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Zusammenfassung

Die vorliegende Arbeit gibt einen grundlegenden Diskurs zu unterschiedlichen Methoden zur
Auswertung von Kleinwinkelstreudaten (SAS Daten), insbesondere hier zum ersten Mal in
einem präzise statistisch definierten Rahmen.

Die Ermittlung von Strukturinformationen via Anpassungen von physikalischen und
Freiform-Modellen wird in zwei unterschiedlichen statistischen Inferenz-Ansätzen diskutiert,
einem Bayes’schen und einem frequentistischen Ansatz. Somit basiert eine Auswertung und
Interpretation der SAS Daten auf gut fundierten Theorien, die zudem aufzeigen wie optimale
Schlussfolgerungen zu ziehen sind. Die Diskussion zeigt, dass es wichtig ist genug Infor-
mationen über das streuende System (a priori Strukturinformation und Information in den
Streudaten) zur Verfügung zu haben, um zugrundeliegende Strukturen zu ermitteln. Beispiel-
haft wird eine simultane Anpassung eines physikalischen Modells an Kontrastvariationsdaten
eines Inter-Polyelektrolyt-Komplexes diskutiert. Darüber hinaus werden die statistischen
Inferenz-Ansätze auf die Indirekte Fourier Transformation (IFT) angewendet, um objektiv
eine Freiform-Lösung zu erhalten, und moderne Methoden des Maschinellen Lernens (RVM,
SVR, LASSO) werden benutzt, um eine stabilere Lösung zu ermitteln.

Ein neues, selbst entwickeltes Programm (SASET) wird präsentiert, das es erlaubt ef-
fizient umfangreiche und gekoppelte 1-dimensionale Datensätze/-serien auszuwerten; somit
ermöglicht das Programm viele Informationen in den Auswertungsprozess einfließen zu lassen.
Auch können 2-dimensionale Datensätze/-serien effizient ausgewertet werden. Außerdem wird
dargelegt wie Strukturinformationen aus 2-dimensionalen anisotropen Streudaten gewonnen
werden können.

Die Bildung von Vesikeln wird durch die Differentialgleichung von Smoluchowski simuliert.
Experimentelle SAS Daten eines Vesikel-bildenden Systems werden simultan angepasst, somit
viel Information verwendet, um wenige Parameter zuverlässig zu ermitteln.

Streuintensitäten von komplex, hierarchisch strukturierten kolloidalen Systemen werden
mittels Monte Carlo (MC) Simulationen analysiert. Die MC Simulationen zeigen welche
strukturellen Informationen in SAS Daten enthalten sind.

Abstract

This work presents an in-depth discussion of different methods used for Small-Angle Scattering
(SAS) data analysis, and especially for the first time within a precisely defined statistical
framework.

Inferring structural information from SAS data via physical model fitting and free-form
model fitting is discussed within two different statistical inference approaches, namely
Bayesian and frequentist statistics, which put the analysis and interpretation of SAS data
on well founded theories, hence showing how to draw optimal inferences. The discussion
shows the importance of having enough of scattering system information (a priori knowl-
edge about the system and information contained in the experimental SAS data) available
in order to infer structural information. As an example, simultaneous physical model fitting
is performed on contrast variation data of an InterPolyElectrolyte Complex (IPEC) system.
Moreover, statistical inference is applied to the Indirect Fourier Transform (IFT) in order
to get objectively a free-form solution, and additionally, modern machine learning methods
(RVM, SVR, LASSO) are employed to determine a more robust solution.

A new and homemade program, called SASET, is presented that easily allows to efficiently
evaluate comprehensive and coupled 1-dimensional SAS data sets/series, hence allowing to
include a lot of information in the evaluation process. 2-dimensional data sets/series can also
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be evaluated efficiently. Moreover, a discussion about inferring structural information from
anisotropic 2-dimensional scattering data is given.
Vesicle formation is simulated by the von Smoluchowski differential equation. Experimental

SAS data of a vesicle building system are simultaneously fitted by adjusting parameters of
the kernel of the differential equation, and therefore a lot of information is used to determine
reliably a few parameters.
The scattering intensity of complex, hierarchically structured colloidal systems is analyzed

by Monte Carlo (MC) simulations. The MC simulations show which structural information
are contained in the SAS data.
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1 INTRODUCTION

1. Introduction

Small-Angle Scattering (SAS) of neutrons (SANS) or X-rays (SAXS) is a well established
method to probe and analyze nanomaterials (e.g., nanoparticles or colloidal soft-matter).
Nanomaterials are in between the size of atoms and bulk materials, hence the properties of
nanomaterials can be totally different from the ones known from bulk materials. Therefore
nanomaterials are interesting for a number of new applications, e.g., within nanomedicine,
cosmetics, paints, electronics, etc., but with their usage in everyday products it is also very
important to understand and analyze their nanotoxicity. By means of SAS sample systems
are analyzed in situ, which, e.g., allows to study dynamics of a nanomaterial system or to
probe it in an external field (electric or magnetic field, flow field, etc.). Often SAS is the only
method to perform these analyses, and hence it is one of the most important tools for such
research topics. Another important feature of SAS is that the scattering intensity represents
the scattering from the illuminated system volume. Therefore, structural parameters that are
inferred represent averages from a huge number of scattering objects, i.e., they are statistically
meaningful.

However, determining structural information from the scattering intensity is an inverse
problem, which is ill-posed due to the loss of phase information, finite resolution, smearing
effects, noise, etc., and therefore a priori knowledge is required to find plausible solutions.
A priori knowledge could be that, e.g., the shape or size of the scattering objects is known,
experimental boundary conditions like volume fractions, densities, etc. are known, but also in
case of a dynamic system that it changes continuously or that a system responds continuously
in dependence of an applied external field. The inference process itself can be improved by
performing the method of contrast variation. I.e., a number of different scattering patterns
can be created by changing the scattering length density of one or more components in order
to emphasize certain structures of the particles in the scattering intensity, thus to infer these
structures more robustly — hence, via contrast variation the available information content in
the data is increased.

This thesis is about evaluations and simulations of complex SANS/SAXS data. The infer-
ence procedure is mainly discussed in a statistical framework, either a Bayesian or a frequentist
one, in order to have a well established theory at hand to perform plausible reasoning and to
draw optimal inferences. Considering the SAS evaluation within a statistical framework is a
logical consequence of the fact that the data are uncertain and system information is incom-
plete. The two statistical inference approaches are introduced in section 2 together with an
introduction of the theory of SAS.

In order to easily and efficiently evaluate comprehensive 1- and 2-dimensional SAS data sets
or data set series, which might result from dynamic experiments and/or from using the method
of contrast variation, many new and important features have been added to the scattering
evaluation software SASET, which has been initially implemented by the author in his diploma
thesis. One of the new and noteworthy features of SASET is that the software allows to
effortlessly perform model fitting to coupled 1-dimensional scattering series (e.g., series of
different contrasts or different experimental set-ups), hence allowing to conveniently increase
the information content of a SAS evaluation, and therefore to make the analysis more robust.
In general, the analysis of comprehensive data sets/series was the bottleneck in the evaluation
process so far, but can now be comfortably and efficiently done with SASET. Moreover, in
order to speed up the evaluation process, parallel methods have been implemented. SASET
is presented in section 3 together with an example evaluation of a contrast variation data
set of an InterPolyElectrolyte Complex (IPEC) system, having the goal to infer the IPEC
structure.

1



1 INTRODUCTION

In section 4 complex colloidal systems, consisting of particles decorating vesicles and/or
internalized in them, are simulated in order to study their scattering behavior. In these sim-
ulations the method of Monte-Carlo sampling is applied, which is a standard method within
physical chemistry to simulate particle configurations, but also within statistical inference,
where it is used to create samples from a probability distribution, and to calculate averages
of some desired quantities with respect to this distribution.
The subject of spontaneous vesicle formation from mixing different amphiphiles is studied

in section 5. In this study it is considered that the vesicles are built from relatively large
disks that close to form vesicles. The disks themselves are built from smaller disks that
coalesce. It is considered that the whole coalescence and vesiculation process is controlled by
a few initial parameters that build harsh constraints. The analysis shows which parameters
have an impact on the scattering intensity. Moreover an experimentally measured scattering
data series of a spontaneously forming vesicle system is fitted by the considered model, i.e.,
the whole intensity series is simultaneously fitted by a model having only a few parameters.
Hence, a lot of information is used to determine reliably a few parameters.
The evaluation of 2-dimensional anisotropic scattering images, often resulting from the

application of an external field (shear, magnetic or electric field, etc.) on the scattering
system, is a demanding task because of the huge amount of data. However, determining only
the anisotropy within an image can be efficiently done if the analysis is restricted to certain
regimes in an image. In section 6 different methods of quantifying the anisotropy in an image
are studied and compared with each other.
In section 7, the Indirect Fourier Transform (IFT) is discussed within the two statistical

inference approaches, the Bayesian one and the frequentist one. The IFT determines the
pair distance distribution function from the scattering intensity by performing a regularized
inverse Fourier transform. While the IFT was already discussed in a Bayesian framework
elsewhere, the method is discussed here in a frequentist one. Moreover modern machine
learning approaches, which can be seen as special approaches within statistical inference, are
applied with the goal to get a more robust solution.

Hence, this work presents all possible analyses that can be performed on SAS data, from
physical model fitting to model-free analysis, demonstrating how these methods can be effi-
ciently applied and why a well-defined statistical framework is necessary for a proper data
interpretation resulting in robust and reliable scientific findings.
The last section finishes with an overall conclusion and outlook.
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2 THEORY

2. Theory

This section introduces and discusses the main principles of small-angle scattering and of
statistical inference, which are required for this work.

2.1. Small-Angle Scattering

In this chapter the principles of Small-Angle Scattering (SAS) are explained. For a rigorous
discussion the reader is referred to [52, 58, 144, 94, 41, 133].
In SAS a primal plane wave of neutrons (SANS) or photons (SAXS) strikes a sample, cf.

Fig. 1. Then, the wave interacts within the sample with the nuclei of the atoms in case of
a wave of neutrons, and mainly with the electrons in case of a wave of photons1. Hence,
the interaction strength in any point of space can be described by the so called Scattering
Length Density (SLD), and the scattering mechanism is according to the Huygens-Fresnel
principle that states: Each point in space that is covered by the primal wave is the source of a
secondary, spherical wave, whereby the amplitude of the secondary wave in its source point is
proportional to the SLD in the source point. Moreover, the amplitude of any receiving point
in space is given by the superposition of all secondary waves.
If the far-field condition is assumed, i.e., if the receiving point is relatively far away from

the sample, the superposition of the secondary waves in this point is essentially given by a
Fourier Transform (FT) of the SLD2:

A(q) =

∫
V
SLD(r) exp

(−iqT r
)
dr. (1)

V is the sample volume and q is the scattering vector in the reciprocal space, which is defined
as

q := kR − k0, (2)

where k0 is the wave vector of the incident wave and kR is the wave vector in the direction
R. The magnitude of q is given by

q =
4π

λ
sin

(
ϑ

2

)
, (3)

where ϑ is the angle enclosed between kR and k0, i.e., ϑ = �(kR,k0). Finally, the intensity
measured by a detector is given by3

I(q) = A(q) ·A∗(q). (4)

Thus, if the intensity is measured any information about the phase of the complex amplitude
is lost. In case of a real amplitude the sign of the amplitude is lost.
If the definition of the amplitude, Eq. (1), is substituted into Eq. (4), the intensity can be

written as the FT of the autocorrelation γ(r) of the SLD [133, §1.5.2]:

I(q) =

∫
V
γ(r) exp

(−iqT r
)
dr, (5)

where

γ(r) =

∫
V
SLD(u) · SLD(u+ r) du. (6)

1The interaction of the photons with the protons is negligible, mainly because a proton is much heavier than
an electron.

2The symbol T in the formula means the transpose of a vector, and i2 = −1.
3The symbol ∗ in the formula means conjugate complex.
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ϑ

Figure 1: The scattering experiment.

The autocorrelation of the SLD also has an inherent loss of information, such that the SLD
cannot uniquely be reconstructed from the autocorrelation. The relationships between the
SLD and the intensity are completely summarized in Fig. 2, and hence the following three
approaches can be conceived to determine the SLD profile from measured intensities:

1. (i) Determine the autocorrelation function from the intensity. (ii) Decorrelate the
autocorrelation.

2. (i) De-square the intensity in order to retrieve the amplitude. (ii) Calculate the inverse
Fourier transform of the amplitude.

3. (i) Build a (physical) model of the SLD and calculate the intensity. (ii) Change the
model parameters, such that the calculated intensity fits well the measured intensity.

The practical implementation of approach 1 has been mainly developed by Glatter [49, 48, 51],
and approach 2 has been mainly developed by Svergun [148, §5]. Approach 3 is probably used
since more than a 100 years, but the inventor is unknown.
From the preceding discussion and Fig. 2 it follows that even if the intensity is given

analytically over the whole reciprocal space the solution is in general non-unique. Such a
problem is called an ill-posed (inverse) problem and is the topic of chapter 7.1. Ill-posed
problems often arise if one tries to determine causes from effects, i.e., if one tries to solve an
inverse problem. On the other hand calculating the effects from the causes, i.e., calculating
the intensity from a given SLD distribution, is called a direct problem and is well posed. For
simple models (as, e.g., some spherical objects, see text below and section 3.3.1) the direct
solution can often be given as a closed-form expression or it often only needs deterministic
numerical integrations. In general, however, more complicated models require Monte-Carlo
(MC) simulations (e.g., decorated vesicles or vesicles containing internalized particles as used
in section 4, see also [13]) or molecular dynamic simulations (e.g., [80]). Several ‘simple’
models are given in the paper of Pedersen [123] as well as in the documentations of the
program SASfit (Joachim Kohlbrecher, PSI, Villigen, Switzerland, and Ingo Bressler, BAM,
Berlin, Germany) and of the program of S. Kline [86] based on IGOR. In this work, many
different models have been implemented and are documented in the homemade program
SASET or they are discussed within this thesis, e.g., models of complex clusters based on MC
simulations — cf. chapter 4.

4
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γ

Figure 2: Relation between the SLD and the intensity, cf. [133, §1.5.4]. A dotted arrow
indicates an ambiguous solution.

Because calculating the intensity of a given physical model is well-posed, scientific inference
is often done in accordance with approach 3 from above, and hence yielding a relatively robust
inference procedure. In detail, e.g., if the sample only consists of homogeneous spherical
particles of the same size, and the size is looked for, the scattering intensity is calculated from
a homogeneous sphere4 SLD model given a certain sphere radius that is a freely adjustable
parameter. The parameter can then be adjusted in a 2-step iterative procedure that is:
(i) Calculate the intensity for a given radius and (ii) change the radius and iterate as long as
the intensity is not fitted ‘well’ by the model or another termination criterion is not fulfilled
(e.g., the maximum number of iterations is not reached). Often gradient-search methods can
be used to efficiently adjust the model parameters — see, e.g., [14, §8].

In the following the model intensity of a homogeneous sphere with radius R is calculated
in order to discuss some important principles. The sphere model as well as the technique
to derive the scattering formula is used again in later chapters to build more complicated
hierarchical systems. Consider a single homogeneous sphere with volume vsphere within the
sample volume V . According to Eq. (1) the amplitude is written as

A(q) =

∫
vsphere

SLDsphere exp
(−iqT r

)
dr+

∫
V \vsphere

SLDmatrix exp
(−iqT r

)
dr

=

∫
vsphere

(SLDsphere − SLDmatrix) exp
(−iqT r

)
dr+

∫
V
SLDmatrix exp

(−iqT r
)
dr

V→∞→
∫
vsphere

ΔSLDexp
(−iqT r

)
dr+ SLDmatrixδ(q),

(7)

where SLDsphere is the SLD within the sphere and SLDmatrix is the SLD of the matrix/solvent
and ΔSLD := SLDsphere − SLDmatrix. δ(q) is the Dirac delta function. Thus, for q �= 0 the

4Note that the technical term sphere is ambiguous, since in mathematics a sphere is the surface of a ball,
whereas here as well as in the SAS-literature it is meant to be a ball in the mathematical sense.
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Figure 3: A homogeneous sphere within a Cartesian and spherical coordinate system and the
scattering vector q.

amplitude is given by

Asphere(q) =

∫
vsphere

ΔSLD · exp (−iqT r
)
dr

= ΔSLD

∫ 2π

φ=0

∫ π

θ=0

∫ R

r=0
exp (−iqr cos θ) r2 sin θ dr dθ dφ

= 4πΔSLD

∫ R

r=0
r2

sin qr

qr
dr

= 4πΔSLD
sin(qR)− qR cos(qR)

q3
· 3R

3

3R3

= vsphere(R) ·ΔSLD · 3sin(qR)− qR cos(qR)

(qR)3

=: Asphere(q,R),

(8)

and is called amplitude form factor of a sphere5, and

vsphere(R) =
4π

3
R3 (9)

is the volume of the sphere. In Eq. (8) the scattering vector is taken to be aligned along the
z-direction such that qT r = qr cos θ, see Fig. 3, which is always possible since a particle of
spherical symmetry is assumed.
By substituting Eq. (8) into Eq. (4) the intensity form factor of a sphere is obtained as

Isphere(q) = A2
sphere(q,R) = v2sphere(R) · (ΔSLD)2 · 9

(
sin(qR)− qR cos(qR)

)2
(qR)6

. (10)

From this formula it is obvious that the intensity does not change if the SLD of the sphere is
exchanged with the one of the matrix — only the squared SLD difference is important. This

5 The amplitude form factor is also defined for q = 0, but for q = 0 the (overall) amplitude consists of the
amplitude form factor term plus an additional Dirac term, cf. Eq. (7). In the following, the addition ‘form
factor’ is often not written explicitly, but from the context it should be clear that this meant. The same
holds for the technical term ‘intensity form factor’.
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effect is known as the Babinet principle [133, §1.6] and exemplifies the phase/sign loss, as
discussed above.

Taking the limit q → 0 of Eq. (10) yields the forward intensity (form factor) of a sphere:

Isphere(0) = A2
sphere(0, R), (11)

where

Asphere(0, R) = vsphere(R) ·ΔSLD (12)

is the forward amplitude (form factor) of a sphere6. The calculation of the forward intensity
often gives an easy check if a model is correctly implemented, since the intensity of an imple-
mented model has to approach the forward intensity calculation when q → 0. Therefore it
was usually used to check the models that are implemented within this work.

The mathematical decomposition of the volume as done in Eq. (7) is used in this work to
derive formulas of more complex systems, e.g., in section 4.3. If there are different scattering
objects it is important to note that the amplitudes of these objects have to be added before
the intensity is calculated. Furthermore, the amplitude of an object that is shifted out of the
origin is given by the amplitude of the object at the origin times a complex phase lift, since
there is the Fourier theorem:

SLD(r− r0)
FT←→ A(q) exp

(−iqT r0
)
. (13)

As an extension of the simple sphere amplitude/intensity form factor given above, a cluster
of Nc spheres with different radii Rk is considered. In this case Eq. (8) is used together with
Eq. (13) in order to calculate the overall scattering amplitude

Acluster(q) =

Nc∑
k=1

Asphere(q,Rk) exp
(−iqT rk

)
=

Nc∑
k=1

Ak(q) exp
(−iqT rk

)
,

(14)

where

Ak(q) := Asphere(q,Rk), (15)

and rk is the position of the k-th sphere. Hence, the intensity is

Icluster(q) = Acluster(q) ·A∗
cluster(q)

=

Nc∑
k=1

Nc∑
l=1

Ak(q)Al(q) exp
(−iqT rkl

)
,

(16)

where rkl = rk − rl. This expression can be further modified, assuming that the cluster is
freely moving (but the relative positions of spheres to each other stay fixed) and that the
scattering experiment captures a time average of the scattering intensity. Then, the average

6In general, the forward amplitude form factor of an object can be written as Aobject(0) =
∫
vobj.

ΔSLD(r) dr,

where vobj. is the volume of the considered object.
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intensity is given by an orientational average (indicated by 〈·〉Ω)

〈Icluster(q)〉Ω = 〈Acluster(q)A
∗
cluster(q)〉Ω

=

〈
Nc∑
k=1

Nc∑
l=1

Ak(q)Al(q) exp
(−iqT rkl

)〉
Ω

=

Nc∑
k=1

〈
A2

k(q)
〉
Ω
+

〈
Nc∑
k=1

Nc∑
l �=k

Ak(q)Al(q) exp
(−iqT rkl

)〉
Ω

=

Nc∑
k=1

A2
k(q) + 2

Nc−1∑
k=1

Nc∑
l=k+1

Ak(q)Al(q)
〈
exp
(−iqT rkl

)〉
Ω
.

(17)

The average over the exponential function yields

〈
exp
(−iqT rkl

)〉
Ω
=

1

4π

∫ 2π

0

∫ π

0
exp (−iqrkl cos(θ)) sin(θ) dθ dφ

=
1

2

∫ π

0
exp (−iqrkl cos(θ)) sin(θ) dθ

=
1

2

exp (iqrkl)− exp (−iqrkl)

iqrkl

=
sin(qrkl)

qrkl

(18)

where in the second line the substitution u = − cos(θ) is used to perform the integration.
The final result is

〈Icluster(q)〉Ω =

Nc∑
k=1

A2
k(q) + 2

Nc−1∑
k=1

Nc∑
l=k+1

Ak(q)Al(q)
sin(qrkl)

qrkl

=

Nc∑
k=1

Nc∑
l=1

Ak(q)Al(q)
sin(qrkl)

qrkl
,

(19)

and is known as Debye formula [35]. The second term on the r.h.s. of the first line defines a
structure factor term of the interacting spheres that is negligible if the spheres do not interact
with each other, i.e., if |Ak(q)Al(q) sin(qrkl)| � qrkl ∀k, l. Often this equation is written as

〈Icluster(q)〉Ω = Pcluster(q)S
eff.
cluster(q), (20)

where

Pcluster(q) =

Nc∑
k=1

A2
k(q) (21)

defines an intensity form factor, and

Seff.
cluster(q) = 1 +

2∑Nc
k=1A

2
k(q)

Nc−1∑
k=1

Nc∑
l=k+1

Ak(q)Al(q)
sin(qrkl)

qrkl
(22)

describes an effective structure factor.
In general, the positions of the particles depend on an interaction potential of the particles,

external forces (electric/magnetic field, shear forces), and the temperature of the system.
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Usually, determining a plausible configuration of such a system is non-trivial, and ana-
lytical expressions of structure factors are approximations, and are only available for a few
simple cases, e.g., for monodisperse or polydisperse hard spheres with a hard sphere structure
factor (cf. section 3.3 together with appendices D.1 and D.2). In general, structure factors
are only available for simple symmetries (mainly isotropic, i.e., for spherical potentials) and
are approximations based on the choice of a closure relation (Percus-Yevick PY [124] (cf.
appendix D.1,D.2), HyperNetted Chain HNC (e.g., in [135])) or a mixture of closure-relations
to reduce thermodynamical inconsistencies (e.g., Rogers-Young [134]). In more complex cases
only Monte Carlo (MC) methods or molecular dynamics (MD) simulations can determine the
structure factor of a given system. In section 4 the MC method is used to determine struc-
ture factors of complex clusters consisting of vesicles that are decorated with particles and/or
contain internalized particles.
The Debye formula Eq. (19) can be used to derive another scattering property. For this,

consider a system of N/Nc identical clusters, and all spheres are assumed to be identical.
N is the total number of particles. Then, the total scattering intensity of such a system is
obtained by multiplying the Debye formula Eq. (19) with N/Nc, yielding

〈I(q)〉Ω =
N

Nc
A2

sphere(q,R)

Nc∑
k=1

Nc∑
l=1

sin(qrkl)

qrkl
, (23)

and the forward intensity reads

lim
q→0

〈I(q)〉Ω =
N

Nc
lim
q→0

(
A2

sphere(q,R)
) · lim

q→0

(
Nc∑
k=1

Nc∑
l=1

sin(qrkl)

qrkl

)

=
N

Nc
· (vsphere(R) ·ΔSLD)2 ·N2

c

= N ·Nc · (vsphere(R) ·ΔSLD)2,

(24)

where Eq. (11) has been used, and limq→0 sin(qrkl)/(qrkl) = 1. Thus showing that the forward
intensity scales proportionally with the number of particles in a cluster Nc, though the total
number of particles N stays constant.
Last but not least it is mentioned that in a scattering experiment there is an illuminated

scattering volume, which is taken into account by the subsequent transmission correction (be-
sides other transmission corrections, see, e.g., [121, 146]). Accordingly, the modeled scattering
intensity has to be normalized by the volume of the considered system , i.e.,

In(q) =
I(q)

V
. (25)

E.g., the normalized scattering intensity of the collection of clusters described in Eq. (23)
becomes

In(q) = nA2
sphere(q,R)

1

Nc

Nc∑
k=1

Nc∑
l=1

sin(qrkl)

qrkl
, (26)

where

n =
N

V
(27)

is the number density of particles.

9



2 THEORY

2.2. Statistical Inference

A comprehensive and important part of this work is about regression, i.e., a function shall
be fitted to some noisy data. E.g., (i) the fitted function may represent a physical model,
whereby the determined parameters represent some physical quantities (parametric model),
or (ii) the fitted function is a free-form solution, i.e., the determined parameters do not have
a physical meaning, but the functional behavior is of interest. Because of the noise in the
data and the finite data set size, i.e., there are uncertainties incorporated, methods from
statistical inference7 have to be applied in order to perform an optimal regression and in
order to perform model selection.

There are mainly two different schools of statistical inference, the Bayesian and the fre-
quentist one. These two approaches differ in their interpretation of the notion of probability.
In the Bayesian school probability represents the degree of belief (degree of plausibility) of a
person about something, while in the frequentist school probability represents the long-run
relative frequency with which an event occurs [141, §1.4]. In order to exemplify these two
approaches let us consider the following: there is an observed data set D = {(xn, yn)}Nn=1 and
a regression model f(x,w) having the adjustable parameter vector w containing M scalar
parameters wm. xn is an abscissa value and yn its appropriate ordinate value, cf. Fig. 4.
Then, for regression — case (iii) in Fig. 4:

Figure 4: Inference example. It is considered that data (x, y) are generated from the (true)

probability distribution p̂df(x, y). At position x′ the data distribution with respect

to y is described by the (true) conditional distribution p̂df(y|x′), which is given by
the (true) deterministic function ŷ(x) and additional noise ε, i.e., y|x′ = ŷ(x′) + ε.
Then, inference goals can be (i) to determine the joint probability distribution

p̂df(x, y), in this case the overall data generation process is inferred, (ii) to determine

p̂df(y|x′), in this case the generation of y given x′ is inferred or (iii) to infer only the
(true) deterministic function ŷ(x), in this case a noise model is assumed, and then
a function f(x,w) is fitted to the random data set {(xn, yn)}Nn=1 with the goal to
have f(x,w) = ŷ(x), i.e., regression is performed. Note, in the text of this chapter

a data set (x,y) is considered to be a sample from the distribution p̂df(x,y), which
describes the more general case that data in the set can be interdependent.

7Statistical inference (also called scientific inference) means the process of drawing (optimal) conclusions from
uncertain data and hypotheses.
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Frequentist inference: It is considered that there is a fixed and true parameter vector ŵ
(e.g., some fixed physical quantities). Because of the uncertainty within the data, the
inference will yield a point estimate of ŵ, namely w̃. Confidence intervals (error-
bars / uncertainties) in w̃ can be determined by considering the distribution of further
estimates obtained from independent and identically distributed (i.i.d.) data sets [129,
§15.6].

Bayesian inference: It is considered that there is a distribution of possible parameter vectors
before the data set D is observed, which represents the degree of belief about the
parameters in oneself (i.e., the distribution represents the state of knowledge a person
has about the parameters). This a priori distribution is then adjusted according to the
observed data set, yielding an a posteriori distribution of the parameter vector (i.e, one
gains refined knowledge).

The Bayesian inference formula can be derived from the product rule of probability theory8,
and reads as follows

pdf(X|Y ) =
pdf(Y |X)pdf(X)

pdf(Y )
. (28)

pdf(X|Y ) can be interpreted as the a posteriori distribution function9 of an event X (or
a hypothesis being true) given that the event Y (data) has been observed. The a priori
probability distribution function about X is given by pdf(X), and pdf(Y |X) is the condi-
tional probability distribution function for Y under the assumption that X is true and is
called likelihood (function). The denominator on the r.h.s. of this equation is the marginal
probability of Y , which is obtained by integrating the numerator over X (i.e., applying the
sum rule of probability theory); it ensures normalization. It is worth emphasizing that
the a priori probability and the likelihood are built on some available background infor-
mation I. Therefore one should indicate this issue by accurately writing the Bayes formula
as pdf(X|Y, I) = pdf(Y |X, I)pdf(X|I)/pdf(Y |I), but it is not done here, in order to keep
the notation uncluttered. However, all the available information (i.e., constraints on X and
dependence of Y given X) should be incorporated into these functions in order to perform
the inference as good as possible.

If X and Y are substituted by w and D from the regression example above, the Bayes
formula reads

pdf(w|D) =
pdf(D|w)pdf(w)

pdf(D)
, (29)

allowing us to infer the a posteriori parameter distribution of w given the data D and given
some background information I (not explicitly mentioned here). In order to get a more ap-
propriate likelihood function for our regression problem (in which the ordinate values are
generated in dependence of the abscissa values and the parameter vector — case (iii), respec-
tively case (ii), shown in Fig. 4), the product rule of probability theory can be applied on the
r.h.s. of Eq. (29) in order to get

pdf(x,y|w)pdf(w)

pdf(x,y)
=

pdf(y|x,w)pdf(x|w)pdf(w)

pdf(y|x)pdf(x) , (30)

8The product rule of probability theory reads as follows pdf(X,Y ) = pdf(Y |X)pdf(X) = pdf(X|Y )pdf(Y ),
and there is another important rule, called sum rule, that reads pdf(X) =

∑
Y pdf(X,Y ) [16, §1]. Herein,

pdf(X) and pdf(Y ) are the probability distribution functions of X and Y , pdf(X,Y ) is the joint distribution
of X and Y , and pdf(Y |X) is the conditional distribution of Y given X. The rules can be seen [77] as an
extension of the Boolean logic for the case where reasoning has to be done from incomplete information,
and they are unique to perform consistent reasoning [31] — see also, e.g., [141, §1.2-1.3 and appendix B].

9 With pdf(x) we mean the probability distribution function of x. However, in case of continuous x, it is
actually a probability density function.
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where the vector x contains the abscissa values {xn}Nn=1, and the vector y the ordinate values
{yn}Nn=1. Since in the regression problem above, we are looking for a parametric model for y
given x, and the generation of x is not modeled by w (x is statistically independent of w),
i.e., pdf(x|w) = pdf(x), the a posteriori distribution of the parameter vector becomes

pdf(w|x,y) = pdf(y|x,w)pdf(w)

pdf(y|x) . (31)

The best likelihood pdf(y|x,w) is given by the true conditional distribution p̂df(y|x), cf.
Fig. 4. If it is assumed that the data are independent, and, e.g., the true noise generation
at position x is Gaussian N (·) with mean given by the true deterministic function ŷ(x) and
having variance10 σ2, then the likelihood should be modeled as

pdf(y|x,w) =

N∏
n=1

N (yn|f(xn,w), σ2)

=
N∏

n=1

1√
2πσ2

exp

(
−1

2

(yn − f(xn,w))2

σ2

)
,

(32)

and the optimal f(x,w) is given by ŷ(x). Moreover, if a priori there is reason to believe
that the parameters in w are independently distributed as a Gaussian with mean zero and
variance γ−1, the a priori distribution would be

pdf(w) =

M∏
m=1

N (wm|0, γ−1)

=
M∏

m=1

1√
2πγ−1

exp
(
−γ

2
w2
m

)
.

(33)

Substituting Eq. (32),(33) in Eq. (31) and taking the negative logarithm11 of Eq. (31) yields

− ln pdf(w|x,y) = 1

2

N∑
n=1

(yn − f(xn,w))2

σ2
+

γ

2

M∑
m=1

w2
m + const., (34)

where const. includes remaining terms not involving w. Thus, if the parameter vec-
tor that is looked for is one that has the highest a posteriori probability, i.e., wMAP =
argmaxw pdf(w|x,y), one can equivalently minimize Eq. (34), yielding

wMAP = argmin
w

{
1

2

N∑
n=1

(yn − f(xn,w))2

σ2
+

γ

2

M∑
m=1

w2
m

}
. (35)

The subscribed index MAP means maximum a posteriori. Anyway, the MAP solution only
reflects one specific point of the distribution, whereas there might be many further impor-
tant features of the distribution such as width, multi-modality, skewness, etc., which can be
calculated from expectation values of the form

〈Q〉 =
∫

Q(w)pdf(w|x,y) dw, (36)

10 Here, for exemplification, it is not considered that the variance σ2 depends on x, i.e., homoscedastic noise
is assumed.

11Note, the logarithm of the a posteriori distribution does not change the positions of the extrema, since it is
a strictly monotonically increasing function.
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where Q is a desired quantity. If w is high dimensional (M � 3) the integration over w is
usually analytically as well as by means of deterministic numerical integration methods not
possible. Often, however, the expectation value can be determined via the Metropolis-MCMC
method described in section 4.1.

In a frequentist approach, principles that lie outside the rules of probability theory have to
be applied in order to perform inference. Here, e.g., the Kullback-Leibler Divergence (KLD)
[89] from information theory is used to derive a frequentist inference method.12 The KLD

measures the amount of excess information that is required if the true distribution p̂df is
modeled by pdf. The KLD is always larger than zero except if pdf = p̂df:

KLD(p̂df‖pdf) ≥ 0, and KLD(p̂df‖pdf) = 0 ⇔ p̂df = pdf. (37)

Hence, an optimal model can be determined from a class of models by selecting the model
that has the lowest KLD.
Now, consider that data (x,y) are generated according to the true joint distribution

p̂df(x,y), and that pdf(x,y|w) is a model of it — cf. case (i) in Fig. 4. In this case the
KLD reads as follows

KLD(p̂df‖pdf) = −
∫∫

p̂df(x,y) ln

(
pdf(x,y|w)

p̂df(x,y)

)
dx dy, (38)

and minimizing this term with respect to w would allow us to infer an optimal model for the
overall generation of the data. However, here we are interested in the generation of y given
x (cases (ii) and (iii) in Fig. 4)), therefore we use p̂df(x,y) = p̂df(y|x)p̂df(x) and model

pdf(x,y|w) as pdf(y|x,w)p̂df(x), such that the KLD becomes

KLD(p̂df‖pdf) = −
∫∫

p̂df(x,y) ln

(
pdf(y|x,w)

p̂df(y|x)

)
dx dy

= −
∫∫

p̂df(x,y) ln pdf(y|x,w) dx dy +

∫∫
p̂df(x,y) ln p̂df(y|x) dx dy,

(39)

showing that only the first term on the r.h.s. in the last line of this equation, called general-
ization error, makes a cost contribution to the KLD when the KLD is minimized with respect
to pdf. As aforementioned, pdf is described by a noise generating function and a regression
model. If it is assumed that the noise generating function is fixed, then only the parameter
vector w of the regression model has to be determined. Hence the generalization error has to
be minimized with respect to w

argmin
w

{
E
p̂df

(w) := −
∫∫

p̂df(x,y) ln pdf(y|x,w) dx dy

}
, (40)

in order to determine the optimal parameter vector. The integration expresses the general
idea of the frequentist perspective: An infinite amount of data sets is required in order to
perform inference. In practice, however, there is only a finite amount of data, therefore the

12Usually in other works the basis for determining some parameters starts directly with the maximum like-
lihood principle (see below). However, this principle “... is entirely based on intuition. It has no formal
mathematical basis in and of itself.”[129, §15.1]. Whereas the KLD from information theory seems to be a
more fundamental principle, it does not only allow to derive optimal model parameters, but also allows to
derive model selection methods.
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generalization error cannot be minimized directly. As a substitute for it one may consider the
empirical error

E
p̂df

(w) = − 1

ND

ND∑
n=1

ln pdf(yn|xn,w)

= − 1

ND
ln

ND∏
n=1

pdf(yn|xn,w),

(41)

where ND is the number of data sets. For independent data sets, it follows that with proba-
bility one it holds [87]

lim
ND→∞

E
p̂df

(w) = E
p̂df

(w), (42)

because of the strong law of large numbers. Minimization of the empirical error yields

wML = argmin
w

E
p̂df

(w), (43)

which is called maximum likelihood (ML) solution. This is because the negative sum of
logarithms of the likelihood functions is minimized in Eq. (43), which can be replaced by
an equivalent optimization, the maximization of the product of likelihood functions, i.e.,
wML = argmaxw

∏ND
n=1 pdf(yn|xn,w). In practice, there is often only one data set, ND = 1,

containing N data points. Assuming this, and that the N data points in the available data
set are independently generated, then the empirical error reads

E
p̂df

(w) = − ln pdf(y|x,w)

= − ln

N∏
n=1

pdf(yn|xn,w)

= −
N∑

n=1

ln pdf(yn|xn,w).

(44)

Using in this formula, e.g., the Gaussian noise model from above it follows the optimization
problem

wML = argmin
w

{
1

2

N∑
n=1

(yn − f(xn,w))2

σ2

}
. (45)

Since, up to this point, no background information about the function f(x,w) is taken into
account in this approach, trouble can easily arise with the empirical (there are only a finite
number of data points) frequentist inference, especially if a free-form solution is searched. In
this case the function complexity should be high enough, such that the underlying ŷ(x) can
be described reasonably well; otherwise underfitting would occur, meaning that there would
be a systematic error incorporated in the fitted function, see Fig. 5. Accordingly, there should
be enough adjustable parameters controlling the complexity of the function. On the other
side, if there are too many parameters, the function may follow the noise in the data, since
this then decreases the value of the empirical error. This effect is known as overfitting. E.g.,
if there are N data points and if f(x,w) is a polynomial with M = N parameters, all points
are interpolated by f(x,w), and the empirical error is zero — cf. Fig. 5. In this case, the
fitted function will in general not be a good approximation of ŷ, and the polynomial oscillates
strongly. This problem can be easily revealed with a second i.i.d. data set (validation set)
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Figure 5: Regression of a data set consisting of N = 11 samples drawn from a noisy sine. Blue
curves: regression models, black curves: noiseless sines, red crosses: noisy data.
From left to right: fit via a line (wT

ML = (0.66,−0.22)), fit via a polynomial of order
three (wT

ML = (−0.2, 1.9,−0.85, 0.09)) and fit via a polynomial of order ten (wT
ML =

(−0.07,−48.8, 211.5,−356.9, 319.8,−170.5, 56.7,−11.8, 1.5,−0.11, 0.003)).

on which the empirical error is determined, yielding a more objective estimate of the desired
generalization error: the empirical error would give a value larger than zero for the second
data set. In summary: the ML estimator is an estimator that minimizes the empirical error,
but it has the tendency to perform overfitting (hence underestimating the generalization
error) if the fit function is relatively complex and the amount of data is too small, cf. Fig. 6.
However, one may apply the principle of ‘Occam’s razor’ to prevent overfitting. It states,
that the simplest model should be chosen that can explain the data. This idea is contained in
the method of regularization that extends the empirical error for a penalty term Eγ(w) ≥ 0,
which penalizes too complex models. The optimal parameter vector is then determined via

wR = argmin
w

{
E

p̂df
(w) + Eγ(w)

}
. (46)

In the polynomial regression example from above, one may notice that some parameter val-
ues may drastically increase with the number of fitted parameters, cf. Fig. 5, since a fitted
parameter having a large positive value can be compensated by another parameter having a
large negative value, and vice versa. Thus, ad hoc, the following penalizing function

Eγ(w) =
γ

2

M∑
m=1

w2
m γ > 0, (47)

can be considered to prevent large absolute parameter values, if γ is sufficiently large, and
hence gives a simple method to control the model complexity of the solution in Eq. (46). γ is
called regularization parameter. Combining this penalizing term together with the squared
error function (derived from the Gaussian noise model) gives the optimization problem

wR,γ = argmin
w

{
1

2

N∑
n=1

(yn − f(xn,w))2

σ2
+

γ

2

M∑
m=1

w2
m

}
. (48)

The problem of adjusting γ (hence fine tuning the model complexity) appropriately remains.
As explained above, the minimization of the generalization error is the main goal, and it can
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Figure 6: Under- and overfitting. Underfitting: If the model complexity is too low, the model
is poorly approximated and the generalization error as well as the empirical error
are high. Overfitting: If the model complexity is too high, the empirical error is
low (since the model follows the noise in the data), but the generalization error is
high. The optimal model complexity lies between the regime of underfitting and
overfitting.

Figure 7: 4-folded cross-validation scheme. A data set is randomly divided into four disjoint
data sets. In the first run model parameters are calculated on basis of the first three
data sets and the error is determined on the fourth set. In the next three iterations
the process is repeated with different disjoint sets for the calculation of the model
parameters and the determination of the error. Finally, the errors are averaged.

be estimated via calculating the empirical error on a validation set. Consequently, a γ can be
chosen that has the lowest empirical error on a second independent data set.
In case where there is only a single data set available, the generalization error can be estimated
by means of the cross-validation method [111, §1.4.8]. This method works as follows —
cf. Fig. 7 and algorithm 1: The original data set D is divided into K disjoint data sets,

D =
⋃̇K

k=1Dk. Then there are K runs. In the l-th run, the minimizer w
[−Dl]
R,γ is determined on

the data set
⋃̇

k �=lDk, and the empirical error E
p̂df

(w
[−Dl]
R,γ ) is calculated on the l-th data set.

Finally, the average of the K empirical errors gives an estimate of the generalization error for
a certain model (e.g., for a certain regularization parameter). Note, if the set D cannot be
divided into equally sized disjoint data sets, the average calculation has to take into account
the number of elements in each set.
In case the noise is a Gaussian one, having variance σ2, and the data are independently
distributed, another simple method to determine an optimal γ is the following one: At first,
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Algorithm 1 The principle cross-validation algorithm (applied to the problem of selecting
the optimal regularization parameter), cf. also Fig. 7.

1: Create a set of different models. Here, for exemplification, only a set of different regular-
ization parameters {γj}Jj=1 is considered that specify the model complexity.

2: Divide the original data set D into K disjoint sets {Dk}Kk=1, i.e., D =
⋃̇K

k=1Dk.
3: for j = 1 to J do
4: Select model j, γ = γj .
5: for l = 1 to K do
6: wl

R,γj
= argminw

{
E

p̂df
(w|⋃̇k �=lDk) + Eγj (w)

}
7: end for
8: E

p̂df
(γj) =

1
K

∑K
l=1Ep̂df

(wl
R,γj

|Dl)
9: end for

10: Select the optimal model complexity, γ∗j = argminγj Ep̂df
(γj).

the mean of the conditional distribution p̂df(y|x) is defined as

ŷ(x) :=

∫
y p̂df(y|x) dy, (49)

and then it is noticed that the generalization error can be rewritten as — neglecting terms
independent of w, which are irrelevant for a minimization of the generalization error with
respect to w —

E ′
p̂df

(w) = N

∫∫
p̂df(x, y)

(
1

2

(y − f(x,w))2

σ2

)
dx dy

=
N

2

∫∫
p̂df(x, y)

[y − ŷ(x) + ŷ(x)− f(x,w)]2

σ2
dx dy

=
N

2

∫∫
p̂df(x, y)

(y − ŷ(x))2

σ2
dx dy +

N

2

∫∫
p̂df(x, y)

(ŷ(x)− f(x,w))2

σ2
dx dy

+N

∫∫
p̂df(x, y)

(y − ŷ(x))(ŷ(x)− f(x,w))

σ2
dx dy

=
N

2
+

N

2

∫
p̂df(x)

(ŷ(x)− f(x,w))2

σ2
dx+ 0,

(50)

thus showing that if f(x,w) = ŷ(x) the minimum of E ′
p̂df

(w) is given by N/2. In the following

E ′
p̂df

(w) is also called generalization error. Accordingly, the optimal model should have the

appropriate empirical error E′
p̂df

(wR,γ∗) ≈ N/2.

Note, in the frequentist discussion above the true joint distribution p̂df(x,y) is used, since

it was assumed that (x,y) is a random sample from p̂df(x,y) (general case). However, for
SAS data, the random character of x is encoded into y after data pre-processing, and data
are measured at discrete abscissa values. Accordingly, the generalization error in Eq. (40) is
approximated by a generalization error whose expectation is calculated with respect to the
conditional distribution p̂df(y|x), i.e.,

E
p̂df

(w) ≈ E
p̂df(y|x)(w) := −

∫
p̂df(y|x) ln pdf(y|x,w) dy, (51)
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and minimizing E
p̂df(y|x)(w) is equivalent to minimizing the Kullback-Leibler divergence

KLD(p̂df(y|x)|pdf(y|x,w)). Using a finite, discrete data set, the empirical error can be
further on calculated according to Eq. (41), but it then gives an estimate of E

p̂df(y|x)(w),

and for independently distributed Gaussian data (yn|xn ∼ N (y|ŷ(xn), σ2)) the generalization
error from which the constant terms with respect to w are dropped, E ′

p̂df(y|x)(w), is similar

to the result given in Eq. (50):

E ′
p̂df(y|x)(w) =

N∑
n=1

∫
p̂df(yn|xn)

(
1

2

(yn − f(xn,w))2

σ2

)
dyn

=
N

2
+

1

2

N∑
n=1

(
(ŷ(xn)− f(xn,w))2

σ2

)
,

(52)

which is equal to N/2 if ŷ(xn) = f(xn,w) ∀n.
Last but not least, it is mentioned that there are further theoretical concepts (e.g., Akaike

information criterion, Bayesian information criterion, structural risk minimization) that allow
to estimate the generalization performance in dependence of the actual empirical error and a
term that incorporates the complexity of the used function (class), see, e.g., [11].

