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 10 

Abstract 11 

Reducing overall household energy consumption through the application of information and 12 

communication technologies (ICT) can play an important role in the transformation towards 13 

sustainable consumption patterns, e.g. through the optimisation of energy-consuming processes. The 14 

challenge in the environmental assessment of ICT applications is to also consider their use-specific 15 

environmental effects, as these can be decisive for overall results. Using the example of smart heating, 16 

we therefore analyse the environmental performance of a sample of 375 smart home systems (SHS) 17 

in Germany and show how the life cycle assessment (LCA) can be extended to include various use-18 

specific effects such as choice of products and individuals’ behaviour when using the product. In an 19 

interdisciplinary study design, we combine life cycle modelling and behavioural science to 20 

systematically include use-specific parameters into the modelling, and to interweave these results with 21 

user characteristics such as sociodemographics and user motivation. Our results are heterogenous: For 22 

the impact category Climate Change (GWP) we find that having smart heating can lead to large savings 23 

in particular cases. On average, however, smart heating does not lead to significant benefits for GWP, 24 

but neither does it represent an additional burden. For Metal Depletion Potential (MDP), we find that 25 

smart heating is always an additional burden, as heating optimisation has almost no reduction 26 

potential for MDP. Our results have a wide range due to large differences in use patterns in the sample. 27 

Depending on the impact category, both number of devices of the SHS as well as heating temperature 28 

are decisive. Regression analysis of our assessment results with user characteristics shows that 29 

differences in MDP and GWP of SHS size can be explained by income, and, in addition, differences in 30 

GWP of net heating energy savings can be explained by user motivation. Our results thus underline 31 

that the standard scenarios for user behaviour assumed in LCA modelling should be well justified. 32 

https://doi.org/10.1016/j.spc.2022.04.003
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Future interdisciplinary research should further explore the links between use-specific approaches in 33 

LCA and users’ environmental behaviour and motivation. 34 

Keywords 35 

Information and communication technology; smart home; user behaviour; user motivation; heating 36 

energy demand; life cycle assessment 37 

1. Introduction 38 

Information and communication technology (ICT)1 has the potential to reduce resource and energy 39 

demand (Sui and Rejeski, 2002). By using ICT-based services, either processes and thus resources and 40 

energy use can be optimised, or the fulfilment of a goal/function can be achieved with alternative, less 41 

resource-intensive (digital) products, services or processes (Pohl et al., 2019). Examples span from the 42 

substitution of traditional with digital media (Amasawa et al., 2018), over forms of telework (Vaddadi 43 

et al., 2020) and new types of consumption (van Loon et al., 2015) to digital process management 44 

(Gangolells et al., 2016). Also in households, the application of ICT-based services can play an important 45 

role in the transformation towards sustainable consumption patterns (Börjesson Rivera et al., 2014). 46 

The role of ICT for reducing environmental effects of processes and services have also been addressed 47 

in earlier literature reviews. For example, with a focus on indirect energy effects of ICT, Horner et al. 48 

(2016) review studies on e-commerce, e-materialisation and telework. Hook et al. (2020) examine the 49 

energy and climate effects of teleworking. Wilson et al. (2020) focus on digital consumer innovations 50 

and their emission reduction potential in areas such as mobility, food or energy. It follows that net 51 

environmental benefits from the application of ICT-based services are not a priori certain: its 52 

application may also lead to an intensification of resource and energy use. On the one hand, this may 53 

be due to the fact that an environmental mitigation effect is not an integral part of the service, and 54 

thus its operation leads to an increase in electricity demand (Røpke et al., 2010). On the other hand, it 55 

may be due to counteracting environmental effects from the application of the respective services, 56 

which may exceed the service’s optimisation effects (Horner et al., 2016). Hence, user behaviour plays 57 

a particular role in the environmental performance of ICT-based services (Bieser and Hilty, 2018).  58 

More precise insights into the role of user behaviour for the overall environmental performance of 59 

household appliances can be gained from other disciplines. From a social science perspective, Gram-60 

Hanssen (2013) investigates socio-technical factors that have an influence on residential energy 61 

demand. Based on empirical and statistical data, the author identifies four factors that are decisive for 62 

overall energy demand: number and size of the appliances, energy efficiency of the technology itself, 63 

                                                           
1 Abbreviations: EoL – End-of-life; FU - Functional unit; GWP - Climate Change; ICT - Information and communication technology; LCA - Life 

cycle assessment; MDP - Metal Depletion; SHS - Smart home system 
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and related user behaviour. In the case of heating, behavioural aspects are at least as important as the 64 

energy efficiency of the technology itself, and in the case of electricity consumption number and use 65 

of appliances in the household are particularly relevant. Sociodemographic factors like age, income 66 

and education may also play a role in both heat and electricity consumption (Gram-Hanssen, 2013). 67 

Other studies show that factors such as user motivation and values (Nilsson et al., 2018), personal 68 

beliefs (Girod et al., 2017) and intentions (Ahn et al., 2016) influence the use of appliances and their 69 

effects on residential energy consumption. However, regarding individuals’ environmental impact, 70 

Moser and Kleinhückelkotten (2018) show that income plays a greater role than environmentally 71 

friendly intentions. Changes in energy demand related to the way the SHS is used is also examined 72 

from the perspective of user adoption of new technologies. In addition to the identification of social 73 

barriers that hinder SHS adoption (Balta-Ozkan et al., 2013), this also includes questions about 74 

acceptability & usability, user needs (Wilson et al., 2015) and domestication processes (Gram-Hanssen 75 

and Darby, 2018; Hargreaves and Wilson, 2017). For example, Hargreaves et al. (2018) show that forms 76 

of adaptation also include using only some or none of the features offered by the SHS, which could 77 

lead to the technical energy saving potential of the SHS not being fully realised. Chang and Nam (2021) 78 

find, however, that the intention to use smart home services is particularly high among those who 79 

prefer energy control services. Sovacool et al. (2021) find conflicting practices regarding energy savings 80 

and emphasise the link between knowledge about the SHS and its acceptance and diffusion. From 81 

these findings, it can be concluded that a holistic environmental assessment that covers effects along 82 

products’ life cycles as well as their application and use is essential.  83 

With regard to life cycle assessment (LCA), integration of variances in user behaviour is repeatedly 84 

cited as one of the most urgent methodological challenges (Finkbeiner et al., 2014; Hellweg and Milà i 85 

Canals, 2014). However, a systematic exploration of use-specific aspects and their inclusion into the 86 

LCA is still in its infancy (Pohl et al., 2019). Often, poor availability of data is cited as a reason (Börjesson 87 

