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Abstract

Relation extraction (RE) is concerned with developing methods and models that automatically
detect and retrieve relational information from unstructured data. It is crucial to information
extraction (IE) applications that aim to leverage the vast amount of knowledge contained in
unstructured natural language text, for example, in web pages, online news, and social media;
and simultaneously require the powerful and clean semantics of structured databases instead of
searching, querying, and analyzing unstructured text directly. In practical applications, however,
relation extraction is often characterized by limited availability of labeled data, due to the cost
of annotation or scarcity of domain-specific resources. In such scenarios it is difficult to create
models that perform well on the task. It therefore is desired to develop methods that learn
more efficiently from limited labeled data and also exhibit better overall relation extraction
performance, especially in domains with complex relational structure.

In this thesis, I propose to use transfer learning to address this problem, i.e., to reuse knowledge
from related tasks to improve models, in particular, their performance and efficiency to learn
from limited labeled data. I show how sequential transfer learning, specifically unsupervised
language model pre-training, can improve performance and sample efficiency in supervised and
distantly supervised relation extraction. In the light of improved modeling abilities, I observe
that better understanding neural network-based relation extraction methods is crucial to gain
insights that further improve their performance. I therefore present an approach to uncover the
linguistic features of the input that neural RE models encode and use for relation prediction. I
further complement this with a semi-automated analysis approach focused on model errors,
datasets, and annotations. It effectively highlights controversial examples in the data for
manual evaluation and allows to specify error hypotheses that can be verified automatically.
Together, the researched approaches allow us to build better performing, more sample efficient
relation extraction models, and advance our understanding despite their complexity. Further, it
facilitates more comprehensive analyses of model errors and datasets in the future.





Kurzfassung

Relationsextraktion (RE) befasst sich mit der Entwicklung von Methoden, die relationale
Informationen in unstrukturierten Daten automatisch erkennen und abrufen können. Sie ist
von entscheidender Bedeutung für Anwendungen der Informationsextraktion (IE), die darauf
abzielen große Mengen an Wissen in unstrukturiertem natürlichsprachigem Text, z.B. in Web-
seiten und sozialen Medien, zu nutzen und gleichzeitig die leistungsfähige und klare Semantik
strukturierter Datenbanken benötigen; statt unstrukturierten Text direkt zu durchsuchen, ab-
zufragen und zu analysieren. In der Praxis ist die Anwendung von RE jedoch problematisch:
Annotationskosten und Knappheit domänenspezifischer Ressourcen resultieren oft in einer be-
grenzten Verfügbarkeit von überwachten Daten. In solchen Szenarien ist es schwierig Modelle
zu erstellen, die diese Aufgabe effektiv lösen können. Daher ist es wünschenswert Methoden
zu entwickeln, die effizienter aus wenigen überwachten Daten lernen und eine bessere RE
Gesamtperformanz aufweisen, besonderes in Domänen mit komplexer relationaler Struktur.

In dieser Dissertation schlage ich vor hierfür Transferlernen zu verwenden, d.h. erlerntes Wis-
sen aus verwandten Aufgaben wiederzuverwenden um Modelle zu verbessern, speziell ihre
Performanz und Effizienz aus wenigen überwachten Daten zu lernen. Ich zeige wie sequen-
tielles Transferlernen, insbesondere unüberwachtes Sprachmodel-Vortraining, die Leistung
und Dateneffizienz überwachter und distanzüberwachter RE verbessern kann. Angesichts der
verbesserten Modellierungsfähigkeiten ist ein besseres Verständnis der auf neuronalen Netzen
basierenden RE Methoden entscheidend um neue Erkenntnisse zu gewinnen, die ihre Leistung
weiter verbessern. Hierzu stelle ich einen Ansatz vor um linguistische Merkmale der Einga-
betexte aufzudecken, die von Modellen kodiert und für die Relationsvorhersage verwendet
werden. Des Weiteren ergänze ich dies durch einen halbautomatischen Analyseansatz, der
sich auf Modellfehler, Datensätze und Annotationen konzentriert. Zusammen erlauben es die
erforschten Ansätze, leistungsfähigere und effizientere RE Modelle zu erstellen und unser
Verständnis trotz ihrer Komplexität zu verbessern. Darüber hinaus erleichtert es in Zukunft
umfassendere Analysen von Modellfehlern und Datensätzen.
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Chapter 1

Introduction

1.1 Motivation

We live in a digital world full of data, and it is expanding at astonishing rates. As access to the
internet increases, with a global internet population of over 4.5 billion people in 20191, natural
language remains the primary way to exchange information – and thus knowledge. Each day,
a tremendous amount of text data is generated in the form of web pages, online news, blog
posts, tweets, texts, and emails: Each minute in 2019, users sent 188 million emails, wrote 18.1
million texts, published 510,000 tweets and 92,000 blog posts on Tumblr, and queried Google
4.5 million times2. In 2019, authors edited the English Wikipedia approximately 12 million
times and created more than 200,000 new articles, now totaling 6 million3. Although these
examples represent only a small fraction of data being created, they clearly show an increasing
trend in available text data. Gantz and Reinsel (2012) expect this trend to accelerate even further
and estimate that in 2020 a third of the data in the digital universe, including unstructured text,
will be of value, but only if it can be tagged and analyzed. Tagging such quantities of natural
language data, i.e., enriching it with structured information, is only possible with automated
information extraction from text.

To illustrate the importance of information extraction from text and its challenges, let us assume
our company manufactures a complex technical product, e.g., a car or a power plant. Producing

1https://www.internetworldstats.com/stats.htm
2https://www.domo.com/learn/data-never-sleeps-7
3https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

https://www.internetworldstats.com/stats.htm
https://www.domo.com/learn/data-never-sleeps-7
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
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it involves thousands, sometimes even tens of thousands, of different parts and technologies.
To ensure that each part is available in time, our buying department expects an up-to-date list
of suppliers and possible alternatives. It, however, is infeasible to manually research, compile,
and continuously update a database of all possible suppliers for so many different parts. In our
fast paced world this information also changes rapidly, e.g., new companies enter the market
while others shift their focus or go out of business. We thus want to automatically collect this
information about companies of interest, e.g., their name, where they are located, and the parts
and technologies they produce. The more accurate and up-to-date this information, the more
cost savings can be realized.

In addition to the usefulness of automated information extraction from text, the example
highlights its challenges. The information we desire is often readily available in web pages, in
online news, and on social media; continuously monitoring these sources and automatically
extracting the relevant details would satisfy our information need. The information, however, is
only available in un- or semi-structured text, which, if untagged, can not be readily analyzed
for our purpose. In other words, we are unable to search, filter, or sort unstructured natural
language data for the specific information we seek, such as, companies, where they are located,
what kind of technologies they produce, etc.

Relation extraction The objective of relation extraction is to automatically detect such
relational information in unstructured text data, which is why it plays such an important role in
the effort to extract structured information from text. For example, in our scenario we aim to
find companies and where they are located. Thus, we first identify entities of interest mentioned
in text, in this case companies and locations. Given the entities, we must detect whether the
context allows the conclusion that a company is located in a particular location. In other words,
we want to find instances of a LocatedIn relation between entities of type company and location.
Figure 1.1 shows three examples with marked entities in question, e.g., companies (“Intel”,
“Texas Instruments”) and locations (“Santa Clara”, “Dallas”). The first two examples contain a
relation instance LocatedIn(Intel, Santa Clara). In the context of the third one, however, “Intel”
and “Dallas” do not express a LocatedIn relation, whereas “Texas Instruments” and “Dallas”
do.

Crucially, the relation may be expressed in many different ways in text. The goal in relation
extraction is to develop methods that reliably and effectively detect a relation of interest, no
matter the wording or syntax. Relation instances extracted from text are structured information.
Depending on the use case, they may be subsequently input to another system or model, or
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Intel is based in Santa Clara .

LocatedIn

Intel has its headquarters in Santa Clara .

LocatedIn

Intel produces semiconductors , similar to Dallas - based Texas Instruments .

LocatedIn

Figure 1.1 Examples for a LocatedIn relation. Entities of type company and location are marked. A
link between two entities indicates that a relation is supported by the sentential context they appear in.
Typically, links are directional, connecting head and tail entities, also called arguments.

indexed into a structured database where they can be analyzed, i.e., searched, sorted, or filtered
for the desired attributes.

The literature shows two established categories of relation extraction methods:

Rule-based methods Rule-based methods use handcrafted extraction rules, or templates,
similar to regular expressions (Yangarber and Grishman, 1998). The methods do not require
annotated data and also allow to easily inspect the system’s state, which is mandatory in many
industrial applications. They, however, suffer from scalability issues when the set of rules
grows large and becomes more complex, making it impossible to be managed effectively. Most
research thus focuses on machine learning-based methods.

Machine learning-based methods Machine learning-based methods use mathematical mod-
els built from available task-specific data (Skounakis et al., 2003; Zeng et al., 2014). These
methods exhibits superior scalability and performance on complex relations but require large
quantities of supervised data, in particular neural network-based approaches (Smirnova and
Cudré-Mauroux, 2018). A lot of research therefore focuses on addressing this issue, for
example, via distant supervision (Mintz et al., 2009) or bootstrapping (Uszkoreit, 2011).

Applications that rely on relation extraction critically depend on the quality and accuracy
of the extracted relation instances; making relation extraction performance most crucial to
their success. In practical scenarios, both categories outlined above suffer from a number of
limitations. As previously observed (e.g., Akbik, 2016), the overall problem is one of cost.
Pattern-based methods require experts familiar with linguistics, machine learning, and natural
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language processing (NLP) to manually create precise but often complex rules and templates.
On the other hand, machine learning-based methods require large quantities of supervised data.
In practice, however, only a limited number of labeled examples will be available due to the
cost of manual annotation by human experts or crowd workers. A model is then created from
scratch, given only the task-specific supervised data. This may result in sub-par performance,
in particular for complex relations, as the number of examples is insufficient to reliably model
robust syntactic and semantic patterns of a relation that generalize well to unseen data.

Transfer learning promises to mitigate this issue by transferring useful knowledge from related
domains, tasks, and languages to the target setting (Howard and Ruder, 2018; Peters et al.,
2018).

In this thesis, I argue that current relation extraction methods, specifically neural network-based
approaches, are too data-intensive and exhibit insufficient performance on complex relations
when trained solely on task-specific supervised data – which is typically limited. To overcome
this problem, I develop methods based on transfer learning that reuse previously acquired
knowledge for the relation extraction task. I demonstrate that the proposed methods outperform
existing approaches under different types of supervision; often without additional linguistic
features that state-of-the-art approaches rely on. To improve our understanding of complex
neural network-based models, I develop a method to analyze which linguistic features of
the input they capture and use for relation prediction, and further propose an approach to
comprehensively analyze model misclassifications.

1.2 Research Objectives

This thesis studies the problem of transferring learned knowledge to the task of relation
extraction. The main hypothesis of the thesis is the following:

Deep neural network methods for relation extraction that leverage existing knowledge from
related tasks or domains outperform models not using this information.

The first objective is to develop methods that learn more efficiently from the same amount of
supervised data, i.e., methods that are more data- or sample-efficient. I place the following
desiderata on the researched methods:
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• The acquisition of helpful (linguistic) knowledge should be independent of task-specific
in-domain data. Instead, it should be acquired in advance, without supervision, on large
and easy accessible text corpora.

• To further reduce the dependence on supervised data, it is desired that the method can be
combined with other sources of supervision, e.g., distant supervision.

The second objective is to develop approaches that improve our understanding of neural relation
extraction methods – including those based on transfer learning – with the goal to provide
further insights and to identify areas for future research. I place the following requirements on
the researched methods:

• Understanding neural network-based relation extraction methods should consider multi-
ple aspects: model, dataset, annotations, and evaluation. It is desired to provide insights
into a model’s internal workings, e.g., properties of the input relevant to the decision
making process, as well as external factors, such as linguistic phenomena (of the data) or
incorrect annotations that result in model errors.

• Relation extraction methods, domains, and corpora may differ greatly, depending on the
use case. It is desired that an approach is applicable independently of the aforementioned
aspects.

1.3 Main Contributions

To address the requirements stated above, I propose a sequential transfer learning method for
relation extraction. It uses language model pre-training to first acquire (linguistic) knowledge
about the language from a large collection of text data. The knowledge is then transferred when
creating a relation extraction model from the task-specific supervised data. Further, I propose
two methods to improve our understanding of trained neural network-based relation extraction
models. In more detail, the main contributions of this thesis are:

1. Sequential transfer learning for relation extraction I develop a sequential transfer
learning method for supervised relation extraction to increase data efficiency and thus perfor-
mance in settings with limited labeled data. The method is based on unsupervised pre-training
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of language representations (Section 2.4.3.1). A model is first trained on a large collection of
text to acquire knowledge about the language. In a second step, the knowledge is transferred to
the relation extraction task by further training the model on supervised in-domain data. This
approach improves training efficiency, as the model already acquired reliable syntactic and
semantic representations of the language. An extensive experimental evaluation on two popular
supervised relation extraction benchmarks shows superior performance and data efficiency
compared to earlier methods. In a second step, I use the resulting state-of-the-art transfer learn-
ing method and extend it to distantly supervised relation extraction, i.e., to build a model from
noisily supervised data (Section 2.3.2.2). A comprehensive automated and manual evaluation
demonstrates superior performance at higher recall levels and the models ability to predict a
more diverse set of relations compared to previous approaches.

This research has resulted in two full paper publications:

• Improving Relation Extraction by Pre-Trained Language Representations. Christoph Alt§,
Marc Hübner§ and Leonhard Hennig. 1st Conference on Automated Knowledge Base
Construction, AKBC 2019.

The authors contributed as follows: I proposed the idea of using transformer-based lan-
guage model pre-training for relation extraction, conceived, implemented, and evaluated
the performance, entity masking, and ablation experiments on both datasets. Marc Hüb-
ner implemented and evaluated the data efficiency experiments on TACRED. Leonhard
Hennig supervised the work. The manuscript was written by all authors.

• Fine-tuning Pre-Trained Transformer Language Models to Distantly Supervised Relation
Extraction. Christoph Alt, Marc Hübner and Leonhard Hennig. 57th Annual Meeting of
the Association for Computational Linguistics, ACL 2019.

The authors contributed as follows: I proposed the idea, implemented the model and
selective attention mechanism, and also conceived and evaluated the held-out perfor-
mance experiments. Marc Hübner implemented the evaluation and visualization of
precision-recall curve. Leonhard Hennig supervised the work, coordinated the manual
evaluation efforts, and we jointly analyzed the results. The manuscript was written by all
authors.

2. Analyzing captured linguistic knowledge Analyses of the previously proposed transfer
learning methods strongly demand a better understanding of neural network-based models

§Equal contribution.
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and their decision process. The goal is to provide insights into model internals, identify new
directions of research, and ultimately improve performance. To reveal linguistic features used
by models for relation extraction, I develop an approach based on probing tasks, or diagnostic
classifiers (Section 2.5.1). Each task targets a linguistic property of the input, e.g., the type
of the head entity, and estimates how well this information is encoded in a model’s internal
representation – indicating how important it is to the model’s prediction. In particular, I
introduce 14 probing tasks that specifically target linguistic properties relevant to relation
extraction. An extensive evaluation on two benchmark datasets and more than 40 different
models finds that the bias induced by the neural network architecture and the inclusion of
linguistic knowledge are clearly expressed in the probing task performance. To facilitate future
research and development of probing tasks, I introduce two modular and extensible software
libraries: RelEx5, a comprehensive suite of state-of-the-art neural relation extraction methods;
and REval6, a framework to develop and evaluate probing tasks.

This research has resulted in a full paper publication:

• Probing Linguistic Features of Sentence-Level Representations in Neural Relation Ex-
traction. Christoph Alt, Aleksandra Gabryszak and Leonhard Hennig. 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020.

The authors contributed as follows: I proposed the idea to use probing tasks tailored to
relation extraction and implemented all tasks except TreeDepth and SDPTreeDepth. I
also conceived and evaluated the experiments. Leonhard Hennig supervised the work
and implemented the TreeDepth and SDPTreeDepth tasks. The manuscript was written
by all authors.

3. Fine-grained analysis of model errors and datasets Analyses by means of probing tasks
focus on aspects of the input that models consider relevant for their prediction, but neglect
circumstances where models fail – and why they fail. To enable analyses with a focus on model
errors, datasets and annotations, I develop a semi-automated approach that selects examples for
manual evaluation based on aggregated evidence from multiple models, followed by grouping of
examples and counterfactual rewriting (Section 2.5.2) to formulate and verify error hypotheses.
To demonstrate its effectiveness, I conduct an extensive evaluation of TACRED (Zhang et al.,
2017), one of the largest and most widely used crowdsourced relation extraction datasets.
Specifically, the goal is to understand where current state-of-the-art relation extraction methods

5https://github.com/dfki-nlp/RelEx
6https://github.com/dfki-nlp/REval

https://github.com/dfki-nlp/RelEx
https://github.com/dfki-nlp/REval
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fail. In particular, I investigate how crowd annotations and linguistic phenomena in the dataset
contribute to the errors. An extensive manual and automated evaluation shows that labeling
errors and ambiguous relations account for a large fraction of errors. I further release a
revised TACRED to improve the accuracy and reliability of future relation extraction model
evaluations.7

This research has resulted in a full paper publication:

• TACRED Revisited: A Thorough Evaluation of the TACRED Relation Extraction Task.
Christoph Alt, Aleksandra Gabryszak and Leonhard Hennig. 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020.

The authors contributed as follows: I proposed the idea to thoroughly evaluate TACRED,
implemented, created, and evaluated the 49 models to aggregate evidence for selecting
examples for manual evaluation. Further, I conceived, implemented, and evaluated the
automated analysis. Aleksandra Gabryszak coordinated the manual annotation efforts,
analyzed the label errors, and created the misclassification categories. Leonhard Hennig
supervised the work. The manuscript was written by all authors.

Together, the three contributions address the desiderata outlined above, and allow us to build
better performing and more data-efficient relation extraction models. Similarly, they improve
our understanding of complex relation extraction models, and allow for a more fine-grained
and effective analysis of model errors, datasets, and annotations in the future.

1.4 Thesis Outline

This thesis is structured as follows: In Chapter 2, I provide an overview of background
information that is necessary to understand the content of this thesis. I review fundamentals in
machine learning, neural network-based methods, and natural language processing. I further
discuss the main aspects of this thesis: relation extraction, transfer learning, and the analysis of
methods in neural language processing.

I then present the three main contributions in the order presented above.

7https://github.com/dfki-nlp/tacrev

https://github.com/dfki-nlp/tacrev
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In Chapter 3, I present my work on sequential transfer learning for supervised relation extraction
to increase performance and data efficiency in settings with limited supervised data (Alt et al.,
2019b). Chapter 4 presents my work on extending the transfer learning method proposed in the
previous chapter to distantly supervised relation extraction (Alt et al., 2019a). In Chapter 5,
I introduce an approach based on probing tasks, or diagnostic classifiers, to reveal linguistic
features of the input used by neural network-based models for relation extraction (Alt et al.,
2020a). Chapter 6 then presents my research on analyzing relation extraction methods with
a focus on model errors, datasets, and annotations; for which I develop a semi-automated
approach based on evidence aggregation, grouping of examples, and counterfactual rewriting
to formulate and verify error hypotheses (Alt et al., 2020b).

Chapter 7 completes this thesis with a conclusion, where I summarize my findings and provide
an outlook into future directions of research.





Chapter 2

Background

This chapter provides background knowledge for the subsequent chapters. It introduces the
fundamentals of machine learning and a particular type of machine learning model that will
be used throughout the thesis, neural networks (Section 2.1). It then gives an overview over
common tasks in natural language processing (NLP) (Section 2.2).

I subsequently review the main NLP task of this thesis: relation extraction, which is concerned
with extracting semantic relations from text (Section 2.3). In the following, I discuss transfer
learning methods that allow to transfer knowledge between tasks and domains (Section 2.4).
Finally, I give an overview of methods to analyze trained models in neural language processing
(Section 2.5).

2.1 Machine Learning

In machine learning, we aim to build mathematical models from data. In the typical setting we
have an input that is represented as a vector x ∈ Rd of d features. A feature is a property, or an
attribute, of the data. An example is a single instance, or observation, represented by a feature
vector, and it is assumed to be drawn independently from a distribution that generates the data
p̂data. A dataset is a collection of examples, which can be represented as a matrix X ∈ Rn×d ,
where n is the number of examples in the dataset.

In the supervised learning scenario, each example xi is typically associated with a target, or
label, yi. In contrast, in unsupervised learning no labels are available. There exist two common
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types of supervised learning: classification and regression. In classification the label belongs
to a pre-defined set of categories, or classes; in regression the target is a continuous number.
Classification can be further divided into three settings: binary classification, multi-class
classification and multi-label classification. In binary classification, there are only two classes;
in multi-class classification we deal with more than two classes; and in multi-label classification
one example can be associated with multiple labels.

2.1.1 Neural Networks

Neural networks are a commonly used method to model various tasks in computer vision and
natural language processing, which led to remarkable results in recent years. In this section, I
give an overview over the building blocks of neural networks. In general, neural networks can
be seen as a composition of functions. For example, logistic regression is one of the simplest
forms of neural network:

f (x) = Wx+b ,

a(z) = so f tmax(z) ,

so f tmax(z)i =
ezi

∑
C
j=1 ez j

,

(2.1)

where W ∈ RC×d , x ∈ Rd , b ∈ RC, z ∈ RC, C is the number of classes, and d is the dimen-
sionality of the input. Logistic regression is a composition a( f (·)) of two functions f and a,
where f (·) is an affine function and a(·) is a so called activation function. A neural network is
a composition of multiple of these functions, with intermediate non-linear activation functions.
The sigmoid (Equation 2.2) and softmax activation are commonly used at the final layer, or
output layer, to obtain a Bernoulli or categorical distribution.

sigmoid(z) =
1

1+ ez (2.2)

Non-output layers are called hidden layers. Neural networks are typically named according
to the number of hidden-layers. For example, a network with one hidden layer is commonly
known as feed-forward neural network, or multilayer perceptron (MLP):

h1 = a1(W1x+b1) ,

y = so f tmax(W2h1 +b2) ,
(2.3)
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where a1 is the activation function of the first hidden layer. Each layer l is parameterized by its
own weight matrix Wl and bias vector bl . hl is commonly referred to as the hidden state of the
neural network at layer l.

Activation function Besides the softmax and sigmoid functions, which are mainly used
at output layers, a common activation function for hidden layers is the rectified linear unit
(ReLU):

ReLU(z) = max(0, z) . (2.4)

2.1.1.1 Layers and Models

I will now describe the neural network layers and models that are typically applied to the
natural language processing (NLP) tasks discussed in the next section, and which will be used
frequently throughout this thesis.

Word embeddings When applying neural networks to NLP tasks, each word wi in the
dictionary, or vocabulary, V is typically mapped to a vector xi, which is known as the word
embedding of wi. The word embeddings are stored in an embedding matrix E ∈ R|V |×d . A text,
which consists of a sequence of words wi, . . . ,wT , is first represented by a sequence of word
embeddings x1, . . . ,xT before it is input to a neural network.

Recurrent neural network To model tasks for natural language, typically a sequence of
words, we require models that are able to process sequential input. The recurrent neural network
(RNN) (Elman, 1990) is one of the elementary building blocks for processing sequential input.
An RNN can be seen as a feed-forward network unrolled over a number of steps. At each step t
the network is applied to the input xt and the hidden state ht−1 from the previous step. h can be
seen as a “memory” of the previous steps in the sequence. Specifically, at every step the RNN
computes the following operation:

ht = ah(Whxt +Uhht−1 +bh) ,

yt = ao(Woht +bo) ,
(2.5)

where ah(·) and ao(·) are activation functions. The RNN, however, has difficulties to learn
over long sequences, due to the problem of vanishing or exploding gradients. During the
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forward pass, the hidden state is multiplied by the weight matrix at every step. The gradients
are multiplied with the same values at each step during the backward pass, or back-propagation,
which can cause the gradients to become very large, i.e., explode, or become very small, i.e.,
vanish. In both cases the model is unable to learn. Mitigating this issue is one of the motivations
behind the development of long-short term memory networks.

Long-short term memory Long-short term memory networks (LSTM) (Hochreiter and
Schmidhuber, 1997) are preferred when modeling sequential data as they are able to retain
information for long time spans. This is beneficial for long range dependencies that are common
in natural language. To achieve this, the LSTM extends the standard RNN with a mechanism
to decide what information should be retained and what should be forgotten. In contrast to
the RNN the LSTM contains a forget gate ft , input gate it , and output gate ot , which are all
functions of the current input xt and the previous hidden state ht−1. The gates then interact
with the previous cell state ct−1, the current input xt , and the current cell state ct to selectively
retain and overwrite information:

it = ag(Wixt +Uiht−1 +bi) ,

ft = ag(W f xt +U f ht−1 +b f ) ,

it = ag(Wixt +Uiht−1 +bi) ,

ct = ft ◦ ct−1 + it ◦ac(Wcxt +Ucht−1 +bc) ,

ht = ot ◦ah(ct) ,

(2.6)

where ac(·) and ah(·) are tanh activation functions, ag(·) is a sigmoid activation, and ◦ is an
element-wise multiplication.

Convolutional neural network Convolutional neural networks (CNN) (LeCun et al., 1998)
are another commonly used type of neural network. In particular, we are interested in its
application to natural language tasks (Kim, 2014).

Typically, a convolutional layer slides filters of different window sizes over the concatenated
input word embeddings [x1, . . . ,xT ] ∈ RT×d , where d is the dimension of the word embedding.
Each filter with weight Wc ∈ Rkd computes a new feature ci ∈ R for each window of k words
[xi, . . . ,xi+k−1] ∈ Rkd according to the following equation:

ci = a(W[xi, . . . ,xi+k−1]+b) , (2.7)
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where b is the bias, and a(·) is an activation function. Sliding a single filter over every window
of size k produces a feature map c ∈ RT−k+1:

c = [c1, . . . ,cT−k+1] (2.8)

Finally, pooling is applied to reduce a feature map to its most important feature:

c̃ = pool(c) , (2.9)

where pooling can be the min, mean, or max operator. The pooled values of all feature maps
are then combine into a vector c̃ ∈ RC, where C is the number of filters. The vector is then
passed on to the next layer or an output layer.

Transformer The transformer (Vaswani et al., 2017) is a more recent neural network ar-
chitecture motivated by the desire to replace the inherently sequential computation of RNNs
with a more parallelizable approach based on (self-)attention (Bahdanau et al., 2014). Many
state-of-the-art methods for language modeling and transfer learning use this architecture, e.g.,
the OpenAI GPT (Radford et al., 2018) and BERT (Devlin et al., 2019). Its main building block

Layer-norm

Feed forward

Input hi

Layer-norm

Multi-head
self-attention

Figure 2.1 A transformer layer.

is the transformer layer, shown in Figure 2.1, which consists of two sub-layers: multi-head
self-attention and a position-wise feed-forward neural network. A residual connection (He et al.,
2016) is employed around each of the two sub-layers, followed by layer normalization (Ba
et al., 2016). The main component is an attention function, which can be described as mapping
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a query vector q and a set of key-value vector pairs (ki, vi) to an output. The output is computed
as the weighted sum over value vectors, where the weight is obtained by a compatibility, or
scoring, function between the query vector and the key vectors. We typically compute the
attention on multiple queries at once, for example on a sequence of word embeddings xi, . . . ,xT .
Queries, keys, and values therefore are concatenated into matrices Q, K, and V, respectively.
Each query is then compared to all keys to compute an attention distribution over values, which
is used to weight them as follows:

attention(Q,K,V) = so f tmax(
QKT
√

dk
)V , (2.10)

where dk is the dimensionality of the queries and keys. For multi-head attention H different
linear projections are first applied to queries, keys, and values before the attention is computed,
where H denotes the number of heads. Intuitively, in each of the H subspaces the similarity
between queries and keys has a different meaning, e.g., syntactic similarity or distance in the
input sequence. Multi-head attention is computed as follows:

multi_head_attention(Q,K,V) = ([head1, . . . ,headH ])WQ ,

headi = attention(QWQ
i ,KWK

i ,QWV
i ) ,

(2.11)

where WQ
i ∈ Rdm×dk , WK

i ∈ Rdm×dk , WV
i ∈ Rdm×dv , and WO ∈ Rhdv×dm . dm is the dimension-

ality defined for the model.

2.2 Natural Language Processing

Natural language processing (NLP) aims to teach computers to process and understand natural
language. This is typically framed as a series of annotation tasks, i.e., mapping a text to
linguistic structures that represent its meaning. We use machine learning, as presented in
the previous section, to learn a model of this mapping. Our aim is to train a model that
can map from an input text, a sequence of words1 w1, . . . ,wT represented by their numerical
representation x1, . . . ,xT , to an output y.