Noteworthy, the optimization problem for determining an optimal parameter vector wR,γ

in Eq. (48) in the regularized frequentist approach is identical to the optimization problem
given in Eq. (35) for determining the MAP solutionwMAP in the Bayesian approach. However,
the paths to arrive at these optimization problems are conceptually totally different: In the
Bayesian approach all a priori information is used to build the a priori distribution of the
parameters as well as the likelihood, and subsequently the rules from probability theory are
used to perform a structured inference in order to get the a posteriori distribution. In the
frequentist approach different concepts and ad-hoc principles have been applied to infer a
satisfying solution in the case of a finite number of data points.13. Note, if the number of
data points increases in a Bayesian approach, the likelihood term will dominate the prior
term, hence the prior will become irrelevant. Thus, taking the negative logarithm of the
a posteriori distribution and assuming an infinite amount of data, the Bayesian approach
yields essentially the generalization error. Moreover, in the frequentist inference procedure
the optimal parameter vector is always determined by means of solving an optimization
problem, whereas in the Bayesian inference the a posteriori distribution is given by using
basic arithmetic operations (additions and multiplications are required for applying the sum
and product rules of probability theory) and only needs an optimization if, e.g., the MAP
solution shall be determined.
So far not considered is the problem of subjectivity in the Bayesian approach: If, e.g., there

are two persons having the same background information about the a priori distribution of
the parameters, they may incorporate the information differently, yielding different a priori
distributions. E.g., if both persons would know the mean vector μμμw and the covariance matrix
ΣΣΣw of a parameter distribution, one person may find an unimodal distribution in accordance

13 Cox’s theorem [31] states that there is only one unique way of performing consistent statistical inference
(Jaynes [77] remarks that “this article was the most important advance in the conceptual ... formulation
of probability theory since Laplace”). The rules for doing this are encoded in the sum and product rules of
probability theory (that then yield the Bayes formula). Any other method, as done in the ‘ad-hoc devices’
[77] in frequentist approaches, thus lead inevitably to inconsistencies. Jaynes devoted a whole chapter in his
book [77] to inconsistencies of frequentist statistics, showing paradoxes of unbiased estimators, confidence
intervals, statistical tests, etc. (see also [111, §6.6]). In [129, §15.0.1] “Either you become a Bayesian or else
you must live in a world with no general calculus of inference.”.
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with μμμw and ΣΣΣw, while the other person may take a different distribution, e.g., a bimodal
one, which satisfies μμμw and ΣΣΣw, too. In order to overcome such ambiguities, the maximum
entropy method (MEM) [76] can be applied to get a unique distribution that is in accordance
with the constraints. People following this approach belong to the objective Bayesian school,
while the others belong to the subjective Bayesian school. The MEM maximizes the entropy
[139] of the probability distribution with respect to the given constraints. E.g., if the mean
vector μμμw and the covariance matrix ΣΣΣw of the distribution are known, the distribution that
is found by the MEM is the Gaussian one N (w|μμμw,ΣΣΣw) [54, appendix E].14,15

Another aspect that has not been discussed so far is the issue of model comparison / model
selection. E.g., if there are two different physical models or two different classes of free-
form functions (e.g., one class may consist of a number of adjustable sine functions and the
other class may consist of a number of adjustable b-splines) and the ‘optimal’ model shall be
selected.
As discussed above, in frequentist inference the fundamental idea is to minimize the KLD,

or equivalently the generalization error, and therefore an optimal model is one that has the
lowest generalization error. Thus, the model selection procedure in a frequentist approach
only requires an estimation procedure of the generalization error in order to perform model
comparison. Often cross-validation is a good choice.16 However, if there are two different
models yielding the same value of the KLD, additional knowledge is required in order to
perform model selection.
In the Bayesian inference, the principle idea is to assign a posteriori probabilities, in accor-

dance with the rules of probability theory, to the models and their parameters given that some
data are observed. It essentially adjusts the a priori probabilities (of the models and their
parameters) in accordance with the observed data to yield the joint a posteriori distribution of
the models and their parameters. In the following it is assumed that there is a set of K model
classes {Hk}Kk=1, and each model can have Lk hyperparameters17, summarized in the vector
θθθk, and has a parameter vector wk with Mk elements. Then, the a posteriori distribution is
pdf(wk, θθθk, Hk|D), where D is the observed data set. The product rule of probability theory
can be sequentially applied in order to rewrite pdf(wk, θθθk, Hk|D): Firstly,

pdf(wk, θθθk, Hk|D) = pdf(wk|θθθk, Hk,D) pdf(θθθk, Hk|D), (53)

where
pdf(θθθk, Hk|D) = pdf(θθθk|Hk,D) pdf(Hk|D), (54)

and hence

pdf(wk, θθθk, Hk|D) = pdf(wk|θθθk, Hk,D) pdf(θθθk|Hk,D) pdf(Hk|D). (55)

Each term on the r.h.s. of Eq. (55) can be interpreted as an a posteriori distribution in a hier-
archical inference procedure [98],[131, §5.2]. On the lowest level the probability distribution
of wk is inferred given θθθk, Hk and D

pdf(wk|θθθk, Hk,D) =
pdf(D|wk, θθθk, Hk) pdf(wk|θθθk, Hk)

pdf(D|θθθk, Hk)
, (56)

14In section 6.1.5, the MEM is used to determine an orientational distribution function.
15A distribution that maximizes the entropy subject to a set of constraints can be seen as the most general

(i.e., maximally non-committal) distribution that is consistent with the constraints.
16There are also other model comparison methods like the well known Akaike Information Criterion (AIC)

that is asymptotically equivalent to the cross-validation method [145]. However, in practice it can also
easily give misleading results [16, §4.4.1] if the model parameters are not “well-determined”.

17 E.g., the width of a Gaussian a priori distribution can be an uncertain hyperparameter.
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with the marginal likelihood

pdf(D|θθθk, Hk) =

∫
pdf(D|wk, θθθk, Hk) pdf(wk|θθθk, Hk) dwk. (57)

On the second level of inference, the a posteriori distribution of the hyperparameters θθθk given
Hk and D is determined by calculating

pdf(θθθk|Hk,D) =
pdf(D|θθθk, Hk) pdf(θθθk|Hk)

pdf(D|Hk)
=

∫
pdf(θθθk,wk|Hk,D) dwk, (58)

where the marginal likelihood is

pdf(D|Hk) =

∫
pdf(D|θθθk, Hk) pdf(θθθk|Hk) dθθθk. (59)

At the top level, the model a posteriori probabilities are inferred:

pdf(Hk|D) =
pdf(D|Hk) pdf(Hk)

pdf(D)
=

∫∫
pdf(wk, θθθk, Hk|D) dwk dθθθk, (60)

where the marginal likelihood is

pdf(D) =

K∑
k=1

pdf(D|Hk) pdf(Hk). (61)

As it is shown here, the Bayesian inference procedure can be a well structured one, and can
be easily extended to even more nested model classes. In accordance with this hierarchical
inference procedure, Eq. (55)-(61), hierarchical model selection can be done by first selecting
the most probable model class given the data D

k∗ = argmax
k

{pdf(Hk|D)}, (62)

i.e., the MAP solution (of the joint a posteriori distribution in which wk and θθθk are marginal-
ized out) for the model class. Next, the MAP solution for the hyperparameters given Hk∗

and D reads

θθθ∗ = argmax
θθθ

{pdf(θθθ|Hk∗ ,D)}, (63)

and finally the MAP solution for the parameters given θθθ∗, Hk∗ and D is

w∗ = argmax
w

{pdf(w|θθθ∗, Hk∗ ,D)}. (64)

Anyway, performing the whole inference procedure given in Eq. (55)-(61) is usually analyt-
ically as well as by means of deterministic numerical integrations not possible because of
the nested and often high-dimensional integrals.18 In this case Monte-Carlo methods may
be used to sample from the distributions. E.g., by means of the Metropolis-MCMC method
described in chapter 4.1 it is possible to draw samples from a distribution that is proportional
to a desired distribution, and determining the appropriate normalization constant (marginal
likelihoods) may be achieved by applying an extended Metropolis-MCMC method [163] or
by using nested sampling methods [142, 42]. Complementary to these statistical sampling

18This is still a reason why simple concepts for performing model selection (e.g., cross-validation) are often
taken.
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methods are deterministic approximate inference methods. E.g., there is the Laplace approx-
imation of a distribution around its mode by a Gaussian (cf. section 3.2, page 33) or, e.g.,
the involved distributions are assumed to be well approximated by factorizing distributions
(this is a special case of variational inference [16, §10.1]), such that the nested integrals can
be written as a product of integrals.
Of course, model selection via pdf(wk, θθθk, Hk|D) can mathematically also be performed by

determining the global maximum of the joint a posteriori distribution

(w∗
k∗ , θθθ

∗
k∗ , Hk∗) = arg max

(wk,θθθk,Hk)
{pdf(wk, θθθk, Hk|D)}, (65)

neglecting any hierarchical inference interpretation. Note here that the Bayes formula only
describes the mathematical procedure of how consistent inference is performed, but it does
not make any statement of how the variables are to be interpreted or how to encode
them in the formula. As explained above background information should be encoded ob-
jectively in the formula, and usually the hierarchical variable model is chosen, since then
the hierarchical model selection given in Eq. (62)-(64) prevents from selecting an overfit-
ted model. This is because in a hierarchical model selection procedure the principle of
Occam’s razor is intrinsically contained within the marginalization process (see, e.g., [16,
§3.4]): Consider different model functions/classes. Then, if a model function is more com-
plex than another one, it can create more different data sets D than the simpler model, i.e.,
pdf(D|Hk) =

∫ ∫
pdf(D|wk, θθθk, Hk) pdf(wk, θθθk|Hk) dwk dθθθk is broader for the more complex

model, and thus it is very likely that the probability pdf(D|Hk) for a specific data set D′ will
be less for the more complex model (since the total area under the distribution pdf(D|Hk) is
normalized), see Fig. (8). Therefore, if the a priori distribution of models pdf(Hk) does not
influence Eq. (60) much, the model that is selected by means of Eq. (62) is the one that has
the highest pdf(D′|Hk), and is likely to be the simplest one that is in agreement with the
data; hence the principle of Occam’s razor is implemented. On the second level of inference
one can argue as on the top level. Hence, the hierarchical model selection procedure can be
performed, in order to prevent from selecting an overfitted model. However, if overfitting does
not occur, and if there is no need for a hierarchical model description, the maximization of the
joint a posteriori distribution, Eq. (65), is computationally less demanding than performing
the hierarchical model selection via Eq. (62)-(64), and can be applied as well — e.g., it is
applied in section 3.2 in Eq. (72)-(74).
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Figure 8: Hierarchical model selection incorporates the principle of Occam’s razor — a
schematic illustration. Three different model classes {Hk}3k=1 are considered, where
H1 is the simplest model and H3 the most complex one. Model class H1 is only able
to generate a few different data sets D, hence the distribution pdf(D|H1) is con-
fined on a small interval, and in this interval pdf(D|H1) is relatively high (i.e., the
probability that model H1 generates a data set from this interval is relatively high).
Model class H3 is the most complex one, and thus can generate many different data
sets. Therefore the distribution pdf(D|H3) is very broad, and hence pdf(D|H3) is
relatively low. The model complexity of H2 lies between the complexities of H1 and
H3, and H2 has for the data set D′ the highest likeliness. Hence, if the data set D′

is observed, this intermediate model will be preferred to the more complex model
H3 (if there is no further impact by a weighting with the priors, cf. Eq. (60)) in
the hierarchical model selection scheme. Therefore, the hierarchical model selection
procedure incorporates the principle of Occam’s razor.
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3. SASET and Model Fitting

This section discusses the issue of fitting physical models to scattering data in order to in-
fer structural information from a SAS experiment. As outlined in section 2.1 (approach 3
(page 4), and text thereafter), a robust way to infer structural information from a scatter-
ing experiment is to build a physical model of the scattering system (as well as to assume
a noise model), and then to use an optimization routine to fit the model to the scattering
data, i.e., to perform regression (cf. section 2.2), in order to determine optimal model param-
eters. The development of the fitting program SASET is a centerpiece of this thesis. This
program is unique in that it allows to perform fast and simultaneous model fitting of large
SAS data sets/series with flexible models and optimization options; it is presented in the next
subsection. The subsequent subsection, discusses the case of model fitting in the context of
the Bayesian and frequentist statistical inference, which sheds light on the trustworthiness of
fitted models and the uncertainties of model parameters. In the last subsection simultaneous
model fitting is performed in order to exemplify the potency of SASET as well as to discuss
the results from section 3.2 in the context of real data fits.

3.1. SASET

Many different SAS analysis programs are used today [88, 132, 127, 150, 61, 32, 179, 36],
either proposed by facilities for their users or developed in groups specializing in SAS. How-
ever, a systematic trend of such software is that they are developed by scientists with little
programming knowledge, initially for a very specific, narrow and typically not very challeng-
ing task, with new functions added progressively as ‘patchs’ on the original code. As a result,
relatively powerful options, such as simultaneous or series fitting, are under-performing, and
only work well for quite simple cases. For example, SASfit [88], originally developed by J.
Kohlbrecher during his PhD thesis in the early 90s, can handle simultaneous data set fitting
since many years and series fitting since a couple of years. However, the architecture of the
software, originally conceived for single data set fitting, creates restrictions for both features.
Simultaneous fitting of more than 10 spectra, even with a simple model and few fit parame-
ters, becomes extremely time consuming, parameter ranges cannot be constrained, and only
a simple relationship between global parameters can be handled. Series fitting requires that
all spectra are very similar so that minor changes in parameters are a prerequisite, and any
failure to fit will result in the interruption of the series fit. Yet this program is probably so far
the most used, and the ‘best’, proposed to the SAS community. Even more recent projects,
such as SASview, are lagging behind in terms of functionalities.

At the opposite, the new and homemade program SASET (SAS Evaluation Tool, SASET)
has been purposely designed to handle large amounts of data efficiently, and it taps into the
vast capabilities of MATLAB for minimization algorithms; thus allowing for performing model
fitting with virtually unlimited constraints between parameters. SASET is published in [113],
and the software is available from [112]. A preliminary version of SASET was implemented
by the author in his diploma thesis, and it could mainly accomplish the following: it could
perform 1-dimensional model fitting on a whole series of scattering curves via the Levenberg-
Marquardt algorithm (without constraints), and it could extract 1-dimensional scattering
curves from 2-dimensional images. In the this work, new features, which are listed below,
have been added to SASET in order to allow for more complex, comprehensive and efficient
SAS data analysis, and therefore state of the art experiments, where a lot of information
has to be processed, can be easily evaluated. All features are implemented user-friendly.
Moreover, many physical model functions have been implemented, and are fully documented
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within the help of SASET — available from within the program. Tutorials with step-by-step
instructions for all major features/topics are accessible from the main interface.
An essential aspect of the development of SASET is that it results from the interconnection

between a software engineer and scientists from physical-chemistry, resulting in a sophisticated
code tailor-made for the practical problems of end users. E.g., the option of simultaneous
fitting (see below) has been developed in direct cooperation with Dr. Katharina Bressel, who
gave a lot of useful ideas to make the program interaction very user-friendly. Dr. Bressel used
SASET extensively for analyzing time-series of scattering data of self-aggregating colloidal
systems (see also section 5), obtained from different experimental SAXS configurations, by
means of performing simultaneous series fitting. The results of these analyses are published
in [23, 24, 25].
The realization of users wishes resulted in a versatile, efficient and user-friendly program.

In the present work following main features have been added to SASET:

1. New optimization procedures are available for performing (series) model fitting. These
procedures are

(i) the lsqcurvefit() procedure of MATLAB, and

(ii) the fmincon() procedure of MATLAB,

which allow to perform model fitting with constraints. Constraints allow to incorporate
information derived from other experiments or the molecular or mesoscopic build-up of
the system, thereby enhancing the reliability of the inferred structural information, cf.
section 2.2. The originally implemented Levenberg-Marquardt algorithm does not allow
to use constraints in its fitting procedure. The two newly included algorithms allow to
define lower and upper parameter bounds: Let a the parameter vector controlling the
model function f(q,a), where q is the magnitude of the scattering vector, and let D =
{(qn, In, σn)}Nn=1 the observed scattering data set, where In is the n-th intensity value
measured at position qn and having the uncertainty σn, then the following optimization
problem can be solved by the new algorithms in SASET

argmin
a

{
N∑

n=1

[
In − f(qn,a)

]2
2σ2

n

}
subject to lb ≤ a ≤ ub, (66)

where lb is a vector defining the lower bounds of the parameters in a, and ub is a vector
defining the upper bounds of the parameters. Additionally, the fmincon() procedure
allows to perform model fitting with even more general constraints in Eq. (66), which
are given by

c(a) ≤ 0,

ceq(a) = 0,

A · a ≤ b, and

Aeq · a = beq,

(67)

where c(a) and ceq(a) are (nonlinear) vectorial functions of the parameter vector a,
A and Aeq are matrices, and b and beq are vectors. Nonlinear constraints become
useful in cases such as fitting the scattering intensity of a multi-component complex
fluid where only overall values are experimentally known, e.g., in bimodal mini-/micro-
emulsions where the total concentrations of oil, surfactants and cosurfactants are fixed
[69]. Therein nonlinear constraints allow to insure that the total volume fractions of
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oil (inside mini-/micro-emulsion droplets), surfactants (at the interface of the droplets)
and cosurfactant (possibly partitioned between the interface, the oil and the water,
where interfacial cosurfactant amount depends on the curvature) are fixed. Inequality
constraints are useful to insure that quantities of interest stay below or above certain
threshold values.

2. Different data sets can be fitted simultaneously by SASET. Simultaneous fitting means
that there are different data sets with corresponding models, and that the models are
coupled by common/global parameters within the fitting procedure. Such a situation
arises frequently in SANS experiments for the case of external or internal contrast
variation, but also if there are SANS and SAXS data for the same sample, or when
using Anomalous SAXS (ASAXS). By means of simultaneous fitting one then is able to
infer more reliably structural parameters and can also employ refined structural models
that use the enhanced information content of such experiments. Then, the fitting routine
minimizes over a parameter space that is given by the global parameters as also by the
non-global parameters: Given K data sets {Dk}Kk=1, where Dk = {(qnk, Ink, σnk)}Nk

n=1,
and corresponding models {fk(·, ·)}Kk=1, the optimization problem reads as follows

arg min
b,{a′

k}Kk=1

{
Es :=

K∑
k=1

wk

Nk∑
n=1

[
Ink − fk

(
qnk,gk(ak,hk(b, ck))

)]2
2σ2

nk

}
(68)

with

gk : R
Mk × R

Lk → R
Mk

(ak,Hk) �→ ãk
(69)

and

hk : R
b × R

d → R
Lk

(b, ck) �→ Hk.
(70)

ak is the primal parameter vector of the k-th model. The mapping gk(·, ·) returns ãk that
is identical to ak except that Lk entries are bijectively replaced by elements of Hk. The
parameters that are not replaced are collected in a′k. The elements of Hk = hk(b, ck)
are calculated from the global parameter vector b and some fixed parameters in ck that
are associated with the k-th data set. ck can directly be defined from the header of
a BerSANS [83] file, but can also be set manually. {wk|wk ∈ R+}Kk=1 is a set of fixed
weights, which allow to weight the k-th contribution in the cost function.

The user can interactively define the global parameters b as well as the functional be-

havior, i.e., the functions
{(

gk(·, ·),hk(·, ·)
)}K

k=1
, in a table. Thus, a coupling of the

model functions can be performed quickly and adapted to the problem at hand. Con-
sequently, contrast variation data sets as also data coming from different instrumental
setups (e.g., different sample-to-detector distances resulting in different instrumental
resolution functions) can easily be analyzed.

The optimization procedure that is used for simultaneous fitting is lsqcurvefit(). It
is planned that fmincon() will be available as well in a later SASET version.

3. Parallel methods have been implemented in order to speed up the fitting procedure:
(i) integration procedures can be performed in parallel mode, (ii) if a simultaneous fit
is performed, the model functions can be calculated in parallel mode.
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These new parallel program features can be used, if there is an open pool of MATLAB
workers. A MATLAB worker is an additional running MATLAB instance that runs in
the background of the main instance. It should have its own resources, i.e., it should
use its own core and enough memory should be available for it. Then, the program
parallelization is achieved by sending independent statements (e.g., the body of a parallel
for-loop) from the main MATLAB instance to the different workers. Of course there
is a communication overhead when the main MATLAB instance communicates with
the workers, due to sending the statements to the workers and sending the results back
from the workers to the main MATLAB instance. Thus, the statements that shall be
calculated in parallel have to be sufficiently time consuming to at least compensate the
communication overhead.

Following benchmarks are done — on a PC with an Intel R© CoreTM i7 CPU 860 at
2.8 GHz (4 cores, 8 threads), running Matlab2012b, and eight local Matlab workers are
used in parallel mode — with compute-intensive models to highlight time differences:

(i): A typical case is the scattering of a polydisperse, lognormally distributed collection
of cylinders, which can be computed by employing the model lognpdfInRCylinders()
in SASET. The evaluation of this function takes in non-parallel mode ca. 1.5 s for
200 different q-values, whereas the calculation takes ca. 0.4 s in parallel mode with
eight workers (100 integration support points for the integration over the lognormal
distribution are used, and 50 integration support points for the orientational average of
a cylinder). Hence, the speedup19 is ca. 370%.

(ii): For the more compute-intensive model homogeneousSpheresCLSF(), which cal-
culates the scattering of spheres interacting with a crystalline structure factor, the
execution speed in non-parallel mode is ca. 6.1 s, and in parallel mode ca. 1.3 s (for
200 different q-values, and 250 integration support points for each of the two inherent
integrations). Hence, the speedup is ca. 470%.

(iii): Fitting a polydisperse core-shell-(linear corona) model with polydisperse hard
sphere structure factor (see section 3.3.1) to the data set 3 (containing four measured
intensity curves) from section 3.3 takes ca. 600 s in non-parallel mode and ca. 185 s if
the functions are calculated in parallel. Hence, the speedup is ca. 320%. (If the content
of the functions is calculated in parallel mode the fit takes ca. 245 s.)

These benchmarks show typical speedups. Moreover, the benchmarks show that even
if there are eight local workers available, the speedup typically does not increase much
more than 400% if there are only four cores available. In principle, one would ex-
pect that, e.g., with eight cores and eight threads the performed benchmarks (i) and
(ii) would have a speedup of ca. 700 – 800% in parallel mode, whereas for case (iii) one
would not expect an increase of the speedup in parallel mode when the functions are
calculated in parallel, since there are only four different functions to be calculated.
More detailed analyses of the benchmarks are difficult, since, e.g., CPU frequency (in
particular ‘turbo-boost’ mode with modulation of the frequency depending on the type
and number of tasks), cache memories of various levels and also hyper-threading ef-
fects have to be taken into account (hyper-threading being known for having sometimes
counter-productive effects).

Note that MathWorks restricts the number of MATLAB workers in the Parallel Com-
puting Toolbox, but MathWorks regularly increases it when new processors with more

19The speedup is defined as Told/Tnew [172], where Told is the old execution time, i.e., without the improvement,
and Tnew is the new execution time, i.e., with the improvement.
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cores are released. Thus, over the next few years SASET will be able to exploit new
CPUs with more cores and thus it can become even faster for complex calculations.

4. A model function file parser has been implemented. This parser does the following:

a) Scattering model function files being in certain directories of the SASET parent
folder are automatically available from a pop-up menu in the fitting Graphical User
Interface (GUI). Consequently, this allows users to write their own model functions,
save them in a separate directory, and access them from within the GUI.

b) If a model function is selected from the pop-up menu, the function file is analyzed
for consistency and a function definition is created (which includes the definition
of fit start values, lower and upper parameter bounds as well as an information
whether a parameter shall be fitted or not) that is then set into some edit-fields of
the fitting GUI. Because the function definition is editable within the edit-fields,
this easily allows to manipulate it for minor changes. Moreover, there are further
tools, which allow, e.g., (i) to edit conveniently the fit start parameters in a table,
as well as their bounds and the information whether a parameter shall be fixed or
not, and (ii) to easily add a smearing function to a current function definition.

c) A model function file can be endowed with a result function and a plot function (i.e.,
a certain string information can be added as a comment that is then interpreted
by SASET as a special function call). This allows to evaluate further functions
given the parameters of the current model, e.g., in order to calculate meaningful
structural parameters (e.g., the gyration radius) or the forward intensity of the
current model, or to create a plot in dependence of the current model (size distri-
bution, scattering length density profile, effective structure factor, 2-dimensional
cross section or 3-dimensional representation of the shape of the scatterer, etc.).

The principle form of a model function file is described in Fig. 9. As explained there, the
code may also contain further comments and specific commands, which then allow to
generate an associated function description/help (containing, e.g., hyperlinks, images,
and LATEX formulas) out of it, cf. Fig. 10.

The implemented parser uses a lot of regular expressions in order to look for patterns
in the function file.

5. A file parser, similar as the one described in the last point, has been implemented in
order to access and use anisotropy function files within SASET (cf. section 6 for the
anisotropy measurement methods that are by default available in SASET).

6. The fit start parameters of a whole 1-dimensional scattering data series can be defined
in a table.

7. Different radial or azimuthal intensity curves can be extracted from a 2-dimensional
image and attached with a label. Hereafter, the labeled set of intensity curves can be
fitted simultaneously. This extraction and labeling of intensity curves works also on
series of scattering images.

Before in section 3.3 a simultaneous fitting evaluation is performed on an interpolyeletrolyte
complex system, which has been done with SASET, a general discussion about fitting of
physical models is given in the next section.
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Figure 9: An exemplary model function file, the associated help is depicted in Fig. 10. The
function file is divided into two main blocks. Block 1 is used to create the main
function help/description. This block is partitioned into cell blocks, where a cell
starts with ‘%%’. Each cell is a separate section within the function help, where
the string behind ‘%%’ gives the section title. In the first cell (from top) a general
description of the model function file is given. In the second cell a formula is written
in LATEX, which produces a formula in the help file. In the 5th cell a command is
used that includes an image in the help file. The 3rd and 4th cells are information
that allow to call result functions or plot functions — see the text. Block 2 defines
the sphere function. Herein a is a parameter vector with five elements that are
specified in block 2a-i, and the appropriate parameter descriptions are given in
block 2a-ii. In block 2a-iii start fit values (default = ...;), lower (lb = ...;) and upper
(ub = ...;) bounds are defined as well as an information whether a parameter shall
be fitted or not (aFixed = ...;). The sphere function is calculated in block 2b.
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Figure 10: The help file associated to the function file in Fig. 9.
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3.2. Fitting of Physical Models

Fitting a physical model to some scattering data is an instance of regression. As outlined in
section 2.2, there are two statistical inference approaches, a frequentist one and a Bayesian
one, that can be used to perform regression. In both approaches a likelihood function needs
to be defined, and as explained in section 2.2, it can be described by a noise model together
with a model function. In SASET a weighted square sum of errors is used as the objective
function, cf. Eq. (66),(68), and thus a heteroscedastic Gaussian noise model is implicitly
assumed. In practice, the Gaussian noise model is often a good choice, because of the Central
Limit Theorem, which states that a sum of independent random numbers becomes more and
more Gaussian distributed as the number of random numbers increases. In SANS single
neutrons are counted, and hence the intensity measured by a detector pixel can be described
by a Poisson distribution. Hence, if many neutrons (� 20) are counted the distribution is well
described by the Gaussian one. Also if less neutrons are counted the involved transmission
correction procedure additionally leads to a more Gaussian like distribution. For SAXS (or
light scattering) one can usually consider a flow of photons (very high number of photons) and
the Gaussian noise assumption should be a rather good one (aside from detector non-ideal
behavior).20

In the frequentist inference the goal is to minimize the generalization error, Eq. (40) (respec-
tively Eq. (51)), and as long as no overfitting occurs this can be accomplished by minimizing
the empirical error, Eq. (41), respectively encoded in Eq. (66),(68). If overfitting occurs the
generalization error can be estimated by methods like cross-validation, see section 2.2.
As explained in section 2.2 overfitting describes the case when the model function follows

the noise in the data. In case of fitting a physical model function to a scattering curve
overfitting usually does not occur21, since

(i) a scattering curve is ‘oversampled’, meaning that the data curve is still very well repre-
sented, if, e.g., only every second data point from the original data curve is taken into
account, and

(ii) the number of fit parameters is small, and additionally often the parameters are very
likely to be correlated, meaning that there is less freedom to vary independently the
parameters in order to get a better fit.

Consequently, the generalization error can be estimated by the empirical error. Accordingly,
if there are a number of different physical model fits, the fit having the smallest empirical
error will define the optimal model. Here, the classical frequentist inference finishes.
However, performing model selection only on the criterion of having the lowest generaliza-

tion error may not be a good approach, since no a priori knowledge is taking into account.
This can then lead to obscurities and inconsistencies (cf. also footnote 13, page 18), e.g.,

(a) in general two different scattering models may produce the same intensity curve, but
then there is no clue what model is the true or better one, and

20Also if the Gaussian noise assumption is often a good one in practice, sometimes one may experience outlier
points. In this case the Gaussian noise model is not a good choice, since the Gaussian has rather short
distribution tails, which then lead to a huge contribution of the outlier points to the objective function,
and which may then lead to a wrong inference of the shape of the regression function. This problem can be
circumvented with distributions having longer tails (e.g., the Lévy distribution or the Cauchy (Lorentzian)
distribution), and hence give a more robust estimation [129, §15.7].

21For the IFT method in section 7 the case is different: The data curves are still oversampled, but there are
many free-form parameters to be adjusted that are only weakly interdependent. In this case overfitting can
occur and cross-validation becomes useful.
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(b) a model may have a lower fitting error as another model, yet be physically much less
likely.

For case (a) the principle of Occam’s razor (cf. section 2.2) can be applied, hence the simplest
model should be selected; but simplicity can be considered within a mathematical model
description (e.g., a model could have less parameters as the other one) as well as within a
physical model description (e.g., the physical surface of a model could be less smooth as the
one from the other model, and thus it might have a higher surface energy, and therefore this
model might be less plausible). Indeed, model selection should respect the physical model
assessment and the mathematical one, but there is no consistent approach to accomplish this
within the frequentist school. In case (b) the fits must be analyzed with respect to where
the mismatch of a model is coming from in order to subsequently perform model selection.
As explained above the mismatch is usually not resulting from an overfitted model function,
instead it is because of underfitting occurs, meaning that there is a systematic error within
the fit, which results from a wrong physical model description22 (often a too simple one) of the
scattering system (e.g., assuming spheres instead of ellipsoids) or of the scattering conditions
(e.g., wrong or missing resolution function, existence of multiple scattering, aging of sample
during measurement). E.g., if a fit is wrong in the low q-regime, and the measured intensity
decreases in this regime, it might be that a structure factor of interacting particles is badly
modeled instead of having big core-shell objects that produce a similar intensity but are very
unlikely. Then, based on these considerations (i) model selection should be done or (ii) the
structure factor should be better modeled and then, this new physical model has to be refitted
to the data.

Last but not least, the question arises how trustworthy the inferred model parameters
are. Since a frequentist approach is considered many i.i.d. data sets need to be generated (as
discussed in section 2.2), which can be obtained by repeating the experiment many times or by
an artificial generation via, e.g., the bootstrap method [129, §15.6.2]. Then, on each of these
data sets a model fit must be performed, which finally yields a joint parameter distribution.
The uncertainty of a parameter is then obtained by taking the standard deviation of its
marginalized distribution. Furthermore, the correlation of two parameters can be gained
by determining the covariance of the joint two-parameter distribution (in which the other
parameters are marginalized out). However, since the scattering data curves are oversampled,
the width of the distribution can be expected to be very small, except if the scattering data
do not contain any well defined features at all (e.g., if the scattering data values are nearly
constant and a Gaussian distribution shall be fitted to them, then the width of the Gaussian
distribution can be quite uncertain).

Another frequentist approach to describe the goodness of the determined parameters is
given by inspecting the curvature of the likelihood function at its maximum [122, §2.5, 3.4].
Therein, the idea is that the logarithm of the likelihood function, called log-likelihood, can
often be well described by a quadratic function around its maximum likelihood solution.
Then, if the modulus of the curvature is high, it corresponds to a strong peak, and hence
‘intuitively’ [122, §2.5] indicates less uncertainty about the parameters as if the curvature is
low. The curvature of the negative log-likelihood is given by the Hessian matrix of the neg-
ative logarithm of the likelihood, Eq. (44), i.e., −∇∇ ln pdf(y|x,w), which is called observed
(Fisher) information matrix [180, §3.2.1], and the square root of its inverse can be related to
the width of the peak, hence can be used to define parameter uncertainties. No more details

22 A poor data reduction can also lead to poor data. In this case the data reduction has to be improved —
for a discussion on the many correction steps (a number of them are actually rarely performed) in data
reduction for SA(X)S can be found in [121] and [146].
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are given here, since in the Bayesian approach below, a very similar discussion is given about
uncertainties of the determined parameters; then from Eq. (79) by setting the second term on
the r.h.s. to zero (i.e., the Bayesian prior is removed) parameter uncertainties are quantified
for the frequentist approach.

In the Bayesian inference, the main goal is the determination of the joint a posteriori
distribution pdf(wk, θθθk, Hk|D), Eq. (55). Subsequently, based on the determined a posteriori
distribution model selection can be performed. Since a physical model is considered, it seems
logical to perform hierarchical model selection via Eq. (62)-(64), as discussed in section 2.2.
However, such an approach can easily be very compute-intensive, since the involved likelihood
functions are nonlinear (because of the inherent nonlinear physical models), and the formula
requires the calculation of many nested integrals: E.g., consider that a ‘simple’ physical model
function has two inherent integrations (e.g., one for the model itself and another one for a
resolution function), and that the model has two adjustable parameters, then the inference
formula may end up with six nested integrations if addtionally two hyperparameters are
considered for the two parameters. Usually, only deterministic approximate inference methods
as well as MC methods can solve such a problem, cf. section 2.2 and 4.1. Note that further
integrations are required for the other considered models. However, the number of integrations
can be reduced if the hyperparameters are considered to be fixed. Then, in the given example
only four nested integrations need to be calculated, but this is still a demanding problem.
In order to get a more tractable solution the following is considered: As explained above,

the models are usually underfitted, i.e., there is a systematic error, and as discussed in sec-
tion 2.2, the global maximum, Eq. (65), can then be used to identify the optimal model,
hyperparameters, and parameters simultaneously. For simplicity it is assumed that the hy-
perparameters are fixed (respectively do not exist), then the a posteriori distribution can be
written as

pdf(wk, Hk|D) =
pdf(D|wk, Hk)pdf(wk, Hk)

pdf(D)

=
pdf(D|wk, Hk)pdf(wk|Hk)pdf(Hk)

pdf(D)
.

(71)

Hence, its maximization gives the joint MAP solution

(w∗
k∗ , Hk∗) = arg max

(wk,Hk)
{pdf(D|wk, Hk)pdf(wk|Hk)pdf(Hk)} , (72)

which can be accomplished by a sequential optimization where at first for each model the
optimal parameter vector is determined

w∗
k = argmax

wk

{pdf(D|wk, Hk)pdf(wk|Hk)}, (73)

and then the optimal model can be selected via

H∗
k = argmax

Hk

{pdf(D|w∗
k, Hk)pdf(w

∗
k|Hk)pdf(Hk)}. (74)

Eq. (73) can be seen a regularized optimization (cf. the Gaussian example in Eq. (35)),
which becomes a non-regularized optimization if pdf(wk|Hk) is considered to be constant:
in this case maximization is accomplished equivalently by minimizing the empirical error,
Eq. (41), respectively encoded in Eq. (66),(68). Based on physical considerations and infor-
mation gained from other experiments, upper and lower parameter bounds can often be used
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in the conditional a priori probability distribution pdf(wk|Hk). Specifying pdf(Hk) is usually
not so easy, since this requires a detailed physical understanding of the system together with
a method of how to encode this knowledge as a probability. However, if there is knowledge
from other experiments stating that the relative frequency of occurrence of model Hk is rk,
then pdf(Hk) = rk.

The trustworthiness of an optimally determined parameter vector w∗
k for a given model Hk

is fully described by the conditional a posteriori distribution pdf(wk|Hk,D). The functional
behavior of pdf(wk|Hk,D) around the mode w∗

k can be locally approximated via a Taylor
expansion. However, a common practice is to perform a Taylor expansion on the logarithm
of pdf(wk|Hk,D), since pdf(wk|Hk,D) is often a very ‘peaky’ function around the mode
[141, §2.2] that can often be well described by a Gaussian distribution. Hence, the local
approximation gives

ln pdf(wk|Hk,D) ≈ ln pdf(w∗
k|Hk,D) +

1

2
(wk −w∗

k)
T
[∇∇ ln pdf(wk|Hk,D)

]
w∗

k
(wk −w∗

k),

(75)
and approximately yields

pdf(wk|Hk,D) ∝ exp

{
1

2
(wk −w∗

k)
T
[∇∇ ln pdf(wk|Hk,D)

]
w∗

k
(wk −w∗

k)

}
(76)

around w∗
k. Herein,

[∇∇ ln pdf(wk|Hk,D)
]
w∗

k
is the Hessian matrix of ln pdf(wk|Hk,D) eval-

uated at w∗
k, and defines the curvature of ln pdf(wk|Hk,D) at w∗

k. Eq. (76) has the form of a
multidimensional Gaussian distribution [126]. Therefore, the negative of the inverse Hessian
matrix can be identified as the covariance matrix of a Gaussian distribution

cov(w∗
k) = −

([∇∇ ln pdf(wk|Hk,D)
]
w∗

k

)−1
, (77)

and the missing constant of proportionality in Eq. (76) is√√√√det
([∇∇ ln pdf(wk|Hk,D)

]
w∗

k

)
(2π)Mk

, (78)

where Mk is the number of elements in wk. This approach (fitting a Gaussian to a mode of a
distribution) is called Laplace approximation [16, §4.4]. The variance of the m-th parameter
is given by [cov(w∗

k)]mm, hence its standard deviation is
√

[cov(w∗
k)]mm. The off-diagonal

elements in the covariance matrix define parameter-parameter covariances. As an example
of the Laplace approximation, consider the Gaussian posterior in Eq. (34) of section 2.2: At
first, a mode needs to be found by a nonlinear optimization procedure. Then, given a mode
the covariance reads

cov(w∗
k) =

⎛⎝[∇∇
(
1

2

N∑
n=1

(yn − f(xn,wk))
2

σ2

)]
w∗

k

+ γ1Mk

⎞⎠−1

, (79)

where 1Mk
∈ R

Mk×Mk is the identity matrix of dimension Mk.

Remarks:

(i) the Gaussian approximation of the a posteriori distribution around a mode is often a
reasonable assumption, but
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(ii) because of the non-linearity of the physical models many modes might exist — in this
case separate Laplace approximations can be performed for each mode, in order to
describe the complete posterior distribution. Alternatively, MC methods can be used to
sample from the posterior distribution, and hence to infer the shape of it, cf. section 4.1.

Issue (i) can be explained with the fact that if the data are independent, the logarithm of
the likelihood defines a sum of independent random numbers, which yields — due to the
Central Limit Theorem — a Gaussian variable if the number of data points increases. Hence,
if the prior is relatively flat or if the number of data points N is so high that the likelihood
dominates the prior, the posterior will become a Gaussian distribution. Moreover, with an
increase of data points the likelihood increases and will ultimately dominate the prior term,
and hence the covariance will decrease23 (because of the inversion of the Hessian matrix in
Eq. (77)). Because of these facts, and because of scattering curves are oversampled and the
physical models are not overfitted, it can be expected that the covariances are relatively small.

Last but not least, from the above frequentist and Bayesian discussions it follows that the
global minimum of the generalization error or the global maximum of the joint MAP defines
the optimal solution; however, in practice the global optimum might not be desired, since:

(i) Often, because of simplicity, only lower and upper parameter bounds are used in order
to describe the domain of the objective function, whereas in general only sophisticated
non-linear constraints would be able to describe the domain properly. As a consequence
of this, an optimization routine may find a solution that lies outside of the physical
domain of the model function, and hence has to be rejected.

(ii) Usually, underfitting occurs, i.e., the physical model is wrong even if the fitted model
corresponds to a global optimum. In this case another locally optimal solution can still
be physically more meaningful than the globally optimal solution.

Of course, in the Bayesian approach these two points define inconsistencies, but only occur if
the a priori information is not properly encoded in the likelihood and the a priori distribution.

3.2.1. Results

Inferring physical models and model parameters within frequentist and Bayesian inference is
discussed. It has been shown that:

(i) Because of the usual underfitting of the physical models

(a) the empirical error is sufficient as objective function (for determining the mathemat-
ical optimal model and its parameters) in the frequentist approach or alternatively

(b) the joint maximum a posteriori distribution in the Bayesian approach can be used
to infer the optimal model and parameters.

(ii) A priori knowledge about physical models is essential to perform (physical) model se-
lection, and it is especially important here, since an inverse (scattering) problem needs
to be solved. In the Bayesian approach a priori knowledge has to be encoded in the
a priori distributions, while only ad-hoc/intuitive methods can accomplish this in the
frequentist approach.

23An illustrative example is given in [16, §3.3].
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(iii) Parameter uncertainties are usually expected to be quite small. However, these uncer-
tainties might not have much/any meaning if the model is wrong [129, §15.0], which is
usually the case because of an underfitting (there is a systematic error in the description
of the physical model).

A full hierarchical Bayesian model approach does not only allow to take into account physical
a priori knowledge, but the model selection scheme also penalizes mathematically complex
models more than simpler ones — hence implementing the principle of Occam’s razor in a
mathematical sense. In any case, this full scheme is usually not tractable, but the simpler
joint maximum a posteriori approach can in principle be performed, because of the expected
underfitting of the physical models. However, the problem of having physical a priori knowl-
edge at hand, allowing to quantify a priori model and parameter probabilities, is often missing
(usually, only parameter bounds can be easily specified) and knowledge can be difficult to
encode in the formula. Because of these practical reasons the frequentist approach is still
commonly chosen.
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3.3. Example: Simultaneous Fitting of SANS Data of PIB-PMAA / P4VPQ
IPECs

In this section, evaluations of SANS data in external contrast variation are described for
micelles resulting from the mixing of oppositely charged polymers that are known to build
InterPolyElectrolyte Complexes (IPECs). This evaluation is done as a demonstration of
the powerfulness of the program SASET. The main questions that should be clarified in
this work is how the considered IPEC structures look like, e.g., (i) are they core-shell or
core-shell-corona structures, and in the latter case can the density profile of the corona be
determined, and (ii) how compact is the shell?

The considered systems consist of the diblock copolymer polyisobutylene-b-
poly(methacrylic acid) (IBx−MAAy, PIB-b-PMAA) where the polyacid has been neutralized
into the sodium salt of the polyanion PMANa via equimolar addition of NaOH, and the
polymer P4VP (poly(4-vinylpyridine), which is quaternized at α = 90% with C2D5Br into
the polycationic poly(N-ethyl-4-vinylpyridinium bromide) (d5-P4VPQBrα) (i.e., not all 4VP
units bear a charge).

The PMANa block of the copolymer is negatively charged, therefore strong electrostatic
interactions will take place between this block and the positively charged polycation d5-
P4VPQBrα, yielding a (PMANa+d5-P4VPQBrα) complex. The PIB block is hydrophobic.
The complex is characterized by the ratio Z between the number of positive and negative
polymer charges, Q+, Q−:

Z =
Q+

Q− =
moles of 4VPQ units

moles of MA units
. (80)

In all sample systems the overall charge ratio is at 0.4, i.e., PMANa is in large excess. The
aqueous solution resulting from the mixing of these two polymers was observed to be trans-
parent and stable against sedimentation for low Z. It is expected, since already observed for
a very similar system in [125], that colloidal nanoparticles are formed which have a spheri-
cally symmetrical structure. Accordingly, spherically symmetrical core-shell, core-corona or
core-shell-corona structures are expected and modeled as schematically illustrated in Fig. 11,
and following model assumptions are made: The core is hydrophobic and made of PIB. In
the core-shell and core-corona models the outer part (i.e., the shell or corona) consists of the
complex and hydration. In the core-shell-corona models the shell consists of the complex at
charge stoichiometry (and hydration), and the corona consists of PMANa (and hydration).

Three different systems are analyzed consisting of different degrees of polymerization of
PMAA and of PIB. The appropriate data sets are listed in table 1 together with the employed
D2O:H2O ratios. In short, three diblock copolymers are used: for sets 1 and 2 the hydrophobic
blocks are the same (75 units), and for sets 1 and 3 the hydrophilic blocks are the same (190
units), while for set 2 the hydrophilic block is almost an order of magnitude larger. It is
assumed that there is no effect from isotopic substitution in the solvent, such that one specific
geometric aggregate model can be employed for the different D2O:H2O ratios.

All samples are at 10 g·dm−3 in PIB-PMAA, in a buffer of NaCl 0.1mol·dm−3 with TRIS
(tris(hydroxymethyl)aminomethane, for pH adjustment) 0.01mol·dm−3. The total volume
fraction of polymer (PIB-PMANa and d5-P4VPQBrα) is around 1 – 2%.

The samples were measured on D11 at ILL by Markus Burkhardt in March 2005 [27].
The apparent aqueous densities of polymers were not measured at that time. However,
densitometry measurements were performed by Dr. Sylvain Prévost (his results are described
below) in the same concentration range in aqueous (H2O) buffer on materials as similar as
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Figure 11: Schematic IPEC model structures. Left: core-shell / core-corona model: the core
consists of PIB, and the shell, respectively the corona, consists of the complex
(and hydration). Right: core-shell-corona model: the core consists of PIB, the
shell consists of the complex (and hydration), and the corona consists of PMANa
(and hydration).

possible, but not on the diblock copolymer PIB-PMAA whose synthesis, purification and
characterization is time-consuming.

The density of PIB was taken from the thesis of Markus Burkhardt [27] as being
0.918 g·cm−3. The scattering length of IB (one unit of PIB) for neutrons is -3.33 fm, giv-
ing with 0.918 g·cm−3 a SLD of -0.33·10−4 nm−2.

The density of PMANa was measured on commercially available polymer24 at 0 – 3% and
found to be 2.4 g·cm−3 in buffer. The scattering length of MANa (one unit of PMANa) for
neutrons is 23.13 fm, giving with 2.4 g·cm−3 a SLD of 3.2·10−4 nm−2.

Since P4VPQBr is commercially not available, the quaternization of P4VP with (hydro-
genated) ethylene bromide has been carried out by Michaela Dzionara25. The NRM spectrum
suggest that around 90% of polymer units have been effectively quaternized, see appendix C.1.
The density of P4VPQBrα was measured in buffer and found to be 1.44 g·cm−3, correspond-
ing to 1.5 g·cm−3 for d5-P4VPQBrα. The scattering length of d5-4VPQBrα (one unit of
d5-P4VPQBrα) for neutrons is 77.807 fm, giving with 1.5 g·cm−3 a SLD of 3.38·10−4 nm−2.

Solutions of the complex (PMANa+P4VPQBrα) are cloudy and start phase-separating
within minutes; two clear phases (low viscous upper phase, viscous lower phase) are obtained
within hours. Densitometry measurements indicate a strongly non-ideal behavior. At Z = 0.4,
the apparent density of the stoichiometric complex (assuming that the excess of PMANa
has the same apparent density as without P4VPQBrα) is found to be 1.5 g·cm−3, too. If
subtracting from the complex the apparent volume of NaBr (which has an apparent density
of 4.35 g·cm−3), the apparent density of the complex is 1.13 g·cm−3 (for hydrogenated C2H5) or
1.16 g·cm−3 (for deuterated C2D5). Assuming 90% of quaternization, the deuterated version
will have a neutron coherent scattering length of 109.58 fm including counterions Na+ and
Br− (99.15 fm without counterions), giving with 1.5 g·cm−3 (respectively 1.16 g·cm−3) a SLD

24Chemical from Aldrich. Information from the provider: reference 434507-1L lot # MKBM1345V, solution
of poly(methacrylic acid, sodium salt) at 30% in H2O by weight, number average molecular weight Mn ≈
5400 g·mol−1, mass average molecular weight Mw ≈ 9500 g·mol−1 by GPC (Gel Permeation Chromatogra-
phy).

25P4VP was from Sigma-Aldrich (ref.:25232-41-1, weight-average molecular mass 60 000 g·mol−1) and used as
received. 10 g (0.0950 mmol) of the polymer and 11.39 g (0.1045 mmol) bromoethane were solubilized in 80
mL methanol and heated up at 70 ◦C for 5 days under reflux. After cooling, the polymer was precipitated
with 100 mL diethylether, and the precipitate was dried under vacuum at 30 ◦C for one day.
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3 SASET AND MODEL FITTING

DPk(PIB) DPk(PMAA) D2O:H2O ratios

set 1 75 190 100:0, 80:20, 60:40, 50:50, 0:100
set 2 75 1590 100:0, 80:20, 60:40, 40:60, 0:100
set 3 30 190 100:0, 80:20, 60:40, 40:60

Table 1: Used IPEC systems. DPk: degree of polymerization (k is the average number of
units).

of 2.90·10−4 nm−2 (respectively 2.93·10−4 nm−2). Hence, for neutron scattering, it does not
matter where the sodium and bromide counterions are; note that the situation would be
completely different for X-rays, which are sensitive to electronic densities. In the following,
the counter-ions will be considered as part of the complex.

Densitometry data seem to indicate that SLDs of PMANa (3.2·10−4 nm−2), d5-P4VPQBrα
90% (3.38·10−4 nm−2) and the stoichiometric complex (2.90·10−4 nm−2 or 2.93·10−4 nm−2

respectively including or excluding counterions) are hardly distinguishable by neutrons.

3.3.1. Models

In order to analyze the SANS curves, different spherically symmetrical amplitude form factors
have been implemented in SASET, which model the scattering amplitudes of core-shell, core-
(linear corona), core-(algebraic corona), core-shell-(linear corona) and core-shell-(algebraic
corona) objects. The scattering length density (SLD) profiles of such objects are exemplified
in Fig. 12. Moreover, following assumptions are made:

1. It is assumed that within one data set (cf. table 1) the IPECs are reproducible. This
essentially means that there is no effect from isotopic substitution26, and that the other
framework conditions are as similar as possible (stoichiometric composition, tempera-
ture, etc.).

