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Objective: This study investigates the feasibility of 
using a method based on electroencephalography (EEG) 
for deriving a driver’s mental workload index. 

Background: The psychophysiological signals pro-
vide sensitive information for human functional states 
assessment in both laboratory and real-world settings 
and for building a new communication channel between 
driver and vehicle that allows for driver workload 
monitoring.

Methods: An experiment combining a lane-change 
task and n-back task was conducted. The task load lev-
els were manipulated in two dimensions, driving task 
load and working memory load, with each containing 
three task load conditions.

Results: The frontal theta activity showed signifi-
cant increases in the working memory load dimension, 
but differences were not found with the driving task 
load dimension. However, significant decreases in pari-
etal alpha activity were found when the task load was 
increased in both dimensions. Task-related differences 
were also found. The driving task load contributed 
more to the changes in alpha power, whereas the work-
ing memory load contributed more to the changes in 
theta power. Additionally, these two task load dimen-
sions caused significant interactive effects on both theta 
and alpha power. 

Conclusion: These results indicate that EEG tech-
nology can provide sensitive information for driver work-
load detection even if the sensitivities of different EEG 
parameters tend to be task dependent.  

Application: One potential future application of this 
study is to establish a general driver workload estimator 
that uses EEG signals.

Keywords: electroencephalography, operator func-
tional states, driver mental states, psychophysiological 
measures, n-back, lane-change task

INTRODUCTION

With the spread of in-vehicle technologies 
(IVTs), such as navigation systems and cellular 
phones, the driver often engages in multiple 
tasks unrelated to vehicle control and naviga-
tion (Lenneman & Backs, 2009). In such situ-
ations, driver mental overload may occur, 
especially if confronted with complex driving 
conditions (e.g., high traffic density or poor 
weather), and the likelihood of driving error 
increases (De Waard, 1996). Hence, the evalua-
tion of driver workload is important for traffic 
safety research.

Driver workload has been examined with 
various methods in recent decades, such as per-
formance evaluation, subjective reporting, and 
psychophysiological measurements. Perfor
mance measurement is used to examine the det-
rimental effect of various side tasks and devices, 
such as navigation systems (e.g., Tsimhoni, 
Smith, & Green, 2004) and cellular phones 
(e.g., Collet, Guillot, & Petit, 2010; Strayer, 
Drews, & Crouch, 2006) on the driving task. 
Subjective assessment tools, such as the NASA 
Task Load Index (NASA-TLX; Hart & 
Staveland, 1988), are used to provide workload 
self-evaluation through responses to certain 
questionnaires. Specifically, the Driver Activity 
Load Index (DALI) was developed as a subjec-
tive method to evaluate driver workload (Pauzie, 
2008). However, performance measurement 
demonstrates occasional insensitivity (Lenneman 
& Backs, 2009), and subjective evaluation does 
not measure time-varying qualities and is often 
influenced by events toward the end of immer-
sion at the time of questionnaire administration 
(Insko, 2003).

Psychophysiological measures, for example, 
electroencephalogram (EEG), electrocardiogram 
(ECG), and pupil dilation, address shortcomings 
in performance and subjective measurements 
and are found to be robust candidates for oper-
ators workload evaluation (Brookhuis & De 
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Waard, 2010; Gevins et al., 1998; Gevins, Smith, 
McEvoy, & Yu, 1997; Kramer, 1991; Wilson & 
Russell, 2003). Unlike performance and subjec-
tive measurements, psychophysiological mea-
sures offer continuous observation in high time 
resolution (e.g., in milliseconds) and can be col-
lected without intruding into the operator’s task 
(Kramer, 1991; Wilson & Russell, 2007).

The EEG signal is a representation of the 
brains electrical activity recorded from elec-
trodes placed on the scalp. It has been used to 
assess operators workload for many years in 
both laboratory (Berka et al., 2007; Gundel & 
Wilson, 1992; Lei, Welke, & Roetting, 2009) 
and applied settings (Kohlmorgen et al., 2007; 
Wilson, 2001, 2002). The EEG spectral compo-
nents, for example, theta (4–8 Hz) and alpha 
(8–12 Hz), are used to determine activity levels 
during different cognitive activities. The majority 
of previous findings consistently indicate that 
increased workload leads to increased frontal 
theta (fro-theta) activity and decreased parietal 
alpha activity (Gevins et al., 1997, 1998; 
Gundel & Wilson, 1992; Smith, Gevins, Brown, 
Karnik, & Du, 2001; Sterman, Mann, Kaiser, & 
Suyenobu, 1994; Yamamoto & Matsuoka, 1990).