I will now provide an overview of the tasks that are discussed throughout this thesis, except
relation extraction which I review in detail in the next section (Section 2.3). Table 2.1 shows
an example sentence and annotations for each task. Part-of-speech tagging, named entity

1While I use the notion of words for brevity, the examples also hold for other units, e.g., subwords or characters.
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recognition, and dependency parsing are sequence labeling tasks that assign an output yi to
each word wi.

Task Annotation

Subwords Intel manufactures semi ##conductor ##s .

Words Intel manufactures semiconductors .

Part-of-speech tagging NNP VBZ NNS PUNCT

Named entity recognition B-ORG O B-TECH O

Dependency parsing
Intel manufactures semiconductors .

nsubj obj

punct

Language modeling Intel manufactures semiconductors [?]

Masked language modeling Intel [MASK] semiconductors .

Table 2.1 Annotations for natural language processing tasks. NLP is typically framed as a series of
annotation tasks modeled by a machine learning algorithm, e.g., a neural network. The input can be of
different granularity, e.g., words, characters, or subwords (in the example ‘##’ indicates subwords that
do not start a word).

Part-of-speech (POS) tagging POS tagging assigns each word in a text its corresponding
part-of-speech tag. A part-of-speech is a category of words that have similar grammatical
properties, for example, noun, verb, adjective, adverb, pronoun, preposition, conjunction, etc.
A word can also function as more than one part-of-speech when used in different context. The
tag set used by the Penn Treebank (Marcus et al., 1993) is the most common and consists
of 36 tags.2 The tags, however, can be arbitrarily fine-grained and may also differ between
languages. Multiple efforts exist to develop a “universal” tag set. For example, Petrov et al.
(2012) proposed a set of 12 coarse-grained POS tags, and the current Universal Dependencies
2.0 tag set (Nivre et al., 2016) contains 17 tags.3

Named entity recognition (NER) NER detects and assigns types or categories to entities in
a text, such as PERSON or LOCATION. Typically, the types are pre-defined and depend on
the application they are used in. In our introductory example tags include ORGANIZATION

2https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
3http://universaldependencies.org/u/pos/

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://universaldependencies.org/u/pos/
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and TECHNOLOGY. Common types include locations, organizations, person names, and time
expressions. Named entity recognition therefore is a common component of many information
extraction systems. There exist various annotation schemes for the task. The most common
notation is BIO, which indicates the begin, inside, and outside words of an entity span, e.g.,
B-ORG, as shown in Table 2.1.

Dependency parsing Dependency parsing determines the dependency structure, or depen-
dency parse, of a sentence. The parse consists of words that are connected by directed links,
representing the grammatical structure of the sentence. Each link connects a head word to its
dependent (the child), which modifies the head according to the syntactic relationship indicated
by the link. Dependency parsing is used in many applications, such as coreference resolution,
question answering, and relation extraction.

Language modeling Language modeling aims to predict the next word, given its history of
words, for example, in a sentence. It is typically considered an un- or self-supervised learning
problem, as it only requires access to the raw text, and it is a fundamental part of recent advances
in transfer learning for NLP, in particular, pre-training (Section 2.4.3.1). Language modeling is
applied in many applications, such as intelligent keyboards and spelling autocorrection. More
recently, masked language modeling evolved as a task. Instead of predicting the next word, the
task involves first masking one or multiple words with the goal to predict them based on the
remaining context. This is similar to a cloze style test, which aims to “fill in the blanks.”

2.3 Relation Extraction

Relation extraction is a common task in NLP, like named entity recognition, and it is concerned
with extracting semantic relations from text. It is a crucial part of information extraction from
text, which aims to transform unstructured text into a structured representation so that it can be
analyzed or further processed by subsequent applications.

In this section, I first introduce information extraction to ground relation extraction in its most
common application (Section 2.3.1). I then review existing relation extraction methods, which
can be divided into four categories depending on the degree of supervision (Section 2.3.2).
Most recent methods are based on neural network models, which I subsequently describe
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(Section 2.3.3). Finally, I give an overview over the datasets and metrics that I use to evaluate
relation extraction methods in this thesis (Section 2.3.4).

2.3.1 Information Extraction

Let us return to the introductory example: collecting information for our supply chain appli-
cation from large quantities of text. For example, we wish to collect facts about companies,
e.g., where they are located and the technologies they produce. Information extraction aims to
automatically extract the desired information from unstructured text data so it can be analyzed
or subsequently used in higher-level NLP tasks, such as question answering (Xu et al., 2016a)
or knowledge base population (Ji and Grishman, 2011).

Information extraction systems typically process the text input in multiple steps, similar to a
pipeline, as shown in Figure 2.2. Each step adds increasingly abstract annotations to the input
text so as to successively create a more abstract representation of it. The initial pre-processing

Part-of-speech tagging

Coreference resolution

Relation extraction

Pre-processing

Dependency parsing

Named entity recognition
Information 

extraction sub-tasks

Linguistic analysis

Text

Structured 
representation

Figure 2.2 A typical information extraction pipeline. Each step adds increasingly abstract annotations
to the input text, successively creating a more abstract representation of it.

step segments the text into sentences and tokenizes each sentence into a sequence of words, or
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other linguistic units, such as sub-words (Sennrich et al., 2016). Subsequent linguistic analysis
steps include part-of-speech tagging and dependency parsing. After the linguistic analysis,
named entity recognition detects entity types of interest mentioned in the text, followed by
coreference resolution to find all expressions that refer to the same entity. In some cases, a
mentioned entity can be ambiguous, i.e., it refers to multiple entities. For example, “Paris” may
refer to the capital or to the name, e.g., “Paris Hilton”, depending on the context. Entity linking
aims to resolve the mentions to unique entries in a structured knowledge base. At this point
only the structure between entities is missing. The objective of relation extraction is to establish
this structure by detecting relationships between the mentioned entities or concepts.

In most applications, entity types and relations are pre-defined (Piskorski and Yangarber,
2013), which is assumed to be the case throughout this thesis. There, however, exist scenarios
without pre-defined entities types and relations, as we will see shortly. In case of our supply
chain example, we first define entities of interest, such as ORGANIZATION, LOCATION, and
TECHNOLOGY. Relations may include LocatedIn and ProducesTech. The first relation holds
between an ORGANIZATION and a LOCATION and between two LOCATIONS; the latter
holds between an ORGANIZATION and a TECHNOLOGY.

Let us take a look at the example sentence: “Intel, headquartered in Santa Clara, California, man-
ufactures semiconductors.”, shown in Figure 2.3. The linguistic analysis and named entity recog-

Intel , headquartered in Santa Clara , California , manufactures semiconductors .

ORG LOC LOC TECH

ORG:LocatedIn LOC:LocatedIn

ORG:ProducesTech

Figure 2.3 Relation extraction example. The goal of relation extraction is to detect semantic relationships
between entities of different types, e.g., organizations (ORG), locations (LOC), and technologies (TECH).

nition identified “Intel” as an ORGANIZATION, “Santa Clara” and “California” as a LOCA-
TION, and “semiconductors” as a TECHNOLOGY. This is equivalent to the setting of this thesis,
which assumes that linguistic analysis and information extraction sub-tasks already completed
and their results are available. I therefore focus on the task of relation extraction. The goal is to
develop a system that is able to detect relationships in text, if there is textual evidence. In our
example, a system is expected to identify the following relations: LocatedIn(Intel,Santa Clara),
LocatedIn(Santa Clara,California), and ProducesTech(Intel,semiconductors). This, however,
is often challenging due to the complexity and ambiguity of natural language.
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In principle, relations can have an arbitrary number of arguments, which is commonly known
as n-ary relation extraction (Akbik and Löser, 2012; Ling and Weld, 2010). For example, an
Acquisition relation may comprise a buyer, seller, and price. In this thesis, I focus on methods
for extracting relations between two arguments, i.e., binary relation extraction. In general,
these methods can be readily applied to the n-ary setting as well.

2.3.2 Methods

Depending on the use case or domain, relation extraction systems can be built with a variety of
methods. Typically, one must consider the availability of training data and structured knowledge
sources, and the cost involved with manual annotation of examples. In this section, I provide an
overview of relation extraction methods categorized into four scenarios, in order of difficulty of
obtaining the training data:

• Traditional supervision: The traditional supervised setting requires manually labeling
each training example.

• Distant supervision: Distant supervision (Mintz et al., 2009) uses heuristics to automat-
ically obtain large quantities of noisily supervised data.

• Semi supervision: Semi-supervised methods uses a small amount of manually labeled
data as a seed to iteratively expand the supervised data.

• No supervision: No supervision is the simplest setting, as it only requires raw data such
as unlabeled text.

2.3.2.1 Supervised Relation Extraction

In the traditional supervised setting, we assume that sufficient labeled data is available which
can be used to create a relation extractor, e.g., by training a machine learning-based relation
extraction model. Figure 2.4 shows two annotated binary relation extraction examples. Each
example consists of text with two of the mentioned entities marked, e.g., “Intel” and “mother-
board chipsets”, and an associated label indicating the relation, such as ProducesTech. Labels
are typically assigned by trained annotators or crowd workers.
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Intel also manufactures motherboard chipsets , flash memory and integrated circuits .

ProducesTech

Texas Instruments designs and manufactures semiconductors and integrated circuits .

ProducesTech

Figure 2.4 Supervised relation extraction examples. Both examples contain a ProducesTech relation
between an organization and a technology.

Early work in supervised relation extraction mainly focuses on two categories of methods
depending on how the input text and mentioned entities are represented: Pattern-based methods
use explicit rules or templates; feature-based methods, on the other hand, represent the input as
a feature vector, i.e., a set of manually defined attributes of the input.

Pattern-based methods Early pattern-based methods use hand-built extraction rules, similar
to regular expressions (Yangarber and Grishman, 1998). An input is processed in subsequent
steps via pattern matching on logical forms extracted from the input over previous steps. Typical
steps include lexical analysis, named entity recognition, and parsing. Figure 2.5 shows an
example for a logical form, which can be seen as an object with named slots.

Slot Value

Class Manufacturer

Company Intel
City Santa Clara
State California
... ...

Figure 2.5 Example of a logical form for the sentence “Intel, headquartered in Santa Clara, California,
manufactures semiconductors.”

Later methods (Kim et al., 2011; Xu et al., 2007) use sentence templates, also called patterns or
rules, learned from supervised data. The templates include surface-level word representations,
dependency parse grammar, and entity types. After obtaining the templates, they can be used
to extract relations from text via explicit pattern matching. An advantage of pattern-based
methods is that it allows humans to handcraft rules and easily inspect the systems state, which
is often required in industrial applications.
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Feature-based methods In comparison to pattern-based relation extraction methods, feature-
based methods represent the input text and mentioned entities as a set of attributes, or features,
that can be extracted from the input. These features include:

Lexical features: Lexical features are in widespread use since the earliest work in relation
extraction (Grishman and Sterling, 1993). These “shallow” features include properties of
words, e.g., their surface form, lemma, and stem (Zhou et al., 2005). Another example
is the use of trigger words, i.e., words that indicate a relation (Hendrickx et al., 2010).
For example, the word “manufacturer” may indicate the presence of a Produces[...]
relation. In addition to trigger words, a number of works use words before the first entity,
after the second entity, and between mentions as a feature since they often relate the
entities (Mooney and Bunescu, 2006). One of the most widely used features besides
lexical ones are part-of-speech tags. POS tagging is a form of syntactic analysis that
determines the syntactic category of a word, e.g., noun or verb. For instance, a phrase that
consists of a preposition and a verb, e.g., “headquartered in”, between entity mentions
may indicate a LocatedIn relation.

Dependency parse features: Lexical features, however, are unable to capture long range
dependencies or semantic relationships between constituents in a sentence. A number of
works use dependency parsing to determine the dependency structure of a sentence. A
frequently used feature is the shortest dependency path (SDP) connecting the two entity
mentions (Mintz et al., 2009; Zhou et al., 2005). Considering the SDP is beneficial to
relation extraction, because it focuses on the actions and agents in a sentence (Bunescu
and Mooney, 2005b; Socher et al., 2014).

Entity mention features: Unsurprisingly, features related to the entity mentions are one of
the most important. For example, Mintz et al. (2009); Zhou et al. (2005) used the named
entity type of each mention as a feature. This is often helpful, because it constraints the
set of relations to be considered, e.g., the LocatedIn only holds between organizations
and locations. Other features are words surrounding the entities, and whether an entity is
a nominal, name, or pronoun.

For each example, the desired features are extracted and stored in a feature vector, which is
combined with the corresponding relation label to train a supervised machine learning model,
e.g., a support-vector machine (Bunescu and Mooney, 2005a; Grishman et al., 2005; Zelenko
et al., 2003), logistic regression/maximum-entropy model (Chieu and Ng, 2002; Kambhatla,
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2004; Sun et al., 2011), or probabilistic graphical model (Ray and Craven, 2001; Rosario and
Hearst, 2004; Skounakis et al., 2003).

In traditional feature-based methods, features are hand engineered and defined a priori. Recent
deep learning methods aim to automatically learn useful input features for the task. These
methods use neural network-based models to learn latent features, e.g., representing the input in
a continuous vector space, on top of which a classifier is applied to predict the relation. We will
see shortly how recent work uses neural networks of different architecture to extract relations
from text. Despite the recent advances it is still common to explicitly provide neural network-
based models with features, such as part-of-speech tags, named entities types, morphological
features, and hypernyms to improve their performance.

2.3.2.2 Distantly Supervised Relation Extraction

Distant supervision was first proposed by Mintz et al. (2009) to train relation extraction models,
where any sentence that contains a relation instance, i.e., a pair of entities that participates in
a known relation, was assumed to be an example of that relation. Known relations are taken
from existing knowledge bases (KB), which contain facts in the form of tuples, for example,
PlaceLived(Jonathan Lethem, Brooklyn). In this setting the supervised data necessary for
training can be created automatically without time-consuming and expensive manual annotation
by human experts. For instance, in Figure 2.6 the tuple (Jonathan Lethem, Brooklyn) is used
to assign any sentence that contains both entities the relation label PlaceLived. This is also
commonly known as the distant supervision assumption. After obtaining the noisily supervised
data, we can create a relation extraction model with the same methods and features as in the
supervised setting. For example, Mintz et al. (2009) trained a multi-class logistic regression for
relation classification.

A drawback of heuristically assigning labels is that it introduces noisy labels. For instance,
under the distant supervision assumption we consider all three sentences in Figure 2.6 to be
examples of the relation PlaceLived. Only one of them, however, truly expresses the relation
(green check mark); the other two sentences do not (red check marks). In practice this often
leads to poor relation extraction performance, because it is often impossible to accurately
model the task based on inaccurate labels. Riedel et al. (2010) find that the distant supervision
assumption is frequently violated and proposed multi-instance learning to train a model despite
the noisy labels. This setting assumes that at least one sentence that contains a pair of entities
which participates in a know relation is also an example of that relation. The authors use a
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Knowledge 
Base

Data

Jonathan 
Lethem Brooklyn

PlaceLived

“Nonconnectivity becomes a commodity , something to cherish, '' 
said Jonathan Lethem, a Brooklyn novelist and a new MacArthur 
fellow.

In Brooklyn, they ask when you're going on Charlie Rose and if you 
know Jonathan Lethem.

You could say that only the dead, and Jonathan Lethem, know 
Brooklyn.

Figure 2.6 Distant supervision example. The underlying assumption is that all sentences that mention a
known fact, e.g., Jonathan Lethem lived in Brooklyn, also express this relation. However, this assumption
is often violated and thus introduces label noise, e.g. only the second sentence truly expresses the
PlaceLived relation.

probabilistic graphical model to predict relations between entities and which sentence truly
expresses the relation, which leads to more accurate results. Hoffmann et al. (2011) and
Surdeanu et al. (2012) observe that previous multi-instance models assume that relations are
disjoint, although entity pairs often participates in multiple relations, e.g., PlaceLived and
PlaceOfDeath. The authors propose multi-instance multi-label learning which is based on the
assumption that each relation mention, i.e., a pair of entities in a sentence, has exactly one label,
but a pair is allowed to exhibit multiple relations across different mentions. Both works use
probabilistic graphical models to model this assumption and classify relations.

Other limiting factors include: incomplete knowledge bases, i.e., knowledge bases lack facts that
are true; and system’s preprocessing errors, which violate the distant supervision assumption
in many cases and further increase the label noise. Various works focus on mitigating this
problem. For example, Angeli et al. (2014) use active learning, i.e., they integrate human
feedback into the learning process; Takamatsu et al. (2012) and Roller et al. (2015) aim to
automatically identify unreliable labels, e.g., via learned relation paths in the knowledge base
and a generative model to assess the quality of the labeling process. Another drawback is the
availability of knowledge bases that cover the relations of interest. Major sources of relations
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Seeds

Sentences

Build 
extractor

Intel is headquartered in Santa Clara.

(Intel, Santa Clara)

New
sentences

[NNP] “is 
headquartered in” 
[NNP]

Texas Instruments is headquartered in Dallas.

(Texas Instruments, Dallas)

Texas Instruments is based in Dallas.

Figure 2.7 Semi-supervised relation extraction with bootstrapping example. Relation of interest is
LocatedIn. Bootstrapping starts from an initial set of seed relation instances, e.g., (Intel Santa Clara), and
iteratively expands it by first building a relation extractor from newly obtained sentences that mention
these instances, followed by extracting new instances that can be added to the initial seeds.

are Freebase, DBPedia4 and Wikidata,5 which only cover a specific set of relations that may
not be applicable to the domain of interest, such as healthcare.

Similar to the traditional supervised learning setting, most recent methods in distantly super-
vised relation extraction also use neural network-based models (Section 2.3.3).

2.3.2.3 Semi-Supervised Relation Extraction

In semi-supervised relation extraction, we aim to minimize the manual effort involved to build a
model for the task (Agichtein and Gravano, 2000; Brin, 1998; Xu et al., 2007). Methods in this
setting typically rely on bootstrapping, or bootstrap learning. In this scenario, we use a small
set of relation instances, or seeds,6 to initially collect sentences from a corpus that mention the
instances. In a second step, we use the obtained sentences to build a relation extraction model,
e.g., by learning a classifier (Agichtein and Gravano, 2000), or by learning extraction rules (Xu
et al., 2007). Then, we apply the model to a corpus to retrieve further relation instances, which
are added to the initial seed set. In the next iteration, we repeat the same procedure with the
larger seed set to retrieve even more sentences, which we use to extend the seed set even further.
Figure 2.7 shows a simplified bootstrapping iteration example. Here, we use the initial seed
tuple (Intel, Santa Clara) to retrieve a sentence from a corpus that mentions the instance. Then

4https://wiki.dbpedia.org
5https://wikidata.org
6Seeds are not limited to relation instances and also include manually created patterns or annotated sentences.

https://wiki.dbpedia.org
https://wikidata.org
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we build an extractor from the sentence and use it to retrieve a new relation instance, in this
case (Texas Instruments, Dallas). In the next iteration, we add the newly found relation instance
to the seeds and repeat the process.

A drawback of this iterative approach is that it leads to semantic drift (Agichtein and Gravano,
2000; Xu et al., 2010). At each iteration there is a chance that we add false positive tuples to
the seed instances. As we use these instances to retrieve new sentences, and the new sentences
to learn a new extractor, the error propagates from iteration to iteration. To mitigate this issue,
Agichtein and Gravano (2000) focus on overly specific patterns so only highly precise tuples
get added to the seeds. Xu et al. (2010) instead estimate pattern confidence to decide which
extracted tuples to add.

2.3.2.4 Unsupervised Relation Extraction

In unsupervised relation extraction our objective is to extract relations of a priori unknown
semantic types, for example, in applications where the relations are new or unknown. A
common approach is to use clustering methods on entity pairs and patterns. For instance,
Shinyama and Sekine (2006) propose the paradigm of unrestricted relation discovery. They
first cluster news articles and extract the mentioned entity pairs, followed by a step to construct
patterns that indicate a relation. The method then uses the obtained patterns to cluster entity
pairs extracted from other articles. More recent unsupervised relation extraction methods build
on the latent relation hypothesis, which states that pairs of words that co-occur in similar patterns
tend to have similar relations. Turney (2008) compute a pair-pattern matrix between entity pairs
and distinct patterns to capture this hypothesis in a vector space model (Section 2.4.3.1). The
resulting vector representations allow us to compute similarities between entity pairs based
on the patterns they are observed with. Akbik et al. (2012) observe that the choice of patterns
is crucial, as there often exist ambiguous or underspecified patterns. They propose a more
informed feature generation strategy, e.g., to consider dependency parse information beyond
the shortest path between two entities, and also to consider the distinctiveness of each pattern in
a cluster to determine its ambiguity. Akbik et al. (2013) add selectional restrictions to patterns,
i.e., they restrict the entity types between which a pattern is allowed to match so as to reduce
ambiguous patterns.

Unsupervised relation extraction and the paradigm of open information extraction often go
hand in hand. The TextRunner system (Etzioni et al., 2008; Yates et al., 2007) uses a self-
supervised training approach based on a dependency parsed corpus, POS tags and identified
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noun phrases to train a classifier, which is subsequently applied to extract relations from a
corpus. A limitation of this system is that the semantics of a relation had to be determined in a
separate step and the output was noisy. Later works address this, e.g., by adding an additional
disambiguation step (Yates and Etzioni, 2009), or by using a language model to assess the
quality of extractions (Downey et al., 2007). Subsequent works improved self-supervised
learning, for example, by using heuristic matches between Wikipedia info box attribute values
and corresponding sentences to construct training data (Wu and Weld, 2010).

Although unsupervised relation extraction methods do not require supervised data, the results
are often difficult to interpret and hard to map to existing relations, schemas, or ontologies (Fader
et al., 2011). This is a crucial shortcoming that prevents its use in applications such as
knowledge base refinement (Smirnova and Cudré-Mauroux, 2018).

2.3.3 Neural Relation Extraction

Most recent relation extraction methods use neural networks to model the task, which led
to a considerable increase in performance; mainly due to their ability to automatically learn
useful input representations, and to effectively model sequential data. Figure 2.8 shows a
typical architecture for neural relation extraction. As stated in the previous section, we assume
linguistic analysis and named entity recognition already completed, and that we have access to
their results, e.g., part-of-speech information, dependency parse, and named entities. Our goal
is to model the probability of a relation P(r |w1, . . . , wT , head, tail) given a sequence of words
w1, . . . ,wT , e.g., a sentence, and two entity mention spans denoted head and tail. Distinguishing
between head and tail is important, as it indicates the directionality of the predicted relation.
Each word wi is represented by its embedding ei ∈ Rc, which we either learn during training
or initialize with pre-trained embeddings (Section 2.4.3.1). It is common to use a positional
embedding pi ∈ Rd to indicate the relative offset of the two mentions to other words in the
input sequence, e.g., “headquartered” has an offset of -2 to “Intel”, and 8 to “semiconductors”.
Intuitively, positional embeddings capture features related to the proximity of words and also
serve as an indicator for the entity mentions in question. Additional word features are often
represented as embeddings, denoted fi ∈ Re, such as part-of-speech tags or named entity types.

We then apply a neural network to the sequence of concatenated word representations X =

[x1, . . . ,xT ], with xi = [ei, pi, fi] ∈ R(c+d+e) to obtain a fixed size representation s ∈ R f . For
example, if the input is a sentence, s can seen as a representation of the sentence conditioned
on the respective head and tail mentions. The encoder can be a neural network of arbitrary
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Figure 2.8 Typical architecture for neural relation extraction. We represent each word wi in the input
sentence by its corresponding word embedding ew

i , positional embedding pi, and additional word level
features fi. A neural network-based encoder maps X to the sentence representation s, which we then
use to predict the relation. External knowledge can be added via sentence level features (A), distributed
word representations (B), or word level features (C).

architecture, e.g., a convolutional neural network (CNN), a recurrent neural network (RNN), a
graph convolutional neural network (GCN), or a self-attentive architecture. Finally, we apply
a classification layer to s, typically a linear projection followed by a softmax, to obtain the
probability distribution P(r |s) over the set of possible relations.

2.3.3.1 Supervised Neural Relation Extraction

In supervised neural relation extraction, methods mainly differ in the architecture of the encoder
and the external knowledge or features they use. Socher et al. (2012) were the first to apply
neural networks to the task. They use a matrix-vector recurrent neural network (MV-RNN)
to encode the input token sequence according to its syntactic parse tree. Zeng et al. (2014)
apply a CNN with max-pooling to pre-trained word embeddings and positional embeddings to
obtain the sentence representation and combine it with lexical features of the entity mentions.
Nguyen and Grishman (2015) use a similar approach but instead apply multiple convolutions
of different filter sizes. Xu et al. (2015a) encode the words on the shortest dependency path
and their dependency relations with a CNN into a sentence representation, similar to Xu et al.
(2015b), who instead use an LSTM. Zhou et al. (2016) use an attention layer (Bahdanau
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et al., 2014) to combine the final hidden states of a Bi-LSTM for each token into a sentence
representation. To compute the attention weights, they use a static query vector learned during
training. Zhang et al. (2017) instead proposed PA-LSTM, a position-aware LSTM, which is
similar to the previous approach but uses the final state to control the attention, so the model is
able to dynamically evaluate the contributions of each token after observing the entire input
sequence. More recently, graph convolutional neural networks (GCN) for relation extraction
garnered a lot of interest. For example, Zhang et al. (2018b) apply graph convolutions to
the input token sequence. They use dependency tree information in combination with graph
pruning to aggregate the token representations along the shortest dependency path. Similarly,
self-attention gained a lot of interest recently. For instance, Verga et al. (2018) extend the
transformer by a custom architecture for supervised biomedical named entity recognition and
Relation Extraction.

2.3.3.2 Distantly Supervised Neural Relation Extraction

Methods in distantly supervised relation extraction mainly focus on multi-instance learning,
multi-instance multi-label learning, and integration of additional knowledge to better learn with
noisily supervised data. Neural encoder architectures are similar to the traditional supervised
setting, however, methods predominantly rely on CNNs, in particular the piecewise convolu-
tional neural network (PCNN) proposed by Zeng et al. (2015). The architecture is inspired by
earlier work on feature-based methods, which observed that different parts of the context may
contain important features to identify a relation. Instead of encoding the input sequence into a
single representation by max-pooling, this method uses a piecewise max-pooling procedure to
obtain a representation of the left context (to the left of the first entity mention), middle context
(between mentions), and right context (to the right of the second mention). The representation
is then combined with lexical features, such as, embeddings of entity mention tokens, their
context tokens, and WordNet hypernyms, to form the final representation for relation prediction.
Adel et al. (2016) further extended the PCNN. Rather than applying the separation into left,
middle, and right context during pooling, the convolutional part is divided into three distinct
parts.

In neural multi-instance multi-label learning, shown in Figure 2.9, we first group all examples
into a bag B according to the mentioned entity pairs, e.g., Jonathan Lethem and Brooklyn.
Similar to the supervised case, we use a neural network to map each example X1, . . . ,XM in a
bag to its representation si. Under the assumption that at least one of the examples in the bag
truly expresses the relation, the selection step selects the final bag-level representation sbag,
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given the representations of each individual example in the bag s1, . . . ,sM. This representation
is then input to the classification layer to obtain the probability distribution over the set of
available relations.
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“Nonconnectivity becomes a commodity , something to cherish, '' 
said Jonathan Lethem, a Brooklyn novelist and a new MacArthur 
fellow.

In Brooklyn, they ask when you're going on Charlie Rose and if you 
know Jonathan Lethem.

You could say that only the dead, and Jonathan Lethem, know 
Brooklyn.
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Figure 2.9 Architecture for multi-instance multi-label learning in neural distantly supervised relation
extraction. First, we group all examples that mention the same entity pair, e.g., Jonathan Lethem and
Brooklyn, into a bag B. Each example Xi in the bag is mapped to its representation si by an encoder (2),
followed by combining the individual representations into a bag representation sbag (3). Similar to the
supervised setting, we use sbag to predict the relation (4).

Initial multi-instance learning methods (Zeng et al., 2015) select only the most likely example
in the bag. Lin et al. (2016) instead propose to use selective attention over examples, an
approach that produces an attention distribution by comparing the sentence representation of
each example to a learned representation of each relation. The attention distribution is then used
to compute the group representation as a weighted combination of all sentence representations.
The previous method treats relation extraction as multi-class classification, which does not
consider that entity pairs can participate in multiple relations. Jiang et al. (2016) extend the
method to multi-label classification to allow multi-instance multi-label learning.