2. H and D are homogeneously distributed in the solvent.

Core: In all models it is assumed that the core solely consists of hydrophobic PIB. Therefore,
the SLD in the core, having radius Ri, is the one of PIB, SLDPIB, and the amplitude form
factor is a homogeneous sphere one:

Asphere =

∫ Ri

0
4πr2

sin(qr)

qr
[SLDPIB − SLDmatrix] dr

= 4π(SLDPIB − SLDmatrix)
sin(qRi)− qRi cos(qRi)

q3
,

(81)

where SLDmatrix is the SLD of the matrix.

Shell: For the shell, the following two extreme cases are considered:

(i) Either the shell consists of all polyelectrolytes (i.e., the total PMANa and d5-P4VPQBrα)
with solvent, i.e., it has a Z ratio of 0.4, or

(ii) the shell consists of the solvated stoichiometric complex (PMANa+d5-P4VPQBrα) with
Z = 1, and the excess of PMANa (≈ 60%) is contained in an outer corona.

26 Effects from isotopic substitution have been observed, e.g., in [147].
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3 SASET AND MODEL FITTING

Figure 12: Schematic SLD profiles of the assumed IPEC objects. SLDi: SLD in the core.
SLDs: SLD in the shell. SLDc, and SLDci: SLD in the corona at the interface core-
corona or shell-corona. SLDco: SLD in the corona at the interface corona/matrix.
SLDmatrix: SLD of the matrix. Ri: core radius. Rs: shell radius. Rc: corona
radius.
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The volume fraction of material (PMANa+P4VPQBr) in the shell is

ϕm = 1− ϕh, (82)

where ϕh is the volume fraction of shell hydration. Hence, the SLD in the shell is

SLDshell(r) = ϕmSLDm + ϕhSLDmatrix, Ri ≤ r ≤ Rs, (83)

where SLDm is the SLD of the material, i.e., the complex. Accordingly, the shell amplitude
form factor reads

Ashell =

∫ Rs

Ri

4πr2
sin(qr)

qr
[SLDshell(r)− SLDmatrix] dr

= 4π(1− ϕh)(SLDm − SLDmatrix)

{
sin(qRs)− qRs cos(qRs)

q3

− sin(qRi)− qRi cos(qRi)

q3

}
.

(84)

Corona: In the models that have a corona but no shell, the corona consists of the complex
(PMANa+P4VPQBr) and is hydrated. In the models with a corona and a shell, the corona
only consists of PMANa and is hydrated.
Consider a linear corona in [R1, Rc], whereR1 = Ri in case of the core-(linear corona) model,

and R1 = Rs in case of the core-shell-(linear corona) model. The linear corona is characterized
by the fact that the volume fraction of material in the corona (i.e., PMANa+P4VPQBr for the
core-(linear corona) model and PMANa for the core-shell-(linear corona) model) is linearly
decreasing with increasing r:

ϕlin.(r) = ϕ′
int.

(
1− r −R1

Rc −R1

)
for R1 ≤ r ≤ Rc, (85)

where ϕ′
int. is the interfacial volume fraction27 (i.e., surface fraction) of material at R1+0. ϕ′

int.

is given by the fraction of a sphere (with radius Ri, respectively Rs for the core-shell-corona
models) that is penetrated by PMANa chains (the PMANa cross-section is calculated from
the molecular volume (which is determined from the molecular mass and the fitted density)
and the PMANa length (the monomer unit length is taken to be 0.252 nm [78]). Thus, the
SLD in the corona reads

SLDlin.(r) = ϕlin.(r)SLDm + [1− ϕlin.(r)]SLDmatrix

= ϕlin.(r)ΔSLD + SLDmatrix,
(86)

where
ΔSLD := SLDm − SLDmatrix, (87)

and SLDm is the SLD of the considered material. Accordingly, the amplitude form factor is

Alin. corona =

∫ Rc

R1

4πr2
sin(qr)

qr
[SLDlin.(r)− SLDmatrix] dr

= 4πϕ′
int.ΔSLD

∫ Rc

R1

r2
sin(qr)

qr

r −Rc

R1 −Rc
dr

= 4πϕ′
int.ΔSLD/

{
(R1 −Rc)q

4
}

× {qRc sin(qRc) + 2 cos(qRc) + qRc sin(qR1)− q2R1Rc cos(qR1)

+ q2R2
1 cos(qR1)− 2 cos(qR1)− 2qR1 sin(qR1)

}
.

(88)

27 Note: For the core-corona models ϕ′
int. = 1.
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Now, an algebraic corona in [R1, Rc] is considered, where R1 = Ri in case of the core-
(algebraic corona) model, and R1 = Rs in case of the core-shell-(algebraic corona) model.
The algebraic corona is characterized by the fact that the volume fraction of material (i.e.,
PMANa+d5-P4VPQBrα for the core-(algebraic corona) model and PMANa for the core-shell-
(algebraic corona) model) is decreasing according to

ϕalg.(r) = ϕ′
int.

(
r

R1

)−a

, for R1 ≤ r ≤ Rc. (89)

0 < a ≤ 2 is an exponent describing the shape of the corona function [45], and is related
to the so-called ‘Flory exponent’: for a = 2 the polymer chain is in stretched conformation,
for a = 1 the polymer is in theta conditions28, and for a = 0 the chain is collapsed. The
corresponding SLD profile of the corona is calculated analogously to the linear one given by
Eq. (86). Thus, the excess SLD reads

ΔSLDalg.(r) = ϕalg.(r)ΔSLD, (90)

where ΔSLD is given in Eq. (87), and the amplitude form factor is

Aalg. corona =

∫ Rc

R1

4πr2
sin(qr)

qr
ΔSLDalg.(r) dr

= 4πΔSLDϕ′
int.

∫ Rc

R1

r2
sin(qr)

qr

(
r

R1

)−a

dr.

(91)

Defining c := 4πΔSLDφ′
int.R

a
1, then [176]

Aalg. corona = c

∫ R2

R1

r1−a sin(qr)

q
dr

− i
cqa−3

2

{[
(−i)aΓ(2− a,−iqR2)− iaΓ(2− a, iqR2)

]
− [(−i)aΓ(2− a,−iqR1)− iaΓ(2− a, iqR1)

]}
,

(92)

where Γ(·, ·) is the (upper) incomplete gamma function. The incomplete gamma function
can be expressed by means of the confluent hypergeometric function of first kind (Kummer
function, 1F1(·)) as well as the gamma function Γ(·) [6, Eq. (6.5.3) and Eq. (6.5.12)]

Γ(b, x) = Γ(b)− [b−1xb1F1(b, 1 + b,−x)]. (93)

However, the incomplete gamma function available in MATLAB does not allow for complex
arguments and the confluent hypergeometric function does not exist. In general the conver-
gence of such functions is numerically not easy to accomplish. Therefore the integration in
Eq. (91) has been performed numerically via a Gaussian quadrature method using a fixed
number of integration support points [33, §2.7].

28From Wikipedia [173]: The “polymer coils act like ideal chains, assuming exactly their random walk coil
dimensions. Thermodynamically, the excess chemical potential of mixing between a polymer (without mass
and volume) and a theta solvent is zero.”

41



3 SASET AND MODEL FITTING

Scattering amplitudes: Using the basic amplitude form factors given above, the overall am-
plitude form factors for the different models are:

1. core-shell model:
Acore-shell = Asphere +Ashell (94)

2. core-(linear corona) model:

Acore-(lin. corona) = Asphere +Alin. corona (95)

3. core-(algebraic corona) model:

Acore-(alg. corona) = Asphere +Aalg. corona (96)

4. core-shell-(linear corona) model:

Acore-shell-(lin. corona) = Asphere +Ashell +Alin. corona (97)

5. core-shell-(algebraic corona) model:

Acore-shell-(alg. corona) = Asphere +Ashell +Aalg. corona (98)

If the system is monodisperse and if there are no interactions between the particles, the
normalized scattering intensity reads

Inmono(q) = nA2(q), (99)

where n is the particle number density and A(q) is one of the above-mentioned amplitude
form factors.
For a polydisperse29 system, where the dispersity is taken over the aggregation number

Nagg. of PIB-PMANa, the normalized intensity reads as follows

Inpoly(q) = n
〈
A2(q;Nagg.)

〉
Nagg.

, (100)

where the bracket indicates an average over the aggregation number. Here, it is assumed
that the aggregation number can be well described by a probability density function pdf(·).
Usually, the effect of different uni-modal distributions is negligible in SAS, and a log-normal
probability density distribution was taken:

pdf(Nagg.) = lognpdf(Nagg., u, v) =
1

Nagg.v
√
2π

exp

(
− ln2(Nagg./u)

2v2

)
. (101)

u and v are parameters that are related to the mean Nagg. and the standard deviation
std(Nagg.) of the distribution by

u =
N

2
agg.√

(std(Nagg.))2 +N
2
agg.

, (102)

29 Here, and in the following sections the notion ‘polydispersity’ means the quantity p = σ/μ, where σ and μ are
the standard deviation and mean of a considered distribution. The quantity p is also called ‘polydispersity
parameter’ [62] and ‘coefficient of variation’ [4].
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and

v =

√√√√ln

(
(std(Nagg.))2

N
2
agg.

+ 1

)
. (103)

Particle interactions have been taken into account by an effective hard sphere potential,
such that the considered model intensities read

Inmono,HS(q) = Inmono(q)S1(q), and (104)

Inpoly,HS(q) = Inpoly(q)S1(q), (105)

where here S1(q) is the structure factor in the approximation for monodisperse hard spheres
with the Percus-Yevick closure relation [154, 170, 85] (cf. appendix D.1 Eq. (421)). The
formula for the monodisperse case, Eq. (104), is exact within the Percus-Yevick closure ap-
proximation [124]. However, the structure factor for the polydisperse case, Eq. (105), only
describes an approximation to the effective structure factor within a complete polydisperse
Percus-Yevick closure approximation, i.e., of Seff.

HS,compl.(q) in

Inpoly,HS,compl.(q) = n

∫ ∞

0
A2(q;Nagg.)pdf(Nagg.) dNagg.

+ n2

∫ ∞

0

∫ ∞

0
A(q;N ′

agg.)A(q;N ′′
agg.)H

(
q;σ(N ′

agg.), σ(N
′′
agg.)
)

× pdf(N ′
agg.)pdf(N

′′
agg.) dN

′
agg. dN

′′
agg.

= n
〈
A2(q;Nagg.)

〉
Nagg.

Seff.
HS,compl.(q),

(106)

where H
(
q;σ(N ′

agg.), σ(N
′′
agg.)
)
is the partial structure function for N ′

agg. and N ′′
agg. (cf. ap-

pendix D.2), and σ(Nagg.) is a function30 that returns the hard sphere diameter for Nagg.,
and

Seff.
HS,compl.(q) = 1+

{
n2

∫ ∞

0

∫ ∞

0
A(q;N ′

agg.)A(q;N ′′
agg.)H

(
q;σ(N ′

agg.), σ(N
′′
agg.)
)

× pdf(N ′
agg.)pdf(N

′′
agg.) dN

′
agg. dN

′
agg.

}
/∫ ∞

0
A2(q;Nagg.)pdf(Nagg.) dNagg..

(107)

Here, Eq. (106) was employed, and the partial structure factor functions are taken from31

Blum and Stell [17] and its errata paper [18] and further corrections given by [56] Still, [56]
contains typos and are corrected in Eq. (106 and the partial structure factor functions given
in the appendix D.2.

Following quantities are fitted:

- the density of the complex ρ(complex),

30In the implemented core-shell model function the core radius Ri(Nagg.) and the shell thickness ts(Nagg.)
are determined for a given aggregation number Nagg.. Then, the hard sphere diameter is calculated as
σ(Nagg.)/2 = Ri(Nagg.) + xrts(Nagg.), where xr ≥ 0 is an adjustable parameter allowing to vary the hard
sphere diameter. An analogous calculation is done for the core-shell-(linear corona) model. The determined
mean hard sphere radii rHS are listed in the tables 2 - 4.

31Vrij also derived a formula independently [167, 168].
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- the aggregation number Nagg. for the monodisperse case, respectively the mean aggre-
gation number Nagg. and the polydispersity p(Nagg.) for the polydisperse case,

- the hydration fraction within the shell ϕh,

- the shape parameter of the algebraic corona a, and

- an effective hard sphere structure radius rHS, respectively the parameter xr (see footnote
30 on page 43) in the polydisperse structure factor approach (from which an effective
mean hard sphere radius rHS is calculated).

Note that the hydration and thickness of the corona are implicitly determined by the con-
straints given by the definition of the linear/algebraic corona and the volume of the complex
or of PMANa — see appendix C.2. The material equations that are used within the amplitude
form factors are given in appendix C.2.

3.3.2. Evaluations

Before the fits are discussed in some detail below, it should be mentioned that many of the
measured intensity curves have an increase of the intensity in the low q-regime, see Fig. 13-
17. In the literature such an upturn is already observed for pure polyelectrolytes in solution
[101, 38, 30] as a signature of fluctuations of SLD over very large distances. The reason for
it is still being under discussion, and possibly related to same-charge attractivity [100]. In
the systems presented here, the upturn of the intensity in the low q-regime might also arise
from the existence of some clusters of micelles linked together via d5-P4VPQBrα (creating
necklace structures).

For all fits, the optimization algorithm converged and the Hessian matrix of the misfit error
(Hessian matrix of Es in Eq. (68)) was positive definite (i.e., a minimum has been found by
the algorithm). For all models Es was determined in the optimum, see tables 2-4. However,
because of the underfitting it may be more instructive to look at the obtained fits and to
decide which one is good — often called ‘chi-by-eye’ [129, §15.0] — since the misfit error does
not contain the information from where the mismatch is coming from. The uncertainties of
all determined parameters are in the per-mill regime or less.

Set 1: Fig. 13 - 15 show the data set 1 together with the different model fits, and the fitted
parameters are listed in table 2. Fig. 13 shows the monodisperse fits of the different
models. The model fits are quite good for all models except for the core-(linear corona)
model, and the core-(algebraic corona) model. These two models cannot capture the
features of the observed intensity curves, hence also the model parameters are not
listed in table 2. The other three models (core-shell, core-shell-(linear corona), and
core-shell-(algebraic corona)) fit rather well, except from a relatively slight mismatch
in the low q-regime. Therefore, polydisperse fits have been considered for them, and
are shown in Fig. 14. These polydisperse models improve the fits in the mid and high
q-regime (the original oscillatory curve behavior is suppressed), but not in the low q-
regime. The core-shell-(linear corona) model and the core-shell-(algebraic corona) model
fit equally well the data, hence only the core-shell-(linear corona) model is considered
in the following. Fig. 15 shows fits of the core-shell model and of the core-shell-(linear
corona) model, where a monodisperse hard sphere structure factor is applied, as well as
a polydisperse one. There is nearly no difference between the monodisperse structure
factor model and the polydisperse one. Best fits are obtained when a model contains a
shell, polydispersity, and a structure factor. The inclusion of a corona (one more fitted
parameter) enhances the fit (Es decreases by a factor 3).
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Set 2: Fig. 16 shows the data set 2 together with different model fits, and the fitted param-
eters are listed in table 3. The core-shell model as well as the core-shell-(linear corona)
model capture the main features of the scattering intensity in the mid and high q-regime
nearly equally well, but there are similar mismatches in the low q-regime. The other
basic models (core-(linear corona), and core-(algebraic corona)) are not represented,
since no good model fits could be achieved for them. The polydisperse model version
of the core-shell model and the core-shell-(linear corona) model improve the fits in the
low and mid q-regime (the oscillatory behavior of the curves is suppressed), but the
low q-regime is still not well fitted. Using an additional structure factor (monodisperse
or polydisperse) for the considered models does not really improve the fits. Overall,
adding a corona does not lead to any improvement, visually as well as for Es. Hence,
all models are equally good as long as a polydispersity is included, but no model can
capture all features.

Set 3: Fig. 17 shows the data set 3 together with the different model fits, and the fitted
parameters are listed in table 4. Here, the core-shell model as well as the core-shell-
(linear corona) model can both capture the main features of the intensity curves in
the mid and high q-regime. The other basic models (core-(linear corona), and core-
(algebraic corona)) are not represented, since no good model fits could be achieved
for them. Anyway, in the mid q-regime the core-shell-(linear corona) model slightly
fits the intensity curves better than the core-shell model. The same fact holds for
the polydisperse variants of these two models. The point seems to be the following
one: Monodisperse models exhibit too strong features; then, adding a polydispersity
but no corona leads to too smooth models that cannot simultaneously reproduce the
smoothness of the curves at high-to-mid q and the minimum in intensity observed at
q ≈ 0.2 nm−1 for the curve with a D2O:H2O ratio of 40:60. The presence of the corona
allows to get smoother curves with less polydispersity (ca. 0.8 instead of ca. 1.3), allowing
to fit the minimum. Taking into account a hard sphere structure factor (monodisperse
or polydisperse) only very slightly improves the fits in the low q-regime, but there is
nearly no difference between the monodisperse structure factor and the polydisperse
one. In this case the inclusion of a corona does improve the fits visually and it leads
to a small reduction of Es, but overall the reproduction of experimental features is not
properly achieved.

In the following, essential outcomes of the fits are discussed:

The aggregation number: The comparison between sets 1 and 3 shows that reducing the
hydrophobic block from 75 to 30 units, with constant hydrophilic block (190 units),
results in a decrease of the aggregation number from ca. 300 to ca. 100. The comparison
between set 1 and 2 shows that increasing the hydrophilic block from 190 to 1590 units,
with constant hydrophobic block (75 units), results in a decrease of the aggregation
number from ca. 300 to ca. 20.

The density of the complex is almost constant for a given Z: Whenever fits are good, the
fitted value of the density of the complex at Z=1 is systematically close to 2 g·cm−3,
and the fitted value of the density of the complex at Z=0.4 is systematically close to
2.2 g·cm−3. Given that PMANa has a density of 2.4 g·cm−3, and that d5-P4VPQBrα
has a density of 1.5 g·cm−3, these values are perfectly reasonable.

The shell thickness is slightly larger for set 1 (ca. 12 nm) than for set 3 (ca. 9 nm), while the
hydrophilic block is identical, in agreement with the smaller aggregation number (same
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volume of complex, similar hydration around 80-85%, but the core/shell volume ratios
are larger for smaller micelles). The value for set 2 (ca. 15 nm), with a much larger
hydrophilic block length (1590 units) is barely twice the value for set 1, but this can
again be explained by the smaller core and aggregation number.

The shell hydrations for set 2 are higher (ca. 95%) than for sets 1 and 3 (ca. 80%). Since,
data set 2 does not contain much information/features, fits have also been performed
with the hydration fraction fixed at 80%, but these fit are not good at all. Consequently,
it can be stated that there is the correlation: the longer the polyelectrolyte chain is the
less compact the shell is.

The number density n can be used to estimate the average distance d between centers of
micelles (assuming a simple cubic packing, it follows d ≈ n−1/3). In all cases, this
average distance is comparable to the diameter of micelles with a core-shell-corona
structure. For models with a corona used for fitting sets 2 and 3, the interparticle
distance is actually less than the size of the objects, which means that the overlapping
concentration has been reached or possibly exceeded. This overlap is not taken into
account by the applied models (both in terms of SLD profile and of structure factor),
i.e., these models are partially inconsistent.

The aggregation number and the shell thickness are controlled by the hydrophobic and hy-
drophilic blocks in a way that is qualitatively explained by the packing parameter [75] concept:
a surfactant with larger head-group and/or smaller tail leads to smaller aggregates with larger
shell thickness.
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Figure 13: Monodisperse model fits achieved for set 1 (IB75−MANa190). No structure factor
taken into account. Legend entries show the percentage of D2O.
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Figure 14: Polydisperse model fits achieved for set 1 (IB75−MANa190). No structure factor
taken into account. Legend entries show the percentage of D2O.
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Figure 15: Polydisperse model fits achieved for set 1 (IB75−MANa190). Structure factor taken
into account. Left side: monodisperse hard sphere structure factor. Right side:
polydisperse hard sphere structure factor. Legend entries show the percentage of
D2O.
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Figure 16: Model fits achieved for set 2 (IB75−MANa1590). HS-SF: hard sphere structure
factor. PHS-SF: polydisperse hard sphere structure factor. Legend entries show
the percentage of D2O.

51



3 SASET AND MODEL FITTING

C
S

C
S
P

C
S
L
C

C
S
L
C
P

C
S
P
H
S

C
S
P
H
S
P

C
S
L
C
P
H
S

C
S
L
C
P
H
S
P

ρ
(c
o
m
p
le
x
)
/
(g
·cm

−3
)

2
.4

2
.3
4

2
.1
1

2
.0
6

2
.0
9

2
.3
5

2
.0
5

2
.0
7

N
a
g
g
.,
N

a
g
g
.

2
2
.1

6
.8
9

4
1
.2

1
7

1
4
.4

1
2
.9

1
9
.6

1
7

p
(N

a
g
g
.)

3
.2
5

1
.9
5

2
.0
9

2
.4
9

2
1
.9
8

ϕ
h

0
.9
6

0
.9
5

0
.9
5

0
.9
3

0
.9
5

0
.9
5

0
.9
3

0
.9
4

r H
S
,r

H
S
/
n
m

1
6
.7

1
5
.9

1
7
.6

7
8
.6

R
i,
R

i
/
n
m

3
.4
8

1
.7
6

4
.2
1

2
.6
3

2
.4
6

2
.2
6

2
.7
5

2
.5
9

t s
,t

s
/
n
m

2
7
.3

1
4
.8

2
5
.5

1
5

1
9
.6

1
6

1
4
.8

1
4
.7

t c
,t

c
/
n
m

1
0
3

7
5
.2

7
5

7
4
.3

n
/
(1
0
−6

n
m

−3
)

1
.9
5

6
.4

1
.0
5

2
.5
7

3
.0
5

3
.6

2
.2
4

2
.6
2

d
/
n
m

8
0

5
3
.9

9
8
.4

7
3

6
9

6
5
.2

7
6
.4

7
2
.5

E s
/
(1
0
4
)

3
6
.5

6
.3
9

2
8
.1

4
.6
4

4
.6
6

4
.2
8

7
.6
8

4
.4
6

T
a
b
le

3
:
M
o
d
el

p
a
ra
m
et
er
s
o
b
ta
in
ed

fo
r
se
t
2
(I
B
7
5
−M

A
N
a 1

5
9
0
).

M
o
d
el

ab
b
re
v
ia
ti
o
n
s:

C
S
=

co
re
-s
h
el
l;
C
S
P

=
C
S
p
o
ly
d
is
p
er
se
;
C
S
P
H
S

=
C
S
P

w
it
h
m
o
n
o
d
is
p
er
se

h
a
rd

sp
h
er
e
st
ru
ct
u
re

fa
ct
o
r,

C
S
P
H
S
P

=
C
S
P

w
it
h
p
o
ly
d
is
p
er
se

h
a
rd

sp
h
er
e
st
ru
ct
u
re

fa
ct
o
r;

C
S
L
C

=
co
re
-s
h
el
l-
(l
in
ea
r
co
ro
n
a
);

C
S
L
C
P

=
C
S
L
C

p
o
ly
d
is
p
er
se
,
C
S
L
C
P
H
S
=

C
S
L
C
P

w
it
h
m
o
n
o
d
is
p
er
se

h
a
rd

sp
h
er
e
st
ru
ct
u
re

fa
ct
o
r,

C
S
L
C
P
H
S
P

=
C
S
L
C
P

w
it
h

p
ol
y
d
is
p
er
se

h
a
rd

sp
h
er
e
st
ru
ct
u
re

fa
ct
o
r.

ρ
(c
o
m
p
le
x
):

a
p
p
a
re
n
t
d
en
si
ty

o
f
th
e
co
m
p
le
x
.

N
a
g
g
.:

a
g
g
re
g
a
ti
o
n

n
u
m
b
er
.

p
(N

a
g
g
.)
:
p
ol
y
d
is
p
er
si
ty

of
th
e
a
g
g
re
g
a
ti
o
n

n
u
m
b
er
.

ϕ
h
:
h
y
d
ra
ti
o
n

fr
a
ct
io
n

(w
it
h
in

th
e
sh
el
l)
.

a
:
sh
a
p
e

p
a
ra
m
et
er

o
f
th
e
a
lg
eb
ra
ic

co
ro
n
a
.
r H

S
:
h
a
rd

sp
h
er
e
ra
d
iu
s.

R
i:

co
re

ra
d
iu
s.

t s
:
sh
el
l
th
ic
k
n
es
s.

t c
:
co
ro
n
a
th
ic
k
n
es
s.

n
:
n
u
m
b
er

d
en

si
ty
.
d
:
av
er
a
g
e
p
a
rt
ic
le

d
is
ta
n
ce

(a
ss
u
m
in
g
a
si
m
p
le

cu
b
ic

p
a
ck
in
g
).

E s
:
m
is
fi
t
er
ro
r
a
s
d
efi
n
ed

in
E
q
.
(6
8
).

A
b
a
r
ov
er

o
n
e

o
f
th
es
e
sy
m
b
o
ls

m
ea
n
s
av
er
a
g
e
va
lu
e.

T
h
e
fi
rs
t
co
lu
m
n

b
lo
ck

co
n
ta
in
s
fi
tt
ed

p
a
ra
m
et
er
s.

T
h
e
b
o
tt
o
m

co
lu
m
n

b
lo
ck

co
n
ta
in
s

p
a
ra
m
et
er
s
d
et
er
m
in
ed

fr
o
m

th
e
fi
t.

52



3 SASET AND MODEL FITTING

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell, Polydisperse

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell, Polydisperse, HS−SF

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell, Polydisperse, PHS−SF

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell−(Linear Corona)

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell−(Linear Corona), Polydisperse

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell−(Linear Corona), Polydisperse, HS−SF

 

 

1
0.8
0.6
0.4

10−1 100

10−1

100

101

q   [nm−1]

I  
 [c

m
−1

]

Core−Shell−(Linear Corona), Polydisperse, PHS−SF

 

 

1
0.8
0.6
0.4

Figure 17: Model fits achieved for set 3 (IB30−MANa190). HS-SF: hard sphere structure
factor. PHS-SF: polydisperse hard sphere structure factor. The gray curve parts
are not used in the fits, since they cannot be explained by the considered models.
Legend entries show the percentage of D2O.
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3.3.3. Results

For all IPEC data sets, the core-shell model, the core-shell-(linear corona) model, and the
variants of these two models (polydisperse models, and with monodisperse or polydisperse
structure factor) fit well the observed intensities in absolute scale, except in the very low
q-regime, and in particular for data set 3. The core-corona models did not fit the data
at all. Hence the first result is that a shell with a constant SLD is needed to reproduce
the experimental data. The polydisperse models are essentially necessary to explain the
smoothness of the curves. The inclusion of a structure factor slightly improves the fits in the
low q-regime. The fitted parameters for different models for a given data set typically end
up in a narrow range. In particular, the aggregation numbers, densities of the complex, shell
hydrations and corona thicknesses are quite similar.

The compactness of the shell depends on the length of the PMANa block. For a short
PMANa block of 190 units, the shell hydration is ca. 80-85%; for the long PMANa block
(1590 units) the hydration increases at 95%. In both cases, the amount of solvent is very
large, which is interesting given that the complex made of homopolymers is not water-soluble,
and one could expect such a neutral complex to be rather hydrophobic.
The question of whether the IPEC structures are core-shell objects or core-shell-corona

objects cannot fully be answered, since both models capture nearly equally well the main
features of the scattering intensities. The main problem is that the measured intensity curves
are quite smooth as a consequence of the polydispersity of the objects, meaning that distinct
features of a core-shell or of a core-shell-corona structure are smeared out, and hence a reliable
determination of such structures is not possible. Therefore, also the shape of a possible corona
cannot be inferred. However, data set 1 and data set 3 contain more distinct features than
data set 2, and at the same time for set 1 and 3 the core-shell-corona models fit slightly better
than the core-shell models. This might give an indication that the built structures, at least
for set 1 and 3, contain a corona. Data set 2 does not have enough features to make any
selection at all.

This evaluation has also shown the importance of physical a priori knowledge in order to
perform model selection. In the fits, the dominating error results from a systematic error, i.e.,
underfitting exists. The obtained fitting errors can be used to compare models with each other,
but they do not contain information of where a mismatch is resulting from. The obtained
parameter uncertainties are all in the per-mill regime or less. However, these parameters and
their uncertainties are meaningless if the assumed model is wrong as already stressed in the
last subsection.
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3.4. Conclusion

In this section the case of physical model fitting of SAS data has been discussed.
The bottleneck of evaluating comprehensive 1- and 2-dimensional scattering data sets/series

is now overcome and efficiently possible with the newly developed features of SASET. Out-
standing is the feature to easily perform simultaneous model fitting (of data sets as well as of
coupled series), hence allowing to conveniently increase the information content of an analysis
and therefore to determine more reliably models.
The frequentist and Bayesian statistical inference discussions have shown how model selec-

tion can be performed in the two different inference approaches, where limitations occur in
the inference procedures, how uncertainties of model parameters are determined, and it is also
shown that physical a priori knowledge is indispensable in order to perform model selection.
Last but not least a simultaneous fitting example of contrast variation data of a PIB-

PMAA/P4VPQ interpolyelectrolyte complex system has been presented. The model fits were
quickly obtained via SASET (a few seconds (for monodisperse models) up to a few minutes (for
polydisperse models with polydisperse structure factor) on a PC with an Intel R© CoreTM i7
CPU 860 at 2.8 GHz (4 cores, 8 threads) and using parallel computing capacities of SASET).
The model fits have shown that spherical core-shell and core-shell-corona structures are pos-
sible ones.
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4 COMPLEX COLLOIDAL SYSTEMS

4. Complex Colloidal Systems

This chapter analyzes the scattering of complex cluster systems, which consist of vesicles
that are decorated by particles and/or may contain internalized particles, cf. Fig. 18, 19, 20.
Such hierarchical morphologies cannot be modeled by analytical formulas. Actual structures
must be generated by physically consistent random placement of the different components,
which can be achieved by means of Monte Carlo simulations, but they usually need a lot of
computational power.

Here, the vesicles consist of a soft bilayer membrane (phospholipids) and the (solid) particles
are silica nanoparticles. Such systems have attracted growing attention in the last years, since
vesicles (closed bilayer membranes) can be considered as model for cells (cell membranes) and
the particles as interacting test specimen, hence these systems are very important for studies
in nanomedicine, and nanotoxicology [105], as there is an increasing number of applications
of nanoparticles. In this work, the scattering of such systems is simulated in order to identify
model parameters that can reliably be determined from scattering experiments.

Two systems are considered here — detailed information have been friendly provided by
Dr. Raphaël Michel: in one case DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) builds
closed phospholipid bilayer with membranes in a fluid state; in the other case DOPC (1,2-
dioleoyl-sn-glycero-3-phosphocholine) builds membranes in a gel state32. The matrix is H2O
and the silica (nano-)particles consist of Ludox R© HS 40. The particles are assumed to be
spherical, having a mean radius of Rp = 8.36 nm and a polydispersity of pp = 0.14. The
vesicles (closed phospholipid bilayer membranes) are considered to be spherical, too, and
having different size distributions for the different experimental setups (cf. text below), which
were inferred from earlier experiments, namely cryo-TEM (cryogenic transmission electron
microscopy), light scattering, and SANS [104]. For instance, Fig. 18 and 19 show cryo-TEM
pictures of decorated vesicles and of vesicles with internalized particles. Moreover, from these
earlier experiments it was deduced for the DOPC vesicle systems that the particles are first
on the outside of the vesicle shell, and gradually become incorporated into the vesicle interior.
Furthermore, it was inferred that if a particle goes into a vesicle, it removes a part of the
vesicle membrane in order to build its own membrane shell encapsulation — this shell is
called ‘supported lipid bilayer’. Fig. 20 depicts a schematic drawing of a decorated vesicle
with internalized particles that have an additional membrane encapsulation.

However, the performed cryo-TEM micrographs may contain artifacts, because of the in-
volved freezing procedure, and additionally this method can only show a few localized, static
objects. Complementary to this microscopic method are scattering methods, which are in situ
methods that allow to infer structural information from an intensity average of the scattering
objects. However, the performed SANS experiments could not be used to deduce detailed
structural information about the particles, because of the poor contrast conditions (SANS is
mostly sensitive to the hydrogenated phospholipidic vesicles).

In this work, SAXS experiments are simulated in order to comprehend how well structural
information can be inferred if such an experiment is performed. For SAXS, the contrast
conditions stress the focus more on the particles and their interactions in comparison with
SANS (which has been used in earlier evaluations [104]), and therefore SAXS gives a more
detailed overall picture of the particle structure within the considered systems.

The aim is to compare experimental SAXS data with the simulations, to assess our full
understanding of the system. However, for technical reasons, the SAXS measurements could
not be performed within the time of this thesis.

32The transition temperature of DPPC is 41 ◦C and the one of DOPC is −18 ◦C.
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Figure 18: Cryo-TEM image featuring decorated DPPC vesicles in the mixed system DP1.0.
Figure adapted and reprinted with permission from [104, 107].

Figure 19: Cryo-TEM image featuring a DOPC vesicle with internalized (nano-)particles in
the mixed system DO0.5. Figure adapted and reprinted with permission from
[104, 106].
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Figure 20: Schematic drawing of a decorated vesicle with internalized particles (i.e., a complex
cluster). The particles within the vesicle are surrounded by a shell. The hatching
indicates the matrix.

The main program to simulate such complex clusters consists of four parts as described in
algorithm 2. The two main sub procedures are the creation of the complex clusters and the
calculation of the appropriate intensity. The creation of the complex clusters is described in
section 4.2, and is based on Monte Carlo (MC) simulations, since a full model description
is analytically as well as by means of deterministic numerical methods not tractable. An
introduction into Monte Carlo (MC) simulations is given in the next section. In section 4.3
the scattering formulas for the complex clusters are derived as well as the formulas for a few
simpler analytical models. In section 4.4 the results are presented.

Algorithm 2 The complex cluster algorithm.

1: initialize algorithm parameters
2: create complex cluster size parameters and appropriate configuration of particles (via

algorithm 4)
3: calculate the appropriate scattering intensity
4: plot the scattering intensity

4.1. Introduction to Monte Carlo Simulations

In the following a summary of the theory of MC simulations is presented, which mainly
consists of the contents in [16, 129, 116].

Monte Carlo (MC) methods, in earlier times also known as statistical sampling methods,
are used to approximately solve problems that are analytically not solvable as well as by
means of deterministic numerical integration methods not tractable. A typical example is the
evaluation of multidimensional integrals, e.g., in order to determine the expectation value of
a quantity Q(x) with respect to the probability density function pdf(x) [16, §11]:

〈Q〉 =
∫

Q(x) pdf(x) dx, (108)

cf. Fig. 21. Another example [129, §15.8] is the sampling from a probability density function
itself, e.g., in order to infer the a posteriori distribution in a Bayesian approach.
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In this work expectations of the form given in Eq. (108) are considered. If the sampling
procedure creates N independent samples {xn}Nn=1 from the distribution pdf(x), then the
expectation of Q(x) is approximated by the mean

Q =
1

N

N∑
n=1

Q(xn) (109)

and its standard deviation is [16, §11]

std[Q] =

√
1

N

〈 (
Q− 〈Q〉)2 〉, (110)

thus showing that the standard deviation of the estimator Q (i) decreases proportionally to
1/
√
N (variance reduction), and (ii) does not depend on the dimensionality of x. Therefore,

often only a few samples (≈10-20) are required in order to estimate the expectation of Q(x)
with sufficient accuracy. However, the sample size may have to be larger in cases where (i) the
samples are not drawn independently from pdf(x) or (ii) where the function |Q(x)| is low in
regions where pdf(x) is large, and vice versa [16, §11].

In order to exemplify the need for a non-deterministic numerical integration method, one
may consider the following: let x have 80 dimensions, e.g., in order to describe the positions
of 40 particles on a vesicle (via an azimuthal angle and a polar one for each particle), and
let pdf(x) a non-factorizable distribution, such that the nested integration cannot be written
as a product of single integrations. If the deterministic integration procedure shall only
evaluate the function at 10 different points per dimension (i.e., the integration is probably
quite rough) the nested integration would yield 1080 function evaluations — a number that
equals the estimated number of nucleons in the whole universe! However, the Monte Carlo
approach suggests that a good estimation may be achievable by only drawing a few samples
from the underlying probability density function.

Nowadays, there are pseudorandom number generators available for the uniform probability
distribution and the normal distribution in almost all computer languages. Pseudorandom
means that a number is not really randomly generated, but created according to a determin-
istic algorithm. Thus if the algorithm is initialized with the same seed number it generates
the same sequence of pseudorandom numbers. Creating pseudorandom numbers having good
statistics (e.g., less correlations between consecutive numbers, similarity to the target distri-
bution) is a research field for itself and very important in encryption methods. Moreover,
all methods that allow to sample from more complicated probability density distributions,
like the probability density transformation method (appendix A.1), inversion sampling (ap-
pendix A.2), and the Metropolis algorithm described below are usually build on the pseudo-

Figure 21: A given function/quantity Q(x) is given and the expectation with respect to the
probability density function pdf(x) shall be evaluated, i.e., 〈Q〉 = ∫ Q(x)pdf(x) dx.
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random number generators for the uniform distribution or the normal distribution. For an
overview of methods of pseudorandom number generations the reader is referred to [129, §7].
In this work the Metropolis Markov Chain Monte Carlo (Metropolis MCMC) method is

used in order to create sample points {xn}Nn=1 in proportion to pdf(x) [129, §15.8]. This means
that the points are sampled from a distribution π(x) that is not normalized but proportional
to the desired probability density function, i.e., π(x) ∝ pdf(x), having the advantage that no
high dimensional integrals must be evaluated for determining a normalization constant. The
algorithm explores the data space sequentially by a first-order Markov chain, i.e., a sequence
of points < xn >N

n=1 is created, where the probability for creating a point xn+1 depends
only on the point xn. Thus the transition probability is given by the conditional distribution
pdf(xn+1|x0, . . . ,xn) = pdf(xn+1|xn). Since the sequence shall be created according to the
desired distribution π(x), it follows that if xn is sampled from π(x) then the succeeding xn+1

has to be a sample from the distribution π(x), too. This means that the transition probability
distribution pdf(xn+1|xn) has to fulfill the equation33∫

pdf(xn+1|xn)π(xn) dxn = π(xn+1) (111)

such that the distribution π(x) stays invariant. The distribution is then said to be invariant
with respect to the chosen transition distribution. The required invariance can be imposed if
the detailed balance principle

pdf(xn+1|xn)π(xn) = pdf(xn|xn+1)π(xn+1) (112)

is fulfilled34 (sufficient condition), as it can be easily seen by integrating Eq. (112) over xn
35:∫

pdf(xn+1|xn)π(xn) dxn = π(xn+1)

∫
pdf(xn|xn+1) dxn = π(xn+1). (113)

The detailed balance principle, also called reversibility, states that the overall transition rate
from a point xn to a point xn+1 equals the overall transition rate from the point xn+1 to
the point xn. Metropolis et al. [103] were the first to suggest a way of how the transition
probability distribution can be chosen. Later on, this method was generalized by Hastings
[66], yielding the Metropolis-Hastings MCMC algorithm, which is as follows: the transition
probability is considered to be a product of a proposal distribution q(xn+1|xn) times an
acceptance probability α(xn,xn+1):

pdf(xn+1|xn) = q(xn+1|xn)α(xn,xn+1), (114)

where

α(xn,xn+1) := min

(
1,

q(xn|xn+1)π(xn+1)

q(xn+1|xn)π(xn)

)
. (115)

33Eq. (111) can also be seen as an eigenvalue equation, where the eigenfunction is π(·), the eigenvalue is one
and the integral kernel pdf(·|·) is searched.

34Eq. (112) can be written with the normalized distributions pdf(xn) and pdf(xn+1) as well. If done so,
one can write the detailed balance principle as pdf(xn+1|xn)pdf(xn) = pdf(xn+1,xn) = pdf(xn,xn+1) =
pdf(xn|xn+1)pdf(xn+1), thus showing that detailed balance requires symmetry of the arguments in the
joint probability distribution pdf(xn,xn+1).

35If the sample distribution π(x) consists of Dirac-distributions, the detailed balance principle has to be proven
by showing that

∫
A

∫
B
pdf(xn+1|xn)π(xn) dxn+1 dxn =

∫
A

∫
B
pdf(xn|xn+1)π(xn+1) dxn dxn+1 holds for

any two space regions A and B [116]. However, in this work Dirac-distributions are not considered.
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Algorithmically, this can be implemented by first creating a point xn+1 according the pro-
posal distribution, and then accepting xn+1 with probability α(xn,xn+1). By substituting
Eq. (114),(115) into Eq. (112) it is shown that this ansatz fulfills the detailed balance principle:

pdf(xn+1|xn)π(xn) = q(xn+1|xn)min

(
1,

q(xn|xn+1)π(xn+1)

q(xn+1|xn)π(xn)

)
π(xn)

= min
(
q(xn+1|xn)π(xn), q(xn|xn+1)π(xn+1)

)
= q(xn|xn+1)min

(
q(xn+1|xn)π(xn)

q(xn|xn+1)π(xn+1)
, 1

)
π(xn+1)

= pdf(xn|xn+1)π(xn+1).

(116)

Algorithmically, the decision whether a candidate point xn+1 is accepted or rejected is imple-
mented via a random number generator: let u a realization of a uniformly distributed random
variable in [0, 1] (i.e., u ∼ U(0, 1)), then, if u < α(xn,xn+1) the move is accepted, otherwise
rejected. If the candidate point xn+1 is rejected by the algorithm, the algorithm sets xn as
xn+1 (if not done so, the sampling statistics would be wrong). Moreover, it is noticed here
that since xn+1 and xn are not independent, instead being strongly correlated, many more
data points are required in Eq. (109) in order to determine the estimate of 〈Q〉 with sufficient
accuracy.
The earlier choice of Metropolis et al. was to choose the proposal distribution symmetrically,

i.e., q(xn|xn+1) = q(xn+1|xn), thus accepting a new candidate point xn+1 with probability

α(xn,xn+1) = min

(
1,

π(xn+1)

π(xn)

)
. (117)

In their work, x is a point within a configuration space of particles (as it is also the case in
this work, cf. algorithm 3 in section 4.2) and each particle is chosen with equal probability
and is randomly moved in any direction and for a random short distance to a new position.
Furthermore, their algorithm uses a maximum particle displacement distance (also used in
this work), such that in general there is no direct transition from a state xn to any other
state xn+1. However, the algorithm fulfills the detailed balance principle, since (i) selecting
a particle at random and moving it randomly to a new position has the same probability
as selecting the particle in the new position at random and moving it randomly to its old
position, and (ii) also if it is not possible to reach a point xn+1 from xn within a single
Markov chain step, the point can be reached by a number of extra intermediate steps.
Another important aspect is that whatever the initial distribution π̃(x) in the algorithm

for x0 is, the distribution π̃(xn) should converge for n → ∞ to the invariant distribution
π(x). If this is the case, the Markov chain is ergodic36 and the invariant distribution is called
the equilibrium distribution. Here, x0 is created according to π̃(x0), but the domains, D(·),
of π̃(x0) and π(x) are considered the same. Thus x0 ∈ D(π(x)) and the Markov chain will
sample from the equilibrium distribution. However, usually π(x0) is relatively low for the
initial x0, such that it may take a number of iterations to also reach regions in space where
π(xn) becomes relatively large. Accordingly, a good method is to discard the beginning of
the Markov chain until the chain starts to explore a part of the space that occurs with higher
probability, i.e., to wait until the burn-in phase37 is over before sampling is performed. The
decision as to whether the burn-in phase is over or not should always be taken by looking at
the evolution of the desired quantity or of other parameter evolutions (cf. next section and

36There are different definitions of the technical term ergodicity, cf. [116]. Here, the definition from [16, §11]
is taken.

37Often, the burn-in phase is also called equilibration phase.
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and Fig. 23), even if there are diagnostics tools available for checking the convergence of the
algorithm [129, §15.8.4].
In practice, choosing the right proposal distribution, especially its width, is often not easy.

If, e.g., the proposal distribution only allows relatively small steps, then the space exploration
can become extremely slow. If on the contrary, the proposal steps are created too large, most
of the steps are rejected and the algorithm also only performs a slow space exploration. Often
a good rule of thumb for having an acceptable fast space exploration is by choosing the
proposal distribution such that the acceptance probability is roughly in [0.1, 0.5] [7, §4.4],
e.g., by changing appropriately the maximum step length.38

Another issue is the following one: Often there are regions of high probability density, called
probability islands, that are separated by regions of low probability density and since the
Metropolis-Hastings MCMC algorithm performs a (weighted) random walk space exploration
[46, §3.2.1], it can take very long MCMC runs to sample from all islands. Possible remedies
can be to use slice sampling or the hybrid Monte Carlo method [16, §11] or the technique of
parallel tempering or cluster moves [46, §14].

4.2. Creating Complex Clusters

In this work, the interesting quantity in Eq. (108) is the scattering intensity of a vesicle that is
decorated with particles or has internalized particles, i.e., the considered system is a complex
cluster. The system is considered to be in thermodynamic equilibrium, such that an intensity
average over the time can be replaced by a canonical ensemble average of the system. A
canonical ensemble is an imaginary, infinite replication of the system, where all systems have
the same temperature T , the same volume V , and K identically replicated particles, but
the total energy of a system may change according to the positions rK = (rT1 , . . . , r

T
K)T and

momenta pK = (pT
1 , . . . ,p

T
K)T of the particles. The canonical ensemble is then described

statistically by the Boltzmann distribution (probability density function)

pdf(rK ,pK) =
1

Z
exp

(
−H(rK ,pK)

kBT

)
, (118)

where H(rK ,pK) is the Hamiltonian at point (rK ,pK) in the phase space, and Z is the
partition function

Z =

∫∫
exp

(
−H(rK ,pK)

kBT

)
drK dpK , (119)

ensuring the normalization of the probability density function. kB is the Boltzmann constant.
Thus, the canonical ensemble average of any quantity Q(rK ,pK) is

〈Q〉 =
∫∫

Q(rK ,pK) exp
(
−H(rK ,pK)

kBT

)
drK dpK∫∫

exp
(
−H(rK ,pK)

kBT

)
drK dpK

. (120)

The integration over the momenta in the numerator can be nullified by the integration over
the momenta in the denominator, since (i) the Hamiltonian is given as the sum of the kinetic
T (pK) and potential E(rK) energies of the system, thus the exponential can be factorized, and
(ii) the interesting quantity is the intensity I(rK ,q) (at a scattering vector q), not depending

38Changing the step size should only be done as long as the algorithm has not started to generate samples,
otherwise the detailed balance principle is no longer fulfilled.
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on the momenta of the particles. Therefore, the remaining integrations are only over the
volume of the configuration space

〈I(q)〉 =
∫
I(rK ,q) exp

(
−E(rK)

kBT

)
drK∫

exp
(
−E(rK)

kBT

)
drK

, (121)

and the unnormalized distribution π(x) from the last subsection becomes

π(x) = exp

(
−E(rK)

kBT

)
. (122)

Here, it is assumed (as it is commonly done, see, e.g., [114, §2]) that the potential energy of
the considered system can be written as

E(rK) =
1

2

K∑
i=1

K∑
j=1
j �=i

V (rij), (123)

where V (rij) is the potential energy that describes the interaction of particles i and j, and
rij = ri − rj . E.g., V (rij) can be a hard sphere potential energy that is

VHS(rij) =

{
0 particles i and j do not overlap
∞ particles i and j overlap

(124)

or a modified Coulomb potential energy

VC(rij) =

{
ce

QiQj

rij
particles i and j do not overlap

∞ particles i and j overlap
, (125)

where rij is the magnitude of rij , Qi and Qj are the charges on the particles i and j, and ce
is a constant. It is considered that the number of charges on a particle scales with its surface.
However, here the Coulomb potential is only used to place the particles on the vesicles, such
that they have a maximum distance to each other39, i.e., ce is chosen so large that the particles
repel each other very strongly.

