs ui(⋅, θ).
Assume that (i) aθ∗ = aθ∗ = a∗ and (ii) aθ, aθ continuous at θ∗. Note that ŝ ≥ š, so
it suffices to show that š(θ∗) ≥ a∗ ≥ ŝ(θ∗). We will prove the first inequality; the
second follows by duality. To do so, we will compare the payoff functions ui satisfying
(A1)–(A3∗) to payoff functions u′i satisfying (A1)–(A4).

First, by continuity of aθ and aθ at θ∗, there is some nearby, game gθ∗−ε embedded
at θ∗ − ε whose GGS is unique and equal to a∗. Next, consider the game g′ given by
g′i(ai, a−i) = ui(ai, a−i, θ

∗ − ε)− kai, k > 0. By Claim 3, we can choose k such that the
GGS in g′ is unique and equal to a∗. Furthermore, w.l.o.g., assume that there exist
extreme values θ̌ < θ and θ < θ̂ such that we have a chain of four games satisfying
gθ̌ ≺ g′ ≺ gθ∗ ≺ gθ̂. Using this chain, we construct u′i:

u′i(ai, a−i, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(ai, a−i, θ̌) if θ < θ∗ − ε,
θ∗−θ
ε ui(ai, a−i, θ̌) +

θ−(θ∗−ε)
ε g′i(ai, a−i) if θ∗ − ε ≤ θ < θ∗,

θ̂−θ

θ̂−θ∗
g′i(ai, a−i) +

θ−θ∗
θ̂−θ∗

ui(ai, a−i, θ∗) if θ∗ < θ < θ̂,
(θ̂ + 1 − θ)ui(ai, a−i, θ∗) + (θ − θ̂)ui(ai, a−i, θ̂) if θ̂ ≤ θ < θ̂ + 1,
ui(ai, a−i, θ̂) if θ̂ + 1 ≤ θ,

Comparing the payoffs u′i with ui, we see that under u′i the dominance regions have
been shifted to the right, the game gθ̌ is now embedded at θ∗ − ε, g′ at θ∗, gθ∗ at
θ̂, gθ̂ at θ̂ + 1 and the remaining games are linear interpolations. Thus, for any θ,
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the lowest best reply under ui is weakly higher than under u′i. Also, since payoffs
are linearly interpolated between gθ̌ ≺ g′ ≺ gθ∗ ≺ gθ̂, payoff differences are piecewise
linear in θ, thus satisfy (A3). Clearly, (A4) is satisfied as well.

Finally, consider the global game G′(v) with the newly constructed payoff func-
tion u′i, and the same noise distribution f and prior as G̃(v). For any v > 0, G′(v)

has a lowest equilibrium strategy profile, denoted s′v. As best replies are higher under
ui than under u′i, for the lowest equilibrium strategy profile in G̃(v) we find šv ≥ s′v.
Thus, š(θ∗) = lim infv→0 šv(θ∗) ≥ limv→0 s′v(θ

∗) = a∗, where the last equality follows
by Theorem 1 and the fact that a∗ is the unique GGS of g′.

Proof of Lemma 2. Let us first prove two claims about restricted games of g:

Claim 4. Consider four action profiles a, b, c, d such that a ≤ b ≤ d and a ≤ c ≤ d.
Then the highest GGS in g∣[a, b] is weakly lower than the highest GGS in g∣[c, d].

Proof. Consider the highest GGS a in g∣[a, b]. By Theorem 1 there exists an equi-
librium strategy profile s in E∣[a, b] prescribing the action profile a for high signals.
Define a strategy profile s′ pointwise as max{c, s(x)} for each signal tuple x. Due to
supermodularity, an upper best reply iteration in E∣[c, d] starting from s′ will be in-
creasing. Thus, there exists an equilibrium strategy profile in E∣[c, d] that prescribes
actions weakly higher than a for high enough signals. ◇

Claim 5. Consider three action profiles a ≤ b ≤ c. If, for fixed f , a is the unique GGS
in g∣[a, b] and b is the unique GGS in g∣[b, c], then a is the unique GGS in g∣[a, c].

Proof. Consider the highest GGS a in g∣[a, c]. Since b is the highest GGS in g∣[b, c],
Claim 4 implies a ≤ b. In addition, a is the highest GGS in g∣[a, a], as the highest
equilibrium strategy profile in E∣[a, c] (which attains a) is also an equilibrium profile
in E∣[a, a]. Since a ≤ a ≤ b, Claim 4 applied to the games g∣[a, a] and g∣[a, b] yields
a ≤ a, proving Claim 5. ◇

Now, applying Claim 5 iteratively to the sequence an ≤ an+1 ⋅ ⋅ ⋅ ≤ am, we see that an
is the unique GGS in g∣[an,m]. Hence, by Claim 4, the highest GGS in g = g∣[0,m],
a, is weakly lower than an. By a dual argument, an is the unique GGS in g∣[0, an],
and the lowest GGS in g = g∣[0,m], a, is weakly higher than an. Together, this yields
a = a = an.

Proof of inequality (2.5). Fix a noise distribution f ; let Fi be the c.d.f. of player i’s
density fi. Then

∑
i∈I

Pi =∑
i∈I

∏
j∈I−{i}

P(xj ≥ zj ∣xi = zi) =∑
i∈I
∫

∣A∣+1

−∣A∣−1
fi(zi − θ) ∏

j∈I−{i}

(1 − Fj(zj − θ)) dθ.

Picking some player t ∈ I and integrating by parts the summand corresponding to
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i = t gives

⎡
⎢
⎢
⎢
⎢
⎣

(1 − F1(z1 − θ)) ∏
j∈I−{t}

(1 − Fj(zj − θ))
⎤
⎥
⎥
⎥
⎥
⎦

∣A∣+1

−∣A∣−1

− ∫

∣A∣+1

−∣A∣−1
∑

i∈I−{t}

⎛

⎝
fi(zi − θ) ∏

j∈I−{i}

(1 − Fj(zj − θ))
⎞

⎠
dθ

+ ∑
i∈I−{t}

∫

∣A∣+1

−∣A∣−1
fi(zi − θ) ∏

j∈I−{i}

(1 − Fj(zj − θ)) dθ

=

⎡
⎢
⎢
⎢
⎢
⎣

∏
j∈I

(1 − Fj(zj − θ))
⎤
⎥
⎥
⎥
⎥
⎦

∣A∣+1

−∣A∣−1

= 1.
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B Appendix to Section 2.2

Proof of Lemma 3. We may assume without loss of generality that g is strictly su-
permodular.16 Define M(w2) to be the number w0 that solves the equation

w0g(1,0)+(1−w0−w2)g(1,1)+w2g(1,2)=w0g(2,0)+(1−w0−w2)g(2,1)+w2g(2,2).

Even though M(w2) is not necessarily in the interval [0,1], we can think of it
intuitively as the weight that may be put on the least action, 0, while still leaving the
opposing player indifferent between playing the middle action, 1, and the greatest
action, 2, when the weight on 2 is w2. Existence and uniqueness of the solution
M(w2) are guaranteed by strict supermodularity. The function M has derivative

ρM ∶=
∆2

1(2) −∆2
1(1)

∆2
1(1) −∆2

1(0)
> 0,

thus is linear and (due to supermodularity) increasing. Analogously, define N(w0)

to be the minimal weight that needs to be put on 2 to make the opposing player
indifferent between playing 0 and 1 when the weight on 0 is w0. That is, N(w0) is
the solution w2 that solves

w0g(0,0)+(1−w0−w2)g(0,1)+w2g(0,2)=w0g(1,0)+(1−w0−w2)g(1,1)+w2g(1,2).

The function N has derivative

ρN ∶=
∆1

0(1) −∆1
0(0)

∆1
0(2) −∆1

0(1)
> 0.

We will show that, under the hypothesis of the lemma, there exists an increasing
equilibrium strategy profile s in e such that s(R) = 2 for R ≥ 6. In this case, 2 must
be the global game selection. If 2 ∈ br(µ2

0), it is easy to verify the existence of such
strategy profile s. Simply set z1 = z2 = z1 = z2 = 0. For the remainder of the proof,
consider 2 ∉ br(µ2

0). By supermodularity, br((1
2 , p,

1
2 − p)) ⊆ {0,1}, for all p ∈ [0, 1

2].
Thus, if (C2) holds for some p∗ ∈ [0, 1

2], then 1 ∈ br((1
2 , p

∗, 1
2 − p

∗)), and, in our
new notation, N(1

2) ≤
1
2 − p

∗. Note that supermodularity implies 1 ∈ br(µ2
0). Also, as

2 ∈ br((1
2 − p

∗, p∗, 1
2)), it follows that M(1

2) ≥
1
2 − p

∗ and in particular N(1
2) ≤M(1

2).
16 If g is only weakly supermodular, we may embed it in a global game G(v) where the payoff

structure is symmetric and strictly supermodular almost everywhere, for example by letting payoffs
depend on θ as follows:

ui(ai, a−i, θ) ∶= g(ai, a−i) + θai(3 + sgn(θ)a−i).

One may verify that g(ai, a−i) = u(ai, a−i, θ) for θ = 0 and that u satisfies the requirements of
a global game as in FMP. If condition (C2) is satisfied for θ = 0, it also holds at all θ > 0 by
monotonicity of the payoff difference functions. By results in Basteck et al. [2010], the global
game selection at θ = 0 does not depend on the embedding chosen. Since the greatest global game
selection is continuous from the right, and equal to 2 at almost all θ > 0 by our proof below, 2 is
the greatest global game selection at θ = 0.
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As θ is distributed uniformly over a large interval U = [U,U], the distribution
over signal differences x1 − x2 conditional on the signal xi received is the same for
all xi ∈ [U + 1

2 , U − 1
2]. Let H be the cumulative distribution function of this signal

difference and, without loss of generality, assume H(0) = 1
2 . We may deduce the

following weights from H, which are straightforward to verify. If player 2 receives
the signal x2 = z2, she assigns weight

w2(z2∣z1) ∶= P(x1 ≥ z1∣x2 = z2) = P(x1 − x2 ≥ z1 − z2∣x2 = z2) = 1 −H(z1 − z2)

to player 1 playing 2. Player 1 at x1 = z1 assigns weight w2(z1∣z2) ∶= H(z1 −

z2) = 1 − w2(z2∣z1) to player 2 playing 2. In a similar vein, at z2, player 2 assigns
weight w0(z2∣z1) ∶= H(z1 − z2) to player 1 playing 0. At z1, player 1 assigns weight
w0(z1∣z2) ∶= 1 −H(z1 − z2) to player 2 playing 0. Also, we will make use of the fact
that w0(z2∣z1) ∶= H(z1 − z2) =∶ w2(z1∣z2) and similarly w0(z1∣z2) ∶= 1 −H(z1 − z2) =∶

w2(z2∣z1).

Now consider the set Z ⊆ R4 of all increasing strategy profiles satisfying: (i) at
z2, 1 or 2 is a best reply for player 2; and (ii) at z2, 2 is a best reply for player
2; and (iii) z1 player 1 weakly prefers to play 2 over 1 (we make no assumptions
about the expected payoff from playing 0); and (iv) z1 = 1. Expected payoff in e is
continuous, so the inequalities implied by (i)-(iii) entail Z is a closed set. Note that
due to supermodularity, if s satisfies (i)-(iii), decreasing z2 preserves (ii) and (iii);
decreasing z2 preserves (i) and (iii), and decreasing z1 preserves (i) and (ii).

We claim the set Z is nonempty. To see this, set z1 = z2 = 3 and choose z2 ∈ [2,3]
such that w2(z2∣z1) = w0(z1∣z2) =

1
2 − p

∗. Player 2 at z2 faces µ = (0, 1
2 + p

∗, 1
2 − p

∗)

so that supermodularity and (C2) ensure (i). At z2, she faces µ2
1 and by (C2) and

supermodularity 2 is best reply, so (ii) holds. Finally, player 1 at z1 faces µ = (1
2 −

p∗, p∗, 1
2) so that (iii) is satisfied by (C2).

Since Z ⊆ R4 is non-empty, closed, and bounded from below, Z has a minimal
element ŝ; that is, there is no other profile s ∈ Z in which all of the thresholds are
weakly smaller than in ŝ. We will prove that player 1 weakly prefers 1 over 0 at the
threshold z1 = 1 in ŝ. Since ŝ also satisfies (i)-(iii), standard results for supermodular
games imply that a greatest best reply iteration starting from ŝ must converge to
an equilibrium in which action 2 is played, and the proof is done.