EEG spectrum modulation has also been 
introduced to investigate driver workload in 
various driving conditions (Brookhuis & De 
Waard, 1993; Hagemann, 2008; Kohlmorgen 
et al., 2007). Brookhuis and De Waard (1993) 
used an energy parameter ([theta + alpha] / 
beta) to measure participants activation during 
on-the-road driving experiments. More recently, 
Kohlmorgen and colleagues (2007) outlined an 
EEG-based system for detecting driver mental 
workload in real traffic conditions. They classi-
fied driver workload into high and low condi-
tions with various EEG spectrum features. The 
result was used immediately to modulate the 
workload induced by the influx of information 
from the cars electronic systems. They showed 
that a system as such was beneficial for improv-
ing drivers overall task performance.

Besides EEG components, the ECG signal, 
which reflects heart activity, has been introduced 
for driver workload assessment (Brookhuis & 
De Waard, 1993, 2010; Lenneman & Backs, 
2009; Mehler, Reimer, Coughlin, & Dusek, 2009). 
The ECG involves several parameters, such as 

heart rate (HR; the number of heartbeats within 
a fixed period of time), the interbeat interval 
(IBI), and heart rate variability (HRV; changes 
of the interval between heartbeats in either 
time or frequency domain; see Kramer, 1991). 
An increase in HR and a decrease in HRV are 
expected when more mental effort is required 
(see Brookhuis & De Waard, 2010; Mulder, 
De Waard, & Brookhuis, 2004). In the HRV 
frequency domain, low frequency (LF; 0.04–
0.15 Hz), high frequency (FH; 0.15–0.4 Hz), 
and their ratio (LF/HF) are all sensitive to 
changes in the operator’s workload (Kamada, 
Miyake, Kumashiro, Monou, & Inoue, 1992; 
Murai, Hayashi, Nagata, & Inokuchi, 2004; 
Wilson, 2002).

Modulation of the EEG spectrum in simple 
tasks whereby workload levels were manipu-
lated in a single dimension (e.g., working mem-
ory load), has been systematically investigated 
(Gevins et al., 1997, 1998; Gundel & Wilson, 
1992). There are also other studies involving 
relatively complex tasks (Smith et al., 2001; 
Wilson & Russell, 2003). However, most of 
these either investigate EEG spectrum modula-
tion in a general manner or directly use machine 
learning methods to classify workload levels 
with multiple EEG variables. There is little evi-
dence of a clear comparison between the simi-
larities and differences in the EEG spectrum 
modulation induced by different workload dimen-
sions. Questions such as how these workload 
subresources contribute to the general workload 
and what effect will emerge after these subre-
sources are combined should be addressed. 

An objective of this study is to determine 
whether previous findings are reproducible in 
driving contexts. Another objective is to inves-
tigate the effects of different workload dimen-
sions and their combinations on EEG spectrum 
variation. Unlike Kohlmorgen et al.’s (2007) 
study, we focus on the analysis of changes in 
the EEG spectrum induced by the task load 
rather than use a machine learning method clas-
sifying the workload. A simulated driving task, 
the lane-change task (LCT; Burns, Trbovich, 
McCurdie, & Harbluk, 2005; Mattes, 2003), 
combined with a secondary working memory 
task, the n-back task (Kirchner, 1958), was 
adopted in this experiment. Besides EEG, other 
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variables, including NASA-TLX, ECG, n-back 
performance, and reaction time, were recorded 
to determine the feasibility of using EEG to 
index driver workload.

METHOD

Participants

Overall, 26 participants (19 males, 7 
females) participated in this study. They all 
ranged in age from 21 to 33 with a mean of 
27.8 (standard deviation = 2.96 years). Of the 
participants, 15 had a valid driving license. 
All individuals were reported to be free of ill-
ness and medication. None had prior experi-
ence with either the LCT or the n-back 
task. Data from 2 participants were excluded 
because of incomplete recordings during the 
experiment attributable to simulator sickness. 
All participants received cash remuneration 
for their participation.

Experiment Apparatus

The experiment was conducted with the use 
of a driving box (Figure 1). Using a projector, 
we projected the driving scene onto the wall 
approximately 1 m in front of the driving box. 
The n-back digits were visually presented to the 
participants with projections overlaid on the 
driving scene by another projector (Figure 2). 
The driving box had an adjustable driving seat 
and buttons on the steering wheel that allowed 
participants to react to the n-back task.