Anyway, a real system will have a size distribution of vesicles, and each vesicle will have a
different number of differently sized particles. Considering that there are only particles on a
vesicle (no internalization) the overall intensity is given by a number of nested averages as

Icc(q) =

∫∫
Ic(q,R, t)pdf(R)pdf(t) dR dt, (126)

Icc(q,R, t) =
∞∑

K=0

Ic(q,R, t,K)P (K,λ(R, t)), (127)

Icc(q,R, t,K) =

∫
Ic(q,R, t,RK

p )pdf(RK
p ) dRK

p , (128)

and

Icc(q,R, t,RK
p ) =

∫ 〈
Ic(q, R, t,RK

p , rK)
〉
Ω
pdf(rK) drK . (129)

39 Note, the Coulomb potential cannot be the true physical potential, since the space is not homogeneous (e.g.,
the vesicle shell has another permittivity than water). Only numerical field calculations can determine the
true potential.
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Figure 22: Schematic size distribution effect on the number distribution of particles per vesi-
cle, if P (K,λ(R)) is assumed to be a Poisson distribution. In the upper diagram,
a size distribution for the vesicle radius is plotted. In the lower left diagram, the
number distribution of particles per vesicle for a vesicle radius size R1 is plotted.
On the lower right diagram the number distribution of particles per vesicle for a
vesicle radius R2 > R1 is plotted. Rves = R+ t.

Herein, pdf(R) and pdf(t) are the size distributions of the vesicle core radius R and of
the vesicle shell thickness t, P (K,λ(R, t)) can be a Poisson distribution P (K,λ(R, t)) =
λK(R, t)/K! ·exp(−λ(R, t)) that gives the probability to have K particles on a vesicle, having
radius R and shell thickness t, when λ(R, t) is the mean. The mean of the distribution is
assumed to change proportionally to the surface of a considered vesicle, cf. Fig. 22, according
to

λ(R, t) = λ〈R+t〉R,t

(R+ t)2

〈R+ t〉2R,t

, (130)

where λ〈R+t〉R,t
is average number of particles at the average (outer) vesicle radius

〈R+ t〉R,t =

∫∫
(R+ t)pdf(R)pdf(t) dR dt. (131)

As another option P (K,λ(R, t)) can be a Dirac distribution, i.e., all vesicles have a fixed

number of particles. pdf(RK
p ) = pdf(R

(1)
p ) · . . . · pdf(R(K)

p ) is the joint radii size distribution

of the K particles of a vesicle, and
〈
Ic(q, R, t,RK

p , rK)
〉
Ω

is the isotropic intensity of an
orientational average of the scattering intensity of a single vesicle with K particles. The last
expectation, Eq. (129), is over the configuration space, where pdf(rK) is conditioned on the
cluster variables R, t and RK

p , i.e.,

pdf(rK) := pdf(rK |R, t,RK
p ) =

exp
(
−E(rK ,RK

p )

kBT

)
∫
exp
(
−E(rK ,RK

p )

kBT

)
drK

, (132)

since the distribution of configurations is considered for a certain complex cluster.
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The nested expectation calculation given in Eq. (126)-(129) is then MC integrated by
sequentially sampling values from the involved distributions given in Eq. (126)-(129). This
means, that at first N samples {(Rn, tn)}Nn=1 are taken from pdf(R) and pdf(t) in Eq. (126),
and then for each sample pair (Rn, tn) exactly one further sample is sequentially drawn from
the distributions in Eq. (127)-(129), yielding the overall sample set {(Rn, tn,R

Kn
p , rKn)}Nn=1,

and the mean (isotropic) intensity form factor

Icc(q) =
1

N

N∑
n=1

〈
Icc(q, Rn, tn,R

Kn
p , rKn)

〉
Ω
. (133)

The detailed formula of how the intensity is calculated is given in section 4.3.
As an extension to the decoration of vesicles by particles, it is considered in this work that

each particle that was firstly placed on the vesicle may be later internalized with a specified
probability Pin. Thus, if the n-th vesicle was created together with Mn particles on it, Ln

particles may be internalized later, leaving only Kn = Mn − Ln particles on the vesicle.
If a particle is internalized it is considered that it receives a particle shell (encapsulation),
consisting of the same material as the vesicle shell is built of and having a particle shell
thickness distribution identically to the vesicle shell distribution pdf(t). There are two options
for the internalization process in the program: if a particle will be internalized (i) it can get
additional material for building its shell or (ii) it can take shell material from the vesicle
shell in order to build its own shell. In the second case, the vesicle shell core radius needs
to be adjusted (assuming that the vesicle shell thickness stays fixed) according to the loss of
shell material required for building the shells of the internalized particles. Finally, the mean
intensity form factor reads

Icc(q) =
1

N

N∑
n=1

〈
Icc(q, Rn, tn,R

Kn
p , rKn ,RLn

p , rLn , tLn
p )
〉
Ω
, (134)

where rLn
p are the positions of the internalized particles, RLn

p contains the radii of the inter-

nalized particles and tLn
p are corresponding particle shell thicknesses. The detailed scattering

formula is given in section 4.3.
In the developed program, it is considered that the particles on a vesicle do not interact

with the internalized particles. Hence, the configurations on and in a vesicle are determined
independently from each other. Algorithm 4 describes the overall complex cluster parameter
generation that uses the algorithm 3 (the Metropolis MCMC algorithm) as a subroutine in
order to determine the configurations of particles on and in a vesicle. In the implementation
of the algorithm 4 the for-loop is implemented as a parallel one in order to speed up the code
execution. This is possible because in any iteration the loop body is independent of any other
iteration.
Some remarks are necessary for the Metropolis MCMC algorithm (algorithm 3):

1. Whether the burn-in phase is finished or not is inferred by plotting

λdist. =
1

Kn

Kn∑
k=1

min
k′ �=k

‖rk − rk′‖, (135)

which is the average minimum distance between particles, over the number of MCMC-
steps and then by visually determining the end of the burn-in phase, cf. Fig. 23. Prac-
tically, it is enough to evaluate this parameter every i-th MCMC iteration, in order to
keep the code execution efficient.
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Algorithm 3 Determination of one configuration of particles via the Metropolis-MCMC
method. In this algorithm equilibration is checked by means of plotting the quantity in
Eq. (135) over the number of MCMC-steps and then by deciding from visual inspection when
the burn-phase is over.

1: initialize the system: set the particles randomly in / on the vesicle (using algorithm 5 or 6)
or optionally, if the volume fraction of particles in the vesicle is too high, assume a larger
vesicle, and then perform a vesicle shrinking

2: calculate the energy E of the system
3: burnInPhase ← true
4: while burnInPhase = true do
5: take a particle at random and move it randomly, according to a given symmetrical

proposal distribution, to a new position
6: calculate the new energy E′ of the system
7: if E′ < E then
8: accept the new particle position and set E ← E′

9: else
10: generate a random realization u ∼ U(0, 1)
11: if u < e−(E′−E)/(kBT ) then
12: accept the new particle position and set E ← E′

13: else
14: set the particle to its previous position
15: end if
16: end if
17: if burn-in phase is over then
18: burnInPhase ← false
19: end if
20: end while
21: return configuration of particles

Algorithm 4 Creation of the overall MC sample set.

1: MCSampleSet = {∅}
2: for n = 1 to N do
3: create samples Rn ∼ pdf(R) and tn ∼ pdf(t)
4: create Mn particles according to P (M,λ(Rn, tn))
5: create Mn particle radii RMn

p ∼ pdf(RM
p )

6: with probability Pin let each of the Mn particles be in the vesicle, hence RKn
p are the

radii of the particles that are on the vesicle and RLn
p are the radii of the internalized

particles
7: optional: generate particle shells for the internalized particles — according to pdf(t)
8: optional: recalculate the vesicle core radius Rn if internalized particles took vesicle

shell
9: create one configuration of particles for the particles on a vesicle rKn ∼ pdf(rK) =

pdf(rK |Rn, tn,R
Kn
p ) via algorithm 3

10: create one configuration of particles for the particles in a vesicle rLn ∼ pdf(rL) =
pdf(rL|Rn,R

Ln
p , tLn

p ) via algorithm 3

11: MCSampleSet ← {MCSampleSet, (Rn, tn,R
Kn
p , rKn ,RLn

p , rLn , tLn
p )}

12: end for
13: return MCSampleSet
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Figure 23: Exemplary evolution of the parameter λdist. in Eq. (135) over the number of MCMC
steps. The burn-in phase is approximately finished after 500 iterations.

2. In order to get initial configurations of the particles in/on a vesicle (cf. line 1 of al-
gorithm 3), the particles can be randomly placed in/on the vesicle via (i) a sequential
particle setting procedure described in algorithm 5 or (ii) a simultaneous particle setting
procedure described in algorithm 6 or (iii) see next point.

In comparison to the simultaneous particle setting algorithm, the sequential algorithm
can be much faster in finding an initial configuration of particles if the number of
particles is relatively high and if the particles occupy a relatively high volume fraction
in a vesicle or a relatively high surface fraction on it.

Algorithm 5 Sequential particle setting in/on a vesicle.

1: while there are not set particles do
2: take a not set particle at random
3: maxIt ← default integer value
4: while maxIt > 0 do
5: if the particle shall be set in the vesicle, create a new particle position from a

uniformly distributed probability distribution function within the vesicle, otherwise create
a position from a uniformly distributed probability function on the vesicle

6: if particle overlaps with any already placed particle then
7: reject new particle position
8: maxIt ← maxIt− 1
9: if maxIt = 0 then

10: set a few already placed particles as not set again
11: jump to the first code line (perform this jump not more then x times)
12: end if
13: else
14: accept the new particle position
15: maxIt ← 0
16: end if
17: end while
18: end while

In order to create points from a uniform distribution of points in/on a vesicle, the
inversion sampling method (see appendix A.2) has been applied:
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Algorithm 6 Simultaneous particle setting in/on a vesicle.

1: maxIt ← default integer value
2: while maxIt > 0 do
3: if the particles shall be set in the vesicle, create for all particles new positions from a

uniformly distributed probability distribution function within the vesicle, otherwise create
points from a uniformly distributed probability function on the vesicle

4: if there is a particle overlap then
5: reject all positions
6: maxIt ← maxIt− 1
7: else
8: maxIt ← 0
9: end if

10: end while

a) Uniformly distributed random points on a sphere: Let θ be the polar angle and φ
the azimuthal angle. The probability of finding a point on a sphere that lies in an
infinitesimal small solid angle around Ω = (θ, φ) is

pdfΩ(θ, φ) dθ dφ, (136)

where

pdfΩ(θ, φ) =
sin(θ)

4π
. (137)

The denominator is chosen such that∫ 2π

0

∫ π

0
pdfΩ(θ, φ) dθ dφ = 1. (138)

Thus, the two marginal density functions are

pdf(θ) =

∫ 2π

0
pdfΩ(θ, φ) dφ =

sin(θ)

2
, (139)

and

pdf(φ) =

∫ π

0
pdfΩ(θ, φ) dθ =

1

2π
, (140)

and their cumulative distribution functions are

Fθ(θ0) =

∫ θ0

0
pdf(θ) dθ =

1

2
(1− cos(θ0)), (141)

and

Fφ(φ0) =

∫ φ0

0
pdf(φ) dφ =

φ0

2π
. (142)

Applying Eq. (373), it follows for two independent and uniformly distributed ran-
dom variables u1 ∼ U(0, 1) and u2 ∼ U(0, 1) that

F−1
θ (u1) = θ0 ⇒ θ0(u1) = arccos(1− 2u1) (143)

and
F−1
φ (u2) = φ0 ⇒ φ0(u2) = 2πu2. (144)

where θ0(u1) and φ0(u2) give the appropriate random polar and azimuthal angles,
such that (θ0(u1), φ0(u2)) is a uniformly distributed random point on a sphere.
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b) Uniformly distributed random points in a three dimensional ball (note: a second
method is given in appendix A.3): Let θ be the polar angle, φ the azimuthal angle
and r the radial distance. Then, the probability of finding a point in a ball with
radius R and lying in an infinitesimal small volume element around M = (r, θ, φ)
is

pdfM (r, θ, φ) dr dθ dφ, (145)

where

pdfM (r, θ, φ) =
r2 sin(θ)

4π
3 R3

. (146)

The denominator is chosen such that∫ 2π

0

∫ π

0

∫ R

0
pdfM (r, θ, φ) dr dθ dφ = 1. (147)

Thus, there are the three marginal density functions:

pdf(r) =

∫ 2π

0

∫ π

0
pdfM (r, θ, φ) dθ dφ =

3r2

R3
, (148)

pdf(θ) =

∫ 2π

0

∫ R

0
pdfM (r, θ, φ) dr dφ =

sin(θ)

2
, and (149)

pdf(φ) =

∫ π

0

∫ R

0
pdfM (r, θ, φ) dr dθ =

1

2π
, (150)

and their appropriate cumulative distribution functions are

Ft(r0) =

∫ r0

0
pdf(r) dr =

r30
R3

, (151)

Fθ(θ0) =

∫ θ0

0
= pdf(θ) dθ =

1

2
(1− cos(θ0)), and (152)

Fφ(φ0) =

∫ φ0

0
pdf(φ) dφ =

φ0

2π
. (153)

Applying Eq. (373) it follows for three independent and uniformly distributed
random variables u1 ∼ U(0, 1), u2 ∼ U(0, 1) and u3 ∼ U(0, 1) that

F−1
r (u1) = r0 ⇒ r0(u1) = R 3

√
u1, (154)

F−1
θ (u2) = θ0 ⇒ θ0(u2) = arccos(1− 2u2), and (155)

F−1
φ (u3) = φ0 ⇒ φ0(u3) = 2πu3, (156)

where r0(u1), θ0(u2) and φ0(u3) give the appropriate random radial distance, and
random polar and azimuthal angles, such that (r0(u1), θ0(u2), φ0(u3)) is uniformly
distributed within a ball having radius R.

3. It might be that the initial volume fraction of particles within the vesicle is relatively
high, such that it is very unlikely to find an initial configuration of particles. Optionally
(cf. line 1 of algorithm 3), in this case the implemented algorithm allows to put the
particles within a blown up vesicle, firstly. Then, the vesicle is slowly decreasing its
size, while the particles are moving around, until the original (desired) vesicle size is
reached.
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4. It can be that not all particles can be placed within the vesicle. In this case the
implemented algorithm has a further option (instead of just producing an error message
stating that a current desired configuration is not possible): since the algorithm puts
the particles sequentially inside the vesicle, it can stop putting further particles in the
vesicle if it becomes highly improbable.

5. According to algorithm 3 the particles have to be moved randomly to new positions.
The move is described by the proposal distribution (used in Eq. (114)), and is given by
the following methods:

a) For internalized particles it is considered that the particles can move randomly in
any direction within the vesicle, and that the maximum allowed displacement is
δRmax. Then with Eq. (154)-(156), where R is replaced by δRmax in Eq. (154), the
particle shift is determined.

b) For particles on a vesicle it is assumed that a particle can move randomly in any
direction and for a random arc length. Such a particle move can be described as
follows — see Fig. (24): Consider that a particle on a vesicle has the spherical
coordinates (ro, θo, φo) and that there is a Cartesian coordinate system (xo, yo, zo)
attached to it. The particle is then placed at (ro, 0, 0) within the Cartesian coor-
dinate system (x, y, z), and randomly moved along the azimuthal direction

δφ ∼ 2π · U(0, 1) (157)

and for a polar angle
δθ ∼ δθmax · U(0, 1) (158)

far away from (ro, 0, 0) to the spherical coordinate (ro, δθ, δφ), where δθmax is a
maximal allowed angle, bounding the displacement move of the particle to a max-
imum arc length bmax = r0δθmax. The new position is in the Cartesian coordinate
system (x, y, z) given as

rδ =

⎡⎣ xδ = ro sin(δθ) cos(δφ)
yδ = ro sin(δθ) sin(δφ)
zδ = ro cos(δθ)

⎤⎦ . (159)

Subsequently, the Cartesian coordinate system (x, y, z) is rotated via the rotation
matrices

Ry(α) =

⎡⎣ cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

⎤⎦ , (160)

and

Rz(α) =

⎡⎣ cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

⎤⎦ (161)

into the coordinate system (xo, yo, zo), and correspondingly also the displaced par-
ticle:

ro,δ = Rz(φo)Ry(θo)rδ. (162)

6. In the implementation of the Metropolis algorithm 3 the maximum particle displacement
(i.e., the width of the proposal distribution) can automatically be adjusted, such that the
acceptance rate becomes optimal as discussed in section 4.1. This is done by determining
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(a) The original particle is positioned at
ro within the Cartesian coordinate system
(x, y, z) with appropriate spherical coordinates
(r0, θ0, φ0). The coordinate system (x0, y0, z0)
is attached to the particle, and is given by a ro-
tation of the (x, y, z) coordinate system around
the y-axis for an angle θ0 and a subsequent
rotation of the coordinate system around the
z-axis for an angle φ0.

(b) In order to move the original particle ran-
domly in any direction on the sphere for a
random distance, it is firstly considered that
the particle is placed on the top of the vesi-
cle. From this position the particle is then
randomly moved in a direction given by δφ ∼
2πU(0, 1), and for a certain distance given by
the polar angle δθ ∼ δθmaxU(0, 1).

(c) In the second step, the randomly moved
particle from (b) is rotated into the coordinate
system (x0, y0, z0) by applying Eq. (162).

Figure 24: A random particle displacement on a vesicle.
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the acceptance rate for a of number of MC steps (e.g., for 100 iterations). Then, if the
acceptance rate in this interval is too low (e.g., less than 0.2) the maximal particle
displacement is decreased by a certain factor (e.g., 0.5), and if the acceptance rate
is too high (e.g., more than 0.6) the maximal particle displacement is increased by a
certain factor (e.g., 1.2).

7. The developed program allows to calculate the average form factor of a system of differ-
ent complex clusters. In this case, only the geometric sizes and the number distribution
of particles per vesicle have to be specified.

However, another option allows to take into account the volume fraction of particles
and the volume fraction of shell material (vesicle/particle shell) in order to calculate
the overall intensity of a considered system. In this case either (i) the average number
of particles per vesicle has to be determined from the other given quantities, or (ii) the
mean of the vesicle distribution needs to be determined from the other given quantities.
The missing parameter is determined under the constraint that there shall be no free
particles as well as no remaining shell material.

In the description below the determination of the missing parameter for the two cases
is given. Therein, the following quantities are used: ϕs is the volume fraction of shell
material, ϕp is the volume fraction of particles, pdfRp

(Rp) is the particle radius size
distribution, pdf(t) is the shell thickness size distribution. In both cases it is considered
that the different size distributions pdfx(x) are controlled by only two parameters, the
mean μx of the distribution and its polydispersity (parameter) px, which is defined as
the standard deviation of x over μx, hence pdfx(x) = pdfx(x;μx, px).

Case (i): The average number of particles per vesicle, i.e.,

〈λ(R+ t)〉R,t =
λ〈R+t〉R,t

〈R+ t〉2R,t

〈
(R+ t)2

〉
R,t

, (163)

needs to be determined (average of Eq. (130)). This is easily accomplished, since
the number density of particles np has to be equal to the number density of vesicles
nv times the average number of particles per vesicle:

np = nv〈λ(R+ t)〉R,t (164)

⇒ 〈λ(R+ t)〉R,t =
np

nv
. (165)

The number density of particles is

np =
ϕp

〈vp〉Rp

, (166)

where

〈vp〉Rp
=

4π

3

∫
R3

p pdfRp
(Rp) dRp (167)

is the average particle volume. The number density of vesicles is

nv =
ϕs

〈vs〉R,t

, (168)

where

〈vs〉R,t =
4π

3

∫∫ (
(R+ t)3 −R3

)
pdf(R)pdf(t) dR dt (169)
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is the average shell volume associated to a vesicle/cluster. Note: If a vesicle has
internalized particles, the particles may have taken a part of the shell volume of
the vesicle for their encapsulation, but the amount of shell volume associated to
each vesicle will not change. Hence, the formula Eq. (165), respectively Eq. (169),
stays unchanged.

Case (ii): The mean of the vesicle distribution needs to be determined. Again,
Eq. (164) has to be solved, but now 〈λ(R+ t)〉R,t is given, while nv is unde-
termined, since it depends on the unknown mean vesicle core radius μR, i.e.,
nv = nv(μR). In order to determine the mean vesicle radius that solves Eq. (164)
the following optimization problem can be solved:

μ∗
R = argmin

μR

(
np − nv(μR) 〈λ(R+ t)〉R,t

)2
s.t. μR > 0. (170)

However, if only Gaussian size distributions

pdf(x;μ, p) =
1

pμ
√
2π

exp

(
−1

2

(x− μ)2

(pμ)2

)
(171)

are considered, where μ is the mean and p the polydispersity of the distribution,
an analytical solution can be found: At first, it is noted that the second moment〈
x2
〉
x
and the third moment

〈
x3
〉
x
of the Gaussian distribution40 can be written

as 〈
x2
〉
x
= μ2(1 + p2), and (172)〈

x3
〉
x
= μ3 + 3μ(μp)2. (173)

This can then be used to analytically solve Eq. (164) with respect to μR:

(Eq. (168) → Eq. (164)) np =
ϕs

〈vs〉R,t

〈λ(R+ t)〉R,t

⇔ 〈vs〉R,t =
ϕs

np
〈λ(R+ t)〉R,t

⇔ 〈
3R2t+ 3Rt2 + t3

〉
R,t

=
3

4π

ϕs

np
〈λ(R+ t)〉R,t

⇔ 〈
R2
〉
R
〈t〉t + 〈R〉R

〈
t2
〉
t
+

〈
t3
〉
t

3
=

1

4π

ϕs

np
〈λ(R+ t)〉R,t

⇔ μ2
R(1 + p2R) + μR

〈
t2
〉
t

〈t〉t
+

〈
t3
〉
t

3〈t〉t
=

1

4π

ϕs

np〈t〉t
〈λ(R+ t)〉R,t

⇔ μ2
R + μRP +Q = 0

(174)

where

P =

〈
t2
〉
t

〈t〉t(1 + p2R)
(175)

and

Q =

〈
t3
〉
t

3〈t〉t(1 + p2R)
− 1

4π

ϕs

np〈t〉t(1 + p2R)
〈λ(R+ t)〉R,t. (176)

40 Note, the Gaussian distribution is positive for negative arguments, which is physically not possible for a
geometric quantity (thickness or radius). Nevertheless, for low polydispersities (p � 0.25) the probability of
producing a negative value is usually rather small — meaning that in MC simulations as done here, negative
values usually do not realize (there are only a few hundreds random parameter realizations). However, if a
negative value occurs the simulation will be canceled.
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Then, the physical solution for the mean vesicle radius is

μR = −P

2
+

√(
P

2

)2

−Q. (177)

8. In case that a hard sphere interaction potential is used, one may wonder if it is feasible
to let the algorithm 3 stop directly after line 1. In case that the simultaneous particle
setting algorithm 6 is used, this is admissible. However, it is not anymore admissible
in case of the sequential particle setting algorithm 5: The sequential particle setting
procedure does not give configurations that are drawn from the desired equilibrium dis-
tribution. There is an illustrative example in appendix B.1 explaining this issue. The
sequential particle setting algorithm may find a configuration faster than the simultane-
ous particle setting algorithm, but it requires additional time to perform equilibration,
and thus the simultaneous algorithm may be faster nevertheless. However, in practice,
when there are a number of particles that occupy a relatively large volume/surface
fraction, the sequential algorithm usually outperforms the simultaneous particle setting
algorithm.

4.3. Calculating the Scattering Intensity of Complex Clusters

Using the methods described in section 2.1 the scattering amplitude of a complex cluster (i.e.,
a decorated vesicle with internalized particles) as depicted in Fig. 20 can be written as the
3-dimensional Fourier transform of the excess scattering length density

Acc(q) =

∫
⋃̇

{om}Mm=1

vom

(
SLD(r)− SLDmatrix

)
e−iqT r dr, (178)

where
⋃̇

{om}Mm=1

vok indicates the disjoint union of the volumes of the M objects om that con-

stitute the complex cluster, and that are embedded in the matrix. Objects of a cluster are
the vesicle shell, the particles on the outside of the vesicle shell, and the internalized particles
with shell. In this work, the particles and the vesicle shell are considered to be spherical.
Without loss of generality, the vesicle shell may be centered at the origin, thus Eq. (178)
becomes

Acc(q) = Ashell(q,R, t) +

#(particles on shell)∑
k=1

Asphere(q,Rk)e
−iqT rk

+

#(particles in core)∑
l=1

Acore-shell(q,Rl, tl)e
−iqT rl .

(179)

Ashell(q,R, t) gives the contribution of the vesicle shell, where R is the vesicle radius and t
the thickness of the vesicle shell. The formula of it reads as follows

Ashell(q,R, t) =

∫
vshell

(SLDshell − SLDmatrix)e
−iqT r dr

= 4π

∫ R+t

R
(SLDshell − SLDmatrix)r

2 sin(qr)

qr
dr

= 4π(SLDshell − SLDmatrix)

×
(
sin(q(R+ t))− q(R+ t) cos(q(R+ t))

q3
− sin(qR)− qR cos(qR))

q3

)
,

(180)

75



4 COMPLEX COLLOIDAL SYSTEMS

Figure 25: Schematic procedure for determining a core-shell amplitude form factor.

and the forward amplitude is

lim
q→0

Ashell(q,R, t) = (SLDshell − SLDmatrix) [vsphere(R+ t)− vsphere(R)] , (181)

where vsphere(R) is the volume of a sphere with radius R, Eq. (9). The second term on the
r.h.s. of Eq. (179) gives the amplitude contribution of the particles on the shell. Herein, the
k-th particle contribution is given by an amplitude form factor of a sphere, Eq. (8), with
radius Rk that is situated at the origin, and that is then moved to the position rk. Such
a translation is described mathematically by a multiplication of the sphere amplitude form
factor with e−iqT rk , cf. Eq. (13). The last term on the r.h.s. of Eq. (179) is the contribution
of the particles internalized in the vesicle, and analogously described as the previous term,
but a core-shell amplitude form factor is taken into account for the core-shell particles. This
amplitude form factor is given by

Acore-shell(q,Rl, tl) =

∫
vtotal

(SLDshell − SLDmatrix)e
−iqT r dr

+

∫
vcore

(SLDcore − SLDshell)e
−iqT r dr

= 4π(SLDshell − SLDmatrix)
sin(q(Rl + tl))− q(Rl + tl) cos(q(Rl + tl))

q3

+ 4π(SLDcore − SLDshell)
sin(qRl)− qRl cos(qRl)

q3
,

(182)

and the forward amplitude is

lim
q→0

Acore-shell(q,Rl, tl) = (SLDshell − SLDmatrix)vsphere(Rl + tl)

+ (SLDcore − SLDshell)vsphere(Rl).
(183)

The first integral in Eq. (182) is an integration over the complete particle volume, but since
the shell material does not exist in the core of the particle, it is removed by the second
integration over the core volume. This integration scheme can be nicely illustrated as done
in Fig. 25, and is already used in Eq. (7).

The intensity of the decorated vesicle with internalized particles is obtained by substituting

76



4 COMPLEX COLLOIDAL SYSTEMS

Eq. (178) into Eq. (4) yielding

Icc(q) = Acc(q) ·A∗
cc(q)

= A2
shell(q,R, t)

+
∑
k

∑
k′

Asphere(q,Rk)Asphere(q,Rk′)e
−iqT rkk′

+
∑
l

∑
l′

Acore-shell(q,Rl, tl)Acore-shell(q,Rl′ , tl′)e
−iqT rll′

+Ashell(q,R, t)
∑
k

Asphere(q,Rk)
(
eiq

T rk + e−iqT rk
)

+Ashell(q,R, t)
∑
l

Acore-shell(q,Rl, tl)
(
eiq

T rl + e−iqT rl
)

+
∑
k

∑
l

Asphere(q,Rk)Acore-shell(q,Rl, tl)
(
eiq

T rkl + e−iqT rkl
)
,

(184)

where rkk′ = rk − rk′ and analogously for the other double indexed r’s. A scattering ex-
periment captures a time average of the freely moving complex cluster, or equivalently an
orientational ensemble average of it. Since

〈
e−iqT r

〉
Ω
= sin(qr)/(qr), cf. Eq. (18), it follows

for the orientationally averaged intensity form factor of a single complex cluster

Icc(q) = 〈Icc(q)〉Ω
= A2

shell(q,R, t)

+
∑
k

∑
k′

Asphere(q,Rk)Asphere(q,Rk′)
sin(qrkk′)

qrkk′

+
∑
l

∑
l′

Acore-shell(q,Rl, tl)Acore-shell(q,Rl′ , tl′)
sin(qrll′)

qrll′

+ 2Ashell(q,R, t)
∑
k

Asphere(q,Rk)
sin(qrk)

qrk

+ 2Ashell(q,R, t)
∑
l

Acore-shell(q,Rl, tl)
sin(qrk)

qrl

+ 2
∑
k

∑
l

Asphere(q,Rk)Acore-shell(q,Rl, tl)
sin(qrkl)

qrkl
,

(185)

which describes isotropic scattering. For a number of N clusters the mean isotropic intensity
form factor reads

Icc(q) =
1

N

N∑
n=1

Icc,n(q), (186)

where Icc,n(q) is the formula given in Eq. (185), but applied to the n-th cluster. Eq. (186) is
identical to Eq. (134), but here the additional parameter symbols are suppressed in order to
keep the notation uncluttered.

In the program code it is important to check whether the formula is correctly implemented
or not. This has been done by comparing the implemented scattering formula for q → 0 with
the forward intensity (cf. section 2.1) of Eq. (186), i.e., determining limq→0 Icc(q), which is
easily accomplished by applying the results from Eq. (11), (181), and (183) in Eq. (186).
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Figure 26: Model simplification. As a model simplification the decorated vesicle can be con-
sidered to be a vesicle which is surrounded with a second shell. The second shell
might be described by a constant SLD profile as well as by a non constant profile —
see text for further explanations.

4.3.1. Analytical Models

As a special case of a complex cluster system only decorated vesicles are considered in the fol-
lowing. In this case the complex cluster intensity Eq. (185), respectively Eq. (186), simplifies,
since all core-shell amplitude terms are equal to zero.

Since MC simulations can be quite compute-intensive the question arises if a MC simulated
decorated vesicle model can be described by a simpler, analytical model as well. Following
models are considered:

Vesicle-(homogeneous particle shell) model: It is considered that the vesicles are monodis-
perse and that the particles on the vesicle shell can be described by a second shell, a
‘homogeneous particle’ shell, having a constant SLD profile — see Fig. 26 and 27a. It is
considered that the second shell has the thickness 2Rp and consists of particle material
of K particles that is homogeneously distributed in the hydrated shell. The intensity
form factor of this model reads

Ivesicle + homog. shell(q) =
[
Ashell(q,R, t; SLDvesicle shell, SLDmatrix)

+Ashell(q,R+ t, 2Rp; SLDparticle shell, SLDmatrix)
]2
,

(187)

where the used amplitude form factors are given by the shell form factor in Eq. (180),
but here the SLDs are explicitly written: SLDmatrix is the SLD of the matrix and
SLDvesicle shell is the SLD of the vesicle shell that has an inner radius R and an outer ra-
dius R+t. The only unknown parameter is the SLD of the particle shell, SLDparticle shell.
It can be calculated as follows: vps = 4π/3

[
(R+ t+ 2Rp)

3 − (R+ t)3
]
is the volume of

the homogeneous particle shell, and the total particle volume in this shell is vp = Kvp,1,
where vp,1 = 4πR3

p/3, and therefore the volume of hydration is vh = vps − vp. Conse-
quently, the SLD of the homogeneous particle shell reads

SLDparticle shell =
SLDparticle · vp + SLDmatrix · vh

vp + vh
. (188)

Vesicle-(particle profile shell) model: Similar to the previous model this model consists of
a particle shell on the vesicle, but this time the shell has a non constant SLD profile
that aims at reproducing the radial average SLD corresponding to monodisperse spheres
laying on a sphere — see Fig. 26 and 27b. The SLD profile of this shell is defined for
r ∈ [Rves, Rves + 2Rp], where Rves = R + t, and at position r the SLD depends on the
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Figure 27: a) SLD profile of the vesicle-(homogeneous particle shell) model. b) SLD profile
of the vesicle-(particle profile shell) model. Rves = R+ t.

amount of particle surface that is given by the intersection of a sphere having radius r
with the particles, cf. Fig. 28.

The volume of one particle, which is situated at the top of a vesicle (see Fig. 28), can
be written as

vp,1 =

∫ Rves+2Rp

Rves

∫ 2π

0

∫ ϑ(r)

0
r2 sin(ϑ) dϑ dϕ dr

=

∫ Rves+2Rp

Rves

2πr2
(
1− cos(ϑ(r))

)
dr

=

∫ Rves+2Rp

Rves

2πr2

(
1− R2

p − (Rves +Rp)
2 − r2

−2r(Rves +Rp)

)
dr =

4π

3
R3

p,

(189)

where the law of cosines, cos(ϑ(r)) =
[
R2

p − (Rves + Rp)
2 − r2

]
/
[ − 2r(Rves + Rp)

]
, is

used. The integrand in the last line of Eq. (189)

sp,1(r) = 2πr2

(
1 +

R2
p − (Rves +Rp)

2 − r2

2r(Rves +Rp)

)
(190)

is the intersection of a sphere with radius r with the particle volume, i.e., it defines
a sphere segment within the particle. Accordingly, if the shell consists of K identical
particles and the remaining shell volume consists of matrix, the SLD profile of the
particle shell changes according to

SLDparticle shell(r) =
SLDparticle ·Ksp,1(r) + SLDmatrix · (4πr2 −Ksp,1(r))

4πr2
. (191)

79



4 COMPLEX COLLOIDAL SYSTEMS

ϑ

Figure 28: A particle situated on the top of a vesicle. ϑ is the polar angle. As depicted, the
radius r defines a sphere segment within the particle.

Hence, the amplitude form factor is

Aprofile shell(q,Rves, Rp,K) = 4π

∫ Rves+2Rp

Rves

(SLDparticle shell(r)− SLDmatrix)

× r2
sin(qr)

qr
dr

= (SLDparticle − SLDmatrix)

∫ Rves+2Rp

Rves

Ksp,1(r)
sin(qr)

qr
dr

= K(SLDparticle − SLDmatrix)
−4π

q4(Rves +Rp)

×
(
qRp sin(qRves) cos

2(qRp)

+ qRp cos(qRves) sin(qRp) cos(qRp)

+ cos(qRves) cos
2(qRp)− cos(qRves)

− sin(qRves) sin(qRp) cos(qRp)

)
,

(192)

and the forward amplitude is Aprofile shell(0) = K(SLDparticle − SLDmatrix)
4π
3 R3

p.

Finally, the intensity of the vesicle decorated with a SLD particle profile shell is

Ivesicle + shell(q) =
[
Ashell(q,R, t; SLDvesicle shell, SLDmatrix)

+Aprofile shell(q,R+ t, Rp,K; SLDparticle, SLDmatrix)
]2
.

(193)

Vesicle-(two particles correlation) model: The previous two models are not capable to cap-
ture any particle correlations, whereas in this model the interaction of two particles is
taken into account. The contribution of the correlation of two particles can be obtained
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by placing one particle at the top of a vesicle while a second particle is considered to
be randomly distributed over the vesicle, see Fig. 29. Consider K identical particles on
a vesicle, then Eq. (185) gives

Ivesicle, 2-particle corr. = A2
shell(q,R, t)

+KA2
sphere(q,Rp) +A2

sphere(q,Rp)

K∑
k

K∑
k′ �=k

〈
sin(qrkk′)

qrkk′

〉

+ 2KAshell(q,R, t)Asphere(q,Rp)
sin(q(Rves +Rp))

q(Rves +Rp)
,

(194)

where the bracket indicates a distance average between particle k and particle k′, and
Rves = R+ t. Using spherical coordinates, the distance rkk′ can be written as a function
of the polar angle ϑ, i.e., rkk′ = rkk′(ϑ). Let ϕ the azimuthal angle, then

rkk′(ϑ) =

∥∥∥∥∥∥
⎛⎝ 0

0
Rves +Rp

⎞⎠−
⎛⎝ (Rves +Rp) sin(ϑ) cos(ϕ)

(Rves +Rp) sin(ϑ) sin(ϕ)
(Rves +Rp) cos(ϑ)

⎞⎠∥∥∥∥∥∥
=
√
(Rves +Rp)2 sin

2(ϑ) + (Rves +Rp)2(1− cos(ϑ))2

=
√
2(Rves +Rp)2(1− cos(ϑ)) = 2(Rves +Rp) sin

(
ϑ

2

)
.

(195)

Hence, a single two particles correlation is〈
sin(qrkk′)

qrkk′

〉
=

∫ π

0

sin(qrkk′(ϑ))

qrkk′(ϑ)

sin(ϑ)

2
dϑ

=
1− cos2(q(Rves +Rp))

q2(Rves +Rp)2

=
sin2(q(Rves +Rp))

q2(Rves +Rp)2
,

(196)

and is used in Eq. (194) in order to calculate the correlations, i.e., the second term in
the second line becomes

A2
sphere(q,Rp)

K∑
k

K∑
k′ �=k

〈
sin(qrkk′)

qrkk′

〉
= K(K − 1)A2

sphere(q,Rp)
sin2(q(Rves +Rp))

q2(Rves +Rp)2
.

(197)

4.4. Evaluations

In the next subsection, a comparison between the different analytical models given in sec-
tion 4.3.1 with MC simulated decorated vesicle models is given. In the succeeding subsection,
scattering simulations are analyzed for the considered decorated vesicle systems (DPPC vesi-
cles, decorated with silica nanoparticles). The final subsection analyzes expected scattering
intensities of more complex systems consisting of DOPC vesicles that are decorated and/or
contain internalized silica nanoparticles.
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Figure 29: Two particles correlation. It is considered that the k-th particle is situated at the
top of the vesicle and the other particle k′ is randomly placed on the vesicle.

4.4.1. Analytical Models vs. MC Simulations

A model system is considered that comprises vesicles consisting of a DPPC bilayer decorated
with silica (nano-)particles. The vesicles are monodisperse as well as the particles, and the
number of particles per vesicle is fixed. The vesicle core radius is R = 37.9 nm and the shell
thickness is t = 4.4 nm, the particle radius isRp = 8.36 nm. The number of particles per vesicle
is K ∈ {2, 5, 10, 20, 30, 60}. The intensity is calculated for the case of X-ray scattering (CuKα
characteristic radiation), i.e., SLDDPPC = 10.1 · 10−4 nm−2, and SLDSiO2

= 18.9 · 10−4 nm−2.
The matrix is H2O, having SLDH2O

= 9.46 ·10−4 nm−2, i.e., the vesicle shell is nearly contrast
matched.
In the following the surface fraction of nanoparticles on a vesicle ϕ′

pv is defined as the total
particle profile area per vesicle surface area:

ϕ′
pv =

KπR2
p

4π(R+ t)2
. (198)

For differentK the scattering intensities of the three different analytical models of decorated
vesicles, given in section 4.3.1, are plotted together with the scattering intensities of MC
simulations (where a hard sphere potential energy is used, Eq. (124)) in Fig. 30. Clearly for
K � 10 (ϕ′

pv � 10%), the vesicle-(two particles correlation) model gives an excellent match
with the MC simulation one. The two different vesicle-shell models do not give a good match
for these low surface fractions, except for the low q-regime (q � 0.05 nm−1). However, for
higher surface fractions the vesicle-(two particles correlation) model does not match well the
intensity of the MC simulated one in the mid q-regime (0.05 nm−1 � q � 0.3 nm−1), whereas
the quality of the match of the intensity of the vesicle-shell models with the MC simulated
one increases. Of course, the two different vesicle-shell models can never describe properly
the high q-regime, since the intensity in this regime is described by the intensity form factor
of the particles (spheres). The differences between the two vesicle-shell models are negligible
in the mid q-regime.
In Fig. 31 results of MC simulations are depicted, where the intensity of decorated vesicles

having a fixed number of particles is compared with the intensity of decorated vesicles having
the same average number of particles, but the number of particles is described by a Poisson
distribution. Therein, the average surface fraction of nanoparticles per vesicle is defined as

〈
ϕ′
pv

〉
=

1

N

N∑
n=1

Kn∑
k=1

KnπR
2
p,k

4π(Rn + tn)2
, (199)
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Figure 30: Intensity form factors of models of decorated vesicles. K is the number of particles
on a vesicle, and ϕ′

pv is the surface fraction of particles on a vesicle. Blue intensity
curves: MC simulation of decorated vesicles. Red intensity curves: vesicle-(two
particles correlation) model. Black intensity curves: vesicle-(homogeneous particle
shell) model. Magenta intensity curves: vesicle-(particle profile shell) model. The
blue curve is covered by the red curve in the diagrams of the first row.
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Figure 31: Intensities of MC simulations of decorated vesicles. Blue intensity curves: the
vesicles are decorated by particles, where the number of particles is Poisson dis-
tributed. Red intensity curves: the vesicles are decorated with a fixed number
of particles. Left diagram: there are two particles per vesicle in average (i.e.,
ϕ′
pv =

〈
ϕ′
pv

〉
= 1.96%). Right diagram: there are 55 particles per vesicle in av-

erage (i.e., ϕ′
pv =

〈
ϕ′
pv

〉
= 53.8%). The blue curves are nearly perfectly matched

by the red curves, except that the low q-intensity is slightly higher for the blue
curves.

where this formula also takes a possible size distribution of nanoparticles into account, which
is used in the next subsection. Two limiting cases are considered: (i) 2 particles in average
per vesicle and (ii) 55 particles in average per vesicle41. As depicted in Fig. 31 the intensity
differences are negligible, only the intensity in the low q-regime is slightly higher for the case
where the number of particles per vesicle is Poisson distributed compared to the case of having
a fixed number of particles. Considering that the vesicle shell is contrast matched, this effect
can be mathematically described by applying Eq. (185),(186), which then becomes for q → 0

lim
q→0

Icc(q) = lim
q→0

(
A2

sphere(q,Rp)
1

N

N∑
n=1

Kn∑
k=1

Kn∑
k′=1

sin(qrkk′,n)

qrkk′,n

)

= A2
sphere(0, Rp)

1

N

N∑
n=1

K2
n

= (SLDparticle − SLDmatrix)
2v2sphere(Rp)

〈
K2

n

〉
n
,

(200)

where
〈
K2

n

〉
n
:= 1

N

∑N
n=1K

2
n is the second moment, which can be expressed by the average

〈Kn〉n and the variance
〈
(Kn − 〈Kn〉n)2

〉
n
≥ 0 as

〈
K2

n

〉
n
= 〈Kn〉2n +

〈
(Kn − 〈Kn〉n)2

〉
n
, and

thus showing that if the average number of particles per vesicle stays fixed, any particle
number distribution having a variance larger than zero will increase the intensity compared
to the case of having a Dirac distribution with the number of particles per vesicle equal to
〈Kn〉n.

4.4.1.1. Results
The evaluations show that the considered decorated (silica nanoparticles) DPPC vesicle sys-
tem is well described by the vesicle-(two particles correlation) model for surface fractions
of ϕ′

pv � 10%, and considering X-ray contrast conditions. For ϕ′
pv � 60% the vesicle-

(homogeneous particle shell) model and the vesicle-(particle profile shell) one give a better

41 Less than 60 particles in average per vesicle are taken, otherwise problems would occur with placing the
particles on a vesicle (too high surface fraction of particles on a vesicle).
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model description in the mid q regime. Last but not least, the effect of having a Poisson
distribution of particles instead of taking a Dirac distribution only produces a minor intensity
difference at the low q-regime.
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DP0 DP0.7 DP0.85 DP1.0 DP1.5 DP3.0

ϕp 0 3.18 · 10−4 3.87 · 10−4 4.55 · 10−4 6.82 · 10−4 13.7 · 10−4

HS 〈#NP/vesicle〉 0 12.1 15.1 17.9 26 52.7〈
ϕ′
pv

〉
/% 0 11.3 14.1 16.5 24.8 50.2

C 〈#NP/vesicle〉 0 12.5 15.1 17.7 27.1 53.5〈
ϕ′
pv

〉
/% 0 12 14.4 16.9 25.1 50.1

Table 5: Values of ϕp (volume fraction of nanoparticles) used to create decorated DPPC vesi-
cles. DPx defines the simulation set names (x indicates the weight percentage that
ranges from 0-3 wt%). ‘HS’ means hard sphere potential energy, see Eq. (124), and
‘C’ means strong repulsive Coulomb potential energy, see Eq. (125) and description
in the text thereafter. 500 decorated vesicles are generated and corresponding scat-
tering intensities are calculated (see Fig. 32) — according to algorithm 2. From
the simulations the following two quantities are obtained: (i) 〈#NP/vesicle〉: the
average number of nanoparticles per vesicle, (ii)

〈
ϕ′
pv

〉
: the average of the surface

fraction (here in percentages) of nanoparticles on a vesicle, cf. Eq. (199). Simulating
more decorated vesicles does not change the scattering intensity curves significantly.

4.4.2. MC Simulations of Decorated DPPC Vesicles

In this section MC simulations are presented for systems consisting of DPPC vesicles that are
decorated by silica nanoparticles (NP). These systems have already been analyzed in some
depth in [104, 107] (via SANS, cryo-TEM, dynamic and static light scattering, differential
scanning calorimetry, zeta potential measurements). Here now, MC simulations are per-
formed according to algorithm 2 in order to get detailed insights into the scattering intensity
behavior of such systems. The simulations have been performed with a hard sphere potential
energy, Eq. (124), as well as with a strong repulsive Coulomb potential energy, cf. Eq. (125)
and text thereafter. Moreover, X-ray contrast conditions are assumed, hence the scattering
intensity reflects more strongly (compared to SANS) the form factor of the particles and their
interactions, i.e., their structure factor.

According to [104], it is considered that the vesicle core radius distribution has a mean 〈R〉 =
37.9 nm and a polydispersity pR = 0.25, and here the distribution is assumed to be a Gaussian
one. The vesicle shell thickness distribution is considered to have a mean 〈t〉 = 4.4 nm and
a polydispersity pt = 0.1 and is assumed to be Gaussian, too. The radius distribution of the
particles is also assumed to be Gaussian with mean radius 〈Rp〉 = 8.36 nm and polydispersity
pRp = 0.14. The total volume fraction of shell material is taken as ϕDPPC = 9.39 · 10−4, and
different volume fractions of nanoparticles ϕp are considered, which are listed in table 5. It
is assumed that the number of particles on a vesicle is Poisson distributed, and changing ϕp

changes the average number of particles per vesicle, see Eq. (165),(166). The SLDs of the
considered substances are already given in section 4.4.1.

MC simulations have been done according to table 5, which additionally contains parameter
results obtained from the simulations (the average number of nanoparticles per vesicle, and
the average surface fraction of nanoparticles on a vesicle). Fig. 32 shows the results of the
MC simulations, and Fig. 33 shows a plot of all contributions to the overall intensity of the
sample system DP3.0 having strong repulsive interactions. From these simulations it is clearly
seen that there is an oscillation in the mid q-regime (q ≈ 0.05 − 0.07 nm−1), which becomes
more significant with (i) the increase of the volume fraction of nanoparticles ϕp as well as
with (ii) the presence of repulsive forces. Moreover, the presence of (strongly) repulsive forces
create a bump at q ≈ 0.13− 0.3 nm−1. This bump becomes more significant with increasing
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Figure 32: Simulation results of decorated vesicles according to table 5 and description in
the text. Left diagram: hard sphere potential is used. Right diagram: a strong
repulsive Coulomb potential is used. Clearly, an increase of the volume fraction
of nanoparticles ϕp lifts the scattering curve, especially it increases the forward
intensity. The presence of strongly repulsive forces produces a bump at q ≈ 0.13−
0.3 nm−1, which becomes more significant with an increase of ϕp.
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Figure 33: Plot of all amplitude-amplitude contributions to the overall scattering intensity
of sample system DP3.0 having strong repulsive interactions between the parti-
cles (i.e., a strong repulsive Coulomb potential energy is used for the simulation).
The red curve is the overall intensity of all amplitude-amplitude contributions in
Eq. (185),(186). Note, the cross amplitude form factor is partially negative.

particle volume fraction ϕp, and moves from 0.13 nm−1 to 0.3 nm−1 as ϕp increases from 0 up
to 13.7 ·10−4. This shift to higher q-values is due to the fact that the interparticle distances of
the particles on a vesicle decrease as ϕp increases. Last but not least, the forward scattering
increases with ϕp — cf. Eq. (24) and text thereafter.