Rivera et al., 2014; Gradin and Björklund, 2021; Miller and Keoleian, 2015). Another reason is that LCA 88 

studies often focus on the narrow product system (Kjaer et al., 2016) and apply standardised default 89 

use phase modelling. Thus, variations in product application are ignored (Geiger et al., 2018). In order 90 

to integrate these use-specific aspects into the LCA, both a solid understanding of user behaviour in 91 

the specific context (Polizzi di Sorrentino et al., 2016), and a theoretical concept of how these aspects 92 

can be better integrated into the LCA (Pohl et al., 2019) are necessary. More specifically, as shown in 93 

previous research, definitions of goal and scope are crucial when integrating use-specific aspects into 94 

the LCA: For instance, in order to integrate aspects of prolonged product service life into the LCA, 95 

Proske and Finkbeiner (2020) show the importance of defining goal, functional unit (FU) and system 96 

boundaries. Likewise, Pohl et al. (2021) highlight that definitions of product system, system boundaries 97 

and FU are crucial when integrating user decisions such as choice of devices and services into the 98 
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environmental assessment. In order to use LCA to address rebound effects or shifts in consumption 99 

patterns from circular economy initiatives, Niero et al. (2021) state that the scope definition is of 100 

central importance.  101 

In our study we investigate the environmental performance of ICT-based services, focusing on the 102 

interlinkages between variances in user behaviour in LCA and further interferences between the user, 103 

the product(s) and the surrounding environment. We do this by analysing the environmental 104 

performances of a sample of 375 smart home systems (SHS) that include smart heating in Germany. 105 

The research-guiding question is: How do variances in user behaviour influence the environmental 106 

performance of the SHS? More specifically, and based on our survey, i) we consider and compare LCA 107 

of 375 SHS in Germany that differ in number and size of SHS components, and in SHS settings; and ii) 108 

we examine whether our environmental assessment results can be predicted by sociodemographics 109 

or user motivation. 110 

Our structure is as follows: In Section 2, we briefly present the state of research on the interplay of 111 

user behaviour and environmental assessment and identify methodological barriers in current LCA 112 

modelling practice. On this basis, in Section 3 we present the interdisciplinary methodology underlying 113 

our study on the environmental performance of SHS. In Section 4, we present our results for the impact 114 

categories Climate Change (GWP) and Metal Depletion (MDP) and analyse whether they can be 115 

explained by sociodemographic information and user motivation. We discuss relevant findings with 116 

regard to use-specific modelling in Section 5 and conclude with implications for future LCA modelling 117 

in Section 6. 118 

2. Literature review 119 

On a theoretical level, various authors stress the importance of user behaviour in LCA. Suski et al. 120 

(2021) suggest a framework that combines LCA with social practice theory when assessing sustainable 121 

consumption and helps to define relevant system boundaries by identifying relevant social practices 122 

and their interconnectedness. A similar approach is taken by Niero et al. (2021) for addressing socio-123 

technical dynamics when implementing Circular Economy initiatives. Pohl et al. (2021) describe the 124 

systematic inclusion of user decision and behaviour in environmental modelling based on three use-125 

specific parameters: (i) choice of products in number and size (product parameters); (ii) use frequency 126 

and intensity (use parameters); and (iii) sociodemographic information on the user, all of which can 127 

have a decisive influence on products’ environmental performance. To assess the consumption 128 

behaviour of a human being over their lifetime, Goermer et al. (2020) propose a methodological 129 

framework that includes both changes in consumption patterns during lifetime and environmental 130 

effects from consumed products throughout the product life cycle. Central to all proposals is the shift 131 
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from an exclusively product-centric focus in the LCA to a service or consumption focus. What has 132 

played little role in these concepts so far is the use of information about users other than 133 

sociodemographics, e.g. information on lifestyle or user motivation to further characterise LCA results 134 

(see e.g. Moser and Kleinhückelkotten, 2018; Wiedmann et al., 2020).  135 

Several case studies include variances in use patterns into their modelling. However, these differ with 136 

respect to the goal definition: (i) influence of user behaviour on the environmental performance of 137 

products is either investigated only as a boundary condition; or (ii) user behaviour is addressed as 138 

relevant to product use when assessing the environmental impact of a product; or (iii) the study 139 

directly focuses on the environmental impact of different types of user behaviour on the overall 140 

results. For example, Achachlouei and Moberg (2015) use sensitivity analysis to identify the impact on 141 

intensity of use of both tablet device and print editions of a Swedish magazine. However, such studies 142 

focus mainly on the environmental effects of production, and differences in user behaviour are 143 

considered only as a boundary condition (Achachlouei and Moberg, 2015). Amasawa et al. (2018) 144 

investigate to what extent changes in book reading activities impact on GWP when comparing paper 145 

book and e-book reading. Investigations of reading activities show that substitution is rarely complete 146 

and that both paper books and e-books are read, which significantly alters results (Amasawa et al., 147 

2018). Ross and Cheah (2017) investigate how energy use in air conditioning systems depends on 148 

different use patterns and show that variances in use patterns can significantly determine the overall 149 

result for GWP.  150 

Studies further differ in terms of types of use patterns that are included. Taking the example of three 151 

case studies, Daae and Boks (2015) analyse which and how variances in user behaviour are currently 152 

addressed in LCA. Depending on the type of product, the authors identify variations in the interaction 153 

with the product with regard to (i) handling of the product (Solli et al., 2009); (ii) frequency of use 154 

(O’Brien et al., 2009); and, (iii) duration (Samaras and Meisterling, 2008). Furthermore, choice of (by-155 

)products and/or product settings (Shahmohammadi et al., 2019, 2017) can be identified as a forth 156 

type of product interaction. In addition, the way the FU is defined varies greatly, highlighting the 157 

different degree of focus on the product or product use within the study. These refer either to the use 158 

of a certain quantity of a product, e.g. “one wash cycle” (Shahmohammadi et al., 2017), or to the use 159 

of the product over a certain period of time, e.g. “delivery and viewing of one year's worth of BBC 160 

television“ (Schien et al., 2021). Reference to the user or the household is very rarely made in the 161 

definition of the FU, e.g. “book reading activities per person” (Amasawa et al., 2018) or “110 m2 162 

apartment space in Germany managed (monitored and controlled) for 5 years” (Pohl et al., 2021). 163 

Bossek et al. (2021) refrain from defining a FU at all and use ‘reporting unit’ instead (“life of a human 164 

being”). It becomes apparent that not all definitions here allow for inclusion of secondary effects of 165 

product use, i.e. intensification of use or expansion of products used, and that comparability across 166 
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studies may be limited for very specific FU definitions. One solution to this could be the sound 167 

definitions of goal and FU that play a prominent role when it comes to integrating user behaviour into 168 

an LCA. For a detailed overview of the methodological choices of all the studies identified here, see 169 