Brain activity was recorded with 32 Ag/ 
AgCl impedance-optimized electrodes (ActiCap, 
Brain Products, Germany), referenced to the 
nasion, sampled at 1000 Hz and wide band fil-
tered (0.5–70 Hz), and placed according to the 
international 10-20 system. One channel of the 
ECG was used to collect the heartbeat informa-
tion via two bipolar electrodes. One electrode 
was attached at the upper breastbone and the 

Figure 1. Experiment set-up: A driving simulator.
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other around the lowest rib on the left side of 
the body. ECG was sampled at 1000 Hz and 
recorded with EEG as one extended channel with 
the use of the software Brain Vision Recorder 
from Brain Products.

The signals from the LCT, n-back, and 
EEG were synchronized with the use of a self-
developed tool based on Labview (National 
Instruments, USA). This tool automatically trig-
gered the n-back program when detecting the 
start of each LCT track and shut it down at the 
end of each track.

Tasks

LCT. The LCT was initiated by the project 
ADAM (Advanced Driver Attention Metrics) 
as a standardized methodology for evaluating 
attentional demands associated with performing 
in-vehicle tasks during driving. In the LCT, the 
driving road consists of three lanes, and par-
ticipants are asked to repeatedly perform lane 
changes when prompted by road signs without 
other vehicles or pedestrians present. The LCT 
consists of 10 tracks; each track is approxi-
mately 3 km (approximately 3 min if driving at 
60 km/h) and includes 18 randomly sequenced 
road signs (indicating to which lane the partici-
pant should change) plus a start sign. In the 

present study, the participant was asked to fully 
step on the gas pedal to travel at a constant max-
imum speed configured in advance.

The quality of these lane changes can be eval-
uated by the difference (based on mean devia-
tion) between a normative lane change path and 
the drivers actual lane change path, influenced 
by the drivers ability to detect and respond to the 
road signs as well as to maintain lateral control. 
In this study, we used a linear global normative 
path for all participants in all driving conditions.

N-back task. The n-back task was first intro-
duced by Kirchner in 1958 and is commonly 
used in neuroimaging to stimulate brain activity 
to test working memory capacity. The participant 
is presented with a sequence of stimuli (in this 
study, the stimuli were digits), and the task con-
sists of indicating whether the current stimulus 
matches the one from n steps used earlier in the 
sequence. The load factor n can be adjusted to 
make the task more or less difficult. In this study, 
the digital stimuli were presented every 3 s for a 
duration of 1 s. Each time, the digit appeared in a 
random location on the driving scene. Only 1-back 
and 2-back were used. Participants reacted to 
n-back tasks by pressing the left or right button 
on the steering wheel to indicate match or mis-
match of the digits, respectively.

Figure 2. Overlaid projections of the n-back tasks and driving scene. The digits of the n-back tasks were 
randomly allocated to the driving scene.
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Task load manipulation. A 3 × 3 two-factor 
within-subject design was used in this study. 
Task load levels were manipulated with two 
dimensions, driving task load and working 
memory load. The driving task load dimension 
comprised three conditions: no driving (“base”; 
participants passively watched the driving 
performed by the experimenter at a speed of 
75 km/h), slow driving (“slow”; driving speed 
was set at 75 km/h while participants used the 
steering wheel to perform lane changes), and 
fast driving (“fast”; driving speed was set at 
100 km/h, and participants used the steering 
wheel to perform lane changes). The working 
memory load dimension also contained three 
conditions: no n-back (N0; digits were still 
presented to participants but required no reac-
tion from them), 1-back (N1), and 2-back 
(N2). The combination of driving conditions 
and n-back modes resulted in a total of nine 
task load levels.

Procedures

Participants first filled out a form with their 
personal information (age, driving experience, 
illness and medication situation, etc.) before 
reading an experiment introduction. After the 
electrode preparation (approximately 20 min), 
they had a 20-min practice session with all nine 
task conditions. Then, they were required to 
evaluate the NASA-TLX weights of six work-
load contributors. Afterward, they were asked 
to perform three randomly organized sessions 
(base, slow, and fast), with a 5-min break after 
each session. Both base and slow sessions com-
prised 9 randomized driving trials, 3 trials on 
each n-back condition, lasting 2.5 min per trial. 
The fast trials lasted approximately 2 min each. 
To keep the same duration for each experi-
mental condition, the fast session comprised 
12 trials (randomized as well), 4 trials per 
n-back condition. Generally, each session lasted 
25 min. During each session break, participants 
were asked to report NASA-TLX ratings. The 
whole experiment lasted approximately 2 hr 
and 40 min.