We begin by examining the preferences at the other three thresholds. First,
consider the case z1 = 1 = z1. By the minimality of ŝ, player 2 must be indifferent
between 0 and 1 at z2 ≤ 1, as 1 is a best reply to the opposing mixed strategy profile
µ2

0 at signal x2 = 1. Similarly, she is indifferent between 1 and 2 at z2 ≥ 1. But then

N(w0(z1∣z2)) ≤ N(1
2) ≤M(1

2) ≤M(w2(z2∣z1)) = w0(z2∣z1) = w2(z1∣z2).

where M(w2(z2∣z1)) = w0(z2∣z1) expresses the indifference at z2. But, by the defi-
nition of N , this simply says that player 1 weakly prefers 1 over 0 at z1, which is
what we needed to show.
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Next, consider the case z1 < z1 and z2 = z2 =∶ z2 so that by the minimality of ŝ, both 0
and 2 are best replies for player 2 at z2. The minimality of ŝ also implies that player
1 is indifferent between 1 and 2 at z1. As br(µ2

0) ⊆ {0,1}, this implies w2(z1∣z2) >
1
2

and thus z2 < z1. Similarly, we have that z1 < z2, as otherwise at z2 player 2 would
face an opposing action distribution that is dominated by µ2

0, so that her best reply
would be strictly smaller than 2. Then we arrive at the following contradiction:

w2(z2∣z1) ≤ N(w0(z2∣z1)) < N(1
2) ≤M(1

2) <M(w2(z1∣z2)) = w0(z1∣z2) = w2(z2∣z1).

Finally, consider z1 < z1 and z2 < z2 and note that the minimality of ŝ implies that
each player i is indifferent between 1 and 2 at zi and player 2 is indifferent between
0 and 1 at z2. Thus, by definition, M(w2(z1∣z2)) = w0(z1∣z2) and N(w0(z2∣z1)) =

w2(z2∣z1). In addition, it is always the case that w0(z1∣z2) = w2(z2∣z1), so we conclude
that M(w2(z1∣z2)) = N(w0(z2∣z1)). But then, as

M(w2(z1∣z2)) =M(1
2) + (w2(z1∣z2) −

1
2)ρM =M(1

2) +
1
2(w2(z1∣z2) −w2(z2∣z1))ρM

= N(1
2) +

1
2(w0(z2∣z1) −w0(z1∣z2))ρN = N(w0(z2∣z1)),

and M(1
2) ≥ N(1

2), this implies

(w2(z1∣z2) −w2(z2∣z1))ρM ≤ (w0(z2∣z1) −w0(z1∣z2))ρN .

Returning to the situation of player 1 at z1, we can now say that

N(w0(z1∣z2)) = N(1
2) −

1
2(1 − 2w0(z1∣z2))ρN

= N(1
2) −

1
2(w0(z2∣z1) −w0(z1∣z2))ρN

≤M(1
2) −

1
2(w2(z1∣z2) −w2(z2∣z1))ρM =M(w2(z2∣z1)).

In this step, symmetry of g is essential, as otherwise we would have to differentiate
between the individual players’ ρM and ρN and hence not be able to appeal to the
preceding inequality. Now, since we know that player 2 is indifferent between 1 and
2 at z2 and that w0(z2∣z1) = w2(z1∣z2), we conclude that

N(w0(z1∣z2)) ≤M(w2(z2∣z1)) = w0(z2∣z1) = w2(z1∣z2).

But, by the definition of N , this simply says that player 1 weakly prefers 1 over 0
at z1, which is what we needed to show.
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C Appendix to Chapter 3

Example 4. The following example shows that a random assignment in the strong
sd-core from equal division that satisfies the sd-equal-division-lower-bound may nev-
ertheless violate equal treatment of equals. Suppose individuals i ∈ {1,2,3} hold
preferences a ≻i b ≻i c ≻i d while individual 4 prefers object d. Then in the following
random assignment p

a b c d

p1: 1/4 1/2 1/4 0

p2: 1/4 1/2 1/4 0

p3: 1/2 0 1/2 0

p4: 0 0 0 1

each individual receives an assignment pi that stochastically dominates equal divi-
sion, viz. p satisfies the sd-equal-division-lower-bound.

To see that p lies in the strong sd-core from equal division, observe first that
it is sd-efficient - there exists no Pareto improving trade involving 4 (who already
receives d with certainty) and no Pareto improving trade among 1,2 and 3 (who
hold identical preferences). Thus, the grand coalition will not object to p. Next,
consider objections by coalitions of size k < 4. Individual 4 cannot be part of such a
coalition as it could guarantee only a probability share p4,d = k/4 < 1. Nor could the
remaining individuals form a blocking coalition where everyone is (weakly) better
of in a stochastic dominance sense, as someone would have to accept pi,d > 0. Hence,
p lies in the strong sd-core.

However, p does not satisfy equal treatment of equals, as p1 = p2 ≠ p3.

Example 5. The following example shows that the weak sd-core may include alloca-
tions that are not member of any weak w-core. Consider the case n = 4 and suppose
that preferences of individual i ∈ {1,2} are given as a ≻i b ≻i c ≻i d. The third indi-
viduals preferences are given as b ≻3 a ≻3 c ≻3 d while the fourth individuals holds
preferences a ≻4 c ≻4 b ≻4 d. Then the following random assignment p

a b c d

p1: 1/4 1/4 1/4 1/4

p2: 1/4 1/4 1/4 1/4

p3: 0 1/2 1/4 1/4

p4: 1/2 0 1/4 1/4

lies in the weak sd-core from equal division: Consider an objection p̃ by a blocking
coalition G that includes 4. Since everyone agrees that d is the worst, we have
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p̃i,d =
1
4 = pi,d for all i ∈ G. Moreover, since for 1,2 ∈ G they would receive at least 1

4
of object a under p̃, we have p̃4,a =

1
4 . But then p̃4 ≻

sd
4 p4 is impossible, as 4 cannot

receive less than 0 of b.
Next, consider an objection p̃ by a blocking coalition excluding 4. Since individ-

uals 1, 2 and 3 agree that c is the third- and d is the forth-most preferred object,
no one individual may receive more than 1

4 of d and more than 1
2 of c and d. Thus

we have p̃i,c = p̃i,c = 1
4 = pi,c = pi,d for all i ∈ G. But then p̃3 ≻sd3 p3 is impossible,

as 3 receives his most preferred object b with maximal probability. Hence, finally,
a blocking coalition G may only include individuals 1 and 2 – but since they have
identical preferences, there is no scope for a valid objection that improves upon equal
division.

However, for any compatible profile of vNM-utility functions the following allo-
cation constitutes a valid objection by individuals 1,2, and 3 - provided ε is chosen
sufficiently small:

a b c d

p1: 3/8 1/8 − ε 1/4 + ε 1/4

p2: 3/8 1/8 − ε 1/4 + ε 1/4

p3: 0 1/2 + 2ε 1/4 − 2ε 1/4
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D Appendix to Chapter 4

Proof of Theorem 9. Consider a ballot b = (k, l,m) ∈ V and assume w.l.o.g. that
k ≥ l ≥m. Since V is assumed to be neutral, it also includes all permutations of b.

If k > l > m, the 6 permutations exhaust V ; normalizing all ballots in V by
replacing k by k′ = k−m

k−m = 1, l by l′ = l−m
k−m ∈ [0,1] and m by m′ = m−m

k−m = 0 yields case
(1).

If two entries of b coincide, V contains 3 permutations of b. If those are the only
elements of V , we can normalize ballots such that k′ = 1 and m′ = 0 which again
yields case (1). If V contains another non-abstention ballot b′ = (p, q, r), then two
of its three entries must coincide - if all were distinct, V would contain not only all
permutations of b but also of b′, violating ∣V ∣ ≤ 6.

W.l.o.g assume p ≥ q ≥ r. If k = l >m and p > q = r, normalizing each permutation
of b by subtracting m and each permutation of b′ by subtracting r before dividing
each ballot by k−m+p−r yields k′ = l′ = k−m

k−m+p−r , m′ = 0, p′ = p−r
k−m+p−r and q′ = r′ = 0,

which corresponds to case (2).
If k > l = m and p > q = r, assume w.l.o.g. that k − m ≥ p − r. Normalizing

each permutation of b by subtracting m and each permutation of b′ by subtracting
r before dividing each ballot by k −m yields k′ = 1, l′ = m′ = 0, p′ = p−r

k−m ≤ 1 and
q′ = r′ = 0, which corresponds to case (3).

If k = l > m and p = q > r, assume w.l.o.g. that k −m ≥ p − r. Normalizing each
permutation of b by subtracting m and each permutation of b′ by subtracting r

before dividing each ballot by k −m yields k′ = l′ = 1, m′ = 0, p′ = q′ = p−r
k−m ≤ 1 and

r′ = 0, which corresponds to case (4).

Proof of Theorem 10. In light of the arguments presented in Section 4.5, the two
remaining cases are (2) and (3). Assume condition (2) holds, so that

min
v∈V 1

∣vx∣ − ∣vz ∣ = 1/2∣Ixyz ∣ − 1/2∣Ixzy ∣ − 1/2∣Iyxz ∣ − ∣Iyzx∣ − ∣Izxy ∣ − ∣Izyx∣ ≥ 0.

Then, for any ixyz in Γ(≻I , V 1), ballot vi = (vxi , v
y
i , v

z
i ) = (1, 1

2 ,0) is a weakly better
reply than ṽi = (1

2 ,1,0) against any v−i ∈ V 1
−i:

(i) if for ṽ = (ṽi, v−i), ∣ṽy ∣> ∣ṽx∣ ≥ ∣ṽz ∣, then for v = (vi, v−i), we have ∣vy ∣ ≥ ∣vx∣> ∣vz ∣,

(ii) if for ṽ = (ṽi, v−i), ∣ṽx∣ ≥ ∣ṽy ∣, ∣ṽz ∣, then for v = (vi, v−i), we have ∣vx∣ > ∣vy ∣, ∣vz ∣.

Hence, ṽi is either dominated by vi = (1, 1
2 ,0), or it is a duplicate strategy. Eliminat-

ing ṽi and moving to the restricted game, Γ(≻I , V ′), where V ′
xyz = V

1
xyz/{(

1
2 ,1,0)} =

{(1,0, 1
2), (1,

1
2 ,0)} and V ′

j = V
1
j for all j ∉ Ixyz we find that

min
v∈V ′ ∣v

x∣ − ∣vy ∣ = 1/2∣Ixyz ∣ + 1/2∣Ixzy ∣ − ∣Iyxz ∣ − ∣Iyzx∣ − 1/2∣Izxy ∣ − ∣Izyx∣

= 1/2∣Ixyz ∣ − 1/2∣Ixzy ∣ − 1/2∣Iyxz ∣ − ∣Iyzx∣ − ∣Izxy ∣ − ∣Izyx∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

−1/2∣Iyxz ∣ + 1/2∣Izxy ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

+∣Ixzy ∣ > 0,
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which rules out y as an outcome of Γ(≻I , V ′). But then, in the game Γ(≻I , V ′), for
any voter i who prefers x over z, vi = (1, 1/2,0) is a best reply as it maximizes i’s
impact on ∣vx∣ − ∣vz ∣. Eliminating dominated or duplicate strategies and moving to
Γ(≻I , V ′′), where V ′′

i = {(1, 1/2,0)} for all i ∈ Ixyz ∪ Ixzy ∪ Iyxz and V ′′
j = V ′

j = V
1
j for

all j ∉ Ixyz ∪ Ixzy ∪ Iyxz, we find that for all v ∈ V ′′

∣vx∣ ≥ ∣Ixyz ∣ + ∣Ixzy ∣ + ∣Iyxz ∣ > 2∣Ixzy ∣ + 2∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ − 1
≥ ∣Iyzx∣ + ∣Izxy ∣ + ∣Izyx∣ ≥ ∣vz ∣,

where the strict inequality follows from directly from condition (2), while the next
weak inequality follows from the fact that ∣Izxy ∣ > 0 by condition (2). Hence, x is the
unique outcome after iteratively eliminating dominated strategies from Γ(≻I , V 0).
Finally, assume condition (3) holds, so that

min
v∈V 1

∣vx∣ − ∣vz ∣ = 1/2∣Ixyz ∣ − 1/2∣Ixzy ∣ − 1/2∣Iyxz ∣ − ∣Iyzx∣ − ∣Izxy ∣ − ∣Izyx∣ ≥ −1/2.

Then, for any ixzy in Γ(≻I , V 1), ballot vi = (vxi , v
y
i , v

z
i ) = (1,0, 1/2) is a weakly better

reply than ṽi = (1/2,0,1) against any v−i ∈ V 1
−i:

(i) if for ṽ = (ṽi, v−i), ∣ṽx∣ ≥ ∣ṽy ∣, then for v = (vi, v−i), we have ∣vx∣ > ∣vy ∣, ∣vz ∣,

(ii) if for ṽ = (ṽi, v−i), ∣ṽy ∣ > ∣ṽx∣, ∣ṽz ∣, so that v = (vi, v−i) can only yield a weakly
better outcome for ixzy,

(iii) if for ṽ = (ṽi, v−i), ∣ṽz ∣ ≥ ∣ṽy ∣ > ∣ṽx∣, then ∣ṽz ∣ = ∣ṽx∣ + 1
2 and∣ṽz ∣ = ∣ṽy ∣. But then

2(∣ṽx∣+ ∣ṽy ∣+ ∣ṽz ∣) = 2(3∣ṽx∣+ 1). However, as each voter awards score that sum
to 3

2 , 2(∣ṽx∣ + ∣ṽy ∣ + ∣ṽz ∣) would have to be divisible by three - a contradiction.

