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A B S T R A C T

Microservices have emerged as a popular pattern for developing large-scale
applications in cloud environments for its benefits of flexibility, scalability,
and agility. A microservices-based cloud system (named as cloud microservices)
comprises hundreds or thousands of disparate services that communicate via
lightweight messaging protocols, share a finite set of hardware and software
resources, and are frequently updated to meet customer requirements. In
such a complex and dynamic environment, the occurrence of performance
problems (e.g., slow application responses) has become the norm rather than
the exception, resulting in decreased revenue, damaged reputation, and sig-
nificant human effort spent on performance diagnosis and recovery. More-
over, manual operation and maintenance of cloud microservices tend to be
error-prone or even impracticable. Therefore, there is an urgent need for an
automatic performance problem management system that can not only de-
tect anomalous behaviors (performance anomalies) but also uncover the root
causes and recommend recovery actions.

In this thesis, we investigate methods for automatic performance diagno-
sis and recovery in cloud microservices. The core objectives of this thesis are
to identify where and why a performance anomaly occurs, and further to de-
cide how to mitigate it. To this end, this thesis contributes: (1) a method for
locating the faulty service from which a performance anomaly originates, in-
cluding a graphical model for capturing the propagation of the anomaly in
the system; (2) two methods for identifying the anomalous metrics that cause
a performance anomaly, using deep learning and Spatio-temporal causal in-
ference (CI). In addition, we evaluate the performance of CI techniques on
performance diagnosis in cloud microservices through extensive experiments;
(3) a method for selecting the most appropriate recovery action to mitigate an
identified performance anomaly. Overall, the methods presented in this thesis
diagnose root causes and recommend remedies in real-time without requiring
any application instrumentation and historical failure instances.

Our methods were implemented in prototypes and experimentally evalu-
ated on representative microservices benchmarks. The evaluations show that
they can support automatic performance diagnosis and recovery in cloud mi-
croservices and improve service reliability and end-user experience. The re-
sults have been peer-reviewed and published at renowned international con-
ferences.
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Z U S A M M E N FA S S U N G

Microservices haben sich aufgrund ihrer Flexibilität, Skalierbarkeit und
Agilität zu einem beliebten muster für die Entwicklung umfangreicher
Anwendungen in Cloud-Umgebungen entwickelt. Ein auf Microservices
basierendes Cloud-System (auch als Cloud-Microservices bezeichnet) besteht aus
Hunderten oder Tausenden von unterschiedlichen Diensten, die über leicht-
gewichtige Nachrichtenprotokolle miteinander kommunizieren, häufig aktu-
alisiert werden, und sich eine begrenzte Anzahl von Hardware- und Softwar-
eressourcen teilen. In einer derart komplexen und dynamischen Umgebung
ist das Auftreten von Leistungsproblemen (z. B. langsame Anwendungsreak-
tionen) eher die Regel als die Ausnahme. Darüber hinaus sind der manuelle
Betrieb und die Wartung von Cloud-Microservices oft fehleranfällig. Daher
besteht ein dringender Bedarf an einem automatischen System zur Verwal-
tung von Leistungsproblemen, das abnormales Verhalten erkennen, die Ur-
sachen aufdecken und Abhilfemaßnahmen empfehlen kann.

In dieser Arbeit werden Methoden zur automatischen Ursachen-
lokalisierung und Behebung von Leistungsproblemen in Cloud-Microservices
erforscht. Das Hauptziel dieser Arbeit ist es, zu identifizieren, wo und warum
ein Leistungsproblem auftritt, und dann zu entscheiden, wie es behoben
werden kann. Zu diesem Zweck bietet diese Arbeit (1) eine Methode zur
Lokalisierung des fehlerhaften Dienstes, von dem ein Leistungsproblem aus-
geht; (2) zwei Methoden zur Identifizierung der anomalen Metriken, die ein
Leistungsproblem verursachen, unter Verwendung von Deep Learning bzw.
räumlich-zeitlicher kausaler Inferenz (CI); (3) eine Methode zur Auswahl
der am besten geeigneten Wiederherstellungsmaßnahmen zur Entschär-
fung des Leistungsproblems. Insgesamt diagnostizieren die in dieser Ar-
beit vorgestellten Methoden die Grundursachen und empfehlen Abhilfemaß-
nahmen in Echtzeit, ohne dass eine Anwendungsinstrumentierung und his-
torische Fehlerfälle erforderlich sind.

Unsere Methoden wurden in Prototypen implementiert und experimentell
an repräsentativen Microservices-Benchmarks evaluiert. Die Auswertungen
zeigen, dass sie zur Unterstützung der automatischen Leistungsdiagnose
und -wiederherstellung in Cloud-Microservices, zur Verbesserung der Ser-
vicezuverlässigkeit und der Endbenutzererfahrung eingesetzt werden können.
Die Ergebnisse wurden auf renommierten internationalen Konferenzen veröf-
fentlicht.
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1
I N T R O D U C T I O N

Cloud computing has been a popular topic in the industry and academia for
decades. Because of its promises, plenty of companies, from large to small
and medium sizes, have migrated to the cloud [1]. Although the cloud pro-
vides many benefits such as high availability and scalability, most monolithic
architectures that encompass all functionality in a single binary cannot fully
exploit, and adapting them to the cloud environment is a non-trivial task [2].

Microservices have emerged as a novel architecture style that overcome the
shortcomings of monoliths and can fully benefit from the cloud environment
due to their inherent attributes, such as scalability. Since 2014, microservices
have gained increasing popularity in the cloud [3] and other domains, such
as the internet of things (IoT) [4], web, and mobile [5]. According to the sur-
vey conducted by Nginx, nearly 70% of organizations are either using or in-
vestigating microservices, including enterprises Netflix, Uber, Amazon, and
eBay [6]. In addition, O’Reilly 2020 reports that 92% of organizations are ex-
periencing success with microservices [7].

With the microservices architecture (MSA), an application is decomposed
into self-contained and independently deployable services with communicat-
ing via lightweight messaging protocols [8–10]. This loosely coupled design of
MSA enables independent development, testing, and deployment of services,
allowing developers to select the most appropriate programming stacks for
each service and to freely apply updates to adapt to technology changes and
dynamic customer requirements [8]. Moreover, the decomposition of MSA
improves the resilience of services since the problem diagnosis and resolu-
tion can be applied to specific components, as opposed to monoliths, where
these processes often affect the entire application. Lastly, the modularity of
microservices fits well to the model of container-based cloud environments,
where each service is accommodated in a single container and orchestrated by
a platform [11]. This container-based cloud system, whose applications follow
the MSA design, is referred to as cloud microservices throughout this thesis (the
detailed description of cloud microservices is presented in Chapter 2.1).

1



1.1 research motivation 2

1.1 research motivation

In a cloud microservices environment, there are hundreds or thousands of
heterogeneous services distributed across separate and often geographically
dispersed physical (virtual) machines, with a large number of messages ex-
changed between them [12]. These services are deployed in containers that
can be migrated from one node to another within or across data centers,
and their functionalities are frequently updated to meet dynamic customer
requirements. Such a complex and dynamic environment indicates that per-
formance problems (e.g., slow application responses) have become the norm
rather than the exception. However, the performance is critical to the guar-
anteed Quality of Service (QoS) and Service-level Agreement (SLA), which
are directly related to the user experience and enterprise revenue. For in-
stance, Google reported that an extra 0.5 seconds in search page generation
time results in a 20% drop in traffic; Amazon reported that every 100ms of la-
tency costs 1% of revenue per year [13]. Even worse, a prolonged performance
degradation tends to affect other services or even cause a severe outage with a
considerable revenue loss (e.g., the e-commerce company eBay reported $1.3
billion loss from one-hour outage [14]).

Due to the financial and operational implications of performance deterio-
ration, handling performance incidents thus had become a significant chal-
lenge in the daily operation of cloud microservices. Operators are required
to quickly detect abnormal performance behaviors (performance anomalies),
discover the symptoms and root causes, and execute corrective strategies to
address the problems. Even though performance anomalies can be detected
sooner or later (e.g., with a deterministic threshold), diagnosing the root
causes and recovering the system is time-consuming and tedious for oper-
ators. Overall, the challenges are from two aspects: the property of perfor-
mance anomalies and the characteristics of cloud microservices. On the one
hand, a performance problem often ties with a specific interaction of com-
ponents rather than a single component; therefore, more anomalous events
are reported for one problem. In particular, a large number of components in
cloud microservices (e.g., Netflix has over 1000 microservices [15], and Uber
has 4000 microservices [16]) makes the interactions more complex, inflating
the number of performance anomalies. On the other hand, the polyglot de-
sign of microservices, frequent updates of software and hardware, and a wide
range of root causes lead the same performance anomaly to manifest differ-
ently across separate services or distinct anomalies to manifest in similar ways.
As a result, it becomes difficult or even impracticable for operators to identify
the root cause of such large volume and complicate anomalies.
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Once the root cause(s) have been identified, it is also challenging for op-
erators to determine the corrective actions. Due to the dynamic nature and
complexity of cloud microservices, it is unlikely to eliminate false positives in
both performance anomaly detection and diagnosis. Such incorrect analysis
tends to introduce delusive corrective actions, increasing the risk of executing
incorrect actions that may create performance anomalies instead of resolve.
Additionally, the resource-sharing cloud and frequent-updated microservices
yield tremendous uncertainties to the system. All in all, it is tough for oper-
ators to foresee the consequences of the potential recovery action and make
the appropriate decision to recover the system.

To this end, to reduce monetary loss and relieve operators from urgent calls
and tedious work, there is an imperative need to automate performance diag-
nosis and recovery, or at least some valuable insights to steer troubleshooting
and remediation.

1.2 research objectives

The main goal of this thesis is:

To investigate how analytic methods can be applied to observational monitoring
metrics to enhance automatic performance diagnosis and recovery in cloud microser-
vices.

The overall objective is to develop methods that leverage monitoring met-
rics to resolve service-level performance degradations in cloud microservices,
focusing on localizing root causes of performance anomalies and recommend-
ing corrective actions. To scope this research, we formulate three research ob-
jectives embodied in the main goal and addressed in this thesis, where RO1

and RO2 are for performance diagnosis and RO3 is for recovery.

• RO1: To design, develop, and evaluate methods for localizing where a
performance anomaly originates (Coarse-grained cause localization).

• RO2: To design, develop, and evaluate methods for identifying why a
performance anomaly occurs (Fine-grained cause localization).

• RO3: To design, develop, and evaluate methods for deciding how to
select the best recovery action(s) for an identified performance anomaly
(Recovery action selection).
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1.3 research contributions

This thesis contributes to knowledge in automatic performance problem man-
agement in cloud microservices within the context of the above three research
objectives.

Our key contributions are briefly summarized as follows:

• To address RO1, we propose a method named MicroRCA1, to locate
the faulty service that causes the performance degradation in cloud mi-
croservices. MicroRCA locates the culprit service in real-time, without
any application instrumentation. It constructs an attributed graph with
service and host nodes to model the anomaly propagation in the system,
and then identifies the most likely culprit service by correlating service
performance symptoms with corresponding resource utilization. Evalu-
ation on a testbed where a microservices benchmark is deployed and a
range of performance anomalies are injected shows that MicroRCA can
identify the faulty service with high precision and outperforms several
state-of-the-art methods (Chapter 5).

• We address RO2 with two methods that aim to identify the culprit met-
rics that explain the performance anomaly in cloud microservices. Both
methods are application-agnostic and require no historical failure data.
One, named MicroRCA+, applies a deep learning algorithm to relevant
metrics of a faulty service to detect the most likely performance bottle-
necks. It is an extension of MicroRCA developed to address RO1 and tar-
get culprit metrics that deviate significantly from the normal. The other,
named MicroDiag, employs Spatio-temporal Causal Inference (CI) anal-
ysis to metrics of all components to uncover the reasons for performance
deterioration. MicroDiag identifies the most likely bottleneck metrics
through modeling the anomaly propagation across metrics with a met-
ric causality graph. This graph is derived through a combination of spa-
tial propagation analysis among components and a mixture of temporal
causal inference among metrics of interactive layers. Both MicroRCA+
and MicroDiag have been experimentally evaluated on a well-known mi-
croservices benchmark. Additionally, we perform a comprehensive eval-
uation of CI techniques on locating root causes of performance anoma-
lies in cloud microservices to fill the gap in understanding the overall
performance of this class of methods, as few CI methods have been used
in the literature. The results of this experimental study also form the ba-
sis for the MicroDiag method. (Chapter 6).

1 MicroRCA - Microservices Root Cause Analysis
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• We address RQ3 with a method named MicroRAS2 that automatically
selects the best recovery action to mitigate the performance anomaly
in the absence of historical failure data. MicroRAS is a model-based
method for real-time mitigation in cloud microservices. It predicts the
effectiveness associated with each candidate recovery action, including
the benefit (positive effect) and risk (negative effect) on service perfor-
mance, using a graphic model and fuzzy logic, and then selects the most
appropriate recovery action with a tradeoff between action effectiveness
and recovery time, minimizing the duration of degraded performance
or outage. Experimental evaluation shows that the actions selected by
MicroRAS can effectively recover the faulty services, while reducing the
inference to other services and the recovery time compared to several
baseline methods (Chapter 7).

The proposed methods are based on the assumption that monitoring met-
rics are available in cloud microservices, commonly used in the industry by
deploying non-intrusive monitoring tools inside the environment. In addition,
our methods are designed to address service-level performance degradation
problems (e.g., slow responses of services), the causes of which can manifest
directly or indirectly in the observational metrics.

In addition to this thesis, this research has contributed to the following
peer-reviewed publications:

1. Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. "MicroRCA: Root
cause localization of performance issues in microservices." In: NOMS 2020-
2020 IEEE/IFIP Network Operations and Management Symposium. IEEE.
2020, pp. 1–9.

2. Li Wu, Jasmin Bogatinovski, Sasho Nedelkoski, Johan Tordsson, and Odej
Kao. "Performance diagnosis in cloud microservices using deep learning." In:
International Conference on Service-Oriented Computing. Springer. 2020, pp.
85–96.

3. Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao.
"MicroDiag: Fine-grained Performance Diagnosis for Microservice Systems."
In: Proceedings of the 43rd ACM/IEEE International Conference on Software
Engineering Workshops. ICSEW. 2021.

4. Li Wu, Johan Tordsson, Erik Elmroth, and Odej Kao. "Causal Inference
Techniques for Microservice Performance Diagnosis: Evaluation and Guid-
ing Recommendations," In: 2021 2nd IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems (ACSOS), 2021.

2 MicroRAS - Microservices Recovery Action Selection
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5. Li Wu, Johan Tordsson, Alexander Acker, and Odej Kao. "MicroRAS: Au-
tomatic Recovery in the Absence of Historical Failure Data for Microservice
Systems." In: 2020 IEEE/ACM 13th International Conference on Utility and
Cloud Computing (UCC). 2020, pp. 227–236.

1.4 outline of the thesis

The remainder of this thesis is structured as follows:
Chapter 2 presents the background for understanding our research topic

and methods, including cloud microservices, performance problem manage-
ment, and analytic methods used in this thesis.

Chapter 3 presents the related work for performance diagnosis and auto-
matic recovery in the literature.

Chapter 4 describes the main problems and challenges of performance
diagnosis and recovery in cloud microservices. We also present a reference
architecture for performance problem management in cloud microservices,
on which we position and briefly describe our proposed methods.

Chapter 5 presents the MicroRCA method for locating the faulty service
from which the performance anomaly originates. We also present the testbed
setup, evaluation results, and comparisons with several state-of-the-art meth-
ods.

Chapter 6 presents two methods, MicroRCA+ and MicroDiag, and their
evaluations for locating culprit metrics that explain the performance anomaly.
We also present an experimental study of CI techniques for microservices
performance diagnosis.

Chapter 7 presents the MicroRAS method for deciding the most appro-
priate recovery action, after giving a concrete example to illustrate the moti-
vation. A detailed evaluation of mitigating performance degraded services is
presented at the end of this chapter.

Chapter 8 concludes this thesis by summarizing our results and providing
directions for future work.
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This chapter presents the fundamentals of our research topic and method,
including cloud microservices, performance problem management, and the
analytic methods used in this thesis.

2.1 cloud microservices

A cloud microservices environment represents a cloud computing system with
applications that follow the design of MSA, which is built on a set of concepts,
including cloud computing, microservices architecture, containerization, and
service meshes.

2.1.1 Cloud computing

Cloud computing is a paradigm that delivers on-demand computing services
(e.g., computational resources, development tools, and applications) to users,
typically over the internet and on a pay-as-you-go basis [17]. The scalable and
elastic resources offerings provide cloud users with a time- and cost-efficient
way to fulfill their services. Generally, requested resources can be provisioned
in minutes, even geographically from multiple data centers, and users are
charged only for what they actually use.

According to the offered services, cloud computing can be broken down
into three models [18], as shown in Figure 1(a), which offer different levels of
control, flexibility, and management so that users can select the right package
of services for their needs.

• Infrastructure-as-a-Service (IaaS) – provides cloud users with on-demand
computing resources such as physical or virtual servers, storage, and

7
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23]. Containerization technology is a virtualization mechanism that allows an
application to run in an isolated environment (user space) along with its de-
pendencies. As shown in Figure 1(b), a container holds packaged portions of
applications and, if necessary, middleware and business logic in the form of
binaries and libraries. Compared to hypervisor-based virtualization, like vir-
tual machines (VM), containers share the host OS, making them much lighter,
faster to restart, and easier to scale [24].

Because of its benefits, containerization is considered the ideal virtualiza-
tion solution for deploying microservices-based applications [25, 26]. Typi-
cally, in a cloud microservices environment, services are encapsulated in con-
tainers, communicating via network and interacting with volumes of data
storage. These containerized services can be easily scaled out to handle more
workloads [27] or restarted to mitigate intermittent issues. Moreover, the iso-
lation property of containers implemented with the OS kernel features (i.e.,
namespaces and control groups (cgroups)) can facilitate inference among ser-
vices. For example, if a process running in a container exhausts its resources,
it may not affect other services if resource limits are set [25].

Since each container covers only a portion of an application and is iso-
lated from others, an orchestration platform is required to manage depen-
dencies among containers for deployments and operations. Many popular
orchestration tools, such as Kubernetes [28], Docker Swarm [29], and Apache
Mesos [30] are used to manage the lifecycle of containers. Kubernetes is be-
coming widely adopted among these orchestration tools in computing sys-
tems, such as cloud microservices, in virtually all industry sectors (and academia).
It enables automated deployment, scaling, and management of containers and
improves application resiliency.