Table S1, supplementary material. 170 

3. Methods  171 

This study investigates the influence of user behaviour on the environmental performance of SHS. In 172 

the following section, we outline the underlying methods and operationalisation. We first give 173 

definitions for the key terms ‘smart home’, and ‘user behaviour’, and then explain how our 174 

interdisciplinary study design was conceptualised and how and where life cycle modelling and the 175 

online survey intertwine. 176 

3.1 Definitions, conceptualisation and operationalisation 177 

The term ‘smart home’ summarises networked applications in the home. Depending on the device 178 

composition of the SHS, these applications provide a variety of services in the home, such as security, 179 

energy management or comfort (Strengers and Nicholls, 2017). From an environmental perspective, 180 

applications for room temperature control, lighting control or optimisation of overall energy 181 

consumption can play a role in reducing overall energy consumption in the household (Urban et al., 182 

2016). Smart heating in particular provides some of the greatest potential for energy savings (Beucker 183 

et al., 2016). The environmental performance of an SHS is determined from the actual savings of 184 

energy optimisation, while accounting for resource demand due to production and operation of the 185 

SHS (life cycle effects) and changed user behaviour (Pohl et al., 2021). 186 

The term ‘user behaviour’ describes a variety of behavioural interactions with a product/system. These 187 

include choice of products, the user's subsequent behaviour when using the product, and – at the end 188 

of the product life cycle – the decision on how to dispose of the product (see Polizzi di Sorrentino et 189 

al., 2016). The behavioural sciences, especially environmental psychology, have a long tradition of 190 

predicting pro-environmental behaviour, especially energy saving, but also investment behaviour. 191 

They find that some behaviour is mainly predicted by socioeconomic factors (impact-oriented), 192 

whereas other behaviour is better predicted by motives (intent-oriented) (see Geiger et al., 2018). For 193 

LCA modelling, it is particularly relevant that user behaviour not only manifests itself during the use 194 

phase of a product, but also includes choice of products, services and settings. 195 

In the following section, we will analyse the ICT-based service of smart heating, i.e. we will focus on 196 

SHS with smart heating. To break down how and to what extent user behaviour may affect the 197 

environmental performance of an SHS, we apply the conceptual model “The user perspective in LCA” 198 
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(Pohl et al., 2021). The use-specific parameters that we have included into the modelling are shown in 199 

Figure 1. Their integration in the LCA and operationalisation in the survey are summarised in Table 1.  200 

 201 

Figure 1: Conceptualisation: how user behaviour impacts on the environmental performance of a SHS. 202 

Use-specific modelling parameters are marked in green (own work, adapted from Pohl et al., 2021) 203 

Smart heating devices and SHS infrastructure are at the centre of our product system. Other SHS 204 

components that are used in parallel with smart heating devices are also included in the product 205 

system. Our model also considers whether these devices were newly acquired/replaced or were 206 

already in place. The type of connection the SHS uses (WiFi, other radiofrequency) is also considered. 207 

Heating energy demand is affected by applying the smart heating function in two ways: through 208 

heating optimisation and through changes in heating behaviour in the home (i.e. variations in the 209 

number of rooms that are heated and differences in the temperature level). Since the SHS is operated 210 

within an existing and occupied living space, additional information about the living space as well as 211 

the people living there can play a role in the context of the system's environmental impact. Information 212 

on building type, size of living space and type of heating system is used to calculate total energy savings 213 

due to the application of the SHS. Information on sociodemographics and user motivation is used ex 214 

post for regression analyses. With this, we want to investigate whether the results from our 215 

environmental assessment can be explained by user characteristics. We base our analysis on a previous 216 

study by Pohl et al. (2021) and use the sample and inventory data from that study.  217 

Table 1: Use-specific information, their operationalisation in the survey and integration in the LCA  218 

Use-specific information Operationalisation in the survey Integration in the LCA 

Primary data for LCA modelling 

Smart heating component Number of devices  

Definition of product system 
Other SHS components (system 
expansion) 

Device type and number of 
devices  

Type of connection WiFi or other type of connection 

Acquisition of SHS components  
New acquisition of devices 
[new/replaced/kept in use] 

Scope: production phase from 
devices already in place is 
excluded 

Heating behaviour 
Room temperature [day and 
night; sleeping and living rooms]  

Additional expenditures in the 
model (see Pohl et al., 2021 for 
details)  
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Housing specifics 
Building type [apartment / 
house], living space, type of 
heating fuel 

Proportional heating energy 
savings due to the SHS 
application (see Pohl et al., 2021 
for details) 

User characteristics for regression analyses 

Sociodemographic information 
Gender, income, education of 
SHS users  

Ex post: relationship of 
assessment results with 
sociodemographic information 

User motivation 
Consumption Motivation Scale 
by Barbopoulos and Johansson 
(2017) 

Ex post: relationship of 
assessment results with user 
motives 

3.2 Online survey 219 

The online survey is used to collect (i) primary data from the user about their individual SHS 220 

composition, heating behaviour, and housing situation; and (ii) further information on user 221 

characteristics, such as information on sociodemographics and user motivation.  222 

Survey sample & procedure First, the 8149 potential participants who opened the survey link were 223 

asked whether they use a SHS with smart heating control (screening). Of these, 644 people (7.9%) 224 

confirmed that they used this type of SHS and completed the entire questionnaire. Because 269 225 

participants were excluded due to inconsistent responses or missing information, the final sample size 226 

was N = 375. The final sample compared to the total of potential participants is roughly equivalent to 227 

the percentage of 5.3% smart home users in Germany at the data collection period (Statista, 2019). 228 

The high exclusion rate can be explained by the fact that, especially in online surveys and when using 229 

a screening question that includes only a small number of people, the number of misreporting is 230 

particularly high (Chandler and Paolacci, 2017). We discuss this high exclusion rate in more detail in 231 

our adjacent publication (Frick and Nguyen, 2021). The questionnaire consisted of five sections: It 232 

started with questions about the participants’ motivations for using an SHS. Then followed questions 233 

about the SHS composition (number of devices, type of connection) and about housing specifics (e.g. 234 

living space, source of heating energy). This was followed by questions on heating behaviour 235 

(temperature levels in sleeping and living rooms, daytime and night-time). At the end of the survey, 236 

sociodemographic information was obtained. As we use the sample from a previous study by Pohl et 237 

al. (2021), detailed description of survey sample and procedure can be found in that study. The online 238 

survey questions are provided in the supplementary material. The quality of the questionnaire was 239 

ensured by discussing it with experts in the field and testing and revising it with a convenient sample 240 

of few participants. 241 

User motivation The different dimensions of the motivation to use the SHS were created based on the 242 