Hence, ṽi is either dominated by vi = (1,0, 1/2), or it is duplicate. Eliminating
ṽi and moving to the restricted game, Γ(≻I , V ′), where V ′

xzy = V 1
xzy/{(

1
2 ,0,1)} =

{(1,0, 1
2), (1,

1
2 ,0)} and V ′

j = V
1
j for all j ∉ Ixyz, condition (3) yields

min
v∈V ′ ∣v

x∣ − ∣vz ∣ = 1/2∣Ixyz ∣ + 1/2∣Ixzy ∣ − 1/2∣Iyxz ∣ − ∣Iyzx∣ − ∣Izxy ∣ − ∣Izyx∣

= 1/2∣Ixyz ∣ − 1/2∣Ixzy ∣ − 1/2∣Iyxz ∣ − ∣Iyzx∣ − ∣Izxy ∣ − ∣Izyx∣ + 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

−1 + ∣Ixzy ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

> 0,

which rules out z as an outcome of Γ(≻I , V ′). But then, in the game Γ(≻I , V ′), for
any voter i who prefers x over y, vi = (1,0, 1/2) is a best reply as it maximizes i’s
impact on ∣vx∣ − ∣vy ∣. Eliminating dominated or duplicate strategies and moving to
Γ(≻I , V ′′), where V ′′

i = {(1,0, 1/2)} for all i ∈ Ixyz ∪ Ixzy ∪ Izxy and V ′′
i = V ′

i = V
1
i for

all i ∉ Ixyz ∪ Ixzy ∪ Izxy, we find that for all v ∈ V ′′

∣vx∣ ≥ ∣Ixyz ∣ + ∣Ixzy ∣ + ∣Izxy ∣ > 2∣Ixzy ∣
²

≥2

+∣Iyxz ∣ + 2∣Iyzx∣ + 3∣Izxy ∣ + 2∣Izyx∣ − 2

≥ ∣Iyxz ∣ + ∣Iyzx∣ + ∣Izyx∣ ≥ ∣vz ∣
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by condition (3). Hence, x is the unique outcome after iteratively eliminating dom-
inated strategies from Γ(≻I , V 0).

Proof of Lemma 5. Suppose that for any labelling of candidates, we have

(⋆) ∣Ixyz ∣ < ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ + 2∣Izyx∣ − 2.

Now consider a voter of type iabc. We will show that after one round of elimination,
no strategy vi = (vai , v

b
i , v

c
i ) in V 1

i = {(1, 1
2 ,0), (1,0,

1
2), (

1
2 ,1,0)} is dominated in the

game Γ(≻I , V 1) and that each outcome a, b, c ∈ A is possible.

Claim 1. Neither (1,0, 1
2) nor (1, 1

2 ,0) is dominated by (1
2 ,1,0). Moreover, (1,0, 1

2)

is not dominated by (1, 1
2 ,0) and both a and b are possible outcomes.

Proof. We will proof the claim by constructing an opposing strategy profile for which
(i) vi = (1,0, 1

2) and vi = (1, 1
2 ,0) yield outcome a while vi = (1

2 ,1,0) yields b and (ii)
another opposing profile for which vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields b.

To find such profiles, observe that

max
v∈V 1

∣va∣ − ∣vb∣ = ∣Iabc∣ + ∣Iacb∣ +
1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ + ∣Icab∣ +

1
2 ∣Icba∣ ≥ 1

as otherwise (⋆) would be violated for x = b, y = c and z = a. Similarly,

min
v∈V 1

∣va∣ − ∣vb∣ = −1
2 ∣Iabc∣ +

1
2 ∣Iacb∣ − ∣Ibac∣ − ∣Ibca∣ −

1
2 ∣Icab∣ − ∣Icba∣ ≤ −1

as otherwise (⋆) would be violated for x = a, y = c and z = b. Adjusting opponents’
strategies one by one, we can generate a profile v−i such that ∣va−i∣ ≈ ∣vb−i∣. Holding
∣vc−i∣ as small as possible in the process, leads us to the following 5 case distinctions.

Case 1.1 We know that by (⋆),

2∣Iabc∣ + 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

≥ 2.

Suppose
∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−∣Iabc∣−∣Iacb∣

< 0.

Construct v−i as follows:

● n − 1 < ∣Iabc∣ + ∣Iacb∣ − 1 of Iabc/{i} ∪ Iacb chose vj = (1, 1
2 ,0),

● all remaining j ∈ Iabc/{i} ∪ Iacb chose vj = (1,0, 1
2),

● all j ∈ Ibac chose vj = (1, 1
2 ,0),

● all j ∈ Ibca chose vj = (1
2 ,1,0),

● all j ∈ Icab chose vj = (1,0, 1
2),
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● all j ∈ Icba chose vj = (1
2 ,0,1).

Then,

∣va−i∣ − ∣vb−i∣ = (1
2 n −

1
2) + (∣Iabc∣ − 1 + ∣Iacb∣ − n + 1) + 1

2 ∣Ibac∣ −
1
2 ∣Ibca∣ + ∣Icab∣ +

1
2 ∣Icba∣

= −1
2 n + ∣Iabc∣ + ∣Iacb∣ +

1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ + ∣Icab∣ +

1
2 ∣Icba∣ −

1
2 = −

1
2

and

∣va−i∣ − ∣vc−i∣ = n − 1 + 1
2(∣Iabc∣ − 1 + ∣Iacb∣ − n + 1) + ∣Ibac∣ +

1
2 ∣Ibca∣ +

1
2 ∣Icab∣ −

1
2 ∣Icba∣

= 1
2 n +

1
2 ∣Iabc∣ +

1
2 ∣Iacb∣ + ∣Ibac∣ +

1
2 ∣Ibca∣ + ∣Icab∣ −

1
2 ∣Icba∣ − 1

≥ 3/2∣Iabc∣ − 1 ≥ 1
2 .

Hence for a▷ b, vi = (1,0, 1
2), (1,

1
2 ,0) yield a while vi = (1

2 ,1,0) yields b. Moreover,
if b▷ a, vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields b.

Case 1.2 Suppose

∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

≥ 0

but
∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−3∣Icba∣

< 0.

Construct v−i as follows:

● all j ∈ Iabc/{i} ∪ Iacb ∪ Ibac chose vj = (1, 1
2 ,0),

● all j ∈ Ibca chose vj = (1
2 ,1,0),

● all j ∈ Icab chose vj = (1,0, 1
2),

● ⌊n3 ⌋ < ∣Icba∣ of Icba chose vj = (0,1, 1
2),

● all remaining j ∈ Icba chose vj = (1
2 ,0,1).

Then,

∣va−i∣ − ∣vb−i∣ =
1
2 ∣Iabc∣ −

1
2 +

1
2 ∣Iacb∣ +

1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ + ∣Icab∣ +

1
2 ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=n

2 −
1
2

−
3
2 ⌊

n

3 ⌋

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−1
2 if n mod 3 = 0

0 if n mod 3 = 1
1
2 if n mod 3 = 2

and

∣va−i∣ − ∣vc−i∣ = ∣Iabc∣ − 1 + ∣Iacb∣ + ∣Ibac∣ +
1
2 ∣Ibca∣ +

1
2 ∣Icab∣ −

1
2 ∣Icba∣ ≥ 0,
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as otherwise, (⋆) would be violated for x = c, y = b and z = a. Hence for vi = (1,0, 1
2),

a is elected independent of ▷. If ∣va−i∣ − ∣vb−i∣ ∈ {−1
2 ,0}, and a▷ b, then vi = (1, 1

2 ,0)
yields outcome a while vi = (1

2 ,1,0) yields b. If ∣va−i∣ − ∣vb−i∣ ∈ {0, 1
2}, and b▷ a, then

vi = (1, 1
2 ,0) yields a while vi = (1

2 ,1,0) yields b.
If ∣va−i∣ − ∣vb−i∣ = −

1
2 and b▷ a, then vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields

b. If ∣va−i∣ − ∣vb−i∣ ∈ {0, 1
2}, observe that ⌊n3 ⌋ < ∣Icba∣, so that there is some j ∈ Icba who

chooses vj = (1
2 ,0,1). A switch by j to ṽj = (0, 1

2 ,1) yields ∣ṽa−i∣ − ∣ṽb−i∣ ∈ {−1,−1
2} and

∣ṽa−i∣ − ∣ṽc−i∣ ≥ −1
2 . If ∣ṽa−i∣ − ∣ṽb−i∣ = −1 and a ▷ b, c, then vi = (1,0, 1

2) yields a while
vi = (1, 1

2 ,0) yields b. If ∣ṽa−i∣ − ∣ṽb−i∣ = −
1
2 and b▷ a▷ c, then (1,0, 1

2) yields a while
(1, 1

2 ,0) yields b.

Case 1.3 Suppose

∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

≥ 0

but
−∣Iabc∣ + ∣Iacb∣ − ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−2∣Iabc∣−2∣Ibac∣

< 0.

Construct v−i as follows:

● ⌊n2 ⌋ ≤ ∣Iabc∣ − 1 + ∣Ibac∣ of Iabc/{i} ∪ Ibac chose vj = (1
2 ,1,0),

● all remaining j ∈ Iabc/{i} ∪ Ibac chose vj = (1, 1
2 ,0).

● all j ∈ Iacb chose vj = (1, 1
2 ,0),

● all j ∈ Ibca chose vj = (1
2 ,1,0),

● all j ∈ Icab chose vj = (1,0, 1
2),

● all j ∈ Icba chose vj = (0,1, 1
2).

Then,

∣va−i∣ − ∣vb−i∣ = − ⌊
n

2 ⌋ + 1
2(∣Iabc∣ − 1 + ∣Ibac∣) +

1
2 ∣Iacb∣ −

1
2 ∣Ibca∣ + ∣Icab∣ − ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n
2 −

1
2

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1
2 if n mod 2 = 0,

0 if n mod 2 = 1.

First, consider the case n mod 2 = 0, so that ∣va−i∣ − ∣vb−i∣ = −
1
2 . Towards a contra-

diction, assume ∣va−i∣ < ∣vc−i∣. Then ∣vb−i∣ ≤ ∣vc−i∣ and 3∣vc−i∣ > ∣va−i∣+ ∣vb−i∣+ ∣vc−i∣ =
3
2(∣I ∣− 1).

But 3∣vc−i∣ ≤ 3
2(∣I ∣ − 1) as no j ∈ I/{i} awards more than vcj =

1
2 . Hence, ∣va−i∣ ≥ ∣vc−i∣.

Then, for a▷ b, vi = (1,0, 1
2), (1,

1
2 ,0) yield a while vi = (1

2 ,1,0) yields b. Moreover,
for b▷ a, vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields b.
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Next, consider the case n mod 2 = 1, so that ∣va−i∣ = ∣vb−i∣. Towards a contradiction,
assume ∣va−i∣ ≤ ∣vc−i∣. Then 3∣vc−i∣ ≥ ∣va−i∣+∣v

b
−i∣+∣v

c
−i∣ =

3
2(∣I ∣−1). Moreover 3∣vc−i∣ ≤ 3

2(∣I ∣−1)
as no j ∈ I/{i} awards more than vcj =

1
2 . Hence, ∣vc−i∣ =

1
2(∣I ∣ − 1) which requires

I/{i} = Icab ∪ Icba. Then (⋆) requires

∣Icab∣ + 1 ≤ ∣Icba∣ + 2∣Iabc∣ − 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

and ∣Icba∣ ≤ ∣Icab∣ + 2∣Iabc∣ − 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

- a contradiction. Instead we conclude that ∣va−i∣ − ∣vc−i∣ ≥
1
2 . Then, for a ▷ b, vi =

(1,0, 1
2), (1,

1
2 ,0) yield a while vi = (1

2 ,1,0) yields b. To see that vi = (1,0, 1
2) can

be a better reply than (1, 1
2 ,0), consider first the case that ⌊n2 ⌋ < ∣Iabc∣ − 1 + ∣Ibac∣.

Then there is some j ∈ Iabc/{i} ∪ Ibac who chooses vj = (1, 1
2 ,0). A switch by j to

ṽj = (1
2 ,1,0) yields ∣ṽa−i∣ − ∣ṽb−i∣ = −1 and ∣ṽa−i∣ − ∣ṽc−i∣ ≥ 0, so that for a▷ b, vi = (1,0, 1

2)

yields a while (1, 1
2 ,0) yields. If instead ⌊n2 ⌋ = ∣Iabc∣ − 1 + ∣Ibac∣, then, as n is odd,

2∣Iabc∣ − 2 + 2∣Ibac∣ = 2⌊n2 ⌋ = n − 1 = ∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ − 2∣Icba∣ − 1

⇐⇒ ∣Iabc∣ + ∣Ibac∣ = ∣Iacb∣ − ∣Ibca∣ + 2∣Icab∣ − 2∣Icba∣ + 1.