2.1.3 Microservices

Microservices are novel software architecture styles first proposed by James
Lewis and Martin Fowler in 2014 [31]. The core idea of MSA is to decou-
ple complex applications into self-contained and independently deployable
units, named microservice (MS), that intercommunicate through lightweight
messaging protocols, like Representational state transfer (REST) APIs and Re-
mote Procedure Call (RPC) APIs [32]. Figure 1(c) gives a conceptual overview
of microservices where each service, such s1 − s6 and service UI, implements
a single task following the Single-responsibility Principle (SRP). Because of
the loosely coupled nature, each service in a microservices-based application
can be developed, tested, and deployed independently, thus reducing the com-
plexity of software development and maintenance.
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Driven by the advantages of microservices (e.g., flexibility, scalability, and
agility), many organizations, including companies like Netflix, Amazon, and
Uber, have shifted from monoliths to microservices for designing their large-
scale web applications. The monolith is an architecture that wraps all function-
alities into one single unit. While the monolith pattern is simple and suitable
for small applications, the complexity of the application and the time required
to launch new features or enhancements increase dramatically as the number
of functions increases. It is also difficult to operate and maintain monolithic
applications in distributed systems, such as the cloud. If one component has
a performance problem, operators need to look into the entire application
to get the root cause. Even worse, any modifications or recovery actions af-
fect the performance of the entire application, usually resulting in significant
downtime [33].

In contrast, microservices are self-contained and self-managed and are more
flexible in development and maintenance. Performance degradation in mi-
croservices tends to affect only a portion of the services rather than causing
an outage in monoliths. When a performance degradation is detected, the
diagnosis in microservices can focus on a set of anomalous services rather
than the entire application, and the bottleneck service can be independently
updated, scaled, or restarted to mitigate the problem.

2.1.4 Service meshes

Service mesh has become increasingly popular in recent years for its advance-
ments in mitigating the operational complexity of microservices. Although
the microservices methodologies greatly improve the development and de-
ployment efficiency, the complex interdependencies between hundreds of ser-
vices and dynamics inherent in orchestration platform scheduling and fre-
quent service updates pose a significant challenge to understanding and op-
erating the applications at runtime.

A service mesh, serving as a fully manageable service-to-service communi-
cation platform, is designed to provide observability of the entire network of
distributed microservices (e.g., the topology of services, end-to-end response
times) and standardize the runtime operations over traffic flows between ser-
vices (e.g., load balancing, circuit breaker). In particular, the visibility pro-
vided by service meshes can dramatically accelerate the identification of per-
formance anomalies and corresponding bottlenecks; traffic control can speed
up the mitigation process by making appropriate and rapid changes to traf-
fic. For example, when a service becomes bottlenecked in an application, the
common mitigation strategy is retrying. However, it might exacerbate the is-
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2.2 performance problem management

The performance of a system is closely related to its availability, reliability, and
scalability and provides crucial information for capacity planning, scheduling,
and other decision-making. In addition, performance is a critical indicator of
QoS, which reveals the efficiency of a system in accomplishing specific tasks.
Typically, it can be measured in terms of time for accomplishing tasks, the
rate of processing tasks, or the consumed resources while performing tasks.

Cloud systems rely on effective performance problem management to meet
the SLA in runtime operations, particularly when a performance degradation
occurs. Overall, performance management aims to: (1) detecting unexpected
performance behaviors, referred to as performance anomalies; (2) analyzing
monitoring metrics to gather evidence to locate the root cause(s) responsible
for the observed performance anomalies; (3) either recommending strategies
that may resolve the problem or automatically executing the remedy actions.
In this section, we present the details of the above steps after describing the
basic concepts, including performance metrics, performance anomalies, root
causes, and symptoms.

2.2.1 Performance metrics and anomalies

2.2.1.1 Performance metrics

In cloud operations, there are typically a set of metrics that are vital to busi-
ness interests of an organization. These metrics, called key performance in-
dicators (KPIs) or performance metrics, are used to measure high-level perfor-
mance objectives and can be defined at different levels of abstraction (e.g.,
hardware, virtual machine, application) or from different perspectives (e.g.,
infrastructure providers, platform providers, and end-users of applications).
For cloud microservices, two sets of performance metrics are commonly used:

The first set of performance metrics defines the performance experienced
by the end-user of applications. It is relatively small and follows the RED
method [36]. The RED method, which includes three key metrics: Rate, Error,
and Duration, loosely follows the principle described in Google’s four golden
signals [37]. These three metrics can be collected from any service and are
defined as follows:

• (Request) Rate – the number of requests per second served by services.

• (Request) Error – the number of failed requests per second.
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• (Request) Duration – the amount of time each request takes expressed
as a time interval.

The second set of performance metrics measures the low-level performance
of the underlying system, particularly computational resources used by ap-
plications (e.g., CPU, disks, memory, and other physical server functional
components). These system-level metrics follow the USE method [38], which
includes the following three key metrics:

• Utilization – the average time that the resource was engaged in process-
ing work. It is usually expressed as a percentage over a time interval.

• Saturation – the degree to which the resource has additional work that
it cannot serve, often queued. It is usually expressed as a queue length.

• Errors – the count of error events. It is usually expressed as scalar counts.

In cloud microservices, both the USE and RED methods can be imple-
mented with cloud-native monitoring tools. For example, metrics collected by
service mesh Istio3 can implement the RED method and metrics from Node-
exporter4 or Cadvisor5 for the USE method.

2.2.1.2 Performance anomalies

Anomalies also referred to as outliers, deviations, and exceptions can be viewed
as a point or group of data points that significantly deviates from the well-
defined normal patterns of a dataset [39]. A general widely accepted defini-
tion of anomaly is introduced by Hawkings [40]:

"An outlier (anomaly) is an observation which deviates so much from other obser-
vations as to arouse suspicions that it was generated by a different mechanism."

Figure 3 illustrates anomalies in a simple two-dimensional dataset. The data
have two homogeneous normal regions N1 and N2, and most observations
lie in these two regions. Points that are sufficiently far away from these two
regions, e.g., points o1, o2, and points in region o3, are anomalies. In perfor-
mance studies, the observations are discrete measurements of a performance
metric, which is time series, and the unexpected deviations are called perfor-
mance anomalies.

3 Istio - https://istio.io/
4 Node-exporter - https://github.com/prometheus/node_exporter
5 Cadvisor - https://github.com/google/cadvisor
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or more analytics techniques, e.g., statistical analysis, machine learning, time
series analysis, etc., to extract insights and structure actions needed to achieve
goals and objectives. In performance problem management, the analytics and
plan module includes the following three functions:

• (Performance anomaly) Detection: aims to identify or predict anomalies
from performance metrics provided by the monitoring module. When
an anomaly is detected, it first checks whether its symptoms are similar
to a previously seen problem so that a known root cause and recovery
action can be recommended. This similarity matching accelerates the di-
agnosis process and avoids escalation. For new symptoms, this function
gathers evidence that partially explains the anomaly and helps narrow
the search path for possible root causes.

• (Performance anomaly) Diagnosis: infers the most likely root causes
from the observable symptoms along with detected performance anoma-
lies (e.g., identifying abnormal resource consumption in a physical ma-
chine). Based on the identified root causes, potential recovery strategies
can be determined to mitigate the anomaly in the recovery function. An
accurate root cause localization of performance anomalies is essential
for mitigating the problem, restoring the system to a stable state, and
future recall.

• (Performance anomaly) Recovery: aims to resolve the performance anoma-
lies automatically (e.g., roll back a faulty patch or suspend an offending
container) or recommend strategies for operator or a higher-level control
system to mitigate the problem. It creates or selects a strategy (ranging
from a single command to a complex workflow) to perform an alter-
ation in the managed system. It relies on information and recommen-
dations from the last two phases or policies and historical data stored
in a knowledge base. After the recommended actions get executed, the
system changes can be used to update the knowledge.

Many Application Performance Management (APM) tools (e.g., Dynatrace [44]
and AppDynamics [45]) have been developed to meet the stringent perfor-
mance and availability requirements in the industry. This type of tool provides
a sophisticated view of the monitored system and helps operators quickly
identify, isolate, and resolve problems by diagnosing root causes. However,
most APMs are more capable of detecting anomalies but less in diagnosis
and recovery.
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2.3 analytic methods

In this section, we describe the analytic methods investigated or used in this
thesis.

2.3.1 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [46,
47] is an integrated hierarchical clustering algorithm that aims to cluster data
points within large datasets. It processes given data points on the fly and
stores them in a Clustering Feature Tree (CF-tree), where Clustering Feature
(CF) is a 3-tuple that summarizes the information of the cluster. The concepts
of CF and CF-tree allow for a fixed size memory usage and logarithmic time
for iterative updates, thus improving BIRCH in clustering large datasets on
speed and scalability.

A CF is used to represent a cluster by a vector of three values CF =

(N,Ls,Ss):

• N is the number of multi-dimensional data points xi in a cluster,

• Ls is the linear sum of
∑N

i xi of the data points,

• Ss is the squared sum
∑N

i x2i of the data points.

This CF summary is not only efficient because it stores many fewer data points
for a cluster, but also accurate for calculating the measurements (centroid
C and radius R) to make clustering decisions in BIRCH. Furthermore, the
centroid and radius of a cluster can be derived from the CF vector as follows:

• the centroid D = Ls
N

• the radius R =

√
N·(LsN )2+Ss−2·(LsN )2·Ls

N .

A CF-tree is a height-balanced tree with two parameters: branching factor
B and threshold T, where B is the maximum number of CF subclusters in
each node, and T is the maximum radius value of the cluster. This is a very
compact representation of the dataset since each entry in a leaf node is not
a single data point but a subcluster (which absorbs many data points with a
radius below a certain threshold T).

While data points enter into BIRCH, a CF-tree is built incrementally. Each
new point starts at the root and recursively walks down the tree, entering
the subcluster of the nearest center. When adding a point at the leaves, a new
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time-series X = {x1, x2, ..., xt, ...} is said to Granger-cause another time series
Y if the inclusion of information about the past of X significantly increases
the predictive accuracy of the current value yt of Y compared to a prediction
based on the past values of Y alone, which can be explained by the following
two models [58].

The first model, named restricted model, calculates the extent to which the
time series X, Y can be predicted with their own past (xt−j and yt−j, with
j = 1, 2, ...), resulting in the residual error variance ∆1 = var(δ1t) and Γ1 =

var(γ1t). The model order is denoted by P, which indicates how many previ-
ous time points are considered, and the length of the time series by T , with P
< T.

xt =

P∑
j=1

ajxt−j + δ1t, yt =

P∑
j=1

ajyt−j + γ1t (5)

In the second, called unrestricted model, the prediction is based on both the
own past of the time-series as well as the past of the other time series. This
results in the residual error variance ∆2 = var(δ2t) and Γ2 = var(γ2t). The
linear influence from x to y Fx→y, and from y to x, Fy→x, can be calculated as
the ratio between the variances of the residual errors in two models, i.e.,

xt =

P∑
j=1

ajxt−j +

P∑
j=1

bjyt−j + δ2t, yt =

P∑
j=1

ajyt−j +

P∑
j=1

bjxt−j + γ2t (6)

A reduction of error variable with including the past of another time series
results in a larger F-ratio, the difference G-causality, i.e., Fx→y − Fy→x, is cal-
culated to assess the dominant direction of information flow between x and
y.

Fx→y = ln
var(γ1t)

var(γ2t)
= ln

Γ1
Γ2

, Fy→x = ln
var(δ1t)

var(δ2t)
= ln

∆1

∆2
(7)

Figure 7(c) states that the metric m1 is G-causing m2 if lag1 is detected be-
tween them. GC [58] was originally formalized as a predictive model using
vector autoRegressive (VAR). However, the regression model used assumes
linearity and stationarity, and the accuracy of the causal inference is strongly
affected by the predefined model order (which indicates how many prior time
points are included in the regression). Some extensions of the basic GC con-
cept include modeling nonlinear dependencies with transfer entropy, includ-
ing multiple variables in GC, etc. Nevertheless, GC is limited to lagged causal
dependencies and has known shortcomings for contemporaneous effects in
sub-sampled time series [59].
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2.3.3.2 Causal network learning algorithms

One of the most advanced theories widely recognized in the discovery of
causality is the causal Bayesian network (CBN), which uses a Directed Acyclic
Graph (DAG) to represent the causal relationships. There are two main ap-
proaches for learning a DAG: score-based approaches and constraint-based
approaches. GES [60] is a score-based approach. It starts with an empty graph
and then greedily searches for a Markov equivalent class that maximizes a
score function. The PC algorithm [56] is one of the state-of-the-art constraint-
based approaches. It starts with a complete, undirected graph and recursively
deletes edges based on conditional independence tests. For example, in Fig-
ure 7(d), the edge between metric m1 and m4 is deleted as m4 ⊥ m1|m3. Once
the skeleton is obtained with conditional independence tests, the edges are
oriented with D-separation [61].

Learning a DAG from data is highly challenging and complex because the
number of possible DAGs is super-exponential to the number of nodes. When
applied to a high-dimensional dataset, the runtime of the PC algorithm is ex-
ponential to the number of nodes in the worst case. Nevertheless, if the true
underlying DAG is sparse, which is often a reasonable assumption, the run-
time is reduced to a polynomial run. There are some other methods, such as
FCI [56], that can account for unobserved direct common causes and still par-
tially identify which links must be causal. PCMCI [62] incorporates time-order
as a constraint (causes precede effects) and utilizes a set of causal orientation
rules to identify causal directions.

2.3.3.3 Structural causal models (SCMs)

The key idea of SCMs is to exploit the invariance of structural equations with-
out committing to a specific functional form [63]. It assumes that the value
of each variable is a deterministic function of its direct causes in the graph
and some independent factors, such as unmeasured disturbances. A general
SCM is defined as Equation 8, where g and f are arbitrary functions, X is the
random input variables, and E is the environmental random variable that is
independent of X. We say that X causes Y if they satisfy a generative process,
such as Equation 8.

Y = g(f(X),E). (8)

Several methods have been proposed for causal inference in the SCMs.
Many of these methods rely on independence testing, where the algorithms
model the data as Equation 8 (and vice versa) and decides upon the side
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that provides a better fitting in terms of mapping accuracy and independence
between f(X) and E. The linear non-Gaussian acyclic model (LiNGAM) [64]
algorithm assumes that the SCM takes the form of Y = βX+ E, where X ⊥⊥ E,
and β ∈ R and E is non-Gaussian. The LiNGAM learns β such that X and
Y − βX are independent by applying independent component analysis (ICA).
In our example Figure 7(e), the effect metric m2 can be defined as a function
of the causal metric m1 with an Non-Gaussian noise Nm2.

The ANM approach [65] extends the LiNGAM model and assumes that the
effect is a function of the cause: Y = f(X) + E, where X ⊥⊥ E. The function is
trained to map between Y and X, and then kernel independence tests are used
to test whether X and Y − f(X) are independent.
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In this chapter, we present the related work in performance diagnosis and
automatic recovery in the literature.

3.1 performance diagnosis

In the literature, many approaches have been proposed to diagnose root causes
of performance problems, particularly in domains like clouds [41, 66], net-
works [67], and microservices [68]. Overall, these approaches are based on
the observational data collected from the system, such as logs, traces, and
metrics.

3.1.1 Logs-based methods

System logs are helpful in understanding the operations. When a performance
problem occurs, operators usually examine recorded logs to gain insights into
the issue and identify the potential root causes. Traditionally, operators per-
form simple keyword searches (such as error or exception) of logs that may
be associated with the issue. Such a manual searching approach is often time-
consuming and error-prone. In order to automate the problem diagnosis from
system logs, many approaches have been proposed [69–81].

The primary idea to diagnose root causes from logs is to build a reference
model for the normal operations, and a deviation from normal patterns im-
plies the hidden root causes. DeepLog [70], LogSayer [71], Logsy [82], [72],
LogCluster [73], and DISTALYZER [74] learn the normal patterns with ma-
chine learning. DeepLog [70] models a system log as a natural language
sequence with a deep neural network utilizing Long Short-Term Memory
(LSTM). It automatically learns log patterns from normal execution, detects
anomalies, and performs root cause analysis when log patterns deviate from

24
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the model trained from log data under normal execution. LogSayer [71] rep-
resents the system state by identifying suitable statistical features (e.g., fre-
quency, surge), which are not sensitive to the exact log sequence first, then
measures changes in the log pattern when an anomaly occurs. LogSayer uses
LSTM neural networks to learn the historical correlation of log patterns and
applies a backpropagation neural network for adaptive anomaly decisions.
Logsy [82] uses an attention-based encoder model to learn log representa-
tions to distinguish the differences between normal and anomalous logs. Mi et
al. [72] propose an approach that first classifies user requests with a clustering
algorithm, then applies principal components analysis to extract the primary
methods, and finally compares behaviors of the primary methods in normal
and abnormal statues to locate the potential causes. Similarly, LogCluster [73]
clusters the logs and utilizes a knowledge base to check if the log sequence
occurred before, thus significantly reducing the number of logs that should be
examined, meanwhile improving the identification accuracy. LogDC [83] pin-
points the root causes in terms of abnormal declarative in deployment files
and log entries for cloud-native applications. It employs clustering to sepa-
rate normal and abnormal deployments and build reference models based on
normal samples. Then it localizes the anomaly by comparing the current de-
ployment file and the reference deployment. DISTALYZER [74] uses machine
learning techniques to compare system behaviors extracted from the logs and
automatically infers the strongest associations between system components
and performance. Decaf [84] leverages Random Forest models along with cus-
tom scoring functions to identify the root causes from logs that correlate to
performance degradation.

Some approaches [75, 76] represents the normal pattern with graph models
by mining the log data. Jia et al. [75] build a hybrid graph model to capture
normal execution flows of intra-services and inter-services. They model the
intra-service request flows as a service topology by utilizing the frequency of
logs, and model the inner-service request flows as a time-weighted control
flow graph from logs of each service. Pooja et al. [76] focus on the error rate
of runtime logs and transform them into multivariate time series for inferring
the causal graph, which is used to discover the ranked list of possible faulty
components in microservices.

LOGAN [77] utilizes log correlations to construct behavioral reference mod-
els from logs that represent the normal patterns. When a problem occurs, it
enables operators to inspect the divergence of current logs from the reference
model and highlights logs likely to contain hints to the root cause. Uilog [78]
uses a fault keyword matrix to classify logs by the fault type in real-time
and locates the root causes with log correlation analysis. Draco [79] uses a
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top-down approach, starting with identifying user interactions that may have
failed (e.g., dropped calls) and drilling down to identify groups of attributes
that best explain the difference between failed and successful interactions with
a scalable Bayesian learner.