Other methods include adversarial training (Qin et al., 2018; Wu et al., 2017), noise models (Luo
et al., 2017), and soft labeling (Liu et al., 2017a; Wang et al., 2018b). Recent work showed graph
convolutions (Vashishth et al., 2018) and capsule networks (Zhang et al., 2018a), previously
applied to the supervised setting, to be applicable in a distantly supervised setting, too. In
addition, linguistic and semantic background knowledge is helpful for the task, but the proposed
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systems typically rely on explicit features, such as dependency trees, named entity types, and
relation aliases (Vashishth et al., 2018).

2.3.4 Datasets and Evaluation

In this section, I first provide an overview of metrics and evaluation procedures typically used
in relation extraction (Section 2.3.4.1). I then introduce the most popular benchmark datasets
to evaluate supervised and distantly supervised relation extraction methods (Section 2.3.4.2).

2.3.4.1 Evaluation

Typically, we evaluate relation extraction methods in terms of precision, recall, and Fβ measure
against a test dataset, also commonly referred to as ground truth or gold standard. The dataset
contains examples with all relation instances annotated that a relation extraction method is
expected to identify. During evaluation, we compare the relations extracted by a model to the
ground truth so we can check whether they are correct or incorrect. True positives (TP) are
all relation instances that are retrieved and also in the set of ground truth instances. All other
retrieved instances are considered false positives (FP).

Precision is the proportion of true positives among all retrieved instances, i.e., the overall
correctness of the model. This is calculated as:

precision =
#T P

#T P+#FP
(2.12)

Recall is the proportion of true positives among all ground truth instances, i.e., the overall
completeness of the model. This is calculated as:

recall =
#T P

#T P+#FN
(2.13)

There typically exists a trade-off between both metrics. For example, an application for
knowledge base construction may demand that we only add relations that are extracted with
high confidence. We therefore optimize our model for precision. This, however, goes at the
expense of recall, as overall less relation instances are retrieved. The Fβ score provides a single
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metric that combines precision and recall:

Fβ measure =
(1+β 2) · precision · recall

β 2 · precision+ recall
(2.14)

In relation extraction, it is common to use the harmonic mean of precision and recall (β = 1),
the so-called F1 score (van Rijsbergen, 1979), which is defined as follows:

F1 score = 2 · precision · recall
precision+ recall

(2.15)

The F1 score can be extended to the multi-class setting, e.g., by ignoring the class distribution
(micro-averaged) or by calculating the F1-scores for each class individually and taking the
mean (macro-averaged).

2.3.4.2 Datasets

Table 2.2 gives an overview over commonly used datasets in supervised and distantly supervised
relation extraction. The SemEval 2010 Task 8 dataset (Hendrickx et al., 2010) is a standard

Dataset Examples Neg. examples (%) Relations Supervision

SemEval 2010 Task 8 10,717 17.4% 19 traditional
TACRED 106,264 79.5% 42 traditional
NYT-10 522,611 - 53 distant

Table 2.2 Statistics for relation extraction datasets.

benchmark for binary relation classification, and contains 8,000 sentences for training, and
2,717 for testing. Sentences are annotated with a pair of untyped nominals and one of 9 directed
semantic relation types, such as Cause-Effect, Entity-Origin, as well as the undirected Other
type to indicate no relation, resulting in 19 (2 x 9 + 1 other) distinct relation types in total. The
official convention is to report macro-averaged F1 scores with the directionality of relations
taken into account.

The TAC Relation Extraction Dataset (TACRED) introduced by Zhang et al. (2017) contains
106k sentences with entity mention pairs collected from the TAC KBP evaluations7 2009–
2014, with the years 2009 to 2012 used for training, 2013 for evaluation, and 2014 for testing.

7https://tac.nist.gov/2017/KBP/index.html

https://tac.nist.gov/2017/KBP/index.html
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Sentence Head Tail Relation

Mr. Scheider played the police chief of
a resort town menaced by a shark.

Scheider police chief per:title

The measure included Aerolineas’s do-
mestic subsidiary, Austral.

Aerolineas Austral org:subsidiaries

Yolanda King died last May of an ap-
parent heart attack.

Yolanda King heart attack per:cause_of_death

The key was in a chest. key chest Content-Container

The car left the plant. car plant Entity-Origin

Branches overhang the roof of this
house.

roof house Component-Whole

Table 2.3 Examples for relation extraction datasets.

Sentences are annotated with person- and organization-oriented relation types, e.g., per:title,
org:founded, and no relation for examples that do not contain a defined relation. While TACRED
is approximately ten times the size of SemEval 2010 Task 8, it contains a much higher fraction
of negative training examples, which makes classification more challenging. In contrast to
the SemEval dataset the entity mentions are typed, with subjects classified into person and
organization, and objects categorized into 16 fine-grained classes (e.g., date, location, title).
The convention is to report results as micro-averaged F1 scores.

The NYT10 dataset by Riedel et al. (2010) is a standard benchmark for distantly supervised
relation extraction. It was created by aligning Freebase relations with the New York Times
corpus, with the years 2005–2006 reserved for training and 2007 for testing. The training data
contains 522,611 sentences, 281,270 entity pairs and 18,252 relational facts. The test data
contains 172,448 sentences, 96,678 entity pairs and 1,950 relational facts. There are 53 relation
types, including NA if no relation holds for a given sentence and entity pair. The convention is
to report Precision@N, i.e., precision scores for the top N extracted relation instances ranked
by model confidence, and precision-recall curve. Since the test data is also created via distant
supervision and can only provide an approximate measure of the performance, it is customary
to also report Precision@N based on a manual evaluation.
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2.3.5 Summary and Discussion

Relation extraction is a crucial sub-task of information extraction, and the shift from early
pattern-based to machine learning-based methods considerably improved the quality of its
results. The traditional supervised machine learning setting, however, requires large quantities
of supervised data, which is costly to create. This led to the development of methods with
less strict requirements on the degree of supervision, for example, distant supervision, semi-
supervised learning via bootstrapping, or unsupervised relation extraction. These methods
also have drawbacks, such as label noise, semantic drift, or difficult to interpret results. None
of the methods is always suited and can be applied universally. At lot of research has since
focused on better methods to create high quality relation extraction models, as measured in pre-
cision and recall. In particular, neural network-based methods lead to significant performance
improvements.

Neural network-based methods, however, often require even larger quantities of supervised
data to learn and generalize well to unseen examples. To make training more efficient, current
methods try to leverage prior knowledge in the form of additional and often hand-engineered
features, as well as side information. As I argue in Chapter 1, current relation extraction
methods are too data-intensive and often exhibit insufficient performance on complex relations,
and the current form of using prior knowledge is limited and scales poorly. To improve this, we
need to: efficiently transfer knowledge from other tasks or domains that are helpful to relation
extraction; and develop a better understanding what models learn, and where they still fail.

To address these limitations, I propose to use transfer learning and methods to analyze neural
language processing models, which I cover in the next two sections.

2.4 Transfer Learning in Neural Language Processing

This chapter provides an overview of transfer learning. It describes the setting in which
machine learning models are transferred to data outside of their training distribution. First,
I contrast traditional supervised machine learning to the transfer learning setting, provide a
formal definition, and introduce the four prevalent settings in transfer learning (Section 2.4.1).
I then focus on those most relevant to this thesis. In particular, I review multi-task learning
(Section 2.4.2) and sequential transfer learning (Section 2.4.3).
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2.4.1 Transfer Learning

In the conventional supervised learning setting, if we want to learn a model A, we assume
access to sufficient labeled data for the task and domain A, as shown in Figure 2.10. We can
now train the model on this data an expect it to perform well on unseen data from the same task
and domain. If we want to train another model B on a different task and domain B, we again
need access to labeled data for this particular domain and expect it to perform well on unseen
data from this particular task. The assumption in this setting is that training and unseen test

Model A Model B

Task in 
domain A

Task in 
domain B

Figure 2.10 The classic supervised learning setting.

data is drawn from the same distribution and the same feature space, i.e., the data is assumed to
be independent and identically distributed (i.i.d.).

This assumptions, however, fail in cases where we have insufficient labeled data for a task or
domain C. Transfer learning aims to use data, or knowledge, from related tasks or domains
to deal with this scenario. The related task and domain are known as source task and source
domain. We first obtain the knowledge by training a model on the source task and its domain
and then apply it to the target task and target domain as depicted in Figure 2.11. Depending
on task and data, knowledge can be of various forms. In this thesis, knowledge is typically
associated with the representations learned by neural network models (Section 2.1.1).

Following the taxonomy of Pan and Yang (2010), which was subsequently extended by Ruder
(2019), transfer learning can be broadly divided into two scenarios:

• Transductive transfer learning: In this scenario, the source and target task are the
same but supervised data is only available in the source domain. This includes domain
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Model A Model C

Task in 
domain A
(source)

Task in 
domain C
(target)

Knowledge

Figure 2.11 The transfer learning setting.

adaptation, where the marginal probability distributions P(XS) and P(XT ) differ, e.g.,
NER for similar entity types in the legal domain (source) and in the medical domain
(target) – both in the same language. The scenario also includes cross-lingual learning,
which is characterized by differing feature spaces between source and target domain, i.e.,
the vocabulary differs between domains.

• Inductive transfer learning: In this scenario, the source and target task differ and
supervised data is (only) available in the target domain. In this setting the label spaces
differ between source and target tasks. This setting includes multi-task learning and
sequential transfer learning, with the tasks either trained simultaneously or sequentially.

This thesis is concerned with the inductive transfer learning scenario, namely multi-task learning
and sequential transfer learning, which I discuss in detail in the following sections.

2.4.2 Multi-Task Learning

The most common setting in machine learning is single-task learning, where we train a model on
a single task. By focusing on just one task, however, we ignore useful knowledge from related
tasks that may help us to improve the metric of interest. In multi-task learning, we address
this by leveraging the knowledge contained in the training signals of related tasks (Caruana,
1997). For example, by sharing representations between tasks we can help our model to
generalize better to our task of interest. Multi-task learning is also known as learning to learn,
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joint learning, and learning with auxiliary tasks. Motivation for multi-task learning can be
drawn from a biological or pedagogical perspective, e.g., humans first learn the necessary skills
before mastering more complex tasks (Brown and Principles, 2001; Ruder, 2017). From the
perspective of machine learning, multi-task learning introduces an inductive bias provided by
the related tasks that forces a model to prefer some hypotheses over other hypotheses (Caruana,
1993). Specifically, it prefers those that explain more than a single task in isolation. This may
result in better generalization with a fixed training set, or increased data efficiency, i.e., equal or
better task performance with less supervised data. In the context of deep learning two methods
are commonly used for multi-task learning with deep neural networks: Hard and soft parameter
sharing.

Hard parameter sharing Hard parameter sharing is the most commonly used approach for
multi-task learning in deep neural networks (Caruana, 1997). In this setting the hidden layers
are typically shared between all tasks, except for some task specific output layers (Figure 2.12).
Hard parameter sharing greatly reduces overfitting by forcing the model to find a representation
that captures all tasks well, instead of just the task of interest, which reduces the chance of
overfitting (Ruder, 2019).

Task A Task B

Layer(s)
(task-specific)

Layers
(shared)

Figure 2.12 Multi-task learning with hard parameter sharing.

Soft parameter sharing In soft parameter sharing, each task has its own model with its own
parameters. Instead, the difference between parameters is constrained, in order to regularize and
thus encourage the parameters to be similar, as depicted in Figure 2.13. Approaches include the
use of L2 norm for regularization (Duong et al., 2015), or the trace norm (Yang and Hospedales,
2017).
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Task A Task B

Constraint

Constraint

Figure 2.13 Multi-task learning with soft parameter sharing.

2.4.2.1 Auxiliary Tasks

In most multi-task learning settings, we are only interested in the performance of one particular
task: the main task. For example, we may train a text classification model simultaneously with
part-of-speech tagging or named entity recognition. In this case, we are mainly concerned
with the text classification performance. Auxiliary tasks include: statistical tasks that predict
underlying statistics of the data, e.g., predicting the log frequency of a word as an auxiliary
task for sequence tagging (Plank et al., 2016); selective unsupervised auxiliary tasks that
provide the model with hints about certain aspects of the task, for example, predicting whether
a sentence contains a name as an auxiliary task for name error detection (Cheng et al., 2015);
and supervised auxiliary tasks, e.g., tasks that are related to the main task.

2.4.3 Sequential Transfer Learning

Sequential transfer learning is the prevalent setting in transfer learning, which typically involves
one source task and a target, or downstream, task. In this scenario the source and target task
differ and training is performed in sequence (Ruder, 2019). The goal is to improve the target
model by transferring knowledge from the model trained on the source task. It is mainly used
in the following three settings: data for both tasks is not available simultaneously, data for
the source task is available in much larger quantities than data for the target task, or repeated
transfer to many target tasks is necessary.

Sequential transfer learning stages Sequential transfer learning with one source and one
target task typically consists of two stages: pre-training and adaptation. In the pre-training
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phase the initial model is trained on the source task, in the adaptation phase the knowledge
contained in the trained model is transferred to the target task, i.e., the pre-trained model is
further trained on the target task. Often the pre-training phase is expensive. However, it must
be performed only once, while the fine-tuning stage is much more efficient. The source task
is typically chosen to maximize the usefulness of the approach by selecting a source task that
allows to learn more general representation that is useful for a wide variety of target tasks.

2.4.3.1 Pre-training

Pre-training, similar to the choice of auxiliary tasks in multi-task learning, should force a model
to capture knowledge that is useful for the downstream tasks, and ideally the pre-training task
provides large quantities of training data. We can discern pre-training tasks by the source of
supervision: traditional supervision, distant supervision, and no supervision.

Supervised pre-training typically leverages existing supervised tasks and datasets. A common
approach is to pre-train on a task related to the target task. For example, Yang et al. (2017)
pre-train a model on part-of-speech tagging and adapt it to word segmentation. Another strategy
is to pre-train on a task which is similar to the downstream task but has more available training
data. Min et al. (2017) and Wiese et al. (2017), for instance, pre-train a question answering
model on the large Stanford Question Answering Dataset (SQUAD, Rajpurkar et al., 2016) and
adapt it to more specialized domains, such as biomedical QA. The focus of recent research is
to learn general purpose language representations. In this case, pre-training tasks are selected
which are thought of to learn something about the general structure of language, for example,
by pre-training on paraphrasing (Wieting et al., 2015) or natural language inference (Conneau
et al., 2017).

Distantly supervised pre-training, on the other hand, aims to provide hints, or helpful signals,
to the model during training, which those solely trained on unsupervised data may be unable
to exploit. The hints are similar to auxiliary tasks in multi-task learning but can be created by
heuristics from raw data. For instance, Severyn and Moschitti (2015) and Felbo et al. (2017)
predict emojis in tweets to pre-train a model for sentiment analysis. Nie et al. (2019) show that
predicting discourse markers in sentences (e.g., “but”, “also”) is an effective pre-training signal
to improve performance on downstream tasks that rely on sentence meaning, such as discourse
relation prediction.
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Unsupervised pre-training, also known as unsupervised transfer learning or self-taught learning,
is of particular interest to this thesis. It uses raw language data to learn representations and
thus is more scalable and more general than the supervised setting. The reason is that a
model must encode more general information about language, its structure and meaning. Most
approaches focus on learning representations of words from unsupervised data. Traditional
approaches include: Latent Semantic Analysis (LSA, Deerwester et al., 1990), Latent Dirichlet
Allocation (LDA, Blei et al., 2003), and Brown clustering (Brown et al., 1992) but are out
of the scope of this thesis. Instead, we focus on methods that learn a dense representation of
words with neural networks, in particular for pre-training word embeddings, and pre-training
contextual embeddings via language modeling.

Word embeddings Representing words as dense vectors has a long history, for example,
Bengio et al. (2003) use a neural network-based n-gram language model (NNLM) to learn word
representations, i.e., they predict the next word in a corpus, given a context of n−1 words. The
training procedure then minimizes the loss LNNLM, specifically, the log-likelihood under the
training corpus C:

LNNLM =− 1
|C|

|C|−n+1

∑
i=n

log f (wi|wi−1, . . . ,wi−n+1;θ)+R(θ) , (2.16)

where f (·) is a neural network, e.g., a feed-forward network, θ denotes the set of model
parameters, and R(θ) is a regularization term. Collobert et al. (2011) learn word representations
by training a neural network to rank correct word sequences higher than incorrect ones using a
max-margin loss:

LMML =
|C|−C

∑
i=C

∑
w′∈V

max(0,1− f (wi−C, . . . ,wi, . . . ,wi+C)+ f (wi−C, . . . ,w′i, . . . ,wi+C)) (2.17)

The outer sum iterates over all words in the corpus C and the inner sum iterates over all words
in the vocabulary. Each word has a context window of c words to its left and right. Skip-gram
with negative sampling (SGNS, Mikolov et al., 2013a,b) is one of the most popular methods to
learn word embeddings, with the goal of training efficiency and robustness (Levy et al., 2015).
Word2Vec is one of the most popular implementations of this approach. SGNS learns word
representations that are good at predicting the surrounding context, given a target word wi. The



42 | Background

objective is as follows:

LSGNS =
1
|C|

|C|

∑
i=1

∑
−C< j<C, j ̸=0

logP(wi+ j|wi) (2.18)

The probability P(wi+ j|wi) is computed using the softmax function:

P(wi+ j|wi) =
exp(x̃i+ j

T xi)

∑
|V|
t=1 exp(x̃t T xi)

, (2.19)

where xi and x̃i are the word embedding and the context word embedding of word wi, respec-
tively. Global vectors (GloVe, Pennington et al., 2014) learn word representations via matrix
factorization. GloVe minimizes the difference between the dot product of the embeddings xi

and x̃ j of word wi and its context word ˜︁w j:

LGloVe =
|V|

∑
i, j=1

g(Ci j)(xi
T x̃ j +bi + b̃ j− log Ci j)

2 , (2.20)

where bi and b̃ j is a bias corresponding to xi and x̃ j, and g(·) is a weighting function that assigns
lower weight to rare and frequent word co-occurrences, as measured by the co-occurrence
matrix C.

Pre-trained language models All previous neural network-based methods are shallow: they
trade off expressiveness for efficiency. This, however, limits the relations they can capture. For
example, a model initialized with word embeddings must still learn from scratch to disambiguate
words in context, and to infer meaning from a sequence of words. These abilities are at the heart
of language understanding, which requires the ability to model complex language phenomena,
such as long-term dependencies, compositionality, negation, and agreement. Methods therefore
require large quantities of training data to achieve good performance.

Recent advances are based on the principle to not just initialize the first layer, i.e., the word
embeddings, but to pre-train an entire model with hierarchical representations. All models
discussed in the following use deep neural networks to learn representations. For instance,
Dai and Le (2015) propose to pre-train an LSTM autoencoder that reconstructs the words in a
sentence. Kiros et al. (2015), on the other hand, train an RNN to reconstruct the words in the
preceding and succeeding sentences.
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In recent years, increasing computational capabilities made it feasible to train deep neural
language models (LM). The goal of neural language modeling is to estimate the joint probability
p(w) of a text, given its sequence of tokens, e.g., words or subword units, w = w1, . . . ,wT . The
joint probability can be decomposed as:

P(w) =
T

∑
w=1

log p(wi|wi−1, . . . ,w1) . (2.21)

The conditional probability P(wi|wi−1, . . . ,w1) is modeled by a probability distribution over
the vocabulary of tokens, given the context:

P(wi|wi−1, . . . ,w1) = f (w1, . . . ,wi−1) , (2.22)

where f (·) is a neural network model.

Although language modeling is a general concept, in practice it often refers to autoregressive
language models, or unidirectional LM’s. For example, Peters et al. (2017) apply a unidirec-
tional language model to sequence labeling tasks and Ramachandran et al. (2017) utilize one
for summarization and machine translation. Peters et al. (2018) first show that language model
pre-training learns representations that are useful for many downstream tasks. Radford et al.
(2018) show similar results but train a deeper model. Howard and Ruder (2018) found lan-
guage representations learned by unsupervised language modeling to significantly improve text
classification, prevent overfitting, and increase data efficiency. Devlin et al. (2019) introduce a
masked language model (MLM) objective (Section 2.2), which randomly masks tokens in a
text and then predicts only the masked tokens:

LMLM = ∑
w′∈m(w)

logP(w′|w\m(w)) , (2.23)

where m(w) denotes the masked words, and w\m(w) the unmasked words. In comparison to
other pre-training tasks, language modeling is more data-efficient (Zhang and Bowman, 2018).

2.4.3.2 Adaptation

The previous section focused on the first stage of the sequential transfer learning process.
In the second stage, the adaptation phase, two ways are mainly used to adapt pre-trained
representations to the target task: feature extraction and fine-tuning. Feature extraction provides
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pre-trained representation as input features to another model. Fine-tuning, on the other hand,
directly trains the pre-trained model on data of the target task.

Model A Model C

Task in 
domain A
(source)

Task in 
domain C
(target)

Model C

Model A

Task in 
domain C
(target)

frozen

Stage 1:
Pre-training

Stage 2:
Fine-tuning

Stage 2:
Feature extraction

Figure 2.14 Adaptation phase in sequential transfer learning. A model is first pre-trained and then either
fine-tuned (middle) or used as a feature extractor (right). The parameters of the feature extraction model
are frozen, i.e., they are kept fixed throughout the adaptation phase.

Feature extraction In feature extraction, we provide the pre-trained representations as in-
put features to a downstream model (Figure 2.14, right), similar to traditional feature-based
approaches (Section 2.3.2.1). The pre-trained model parameters are frozen during training on
the target task, i.e., they are left unchanged. A common use case is to provide pre-trained word
representations or a combination of multiple representations as input to a model.

Fine-tuning In fine-tuning, on the other hand, we initialize the downstream model with the
pre-trained model parameters (Figure 2.14, middle). In this case, the parameters are updated
during training on the target task. Feature extraction is useful when we want to reuse pre-trained
task specific models, or when we want to reuse the same data multiple times, either during
training or for different tasks. Fine-tuning is convenient because no or minimal task-specific
changes are necessary to adapt to new tasks.
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2.5 Analysis Methods in Neural Language Processing

The field of natural language processing has seen impressive progress in recent years. In
particular, this can be attributed to neural network-based methods replacing traditional rule-
and feature-based systems; which led to improvements in various tasks, such as machine
translation (Bahdanau et al., 2014), reading comprehension (Hermann et al., 2015), and syn-
tactic parsing (Kiperwasser and Goldberg, 2016). The trend also sparked the development of
various neural network architectures, which are typically more opaque than rule- and feature-
based methods, as their highly non-linear structure makes them difficult to understand for
humans (Samek et al., 2017). As a result, interest increased in methods that strive to better
understand how NLP methods work on various tasks. This fits the larger question of inter-
pretability, which aims to increase accountability, fairness, and trust. The goal is to better
understand how models work and identify less covered aspects or scenarios where models fail;
to provide insights, uncover new research directions, and ultimately improve their language
abilities.

Following the taxonomy of Belinkov and Glass (2019), analysis methods can be broadly divided
into the following categories:

• Probing linguistic information: Methods in this category identify linguistic information
that is captured by neural network-based models (Section 2.5.1).

• Adversarial examples: Adversarial attacks create altered versions of examples that
preserve their semantics with respect to the language task but change the prediction of a
model (Section 2.5.2).

• Challenge sets: Challenge sets, or test suites, are exhaustive, systematically collected or
created sets of examples that test specific aspects of a language task (Section 2.5.3).

• Visualization: Methods in this category visualize input feature saliency or model inter-
nals, e.g., attention distribution or hidden unit activation. These methods, however, are
out of the scope of this thesis.

2.5.1 Probing Linguistic Information

Typically, we train neural network-based models in an end-to-end manner, without explicitly
encoding linguistic features. To better understand a model it is helpful to identify particular
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features it encodes. A common approach is to predict such properties from its hidden states,
or activations, as shown in Figure 2.15. First, we train a model on a task, e.g., machine
translation. To probe it for a property of interest, e.g., the tense of the input, we use a diagnostic
classifier (Veldhoen et al., 2016), also known as auxiliary prediction task (Adi et al., 2017; Qian
et al., 2016) or probing task (Conneau et al., 2018). For example, to probe the representations in
layer k of our trained model, we train a second model on the probing task data, e.g., sentences
and their tense, and use the model up to layer k as a feature extractor. The parameters of
the model are frozen, i.e., we update only the parameters of the probing task model during
backpropagation. For each probing task, a classifier is trained on a set of representations, and its

Task Probing Task
Layer k

Layer 1

Figure 2.15 A typical probing task setup.

performance measures how well the information is encoded. Probing tasks are widely used to
analyze the presence of linguistic information in a model’s latent representations, for example,
in machine-translation (Belinkov et al., 2017), language modeling (Giulianelli et al., 2018), and
sentence encoding (Conneau et al., 2018). We typically select the probing tasks in accordance
with the NLP task. For example, Conneau et al. (2018) first trained models on different tasks,
such as, neural machine translation and natural language inference, and probed the sentence
representations for tense, syntactic parse tree depth, subject number, etc.

Other methods try to find agreements between parts of the network and the properties of
interest. Voita et al. (2018), for example, count the correspondences between attention weights
and a property, e.g., for anaphora resolution. Others directly compute correlations between
activations and the property of interest, for example, correlations between hidden state and
syntactic parse tree depth (Qian et al., 2016).
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2.5.2 Adversarial Examples

If we want to understand a model, we also need to understand its failures. Despite their success,
machine learning-based models can be very brittle, i.e., they can be sensitive to malicious
attacks and adversarial examples (Goodfellow et al., 2015; Szegedy et al., 2014). For example,
in the vision domain small changes to an image can lead to misclassifications, even though
the altered image is visually indistinguishable from the original. Adversarial examples can
be generated either with access to model parameters or without. The former is commonly
known as white-box attack, the latter as black-box attack (Liu et al., 2017b; Papernot et al.,
2016a, 2017). White-box attacks are difficult to adapt to text, because they involve computing
gradients with respect to the input, which is discrete. For example, computing the gradient
with respect to the input word embedding and perturbing it may result in an embedding vector
that does not correspond to an actual word, i.e., has zero likelihood in the discrete language
space (Harbecke and Alt, 2020). One strategy is to search for the closest word embedding, given
the dictionary (Papernot et al., 2016b) or use the gradient to compute a ranking of words to be
modified in the input (Liang et al., 2018). Instead, most methods focus on black-box attacks to
generate examples by changing the text input, e.g., introducing typos or misspellings (Belinkov
and Bisk, 2018). The previously mentioned works focus on chracter or word level. Jia and
Liang (2017) instead add sentences to the input to distract a question answering / reading
comprehension model, Iyyer et al. (2018) generate paraphrases that preserve the syntactic
structure. Ribeiro et al. (2018) generate semantic preserving rules that cause the model to
change its prediction.

2.5.3 Challenge Sets

Typically, we train models on benchmark datasets drawn from text corpora, which exhibit a
particular distribution of linguistic phenomena. One of the primary goals of challenge sets,
or test suites, is to evaluate if a model is able to handle specific linguistic phenomena, or if
it performs well on a wide range of phenomena. Cooper et al. (1996), for example, created
a semantic test suite that covers phenomena like ellipsis, plurals, anaphora, quantifiers, etc.
In recent years, in particular machine translation (MT) and natural language inference (NLI)
received a lot of attention. Sennrich (2017) introduced a set of challenges to evaluate machine
translation on phenomena such as noun-phrase agreement, subject-verb agreement, polarity,
and so on. Burchardt et al. (2017) evaluate different machine translation engines with a test suite
that covers 120 phenomena. Similarly, the GLUE NLI set (Wang et al., 2018a) covers more than
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30 phenomena in four categories, such as logic, knowledge, lexical semantics, and predicate-
argument structure. Challenge sets are created by handcrafting examples, either manually or
programmatic. A common approach is to extract and modify examples from an existing dataset.
Sanchez et al. (2018), for example, use examples from the SNLI dataset (Bowman et al., 2015)
and replaced specific words, e.g., synonyms or hypernyms. Linzen et al. (2016) created a large
dataset by extracting subject-verb agreement from raw text using a set of heuristics.

2.6 Conclusions

In this chapter, I provided background knowledge in machine learning and natural language
processing that is necessary for the subsequent chapters. In particular, I highlighted the need for
better performing and more data-efficient relation extraction methods and discussed how this
can be addressed with transfer learning and analysis methods for neural language processing
models. The next chapter will introduce my research on sequential transfer learning for
supervised relation extraction.