4.4.2.1. Results
For a possible SAXS data evaluation of the considered systems (DPPC vesicles decorated
by silica nanoparticles), the average number of particles per vesicle can be deduced from
the forward scattering42. Evidence of repulsive forces between particles are mainly encoded
in a bump at q ≈ 0.13 − 0.3 nm−1, and are also slightly encoded in an oscillation at q ≈
0.05− 0.07 nm−1.

42 E.g., the (average) number of particles can be estimated by fitting the formula in Eq. (194) or in Eq. (200)
to the experimentally observed forward intensity.
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4.4.3. MC Simulations of Decorated DOPC Vesicles with Internalized Particles

In this section different MC simulations are presented of systems consisting of DOPC vesi-
cles that are decorated and/or contain internalized silica nanoparticles. Such systems have
already been analyzed in some depth in [104, 9, 106] (via SANS, and cryo-TEM, dynamic
and static light scattering, fluorescence correlation spectroscopy). Here now, MC simulations
are performed in order to get detailed insights into the scattering intensity behavior of such
systems. X-ray contrast conditions are assumed, hence the scattering intensity reflects more
strongly (compared to SANS) the form factor of the particles and their interactions, i.e., their
structure factor.

Two different systems are considered, which consist of

(A) a DOPC volume fraction of ϕDOPC = 9.983 · 10−3 and a silica nanoparticle volume
fraction of ϕp = 1.093 · 10−3,

(B) a DOPC volume fraction of ϕDOPC = 9.984 · 10−3 and a silica nanoparticle volume
fraction of ϕp = 2.194 · 10−3.

In [104] it was inferred that after mixing the above given quantities of DOPC and silica
nanoparticles, silica nanoparticles attach to the surface of the DOPC vesicles, which pre-
vent the vesicles from coalescence. Then, particles are gradually internalized by the vesicles
whereby the particles remove a part of the vesicle shell in order to encapsulate themselves with
it forming a supported lipid bilayer [91, 106] — cf. Fig. 20. As a consequence of the reduced
amount of particles on the vesicles, the vesicles coalesce and grow in size. According to [104]
it is considered that the initial vesicle core radius distribution has a mean 〈R〉 = 43.4 nm and
a polydispersity of pR = 0.25, and here the distribution is assumed to be a Gaussian one.
Furthermore, the vesicle shell thickness distribution is considered to be Gaussian with mean
〈t〉 = 4.4 nm and polydispersity pt = 0.1. The radius distribution of the particles is Gaussian
too with mean radius 〈Rp〉 = 8.36 nm and polydispersity pRp = 0.14 [104].

The SLDs of water and of the silica nanoparticles are given in section 4.4.1, and SLDDOPC =
9.4 · 10−4 nm−2.

MC simulations have been done with a hard sphere potential as well as with a strong re-
pulsive Coulomb potential according to tables 6 and 7 and the quantities given above. Fig. 34
shows the simulation results of systems (A) and (B), and obtained simulation parameters are
listed in tables 6 and 7, too.
System (A): If a hard sphere potential is used, there is only a slight structure factor peak

(at ca. 0.07 nm−1) if all particles are on the surface (sample ‘0 days, 0% int.’). All other
simulations of the same system do not show an oscillation. However, if a strong repulsive
Coulomb potential is used (only for the particles on the vesicles; the particles in the vesicles are
encapsulated with shell material, hence screened, and therefore only a hard sphere interaction
is considered for them), a deep oscillation is produced for sample ‘0 days, 0% int.’ (at ca.
0.05 nm−1) and the structure factor peak is amplified and moved43 to ca. 0.08 nm−1. The
sample curves ‘5 days, 30% int.’ and ‘8 days, 70% int.’ show only a slight ‘wobbling’ at
q ≈ 0.04− 0.1 nm−1.
System (B): The simulations show the same effects as discussed for system (A), but here, the

features in the curves are amplified due to the fact that there are approximately two times the
number of nanoparticles on the vesicles. Moreover, the structure factor peaks move to higher

43The peak moved to a higher value (compared to the hard sphere potential energy case), whereas the average
particle distance increased (hence the peak position should be shifted to a lower q value), as a result of the
influence of the adjacent deep oscillation at ca. 0.05 nm−1.
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q values, since the interparticle distances decrease with an increase of the particle volume
fraction. E.g., considering the sample ‘0 days, 0% int.’ for the strong Coulomb potential, the
structure factor peak moves from q ≈ 0.08 nm−1 for ϕp = 1.093 · 10−3 to q ≈ 0.12 nm−1 for
ϕp = 2.194 · 10−3. Last but not least, the forward scattering increases with ϕp (cf. Eq. (24)
and text thereafter).
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Figure 34: Simulation results of decorated vesicles with internalized particles according to
tables 6 and 7 and description in the text. Top row: system (A), i.e., ϕp =
1.09 · 10−4. Bottom row: system (B), i.e., ϕp = 2.19 · 10−4. Left column: hard
sphere potential energy is used, right column: strong repulsive Coulomb potential
energy is used. The scattering intensity of only DOPC vesicles is not shown in
the plots, since the forward intensity is already less than 0.05 cm−1. The increase
of intensity at low q for curves ‘8 days, 70% int.’ and ‘12 days, 100% int.’ is a
result of the increasing scattering mass of the complex clusters — resulting from
the coalescence of the complex clusters, see text.

4.4.3.1. Results
For a possible SAXS data evaluation of the considered systems (DOPC vesicles decorated with
nanoparticles and/or contain internalized nanoparticles), the average number of particles per
vesicle can mainly be deduced from the forward scattering44. Shortly after mixing the systems,
evidence of repulsive forces between particles on the vesicles is encoded in an oscillation at
q ≈ 0.05 nm−1, and in a structure factor peak at q ≈ 0.07 nm−1 for ϕp = 1.093 · 10−3 and
at q ≈ 0.12 nm−1 for ϕp = 2.194 · 10−3. At later times, evidence of strongly repulsive forces
between the particles on the vesicles is not so strongly encoded anymore in the scattering
intensities.

44 E.g., the (average) number of particles per vesicle can be estimated by fitting the formula in Eq. (194) or in
Eq. (200) to the experimentally observed forward intensity, if additionally the number of clusters is taken
into account in the formulas.
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4.5. Conclusion

Monte-Carlo simulations were successfully implemented that produce quickly (from seconds
up to minutes for the more demanding cases) scattering patterns of rather complex hierarchical
structures, harvesting the multiple cores of today’s personal computers.
The cases of vesicles decorated with particles, encapsulated particles internalized by vesicles,

and intermediate situations have been examined. Simulations were performed using physically
realistic parameters, aiming to clarify the structure of systems already analyzed in [105] by
probing them via SAXS, but because of technical reasons experimental SAXS data have yet
to be acquired.
Simulations have shown which parameters can be deduced from features in the scattering

intensities. In general, the two important features for vesicle-particles interactions are the
intensities at low q (showing the increase in mass of the scatterer), and a structure factor
resulting from the particles in a confined space. Moreover, it has been found that the consid-
ered decorated vesicle system can be well described by an analytical ‘two particles-correlation’
model for surface fractions of particles on a vesicle up to ca. 10%.
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5. Spontaneous Formation of Vesicles

The following coalescence study is an example of how the available information in a compre-
hensive scattering series is related to a few physical parameters. Moreover, this study shows
which physical parameters can be determined from the scattering intensities reliably.

Vesicles are very interesting colloidal objects, since they are relevant as delivery systems
[90, 29], and as models for biological membranes [12, 151]. Hence, the formation process of
vesicles is very interesting, since this process defines the vesicular structures, e.g., the size
and polydispersity of the vesicles.

Experiments show that vesicles can assemble spontaneously in diverse amphiphilic systems,
e.g., in mixtures of cationic and anionic (catanionic) surfactants [81, 82, 8], in mixtures of
mesoionic and anionic (mesoanionic) surfactants [175, 181], by means of addition of cosur-
factant to surfactant solutions [44, 53], etc. Certain mixtures in particular catanionic and
mesoanionic systems have been shown to often yield rather well defined unilamellar vesicles
[81, 130, 23]. However, only in few cases the vesicles have been observed to be thermodynam-
ically stable, while in the other cases the vesicles are metastable and age more or less quickly
with time [73].

Understanding the pathway of the vesicle building process does not only rationalize the
experimental observations but also allows to modify it if one wishes to control the vesicular
structures. Therefore, many studies have been undertaken to follow the formation of vesicles
as they are formed by mixing the corresponding surfactant solutions. Such experiments
have for instance been done by means of a stopped-flow apparatus where the surfactants are
mixed in a time of 1-5ms and subsequently the structural evolution of the surfactant mixture
can be followed by methods such as turbidimetry [110], static and dynamic light scattering
[120, 93], SAXS [136] or SANS [57]. For the case of mixing anionic with cationic or mesoionic
surfactants (concentrations above the critical micelle concentration (cmc)) these experiments
have shown that typically as intermediate structures disk-like micelles are formed that grow
in size until reaching a certain critical size at which they close to form unilamellar vesicles
(vesiculation). This experimental finding and the growth of the initially present disk-like
micelles have already some while ago been explained by means of a coalescence model, in
which disks coalesce after collision processes [93, 178, 140, 92]. Beyond a certain size they
become unstable due to the fact that their unfavorable rim energy, described by the line
tension, becomes larger compared to the bending energy required to close the disk, thereby
eliminating the rim by vesicle formation [140, 47, 95, 79]

In this work now, the experimental parameters of the considered system are varied in or-
der to understand how the growth process of the disks is influenced, and as a consequence,
how the size distribution of the initially formed vesicles depends on it. Compared to previ-
ously published analyses of the growth and vesiculation process, based only on the forward
scattering, here, the entire q-range is modeled that contains further information on the size
distribution (which is encoded in the oscillations in the scattering pattern). This knowledge
is important for building well-defined vesicles.

For this purpose diffusion and reaction limited models of disks coalescence are employed as
similarly outlined in previous works [140, 92], but here the intention is to obtain a detailed and
systematic insight into how certain parameters of this growth process affect experimentally
observable structural properties of the disks, such as size distribution, and in particular how
they influence the size distribution of the finally formed vesicles.

Physical quantities and parameters that are varied in this study are

1. the initial size distribution of the disks,
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2. the critical radius at which vesiculation occurs, and

3. the effect of an activation energy which controls the speed of the coalescence process.

Moreover, the appropriate scattering intensities for the different cases are calculated in order
to get an insight into the information content of time resolved scattering experiments. Scat-
tering experiments are especially interesting, since they allow to observe colloidal systems in
situ and time resolved.

A refined understanding of the vesicle formation process will be important for future de-
velopments in the formation of vesicles with tailor-made structural properties.

5.1. Modeling the Disk Growth Pathway

The considered dynamical growth model is as follows:

1. It is assumed that the initial coalescence state consists of only disk-like micelles. This
is considered as experimental observations have been shown that very quickly after
mixing of a zwitterionic or a cationic surfactant with an anionic surfactant, these disk-
like micelles are build. Moreover, this time is close to the dead-time of the stopped-flow
experiment, hence experimentally not observable.

2. In a second step, the initially formed disks grow by means of coalescence. The rate of
fusion may depend (i) only on the speed of diffusion, where each collision of particles
lead to a fusion of them, hence the process is called diffusion limited, or (ii) additionally
on an energy barrier of fusion, hence not all particle collisions result in a fusion of the
particles. In this case the process is called reaction limited.

3. Disks that reach a certain, critical size are assumed to become unstable and close to
form vesicles.

4. The rate of coalescence of vesicles is much smaller than the rate of coalescence of disks.
Moreover, it is assumed that there is no inter-species (disk-vesicle) coalescence. Hence,
the pathway of the coalescence of disks can be independently analyzed from the one of
the vesicles.

For a mathematical description of the coalescence mechanism the formula of aggregation
of M. von Smoluchowski [165, 166] is employed, which was already used in [140, 92].

5.2. Von Smoluchowski Differential Equation

The following discussion is based on the von Smoluchowski differential equation45 (DEQ)
[165, 166]

dnm(t)

dt
=

1

2

m−1∑
j=1

Km−j,j(t)nm−j(t)nj(t)− nm(t)

∞∑
j=1

Km,j(t)nj(t). (201)

45 For ‘continuously’ sized particles Eq. (201) can be formulated with integrals instead of sums as an integro-
differential equation, which can be justified due the relatively large number of surfactant molecules contained
already in the smallest sized disk-like micelles (> 200). However, an analytical solution is only available
for a few simple kernels [118] (e.g., a constant kernel with a monodisperse starting distribution [165]).
Therefore, for more realistic cases, numerical methods must be employed, requiring a discretization of the
integrals, hence resulting into Eq. (201) (possibly with additional integration weights within the sums).
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It describes irreversible particle coalescence under the assumption that only two particles can
fuse with each other. Thus, coalescence of three and more particles is not taken into account,
which is a reasonable assumption for diluted systems. In this equation nm(t) is the number
density of colloidal particles consisting of m unimers (m-mers) at time t, dnm(t)/dt is its
rate of change and Km,j(t) gives the rate coefficient for collisions of m-mers with j-mers at
time t. In general the rate coefficient can be time-dependent, since the properties of the
particles might change with time, e.g., due to a rearrangement of charges between different
particles. However, here it is considered that properties are time-invariant and therefore the
evolution of the system is solely determined by a time independent kernel matrix K, where
[K]m,j = Km,j . The first term on the r.h.s. of Eq. (201) describes the increase of concentration
of m-mers resulting from the coalescence of j-mers with (m− j)-mers. The factor 1/2 takes
into account that each particle can coalesce only once, whereas the sum takes it into account
twice. The second term on the r.h.s. of Eq. (201) describes the decrease of concentration of
m-mers resulting from fusions of m-mers with j-mers. The colloidal particles are considered
to stay finite in size. Therefore the second sum will only give a contribution up to a certain
maximum index jmax, hence nj = 0 for j > jmax.

Since it is considered that the disks close and become vesicles at a certain critical disk size,
the kernel matrix can be decomposed into four submatrices

K =

(
Kdd Kdv

Kvd Kvv

)
, (202)

where Kdd is the kernel describing the disk-disk coalescence, Kvv is the kernel for vesicle-
vesicle coalescence, andKdv andKdv is the kernel for inter-species coalescence. Here, onlyKdd

is a non-zero matrix, since it is assumed that the disk-disk coalescence process is much faster
than the vesicle-vesicle coalescence process, and the interesting size is the initially formed
vesicle size distribution; moreover it is assumed that there is no inter-species coalescence.
Considering that vesiculation occurs at a size index jcr. + 1, it follows jmax = 2jcr., since a
maximum sized vesicle is build from two maximum sized disks that coalesce. The aggregate
volume associated to index j is πR2

j tm, corresponding to a disk with radius Rj and thickness
tm if j ≤ jcr., otherwise to a vesicle — see next section. Since a j-mer consists of j unimers
with disk radius R1, the disk radius of the j-mer is

πR2
j tm = jπR2

1tm (203)

⇒ Rj =
√
jR1 (204)

for j ≤ jcr..

5.2.1. Initial Conditions

Since the disk-like micelles and the vesicles are build of bilayer membranes, it is assumed
in the following that the thickness (height) of the disk-like micelles is fixed, as well as the
thickness of the vesicles is fixed, and both thicknesses are equal to the thickness of the bilayer
membrane tm. For j > jcr. in the kernel matrix the appropriate vesicle core radius Rv

j can be

determined by equating the volume πR2
j tm of a disk with radius Rj =

√
jR1 with the volume

4π
3 [(Rv

j + tm)3 − (Rv
j )

3] of a vesicle with core radius Rv
j :

Rv
j = − tm

2
+

1

6

√
9R2

j − 3t2m. (205)

The initial disk radius size distribution is considered to be Gaussian, i.e.,

R ∼ N (R|μR, σ
2
R

)
, (206)
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where μR is the mean radius and σ2
R is the variance of the distribution. Hence the initial

continuous number density distribution reads

n(R, t = 0) = n0 · N
(
R|μR, σ

2
R

)
, (207)

where n0 is the initial total number density of disk-like micelles, i.e.,

n0 =
ϕ

〈vD(R)〉R
, (208)

where ϕ is the volume fraction of bilayer material, and 〈vD(R)〉R is the average volume of
the initial disk-like micelles. In the implemented program, the initial disk distribution is
discretized as

nj(t) := n(Rj , t)ΔRj (209)

by means of the midpoint integration formula, where the integration support points are taken
as Rj =

√
jR1 (Eq. (204)), the j-th integration interval is [Rj − 1

2(Rj −Rj−1); Rj +
1
2(Rj+1−

Rj)
]
, and

ΔRj =
Rj+1 −Rj−1

2
. (210)

The radius of the ‘unimer’ is chosen according to R1 = (μR − 5σR)/
√
j5σR , hence allowing to

control the initial discretization error of the Gaussian distribution by changing j5σR . In order
to determine an error of the initial discretization, the relative error∣∣∣∣∣n0 −

∑
j n0 · N (Rj |μR, σ

2
R)

Rj+1−Rj−1

2

n0

∣∣∣∣∣ (211)

is used. For all evaluations this error was found to be not more than 0.1%.

5.2.2. Solving the v. Smoluchowski DEQ

There are only a few known solutions to the v. Smoluchowski DEQ, Eq. (201), considering
special cases of kernels and a monodisperse initial particle distribution (see, e.g., [118]). Here,
the initial particle distributions are considered to be polydisperse and the kernel is another
one, hence in this work numerical approaches are employed, and solutions are determined via
DEQ solvers provided by MATLAB [153]. E.g., by means of the ode45 solver46 using a Runge-
Kutta (4, 5) formula or by means of the ode113 solver47 using the Adams-Bashforth-Moulton
PECE algorithm. Different DEQ solver algorithms have been tested, and all solvers can yield
identical solutions if only the specified tolerances are chosen small enough, but the execution
time can be significantly different. It has been found that especially the Adams-Bashforth-
Moulton PECE solver was relatively fast compared to the other solvers, hence in agreement
with the description of the MATLAB help [152]. The DEQ solvers require the kernel matrix
K as well as the discretized initial number density distribution, and they return the time
evolution of the number density distribution.

46“ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver —
in computing y(tn), it needs only the solution at the immediately preceding time point, y(tn−1). In general,
ode45 is the best function to apply as a first try for most problems” [152].

47“ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be more efficient than ode45
at stringent tolerances and when the ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding time points to compute the current
solution” [152].
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As a check if an algorithm did not diverged the total volume of material at the end of the
simulation was checked against the initial volume of material at the beginning (the volume
of material is a conserved quantity).
In order to characterize the transient coalescence process following quantities are used:

1. The mean disk radius

μR(t) =
1∑jcr.

j=1 nj(t)

jcr.∑
j=1

Rjnj(t). (212)

2. The polydispersity of the radius size distribution

pR(t) =
σR(t)

μR(t)
, (213)

where

σR(t) =

√√√√ 1∑jcr.
j=1 nj(t)

jcr.∑
j=1

(
Rj − μR(t)

)2
nj(t). (214)

3. The z-averaged gyration radius [133, §5.2.4.2]

μRg(t) =

√√√√∑jmax

j=1 nj(t)v2jR
2
g,j∑jmax

j=1 nj(t)v2j
, (215)

where vj is the volume of a disk with radius Rj if 1 ≤ j ≤ jcr., otherwise the volume
of a vesicle with core radius Rv

j , cf. Eq. (205). Rg,j is the gyration radius of a disk if
1 ≤ j ≤ jcr., and reads as follows [133, §5.2.1]

Rg,j = Rdisk
g (Rj , tm) :=

√
R2

j

2
+

t2m
12

1 ≤ j ≤ jcr., (216)

otherwise the gyration radius of a vesicle, which reads [41, table 3.1]

Rg,j = Rshell
g (Rv

j , tm) :=

√√√√3
[
(Rv

j + tm)5 − (Rv
j )

5
]

5
[
(Rv

j + tm)3 − (Rv
j )

3
] j > jcr.. (217)

4. The normalized scattering intensity

In(q, t) =

jcr.∑
j=1

nj(t)Idisk(q,Rj , tm) +

jmax∑
j=jcr.+1

nj(t)A
2
shell(q,R

v
j , tm), (218)

where Ashell(q,R
v
j , tm) is the shell (vesicle) amplitude form factor already defined in

Eq. (180) with core radius Rv
j and shell (membrane) thickness tm, and Idisk(q,Rj , tm) is

the intensity form factor of an orientationally averaged disk with radius Rj and thickness
tm given in Eq. (472) in the appendix D.3.

5. The evolution of the volume fraction of disks over time ϕ(t).

6. The characteristic time τϕ of volume fraction of disks, which describes the point in time

at which there is only half of the original volume fraction of disks left, i.e., 1
2 =

ϕ(τϕ)
ϕ .
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7. The mean vesicle core radius Rv and the polydispersity pv of the vesicle core radius
distribution at simulation end. These quantities are calculated analogously to Eq. (212)-
(214), but here j > jcr. and the vesicle core radius is used, Eq. (205).

8. The probability density function pdf(Rv) of the vesicle core radius size distribution is
plotted48. pdf(Rv) is obtained as follows: First, the discrete number density distribu-
tion n(j) is made continuously in [jcr., jmax] by applying a spline interpolation (using
MATLAB’s interp1() function) and then, this new continuous distribution is normal-
ized, yielding pdf(j). Next, the probability density transformation from appendix A.1
is used to get

pdf(Rv) =

∣∣∣∣ dj(Rv)

dRv

∣∣∣∣ pdf(j(Rv)), (219)

where herein Eq. (205) and Eq. (204) are employed in order to obtain

j(Rv) =
(Rv +

1
2 tm)262 + 3t2m
9R2

1

, (220)

and ∣∣∣∣ dj(Rv)

dRv

∣∣∣∣ = 2(Rv +
1
2 tm)62

9R2
1

. (221)

5.3. Simulations

In this section solutions of the v. Smoluchowski DEQ are given for differently assumed kernels.

Brownian Diffusion Kernel

If the disks coalescence process is assumed to be diffusion limited, the Brownian kernel can
be employed

Kdisk
m,j = 4π(Dm +Dj)(R

h
m +Rh

j ) 1 ≤ m, j ≤ jcr., (222)

see, e.g., [40], where Dj is the diffusion coefficient of an object with hydrodynamic radius Rh
j .

The diffusion coefficient [37] is given as

Dj =
kBT

6πηRh
j

(223)

where kB is the Boltzmann constant (1.38 · 10−23 J/K), T the temperature (25 ◦C), and η is
the viscosity of the solvent, here assumed to be water, i.e., η = 0.891 · 10−3Ns/m2 (at 25 ◦C).

Different models of the hydrodynamic radii are considered:

Disks: The hydrodynamic radius Rh
j of a disk with radius Rj and thickness tm has been

approximately found to be [102]

Rh
j =

3Rj

2

(√
1 + α2 +

1

α
ln
(
α+
√
1 + α2

)
− α

)−1

, (224)

where α = tm/(2Rj).

48Here, Rv is used instead of Rv
j to distinguish between the continuous case and the discrete one.
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Spheres: A even more rough approximation of the hydrodynamic radius of a disk with radius
Rj is given by assuming the hydrodynamic radius of a sphere with radius Rj , i.e.,
Rh

j = Rj . In this case the kernel becomes

Kspheres
m,j = 4π

kBT

6πη

(Rm +Rj)
2

RmRj
1 ≤ m, j ≤ jcr.. (225)

Identical Spheres: Considering particles of nearly the same size Rm ≈ Rj ∀j,m, the kernel
can be approximated as

Kconst.
m,j = Kconst. :=

8kBT

3η
1 ≤ m, j ≤ jcr., (226)

hence yielding a value of Kconst. = 1.23 ·10−17m3/s for the assumed physical quantities.

Fig. 35 shows results obtained for different initial mean disk radii (3, 4.5, 7 nm), and vesicu-
lation radii (10− 70 nm, in steps of 10 nm). The Brownian disks diffusion kernel is employed
(Eq. (222)-(224)), and the initial disk polydispersities are pR(0) = 0.05. In this figure, the
plot of the evolutions of the disk volume fractions ϕ(t) shows that there are negligible dif-
ferences between the different volume fraction curves for Rcr. > 10 nm. The vertical dashed
lines define the characteristic times τϕ, where the disk volume fractions are declined to 50%.

The plot of the evolutions of the mean gyration radii shows that the mean gyration radius
at simulation end only depends on the critical radius, but not on the initial mean disk radius.
Differences of the mean gyration radii only exist at the beginning of the simulations, where
the mean gyration radius can be related to the initial mean disk radius. There are only
negligible differences of the mean gyration radii for the different initial mean disk radii at the
characteristic times.

The plot of the evolutions of the mean disk radii behaves very similar to the plot of the
evolution of the mean gyration radii, but here the mean disk radii still increase a bit at
simulation end. However, at this time the disk volume fractions are very low (e.g., the disk
volume fraction for the extreme case μR(0) = 3 nm, and Rcr. = 70nm is only 0.27% of the
total volume fraction), and hence the increase of the mean disk radius at simulation end has
practically no meaning.

The plot of the evolutions of the polydispersities shows that the transient behavior of the
polydispersity depends on the critical radius as well as on the initial mean disk radius: e.g.,
at time τϕ the polydispersity becomes larger if the initial mean disk radius becomes smaller.
However, the transient behavior of the polydispersity for different initial mean disk radii at
fixed critical radius has practically no influence on the scattering intensity at simulation end
as Fig. 36 shows.

Fig. 36 shows the effect of the initial mean disk radius and the critical radius on the
scattering intensity and on the initial vesicle radius distribution at simulation end: there is
mainly an impact of the initial mean disk radius on the vesicle size distribution for the critical
radius Rcr. = 10nm (different oscillatory behavior of the vesicle radius distributions), however,
the appropriate scattering intensities show that this effect is practically not observable in the
scattering intensity. Note here, that the vesicle size distributions oscillate differently strong,
but the polydispersities are very similar (ca. 0.115 − 0.135) and the intensities are nearly
identical.

Fig. 37 shows the dependence of the mean vesicle core radius μRv(R
cr.) and the vesicle core

radius polydispersity pRv(R
cr.) over the critical radius Rcr. for an initial mean disk radius of

4.5 nm and an initial disk polydispersity of 0.05. Clearly, there is a linear increase of μRv(R
cr.)
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with Rcr.. pRv(R
cr.) can be well described by an exponential decay with offset, if the first

point is considered as an outlier. From the fit it can be concluded that the lower bound of
the minimal achievable polydispersity is around 0.086 nm.

Changing the initial disk polydispersity from 0.5 to 0.025 or 0.1 produces visibly identical
results as obtained for 0.5, which are depicted in Fig. 35. Exemplarily, in Fig. 38 the evolution
of the polydispersity is plotted for different initial disk polydispersities and critical radii
(initial disk radii are 4.5 nm), showing that the influence of the initial disk polydispersity on
the transient polydispersity evolution pR(t) becomes negligible for t � 10−6 s, if the critical
radius is fixed. The main effect of changing the polydispersity is the impact on the oscillatory
behavior of the vesicle size distribution for small critical radii, see Fig. 39. However, as Fig. 39
shows, the oscillatory behavior of the different initial vesicle size distributions has visually no
influence on the scattering intensity.

Considering different kernel simplification: Since the different kernels (disks kernel, spheres
kernel, and constant kernel) encode the disk size differently, the main impact on the different
considered quantities is expected for the largest disk size interval, which here, is given by
the initial mean disk radius of 3 nm and by the critical radius of 70 nm. Fig. 40 shows these
results: all considered quantities for the disks kernel and spheres kernel are nearly identical,
only the constant kernel deviates slightly in its transient behavior from the transient behavior
of the other two kernels. Also the initial vesicle size distribution (at simulation end) for the
constant kernel deviates very slightly from the distributions of the other two kernels, but the
appropriate intensities match perfectly each other.

Reaction Limited Kernel

In a colloidal self aggregating system it can be expected that many coalescence processes are
not diffusion limited, since the colloidal particles have typically to overcome a certain energy
barrier in order to fuse. Hence, not all collisions will lead to a fusion of the colliding particles.
In order to model this process, the Brownian diffusion kernel is multiplied with a Boltzmann
factor W (m, j) = exp(−Ea(m, j)/(kBT )) that describes the probability of the particles to
coalesce if they collide, where Ea(m, j) is an activation energy function depending on the
particles j and m. However, here it is considered that Ea(m, j) = Econst.

a for 1 ≤ j,m ≤ jcr.,
and Econst.

a has been found to be in the order of approximately 10 − 30 kBT , see, e.g., [92].
Accordingly, W (m, j) = W = exp(−Econst.

a )/(kBT )), and the v. Smoluchowski DEQ can be
written as

dnm(t)

dt
=

1

2

m−1∑
j=1

WKm−j,jnm−j(t)nj(t)− nm(t)

jmax∑
j=1

WKm,jnj(t)

⇔ dnm(t)

d(Wt)
=

1

2

m−1∑
j=1

Km−j,jnm−j(t)nj(t)− nm(t)

jmax∑
j=1

Km,jnj(t)

⇔ dñm(t̃)

dt̃
=

1

2

m−1∑
j=1

Km−j,jñm−j(t̃)ñj(t̃)− ñm(t̃)

jmax∑
j=1

Km,jñj(t̃),

(227)

where t̃ = Wt, and nm(t) = nm(t̃/W ) =: ñm(t̃), hence showing that if the Brownian diffusion
kernel is multiplied with W , the solution of this new reaction limited process is identical to
the solution with the Brownian diffusion kernel, only t̃ has to be divided by W in order to
get the ‘proper’ time t.
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Figure 35: From top to bottom: Evolution of the disk volume fraction ϕ(t), mean gy-
ration radius μRg(t), mean disk radius μR(t), and polydispersity pR(t) for
different initial mean disk radii (3, 4.5, 7 nm) and different critical radii Rcr.

(10, 20, 30, 40, 50, 60, 70 nm). The Brownian disks diffusion kernel is used, and
the initial polydispersity is 0.05. Blue curves: mean start radius 3 nm. Green
curves: mean start radius 4.5 nm. Red curves: mean start radius 7 nm. Nearly
indistinguishable results are obtained for initial polydispersities 0.025 and 0.1. The
vertical lines indicate the half-life time τϕ of the appropriate disk volume fractions
(cf. top diagram).
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Figure 36: Scattering intensities In(q) = In(q, t = 1 s) (left column) and vesicle size distri-
butions pdf(Rv) (right column) for different initial mean disk radii 3, 4.5, 7 nm (in
this order: blue, green, red) and for critical radii of 10 nm (top row), 40 nm (middle
row) and 70 nm (bottom row) at simulation end (t = 1 s). The Brownian disks
diffusion kernel is used, and the initial polydispersities are 0.05. For a critical ra-
dius of 10 nm the intensity curves corresponding to initial mean disk radii of 3 nm
and 4.5 nm are visually identical, only the intensity curve corresponding to 7 nm
is slightly different. The appropriate vesicle size distributions (i.e., for a critical
radius of 10 nm) show a similar overall curve behavior, but have a more or less
strong oscillatory behavior. These size distributions are right-tailed due to the
hard cut-off at the critical/vesiculation radius. Note, for the critical radius 10 nm
the vesicle size distributions have polydispersities of 0.135, 0.115, 0.114 and mean
radii of 4.06, 3.96, 3.99 nm for the initial mean disk radii of 7, 4.5, 3 nm (in this
order). For Rcr. = 40nm the polydispersities are 0.0892 and the mean radii are
20.8 nm. and for Rcr. = 70nm the polydispersities are 0.0864 and the mean radii
are 37.6 nm. The intensity curves and vesicle size distributions for a critical radius
of 40 nm, and 70 nm are visually identical. Nearly indistinguishable results are
obtained for initial polydispersities 0.025 and 0.1, only slight differences exist for
the vesicle size distribution corresponding to the critical radius Rcr. =10nm, cf.
Fig. 39.
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Figure 37: Left plot: determined mean vesicle core radii (blue stars) over critical radii at
simulation end, and fit by a line (red curve, the line’s offset is -1.569 nm and its
slope is 0.6 ). The initial mean disk radii are 4.5 nm, and the initial polydispersities
are 0.05. Right plot: determined vesicle polydispersities (blue stars, and black cross
(outlier, not used for the fit)) over critical radii and fit by an decaying exponential
(red curve), i.e., f(Rcr.) = A · exp(−Rcr./τRcr.) + b, where b = 0.0861 nm, A =
0.0359 nm, and τRcr. = 16.13 nm.
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Figure 38: Evolution of the disk polydispersity pR(t) for different initial disk polydispersities
and different critical radii (Rcr. = 10, 20, 30, 70 nm). The vertical lines indicate the
half-life time of the appropriate disk volume fractions.
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Figure 39: Scattering intensities In(q) = In(q, t = 1 s) (left plot) and vesicle size distributions
pdf(Rv) (right plot) for different initial polydispersities 0.025, 0.05, 0.1 (in this
order: blue, green, red) for an initial mean disk radius of 4.5 nm, and a critical
radius of 10 nm at simulation end. The Brownian disks diffusion kernel is used.
The intensity curves are nearly identical, whereas the size distributions have a
similar slope behavior, but they oscillate to a varying extent. Note, the vesicle size
distributions have similar polydispersities of 0.12, 0.118, 0.115 and mean radii of
3.94, 4, 4.03 nm for the initial disk polydispersities of 0.025, 0.05, and 0.1 (in this
order).

5.3.1. Results

The main results from the Brownian diffusion coalescence simulations are that the initial
mean disk radius (3− 7 nm) and the initial disk polydispersity (0.025− 0.1) have practically
no influence on the initial vesicle radius distribution and its appropriate scattering intensity (if
the critical radius is larger than 10 nm). For the smallest considered critical radius of 10 nm,
there are differences (different oscillatory behaviors) within the initial vesicle size distributions
(which depend on the initial disk polydispersity and mean disk radius), but this again has no
significant impact on the appropriate scattering intensities.

A constant activation energy in a reaction limited kernel can be described by a time scaling
of the solution obtained from a Brownian diffusion kernel.

5.4. Experimental Data Fitting

In this section the time evolution of the scattering intensity of a colloidal self-aggregating
system — consisting of the three compounds that are given below — is analyzed by means
of fitting a reaction limited coalescence model to the intensity data.

TDMAO N,N-tetradecyldimethylamine oxide, C14H29N(CH3)2O (Mw = 257.46 g·mol−1,
vm = 0.4766 nm3, SLDX = 8.64 · 10−4 nm−2) is a mesoionic surfactant, which is overall
neutral but has partial charges (electrons are partially delocalized, drawn away from
the nitrogen to the oxygen). In aqueous solutions over the concentration range relevant
for this work, it forms cylindrical micelles.

LiPFOS lithium perfluorooctanesulfonate, C8F17SO
–
3;
+Li (Mw = 506.06 g·mol−1, vm =

0.4038 nm3, SLDX = 17.2 · 10−4 nm−2) is a perfluorinated anionic surfactant. The
perfluorinated chain is bulkier, stiffer and more polarizable than alkyl chains. The
solubility of perfluorinated chains is also little, with low miscibility in water but also
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Figure 40: Comparison of different Brownian diffusion kernels. Here, the critical radius is
Rcr. = 70, the initial mean disk radius is 3 nm, and the initial polydispersity is
p = 0.05. Red curves: disks kernel, blue curves: spheres kernel, green curves:
constant kernel. ϕ(t): volume fraction of disks, μRg(t): mean gyration radius,
μR(t): mean disk radius, pR(t): disk polydispersity, In(q): scattering intensity
at simulation end, pdf(Rv): vesicle core radius distribution at simulation end.
Clearly there are negligible differences for all quantities resulting from employing
a disks kernel and a spheres kernel (red curves are often overlaid by the blue
curves). Minor transient differences exist between the constant kernel and the
disks/spheres kernel. However, the intensity plot shows a perfect match of all
different intensity curves. The vesicle size distributions have polydispersities of
0.0864, 0.0864, 0.0868 and mean radii of 3.76, 3.76, 3.77 nm for the disks kernel,
spheres kernel, and constant kernel (in this order).
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in hydrogenated oils. In aqueous solutions over the concentration range of interest, it
forms spheroidal micelles.

Pluronic L35 triblock copolymer with three blocks of two different natures: poly(ethylene ox-
ide) (PEO) and poly(propylene oxide) (PPO), EO11−PO16−EO11 (Mw = 1900 g·mol−1,
vm = 2.98 nm3, SLDX ≈ 9.9 · 10−4 nm−2) is a nonionic amphihilic polymer, where the
polypropylene oxide block is rather hydrophobic while the polyethylene oxide block is
hydrophilic.

An earlier work [24] suggests that aqueous micellar solutions of these surfactants form,
upon mixing, aggregating disk-like micelles which will collapse at a critical size into vesicles.
The time lapse of the existence of the rather monodisperse vesicles is controllable by the
amount of poloxamers (Pluraonic L35). The poloxamers adsorb onto aggregates and stabilize
them by steric interactions, reducing the likeliness of fusion, thus increasing the lifespan of
stable solutions of monodisperse vesicles. By adsorbing on the unstable rims of the disks,
they also stabilize them, slowing down their growth and increasing the vesiculation radius,
thus controlling the size of the monodisperse vesicles.

Here, a TDMAO/(Pluronic L35) solution (concentration of TDMAO: 0.05mol/L, concen-
tration of Pluronic L35: 0.0005mol/L) was mixed with a LiPFOS solution (concentration:
0.05mol/L) in a BioLogic SFM-400 stopped flow apparatus49 such that the concentrations
in the mixed solution were: c(TDMAO) = 0.0275mol/L, c(LiPFOS) = 0.000275mol/L,
c(Pluronic L35) = 0.0225mol/Ls, and the kinetics were observed in situ by SAXS.

In detail — following information are friendly provided by Dr. Katharina Bressel —, SAXS
experiments were performed at the beamline ID02 at the European Synchrotron Radiation
Facility by Dr. Bressel, with a wavelength of 0.1 nm (12 400 eV, relative spread of 2.0·10−4), at
different sample-to-detector distances (at 2m and 4m, covering a q-regime of 0.02−2.7 nm−1).
The 16-bits detector FReLoN Kodak CCD was used, which is 100×100mm2 with a resolution
of 2048×2048 pixels (reduced to 512×512 during kinetics to decrease minimum delay between
successive frames) and a spatial resolution determined by the point spread function of 80μm.
The beam size at the sample is 100×300μm2. The direct beam intensity is captured by a
monitor on top of the beam stop, which provides the transmission. The aqueous solutions
of pure surfactants are poured into the reservoirs of syringes of the stopped-flow apparatus,
which is controlled by a computer; liquid samples are flowing in a quartz capillary of ca.
1.3mm diameter with ca. 10μm wall thickness. Data are corrected for transmission, detector
aberrations (including electronic noise), scaled with a normalization coefficient determined
from the scattering of water (1.6 · 10−2 cm−1 at 25 ◦C) and azimuthally averaged. The scat-
tering of solvent (water) was subtracted. Whether the capillary thickness was taken into
account during the normalization process is unknown.

5.4.1. Evaluation

Fig. 41 shows the best fit result obtained from adjusting the reaction limited kernel in Eq. (227)
such that the appropriate scattering intensity calculated according to Eq. (218) simultaneously
fits the measured intensity data of the TDMA/LiPFOS/(Pluronic L35) system (upon mixing
it together).

In this fit, the disks diffusion kernel, i.e., Eq. (222)-(224), is used and the coalescence
probability has been determined to be W = 1.1 · 10−5, yielding Econst.

a ≈ 11.42 kBT , which
is well in agreement with [92]. The initial mean disk radius μR(t = 0) as well as the critical

49Total mixing volume: 600μL, flow rate: 6mL/s, dead volume: 50μL, dead time: 2.3ms.
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radius Rcr. have also been fitted: μR(t = 0) = 8nm, and Rcr. = 67nm. The initial disk
polydispersity was set to 5% as this parameter cannot be well adjusted, since (i) changing
the polydispersity has only a minor impact on the low q intensity regime for t � 3 s (i.e.,
when there are mainly disks), and (ii) there are relatively large model intensity deviations
at the low q-regime resulting from a missing structure factor in the employed model. Such a
structure factor describing the interaction of disks is not employed here, since the aggregates
are anisometric, with certainly an uneven distribution of charges (e.g., an enrichment of
charges at the rim), for which there is no analytical structure factor available that takes
these facts properly into account. Note, because of the missing structure factor, the fit was
achieved by adjusting the model parameters by hand (chi-by-eye approach), hence allowing to
include the a priori knowledge ‘there is a structure factor, but it cannot be easily modeled’. If
otherwise, e.g., a weighted square error objective function would have been taken, an optimal
model would be selected, which would also adapt to the low q-regime (for t � 3 s, where
definitely a structure factor is required. Hence, by adapting the parameters by hand, a model
fit was achieved, that intentionally prevented this inconsistency50.

Deviations at the high q-regime result from the simplification of the bilayer membrane,
which here is considered to be homogeneous.
Anyway, the fit captures rather well the kinetics of the TDMA/LiPFOS/(Pluronic L35)

system.

5.4.2. Results

The simple reaction limited kernel in Eq. (227) is able to capture the principle kinetic behavior
of the TDMA/LiPFOS/(Pluronic L35) system upon mixing. Hence, it can be inferred that
the process is based on coalescence, and not on a, e.g., Ostwald ripening process. The fitted
parameters: activation energy barrier EA ≈ 11.42 kBT , initial mean disk radius μR(0) = 8 nm,
and vesiculation (critical) radius Rcr. = 67nm are well in agreement with results from the
works of Dr. Bressel [24, 22], which have been obtained from a sequential fitting of models to
the scattering curves.

5.5. Conclusion

In this section the process of disk-disk coalescence forming vesicles at a certain critical radius
has been analyzed.
The main parameters controlling the coalescence process are the critical radius and the

activation energy. If the activation energy is constant, the coalescence process can be seen as
a diffusion limited coalescence process that is additionally scaled in time. Other parameters
like the initial disk polydispersity, mean disk radius, and simplifications of the diffusion model
(spheres kernel or constant kernel instead of a disks kernel) have less influence on the overall
coalescence process / initial vesicle size distribution.
The reaction limited kernel has been successfully fitted to an experimental SAXS data set

of a TDMAO/LiPFOS/(Pluronic L35) system, proving that the underlying growth process is
based on coalescence. In this fit a lot of information has been provided by the many different
SAXS intensity curves, and a priori knowledge is used to prevent from a wrong model fitting,
hence the obtained parameter values can be seen as quite plausible and reliable. Moreover,
the determined parameters are well in agreement with results obtained from earlier works.

50In principle the data from the low q-regime for t � 3 s could also be discarded, and then the intensity could
be fitted by minimizing a weighted square error objective function. However, the problem of defining the
‘useless’ data remains, since the structure factor is unknown.
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Figure 41: Fitted coaclescence model to the measured SAXS intensities of the selfaggregating
system consisting of TDMAO, LiPFOS and Pluronic L35, see text. The black
curves are measured intensities. The colored curves are model intensities received
from adapting the factor W in the v. Smoluchowski DEQ Eq. (227) such that
the appropriate intensities calculated by means of Eq. (218) fit well the measured
intensities. The disks diffusion kernel is employed, i.e., Eq. (222)-(224). W has
been determined to be 1.1 · 10−5, i.e., Econst.

a ≈ 11.42 kBT , hence this value is well
in agreement with [92]. Furthermore, the initial mean disk radius μR(t = 0) and
the critical radius Rcr. have been fitted: μR(t = 0) = 8nm, and Rcr. = 67nm.
The initial disk polydispersity was set to 5% — see notes in the text. The bilayer
thickness has been determined to be tm = 4nm. Deviations at the high q-regime
result from the simplification of the bilayer membrane, which here is considered to
be homogeneous. Deviations at the low q-regime result from a missing structure
factor — see notes in the text. The relative volume fraction of disks at simulation
end (tend = 175 s) is 14.5%.
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6. 2-Dimensional Analysis

If anisometric particles are randomly oriented, the scattering is isotropic. However, if aniso-
metric particles are non-randomly orientated, e.g., because of a preferred orientation of the
particles resulting from an existing external field (shear-field [117, 39], electric [109] or mag-
netic field [171]), the scattering can be anisotropic. Hence, the evaluation of such anisotropic
pattern is an important issue.
In this section the information contained in a 2-dimensional anisotropic image is analyzed by

quantifying its anisotropy. In doing so, different methods can be applied that are implemented
in the developed program SASET. Usually, evaluating 2-dimensional images is computation-
ally more demanding than evaluating 1-dimensional images due to the huge amount of data
points (number of pixels). However, methods that quantify the anisotropy are commonly
rather efficient in order to extract some structural information from a scattering image and
presenting this information in some phenomenological or structural parameters.

6.1. Anisotropy Measurement Methods

The different anisotropy measurement methods that are considered (and are implemented in
SASET) in the following are the alignment factor, the order parameter, the entropy and the
principal component analysis (PCA). Only the order parameter method is capable to addi-
tionally determine the orientational distribution function of the particles if certain conditions
are fulfilled.

6.1.1. Alignment Factor

Due to [169] the alignment factor is defined as

Af (q) :=

∫ 2π
0 I(q, φ) cos(2φ) dφ∫ 2π

0 I(q, φ) dφ
. (228)

I(q, φ) is the intensity measured at (q, φ), where q is the magnitude of the scattering vector
q and φ an azimuthal angle on the detector plane, and φ = 0 gives the maximum scattering
direction. The principle idea is that most azimuthal scattering curves have a partially cos(2φ)
alignment that can be measured by the above functional. The maximum scattering direction
may be determined reliably by a PCA (section 6.1.3) beforehand. For an isotropic image Af

is zero, and is one if the scattering is only along φ = 0, π. Note, the alignment factor can be
generalized by replacing cos(2φ) with cos(nφ), where n > 2 and even. If there is a feature
that is (partially) anti-aligned with cos(nφ), the appropriate alignment factor can become
negative, and −1 is the smallest possible value.

6.1.2. Entropy

Based on information theory (see, e.g., [67, §10]), the quantity

AH =
ln(N)−H

ln(N)
(229)

has been defined in order to determine the anisotropy in an intensity ring. H is the discrete
entropy defined as

H = −
N∑

n=1

pn ln(pn), (230)
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Figure 42: An arbitrary data set (data cloud). The two red lines are aligned along the extremal
scattering directions and are orthogonal to each other.

where N is number of intensity values in the ring and

pn =
In∑N
ν=1 Iν

(231)

is the n-th normalized intensity such that
∑N

n=1 pn = 1, where In is the n-th intensity. pn can
be seen as relative frequency of photon/neutron occurrence in the n-th pixel in the ring. The
discrete entropy is bounded by 0 ≤ H ≤ ln(N) [67], whereH = ln(N) occurs if pn = pconst. ∀n.
Therefore AH = 0 if the intensity is isotropic and any deviation from the isotropic image leads
to an increase of AH . AH = 1 is reached for pn = 1 and pm = 0 ∀m �= n.

6.1.3. Principal Component Analysis (PCA)

The PCA is a well established method in statistics, signal processing and pattern recognition
and is used here to quantify the anisotropy in an image as well as to determine the maximum
scattering direction.

Consider a discrete, bivariate data cloud consisting of N data points {xn}Nn=1 as depicted in
Fig. 42. The projected variance on a complex feature k is

〈
kT (xn − x)(xn − x)Tk

〉
, where the

〈·〉 means the average over the N data points and x = 〈xn〉. Next, a direction k is searched
on which the variance of the projected data becomes extremal subject to keeping the length
of k fixed. This is a constraint optimization problem, which can be solved by means of the
Lagrangian method, yielding the Lagrangian function

L(k, λ) = kTRk− λ(kTk− 1), (232)

where

R :=
〈
(xn − x)(xn − x)T

〉
(233)

is the covariance matrix of the data. Taking the partial derivative ∂L(k, λ)/∂k and setting
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the result equal to zero gives the eigenvalue problem

Rk = λk, (234)

which has two solutions {(λi,ki)}2i=1 for the bivariate data set. Assuming51 λ1 > λ2, then
the maximum scattering direction is given by k1 and the appropriate variance is λ1 as it can
be seen by kT

1 Rk1 = λ1k
T
1 k1 = λ1. Furthermore, it can be shown [15, appendix A] that k2

is orthogonal to k1. Therefore, the quantity

A =

√
λ1 −

√
λ2√

λ1
λ1 ≥ λ2 (235)

has been defined to measure the anisotropy, where 0 ≤ A ≤ 1. However, since a scattering
image consists of intensity values instead of having a discrete data cloud, the covariance
matrix R is replaced by

RI =

N∑
n=1

pnqnq
T
n . (236)

where pn is the normalized intensity from Eq. (231) and qn is the appropriate scattering
vector.
It can make sense to project the intensity onto the unit circle, i.e., to normalize with

respect to the magnitude of the scattering vector, which is accomplished by substituting qn

by qn/‖qn‖. This is useful in order to compare different q-regimes with each other.