POD-Diagnosis [80] builds fault trees to capture potential root causes by
using process context to log analysis.

Some approaches are specifically for diagnosing issues in MapReduce sys-
tems [81, 85], Openstack [86], Spark [87]. For example, Kahuna [85] diagnoses
the performance issues in MapReduce systems using peer-similarity. It de-
tects a node that behaves differently as the likely culprit of a performance
issue if they behave alike in normal operations. Instead of extracting execu-
tion sequence from logs for all system tasks, Yuan et al. propose an approach
that automatically recognizes the exception logs of ERROR logging level gen-
erated by a system task, which are critical snippets of execution traces for
failure diagnosis [86]. Sherlog [88] uses runtime logs to diagnose failures in
source code.

Even though logs-based approaches can discover more informational causes,
they are hard to work in real-time and require abnormal information hidden
in logs.

3.1.2 Traces-based methods

One important tool for diagnosing performance anomalies in distributed sys-
tems is tracing, which can precisely record the execution paths and locate the
root causes by instrumenting to the system or source code of applications. To
obtain the tracing and diagnosis problems, many tools have been proposed in
the academia and industry [89–104].

Many tools traces the requests of applications in order to locate the faulty
service, such as X-Trace [90], Pinpoint [92], Google’s Dapper [100], Facebook’s
Canopy [103], X-ray [98], PreciseTracer [105] and the Mystery Machine [93].
Pinpoint traces the client requests and uses data mining techniques to corre-
late these requests’ believed failures and successes to determine which com-
ponents are most likely to be at fault. PreciseTracer debugs performance prob-
lems of multi-tier services by constructing a component activity graph to
present causal paths of requests. Magpie monitors the fine-grained events gen-
erated by kernel, middleware, and application components with low-overhead
instrumentation and accurately extracts requests and constructs representa-
tive models of system behavior. By constructing concise workload models, it
can predict the performance and detect changes in the system. In addition,
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distributed tracing tools, like Zipkin1 and Jaeger2 are developed for microser-
vice architecture. Distributed tracing enables the operators to track the path
of each transaction as it travels through a distributed system and analyze
the interaction with every service it visits. This capability helps the opera-
tors deeply understand the performance of every service, thus helps pinpoint
where failures occur and what causes poor performance.

Some tools are for the kernel or system (e.g., Perfscope [99] and Pip [95]).
Perfscope collects system call trace via kernel tracing tools, such as Linux
Tracing Tool next generation (LTTng)3 and aims at performance anomalies
that are caused by anomalous interactions between the application and the
kernel. Pip instruments to the system to log the actual system behavior, such
as the system’s communication structure, timing, and resource consumption,
and detects structural errors and performance problems in distributed sys-
tems by comparing actual behavior and the expected behavior. Some other
tools are for software bugs [96–98] by collecting function-level traces from
each process. If the application has issues, the traces are compared automati-
cally, detecting the anomalies by identifying processes that stopped earlier or
behaved differently from the rest.

Specifically, to diagnose the root causes from tracing data, Mi et al. [106]
cluster the end-to-end request tracing into different categories according to
request call sequences and select major categories, then extract the abnormal
principal methods that might be causes of performance degradation. The Mys-
tery Machine [93] uses traces to create a causal model to show how software
components interact during the end-to-end processing or request. Then it uses
the causal model to perform several types of distributed systems performance
analysis: finding the critical path, quantifying slack for segments not on the
critical path, and identifying segments correlated with performance anoma-
lies. Sambasivan et al [107] builds end-to-end request-flow tracing within and
across components and identifies the root causes of changes by comparing
request flows from two executions (e.g., of two system versions or periods).

GMTA [108], MEPFL [109], and MicroRank [110] diagnose problems in mi-
croservices. GMTA abstracts traces into different paths and further groups
them into business flows, represented as a graph, for understanding the ar-
chitecture and diagnosis problems. MEPFL trains prediction models at both
the trace level and the microservice level using the system traces collected
from automatic executions of the target application and its faulty versions
produced by fault injection. The trained prediction models are then used in

1 Zipkin - https://zipkin.io/
2 Jaeger - https://www.jaegertracing.io/
3 LTTng - https://lttng.org/
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the production environment to predict latent errors, faulty microservices, and
fault types for traces captured at runtime. MicroRank locates the root cause
by identifying the abnormal traces, differentiating the importance of traces to
extended-spectrum techniques, and ranking based on the weighted spectrum
information from PageRank Scorer.

Although traces are beneficial to debug distributed systems and software,
the overhead brought by these tools is considerable. Distributed systems today
may generate millions of events per second, resulting in traces consisting of
billions of events. Such large traces can overwhelm existing trace analysis
tools. In addition, deploying these tools is also a daunting job requiring the
developers to understand the source code well to instrument the tracing code.

3.1.3 Metrics-base methods

Metrics along with logs and traces are the three pillars of observability for
capturing the system states and the quality of services. Compared to logs and
traces, metrics are able to manifest the abnormality in the system and require
no instrumentation to the source code. Many approaches in the literature
employ observational metrics to infer the root causes of performances issues
in distributed systems, cloud, network, and microservices [111–118].

One of the dominant methods for performance diagnosis is to capture the
dependency between components in the system, including software and hard-
ware components, then infer the root causes from the constructed dependency
graph [111, 113–117, 119–130]. Dependency inference learns the relationship
between interconnected components for problem diagnosis, particularly when
localizing the source of the problem that propagates across a distributed sys-
tem. Specific insights sought by dependency inference include service depen-
dencies, request or call paths, deployment information, and transaction track-
ing through a distributed system.

In order to infer dependency, various approaches have been proposed in
the literature. Orion [119], Project5 [120], and E2EProf [121] use network traf-
fic to infer the dependency, which requires no domain knowledge about the
applications, so that they can operate in a black-box manner. For example,
Orion [119] discovers the dependencies using packet headers and timing
information in network traffic. Sherlock [123] and NetMedic [124] leverage
application-level knowledge such as configuration information and historical
failure/success records, along with network traffic information, to infer de-
pendencies. MonitorRank [117] periodically generates service dependencies
which are then leveraged by unsupervised machine learning models for sug-
gesting root cause candidates.
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Many approaches leverage causal inference techniques to construct the de-
pendency graph [111, 113–116, 129–131]. Microscope [113] combines both
network traffic and PC (named after its authors, Peter and Clark [56]) algo-
rithm to infer the service causality graph by considering both communicat-
ing and non-communicating dependencies in microservices. CauseInfer [111]
constructs a two-layered hierarchical causality graph, including service de-
pendency graph and metric causality graph of each service, to show the de-
pendency among metrics. MS-Rank [130] introduces the concept of implicit
metrics and proposes a hybrid impact graph construction algorithm, using
multiple types of metrics to discover causal relationships between services.
MicroCause [129] applies a variant of the PC algorithm that considers the
time-order of metrics to metrics from multiple layers in microservice systems
to capture the causality among metrics. Sieve [115] and Loud [116] systems
construct an anomaly propagation graph across all metrics using the Granger
causality test. Sage [131] uses Causal Bayesian Networks to capture the de-
pendencies between microservices.

With the dependency graph constructed, the next step is to rank the root
causes in the graph. Random walk [114, 117, 125, 130, 132–134] and graph
traversal [111, 113, 127] are the two mainstream methods. FluxInfer [128]
applies a weighted PageRank algorithm to localize root cause-related KPIs.
Loud [116] uses graph centrality algorithms to get the root causes. Monitor-
Rank [117], MS-Rank [130], and AutoMap [132] customize the random walk
with forward, selfward, and backward transitions. Additionally, MonitorRank
considers internal and external factors and proposes a pseudo-anomaly clus-
tering algorithm to classify external factors before the random walking. MS-
Rank establishes a self-adaptive mechanism to update the confidence of differ-
ent metrics dynamically according to their diagnostic precision. CloudRanger [114]
and ServiceRank [134] use a second-order random walk to identify the root
causes. ServiceRank also proposes a correlation calibration mechanism for
the circuit breaker - a typical protection pattern in the microservice architec-
ture. Microscope [113], CauseInfer [111], and FacGraph [127] identifies the
root causes by traversing the dependency graph to find the root cause can-
didates. Microscope [113] traverses the constructed graph from the front-end
service to find the root cause candidates and ranks them based on the sim-
ilarity of metrics. CauseInfer [111] uses the depth-first search method to tra-
verse the metric causality graph of each service to get the candidate culprit
metrics and ranks with the significance of abnormality. FacGraph [127] lever-
ages breadth-first ordered string (BFOS) to get the root causes. Additionally,
MicroHECL [135] analyses possible anomaly propagation chains and ranks
candidate root causes based on correlation analysis.
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The second class of methods is based on machine learning. Machine learn-
ing approaches [118, 131, 136–138] diagnose root causes by identifying fea-
tures that significantly deviate from the predicted values estimated by ma-
chine learning algorithms. This approach is based on the assumption that
the anomalous causal feature has a significant deviation from its normal
behavior. Seer [118] identifies the faulty services and which resource, like
CPU overhead, causes the service performance degradation. It is a proactive
method that applies deep learning to massive data to identify root causes. This
approach requires source code instrumentation to get metrics; meanwhile,
its performance may decrease when microservices are frequently updated.
UBL [136] leverages Self-Organizing Maps to capture emergent system be-
haviors and predict unknown anomalies for cloud infrastructures. Sage [131]
leverages unsupervised learning to identify the culprit of unpredictable per-
formance in complex graphs of microservices. It applies counterfactuals through
a Graphical Variational Autoencoder to examine the impact of microservices
on end-to-end performance based on the microservice dependency graph.
Scheinert et al. [138] uses Arvalus and its variant D-Arvalus, a neural graph
transformation method that models system components as nodes and their
dependencies and placement as edges, to identify the root causes from met-
rics.

Correlation analysis is also commonly used to identify the root causes [139–
148]. They correlate the observed metrics with the problematic behaviors
of systems to identify the root causes. [142] correlates SLA violation to the
system-level metrics; [143] correlates system changes to the failure or success
symptoms of systems; Fa [144] builds correlation models among monitoring
data in a normal state by using clustering methods; [145] correlates time se-
ries data with event data. [139] correlates throughput and load of each server
in an n-tier system. [140] correlates workloads with the metrics of application
performance and resource utilization. FD4C [141] uses an online incremental
clustering method to recognize access behavior patterns and correlates the
workloads with the application performance/resource utilization metrics in a
specific access behavior pattern. In addition, correlation analysis is also used
in other methods, like Microscope [113], to characterize the abnormality of
components.

FChain [149], PAL [150], and [151] pinpoint the root causes by localizing
the change points in the observed time services data. FChain pinpoints faulty
components immediately after a performance anomaly is detected. FChain
first discovers the onset time of abnormal behaviors at different components
by distinguishing the abnormal change point from many change points caused
by normal workload fluctuations. Faulty components are then pinpointed
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based on the abnormal change propagation patterns and inter-component de-
pendency relationships. PAL can pinpoint the source of faulty components
in distributed applications by extracting anomaly propagation patterns. PAL
provides a robust critical change point discovery algorithm to accurately cap-
ture the onset of anomaly symptoms at different application components. PAL
then derives the propagation pattern by sorting all critical change points in
chronological order.

PeerWatch [152] and [153] compare the behaviors of peer machines or peer
software components, under the assumption that the peers should perform
similarly in normal status and the majority of peers in the system are fault-
free and identify the outliers deviating from the similarity are the problematic
nodes or components. Wang et al. [154] locates the root-cause metrics with
the log anomaly score. They collect anomaly scores by log anomaly detection
algorithm and identify root-cause metrics by robust correlation analysis with
data augmentation.

For performance diagnosis, there is an ongoing trend to combine all the
observational data, including logs, traces, metrics, customer tickets, and other
information. Brandón et al. [155] use all the logs, traces, and metrics from
previous failures to build anomaly graphs, then identify the root cause of a
new anomaly by matching the anomalous pattern with previous knowledge.

3.2 automatic recovery

A wide variety of techniques and approaches have been proposed to recover
the abnormality ([156–158] study the potential failures and fixes ) in the
cloud, networks, and distributed systems [159–163]. Some methods address
functional failures, whereas others address performance failures. Some of
them are about specific recovery strategy, such as reboot [164–166], check-
pointing [167], self-adaptation [168–171], placement [172], load-balancing [173],
[174] auto-scaling for container-based clusters, dynamic reconfiguration [175],
recovery testing [176], and one of the techniques used in Recovery-Oriented
Computing (ROC) [166] consists on isolating faulty components and replacing
them with redundant ones whereas others focus on general recovery strate-
gies [177–179]. Some of them work on planning and optimizing recovery poli-
cies to improve system performance best, using model-based or reinforcement
learning methods [180–182]. Meanwhile, some work on selecting the optimal
actions for the anomaly situation. We herein review the related work in gen-
eral automatic recovery from the following aspects.

Rule-based approaches transfer the expert knowledge into IF-THEN rules
and use policies to match the rules for reacting to the faults [183–187]. For ex-
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ample, Rainbow [187] statically associates a set of action rules for each of the
pre-identified failure causes. This kind of approach is easy to develop. How-
ever, formalizing the rules requires much expertise and is a time-consuming
and challenging task. In addition, frequent human intervention to revise the
rules is required to keep them up-to-date in dynamic microservices systems,
which conflicts with the goal of automatic recovery.

More studies [184, 188–190] adopt Case-Based Reasoning (CBR) to provide
failure recovery. This kind of method collects symptoms of failures and stores
them in a problem experience repository as case-solution pairs. When a new
fault occurs, it obtains the solution by matching the cases. The hypothesis
of this technique claims that similar problems may be resolved by applying
the same type of solution. This kind of approach can effectively avoid re-
peating past mistakes and adapt to the system’s changes. However, similar
problems in microservices commonly give rise to different symptoms due to
technology heterogeneity and frequent updates. Thus, it is difficult and error-
prone to apply case matching. Furthermore, the number of exposed metrics
in microservices is very high; computing the similarity between these metrics
would cause significant overhead and delay.

Learning-based approaches use reinforcement learning or deep learning to
generate recovery policies [181, 182, 191] or commands [192] without human
intervention. Q. Zhu et al. [182] use reinforcement learning to generate error
type-oriented policies. H. Ikeuchi et al. [192] use seq2seq learning to generate
the recovery command line. This kind of approach views the system as a
black box and can adapt to the changes in microservices. However, it requires
a large set of historical failure data to train the model, which is difficult to
obtain in microservice systems. Our method can complement this approach to
help recover newly updated services. Once the failure data are available, this
learning-based method can provide another recommendation for the action.

Model-based approaches model different aspects of a healing process, such
as the properties of the fault [177], the properties of the actions [193], or use
theoretical techniques, like Markov decision theory [180, 193, 194]. Jyoti Shetty
et al. [195] select the best applicable remediation technique by considering the
impact and overhead of remediation technique, the severity of the fault, and
priority of the application. K. R. Josh et al. [180] use Bayesian estimation to
probabilistically diagnose faults and use the results to generate recovery ac-
tions. Madam [196] uses some utility functions to select the most suitable
architectural variant to repair the fault. Consequences of recovery actions are
considered in [197–199]. M.Fu et al. [197] define the impact of an action on ser-
vice response times which are caused by the increasing requests introduced
by different recovery patterns. However, the impact of a performance issue
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in microservice systems, such as hardware failure, software bugs, resource
contention, etc., cannot manifest in the number of requests. Others [198, 199]
define their models based on probabilistic parameters learned from recovery
history (e.g., the prior probability of the system being in a stable state af-
ter executing an action). However, these probabilistic parameters are difficult
to obtain in frequently updated microservice systems. The analytic queuing
models used in [200] to analyze the effects of recovery actions on applications.

In addition, some orchestration platforms where microservices run on have
the capability of self-healing to help recover the issues. For example, Ku-
bernetes enables healing by automatically restarting failed containers and
rescheduling them when their host dies [28]. However, service performance
degradation sometimes does not manifest itself as containers or nodes failure;
thus, the auto-recovery mechanism of the platform can not be triggered. In
addition, this capability probably impacts and delays the recovery time, even
resulting in a severe service outage [11].
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This chapter describes the formulation of the addressed problems, the as-
sumptions, and the main challenges of automatic performance diagnosis and
recovery in cloud microservices. It also positions the methods developed in
this thesis in a general performance problem management system and pro-
vides a conceptual overview of our methods.

4.1 problem formulation and assumptions

This section provides the detailed formulation of the problems addressed in
this thesis, namely coarse-grained cause localization, fine-grained cause local-
ization, and recovery action selection, as well as the associated assumptions.

4.1.1 Coarse-grained cause localization

Giving a cloud microservices environment, it consists of a set of services
S = {si}

ns
i=1, running inside of containers P = {pj}

np

j=1, and deployed on a num-
ber of (physical or virtual) hosts H = {hk}

nh
k=1, where ns, np, and nh are the

number of services, containers, and hosts, respectively. We define all the ser-
vices, containers, and hosts as a part of the components C = {S,P,H} of the
system.

To observe the states of the cloud microservices, a telemetry infrastructure
is deployed alongside the components to provide a collection of metrics time
series M. We denote Mc as exposed metrics of component c ∈ C, and mc

i as
an individual metric (e.g., response time, CPU utilization, disk IO read time)
of component c, where i is the type of metric. In particular, the end-to-end
service response times MS

rt are used to detect performance anomalies. When

34
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there is a performance problem in cloud microservices, a set of services Sa

tends to be detected as anomalies in the corresponding metrics mSa
rt .

Based on the above definition, the coarse-grained cause localization prob-
lem is formulated as follows:

Coarse-grained cause localization: Given a set of metrics M and detected per-
formance anomalies mSa

rt in cloud microservices, how can we best localize the faulty
service src from which the performance issue originates?

In this problem, the identified faulty service src is defined as the coarse-
grained cause, and it provides where the performance degradation comes from.
Notably, a performance anomaly tends to propagate across services in an
interdependent cloud microservices environment; hence, in addition to the src,
a number of services relying on the src are likely to be detected as anomalies.

4.1.2 Fine-grained cause localization

Similarly, a fine-grained cause localization problem can be formulated as

Fine-grained cause localization: Given a set of metrics M and detected per-
formance anomalies mSa

rt in cloud microservices, how can we best localize the culprit
metric msrc

rc that identifies not only the faulty service but also the detailed information
about the anomaly?