If Ibac ∪ Ibca ∪ Icab = ∅, this would yield ∣Iacb∣ = ∣Iabc∣ + 2∣Icba∣ − 1, contradicting (⋆).
Hence, there is some j ∈ Ibac ∪ Ibca ∪ Icab. A switch by either j ∈ Ibac ∪ Ibca from
vj = (1

2 ,1,0) to ṽj = (0,1, 1
2) or by j ∈ Ibac from vj = (1,0, 1

2) to ṽj = (1
2 ,0,1) yields

∣ṽa−i∣− ∣ṽb−i∣ = −
1
2 and ∣ṽa−i∣− ∣ṽc−i∣ ≥ −

1
2 , so that for b▷a▷ c, vi = (1,0, 1

2) yields a, while
vi = (1, 1

2 ,0) yields b.

Case 1.4 Suppose

−∣Iabc∣ + ∣Iacb∣ − ∣Ibac∣ − ∣Ibca∣ + 2∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

≥ 0

but
−∣Iabc∣ + ∣Iacb∣ − ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−3∣Icab∣

< 0.

Construct v−i as follows:

● all j ∈ Iabc/{i} chose vj = (1
2 ,1,0).

● all j ∈ Iacb chose vj = (1, 1
2 ,0),

● all j ∈ Ibac ∪ Ibca chose vj = (1
2 ,1,0),

● ⌈n3 ⌉ ≤ ∣Icab∣ of Icab chose vj = (0, 1
2 ,1)

● all remaining j ∈ Icab chose vj = (1,0, 1
2),

● all j ∈ Icba chose vj = (0,1, 1
2).
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Then,

∣va−i∣ − ∣vb−i∣ = −
1
2 ∣Iabc∣ +

1
2 −

1
2 ∣Ibac∣ +

1
2 ∣Iacb∣ −

1
2 ∣Ibca∣ + ∣Icab∣ − ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=n

2 +
1
2

−
3
2 ⌈

n

3 ⌉

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 if n mod 3 = 0
−1

2 if n mod 3 = 1
0 if n mod 3 = 2

and

∣va−i∣ − ∣vc−i∣ = ∣vb−i∣ − ∣vc−i∣ + ∣va−i∣ − ∣vb−i∣

= ∣Iabc∣ − 1 + ∣Ibac∣ +
1
2 ∣Iacb∣ + ∣Ibca∣ −

1
2 ∣Icab∣ +

1
2 ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶k

+∣va−i∣ − ∣vb−i∣.

Since 1{∣Iabc∣>0}, (⋆) yields 1
2 ∣Icab∣ ≤

1
2 ∣Icba∣ +

1
2 ∣Iacb∣ + ∣Iabc∣ + ∣Ibca∣ + ∣Ibac∣ −

3
2 , so that

k ≥ 1
2 . Hence, ∣va−i∣ − ∣vc−i∣ > ∣va−i∣ − ∣vb−i∣ ≥ 0, so that for vi = (1,0, 1

2), a is elected
independent of ▷. If ∣va−i∣− ∣vb−i∣ ∈ {−1

2 ,0}, and a▷b, then vi = (1, 1
2 ,0) yields outcome

a while vi = (1
2 ,1,0) yields b. If ∣va−i∣− ∣vb−i∣ ∈ {0, 1

2}, and b▷a, then vi = (1, 1
2 ,0) yields

a while vi = (1
2 ,1,0) yieldsb.

If ∣va−i∣− ∣vb−i∣ = −
1
2 and b▷a, then vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields b.

If ∣va−i∣ − ∣vb−i∣ =
1
2 , then n mod 3 = 0 and hence ⌈n3 ⌉ =

n
3 < ∣Icab∣, so that there is some

j ∈ Icab who chooses vj = (1,0, 1
2). A switch by j to ṽj = (0, 1

2 ,1) yields ∣ṽa−i∣− ∣ṽb−i∣ = −1
and ∣ṽa−i∣ − ∣ṽc−i∣ ≥ −

1
2 . Hence, for a▷ b, vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields

b.
If ∣ṽa−i∣ − ∣ṽb−i∣ = 0 then n mod 3 = 2. If in addition ∣Ibac∣ + ∣Ibca∣ = 0, then by (⋆)

−∣Iabc∣ + ∣Iacb∣ − ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−3∣Icab∣

= −∣Iabc∣+∣Iacb∣−2∣Ibac∣−2∣Ibca∣−∣Icab∣−2∣Icba∣ ≤ −2.

Hence ⌈n3 ⌉ = n
3 +

1
3 < n

3 +
2
3 ≤ ∣Icab∣, so that there is some j ∈ Icab who chooses

vj = (1,0, 1
2). A switch by j to ṽj = (1

2 ,0,1) yields ∣ṽa−i∣− ∣ṽb−i∣ = −
1
2 and ∣ṽa−i∣− ∣ṽc−i∣ ≥ −

1
2 .

Thus, for b ▷ a ▷ c, vi = (1,0, 1
2) yields a while vi = (1, 1

2 ,0) yields b. If instead
∣Ibac∣+ ∣Ibca∣ > 0, let some j ∈ Ibac∪Ibca switch from vj = (1

2 ,1,0) to ṽj = (0,1, 1
2). Then

∣ṽa−i∣ − ∣ṽb−i∣ = −
1
2 and ∣ṽa−i∣ − ∣ṽc−i∣ ≥ −

1
2 . Hence, for b▷ a▷ c, vi = (1,0, 1

2) yields a while
vi = (1, 1

2 ,0) yields b.

Case 1.5 Suppose

−∣Iabc∣ + ∣Iacb∣ − ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

≥ 0.
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We know that

−∣Iabc∣ + ∣Iacb∣ − 2∣Ibac∣ − 2∣Ibca∣ − ∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−∣Ibac∣−∣Ibca∣

≤ −2,

as otherwise (⋆) would be violated for x = a, y = c and z = b. Construct v−i as follows:

● all j ∈ Iabc/{i} chose vj = (1
2 ,1,0).

● all j ∈ Iacb chose vj = (1, 1
2 ,0),

● all j ∈ Icab chose vj = (0, 1
2 ,1),

● all j ∈ Icba chose vj = (0,1, 1
2),

● n + 2 ≤ ∣Ibac∣ + ∣Ibca∣ of Ibac ∪ Ibca chose vj = (0,1, 1
2),

● all remaining j ∈ Ibac ∪ Ibca chose vj = (1
2 ,1,0).

Then,

∣va−i∣ − ∣vb−i∣ = −
1
2 ∣Iabc∣ −

1
2 +

1
2 +

1
2 ∣Iacb∣ −

1
2 ∣Icab∣ − ∣Icba∣ −

1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ −

1
2 (n + 2) = −1

2

and

∣va−i∣ − ∣vc−i∣ =
1
2 ∣Iabc∣ −

1
2 + ∣Iacb∣ − ∣Icab∣ −

1
2 ∣Icba∣ +

1
2 ∣Ibac∣ +

1
2 ∣Ibca∣ − (n + 2)

= 3/2∣Iabc∣ + 3/2∣Ibac∣ + 3/2∣Ibca∣ + 3/2∣Icba∣ − 3/2 ≥ 0.

Hence for a▷ b, vi = (1,0, 1
2), (1,

1
2 ,0) yields a while vi = (1

2 ,1,0) yields b. Moreover,
for b▷ a, vi = (1,0, 1

2) yields a while vi = (1, 1
2 ,0) yields b. Claim 1 ◇

Claim 2. Neither (1
2 ,1,0) nor (1, 1

2 ,0) is dominated by (1,0, 1
2). Moreover, (1

2 ,1,0)
is not dominated by (1, 1

2 ,0) and both b and c are possible outcomes.

Proof. We will proof the claim by constructing an opposing strategy profile for which
(i) vi = (1

2 ,1,0) and vi = (1, 1
2 ,0) yield outcome b while vi = (1,0, 1

2) yields c and (ii)
another opposing profile for which vi = (1

2 ,1,0) yields b while vi = (1, 1
2 ,0) yields c.

To find such profiles, observe that

max
v∈V 1

∣vb∣ − ∣vc∣ = ∣Iabc∣ +
1
2 ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ −

1
2 ∣Icab∣ +

1
2 ∣Icba∣ ≥

3/2

as otherwise (⋆) would be violated for x = c, y = a and z = b. Similarly,

min
v∈V 1

∣vb∣ − ∣vc∣ = −1
2 ∣Iabc∣ − ∣Iacb∣ +

1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ − ∣Icab∣ − ∣Icba∣ ≤ −1

as otherwise (⋆) would be violated for x = b, y = a and z = c. Adjusting opponents’
strategies one by one, we can generate a profile v−i such that ∣vb−i∣ ≈ ∣vc−i∣. Holding
∣va−i∣ as small as possible in the process, leads us to the following 5 case distinctions.
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Case 2.1 We know that by (⋆),

2∣Iabc∣ + ∣Iacb∣ + 2∣Ibac∣ + 2∣Ibca∣ − ∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

≥ 3.

Suppose
2∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ − ∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−∣Ibac∣−∣Ibca∣

≤ 0.

Construct v−i as follows:

● all j ∈ Iabc/{i} chose vj = (1
2 ,1,0),

● all j ∈ Iacb chose vj = (1, 1
2 ,0),

● n − 1 < ∣Ibac∣ + ∣Ibca∣ of Ibac ∪ Ibca chose vj = (0,1, 1
2),

● all remaining j ∈ Ibac ∪ Ibca chose vj = (1
2 ,1,0),

● all j ∈ Icab chose vj = (0, 1
2 ,1),

● all j ∈ Icba chose vj = (0,1, 1
2).

Then,

∣vb−i∣ − ∣vc−i∣ = ∣Iabc∣ − 1 + 1
2 ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ −

1
2(n − 1) − 1

2 ∣Icab∣ +
1
2 ∣Icba∣ = −

1
2

and

∣vb−i∣ − ∣va−i∣ =
1
2 ∣Iabc∣ −

1
2 −

1
2 ∣Iacb∣ +

1
2 ∣Ibac∣ +

1
2 ∣Ibca∣ +

1
2(n − 1) + 1

2 ∣Icab∣ + ∣Icba∣

= 3/2∣Iabc∣ + 3/2∣Ibac∣ + 3/2∣Ibca∣ + 3/2∣Icba∣ − 3/2 ≥ 6,

since by assumption for Case 2.1 we have ∣Ibac∣ + ∣Ibca∣ ≥ 4. Then for b ▷ c, vi =
(1

2 ,1,0), (1,
1
2 ,0), yield b whereas vi = (1,0, 1

2) yields c. Moreover, for c ▷ b, vi =
(1

2 ,1,0) yields b while vi = (1, 1
2 ,0) yields c.

Case 2.2 Suppose

2∣Iabc∣ + ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ − ∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

> 0

but
2∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ − ∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−3∣Iacb∣

≤ 0.

Construct v−i as follows:

● all j ∈ Iabc/{i} chose vj = (1
2 ,1,0),

● ⌊n−1
3 ⌋ < ∣Iacb∣ of Iacb chose vj = (1

2 ,0,1),



Appendix 89

● all remaining j ∈ Iacb chose vj = (1, 1
2 ,0),

● all j ∈ Ibac ∪ Ibca chose vj = (0,1, 1
2),

● all j ∈ Icab chose vj = (0, 1
2 ,1),

● all j ∈ Icba chose vj = (0,1, 1
2).

Then,

∣vb−i∣ − ∣vc−i∣ = ∣Iabc∣ − 1 + 1
2 ∣Iacb∣ +

1
2 ∣Ibac∣ +

1
2 ∣Ibca∣ −

1
2 ∣Icab∣ +

1
2 ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n
2 −1

−
3
2 ⌊

n − 1
3 ⌋

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−1
2 if n − 1 mod 3 = 0

0 if n − 1 mod 3 = 1
1
2 if n − 1 mod 3 = 2

and

∣vb−i∣ − ∣va−i∣ =
1
2 ∣Iabc∣ −

1
2 −

1
2 ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ +

1
2 ∣Icab∣ + ∣Icba∣ ≥

1
2 ,

as otherwise, (⋆) would be violated for x = a, y = c and z = b. If ∣vb−i∣− ∣vc−i∣ = −
1
2 , and

b▷ c, a, then vi = (1, 1
2 ,0), (

1
2 ,1,0) yields b while vi = (1,0, 1

2) yields c. Moreover, for
c▷ b, a, vi = (1

2 ,1,0) yields b while vi = (1, 1
2 ,0) yields c.