6.1.4. Order Parameters

Deas [34]52,53 showed that in case the orientational distribution function D(α) of a particle
is expanded into Legendre polynomials P2k(·)

D(α) =
∞∑
k=0

D2kP2k(cosα), (237)

where

D2k =
4k + 1

2

∫ π

0
D(α)P2k(cosα) sinα dα, (238)

that the coefficients D2k, called order parameters, can be determined as well from the scat-
tering intensity and the intensity of an aligned model via

D2k =
4k + 1

2

I2k(r
∗)

G0
2k(r

∗)
, (239)

since the scattering intensity can be expressed as

I(r∗, θ∗) =
∞∑
k=0

I2k(r
∗)P2k(cos θ

∗)

=

∞∑
k=0

2

4k + 1
D2kG

0
2k(r

∗)P2k(cos θ
∗),

(240)

51 The eigenvalue problem has two identical eigenvalues only if [R]12 = [R]21 = 0 and [R]11 = [R]22, which
can be seen by calculating its eigenvalues.

52Later also in Wilke and Göttlicher [174].
53In what follows, the notation from [34] is taken.
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and the orthogonality relation∫ π

0
Pk(cos θ

∗)Pν(cos θ
∗) sin θ∗ dθ∗ =

2

2ν + 1
δkν (241)

can be applied, and {G0
2k(r

∗)}∞k=0 are coefficients of an expansion of the intensity of an aligned
model (the particle is orientated along the director):

Ialigned(r
∗, θ∗) =

∞∑
k=0

G0
k(r

∗)Pk(cos θ
∗). (242)

α is the angle enclosed between the director f of the particle and a particle axis n (also called
structural unit axis in [108], or sometimes also particle structure normal). The scattering
vector is q = (r∗, θ∗, φ∗)T , where the director is taken as the polar axis of the spherical
coordinate system (r∗, θ∗, φ∗) (r∗: radial distance, θ∗: polar angle, φ∗: azimuthal angle54).
In his work he has shown that Eq. (239) and Eq. (240) are valid under the assumption that
(i) the particle uniformly rotates around its molecular axis n or that there is a rotational
symmetry around n, and (ii) n rotates uniformly around the director f , cf. Fig. 43.

Eq. (242) and Eq. (240) give the intensity of only one particle. If there is a collection of
independent scatterers the formulas have to be multiplied by the number of particles.

Next, some normalized coefficients are considered. For this, the orthogonality relation
Eq. (241) is applied to Eq. (240), yielding∫ π

0
I(r∗, θ∗)P2ν(cos θ

∗) sin θ∗ dθ∗ =
∫ π

0

∞∑
k=0

2

4k + 1
D2kG

0
2k(r

∗)P2k(cos θ
∗)P2ν(cos θ

∗) sin θ∗ dθ∗

=

∞∑
k=0

2

4k + 1
D2kG

0
2k(r

∗)
2

4ν + 1
δkν

=

(
2

4ν + 1

)2

D2νG
0
2ν(r

∗).

(243)

For ν = 0 the result is ∫ π

0
I(r∗, θ∗) sin θ∗ dθ∗ = 22D0G

0
0(r

∗). (244)

Dividing the l.h.s. of Eq. (243) by the l.h.s. of Eq. (244) yields∫ π
0 I(r∗, θ∗)P2ν(cos θ

∗) sin θ∗ dθ∗∫ π
0 I(r∗, θ∗) sin θ∗ dθ∗

=: 〈P2ν(cos θ
∗)〉I , (245)

and similarly for the r.h.s.

1

(4ν + 1)2
D2νG

0
2ν

D0G0
0

= 〈P2ν(cosα)〉D〈P2ν(cos θ
∗)〉Ialigned , (246)

since
1

4ν + 1

D2ν

D0
=

1

4ν + 1

4ν+1
2

∫ π
0 D(α)P2ν(cosα) sinα dα
1
2

∫ π
0 D(α) sinα dα

=: 〈P2ν(cosα)〉D (247)

54Here, the scattering intensity is actually independent of the azimuthal angle [34].
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and

1

4ν + 1

G0
2ν

G0
0

=
1

4ν + 1

4ν+1
2

∫ π
0 Ialigned(r

∗, θ∗)P2ν(cos θ
∗) sin θ∗ dθ∗

1
2

∫ π
0 Ialigned(r∗, θ∗) sin θ∗ dθ∗

=: 〈P2ν(cos θ
∗)〉Ialigned .

(248)

Therefore, it follows

〈P2ν(cosα)〉D =
〈P2ν(cos θ

∗)〉I
〈P2ν(cos θ∗)〉Ialigned

. (249)

{〈P2ν(cosα)〉D} are normalized order parameters. 〈P2(cosα)〉D is often simply called order
parameter or Herman’s orientation parameter [133]. Sometimes [96, 43, 182] 〈P2(cos θ

∗)〉I is
used to quantify the anisotropy and in these contexts 〈P2(cos θ

∗)〉I is also called Herman’s
orientation parameter.
The first coefficient D0 in Eq. (237) is always constant, since

D0 =
1

2

∫ π

0
D(α)P0(cosα) sinα dα =

1

2
, (250)

and with Eq. (247) it follows

〈P2ν(cosα)〉D =
2

4ν + 1
D2ν . (251)

Eq. (239), respectively Eq. (249) together with Eq. (251), can be used in order to determine
experimental estimations for D2k, namely Dexp

2k , and therewith to find an approximation for
D(α) in Eq. (237). This is accomplished by taking the measured intensity Iexp instead of
the true intensity I and an assumed model intensity Im is taken for the intensity of the true
aligned particle Ialigned, i.e.,

D(α) ≈ Dexp(α) =

K∑
k=0

Dexp
2k P2k(cosα), (252)

where

Dexp
2k =

4k + 1

2

〈P2k(cos θ
∗)〉Iexp

〈P2k(cos θ∗)〉Im
. (253)

K is the maximum number of determined coefficients.

Eq. (252) and Eq. (253) give a direct way to determine the orientational distribution func-
tion. However, the solution may be easily influenced by noise in the data and by model
inaccuracies such that the solution may contain artifacts as, e.g., oscillations or that the solu-
tion becomes negative, cf. Fig. 47. Via the Maximum Entropy Method (MEM) [76], as already
suggested in [20], a solution can be found having the aforementioned effects suppressed and
is discussed in the next section.

6.1.5. Applying the Maximum Entropy Method (MEM)

The MEM [76] determines the most general solution given some constraints. This solution is
characterized by the fact that it contains a maximum of entropy [139] S, “i.e., it is maximally
noncomittal with regard to missing information” [76]. Here, the entropy is given by

S = −
∫ π

0
D̃(α) ln

(
D̃(α)

)
sinα dα, (254)

where D̃(α) is a test orientational distribution function. Then, S has to be maximized subject
to the following two constraints
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(i) D̃(α) is normalized ∫ π

0
D̃(α) sinα dα = 1, (255)

(ii) the experimentally determined coefficients {Dexp
2k }Kk=0 can be recovered, i.e.,

4k + 1

2

∫ π

0
D̃(α)P2k(cosα) sinα dα = Dexp

2k . (256)

This optimization problem can be reformulated via the Lagrangian function

L(D̃) = −
∫ π

0
D̃(α) ln

(
D̃(α)

)
sinα dα+ λ0

(∫ π

0
D̃(α) sinα dα− 1

)
+

K∑
k=1

λK

(
4k + 1

2

∫ π

0
D̃(α)P2k(cosα) sinα dα−Dexp

2k

)

=

∫ π

0

[
D̃(α) ln

(
D̃(α)

)
+ λ0D̃(α) +

K∑
k=1

λk
4k + 1

2
D̃(α)P2k(cosα)

]
sinα dα

− λ0 −
K∑
k=1

λkD
exp
2k ,

(257)

where {λk}Kk=0 is a set of Lagrange parameters. Setting D̃(α) = DMEM(α) + εη(α), where
ε ∈ R, and η(α) is an arbitrary function, andDMEM(α) is a desired maximum entropy solution.
Then, taking the first functional derivative [84, §9.2] of Eq. (257) and setting it equal to zero
yields

∫ π

0

[
− 1− ln

(
DMEM(α)

)
+ λ0 +

K∑
k=1

λk
4k + 1

2
P2k(cosα)

]
η(α) sinα dα = 0. (258)

This holds for any η(α), therefore it follows

− 1− ln
(
DMEM(α)

)
+ λ0 +

K∑
k=1

λk
4k + 1

2
P2k(cosα) = 0, (259)

from which DMEM(α) can be determined

DMEM(α) = exp

(
−1 + λ0 +

K∑
k=1

λk
4k + 1

2
P2k(cosα)

)

=
1

Z
exp

(
K∑
k=1

λk
4k + 1

2
P2k(cosα)

)
,

(260)

where Z is a normalization constant that can be determined from the first constraint. Hence,
the second constraint can be written as

Dexp

2k̃

!
=

4k̃ + 1

2

∫ π

0

1

Z
exp

(
K∑
k=1

λk
4k + 1

2
P2k(cosα)

)
P2k̃(cosα) sinα dα, (261)
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Figure 43: The spheroid rotates uniformly with its short axis, that is along n, around the
director f . The fraction of particles lying in the interval [α, α + dα] is given by
D(α) sinα dα, where D(α) is a Maier-Saupe orientational distribution function.
The scattering vector q is assumed to lie in the (z, x) plane of the detector.

and the Lagrange parameters {λk}Kk=1 can be determined by means of a non-linear optimiza-
tion routine having the objective function

K∑
k̃=1

{
Dexp

2k̃
− 4k̃ + 1

2

∫ π

0

1

Z
exp

(
K∑
k=1

λk
4k + 1

2
P2k(cosα)

)
P2k̃(cosα) sinα dα

}2

, (262)

which is to be minimized with respect to {λk}Kk=1.

As it is seen from Eq. (260) DMEM(α) is always positive. Therefore no additional constraint
is required, stating that the solution has to be positive. Moreover, if K = 1 then DMEM(α)
is the Maier-Saupe distribution.

6.2. Example and Results

The following simulation is considered in order to discuss the described anisotropy measure-
ment methods: A collection of independent oblate shaped ellipsoids of revolution with axes
1, 10, 10 nm rotate uniformly with their short axis n around the director f , see Fig. 43. The
angle enclosed between f and n is α, and the fraction of oblates lying in the infinitesimal
small interval [α, α + dα] is D(α) sinα dα, where D(α) is an orientational distribution func-
tion. Here, D(α) is assumed to be a Maier-Saupe distribution [99], i.e.,

D(α) =
1

Z̃
exp(m cos2(α)), (263)

where m is a width parameter of the distribution and Z̃ is a normalization constant such that∫ π

0
D(α) sinα dα = 1 (264)

holds. In the simulated scattering experiments m is varied between 0.1 and 100. The scat-
tering for m = 0.1, 1, 10, 100 is depicted in Fig. 44. In all anisotropy methods the scattering
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Figure 44: The scattering images for an oblate that has an orientational distribution according
to a Maier-Saupe distribution with a parameter m = 0.1, 1, 10, 100. The circle
corresponds to ‖q‖ = 1.15 nm−1. The intensity is plotted in logarithmic scale and
in arbitrary units, from blue (low intensity) to red (high intensity).
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Figure 45: Results of the different anisotropy measurement methods for the simulated scat-
tering experiment. m is the width parameter in the Maier-Saupe orientational
distribution function. The order parameter curve only represents the quantity
〈P2(cos θ

∗)〉I in Eq. (249).

Figure 46: The first four determined experimental order parameters {Dexp
2n }4n=1 for the simu-

lated scattering experiment. m is the width parameter in the assumed Maier-Saupe
distribution.

data are taken from an intensity ring at ‖q‖ = 1.15 nm−1. This value was chosen somewhat
arbitrarily, but such that the ring contains many intensity values and structure. The results
for the alignment factor, order parameter (only 〈P2(cos θ

∗)〉I in Eq. (249)), PCA and entropy
are depicted in Fig. 45. All curves have a very similar slope behavior. In Fig. 46 the first
four experimental orientation parameters Dexp

2n (Eq. (253)) are plotted. These parameters are
used to reconstruct the orientational distribution functions directly via Eq. (252) as well as
to get the orientational distribution functions from the MEM. All solutions are depicted in
Fig. 47. As it can be seen from this figure, the MEM gives always solutions that are in good
agreement with their underlying Maier-Saupe distributions, while the direct solutions may
oscillate and may even be negative.

6.3. Conclusion

Four different anisotropy measurement methods are presented. The alignment factor and the
order parameter are already existing methods, while the entropy and the PCA are introduced
here. The entropy is well founded in information theory, and can always easily be applied. The
PCA can quantify the anisotropy in an image, and additionally it can also find the maximum
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Figure 47: Left column: orientational distribution functions versus α, right column orien-
tational distribution functions times sin(α) versus α. From top to bottom row:
m = 0.1, 1, 10, 100. Red and line style ‘-’: true D(α), blue and line style ‘- -’:
approximate direct solution, black and line style ‘-.-.’: MEM solution. D(α) is the
Maier-Saupe orientational distribution function and m is a parameter controlling
the width of the distribution.
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scattering direction, which can subsequently be used for determining the alignment factor or
the order parameters. However, only the order parameter method is capable of inferring the
orientational distribution function of particles (if the shape of the particles is known), which
however should be done in consensus with the maximum entropy principle in order to get a
robust solution.
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7. Indirect Fourier Transform (IFT)

The IFT is used to get structural information about a system from a scattering experiment by
means of determining the Pair Distance Distribution Function (PDDF) from which, e.g., size
and shape information of scattering objects can be deduced [50, 26]. The IFT is a regularized
version of the inverse Fourier transform, which is an ill-posed problem, hence it requires some
kind of regularization in order to yield a reasonable solution.

In this section, the mathematical derivation of the method is explained, showing how nu-
merical instabilities arising from such an ill-posed problem are reduced by regularization
methods. The next subsection shortly discusses the theory of ill-posed problems in a classical
mathematical framework. However, the problem can also be seen as an inference one, and the
subsequent two subsections discuss the problem in the Bayesian inference approach as well as
in the frequentist one. These two approaches yield the evidence and the generalization error
as objective functions — cf. section 2.2. The evidence was already introduced earlier [64],
while the present work suggests the generalization error as an alternative; indeed a quite good
one. Using these two different objective functions, the inverse Fourier transform is discussed
in the context of modern machine learning methods (RVM, SVR, LASSO) in the subsequent
subsection yielding new regularization / inference schemes.

For the isotropic scattering case of randomly oriented and non-interacting particles the scat-
tering intensity Î(q) is related to the PDDF p̂(r) by a first order Fredholm integral operator55

A:

Î(q) := (Ap̂)(q) := 4π

∫
Ξ
p̂(r)

sin(qr)

qr
dr, (265)

which is also known as Fourier transform [49]. Solving this equation for p̂(r) can be regarded
as an inverse problem, and a short introduction to the theory of inverse problems is given in
the next section. As suggested by Glatter [49], it is beneficial to assume that the PDDF is
approximated as a linear combination of basis functions {φm}Mm=1

p̂(r) ≈ p(r) :=
M∑

m=1

wmφm(r), (266)

e.g., b-splines. {wm}Mm=1 is a set of weights. For an inverse problem it is usually difficult
to find a reasonable good solution. Often solutions are corrupted by artifacts, e.g., in form
of strong oscillations. This problem can be exemplified by considering a discrete and noisy
scattering curve represented by the set D := {(qn, In)}Nn=1, where In is the measured intensity
at position qn, and the data points are assumed to be independent from each other. Then,
applying the model p(r) to the integral operator A in Eq. (265) yields for the discrete data
set D the linear system

ΨΨΨw = I, (267)

where [I]n = In, [w]m = wm, and [ΨΨΨ]n,m = ψm(qn) with

ψm(qn) := 4π

∫
Ξ
φm(r)

sin(qnr)

qnr
dr. (268)

55 Eq. (265) can be derived from Eq. (5) if the orientationally averaged autocorrelation function of the excess
SLD Δγ(r) = 〈Δγ(r)〉Ω =

〈∫
ΔSLD(u)ΔSLD(u+ r) du

〉
Ω
is substituted in Eq. (5), and then using dr =

r2 sin(θ) dr dθ dφ and
〈
exp(−iqT r

〉
Ω
= sin(qr)/(qr), see Eq. (18). Hence, the PDDF reads p̂(r) = Δγ(r) ·

r2. If the intensity is normalized by a volume, the PDDF has to be divided by the volume, too.
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Determining a unique parameter vector w in Eq. (267) is only possible if ΨΨΨ ∈ R
N×N and

regular. To keep the subsequent discussion more general, consider M ≤ N , i.e., ΨΨΨ ∈ R
N×M .

Then, Eq. (267) can be multiplied from the left with the transposed matrix of ΨΨΨ, yielding

ΨΨΨTΨΨΨw = ΨΨΨT I, (269)

where ΨΨΨTΨΨΨ is a M ×M matrix. Finding a solution for w is easily possible if ΨΨΨTΨΨΨ is regular.
If this is the case, it follows

w = (ΨΨΨTΨΨΨ)−1ΨΨΨT I, (270)

where ΨΨΨ† := (ΨΨΨTΨΨΨ)−1ΨΨΨT is called (Moore-Penrose) pseudoinverse. (ΨΨΨTΨΨΨ)−1 can be analyzed
by performing a Singular Value Decomposition (SVD) [129, §2.6] of the matrix ΨΨΨ. The SVD
is a basic theorem from linear algebra that states that any matrix, e.g., ΨΨΨ, can be decomposed
into a product of three matrices

ΨΨΨ = USVT . (271)

Herein, U = [u1, . . . ,uM ] ∈ R
N×M is an orthogonal matrix build of left singular vectors

{um}Mm=1, V = [v1, . . . ,vM ] ∈ R
M×M is an orthogonal matrix build of right singular

vectors {vm}Mm=1, and S ∈ R
M×M is a diagonal matrix of singular values {sm}Mm=1, i.e.,

S = diag(s1, . . . , sM ), with s1 ≥ s2 ≥ · · · ≥ sm ≥ 0. The singular vectors are normalized to
one. With this decomposition the inverse matrix can be written as

(ΨΨΨTΨΨΨ)−1 = (VSUTUSVT )−1

= (VSSVT )−1

= (VT )−1S−1S−1V−1

= VS−1S−1VT ,

(272)

where [S−1]mm = [diag(s−1
1 , . . . , s−1

M )]mm = s−1
m . Hence, the matrix ΨΨΨTΨΨΨ is regular if none of

the singular values sm is zero, otherwise the matrix is singular. In practice sm can become
very small, especially if the number of parameters M is large, which can then lead to huge
errors in the solution. This fact can be exemplified via Eq. (280) (see the next section),
which shows that the upper bound of the relative error in the solution is given by the product
of the condition number times the relative error in the data. The condition number of the
pseudoinverse is given in Eq. (287), hence [63, §4]

C(ΨΨΨ) = ‖ΨΨΨ‖ ‖ΨΨΨ†‖ = s1 · s−1
M , (273)

where the Euclidean norm (2-norm) is taken. In practice, C(ΨΨΨ) can be extremely large, e.g.,
10h with often 10 � h � 100, which then yields a severely, numerically unstable solution.
In a nested model class56, C(ΨΨΨ) increases with the number of freely adjustable parameters,
i.e., if the model becomes more complex, and decreases if there are less parameters, i.e.,
if the model complexity decreases. Hence, a model is searched that is as less complex as
possible under the constraint that it can explain the data — in accordance with the principle
of Occam’s razor, cf. section 2.2. This idea can be implemented via regularization methods
and is already discussed in section 2.2 in the context of ML estimators, Eq. (46). Note that
minimizing ‖I − ΨΨΨw‖2 with respect to w is equivalent to Eq. (269) [97, §6.9, theorem 1].
Hence, e.g., the regularized optimization problem [158, 159]

argmin
w

{‖I−ΨΨΨw‖2 + γ‖w‖2} (274)

56E.g., the polynomial class is a nested one: the polynomial of order m is contained in the polynomial of order
m+ 1.
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can be solved. However, it would additionally require to optimally determine the regular-
ization parameter γ > 0, i.e., the model complexity, which is the topic of section 7.2. The
optimal parameter vector in Eq. (274) is found by setting the first derivative of it, i.e.,

d

dw

[
(I−ΨΨΨw)T (I−ΨΨΨw) + γwTw

]
= 2ΨΨΨTΨΨΨw − 2ΨΨΨT I+ 2γw, (275)

equal to zero, yielding
wγ = (ΨΨΨTΨΨΨ+ γ1)−1ΨΨΨT I, (276)

where 1 is the identity matrix of dimension M ×M . By virtue of the SVD, Eq. (271), this
formula can be rewritten as

wγ = (VSSVT + γ1)−1VSUT I

= (VT )−1(SS+ γ1)−1V−1VSUT I

= V(SS+ γ1)−1SUT I

=
M∑

m=1

vm
sm

s2m + γ
uT
mI,

(277)

showing that the filter coefficient sm/(s2m+ γ) is inherently ‘stabilized’ by means of γ if sm is
close to zero or zero (i.e., it prevents this term, as well as wγ , to become unreasonably large)
and γ sufficiently large.
The optimal parameter vector can often easily be calculated, while the determination of

the optimal model complexity is usually non-trivial. In this work now, this issue is considered
in the context of statistical inference, see section 2.2, and the following aspects are discussed
in the next subsections:

1. How to build an objective function in order to perform model selection?

2. Is there a method to get a numerically more stable solution (i.e., by using other regu-
larization approaches)?

The main approaches to solve these two questions are coming from ideas of statistical in-
ference, and not from a classical mathematical approach. Hence, the Bayesian inference is
applied or the frequentist one. Indeed, from a Bayesian viewpoint there is no inverse problem
only an inference one, cf. footnote 57 on page 124. In a frequentist approach, the goal is to
find a model with good generalization properties, i.e., the optimal model should optimally
predict unseen data. A classical mathematical approach would only look for a model that
can explain the current data, and which is at the same time a more or less smooth function.
Nevertheless, a short introduction to the mathematical theory of inverse problems is given in
the next section, in order define some technical terms often used in this context, as well as to
show how ill-posed problems (in the sense of Hadamard) become well-posed (in the sense of
Nashed) if discretized.

123



7 INDIRECT FOURIER TRANSFORM (IFT)

7.1. Mathematical Introduction to Inverse Problems

As discussed in chapter 2.1 calculating the intensity for a given SLD is a direct problem, while
the reverse procedure is often called inverse problem.57 Mathematically, the direct problem
as well as the inverse problem are formally given by means of an operator

K : X → Y (278)

that acts between a set of causes X and a set of effects Y [59, 72]. Then, the direct problem
is the evaluation of K for a given f ∈ D(K) ⊂ X, i.e.,

K(f) = g, f ∈ D(K) ⊂ X, g ∈ Y. (279)

D(K) is the domain of the operator K. In the inverse problem an element g ∈ Y is given and
the task is to find a f such that Eq. (279) holds.

An important notion in the mathematical problem description is the technical term well-
posedness. In the sense of Hadamard [60] a problem is well-posed if three conditions are
fulfilled:

1. There is a solution for all admissible data. (Existence)

2. The solution is unique. (Uniqueness)

3. The solution depends continuously on the data. (Continuity)

In this section only operators from the set of linear and continuous operators, denoted by
L(X,Y ), are considered, which act between real Hilbert spaces of functions X and Y .

However, even if a problem is well-posed in the sense of Hadamard, it may be that small
errors in the data lead to large errors in the solution, hence continuity is a necessary but
not a sufficient condition for robustness [74, §1.3], [128]: Let K ∈ L(X,Y ) and assume that
the inverse operator K−1 exists and is continuous, then a solution is called well-conditioned
[74, §1.5] if small deviations δg in the datum g only lead to small deviations δf of the true
solution f . Following procedure is applied in order to elucidate the instability issue: Since
K and K−1 are linear and continuous operators we have for Kf = g and δf = K−1 δg the
inequalities ‖K‖‖f‖X ≥ ‖g‖Y and ‖δf‖X ≤ ‖K−1‖ ‖δg‖Y , which can be combined to yield

‖δf‖X
‖f‖X ≤ C(K)

‖δg‖Y
‖g‖Y , (280)

where (see, e.g., [74, §1.5])
C(K) = ‖K‖ ‖K−1‖ ≥ 1 (281)

and is called condition number. Hence the relative error in the solution, i.e., ‖δf‖X/‖f‖X ,
is bounded by the product of the relative error in the data times the condition number. It
follows that the inverse problem is well-conditioned if the condition number is close to one,
and if it is considerably larger than one it is called ill-conditioned [74, §1.5].
57 From a classical mathematical point of view, the problem of finding the causes given the effects can be

thought as an inverse problem. However, from a Bayesian point of view [141, §6.4.2][77], the problem is not
an inverse one, but an inference problem, in which a priori probabilities about hypotheses (causes) have to
be adjusted according to some observed data (noisy effects), in order to infer the a posteriori probabilities
of the hypotheses. Nevertheless, the fundamentals in this chapter shed some light on the intrinsic problems
that arise when trying to solve the problem with ‘classical’ mathematics. Therefore, the notion inverse
problem is kept.
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In general, the datum g ∈ Y does not have to lie in the range of the operator, R(K), because
R(K) ⊂ Y , i.e., K can be non-surjective. In such a case an approximate solution might exist
by means of the pseudosolution58 f+ given by [128]

‖Kf+ − g‖Y ≤ ‖Kf − g‖Y ∀f ∈ D(K) (282)

or equivalently by

K∗Kf+ = K∗g. (283)

K∗ is the adjoint operator of K. If there is a solution it is not unique unless the nullspace of K,
N(K), is trivial, i.e., K is injective. Then, K∗K is regular such that the inverse (K∗K)−1 exists
[97, §6.9]. Getting a unique solution for a non-trivial N(K) can be easily accomplished [128]:
since X = N(K)⊥⊕N(K) a pseudosolution f+ can uniquely be decomposed as f+ = f‖+f †,
where f † ∈ N(K)⊥ and f‖ ∈ N(K), and therefore by only taking the contribution f † a unique
pseudosolution is selected. f † can be selected by choosing the pseudosolution with minimum
norm, i.e.,

f † = arg inf
f+

{‖f+‖X : K∗Kf+ = K∗g}, (284)

since

‖f+‖2X = ‖f‖ + f †‖2X = ‖f‖‖2X + ‖f †‖2X ≥ ‖f †‖2X . (285)

f † is called generalized pseudosolution. A solution of Eq. (282),(284) is only guaranteed to
exist if R(K) is closed (cf. [97, §3, theorem 1,2]), because then R(K)⊕R(K)⊥ = Y , otherwise
R(K) ⊕ R(K)⊥ is a proper subset of Y . Define D(K†) := R(K) ⊕ R(K)⊥ ⊂ Y , then the
operator K† : D(K†) → X defined by the mapping

K†g = f † (286)

is called generalized inverse operator, and the appropriate condition number reads (see, e.g.,
[74, §1.5])

C(K) = ‖K‖ ‖K†‖ ≥ 1. (287)

It can be shown that K† is linear [128, Eq. (15)-(17)], and K† is continuous if and only if R(K)
is closed [128, theorem 3]. Thus, the well-posedness conditions of Hadamard are all together
fulfilled by K† if and only if R(K) is closed. Therefore, in the sense of Nashed, a problem is
well-posed if and only if R(K) is closed [59, definition 3.10].

As a concluding result from the discussion above, it can be summarized that if the range of a
linear and continuous operator is closed, a unique solution exists, which depends continuously
on the data (hence the well-posedness conditions are altogether fulfilled), and is given by the
generalized pseudosolution, Eq. (284). This is an important result if applied to practical
problems involving a finite number of measured data points: In this case the range of the
operator K is a finite dimensional space, and since in a normed linear space any finite-
dimension subspace is closed [97, §2.12, theorem 1,2] it follows that the inverse problem is
well-posed in the sense of Nashed. However, the problem is usually ill-conditioned, hence
the solution is non-robust, i.e., it is numerically unstable [74, §1.5]. In order to achieve a
robust solution regularization can be applied as already explained in the previous section, cf.
Eq. (274).

58Also called normal solution.
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7.2. Objective Function and Model Selection

Consider a discrete and noisy scattering data set D as in section 7, but now, it is assumed
that the errors (standard deviations) σn in the measured intensities In are available, thus
D := {(qn, In, σn)}Nn=1, where it is assumed that the data points are statistically independent
from each other. Then, the optimization problem from Eq. (274) becomes

wγ = argmin
w

{
J(w) :=

1

2

∥∥Σ−1/2(I−ΨΨΨw)
∥∥2 + γ

2
‖Lw‖2

}
, (288)

where
Σ = diag(σ2

1, . . . , σ
2
N ) (289)

is the error covariance matrix, and L is an additionally introduced regularization matrix,
which extracts certain features from w that are to be penalized. The factors 1/2 in Eq. (288)
are introduced for consistency with section 2.2. Eq. (288) is known as Tikhonov regularization
(see, e.g., [158, 159]) or ridge regression [71]. It is a weighted linear least squares problem59,
which has a unique solution if the intersection of the nullspaces N(ΣΣΣ−1/2ΨΨΨ) and N(

√
γL) is

trivial, i.e.,
N(ΣΣΣ−1/2ΨΨΨ) ∩N(

√
γL) = {∅}, (291)

otherwise any non-trivial w̃ ∈ N(ΣΣΣ−1/2ΨΨΨ) ∩ N(
√
γL) could be added to the solution while

keeping J(wγ+w̃) in Eq. (288) unchanged. Here, L is taken as discrete second order derivative
operator60,61 with zero boundary conditions [63, §8.1], i.e.,

L = LD2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

M×M , (292)

and

‖LD2w‖2 =
M∑

m=1

(wm−1 − 2wm + wm+1)
2, where w0 = wM+1 = 0. (293)

LD2 has full rank, hence for γ > 0 the nullspace N(
√
γLD2) is trivial and therefore the

solution is unique.
Tikhonov [158] has considered Eq. (288) as a mathematical approach to solve linear ill-

posed problems (as given in discrete form in Eq. (267). Later, Glatter [49] independently
invented the Tikhonov formula for stabilizing the inverse Fourier transform. In this classical
mathematical approach the principle idea is to find a solution that explains the data and at
the same time is smooth. In the Tikhonov formula, Eq. (288), the regularization parameter γ

59 In order to see that Eq. (288) is a weighted linear least squares problem, the formula can be arranged as

wγ = argmin
w

∥∥∥∥
(

ΣΣΣ−1/2ΨΨΨ√
γL

)
w −

(
ΣΣΣ−1/2I

0

)∥∥∥∥
2

. (290)

60Depending on the boundary conditions the second derivative matrix can be defined differently, see, e.g., [63,
§8.1 and §8.2]. Here, the boundary condition is that the solution shall be zero outside of the considered
interval, hence w0 = wM+1 = 0.

61 Another regularization matrix is given in the work of Glatter [49, 26], which is reproduced in the ap-
pendix F.1.
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controls the model complexity, and needs to be adjusted optimally, i.e., by means of perform-
ing model selection. There are many different approaches for performing model selection, e.g.,
in the context of the IFT, by means of a ‘stability plot’ / ‘point of inflection’62 [49] or percep-
tual criteria [149], but they are introduced ad-hoc, and have no deep fundamental basis. The
main problem with such methods is that usually the solution is not unique and therefore the
user has a certain freedom to select an ‘optimal’ solution, thus it is not an objective method
(instead it is a subjective one, and hence different users might select different solutions).
Moreover, with such methods inter-model comparison is not possible, and additionally, a few
methods might even not yield a solution in some cases.

Alternatively the Tikhonov formula, Eq. (288), can be interpreted in the Bayesian inference
framework as well as within a frequentist one, cf. section 2.2, which then allow to build
objective functions for model selection based on these approaches. These objective functions
even allow to perform inter-model comparison — see section (7.2.3).
In the frequentist approach, the empirical error should not be minimized directly, since

overfitting would occur if the model complexity is too high, which is a natural property of
a maximum likelihood (ML) estimator — see section 2.2. Hence, the empirical error term
of a relatively complex model is conveniently augmented by a regularization term (yielding
the Tikhonov formula Eq. (288)) in order to control the model complexity. Then, the model
complexity is fine-tuned by adjusting the regularization parameter γ. In this frequentist ap-
proach γ should be adjusted such that it yields a model with optimal generalization property,
i.e., the selected model should predict (in average) unseen i.i.d. data sets as well as possible,
hence the generalization error is the desired objective function. This approach is followed in
the next subsection.

In the Bayesian approach, already used earlier in the work of Hansen [64], a priori hy-
potheses (model parameters w, hyperparameter γ) are adjusted according to an observed
data set D, yielding an a posteriori distribution of the hypotheses given the observed data
set — cf. section 2.2. Then, in the hierarchical inference approach, Eq. (288) gives the most
probable set of parameters (MAP solution) for a given but unknown hyperparameter γ that
controls the uncertainty of the parameters; and the marginal likelihood pdf(γ|D), also called
evidence, yields the appropriate objective function for the model complexity, and which has
to be maximized with respect to γ to select the MAP solution of γ. This approach is followed
in subsection after next.

Before the objective functions for model selection are given in the context of the two different
inference approaches, the Tikhonov optimization problem in Eq. (288) is extended for the case
of a constant background intensity Ibkg.. Since Ibkg. yields an additional intensity contribution
that may have in principle any value, it should not be penalized by the regularization term.
Thus, the optimization problem reads

arg min
w,Ibkg.

{
J̃(w, Ibkg.e1) :=

1

2

∥∥Σ−1/2
(
I− (ΨΨΨw + Ibkg.e1)

)∥∥2 + γ

2
‖Lw‖2

}
, (294)

where e1 = [1, 1, . . . , 1]T ∈ R
N . The derivative of J̃(w, Ibkg.e1) with respect to Ibkg.e1 gives

∂J̃(w, Ibkg.e1)

∂(Ibkg.e1)
=

∂

∂(Ibkg.e1)

(
(I−ΨΨΨw − Ibkg.e1)

TΣ−1(I−ΨΨΨw − Ibkg.e1)
)

= 2ΣΣΣ−1(Ibkg.e1)− 2ΣΣΣ−1(I−ΨΨΨw),

(295)

62The ‘stability plot’ / ‘point of inflection’ method is as follows: The empirical error and the regularization
term (without the regularization parameter) are plotted versus the regularization parameter. Then, an
optimal regularization parameter can be obtained from the position of a point that lies within a plateau of
the regularization term, where additionally the empirical error is small.
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and setting the result equal to zero yields:

Ibkg.e1 = (I−ΨΨΨw) (296)

⇒ Ibkg.N = eT1 (I−ΨΨΨw)

⇔ Ibkg. =
1

N

N∑
n=1

In − 1

N

N∑
n=1

M∑
m=1

Ψm(qn)wm,
(297)

where Eq. (296) is multiplied from the left with eT1 in order to get Eq. (297). Substituting
Ibkg. back into Eq. (294) gives the remaining optimization problem

argmin
w

{
J̃(w) :=

1

2

∥∥Σ−1/2(Ic −ΨΨΨcw)
∥∥2 + γ

2
‖Lw‖2

}
, (298)

where
Ic := I− Ie1 (299)

with

I : =
1

N

N∑
n=1

In

=
1

N
eT1 I,

(300)

and

ΨΨΨc : =

⎛⎜⎝ Ψ1(q1)−Ψ1 · · · ΨM (q1)−ΨM
...

. . .
...

Ψ1(qN )−Ψ1 · · · ΨM (qN )−ΨM

⎞⎟⎠
=

(
1− 1

N
e1e

T
1

)
ΨΨΨ

(301)

with

Ψm :=
1

N

N∑
n=1

Ψm(qn). (302)

1 ∈ R
N×N is the identity matrix. Eq. (298) shows that the optimization problem in

Eq. (288) is not different from the one in Eq. (288), it only requires a centering of I and
ΨΨΨ via Eq. (299),(301) in advance. After the optimization problem in Eq. (298) is solved, the
background intensity can be calculated for the optimal parameter vector w∗ via Eq. (297).

7.2.1. Objective Function within a Frequentist Approach

As explained in section 2.2, in a frequentist approach the Kullback-Leibler divergence can
be minimized, or equivalently the generalization error, in order to perform model selection.
Hence here, the generalization error is used as the objective function for performing model
selection.
The generalization error with respect to the conditional distribution p̂df(I|q), being a

heteroscedastic Gaussian likelihood function consisting of N independently distributed data
points, reads

E ′
p̂df(I|q)(p) =

N∑
n=1

∫
p̂df(In|qn)

((
In − (Ap)(qn)

)2
2σ2(qn)

)
dIn, (303)
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where terms independent of the model function p(r) are neglected as they are not relevant
for a minimization of the generalization error with respect to p(r). Eq. (303) has a minimum

if (Ap)(qn) =
∫
In p̂df(In|qn) dIn ∀n, cf. Eq. (52).

In this work now, the generalization error is estimated by means of the cross-validation
method, which is already described in algorithm 1 of section 2.2. The factor 1/2 in Eq. (303)
is replaced by 1/N in order to make the analysis independent of the data set size — it is
just a matter of convenience —, and thus the optimal estimate of the generalization error
should be close to one. However, the question arises in how many different data sets the
original data set has to be divided in the cross-validation method. Consider the two extreme
cases: (i) If the data set is divided into two disjoint sets, then there are only two training
sets and two validation sets, yielding training sets that might be too small or too different
from the original complete data set. Hence, statistics might be poor. (ii) If the data set is
divided into N disjoints sets (N is the number of data points, and the method is then called
leave-one-out cross-validation), then there are N training sets, but which are all very similar,
hence statistics might be poor again63. In practice it is found that often 5- or 10-folded cross-
validation is a good choice. Last but not least, it is noted that the cross-validation method
can be easily applied to the two considered cases: scattering data containing a background
intensity and scattering data without a background.

The optimal parameter vector in Eq. (288) (and similarly in Eq. (298)) is found by setting
the first derivative of J(w), i.e.,

∇J(w) =
(
ΨΨΨTΣΣΣ−1ΨΨΨw −ΨΨΨTΣΣΣ−1I

)
+ γLTLw, (304)

equal to zero, yielding

wγ = (ΨΨΨTΣΣΣ−1ΨΨΨ+ γLTL)−1ΨΨΨTΣΣΣ−1I. (305)

As outlined in section 2.2 parameter uncertainties can be determined from the distribution
of parameters obtained from i.i.d. data sets (which might have been obtained from repeating
the experiment or by applying the bootstrap method). However, here a more convenient
procedure is considered, which builds on the idea of analyzing the curvature of the likelihood
at its maximum likelihood value, and which is described in section 3.2. Unfortunately, this
approach would require calculating the inverse of the Hessian matrix of the negative logarithm
of the likelihood function, which might give unreasonably large uncertainties, because the
likelihood function describes an inverse set-up, and thus the Hessian matrix can be singular
or close to singular. Moreover, here a regularized solution wγ is used, which is in general
not the maximum likelihood solution, hence the likelihood is not approximated around a
maximum, as required. Both problems can be circumvented if the regularization term is also
taken into account. Accordingly, the Hessian matrix is calculated of J(w) at the minimum
position wγ

∇∇J(w)
∣∣
w=wγ = ∇∇J(w) = ΨΨΨTΣΣΣ−1ΨΨΨ+ γLTL. (306)

Hence this Hessian matrix is used as a substitute and the parameter uncertainties read
Δwm = [Δw]m =

√
[(∇∇J(w))−1]mm, 1 ≤ m ≤ M . This approach is introduced ad-hoc in

the frequentist approach, therefore Δwm are uncertainties which are not easy to interpret.
However, if the perspective is changed to the Bayesian approach (cf. next section), then Δwm

63 The issue of finding the optimal data partition size is related to the bias-variance tradeoff of frequentist
statistics, see, e.g., [111, §6.4.4]: Let D a data set and θ(D) an estimator of a quantity θ̂. Then, the mean

squared error
〈
(θ(D)− θ̂)2

〉
D

is equal to
〈
(θ(D)− θ)2

〉
D +(θ− θ̂)2, where θ = 〈θ(D)〉D. Hence, in practice

one should use an estimator θ(D) that has a small variance
〈
(θ(D)− θ)2

〉
D as well as a small bias squared

(θ − θ̂)2 in order get an overall small mean squared error.
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can be interpreted as the standard deviation of the m-the parameter within the a posteriori
distribution, which gives the uncertainty Δwm a clear meaning. Therefore, this method is
applied, here.

7.2.2. Objective Function within a Bayesian Approach

In order to define the objective function for the Tikhonov formula Eq. (288) within a Bayesian
approach, the formula is derived for it: Consider as in the previous, frequentist approach that
the noise model is a heteroscedastic Gaussian one with mean ΨΨΨw and covariance Σ. Then,
the likelihood function reads

pdf(I|q,σσσ,w) = N (I|ΨΨΨw,Σ) ∝ exp

{
−1

2

∥∥Σ−1/2(I−ΨΨΨw)
∥∥2} . (307)

If also the a priori distribution is a Gaussian distribution with zero mean and covariance(
γLTL

)−1
, i.e.,

pdf(w|γ) = N (w|0, (γLTL)−1
) ∝ exp

{
−1

2
γ‖Lw‖2

}
, (308)

then by means of the formulas from appendix E.1 the a posteriori distribution of the param-
eters is a Gaussian one and reads as follows

pdf(w|q,σσσ, I, γ) = pdf(I|q,σσσ,w)pdf(w|γ)
pdf(I|q,σσσ, γ)

= N (w|BΨΨΨTΣ−1I,B
)

∝ exp

{
−1

2

∥∥Σ−1/2(I−ΨΨΨw)
∥∥2 − 1

2
γ‖Lw‖2

}
,

(309)

where

B =
(
ΨΨΨTΣ−1ΨΨΨ+ γLTL

)−1
. (310)

From the a posteriori distribution it can be seen that finding the maximum a posteriori
(MAP) solution wγ = argmaxw pdf(w|q,σσσ, I, γ) is equivalent to the minimization of J(w)
in Eq. (288), since the exponential function is strictly monotonically increasing. In this
setting γ can be interpreted as a hyperparameter, cf. section 2.2, and similarly the a posteriori
distribution of γ on a higher hierarchical level of model specification can be calculated as

pdf(γ|q,σσσ, I) = pdf(I|q,σσσ, γ)pdf(γ)
pdf(I|q,σσσ) . (311)

pdf(γ) is the a priori distribution of γ and pdf(I|q,σσσ) = ∫ pdf(I|q,σσσ, γ)pdf(γ) dγ. If pdf(γ)
is assumed to be constant64 it follows pdf(γ|q,σσσ, I) ∝ pdf(I|q,σσσ, γ), i.e., the a posteriori
distribution in the second level is proportional to the marginal likelihood (evidence) of the
first level in Eq. (309). Then, an optimal regularization parameter can be chosen as γ∗ =
argmaxγ pdf(I|q,σσσ, γ), i.e., one that maximizes the evidence in Eq. (309). γ∗ gives the most
probable model. The evidence can be expressed via the formulas in appendix E.1, as

pdf(I|q,σσσ, γ) = N (I|0,W), (312)

64 In this case the prior pdf(γ) is not normalized, and hence is called improper (see, e.g., [16, §2.4.2]), but it
can be used here anyway, since the a posteriori distribution can be correctly normalized.
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where
W = Σ+ΨΨΨ(γLTL)−1ΨΨΨT . (313)

The evidence is the desired objective function in the Bayesian approach for determining the
optimal model (complexity). However, in practice it is more convenient to maximize the
logarithm of the evidence (because of numerical stability), i.e., to maximize

QB(γ) = ln pdf(I|q,σσσ, γ)
= −1

2

(
N ln(2π) + ln(det(W)) + ITW−1I

)
,

(314)

and we also call this expression evidence.
Given a certain γ, appropriate standard deviations of the model parameters can be obtained

from the covariance matrix B in Eq. (310) of the a posteriori distribution pdf(w|q,σσσ, I, γ) via
[Δw]m =

√
[B]mm, 1 ≤ m ≤ M .

In case the intensity data contain an unknown background intensity Ibkg., the likelihood
function reads

p̃df(I|q,σσσ,w) = N (I|ΨΨΨw + Ibkg.(w)e1,Σ)

∝ exp

{
−1

2

∥∥Σ−1/2(I− (ΨΨΨw + Ibkg.(w)e1))
∥∥2} .

(315)

In this formula, it is considered that Ibkg. is also distributed, since unknown, and in general it
can be considered that Ibkg. is actually a function of w — expressing the idea that Ibkg. shall
be optimally selected for each parameter vector w. Ibkg.(w) is determined as follows: Firstly,
consider the a priori distribution pdf(w|γ) from Eq. (308), then the a posteriori distribution
reads

p̃df(w|q,σσσ, I, γ) = p̃df(I|q,σσσ,w)pdf(w|γ)
p̃df(I|q,σσσ, γ)

∝ exp

{
−1

2

∥∥Σ−1/2(I− (ΨΨΨw + Ibkg.(w)e1))
∥∥2 − 1

2
γ‖Lw‖2

}
.

(316)

Next, for a certain w the background Ibkg.(w) has to be determined optimally, which can be
achieved by taking the negative logarithm of Eq. (316) yielding the cost function J̃(w, Ibkg.e1),
where J̃ is defined in Eq. (294). Optimizing for Ibkg.(w), as similarly done in Eq. (295)-(297),
yields the background intensity in dependence of w

Ibkg.(w) =
1

N
eT1 (I−ΨΨΨw)

= I − 1

N
eT1ΨΨΨw,

(317)

and I is defined in Eq. (300). Back-substitution of this result into the likelihood function
Eq. (315) yields

p̃df(I|q,σσσ,w) = N (I|ΨΨΨw + Ie1 − 1

N
e1e

T
1ΨΨΨw,Σ

)
= N
(
I
∣∣(1− 1

N
e1e

T
1

)
ΨΨΨw + Ie1,Σ

)
= N (I|ΨΨΨcw + Ie1,ΣΣΣ)

∝ exp

{
−1

2

∥∥∥Σ−1/2
(
I− (ΨΨΨcw + Ie1

))∥∥∥2}
∝ exp

{
−1

2

∥∥∥Σ−1/2
(
Ic −ΨΨΨcw

∥∥2} ,

(318)
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where ΨΨΨc is defined in Eq. (301), and Ic is defined in Eq. (299). Combining this likelihood
function with the a priori distribution in Eq. (308) and applying the formulas in appendix E.1,
gives the a posteriori distribution

p̃df(w|q,σσσ, I, γ) = p̃df(I|q,σσσ,w)pdf(w|γ)
p̃df(I|q,σσσ, γ)

= N (w|B̃ΨΨΨT
c ΣΣΣ

−1(I− Ie1), B̃)

= N (w|B̃ΨΨΨT
c ΣΣΣ

−1Ic, B̃)

∝ exp

{
−1

2

∥∥∥Σ−1/2
(
Ic −ΨΨΨcw

)∥∥∥2 − 1

2
γ‖Lw‖2

}
,

(319)

where
B̃ =

(
γLTL+ΨΨΨT

c ΣΣΣ
−1ΨΨΨc

)−1
. (320)

Applying the formulas in appendix E.1 again, the evidence reads

p̃df(I|q,σσσ, γ) = N (I|Ie1,W̃), (321)

where
W̃ = ΣΣΣ+ΨΨΨc(γL

TL)−1ΨΨΨT
c . (322)

Similarly as above, the objective function is taken as

Q̃B(γ) = ln p̃df(I|q,σσσ, γ)
= −1

2

(
N ln(2π) + ln(det(W̃)) + ITc W̃

−1Ic

)
.