In this problem, the observable metrics and service performance degrada-
tion detection are the same as in the coarse-grained cause localization, but we
take one step further into the metrics to get more details about the anomaly.
We define the identified culprit metric msrc

rc as a fine-grained root cause, since
it not only indicates the source of the performance anomaly src but also ex-
plains why the anomaly occurs through the identified bottleneck metric mrc.
An example of a fine-grained cause can be m

s1
cpu_utilization, which represents

the high CPU utilization of s1 causing the performance degradation.
Fine-grained cause root localization is essential for performance recovery in

cloud microservices since the identified details of the performance anomaly
help reduce the number of potential corrective actions, which is beneficial to
decrease the MTTR and the risk of executing delusive actions. For root causes
that manifest themselves directly in the observational metrics, the identified
culprit metrics are the actual causes; otherwise, the bottleneck metrics are the
most likely symptoms that explain the performance anomalies.
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4.1.3 Recovery action selection

Recovery action selection is the next step of performance diagnosis, which
utilizes the identified root causes, determines the corrective action(s), and
attempts to restore the system to a stable state.

Same as performance diagnosis, monitoring metrics M of all components
are provided. After locating the root causes, the possible faulty service src
and/or the bottleneck metrics for the performance anomalies can be deter-
mined. Following that, a list of possible recovery actions A = {ai}

na
i=1 can be

obtained (e.g., from expert knowledge or operator-maintained scripts), where
na is the number of actions. These potential recovery actions can be service
restart, service scale-out/up, host restart, etc. Furthermore, we formulate the
recovery action selection problem as follows:

Recovery action selection: Given a set of metrics M, an identified faulty service
src, and a list of possible corrective actions A, how can we select the most appropriate
action(s) to mitigate the anomaly?

The most appropriate action defined in the problem statement is the one
that can recover the performance degraded services without disrupting other
functional services and also minimize the time of recovery.

4.1.4 Assumptions

We use the following assumptions throughout this thesis unless otherwise
stated.

The first general assumption is the existence of observational metrics of
cloud microservices that provide information about the system behaviors, ap-
plication behaviors, and components dependencies, such as the service invo-
cations and deployment information. For cloud microservices, there are many
monitoring tools to understand the states of the system, including the hard-
ware, OS, container runtime, orchestration platform, and applications. For
example, Cloud Watch [201] in Amazon, Cloud Monix [202] in Microsoft
Azure, and the open-source cloud-native monitoring tools Prometheus for
Kubernetes clusters. In this thesis, we deploy a set of cloud-native monitoring
tools alongside the cloud microservices environment to collect metrics.

The second general assumption is that the metrics used for performance
diagnosis and recovery are capable of reflecting abnormal system behaviors
and harboring a performance anomaly in the system. In our evaluations, we
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manually inject performance anomalies into microservices and filter out the
cases that fail to exhibit anomalous behaviors.

In addition to the general assumptions, performance diagnosis assumes
that root causes are directly or indirectly reflected in the observational met-
rics. For the observable causes, the localization process is able to locate them
as culprit metrics. Otherwise, we can only obtain the most likely visible symp-
toms, the intermediate causes, and give evidence about the actual causes. We
aim to identify faulty services only for problems that can only be found by
reproducing and debugging the application source code.

Regarding recovery action selection, apart from the assumption that the
root causes have been identified, we additionally assume that a list of candi-
date corrective actions is available, and their properties are stored in a knowl-
edge base. In practice, these feasible actions can be obtained from expert
knowledge or previous experiences, and the latter are usually managed in
the form of scripts or playbooks [37].

4.2 challenges of performance diagnosis and recovery

In this section, we present the challenges of coarse-grained and fine-grained
cause localization and recovery action selection in cloud microservices.

4.2.1 Challenges of coarse-grained cause localization

The challenges in locating the faulty service in cloud microservice can mainly
be two-fold. On the one hand, the challenges lie in the following characteris-
tics of cloud microservices:

• Complex dependencies. The number of services in cloud microservices
can often be hundreds or thousands (e.g., Uber has deployed 4000 mi-
croservices [16]). These services are interdependent in their business
logic implementation, highly distributed across the cloud infrastructure,
and sharing a finite set of hardware and software resources. Conse-
quently, the dependencies between services are much more complex
than in traditional distributed systems. When a performance anomaly
arises in one service, it tends to propagate widely and causes disrup-
tions to a number of services. Locating the faulty service from many
anomalous services with complex dependencies is a challenging task.

• Heterogeneous services. Technology heterogeneity [33], one key bene-
fit of MSA, allows development teams to select the most appropriate
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programming languages and technology stacks for each service. This
polyglot design may cause the same type of performance problems to
manifest themselves differently across heterogeneous services. These di-
verse anomaly symptoms make it difficult to identify the root causes.

• Dynamic services and infrastructures. In cloud microservices, services
are updated frequently to meet customer demands (e.g., Netflix up-
dates thousands of times per day [203]), and infrastructures constantly
change to adapt to workloads and orchestration platform scheduling.
For example, workloads vary temporally and spatially across services
and servers in the environment; services can be dynamically created,
migrated, and terminated to achieve resource efficiency or service relia-
bility. This highly dynamic environment aggravates the difficulty of lo-
cating the root causes. Moreover, the dynamic nature of cloud microser-
vices implies that historical failure data is limited, resulting in methods
that need to learn from failure events, such as pattern recognition-based
methods, not working.

• A wide range of root causes. For cloud microservices, the root cause of a
performance anomaly can vary widely and evolve with the frequent up-
dates of microservices. As a result, unseen performance issues with un-
known root causes are not uncommon, and pinpointing them becomes
difficult even for experienced operators. Especially when distinct root
causes manifest themselves with similar symptoms in the metrics, it is
much harder to find the root causes.

On the other hand, coarse-grained cause localization is challenged by the
detection of performance anomalies. The scale, complexity, and dynamics of
cloud microservices make it challenging to detect the anomalies accurately.
For example, numerous normal instances are wrongly reported as anomalies,
while sophisticated anomalies are overlooked. These false alarms in the de-
tection phase would complicate the modeling of anomaly propagation and
prolong the performance diagnosis.

4.2.2 Challenges of fine-grained cause localization

Except for the above challenges in coarse-grained cause localization, some
new difficulties emerge while looking for the culprit metrics.

• A large volume of anomalous metrics. A performance problem is likely
to result in a large number of components emitting anomalous metrics,





4.3 conceptual overview 40

4.2.3 Challenges of recovery action selection

In cloud microservices, deciding the most appropriate recovery action is diffi-
cult due to the following challenges:

• Delusive corrective actions. Due to the scale, complexity, dynamics,
and diverse root causes in cloud microservices, the analysis of perfor-
mance anomaly detection and diagnosis inevitably contains false posi-
tives. Such an incorrect analysis is likely to introduce delusive recovery
actions in the candidates, which not only reduces the chance of selecting
the best possible recovery actions but also increases the risk of executing
the incorrect actions.

• Limited historical failure data. Due to the dynamics of services and
cloud infrastructure, historical failure data is unavailable or is fast to
become obsolete. Sames as performance diagnosis methods, learning-
based recovery methods, which require a large amount of failure data to
learn the recovery policies, are unlikely to make the appropriate decision
to restore cloud microservices from performance anomalies.

• Large state and action spaces. The system state space is prominent in
cloud microservices, varying with the behaviors of services and infras-
tructures, the type of performance problems, and the candidate recov-
ery actions. The state space is further extended by the large number of
services and machines of cloud microservices. The ample state space
of cloud microservices complicates the creation of the system model
and causes significant computation overhead and time delay during the
decision-making process. Aside from the huge state space, the space
of candidate actions can also be large due to the high cardinality root
causes in cloud microservices.

Overall, it is challenging to determine the recovery actions in cloud mi-
croservices, where the decision is based on limited historical failure data,
and predicting the consequences of actions requires tackling the uncertain-
ties from large state and action spaces. More importantly, delusive corrective
actions are inevitable in cloud microservices, and the risky ones that lead to
severe disruptions must be avoided at all costs.

4.3 conceptual overview

To address the above challenges while considering the assumptions made in
this thesis, we present multiple methods for automatic performance diagnosis
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and error rates are collected to indicate the high-level performance of the ser-
vices; for system resources, metrics such as the utilization of CPU, memory,
cache, and disk, the network transmit/received packets are collected to show
the low-level system performance. These metrics are continuously collected,
stored, aggregated, and forwarded to the analytics and plan module for anal-
ysis.

Before pinpointing root causes and deciding correctness, anomaly detec-
tion is required to identify the occurrence of performance anomaly. It mon-
itors the service performance metrics and reports an anomaly when service
performance deviates significantly from normal operations. In the literature,
many methods [204–207] have been proposed to address the anomaly detec-
tion problem. Considering the challenges of limited historical data in cloud
microservices and the requirement of minimal MTTR, we employ an unsu-
pervised machine learning algorithm to detect performance anomalies in real-
time without requiring any labeled historical data.

After detecting performance anomalies, the next step is to identify the root
cause and determine the appropriate actions to restore cloud microservices to
a stable state. Overall, each method presented in this thesis is designed to mit-
igate the challenges described earlier. For example, all our methods require
no historical failure data that dynamic cloud microservices cannot provide. In
addition, our methods are able to provide graphical views of cloud microser-
vices, including component dependencies, anomaly propagation paths, po-
tential consequences of corrective actions, and bottleneck services or metrics.
These views can be visualized to the developers, operators, and management
teams to provide better insights into performance anomalies, the system, and
the design of microservices.

4.3.2 Conceptual overview of our methods

We then provide a conceptual overview of our methods and explain the chal-
lenges that they address.

In a cloud microservices environment, services are designed to communi-
cate to each other to implement specific business logic and are deployed on
distributed hosts. As shown in Figure 10, services s1 − s5 are deployed on
hosts h1 and h2, and are interdependent along their invocations. In this envi-
ronment, a large volume of monitoring metrics is observed. Once anomalies
are detected on service performance metrics, coarse-grained cause localiza-
tion, fine-grained cause localization, and recovery action selection are trig-
gered to resolve the performance anomalies.
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Fine-grained cause localization. Compared to coarse-grained cause local-
ization, the main challenges of fine-grained diagnosis are the increased num-
ber of anomalous metrics and the diverse anomaly patterns. Using deep learn-
ing and causal inference, we address the above challenges with two methods:
MicroRCA+ and MicroDiag.

The first method, MicroRCA+, is an extension of MicroRCA by using the
identified faulty services. It applies autoencoders to the relevant metrics of a
faulty service to detect the bottleneck that contributes to the service abnor-
mality, assuming that the most likely culprit metric is the one deviates most
significantly from its normal state. MicroRCA+ first employs autoencoders
(the structure of the autoencoder is shown in Figure 10) to learn the normal
patterns with metrics collected under normal operations, and then detects the
anomalous metrics with the trained models and finally ranks them accord-
ing to their reconstruction errors. Since MicroRCA+ leverages the results of
coarse-grained cause localization, the number of anomalous metrics and the
complexity of their anomalous patterns can be significantly reduced.

The second method, MicroDiag, identifies culprit metrics by modeling the
anomaly propagation across metrics, represented as a metric causality graph,
with Spatio-temporal causal inference. Figure 10 gives an example of met-
ric causality graph. To obtain the graph, MicroDiag first analyzes the spa-
tial propagation over components, beneficial to eliminate inference from unre-
lated metrics, and then uses a mixture of temporal CI on metrics from interac-
tive layers to differentiate diverse anomaly patterns. In this regard, numerous
metrics and diverse anomaly patterns in different layers are addressed.

In addition, we perform a comprehensive evaluation for understanding the
overall performance of CI techniques on diagnosing root causes in cloud mi-
croservices, which is missing in the literature. Six representative CI methods
from three categories are applied to locate the root causes of a range of per-
formance anomalies injected to services in microservices benchmarks. The
findings are reported and lay a foundation for the MicroDiag method.

Recovery action selection. One of the biggest concerns in recovery is to
avoid the delusive actions or commands that deteriorate the system and cause
a severe outage. Therefore, the core question of recovery is to select the appro-
priate action that resolves the issue but has little or no side-effects on other
functional services, under the condition of limited historical failure data. To
address this problem, we propose a model-based recovery action selection
method named MicroRAS, which builds a graphic system-state model to pre-
dict the effectiveness of each candidate action, including the benefit of recov-
ering the faulty service and the risk of affecting others. Figure 10 shows a
graphic model and the prediction of the recovered state after an action is ex-
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ecuted. In the end, the best possible action is selected from the candidates,
with a tradeoff between the effectiveness of action E and the recovery time T .

The selected action can be evaluated by operators or executed directly to
cloud microservices. The system states after the execution of the recovery ac-
tion are then used to update the knowledge base for analysis or learning.
All in all, MicroRAS can select the best recovery action in the absence of his-
torical failure data and adapt well to the dynamics of cloud microservices.
Moreover, the assessment of actions helps avoid the execution of delusive cor-
rective actions inducted by false positives in performance anomaly detection
and diagnosis.
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Identifying the faulty service that explains where a performance anomaly
originates in cloud microservices is challenging due to the complex depen-
dencies, numerous metrics, heterogeneous services, and frequent updates. Ex-
isting methods either require instrumenting the application (e.g., [118, 208]) or
analyzing numerous metrics (e.g., [115, 116]). The third class of methods [113,
114, 117] avoids these limitations by building a causality graph and inferring
the causes along the graph using application-level metrics. These methods
typically identify potential root causes by correlating back-end services with
front-end services, which may fail to identify faulty services that have little
or no impact on front-end services, implying they cannot adapt to the hetero-
geneity of microservices.

In this chapter, we present an application-agnostic coarse-grained cause lo-
calization method for cloud microservices, named MicroRCA1, which locates
the faulty service in real-time without requiring instrumenting to the applica-
tion source code. MicroRCA constructs an attributed graph with services and
hosts to model the anomaly propagation among services. This graph does not
only include the service call paths but also include service collocated on the
same (virtual) machines. MicroRCA correlates anomaly symptoms of com-
municating services with relevant resource utilization to infer the potential
abnormal services and ranks the potential root causes. With the correlation of
service anomalies and resource utilization, MicroRCA can identify abnormal
non-compute intensive services with non-obvious service anomaly symptoms,
mitigate the effect of false alarms to root cause localization and adapt to the
heterogeneity of microservices.

In summary, our contributions are threefold:

1 Parts of this chapter are published in [209].
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• We propose an attributed graph with service and host nodes to model
the anomaly propagation in cloud microservices. Our approach is purely
based on metrics collected at application and system levels and requires
no application instrumentation.

• We provide a method to identify the anomalous services by correlating
service performance symptoms with corresponding resource utilization,
which adapts well to the heterogeneity of microservices.

• We evaluate MicroRCA by locating root causes from different types of
faults and different kinds of faulty services. On average, of 95 test scenar-
ios, it achieves a 13% improvement in precision over the state-of-the-art
methods.

5.1 microrca : faulty service localization in cloud microservices

5.1.1 Overview of MicroRCA

Figure 11 presents the three main components, namely data collection, anomaly
detection, and cause analysis engine, for locating root causes in cloud mi-
croservices. The data collection module continuously collects metrics from
application and system layers. The application-layer metrics, particularly the
end-to-end service response times, are used to detect performance anomalies,
and metrics from both layers are used to locate root causes. Once performance
anomalies are detected, the cause analysis engine is triggered to construct an
attributed graph G with service and host nodes to represent the anomaly prop-
agation in the system. Next, the engine extracts an anomalous subgraph SG

by pruning the graph based on the detected anomalies and inferring which
service is the most likely to cause the anomalies. The output of the cause
analysis engine is a ranked list of faulty services, and the top service has the
highest probability of being the root cause.

5.1.2 Data collection

MicroRCA is designed to be application-agnostic. It collects application and
system levels metrics from a service mesh [210] and monitoring system sep-
arately and stores them in a time-series database. For cloud microservices,
system-level metrics include container and host resource utilization, as illus-
trated by container and host in Figure 11. Application-level metrics include
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5.1.4 Cause analysis engine

Once performance anomalies in end-to-end service response times are de-
tected, the cause analysis engine starts to locate the root cause in services. The
engine first constructs an attributed graph to capture the potential anomaly
propagation through services and hosts in the cluster. Next, it extracts an
anomalous subgraph from the attributed graph based on the detected anoma-
lous services, thus narrowing down the service searching space. Lastly, it as-
signs attributes to the anomalous subgraph by correlating the service perfor-
mance metrics and corresponding resource utilization and locates the faulty
services with a graph centrality algorithm named Personalized PageRank [212].
The details about the engine are introduced in the next section.

5.2 the microrca method

In this section, we describe the three procedures for identifying the faulty
service that initiates the performance anomaly, namely attributed graph con-
struction (Chapter 5.2.1), anomalous subgraph extraction (Chapter 5.2.2) and
faulty services localization (Chapter 5.2.3).

5.2.1 Attributed graph construction

In the first step, MicroRCA constructs an attributed graph to represent the
potential anomaly propagation paths in cloud microservices, which is based
on the observation that anomalies propagate not only to services along the
service call paths but also the services collocated on the same (virtual) ma-
chines [41, 213].

Our attributed graph consists of a set of service nodes S = {s1, s2, ..., sns}

and host nodes H = {h1,h2, ...,hnh
} as shown in Figure 11. The service nodes

are the services in the microservice-based application, and the host nodes are
the (virtual) machines that services are deployed on. For each service node si,
we add edges to all other service sj it communicates with, and all hosts hk it
runs on.

We discover the graph nodes and their dynamic relationships by enumerat-
ing and parsing the metrics monitored at application and system levels. The
graph nodes are interconnected as follows. (1) For the links between services,
we parse the metrics collected from the service mesh, including the source
and destination of a request. By enumerating and parsing these metrics, we
get the dependencies among services. For example, we add a directed edge
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as the anomalous service nodes. Figure 12(c) depicts the anomalous edges
as dashed lines and anomalous service nodes as shadowed nodes. Next, we
compute the average of anomalous response times for each anomalous ser-
vice node, denoted as rt_a, to a node attribute. Finally, we add nodes and
edges that are connected to anomalous service nodes. Figure 12(c) shows the
extracted anomalous subgraph, where adjacent services nodes s1 and s5 and
adjacent host nodes h1 and h2 probably are impacted.

5.2.3 Faulty services localization

Once an anomalous subgraph is extracted, we start to locate the most likely
faulty services. We first compute the similarity between connected nodes by
weighing the subgraph, then assign anomaly scores to anomalous service
nodes, and finally locate root causes based on a graph centrality algorithm.