Next, consider ∣vb−i∣ − ∣vc−i∣ = 0. Again, for b▷ a, then vi = (1, 1
2 ,0), (

1
2 ,1,0) yields

b while vi = (1,0, 1
2) yields c. For a profile where vi = (1

2 ,1,0) is a better reply
than (1, 1

2 ,0), let some j ∈ Iacb switch from vj = (1, 1
2 ,0) to ṽj = (1,0, 1

2). Then
∣ṽb−i∣ − ∣ṽc−i∣ = −1 and ∣ṽb−i∣ − ∣ṽa−i∣ ≥ 0. Hence, for b▷ c▷ a, vi = (1

2 ,1,0) yields b while
vi = (1, 1

2 ,0) yields c.
Finally, consider v−i where ∣vb−i∣ − ∣vc−i∣ =

1
2 or rather the neighbouring profile

ṽ−i where some j ∈ Icab has switched from vj = (1, 1
2 ,0) to ṽj = (1,0, 1

2). Then
∣ṽb−i∣ − ∣ṽc−i∣ = −1

2 and ∣ṽb−i∣ − ∣ṽa−i∣ ≥ 0. Hence, for b ▷ c ▷ a, a or b is elected for
vi = (1, 1

2 ,0), (
1
2 ,1,0) while vi = (1,0, 1

2) yields c. For a profile where vi = (1
2 ,1,0) is a

better reply than (1, 1
2 ,0), consider v̂−i, which differs from v−i in that some j ∈ Iacb

switches from vj = (1, 1
2 ,0) to v̂j = (1

2 ,0,1). Then ∣v̂b−i∣ − ∣v̂c−i∣ = −1, ∣v̂b−i∣ − ∣v̂a−i∣ ≥
1
2 so

that for b▷ c, vi = (1
2 ,1,0) yields b while vi = (1, 1

2 ,0) yields c.

Case 2.3 Suppose

2∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ − ∣Icab∣ + ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

> 0

but
2∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−2∣Ibca∣−2∣Icba∣

≤ 0.

Construct v−i as follows:
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● all j ∈ Iabc/{i} chose vj = (1
2 ,1,0)

● all j ∈ Iacb chose vj = (1
2 ,0,1),

● all j ∈ Ibac chose vj = (0,1, 1
2),

● ⌊n2 ⌋ ≤ ∣Ibca∣ + ∣Icba∣ of Ibca ∪ Icba chose vj = (0, 1
2 ,1),

● all remaining j ∈ Ibca ∪ Icba chose vj = (0,1, 1
2).

● all j ∈ Icab chose vj = (0, 1
2 ,1),

Then,

∣vb−i∣ − ∣vc−i∣ = ∣Iabc∣ − 1 − ∣Iacb∣ +
1
2 ∣Ibac∣ +

1
2 ∣Ibca∣ −

1
2 ∣Icab∣ +

1
2 ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n
2 −

1
2

− ⌊
n

2 ⌋

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−1
2 if n mod 2 = 0,

0 if n mod 2 = 1,

and

∣vb−i∣ − ∣va−i∣ =
1
2 ∣Iabc∣ −

1
2 −

1
2 ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ +

1
2 ∣Icab∣ + ∣Icba∣ −

1
2 ⌊n2 ⌋

≥ 1
2 ∣Iabc∣ −

1
2 −

1
2 ∣Iacb∣ + ∣Ibac∣ + ∣Ibca∣ +

1
2 ∣Icab∣ + ∣Icba∣ −

n
4

= 3/4∣Ibac∣ + 3/4∣Ibca∣ + 3/4∣Icab∣ + 3/4∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥3/4, by (⋆)

−1
2 > 0.

For b ▷ c ▷ a, both vi = (1, 1
2 ,0), (

1
2 ,1,0) yields b while vi = (1,0, 1

2) yields c.
Moreover, if ∣vb−i∣− ∣vc−i∣ = −

1
2 and c▷a, b then vi = (1

2 ,1,0) yields b while vi = (1, 1
2 ,0)

yields c.
If on the other hand ∣vb−i∣ − ∣vc−i∣ = 0 then ⌊n2 ⌋ =

n−1
2 < ∣Ibca∣ + ∣Icba∣, so that there

is some j ∈ Ibca ∪ Icba who chooses vj = (0,1, 1
2). Letting her switch to ṽj = (0, 1

2 ,1)
gives ∣ṽb−i∣ − ∣ṽc−i∣ = −1 and ∣ṽb−i∣ − ∣ṽa−i∣ ≥ 0, so that for b▷ c▷ a, vi = (1

2 ,1,0) yields b
while vi = (1, 1

2 ,0) yields c.

Case 2.4 Suppose

2∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

> 0

but
−∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−3∣Iabc∣

≤ 0.

Construct v−i as follows:

● ⌈n3 ⌉ − 1 ≤ ∣Iabc∣ − 1 of Iabc/{i} chose vj = (1,0, 1
2)
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● all remaining j ∈ Iabc/{i} chose vj = (1
2 ,1,0)

● all j ∈ Iacb chose vj = (1
2 ,0,1),

● all j ∈ Ibac chose vj = (0,1, 1
2),

● all j ∈ Ibca ∪ Icab ∪ Icba chose vj = (0, 1
2 ,1).

Then,

∣vb−i∣ − ∣vc−i∣ = ∣Iabc∣ − 1 − ∣Iacb∣ +
1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ −

1
2 ∣Icab∣ −

1
2 ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n
2 −1

−
3
2 ⌈

n

3 ⌉ +
3
2

=

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 if n mod 3 = 0,
−1

2 if n mod 3 = 1,
0 if n mod 3 = 2.

and
∣va−i∣ − ∣vc−i∣ =

1
2 ∣Iabc∣ −

1
2 −

1
2 ∣Iacb∣ −

1
2 ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣ ≤ −3/2,

as otherwise (⋆) would be violated for x = a, y = b, z = c. For vi = (1
2 ,1,0), b is elected

independently of ▷. If ∣vb−i∣− ∣vc−i∣ ∈ {−1
2 ,0} and b▷ c, then vi = (1, 1

2 ,0) yields b while
vi = (1,0, 1

2) yields c. If ∣vb−i∣− ∣vc−i∣ ∈ {0, 1
2} and c▷ b, then vi = (1, 1

2 ,0) yields b while
vi = (1,0, 1

2) yields c.
Moreover, if ∣vb−i∣− ∣vc−i∣ = −1

2 and c▷b, then vi = (1
2 ,1,0) yields b while vi = (1, 1

2 ,0)
yields c. Next, if ∣vb−i∣− ∣vc−i∣ = 0, then n mod 3 = 2 and hence ⌈n3 ⌉−1 = n+1

3 −1. Towards
a contradiction, assume that n+1

3 − 1 = ∣Iabc∣ − 1. Then

3∣Iabc∣ − 1 = n ≤ 2∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ Ô⇒ ∣Ibac∣ ≥ ∣Ibca∣ + ∣Iabc∣ + 2∣Iacb∣ − 1,

which violates (⋆). Thus, we know that there exist either some j ∈ Iabc/{i} who votes
vj = (1

2 ,1,0). Letting j ∈ Iabc/{i} switch to ṽj = (1, 1
2 ,0) gives ∣ṽb−i∣ − ∣ṽc−i∣ = −

1
2 and

∣ṽa−i∣ − ∣ṽc−i∣ ≤ 1. Then for c▷ a, b, vi = (1
2 ,1,0) yields b while vi = (1, 1

2 ,0) yields c.
Finally, if ∣vb−i∣ − ∣vc−i∣ =

1
2 then n mod 3 = 0 and hence ⌈n3 ⌉ =

n
3 . Towards a contra-

diction, assume that n
3 − 1 = ∣Iabc∣ − 1. Then

3∣Iabc∣ = n ≤ 2∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ Ô⇒ ∣Ibac∣ ≥ ∣Ibca∣ + ∣Iabc∣ + 2∣Iacb∣,

which violates (⋆). Thus, we know that there exist either some j ∈ Iabc/{i} who votes
vj = (1

2 ,1,0). Letting j ∈ Iabc/{i} switch to ṽj = (1,0, 1
2) gives ∣ṽb−i∣ − ∣ṽc−i∣ = −1 and

∣ṽa−i∣ − ∣ṽc−i∣ ≤ −
3/2. Then for b▷ c, vi = (1

2 ,1,0) yields b while vi = (1, 1
2 ,0) yields c.

Case 2.5 Suppose

−∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶n

> 0.
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We know that

−∣Iabc∣ − 2∣Iacb∣ + ∣Ibac∣ − ∣Ibca∣ − 2∣Icab∣ − 2∣Icba∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=n−∣Icab∣−∣Icba∣

≤ −2.

Construct v−i as follows:

● all j ∈ Iabc/{i} chose vj = (1,0, 1
2)

● all j ∈ Iacb chose vj = (1
2 ,0,1),

● all j ∈ Ibac chose vj = (0,1, 1
2),

● all j ∈ Ibca chose vj = (0, 1
2 ,1),

● n + 2 of Icab ∪ Icba chose vj = (1
2 ,0,1),

● all remaining j ∈ Icab ∪ Icba chose vj = (0, 1
2 ,1).

Then,

∣vb−i∣ − ∣vc−i∣ = −
1
2 ∣Iabc∣ +

1
2 − ∣Iacb∣ +

1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ −

1
2 ∣Icab∣ −

1
2 ∣Icba∣ −

1
2(n + 2) = −1

2

and

∣va−i∣ − ∣vc−i∣ =
1
2 ∣Iabc∣ −

1
2 −

1
2 ∣Iacb∣ −

1
2 ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣ +

1
2(n + 2)

= −3/2∣Iacb∣ − 3/2∣Ibca∣ − 3/2∣Icab∣ − 3/2∣Icba∣ +
1
2 ≤ −4,

since by assumption for case 2.5, ∣Icab∣− ∣Icba∣ ≥ 3. Then for b▷c, vi = (1
2 ,1,0), (1,

1
2 ,0)

yields b while vi = (1,0, 1
2) yields c. Moreover, if c▷b, vi = (1

2 ,1,0) yields b and while
vi = (1, 1

2 ,0) yields c. Claim 2 ◇

Together, Claim 1 and 2 show that each outcome is possible in Γ(≻I , V 1) and that
for i ∈ Iabc, V 2

i = V 1
i . In the same way, i.e. just by relabelling candidates in Claim

1 and 2, we find that for any j ∈ Ixyz V 2
j = V 1

j . Then by induction V m = V 1, for all
m ≥ 1. This completes the proof.

Proof of Theorem 11. For x, y, z ∈ A, define ∣Oxyz ∣ ∶= ∣Ixzy ∣ + ∣Iyxz ∣ + 2∣Iyzx∣ + 2∣Izxy ∣ +
2∣Izyx∣ and to fix labels, assume w.l.o.g. that ∣Iabc∣ − ∣Oabc∣ ≥ ∣Ixyz ∣ − ∣Oxyz ∣ for all
x, y, z ∈ A. We will show that each election outcome is possible under some ballot
profile, where each voter i chooses a strategy vi that is undominated. To guide our
construction, we make use of the following fact.

Claim 1. Consider a ballot profile v such that ∣vx∣ = ∣vy ∣ = ∣vy ∣ and some voter i ∈ Ixyz
such that vxi = 1. Then vi is undominated in any Game Γ(≻I , V ′) where v ∈ V ′ ⊂ V 1.

Proof. Consider the case vi = (vxi , v
y
i , v

z
i ) = (1, 1

2 ,0). If x▷ y, z, then i’s most pre-
ferred outcome x is realized. On the other hand, a switch to ṽi = (1

2 ,1,0) would
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yield outcome y and a switch to ṽi = (1,0, 1
2) would yield z. Hence vi = (1, 1

2 ,0) is
undominated.

If vi = (vxi , v
y
i , v

z
i ) = (1,0, 1

2) and x▷ y, z outcome x is realized, while a switch to
ṽi = (1

2 ,1,0) or ṽi = (1, 1
2 ,0) would yield y. Hence vi = (1,0, 1

2) is undominated.
Claim 1 ◇

Case 1: ∣Iabc∣ = ∣Oabc∣ = ∣Iabc∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣
By the assumptions of Proposition 11 we have ∣Icab∣ ≤ ∣Ibac∣ and ∣Iacb∣ = 0. If

∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 0, so that ∣Iabc∣ = ∣Ibac∣, consider a ballot profile v where all iabc
chose vi = (1,0, 1

2) ∈ V
1
i while all ibac chose vi = (0,1, 1

2) ∈ V
1
i . Then ∣va∣ = ∣vb∣ = ∣vc∣,

so that by claim 1 each vi is undominated and hence no outcome can be ruled out
via iterated elimination of dominated strategies.

Next, consider ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ > 0. To show that no outcome can be eliminated,
we will construct two strategy profiles where a, b and c are possible outcomes (de-
pending on ▷) and show that no individual strategy used in the construction can
be eliminated based on weak domination.

Profile v ∈ V 1:

● each i ∈ Iabc chooses vi = (1,0, 1/2),

● each i ∈ Ibac chooses vi = (0,1, 1/2),

● each i ∈ Ibca ∪ Izxy ∪ Izyx chooses vi = (0, 1/2,1).