Consumption Motivation Scale by Barbopoulos and Johansson (2017). A shortened version with 21 243 

items adapted to SHS was developed, assessing the original seven consumption motives (for details 244 

see Frick and Nguyen, 2021). On a five-point Likert scale, the participants stated how strong their 245 
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different motives were to use the SHS. Frick and Nguyen (2021) applied cluster analysis to identify four 246 

distinct user motives in the smart home: energy-saving, security, technology enthusiasm and 247 

consumerism. The energy-saving motive summarises the financial and environmental benefits of 248 

energy saving of the SHS. The six items measuring the motive showed high reliability (Cronbach’s 249 

α=.88). The security motive covers the aspects of protection or control over the apartment/house 250 

(α=.89). Technology enthusiasm includes the pleasure of using the product, as well as comfort as a 251 

reduction of (physical) effort (α=.83). The consumerism motive describes the will to consume goods 252 

that serve the purpose of establishing identity, social acceptance and recognition, but also hedonistic 253 

need satisfaction (α=.89). 254 

3.3 Life cycle assessment 255 

The environmental impact of each SHS is assessed by performing an LCA based on ISO 14040 (2006).  256 

Aim and scope The aim of the LCA is to assess the environmental performance of a particular SHS 257 

operated in a household in Germany related to one resident. The FU was defined as “providing the 258 

service of energy management in a residence for one resident over the period of one year”. Based on 259 

the analyses of an average SHS in Germany (Pohl et al., 2021), we include a total of 10 components 260 

into the SHS product system. Definition of product system, system boundaries and study scope is taken 261 

from Pohl et al. (2021). Environmental impacts from the production of SHS devices are only included 262 

in the assessment if the devices were newly acquired. As in Pohl et al. (2021),we use the smart device 263 

control unit “X1” as a weight-based proxy device for all components of the SHS. 264 

Inventory analysis & impact assessment We used GaBi LCA software and the GaBi database Service 265 

Pack 39. The majority of our inventory data is adopted from Pohl et al. (2021), where further details 266 

on technical data (weight, load) of the different components of the SHS can be found. We assumed 267 

that all devices run 2h per day under full load and 22h per day under standby (IEA 4E, 2019). For 268 

average savings of heating energy through the energy management function of the SHS we assumed 269 

4% of the household’s annual heating energy demand (Rehm et al., 2018). This assumption was 270 

necessary because we did not have access to the energy consumption data of each SHS user. 271 

Calculation of the annual heating energy demand of each household was based on housing specifics 272 

from the online survey using the approach by Pohl et al. (2021). We provide results for the impact 273 

categories Climate Change (GWP, ReCiPe 2016 v1.1 (H)), and Metal Depletion (MDP, ReCiPe 2016 v1.1 274 

(H)).  275 

3.4 Statistical analysis 276 

We statistically analysed relationships between the online survey data and LCA results for GWP and 277 

MDP using multiple regression analysis to predict LCA results by sociodemographic data and user 278 
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motivation. We performed a per capita analysis. For this purpose, we had to convert some values from 279 

the data for the entire household for respondents living in a multi-person household. This concerned 280 

income, living space and the number of devices in the SHS. To increase the comparability of results 281 

across the study, we weighted the corresponding values per person depending on their age (as 282 

opposed to equally weighting all persons in the household), following the approach of 283 

Kleinhückelkotten (2016). The respondent was included in the calculation with a factor of 1, other 284 

household members at the age of 18 and older with a factor of 0.5, and household members younger 285 

than 18 with a factor of 0.3.  286 

4. Results 287 

First in this section, we describe the SHS composition and housing specifics per capita of our sample. 288 

Second, we present per capita results on the environmental performance of the SHS for the impact 289 

categories GWP and MDP. Third, we analyse to what extent sociodemographic factors of the sample 290 

and different user motives may play a role in environmental performance.  291 

4.1 The SHS sample 292 

The compositions of our sample’s 375 SHS and related use-specific modelling parameters (see Figure 293 

1) such as number of devices in the SHS, acquisition of devices, type of connection and housing 294 

specifics are described on a per capita basis. See Table 2 for an overview. 295 

Based on our sample, the SHS consists of a total of M (SD) = 4.79 (2.45) components per capita on 296 

average. The smart heating component is always included, as it was a precondition for being included 297 

in the sample, followed by control unit and smart plug. A central switch is the least frequently present. 298 

Almost 3% of our sample report that their SHS is composed of 10 different components, while 8% state 299 

that their SHS consists only of the smart heating component. Since different components are present 300 

several times in the same system, the SHS consists of a total of M (SD) = 7.52 (5.27) devices per capita 301 

on average. Both the maximum value of 34 devices per capita and the minimum value of 0.40 devices 302 

per capita are indicated once. The latter value comes about when the SHS is composed of only a few 303 

devices while there are more (weighted) people than SHS devices in the household. In most cases 304 

(63%) all devices were newly purchased. In some cases, parts of the SHS were already installed (30%), 305 

and in others, the entire set of devices was present and no new devices had to be purchased (7%). In 306 

most cases (83%), WiFi is the prevailing communication standard. See Table S2, supplementary 307 

material for a detailed overview. 308 

Average heating temperature of our sample is reported at M (SD) = 19.4 (1.37) degrees Celsius. The 309 

maximum heating temperature of 24 degrees Celsius is stated twice and the minimum value of 16 310 

degrees Celsius is stated four times. The majority of SHS users live in a 1-2 family home (62%). 311 
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Considerably fewer people (38%) indicate that they live in an apartment in a building with 3 or more 312 

apartments. A total of 235 people (63%) state that they are the owner of the house or apartment. The 313 

average per capita living space is reported at 66.3 (SD=23.43) m2. Both the maximum living space per 314 

capita of 210 m2 and the minimum value of 20 m2 per capita are indicated once. The distribution by 315 

heating system is more complex. We distinguish type of heating system both by power (< 20 kW in 1-316 

2 family homes, 20-120 kW in apartment houses) and by heating fuel. According to the sample, both 317 

1-2 family homes and apartments are predominantly heated with gas (60% of family homes, 53% of 318 

apartments) and oil (19% of family homes, 18% of apartments).  319 

Table 2: Description of average smart home composition and housing specifics per capita 320 

Average smart home 
composition  

No. of devices 
M (SD) 

Housing specifics 

Radiator thermostat 2.4 (1.4) Heating temperature M (SD) 19.4 (1.37) °C 

Humidity sensor 0.8 (1.5) Living space M (SD) 66.3 (23.43) m2 per capita 

Door/window sensor 0.5 (0.9) 

House type 

61.6% 1-2 family home  

Motion sensor 0.6 (0.9) 37,9% apartment  

(Security) Camera 0.4 (0.7) 0.5% other  

Smoke detector 0.9 (1.3) 