5.2.3.1 Anomalous subgraph weighing

Edge weights represent the similarity between pairs of nodes. Similar to pre-
vious work [113, 114, 116, 117], we use the Pearson correlation function to
measure similarity, henceforth denoted as corr(i, j). In particular, weights are
computed in the following three ways:

• Weight of an anomalous edge wa. From anomalous subgraph extraction
(Chapter 5.2.2), we get a list of anomalous edges. To each anomalous
edge, we assign a constant value α ∈ (0, 1], which denotes the anomaly
detection confidence. If the real anomalies are correctly detected, we
would set α higher, and vice versa. In Figure 12(d), weights w(s1,s2),
w(s2,s3), w(s2,s4) are assigned α.

• Weight between an anomalous service node and a normal service node
wn. The weight is assigned with the correlation between two response
times: the response time between an anomalous service node and a nor-
mal service node, and the average anomalous response time rt_a of an
anomalous service node. In Figure 12(d), the weight w(s1,s3) between the
normal service node s1 and the anomalous node s3 is the correlation
between the response time rt(s1,s3) between s1 and s3, and the response
time rt(s2,s3) which is the average anomalous response time of s3.

• Weight between an anomalous service node and a normal host node wh.
We use the maximum correlation coefficient between the average anoma-
lous response time rt_a of an anomalous service node, and the host
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resource utilization metrics Uh, including CPU, memory, I/O, network,
to represent the similarity between service anomaly symptoms and the
corresponding resource utilization. Given that the response time of both
normal and abnormal services have strong correlations with the host re-
source utilization, we take the average of in-edge weights win as a factor
of the similarity. Thus, wh

ij between service node i and host node j can
be formulated as:

wh
ij = max

k:uk∈Uh(j)
corr(uk, rt_a(i)) ·wI(i)

Algorithm 1: Anomalous Subgraph Weighing
Input: Anomalous subgraph SG, anomalous edges, anomalous

nodes, anomaly response time rt_a, host metrics Uh, response
times of edges rt

Output: Weighted SG

1 for node vj in anomaly nodes do
2 for edge eij in in-edges of vj do
3 if rt(i,j) in anomalous edges then
4 Assign α to wij ;
5 else
6 Assign corr(rt_a(j), rt(i,j)) to wij

7 end
8 end
9 for edge ejk in out-edges of vj do
10 if node vk is service node then
11 Assign corr(rt_a(j), rt(j,k)) to wjk ;
12 else
13 Assign avg(win(j))×max(corr(rt_a(j),Uh(k))) to wjk

14 end
15 end
16 end
17 return Weighted SG

To summarize, the weight wij between node i and node j is given by Equa-
tion 9, where rt_a(i) denotes the average anomalous response time of anoma-
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lous service node i. Figure 12(d) shows these three types of weights along the
edges.

wij =



α, if rt(i,j) is anomalous,

corr(rt(i,j), rt_a(j)), if i ∈ S and normal,

corr(rt(i,j), rt_a(i)), if j ∈ S and normal,

as per Equation 5.2.3.1 if j ∈ H and normal.

(9)

The procedure of anomalous subgraph weighing is presented in Algorithm 1.
In this algorithm, we iterate over the anomalous nodes and compute the
weights for in-edges in lines L1-L8 and for out-edges in lines L9-L15.

5.2.3.2 Assigning service anomaly score

We calculate anomaly scores for anomalous service nodes and assign them
to a node attribute, denoted as AS ∈ [0, 1], to indicate its average effects on
linked nodes and its abnormality.

To quantify the anomaly, we take an average weight of the service node
w(sj) that indicates the impact to linked nodes. Furthermore, In container-
based microservices, we assume container resource utilization is correlated
with service performance. We thus complement the service anomaly with
the maximum correlation coefficient between the anomalous service node’s
average anomalous response time rt_a and its container resource utilization
Uc. To summarize, given anomalous service node sj, the anomaly score AS(sj)

is defined as:

AS(sj) = w(sj) · max
k:uk∈Uc(sj)

corr(uk, rt_a(sj)) (10)

5.2.3.3 Localizing faulty services

We locate the faulty services from the anomalous subgraph with a graph cen-
trality algorithm - Personalized PageRank [212], which proves a good per-
formance in capturing anomaly propagation in previous work [114, 116, 117,
213]. In Personalized PageRank, the Personalized PageRank vector (PPV) v is
regarded as the root cause score for each node, which shows the probability
of being the root cause.

To compute PPV, we first define P as the transition probability matrix,
where Pij =

wij∑
j wij

if node i links to node j, and Pij = 0 otherwise. A pref-
erence vector u denotes the preference of nodes, which we assign the value
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of anomaly scores of the nodes in our method. In this regard, the anomaly-
related service nodes are visited more frequently when the random telepor-
tation occurs. Formally, the personalized PageRank equation [212] is defined
as:

v = (1− c)Pv+ cu (11)

Where c ∈ (0, 1) is the teleportation probability, indicating that each step
jumps back to a random node with probability c, and with probability 1− c

continues forth along with the graph. Typically c = 0.15 [212]. After ranking,
we removed the host nodes from the ranked list as MicroRCA is designed
to locate faulty services. Notably, as the link between service nodes in the
anomalous subgraph represents the service call-callee relationship, we need
to reverse the edges before running the localization algorithm. We give an
example of the ranked list of root causes in Figure 12(e).

5.3 evaluation

In this section, we present the experimental setup, experimental results, a
comparison with state-of-the-art methods, and discuss the characteristics of
our approach.

5.3.1 Experimental setup

5.3.1.1 Testbed

We evaluate MicroRCA in a testbed established in Google Cloud Engine (GCE)2

where we set up a Kubernetes cluster, deploy the monitoring system and ser-
vice mesh, and run the benchmark named Sock-shop3. There are four worker
nodes and one master node in the cluster; three of the worker nodes are ded-
icated to microservices and one for data collection. In addition, one server
outside of the cluster runs the workload generator. Table 1 describes the de-
tailed configuration of the hardware and software in the testbed.

5.3.1.2 Benchmark

Sock-shop3 is a microservice demo application that simulates an e-commerce
website that sells socks. It is a widely used microservice benchmark designed

2 Google Cloud Engine - https://cloud.google.com/compute/
3 Sock-shop - https://microservices-demo.github.io/
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Table 1: Hardware and software configuration used in experiments.
Hardware Configuration

Component Master node Worker node(x4) Workload generator

Operating System Container-Optimized OS Container-Optimized OS 18.04.2 LTS

vCPU(s) 1 4 6

Memory(GB) 3.75 15 12

Software Version

Kubernetes Istio Prometheus Node-exporter

1.14.1 1.1.5 2.3.1 v0.15.2

to aid in demonstrating and testing microservices and cloud-native technolo-
gies. Figure 13 shows the architecture of sock-shop3. It consists of 13 microser-
vices, which are implemented in heterogeneous technologies and intercom-
municate using REST over HTTP. In particular, front-end serves as the entry
point for user requests; catalogue provides a sock catalogue and product infor-
mation; carts holds shopping carts; user provides the user authentication and
store user accounts, including payment cards and addresses; orders places or-
ders from carts after user log-in through the user service, then process the
payment and shipping from the payment and shipping services separately. For
each microservice, we limit the CPU resource to 1vCPU and memory to 1GB.
The replication factor of each microservice is set with 1.

Figure 13: Sock-shop architecture.
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Table 2: Request rates sent to microservices.

Microservices front-end catalogue user carts orders

Concurrent users 100 100 100 100 100

Request rate(/s) 200 300 50 50 20

5.3.1.3 Workload generator

We develop a workload generator using Locust4, a distributed, open-source
load testing tool that simulates concurrent users in an application. The work-
load is selected to reflect real user behavior, e.g., more requests are sent to the
entry points front-end and catalogue, and fewer to the shopping carts, user and
orders services. We distribute requests to front-end, orders, catalogue, user, carts
with five locust slaves, and provision 500 users that in total generate about
600 queries per second to sock-shop. The request rate of each microservice is
listed in Table 2.

5.3.1.4 Data collection

We use the istio3 service mesh, which in term uses Prometheus1, to collect
service-level and container-level metrics and node-exporter4 to collect host-
level metrics. Prometheus is configured to collect metrics every 5 seconds and
sends the collected data to MicroRCA. At the service level, we collect response
time between each pair of services. In both container-level and host-level, we
collect CPU usage, memory usage, and the size of the total sent bytes.

5.3.1.5 Faults injection

Our method is applicable to any type of anomaly that manifests itself as in-
creased microservice response time. In this evaluation, we inject three types of
faults commonly used in the evaluation of the state-of-the-art approaches [113,
116, 152] to sock-shop microservices to simulate the performance anomaly. (1)
Latency, we use the tc 5 to delay the network packets; (2) CPU hog, we use
stress-ng 6, a tool to load and stress compute system, to exhaust CPU resources.
As microservice payment is non-compute intensive whose CPU usage is only
50mHz, we exhaust its CPU heavily with 99% usage. (3) Memory leak: we use
stress-ng to allocate memory continuously. As microservice carts and orders

4 Locust - https://locust.io/
5 tc - https://linux.die.net/man/8/tc
6 stress-ng - https://kernel.ubuntu.com/ cking/stress-ng/
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Table 3: The detail of injected faults.

Microservices front-end catalogue user carts orders payment shipping

Latency(ms) 200 200 200 200 200 200 200

CPU Hog(vcpu*%) - 2*95 2*95 2*95 2*95 2*99 2*95

Memory Leak(vm*MB) - 2*1024 2*1024 1*2048 1*2048 2*1024 2*1024

are CPU and memory-intensive services, and memory leak causes CPU over-
head [211], we only provision 1 virtual machine. The details of the injected
faults are described in Table 3.

To inject performance anomalies in microservices, we customize the existing
sock-shop docker images by installing the above faults injection tools. Each
fault lasts 1 minute. To increase the generality, we repeat the injection process
five times for each fault. It produces a total of 95 experiment cases.

5.3.1.6 Evaluation metrics

To quantify the performance of each algorithm on a set of anomalies A, we
use the following metrics:

• Precision at top k denotes the probability that the top k results given by an
algorithm include the real root cause, denoted as PR@k. A higher PR@k

score, especially for small values of k, represents the algorithm correctly
identifying the root cause. Let R[i] be the rank of each cause and vrc be
the set of root causes. More formally, PR@k is defined on a set of given
anomalies A as:

PR@k =
1

|A|

∑
a∈A

∑
i<k(R[i] ∈ vrc)

(min(k, |vrc|))
(12)

• Mean Average Precision (MAP) quantifies the overall performance of an
algorithm, where N is the number of microservices:

MAP =
1

|A|

∑
a∈A

∑
1⩽k⩽N

PR@k. (13)

5.3.1.7 Baseline methods

We compare MicroRCA with some baseline methods as follows:
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Table 4: Performance of MicroRCA.

microservics front-end orders catalogue user carts shipping payment average

name

Latency

PR@1 1.0 1.0 1.0 0.6 1.0 0.6 1.0 0.89

PR@3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MAP 1.0 1.0 1.0 0.91 1.0 0.89 1.0 0.97

CPU Hog

PR@1 - 1.0 1.0 1.0 0.8 1.0 0.6 0.9

PR@3 - 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MAP - 1.0 1.0 1.0 0.94 1.0 0.89 0.97

Memory Leak

PR@1 - 1.0 0.8 1.0 1.0 0.8 0.8 0.9

PR@3 - 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MAP - 1.0 0.97 1.0 1.0 0.94 0.94 0.975

The average precision of shipping and payment that is lower than other ser-
vices is likely for three reasons. First, payment is a non-compute intensive
service; even though we exhaust the resources of CPU and memory, its re-
sponse time is scarcely impacted. Second, there are few requests to shipping
and payment, and they do not request any other services, which makes the
response time increase less obvious than other faulty services. Third, to de-
tect anomalies in their experimental cases, we use a small threshold in the
anomaly detection module, which causes more false alarms.

Table 4 demonstrates the performance of MicroRCA in different types of
faults and microservices. It shows that MicroRCA can achieve almost 90% in
terms of PR@1 and effectively locate all root causes in the top three faulty
services.

5.3.3 Comparisons

To evaluate the performance of MicroRCA further, we apply it and the base-
line methods on all experimental cases.

We compare the overall performance of all methods and their performances
in identifying different types of faults. Table 5 shows the performance, in
terms of PR@1, PR@3, and MAP, for all methods. We can observe that Mi-
croRCA outperforms the baseline methods overall. In particular, MicroRCA
achieves a precision of 89% and MAP of 97%, which are at least 13% and
15% higher than the baseline methods separately. In general, Microscope per-
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Table 5: Performance of each algorithm.
Metric RS MonitorRank Microscope MicroRCA Improvement to Improvement to

MonitorRank (%) Microscope(%)

Overall

PR@1 0.21 0.41 0.79 0.89 118 13.3

PR@3 0.46 0.65 0.86 1.0 53.2 15.9

MAP 0.58 0.73 0.85 0.97 33.7 14.7

Latency

PR@1 0.17 0.23 0.66 0.89 287 34.8

PR@3 0.46 0.66 0.71 1.0 51.5 40.8

MAP 0.58 0.73 0.7 0.97 32.9 38.6

CPU Hog

PR@1 0.23 0.6 0.87 0.9 50 3.5

PR@3 0.5 0.67 0.93 1.0 49.3 7.5

MAP 0.61 0.77 0.92 0.97 26 5.4

Memory Leak

PR@1 0.23 0.43 0.87 0.9 109 3.5

PR@3 0.37 0.63 0.97 1.0 58.7 3

MAP 0.57 0.68 0.95 0.98 44.1 3.2

forms well in CPU hog and memory leak when the anomalies are detected
correctly but worse in fault latency when more false alarms are detected. How-
ever, MicroRCA performs well in all types of faults and achieves an average
improvement of 24% in MAP compared to MonitorRank and Microscope.

Next, we compare the performance of each method on different microser-
vices. Figure 15 shows the comparison results, in terms of PR@1, PR@3, and
MAP, on different services. We can see that MonitorRank performs well in
identifying dominating nodes that have large degrees, like microservice or-
ders. However, it fails to identify leaf nodes, like microservice payment. This
is because MonitorRank calculates the similarity based on the correlation be-
tween front-end services and back-end services. The anomaly of microservice
payment decreases the correlation during propagation, and thus the root cause
localization fails. On the contrary, Microscope performs better in identifying
leaf nodes, such as the microservice payment, but worse in identifying dom-
inating nodes, like microservice orders. This is because the Microscope tra-
verses the graph based on the detected anomalies and puts the anomalous
child nodes into a list of potential causes, which makes it fail to identify the
dominating nodes when alarms are reported from child nodes. Compared to
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cases; MonitorRank can identify root causes, but root causes are always low-
ranked; MicroRCA identifies the root cause correctly in scenarios with high
and low F1-score. In particular, MicroRCA identifies 13 out of 18 faults in
the top 1 when F1-score is less than 0.4, which is higher than the other two
methods.

5.3.4 Discussion

Here we discuss the overhead and sensitivity of MicroRCA.

5.3.4.1 Overhead

The overhead of MicroRCA on cloud microservices is mostly caused by the
data collection module, which continuously collects the application-level and
system-level metrics. Table 6 shows the overhead of data collection and the
execution time of modules in MicroRCA. We can see that the execution time of
MicroRCA is short enough to run in real-time, given a data collection interval
of 5 seconds. However, the overhead of the data collection module is a little
high. In the future, we would like to explore lightweight monitoring tools to
reduce this overhead.

Table 6: The overhead of MicroRCA.

Modules Cost

Data collection 0.6 vCPU and 1511MB RAM

Anomaly Detection 0.01s (8 cores)

Attributed Graph Construction 3.3s (8 cores)

Root Cause Localization 0.03 (8 cores)

5.3.4.2 Sensitivity

To evaluate the sensitivity of MicroRCA to the anomaly detection confidence(α),
which is assigned to the anomalous edges in the weighing anomalous sub-
graph (Chapter 5.2.3). We analyze the performance of MicroRCA with differ-
ent values of α. Figure 17 shows the performance of MicroRCA, in terms of
overall PR@k(k=1,2,3) and MAP of different types of faults over all the test
cases, when α ranges from 0.15 to 1.0. We can see that the performance of
MicroRCA changes with the weight assigned to the anomalous nodes. PR@1

increases to the maximum when α = 0.55 and drops when α ⩾ 0.7; PR@3

is always 1 when α is less than 0.55, and drops after that. MAP of all types
of faults is relatively stable and keeps over 96%. In this case, we choose 0.55
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5.4 chapter summary

Locating the source of a performance anomaly is critical for cloud microser-
vices recovery, but it is also challenging due to the complex dependencies,
a large number of services, polyglot service design, and frequent updates.
We presented MicroRCA, an application-agnostic method for identifying the
faulty service that initiates a performance degradation in cloud microservices
to mitigate these challenges. MicroRCA locates the bottleneck service in real-
time by constructing an attributed graph to show the anomaly propagation
among services and hosts and correlating service anomalous performance
symptoms with corresponding resource utilization to infer the faulty service.
We developed a prototype of our method and evaluated it on a microservice
benchmark. The evaluation shows MicroRCA achieves 89% in precision and
97% in mean average precision (MAP). In particular, our method improves
the precision in identifying root causes from both dominating services with
large degrees and leaf services with non-obvious anomaly symptoms, where
the state-of-the-art methods fall short. Furthermore, we discussed the sensi-
tivity of the diagnosis performance against the anomaly detection results and
the computation overhead of our method.

Nevertheless, it is still time-consuming and error-prone with the identified
faulty service to determine the corrective actions for resolving the perfor-
mance anomaly. Therefore, in the next chapter, we provide a fine-grained
cause localization method that dives into the observational metrics to iden-
tify the evidence to explain why the performance anomaly occurs, aiming to
reduce the number of candidate recovery actions.
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In this chapter, we aim to identify the fine-grained causes of performance
anomalies in cloud microservices, which explains why a performance anomaly
occurs or at least provides some insights. Apart from the challenges of the
scale, dynamics, and complex dependencies between services in coarse-grained
cause localization, fine-grained cause diagnosis is additionally challenged by
the complexity of metrics (e.g., the massive number of metrics and their di-
verse anomaly patterns).

To pinpoint fine-grained causes, various approaches based on deep learn-
ing, pattern recognition, and causal inference have been proposed in the liter-
ature. However, approaches that use deep learning, such as Seer [118], require
instrumentation of the application. Approaches based on pattern recognition
suffer a high computation complexity along with the increased number of
failure patterns and can only identify root causes of known issues; The third
class of approaches based on causal inference constructs a causality graph
with metrics from multiple components and may fail to localize root causes
that manifest in diverse anomaly symptoms.