Chapter 3

Sequential Transfer Learning for
Supervised Relation Extraction

3.1 Introduction

As I argue in Chapter 1, current relation extraction methods are too data-intensive and exhibit
insufficient performance when trained only on limited labeled data. A promising way to
overcome this issue is transfer learning, i.e., to transfer knowledge previously acquired on
other tasks or domains to the relation extraction task. In this chapter, I present the first part of
my research on this objective: a sequential transfer learning method for supervised relation
extraction.

In this section, I first give an overview of prior knowledge and supporting information used
by current supervised relation extraction methods to improve training efficiency with limited
labeled data, and highlight their limitations (Section 3.1.1). In the following, I discuss related
work (Section 3.1.2) and propose a sequential transfer learning method based on unsupervised
pre-training of language representations (Section 3.2). To study its effectiveness, I conduct an
extensive evaluation in which I compare its performance and data efficiency to earlier baselines
(Section 3.3). Finally, I conclude this chapter with a discussion of the proposed method and its
alignment with the objective of this thesis (Section 3.4).

This chapter is mainly based on a previously published full paper (Alt et al., 2019b), but
expands on the discussion of the proposed approach.
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3.1.1 Problem Statement

The main challenge in relation extraction is to create a well performing system at low cost. In
other words, we want to achieve the highest possible performance on a set of possibly complex
relations with the least amount of supervised data. Currently, there is great interest in addressing
this by incorporating prior knowledge into the relation extraction process (Lin et al., 2016;
Zhang et al., 2017, 2018b). Contrary to methods that aim to increase the amount of labeled
data, e.g., by heuristically labeling examples, these methods provide additional features from
various sources to more effectively inform the relation extraction. Intuitively, this provides
the model with a stronger signal, allowing it to model patterns that indicate a relation more
effectively, despite the limited number of labeled examples. Given the stated objective of this
thesis, such approaches may be highly relevant and accordingly are the starting point of my
analysis.

Additional features combined with input text The most prominent approach to use prior
knowledge in a model is to explicitly provide it with additional features related to the input
text. Features include: prefix and morphological information about words; syntactic prop-
erties like part-of-speech tags; and semantic features, such as named entity tags, synonyms,
or hypernyms. These features are typically obtained from additional, specialized systems,
such as part-of-speech taggers, named entity taggers, or knowledge bases. Pre-trained word
representations (Section 2.4.3.1) are another form of prior knowledge, encoding syntactic and
semantic relationships among words. Representing a word’s associated features, e.g., named
entity types or part-of-speech tags, in vector space is also a common approach to model their
semantics and compositionality.

Problems: error propagation, limited portability, and a priori feature selection Current
methods that use prior knowledge do so by explicitly providing a set of features, e.g., lexical,
syntactic, and semantic information, in addition to the input text. This, however, has several
limitations: First, it typically requires multiple specialized systems, or feature extractors, to
obtain these features, e.g., part-of-speech taggers, named entity taggers, or dependency parsers.
Critically, a discrete decision is made by each extractor, which introduces a potential source
of error that can propagate and accumulate if the result is used in subsequent steps, e.g., the
relation extraction (Ji and Grishman, 2005). Relying on additional systems for feature extraction
increases the overall complexity of the approach and restricts its portability. The reason is that
each extractors must be created (Grishman, 2019), which typically requires supervised data in
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the respective language or domain in addition to the task-specific data for relation extraction.
Finally, the scope of features is limited and decided a priori, e.g., features that proved useful
in earlier work or those commonly used in other NLP tasks. This may only cover a subset of
important features and prevents the model from deciding which it considers most useful to
solve the task.

Ideally, a method that addresses these limitations should consist of a single system to reduce the
overall complexity; learn features without supervision that are as effective as those of earlier
work to increase performance and training efficiency; be independent of discrete decisions to
reduce error propagation; and instead use an implicit representation that covers a variety of
(linguistic) features a model can select from during training.

3.1.2 Related Work

I first review earlier work that utilizes prior knowledge and supporting information to improve
relation extraction, which I use to identify evaluation baselines (Section 3.1.2.1). I then provide
an overview of approaches to transfer learning that are common in relation extraction and other
NLP tasks (Section 3.1.2.2).

3.1.2.1 Use of Prior Knowledge

Discrete linguistic features Early methods in relation extraction use discrete, linguistically
motivated features (Zelenko et al., 2003). For example, Rink and Harabagiu (2010) use a rich
set of lexical features, including words in context, words between entity mentions, and lemmas.
Hendrickx et al. (2010) utilize part-of-speech tags, dependency parse information, named entity
types, morphological features, and hypernyms as additional features and demonstrated their
importance to improve relation extraction performance. Although current research is mostly
focused on deep learning-based methods, e.g., encoding the input text with a neural network,
discrete features are still an important source of supporting information. For example, Socher
et al. (2012); Zhang and Wang (2015) use discrete part-of-speech and named entity features in
combination with recurrent neural networks. Kim (2014) use a similar feature set but combine
it with convolutional neural networks.
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Distributed representations of linguistic features Most recent methods use distributed
representations of words and features to better model their semantics and compositionality.
Zeng et al. (2014, 2015) combine discrete lexical features and pre-trained word embeddings
with piecewise convolutional neural networks. Xu et al. (2015a,b) use shortest dependency path
(SDP) information between entity mentions combined with an RNN-based model to encode
only the sequence of words along the SDP instead of the whole input. Zhang et al. (2018b)
propose a state-of-the-art relation extraction method that applies a combination of graph pruning
and graph convolutional neural network to the dependency tree. This combination allows the
model to effectively use information from words that are in close proximity based on the
dependency tree, and pruning reduces the noise introduced by less important parts of the input.

3.1.2.2 Transfer Learning for NLP Tasks

Currently, the most common form of transfer learning in relation extraction is to use distributed
word representations, or word embeddings (Mikolov et al., 2013b; Pennington et al., 2014). The
syntactic and semantic features encoded in these representations provide useful information that
often improves performance without additional supervised data (Kim, 2014; Xu et al., 2015b;
Zhang et al., 2017, 2018b). Another approach is to reuse models trained on a related task. For
example, Liu et al. (2018b) show that initializing a relation extraction model with weights of a
trained named entity recognition model improved performance. This setup, however, requires
supervised data to pre-train the NER model.

Most recently, pre-trained language representations (Dai and Le, 2015; Ramachandran et al.,
2017), or contextual word embeddings, emerged as a very effective form of transfer learning.
For example, Peters et al. (2018) demonstrate that substituting word embeddings with contex-
tual ones improves performance on related NLP tasks, such as semantic similarity, coreference
resolution, and semantic role labeling. Howard and Ruder (2018) show language representations
learned by unsupervised language modeling to significantly improve text classification perfor-
mance, to prevent overfitting, and to increase data efficiency. Radford et al. (2018) demonstrate
that general-domain pre-training and task-specific fine-tuning achieves state-of-the-art results
on several question answering, text classification, textual entailment, and semantic similarity
tasks.

Contrary to previous approaches at the time of investigation, I use a sequential transfer learning
method that utilizes a pre-trained language model, specifically its representations, as the source
of prior knowledge by fine-tuning it to the relation extraction task. The method is less complex,
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as it requires only a single model instead of multiple feature extractors. It also improves
portability, because language model pre-training requires no supervision, i.e., it works on
raw text. As no additional systems are involved, no discrete decisions are necessary, which
mitigates error propagation. Ideally, pre-trained language representations encode a broad set of
syntactic and semantic features that allow for feature selection during fine-tuning to the relation
extraction task.

3.1.3 Contributions

I propose a sequential transfer learning method for supervised relation extraction and evaluate
it against a set of baselines on standard benchmarks. Based on this, I create a state-of-the-art
relation extraction model and further investigate the effect of pre-training on performance and
data efficiency in depth. In more detail, the contributions are:

Sequential transfer learning method for supervised relation extraction I propose a novel
method for supervised relation extraction that uses pre-trained language representations
as the source of prior knowledge. The representations are obtained by language model pre-
training on raw text without supervision, which considerably increases applicability and
portability. A well performing language model must implicitly capture useful linguistic
features that can be utilized during fine-tuning to the relation extraction task, instead of
supplying features explicitly. The method’s main advantage is that only a single model
is necessary, which implicitly provides linguistic features, i.e., prior knowledge, and is
also responsible for relation extraction. This mitigates error propagation and obviates
additional feature extractors, such as part-of-speech taggers and dependency parsers. It
also eliminates a priori feature selection, as the model can select the most useful features
during fine-tuning. The proposed method demonstrates superior performance and data
efficiency compared to earlier methods on two popular supervised relation extraction
benchmarks.

Discussion of pre-training and its effect on performance and data efficiency I analyze and
discuss the effect of pre-training on relation extraction performance, data efficiency, and
the extent to which pre-trained language representations replace explicitly provided prior
knowledge in the form of linguistic features. Based on the results of the qualitative
evaluation, I conclude that a better understanding of the captured linguistic features is
necessary to gain further insights into the strengths and limitations of transfer learning
and neural network-based methods for relation extraction in general.
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3.2 Transfer of Pre-Trained Language Representations

This section introduces a sequential transfer learning method for supervised relation extraction.
It uses a pre-trained transformer-based language model, specifically its representations, as a
source of prior linguistic knowledge, which is then transferred to the downstream relation
extraction task by fine-tuning. The method is called TRE: the Transformer for Relation
Extraction. First, I give a detailed overview of model architecture and input text representation
(Section 3.2.1). In the following, I formally describe unsupervised language model pre-training
(Section 3.2.2), and finally introduce the process of supervised fine-tuning to the relation
extraction task (Section 3.2.3).

3.2.1 Model Architecture

TRE is a multi-layer transformer-decoder (Liu et al., 2018a), a decoder-only variant of the
original transformer (Vaswani et al., 2017, Section 2.1.1.1). The model expects its input, e.g., a
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Figure 3.1 TRE input format and representation. Because the model expects a sequence of tokens, the
input follows a specific structure suited for the relation extraction task: head and tail entity mention
followed by the actual input text, all separated by special delimiters ([START], [ENT1], [ENT2], [CLS]).

sentence or a document, as a sequence of tokens t1, . . . , tT . The input text thus is first tokenized
using byte pair encoding (BPE, Sennrich et al., 2016) to make use of sub-word information.
The BPE algorithm creates a vocabulary of sub-word tokens, starting with single characters. It
iteratively merges the most frequently co-occurring tokens into a new token until a predefined
vocabulary size is reached. While language model pre-training is done on plain text, relation
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Figure 3.2 TRE architecture. The model applies L Transformer layers to the input token representations
x1, . . . ,xT followed by a classifier to predict the relation. Next token prediction (language modeling) is
used as an auxiliary task to aid the training process.

extraction requires a more structured input, namely, a sentence1 and a pair of entity mentions (in
case of binary relation extraction). In order to avoid task-specific changes and extensions to the
architecture, I adopt a traversal-style approach (Radford et al., 2018) that converts the structured
input into an ordered sequence of tokens so it can be fed directly to the model. Figure 3.1
shows a visual illustration of the input format. It starts with the tokens belonging to both entity
mentions, denoted head and tail, separated by delimiters ([ENT1], [ENT2]), followed by the
tokenized input text containing the mentions. The input token sequence is terminated by a
special classification token ([CLS]) that signals the model to generate a sentence representation
s ∈ Rd at this position. Finally, the classifier predicts the relation based on s. Since the model
processes the input left-to-right, the entity mentions are added at the beginning in order to bias
the attention mechanism towards their token representation while processing the sentence’s
token sequence. For each token ti, its input representation xi is obtained by first summing over
its corresponding token embedding ei and positional embedding pi. As depicted in Figure 3.2,
the model then repeatedly encodes the sequence of input representations x1, . . . ,xT by applying
multiple transformer layers, each consisting of masked multi-head self-attention followed by a

1A “sentence” denotes an arbitrary span of contiguous text, rather than an actual linguistic sentence. During
pre-training the input consists of multiple linguistic sentences, whereas relation extraction is typically applied to a
single one. A “sequence” refers to the input token sequence.
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position-wise feedforward operation:

{h0
i }i=1,...,T = X = tWe +Wp ,

hl = trans f ormer_layer({hl−1
i }i=1,...,T ) ∀ l ∈ [1,L] ,

(3.1)

where t = [t1, . . . , tT ] is a sequence of token indices in a sentence. We is the token embedding
matrix, Wp is the positional embedding matrix, L is the number of transformer layers, and
hi

l is the i-th hidden state at layer l. Since the transformer has no implicit notion of token
positions, the first layer adds a learned positional embedding pi ∈ Rd to each token embedding
ei ∈ Rd at position i in the input sequence. The self-attentive architecture allows an output
state hl

i of a layer to be informed by all input states hl−1
i , which is key to efficiently model

long-range dependencies. For language modeling, however, self-attention must be prohibited
from attending to tokens ahead of the current position, i.e., the model must be prevented from
looking into the future.

3.2.2 Unsupervised Pre-training of Language Representations

Relation extraction benefits from the ability to efficiently represent long-range dependen-
cies (Zhang et al., 2018b) and hierarchical relation types (Han et al., 2018). Generative
pre-training via language modeling can be seen as an ideal task for a model to learn represen-
tations that capture useful linguistic features, i.e., to acquire prior knowledge about language
without supervision (Howard and Ruder, 2018; Linzen et al., 2016), before it is fine-tuned to
the target task – in this case relation extraction.

Given a corpus C = [t1, . . . , tM] of tokens ti, the language modeling objective maximizes the
likelihood:

Llang(C) =
M

∑
i=k

logP(ti|ti−1, . . . , ti−k+1;θ) , (3.2)

where k is the context window considered for predicting the next token ti and θ denotes the
model parameters. TRE models the conditional probability P(ti) by an output distribution over
target tokens:

P(ti) = so f tmax(hL
i WT

e ) , (3.3)

where hL
i denotes the i-th hidden state after layer L and We is the embedding matrix.
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3.2.3 Supervised Fine-tuning to Relation Extraction

After pre-training with the objective in Equation 3.2, the language model is fine-tuned to the
relation extraction task. Assume a labeled dataset D = {(t1

i , . . . , t
n
i ,headi, taili,ri)}i=1,...,|D|,

where the i-th example consists of a token sequence t1
i , . . . , t

n
i of length n, the spans headi

and taili of both entity mentions in the sequence of tokens, and a corresponding relation
label ri. The input sequence is fed to the pre-trained model to obtain the final hidden state
representations {hL

i }i=1,...,m. To compute the output distribution P(ri) over relation labels, a
linear layer followed by a softmax is applied to the representation hL

m, which represents a
summary of the input sequence:

P(ri|t1
i , . . . , t

n
i ;headi, taili) = so f tmax(hL

nWr) (3.4)

During fine-tuning the following objective is optimized:

Lrel(D) =
|D|

∑
i=1

logP(ri|t1
i , . . . , t

n
i ,headi, taili) (3.5)

According to Radford et al. (2018), using language modeling as an auxiliary task (next token
prediction in Figure 3.2) during fine-tuning leads to better generalization and faster convergence.
I therefore adopt a similar objective:

L(D) = λ ∗Llang(D)+Lrel(D) , (3.6)

where λ is the language model weight, a scalar weighting the contribution of the language
model objective during fine-tuning.

3.3 Evaluation

The goal of the evaluation is to determine whether pre-trained language representations capture
prior knowledge that can effectively replace explicitly provided features. I evaluate the relation
extraction performance of the proposed transfer learning method against baselines from previous
work in a series of experiments. I then follow up on the results with an additional set of
experiments to determine the effect of pre-training on overall performance and data efficiency.
I begin this section with an outline of the evaluation setup, followed by a detailed discussion of
the results.



58 | Sequential Transfer Learning for Supervised Relation Extraction

3.3.1 Experimental Setup

I select two supervised relation extraction benchmarks for the experiments: SemEval 2010 Task
8 and the recently published TACRED (Section 2.3.4.2). Both datasets cover different aspects
of the task, e.g., SemEval focuses on semantic relations between untyped nominals, whereas
TACRED focuses on person- and organization-oriented relation types. It is also approximately
10x the size of SemEval and contains a much higher fraction of negative training examples
(Table 3.1), which makes relation extraction more challenging.

Dataset # Relations # Examples Negative examples (%)

SemEval 2010 Task 8 19 10,717 17.4%
TACRED 42 106,264 79.5%

Table 3.1 Statistics for evaluation datasets.

For each experiment, I initialize TRE with parameters from an existing pre-trained language
model, then fine-tune it to the dataset and compare its performance to the selected baselines.
As per convention, I report results on TACRED as micro-averaged F1 scores. Following the
evaluation strategy of Zhang et al. (2017), the best performing model is selected based on the
median validation F1 score over 5 independent training runs and its performance is reported on
the test set. I follow the official convention of SemEval and report macro-averaged F1 scores
with directionality taken into account, averaged over 5 independent training runs. In the first set
of experiments, I evaluate the relation extraction performance of TRE on both benchmarks. For
comparison, I select the following baselines:2 Logistic regression (LR, Angeli et al., 2015b),
support vector machine (SVM, Rink and Harabagiu, 2010), Tree-LSTM (Tai et al., 2015),
BRCNN (Cai et al., 2016), DRNN (Xu et al., 2016b), PA-LSTM (Zhang et al., 2017), and
C-GCN (Zhang et al., 2018b). For the second set of experiments, I select PCNN (Zeng et al.,
2015) as the state-of-the-art baseline to study its data efficiency in comparison to TRE. I use
the PCNN implementation of OpenNRE.3

I will now describe further details of the experimental setup.

2Section 2.3.3.1 describes the methods in more detail.
3https://github.com/thunlp/OpenNRE

https://github.com/thunlp/OpenNRE
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3.3.1.1 Pre-trained Language Model

Since the main goal is to show the effectiveness of fine-tuning a pre-trained language model
on the relation extraction task, I reuse the OpenAI GPT4 published by Radford et al. (2018)
for the experiments. The model was pre-trained on the BooksCorpus (Zhu et al., 2015), which
contains around 7,000 unpublished books with a total of more than 800M words of different
genres. It consists of L = 12 layers with 12 attention heads and 768 dimensional states, and
a feed-forward layer of 3072 dimensional states. I also reuse the model’s byte pair encoding
(BPE) vocabulary, containing 40,000 tokens, but extend it with task-specific ones, e.g., entity
mention delimiters. Also, I use the learned positional embeddings with supported sequence
lengths of up to 512 tokens.

3.3.1.2 Entity Masking

For a subset of experiments I employ entity masking (Zhang et al., 2017). As shown in Figure
3.2, entity masking substitutes an entity mention with a placeholder according to the selected
strategy. In the experiments, I use four different entity masking strategies. For the simplest
masking strategy UNK, I replace all entity mentions with a special unknown token. For the NE
strategy, I replace each mention with its named entity type. GR substitutes a mention with its
grammatical role (subject or object). NE + GR combines both strategies. Entity masking has

Masking Input

None The measure included Aerolineas ’s domestic subsidiary , Austral .
UNK The measure included <UNK> ’s domestic subsidiary , <UNK> .
GR The measure included <SUBJ> ’s domestic subsidiary , <OBJ> .
NE The measure included <ORG> ’s domestic subsidiary , <ORG> .
NE + GR The measure included <SUBJ-ORG> ’s domestic subsidiary , <OBJ-ORG> .

Table 3.2 Examples for entity masking strategies

been shown to provide a significant gain in relation extraction performance on TACRED, as it
limits the information about a mention that is available to the model. This prevents overfitting
to specific mentions and forces the model to focus more on the context. I also use it to simulate
different scenarios, such as the presence of unseen entities, and to analyze the impact of entity
type and grammatical role features on the model’s performance.

4https://github.com/openai/finetune-transformer-lm

https://github.com/openai/finetune-transformer-lm
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3.3.1.3 Hyperparameters and Optimization

During the experiments, I found the hyperparameters for fine-tuning, reported in Radford et al.
(2018), to be very effective. Therefore, unless specified otherwise, the Adam optimization
scheme (Kingma and Ba, 2015) is used with β1 = 0.9, β2 = 0.999, a batch size of 8, and a
linear learning rate decay schedule with warm-up over 0.2% of training updates. Residual, and
classifier dropout is applied with a rate of 0.1. I also experimented with token dropout, i.e.,
randomly replacing a token embedding with the zero vector, but did not find it to improve per-
formance. Table 3.3 shows the best performing hyperparameter configuration for each dataset.
On SemEval 2010 Task 8, I first split 800 examples of the training set for hyperparameter
selection and retrained on the entire training set with the best parameter configuration.

Dataset Epochs
Learning

rate
Warm-up

learning rate λ
Attention
dropout

SemEval 3 6.25e-5 1e-3 0.7 0.15
TACRED 3 5.25e-5 2e-3 0.5 0.1

Table 3.3 Hyperparameter configurations for SemEval and TACRED

3.3.2 Results

In this section, I present the experimental results in comparing the proposed transfer learning
method for relation extraction (TRE) to previous approaches on the two benchmark datasets,
demonstrating that it achieves state-of-the-art performance even without explicitly provided
linguistic features. I further provide results on model ablations to determine the effect of
pre-training on relation extraction performance, and conduct a data efficiency comparison
between TRE and the selected PCNN baseline from previous work.

3.3.2.1 Experiment 1: Relation Extraction Performance

As shown in Table 3.4, TRE achieves an F1 score of 67.4, outperforming all baselines on
TACRED, including state-of-the-art methods. The results also show that methods with the
ability to model complex syntactic and long-range dependencies, such as PA-LSTM and C-GCN,
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perform better on TACRED. Outperforming these methods highlights the ability of pre-trained
language representations to implicitly encode information similar to complex syntactic features
and the ability to also capture long-range dependencies. It, however, is important to note that
the result was obtained by using the same NE + GR entity masking strategy as in previous
work (PA-LSTM, C-GCN). As described in Section 3.3.1.2, each entity mention is replaced by
a special token, a combination of its named entity type and grammatical role. While the model
achieves state-of-the-art results when provided only with named entity information, unmasked
mentions decrease the test F1 score to 62.8. In Section 3.3.2.2, I analyze the effect of entity
masking on task performance in more detail.

System Precision Recall F1 score

LR† (Zhang et al., 2017) 72.0 47.8 57.5
CNN† (Zhang et al., 2017) 72.1 50.3 59.2
Tree-LSTM† (Zhang et al., 2018b) 66.0 59.2 62.4
PA-LSTM† (Zhang et al., 2018b) 65.7 64.5 65.1
C-GCN† (Zhang et al., 2018b) 69.9 63.3 66.4
TRE 70.1 65.0 67.4

Table 3.4 Test set performance on TACRED. The hyperparameters were selected on the validation set,
and the test score is reported as the run with the median validation score among 5 randomly initialized
runs. † marks results reported in the corresponding work.

Similar to TACRED, TRE outperforms the best previously reported methods on SemEval 2010
Task 8, establishing a new state-of-the-art score of 87.1 F1 (Table 3.5). The result indicates that
pre-training with a language modeling objective forces the model to implicitly capture linguistic
features that are useful for relation extraction, outperforming methods that rely on explicit
lexical features (e.g., SVM). Further, TRE outperforms previous approaches that rely on explicit
syntactic features, such as shortest dependency path information and distributed representations
of part-of-speech tags and named entity types (e.g., BRCNN, DRNN, and C-GCN).

I also observe a high correlation between entity mentions and relation labels, analogous to
Zhang et al. (2018b). According to the authors, simplifying SemEval sentences in the training
and validation set to contain only subject and object, where subject and object refer to the entity
mentions, already achieves an F1 score of 65.1. To better evaluate the model’s (TRE) ability to
generalize beyond entity mentions, I use the UNK entity masking strategy to substitute each
mention in the training set with a special unknown token. This strategy prevents the model
from observing any entity mentions during training and thus avoids overfitting to mentions
that strongly correlate with specific relations. In this setting, TRE achieves an F1 score of
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System Precision Recall F1 score

SVM† (Rink and Harabagiu, 2010) – – 82.2
PA-LSTM† (Zhang et al., 2018b) – – 82.7
C-GCN† (Zhang et al., 2018b) – – 84.8
DRNN† (Xu et al., 2016b) – – 86.1
BRCNN† (Cai et al., 2016) – – 86.3
PCNN (Zeng et al., 2015) 86.7 86.7 86.6
TRE 88.0 86.2 87.1 (±0.16)

Table 3.5 Test set performance on SemEval 2010 Task 8. † marks results reported in the corresponding
papers. Mean and standard deviation are computed across 5 randomly initialized runs.

79.1 (Table 3.6), an improvement of 2.6 points F1 score over state-of-the-art baselines. The
result suggests that language model pre-training also improves the model’s ability to generalize
beyond the mention level when predicting the relation between two previously unseen entities.

System Precision Recall F1 score

PA-LSTM† (Zhang et al., 2018b) – – 75.3
C-GCN† (Zhang et al., 2018b) – – 76.5
TRE 80.3 78.0 79.1 ( ± 0.37)

Table 3.6 SemEval 2010 Task 8 test set performance with UNK entity masking, where each mention is
replaced by a special unknown token. † marks results reported in the corresponding papers. Due to the
small test set size, mean and standard deviation are reported across 5 randomly initialized runs.

3.3.2.2 Experiment 2: Effect of Pre-training

Although the previous experiments demonstrated strong empirical results, the contributions of
individual parts of TRE are still unclear. I therefore first conduct an ablation study to determine
the relative impact of each model component on overall performance, followed by experiments
to validate if pre-trained language representations capture linguistic properties that are useful
to relation extraction, and whether pre-training also improves data efficiency.

Effect of pre-training Pre-training affects the two main parts of the model: Language model
and byte pair embeddings, i.e., the distributed representations of the input token sequence. In
Table 3.7, I first compare the best model, initialized with pre-trained parameters, to one with
randomly initialized parameters. The results on both datasets clearly show that fine-tuning
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considerably benefits from a pre-trained language model. In case of the SemEval, the validation
F1 score increases to 85.6 when fine-tuning with a pre-trained language model and no entity
masking, compared to 75.6 without pre-training – a 13% increase in performance. The results
show an even more pronounced performance gain for TACRED, where a pre-trained language
model increases the validation F1 score by 20 to 63.3. With entity masking, performance
gains are slightly lower, at +8 on SemEval and +9.4 (UNK) respectively +3.8 (NE + GR)
on TACRED. The larger effect of pre-training when entity mentions are unmasked suggests
that it has a regularizing effect that prevents overfitting to specific mentions. In addition, the
contextualized features allow the model to better adapt to complex entities. These observations
are consistent with the results of Howard and Ruder (2018), who observed that language model
pre-training considerably improves text classification performance on small and medium-sized
datasets, similar to those used in the experiments.

SemEval TACRED

None UNK None UNK NE + GR

Best model 85.6 76.9 63.3 51.0 68.0
– w/o pre-trained LM 75.6 68.2 43.3 41.6 64.2
– w/o pre-trained LM and BPE 55.3 60.9 38.5 38.4 60.8

Table 3.7 Model ablations on SemEval and TACRED validation set with different entity masking
strategies. “w/o pre-trained LM” uses randomly initialized language model parameters, “w/o pre-trained
LM and BPE” also randomly initializes the byte pair embeddings before fine-tuning. F1 scores are
reported over 5 independent runs.

In addition, I train a model from scratch without pre-trained byte pair embeddings. I keep
the vocabulary of sub-word tokens fixed and randomly initialize the embeddings. Again, the
results show that both datasets clearly benefit from pre-trained byte-pair embeddings. Due to
its small size SemEval benefits considerably more from pre-trained embeddings, because the
model may be unable to learn reliable embeddings from a corpus of this size. This increases
the risk of overfitting to entity mentions as suggested by the lower performance compared to
UNK masking where entity mentions are hidden from the model during training. For TACRED,
model performance drops by approximately 3%−5% with and without entity masking when
not using pre-trained byte pair embeddings.

Linguistic features captured by pre-trained language representations Undoubtedly, lin-
guistic features, such as part-of-speech and entity type information, are crucial to relation
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extraction performance. This is confirmed by the superior performance on TACRED (Table 3.7)
when entity and grammatical role information is provided explicitly by NE + GR masking.
The model achieves a validation F1 score of 68.0, compared to 63.3 without augmenting the
entity mentions. Without a pre-trained language model, NE + GR masking still achieves a
F1 score of 64.2, which suggests that pre-trained language representations capture features
that are as informative as providing entity type and grammatical role information. This is
also suggested by Peters et al. (2018), who show that a language model captures syntactic
and semantic information useful for a variety of natural language processing tasks, such as
part-of-speech tagging and word sense disambiguation.