Then,
∣va∣ − ∣vc∣ = 1

2 ∣Iabc∣−
1
2 ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−

1
2 ∣Iabc∣

= 0,

while

∣va∣ − ∣vb∣ = ∣Iabc∣ − ∣Ibac∣ −
1
2 ∣Ibca∣ −

1
2 ∣Icab∣ −

1
2 ∣Icba∣

= 3/2∣Ibca∣ + 3/2∣Icab∣ + 3/2∣Icba∣ ≥ 3/2,

so that both a and c are possible outcomes, depending on ▷. If c ▷ a, then c is
elected while any unilateral deviation to some ṽi ∈ V 1

i by some i ∈ Ibca ∪ Icab ∪ Icba
would yield outcome a. Hence, for i ∈ Ibca ∪ Icab ∪ Icba, (0, 1

2 ,1) is the unique best
response and thus undominated in any game Γ(≻I , V n) where v ∈ V n ⊂ V 1.

Profile v′ ∈ V 1:

● let ∣Ibac∣ − ∣Icab∣ of Iabc chose v′i = (1,0, 1
2)

● let the remaining iabc choose v′i = (1, 1
2 ,0)

● let each i ∈ Icab choose v′i = (0, 1
2 ,1),

● let each i ∈ Ibac ∪ Ibca ∪ Icba chooses v′i = (0,1, 1
2).
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Then,

∣va∣ − ∣vb∣ = ∣Ibac∣ − ∣Icab∣ +
1
2(∣Iabc∣ − ∣Ibac∣ + ∣Icab∣) −

1
2 ∣Icab∣ − ∣Ibac∣ − ∣Ibca∣ − ∣Icba∣

= 1
2 ∣Iabc∣−

1
2 ∣Ibac∣ − ∣Ibca∣ − ∣Icab∣ − ∣Icba∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=

1
2 ∣Iabc∣

= 0,

while

∣va∣ − ∣vc∣ = 1
2(∣Ibac∣ − ∣Icab∣) + (∣Iabc∣ − ∣Ibac∣ + ∣Icab∣) − ∣Icab∣ −

1
2 ∣Ibac∣ −

1
2 ∣Ibca∣ −

1
2 ∣Icba∣

= ∣Iabc∣ − ∣Ibac∣ −
1
2 ∣Ibca∣ −

1
2 ∣Icab∣ −

1
2 ∣Icba∣

= 3/2∣Ibca∣ + 3/2∣Icab∣ + 3/2∣Icba∣ ≥ 3/2,

so that both a and b are possible outcomes, depending on ▷. If b ▷ a, then b is
elected while any unilateral deviation to some ṽi ∈ V 1

i by some i ∈ Ibac ∪ Ibca ∪ Icab
would yield outcome a. Hence, for i ∈ Ibac ∪ Ibca ∪ Icab, (0,1, 1

2) is the unique best
response and thus undominated in any game Γ(≻I , V n) where v′ ∈ V n ⊂ V 1.

It remains to check that for iabc, (1,0, 1
2) and (1, 1

2 ,0) are undominated in any
game Γ(≻I , V n) where v, v′ ∈ V n ⊂ V 1.

For that, consider again profile v where vi = (1,0, 1
2) and assume that c▷ b, a, so

that c is elected. A switch by i to (1
2 ,1,0) would also yield c, as we would now have

∣va∣ = ∣vc∣ and ∣va∣ ≥ ∣vb∣. On the other hand, a switch to (1, 1
2 ,0) would yield a, as we

would now have ∣va∣ > ∣vc∣ and ∣va∣ > ∣vb∣. Hence, for iabc, (1, 1
2 ,0) is the unique best

response and thus undominated in any game Γ(≻I , V n) where v, v′ ∈ V n ⊂ V 1.
Similarly, consider profile v′ where some iabc chooses v′i = (1, 1

2 ,0) and assume
that b ▷ a, c, so that b is elected. A switch by i to (1

2 ,1,0) would yield b, as we
would now have ∣vb∣ > ∣va∣ and ∣va∣ ≥ ∣vc∣. On the other hand, a switch to (1,0, 1

2)

would yield a, as we would now have ∣va∣ > ∣vb∣ and ∣va∣ > ∣vc∣. Hence, for iabc, (1,0, 1
2)

is the unique best response and thus undominated in any game Γ(≻I , V n) where
v, v′ ∈ V n ⊂ V 1.
Case 2: ∣Iabc∣ = ∣Oabc∣ − 1 = ∣Iabc∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣ − 1

By the assumptions of Theorem 11, we have ∣Iacb∣ = 0. Moreover, we know that
∣Ibca∣+ ∣Icab∣+ ∣Icba∣ > 0 as otherwise I = Iabc∪Ibac and ∣Iabc∣ = ∣Ibac∣−1; this would imply
∣Ibac∣ > ∣Iabc∣ = ∣Ibca∣ + ∣Iabc∣ + 2∣Iacb∣ + 2∣Icba∣ + 2∣Icab∣ and hence violate the assumptions
of Theorem 11.

First, assume that ∣Ibca∣ = 1 and ∣Ibac∣+ ∣Icab∣+ ∣Icba∣ = 0 so that ∣Iabc∣ = 1. Let i ∈ Iabc
choose vi = (1,0, 1

2) and j ∈ Ibac choose vj = (0,1, 1
2). Then, ∣va∣ = ∣vb∣ = ∣vc∣ = 1 so

that by claim 1 each vi is undominated and hence no outcome can be ruled out via
iterated elimination of dominated strategies.

Next, assume that either ∣Ibca∣ ≠ 1 or ∣Ibac∣+ ∣Icab∣+ ∣Icba∣ > 0. We construct a ballot
profile v as follows:

● some j ∈ Iabc chooses vj = (1, 1
2 ,0)

● ∣Ibac∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ − 1 of Iabc choose vj = (1,0, 1
2)
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● ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ − 1 of Iabc choose vj = (1
2 ,1,0)

● all j ∈ Ibac choose vj = (0,1, 1
2),

● all j ∈ Ibca ∪ Icab ∪ Icba choose vj = (0, 1
2 ,1).

Then,
∣va∣ = ∣vb∣ = ∣vc∣ = ∣Ibac∣ + 3/2∣Ibca∣ + 3/2∣Icab∣ + 3/2∣Icba∣ −

1
2 ,

and any candidate may win, depending on ▷.
To see that each strategy used in the construction of v is undominated in Γ(≻I

, V n) where v ∈ V n ⊂ V 1, consider i ∈ Iabc who chooses vi = (1, 1
2 ,0). By claim 1,

vi is undominated. Moreover, if c▷ a, b, then outcome c is realized. Only a switch
to ṽi = (1

2 ,1,0) would yield b, while a switch to ṽi = (1,0, 1
2) would yield c as well.

Hence, vi = (1
2 ,1,0) is undominated.

If there is some i ∈ Iabc who votes vi = (1,0, 1
2) (i.e. if ∣Ibac∣+ ∣Ibca∣+ ∣Icab∣+ ∣Icba∣−1 >

0), then vi = (1,0, 1
2) is undominated by claim 1. Similarly, for each j ∈ Ibac∪Icab∪Icba,

strategy vj is undominated by claim 1.
Finally, assume that ∣Ibca∣ > 0 so that there is some j ∈ Ibca who chooses vj =

(0, 1
2 ,1). Then either ∣Ibca∣ > 1, or ∣Ibca∣ = 1 and ∣Ibac∣ + ∣Icab∣ + ∣Icba∣ > 0, so that in

either case ∣Ibac∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ − 1 > 0 and vi = (1,0, 1
2) is undominated for

i ∈ Iabc. Then, letting voter i ∈ Iabc who chooses vi = (1, 1
2 ,0) switch to ṽi = (1,0, 1

2)

yields ∣ṽa∣ = ∣va∣, ∣ṽb∣ = ∣vb∣− 1
2 and ∣ṽc∣ = ∣vc∣+ 1

2 , so that j ∈ Ibca’s second most preferred
candidate c wins. A switch by j to (0,1, 1

2) would again equalize candidates’ scores
and render j’s least preferred candidate a a possible outcome. A switch to (1

2 ,1,0)
would even yield a independent of ▷. Hence, vj = (0, 1

2 ,1) is undominated.
Case 3: ∣Iabc∣ = ∣Oabc∣ − 2 = ∣Iabc∣ + ∣Ibac∣ + 2∣Ibca∣ + 2∣Icab∣ + 2∣Icba∣ − 2

Assume first that ∣Iacb∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ ≥ 2 and ∣Ibac∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ ≥ 2.
We construct a ballot profile v for which each candidate is a possible outcome as
follows:

● 2 of Iabc chooses vj = (1, 1
2 ,0)

● ∣Iacb∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ − 2 of Iabc choose vj = (1
2 ,1,0)

● ∣Ibac∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ − 2 of Iabc choose vj = (1,0, 1
2)

● all j ∈ Ibac choose vj = (0,1, 1
2),

● all j ∈ Ibca ∪ Icab ∪ Icba choose vj = (0, 1
2 ,1).

Then,
∣va∣ = ∣vb∣ = ∣vc∣ = ∣Ibac∣ + 3/2∣Ibca∣ + 3/2∣Icab∣ + 3/2∣Icba∣ − 1,

and any candidate may win, depending on ▷.
In light of claim 1, we only need to check the undominatedness of strategies

vi = (1
2 ,1,0), i ∈ Iabc, and vi = (0, 1

2 ,1), i ∈ Ibca. For that, note that if c▷ a, b, then
outcome c is realized. A switch by some i ∈ Iabc with vi = (1, 1

2 ,0) to ṽi = (1
2 ,1,0)



Appendix 96

would yield b, while a switch to ṽi = (1,0, 1
2) would yield c as well. Hence, vi = (1

2 ,1,0)
is undominated.

If there is some i ∈ Ibca who votes vi = (0, 1
2 ,1), let her switch to ṽi = (0,1, 1

2).
In addition, let some j ∈ Iabc switch from vj = (1, 1

2 ,0) to ṽj = (1,0, 1
2). Then ∣ṽa∣ =

∣ṽb∣ = ∣ṽc∣ and by claim 1, both ṽi and ṽj are undominated in any game Γ(≻i, V ′)

where ṽ ∈ V ′. Moreover, for ballot profile ṽ, if a ▷ b, c, then ibca’s least preferred
candidate a is elected. Only a switch to vi = (0, 1

2 ,1) can prevent this and yields c.
Hence vi = (0, 1

2 ,1) is undominated.
Now, assume that ∣Iacb∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ < 2 or ∣Ibac∣ + ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ < 2.

This can be split up further as follows:

(1) ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 0 and ∣Iacb∣ < 2

(2) ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 0 and ∣Ibac∣ < 2

(3) ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 1 and ∣Iacb∣ = 0 and ∣Ibac∣ = 0

(4) ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 1 and ∣Iacb∣ = 0 and ∣Ibac∣ > 0

(5) ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 1 and ∣Iacb∣ > 0 and ∣Ibac∣ = 0

Consider (1): Since ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 0, it follows

∣Iabc∣ = ∣Iacb∣ + ∣Ibac∣ − 2 ≤ ∣Iacb∣ + (∣Iabc∣ + 2∣Iacb∣ − 2) − 2 = ∣Iabc∣ + 3∣Iacb∣ − 4

which implies ∣Iacb∣ ≥ 2 – a contradiction.

Consider (2): Since ∣Ibca∣ + ∣Icab∣ + ∣Icba∣ = 0, it follows

∣Iabc∣ = ∣Iacb∣ + ∣Ibac∣ − 2 ≤ (∣Iabc∣ + 2∣Ibac∣ − 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥∣Iacb∣

+∣Ibac∣ − 2 = ∣Iabc∣ + 3∣Ibac∣ − 4

which implies ∣Ibac∣ ≥ 2 – a contradiction.

Consider (3): Then ∣Iabc∣ = ∣Iacb∣ + ∣Ibac∣ + 2(∣Ibca∣ + ∣Icab∣ + ∣Icba∣) − 2 = 0 so that I
consists of a single voter i ∈ Ibac ∪ Icab ∪ Icba – a contradiction to the assumptions of
Theorem 11.

Consider (4): Then ∣Iabc∣ = ∣Ibac∣ > 0. Moreover ∣Ibca∣ = 0 as otherwise ∣Ibac∣− ∣Obac∣ =

∣Ibac∣ − ∣Ibca∣ − ∣Iabc∣ = −1 > −2 = ∣Iabc∣ − ∣Ibac∣ − 2∣Ibca∣ = ∣Iabc∣ − ∣Obca∣. Construct ballot
profile v as follows.

● some j ∈ Iabc chooses vj = (1, 1
2 ,0)

● remaining j ∈ Iabc choose vj = (1,0, 1
2)

● all j ∈ Ibac choose vj = (0,1, 1
2)

● j ∈ Icab ∪ Icba chooses vj = (1
2 ,0,1)
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Then ∣va∣ = ∣vb∣ = ∣vc∣ = ∣Iabc∣ +
1
2 = ∣Ibac∣ +

1
2 and each strategy vj is undominated by

Claim 1.