In this chapter, we present two methods, MicroRCA+ and MicroDiag, for
fine-grained cause localization in cloud microservices. In the first method, Mi-
croRCA+, we reduce the computation overhead and the inference of diverse
anomaly symptoms from other services by leveraging the coarse-grained causes
identified by MicroRCA (presented in Chapter 5). For a detected faulty ser-
vice, MicroRCA+ applies autoencoders to its relevant metrics to locate the
culprit metric that contributes to its abnormality. In the second method, Mi-
croDiag, we apply Spatio-temporal cause inference into the metrics collected
from all components and model the anomaly propagation across metrics

65
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with a metric causality graph. A mixture of causal inference techniques is
employed to capture the heterogeneous anomaly patterns, which differenti-
ates the anomaly properties of metrics from interactive layers. This method is
based on our findings from an experimental evaluation of CI techniques on
locating root causes of performance anomalies.

Furthermore, we summarize the contributions in this chapter as follows:

• We propose a method named MicroRCA+, to locate the bottleneck met-
rics for a faulty service using deep learning, without requiring historical
failure data and application instrumentation. The evaluation shows that
this method can identify the culprit metric with 85.5% in precision.

• We evaluate the overall performance of CI techniques on diagnosing per-
formance anomalies in cloud microservices through applying six repre-
sentative CI techniques to locate root causes of a range of performance
anomalies injected into two well-known microservices benchmarks.

• Based on the experimental findings of CI evaluation, we propose a fine-
grained causal localization method named MicroDiag, using Spatio-temporal
causal inference. The evaluation shows that MicroDiag can rank 97% of
the culprit metrics in one of the top 3 most likely causes, outperforming
at least 31.1% of several state-of-the-art methods.

6.1 microrca+ : culprit metric localization with deep learning

This section presents MicroRCA+1, which employs deep learning to identify
the culprit metrics that explain why the performance anomaly occurs. This
method is an extension of our MicroRCA, which identifies the culprit ser-
vices. It applies a deep learning algorithm into the relevant metrics of the
detected faulty service to infer the bottlenecks that cause the service perfor-
mance degradation.

Figure 19 shows the overall structure of our method. Before triggering the
culprit metric localization (CML) procedure, the performance anomaly is de-
tected, and the possible faulty services are pinpointed in culprit service lo-
calization (CSL), using the metrics data collected from microservices and the
underlying cloud infrastructure. For each service in the ranked list of faulty
services, MicroRCA+ applies autoencoders to identify the most likely metrics
that contribute to the service abnormality. In the end, a list of (service, metrics
list) pairs is output as the root causes.

1 Parts of this section are published in [214].
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manifest as both high memory usage and high CPU usage. As our method
targets the root cause that manifests itself with a significant deviation of the
causal metric, the precision decreases when the root cause manifests itself in
multiple metrics. On average, our method achieves 85.5% in precision and
96.5% in MAP.

6.2 causal inference techniques for performance diagnosis

One of the predominant approaches for diagnosing performance anomalies
in cloud microservices is to formulate it as a causal inference problem. It de-
rives the causal relations between components or metrics represented with a
causality graph to capture the anomaly propagation, and then it identifies the
potential root causes by ranking the nodes in the graph. For example, Micro-
scope [113] applies the PC algorithm, and Loud [116] uses Granger causality
to obtain the causal graphs. Although many state-of-the-art approaches em-
ploy CI techniques to locate the root causes of performance anomalies, the
overall performance of this class of methods for root cause analysis is not
well understood. To this end, this section presents the results of a compre-
hensive evaluation of six representative CI methods from three categories,
including Granger causality, causal network learning algorithms, and struc-
tural equation models (SCMs), for locating root causes at both coarse and fine
granularity for cloud microservices2 (the background of CI techniques is in-
troduced in Chapter 2.3.3). The root cause localization is based on observable
metrics from a set of fault injection experiments, where three types of anoma-
lies are injected into heterogeneous services of two widely used microservice
benchmarks. In addition, we developed a non-CI method that leverages the
domain knowledge of service dependencies for comparison. To the best of our
knowledge, this work is the first such comprehensive study to be reported on
evaluating CI techniques for performance diagnosis in cloud microservices.
The experimental results presented in this work are useful for understanding
how well CI methods perform on root cause localization in order to make an
appropriate decision when applying CI methods for performance diagnosis.

6.2.1 Experimental design

To understand the performance of CI techniques on locating root causes in
cloud microservices, we first formulate three research questions, which demon-
strate several dimensions of the challenges (i.e., numerous metrics and hetero-

2 Parts of this section are published in [215].
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geneous anomaly patterns) in microservice performance diagnosis. To cover
the challenge of a wide range of root causes, we conduct a set of experiments
by injecting three types of anomalies into multiple different services. We then
evaluate the performance of CI methods according to the three research ques-
tions with the metrics data collected from microservice benchmarks. Lastly,
we study the computation overhead and scalability of selected CI methods.
The details of our experiment design are shown in Table 8. The three research
questions are formulated as follows:

RQ1: How do CI techniques perform on pinpointing the faulty service that initi-
ates the performance anomaly (coarse-grained diagnosis)?

To localize the faulty service that initiates the performance anomaly, we ap-
ply CI methods to the response times of all services to construct the anomaly
propagation among services. The number of metrics is equal to the number of
services, and the heterogeneity of anomaly patterns in response times is rel-
atively low. To understand the performance of CI methods against different
numbers of metrics in a low-level heterogeneity, we compare the performance
of CI methods under three types of feature reduction, including no feature
reduction, feature reduction, and ideal feature reduction. Moreover, we com-
pare CI methods to a non-CI method that uses the domain knowledge of
service dependency graph.

RQ2: How do CI techniques perform on locating the culprit metric that contributes
to the faulty service abnormality, given the faulty service (fine-grained diagnosis
with giving the coarse-grained cause)?

We assume the faulty service is known, which can be satisfied with our
previous work [209] and other faulty service localization methods [111, 113],
then apply CI methods on metrics exposed by the faulty service to identify the
culprit metric that leads to the service’s abnormality. The number of metrics
is relatively low, but their heterogeneity increases as different types of metrics
are likely to have different anomaly patterns.

RQ3: How do CI techniques perform on locating the culprit metric from all avail-
able metrics (fine-grained diagnosis)?

We use all observable metrics to pinpoint the culprit metric that initiates the
anomaly. The number of metrics is n times larger than the number of metrics
in RQ2, where n is the number of services. Meanwhile, the heterogeneity of
metrics is at a high level as diverse anomaly patterns exist in different types
of metrics and heterogeneous services. Given the high heterogeneity, we also
compare the performance of CI methods against feature reduction.
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6.2.3 Causal inference techniques

This work aims to understand the performance of the class of CI techniques
on microservices performance diagnosis. To achieve this goal, we select six
representative CI methods from three categories, namely Granger causality,
causal network learning algorithms, and structural equation models (SCMs),
based on their popularity, assumptions, and availability of implementations.
Notably, we use the pure form of these methods rather than the tailed ones
used in existing approaches [111, 129] as we aim to understand the perfor-
mance of different types of CI methods in diagnosing microservice perfor-
mance in general rather than achieving high diagnostic accuracy. The chosen
CI methods are as follows:

• GC: GC [58] is a popular CI method that has been adopted by many
performance diagnosis methods [115, 116] to build the causal graph. We
use χ2 as the Granger causality test.

• PC algorithm with partial correlation (PC-corr): PC-corr is a version
based on PC algorithm [216] that uses Fisher’s z-transformation of the
partial correlation to test the (conditional) independence.

• PC algorithm with kernel (PC-kernel): PC-kernel is a version of PC algo-
rithm that uses kernel-based independence criteria [217] which can deal
with non-linear causal-effect relationships and non-Gaussian noise. We
use the Hilbert-Schmidt independence criterion to test independence.

• Greedy Equivalence Search (GES): GES [60] is a score-based CI method.
We use "obs" which is an ℓ0-penalized Gaussian maximum likelihood
estimator based on BIC score in the implementation.

• Causal Additive models (CAM): CAM [218] is an SCM method that iden-
tifies causal relations by fitting an additive SEM with Gaussian error,
where the causal-effect relationships can be non-linear.

• LiNGAM: LiNGAM [64] is an SCM method that assumes linear causal
relationships but with non-Gaussian disturbance.

We conclude the chosen CI methods and their hyperparameters in Table 9.
In addition, we implement and compare to a non-CI method named Corr,
which uses the service dependency graph directly and incorporates the anomaly
symptoms by setting weights with correlation coefficients.
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Table 9: The chosen causal inference methods and their hyperparameters.

Method Category Assumptions Hyperparameters References

GC Time-lag Linearity AIC criteria for lag
selection; maxlag
= 30s; χ2 test for
granger causality;
p-value = 0.05.

package
statsmodels [219]

PC-corr Constraint-based Gaussianity; Linearity CItest = gaussian, al-
pha=0.01

Causal discovery
toolbox [220]

PC-kernel Constraint-based Non-Gaussianity; Non-linearity CItest = hsic_gamma,
alpha=0.01

Causal discovery
toolbox [220]

GES Score-based Gaussian; Linearity score=obs Causal discovery
toolbox [220]

CAM SCM Gaussianity; Non-linearity score=nonlinear,
cutoff=0.001, sel-
method=gamboost,
pruning=False, prun-
method=gam

Causal discovery
toolbox

LiNGAM SCM Non-Gaussianity; Linearity nonparametric;
max_iter=1000

ICALiNGAM in
python package
lingam [221]

6.2.4 Benchmarks and evaluation metrics

The evaluation is based on metrics data collected from fault injection experi-
ments on microservice benchmarks.

6.2.4.1 Benchmarks

We select two representative microservice benchmarks named sock-shop3 and
train-ticket3 (one of the largest microservice benchmarks), which simulate an
e-commerce website for selling socks and a train ticket booking system, re-
spectively. Sock-shop consists of thirteen microservices, and train-ticket has
forty-one microservices. They are polyglot (e.g., Java, Golang, Node.js, etc.)
and intercommunicate using REST over HTTP. Compared to sock-shop, train-
ticket has longer propagation paths and exposes a larger number of metrics.
Figure 24 shows the key services in train-ticket and the potential anomaly
propagation paths of the station microservice. Anomalies from this service
probably affect nine microservices, and the longest propagation path includes
six microservices, which would result in a large number of anomalous met-
rics.

3 Train-ticket - https://github.com/FudanSELab/train-ticket
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services. We first take all the metrics without any feature reduction as the
input and obtain the diagnosis result in terms of PR@1, PR@3, and AP@5

shown in Figure 26(a). Overall, all the methods cannot identify the faulty
services well (with a maximum of 27% in PR@1). This is because services are
interdependent not only in abnormal status but also in normal status. These
normal dependencies in metrics introduce extra causal links in the graph,
which renders the graph centrality algorithm unable to get the precise root
cause.

Next, we apply a feature reduction which results in an F1-score of 0.6 in
anomaly detection. The diagnosis result is shown in Figure 26(b) shows that
the CI technique with feature reduction improves on average 77.4% in PR@3,
outperforming this scenario with no feature reduction by 31.6%. In addition,
we can see that constraint-based methods achieve a higher performance than
non-CI method Corr, like PC-corr achieves an improvement of 19% in terms
of PR@1 over Corr. This is because feature reduction with an F1-score of 0.6
includes false positives, resulting in spurious propagation paths in Corr. In
contrast, CI methods can eliminate parts of the spurious paths, thus increasing
the accuracy.

Finally, we evaluate the performance of CI methods with an ideal feature re-
duction, where only the expected anomalies, including the faulty service and
its upstream services, are used to construct the anomaly propagation graph.
The performance of all methods is shown in Figure 26(c). Overall, all the
methods achieve higher performance when only true-positives are detected
as anomalies, on average, achieving 70.7% in PR@1, improving 39% over fea-
ture selection with an F1-score of 0.6. Particularly, both Corr and PC-kernel
achieves 100% precision.

We note that the results reported here can be improved if advanced methods
are applied according to the state-of-the-art methods, like using metrics from
multiple layers to score the abnormality of services and assigning attributes
to edges and nodes before ranking that has been done in our previous work
MicroRCA [209].

Summary: Neither CI methods nor the non-CI method based on service de-
pendency graphs can identify the faulty services well without feature reduc-
tion, as causal relations exist among both normal and abnormal metrics. How-
ever, their performance can be improved if feature selection can be applied
before causal inference. In particular, PC-kernel and the non-CI method Corr
achieve 100% in precision when only true-positives are detected as anomalies.
More importantly, constraint-based CI methods, like PC-corr, are more robust
than the knowledge-based non-CI method to false positives.
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Table 10: The performance of CI methods on fine-grained diagnosis with giving faulty
service against different types of anomaly.

Methods GC PC-corr PC-kernel GES CAM LiNGAM average

Latency

PR@1 0.24 0.15 0.15 0.21 0.09 0.21 0.175

PR@3 0.56 0.41 0.44 0.41 0.38 0.41 0.435

AP@5 0.55 0.45 0.49 0.44 0.36 0.44 0.455

CPU Hog

PR@1 0.23 0.63 0.73 0.17 0.2 0.17 0.355

PR@3 0.70 0.80 0.83 0.73 0.5 0.73 0.715

AP@5 0.66 0.85 0.87 0.63 0.45 0.63 0.68

Memory Leak

PR@1 0.32 0.11 0.11 0.18 0.21 0.18 0.19

PR@3 0.57 0.57 0.50 0.61 0.39 0.61 0.54

AP@5 0.56 0.51 0.49 0.54 0.46 0.54 0.517

6.2.5.3 RQ2: How do CI techniques perform on fine-grained diagnosis with giving
the faulty service?

To address this research question, we apply CI methods to the faulty service’s
relevant metrics and evaluate their performance on locating the culprit met-
rics contributing to the service abnormality. Table 10 shows the performance
of each CI method on locating the culprit metric on different types of anoma-
lies in terms of PR@1, PR@3, and AP@5 when no feature reduction is applied.
We can see that Granger causality (GC) performs better than other methods
on latency issues. This is because latency anomalies propagate to other re-
sources through service performance degradation, which can be reflected as
time-lags among metrics, which satisfies the assumption of GC.

Regarding CPU hog issues, most of the CI methods identify the root cause
with a higher performance except the CAM method. This is because CPU is-
sues reflect themselves as strong correlations between cause and effect metrics
and weak correlations with non-causal metrics. Figure 27 shows the maximum
and minimum coefficient of determination r2 of linear regression (r_max,
r_min) and Pearson correlation coefficients (p_max, p_min) between the cul-
prit metric and other metrics. We can see that there is a significant differ-
ence between the maximum and minimum values (95.7% of p_max and 12%
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Table 11: The performance of CI methods on different ranges of metrics in terms of
PR@3.

RQ Metrics GC PC-corr PC-kernel GES CAM LiNGAM Average

RQ1 response times of all services 0.47 0.62 0.47 0.25 0.41 0.25 0.45

RQ2 metrics of culprit service 0.61 0.59 0.59 0.58 0.42 0.58 0.56

RQ3 metrics of all services with filtering 0.45 0.4 0.43 0.23 0.15 0.26 0.32

mance of CI methods on dealing with metrics of all services (RQ3) is lower
than others, as metrics in RQ3 include diverse anomaly patterns not only from
service-relevant metrics but also from heterogeneous services. In comparison,
most CI methods achieve a higher performance in identifying the culprit met-
ric from metrics exposed by faulty service.

Summary: It is difficult to identify fine-grained causes from all metrics,
which is a mixture of many normal and abnormal metrics (20.6% in PR@5).
The performance of CI methods can be improved with the feature reduction,
but it does not rank the root cause in the top 5 of the list well (49.7% in PR@5).
Instead, a drill-down approach that first identifies the faulty service pinpoints
the culprit metric that attributes to the faulty service is more promising to
obtain the fine-grained causes.

6.2.6 Computation overhead and scalability

We discuss the overhead of CI methods and their scalability to the number of
microservices and metrics.

6.2.6.1 Overhead

We analyze the computation overhead of each CI method, varying with the
number of metrics it handles. Figure 29(a) shows the computation time of the
six evaluated CI methods (running on the same Intel Core i7 version server
with 8-core CPU and 16 GB memory) against the number of metrics (from 10

to 30, and with 5 minutes of data gathered from each metric, in a total of 60

data points). We can see that the computation times of CAM and PC-kernel in-
crease dramatically with the number of features, and GC also becomes slightly
slower when the number of metrics increases.

6.2.6.2 Scalability

We evaluate the scalability of CI methods on one of the largest benchmarks,
named train-ticket, which has longer propagation paths and a larger number
of metrics.
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• CI methods need to incorporate anomaly symptoms through anomaly
detection or anomaly scores to achieve high performance. In addition,
some CI methods are more robust to false positives in anomaly detection
than the domain knowledge-based non-CI method.

• The performance of CI techniques varies with the types of anomalies.

• The performance of CI techniques is sensitive to the heterogeneous anomaly
patterns manifested in the metrics. Therefore, to identify fine-grained
root causes, a drill-down approach that identifies the coarse-grained
causes first then looks into the detailed information from its relevant
metrics is better than inferring from all metrics.

• With the increasing number of services or metrics, the runtime of some
CI techniques tends to increase drastically, and the precision of fine-
grained diagnosis decreases. However, some CI methods can still per-
form well in identifying the faulty service that initiates the performance
anomaly.

6.3 microdiag : culprit metrics localization with causal infer-
ence

Based on our findings from the above experimental study, we propose a fine-
grained cause localization method, named MicroDiag4. This method applies
Spatio-temporal causal analysis towards the metrics to capture the anomaly
propagation in the system represented as a metric causality graph, and further
localizes the source of the propagation from the inferred causality graph as
the root cause.

6.3.1 Overview of MicroDiag

Figure 30 shows the procedures of fine-grained cause localization with Micro-
Diag. The cause localization is based on metrics Mc exposed by components C
from multiple layers, including services, containers, and server nodes. Once
metrics are collected, the unvarying metrics are removed, and the rest are
grouped by components. Meanwhile, the anomaly detection module continu-
ously detects the unexpected service behaviors using Birch Clustering (intro-
duced in Chapter 5.1.3).