Effect of entity masking Entity masking, as described in Section 3.3.1.2, is used to limit
the information about entity mentions that is available to a model. It can be used to simulate
different scenarios, such as the presence of unseen entities, to prevent overfitting to specific
entity mentions, and to focus more on context. Table 3.8 shows F1 scores on the TACRED
validation set for different entity masking strategies. As previously shown, masking with entity
and grammatical role information yields the best overall performance, yielding a F1 score of
68.0. The results indicate that different entity masking strategies mostly impact recall, while
precision tends to remain high – with the exception of the UNK masking strategy. Applying

Entity masking Precision Recall F1 score

None 69.5 58.1 63.3
UNK 56.9 46.3 51.0
GR 63.8 50.1 56.1
NE 68.8 65.3 67.0
NE + GR 68.8 67.2 68.0

Table 3.8 TACRED validation F1 scores with different entity masking strategies.

UNK masking prevents the model from observing anything about the entity mention, which
greatly decreases precision and consequently the F1 score drops to 51.0. Using grammatical
role information (GR) considerably increases performance to an F1 score of 56.1. This result
may suggest that the semantic role type is a very helpful feature, however, its importance may
also be attributed to the fact that it provides robust information on where each argument entity
is positioned in the input sentence. NE masking significant increases recall, which intuitively
suggests a better generalization ability of the model. Combining NE masking with grammatical
role information yields only a minor gain in recall, which increases from 65.3% to 67.2%,
while precision stays at 68.8%.
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3.3.2.3 Experiment 3: Data Efficiency

The main goal of transfer learning is to improve data efficiency, i.e., the amount of supervised
data that is necessary to achieve a certain performance. I thus expect TRE to reach a defined
performance, e.g., F1 score, more quickly than a baseline that is trained on the same fraction of
the data. To assess their data efficiency, I train TRE and the PCNN baseline on stratified subsets
of the TACRED training set with sampling ratios from 10% to 100%. Further, I train a variant
with NE + GR entity masking and randomly initialized language model (w/o LM). I train each
variant on all subsets and evaluate its performance on the validation set using micro-averaged
F1 score averaged over 5 independent training runs.

Figure 3.3 Validation F1 score over increasing sampling ratios of the training set, averaged over 5 runs.

The results in Figure 3.3 show that the best performing model uses a pre-trained language
model (TRE) combined with NE+GR masking, which consistently performs better than the
other variants of TRE and the baseline PCNN. There is a steep performance increase in the
first part of the curve, when only a small subset of the training examples is used. The model
reaches an F1 score of more than 60 with only 20% of the training data, and continues to
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improve with more training data. The next best models are TRE without a pre-trained language
model, followed by TRE without NE+GR masking. Both perform very similar, which aligns
well with the previous observations. The PCNN baseline performs well with entity masking
applied, but slightly drops in performance compared to TRE after 30% of training data, slowly
approaching a performance plateau of around 61 F1 score. PCNN without masking performs
worse, but improves steadily due to its low base score. TRE with randomly initialized language
model seems to overfit early and diminishes in performance with more than 70% training data.
Interestingly, the performance of several models drops or stagnates after about 80% of the
training data, which might indicate that these examples do not increase the models’ ability to
generalize to unseen data.

3.4 Discussion and Summary

In this chapter, I investigated a transfer learning method for supervised relation extraction that
uses a pre-trained language model and its latent representations as a source of prior knowledge
to mitigate the need for explicitly provided linguistic features. Instead of multiple systems
dedicated to feature extraction, this method is based on a single model and thus reduces error
propagation. It also eliminates a priori feature selection, as this is implicitly done during
fine-tuning to the relation extraction task. In a series of experiments on two standard relation
extraction benchmarks, I demonstrated that the proposed method consistently outperforms the
baselines, including state-of-the-art methods from previous work. In additional experiments, I
showed that pre-training considerably increases data efficiency, and also suggested that useful
linguistic features encoded in pre-trained language representations are one of the main reasons
for the observed increase in relation extraction performance and data efficiency.

Despite the strong empirical results, I found two aspects of the proposed approach demand
further investigation. First, it is still unclear to what extent linguistic information is encoded in
language representations and how it is used by the model to predict a relation between entity
mentions in a sentence. To gain further insights and identify areas for improvement it would be
helpful to determine the linguistic features encoded by neural network-based relation extraction
models. Their complexity, however, makes it difficult to understand this process. This is
a problem inherent to all models with highly non-linear structure, such as neural networks,
which makes it difficult to explain their inner workings. Secondly, while the experiments
show that pre-training increases data efficiency, they also show that increasing the amount
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of supervised data benefits overall performance. Creating labeled examples, however, is still
costly as annotation is a time consuming process.

I conclude that the increased complexity demands a better understanding of the aspects about
the input a model considers relevant for its decision. I investigate this in more detail in Chapter 5.
Also, I observe that relation extraction performance still considerably benefits from labeled
examples, despite the improvements in data efficiency. I therefore conclude that a combination
of the proposed transfer learning method with an approach to automatically annotate more
examples, e.g., distant supervision, could further improve performance. This is investigated in
further detail in the next chapter.





Chapter 4

Combining Sequential Transfer Learning
with Distant Supervision

4.1 Introduction

As I demonstrated in the previous chapter, sequential transfer learning increases relation
extraction performance as well as data efficiency in the supervised setting. The results, however,
also show that even with pre-training a considerable amount of supervised data is necessary,
and that more labeled data further increases performance. Creating a well performing relation
extraction model in this scenario would still be costly and time consuming, due to the effort of
manual annotation. One way to further reduce the cost is to combine transfer learning with
methods that automatically label data, for example, via heuristics. In this chapter, I therefore
extend the transfer learning method proposed in the previous chapter to the distantly supervised
setting.

I first discuss the challenge of creating models from distantly supervised data and how this is
commonly addressed in relation extraction (Section 4.1.1). In the following, I look at previous
works and highlight the limitations of current methods that combine multi-instance learning
with additional linguistic features and side information to mitigate this problem (Section 4.1.2).
I then introduce a method to extend the model developed in Chapter 3 to distantly supervised
relation extraction (Section 4.2). To demonstrate its effectiveness, I conduct an extensive
automated and manual evaluation in which I compare its performance to state-of-the-art
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baselines (Section 4.3). Finally, I discuss the proposed approach and its alignment with the
objectives of this thesis (Section 4.4).

This chapter is based on a previously published full paper (Alt et al., 2019a).

4.1.1 Problem Statement

The major challenge in distantly supervised relation extraction is the presence of label noise,
which is a result of the heuristic labeling process (Section 2.3.2.2). Multi-instance learn-
ing (Riedel et al., 2010; Surdeanu et al., 2012) is the most common approach to create models
in the presence of noisily supervised data. It groups all examples with the same entity pair,
e.g., Jonathan Lethem and Brooklyn, into a “bag”. The task is to identify a target relation
between the entities on a bag-level, under the assumption that at least one of the examples in a
bag properly expresses this relation. Intuitively, this approach forces a model to decide which
patterns or features from a set of examples are on average most indicative of a relation – without
knowledge of which example is actually labeled correctly. Recently, there has been increased
interest in using additional knowledge in the form of linguistic features and side information to
improve distantly relation extraction performance (Vashishth et al., 2018; Yaghoobzadeh et al.,
2017).

Problem 1: Explicitly provided prior knowledge Similar to the supervised setting, meth-
ods in distantly supervised relation extraction leverage prior knowledge by explicitly providing
it as features alongside the input text. These features include: prefix and morphological proper-
ties, lexical features of words, and syntactic features. Recent methods (e.g., Vashishth et al.,
2018) utilize additional side information, e.g., paraphrases, relation aliases, and entity types to
better inform the relation extraction. Similar to supervised relation extraction methods, these
features are often represented in a vector space to better model their compositionality and
semantics.

Consequently, this leads to limitations similar to the supervised setting. To obtain useful
features, dedicated systems are necessary, e.g., part-of-speech taggers, dependency parsers, or
knowledge bases. Each additional system introduces a potential source of error that propagates
through subsequent steps, and further introduces additional complexity. Again, the set of
features is selected a-priori; creating the feature extractors requires supervised data in addition
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to the labeled task-specific data, which may not be readily available for the desired language or
domain; and useful side knowledge may be unavailable in structured form.

Problem 2: Bias towards a subset of relations A key problem of multi-instance learning is
that it creates a bias towards relations that are frequently expressed by similar, often simple,
patterns, as confirmed by preliminary experiments. For example, a LocationContains relation
may be frequently expressed as “<Location>, <Location>”, e.g., “Berlin, Germany”. This
leads to a situation where a model recognizes a small set of relations with high precision, while
performing poorly on the remaining ones in the long-tail (Kirschnick et al., 2014). This limits
the applicability of the approach, because many relations of interest do not appear frequently in
the training dataset and may be expressed in a more complex fashion. Background knowledge
could help to mitigate this problem (Rocktäschel et al., 2015).

A method that addresses these limitations therefore should consist of a single system to reduce
the overall complexity; learn linguistic features and entity related background knowledge
without supervision; efficiently learn on noisily supervised data; and effectively recognize
complex syntactic patterns from a small set of examples.

4.1.2 Related Work

I first discuss previous work that utilizes prior knowledge and side information to improve
distantly supervised relation, which I use to determine evaluation baselines (Section 4.1.2.1). In
the following, I review approaches that are commonly used to create relation extraction models
with noisily supervised data (Section 4.1.2.2).

4.1.2.1 Use of Prior Knowledge

Linguistic features Similar to the supervised setting, previous works utilize various discrete
linguistic features to support the relation extraction process. Early distantly supervised ap-
proaches (Mintz et al., 2009) use prefix and morphological features; lexical features of specific
words between and surrounding the mentions; flags that indicate which mention appears first in
the text; and a window of words to the left and right of the entity mentions. They also utilize
syntactic features, e.g., the dependency path between mentions, and named entity types of
both arguments. Other works used argument features, e.g., the head word of each mention and
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their combination (Surdeanu et al., 2011); syntactic features, e.g., the sequence of dependency
links between mention heads and the lemma of all words on the path (Hoffmann et al., 2011);
and surface features, e.g., flags indicating the presence of a particular entity type between
mentions (Surdeanu et al., 2012). Similar, He et al. (2018) use dependency parse features to
obtain distinct sentence and mention level representations via a tree based recurrent neural
network (Tree-RNN), which are subsequently combined for relation classification.

Side information and background knowledge Recent work shows that in addition to lin-
guistic features, side information, or background knowledge, is helpful to improve relation
extraction. Yaghoobzadeh et al. (2017) use entity type information to constrain the relations
considered by the model. The authors observed that a relation typically holds only between a
subset of entity types, which reduces the set of possible relations. RESIDE (Vashishth et al.,
2018) combines dependency parse and entity type information with open information extraction
(Angeli et al., 2015a) to extract relation instances without the need for a pre-defined ontology.
The extracted instances, however, must be matched against the pre-defined set of relations,
for which they use known relation aliases from existing knowledge bases, e.g., Freebase or
Wikidata.

4.1.2.2 Learning with Noisily Supervised Data

Multi-instance learning (Riedel et al., 2010) is a popular approach to create a relation extraction
model from noisily supervised data. It assumes that in a group of examples (bag) with the same
pair of entities at least one example is labeled with the correct relation. Multi-instance multi-
label learning (Hoffmann et al., 2011; Surdeanu et al., 2012) extended this setting to account for
the fact that multiple relations can hold between a pair of entities. With the increasing popularity
of neural networks, PCNN (Zeng et al., 2014) became the most widely used architecture for
distantly supervised relation extraction, e.g., with an extensions for multi-instance learning
(Zeng et al., 2015). Initial multi-instance learning methods select only the most likely example
in a group. Lin et al. (2016) instead proposed to use selective attention (PCNN+ATT) to obtain
an attention distribution over the sentence representations. This distribution is then used to
compute a bag representation as a weighted combination of all sentence representations. Other
methods include adversarial training Qin et al. (2018); Wu et al. (2017), noise models Luo et al.
(2017), and soft labeling Liu et al. (2017a); Wang et al. (2018b).
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In contrast to earlier work in distantly supervised relation extraction at the time of investigation,
I use sequential transfer learning based on a pre-trained language model as the source of
supporting linguistic features and entity related background knowledge. Again, the method is
less complex than previous systems, reduces error propagation, and does not require a priori
feature selection. To enable learning on distantly supervised data, I extend the fine-tuning step
with a selective attention mechanism for multi-instance and multi-instance multi-label learning
on groups of examples.

4.1.3 Contributions

I extend the transfer learning approach introduced in the previous chapter to distantly supervised
relation extraction and evaluate it against a set of baselines on a standard benchmark. Based on
this, I create a state-of-the-art relation extraction system and further investigate the performance
on relations in the long tail. In more detail, the contributions are:

Sequential transfer learning method for distantly supervised relation extraction I intro-
duce a novel approach that extends the sequential transfer learning method presented
in Chapter 3 to distantly supervised relation extraction. Similarly, it uses pre-trained
language representations to replace explicitly provided linguistic features, which reduces
error propagation and overall complexity. To efficiently learn on distantly supervised
data, it utilizes selective attention to aggregate sentence-level evidence that is then used
to produce bag-level predictions for multi-instance (multi-label) learning. In an extensive
evaluation, I show that pre-trained language models are better suited for distant super-
vision; more effectively guiding the relation extraction with the knowledge acquired
during unsupervised pre-training. Although the proposed method achieves lower preci-
sion for the top ranked predictions, it shows a state-of-the-art area under curve (AUC)
score compared to earlier approaches that rely on additional linguistic features and side
information. Importantly, I demonstrate an overall more balanced performance, and show
that it recognizes a more diverse set of relations and performs especially well at higher
recall levels.

Discussion of pre-training and how it impacts performance on infrequent relations I
analyze and discuss the effect of pre-training on distantly supervised relation extraction
with multi-instance learning. In particular, I provide an extensive manual analysis of the
bias towards a small subset of relations, including state-of-the-art methods of earlier work.
I conclude that transfer learning is able to improve performance on long-tail relations



74 | Combining Sequential Transfer Learning with Distant Supervision

and that a better understanding of neural network-based models and the (linguistic)
knowledge they encode is necessary to further improve performance.

4.2 Multi-Instance Learning with Pre-trained Language
Representations

This section introduces DISTRE: the Distantly Supervised Transformer for Relation Extraction.
It extends TRE, the sequential transfer learning method introduced in the previous chapter,
by a mechanism that allows us to create a model from distantly supervised data. First, I
briefly introduce the model architecture and extension compared to the supervised setting
(Section 4.2.1), followed by a detailed description of my approach to distantly supervised
fine-tuning on the target relation extraction task (Section 4.2.2).

4.2.1 Model Architecture

As an extension to TRE, DISTRE shares the same multi-layer transformer-decoder architecture.
It, however, utilizes multi-instance learning to mitigate the issues of noisily supervised data.
Instead of a single input, it expects a group (bag) of input texts mentioning the same pair of
entities, e.g., (Jonathan Lethem, Brooklyn). Each text in a bag is first tokenized using byte pair
encoding then converted into an ordered sequence of tokens that can be directly supplied to the
model. Similar to TRE, each sequence starts with the tokens belonging to both entity mentions
separated by delimiters, which is followed by the token sequence of the actual text containing
the mentions. The input sequence is terminated by a special classification token that signals the
model to generate its representation s ∈ Rd at this position.

To determine the relations a pair of entities participates in, I first supply the model with each
input {(xi

1, . . . ,x
i
T )}i=1,...,p contained in a bag to obtain its representation si ∈ Rd . Then, I use

selective attention to compute a bag level representation sbag as a weighted combination of the
individual representations {s1, . . . ,sp}, as shown in Figure 4.1. The step can be thought of as a
denoising step that filters, or down-weights, sentences that do not indicate a particular relation,
while retaining those that do.
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Figure 4.1 DISTRE architecture. In multi-instance learning, we group all input texts mentioning a
particular entity pair, e.g., (Jonathan Lethem, Brooklyn), into a bag and apply the model to each input.
The model computes a sentence representation s j ∈ Rd for each input in the bag {x j

1, . . . ,x
j
T} j=1,...,p by

applying L transformer layers. After encoding all inputs, we obtain a bag level representation sbag by
selectively attending over the individual representations [s1, . . . ,sp]. Finally, we classify all relation(s)
the two entities participate in based on sbag.

4.2.2 Distantly Supervised Fine-tuning on Relation Extraction

Similar to TRE, language model pre-training seeks to maximize the following likelihood, given
a corpus C = [t1, . . . , tM] of tokens ti:

Llang(C) =
M

∑
i=k

logP(ti|ti−1, . . . , ti−k+1;θ) , (4.1)

where k is the context window of tokens that is considered for predicting the next token ti via
the conditional probability P(ti), and θ are the model parameters optimized during pre-training.
The distribution over target tokens is computed according to the following equation:

P(ti) = so f tmax(hL
i WT

e ) , (4.2)

where hL
i denotes the hidden state after the final layer L, and We is the embedding matrix.

After pre-training the language model is fine-tuned to the relation extraction task. Similar to the
supervised setting, we assume a labeled datasetD= {(t1

i , . . . , t
n
i ,headi, taili,ri)}i=1,...,|D|, where
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each example consists of an input sequence of tokens t1
i , . . . , t

n
i , the positions headi and taili of

the relation’s head and tail entity mention in the sequence of tokens, and the corresponding
relation label ri, which is assigned by a distant supervision. The label ri, however, is an
unreliable target on its own, because it may be incorrectly assigned. Relation(s) therefore
are classified based on a bag, which contains all inputs {(xi

1, . . . ,x
i
T )}i=1,...,p that mention a

particular entity pair, e.g., (Jonathan Lethem, Brooklyn). The model is applied to each of
the inputs to compute its representation si = hL

j , where j denotes the position of the special
classification token ([CLS], Figure 3.1) in the token sequence. A set representation sbag is then
derived as a weighted sum over the individual representations:

sbag =
p

∑
i=1

αisi , (4.3)

where αi is the weight assigned to the corresponding representation si. The bag representation
sbag is then used to inform the relation classification.

I use selective attention (Lin et al., 2016) to aggregate a bag-level representation sbag given the
individual representations si, as shown in Figure 4.1 (middle). In contrast to average selection,
where each representation contributes equally to the bag level representation, selective attention
learns to identify the representations with features most indicative of a relation, while de-
emphasizing those that contain noise. The weight αi is obtained for each input by comparing
its representation against a learned relation representation r ∈ Rd:

αi =
exp(sir)

∑
p
j=1 exp(s jr)

(4.4)

To compute the output distribution P(r) over relation labels, a linear layer followed by a softmax
is applied to sbag:

P(r|{xi
1, . . . ,x

i
T}i=1,...,p;θ) = so f tmax(Wrsbag +b), (4.5)

where Wr is the representation matrix of relations r and b ∈ Rd is a bias vector. During
fine-tuning the following objective is optimized:

Lbag(D) =
|B|

∑
i=1

logP(ri|{(x j
1, . . . ,x

j
T )} j=1,...,|Bi|;θ) , (4.6)
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where |B| denotes the number of unique bags. Similar to fine-tuning in the supervised setting,
Equation 4.1 and Equation 4.6 are combined by a scalar weight λ :

L(D) = λ ∗Llang(D)+Lbag(D) (4.7)

4.3 Evaluation

The main evaluation goal is to determine if language model pre-training and fine-tuning
combined with multi-instance learning improves relation extraction performance in the distantly
supervised setting. In particular, I study whether the method can replace explicitly provided
side information and background knowledge, and if it improves performance on less frequently
observed relations. I therefore evaluate the proposed method in a series of experiments on a
standard benchmark, followed by a manual evaluation to compare predicted relations to those
of earlier methods. In this section, I first outline the evaluation setup (Section 4.3.1), then
discuss the results in detail (Section 4.3.2).

4.3.1 Experimental Setup

For the experiments, I use the distantly supervised NYT-10 (Section 2.3.4.2), or Riedel dataset,
as the benchmark. Similar to the experiments on TRE, I initialize DISTRE from an existing
pre-trained language model, then fine-tune it to the dataset and compare its performance to the
selected baselines. As per convention, I report precision at the top N most confident predictions,
as well as the area under curve (AUC), and provide a precision-recall curve. For comparison, I
select the method proposed by Mintz et al. (2009) (MINTZ) as a baseline, which is a multi-
class logistic regression trained directly on the distantly supervised data. Further, I select two
state-of-the-art methods: PCNN+ATTN (Lin et al., 2016), the piecewise convolutional neural
network (PCNN) that segments each input text into three parts, to the left, middle, and right of
the entity mentions, followed by selective attention to compute a bag level representation for
relation classification; and RESIDE (Vashishth et al., 2018), which first encodes the input text
via a bidirectional recurrent neural network, followed by a graph convolutional neural network
(GCN) to encode the explicitly provided dependency parse tree. The computed representation
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is combined with named entity type information to obtain the final input representation that can
be used in the selective attention step.

In the following, I describe additional details of the experimental setup.

4.3.1.1 Pre-Trained Language Model

Since the main goal is to show the effectiveness of fine-tuning a pre-trained language model on
the relation extraction task, I reuse the OpenAI GPT published by Radford et al. (2018) for the
experiments. The model was pre-trained on the BooksCorpus (Zhu et al., 2015), which contains
around 7,000 unpublished books with a total of more than 800M words of different genres. It
consists of L = 12 layers (blocks) with 12 attention heads and 768 dimensional states, and a
feed-forward layer of 3072 dimensional states. I also reuse the model’s byte pair vocabulary,
containing 40,000 tokens, but extend it with task-specific ones, e.g., entity mention delimiters.
Also, I use the learned positional embeddings with supported sequence lengths of up to 512
tokens.

4.3.1.2 Hyperparameters and Optimization

For the experiments, I use the Adam optimization scheme (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.999, a batch size of 8, and a linear learning rate decay schedule with warm-up over
0.2% of training updates. I also apply residual, and attention dropout with a rate of 0.1, and
classifier dropout with a rate of 0.2.

4.3.2 Results

This section presents the experimental results in comparing DISTRE to earlier work on the
NYT-10 dataset. In the first experiment, I conduct an automated evaluation to study distantly
supervised relation extraction performance in comparison to the baselines. The automated
evaluation can only provide an approximate result, because the test set is distantly supervised,
too. I therefore conduct an additional manual evaluation and show that the proposed method
recognizes a more diverse set of relations, while still achieving a state-of-the-art AUC – even
without explicitly provided side information and linguistic features.
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4.3.2.1 Experiment 1: Relation Extraction Performance

Table 4.1 shows the results of DISTRE compared to the baselines on the held-out (test) dataset.
DISTRE with selective attention achieves a state-of-the-art AUC value of 0.422. The precision-
recall curve in Figure 4.2 shows that it outperforms RESIDE and PCNN+ATT at higher
recall levels, while precision is lower for top predicted relation instances. The results of the
PCNN+ATT model indicate that its performance is only better in the very beginning of the
curve, but its precision drops early and only achieves an AUC value of 0.341. Similar, RESIDE
performs better in the beginning but drops in precision after a recall-level of approximately 0.25.
This demonstrates that DISTRE yields a more balanced overall performance, which benefits
applications that rely on extracting long-tail relations with high precision.

Figure 4.2 Precision-recall curve on NYT-10. DISTRE shows a more balanced performance across
relations, especially in the long tail. † marks results reported by Vashishth et al. (2018). ‡ indicates
results obtained with the OpenNRE implementation.

Table 4.1 also shows detailed precision values measured at different points along the PR curve.
Again, we can observe that while DISTRE has lower precision for the top 500 most confidently
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predicted relation instances, it shows a state-of-the-art precision of 60.2% for the top 1000 and
continues to perform higher for the remaining, much larger part of the predictions.

System AUC P@100 P@200 P@300 P@500 P@1000 P@2000

Mintz† 0.107 52.3 50.2 45.0 39.7 33.6 23.4
PCNN+ATT‡ 0.341 73.0 68.0 67.3 63.6 53.3 40.0
RESIDE† 0.415 81.8 75.4 74.3 69.7 59.3 45.0
DISTRE 0.422 68.0 67.0 65.3 65.0 60.2 47.9

Table 4.1 Precision evaluated automatically for the top rated relation instances. † marks results reported
in the original paper. ‡ marks results obtained by the OpenNRE implementation.

Since automated evaluation on a distantly supervised, held-out dataset does not reflect the
actual performance of the models given false positive labels and incomplete knowledge base
information, I also evaluate all models manually. This also allows to gain a better understanding
of the difference of the models in terms of their predictions. To this end, three human annotators
manually rated the top 300 predicted relation instances for each model. Annotators were asked
to label a predicted relation as correct only if it expressed a true fact at some point in time (e.g.,
for a /business/person/company relationship, a person may have worked for a company in the
past, but not currently), and if at least one sentence clearly expressed this relation, either via a
syntactic pattern or via an indicator phrase.

Table 4.2 shows the P@100, P@200, P@300 and average precision scores, averaged over all
annotators. PCNN+ATT has the highest average precision at 94.3%, 3% higher than the 91.2%
of RESIDE and 5% higher than DISTRE. However, it can be seen that this is mainly due to
PCNN+ATT’s very high P@100 and P@200 scores. For P@300, all models have very similar
precision scores. PCNN+ATT’s scores decrease considerably, reflecting the overall trend of its
PR curve, whereas RESIDE’s and DISTRE’s manual precision scores remain at approximately
the same level. The model’s precision scores for the top rated predictions are around 2% lower
than those of RESIDE, confirming the results of the held-out evaluation. Manual inspection of
DISTRE’s output shows that most errors among the top predictions arise from wrongly labeled
/location/country/capital instances, which the other models do not predict among the top 300
relations.
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System P@100 P@200 P@300 Avg.

PCNN+ATT 97.3 94.7 90.8 94.3
RESIDE 91.3 91.2 91.0 91.2
DISTRE 88.0 89.8 89.2 89.0

Table 4.2 Precision evaluated manually for the top 300 relation instances, averaged across 3 human
annotators.

4.3.2.2 Experiment 2: Performance on Infrequent Relations

Table 4.3 shows the distribution over relation types for the top 300 predictions of the different
models. We see that DISTRE’s top predictions encompass 10 distinct relation types, more
than the other two models, with /location/location/contains and /people/person/nationality
contributing 67% of the predictions. Compared to PCNN+ATT and RESIDE, DISTRE predicts
additional relation types, such as /people/person/place_lived, e.g., “Sen. <PER>, Republi-
can/Democrat of <LOC>”, and /location/neighborhood/neighborhood_of, e.g., “the <LOC>
neighborhood/area of <LOC>”, with high confidence.

Relation DISTRE RESIDE PCNN+ATT

location/contains 168 182 214
person/nationality 32 65 59
person/company 31 26 19
person/place_lived 22 – –
country/capital 17 – –
admin_div/country 13 12 6
neighborhood/neighborhood_of 10 3 2
location/team 3 – –
company/founders 2 6 –
team/location 2 – –
person/children – 6 –

Table 4.3 Distribution over the top 300 predicted relations for each method. DISTRE achieves per-
formance comparable to RESIDE, while predicting a more diverse set of relations with high con-
fidence. PCNN+ATT shows a strong focus on two relations: /location/location/contains and /peo-
ple/person/nationality.

RESIDE’s top 300 predictions cover a smaller range of 7 distinct relation types, but also focus on
/location/location/contains and /people/person/nationality (82% of the model’s predictions). RE-
SIDE’s top predictions include, e.g., the additional relation types /business/company/founders,
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e.g., “<PER>, the founder of <ORG>”, and /people/person/children, e.g., “<PER>, the daugh-
ter/son of <PER>”.

PCNN+ATT’s high-confidence predictions are strongly biased towards a very small set of
only four relation types. Of these, /location/location/contains and /people/person/nationality
together make up 91% of the top 300 predictions. Manual inspection shows that for these
relations, the PCNN+ATT model picks up on entity type signals and basic syntactic patterns,
such as “<LOC>, <LOC>”, e.g., “Berlin, Germany”, and “<LOC> in <LOC>”, e.g., “Green
Mountain College in Vermont”, for /location/location/contains, and “<PER> of <LOC>”, e.g.,
“Stephen Harper of Canada”, for /people/person/nationality. This suggests that the PCNN
model ranks short and simple patterns higher than more complex patterns where the distance
between the arguments is larger. The two other models, RESIDE and DISTRE, also identify
and utilize these syntactic patterns.

Table 4.4 also lists some of the more challenging sentence level predictions that DISTRE
correctly classified. These example require a model to correctly identify the entity type of each
mention, resolve long range dependencies (e.g., in the third example), and precise syntactic
patterns (e.g., in the first and fourth example).

Sentence Relation

Mr. Snow asked, referring to Ayatollah Ali Khamenei, Iran’s
supreme leader, and Mahmoud Ahmadinejad, Iran’s president.