Heating energy source 

58.9% gas  

Wireless intercom system 0.2 (0.4) 19.2% oil 

Smart plug 0.8 (1.2) 11.0% electricity 

Switch 0.3 (0.6) 7.1% other (e.g. district heating) 

Control unit 0.5 (0.4) 3.8% solid fuel 

 321 

4.2 Environmental performance of the SHS 322 

The environmental performance results of our sample’s 375 SHS are depicted in Figure 2 and in Table 323 

S3, supplementary material. 324 

For GWP, the environmental performance of the SHS varies widely from -991 kg CO2 eq and 804 kg 325 

CO2 eq per capita per year. For a slight majority of cases (55%), having an SHS that contains smart 326 

heating leads to overall reductions (M(SD)= -35 (240) kg CO2 eq per capita). However, there are large 327 

differences between the different fractions that make up the overall environmental performance and 328 

these are strongly tied to variances in user behaviour: (i): Life cycle effects: SHS production and 329 

operation sums up to M(SD)= 80 kg (24) CO2 eq per capita. Slightly more than half of this is accounted 330 

for by production and operation of smart heating components and SHS infrastructure; the remaining 331 

is accounted for by the presence of other components in the SHS. There are large differences within 332 

the sample, depending on the number of devices present, i.e. size of the SHS. (ii) Heating optimisation: 333 

according to our model, the application of smart heating control always leads to savings (M(SD)= -104 334 
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(43) kg CO2 eq per capita). The differences in the absolute amount of heating energy saved depend on 335 

the size of the living space. The larger the living space, the greater the absolute savings potential. (iii) 336 

Heating behaviour: Variances in heating behaviour also lead to changes in heating energy demand. 337 

There are slightly lower heating temperatures on average in the SHS sample compared to the control 338 

group, leading to small overall savings on average (M(SD) = -11 (237) kg CO2 eq per capita). However, 339 

differences in heating temperature are far greater, as can be seen from the high standard deviation, 340 

suggesting very large differences in individual heating behaviour. To sum up, our results for net savings 341 

for GWP show that almost 77% of an SHS’s technical saving potential is equalised by production and 342 

operation of the SHS. Furthermore, heating behaviour has a great influence on environmental 343 

performance for GWP. 344 

For MDP, the environmental impact is above zero on average (M(SD) = 0.97 (0.8) kg CU eq per capita), 345 

which means that the introduction of an SHS poses an additional environmental burden for 98% of our 346 

sample. This is due to MDP originating almost solely from material input and production. Minimal 347 

reductions of MDP are due to heating optimisation and heating behaviour changes. However, the 348 

saving effects for MDP are very small and are not considered significant. For 2% of our cases (N=9), the 349 

introduction of the SHS still lead to an overall reduction in MDP. These reductions are due to the fact 350 

that these participants reported that all devices connected to the SHS were already in place when the 351 

SHS was commissioned, thus the environmental effects from material input and production of these 352 

devices was not included in the impact of the SHS. Furthermore, these participants also reported very 353 

low heating temperatures, leading to minimal reductions of MDP from overall heating energy demand. 354 

To sum up, for MDP the composition and size of the SHS is decisive for the environmental assessment, 355 

and effects from heating behaviour and heating optimisation do not play a significant role. 356 

Our results furthermore show the influence of various other factors that can be directly or indirectly 357 

related to user decisions. Whether devices of the SHS were already in place or were purchased 358 

specifically can have an impact on the SHS’s overall environmental impact, especially for MDP. 359 

According to our sample, for MDP, life cycle effects are reduced by 46% for users incorporating existing 360 

equipment into their SHS. For GWP, this intervention results in a reduction in life cycle effects of 23% 361 

on average. Moreover, as already pointed out, size of living space plays a key role in the environmental 362 

assessment here. On the one hand, it can be observed that the larger the living space, the larger the 363 

life cycle effects for GWP and MDP and thus the environmental impact for MDP. On the other hand, 364 

the larger the living space, the greater are the savings from smart heating, and the stronger the effects 365 

from heating behaviour for GWP. However, since heating behaviour can contribute to the overall 366 

reduction of heating energy demand as well as to its increase, no clear association for the influence of 367 

living space on the overall environmental impact for GWP can be identified. For example, for the most 368 

commonly reported per capita living space of 60 m2, the assessment results for GWP range from -504 369 
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to 560 kg CO2 eq. In summary, we find significant differences in the characteristics of the SHS and 370 

resulting environmental impact that can be traced back to variances in user behaviour (i.e. choice of 371 

products as well as heating behaviour) and housing specifics (i.e. living space). This can also be seen in 372 

the large standard deviations for both GWP and MDP.  373 

  

Figure 2: Boxplot Environmental performance SHS per resident for GWP (left) and MDP (right)  374 

4.3 Linking environmental performance to user’s lifestyle and intention 375 

We further investigate whether the environmental effects from producing and operating the SHS as 376 

well as the environmental performance of the SHS can be explained with sociodemographic 377 

information and/or user motivation.  378 
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Multiple regression analysis (Table 3) shows that a higher level of income predicts higher 379 

environmental life cycle effects from producing and operating the SHS (β = 0.24 for GWP, β = 0.21 for 380 

MDP). We also found a gender effect, shown by higher environmental effects among male users (β = 381 

0.11 for GWP, β = 0.18 for MDP). For GWP, also age predicts higher life cycle effects (β = 0.13). In 382 

addition, the higher the user motives technology enthusiasm (β = 0.17 for GWP, β = 0.17 for MDP), and 383 

security (β = 0.26 for GWP, β = 0.25 for MDP), the higher the life cycle effects from producing and 384 

operating the SHS. Education level, energy saving and consumerism motives did not predict life cycle 385 

effects for GWP or MDP. 386 

Table 3: Regression analysis: Environmental effects from SHS production and operation for GWP & 387 

MDP, socioeconomic information and user motivation  388 

Production and operation SHS 

 GWP MDP 

 B SE β t  p B SE β t  p 

Socioeconomic information 

Age 0.495 0.201 0.125 2.463 0.014 * 
5.97e-
03 

3.119e-
03 

0.098 1.912 0.057 . 