Consider (5): Then ∣Iabc∣ = ∣Iacb∣ > 0. Moreover ∣Icab∣ = 0 as otherwise ∣Iacb∣− ∣Oacb∣ =

∣Iacb∣− ∣Iabc∣− ∣Icab∣ = −1 > −2 = ∣Iabc∣− ∣Ibac∣−2∣Ibca∣ = ∣Iabc∣− ∣Obca∣. We will construct tree
strategy profiles v, ṽ and v̂ and show that each strategy used in the construction is
undominated in any game Γ(≻I , V ′) where v, ṽ, v̂ ∈ V ′. First construct ballot profile
v as follows.

● some j ∈ Iabc chooses vj = (1, 1
2 ,0)

● all remaining j ∈ Iabc choose vj = (1
2 ,1,0)

● all j ∈ Iacb choose vj = (1, 1
2 ,0)

● j ∈ Ibca ∪ Icba chooses vj = (0,1, 1
2)

Then ∣va∣ = 3/2∣Iabc∣+
1
2 , ∣vb∣ = 3/2∣Iabc∣+

1
2 and ∣vc∣ = 1

2 and if b▷ a, b is chosen. A voter
j ∈ Iabc ∪ Iacb who votes vj = (1, 1

2 ,0) could change the outcome to a by switching to
(1,0, 1

2), but not by switching to any other strategy. Hence for j ∈ Iabc∪Iacb, (1,0, 1
2)

is undominated. If voter j ∈ Ibca∪Icba would switch to any other strategy, the outcome
would also be a, so that for her (0,1, 1

2) is established to be undominated.
Next construct ballot profile ṽ as follows.

● all j ∈ Iabc choose ṽj = (1,0, 1
2)

● some j ∈ Iacb chooses ṽj = (1,0, 1
2)

● all remaining j ∈ Iacb choose ṽj = (1
2 ,0,1)

● j ∈ Ibca ∪ Icba chooses ṽj = (0, 1
2 ,1)

Then ∣ṽa∣ = 3/2∣Iabc∣+
1
2 , ∣ṽb∣ =

1
2 and ∣ṽc∣ = 3/2∣Iabc∣+

1
2 and if c▷ a, c is chosen. A voter

j ∈ Iabc ∪ Iacb who votes ṽj = (1,0, 1
2) could change the outcome to a by switching to

(1, 1
2 ,0), but not by switching to any other strategy. Hence for j ∈ Iabc∪Iacb, (1, 1

2 ,0)
is undominated. If voter j ∈ Ibca∪Icba would switch to any other strategy, the outcome
would also be a, so that for her (0, 1

2 ,1) is established to be undominated.
Finally construct ballot profile v̂ as follows.

● one j ∈ Iabc chooses v̂j = (1, 1
2 ,0)

● all remaining j ∈ Iabc choose v̂j = (1
2 ,1,0)

● all j ∈ Iacb choose v̂j = (1
2 ,0,1)

● j ∈ Ibca ∪ Icba chooses v̂j = (0,1, 1
2)
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Then ∣v̂a∣ = ∣v̂b∣ = ∣v̂c∣ = ∣Iabc∣ +
1
2 , so that for c▷ a, b, outcome c is realized. A switch

by j ∈ Iabc to (1,0, 1
2) would also yield c, but a switch to (1

2 ,1,0) yields b. Hence,
for j ∈ Iabc, (1

2 ,1,0) is undominated. A construction symmetric to v̂ shows that for
j ∈ Iabc, (1

2 ,0,1) is undominated, which completes the proof for Case 3.
Case 4: ∣Iabc∣ < ∣Oabc∣ − 2

Then, ∣Ixyz ∣ < ∣Oxyz ∣ − 2 for all x, y, z ∈ A and Lemma 5 completes the proof.

Proof of Theorem 12. We first consider positional scoring rules with s < 1
2 and show

that for any fixed s, there exist preference profiles with I = Iabc ∪ Iacb, where the in-
duced voting game fails to elect a after iterated elimination of dominated strategies.

Assume that ∣Iabc∣ = ∣Iacb∣ = n with n > 2−2s
1−2s ≥ 2. We will show that the ballot profile

v, given by viabc
= (s,1,0) and viacb

= (s,0,1) respectively, survives the iterative
elimination of dominated strategies.

Consider Γ(≻I , V 1) and assume that all voters i ∈ Iabc chose vi = (s,1,0) while
voters i ∈ Iacb chose vi = (s,0,1). Then ∣vb∣ = ∣vc∣ = n while ∣vb∣ − ∣va∣ = ∣vc∣ − ∣va∣ =

n − 2ns = n(1 − 2s) > 2 − 2s > 1. Thus, the winner is either b or c, depending on ▷.
If iabc would switch to a different strategy, (1, s,0), (1,0, s) ∈ V 1

iabc
that awards fewer

points to candidate b, c would win the election independent of ▷. Hence, neither
(1, s,0) nor (1,0, s) dominate (s,1,0) for voter iabc, so that viabc

= (s,1,0) ∈ V 2
iabc

.
A symmetric argument applies to iacb for whom vi = (s,0,1) ∈ V 2

acb. But then, we
can again consider the ballot profile v in Γ(≻I , V 2) and show that neither strategy
is dominated and eliminated as we move to V 3. By induction it follows that the two
strategies are never eliminated.

Moreover, we have already seen that for strategy profile v, candidate a does not
win the election which concludes the proof for the case s < 1

2 .

Next, we consider the case of Antiplurality, i.e. s = 1. Assume that all voters agree
on the ranking a ≻i b ≻i c, so that V 1

i = {(1,1,0), (1,0,1)}. If in Γ(≻I , V 1) all voters
j ≠ i chose vj = (1,1,0), then i can ensure the election of a by casting the ballot
vi = (1,0,1), whereas v′i = (1,1,0) would lead to the election of b whenever b▷ a.
Hence, (1,0,1) is not dominated. Similarly, if all j ≠ i cast ballot vj = (1,0,1) and
the tiebreaker chooses b▷ a, i’s unique best reply is vi = (1,1,0). But then, voters’
strategy sets cannot be narrowed down any further than V 1

i = {(1,1,0), (1,0,1)}, so
that a is not the unique solution in iteratively undominated strategies.

Last, consider the case s ∈ (1
2 ,1). Assume that I = Iabc ∪ Ibac and ∣Iabc∣ = n + 1 >

n = ∣Ibac∣ with n > 2
(2s−1)(1−s) > 2, so that in particular 2sn − n > 2 and

(⋆⋆) s >
n + 2
2n and n >

n + 2
2s .

We will show that in the process of iterative elimination, strategies (1, s,0), (1,0, s) ∈
V 1
abc and (s,1,0), (0,1, s) ∈ V 1

bac are never weakly dominated and hence not elimi-
nated. But then, b remains a possible outcome throughout the sequence of restricted
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games: if all iabc vote (1, s,0) while all ibac vote (0,1, s), candidates scores are

∣va∣ = n + 1, ∣vb∣ = n + s(n + 1), ∣vc∣ = sn.

As s > 1
2 and n > 1, candidate b then wins the election.

First, let us remind ourselves that the sets of undominated strategies are

V 1
abc = {(1, s,0), (1,0, s), (s,1,0)} and V 1

bac = {(s,1,0), (0,1, s), (1, s,0)}.

To show that {(1, s,0), (1,0, s)} ⊆ V m+1
abc ⊆ V m

abc and {(s,1,0), (0,1, s)} ⊆ V m+1 ⊆ V m
bac

for all m ≥ 1 we consider 6 cases.

Case 1: For i ∈ Iabc, (1, s,0) can be a better reply than (1,0, s) in Γs(≻I , V m).
Consider the situation of i ∈ Iabc who faces an opposing strategy profile where

● n − x voters j ∈ Iabc vote vj = (1, s,0),

● x voters j ∈ Iabc vote vj = (1,0, s),

● all n voters j ∈ Ibac vote vj = (0,1, s),

● x = ⌈ n2s −
1
2⌉,

● c▷ b.

This profile is well defined, as

x = ⌈
n

2s −
1
2⌉ <

n

2s +
1
2 <

n

2s +
1
2s < n + 1.

If i chooses vi = (1, s,0), the associated candidates’ scores are ∣va∣ = n + 1, ∣vb∣ =

s(n − x + 1) + n and ∣vc∣ = s(n + x). Then, b wins as its score is larger than c’s

∣vb∣ − ∣vc∣ = n + s − 2sx > n + s − 2s( n2s +
1
2) = 0,

while c’s score is larger than a’s:

∣va∣ − ∣vc∣ = n + 1 − sn − sx ≤ n + 1 − sn − s( n2s −
1
2) =

n + 1 + s
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<sn, see (⋆⋆)

− sn < 0.

If on the other hand i chooses vi = (1,0, s), b’s score is at most as high as c’s, so
that b never wins (ties are broken in favour of c):

∣vb∣ − ∣vc∣ = n − s − 2sx ≤ n − s − 2s( n2s −
1
2) = 0.

Instead, c would win as its score has increased an hence is still larger than a’s.
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Case 2: For i ∈ Iabc, (1, s,0) can be a better reply than (s,1,0) in Γ(≻I , V m).
(This case is only relevant if (s,1,0) ∈ V m

abc). Consider the situation of i ∈ Iabc who
faces an opposing strategy profile where

● n voters j ∈ Iabc vote vj = (1, s,0),

● n voters j ∈ Ibac vote vj = (s,1,0).

Ballot vi = (1, s,0) would elect a, whereas (s,1,0) would elect b.

Together, case 1 and 2 imply that (1, s,0)∈ V m+1
abc . Next, we show that (1,0, s) ∈ V m+1

abc .

Case 3: For i ∈ Iabc, (1,0, s) can be the unique best reply in Γ(≻I , V m):
Consider the situation of i ∈ Iabc who faces an opposing strategy profile where

● n voters j ∈ Iabc vote vj = (1, s,0),

● 1 voter j ∈ Ibac vote vj = (0,1, s),

● n − 1 voters j ∈ Ibac vote vj = (s,1,0).

Ballot vi = (1,0, s) would then elect a, as ∣va∣−∣vb∣ = 1−s > 0. Should i choose (1, s,0),
b would be elected as we would have ∣va∣− ∣vb∣ = 1− 2s < 0. Ballot vi = (s,1,0) would
only further increase b’s lead over a.

Case 4: For i ∈ Ibac, (0,1, s) can be the unique best reply in Γ(≻I , V m): Consider the
situation of i ∈ Ibac who faces an opposing strategy profile where

● n + 1 voters j ∈ Iabc vote vj = (1, s,0),

● n − 1 voters j ∈ Ibac vote vj = (s,1,0).

Ballot vi = (0,1, s) would then elect b, as ∣va∣−∣vb∣ = 1−2s < 0. Should i choose (s,1,0),
a would be elected, as we would have ∣va∣ − ∣vb∣ = 1 − s > 0. Ballot vi = (1, s,0) would
only further increase a’s lead over b.

From case 4, we learn that (0,1, s) ∈ V m+1
bac . The last two cases establish that (s,1,0) ∈

V m+1
bac , which concludes the proof.

Case 5: For i ∈ Ibac, (s,1,0) can be a better reply than (1, s,0) in Γ(≻I , V m):
(This case is only relevant if (1, s,0) ∈ V m

ibac
). Consider the situation of i ∈ Ibac who

faces an opposing strategy profile where

● n + 1 voters j ∈ Iabc vote vj = (1, s,0),

● x voters j ∈ Ibac vote vj = (1, s,0),

● 1 voters j ∈ Ibac vote vj = (0,1, s),

● n − 2 − x voters j ∈ Ibac vote vj = (s,1,0),

● x = ⌈4s−3
2−2s⌉ ≥ 0,
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● a▷ b.

This profile is well defined, as x < n − 2:

x = ⌈
4s − 3
2 − 2s⌉ <

4s − 3
2 − 2s + 1 = 2s − 1

2 − 2s <
2s − 1
1 − s =

1
1 − s − 2 < n − 2.

If i chooses vi = (s,1,0), b wins the election as its score is larger than ∣vc∣ = s and
larger than a’s score ∣va∣:

∣va∣− ∣vb∣ = 1−2s+ (2−2s)x < 1−2s+ (2−2s) (4s − 3
2 − 2s + 1) = 1−2s+4s−3+2−2s = 0.

If on the other hand, i chooses vi = (1, s,0), b’s score is weakly less than a’s:

∣va∣ − ∣vb∣ = 3 − 4s + (2 − 2s)x ≥ 3 − 4s + (2 − 2s) (4s − 3
2 − 2s) = 0.

As ties are broken in favour of a, b would lose the election.