/people/person/nationality

In Oklahoma, the Democratic governor, Brad Henry, vetoed
legislation Wednesday that would ban state facilities and work-
ers from performing abortions except to save the life of the
pregnant woman.

/people/person/place_lived

Jakarta also boasts of having one of the oldest golf courses in
Asia, Rawamangun , also known as the Jakarta Golf Club.

/location/location/contains

Cities like New York grow in their unbuilding: demolition
tends to precede development, most urgently and particularly
in Lower Manhattan, where New York City began.

/location/location/contains

Table 4.4 Examples of challenging relation mentions. These examples benefit from the ability to capture
more complex features. Relation arguments are underlined.
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4.4 Discussion and Summary

This chapter investigated an extension of the previously developed sequential transfer learn-
ing method (TRE) to distantly supervised relation extraction. Similarly, it uses a pre-trained
language model as the source of prior knowledge, which is transferred to the relation extrac-
tion task during fine-tuning. In contrast to previous state-of-the-art methods, e.g., RESIDE,
which heavily utilize explicitly provided side information and linguistic features, the proposed
approach only uses features implicitly captured in pre-trained language representations. This
mitigates error propagation as pre-processing and other feature extraction systems can be
omitted, and also allows for feature selection during fine-tuning instead of selecting them a
priori. In experiments on a widely used distantly supervised relation extraction benchmark, I
show that the proposed method exhibits lower precision for the 300 top ranked predictions but
achieves a state-of-the-art AUC score and an overall more balanced performance, especially for
higher recall values. Most importantly, the approach predicts a larger set of distinct relation
types with high confidence among the top predictions. This is also confirmed in the manual
evaluation, which uncovered that transfer learning helped in particular for infrequent observed
relations, while previous methods only recognize a limited set of relations with simple patterns.

Similar to the supervised setting, the developed transfer learning method demonstrated strong
empirical results. It, however, is still unclear what linguistic features neural relation extraction
models encode. To gain further insights and ultimately improve performance, it is crucial to
better understand this aspect. Further, it is pivotal to explore and characterize circumstances in
which models fail in order to better understand a method’s capabilities and to identify possible
systematic issues.

I conclude that two options exist that could further improve supervised and distantly supervised
relation extraction performance. The first option is to improve pre-training, i.e., to learn
representations that capture more syntactic and semantic knowledge, which allows us to fine-
tune models more efficiently to less supervised data. The second option is to gain further insights
and develop a better understanding of encoded linguistic features, model errors, datasets, and
annotations – which is what I investigate in the next two chapters.





Chapter 5

Analyzing Captured Linguistic
Knowledge

5.1 Introduction

As I demonstrated in the previous two chapters, sequential transfer learning increases relation
extraction performance and data efficiency in the supervised setting, and similarly improves
performance in the distantly supervised setting. The good results suggest that pre-trained
language representations capture linguistic properties useful for the task. With features provided
implicitly through transfer learning, it, however, is unclear what these properties are; uncovering
them could gain insights into model decisions, help with debugging model errors, and ultimately
improve relation extraction performance even further.

In this section, I first discuss the challenges of analyzing neural network-based methods,
particularly in neural relation extraction (Section 5.1.1), followed by a discussion of related
work (Section 5.1.2). I then propose my approach based on probing tasks, or diagnostic
classifiers, to uncover the linguistic knowledge encoded by neural relation extraction models
(Section 5.2). In the following, I conduct an extensive evaluation of the linguistic knowledge
encoded in a various relation extraction models trained on two benchmark datasets (Section 5.3).
Finally, I conclude this chapter with a discussion of the proposed method and how it aligns
with the thesis’ objective (Section 5.4).

This chapter is mainly based on a previously published full paper (Alt et al., 2020a).



86 | Analyzing Captured Linguistic Knowledge

5.1.1 Problem Statement

Recently, neural networks have considerably improved performance on many NLP tasks,
including relation extraction. Understanding how they work is desirable for multiple reasons:
It allows us to identify areas for improvement, and understanding their decision process is
crucial to ensure accountability, trust, and fairness, which is important in critical domains such
as healthcare. Their nested non-linear structure, however, makes them highly non-transparent,
i.e., no information is provided about how they arrive at their decision (Samek et al., 2017) –
essentially making them black boxes that are difficult to understand by humans.

Problem: Limited understanding of neural relation extraction methods Earlier feature-
based, or feature-rich, relation extraction methods are easier to understand in this regard, as
they use morphological properties, lexical classes, syntactic categories, semantic relations, etc.1

In contrast, it is harder to understand end-to-end trained neural relation extraction models that
take word embeddings as input, which in itself are quite opaque, and processes them with
multiple non-linear neural network layers of arbitrary architecture. Also, due to the recent
success of un- or self-supervised pre-training, models became even more complex. It therefore
would benefit further research to be able to analyze what (linguistic) properties of the input
models encode, and consequently use for their decisions; how this is influenced by transfer
learning, neural network architecture, and additional linguistic knowledge; and how this affects
performance on the task.

Ideally, a method that addresses this problem should be applicable independently of the chosen
relation extraction method, domain, and dataset. As these vary greatly depending on the use
case and application.

5.1.2 Related Work

Prior work in neural relation extraction is heavily focused on improving its performance. While
there exist ablation studies that aim to quantifying how explicitly provided input features impact
overall performance (Zeng et al., 2014; Zhang and Wang, 2015), no prior work specifically
focused on analyzing neural relation extraction models. Relation extraction has very little
coverage when it comes to the understanding of methods compared to other areas of NLP,
such as question answering, machine-translation, and natural language inference. I therefore

1Although, one may question how practical such an analysis is; considering, for example, explaining support
vectors in high dimensional support vector machines.
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focus on related work on analysis methods for other NLP tasks, in particular I focus on probing
linguistic information (Section 2.5.1).

5.1.2.1 Probing Linguistic Information for Other NLP Tasks

Probing tasks (Section 2.5.1), or diagnostic classifiers (Adi et al., 2017; Shi et al., 2016), are a
well established method to analyze the presence of specific information in latent representations,
e.g., to analyze linguistic information captured by neural network-based models in machine-
translation (Belinkov et al., 2017), language modeling (Giulianelli et al., 2018), and general
sentence encoding (Conneau et al., 2018). Shi et al. (2016) use probing tasks to probe syntactic
properties captured in encoders trained on neural machine translation. Adi et al. (2017) extend
this concept of “auxiliary prediction tasks”, proposing sentence length, word count, and word
order tasks to probe general sentence encoders. Conneau et al. (2018) use probing tasks for ten
linguistic properties, e.g., sentence length and dependency parse tree depth, and analyze a set
of encoders pre-trained on neural machine translation and natural language inference that were
fine-tuned to text classification. Their setup, however, is not applicable to relation extraction
for two reasons: First, the probing tasks target linguistic properties specific to the respective
task, which are either too generic or unsuited for relation extraction; second, relation extraction
requires both an input sentence and corresponding entity mentions.

5.1.3 Contributions

To uncover the linguistic properties captured by neural relation extraction models, I propose a
set of probing tasks that specifically target properties that are considered useful for the task. I
then analyze the features encoded by a broad set of models of various neural architectures on
two benchmark datasets. In more detail, the contributions are:

Probing tasks for neural relation extraction To reveal the linguistic knowledge that is
captured and used for relation extraction, I develop a workflow based on probing tasks.
Each task targets a linguistic property of the input, e.g., the entity type of the head
relation argument, and estimates how well it is encoded in the final input representation
on which a model’s decision is based. In particular, I introduce 14 probing tasks that
specifically target linguistic properties relevant to relation extraction. The tasks cover
syntactic, semantic, as well as surface features of the input texts. An extensive evaluation
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on two benchmark datasets and more than 40 different models finds that the bias induced
by the neural network architecture and the inclusion of additional linguistic knowledge
are clearly expressed in the probing task performance.

Software libraries for relation extraction and probing tasks To facilitate future research
and development of probing tasks, I also introduce two modular and extensible software
libraries: RelEx,2 a comprehensive suite of state-of-the-art neural relation extraction
methods; and REval,3 a framework to develop and evaluate probing tasks that extends
the widely used SentEval toolkit (Conneau and Kiela, 2018).

Discussion of captured linguistic information In addition to the overall probing task per-
formance, I discuss how the bias induced by different neural network architectures,
e.g., convolution, recurrence, and self-attention, affects the encoded linguistic informa-
tion. Also, I examine how additionally provided linguistic knowledge influences the
captured information. This includes explicit semantic and syntactic knowledge, e.g.,
entity type or grammatical role, and implicit knowledge contained in contextualized word
representations, such as ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019).

5.2 Linguistic Probing Tasks for Neural Relation Extraction

This section introduces the tasks I use to probe relation extraction models for linguistic features.
For each probing task, I train a classifier to predict a specific linguistic property of the input
texts, e.g., the entity type of a relation argument, given the final encoder representations of
a trained neural network-based relation extraction model (Section 5.3.1.1). The classifier
performance then indicates how well the property of interest is encoded. Although I focus on
the supervised relation extraction, this setup is applicable to the distantly supervised setting
as well. Relation extraction literature is rich with information about useful linguistic features
(Mintz et al., 2009; Surdeanu et al., 2011; Zhou et al., 2005), which I use as a starting point
to develop suitable tasks. The features range from simple surface phenomena, e.g., relation
argument distance; to syntactic information, e.g., parse tree depth and argument ordering; and
semantic information, e.g., the entity types of relation arguments. I create the probing task
data based on SemEval 2010 Task8 and TACRED (Section 2.3.4.2); with the standard training,
validation, and test splits for TACRED, and the standard SemEval test split. As SemEval lacks
a validation split, I randomly select 10% of the training split for this purpose. I use the named

2https://github.com/dfki-nlp/RelEx
3https://github.com/dfki-nlp/REval

https://github.com/dfki-nlp/RelEx
https://github.com/dfki-nlp/REval
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entity, part-of-speech, and dependency parsing information provided in TACRED and parse
SemEval with the Stanford Parser (Manning et al., 2014) in version 2018-10-05.

5.2.1 Surface Properties

These tasks test whether a model captures simple surface properties of input sentences it encodes.
The sentence length (SentLen) task, proposed by Adi et al. (2017), predicts the number of
tokens in a sentence. I group sentences into n = 10 bins (TACRED, 7 bins for SemEval) by
length, selecting bin widths so that training sentences are distributed approximately uniformly
across bins, and treat SentLen as an n-way classification task. The next probing task, argument
distance (ArgDist), predicts the number of tokens between the two relation arguments. Similar
to SentLen, I group sentences into 10 bins (5 for SemEval) by relative distance. Inspired by a
common feature in classical relation extraction (Surdeanu et al., 2011), I also test if any named
entity exists between the two relation arguments (EntExist), treating it as a binary classification
problem. Addressing this task requires the encoder to produce a sentence embedding that (at
least partially) represents the inner context of the relation arguments.

5.2.2 Syntactic Properties

Syntactic information is highly relevant for relation extraction. Many methods utilize depen-
dency path information (Bunescu and Mooney, 2005a; Krause et al., 2012; Mintz et al., 2009),
or part-of-speech tags (Surdeanu et al., 2011; Zhou et al., 2005). I therefore include the tree
depth task (TreeDepth) described by Conneau et al. (2018). This task tests whether an encoder
can group sentences by the depth of the longest path from root to any leaf. I group tree depth
values into 10 (TACRED, SemEval 7) approximately uniformly distributed classes, ranging
from depth 1 to depth 15. To account for shortest dependency path (SDP) information, I include
an SDP tree depth task (SDPTreeDepth), which tests if a model encodes information about
the syntactical link between the relation arguments. Again, I group SDP tree depth values
into bins, in this case only 6 (TACRED, SemEval 4) classes, since the SDP trees are generally
more shallow than the original sentence dependency parse tree. The argument ordering task
(ArgOrd) tests if the head argument of a relation occurs before the tail argument in the token
sequence. A model that successfully addresses this challenge captures some information about
syntactic structures where the order of a relation’s arguments is inverted, e.g., in constructs such
as “The acquisition of Monsanto by Bayer”, as compared to default constructions like “Bayer
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acquired Monsanto”. This is useful to determine whether the representation can for example be
used to distinguish between active and passive constructions, where relation arguments may
be reversed. I also include 4 tasks that test for the part-of-speech tag of the token directly to
the left or right of the relation’s arguments: PosHeadL, PosHeadR, PosTailL, PosTailR. These
tasks test whether the encoder is sensitive to the immediate context of an argument. Some
relation types, e.g., per:nationality or org:top_member, can often be identified based on the
immediate argument context, e.g., “US president-NN Donald Trump”, or “Google ’s-POSS
CEO-NN Larry Page”. Capturing this type of information should be beneficial to the relation
classification.

5.2.3 Semantic Properties

Finally, I include tasks that target the understanding of what each argument denotes. The
argument entity type tasks (TypeHead, TypeTail) ask for the entity tag of the head and tail
argument, respectively. Entity type information is highly relevant for relation extraction, since
it strongly constrains the set of possible relation labels for a given argument pair. I treat
these tasks as multi-class classification problems over the set of possible argument entity tags
(Section 2.3.4.2).

The final tasks concern the grammatical function of relation arguments. The grammatical
role tasks (GRHead, GRTail) ask for the role of each argument, as given by the dependency
label connecting the argument and its syntactic head token. The motivation is that the subject
and object of verbal constructions often correspond to relation arguments for some relation
types, e.g., “Bayer acquired Monsanto”. In this scenario I test for four roles, namely nsubj,
nsubjpass, dobj and iobj, and group all other dependency labels into an other class. Note that
there are other grammatical relations that may be of interest for relation extraction, for example
possessive modifiers (“Google’s Larry Page”), compounds (“Google CEO Larry Page”), and
appositions (“Larry Page, CEO of Google”).4

4I exclude all sentences with multi-token entities where the dependency parser failed to create a single directly
connected sub-tree for the entity tokens, with the entity’s head as the root of the sub-tree.
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5.3 Evaluation

The goal of the evaluation is to reveal what linguistic properties of the input text neural
relation extraction models capture. First, I create a set of relation extraction models based
on two benchmark datasets. I then use the proposed probing tasks to determine how well
the properties of interest are encoded, and follow up on the results with a detailed discussion
of factors that might affect the encoded features, such as neural network architecture and
supporting linguistic knowledge. Also, I discuss how probing task performance relates to
relation extraction performance. This section first outlines the evaluation setup (Section 5.3.1),
followed by a detailed discussion of the results (Section 5.3.2).

5.3.1 Experimental Setup

Figure 5.1 gives an overview of the probing task setup I use to determine the captured linguistic
properties. First, I train a neural relation extraction model, optionally with supporting linguistic
knowledge, on supervised data. Then, I freeze the sentence encoder of this model and obtain
the representations s1, . . . ,sN for each example {(t i

1, . . . , t
i
n,headi, taili)}i=1,...,N , where t i

1, . . . , t
i
n

denotes the input token sequence and {head, tail}i are the spans of head and tail entity
mention, respectively. Subsequently, I fit a logistic regression classifier to the probing task data
{(si,yi)}i=1,...,N , where yi is the probing target, e.g., the type of the head relation argument.
The probing classifier performance indicates how well the sentence representations encode the
probed information. I use SemEval 2010 Task 8 and TACRED (Section 2.3.4.2) as datasets for
the experiments and report macro-averaged F1 scores for SemEval and micro-averaged F1 for
TACRED.

5.3.1.1 Sentence Encoders

Typically, binary neural relation extraction methods follow a sequence to vector approach, as
described in Section 2.3.3. The input text is first transformed into a fixed-size representation by
a neural-network based (sentence) encoder, before applying a classification layer to predict the
relation. An input is represented as a sequence of T tokens t1, . . . , tT , and the corresponding
spans of head and tail entity mention. In the experiments, I focus on four widely used neural
network-based architectures and signal the position of head and tail with relative offsets to
each token ti as positional embeddings ph

i ∈ Rd and pt
i ∈ Rd . The positional embeddings are
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Figure 5.1 Probing task setup. In the first step, I train a neural relation extraction model (sentence
encoder + relation classifier) from a dataset. Subsequently, I freeze the encoder and use the sentence
representations s to train a classifier for a particular probing task. The probing task classifier performance
indicates how well a property of interest, e.g., type of the head entity mention, is encoded in s, which is
also used to predict the relation.

concatenated to the token embedding ei ∈ Rc to form the input representation xi = [ei, ph
i , pt

i]

for each token ti. In the following, I now describe the different sentence encoders.

CNN I follow the work of Zeng et al. (2014) and Nguyen and Grishman (2015), who both use
a convolutional neural network for relation extraction. Their methods encode the input token
sequence t1, . . . , tT by applying a series of 1-dimensional convolutions of different filter sizes,
yielding a set of output feature maps M f , followed by a max-pooling operation that selects the
maximum values along the temporal dimension of M f to form a fixed-size representation.

Bi-LSTM Similar to Zhang and Wang (2015) and Zhang et al. (2017), I use a Bi-LSTM
to encode the input sequence. A Bi-LSTM computes a sequence of hidden states h1, . . . ,hT ,
where hi is a concatenation [

−→
hi ,
←−
hi ] of the hidden states of a forward LSTM

−→
hi and a backward

LSTM
←−
hi . Similar to the CNN, I use max pooling across the temporal dimension to obtain a

fixed-size representation5.

5I considered taking the final hidden state of both directions but found max pooling to perform superior.
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GCN Graph convolutional networks (GCN, Kipf and Welling, 2017) adapt convolutional
neural networks to graphs. Following the approach of Zhang et al. (2018b), I consider the
input token sequence t1, . . . , tT as a graph with T nodes, with an edge between ti and t j if
there exists a dependency link between the two tokens. I convert the dependency parse into
a T ×T adjacency matrix after pruning the graph to the shortest dependency path between
head and tail entity mention. An L-layer GCN applied to the input tokens yields a sequence of
hidden states h1, . . . ,hT contextualized on neighboring tokens with a graph distance of at most
L. Forming a fixed size representation is done by max pooling over the temporal dimension
and local max pooling over the tokens {ti}, for i ∈ (headstart , . . . ,headend) and similar for
i ∈ (tailstart , . . . , tailend).

Self-attention Similar to the transformer (Vaswani et al., 2017), I compute a sequence of
contextualized representations h1, . . . ,hT by applying L layers of multi-head self-attention to
the input tokens t1, . . . , tT . The representation ht of ti is computed as a weighted sum of a
projection V of the input tokens, with respect to the scaled, normalized dot product of Q and
K, which are also both linear projections of the input with the procedure repeated for each
attention head. A fixed-size representation is obtained by taking the final state hL

T at the L-th
layer.

5.3.1.2 Supporting Linguistic Knowledge

Zeng et al. (2014); Zhang et al. (2017, 2018b) show that explicitly adding additional lexical,
syntactic, and semantic input features to neural relation extraction models considerably im-
proves performance. Features include, for example, casing, named entity, part-of-speech, and
dependency information. Pre-trained language representations, as previously discussed, are
claimed to implicitly capture syntactic and semantic information useful to a wide range of
downstream tasks (Devlin et al., 2019; Peters et al., 2018; Radford et al., 2018). I therefore
evaluate how adding explicit named entity and grammatical role information through entity
masking affects the linguistic features captured by the models, and compare it to adding con-
textualized word representations computed by ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) as additional input features.

Entity Masking Zhang et al. (2017) show that entity masking provides a significant perfor-
mance gain on the TACRED. It replaces each mention with a combination of its entity type and



94 | Analyzing Captured Linguistic Knowledge

grammatical role (subject and object). It limits the information about mentions available to a
model, possibly preventing overfitting to specific entity mentions and also forcing the model to
focus more on the context.

ELMo Peters et al. (2018) introduced Embeddings from Language Models, an approach to
compute contextualized word representations by applying a pre-trained, two-layer Bi-LSTM to
an input token sequence t1, . . . , tT . ELMo operates on a character level and is pre-trained with
the forward and backward direction as a separate unidirectional language model. It computes
a representation hi = [

−→
hi ,
←−
hi ] for each token ti, with

−→
hi conditioned on the preceding context

t1, . . . , ti−1 and independently
←−
hi , conditioned on the succeeding context ti+1, . . . , tT .

BERT Bidirectional Encoder Representations from Transformers (Devlin et al., 2019) im-
proves upon methods such as ELMo and the OpenAI Generative Pre-trained Transformer
(GPT) (Radford et al., 2018) by using a masked language model (Section 2.4.3.1) that allows
for jointly training forward and backward directions. Compared to ELMo, BERT operates on
word-piece input and is based on the transformer architecture. It computes a representation
for a token ti jointly conditioned on the preceding context t1, . . . , ti−1 and succeeding context
ti+1, . . . , tT .

5.3.2 Results

Table 5.1 and Table 5.2 report the accuracy scores of the probing task experiments for models
trained on the TACRED and SemEval benchmarks. I exclude the ArgOrd and EntExists task
in the SemEval evaluation, since relation arguments are always ordered in the sentence as
indicated by the relation type, and entity types recognizable by standard tools such as Stanford
CoreNLP that might occur between head and tail are irrelevant to the dataset’s entity types and
relations.

Baseline performances are reported in the top section of Table 5.1 and Table 5.2. Length
and ArgDist are both linear classifiers which use sentence length as the only feature, and
distance between head and tail argument, respectively. Bag-of-embeddings (BoE) computes a
representation of the input by taking the sum over its token embeddings. Generally, there is a
large gap between top baseline performance and that of a trained encoder. While SentLength
and ArgDist are trivially solved by the respective linear classifier, BoE shows surprisingly good
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Head
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F1
score

Majority 66.4 33.5 14.5 14.8 54.7 51.0 22.8 23.0 26.9 20.0 23.7 28.4 58.4 75.2 -
Length 66.4 33.5 100 13.8 54.8 59.4 18.6 24.7 26.9 20.1 30.5 29.6 58.4 75.2 -
ArgDist 66.4 33.5 16.5 100 54.7 77.5 14.9 23.0 26.9 19.8 23.8 35.3 58.4 75.2 -
BoE 77.7 47.6 61.1 22.6 97.3 66.5 33.7 41.5 32.5 36.3 29.8 31.0 66.3 77.4 39.4

CNN 94.0 85.8 47.6 88.1 98.8 84.5 70.7 76.1 84.0 86.5 28.5 44.0 78.0 88.6 55.9
ELMo 97.0 90.2 48.7 91.7 99.1 84.3 76.1 81.2 86.6 90.1 28.3 45.0 82.8 91.9 58.8
BERT ↓ 95.9 88.8 44.7 46.0 93.8 79.9 64.7 74.4 80.8 88.4 29.4 41.0 77.7 90.0 59.7
+ BERT ↑ 96.1 88.8 48.0 43.7 91.9 80.0 56.9 70.3 80.1 87.5 28.0 41.3 75.0 89.6 61.0
CNN ⊗ 84.2 60.9 46.4 58.3 94.3 81.5 44.3 50.9 54.4 63.9 27.7 40.0 68.5 82.0 59.5
+ ELMo 82.8 69.8 47.4 75.6 98.1 82.9 54.2 60.2 65.4 77.3 28.7 42.4 71.9 85.0 61.7
+ BERT ↓ 87.6 80.3 50.9 29.3 83.2 72.4 39.3 46.1 67.7 80.7 30.1 36.9 67.1 87.4 65.3
+ BERT ↑ 87.2 79.3 50.6 25.3 78.3 69.8 39.6 42.9 59.9 77.5 30.3 35.1 65.6 86.9 66.1

Bi-LSTM 93.4 81.2 42.0 47.9 99.4 79.2 41.2 50.8 50.6 68.4 28.7 41.7 69.3 85.2 55.3
+ ELMo 96.4 89.6 27.9 47.0 97.9 80.9 47.8 52.5 67.2 72.6 25.2 42.8 72.1 90.0 61.8
+ BERT ↓ 96.0 87.3 31.0 45.5 99.1 78.8 46.1 55.6 61.7 71.3 26.6 42.7 72.2 87.7 62.5
+ BERT ↑ 96.0 87.7 28.6 45.3 97.7 80.4 48.0 50.9 61.4 67.4 25.1 42.3 70.8 87.0 63.1
Bi-LSTM ⊗ 81.9 71.4 27.6 35.6 90.6 73.2 36.1 40.5 59.3 66.4 25.7 38.4 64.6 85.3 62.9
+ ELMo 82.8 50.7 30.6 19.7 73.4 65.0 32.0 35.9 37.9 41.8 28.0 32.2 63.0 79.5 64.1
+ BERT ↓ 82.3 77.9 34.1 25.6 87.6 68.4 32.5 36.7 61.5 64.7 27.6 35.1 66.6 86.0 65.4
+ BERT ↑ 81.7 79.6 30.2 21.3 81.1 67.0 30.6 33.8 55.9 55.1 27.3 34.2 64.1 84.9 66.1

GCN 93.0 81.9 18.8 35.5 86.0 74.4 48.6 48.8 51.2 52.3 24.0 49.9 74.2 85.9 57.4
+ ELMo 96.3 86.2 18.7 29.3 77.5 74.0 50.4 52.0 48.9 51.7 23.2 47.4 77.1 86.9 62.1
+ BERT ↓ 96.0 85.2 20.7 31.2 83.6 74.2 48.6 52.4 47.4 50.4 23.9 48.7 74.4 85.3 62.9
+ BERT ↑ 96.3 85.7 21.4 32.9 84.3 75.3 50.1 54.6 48.6 52.5 24.5 49.2 76.3 85.8 61.5
GCN ⊗ 87.6 67.4 18.1 33.1 81.6 72.8 36.8 51.1 44.8 48.8 24.1 47.3 73.2 83.0 63.7
+ ELMo 92.7 68.6 18.6 26.4 76.8 71.4 41.9 50.4 43.6 45.1 23.8 47.1 76.3 83.9 65.4
+ BERT ↓ 93.5 71.5 22.0 33.3 88.5 73.8 44.9 50.6 44.7 47.7 24.4 49.1 72.6 82.3 66.3
+ BERT ↑ 93.4 72.0 23.7 33.2 90.4 73.9 42.8 50.1 44.0 48.3 24.9 48.0 72.9 83.0 65.9

S-Att. 89.9 81.8 22.7 32.8 75.7 78.1 34.1 38.9 40.8 44.8 26.1 38.2 60.7 81.1 57.6
+ ELMo 96.6 87.8 24.9 30.6 74.1 79.1 36.0 41.4 39.2 44.1 26.4 37.9 64.1 83.4 64.7
+ BERT ↓ 96.2 87.0 25.9 31.4 75.6 76.5 35.3 40.8 39.8 44.4 25.4 39.1 61.8 81.3 63.9
+ BERT ↑ 96.5 87.3 26.1 32.6 76.8 78.0 34.7 40.9 40.0 44.0 25.7 38.1 62.2 81.7 63.8
S-Att. ⊗ 79.5 56.5 29.0 44.3 91.2 79.5 29.6 43.0 36.1 60.3 26.1 39.6 64.7 79.5 65.9
+ ELMo 78.2 44.4 25.1 31.5 72.3 77.1 31.6 37.5 34.4 34.8 26.2 36.7 62.1 75.9 66.6
+ BERT ↓ 82.4 66.9 36.2 33.2 74.9 76.8 32.0 37.6 38.0 41.3 27.4 37.6 63.0 79.8 66.7
+ BERT ↑ 80.0 69.0 31.9 32.8 78.6 76.6 30.3 34.2 37.5 39.2 27.0 38.2 60.4 79.9 66.9

Table 5.1 TACRED probing task accuracies and model F1 scores on the test set. ↑ and ↓ indicate the
cased and uncased version of BERT, ⊗ denotes models with entity masking.

performance on SentLen and ArgOrd, and a clear improvement over the other baselines for
named entity- and part-of-speech-related probing tasks.
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Type
Head

Type
Tail

Sent
Len

Arg
Dist

PosL
Head

PosR
Head

PosL
Tail

PosR
Tail

Tree
Dep

SDP
Dep

GR
Head

GR
Tail

F1
score

Majority 22.0 21.3 25.7 42.1 62.1 39.3 38.3 34.0 25.4 67.2 37.3 80.9 -
Length 25.8 24.7 100 42.1 62.1 39.1 38.3 46.3 44.3 67.2 40.6 80.9 -
ArgDist 23.6 22.3 25.7 100 62.1 43.7 37.9 35.3 26.2 67.8 45.4 80.9 -
BoE 58.5 58.0 82.4 84.8 65.1 66.1 49.2 72.5 44.1 69.8 65.4 83.6 55.7

CNN 76.1 76.2 34.9 87.5 66.0 85.8 74.2 73.1 34.1 72.1 70.3 89.1 80.2
+ ELMo 81.3 81.8 38.1 88.5 70.0 89.0 79.5 76.4 35.5 71.8 75.1 90.9 84.4
+ BERT ↓ 83.9 84.1 55.9 90.2 74.0 89.3 81.2 84.6 41.3 73.1 76.8 90.6 86.3
+ BERT ↑ 83.4 83.7 54.3 90.4 74.4 89.4 82.0 82.8 42.0 73.0 78.3 90.8 86.0

Bi-LSTM 77.1 77.0 50.5 74.9 63.8 75.9 61.8 68.5 41.3 70.3 69.2 87.7 80.1
+ ELMo 81.5 81.8 41.1 66.6 62.8 71.8 59.3 64.5 37.5 70.1 70.0 87.6 83.7
+ BERT ↓ 83.6 83.7 41.8 61.5 62.7 68.9 57.9 63.0 37.1 70.8 67.4 86.7 85.6
+ BERT ↑ 82.5 82.8 41.8 66.0 63.1 70.8 58.6 64.3 37.7 71.0 68.9 87.5 85.1

GCN 75.4 75.5 35.0 81.5 68.5 87.5 71.2 55.5 35.5 80.3 76.3 91.7 79.6
+ ELMo 80.7 80.8 32.2 68.1 68.3 83.4 65.8 53.2 34.4 75.8 80.0 91.1 84.2
+ BERT ↓ 82.5 83.0 42.5 66.5 73.6 84.7 69.2 66.3 38.9 77.2 82.1 91.0 85.7
+ BERT ↑ 81.5 81.9 42.7 67.3 73.8 85.1 69.6 67.8 39.6 77.6 84.2 91.9 84.3

S-Att. 77.4 77.6 34.2 50.0 62.1 56.2 49.8 47.1 35.9 67.9 54.2 84.1 80.2
+ ELMo 80.7 81.3 33.1 46.2 62.0 53.9 49.1 45.7 34.7 68.1 54.9 84.4 83.6
+ BERT ↓ 83.4 83.3 31.0 45.3 62.1 51.8 48.4 44.7 33.0 67.8 53.3 83.6 85.6
+ BERT ↑ 82.8 82.8 30.6 46.1 62.1 52.7 48.2 44.4 33.6 67.9 54.6 84.1 84.9

Table 5.2 SemEval probing task accuracies and model F1 scores on the test set. ↑ and ↓ indicate the
cased and uncased version of BERT.