(323)

Thus, in case the data contain a background, the evidence is calculated similarly as in the
case where there is no background contained in the data, only the intensity vector I and the
matrix ΨΨΨ have to be substituted by their centered versions, i.e., Ic and ΨΨΨc.

Standard deviations of parameters are obtained as [Δw]m =
√
[B̃]mm, 1 ≤ m ≤ M .

7.2.3. Evaluations

Scattering data are simulated in order to analyze the performance of the two different objective
function approaches. For this purpose the scattering of encapsulated silica nanoparticles is
considered (core-shell objects). The intensity is calculated for the case of neutron scattering,
and three different matrix SLDs are assumed: in one case the matrix is contrast matched to
the silica particles, in another case the matrix is contrast matched to the shell, and in the
last case the zero average contrast (ZAC) condition is assumed, i.e., the matrix is adjusted
such that it matches in average the average SLD of the encapsulated particles.
In detail, it is considered that the silica nanoparticles are lognormally distributed with mean
radius 8.6 nm and polydispersity 0.14, the shell thickness has a Gaussian distribution with
mean 4.4 nm and polydispersity 0.1, the overall volume fraction of the encapsulated particles
is 0.015, and the SLDs are considered to be:

SLD of silica nanoparticles: 3.45 · 10−4 nm−2

SLD of the shell: 3.01 · 10−5 nm−2 (which is the SLD of DOPC, cf. section 4.4.3)
SLDs of the matrix (three cases are considered):

(i) Matching core SLD: SLD of the matrix is 3.59 ·10−4 nm−2, such that it approximately
matches the SLD of the silica nanoparticles.
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(ii) Matching shell SLD: SLD of the matrix is 3.07·10−5 nm−2, such that it approximately
matches the SLD of the shell of the encapsulated nanoparticles.

(iii) ZAC condition: SLD of the matrix is 1.38 · 10−4 nm−2, such that it approximately
matches the average SLD of the encapsulated particles.

Such a system is interesting, since it appears in practice (cf. section 4.4.3) and at the same
time allows to model different PDDFs via contrast variation, i.e, by changing the D2O/H2O
ratio of the matrix. The model scattering intensity is calculated as

I(q) = Icore-shell(q) + Ibkg., (324)

where Icore-shell(q) is the scattering intensity of the core-shell objects (which is an integration
over the core-shell amplitude form factor, Eq. (182), of the polydisperse core-shell objects;
times the number distribution of the core-shell objects), and Ibkg. is assumed to be a q-
independent background. Ibkg. is considered to result purely from incoherent scattering and
is essentially proportional to the amount of hydrogen in the sample. The theoretical incoherent
scattering values for the different components (silica, light and heavy water, phospholipid) are
used (see, e.g., [138, 5]), i.e., the incoherent level changes with the solvent isotopic composition.
In order to create a discrete and noisy data set the model scattering intensity is calculated

for N = 130 (typical detector resolution in a SANS experiment) equidistantly distributed
q-values in 0.01− 2 nm−1, yielding the set {I(qn)}Nn=1. Next, these intensity values I(qn) are
multiplied with a constant c, such that c·∑N

n=1 I(qn) is in the order of 106 — hence simulating
a SANS experiment with ca. 106 detected neutrons. Subsequently, a simulated experimentally
observed data set {Ic(qn)}Nn=1 is generated by creating realizations of two independent Poisson
processes Ic(qn) ∼ [Poiss(c · Icore-shell(qn)) + Poiss(c · Ibkg.)]. The finally used intensity data
set is {In}Nn=1, which is obtained by the rescaling In = Ic(qn)/c, and appropriate error bars65

are calculated as σn =
√
Ic(qn)/c. Hence, the complete data set is {(qn, In, σn)}Nn=1.

Performing intra-model comparison
The case of performing intra-model comparison is considered. Since the mean diameter of the
scattering objects is 2 ·(8.6+4.4) nm = 26 nm, 40, respectively 100, b-spline basis functions of
order three, i.e., φm(r) = B3((r − rm)/h), are placed in r-space equidistantly in the interval
[0,40] nm, where h is the spacing. The definition of the third order b-spline is (see, e.g., [1])

B3(x) :=
1

6

⎧⎨⎩
(2− |x|)3 − 4(1− |x|)3, |x| ≤ 1,

(2− |x|)3, 1 ≤ |x| ≤ 2,
0, |x| ≥ 2.

⎫⎬⎭ (325)

In order to check if the b-splines’ set-ups are capable to capture the features of the goal
PDDFs, noiseless data sets are used in the IFT and their appropriate PDDF solutions are
determined and compared with the PDDFs obtained from the direct inversion of Icore-shell(q)
via the inverse Fourier transform formula (see, e.g., [51] or [21, §13])

p̂(r) =
1

2π2

∫
Icore-shell(q)qr sin(qr) dq. (326)

As Fig. 48 shows, the different b-splines’ set-ups are perfect.

65 The error bar calculation is not consistent with the generation of how the intensity data are generated, but
it is the method that is used in practice, and therefore also applied here. The proper generation of error
bars would be to sum up the square roots of the coherent scattering intensity and of the incoherent one
and to divide the result by c.
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Figure 48: B-spline set-up test. First row: scattering intensities of polydisperse core-shell
objects of the three different contrast conditions. Second row: the appropriate
PDDFs, where the red curves are the direct PDDF solutions (i.e., the true PDDFs)
obtained via Eq. (326), and the blue and green curves are the PDDF solutions
obtained by the IFT method having 40, respectively 100, b-splines equidistantly
placed in [0,40] nm. However, the true PDDFs are perfectly covered by the two
different b-splines’ set-ups. Accordingly, the set-ups of the b-spline basis functions
(40 and 100 b-splines) are appropriate to capture the features of the true PDDFs.
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Fig. 49 and 50 show the results obtained for the set-up with 100 splines and by applying the
5-folded cross-validation method (frequentist approach) and the evidence method (Bayesian
approach) to the considered data sets. In Fig. 49 the intensity background is subtracted
automatically by the centering method, see section 7.2, and in Fig. 50 the intensity back-
ground is removed from the optimization by subtracting it before the optimization method
is applied — simulating a user who would have removed it (optimally) ‘by hand’ before the
IFT is applied. Since the data are simulated, the true (noiseless) intensity values are known,
and they have been used to determine an error curve, which is called true error curve in the
following. A point of this curve is determined66 by the weighted mean squared error between
the true (noiseless) intensity values Î and the modeled intensities ΨΨΨw: 1

N ‖ΣΣΣ−1/2(̂I−ΨΨΨw)‖2.
Following aspects are observed in Fig. 49 and 50:

• The (most right) minima positions within the cross-validation curves are in good agree-
ment with the minima positions of the true error curves as well as with the evidence
maxima positions.

Note: (i) Changes of the cross-validation curves in the γ-interval of ca. [10−2, 106]
become visible if there is a zoom in. (ii) There can be multiple minima in a cross-
validation error curve. However, the principle of Occam’s razor is applied here in order
to get a unique solution: A minimum is selected, which has the highest γ-value, meaning
that the appropriate model is the simplest one that is consistent with the data. The
other local minima are considered to be spurious.

• If the γ-position of the maximum of the evidence is taken or the γ-position of the
minimum of the true error in order to determine the appropriate PDDF, the PDDF
would look very similar or identical to the PDDF that is obtained for 5-folded cross-
validation.

• It is not possible to derive unique stable points from the stability plots. However,
the minima of the cross-validation curves (in case of multiple minima in a curve: the
minimum associated to the largest γ), respectively the maxima of the evidence, fall into
a γ-interval, where one would suppose a ‘stable point’.

• The PDDFs show a slight tendency to oscillate at large r-values, where the true PDDFs
are equal to zero. In this regime, the determined uncertainty tubes67 of the PDDFs are
in the order of the amplitudes of the oscillations of the PDDFs.

As these first results show, the cross-validation method seems to be a useful tool to determine
objectively an optimal PDDF.

In order to get a statistically more meaningful analysis of the two different inference ap-
proaches, 32 i.i.d. intensity data sets are simulated for each set-up (different contrasts, and
background is removed a priori or is determined automatically) and the PDDF solutions
(having 40 and 100 b-splines) are plotted in a single diagram, see Fig. 51-53. Additionally,
in these figures PDDFs obtained for 2-/10-folded and leave-one-out cross-validation are in-
cluded. Following aspects are observed in these figures — details within the plots are visible
within the electronic version of this document:

• In average all PDDFs obtained from the different objective functions (evidence, 2-/5-
/10-folded and leave-one-out cross-validation, true error curve) are in good agreement
with the true PDDFs.

66 The true error is essentially the discrete formula of the second term in the last line of Eq. (50) in section 2.2,
but without the pre-factor N/2 as assumed here for convenience. It has as lower bound the value zero.

67An uncertainty tube is obtained by substituting wm by wm ±Δwm in Eq. (266).
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• The determined PDDF uncertainty regimes shown in Fig. 49, 50 are in good agreement
with the spreads of the PDDFs shown in Fig. 51-53.

• The spreads of the PDDFs obtained from the true error curves are in average the
smallest one.

• The spreads of the PDDFs obtained from 5- and 10-folded cross-validation are only
slightly higher or comparable as the spreads of the PDDFs obtained from the true error
curves.

• Especially for all considered shell matched cases, but also for a few other cases, the
spreads of the PDDFs obtained from the evidences are slightly higher as they are for 5-
and 10-folded cross-validations and for the true error cases.

• There is a significant outlier PDDF for 2-folded cross-validation of the ZAC case, and
the spreads of the PDDFs are also slightly higher as they are for 5- and 10-folded
cross-validations and for the true error cases.

• Leave-one-out cross-validation gives spreads of the PDDFs that are comparable with 5-
and 10-folded cross-validation — there is only a slightly stronger oscillation of a PDDF
for the ZAC case.

• Solutions for 40 and 100 b-splines are nearly identical.

• Additionally, the average misfit error68 E is plotted into the diagrams69. The observed
behavior of the PDDFs is in agreement with the determined misfit errors.

In summary: 5- and 10-folded cross-validations are good methods to determine reliably the
PDDF in the considered intra-model comparison approach. Moreover, it has been found that
the cross-validation method performs as well as the evidence method.

68E = 1
Ncurves

∑Ncurves
n=1

√
1

rmax

∫ rmax

r=0

(
pn(r)− ptrue(r)

)2
dr

69E is shown without units within the following figures to keep the diagrams uncluttered.
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Figure 51: Obtained PDDF solutions (p(r)/(cm−1 ·nm−1) vs. r/nm) from the different ob-
jective functions and for different numbers of b-splines from intensity data of the
‘matching shell SLD’ case. For each method 32 i.i.d. scattering data sets are sim-
ulated and accordingly the 32 appropriate determined PDDFs are plotted in one
diagram (blue curves). The red curves show the true PDDFs. 1st column: 40 b-
splines and background is automatically subtracted. 2nd column: 40 b-splines and
background is subtracted a priori. 3rd column: 100 b-splines and background is au-
tomatically subtracted. 4th column: 100 b-splines and background is subtracted a
priori. 1st row: PDDFs obtained via evidence method. 2nd row: PDDFs obtained
via true error method. Rows 3-6: PDDFs obtained via Cross-Validation (CV)
method (2-folded CV, 5-folded CV, 10-folded CV, Leave-One-Out CV (LOOCV)).
E : average misfit error. Details within the plots are visible in the electronic version
of this document.
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Figure 52: Obtained PDDF solutions (p(r)/(cm−1 ·nm−1) vs. r/nm) from the different ob-
jective functions and for different numbers of b-splines from intensity data of the
‘matching core SLD’ case. For each method 32 i.i.d. scattering data sets are sim-
ulated and accordingly the 32 appropriate determined PDDFs are plotted in one
diagram (blue curves). The red curves show the true PDDFs. 1st column: 40 b-
splines and background is automatically subtracted. 2nd column: 40 b-splines and
background is subtracted a priori. 3rd column: 100 b-splines and background is au-
tomatically subtracted. 4th column: 100 b-splines and background is subtracted a
priori. 1st row: PDDFs obtained via evidence method. 2nd row: PDDFs obtained
via true error method. Rows 3-6: PDDFs obtained via Cross-Validation (CV)
method (2-folded CV, 5-folded CV, 10-folded CV, Leave-One-Out CV (LOOCV)).
E : average misfit error. Details within the plots are visible in the electronic version
of this document.
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Figure 53: Obtained PDDF solutions (p(r)/(cm−1 ·nm−1) vs. r/nm) from the different ob-
jective functions and for different numbers of b-splines from intensity data of the
ZAC condition case. For each method 32 i.i.d. scattering data sets are simulated
and accordingly the 32 appropriate determined PDDFs are plotted in one diagram
(blue curves). The red curves show the true PDDFs. 1st column: 40 b-splines and
background is automatically subtracted. 2nd column: 40 b-splines and background
is subtracted a priori. 3rd column: 100 b-splines and background is automatically
subtracted. 4th column: 100 b-splines and background is subtracted a priori. 1st
row: PDDFs obtained via evidence method. 2nd row: PDDFs obtained via true
error method. Rows 3-6: PDDFs obtained via Cross-Validation (CV) method (2-
folded CV, 5-folded CV, 10-folded CV, Leave-One-Out CV (LOOCV)). E : average
misfit error. Details within the plots are visible in the electronic version of this
document.
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Performing inter-model comparison
In order to study the possibility of using the objective functions for performing inter-model
comparison the following procedure is considered: In the IFT method the upper integration
bound in Eq. (265), respectively in Eq. (268), is set to rmax, and its value is changed from
10 nm to 50 nm in steps of 1 nm and the IFT is performed for each rmax. For each rmax

set-up b-splines of order three are placed equidistantly in steps of 1 nm in [0, rmax]. Since the
goal is to determine the true PDDF, it is desirable that rmax is close to the actual largest
particle size70 r̂max. As a consequence of this, it is expected that the oscillatory behavior
of a determined PDDF is suppressed (mainly in the regime lying outside of the physically
relevant domain of the true PDDF) as long as rmax is not much below r̂max (otherwise strong
oscillatory behavior can be expected).

Exemplarily, Fig. 54 shows the results of the different objective functions (5-folded cross-
validation, true error, evidence) plotted versus rmax and γ for a ZAC data set, where the
background is subtracted before the IFT procedure is applied. In order to have easier access
to the important information contained in the surface plots of the objective functions, the
figure contains ‘projection’ plots of the objective functions’ surfaces that have been achieved as
follows: the minimum-function is applied to the Cross-Validation (CV) and true error surfaces
with respect to γ, respectively the maximum-function is applied to the evidence surface with
respect to γ (i.e., minγ{CV(rmax, γ)}, minγ{(true error)(rmax, γ)}, maxγ{evidence(rmax, γ)}).
These projection plots show also (local) extrema as crosses within the curves. Finally, for the
global extrema appropriate PDDFs can be determined. However, in order to get a statistically
more meaningful analysis 32 i.i.d. intensity data sets are simulated and the PDDF solutions
are plotted in a single diagram71, see Fig. 55 — moreover appropriate PDDFs obtained from
10-folded cross-validation are included. The same procedure has been performed for the same
data, but the intensity background has been subtracted before the IFT method has been
applied. Additionally, the same procedure has been performed for the shell-matched case and
the core-matched case and the obtained PDDFs are shown in Fig. 56,57.

Following aspects are observed in Fig. 55-57 (PDDFs are obtained from the global extrema
of the objective functions; the figures also contain means and standard deviations of the
determined rmax values):

• For all objective functions the PDDFs obtained for the background removal method are
similar to the PDDFs obtained for the case where the background is removed optimally
‘by hand’ before the IFT is applied.

• The PDDFs obtained from the global minima of the true error objective functions are
all close to the true PDDFs. These PDDFs have the smallest spreads — compared to
the PDDFs obtained from the extrema of the other objective functions.

• The PDDFs obtained from the global maxima of the evidence objective functions are
close to the true PDDFs too, but have slightly higher spreads as the PDDFs obtained
from the global minima of the true error objective functions. Moreover the PDDFs show
a tendency to underestimate the maximal dimension r̂max: the mean values of rmax of
the PDDFs obtained from the global minima of the true error objective functions (which
are considered as good estimates of the true r̂max values) are slightly higher than the

70 Because of the assumed size distributions, particles can be arbitrary large, but the probability of such sizes
is negligibly small. The actual largest size can be visually inferred from an inspection of the true PDDFs.

71 In appendix F.1 the same procedure is applied on the ZAC data set again, but L is taken as a discrete first
order derivative matrix (the regularization matrix that is used in the work of Glatter [49, 26]). As this
analysis shows the LD2 operator used in this work gives better solutions.
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mean values of rmax of the PDDFs obtained from the global maxima of the evidences,
see tables within Fig. 55-57.

• The PDDFs obtained from the global minima of the 5- and 10-folded cross-validation
objective functions are in average also close to the true PDDFs, but some outlier PDDFs
exist — r̂max is overestimated —, which show oscillations for r̂max � r < rmax. There-
fore, the standard deviations of rmax of the PDDFs obtained from these two objective
functions are much higher than the ones obtained from the true error objective func-
tions. Moreover, the 5-folded cross-validation method has one strong outlier in Fig. 56,
which the 10-folded cross-validation method does not have, but this might be a hazard.

• The misfit errors are in agreement with the observations.

In summary: The true error objective functions yield PDDFs that are closest to the true
PDDFs. The evidence objective functions yield PDDFs that are close to the true PDDFs but
show higher spreads than the PDDFs obtained from the true error objective functions. The
5- and 10-folded cross-validation objective functions yield in average good PDDF results, but
have a tendency to produce outliers, which oscillate more or less strongly. The origin of these
outliers is considered to be a result of spurious extrema in the objective functions, cf. Fig. 54
as well as Fig. 49,50.

In order to get rid of spurious extrema the following 2-step procedure is applied, which is
a repeated application of the principle of Occam’s razor:

(i) The projection plot is modified: Instead of taking the global minimum/maximum with
respect to γ of an objective function f(rmax, γ), where rmax is fixed, the local min-
imum/maximum is taken that has the largest γ (in agreement with the principle of
Occam’s razor) and whose minimum/maximum is non-spurious.

In detail — for the true error and cross-validation objective functions: Let U(rmax)
the set of all local minima positions of the objective function f(rmax, γ) (true error or
cross-validation), where rmax is fixed. Then, Ũ(rmax) = {γ′ ∈ U(rmax)| f(rmax, γ

′) <
βminγ f(rmax, γ)} is a ‘cleaned up version’ of U(rmax): it does not have the possibly
contained spurious minima positions of U(rmax), which would give too simple models
that have relatively high objective function values; here β = 2 has been found to be
appropriate. Finally, the new minimum projection function reads

new-minγ
(
f(γ, rmax)

)
= max

(
Ũ(rmax)

)
. (327)

Analogously, a new maximum projection function can be defined for the evidence func-
tion.

(ii) Determine the local extrema in the new projection curves with respect to rmax, and
then choose an local extremum, which has the smallest rmax (hence is in agreement
with the principle of Occam’s razor, since this selection then has the lowest number
of splines, and therefore it is the easiest model that can explain the data) and which
is non-spurious (e.g., in the min-projection(CV) diagram of Fig. 54 the first left local
minimum is not acceptable — it is much higher than the other local minima).

In detail — for the true error and cross-validation objective functions: Let V the set
of all local minima positions of f̃(rmax) := new-minγ

(
f(γ, rmax)

)
. Then Ṽ = {r′max ∈

V | f̃(r′max) < β′minrmax f̃(rmax)} is a ‘cleaned up version’ of V : it does not have the
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possibly contained spurious minima positions of V , which would give too simple models
that have relatively high objective function values; here β = 2 has been found to be
appropriate.

Then the optimal rmax value is taken as ropt.max = minrmax(Ṽ ). The appropriate optimal
γ of ropt.max is γropt.max

= new-minγ
(
f(ropt.max, γ)

)
.

The same procedure can be applied for the evidence objective function, if the function
is multiplied with -1.

The results of this model selection scheme are also depicted in Fig. 55-57. Following aspects
are observed:

• The PDDFs obtained for the evidence objective functions are unchanged compared to
the PDDFs obtained from the original (global) extrema selection method.

• The PDDFs obtained for the true error objective functions are nearly unchanged com-
pared to the PDDFs obtained from the original (global) extrema selection method —
slight differences are only evident from the misfit errors and the mean values and the
standard deviations presented in the tables.

• The PDDFs obtained for the 5- and 10-folded cross-validation objective functions are
altogether quite good and there is no outlier curve any more. Moreover, in average the
PDDFs are only slightly worse than the PDDFs obtained for the true error objections
functions, but they are slightly better than the PDDFs obtained for the evidence objec-
tive functions. As a result, the standard deviations of the rmax values are smaller than
the ones obtained from the original extrema selection method. Their mean values of
rmax are closer to the mean values of rmax obtained for the true error objective function
than the mean values of rmax obtained for the evidence objective functions.

• The standard deviations of rmax are in average slightly smaller for 10-folded cross-
validation than for 5-folded cross-validation. Moreover, the mean values of rmax obtained
for 10-folded cross-validation are in average slightly closer to the mean values of rmax

obtained for the true error curve than the mean values of rmax obtained for 5-folded
cross-validation. Hence 10-folded cross-validation seems to be to perform slightly better
in average than 5-folded cross-validation.

• The misfit errors are in agreement with the observations.

In summary: the considered extrema selection method gives very good PDDF results for 5-
and 10-folded cross-validation, and which are very close to the PDDFs obtained for the true
error objective function. The considered extrema selection method has no influence on the
PDDFs obtained for the evidence objective function and it only has a slight one on the PDDFs
obtained for the true error objective function. There is no influence on the evidence method,
since in the Bayesian approach the principle of Occam’s razor is automatically incorporated
— see section 2.2 — and therefore it works automatically well. On the contrary, the cross-
validation method only gives an estimate of the generalization error, which can produce
spurious minima. Therefore, additional information is required to select a ‘good’ minimum,
e.g., as done here, one that is in consensus with the principle of Occam’s razor. In doing
so, the 5-/10-folded cross-validation method seems to be a very good objective function for
performing inter-model comparison.
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Figure 54: Plots of objective functions for a ZAC data set (background is subtracted before
the IFT procedure is applied). In the left column are the surfaces of the objective
functions (5-folded Cross-Validation (CV), true error, evidence) shown over rmax

and γ. The right column shows appropriate ‘projection’ plots — from top to bot-
tom: minγ

(
CV(rmax, γ)

)
, minγ

(
(true error)(rmax, γ)

)
, maxγ

(
evidence(rmax, γ)

)
.

Crosses indicate extrema. There are some spurious extrema: the most left mini-
mum in the min-projection(CV) curve, and the most left maximum in the max-
projection(evidence) curve — the PDDFs corresponding to these extrema oscillate
strongly.
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Figure 55: Obtained PDDF solutions (p(r)/(cm−1·nm−1) vs. r/nm) for the inter-model com-
parison approach using different objective functions. For each method 32 i.i.d.
scattering data sets are simulated for the ZAC condition case, and accordingly the
32 appropriately determined PDDFs are plotted in one diagram (blue curves). The
red curves show the true PDDFs. 1st column (method 1): PDDFs are calculated
for the global extrema of the objective functions and background is subtracted
automatically. 2nd column (method 2): PDDFs are calculated for the global ex-
trema of the objective functions and background is subtracted a priori. 3rd column
(method 3): PDDFs are calculated for extrema in accordance with the principle of
Occam’s razor and background is subtracted automatically. 4rd column (method
4): PDDFs are calculated for extrema in accordance with the principle of Occam’s
razor and background is subtracted a priori. 1st row: PDDFs obtained via evi-
dence method. 2nd row: PDDFs obtained via true error method. 3rd row: PDDFs
obtained via 5-folded Cross-Validation (CV) method. 4th row: PDDFs obtained
via 10-folded CV method. The table at the bottom shows the mean and standard
deviation of the determined rmax values (notation: (mean, std. dev.)). E : average
misfit error. Details within the plots are visible in the electronic version of this
document.
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Figure 56: Obtained PDDF solutions (p(r)/(cm−1·nm−1) vs. r/nm) for the inter-model com-
parison approach using different objective functions. For each method 32 i.i.d.
scattering data sets are simulated for the ‘matching shell SLD’ case, and accord-
ingly the 32 appropriately determined PDDFs are plotted in one diagram (blue
curves). The red curves show the true PDDFs. 1st column (method 1): PDDFs
are calculated for the global extrema of the objective functions and background is
subtracted automatically. 2nd column (method 2): PDDFs are calculated for the
global extrema of the objective functions and background is subtracted a priori.
3rd column (method 3): PDDFs are calculated for extrema in accordance with
the principle of Occam’s razor and background is subtracted automatically. 4rd
column (method 4): PDDFs are calculated for extrema in accordance with the
principle of Occam’s razor and background is subtracted a priori. 1st row: PDDFs
obtained via evidence method. 2nd row: PDDFs obtained via true error method.
3rd row: PDDFs obtained via 5-folded Cross-Validation (CV) method. 4th row:
PDDFs obtained via 10-folded CV method. The table at the bottom shows the
mean and standard deviation of the determined rmax values (notation: (mean, std.
dev.)). E : average misfit error. Details within the plots are visible in the electronic
version of this document.
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Figure 57: Obtained PDDF solutions (p(r)/(cm−1·nm−1) vs. r/nm) for the inter-model com-
parison approach using different objective functions. For each method 32 i.i.d.
scattering data sets are simulated for the ‘matching core SLD’ case, and accord-
ingly the 32 appropriately determined PDDFs are plotted in one diagram (blue
curves). The red curves show the true PDDFs. 1st column (method 1): PDDFs
are calculated for the global extrema of the objective functions and background is
subtracted automatically. 2nd column (method 2): PDDFs are calculated for the
global extrema of the objective functions and background is subtracted a priori.
3rd column (method 3): PDDFs are calculated for extrema in accordance with
the principle of Occam’s razor and background is subtracted automatically. 4rd
column (method 4): PDDFs are calculated for extrema in accordance with the
principle of Occam’s razor and background is subtracted a priori. 1st row: PDDFs
obtained via evidence method. 2nd row: PDDFs obtained via true error method.
3rd row: PDDFs obtained via 5-folded Cross-Validation (CV) method. 4th row:
PDDFs obtained via 10-folded CV method. The table at the bottom shows the
mean and standard deviation of the determined rmax values (notation: (mean, std.
dev.)). E : average misfit error. Details within the plots are visible in the electronic
version of this document.
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7.2.3.1. Results
It has been found that model selection for the IFT based on 5- or 10-folded cross-validation,
as an estimator of the generalization error within a frequentist approach, is a very good
alternative to the already existing evidence objective function within a Bayesian approach.
For the inter-model comparison case the cross-validation method even shows a slightly better
performance. However, if the cross-validation scheme is used, it is essential to additionally
apply the principle of Occam’s razor in order to prevent from selecting wrong models.
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7.3. Stable Solution

As discussed in sections 7 and 7.1 a major problem with the IFT is that the solution may
easily contain artifacts (e.g., oscillations) as a result of the bad numerical conditioning, which
means that the solution is numerically unstable. In this section, a few typical machine learning
methods, namely the Relevance Vector Machine (RVM) [160], Support Vector Regression
(SVR) [164], and Least Absolute Shrinkage and Selection Operator (LASSO) [155] are applied
to the IFT method with the goal to get a more stable solution.

The RVM is usually seen as a typical Bayesian approach, and SVR as a frequentist one.
However, the RVM, SVR and LASSO approaches differ only in their loss / likelihood function,
respectively in their regularization term / prior, hence their formulas can be interpreted within
a Bayesian framework as well as in a frequentist one. Nevertheless in practice calculating the
evidence is only easily feasible for the RVM, while applying cross-validation is inexpensive for
SVR and LASSO, whereas cross-validation would be quite demanding for the RVM (the RVM
has as many Lagrangian parameters as elements in the parameter vector, see next section).
The RVM typically yields solutions which only contain basis function contributions that

are supported by the data and are otherwise suppressed. Hence, often solutions are sparse,
meaning that many basis function parameters wm = [w]m are set to zero. Formally sparseness
means |{wm|wm �= 0}| � M . A sparse approach can be interesting as a method that may
suppress all artifacts, which are not supported by the data. Solutions found by SVR can also
be sparse, but are usually less sparse as obtained via the RVM [160]. LASSO is an approach,
which typically also gives sparse solutions.

7.3.1. Relevance Vector Machine (RVM)

The RVM is a sparse Bayesian learning72 method. In this method, the a priori distribution
from the Bayesian approach in section 7.2.2 is substituted for a more general one. It works
as follows: Consider the a priori distribution given in Eq. (308) with L = 1, where 1 is the
M ×M identity matrix, i.e.,

pdf(w|γ) = N (w|0, (γ1)−1
) ∝ exp

{
−1

2
wT (γ1)w

}
. (328)

This shows that each parameter wm = [w]m has the identical standard deviation γ−1/2. A

more general approach would be to assign an individual standard deviation γ
−1/2
m = [γγγ]

−1/2
m

to each parameter wm. This can be accomplished by defining ΓΓΓ := diag(γγγ), and then using
the a priori distribution

pdf(w|ΓΓΓ) = N (w|0,ΓΓΓ−1
) ∝ exp

{
−1

2
wTΓΓΓw

}
. (329)

The RVM uses this prior together with the likelihood function in Eq. (307) in order to maxi-
mize the evidence (and then to determine the a posteriori distribution of the parameters) and
hence to perform inference [160, 161, 162]. However, the solution would miss a certain de-
gree of smoothness, because of the missing regularization matrix L. Accordingly, the original
regularization matrix L is introduced into the a priori distribution again:

pdf(w|ΓΓΓ) = N (w|0, (LTΓΓΓL)−1
) ∝ exp

{
−1

2
wTLTΓΓΓLw

}
. (330)

72 The idea of sparse Bayesian learning has been tried to apply on the inverse Laplace transform in dynamic
light scattering [119].
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In order to apply the evidence maximization algorithm given in [161], which is described in
the text below, the covariance matrix of the a priori distribution needs to be diagonal. In
order to accomplish this, the following substitution is performed: Let L be regular, which is
the case for the second order discrete differential operator with boundary conditions zero as
given in Eq. (292), and define

w̃ := Lw, (331)

hence
w = L−1w̃, (332)

which is substituted into Eq. (330), yielding

pdf(w̃|ΓΓΓ) = N (w̃|0,ΓΓΓ−1
) ∝ exp

{
−1

2
w̃TΓΓΓw̃

}
. (333)

Accordingly, with Eq. (332) the likelihood function in Eq. (307) becomes

pdf(I|q,σσσ, w̃) = N (I|ΨΨΨLw̃,Σ) ∝ exp

{
−1

2

∥∥Σ−1/2(I−ΨΨΨLw̃)
∥∥2} , (334)

where
ΨΨΨL := ΨΨΨL−1. (335)

Using the formulas from appendix E.1, the appropriate a posteriori distribution reads

pdf(w̃|q,σσσ, I,ΓΓΓ) = pdf(I|q,σσσ, w̃)pdf(w̃|ΓΓΓ)
pdf(I|q,σσσ,ΓΓΓ)

= N (w̃|μμμ,BL

)
∝ exp

{
−1

2

∥∥Σ−1/2(I−ΨΨΨLw̃)
∥∥2 − 1

2
w̃TΓΓΓw̃

}
,

(336)

where the mean of the posterior is

μμμ = BLΨΨΨ
T
LΣ

−1I, (337)

and the posterior covariance matrix reads

BL = (ΨΨΨT
LΣΣΣ

−1ΨΨΨL +ΓΓΓ)−1. (338)

Moreover, using the formulas from appendix E.1, the evidence reads

pdf(I|q,σσσ,ΓΓΓ) = N (I|0,WL), (339)

where the covariance matrix is

WL = Σ+ΨΨΨLΓΓΓ
−1ΨΨΨT

L. (340)

There are different strategies to locally maximize73 the evidence with respect to ΓΓΓ, respectively
γγγ, cf. [161]. E.g., by the first order optimality condition (i.e., setting the derivative of the
evidence with respect to γγγ equal to zero and solving for γγγ [161]) two different iterative update
strategies for γγγ can be derived. One gives the iterative re-estimation rule

γnewm =
1

μ2
m + [BL]mm

, (341)

73The evidence can have many local maxima [28, §2].
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where μm = [μμμ]m, and which is identical to an expectation maximization update step, hence
guarantying that the evidence is locally maximized [161], and the other re-estimation rule is

γnewm =
1− γm[BL]mm

μ2
m

, (342)

which has a faster convergence in practice, but there is no guaranty that the evidence is locally
maximized. Indeed in this work tests have shown that the second rule produces solutions that
are not acceptable, and therefore the first update rule is used here.
In order to get an initially good value of ΓΓΓ, it is set to ΓΓΓinit = diag(γ∗, . . . , γ∗), where

γ∗ is the value that maximizes the evidence in Eq. (312). Next, the iterative procedure is
performed as long as there are significant relative changes in the elements of ΓΓΓ. After the
convergence of the algorithm, there is the optimal ΓΓΓ∗, which is used to calculate the optimal
and most probable parameter vector w∗, via Eq. (332), (337) and (338).

In case the intensity data contain an unknown constant background intensity, the intensity
vector I and the basis function matrix ΨΨΨL must first be centered as described in section 7.2.2.
Subsequently, the RVM can be applied on the centered quantities.

7.3.1.1. Evaluations
The PDDF results that have been obtained for the inter-model comparison approach (see last
section) show that the PDDFs obtained for the ZAC case have the highest oscillations at large
r values. Therefore the RVM approach is applied to the ZAC case in order to suppress these
oscillations. Fig. 58 shows the results obtained for the RVM in comparison with the original
(Tikhonov) method (Eq. (288), respectively Eq. (294) and using the evidence, 10-folded cross-
validation and true error objective functions) for two different rmax values (35 and 50 nm) and
for the two different methods of treating the background intensity (background subtracted
automatically and background subtracted before the RVM is applied). Following aspects are
observed:

1. The RVM is superior, compared to the original method and using the different objective
functions, in damping oscillatory behavior of the PDDFs in the regimes outside of the
domains of the true PDDFs (i.e., for r > r̂max).

2. In the regime r < r̂max, the PDDFs obtained via the RVM deviate slightly stronger
from the true PDDFs than the PDDFs obtained from the original method. The PDDFs
obtained from the RVM show a tendency to be edged, cf. Fig. 59.

3. The average misfit error E is in agreement with the two previous observations.

7.3.1.2. Results
The RVM is able to suppress undesired artifacts in the regime outside of the physically relevant
domain of the true PDDF. However, the method has a strong tendency of producing sparse
solutions, and as a result PDDF solutions can be slightly more edged than the ones obtained
from the original (Tikhonov) method; nevertheless, principles features of the true PDDFs are
retained. The edges may be explained by the reasoning that if there is a parameter that is
supported by the data, an adjacent parameter may be damped, and hence yielding a more
edged curve.
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Figure 58: Obtained PDDFs (p(r)/(cm−1 ·nm−1) vs. r/nm) (blue curves) for the RVM ap-
proach (first row). Moreover, for comparison reasons, PDDFs (blue curves) ob-
tained from the original (Tikhonov) method (i.e., minimizing Eq. (288), respec-
tively Eq. (294) using different objective functions (2nd row: evidence, 3rd row:
true error, 4th row: 10-folded cross-validation) are plotted. 1st column: rmax =
35nm and background is determined automatically. 2nd column: rmax = 35nm
and background is determined a priori. 3rd column: rmax = 50nm and background
is subtracted automatically. 4th column: rmax = 50nm and background is sub-
tracted a priori. Red curves: true PDDFs. E : average misfit error. Details within
the plots are visible in the electronic version of this document.
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Figure 59: Obtained PDDFs (p(r) vs. r) for the RVM (black curve) and for the original
(Tikhonov) approach using the evidence as objective function (blue curve). Red
curve: true PDDF. Clearly, the strong oscillatory behavior of the PDDF at large
r is suppressed via the RVM, whereas it is present in the PDDF obtained from
original approach. However, the PDDF solution obtained from the RVM is more
edged, especially in the regime of the last peak.
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Figure 60: A linear ε-insensitive loss function lε(z) (red), and an ordinary quadratic loss func-
tion l2(z) (blue).

7.3.2. Support Vector Regression (SVR)

SVR [11, 164] is a method that has been developed in the field of statistical learning theory74 in
order to perform inference. SVR uses an ε-insensitive loss function (see below) in a regularized
approach for regression, which can yield sparse solutions. However, solutions are usually not
as sparse as they are for the RVM [160]. The following description is based on [16, §7.1.4].
In the SVR method a modified version of the regularization problem given in Eq. (288) is

minimized: Instead of the squared loss function used in Eq. (288) an ε-insensitive loss function
[164, §11.1] is used, and here a linear one

lε

(
(Ap)(qn) + Ibkg. − In

σn

)
=

⎧⎨⎩ 0 if
∣∣∣ (Ap)(qn)+Ibkg.−In

σn

∣∣∣ < ε∣∣∣ (Ap)(qn)+Ibkg.−In
σn

∣∣∣− ε otherwise,

⎫⎬⎭ (343)

which is illustrated in Fig. 60. A is the integral operator from Eq. (265), p the basis function
model given in Eq. (266), and Ibkg. a possible constant intensity background (see section 7.2).
Hence, the weighted misfit [(Ap)(qn) + Ibkg. − In]/σn yields an error that increases linearly
beyond the ε-insensitive region. If model fitting is performed with an ε-insensitive loss function
it is expected that overfitting is suppressed (depending on ε), since the ε-insensitive loss
function prevents the model from following the noise in the data. As a consequence of not
following the noise, artifacts should be suppressed in the PDDF solution. In general, solutions
are less sensitive to noise in the intensity data and therefore are more robust.
The new optimization problem reads

arg min
w,Ibkg.

{
N∑

n=1

lε

(
(Ap)(qn) + Ibkg. − In

σn

)
+

1

2
γ‖Lw‖2

}
. (344)

In a Bayesian approach the linear ε-insensitive loss function corresponds to a likelihood func-
tion of the from 1

2(1+ε) exp(−lε(z)) [143], and Eq. (344) can be seen as the MAP solution
for the model parameters. However determining γ via maximizing the appropriate evidence
is practically not easily tractable. Therefore here, a frequentist viewpoint is taken and the
generalization error is estimated by the cross-validation method in order to determine the
optimal model complexity, i.e., γ∗. Anyway, Eq. (344) is non-differentiable whenever the loss
function has a kink. Therefore, this optimization problem is reformulated via the introduction

74 Statistical learning theory (see, e.g., [164, 19]) gives a theoretical frequentist framework of performing
inference.
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of slack variables {(ξn, ξ̂n)}Nn=1, that are zero if −ε ≤ [(Ap)(qn)+ Ibkg.− In]/σn ≤ ε, otherwise

are set to ξn and ξ̂n such that −ε− ξn ≤ [(Ap)(qn) + Ibkg. − In]/σn ≤ ε+ ξ̂n holds. Then, the
corresponding optimization problem follows

min
w,Ibkg.ξξξ,ξ̂̂ξ̂ξ

{
1

γ

N∑
n=1

(ξn + ξ̂n) +
1

2
‖Lw‖2

}
(345)

subject to

⎧⎪⎨⎪⎩
ξn, ξ̂n ≥ 0 ∀n = 1, . . . , N

In
σn

≤ (Ap)(qn)+Ibkg.
σn

+ ε+ ξn ∀n = 1, . . . , N
In
σn

≥ (Ap)(qn)+Ibkg.
σn

− ε− ξ̂n ∀n = 1, . . . , N,

⎫⎪⎬⎪⎭ (346)

where, because of later convenience, the target function in Eq. (345) is divided by γ−1,
letting the minimization problem unchanged. This is a convex optimization problem, hence
the solution is unique [115] and can be found by quadratic programming75 [70]. The problem
requires minimization over M +2N +1 variables and 4N side conditions, and it is called the
primal problem [115]. A dual problem can be derived from the Lagrangian function of this
problem, which is usually solved in practice, since its constraints are somewhat simpler [137,
§6], and it only needs minimization over 2N variables and 2N + 1 side conditions. For this
purpose, the corresponding Lagrangian optimization problem is considered76, which reads

min
w,Ibkg.,ξξξ,ξ̂̂ξ̂ξ

max
a,â,μ,μ̂μ,μ̂μ,μ̂

{
L(w, Ibkg.,ξξξ, ξ̂̂ξ̂ξ,μμμ, μ̂̂μ̂μ,a, â) :=

1

γ

N∑
n=1

(ξn + ξ̂n) +
1

2
wTLTLw −

N∑
n=1

(μnξn + μ̂nξ̂n)

−
N∑

n=1

an

(
ε+ ξn +

(
wTψψψ(qn)

σn
+

Ibkg.
σn

)
− In

σn

)

−
N∑

n=1

ân

(
ε+ ξ̂n −

(
wTψψψ(qn)

σn
+

Ibkg.
σn

)
+

In
σn

)}
(347)

subject to

{
an, ân ≥ 0 ∀n = 1, . . . , N
μn, μ̂n ≥ 0 ∀n = 1, . . . , N,

}
(348)

where L(·) is the Lagrangian function and {(an, ân, μn, μ̂n)}Nn=1 are the Lagrangian param-
eters, also called dual variables. Moreover, (Ap)(qn) is substituted by wTψψψ(qn), where
ψψψ(qn) ∈ R

M , and [ψψψ(qn)]m := ψm(qn), where ψm(qn) is defined in Eq. (268). Optimiza-
tion with respect to the primal variables (Ibkg., {wm}Mm=1, and {(ξn, ξ̂n)}Nn=1) is accomplished

75In this work the MATLAB function quadprog()(using an interior point method) is used for solving quadratic
programs.

76See, e.g., [70] for a good tutorial on convex optimization
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by setting the derivative with respect to these variables to zero, yielding

∂L
∂w

= 0 ⇒ w = (LTL)−1
N∑

n=1

an − ân
σn

ψψψ(qn), (349)

∂L
∂Ibkg.

= 0 ⇒
N∑

n=1

an − ân
σn

= 0 (if there is a bias), (350)

∂L
∂ξn

= 0 ⇒ an + μn = γ−1 ∀n = 1, . . . , N, (351)

∂L
∂ξ̂n

= 0 ⇒ ân + μ̂n = γ−1 ∀n = 1, . . . , N, (352)

where L is assumed to be regular. Substituting the obtained expressions back into the La-
grangian function L(·), except the result from the second line, yields the dual problem

max
a,â

{
L̃(a, â) :=− 1

2

N∑
i=1

N∑
j=1

(ai − âi)(aj − âj)

(
ψψψ(qi)

σi

)T

(LTL)−1

(
ψψψ(qj)

σj

)

− ε
N∑

n=1

(an + ân) +

N∑
n=1

In
σn

(an − ân)

} (353)

subject to

{
0 ≤ an, ân ≤ γ−1 n = 1, . . . , N∑N

n=1
an−ân
σn

= 0 (if there is a bias),

}
(354)

where the box constraints 0 ≤ an, ân ≤ γ−1 follow from the constraints in Eq. (348) and
the conditions in Eq. (351) and Eq. (352). Having determined the optimal dual parameters
{a∗n, â∗n}Nn=1 via quadratic programming the optimal weights {w∗

m}Mm=1 can be determined
from Eq. (349).

Determination of the background intensity: The optimal bias I∗bkg. is determined by ex-
ploiting the complementary condition of the Karush-Kuhn-Tucker (KKT) conditions [16,
Appendix E],[70] at the optimal solution, which states that the product of a primal con-
straint function at an optimal point with its corresponding optimal Lagrangian multiplier
(dual variable) is zero. Therefore,

a∗n(ε+ ξ∗n + (w∗)Tψψψ(qn)/σn + I∗bkg./σn − In/σn) = 0, (355)

â∗n(ε+ ξ̂∗n − (w∗)Tψψψ(qn)/σn − I∗bkg./σn + In/σn) = 0, (356)

μ∗
nξ

∗
n = 0, (357)

μ̂∗
nξ̂

∗
n = 0. (358)

Using Eq. (351),(352), the last two equations can be written as

(γ−1 − a∗n)ξ
∗
n = 0, (359)

(γ−1 − â∗n)ξ̂
∗
n = 0. (360)

For 0 < a∗n < γ−1, i.e., for a∗n within the box constraints, it follows from Eq. (355) that
ε+ (w∗)Tψψψ(qn)/σn + I∗bkg./σn − In/σn = 0, where ξ∗n is zero, because a∗n �= γ−1 together with
the condition in Eq. (359)). Thus

I∗bkg. = In − εσn − (w∗)Tψψψ(qn). (361)
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An analogous computation is possible for any â∗n that is within the box constraints. In order
to have a numerically more accurate calculation of I∗bkg. an average from all a∗n, â∗n that lie
within the box constraints is taken.

Support Vectors: If data point (In, qn, σn) is within the ε-tube the slack variables ξ∗n and ξ̂∗n
are zero and |(w∗)Tψψψ(qn)/σn+Ibkg./σn−In/σn| < ε. Due to Eq. (355),(356) it follows that a∗n
and â∗n are zero. Accordingly, only data points lying outside the ε-tube can yield a∗n, â∗n �= 0,
and therefore contribute to the optimal solution w∗ (by means of Eq. (349)). Data points
that contribute to the solution are called support vectors.

7.3.2.1. Evaluations
Fig. 61 shows the results obtained for SVR in comparison with the original (Tikhonov) method
(Eq. (288), respectively Eq. (294) and using 10-folded cross-validation) for two different rmax

values (35 and 50 nm), different ε values (0.5, 1, and 2), and for the two different methods
of treating the background intensity (background subtracted automatically and background
subtracted before SVR is applied). Following aspects are observed:

1. Comparing the SVR results obtained via 10-folded cross-validation or the true error
with the original Tikhonov method using 10-folded cross-validation, one sees that these
solutions are very similar. However, outside the domain of the true PDDF the oscil-
latory behavior is visually slightly less for SVR with ε = 2 (background subtracted
automatically) than the one obtained from the original Tikhonov method, but the aver-
age misfit error E is higher. The higher E can be seen as a result of a slight systematic
mismatch within the physically relevant domain of the true PDDF.

2. On average, the oscillatory behavior slightly decreases with increasing ε, but at the same
time there is a slightly increasing systematic mismatch (also indicated by E).

3. The oscillatory behavior outside the physically relevant domains of the true PDDFs is
much stronger in comparison with the results obtained from the RVM, cf. Fig. 58.