Case 6: For i ∈ Ibac, (s,1,0) can be a better reply than (0,1, s) in Γ(≻I , V m):
Consider the situation of i ∈Ibac who faces an opposing strategy profile where

● n + 1 voters j ∈ Iabc vote vj = (1,0, s),

● n − x − 1 voters j ∈ Ibac vote vj = (s,1,0),

● x voters j ∈ Ibac vote vj = (0,1, s),

● x = ⌈n+1
2s − 3

2⌉,

● c▷ a.

This profile is well defined, since

x = ⌈
n + 1

2s −
3
2⌉ <

n + 1
2s −

1
2 =

n + 2
2s −

1 + s
2s

(⋆⋆)
< n −

1 + s
2s < n

and

x ≥

>3
¬
n + 1

2s
®
<2

−
3
2 > 0.

If i chooses vi = (s,1,0), the associated candidates’ scores are ∣va∣ = n + 1 + s(n − x),
∣vb∣ = n and ∣vc∣ = s(n + 1 + x). Hence, a is elected with a higher score than b and c:

∣va∣ − ∣vc∣ = n + 1 − s − 2sx > n + 1 − s − 2s(n + 1
2s −

1
2) = 0.

If on the other hand, i chooses vi = (0,1, s), a’s score is weakly less than c’s:

∣va∣ − ∣vc∣ = n + 1 − 3s − 2sx ≤ n + 1 − 3s − 2s((n + 1)
2s −

3
2) = 0.
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As ties are broken in favour of c, and ∣vc∣ ≥ ∣va∣ ≥ n + 1 > n = ∣vb∣, c would be elected.

Proof of Theorem 13. Let us first analyse scoring rules where V consist of all per-
mutations of (1,1,0) and (s, s,0). For that, consider a preference profile where all
voters share the same preferences, a ≻i b ≻i c.

Claim 1. For all i, if V m
i includes at least one of the two ballots (1,0,1) or (s,0, s)

as well at least one of the two ballots (1,1,0) or (s, s,0) then after eliminating
strategies that are dominated in the game Γ(≻I , V m), V m+1

i will contain at least one
of the two ballots (1,0,1) or (s,0, s) as well at least one of the two ballots (1,1,0)
or (s, s,0).

Proof. In the game Γ(≻I , V m), consider the ballot profile v where all voters choose
either (1,0,1) or (s,0, s) so that ∣va∣ = ∣vc∣ > ∣vb∣ and c is elected if c▷ a▷ b. If an
individual voter i switches to ṽi = (1,1,0) or ṽi = (s, s,0), the outcome is a. If instead
she would switch to (0,1,1) or (0, s, s) (provided that these are still included in V m

i ),
the outcome would be c as well. Hence, at least one of the ballots (1,1,0), (s, s,0)
is undominated and included in V m+1

i .
Analogously, consider the ballot profile v where all voters choose either (1,1,0)

or (s, s,0) so that ∣va∣ = ∣vb∣ > ∣vc∣ and b is elected if b▷a▷ c. If an individual voter i
switches to ṽi = (1,0,1) or ṽi = (s,0, s), the outcome is a. If instead she would switch
to (0,1,1) or (0, s, s) (provided that these are still included in V m

i ), the outcome
would be b as well. Hence, at least one of the ballots (1,0,1), (s,0, s) is undominated
and included in V m+1

i . Claim 1 ◇
Since initially they are included in the set of admissible ballots, at least on

of (1,1,0) and (s, s,0) survives the process of iterative elimination of dominated
strategies. Then, in the game Γ(≻I , V m), if all voters choose either (1,1,0) or (s, s,0),
b is a possible outcome and hence included in S(≻I , V ). Thus, such a scoring rule
violates MEW (as well as U).

Next, let us analyse scoring rules where V consist of all permutations of (1,0,0)
and (s,0,0). If s = 1, the rule is the Plurality rule, for which we know by Theorem
12 that it violates U. If s < 1, consider a preference profile such that I = Iabc ∪ Iacb
and ∣Iabc∣ = ∣Iacb∣ > 1.

Claim 2. If V m
abc includes (0,1,0) while V m

acb includes (0,0,1), then both strategies are
undominated in the game Γ(≻I , V m) and V m+1

abc includes (0,1,0) while V m+1
acb includes

(0,0,1).

Proof. In the game Γ(≻I , V m), consider the ballot profile v where all voters i ∈ Iabc
choose (0,1,0) while all i ∈ Iacb choose (0,0,1), so that ∣vb∣ = ∣vc∣ > ∣va∣+ 1. For b▷ c,
the outcome is b. If an individual voter i ∈ Iabc switches to (1,0,0), (0,0,1), (s,0,0),
(0, s,0) or (0,0, s) the outcome is c, as it has the highest score. Hence, vi = (0,1,0) is
undominated and included in V m+1

abc . By a symmetric argument, (0,0,1) is included
in V m+1

acb . Claim 2 ◇
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By induction, we know that (0,1,0) ∈ V m
abc and (0,0,1) ∈ V m

acb. Then, in the game
Γ(≻I , V m), all voters i ∈ Iabc choose (0,1,0) while all i ∈ Iacb choose (0,0,1), the
outcome is either b or c. Thus, the scoring rule violates U.

Now, let us consider vote-splitting scoring rules, i.e. scoring rules where V consists
of all permutations of (s, s,0) and (1 − s,0,0). We want to show that such a rule
violates unanimity if s < 1

2 . For that, consider a profile such that I = Iabc ∪ Iacb and
∣Iabc∣ = ∣Iacb∣ > 1.

Claim 3. If V m
abc includes (0,1−s,0) while V m

acb includes (0,0,1−s), then both strategies
are undominated in the game Γ(≻I , V m) and V m+1

abc includes (0,1 − s,0) while V m+1
acb

includes (0,0,1).

Proof. In the game Γ(≻I , V m), consider the ballot profile v where all voters i ∈ Iabc
choose (0,1 − s,0) while all i ∈ Iacb choose (0,0,1 − s), so that ∣vb∣ = ∣vc∣ > 1 while
∣va∣ = 0. For b ▷ c, the outcome is b. If an individual voter i ∈ Iabc switches to
(1 − s,0,0), (0,0,1 − s), (s, s,0), (0, s, s) or (s,0, s) the outcome is c, as it has the
highest score. Hence, vi = (0,1 − s,0) is undominated and included in V m+1

abc . By a
symmetric argument, (0,0,1 − s) is included in V m+1

acb . Claim 3 ◇
By induction, we know that (0,1 − s,0) ∈ V m

abc and (0,0,1 − s) ∈ V m
acb. Then, in

the game Γ(≻I , V m), all voters i ∈ Iabc choose (0,1 − s,0) while all i ∈ Iacb choose
(0,0,1 − s), the outcome is either b or c. Thus, the scoring rule violates U.

Finally, we want to show that a vote-splitting scoring rule violates MEW if s ∈
(1

2 ,1) (s = 1 corresponds to the Antiplurality Rule, for which we know from Theorem
12 that it violates MEW). For that, consider a profile such that I = Iabc∪ Ibac, ∣Iabc∣ =
n + 1 and ∣Ibac∣ = n > 1

(1−s)(2s−1) . We will show that strategies (s, s,0), (s,0, s), (1 −
s,0,0) ∈ V m

iabc
and (0, s, s), (0,1−s,0) ∈ V m

ibac
are undominated in Γ(≻I , V m) and hence

included in V m+1
iabc

and V m+1
ibac

respectively.
(i) For i ∈ Iabc, (s, s,0) is undominated in Γ(≻I , V m).
Consider the the ballot profile v where

● i votes vi = (s, s,0)

● one j ∈ Iabc votes vj = (s,0, s)

● remaining n − 1 of Iabc vote vj = (1 − s,0,0)

● all n of Ibac vote vj = (0, s, s)

Then ∣vb∣ = ∣vc∣ = s(n + 1) and ∣va∣ = 2s + (1 − s)(n − 1), so that

∣va∣ − ∣vb∣ = −sn + 3s + n − 1 − sn − s = (1 − n)(2s − 1) < 0

and b is elected for b ▷ c. A switch by i to any other ballot ṽi ∈ V would never
raise the score of a and would either reduce the score of b or increase the score of c,
thereby changing the outcome to c. Hence (s, s,0) is undominated.

(ii) For i ∈ Iabc, (s,0, s) is undominated.
Consider the the ballot profile v where
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● i votes vi = (s,0, s)

● n of Iabc vote vj = (1 − s,0,0)

● n − ⌊ s
2s−1⌋ of Ibac vote vj = (0,1 − s,0)

● ⌊ s
2s−1⌋ of Ibac vote vj = (0, s, s)

Then
∣va∣ − ∣vb∣ = s + (1 − 2s) ⌊ s

2s − 1⌋ ≥ s + (1 − 2s) s

2s − 1 = 0

and
∣va∣ − ∣vb∣ = s + (1 − 2s) ⌊ s

2s − 1⌋ < s + (1 − 2s) ( s

2s − 1 − 1) = 2s − 1.

Moreover, ∣va∣ − ∣vc∣ = n(1 − s) − s ⌊ s
2s−1⌋ >

1
2s−1 −

s2

2s−1 > 0 so that and a is elected for
a▷ b. A switch by i to ballot (1− s,0,0) would change the score difference ∣va∣− ∣vb∣

by −s + (1 − s) = 1 − 2s so that b overtakes a. As any other ballot would change the
difference ∣va∣−∣vb∣ even more in b’s favour, we conclude that (s,0, s) is undominated.

(iii) For i ∈ Iabc, (1 − s,0,0) is not dominated by (s,0, s) or (0,0,1 − s).
Consider the ballot profile v where all j ∈ Iabc vote vj = (1−s,0,0) while all j ∈ Ibac

vote vj = (0, s, s). Then ∣vb∣ = ∣vc∣ = sn which is larger than ∣va∣ = (1− s)(1+n)as n is
large. Then for b▷ c, b is elected while a switch by i to (s,0, s) or (0,0,1− s) would
yield c as outcome.

(iv) For i ∈ Iabc, (1 − s,0,0) is not dominated by (s, s,0), (0, s, s), (0,1 − s,0 or
(0,0,1 − s).

Consider the ballot profile v where all j ∈ Iabc vote vj = (1 − s,0,0) while all
j ∈ Ibac vote vj = (0,1 − s,0). Then ∣va∣ − ∣vb∣ = 1 − s and ∣vc∣ = 0 and a is elected. A
switch by i to (s, s,0) or (0,0, s) would yield ∣va∣ = ∣vb∣, so that for b▷a, a would no
longer be elected. Any other ballot would change the difference ∣va∣ − ∣vb∣ even more
in b’s favour, ruling out a as well.

(v) For i ∈ Ibac, (0, s, s) is undominated.
Consider the ballot profile v where one j ∈ Iabc votes vj = (s, s,0) while n of Iabc

vote vj = (1−s,0,0) and all j ∈ Ibac votes vj = (0,1−s,0) . Then ∣va∣ = ∣vb∣ and ∣vc∣ = 0
so that for a▷ b, b is elected. Then, for some ibac, only a switch to (0, s, s) would
increase the difference ∣vb∣ − ∣va∣ and hence yield outcome b.

(vi) For i ∈ Ibac, (0,1−s,0) is undominated by (s, s,0) (only relevant if (s, s,0) ∈
V m
i ).
If (s, s,0) ∈ V m

i , consider the ballot profile v where every voter votes (s, s,0).
Then if a▷ b, candidate a is elected. A switch be i to (0,1 − s,0) yields outcome b.

(vii) For i ∈ Ibac, (0,1 − s,0) is undominated by (1 − s,0,0), (1 − s,0,0), (0, s, s)
and (s,0, s).

Consider the the ballot profile v where

● one j ∈ Iabc votes (s,0, s),
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● n of Iabc vote (1 − s,0,0),

● ⌈ s
1−s⌉ > 1 of Ibac vote (0,1 − s,0),

● n − ⌈ s
1−s⌉ of Ibac vote (0, s, ).

Then
∣vb∣ − ∣vc∣ = (1 − s) ⌈ s

1 − s⌉ − s ∈ [0,1 − s)

and

∣va∣ − ∣vc∣ = n(1 − s) − (n − ⌈
s

1 − s⌉) s = n(1 − 2s) + s ⌈ s

1 − s⌉ < −
1

1 − s +
s2

1 − s < 0

so the b is elected for b▷ c. If ibac switches from (0,1 − s,0) to either (1 − s,0,0),
(1 − s,0,0), (0, s, s) or (s,0, s), she would reduce the payoff difference ∣vb∣ − ∣vc∣ by
at least 1 − s, so that c’s score would be higher than the score of b, ruling out b as
an outcome.

Together, (i)-(vii) establish that for each i ∈ Iabc, (s, s,0) ∈ V m
i while for each

i ∈ Ibac, (0, s, s) ∈ V m
i . But then b remains a possible outcome in the game Γ(≻I

, V m), violating MEW which requires that a is the only remaining outcome after the
iterative elimination of dominated strategies has run its course.
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