Gender 
1 female, 2 
male 

12.493 5.774 0.11 2.164 0.031 * 
3.08e-
01 

8.971e-
02 

0.176 3.435 
0.0007 
*** 

Education 1.533 1.81 0.042 0.847 0.398 
3.57e-
02 

2.813e-
02 

0.063 1.269 0.205 

Income share 0.015 0.003 0.237 4.737 
3.21e-
06 *** 

2.14e-
04 

5.018e-
05 

0.215 4.254 
2.72e-
05 *** 

User Motivation 

Energy-
saving 

-1.381 4.015   -0.022 -0.344 0.731 
-3.80e-
02 

6.24e-
02   

-0.039 -0.609 0.543 

Consumeris
m 

-2.602 2.519 -0.065 -1.033 0.302 
-4.71e-
02 

3.91e-
02   

-0.07 -1.204 0.229 

Technology 
enthusiasm 

11.845 4.627 0.169 2.560 0.011 * 
1.88e-
01 

7.19e-
02 

0.167 2.501 0.013 * 

Security 11.951 2.763 0.259 4.325 
2.01e-
05 *** 

1.75e-
01 

4.29e-
02 

0.246 4.073 
5.79e-
05 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 389 

Next, we investigate the relationship with regards to overall environmental impact of the SHS. Similar 390 

to the above analysis for MDP, the multiple regression model (Table 4) shows that the environmental 391 

impact of the SHS for MDP can be explained by income (β = 0.22), gender (β = 0.17) and by user motives 392 

technology enthusiasm (β = 0.18), and security (β = 0.24). Again, the greater the income or the higher 393 

the technology enthusiasm and security motives, the higher the environmental burden of the SHS for 394 

MDP. This is not surprising, as the environmental impact for MDP is dominated by the production 395 

phase. Thus, the SHS size is equally decisive for its environmental impact. Age, education level, energy 396 
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saving and consumerism motives did not predict MDP. The picture is somewhat different for the 397 

environmental performance for GWP. The multiple regression model (Table 4) shows that the 398 

environmental performance of the SHS for GWP can be predicted by the user motives consumerism (β 399 

= 0.17), energy-saving (β = -0.19) and security motivation (β = 0.14). This means that the higher the 400 

consumerism and security motive, the higher the environmental impact of the SHS for GWP, i.e. the 401 

lower the net savings from heating energy optimisation. The higher the energy-saving motivation, the 402 

better the environmental performance for GWP, i.e. the higher the net savings. We also found a gender 403 

effect, shown by higher environmental impact among female users (β = -0.13). This may be because 404 

women reported higher room temperatures. In contrast to the above analyses, income did not predict 405 

the environmental impact for GWP.  406 

Table 4: Regression analysis: Environmental performance SHS for GWP & MDP, socioeconomic 407 

information and user motivation  408 

Environmental performance SHS 

 GWP MDP 

 B SE β t  p B SE β t  p 

Socioeconomic information 

Age -0.300 1.024 -0.016 -0.293 0.769 
5.83e-
03 

3.09e-
03 

0.097 1.886 
0.0601
8 . 

Gender 
1 female, 2 
male 

-71.052 29.437 -0.131 -2.414 0.016 * 
2.93e-
01 

8.90e-
02 

0.169 3.292 
0.0011
0 ** 

Education -3.721 9.229 -0.021 -0.403 0.687 
3.18e-
02 

2.80e-
02 

0.057 1.139 
0.2555
6 

Income share 0.022 0.016 0.071 1.323 0.187 
2.13e-
04 

4.98e-
05 

0.216 4.282 
2.42e-
05 *** 

User Motivation 

Energy-
saving 

-56.835 20.470 -0.188 -2.777 
0.006 
** 

-5.96e-
02 

6.19e-
02 

-0.062 -0.964 0.336 

Consumeris
m 

35.074 12.842 0.169 2.731 
0.007 
** 

-3.40e-
02 

3.88e-
02 

-0.051 -0.876 0.382 

Technology 
enthusiasm 

25.201 23.589 0.076 1.068 0.287 
1.91e-
01 

7.13e-
02 

0.179 2.683 
0.008 
** 

Security 31.196 14.089 0.142    2.214 0.027 * 
1.70e-
01 

4.26e-
02 

0.242 4.003 
7.71e-
05 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 409 

 410 

Finally, we analyse the relationship between GWP from overall (optimised) heating energy demand 411 

and socioeconomic characteristics and user motivation to contextualise our results. Our results (Table 412 

5) show that the size of living space can be explained by income (β = 0.48) and age (β = 0.12). This 413 

means that, according to our sample, the higher the income and the older the user, the larger the living 414 
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space. We also found a gender effect, shown by larger living space among female users (β = -0.11). 415 

Secondly, also for overall heating energy demand in households with smart heating, we found that the 416 

higher the income, the larger the GWP from overall heating energy demand (β = 0.44). Again, we found 417 

a gender effect, shown by higher environmental effects among female users (β = -0.13). This may be 418 

because women reported larger living space per resident. User motivation did not predict living space 419 

or heating energy demand. Bringing these results together with our analysis of environmental 420 

performance of SHS, we can conclude that SHS environmental performance for GWP is rather driven 421 

by user motivation and that income does not play a decisive role. However, income remains the most 422 

important predictor of the level of GWP from overall household heating energy demand. 423 

Table 5: Regression analysis GWP of heating energy demand, living space, socioeconomic information 424 

and user motivation 425 

 GWP of heating energy demand Living space 

 B SE Β t  p B SE β t  p 

Socioeconomic information 

Age 7.50 4.254 0.090 1.763 0.079 0.222 0.090 0.121 2.474 0.014 * 

Gender 
1 female, 2 
male 

-316.26 122.33 -0.132 -2.585 0.010 * -5.797 2.581 -0.110 -2.246 0.025 * 

Education -13.61 38.352 -0.017 -0.355 0.723 -1.191 0.809 -0.070 -1.472 0.142 

Income share 0.603 0.068 0.442 8.816 
< 2e-16 
*** 

0.014 0.001 0.482 10.002 
< 2e-16 
*** 

User Motivation 

Energy-
saving 

-127.04 85.065 -0.095 -1.493 0.136 -1.824 1.795 -0.062 -1.016 0.310 

Consumeris
m 

23.70 53.365 0.026 0.444 0.657 -1.057 1.126 -0.052 -0.939 0.348 

Technology 
enthusiasm 

57.672 98.028 0.039 0.588 0.557 2.162 2.068 0.067 1.045 0.297 

Security 42.150 58.549 0.043 0.720 0.472 1.711 1.235 0.080 1.385 0.167 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 426 