Data Analysis

In total, eight parameters, that is, fro-theta 
power, parietal alpha power (par-alpha), subjec-
tive load, HR, HRV, LCT performance, n-back 

performance, and reaction time, were extracted 
to examine variations with the task load.

EEG analysis. We performed an EEG anal-
ysis using EEGLAB 6.03, a freely available 
open-source toolbox that runs on Matlab 7.3.0 
(see Delorme & Makeig, 2004). We digitally 
filtered EEG data using a band pass filter (pass 
band 1–40 Hz) to minimize drifts and line 
noises. Because EEG data involve plenty of eye 
movement artifacts, independent components 
analysis (Delorme & Makeig, 2004; Makeig, 
Bell, Jung, & Sejnowski, 1996) was used for 
ocular artifacts removal. The EEG data were 
then segmented into 10-s epochs with 50% 
overlay (short-term variation of EEG parame-
ters is also our concern although not included in 
this article). An FFT analysis was then used to 
estimate the spectrum for each epoch, and the 
relative power density spectrum (percentage of 
total power of frequency range 4–30 Hz) was 
calculated for each epoch. Frequency bands, 
theta and alpha, were extracted by accumulating 
the power of frequency bands 4 to 8 Hz and 8 to 
12 Hz. This way, an average of 100 data points 
in theta and alpha power were extracted for 
each task condition and participant. The present 
study concentrated only on the modulation of 
the fro-theta and par-alpha, extracted by averag-
ing the theta power from five frontal electrodes 
(Fz, FC1, FCz, FC2, Cz) and alpha power from 
five parietal electrodes (PCz, P3, Pz, P4, POz). 
To reduce the individual variation, the z scores 
of theta and alpha power were calculated for 
900 data points for each participant and aver-
aged across the task conditions.

ECG analysis. A module supplied with 
EEGLAB software used a QRS complex 
detection algorithm to determine individual 
heartbeats from the ECG signal. HR was calcu-
lated as the number of QRS complex divided 
by the duration for each driving track. The IBI 
of successive heartbeats was then used to cal-
culate the HRV statistics. The spectrum of 
HRV was estimated with a method developed 
by Malik et al. (1996). The ratio of energy 
around the LF (0.04–0.15 Hz) activity to the 
energy around the HF (0.15–0.4 Hz) activity 
was analyzed to offer an alternative variable 
for the workload evaluation.

Statistical analysis. We performed statistical 
analysis with PASW Statistics 18 (SPSS, USA). 
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A two-way ANOVA was used to test the sig-
nificance of the differences in these parameters, 
and then multiple comparisons were made with 
post hoc analysis (Bonferroni). An alpha of 
.05 determined the statistical significance.

RESULTS

Subjective Load 
As shown in Table 1, the subjective work-

load showed significant increases in both 
dimensions: for driving task load, F(2, 24)  = 
34.7, p  < .001; for working memory load,
F(2, 24)  = 95.2, p  < .001. The interaction of 
these two dimensions was also significant, 
F(4, 24) = 7.7, p < .001). A post hoc test indi-
cated that within each n-back level, significant 
differences between each pair of driving task 
conditions were found but with no differences 
between slow and fast in N1 and N2 conditions 
(in N0, base and slow, p < .05; base and fast, 
p < .001; slow and fast, p < .01; in N1, base and 
slow, p < .001; base and fast, p < .001; slow and 
fast, p = .14; in N2, base and slow, p < .001; 
base and fast, p < .001; slow and fast, p = .09). 
Within each driving task level, significant dif-
ferences between each pair of n-back conditions 
were found (for all pairs, p < .001).

Task Performance

Task performances are shown in Table 1. 
The mean deviation in LCT showed significant 

increases with augmented driving task load, 
F(1, 24) = 89.4, p < .001, and working memory 
load, F(2, 24) = 17.1, p < .001. There was also 
a significant interaction effect, F(2, 24) = 5.9, 
p < .01. A post hoc test showed significant dif-
ferences in mean deviation between slow and 
fast within each n-back level (in N0, slow 
and fast, p  < .001; in N1, slow and fast, p  < 
.001; in N2, slow and fast, p < .001). Within 
each driving task level, there were significant 
differences in mean deviation between N0 and 
N1 and between N0 and N2 but none between 
N1 and N2 (in slow, N0 and N1, p < .05; N0 
and N2, p < .05; N1 and N2, p = .64; in fast, N0 
and N1, p < .001; N0 and N2, p < .001; N1 and 
N2, p = .88).