7.3.2.2. Results
The oscillatory behavior of a PDDF solution can only be slightly adjusted by ε, but adjusting ε
appropriatly is an instance of the bias-variance tradeoff, cf. footnote 63 on page 129. However,
all PDDF solutions found by SVR and via the various ε’s are very similar to the original
Tikhonov method. Hence, at a first glance SVR does not seem to be interesting, but in
practice the method can be still valuable, since the loss function is linear for residuals larger
than ε, which means that outliers do not have as much impact on the empirical error term
as it would be the case with a squared loss function. Therefore, the method is more robust
against outlier points than the Tikhonov method, which makes SVR interesting in practical
applications where outliers usually occur.
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Figure 61: Obtained PDDFs (p(r)/(cm−1·nm−1) vs. r/nm) (blue curves) for the SVR approach
(rows 1-6) using different ε values and using 10-folded Cross-Validation (CV) or
the true error objective function. Moreover, for comparison reasons, PDDFs (blue
curves) obtained from the original method (i.e., minimizing Eq. (288), respectively
Eq. (294) using 10-folded CV are plotted in row 7. 1st column: rmax = 35nm
and background is determined automatically. 2nd column: rmax = 35nm and
background is subtracted a priori. 3rd column: rmax = 50nm and background
is determined automatically. 4th column: rmax = 50nm and background is sub-
tracted a priori. Red curves: true PDDFs. E : average misfit error. Details within
the plots are visible in the electronic version of this document.
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7.3.3. Least Absolute Shrinkage and Selection Operator (LASSO)

In the LASSO [155, 156] method linear regression is performed subject to a 1-norm ‖ · ‖1
constraint77

argmin
w

{
1

2

∥∥∥ΣΣΣ−1/2(I−ΨΨΨw)
∥∥∥2} subject to ‖Lw‖1 ≤ t, (362)

where t is an upper bound (tuning parameter) on the norm, and here, in addition to the
original method, the regularization matrix L is included in the 1-norm term, in order to
impose additional smoothness on the solution. Assuming L is regular and using Eq. (332)
and (335) the optimization problem78 is rewritten as

argmin
w̃

{
1

2

∥∥∥ΣΣΣ−1/2(I−ΨΨΨLw̃)
∥∥∥2} subject to ‖w̃‖1 ≤ t. (363)

The appropriate Lagrangian function reads as

argmin
w̃

{
1

2

∥∥∥ΣΣΣ−1/2(I−ΨΨΨLw̃)
∥∥∥2 + γ

( ‖w̃‖1 − t
)}

, (364)

or equivalently

argmin
w̃

{
1

2

∥∥∥ΣΣΣ−1/2(I−ΨΨΨLw̃)
∥∥∥2 + γ ‖w̃‖1

}
. (365)

With increasing γ, respectively with decreasing t, the solution becomes sparse. The reason
for this is explained in Fig. 62. The solution of Eq. (365) can be interpreted as the MAP
solution in a Bayesian approach, where the 1-norm regularization term can be considered as
an a priori distribution that consists of a product of Laplacian distributions79

pdf(w̃|γ) =
M∏

m=1

Lap(w̃m|0, 1/γ) ∝
M∏

m=1

exp
(− γ|w̃m|). (366)

Unfortunately, calculating the evidence is analytically not possible and deterministic numeri-
cal integrations are not tractable because of the high dimensionality of w̃. Hence, the problem
is considered in a frequentist framework. It is noted that the objective function in Eq. (365)
is non-differentiable with respect to w̃ whenever any w̃m is zero in the 1-norm (e.g., there is a
kink at w̃1 = 0 in the LASSO constraint region of Fig. 62), hence is a non-smooth optimization
problem [111, §13.3.2] (i.e., simple gradient based optimization routines cannot be applied).
On the contrary, the problem in Eq. (363) describes a quadratic optimization problem with
linear inequality constraints, which can be solved by a quadratic program [70]. In doing so,
w̃ is decomposed as [155, 177]

w̃ = w̃+ − w̃−, (367)

where
w̃+
m, w̃−

m ≥ 0 1 ≤ m ≤ M, (368)

which reduces the number of inequality constraints80 in the quadratic program from 2M to
2M . In order to select t (i.e., the model complexity) 10-folded cross-validation is used as
objective function.

77The 1-norm of a vector w reads ‖w‖1 =
∑M

m=1 |wm|.
78 The solution will be unique if ΨΨΨL has rank equal to the number of basis function[157].
79Lap(x|μ, b) = 1

2b
exp

(
− |x−μ|

b

)
80There is another condition that must hold for the decomposition of w̃m in to w̃+

m−w̃−
m, which is w̃+

m ·w̃−
m = 0,

but this condition can be shown to be redundant, see, e.g., [177].
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Figure 62: Schematic illustration of the LASSO method based on [155], respectively [65,
§3.4.3], in two dimensions. Contours of the empirical error are shown in blue. For
the Tikhonov case (left) the constraint region (light blue) is given by w̃2

1+ w̃2
2 ≤ t2,

and for the LASSO case (right) by |w1|+ |w2| ≤ t. w̃∗ is the optimum (red dot),
which for the LASSO case is solely given by w̃∗

2, while the other parameter is zero;
hence the solution is sparse. Note, in general the contours might have any shape.

In case the intensity data contain an unknown constant background intensity, the intensity
vector I and the basis function matrix ΨΨΨL must first be centered as described in section 7.2.2.
Subsequently, the LASSO method can be applied on the centered quantities.

7.3.3.1. Evaluations
Fig. 63 show the results obtained for the LASSO method in comparison with the original
(Tikhonov) method (Eq. (288), respectively Eq. (294)) using 10-folded cross-validation) for
two different rmax values (35 and 50 nm), for two different methods of treating the background
intensity (background subtracted automatically and background subtracted before the LASSO
method is applied), and for different objective functions (true error objective function, 10-
folded cross-validation, and manually selecting a kink point — see below).
Following aspects are observed:

1. In average, for rmax = 50 nm the PDDFs obtained via the LASSO method (and using the
true error or 10-folded cross-validation) show a less strongly oscillatory behavior as the
one of the PDDFs obtained from the original method. For rmax = 35 nm the observation
is similar. However, the average misfit error is in a direct comparison slightly larger for
the LASSO method, which can be seen as a result of a slight systematic mismatch.

2. In the performed evaluation it has been noted that the solution is quite sensitive with
respect to adjusting t. Accordingly, the determination of the optimal model complexity,
i.e., t∗, via 10-folded cross-validation can easily yield PDDFs that slightly oscillate.
However, by inspecting the 10-folded cross-validation curve a kink point can be detected
in the curve, see Fig. 64, which is close to the minimum, but it corresponds to a slightly
simpler model. This kink point has been determined in all 10-folded cross-validation
curves of the LASSO method and the appropriate PDDFs were calculated for them
and are also shown in Fig. 63. These PDDFs clearly show that the oscillatory behavior
outside of the physically relevant domains of the true PDDFs is strongly suppressed.
On the other hand, the PDDFs are more edged and slightly deviate systematically from
the true PDDFs. Consequently, the average misfit errors are increased, but principles
features of the true PDDFs are retained.
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Figure 63: Obtained PDDFs (p(r)/(cm−1 ·nm−1) vs. r/nm) (blue curves) for the LASSO method
(rows 1-3) using different objective functions. Row 1: true-error objective function is
used. Row 2: 10-folded Cross-Validation (CV) is used. Row 3: manual selection of the
kink point in the 10-folded CV curve (cf. Fig. 64). Moreover, for comparison reasons,
PDDFs (blue curves) obtained from the original method (i.e., minimizing Eq. (288), re-
spectively Eq. (294)) using 10-folded CV are plotted in row 4. 1st column: rmax = 35nm
and background is determined automatically. 2nd column: rmax = 35nm and background
is subtracted a priori. 3rd column: rmax = 50nm and background is determined auto-
matically. 4th column: rmax = 50nm and background is subtracted a priori. Red curves:
true PDDFs. E : average misfit error. Details within the plots are visible in the electronic
version of this document.
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Figure 64: The kink point method for determining an optimal model. Blue curve: true error curve.
Red curve: 10-folded cross-validation curve. In order to get a kink point from the 10-
folded cross-validation curve, the curve is inspected in the regime left from its most left
minimum (there is only one (local) minimum in the displayed curve, but in general there
can be more than one minimum) for a relatively strong change of the slope, which then
defines the optimal t, i.e., model complexity.

7.3.3.2. Results
The LASSO method gives good results if the true error is used as objective function. In
practice 10-folded cross-validation can be used as a substitute, which produces slightly less
oscillations than the original (Tikhonov) method. A minor problem with the LASSO method
is that it is quite sensitive with respect to adjusting t appropriately, while at the same time the
optimal model complexity estimation by means of 10-folded cross-validation is not accurate
enough. Consequently, the oscillatory behavior of the PDDFs obtained from 10-folded cross-
validation is higher than the one obtained from the true error. However, t can be re-adjusted
according to the kink point method described above. Solutions obtained by this method
are slightly edged and deviate systematically, but on the other hand oscillatory artifacts are
strongly suppressed while principle features of the true PDDFs are retained. In practice the
true solution can be considered to lie in between the solution of the kink point method and
the one obtained from 10-folded cross-validation.
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7.4. Conclusion

The inverse Fourier transform is an ill-posed problem, hence it needs regularization / a priori
knowledge in order to get a reasonable solution, which is implemented in the IFT method.
However, adjusting the model complexity requires an objective function in order to perform
objectively model comparison and to get a unique solution. Previously, only the evidence
method of the Bayesian inference approach could accomplish this [64]. In this work now,
the model selection problem has been discussed in a complementary frequentist probability
approach, and it has been shown that an objective function is available by means of 5- or
10-folded cross-validation — as a substitute for the generalization error as the fundamental
objective function in the frequentist approach. The obtained results show that the cross-
validation method performs equally well or often even better than the evidence method.

Moreover, the loss function, respectively the regularization term / a priori distribution,
have been changed in the original Tikhonov approach in order to get a more stable solution.
The considered changes result in the RVM, SVR, and the LASSO method. For the RVM
only the evidence can be efficiently calculated, while for SVR and LASSO it is the cross-
validation method. SVR with a small ε gives similarly good solutions as the ones obtained
from the original Tikhonov method. Nevertheless, SVR can be very valuable in practice
in order to decrease the influence of outlier points on the solution (the linear loss function
does not penalize outliers as much as the squared loss function) — hence in this case the
method can be more robust. The RVM and the LASSO method have the potency to suppress
undesired oscillations. Unfortunately, they also distort the PDDFs to more edged curves, but
the methods retain principles features. Comparing the RVM with the LASSO method, the
LASSO method seems to be more attractive, since it allows to easily adjust the degree of
sparseness with a single parameter.

In practice it may be valuable to have the RVM, SVR and LASSO as alternatives for the
inter-model comparison approach using the original Tikhonov formula, e.g., for the case when
the original Tikhonov approach fails and in order to perform cross-checking of a Tikhonov
solution.

As an outlook, some possible variations and extensions of the given methods are given
here. E.g., the LASSO method can be extended by a quadratic regularization term (hence
is a mixture of Tikhonov and LASSO regularization, which is known as elastic net [111,
§13.5.3]) in order to get a smoother solution as one would obtain with the LASSO method.
However, it requires the determination of another regularization parameter, thus needs more
computational power.

The SVR approach can be modified by replacing the linear ε-insensitive loss function by
a quadratic ε-insensitive loss function [164, §6.1], which would be more in agreement with a
Gaussian noise model, but it would then lose the property of being a robust estimator. One
can also consider a mixture of SVR and the LASSO method (i.e., using an ε-insensitive loss
function together with a 1-norm regularization term) or a mixture of SVR and an elastic net,
with the goal to have a robust estimator that can also give sparse solutions. However, these
are all typical frequentist ad-hoc approaches, which are not built on fundamental principles.
Nevertheless, the principle idea of performing model selection based on the KLD, respectively
the generalization error, remains81.

Complementary to the frequentist approach the Bayesian one gives a clear inference proce-
dure, which is of a hierarchical structure if different a priori terms and likelihood functions are

81 Note, the KLD approach fails if the solution is not unique. In this case additional knowledge or principles
(e.g., Occam’s razor) are required in order to perform model selection.
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used, cf. section 2.2. However, practical implementations would usually require deterministic
[16, §10] or Monte-Carlo [16, §11] approximate inference schemes, which makes the complete
inference process non-trivial, and which also include approximation errors. Conversely, here,
the RVM has been presented as a tractable Bayesian approach, and it is noted that the RVM
can be easily extended to allow for an integration over an unknown scaling of the covariance
matrix [161].
The RVM uses an a priori distribution in which each parameter has its own unknown stan-

dard deviation, hence it is the complementary extreme case of the basic Tikhonov approach,
in which all parameters share the same standard deviation. Considering this, an intermediate
approach could group parameters, where each parameter group has its own associated stan-
dard deviation. Considering only two parameter groups, having different associated standard
deviations, and such that one group of parameters is associated to r ≤ r̂′max and the other
group of parameters is associated to r > r̂′max, and if the desired goal is to push parameters
from the last group to zero (by a standard deviation that goes to relatively large values) and
to adjust r̂′max ≈ r̂max, one essentially performs inter-model comparison, but the described
scheme is more complex than the evidence approach for inter-model comparison given in
section 7.2.

With the discussed inference approaches a model-free analysis of SAS data via IFT can
be performed objectively, automatically, and online. This is of high importance due to the
development of large scale facilities receiving users from a broad community of scientists
from academic research or industry, who might have little understanding of the technique
and theory, but who need the IFT analysis results. To date, the requirement of rather deep
knowledge in scattering theory and expertise in data analysis is keeping back the technique
from spreading and be used routinely. Last but not least, the different IFT methods presented
in this work allow to compare their results which each other and hence increasing the reliability
of outcomes.
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8. Overall Conclusion and Outlook

In this thesis different technical and scientific aspects of Small-Angle Scattering (SAS) exper-
iments have been discussed.

SAS has been interpreted and discussed within the Bayesian and frequentist inference frame-
works. This discussion has shown the importance of a priori knowledge about the sample
system and scattering set-up in order to infer structural information within a physical mod-
eling approach. Moreover, the two inference frameworks have been used to derive objective
functions for the Indirect Fourier Transform (IFT), and additionally to interpret different
other new regularization approaches for the IFT in order to get a more stable solution.

A newly developed program, called SASET, has been presented that allows to handle and
efficiently evaluate comprehensive 1- and 2-dimensional SAS data series, a crucial point that
was the bottleneck in the analysis process up to now. An analysis of an IPEC contrast
variation data set has been done with SASET, showing the importance of a priori knowledge
and of the information content within a scattering experiment.

MC simulations have been performed to model the scattering of some complex cluster struc-
tures. The simulations show the power and resolution limit of SAS experiments, and aiming
at clarifying the structure of some real data. Furthermore, successful model simplifications
were made to get an analytical model for the scattering of vesicles that are decorated with
particles.

Simulations of coalescence have been done in order to model the creation of vesicles by
a disk-disk-coalescence process, and to determine the scattering intensity. The simulations
show which parameters can be inferred from a time series of scattering intensities. Moreover,
the coalescence model has been fitted to experimental data, showing that the mechanism of
the considered system is indeed a coalescence one.

The evaluation of 2-dimensional scattering images has been considered by means of different
methods of quantifying the anisotropy, and two new methods (entropy, PCA) have been
introduced. Moreover, it has been shown that the orientational distribution function should
be calculated from determined order parameters by additionally using the maximum entropy
principle, hence yielding a more robust solution.

In summary, determining the scattering length density profile of a SAS (SANS or SAXS)
experiment is an inverse problem that is ill-posed, hence a certain amount of (physical) a priori
knowledge and distinctive features in the scattering data are required in order to perform
reasonably well inference. The theoretical inference discussion has emphasized the important
point of using a priori knowledge for fitting models to SAS data, and consequently there is
no ‘mathematical trick’ to overcome a lack of knowledge in the inference process. However,
inferring physical models is supported and enhanced by sophisticated software: e.g., if the
software allows to evaluate simultaneously contrast variation data sets/series (i.e., the amount
of available and processed information is rather high), if it can sequentially fit models to SAS
data of continuously changing systems (i.e., the model changes are constrained to change
continuously) or if it can fit simultaneously the overall process with a single model (i.e., a
lot of information is processed to determine a few parameters reliably), if the software allows
to incorporate a priori knowledge via the maximum entropy method, etc. The procedure of
inferring free-form solutions is supported by software that allows to determine objectively
solutions, and that gives different regularization methods at hand to get the most robust
solution. Last but not least, increasing interest of analyzing complex hierarchical systems
requires sophisticated software in order to simulate and fit these systems, and to understand
which influence parameters have on the features of scattering intensities.

Since SANS and SAXS are indispensable techniques for determining nano-structured mate-
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rials, it is foreseeable that a future interest will be the development of even more sophisticated
software in order to support users in their inference procedure. As a desirable target, it is
conceivable that a software gets some physical information about a system and the scattering
data, and the software automatically suggests possible structures. In any case, it is manda-
tory that the evolution of more sophisticated SAS software requires the symbiosis of expertises
from fields as computer sciences, physics, chemistry, engineering, statistics, machine learning,
etc.
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Appendices

A. Appendix

A.1. Probability Density Transformation

Let x be a random variable and pdfx(x) its probability density function. Now, consider the
transformation x = g(y). Since the probability in the infinitesimal small interval [x, x + dx]
is |pdfx(x) dx|, which must be equal [16, chapter 1.2.1] to the probability of its transformed
density pdfy in [y, y + dy], i.e.,

|pdfy(y) dy| = |pdfx(x) dx|, (369)

it follows

pdfy(y) = pdfx(x)

∣∣∣∣ dxdy
∣∣∣∣

= pdfx(g(y))

∣∣∣∣ dg(y)dy

∣∣∣∣ . (370)

As an example, consider the lognormal distribution, which is an often used distribution in
the implemented scattering models in this work. A random variable y is said to be lognormally
distributed if ln(y) = x is normally distributed, i.e.,

pdfx(x) =
1√
2πσ

exp

(
−(x− μ)2

2σ2

)
, (371)

where μ is the mean of the distribution and σ is its standard deviation. Using the transfor-
mation x = ln(y), then yields the transformed density

pdfy(y) = pdfx(ln(y))

∣∣∣∣ d ln(y)dy

∣∣∣∣
=

1√
2πσy

exp

(
−(ln(y)− μ)2

2σ2

)
,

(372)

where d(ln(y))/dy = 1/y has been used. Note, herein μ and σ are not the mean and standard
deviation anymore.

A.2. Inversion Sampling

Let x be a random variable with cumulative distribution function Fx and let u a uniformly
distributed random variable over the interval [0, 1], i.e., u ∼ U(0, 1). Then, due to [129,
chapter 7.3.2],

x = F−1
x (u), (373)

where F−1
x is the inverse function to Fx.

This means that if the cumulative distribution function Fx is calculated from the prob-
ability density function of the random variable x, pdfx, the random variable x ∼ pdfx can
be generated by calculating the inverse cumulative distribution function of Fx, F−1

x , and
applying it to the uniformly distributed variable u.
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A.3. Uniformly Distributed Random Points from a Ball

In section 4.2 a method is given for sampling random points uniformly from a ball. Here, a
second method is explained that was implemented firstly by using the description from [2] that
is based on the theorem 1 in [10]. As it has been discovered, the description in [2] is wrong:
theorem 1 in [10] involves some random distributions of the form 1/(2Γ(1+1/p))e−|t|p (t ∈ R),
where Γ is the gamma function and p > 0 defines some p-norm. However, in [2] it is stated
that for creating random numbers uniformly from a ball in three dimensions (using the 2-
norm), the random distribution is a standard normal distribution. This is not correct, but by
applying the probability transformation from appendix A.1 the standard normal distribution
can be used:

Due to theorem 1 in [10] uniformly distributed random points in the unit three dimensional
ball in the Euclidean space (i.e., taking the 2-norm, p = 2) can be created as follows: Let
g1, g2 and g3 be i.i.d. random variables with density

pdfgi(gi) =
exp(−g2i )

2Γ
(
3
2

) g ∈ R, i = 1, 2, 3, (374)

and let y be an exponential random variable with density

pdfy(y) = exp(−y) y ≥ 0, (375)

and independent of g1, g2 and g3. Then the random variable

(g1, g2, g3)
T√

g21 + g22 + g23 + y
∈ R

3 (376)

is uniformly distributed over the unit ball in three dimensions.

Now, consider the change of variable

gi = ui(xi) := xi/
√
2 , i = 1, 2, 3. (377)

Then, the probability density transformation method yields∣∣pdfxi
(xi) dxi

∣∣ = ∣∣pdfgi(gi) dgi∣∣ (378)

⇒ pdfxi
(xi) = pdfgi

(
ui(xi)

) ∣∣∣∣ dui(xi)dxi

∣∣∣∣
=

exp(−x2
i
2 )

2Γ
(
3
2

) 1√
2

=
1√
2π

exp(−x2i
2
),

(379)

showing xi is standard normally distributed. Accordingly, if x1, x2 and x3 are independent
standard normally distributed variables, and using the transformation in Eq. (377), it follows
that

(x1, x2, x3)
T /

√
2√

x2
1
2 +

x2
2
2 +

x2
3
2 + y

∈ R
3 (380)

is uniformly distributed over the unit ball in three dimensions.
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Note: An exponential distribution can be obtained from an uniformly distributed random
variable z in [0, 1] [129, 7.3] (z ∼ U(0, 1)) as follows: Let z ∼ U(0, 1), i.e., the probability of
z lying in [z, z + dz] reads

pdfz(z) dz =

{
dz 0 ≤ z ≤ 1
0 otherwise.

(381)

Defining the transformation
z = u(y) := exp(−y) (382)

and using

pdfy(y) = pdfz(z)

∣∣∣∣ dzdy
∣∣∣∣ (383)

yields
pdfy(y) = exp(−y), (384)

showing that the transformation in Eq. (382) yields an exponentially distributed random
variable y if z ∼ U(0, 1). Hence, if using y = u−1(z) = − ln(z), Eq. (380) can also be written
as

(x1, x2, x3)
T /

√
2√

x2
1
2 +

x2
2
2 +

x2
3
2 − ln(z)

∈ R
3, (385)

where x1, x2, x3 ∼ N (x) and z ∼ U(0, 1).
The method of random point picking from a ball described here, as well as the one from

section 4.2, page 70, have been both implemented. No significant differences in the execution
speed of the two methods (for the considered complex cluster systems described in section 4)
were observed.
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B. Appendix

B.1. Random Particle Placing

In section 4.2 it is mentioned (page 75) that the sequential particle setting procedure does not
create configurations that are samples from the desired hard sphere equilibrium distribution.
In order to explain this issue consider the following: Let r a vector describing the discrete

configuration of particles and E(r) the appropriate energy of the system. Then, the hard
sphere interaction potential energy yields

E(r) =

{ ∞ particles overlap
0 otherwise.

(386)

Let N0 the number of all configurations and N the number of non-overlapping particle con-
figurations. The goal is to sample from the Boltzmann distribution

pdf(r) =
exp
(
−E(r)

kBT

)
∑N0

i=1 exp
(
−E(ri)

kBT

) =
exp
(
−E(r)

kBT

)
N

=

{
0 particles overlap
1/N otherwise

(387)

showing that each non-overlapping configuration has to be created with the same probability
1/N . A simultaneous particle setting procedure creates each non-overlapping configuration
with probability 1/N , however this is not the case for a sequential particle setting procedure
as it is illustrated by the following 1-dimensional examples: Consider two particles, which
are represented by line segments of length 2, and which are to be randomly placed on a
1-dimension discrete grid (particles can be placed at −1.5, −0.5, 0.5, 1.5) such that there
is no overlap of the particles, see Fig. 65. The grid is bounded, hence this case can be
associated with the case of placing particles within a vesicle. As shown in Fig. 65, the
simultaneous particle setting procedure produces each non-overlapping configuration with
identical probability, as required by Eq. (387), but in case of the sequential particle setting
procedure configurations are created with different probabilities.
The case of placing particles on a vesicle, i.e., there are no bounds, can be considered

by means of circularly closing a 1-dimensional grid. Then, the sequential particle setting
procedure will also not give the correct solution: Consider three particles, then by virtue of
setting the first particle artificial bounds are introduced, and thus the other two particles are
influenced in their setting as explained previously.
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Figure 65: Setting two particles (represented by line segments) on a discrete grid. a) Simul-
taneous particle setting: There are three possible non-overlapping configurations,
each occurring with the same probability. The probability of configuration i is
Pi and the total distance of both particles to the origin is di. Thus, the average
distance is

∑3
i=1 Pidi = 7

3 = 2.3. b) Sequential particle setting: There are six
possible ways to place the particles. The blue particle in each line is considered to
be set at first, and subsequently the pink particle. However, since the particles are
indistinguishable there are only three different configurations, which are occurring
with different probability. The average distance is

∑3
i=1 Pidi =

9
4 = 2.25, and thus

smaller as if the particles are set simultaneously.
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Figure 66: NMR spectrum simulation by means of [3]. There is an expected peak at ca.
4.5 ppm associated with the doublet at the ligand of the aromatic compound.
There is another peak at ca. 1.4 ppm corresponding to the triplet of the ligand.

C. Appendix

C.1. NMR of P4VPQBr

Fig. 67 depicts the measured spectrum of ca. 90% quaternized P4VPQBr (synthesized by
Michaela Dzionara), and Fig. 66 depicts the simulated spectrum of the similar aromatic
compound 1-ethyl-4-(propan-2-yl)pyridinium. In both spectra are peaks at ca. 7.6 ppm and
at ca. 8.7 ppm, were each peak corresponds to two H atoms at the aromatic compound. Hence,
the area of the peak at 8.7 ppm in the measured spectrum is set to two, and is used to define
the reference area of one H atom.

The peak at ca. 4.5 ppm in the simulated spectrum corresponds to the two H atoms at the
first C atom of the ligand (attached to the nitrogen atom of the aromatic compound). For
a 90% quaternization of the aromatic compounds with C2H5 ligands, the peak area should
be 90% of two times the reference area, i.e., 0.9 · 2 = 1.8. The corresponding peak in the
measured spectrum has an area of 1.82, hence it can be considered that the chemical reaction
(synthesis of 90% quaternized P4VPQBr) was successful.

Another check can be considered for the three H atoms at the methyl group of the ligand.
The peak of the methyl group is in the simulation at ca. 1.4 ppm, and has an area of three.
Hence, the peak in the measured spectrum should have an area of 0.9 · 3 = 2.7, and the
observed area is 3.1. The difference can easily be explained by the fact that the peak is
superimposed with the rather broad peak on the l.h.s. of it.
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Figure 67: Measured NMR spectrum of P4VPQBr. P4VPQBr has been synthesized by
Michaela Dzionara. NMR measurement has been done by Michaela Dzionara and
Sven Riemer. Evaluation of the peaks in the NMR spectrum have been performed
by Carolin Ganas.
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C.2. Material Equations

The composition equations within the IPEC models of section 3.3 are given here.
In these equations, the apparent density is

ρ/(g·cm−3) =
Mw/(g·mol−1)

v/nm3

1021/(nm3 ·cm−3)

NA/mol−1 , (388)

and the scattering length density reads

SLD/nm−2 =
SL/nm

v/nm3

=
SL/nm · ρ/(g·cm−3) ·NA/mol−1

Mw/(g·mol−1) · 1021/(nm3 ·cm−3)
.

(389)

SL is the scattering length, v is the apparent molecular volume, Mw the molecular weight, and
NA is the Avogadro constant (NA ≈ 6.022 · 1023mol−1). Following symbols and acronyms
are used in the following material equations: DP: degree of polymerization, m: mass, N :
quantity, Q−: number of negative charges, Q+: number of positive charges, Z: charge ra-
tio, n: number density, Vtot: total system volume, Nagg.: aggregation number, pdf(Nagg.):
aggregation number distribution, ϕh: hydration.

For PIB, of unit IB (C4H8), the following quantities are known: DP(PIB), SL(IB), Mw(IB),
ρ(PIB), m(PIB-PMAA), Mw(PIB-PMAA).
Then, following quantities are calculated:

v(IB) =
Mw(IB)10

21

ρ(PIB)NA
(390)

SLD(PIB) = SL(IB)/v(IB) (391)

Mw(PIB) = DP(PIB)Mw(IB) (392)

v(PIB) = DP(PIB)v(IB) (393)

N(PIB) = N(PMAA) = N(PIB-PMAA)

=
m(PIB-PMAA)

Mw(PIB-PMAA)

(394)

N(IB) = DP(PIB)N(PIB) (395)

For PMAA and PMANa, with respective units MAA (C4H6O2) and MANa (C4H5O2Na),
the following quantities are known: DP(PMAA) = DP(PMANa), SL(MANa), Mw(MANa),
ρ(PMANa).

Then, following quantities are calculated:

v(MANa) =
Mw(MANa)1021

ρ(MANa)NA
(396)

SLD(PMANa) = SL(MANa)/v(MANa) (397)

Mw(PMANa) = DP(PMAA)Mw(MANa) (398)

v(PMANa) = DP(PMAA)v(MANa) (399)

N(MAA) = N(MANa) = DP(PMANa)N(PMAA) (400)

Q− = N(MAA) (401)

174



C APPENDIX

For d5-P4VPQBrα, α-percentage of the 4VP units (C7H7N) are quaternized with C2D5Br,
yielding d5-4VPQBrα (C7+2αH7D5αNBrα), and the following quantities are known: α, m(d5-
P4VPQBrα), Mw(d5-P4VPQBrα) , SL(d5-4VPQBrα)

Then, following quantities are calculated:

N(d5-P4VPQBrα) = N(P4VP) =
m(d5-P4VPQBrα)

Mw(d5-P4VPQBrα)

=
m(d5-P4VPQBrα)

Mw(P4VP) + αDP(P4VP)Mw(C2D5Br)

(402)

DP(P4VP) =
Mw(P4VP)

Mw(4VP)
(403)

N(4V P ) = N(P4VP)DP(P4VP) (404)

Q+ = αN(4VP) (405)

For all samples it is considered that d5-P4VPQBrα builds a complex with PMANa, there-
fore the apparent density of d5-P4VPQBrα is not relevant, only the apparent density of the
(PMANa+d5-P4VPQBrα)-complex ρcomplex(Z) is needed, which however is unknown and
hence fitted.

There are two main model groups:

(i) Core-shell or core-corona models: The overall material of the complex (that is in the
shell or in the corona) consists of the total PMANa and d5-P4VPQBrα, and the charge

ratio is Z = Q+/Q− = αN(4VP)
N(MANa) ≈ 0.4. The overall fraction of MANa that is in the

shell or in the corona is f = 1.

(ii) Core-shell-corona models: The overall fraction of MANa that is in the shell is

f =
αN(4VP)

N(MANa)
, (406)

and the charge ratio in the shell is Z = 1. The fraction of MANa that is in the corona
is 1− f .

For these two cases following quantities are calculated:

〈vcore(Nagg.)〉 = v(PIB)

∫
Nagg. pdf(Nagg.) dNagg. (407)

n/nm−3 =
v(PIB)/nm3

〈vcore(Nagg.)〉/nm3

N(PIB)/mol

Vtot/L

NA/mol−1

1024/(nm3L−1)
(408)

Mw(complex,Z) = Mw(MANa) + Z

(
Mw(4VP)

α
+Mw(C2D5Br)

)
(409)

v(complex,Z) =
Mw(complex,Z)

ρ(complex,Z)

1021

NA
(410)

SLD(complex,Z) =
SL(MANa) + Z

(
SL(4VP)

α + SL(C2D5Br)
)

v(complex,Z)
(411)

vcore(Nagg.) is the core volume of one object with a PIB-PMANa aggregation number of Nagg.,
and its appropriate shell and/or corona material volume (i.e., without hydration) is/are for
the
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(i) core-shell or core-corona models:

v(shell or corona)(Nagg.) = Nagg.v(complex,Z)DP(PMANa) (412)

(ii) core-shell-corona models:

vshell(Nagg.) = Nagg.v(complex,Z)DP(PMANa)f (413)

vcorona(Nagg.) = Nagg.v(MANa)DP(PMANa)(1− f) (414)

The shell thickness ts is determined as follows (ϕh: is the hydration fraction of the shell,
Rs: is the shell radius, Ri = (3vcore(Nagg.)/(4π))

1/3: is the core radius):

Rs =

(
3

4π

(
vshell(Nagg.)

1− ϕh
+ vcore(Nagg.)

))1/3

(415)

⇒ ts = Rs −Ri, (416)

and the corona thickness tc is determined as follows:
Linear Corona: The thickness tc of the linear corona, which is defined in the interval [R1, R1+
tc], is calculated from the total volume of material (complex or PMANa) in the corona and
Eq. (85) (ϕ′

int.: interfacial volume fraction, see section 3.3.1):∫ R1+tc

R1

ϕlin.(r)4πr
2 dr

!
= vcorona(Nagg.) (417)

⇒ tc =
1

6πh

([
352R3

1πϕ
′
int. + 324vcorona(Nagg.)+

36
√
96R6

1π
2(ϕ′

int.)
2 + 176R3

1πϕ
′
int.vcorona(Nagg.) + 81vcorona(Nagg.)2

]
π2(ϕ′

int.)
2

)1/3

−R2
sπϕ

′
int.

([
352R3

1πϕ
′
int. + 324vcorona(Nagg.)

+ 36
√
96R6

1π
2(ϕ′

int.)
2 + 176R3

1πϕ
′
int.vcorona(Nagg.) + 81vcorona(Nagg.)2

]
π2(ϕ′

int.)
2

)−1/3

− 4

3
R1.

(418)

Algebraic Corona: The thickness tc of the algebraic corona, defined in the interval [R1, Rc], is
calculated from the total volume of material (complex or PMANa) in the corona and Eq. (89):∫ R1+tc

R1

ϕalg.(r)4πr
2 dr

!
= vcorona(Nagg.) (419)

⇒ tc = Rs

((
4ϕ′

int.πR
3
1 − vcorona(Nagg.)α+ 3vcorona(Nagg.)

4ϕ′
int.πR

3
1

) 1
3−α

− 1

)
. (420)

The last two integration results have been obtained via MAPLE.
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D. Appendix

D.1. Monodisperse Hard Sphere Structure Factor in the PY Approach

In the following S1(q) is the structure factor formula for particles that interact via a hard
sphere interaction potential. Consider a hard sphere radius rHS and a particle number density
n, then the appropriate volume fraction reads φHS = n4π

3 r3HS. Accordingly, for the Percus-
Yevick closure approximation [154, 170, 85] the structure factor formula reads

S1(q) =

(
1 +

24ηG(2rHSq)

2rHSq

)−1

, (421)

where

G(A) =
α(sin(A)−A cos(A))

A2
+

β(2A sin(A) + (2−A2) cos(A)− 2)

A3

+
γ
(−A4 cos(A) + 4

[
(3A2 − 6) cos(A) + (A3 − 6A) sin(A) + 6

])
A5

(422)

and

α =
(1 + 2φHS)

2

(1− φHS)4
, (423)

β =
−6φHS(1 +

φHS
2 )2

(1− φHS)4
, and (424)

γ =
φHSα

2
. (425)

D.2. Partial Structure Functions for a Hard Sphere Potential in the PY
Approach of a Polydispserse System

In the following, the partial structure functions are given for a polydisperse collection of
particles that interact via hard sphere potentials. The solution is attained in the Percus-
Yevick closure approximation. The partial structure function between two particles having
hard sphere potential diameters σi and σj is [56, 17, 18]

H(q;σi, σj) = −2
Z2Z3 + Z1Z4

q3(X2 + Y 2)
, (426)

where

Z1 = Y sin(qσij)−X cos(qσij), (427)

Z2 = X sin(qσij) + Y cos(qσij), (428)

Z3 = Q′′ − qR3, and (429)

Z4 = qQ′(σi, σj) + qR4. (430)
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Therein, the quantities are

σij =
σi + σj

2
, (431)

Q′′ =
2π

Δ

(
1 +

ξ3π

2Δ

)
, (432)

Q′(σi, σj) =
π

Δ

(
σi + σj +

σiσjξ2π

2Δ

)
, (433)

Δ = 1− πξ3
6

, (434)

(435)

and ξi, for i = 2, 3, is the i-th moment of the used probability density function, pdf(σ), times
the number density n, i.e.,

ξi = n

∫ ∞

0
σi pdf(σ) dσ. (436)

The other quantities are

R3 = n
( π
Δ

)2 ∫ ∞

0
(σ − σi)(σ − σj) y1(σ) pdf(σ) dσ, (437)

R4 = n
( π
Δ

)2 ∫ ∞

0
(σ − σi)(σ − σj)x1(σ) pdf(σ) dσ, (438)

X = 1− nQ′′
∫ ∞

0
x2(σ) pdf(σ) dσ − n

2π

Δ

∫ ∞

0
σx1(σ)

(
1 +

πξ2σ

4Δ

)
pdf(σ) dσ

− 1

2

(πn
Δ

)2 ∫ ∞

0

∫ ∞

0

[
x1(σ

′)x1(σ′′)− y1(σ
′)y1(σ′′)

]
(σ′ − σ′′)2pdf(σ′)pdf(σ′′) dσ′ dσ′′,

(439)

and

Y = −nQ′′
∫ ∞

0
y2(σ) pdf(σ) dσ − n

2π

Δ

∫ ∞

0
σy1(σ)

(
1 +

πξ2σ

4Δ

)
pdf(σ) dσ

− 1

2

(πn
Δ

)2 ∫ ∞

0

∫ ∞

0

[
x1(σ

′)y1(σ′′) + y1(σ
′)x1(σ′′)

]
(σ′ − σ′′)2pdf(σ′)pdf(σ′′) dσ′ dσ′′,

(440)

where

x1(σ) = [cos(qσ)− 1]/q2, (441)

y1(σ) = [qσ − sin(qσ)]/q2, (442)

x2(σ) = [qσ − sin(qσ)]/q3, (443)

y2(σ) = −[ cos(qσ) + (q2σ2)/2− 1
]/
q3. (444)

Scattering of Schulz(-Zimm) distribution Homogeneous Spheres In case of Schulz(-Zimm)
distributed homogeneous spheres, the integrals involved in the scattering function can be
solved analytically [56]. The Schulz probability density function reads as

pdf(σ) = schulzpdf(σ; b, c) =
(σ
b

)c−1 exp(−σ/b)

bΓ(c)
, (445)
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where b, c are some parameters. Then, the first three moments of the distribution are

〈σ〉 = bc, (446)〈
σ2
〉
= b2c(c+ 1), and (447)〈

σ3
〉
= b3c(c+ 1)(c+ 2), (448)

and the scattering intensity becomes

I(q) = I1(q) + I2(q), (449)

where

I1(q) = 8π2(ΔSLD)2q−6[1− χ− qψ′ +
1

4
q2(ζ ′′ + χ′′)], (450)

and

I2(q) = −2
{
Λ
[
Λ(Y δ1 −Xδ6) + Λ′(Y δ2 −Xδ4) +M(Xδ1 + Y δ6) +M ′(Xδ2 + Y δ4)

]
+Λ′[Λ(Y δ2 −Xδ4) + Λ′(Y δ3 −Xδ5) +M(Xδ2 + Y δ4) +M ′(Xδ3 + Y δ5)

]
+M
[
Λ(Xδ1 + Y δ6) + Λ′(Xδ2 + Y δ4) +M(Xδ6 − Y δ2) +M ′(Xδ4 − Y δ2)

]
+M ′[Λ(Xδ2 + Y δ4) + Λ′(Xδ3 + Y δ5) +M(Xδ4 − Y δ2) +M ′(Xδ5 − Y δ3)

]}/[
q3(X2 + Y 2

]
.

(451)

Therein, the quantities are

Λ = n2πΔSLD[ψ − q(ζ ′ + χ′)/2]/q3, (452)

Λ′ = n2πΔSLD[ψ′ − q(ζ ′′ + χ′′)/2]/q3, (453)

M = n2πΔSLD[1− ψ − qψ′/2]/q3, (454)

M ′ = n2πΔSLD[ζ ′ − ψ′ − qψ′′/2]/q3, (455)

X = 1− nQ′′(qζ ′ − ψ)/q3 − n
2π

q2Δ

[
(ψ′ − ζ ′) +

πξ2
4Δ

(χ′′ − ζ ′′)
]

−
( π
Δ

)2( n

q2

)2 [
(χ− 1)(χ′′ − ζ ′′)− (χ′ − ζ ′)2 − (qζ ′ − ψ)(qζ ′′′ − ψ′′′) + (qζ ′′ − ψ′)2

]
,

(456)

Y = nQ′′(qζ ′ − ψ)/q3 − n
2π

q2Δ

[
qζ ′′ − ψ′ +

πξ2
4Δ

(qζ ′′′ − ψ′′)
]

−
( π
Δ

)2( n

q2

)2 [
(qζ ′ − ψ)(χ′′ − ζ ′′)− 2(qζ ′′ − ψ′)(χ′ − ζ ′) + (qζ ′′′ − ψ′′)(ψ − 1)

]
,

(457)
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g(σ) n 1
bcΓ(c)

∫∞
0 σng(σ)pdf(σ) dσ Notation

1 0 1 1
1 1 bc ζ ′

1 2 b2c(c+ 1) ζ ′′

1 3 b3c(c+ 1)(c+ 2) ζ ′′′

sin(qσ) 0 v
c/2
1 sin[c tan−1(bq)] ψ

sin(qσ) 1 bcv
(c+1)/2
1 sin[(c+ 1) tan−1(bq)] ψ′

sin(qσ) 2 b2c(c+ 1)v
(c+2)/2
1 sin[(c+ 2) tan−1(bq)] ψ′′

sin(qσ/2) 0 2cv
c/2
2 sin[c tan−1(bq/2)] μ

sin(qσ/2) 1 2c+1bcv
(c+1)/2
2 sin[(c+ 1) tan−1(bq/2)] μ

cos(qσ) 0 v
c/2
1 cos[c tan−1(bq)] χ

cos(qσ) 1 bcv
(c+1)/2
1 cos[(c+ 1) tan−1(bq)] χ′

cos(qσ) 2 b2c(c+ 1)v
(c+2)/2
1 cos[(c+ 2) tan−1(bq)] χ′′

cos(qσ/2) 0 2cv
c/2
2 cos[c tan−1(bq/2)] λ

cos(qσ/2) 1 2c+1bcv
(c+1)/2
2 cos[(c+ 1) tan−1(bq/2)] λ′

Table 8: Integral notations from [56]. Here, vm = [m2 + (qk)2]−1, and pdf(σ) is the Schulz
distribution.

and

δ1 = (π/Δ)

(
2 +

π

Δ

[
ξ3 − n

q
(qζ ′′′ − ψ′′)

])
, (458)

δ2 =
( π
Δ

)2 n
q
(qζ ′′ − ψ′), (459)

δ3 = −
( π
Δ

)2 n
q
(qζ ′ − ψ), (460)

δ4 =
π

Δ

[
q − πn

qΔ
(χ′ − ζ ′)

]
, (461)

δ5 =
( π
Δ

)2 [n
q
(χ− 1) +

1

2
qξ2

]
, (462)

δ6 =
( π
Δ

)2 n
q
(χ′′ − ζ ′′), (463)

and the remaining parameters/expressions are defined in Table 8. Furthermore, the average
structure factor can be written as [55]

Save(q) = n

∫ ∞

0
pdf(σ) dσ + n2

∫ ∞

0

∫ ∞

0
h(q, σ′, σ′′)pdf(σ′)pdf(σ′′) dσ′ dσ′′

= 1 + nh(q),

(464)
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where

h(q) = −2
{
λ
[
λ(Y δ1 −Xδ6) + λ′(Y δ2 −Xδ4) + μ(Xδ1 + Y δ6) + μ′(Xδ2 + Y δ4)

]
+λ′[λ(Y δ2 −Xδ4) + λ′(Y δ3 −Xδ5) + μ(Xδ2 + Y δ4) + μ′(Xδ3 + Y δ5)

]
+μ
[
λ(Xδ1 + Y δ6) + λ′(Xδ2 + Y δ4) + μ(Xδ6 − Y δ2) + μ′(Xδ4 − Y δ2)

]
+μ′[λ(Xδ2 + Y δ4) + λ′(Xδ3 + Y δ5) + μ(Xδ4 − Y δ2) + μ′(Xδ5 − Y δ3)

]}/[
q3(X2 + Y 2

]
.

(465)

The implemented formula was counter-checked by means of the scattering plots obtained
in this work and the structure factor plots in [55, 56].

D.3. Intensity Form Factor of a Randomly Oriented Disk

The amplitude form factor of a homogeneous, circular cylindrical disk can be calculated
by considering the Fourier transform of the SLD profile of a disk in cylindrical coordinates
(�, ϕ, z) [133, §B.5], where the z axis coincident with the symmetry axis of the disk, � being
orthogonal to it, and ϕ is the polar angle. Then,

Adisk(q, R, t) = 2πΔSLD

∫ t
2

− t
2

∫ R

0
J0(q��)� e

−iqzz d� dz, (466)

where

qz = q cos(θ), and (467)

q� = q sin(θ) (468)

with q = ‖q‖, and θ is the angle enclosed between the scattering vector q and the z axis.
ΔSLD is the SLD difference between the homogeneous disk and the matrix, and J0 is the
zeroth order cylindrical Bessel function. The integration over z yields

Adisk(q, θ, R, t) = 2πΔSLD
2 sin(qzt/2)

qz

∫ R

0
J0(q��)� d�. (469)

Defining �̃ = �R and using the Bessel equality [ζmJm(ζ)]′ = ζmJm−1(ζ) [68, §6.2.3] yields

Adisk(q, θ, R, t) = 2πΔSLD
2 sin(qzt/2)

qz

1

q2�

∫ q�R

0
J0(�̃)�̃ d�̃

= 4πΔSLD
sin(qzt/2)

qz

1

q�
RJ1(q�R)

= 2πΔSLDt
sin(q cos(θ)t/2)

q cos(θ)t/2

1

q sin(θ)
RJ1(qR sin(θ))

= (πR2t)ΔSLD · sin(q cos(θ)t/2)
q cos(θ)t/2

· 2J1(qR sin(θ))

qR sin(θ)
,

(470)

and the appropriate forward amplitude form factor reads

lim
q→0

Adisk(q, θ, R, t) = (πR2t) ·ΔSLD, (471)
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since the limit of each of the last two terms in the last line of Eq. (470) converges to one.
Squaring the amplitude form factor and performing an orientational average yields the inten-
sity form factor of an orientationally averaged intensity form factor of a disk

Idisk(q,R, t) =
1

2

∫ π

0
A2

disk(q, θ, R, t) sin(θ) dθ. (472)

The integration cannot be solved analytically, hence requires a numerical integration.
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E. Appendix

E.1. Marginal and Conditional Gaussians

In the following, lower case bold letters are vectors, and upper case bold letters are matrices.
Then, following relations for marginal and conditional Gaussian distributions hold [16, §2.3.3]:
Let

pdf(x) = N (x|μμμ,ΛΛΛ−1) (473)

a marginal distribution for x with mean μμμ and covariance matrix ΛΛΛ−1, and let

pdf(y|x) = N (y|Ax+ b,L−1) (474)

a conditional distribution for y given x with mean Ax+ b and covariance matrix L−1, then
the marginal distribution for y reads

pdf(y) = N (y|Aμμμ+ b,L−1 +AΛΛΛ−1AT ) (475)

and the conditional distribution for x given y is

pdf(x|y) = N (x|ΣΣΣ{ATL(y − b) +ΛΛΛμμμ},ΣΣΣ) (476)

where
ΣΣΣ = (ΛΛΛ +ATLA)−1. (477)
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F. Appendix

F.1. Regularization Matrix

In the original work of Glatter [49, 26] the regularization term is defined by the matrix

LT
DLD :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 2 1

−1 2 −1
. . .

−1 2 −1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (478)

where

LD =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−1 1
0 −1 1

0 −1 1
. . .

0 −1 1
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(479)

is a discrete first order differential operator82.
Fig. 68 shows the obtained PDDFs for the case that this regularization matrix is applied in

the IFT method in the inter-model comparison approach described in section 7.2.3. Compar-
ing these results with the ones shown in Fig. 55, where the second order derivative operator
LD2 is used, it is seen that the PDDFs obtained with the second order derivative operator
LD2 are better (smoother, less spreads and closer to the true PDDF) than the ones obtained
by using the first order derivative operator LD.

82 Usually, the last line in the derivative matrix LD is removed, see, e.g., [63, §8.1]). Note, LD does not have
full rank.
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Figure 68: Obtained PDDFs (p(r)/(cm−1 ·nm−1) vs. r/nm) for the inter-model comparison
approach using different objective function methods. The regularization term in
Eq. (478) is used. For each method 32 i.i.d. scattering data sets are simulated
for the zero average contrast condition case, and accordingly the 32 appropriate
determined PDDFs are plotted in one diagram (blue curves). The red curves show
the true PDDFs. 1st column (method 1): PDDFs are calculated for the global
extrema of the objective functions and background is subtracted automatically.
2nd column (method 2): PDDFs are calculated for the global extrema of the ob-
jective functions and background is subtracted a priori. 3rd column (method 3):
PDDFs are calculated for extrema in accordance with the principle of Occam’s ra-
zor and background is subtracted automatically. 4rd column (method 4): PDDFs
are calculated for extrema in accordance with the principle of Occam’s razor and
background is subtracted a priori. 1st row: PDDFs obtained via evidence method.
2nd row: PDDFs obtained via true error method. 3rd row: PDDFs obtained via
5-folded Cross-Validation (CV) method. 4th row: PDDFs obtained via 10-folded
CV method. The table at the bottom shows the mean and standard deviation of
the determined rmax values (notation: (mean, std. dev.)).
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