Relation extraction performance The relation extraction performance on TACRED ranges
between 55.3 (Bi-LSTM) and 57.6 F1 (S-Att.), with performance improving to around 58.8 -
64.7 F1 when adding pre-learned, contextualized word representations. As observed in previous
work (Zhang et al., 2017), masking helps the encoders to generalize better, with gains of around
4 - 8 F1 when compared to the vanilla models. This is mainly due to better recall, which
indicates that without masking, models may overfit, for example, by memorizing specific
entity names. The best performing model achieves a score of 66.9 F1 (S-Att. + BERT cased
and masking). On SemEval performance of the vanilla models is around 80.0 F1. Adding
contextualized word representations significantly improves the performance of all models by
3.5 - 6 F1. The best-performing model on this dataset is a CNN with uncased BERT embeddings
with an F1-score of 86.3.

Encoder architecture For most probing tasks, except SentLen and ArgOrd, a proper encoder
clearly outperforms BoE, which is coherent with the findings of Adi et al. (2017) and Conneau
et al. (2018). Similarly, the results indicate that the prior imposed by the encoder architecture
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preconditions the information encoded in the learned embeddings. Models with a local or
recency bias (CNN, Bi-LSTM) perform better on probing tasks with local focus, such as
PosHead{L,R} and PosTail{L,R}, and partially on distance related tasks (ArgDist, ArgOrd).
Similar, models with access to dependency information (GCN) perform well on tree related
tasks (SDPTreeDepth). Due to the graph pruning step the GCN is left with a limited view of
the dependency tree, which explains the low performance on TreeDepth. Surprisingly, while
self-attention exhibits superior relation extraction performance, it consistently performs lower
on the probing tasks compared to the other encoding architectures. This could indicate that
self-attention encodes deeper, more abstract, linguistic features into the sentence representation,
which are not covered by the current set of probing tasks.

Probing task performance Compared to the baselines, all proper encoders exhibit consis-
tently high performance on TypeHead and TypeTail, clearly highlighting the importance of
entity type information to relation extraction. In contrast, these encoders perform worse on
SentLen, which intuitively makes sense, since sentence length is mostly irrelevant for relation
extraction. This is consistent with Conneau et al. (2018), who found SentLen performance to
decrease for models trained on more complex downstream tasks, e.g., neural machine transla-
tion, strengthen the assumption that, as a model captures deeper linguistic properties it will tend
to forget about this superficial feature. With the exception of the CNN, all encoders consistently
show low performance on the argument distance (ArgDist) task. The same can be observed for
ArgOrd, where models that are biased towards locality (CNN and Bi-LSTM) perform better,
while models that are able to efficiently model long range dependencies, such as GCN and
self-attention, show lower performance. The superior relation extraction performance of the
latter indicates that their bias may allow them to learn more complex linguistic features.

The balanced performance of CNN, Bi-LSTM and GCN encoders across part-of-speech related
tasks (PosHeadL, PosHeadR, PosTailL, PosTailR) highlights the importance of part-of-speech-
related features to relation extraction, again with the exception of self-attention, which performs
just slightly above baselines. On TreeDepth and SDPTreeDepth (with GCN as the exception),
average performance in many cases ranges just slightly above baseline performance, suggesting
that TreeDepth requires more nuanced syntactic information, which the models fail to acquire.
The good performance on grammatical role tasks (GRHead, GRTail) once more emphasizes the
relevance of this feature to relation extraction, with the GCN exhibiting the best performance on
average. This is unsurprising, because the GCN focuses on token-level information along the
dependency path connecting the arguments, and hence seems to be able to capture grammatical
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relations among tokens more readily than the other encoders – even though the GCN also does
not have access to the dependency labels themselves.

Entity masking Perhaps most interestingly, masking entity mentions with their respective
named entity and grammatical role information considerably lowers the performance on entity
type related tasks (TypeHead and TypeTail). This indicates that masking forces the encoder’s
focus away from the entity mentions, which is confirmed by the performance decrease in
probing tasks with a focus on argument position and distance, e.g., ArgDist, ArgOrd, and
SentLen. CNN and Bi-LSTM encoders exhibit the greatest decrease in performance, suggesting
a severe overfitting to specific entity mentions when no masking is applied. In comparison,
the GCN shows less tendency to overfit. Surprisingly, with entity masking the self-attentive
encoder (S-Att.) increases its focus on entity mentions and their surroundings as suggested by
the performance increase on the distance and argument related probing tasks.

Word representations Adding contextualized word representations computed by ELMo and
BERT greatly increases performance on probing tasks with a focus on named entity and part-
of-speech information. This indicates that contextualized word representations encode useful
syntactic and semantic features relevant to relation extraction. The improved performance on
syntactic and semantic abilities is also reflected in an overall increase in relation extraction
performance. Compared to ELMo, encoders with BERT generally exhibit an overall better and
more balanced performance on the probing tasks. This is also reflected in a superior relation
extraction performance, suggesting that a bidirectional language model encodes linguistic
properties of the input more effectively. Somewhat surprisingly, BERT without casing per-
forms equally or better on the probing tasks focused on entity and part-of-speech information,
compared to the cased version. While this intuitively makes sense for SemEval, as the dataset
focuses on semantic relations between concepts, it is surprising for TACRED, which contains
relations between proper entities, e.g., person and company names, with casing information
more important to identify the entity type.

Probing task vs. relation extraction performance One interesting observation is that better
performance on probing tasks not necessarily implies better relation performance. For example,
CNN + ELMo scores highest for most of the probing tasks, but has an 8.1 lower F1 score
than the best model on this dataset, S-Att. + BERT cased with entity masking. Similarly, all
variants of the self-attentive encoder (S-Att.) show superior relation extraction performance
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but consistently come up last on the probing tasks, occasionally performing just above the
baselines.

5.4 Discussion and Summary

In this chapter, I proposed a set of probing tasks to uncover the linguistic features captured
by neural relation extraction models. The tasks cover a wide range of surface, syntactic, and
semantic properties of input texts. I conducted an extensive evaluation of more than 40 neural
relation extraction models, and studied the effect of explicitly and implicitly provided linguistic
knowledge, uncovering interesting properties about the architecture and input features. For
example, I found self-attentive encoders to be well suited for relation extraction on sentences
of different complexity, though they consistently perform lower on probing tasks; hinting
that these architectures capture more complex linguistic features. I also showed that the bias
induced by different architectures clearly affects the learned properties, as suggested by probing
task performance, e.g., for distance and dependency related probing tasks. To facilitate further
research, I released two software libraries that implement state-of-the-art relation extraction
methods and simplify future development of probing tasks.

Although the evaluation uncovered that architecture and supporting linguistic knowledge affect
captured features, I found two aspects merit further investigation. First, I observed that probing
task performance does not correlate with relation extraction performance. For instance, the
self-attentive models do not capture any of the probed features well but perform superior on
relation extraction, which suggests that this architecture allows the model to capture different
and possibly more complex linguistic features that are not covered by the current set of tasks.
Second, probing tasks only target model internals, i.e., representations, but do not consider
their predictions, specifically their errors, and the dataset. This makes it difficult to identify
systematic errors and their sources.

I conclude that probing tasks should cover more properties and specific linguistic patterns such
as appositions, and it would be of interest to also investigate a model’s ability of generalizing to
certain entity types, e.g., company and person names. Further, I conclude that a proper model
analysis should be complemented by an evaluation focused on model predictions and dataset;
with the goal to uncover systematic model and dataset errors. I investigate this in more detail in
the next chapter.





Chapter 6

Fine-Grained Analysis of Model Errors
and Datasets

6.1 Introduction

The research presented in the previous chapter found that model analysis via probing tasks
uncovers linguistic features encoded by neural relation extraction methods, and also showed
how these features are affected by neural network architecture and supporting linguistic infor-
mation. The evaluation via probing tasks, however, neglects circumstances where models err.
Understanding these circumstances is crucial to improve their performance, but can be difficult
because errors may be caused for a variety of reasons, e.g., biases in the dataset, annotation
errors, or insufficient modeling capabilities. A thorough evaluation, therefore, should be com-
plemented by an analysis targeting dataset, annotations, and model predictions – in particular
incorrect ones.

This section first discusses the challenges of model error analysis and dataset evaluation
(Section 6.1.1). In the following, I look at previous works in neural language processing that
address these challenges via data grouping and counterfactual analysis (Section 6.1.2). I then
propose a principled approach for fine-grained analysis of relation extraction methods that
consists of four manual and automated steps (Section 6.2). To demonstrate its effectiveness, I
conduct an extensive evaluation of TACRED (Zhang et al., 2017), one of the largest and most
widely used crowdsourced relation extraction benchmarks (Section 6.3). Finally, I conclude
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this chapter with a discussion of the proposed analysis approach and its alignment with the
objective of this thesis (Section 6.4).

This chapter is based on a previously published full paper (Alt et al., 2020b), but expands on
the description and discussion of the proposed approach.*

6.1.1 Problem Statement

As previously shown, neural network-based methods considerably improved relation extraction
performance. Despite the recent improvements, their performance is still far below human
level, as suggested by the state-of-the-art F1 score of 71.5 on TACRED, one of the largest and
most widely used benchmarks. This is a common situation, and naturally we ask if it is possible
to identify the underlying factors that contribute to the error rate of approximately 30%. In
such cases, understanding where models fail is crucial to revise them, uncover deficiencies, and
ultimately improve performance.

Problem: Focus on a single metric and model errors in isolation Typically, we use a
single metric to quantify the performance of a relation extraction method, e.g., precision, recall
or F1 score; either per relation or over the whole dataset. A single number, however, provides us
with no insights into what is causing the errors. For example, the dataset may contain biases or
annotation errors, a problem frequently observed with datasets created by crowdsourcing (Geva
et al., 2019). Instead, we could inspect incorrect model predictions directly to build hypotheses
of what is causing the errors. This may not reveal the underlying cause either, because we are
unable to verify our hypotheses. In the worst case, we focus on cases that are actually well
handled on average when looking at all predictions, not just the errors (Rondeau and Hazen,
2018). It would benefit the development of future relation extraction methods, if we were able
to conduct a more systematic and fine-grained analysis of methods with a focus on detailed
aspects of models, datasets, and annotations, instead of a single metric.

A method that addresses these limitations should be broadly applicable, independently of
relation extraction method, domain, and dataset.

*As stated in Section 1.3, this chapter contains results contributed by my co-author Aleksandra Gabryszak,
specifically Section 6.3.2 and Section 6.3.3.1. They, however, are necessary to describe and demonstrate the
overall approach, and subsequent analyses build on those findings.
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6.1.2 Related Work

I first review earlier works that analyze neural language processing model errors, e.g., by data
grouping and counterfactual analysis (Section 6.1.2.1). In the following, I provide an overview
of prior work on dataset evaluation (Section 6.1.2.2). However, no prior work specifically
focused on analyzing model errors in neural relation extraction. I therefore focus on related
work from other NLP tasks.

6.1.2.1 Analysis of neural language processing models

Analysis methods for neural language processing models include occlusion- and gradient-
based approaches. Occlusion measures the relevance of an input feature, e.g., a token, by
replacing or removing it and observing the change in model prediction (Zintgraf et al., 2017).
Gradient-based methods use the gradient to quantify the relevance of input features to the
output (Harbecke et al., 2018). As previously discussed, probing tasks (Conneau et al., 2018;
Kim et al., 2019) can be used to probe the presence of specific properties, e.g., in neural
network hidden states. None of these, however, are suited to directly analyze model errors. A
typical approach aimed at model error analysis is data grouping, i.e., to group examples based
on some property and aggregate metrics for a particular slice, e.g., accuracy over question
types in machine comprehension (He et al., 2017) or per label performance in semantic role
labeling (Liu et al., 2018c).

Adversarial examples are another approach to analyse models. For example, Jia and Liang
(2017) add distracting sentences to text passages used for machine comprehension. Ribeiro et al.
(2018) use rewrite rules to alter the input while preserving its semantics to cause the model
to change its prediction. While the previous two works use adversarial examples to evaluate
model robustness, Wu et al. (2019) instead combine them with data grouping (Section 2.5.2) to
explicitly formalize and verify model error hypotheses in extractive question answering. They
first group examples according to a property that represents an error hypothesis, for example,
an entity in the passage with the same type as the answer tricks the model into making an
incorrect prediction. In a second step, counterfactual analysis is used to verify if the hypothesis
holds, i.e., creating adversarial examples (Section 2.5.2) by removing the distracting entities
from the passages and observing whether the model’s predictions change.
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6.1.2.2 Dataset evaluation

Typically, dataset evaluation aims to uncover open challenges and artefacts, or biases, which can
be exploited by models to predict the correct solution despite lacking the necessary capabilities
to solve the task. Biases frequently occur in datasets created via heuristics or crowdsourcing.
For example, Chen et al. (2016) evaluate the heuristically supervised CNN/Daily Mail read-
ing comprehension task and show that a carefully designed logistic regression classifier can
outperform more complex deep neural network-based state-of-the-art methods. They further
inspect 100 randomly selected examples and group them based on heuristics a model could use
to answer a question. The authors, for instance, find that many of the examples could be easily
answered by just considering the word overlap between question and passage. Barnes et al.
(2019) identify remaining challenges in sentiment analysis by collecting model misclassifica-
tions on six different datasets and annotating them for 18 linguistic phenomena. The authors
find “mixed polarity” to be the most challenging, i.e., sentences where two differing polarities
are expressed, either towards two separate entities, or towards the same entity.

Other works also explore bias in datasets and the adoption of shallow heuristics on biased
datasets. Niven and Kao (2019) show that near human level performance of models in argument
reasoning comprehension is due to spurious statistical cues in the dataset. For example, the
authors find that choosing the answer containing the word “not” leads to the correct solution
in 61% of the cases. McCoy et al. (2019) hypothesize that three heuristics may be exploited
by models for natural language inference. To verify their hypotheses, they create a controlled
evaluation set similar to the challenge sets described in Section 2.5.3.

6.1.3 Contributions

Fine-grained model analysis should focus on incorrect predictions and also consider the dataset
and its annotations. I therefore propose a principled approach to automatically select the most
challenging examples in a dataset for manual evaluation, followed by an automated analysis
of developed error hypotheses. I demonstrate its effectiveness by analyzing the widely used
TACRED relation extraction benchmark, its annotations, and errors exhibited by state-of-the-art
models. In more detail, the contributions are:

Fine-grained evaluation of relation extraction methods and datasets I propose a method
that allows for a fine-grained and effective evaluation of relation extraction datasets and
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model errors. First, the most challenging examples in a dataset are automatically selected
for manual evaluation based on incorrect predictions of a larger model set. The goal
of the manual evaluation is to identify possible error hypotheses, including labeling
errors. In the following, the hypotheses are automatically verified by using fine-grained
data grouping and counterfactual analysis. An extensive evaluation of the widely used
TACRED benchmark finds that label errors account for 8% absolute F1 test error, and that
more than 50% of the 5k selected examples need to be re-labeled, because the annotations
generated by crowd-workers are incorrect.

Revised TACRED benchmark To improve the accuracy and reliability of future relation
extraction method evaluations, I release the revised TACRED development and test set
with the 5k most challenging examples re-annotated, and labeling errors corrected.2

Analysis of common model errors and state-of-the-art methods I provide a detailed analy-
sis and discussion of the TACRED benchmark, its annotations, and state-of-the-art model
errors. The first analysis evaluates the most challenging, incorrectly predicted examples
of the revised test set, and develops a set of 9 categories for common relation extraction
errors, that will also aid evaluation on other datasets. I then formalize, verify, and discuss
the previously developed error hypotheses on three state-of-the-art relation extraction
methods and show that two groups of ambiguous relations are responsible for most of the
remaining errors, and that models exploit cues in the dataset when entities are unmasked.

6.2 Fine-Grained Analysis

As previously discussed, the goal of the fine-grained analysis is to provide insights into models
by analyzing their errors, or incorrect predictions. A model, however, can fail for various
reasons: examples that are difficult to solve; dataset biases that could be exploited to solve the
task more easily; and annotation errors, which are often observed in crowdsourced datasets.
An effective analysis therefore should focus on incorrect predictions, but also consider the
dataset and its annotations as a possible source of errors. Many datasets, however, are too
large to thoroughly inspect all examples, and inspecting them without sufficient evidence can
be time consuming. For instance, errors of a single model may be insufficient to highlight
examples of interest that are caused by a systematic issue, such as annotation errors. It therefore
is best to first collect evidence from multiple models to highlight and rank examples for human

2https://github.com/dfki-nlp/tacrev

https://github.com/dfki-nlp/tacrev
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Examples Data selection

Misclassification 
annotation

Error hypotheses 
verification

Human evaluation

1 2 3 4 1 3 4 2

Model 
predictions

Ranked 
examples

1 3

1 31 3

Misclassification 
categories

Figure 6.1 The first step of the fine-grained analysis (data selection) gathers evidence for possible
systematic issues, e.g., annotation errors, by aggregating incorrect predictions of multiple models for
each example and ranking them accordingly. The highest ranked examples are then selected for human
evaluation with the goal to re-annotate them, and to subsequently determine possible error hypotheses
(misclassification annotation). In the last step, the misclassification categories are extended to testable
hypotheses and automatically verified on the whole dataset.

evaluation, which has the goal to re-annotate the selected examples and develop possible error
hypotheses. The hypotheses are subsequently formalized and verified on the whole dataset
to ensure their validity. To allow for a more effective and fine-grained analysis of models, I
propose the approach depicted in Figure 6.1. It assumes a set of labeled examples on which the
models are evaluated, i.e., a dataset, and consists of four steps that subsequently analyze the
dataset, its annotations, and model errors:

Data selection To identify systematic issues of models and datasets, and to build error hy-
potheses it is necessary to manually inspect incorrectly predicted examples. However,
the number of examples is often quite large. The goal of data selection therefore is to
collect evidence that best guides the subsequent manual evaluation efforts. It imple-
ments a selection strategy which is based upon ordering examples by the difficulty of
predicting them correctly, i.e., to rank each example according to the number of models
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predicting a different relation label than the ground truth. Intuitively, examples with
large disagreement, between all models or between models and the ground truth, are
either difficult, or incorrectly labeled. The highest ranking examples are then selected for
manual evaluation in the next step.

Human evaluation The human evaluation involves manual inspection and potentially re-
annotation of the selected examples, according to the task or annotation guidelines. This
is the most time consuming step. Therefore, it is crucial to ensure that the manual
evaluation is focused on examples with high probability of being incorrectly labeled, or
being the artefact of a systematic model or dataset issue. In the former case annotators
will revise an example, in the latter it is subject to detailed inspection in the next step.

Misclassification annotation The goal of the misclassification annotation is to identify pos-
sible linguistic aspects that cause incorrect model predictions. Starting from single
observations, a system of categories is iteratively developed based on the existence,
or absence, of contextual and entity-specific features that might mislead the models,
e.g., entity type errors or distracting phrases. Following the exploration, the final set of
categories is defined, guidelines are developed for each, and annotators are instructed to
assign one of the error categories to each misclassified example, if applicable.

Error hypotheses verification Error hypotheses verification extends the misclassification
categories developed in the previous step to testable hypotheses, or groups, that are
verifiable on all examples, i.e., the whole dataset. For instance, if we suspect a model
to be distracted by an entity in context that has the same type as one of the relation
arguments, we formulate a group has_distractor. The group contains all examples, both
correct and incorrectly predicted, that satisfy a certain condition, e.g., there exists at
least one entity in the sentential context that has the same type as one of the arguments.
The grouping ensures that we do not mistakenly prioritize groups that are actually well-
handled on average. I follow the approach proposed by Wu et al. (2019), and extend
their Errudite framework3 to the relation extraction task. After formulating a hypothesis,
the error prevalence can be assessed over the entire dataset split to validate whether the
hypothesis holds, i.e., the group of instances shows an above average error rate. In a last
step, the error hypothesis is explicitly tested by counterfactual evaluation (Section 2.5.2)
of a group’s examples, e.g., by replacing the distracting entities and observing the models’
predictions on the altered examples. In our example, if the has_distractor hypothesis
is correct, removing the entities in context should change the prediction of previously
incorrect examples.

3https://github.com/uwdata/errudite

https://github.com/uwdata/errudite
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The overall approach allows for an effective and fine-grained analysis of model errors by first
highlighting challenging examples for human evaluation based on the evidence provided by
multiple model predictions. The manual evaluation identifies and potentially revises annotation
errors, and subsequently develops model misclassification categories, which are then formalized
into testable hypotheses that can be automatically verified for each model.

6.3 Evaluation

The goal of the evaluation is to demonstrate the effectiveness of the proposed analysis approach
on the basis of an existing dataset. I select TACRED for this purpose, because it is one of the
largest and most widely used relation extraction benchmarks. It contains more than 106k exam-
ples annotated by crowd workers, and the currently best performing methods (Baldini Soares
et al., 2019; Peters et al., 2019) achieve an F1 score of 71.5 based on transfer learning, e.g.,
fine-tuning pre-trained language representations. Although this performance is impressive, the
error rate of almost 30% is still high. Naturally, one might ask the following questions: Is there
still room for improvement, and is it possible to identify the underlying factors that contribute
to this error rate?

I use the proposed approach to analyse this question from two separate viewpoints: First,
to what extent does the quality of crowd based annotations contribute to the error rate; and
secondly, what can be attributed to dataset and models? Answers to these questions can provide
insights for improving crowdsourced annotation in relation extraction, and suggest directions
for future research. To answer the first question, I first select examples in the development
and test set according to the misclassifications of 49 relation extraction models and select the
top 5k instances for manual evaluation (Section 6.3.2). To answer the second question, two
analyses are carried out. The first analysis conducts a manual explorative analysis of model
misclassifications on the most challenging test instances and categorizes them into several
linguistically motivated error categories (Section 6.3.3.1). In the second analysis, I formulate
these categories into testable hypotheses, which can be automatically validated on the full test
set by counterfactual analysis (Section 6.3.3.2).

I begin this section with an outline of the evaluation setup, followed by a detailed discussion of
the analysis results.
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6.3.1 Experimental Setup

As I selected the TACRED benchmark for analysis, I first provide a detailed description of the
dataset and its creation process (Section 6.3.1.1). Although the previous section introduced
the overall four step analysis approach, the specifics of each step depend on the dataset under
investigation. I therefore describe each individual step in detail, namely, data selection, human
validation, misclassification annotation, and error hypotheses verification (Section 6.3.1.2).

6.3.1.1 Dataset

The TAC Relation Extraction Dataset (TACRED), introduced by Zhang et al. (2017), is a fully
supervised dataset of sentence-level binary relation mentions. It consists of 106k sentences with
entity mention pairs collected from the TAC KBP evaluations 2009–2014, with the years 2009
to 2012 used for training, 2013 for development, and 2014 for testing. Each sentence is labeled
with one of 41 person- and organization-oriented relation types, e.g. per:title, org:founded, or
the label no_relation for negative instances. Table 6.1 summarizes key statistics of the dataset.

Split # Examples # Neg. examples

Train 68,124 55,112
Dev 22,631 17,195
Test 15,509 12,184

Table 6.1 TACRED statistics per split. About 79.5% of the examples are labeled as no_relation.

All relation labels were obtained by crowdsourcing, using Amazon Mechanical Turk. Crowd
workers were shown the example text, with head (subject) and tail (object) mentions highlighted,
and asked to select among a set of relation label suggestions, or to assign no_relation. Label
suggestions were limited to relations compatible with the head and tail types.4

The data quality is estimated as relatively high by Zhang et al. (2017), based on a manual
verification of 300 randomly sampled examples (93.3% validated as correct). The inter-
annotator kappa label agreement of crowd workers was moderate at κ = 0.54 for 761 randomly
selected mention pairs.

4See the supplemental material provided by Zhang et al. (2017) for details of the dataset creation and annotation
process.
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6.3.1.2 Details of Fine-Grained Analysis Steps

This section describes each step of the analysis in more detail, as the specifics of each depend
on the scenario at hand, e.g., the dataset, the models used for data selection and error hypotheses
verification, and annotation guidelines for manual evaluation.

Data selection I use a set of 49 different relation extraction models to obtain predictions on
the development and test sets, and rank each example according to the number of models
predicting a different relation label than the ground truth.5 I select the following examples
for validation: (a) Challenging – all examples that were misclassified by at least half
of the models, and (b) Control – a control group of (up to) 20 random examples per
relation type, including no_relation, from the set of examples classified correctly by at
least 39 models. The two groups cover both presumably hard and easy examples, and
allow to contrast validation results based on example difficulty. In total 2,350 (15.2%)
Test examples and 3,655 (16.2%) Dev examples are selected for validation. Of these,
1,740 (Test) and 2,534 (Dev) were assigned a positive label, i.e., a relation, by crowd
workers.

Human validation All selected examples are validated on the basis of the TAC KBP guide-
lines.6 Validation follows the approach of Zhang et al. (2017), and presents each example
by showing the example’s text with highlighted head and tail spans, and a set of relation
label suggestions. The setup differs from the original setup by showing more label sug-
gestions to make the label choice less restrictive: (a) the original, crowd-generated ground
truth label, (b) the set of labels predicted by the models, (c) any other relation labels
matching the head and tail entity types, and (d) no_relation. The suggested positive labels
are presented in an alphabetical order and are followed by no_relation, with no indication
of a label’s origin. Two annotators are asked to assign no_relation or up to two positive
labels from this set. A second label was allowed only if the sentence expressed two
relations, according to the guidelines, e.g., per:city_of_birth and per:city_of_residence.
Any disagreements are subsequently resolved by a third annotator, who is also allowed to
consider the original ground truth label. All annotators are educated in general linguistics,
have extensive prior experience in annotating data for information extraction tasks, and
are trained in applying the task guidelines in a trial annotation of 500 sentences selected
from the development set.

5See Appendix A for details on the models, training procedure, hyperparameters, and task performance.
6https://tac.nist.gov/2014/KBP/ColdStart/guidelines/TAC_KBP_2014_Slot_Descriptions_V1.4.pdf

https://tac.nist.gov/2014/KBP/ColdStart/guidelines/TAC_KBP_2014_Slot_Descriptions_V1.4.pdf
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Misclassification annotation The first manual exploratory analysis focuses on the revised
Control and Challenging test instances that are misclassified by the majority of the 49
models. Based on the exploration, a final set of categories is defined, guidelines are
developed for each, and two annotators are instructed to assign an error category to each
misclassified instance in the revised test subset. In cases where multiple categories are
applicable the annotator selected the most relevant one. As in the validation step, any
disagreements between the two annotators are resolved by a third expert.