N-back error rate showed significant increases 
with augmented driving task load, F(2, 24)  = 
12.6, p  < .001, and working memory load, 
F(2, 24) = 26.2, p < .001. There was also a sig-
nificant interaction effect, F(2, 24)  = 4.7, p  < 
.05. A post hoc test indicated that within each 
n-back level, significant differences were found 
between each pair of driving task load condi-
tions except for pairing between slow and fast in 
the N2 condition (in N1, base and slow, p < .05; 
base and fast, p < .001; slow and fast, p < .01; in 
N2, base and slow, p < .01; base and fast, p < 
.001; slow and fast, p = .06). Significant differ-
ences between N1 and N2 conditions were 
found within each driving task level (in base, 

TABLE 1: Comparison of the Means (standard deviations) of Different Variables From the Experiment for 
All Nine Task Conditions (Values Calculated From 24 Participants)

Variables

Base Slow Fast

N0 N1 N2 N0 N1 N2 N0 N1 N2

Subjective load  
(0–100)

14.8
(14.3)

25.2
(15.0)

40.0
(19.1)

19.3
(15.7)

39,9
(16.5)

56.7
(16.0)

28.2
(20.4)

45.3
(16.6)

68.5
(15.3)

N-back RT (s) - .78
(.11)

.97
(.17)

- .95
(.21)

1.10
(.24)

- 0.98
(.20)

1.09
(.20)

N-back error rate 
(0–1)

- 0.05
(.04)

0.10
(.09)

- .09
(.08)

.19
(.14)

- .13
(.11)

.22
(.14)

LCT mean 
deviation(m)

- - - 1.79
(.29)

1.87
(.28)

1.89
(.29)

2.29
(.41)

2.52
(.42)

2.52
(.45)

Heart Rate 72.0
(7.4)

72.4
(7.7)

73.5
(7.6)

73.5
(8.4)

75.8
(8.5)

76.6
(8.0)

74.0
(8.9)

75.7
(8.7)

77.1
(8.3)

Heart Rate Variability
(LF/HF ratio)

2.06
(1.45)

1.76
(1.63)

1.50
(1.10)

1.98
(1.85)

1.92
(1.49)

1.49
(1.07)

1.58
(1.00)

1.49
(1.04)

1.31
(1.04)
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N1 and N2, p  < .01; in slow, N1 and N2,
p < .001; in fast, N1 and N2, p < .001).

Additionally, a significant response time delay 
for n-back task was found with increased driv-
ing task load, F(2, 24)  = 16.1, p  < .001, and 
working memory load, F(1, 24)  = 69.7, p  < 
.001. A significant interaction effect was also 
observed, F(4, 24) = 5.8, p < .01. A post hoc test 
indicated that for each n-back level, there were 
significant response time differences between 
base and slow and between base and fast but 
none between slow and fast (in N1, base and 
slow, p < .001; base and fast, p < .001; slow and 
fast, p = .11; in N2, base and slow, p < .01; base 
and fast, p  < .05; slow and fast, p  = .77). 
Significant differences between N1 and N2 
conditions were found within each driving task 
level (in base, N1 and N2, p < .001; in slow, N1 
and N2, p < .001; in fast, N1 and N2, p < .001).

HR and HRV

As shown in Table 1, a significant rise in 
HR was found as the task load level increased 
in both dimensions: for driving task load, 
F(2, 24) = 12.2, p < .001; for working memory 
load, F(2, 24) = 31.9, p < .001, with significant 
interaction effect, F(4, 24) = 8.1, p < .001. A post 
hoc test indicated that within each n-back level, 
there were significant differences in HR between 
base and slow and between base and fast but 
none between slow and fast (in N0, base and 
slow, p < .05; base and fast, p < .05; slow and 
fast, p = .43; in N1, base and slow, p < .001; 
base and fast, p < .01; slow and fast, p = .87; in 
N2, base and slow, p < .001; base and fast, p < 
.001; slow and fast, p = .36. Within each driving 
task level, there were significant differences 
between each pair of n-back conditions except 
N0 and N1 in base (in base, N0 and N1, p = 
.31; N0 and N2, p < .01; N1 and N2, p < .01; in 
slow, N0 and N1, p < .001; N0 and N2, p < .001; 
N1 and N2, p < .05; in fast, N0 and N1, p < .001; 
N0 and N2, p < .001; N1 and N2, p < .001).