5. Discussion 427 

In the following section, we discuss our key findings with regard to certain modelling aspects and 428 

deduce implications for research and practice.  429 

5.1 The complex role of user behaviour in the smart home 430 

Our key findings point to the complex role of user behaviour in the smart home. As our results for GWP 431 

show, having smart heating does not lead to significant benefits on average, though neither does it 432 

represent an additional burden. However, in certain cases, having smart heating can lead to large 433 

savings or additional burden. For MDP, having an SHS is always an additional burden, as heating 434 
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optimisation has almost no reduction potential for MDP. Depending on the impact category, both 435 

number of devices of the SHS as well as heating temperature are decisive for the overall results. Both 436 

parameters describe user behaviour in the smart home, on the one hand with regard to choice of 437 

products and on the other with regard to heating behaviour. As can be seen from the high standard 438 

deviations of our results, these sometimes considerably vary within our sample, suggesting very 439 

heterogeneous user behaviour. This also becomes apparent from detailed analysis of the individual 440 

results of the sample, which, for GWP for example, sometimes show very high saving effects, but 441 

sometimes also high additional burden – depending on heating temperatures and the number of 442 

devices in the SHS. It can thus be seen that, above all, variances in heating behaviour are crucial for 443 

the overall results. However, if the use parameters to be included in the LCA are not sufficiently 444 

validated and cannot be contextualised, as we have done here with the help of descriptive statistics, 445 

the uncertainty of the results may increase. Overall, our findings confirm that the inclusion of user 446 

behaviour into an LCA could be a potential source of uncertainty (Baustert and Benetto, 2017; Miller 447 

and Keoleian, 2015) that should be analysed in a methodologically appropriate way. Accordingly, the 448 

default scenario for user behaviour assumed in the modelling should be well justified. 449 

It becomes apparent that size of living space, another factor related to the user, plays a central role in 450 

our analysis, even though it is outside the product system. This is because living space is a key 451 

parameter for determining heating energy demand, which is the service’s application area. From this 452 

it follows that other factors related to the user which are clearly outside the LCA model can 453 

nevertheless have an indirect influence on the environmental assessment results. With regard to the 454 

inclusion of variances in user behaviour, attention should therefore also be paid to use-specific factors 455 

from the individual services’ application areas. 456 

Furthermore, our investigation on the linkages between environmental performance of SHS, 457 

sociodemographics and user motivation shows that it is not possible to clearly answer whether income 458 

or user motivation have more explanatory power. In our study, we find both motives (technology 459 

enthusiasm, security) and socioeconomic factors (income) that are more likely to be associated with 460 

increased energy and resources demand as a predictor for the level of environmental impact due to 461 

the size of the SHS. For the environmental performance for GWP, we find no significant relation with 462 

income, indicating that GWP is independent from their user’s level of purchasing power. However, we 463 

find a positive relation with consumerism and security motives, and a negative relation with the 464 

energy-saving motive. Thus, our results show that a general analysis of the environmental advantages 465 

and disadvantages of an SHS is not helpful; it should be much more focused, e.g. on specific user 466 

groups. User characteristics should also be considered when deducing recommendations for policy 467 

and practice, for example by explaining the context of use, showing limits of scalability or defining 468 

specific target groups. The positive relation of the environmental performance for GWP with 469 
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consumerism and security motives, and negative relation with the energy-saving motive implies, for 470 

example, that the GWP reduction potential of smart heating is only realised if users are motivated to 471 

save energy. Since this pro-environmental value orientation only applies to a small part of the 472 

population, see e.g. a study on market share of green products in Germany (Steinemann et al., 2017), 473 

this clearly shows the limits of scalability. The countervailing high consumption and security motives 474 

show another aspect of the limits of scalability. According to our analysis this is mainly due to higher 475 

device purchases when security motives are high. These limits could be overcome by implementing 476 

energy sufficiency strategies (e.g. Best et al., 2022) that are independent of user motivation. For 477 

example, policy makers could implement incentive structures that promote energy saving 478 

independently of environmental motives, for example through sustainability-oriented pricing policy. 479 

Further, developers could design SHS that help users save energy regardless of their use intentions 480 

(e.g., by energy saving default settings). We also find that income (explainable by living space) largely 481 

determines the level of overall (optimised) heating energy consumption per resident. This shows the 482 

general limitations of the energy saving potential through smart heating, which are independent of 483 

whether the user intends to save energy or not.  484 

Our findings replicate findings that energy savings are only realised if an energy-saving motive is given 485 

as shown by Henn et al. (2019) for smart metering devices and tie in with a strand of consumer research 486 

showing that affluence is by far the strongest determinant for environmental (and social) impacts from 487 

consumption (Jones and Kammen, 2011; Wiedmann et al., 2020). Further, our findings relate to 488 

research on sufficiency measures in the heating sector showing that the necessary GWP reductions 489 

from the residential sector to tackle climate change can only be achieved if the living space per person 490 

is also significantly reduced (Cordroch et al., 2021; Lorek and Spangenberg, 2019). 491 

5.2 Strength and limitations 492 

We carefully defined our FU to allow secondary effects of product use (i.e. variances in size of the SHS 493 

and in heating behaviour) to be included in the modelling while ensuring comparability of results. This 494 

means that to maintain the variability and comparability of the definition of the product system in use, 495 

we refer to the service provided (i.e. energy management) instead of the product itself. To integrate 496 

intensification of use into the LCA, we relate the provision of energy management to time. Further, we 497 

have adopted a consumption-based approach (see Sala et al., 2019, p. 11), i.e. we allocate 498 

environmental effects from service provision to the final consumer. This decision results from the 499 

crucial role that size of living space plays in heating energy demand. We have also tested alternatives 500 

to the consumption-based approach, namely relating the service provision relatively per m2 or per 501 

household. However, we decided to apply the consumption-based approach, because the first 502 

alternative did not take into account all decisive user-specific influences (namely, the different sizes of 503 
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living space), and the second alternative did not allow for comparability of results due to different 504 

household sizes.  505 

Many of the modelling decisions in our study are based on our survey data, e.g. definition of product 506 

system, information on heating behaviour, and information on housing specifics. Online surveys, 507 

especially when administered by professional panel institutes as in our study, provide convenient and 508 

time- and money-saving recruitment. On the other hand, this approach comes with possible limitations 509 

in data quality due to self-reported behaviour for these data. Approaches for data collection that would 510 

improve data quality include in-house interviews or living laboratory studies. The latter would offer 511 

the possibility of combining the data collection with energy consumption measurements, for example 512 

using smart metering. Another limitation is that our sample consists only of SHS users with smart 513 

heating, so we cannot make any general conclusions about the various other SHS types on the market. 514 

The sociodemographic characteristics and user motivations in our sample are specific to SHS users with 515 

smart heating functions in Germany. As no statistical information on the socio-demographical 516 

constitution of this population group was available, we did not set quotas for age, income, education 517 

level, or gender and therefore the sample is by nature not generalisable to the German population.  518 

Another limitation in terms of generalisability of the results is that smart home users can be described 519 

as ‘early adopters’. These are characterised by, among other things, being better informed, having a 520 

higher income and seeing a greater benefit from the adoption compared to mass market adopters 521 