After the service performance degradation is detected, MicroDiag initiates
the cause localization by inferring the spatial propagation among components

4 Parts of this section are published in [222].
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rics. In the metric causality graph, each node represents an individual metric
mc

i of a component c and an edge represents a cause-effect relationship that
is also an anomaly propagation path. For example, an edge from metric m

p3
1

to metric m
p3
2 in Figure 31(c), means that m

p3
1 causes m

p3
2 and the anomaly

propagates from m
p3
1 to m

p3
2 .

MicroDiag identifies the causal relations among metrics by differentiating
the causal properties of metrics between different layers using different causal
inference techniques. For each service in the component dependency graph,
we construct a small causality graph with metrics of components in a path
from service to the server that spans three layers (i.e., service, container, and
host). We note that the temporal causal inference is applied to anomalous ser-
vices. As the number of services in microservice-based applications is large,
analyzing the anomaly propagation among anomalous services can reduce
not only the computation overhead but also the interference of unrelated met-
rics. In our example in Figure 31, the anomalous services are s1, s2, and s3.

In the temporal causal inference, three types of causal properties are con-
sidered: (1) propagation across services; (2) propagation across resource and
service-related metrics of linked service and container nodes; (3) propagation
across resource metrics of linked container and server nodes.

Regarding (1) propagation across services, as the anomaly propagates along
with the service invocations, specifically, an anomaly in a downstream service
would affect its upstream services. For example, the increased response time
of service s3 would increase the tail or medium latencies of service s1 and s2.
Therefore, MicroDiag reverses the edges between services in the component
dependency graph to represent the anomaly propagation paths among ser-
vices. As shown in Figure 31(c), the edges between services s1, s2, and s3 are
opposite to the edges in Figure 31(b).

Regarding (2) propagation across metrics of linked container and service
nodes, MicroDiag leverages a time-lag-based causal inference method named
Granger causality to capture the anomaly propagation. This is based on the as-
sumption that a causal metric affects other metrics in an accumulative manner,
where a cause precedes an effect. Granger causality is helpful to determine
whether a time series can be used to predict another time series.

Selecting the time lag is a critical problem in GC. The estimation of Au-
toRegression models requires the model order (time-lag) included. Too few
lags can lead to poor representation of the data, whereas too many of them
can lead to problems in the model estimation. MicroDiag adopts the Akaike
Information Criterion (AIC) to estimate the model order. AIC is calculated for
a set of model orders, and the order that yields the lowest value of AIC is
selected as the model order of the AR model to determine Granger causality
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between two time series. Once the time lag is determined, MicroDiag infers
the causal relations by applying GC with the χ2 test. As GC tests might intro-
duce spurious causal relations among container resource metrics, we calibrate
the causality with the results from the SCM model.

Regarding (3) anomaly propagation across resource metrics, MicroDiag em-
ploys a structural causal model (SCM) [63] to infer the causal relationships
among the resource metrics. An anomaly from some resource metrics propa-
gates to other resource metrics simultaneously. For example, a memory leak
issue in a container manifests itself in both memory and CPU resource met-
rics and also in the corresponding resource metrics of the server node. This
kind of propagation is known as contemporary effects, which are hard to iden-
tify through conditional independence tests, like the PC algorithm and time-
lag-based methods used in the existing methods [111, 116]. Instead, we ad-
dress the identification of the contemporary effects with a structural causal
model (SCM). Considering that server resources are the sum of the container
resources it runs, i.e., a linear function, and anomalous resource metrics fol-
low a non-gaussian distribution [223], we employ the LiNGAM to infer the
anomaly propagation paths across resource metrics independent containers
and servers.

LiNGAM estimates a causal ordering of variables with no prior knowledge
of the structure and assumes the observed data is generated from a process
represented graphically by a directed acyclic graph (DAG). Let us represent
this DAG with a p× p adjacency matrix B = {bij} where every bij represents
the connection strength from a metric mi to another mj in the DAG. Instead
of getting the causal order of the metrics, we use the adjacency matrix to
construct the anomaly propagation graph. Therefore, for a metric mcx

i of com-
ponent cx, it is defined as a linear function of the causal metrics m

cy
j from

which the anomaly propagates, and an independent factor ecxi , where the lat-
ter from the measurement errors or fluctuations of the metrics. Formally, mcx

i

can be defined as Equation 15.

mcx
i =

∑
k(j)<k(i)

bijm
cy
j + ecxi (15)

Furthermore, we rewrite the model in a matrix form as follows:

m = Bm+ e, m = Ae (16)

where m is the n-dimensional random vector (metric time series), and B is
the direct causal effect and A is the total causal effect. For each bij, it repre-
sents the direct causal effect of mj on mi and each aij, the (i, j)-th element of
the matrix A = (I−B)−1, represents the total effect of mj on mi. The goal of
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identifying the causal relations is to estimate the adjacency matrix B only by
observing the data m.

Algorithm 2: DirectLiNGAM.
Input: p-dimensional random vector m, a set of its variable subscripts

U and a pxn data matrix of the random vector as M

Output: Matrix B

1 Initialize an ordered list of variable L := ∅ and k := 1

2 for Repeat until p− 1 subscripts are appended to L do
3 Perform least square regression of mi on mj for all i ∈ U \ L ( i ̸= j)

and compute the residual vectors r(j) and the residual data
matrix R(j) from the data matrix M fro all j ∈ U \ L. Find a
variable mk that is most independent of its residuals:
mk = argminj∈U\LTpwling(mj;U \ L),

4 where Tpwling is the independence measure defined in
Equation 18.

5 Append m to the end of L

6 Update m := rk, M := Rk

7 end
8 Append the remaining variable to the end of L.

9 Construct matrix B by following the order in L, and estimate the
connection strengths bij by using least squares regression on the
original random vector m and the original data matrix M.

10 return B

MicroDiag employs a method named DirectLiNGAM [224] to infer the
causality from the LiNGAM model. DirectLiNGAM has been proven to give
promising results, especially when the number of observed data points is
small compared to the dimension of the data, and it also shows algorithmic
advantages because of no requirement of gradient-based iterative methods.

DirectLiNGAM estimates a causal order of variables by successively sub-
tracting the effect of each independent component from given data. It first
identifies an exogenous variable based on the independent measures of pair-
wise variables. For each pair of mi and mj, it applies least square regression
and gets the residual ri and rj, and then it applies a differential mutual infor-
mation to measure the dependency between these two variables.

DMI = I(mi, ri) − I(mj, rj) = H(mi) + H(
ri
σri

) − H(mj) − H(
rj

σrj

) (17)
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Where H is the differential entropy which is computed with maximum en-
tropy approximation. This criterion is equivalent to evaluating the indepen-
dence of mi vs ri and mj vs rj using mutual information and choosing the
direction in which the regressor is more independent of the residual.

We first evaluate pairwise independence between a variable and each of the
residuals and next take the sum of the pairwise measures over the residuals.
Let us denote by U the set of the subscripts of variables mi, that is, U=1, ···,
p. We use the following statistic to evaluate independence between a variable
mj and its residuals r

j
i = mi −

cov(mi,mj)

var(mj)
mj when mi is regressed on mj:

Tpwling(mj;U) =
∑

i∈U,i̸=j

D̂MI(mi, r
j
i,mj, rij) (18)

Next, we remove the effect of the exogenous variable from the other vari-
ables using least squares regression. Then, we can find the second variable
in the causal ordering of the original observed variables by analyzing the
residuals and their LiNGAM and finding an exogenous residual. The itera-
tion of these effect removal and causal ordering estimates the causal order of
the original variables. Formally, the algorithm is defined as Algorithm 2. The
causality among resource metrics is shown as the container and server metrics
in Figure 31(c).

After the above three steps, MicroDiag constructs a metric causality graph
for all components in the cloud microservices. Figure 31(c) gives an example
of the constructed metric causality graph from component dependency graph
Figure 31(b).

6.3.2.3 Culprit metric localization

With the constructed metric causality graph, MicroDiag weighs the graph
with the Pearson correlation coefficient between two linked metrics, show-
ing the probability of the anomaly propagation, and ranks the culprit metrics
with the PageRank algorithm. The transition probability matrix P in PageR-
ank is computed as Pij =

wij∑
jwij

if node i links to node j, and Pij = 0 other-
wise, and the teleportation probability is set to c = 0.15 as recommended in
[212]. MicroDiags returns a ranked list of potential root causes by ranking the
nodes in the metric causality graph. We note that the metric causality graph
needs to be reversed before conducting the localization procedure, as shown
in Figure 31(d). An example of the ranked list of culprit metrics is shown in
Figure 31(e), where m

p3
1 has the highest probability to be the root cause.
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6.4 evaluation

In this section, we set up a testbed to evaluate the effectiveness of Micro-
Diag on locating culprit metrics of performance anomalies and compare our
method to two baseline methods.

6.4.1 Experimental setup

We use the testbed described in Chapter 5.3.1 using the same cluster settings,
benchmark, fault injection tools, and workload generator. Two types of perfor-
mance anomalies: CPU hog and memory leak are injected into four microser-
vices (catalogue, carts, orders, and users) in sock-shop. For each anomaly, we
run the system in normal status for 5 minutes, then we inject one anomaly to
one of four microservices for 1 minute and wait another 5 minutes for it to
cold down in the system before performing the next fault injection. We repeat
our experiments five times, and in total of 40 cases. To quantify the perfor-
mance of each system, we use the following two evaluation metrics PR@k
and AP@k (defined in Chapter 6.2.4.2).

6.4.1.1 Baseline methods

We compare our method to two state-of-the-art methods as follows:

• Loud [116]: Loud localizes the culprit metrics by constructing a propaga-
tion graph of anomalous metrics using the Granger causality test. To im-
plement Loud, we use the anomalous metrics detected by our anomaly
detection and construct the propagation graph using the Granger causal-
ity test, then rank the culprit metrics using PageRank after assigning
weights to edges.

• CauseInfer [111]: CauseInfer identifies the culprit metrics by construct-
ing a service dependency graph and metric causality graphs for each
service using the PC algorithm. To implement CauseInfer, we use the
dependency among services in our component dependency graph as
the service dependency graph, then use the PC algorithm with partial
correlation to get the metric causality graph and rank the culprit metrics
with our localization method. We note that the independent test and
ranking method in CauseInfer have poor performance in our dataset.
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it has a high chance to identify the root cause; therefore, it achieves higher
performance in PR@5.

Table 12: Comparison of baseline methods and our MicroDiag.

Metric Loud CauseInfer MicroDiag Minimum improvement

to baseline methods (%)

PR@1 34 9 60 76.5

PR@3 74 49 97 31.1

PR@5 94 69 100 6.4

AP@5 70 42 89 27.1

6.5 chapter summary

Fine-grained cause localization is beneficial to decrease the scope of inves-
tigation and the number of potential recovery actions. Therefore, it is cru-
cial to identify the fine-grained cause or derive some evidence additional to
the faulty service for operators to diagnose and recover cloud microservices.
However, locating the fine-grained cause from metrics is difficult in cloud mi-
croservices due to the increasingly complex dependencies, the scale, and the
diversity in metrics.

We presented MicroRCA+ and MicroDiag to address the challenges by ap-
plying deep learning and causal inference to fine-grained performance diag-
nosis in cloud microservices. MicroRCA+ is an extension of coarse-grained
diagnosis and applies autoencoders to detect bottleneck metrics, addressing
the problem caused by diverse anomaly patterns among services. The evalu-
ation on a microservice benchmark shows that MicroRCA+ can identify the
culprit metric with 85.5% in precision.

As MicroRCA+ assumes, the most likely culprit metric deviates signifi-
cantly to its normal state, which might be violated by issues that manifest
themselves in multiple metrics simultaneously, such as the memory leak is-
sue. To this end, we proposed MicroDiag, which is able to capture contempo-
rary propagation in real-time. Before applying CI techniques into fine-grained
cause localization, we conducted extensive experiments to investigate the over-
all performance of this class of methods on identifying root causes of perfor-
mance anomalies in cloud microservices. MicroDiag identifies the root cause
by modeling the anomaly propagation among metrics, using spatial and tem-
poral causal inferences. Anomaly patterns among metrics from interactive
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layers in cloud microservices are differentiated with a mixture of causal infer-
ence techniques. Experimental results show that MicroDiag can rank 97% of
the culprit metric in one of the top 3 most likely causes, outperforming the
state-of-the-art methods at least 31.1%.

With the identified fine-grained causes, the space of recovery actions can be
reduced. In the next chapter, we present a method to select the best recovery
action from the candidates to mitigate the performance anomaly in cloud
microservices.
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To achieve resilient microservices, proposed solutions ranging from fault-
tolerant service design and development, service resilience testing, and self-
healing exist or have yet to be developed. Several investigations have focused
on resiliency patterns in microservices design [225, 226] and testing [176, 227].
By contrast, less attention has been placed on automatic recovery techniques.

One of the key problems arising in the automatic recovery is to determine:
given a detected service performance anomaly, which action(s) should be
taken to mitigate it? However, the selection of recovery actions for mitigat-
ing an identified performance anomaly in cloud microservice is challenging
to achieve due to the ample space of the system states and recovery actions,
uncertainties in the system and applications, delusive corrective actions, and
limited historical failure data.

In the literature, different approaches have been proposed to recover is-
sues. For example, rule-based approaches select recovery actions by matching
the user-defined rules [183]. However, the rules require frequent updates fol-
lowing the corresponding updates of microservices, which conflicts with the
goal of automatic recovery. Case-based approaches identify recovery actions
by matching previous failure cases [188]. However, their overhead and delay
are high due to the numerous metrics in microservices. This also holds true
for the learning-based approaches [182]. Further suggested methods select re-
covery actions by analyzing action properties [198, 199]. However, they are
highly dependent on the probabilistic parameters learned from recovery his-
tory (e.g., the success rate of action to a given failure) and can be misled by
delusive corrective actions. Notably, all the above approaches assume that his-

95
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torical failure data is available for learning, which is not always the case for
cloud microservices.

To overcome the shortcoming that the existing methods require historical
failure data in the existing methods, we propose an automatic recovery selec-
tion method, MicroRAS 2, to mitigate performance anomalies. MicroRAS is a
model-based method that can adapt to the frequent changes of microservices
without requiring historical data of previous failures and can reduce the po-
tentially destructive consequences of recovery actions by assessing their side
effects. MicroRAS firstly models the system state with an attributed graph
used to track the propagation of positive and negative effects of recovery ac-
tions. Next, it estimates the benefit (positive effects) and the risk (negative
effects) associated with each action by predicting the future state, where the
system would transit with the selected action. Lastly, it aggregates all these ef-
fects into an effectiveness value with fuzzy logic and selects the best possible
action with a tradeoff between action effectiveness and the time of the action
to mitigate the anomaly.

This chapter includes the following contributions 1.

• We propose a recovery action selection method based on real-time data
collection and action properties observed during non-anomalous opera-
tion instead of historical failure data (Chapter 7.3).

• We propose an action effects estimation model to capture the positive
and negative effects associated with a recovery action, which is adaptive
to the anomalous context of the system (Chapter 7.3).

• We evaluate MicroRAS by mitigating different types, levels, and con-
texts of anomalies. Experimental results show that the actions selected
by MicroRAS can mitigate the faulty service well, affecting other ser-
vices 44.3% less, and complete at least four times faster than baseline
recovery strategies (Chapter 7.4).

7.1 movitating example

In this section, we use a concrete example to illustrate the motivation of our
proposed method. For the sake of simplicity, we focus on a small part of a
large-scale microservice-based application shown in Figure 33. This applica-
tion consists of five microservices (MS) deployed on two hosts, where MS 1, 3
and 5 are co-located on Host 1, MS 1, 2 and 4 are on Host 2. Requests to MS 1

1 MicroRAS - Parts of this chapter are published in [228]
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Figure 33: An illustration of the Motivating example.

are load-balanced across two replicas. The interactions among microservices
are henceforth referred to as the microservices call graph.

Subsequently, slower response times of MS 3 are observed and classified
as a performance anomaly. The operators identify the root cause as MS 3, by
manually debugging or root cause analysis tools. Meanwhile, they obtain a
list of possible recovery actions based on their expert knowledge and previous
experience, the latter commonly maintained as scripts or playbooks [37]. The
recovery actions can be restart service, scale-out service, restart host, etc.

Let us take scale-out service as an example of recovery action. When MS
3 scales out, the consequences of this action can be diverse. If the recovery
time (the time it takes for the action to have an effect and the microservice
to recover from the performance anomaly) of scale-out is very short and the
available resources are sufficient, the performance anomaly would be miti-
gated. However, if the recovery time is too long, the performance anomaly
could propagate to upstream microservices, i.e., MS 1 and 2 in the blue box
in the call graph, increasing the response times of MS 1 and 2. Even worse, as
Microservice 1 is a user-facing microservice, it could cause service disruption
for end-users directly. Besides, if the available resources on the host are insuf-
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Figure 34: The workflow of recovery action selection.

ficient, the scale-out action might affect the co-located microservices, i.e., MS
1 and 5 (purple in Figure 1), or even the entire application.

In order to mitigate performance anomalies in cloud microservices without
causing significant downtime, it is crucial to identify the appropriate action
that can recover the anomalous services while minimizing the side effects
on other services and recovery time. We propose a model to assess potential
recovery actions’ positive and negative effects and select the best possible
action with a tradeoff between the effects and the recovery time.

7.2 microras : recovery action selection in cloud microservices

To adapt to the dynamics of the cloud microservices, where the recovery his-
tory is not always available, we propose MicroRAS, a recovery action selection
method to automatically mitigate the performance anomalies based on real-
time contextual information of the system. The main idea of our method is to
understand the anomalous context of the system with a system-state model,
using the data collected in real-time, then selecting recovery action by predict-
ing the effects on the recovered system state if an action were to be applied.
Recovery time is an essential factor in this decision, as unattended anomalies
can propagate quickly, and it is a common objective in the literature [172, 182,
229]; MicroRAS takes both the action effects and recovery time as objectives
and models the selection as an optimization problem.

Before the recovery process is initiated, detection of slower response times
of microservices, location of the faulty service, and a set of possible recovery
actions (a knowledge base) are required. The methods for anomaly detection
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and faulty service localization have been well addressed in the literature [41,
132, 209, 230, 231], and the actions a knowledge base can be configured based
on properties of the available recovery actions as observed in non-anomalous
operations.

Figure 34 shows the workflow of recovery action selection. Once the se-
lection process is triggered, MicroRAS selects the recovery action with the
following steps: (1) it gathers the runtime contextual information of the sys-
tem and models the system state with an attributed graph that can also track
the propagation of action effects across services and hosts. (2) it predicts each
potential recovery action’s benefit and risk by estimating the future state the
system would transit into by applying that action. (3) it aggregates the action
benefit and risk into an effectiveness value and formulates the action selec-
tion as an optimization problem with effectiveness and recovery time as the
objectives. After the action execution, the observed state change caused by the
action and the recovery time is used to update the action knowledge base. We
remark that the runtime complexity of MicroRAS is low, as the time complex-
ity of the operations in our method is linear to the number of the services,
nodes, and potential actions. Thus it scales well with the size of the cloud
microservices environment.