The LF/HF ratio in HRV showed a signifi-
cant negative correlation with the workload in 
both dimensions: for driving task load, F(2, 24) = 
3.9, p < .05; for working memory load, F(2, 24) = 
8.1, p < .01. There was no significant interac-
tion between driving task and n-back task on 
LF/HF, F(4, 24) = .5, p = .71. A post hoc test 

indicated that within each n-back level, signifi-
cant differences were found only between base 
and fast in the N0 condition (p  < .05) and 
between slow and fast in the N1 condition 
(p < .05). Within each driving task level, signifi-
cant differences were found only between N0 and 
N3 in the base condition (p < .01) and between 
N1 and N2 in the slow condition (p < .05).

EEG Spectrum Modulation

Figures 3a and 3b demonstrate the relative 
power spectrum density of three task conditions 
at electrode sites Fz and Pz, respectively. To 
illustrate a general pattern of EEG spectrum 
changes with task load, only three conditions 
(base and N0, slow and N0, and fast and N2, rep-
resenting low, moderate, and high task load lev-
els, respectively) were included in the picture. 
Generally, there was tendency in the power of 
the fro-theta frequency range to increase when-
ever the task load was increased (Figure 3a), 
whereas the parietal alpha activity strongly atten-
uated as the task load was increased (Figure 3b).

The results for fro-theta are shown in Figure 4. 
The variation of driving task load elicited no 

Figure 3. Relative power spectrum density (the per-
centages of the total power of 4–30 Hz) (a) at frontal 
recording site (Fz) and (b) at the parietal recording 
site (Pz) averaged across participants (N = 24).
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significant differences in the fro-theta, F(2, 24) = 
2.4, p = .10. However, the changes in working 
memory load produced significant increases 
in the fro-theta, F(2, 24)  = 23.6, p  < .001, 
with significant interaction between them, 
F(4, 24) = 4.2, p < .01. A post hoc test indi-
cated that for each driving task level, significant 
differences between each pair of n-back condi-
tions were found in the base and slow condition 
but not in the fast condition (in base, N0 and 
N1, p < .001; N0 and N2, p < .001; N1 and N2, 
p = .45; in slow, N0 and N1, p < .01; N0 and 
N2, p < .001; N1 and N2, p < .05; in fast, N0 & 
N1, p = .08; N0 and N2, p = .06; N1 and N2, 
p = .15).

As shown in Figure 5, there were significant 
decreases in z scores of relative par-alpha when-
ever workload increased with driving task load, 
F(2, 24) = 45.9, p < .001, and working memory 
load, F(2, 24) = 18.5, p < .001, with a signifi-
cant interaction effect, F(4, 24) = 3.3, p < .05). 
A post hoc test indicated that within each n-back 
level, there were significant differences between 
each pair of driving task load conditions except 
between slow and fast in the N1 condition (in 
N0, base and slow, p < .001; base and fast, p < 
.001; slow and fast, p  < .01; in N1, base and 
slow, p < .001; base and fast, p < .001; slow and 
fast, p = .14; in N2, base and slow, p <.001; base 
and fast, p < .001; slow and fast, p < .05). Within 
each driving task level, there were significant 

differences between each pair of n-back condi-
tions except between N1 and N2 in base and 
slow conditions (in base, N0 and N1, p < .001; 
N0 and N2, p < .001; N1 and N2, p = .45; in 
slow, N0 and N1, p < .01; N0 and N2, p < .01; 
N1 and N2, p = .32; in fast, N0 and N1, p < .05; 
N0 and N2, p < .01; N1 and N2, p < .05).

Correlation of EEG Parameters 
to Other Variables

The correlations of EEG parameters to 
other parameters were also investigated. As 
shown in Table 2, fro-theta was significantly 
correlated to the subjective load and HRV. 
However, par-alpha was significantly corre-
lated to the subjective load, n-back error rate, 
HR, and HRV. Interestingly, par-alpha showed 
a higher correlation to HR than HRV, whereas 
for-theta showed a higher correlation to HRV 
than HR.

DISCUSSION

This study investigates EEG spectrum mod-
ulation for driver workload representation under 
various factors. Both objective and subjective 
measurements indicated that task manipulations 
increased the workload required for task perfor-
mance. However, these measurements showed 
different sensitivities for workload representa-
tion. In the following section, some of these 
results are discussed.

Figure 4. Mean z scores of frontal theta (4–8 Hz) for 
each of nine task conditions. Z scores were converted 
for each participant and averaged across 24 partici-
pants. The error bars show standard errors of the 
z scores.