(Wilson et al., 2017). 522 

Limitations of our LCA include the use of a proxy device for all devices in the SHS, setting the service 523 

life for all devices to five years, and a cradle-to-use modelling approach. In particular, by using a proxy 524 

device for all appliances, we were not able to capture the choice of different products in terms of 525 

energy and resource efficiency. In addition, we also had to make an assumption regarding the relative 526 

optimisation of heating energy through smart heating. Here we decided to make a conservative 527 

assumption, based on a study that had actually collected measured data on heating behaviour. Other 528 

studies assume higher optimisation potentials for smart heating, but these assumptions are theory-529 

based and a transfer into practice is unclear. Since both production and operation of the SHS devices 530 

as well as heating optimisation are crucial for the final results, as we show for GWP and MDP, more 531 

precise data would presumably lead to the reduction of eventual uncertainties. Nevertheless, the more 532 

exact modelling would be significantly more time-consuming, so that questions of effort and benefit 533 

would justifiably arise.  534 

In general, with our study we were able to emphasise the importance of a life cycle approach. We have 535 

only presented our results for the impact categories MDP and GWP. However, we were able to show 536 

that applying ICT-based services with the goal to reduce processes’ energy demand leads to a shift in 537 
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environmental burden between the impact categories, replicating findings from Cerdas et al. (2017), 538 

Ipsen et al. (2019), and Pohl et al. (2021). For impact categories with regional or local impact (e.g. 539 

acidification or ecotoxicity), this means that there may also be shifts with regards to affected areas. It 540 

is urgently necessary to investigate the influence of digital process optimisation and the role played by 541 

user behaviour on other impact categories as well.  542 

5.3 Implications for research and practice 543 

For the integration of user behaviour in an LCA, our study highlights the advantages of an 544 

interdisciplinary approach to LCA method development, data collection and analysis. By applying an 545 

interdisciplinary concept of how user behaviour and environmental performance of products are 546 

linked, it can be ensured that user behaviour in an LCA is addressed in a scientifically sound way. An 547 

interdisciplinary approach is also helpful for data collection, as it enables the extensive collection of 548 

primary behavioural data and hence enhances the study’s informative value. Finally, the joint analysis 549 

of environmental assessment results, corresponding sociodemographic information and user motives 550 

provides an innovative approach to contextualise LCA results and trends. Based on this, options for 551 

action can be identified or certain policy measures can be validated, e.g. for certain target groups. 552 

These groups could be, for example as we have done here, based on their motives, e.g. energy saving, 553 

consumption, or security. For these groups, environmentally relevant aspects in choice of products 554 

and product use could be described. Vice versa, the findings help focus on impactful target behaviours 555 

in environmental psychology. Future research should build on this and further explore the links 556 

between environmental assessment and user characteristics, user behaviour, or user expectations 557 

from the perspective of environmental psychology, science and technology studies or social practice 558 

theory. In addition to the sociodemographics and user motives considered here, these can also include 559 

user characteristics such as pro-environmental behaviour (Moser and Kleinhückelkotten, 2018), user 560 

adoption of technological innovations (Hargreaves et al., 2018), the social situation or the basic value 561 

orientation of users (Gröger et al., 2011). The quantitative measurement of pro-environmental 562 

behaviour is especially promising for an appliance in more realistic LCA scenarios (Polizzi di Sorrentino 563 

et al., 2016). The measurement of impact-relevant behaviour has a long tradition in environmental 564 

psychology, can be challenging and complex, and needs to be developed context-dependently 565 

depending on the behavioural domain (for a thorough discussion see Lange and Dewitte (2019)). The 566 

identification and characterisation of specific user groups (Sütterlin et al., 2011) would also be valuable 567 

in order to address their group-specific needs in the housing sector in a more energy-sufficient way 568 

rather than increasing dependency on resource-intense technology. Depending on the methodological 569 

approach and the sector, these user-driven parameters can be assessed using a broad set of 570 

quantitative methods (e.g., surveys to collect primary data on individual consumption behaviour), as 571 

in this study, or qualitative methods (e.g., interviews to explore the reasons and rationales behind 572 
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certain user behaviour), as suggested for example by Suski et al (2021). All in all, we identified great 573 

potential for fruitful collaboration of LCA researchers with the disciplines of and environmental 574 

psychology and the social sciences. 575 

For practice, our study highlights the importance of keeping the SHS as small and long-lasting as 576 

possible, i.e. minimise system expansion beyond energy management devices and, if possible, 577 

integrate existing devices into the SHS. In this way, the environmental impacts associated with material 578 

input are kept as low as possible, and the technical saving potential for GWP can be maximised. For 579 

GWP, special attention should be paid to heating temperature settings, since these have a great effect 580 

on the overall environmental performance. Furthermore, the extent of actual GWP savings depends 581 

on the technical savings potential of the SHS. This shows, once more, that there is a need for a standard 582 

specifying technical requirements of an SHS. In order to ensure maximum energy savings effects of the 583 

SHS, the focus of the standard should be on energy management and define energy-saving default 584 

settings. When considering the scalability of individual study results, it should be considered that some 585 

of them depend significantly on sociodemographics and/or user motivation and thus only apply to 586 

certain user groups. 587 

6. Conclusions 588 

With our study, we investigated the impact of variances in user behaviour on environmental 589 

performance of ICT-based services. The contribution of this study is twofold: First, we have shown that 590 

the integration of user behaviour in LCA, i.e. how and in which quantities products are used, can have 591 

a major impact on environmental assessment results for ICT-based services. For the environmental 592 

performance of SHS we find that, for MDP, smart heating is always an additional burden, mainly 593 

stemming from resource demand and production of the SHS. It follows that the composition and size 594 

of the SHS (i.e. choice of products) is crucial for overall MDP. For GWP, we find that having smart 595 

heating does not lead to significant benefits for GWP on average, but can lead to large savings or 596 

additional burden in certain cases. This is particularly dependent on both the number of devices of the 597 

SHS (i.e. choice of products) and heating temperature (i.e. heating behaviour). Another factor that is 598 

indirectly related to user behaviour and has an impact on the environmental assessment result for 599 

GWP is the size of the living space. Second, we have demonstrated that both user motives and 600 

sociodemographic characteristics have strong effects on the actual outcomes of the analysis for GWP 601 

and MDP saving potentials. Thus, combining LCA results with user-specific information beyond mere 602 

product use data can make an important contribution to analysis, for example by classifying results, 603 

identifying target groups or showing limits to scalability. However, for consistent inclusion of user 604 

behaviour throughout all phases of an LCA study, it is important first to consider the potential influence 605 

of user behaviour when defining goal and scope. In particular, the definition of a FU decides how 606 
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extensively user behaviour can be integrated into environmental modelling. Future research should 607 

expand interdisciplinary collaboration of LCA researchers with the disciplines of environmental 608 

psychology and the social sciences. Implications for practice include measures for sustainable design 609 

of SHS. 610 
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