7.3 the microras method

In this section, we describe the three key modules in MicroRAS to select
the best appropriate recovery action without historical failure data, namely
system-state model (Chapter 7.3.1), action effects estimation (Chapter 7.3.2),
and recovery actions selection (Chapter 7.3.3).

7.3.1 System-state modeling

To estimate the potential effects of an action on the system, awareness of the
system context in different states is necessary. We build a system-state model
to capture the context, including the dependency among components in the
system and their states of resources.

In a cloud microservices environment, services inter-communicate through
lightweight protocols and are deployed across multiple hosts. An action ap-
plied to one service does thus influence not only the service itself but also
other services, either through invocation paths or their co-located hosts. Un-
derstanding service influence is similar to the anomaly propagation prob-
lem [213]. Therefore, we model the system-state with an attributed graph that
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Table 13: Notations used in MicroRAS.

Notation Description

A a list of na feasible actions, A = {ai}
na
i=1

G an attributed graph

S a set of ns services S = {si}
ns
i=1

H a set of nh hosts H = {hj}
nh
j=1

si a service with c pods, si = {sij}
c
j=1

sij a pod of service si, the pod runs on host hj

SM a set of system state models, SM = {smi}i∈{N,A,R}

each smi is represented by a unique {G,SV}

smN,smA, smR normal, abnormal, and recovered system state

SV a set of state variables of ns services/pods
and nh hosts, SV = {svk}

ns+nh
k=1

svk state variables of a pod/host, svk = {svRU, svRA}

svRU resource usage (1 vCPU, 1GB memory, etc)

svRA resource allocation such as host capacity,
pod limits (2 vCPU, 2GB memory)

Ee,Eb,Er action effectiveness and its compositions: benefit, risk

UT(sij),UT(hj) resource utilization of pod sij, host hj (%)

T recovery time of an action

not only shows the dependencies among services and hosts but also tracks the
propagation of action effects. In addition, we define the state of services and
hosts in the system as a set of variables SV . As MicroRAS aims at performance
anomalies caused by resource bottlenecks, we store in SV the resource usage
svRU and resource allocation svRA, in terms of CPU, memory, etc. The major
notations are summarized in Table 13. We define the system state model as
follows:

7.3.1.1 System-state model

A set of system states SM, including normal smN, abnormal smA, and recov-
ered smR state, is defined using an attributed graph G together with a set
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of system state-variables SV , including resource usage svRU and resource al-
location svRA. Notably, the normal and abnormal states are fully observable,
whereas accurate prediction of smR is key to select the recovery action.

Once the response time between two services is slow and classified as a per-
formance anomaly, MicroRAS constructs an attributed graph that holds the
normal smN and abnormal smA system states, using the method proposed in
our previous work [209]. In addition, the state variables SV are stored in the
node attributes. The data for graph construction and state variables are gath-
ered from the runtime monitoring of hosts and services, including a service
mesh.

The attributed graph in Figure 35(a) corresponds to our motivating exam-
ple in Figure 33. In Figure 35(a), the solid lines indicate service invocations,
and the dashed lines show which host the service runs on. For each service
and host, we collect resource usage and allocation in normal and abnormal
states. In particular, for service si, which runs with multiple replicas (pods),
we collect the resource data for each of the np pods sij. In Figure 35(a), np = 2

for service s1, and 1 for the other services.

7.3.2 Action effects estimation

Based on the observed normal and abnormal system states, we estimate effects
associated with each potential recovery action by predicting the future state
that the system would transit into if applying the action.

Action effects in MicroRAS are composed of positive and negative effects.
We define the positive effect as the benefit Eb that the identified anomalous
service would achieve in terms of service performance and the negative ef-
fect as the risk Er that the affected hosts would have in terms of resource
contention, thus affecting the services that run on the hosts. Due to the uncer-
tainty and complexity of cloud microservices, it is difficult to estimate service
performance after recovery action execution accurately. We first estimate the
resource utilization UT of service, then map the estimated UT into fuzzy sets
of service performance using a fuzzy inference system described in Chap-
ter 7.3.3. Hence, in order to estimate the action effects, we need to predict the
recovered state, including the attributed graph and system state-variables af-
ter an action execution, in order to identify the potentially affected hosts and
compute the resource utilization of the faulty service (action benefit Eb) and
affected hosts (action risk Er).

To predict the recovered state of an action, we need to know the current
system state and the properties of the action, as the action affects the system
state in different ways. Although there is a wide range of recovery actions, we
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Based on the abnormal state smA and the topology property of a recov-
ery action, MicroRAS predicts the graph changes in recovered state smR. Fig-
ures 35(b) and (c) show the recovered states after migrating and scaling out
anomalous service s3, where service migration removed the link between s3
and h1 and adds a new link between s3 and h2, whereas service scale-out
adds a new link between s3 and h2. In these two recovery actions, the affected
hosts are h1 and h2.

After the attributed graph is predicted, MicroRAS estimates the resource
utilization of the faulty service and affected hosts. When an action applies to
pod sij of faulty service si or affects host hj, the resource utilization in recov-
ered state smR is defined as the ratio between resource usage and allocation:

UT(hj, smR) =
svRU(hj, smR)

svRA(hj, smR)
(19)

UT(sij, smR) =
svRU(sij, smR)

svRA(sij, smR)
(20)

Assuming an ideally equal load balancing between pods of a service, the
utilization of service si is defined as:

UT(si, smR) =
1

np

np∑
j=1

UT(sij, smR). (21)

where np is the total number of pods. As some actions may under-provision
the resource, the estimated UT can be over 1, thus its range is defined as
UT > 0.

Based on the action properties and system state variables in normal and ab-
normal states, MicroRAS estimates the resource usage and resource allocation
of pod sij and host hj in the recovered state as follows.

The future resource usage of a pod in a recovered state varies with the
recovery action. If the action modifies the pod, it is the configured resource
usage ∆svRU; If the action newly creates the pod, it is assigned with the service
normal resource usage after load-balancing. Otherwise, the pod keeps the
abnormal resource usage. Taking Figure 35 as an example, the resource usage
of pod s32 in action migration in Figure 35(b) is ∆svRU; The resource usage
of pod s31 in action scale-out in Figure 35(c) keeps the abnormal resource
usage svRU(s31, smA), and pod s32 is assigned with the load-balanced normal
resource usage of service s3, which is svRU(s3, smN)/2. We summarize the pod
resource usage in Equation 22.
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svRU(sij, smR) =


∆svRU, if sij is modified,

svRU(sij, smA), if sij is not modified,
svRU(si,smN)

c , if sij is a new pod.

(22)

Pod future resource allocation svRA(sij, smR) depends on the pod limits and
the available resources of host hj it runs on. If the available resources in hj are
sufficient (exceeds the pod limits), svRA(sij, smR) is equal to the pod limits
and otherwise to the available resources in hj. The pod limits can be mod-
ified by the action with ∆svRA or kept in an abnormal state. The available
resource of hj is the host resource allocation svRA(hj, smR) with a consump-
tion of svRU(hj, smA), where svRA(hj, smR) can be modified by the action or
remain the same as svRA(hj, smA):

svRA(hj, smR) =

∆svRA, if hj is modified,

svRA(hj, smA) otherwise.
(23)

Once the future pod resource usage (Equation 22) and host resource al-
location (Equation 23) are determined, we can estimate the future resource
utilization of the affected host hj where the pod sij runs on, as shown in
Equation 24. Host resource usage svRU(hj, smA) increases by pod resource us-
age svRU(sij, smA) if pod sij is migrated to hj, or decreases by svRU(sij, smA)

if sij is migrated from hj to another host.

UT(hj, smR) =
svRU(hj, smA)± svRU(sij, smA)

svRA(hj, smR)
(24)

Future resource utilization of hj is summarized in Equation 25. For each
host that service si runs on, we calculate the resource utilization and use the
maximum utilization as the risk of the action.

UT(hj, smR) =

 ∆svRU

svRA(hj,smR)
, if hj is modified,

as per Equation 24, if sij is migrated.
(25)

7.3.3 Recovery action selection

After we estimate the benefit and risk associated with each recovery action
in terms of resource utilization, we map these into fuzzy sets of service per-
formance and aggregate them into a single crisp effectiveness value through
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Table 14: Fuzzy rules for action effectiveness.

Benefit Risk Effectiveness

low high low

low medium low

low low medium

medium high low

medium medium medium

medium low medium

high high low

high medium medium

high low high

fuzzy rules for the inference system are defined based on the cloud microser-
vices and their administrative policy. MicroRAS uses the fuzzy rules shown
in Table 14.

Based on the inputs, some fuzzy rules are fired and integrated. The de-
cisions are made according to the aggregation of the fired fuzzy rules. The
aggregated fired fuzzy rules output a single fuzzy set which is the input of
the defuzzification procedure. We use the centroid method for defuzzification
to convert the fuzzy set into a crisp effectiveness value.

After obtaining the effectiveness values of the potential recovery actions,
we formulate the action selection as an optimization problem, taking the ef-
fectiveness and action recovery time as the objectives. The recovery time of
an action is measured as the time between the action initiation and comple-
tion in normal status, which initially was obtained by executing the recovery
action in non-production environments. Once the action is executed actually
to recover an anomaly, the recovery time is updated with the time between
action initiation and action taking effect.

Given a set of potential recovery actions A, for each recovery action ai ∈
A, its effectiveness is Ee(ai) and its recovery time is T(ai). For consistency
purposes, we normalize the values of effectiveness and recovery time into the
range (0, 1) through Min-Max normalization. The performance of action ai is
quantified with a utility function u(ai):

u(ai) = weEe(ai) −wtT(ai) (26)

where we and wt are user-defined weights for action effectiveness and re-
covery time (we +wt = 1, 0 < we,wt < 1). By setting the weights, users can
prioritize the effectiveness and recovery time. We finally select the action that
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has the highest utility value among the recovery action in A according to
Equation 26.

7.4 evaluation

In this section, we evaluate the performance of MicroRAS through experi-
ments on a cloud testbed. The experimental setup, evaluation results, and
comparisons are presented.

7.4.1 Experimental setup

We evaluate MicroRAS in the same testbed presented in Chapter 5.3, using
the same cluster settings, microservices benchmark, workload generator. How-
ever, we extend the fault injection from service to server host and use different
evaluation metrics described as follows.

7.4.1.1 Faults injection

We evaluate our MicroRAS with two different types of anomalies (CPU hog
and memory leak), different levels of anomalies (stressing services and hosts),
and different contexts (with total cluster resources either sufficient or insuf-
ficient to resolve the anomaly). To inject the CPU hog and memory leak, we
use stress-ng6, a tool to load and stress computer systems to exhaust the CPU
and memory resources continuously. We customize the existing sock-shop
docker images to inject performance anomalies in microservices by installing
the faults injection tool. The injected microservice is catalogue, and the injected
host is the host catalogue runs on. In the cluster resources sufficient scenario,
we only inject anomalies to service or host. In the cluster resources insufficient
scenario, we also stress the other hosts. The details of the anomaly scenarios
are shown in Table 15.

Table 15: Details of anomaly scenarios.

anomaly type host-level service-level

CPU Hog (vCPU * %)
cluster sufficient 4*95 3*95

cluster insufficient (other hosts) 4*80 4*80

Memory Leak (vm * %) 1*73 2*50
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affected services. AP is defined as the mean percentage of decreased per-
formance for affected services from abnormal state perf(si,mA) to recov-
ered state perf(si,mR|a) with action a, to the normal state perf(si,mN):

AP(a) =
1

N

∑
si

perf(si,mR|a) − perf(si,mA)

perf(si,mN)
(28)

• Recovery Time (RT) quantifies time from initiating the mitigation action
until the performance of the anomalous service and any affected services
have stabilized.

7.4.1.3 Baseline methods

We compare MicroRAS with three recovery strategies which require no histor-
ical data and are commonly used in the comparisons in the literature:

• No Action: Here, the operation team just passively observes the system
without taking any actions. This strategy shows the potential damages
of the injected performance anomalies when left unattended.

• Random Selection: This strategy might be adopted when the operation
team cannot determine the correct recovery action precisely but urgently
is trying to fix the problem. The operating team randomly selects one
action from the candidates and applies it [229].

• Restart: This is a prevalent recovery strategy, which can be applied at
various levels. In a production environment, a significant fraction of fail-
ures can be cured by restarts [66]. We perform restarts at the host or pod
level to resolve host and service level anomalies, respectively.

7.4.2 Experimental results

In our experiments, under normal workload, the 50th percentile (p50) of ser-
vice response times is around 10 ms in normal status and is in range (35 ms,
300 ms) in abnormal status, depending on the anomaly types; the 95th per-
centile (p95) of response times is around 40 ms in normal status and ranges
from 160 ms to 2000 ms in abnormal status.

Figure 39 shows the results of our proposed recovery action selection method
for mitigating different anomaly scenarios. For each anomaly scenario, the
bar charts show the mean recovered percentage (RP) and affected percentage
(AP) in terms of p95 and p50 of response times, and the dashed line shows
the mean recovery time.
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and all the services running on the host would be restarted, which introduces
fluctuations and uncertainty in the system.

Finally, we compare the overall performance of all strategies for all types of
anomaly scenarios. Table 17 shows the performance, in terms of RP, AP, and
recovery time (RT), for the four recovery strategies. We can observe that Micro-
RAS outperforms other strategies overall. In particular, MicroRAS achieves a
recovered percentage of 94.7%, affecting other services at least 44.3% less and
completing at least four times faster than other strategies.

Table 17: Overall performance of different strategies.

Metrics RP AP RT(s)

No Action 0.037 0.138 -

Random Selection (RS) 0.646 0.273 40.565

Restart 0.897 0.295 62.652

MicroRAS 0.947 0.152 10.913

Improvement to RS(%) 46.6 44.3 73.1

Improvement to Restart (%) 5.5 48.5 82.6

7.5 chapter summary

This chapter presents a method named MicroRAS to select the best possible
recovery action based on an action effectiveness assessment model to mitigate
performance degradation in cloud microservices. We estimated the positive
and negative effects for each action and select the action with the best tradeoff
between action effectiveness and recovery time, using data collected in real-
time and knowledge obtained in normal status without the use of historical
failure data. A system state model is used to estimate the effects, represented
by an attributed graph that tracks the propagation of action effects across
services and hosts. Experimental results show that MicroRAS can effectively
recover the anomalous services by 94.7% of their degraded performance while
affecting the performance of other services at least 44.3% less and mitigating
the anomaly at least four times faster than several baseline strategies.
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C O N C L U S I O N

This thesis presents automatic performance diagnosis and recovery methods
to improve the design, operation, and reliability of cloud microservices.

To diagnose the origin of a performance anomaly, we presented an application-
agnostic method named MicroRCA, which aims to identify the bottleneck
service in real-time. MicroRCA constructs an attributed graph to model the
anomaly propagation among services and correlates service anomalous per-
formance symptoms with the corresponding resource utilization to infer the
anomalous services. Experimental evaluations on a microservice benchmark
show that MicroRCA achieves 89% in precision and 97% in MAP, outperform-
ing 13% in precision over several baseline methods. In addition, MicroRCA
adapts well to the heterogeneity of microservices and is robust to the results
of performance anomaly detection.

This thesis further investigates methods for locating the reason for the oc-
currence of a performance anomaly, which aim to localize the culprit met-
rics that provide evidence to explain why the performance anomaly occurs.
We presented two methods, MicroRCA+ and MicroDiag, which employ deep
learning and Spatio-temporal CI, respectively. The MicroRCA+ method ap-
plies autoencoders to the relevant performance metrics of a faulty service and
leverages reconstruction errors to rank the anomalous metrics. Experimental
evaluation shows that MicroRCA+ can identify the culprit metrics well with
85.5% in precision. MicroDiag models the anomaly propagation across met-
rics with a metric causality graph, using Spatio-temporal causal inference. It
addresses the challenge of diverse anomaly patterns in metrics with a mixture
of causal inference. Experimental results show that MicroDiag can rank 97%
of the culprit metrics in one of the top 3 most likely causes, outperforming at
least 31.1% of the state-of-the-art methods. Moreover, to fully understand the
overall performance of causal inference techniques on microservices perfor-
mance diagnosis, we conducted a comprehensive evaluation by applying six
representative CI techniques to locate root causes of a range of performance
anomalies injected into microservices benchmarks.

Lastly, with the identified root causes, we presented a method named Mi-
croRAS to select the most appropriate recovery action to mitigate the perfor-
mance anomaly. This decision-making process is based on an action effective-
ness assessment model that estimates the positive and negative effects of each

113
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candidate recovery action. The best possible recovery action is selected with a
tradeoff between the effectiveness of an action and its recovery time, thus min-
imizing the MTTR. Experimental results show that MicroRAS can effectively
recover the anomalous services by 94.7% of their degraded performance while
affecting the performance of other services at least 44.3% less and mitigating
the anomaly at least four times faster than several baseline recovery strategies.

Although this thesis has addressed the central aspects of automatic perfor-
mance diagnosis and recovery of performance anomalies in cloud microser-
vices, there are several interesting directions for further investigations. These
directions can be derived from the key limitations of our current methods.
The first key limitation exists in the performance diagnosis. We would like to
combine all three observability of cloud microservices (i.e., logs, traces, and
metrics) to diagnose a broader range of root causes in cloud microservices.
The second key limitation lies in the recovery action selection. Our existing
method considers a single-step ahead mitigation only, and some performance
anomalies cannot recover completely. Therefore, we would like to investigate
multi-step recovery strategies thus to resolve more types of anomalies. There
is also a third key limitation in our monitoring tools. The involved tools (Ku-
bernetes, Istio, etc.) are not designed to operate with sub-second monitor-
ing intervals. This adds a limitation to how fast anomalies can be detected,
rendering our methods unable to identify anomalous services for which the
anomalies propagate faster than our monitoring interval. Therefore, a possible
extension is to investigate or develop monitoring tools to collect fine-grained
metrics for cloud microservices.

Nevertheless, the results presented in this thesis already show that our
methods for locating root causes and recommending recovery actions are ca-
pable of supporting automatic performance diagnosis and recovery in cloud
microservices, improving service reliability, and relieving operators from trou-
blesome and tedious work.
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