Figure 5. Mean z scores of parietal alpha (8–12 Hz) 
for each of nine task conditions. Z scores were con-
verted for each participant and averaged across 24 
participants. The error bars show standard errors of 
the z scores.
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EEG Spectrum Modulation 
With Workload

The EEG signal yielded sensitive indices for 
neural resources utilization and systematic vari-
ation with task loads. As presented in the 
Results section, the increase in working mem-
ory load resulted in an increase in fro-theta and 
a decrease in par-alpha, which is fairly consis-
tent with previous findings on working memory 
load (Gevins et al., 1997, 1998; Gundel & 
Wilson, 1992; Sterman et al., 1994). Gevins and 
colleagues (1997, 1998) found that EEG signal 
in the theta range, the largest over middle-line 
frontal regions of the scalp, was enhanced in 
tasks with increased working memory load. 
Conversely, activities in the alpha range were 
attenuated by attention-demanding tasks.

Increasing driving task load resulted in a sig-
nificant decrease for par-alpha but elicited no 
differences in the fro-theta. These findings 
were consistent with other driving task studies 
(Hagemann, 2008) and in-flight tasks (Wilson, 
2001, 2002). Hagemann (2008) systematically 
investigated changes in alpha power with task 
load in driving contexts. A significant attenua-
tion of alpha was found when participants per-
formed simultaneously an LCT and a secondary 
word or tone detection task, compared with 
conditions of only word or tone detection. Wilson 
(2002) investigated the changes of EEG activity 
in various flight conditions. Compared with the 
preflight baseline, alpha band power was sig-
nificantly decreased over the parietal scalp dur-
ing flight tasks. However, only few experimental 
segments showed increased theta band activity 
at few scattered electrode sites with no consis-
tent pattern evident.

Previous research suggests that fro-theta is 
generated in the anterior midline region of the 

scalp (Gevins et al., 1997; Inouye et al., 1994), 
which is thought to be part of an anterior brain 
network critical to attention control mecha-
nisms (Posner & Peterson, 1990; Posner & 
Rothbart, 1992; Smith et al., 2001). The pres-
ent results are consistent with the view that 
enhancing working memory load places high 
demands on frontal brain circuits in relation to 
attention control.

Alpha activity is considered inversely pro-
portional to the fraction of cortical neurons 
recruited in a transient functional network for 
the purpose of task performance (Smith et al., 
2001). The modulation in the magnitude of 
alpha power is probably driven through the oscil-
lating synchrony of neuron groups, in which 
individual cells act either as resonation or oscil-
lation (Lopes da Silva, Vos, Mooibreck, & Van 
Rotterdam, 1980; Smith et al., 2001). When the 
brain is at relative rest, a high proportion of 
alpha generators comes to oscillate in phases, 
yielding a large alpha rhythm. As task demands 
increase, different regions of the cortex may be 
recruited in the transient function network, with 
decline in the overall proportion of local alpha 
generators that passively oscillate in synchrony 
with the reduction in alpha power (Smith et al., 
2001). The observation of reduced alpha power, 
with both increased working memory load and 
driving task load, is consistent with this alpha 
generation hypothesis. 

Specifically, statistical results show that work-
ing memory load elicited more significant dif-
ferences in theta power than those elicited by 
driving task load. However, driving task load 
produced more differences in alpha power than 
those produced by working memory load. These 
results reveal a task-dependent workload effect 
on the modulation of EEG activity in either the 
sensitivity or activated location of the scalp, 

TABLE 2: Correlation (Pearson r) of EEG Parameters to Other Variables

Variables Subjective Load N-Back Error Rate N-Back RT
LCT Mean 
Deviation HR HRV (LF/HF)

fro-theta r = .83
p < .01

r = .63
p = .18

r = .70
p = .12

r = .66
p = .15

r = .64
p = .06

r = -.91
p < .001

par-alpha r = -.80
p < .01

r = -.81
p < .05

r = -.76
p =.07

r = -.69
p = .12

r = -.91
p < .001

r = .69
p <.05
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attributable to the recruitment of neural resources 
linked with individual regions of the brain. 
Metabolic studies suggest that working memory 
involves a functional network linking regions of 
the prefrontal cortex with posterior association 
cortices (Frisk & Milner, 1990; Gevins & Smith, 
2000). On the other hand, brain imaging studies 
on neural correlation of driving revealed the 
activation of cerebellar and occipital areas related 
to visuomotor integration (Calhoun et al., 2002; 
Walter et al., 2001).

Interestingly, the combination of the two 
tasks leads to a significant interaction effect on 
both fro-theta and par-alpha activity. As shown 
in Figures 4 and 5, the degree of changes in fro-
theta and par-alpha decreased with the com-
bined task load. A reasonable assumption for 
this phenomenon is that both theta and alpha 
power have a nonlinear relation with a decreased 
slope attributable to workload increase. However, 
as far as we know, there is no hard evidence to 
support this hypothesis.

Other Variables and Their 
Correlation to EEG Parameters 

Subjective ratings augmented with both work
load dimensions while showing significant 
differences in each pairwise comparison. This 
result indicates that the manipulation of task 
loads was successful. The detriments of perfor-
mance are consistent with Wickens’s (2002) 
multiple resource theory. Wickens suggested 
that attention resources were limited and that 
resource structure can be described by four 
different dichotomies: two states of processing 
(perceptual-central and response), two modalities 
of perception (auditory and visual), two codes of 
processing (spatial and verbal), and two aspects 
of visual processing (focal and ambient). Tasks 
involving shared resources lead to a decline in 
task performance when resources are not ade-
quate to meet task demands. In this study, both 
tasks involve common visual perception modal-
ity. The dual tasks elicited competence in visual 
resources, which produces impairment in task 
performance.

The results of HR data reinforce previous 
work indicating that HR can be sensitive to 
workload in driving environments (Lenneman 
& Backs, 2009; Mehler et al., 2009). That HRV 

LF/HF decreased with task load is also consis-
tent with prior studies (Kamada et al., 1992; 
Murai et al., 2004; Wilson, 2002). The simple 
HR measure seems to demonstrate a more 
robust sensitivity than the complex HRV index. 
And this presumption is also supported by other 
studies in which HRV was not as sensitive to 
the varied cognitive demands of flight as other 
psychophysiological variables, such as HR 
and electrodermal activity (EDA) (Veltman & 
Gaillard, 1996; Wilson, 2002).

It is also interesting to compare the robust-
ness of ECG and EEG parameters. Generally, 
the sensitivity of EEG parameters to the index 
workload was higher than HR and HRV. Both 
fro-theta and par-alpha demonstrated signifi-
cant differences for each pairwise comparison 
with working memory load and driving task 
load, respectively. However, neither HR nor 
HRV could completely distinguish three driv-
ing task conditions in pairwise comparisons. 
This robustness of EEG observation is also sup-
ported by Brookings, Wilson, and Swain (1996). 
However, the sensitivity of these psychophysi-
ological parameters seems task dependent, 
whereas each of the physiological parameters 
provides unique information concerning cogni-
tive load (Wilson, 2002). For example, in this 
study, HR could distinguish all three n-back 
conditions, whereas fro-theta was not as sensi-
tive in distinguishing driving conditions. Doyle 
et al. (2009) also suggested that EEG measures 
exhibit less sensitivity than HR when distin-
guishing cognitive load during a satellite man-
agement decision-training task.

The finding that both theta and alpha are 
highly correlated to subjective load emphasizes 
the fact that EEG parameters can be used to 
represent workload. What is interesting and 
surprising is that fro-theta demonstrates a 
higher correlation to HRV, whereas alpha 
power demonstrates a higher correlation to HR. 
Unfortunately, as far as we know, the correla-
tions of EEG to ECG parameters have not been 
systematically investigated.

CONCLUSION AND APPLICATION

This study investigated driver workload in 
two dimensions, driving task load and working 
memory load. The results indicate that enhanced 
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working memory load induced an increase in 
theta power and a decrease in alpha power, and 
an increased driving task load led to a decrease 
in alpha power. Additionally, when the two task 
loads were combined, there were significant 
interactive effects on the changes to both theta 
and alpha power. However, task-related differ-
ences were also observed. For instance, varia-
tion in working memory load contributed more 
to changes in fro-theta power and less to changes 
in par-alpha power, compared with driving task 
load. These results indicate that EEG technol-
ogy can provide sensitive information for driver 
workload detection. However, the sensitivities 
of different EEG parameters tend to be task 
dependent. A potential application of this study 
is in providing some theoretical foundation for 
the establishment of a general metric for driver 
workload estimation.
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KEY POINTS

•	 Previous findings, of increased frontal theta 
power and decreased parietal alpha power with 
increased workload, were reproduced in the driv-
ing task.

•	 Task-related differences were found in this study, 
namely, that working memory load contributed 
more to increasing theta power and less toward 
reducing alpha power, compared with the driving 
task load.

•	 The combination of these two types of task loads 
had a significant interaction effect on the changes 
to both theta and alpha power. A reduction in 
changes to EEG parameters was also observed 
when task load was increased.
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