Error hypotheses verification I evaluate the error hypotheses on a baseline and three of the
most recent state-of-the-art relation extraction methods. Importantly, none of those were
part of the model set used for data selection, so as not to bias the automatic evaluation. As
the baseline, I select a single layer CNN (Nguyen and Grishman, 2015; Zeng et al., 2014)
with max-pooling and 300-dimensional GloVe (Pennington et al., 2014) word embeddings
as input. The state-of-the-art models use pre-trained language representations that were
fine-tuned to the relation extraction task and include:

• TRE: The Transformer for Relation Extraction (Alt et al., 2019b) introduced in
Section 3.2. It uses a pre-trained unidirectional language model based on the
OpenAI Generative Pre-Trained Transformer (GPT) (Radford et al., 2018).

• SpanBERT: SpanBERT (Joshi et al., 2019) uses a pre-trained bidirectional lan-
guage model which is based on BERT (Devlin et al., 2019). It, however, differs
from BERT in that it is pre-trained on a span level instead of word level.

• KnowBERT: KnowBERT (Peters et al., 2019) extends BERT to encode additional
external knowledge, e.g., more fine-grained entity type information. In particular, I
use KnowBERT-W+W, which is pre-trained by joint entity linking and language
modelling on Wikipedia and WordNet.

6.3.2 Analysis of Label Errors

In order to identify the impact of potentially noisy, crowd-generated labels on the observed
model performance, I start with the analysis of TACRED’s label quality. The hypothesis is
that while comparatively untrained crowd workers may on average produce relatively good
labels for easy relation mentions, e.g., those with obvious syntactic and/or lexical triggers, or
unambiguous entity type signatures such as per:title, they may frequently err on challenging
examples, e.g., highly ambiguous ones or relation types whose scope is not clearly defined.
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Dev Test

Challenging Control Challenging Control

# Examples (# positive) 3,088 (1,987) 567 (547) 1,923 (1,333) 427 (407)
# Revised (# positive) 1,610 (976) 46 (46) 960 (630) 38 (38)

# Revised (% positive) 52.1 (49.1) 8.1 (8.4) 49.9 (47.3) 8.9 (9.3)

Table 6.2 Re-annotation statistics for TACRED Dev and Test splits.

Table 6.2 shows the results of the validation process. In total, the annotators revised 960 (49.9%)
of the Challenging Test examples, and 1,610 (52.1%) of the Challenging Dev examples, a very
large fraction of label changes for both dataset splits. Revision rates for originally positive
examples are lower at 47.3% (Test) and 49.1% (Dev). Approximately 57% of the negative
examples were re-labeled with a positive relation label (not shown). Two labels were assigned
to only 3.1% of the Test, and 2.4% of the Dev examples. The multi-labeling mostly occurs with
location relations, e.g., the phrase “[Gross]head:per, a 60-year-old native of [Potomac]tail:city”
is labeled with per:city_of_birth and per:city_of_residence, which is justified by the meaning
of the word native.

As expected, the revision rate in the Control groups is much lower, at 8.9% for Test and 8.1%
for Dev. We can also see that the fraction of negative examples is approximately one-third
in the Challenging group, much lower than the dataset average of 79.5%. This suggests that
models have more difficulty predicting positive examples correctly.

Dev Test

IAA H1,H2 H,C H1,H2 H,C

Challenging 0.78 0.43 0.85 0.44
Control 0.87 0.95 0.94 0.96

All 0.80 0.53 0.87 0.55

Table 6.3 Inter-Annotator Kappa-agreement for the relation validation task on TACRED Dev and Test
splits (H1,H2 = agreement between human re-annotators, H,C = average agreement between human
re-annotators and original TACRED crowd-generated labels).

The validation inter-annotator agreement is shown in Table 6.3. It is very high at κTest = 0.87
and κDev = 0.80, indicating a high annotation quality. For both Test and Dev, it is higher for
the easier Control groups than for the Challenging groups. In contrast, the average agreement
between human re-annotators and the crowdsourced labels is much lower at κTest = 0.55,κDev =

0.53, and lowest for Challenging examples (e.g., κTest = 0.44).
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Frequently erroneous crowd labels are per:cities_of_residence, org:alternate_names, and
per:other_family. Typical errors include mislabeling an example as positive which does not
express the relation, e.g., labeling “[Alan Gross]head:per was arrested at the [Havana]tail:loc air-
port.” as per:cities_of_residence, or not assigning a positive relation label, e.g., per:other_family
in “[Benjamin Chertoff]head:per is the Editor in Chief of Popular Mechanics magazine, as well
as the cousin of the Director of Homeland Security, [Michael Chertoff]tail:per”. Approximately
49% of the time an example’s label was changed to no_relation during validation, 36% of the
time from no_relation to a positive label, and the remaining 15% it was changed to or extended
with a different relation type.

To measure the impact of dataset quality on the performance of models, I evaluated all 49 models
on the revised test split. The average model F1 score rises to 70.1%, a major improvement
of 8% over the 62.1% average F1 on the original test split, corresponding to a 21.1% error
reduction.

Discussion The large number of label corrections and the improved average model perfor-
mance show that the quality of crowdsourced annotations is a major factor contributing to
the overall error rate of models on TACRED. Even though the selection strategy was biased
towards examples challenging for models, the large proportion of changed labels suggests
that these examples were difficult to label for crowd workers as well. To put this number
into perspective – Riedel et al. (2010) showed that, for a distantly supervised dataset, about
31% of the sentence-level labels were wrong, which is less than what we observe here for
human-supervised data.7

The low quality of crowd-generated labels in the Challenging group may be due to their
complexity, or due to other reasons, such as lack of detailed annotation guidelines, lack of
training, etc. It suggests that, at least for Dev and Test splits, crowdsourcing, even with crowd
worker quality checks as used by Zhang et al. (2017), may not be sufficient to produce high
quality evaluation data. While models may be able to adequately utilize noisily labeled data for
training, measuring model performance and comparing progress in the field may require an
investment in carefully labeled evaluation datasets. This may mean, for example, that we need
to employ well-trained annotators for labeling evaluation splits, or that we need to design better
task definitions and task presentations setups as well as develop new quality control methods
when using crowd-sourced annotations for complex NLP tasks like relation extraction.

7Riedel et al.’s estimate is an average over three relations with 100 randomly sampled examples each, for
similar news text. Two of the relations they evaluated, nationality and place_of_birth, are also contained in
TACRED, the third is contains (location).
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6.3.3 Analysis of Model Errors and Dataset

In this section, I present the main analysis results, providing an answer to the question: which of
the remaining errors can be attributed to the models, and what are the potential reasons for these
errors? I first discuss the findings of the manual misclassification analysis (Section 6.3.3.1),
followed by the results of the automatic analysis (Section 6.3.3.2).

6.3.3.1 Model Error Categories

Table 6.4 summarizes the developed linguistic misclassification categories. It distinguishes
between errors resulting from (1) relation argument errors, and (2) context misinterpretation.8

The category relation argument errors refers to misclassifications resulting from incorrectly
assigned entity spans or entity types of arguments. Type annotation errors are always labeled,
but minor span annotation errors were tolerated if they did not change the interpretation of the
relation or the entity.

The category context misinterpretation refers to cases where the sentential context of the
arguments is misinterpreted by the model. The following context problems were identified:
(1) Inverted arguments: The prediction is inverse to the correct relation, i.e., the model’s
prediction would be correct if head and tail were swapped. (2) Wrong arguments: The model
incorrectly predicts a relation that holds between head or tail and an un-annotated entity mention
in the context, therefore misinterpreting one annotated argument. (3) Linguistic distractor:
The example contains words or phrases related to the predicted relation, however they do not
connect to any of the arguments in a way justifying the prediction. (4) Factuality: The model
ignores negation, speculation, future tense markers, etc. (5) Context ignored: The example
does not contain sufficient linguistic evidence for the predicted relation except for the matching
entity types. (6) Relation definition: The predicted relation could be inferred from the context
using common sense or world knowledge, however the inference is prohibited by the guidelines
(e.g., the spokesperson of an organization is not a top member/employee, or a work location is
not a pointer to the employee’s residence). (7) No Relation: The model incorrectly predicts
no_relation even though there is sufficient linguistic evidence for the relation in the sentential
context.

8The manual analysis focused on the sentence semantics, and left aspects such as sentence length, distance
between entities, etc. for the automatic analysis, which can handle the analysis of surface features more effectively.
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Error Type Examples Prediction Freq.

Arguments

Span This is a tragic day for the Australian [Defence Force]head:org
([ADF]tail:org)

org:alt._nam 12

Entity Type [Christopher Bollyn]head:per is an [independent]tail:religion
journalist
The company, which [Baldino]head:org founded in
[1987]tail:date sells a variety of drugs

per:religion

org:founded

31

Context

Inverted Args [Ruben van Assouw]head:per, who had been on safari with his
40-year-old father [Patrick]tail:per , mother Trudy , 41 , and
brother Enzo , 11 .

per:children 25

Wrong Args Authorities said they ordered the detention of Bruno ’s wife
, [Dayana Rodrigues]tail:per , who was found with
[Samudio]head:per’s baby .

per:spouse 109

Ling. Distractor In May , [he]head:per secured $ 96,972 in working capital from
[GE Healthcare Financial Services]tail:org .

per:employ._of 35

Factuality [Ramon]head:per said he hoped to one day become an
[astronaut]head:title
Neither he nor [Aquash]head:per were [American]tail:nationality
citizens .

per:title

per:origin

11

Relation Def. [Zhang Yinjun]tail:per , spokesperson with one of China
’s largest charity organization , the [China Charity
Federation]head:org

org:top_mem. 96

Context Ignored [Bibi]head:per , a mother of [five]tail:number, was sentenced this
month to death .

per:age 52

No Relation [He]head:per turned a gun on himself committing
[suicide]tail:causeo f death .

no_relation 646

Total 1017

Table 6.4 Misclassification types along with sentence examples, relevant false predictions, and error
frequency. The problematic sentence parts are underlined (examples may be abbreviated due to space
constraints).

Discussion The relation label predicted most frequently across the 49 models disagreed with
the ground truth label of the re-annotated Challenging and Control Test groups in 1017 (43.3%)
of the cases. The inter-annotator agreement of error categories assigned to these examples is
high at κTest = 0.83 (κTest = 0.67 if the category No Relation is excluded).
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Argument errors accounted for only 43 (4.2%) misclassifications, since the entities seem to be
mostly correctly assigned in the dataset. In all entity type misclassification cases except one,
the errors originate from false annotations in the dataset itself.

Context misinterpretation caused 974 (95.8%) false predictions. No relation is incorrectly
assigned in 646 (63.6%) of misclassified instances, even though the correct relation is often
explicitly and unambiguously stated. In 134 (13.2%) of the erroneous instances the misclas-
sification resulted from inverted or wrong argument assignment, i.e., the predicted relation
is stated, however, the arguments are inverted or the predicted relation involves an entity
other than the annotated one. In 96 (9.4%) instances the error results from TAC KBP guide-
lines prohibiting specific inferences, affecting most often the classification of the relations
per:cities_of_residence and org:top_member/employee. Furthermore, in 52 (5.1%) of the false
predictions models seem to ignore the sentential context of the arguments, i.e., the predictions
are inferred mainly from the entity types. Sentences containing linguistic distractors accounted
for 35 (3.4%) incorrect predictions. Factuality recognition causes only 11 errors (1.1%). How-
ever, the assumption is that this latter low error rate is due to TACRED data containing an
insufficient number of sentences suitable for extensively testing a model’s ability to consider
the missing factuality of relations.

6.3.3.2 Automated Model Error Analysis

For the automated analysis, I defined the following categories and error groups:

• Surface structure: Error groups in this category are based on surface properties, e.g.,
argument distance and sentence length. In particular, I test whether examples with a
short distance between relation arguments (argdist=1), long distance between arguments
(argdist>10), or long sentences (sentlen>30) result in an increased model error rate.

• Arguments: The argument semantics category includes tests for entity type signature
and argument ordering. Specifically, I test head and tail mention named entity types
(same_nertag, per:*, org:*, per:loc), pronominal head/tail (has_coref ), and relations
with an existing inverse (has_inverse), e.g., org:parents vs. org:subsidiary.

• Context: For contextual information, I define groups based on, e.g., whether there exists
a distracting entity of same type between the arguments (has_distractor), or whether there
is a large number of (distracting) entities in the sentential context (count(entities)>5).
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Figure 6.2 Error rates for different groups (example subsets) on the revised TACRED test set, for four
different models. The bars show the number and fraction of correctly (blue) and incorrectly (orange)
predicted examples in the given group. KnowBERT, as the best-performing model, has the lowest error
rates across most groups. Error rates for has_inverse, per:loc, same_nertag&positive are higher for all
models than the model error rate on the complete test set (all), highlighting examples for further error
analysis and potential model improvements.

• Ground Truth: Finally, some groups are also conditioned on the ground truth label,
e.g., whether the ground truth is “no relation” (negative) or a positive label (positive,
same_nertag&positive).

Figure 6.2 shows the error rates of different groups on the revised TACRED test set. The plot
shows error rates across four representative models. Each chart displays groups on the y-axis,
and the fraction and number of correct (blue) vs. incorrect (orange) instances in the respective
group on the x-axis. The average error rate of each model on the full test set is shown for
reference in the top-most column titled all. Groups with higher than average error rate may
indicate characteristics of examples that make classification difficult. On the other hand, groups
with lower than average error rate comprise examples that the given model performs especially
well on.

What is the error rate for different groups? In Figure 6.2, we can see that KnowBERT
has the lowest error rate on the full test set (7.9%), and the masked CNN model the highest
(11.9%). SpanBERT’s and TRE’s error rates are in between the two. Overall, all models exhibit
a similar pattern of error rates across the groups, with KnowBERT performing best across
the board, and the CNN model worst. We can see that model error rates, e.g., for the groups
has_distractor, argdist>10, and has_coref do not diverge much from the corresponding overall
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model error rate. The presence of distracting entities in the context therefore does not seem
to be detrimental to model performance. Similarly, examples with a large distance between
the relation arguments, or examples where co-referential information is required, are generally
predicted correctly.

On the other hand, we can see that all models have above-average error rates for the group
positive, its subgroup same_nertag&positive, and the groups per:loc and has_inverse. The
above-average error rate for positive may be explained by the fact that the dataset contains
much fewer positive than negative training instances, and is hence biased towards predicting
no_relation. For has_inverse, the automatic analysis confirms that the observation made during
manual error analysis also holds true for the entire test dataset, including correctly classified
instances. Especially the CNN model almost never correctly classifies test instances in this
group, while the TRE model still has an error rate of approximately 55%, almost twice as
much as SpanBERT and KnowBERT. However, a detailed analysis of erroneous examples
in this group shows that in most cases, instances are misclassified as negative or as another
relation with the same entity type signature, but not actually as the inverse relation type. Thus,
the existence of an inverse relation is not truly the cause of misclassifications. A subsequent
analysis shows that the groups per:loc and same_nertag&positive are the most ambiguous.
per:loc contains relations such as per:cities_of_residence, per:countries_of_residence and
per:origin, that may be expressed in a similar context but differ only in the fine-grained type
of the tail argument (e.g., per:city vs. per:country). In contrast, same_nertag contains all
person-person relations such as per:parents, per:children and per:other_family, as well as, e.g.,
org:parent and org:subsidiaries that involve the same argument types (per:per vs. org:org) and
may be only distinguishable from context.

How important is context? KnowBERT and SpanBERT show about the same error rate on
the groups per:loc and same_nertag&positive. They, however, differ in which examples they
predict correctly: For per:loc, 78.6% are predicted by both models, and 21.4% are predicted
by only one of the models. For same_nertag&positive, 12.8% of the examples are predicted
by only one of the models. The two models thus seem to identify complementary information.
One difference between the models is that KnowBERT has access to entity information, while
SpanBERT masks entity spans.

To test how much the two models balance context and argument information, I apply rewriting
to alter the instances belonging to a group and observe the impact on performance. I use
two strategies: (1) I remove all tokens outside the span between head and tail argument
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(outside), and (2) I remove all tokens between the two arguments (between). I find that
SpanBERT’s performance on per:loc drops from 62.1 F1 to 57.7 (outside) and 43.3 (between),
whereas KnowBERT’s score decreases from 63.7 F1 to 60.9 and 50.1, respectively. On
same_nertag&positive, I observe a drop from 89.2 F1 to 58.2 (outside) and 47.7 (between) for
SpanBERT. KnowBERT achieves a score of 89.4, which drops to 83.8 and 49.0. The larger drop
in performance on same_nertag&positive suggests that SpanBERT, which uses entity masking,
focuses more on the context, whereas KnowBERT focuses on the entity content because the
model has access to the arguments. Surprisingly, both models show similar performance on the
full test set (Table 6.5). This suggests that combining both approaches may further improve
relation extraction performance.

Should instance difficulty be considered? Another question is whether the dataset contains
instances that can be solved more easily than others, e.g., those with simple patterns or patterns
frequently observed during training. I assume that these examples are also more likely to be
correctly classified by the baseline set of 49 relation extraction models.

Original Revised Weighted
Model

CNN, masked 59.5 66.5 34.8
TRE 67.4 75.3 48.8
SpanBERT 70.8 78.0 61.9
KnowBERT 71.5 79.3 58.7

Table 6.5 Test set F1 score on TACRED, the revised version, and weighted by difficulty (on the revised
version). The weight per instance is determined by the number of incorrect predictions in the set of 49
RE models. The result suggests that SpanBERT better generalizes to more challenging examples.

To test this hypothesis, I change the evaluation setup and assign a weight to each instance based
on the number of correct predictions. An example that is correctly classified by all 49 baseline
models would receive a weight of zero – and thus effectively be ignored – whereas an instance
misclassified by all models receives a weight of one. In Table 6.5, we can see that SpanBERT
has the highest score on the weighted test set (61.9 F1), a 16% decrease compared to the
unweighted revised test set. KnowBERT has the second highest score of 58.7, 3% less than
SpanBERT. The performance of TRE and CNN is much worse at 48.8 and 34.8 F1, respectively.
The result suggests that SpanBERT’s span-level pre-training and entity masking are beneficial
to relation extraction and allow the model to generalize better to challenging examples. Given
this observation, I propose to consider an instance’s difficulty during evaluation.
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6.4 Discussion and Summary

In this chapter, I proposed a fine-grained analysis approach for relation extraction methods that
targets model errors, dataset, and annotations. To demonstrate its effectiveness, I conducted
an extensive analysis of the TACRED benchmark. The first analysis validated the 5k most
challenging examples in development and test set and found that labeling is a major error
source, accounting for 8% absolute F1 error on the test set. This clearly highlights the need
for careful evaluation of development and test splits when creating datasets via crowdsourcing.
To improve the evaluation accuracy and reliability of future relation extraction methods, I
released a revised, extensively re-labeled dataset. An additional analysis categorized the model
misclassifications into 9 common relation extraction error categories and showed that models
are often unable to predict a relation, even if it is expressed explicitly. Models also frequently
do not recognize argument roles correctly, or ignore the sentential context. In an extensive
automated evaluation, I verified the error hypotheses on the whole test split and showed that
two groups of ambiguous relations are responsible for most of the remaining errors. I further
showed that models adopt heuristics when entities are unmasked and proposed that evaluation
metrics should consider an instance’s difficulty.

Although the evaluation clearly shows the effectiveness of the fine-grained analysis, I found
two aspects merit further investigation. First, considerable effort must be spent on manual
evaluation and re-annotation. While this certainly is acceptable for standard benchmarks like
TACRED, it may be infeasible for other domains or applications. Also, creating a large set of
models for data selection can be costly or is not always possible. Second, it is still challenging
to accurately define error hypotheses, i.e., to create error groups that exhibit an above average
error rate.

I conclude that special care must be taken to ensure high dataset quality, in particular for
standard benchmarks, which allows us to accurately track improvements in modeling abilities
for the task. Also, it is crucial to conduct additional fine-grained analyses on other datasets to
ensure high evaluation quality and to identify aspects of the relation extraction task that are
not yet well handled by current methods. In the latter case, it is important to understand how
models and dataset contribute to the errors. Furthermore, it would benefit future benchmarks
if they accurately reflect important aspects of the relation extraction task, such as factuality,
negation, and temporal aspects.
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Conclusion

7.1 Summary

Relation extraction in practical scenarios is often characterized by limited availability of
supervised data, due to the cost of creation and scarcity of domain-specific resources. In this
thesis, I researched methods for such scenarios that reuse knowledge acquired from related
tasks for relation extraction. Based on an investigation of transfer learning approaches, I
proposed a novel sequential transfer learning method for supervised relation extraction that
is based on unsupervised language model pre-training. First, a model is trained on a large
collection of text to acquire knowledge about the language. In a second step, the knowledge is
transferred to the task of relation extraction by further training, or fine-tuning, the model on
task-specific supervised data. I showed that this approach increases overall performance and
data efficiency in settings with limited labeled data compared to state-of-the-art methods. To
also utilize noisily supervised data, which is often available in larger quantities, I subsequently
extended the proposed method to distantly supervised relation extraction by combining it with
a mechanism for multi-instance learning.

The improved modeling abilities, however, made it even more evident that better understanding
these methods is crucial to further performance improvements. I first presented an approach
based on probing tasks to uncover linguistic features of the input that neural models encode
and use for relation classification. I used this approach to show how network architecture and
inclusion of supporting information affects the linguistic knowledge encoded by more than
40 different neural relation extraction models. Furthermore, I complemented this with a fine-
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grained semi-automated analysis approach focused on model errors, dataset, and annotations.
To demonstrate its effectiveness, I conducted a thorough analysis of the widely used TACRED
benchmark, including state-of-the-art model errors, and found that label errors account for
8% absolute F1 test error, and that more than 50% of the 5k inspected examples need to be
re-labeled. Further, I showed two groups of ambiguous relations to be responsible for most of
the remaining errors, and that models exploit cues in the dataset when entities are unmasked.

Together, the researched approaches allow us to build better performing, more data efficient
relation extraction models, and advance our understanding despite their complexity. Further, it
facilitates fine-grained analysis of model errors and datasets in the future.

7.2 Outlook

This thesis focused exclusively on binary relation extraction on a sentence level, i.e., identifying
relations between two entities mentioned in a single sentence. It therefore would be interesting
to extend the proposed methods to n-ary relation extraction and also to the document level.
Also, to get a more complete picture it would be of interest to analyze the linguistic knowledge
encoded by relation extraction models trained on other datasets, and how this affects the ability
of models to extract relations of varying complexity. Another very important research direction
would be to analyze further standard relation extraction benchmarks to ensure that the measured
progress can indeed be attributed to improved modeling abilities instead of biases in the dataset
or annotation errors.

In my opinion, future work on advancing the state of the art in relation extraction should focus
on two aspects: Improving reuse and acquisition of relevant knowledge, and better defining the
necessary abilities for the task.

Improving reuse and acquisition of relevant knowledge It is unrealistic to assume that
task-specific supervised data will grow in size. Even benchmark datasets are often magnitudes
larger than those used in practical scenarios. While distant supervision can help in such
circumstances, it falls short if no pre-existing knowledge base is available. Furthermore,
unsupervised relation extraction is typically unable to extract the desired relational structure
without supervision, defeating the purpose of extracting clean structured information. I believe
that only the ability to effectively use additional knowledge, either through pre-training or
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dynamically at run time, can further improve performance and data efficiency of relation
extraction methods.

Current pre-trained language representations are good at capturing the syntactic meaning of a
word in context, however, less so for semantic meaning, e.g., as demonstrated on TACRED,
where models are unable to sufficiently determine the type of an entity or do not generalize
well to infrequent or unseen entities. It is therefore crucial to develop pre-training methods that
bias models towards encoding more commonsense knowledge, i.e., information about entities
and the ways they interact. Knowledge enhanced pre-training, e.g., by joint entity linking
and language modeling, already started to address this limitation. The approach, however,
still requires supervision, e.g., entity linked text. Of particular interest would be to explore
how self-supervised language modeling could be used as a signal instead of supervised entity
linking. Also, no studies exist how supervised pre-training or multi-task learning on other
(possibly related) tasks, such as, semantic role labeling, question answering, or coreference
resolution, affects relation extraction performance and data efficiency.

Defining abilities necessary for the task Another important step in advancing the state of
the art in relation extraction is to define and test the abilities of the task a model is expected to
have. In practical scenarios, for example, a model should be able to estimate the factuality of
an extracted relation, for example, “It is rumoured that Google is about to buy Deepmind.” vs.
“Google announced its acquisition of Deepmind.”, where the former example is speculative, or
uncertain, and the latter a confirmed fact. Current works, however, measure and report progress
based on benchmark datasets that neglect these important aspects. I believe that future work
should determine and discuss abilities and also create datasets to test them accordingly. As
discussed in the previous chapter, important aspects include linguistic phenomena that must
be handled in practical scenarios, such as factuality, negation, and temporal aspects (e.g., a
relation may be true only for some period of time).
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Appendix A

Fine-Grained Analysis of Model Errors
and Datasets

Data Selection

This section contains additional details about the models used for data selection.

Models

Table A.1 show the relation extraction performances for the models on the original TACRED
and the revised version. I use the same entity masking strategy as Zhang et al. (2017), replacing
each entity in the original sentence with a special <NER>-{SUBJ, OBJ} token where <NER>
is the corresponding NER tag. For models with ‘POS/NER’, I concatenate part-of-speech and
named entity tag embeddings to each input token embedding.

Hyperparameters

CNN For training I use the hyperparameters of Zhang et al. (2017). I employ Adagrad as
an optimizer, with an initial learning rate of 0.1 and run training for 50 epochs. Starting from
the 15th epoch, I gradually decrease the learning rate by a factor of 0.9. For the CNN I use
500 filters of sizes [2, 3, 4, 5] and apply L2 regularization with a coefficient of 10−3 to all filter
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weights. I use tanh as activation and apply dropout on the encoder output with a probability of
0.5. I use the same hyperparameters for variants with ELMo. For variants with BERT, I use
an initial learning rate of 0.01 and decrease the learning rate by a factor of 0.9 every time the
validation F1 score is plateauing. Also I use 200 filters of sizes [2, 3, 4, 5].

LSTM/Bi-LSTM For training I use the hyperparameters of Zhang et al. (2017). I employ
Adagrad with an initial learning rate of 0.01, train for 30 epochs and gradually decrease the
learning rate by a factor of 0.9, starting from the 15th epoch. I use word dropout of 0.04 and
recurrent dropout of 0.5. The BiLSTM consists of two layers of hidden dimension 500 for each
direction. For training with ELMo and BERT I decrease the learning rate by a factor of 0.9
every time the validation F1 score is plateauing.

GCN I reuse the hyperparameters of Zhang et al. (2018b). I employ SGD as optimizer with
an initial learning rate of 0.3, which is reduced by a factor of 0.9 every time the validation
F1 score plateaus. I use dropout of 0.5 between all but the last GCN layer, word dropout of
0.04, and embedding and encoder dropout of 0.5. Similar to the authors, I use path-centric
pruning with K=1. I use two 200-dimensional GCN layers and similar two 200-dimensional
feedforward layers with ReLU activation.

Self-Attention After hyperparameter tuning, I found 8 layers of multi-headed self-attention
to perform best. Each layer uses 8 attention heads with attention dropout of 0.1, keys and
values are projected to 256 dimensions before computing the similarity and aggregated in a
feedforward layer with 512 dimensions. For training, I use Adam optimizer with an initial
learning rate of 10−4, which is reduced by a factor of 0.9 every time the validation F1 score
plateaus. In addition, I use word dropout of 0.04, embedding dropout of 0.5, and encoder
dropout of 0.5.
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Original Revised
P R F1 P R F1

Model

BoE 50.0 32.6 39.4 51.8 35.9 42.4
CNN 72.3 45.5 55.9 79.8 53.5 64.1
CNN, masked 67.2 53.5 59.5 72.5 61.4 66.5
CNN w/ POS/NER 72.2 54.7 62.2 79.7 64.3 71.2
CNN + ELMo 73.8 48.8 58.8 82.1 57.9 67.9
CNN + ELMo, masked 72.3 53.8 61.7 79.8 63.2 70.5
CNN + ELMo, masked w/ POS/NER 69.2 59.0 63.7 76.0 69.1 72.4
CNN + BERT uncased 71.9 51.1 59.7 79.5 60.2 68.5
CNN + BERT uncased, masked 69.0 62.0 65.3 74.9 71.7 73.2
CNN + BERT cased 69.7 54.3 61.0 77.6 64.3 70.4
CNN + BERT cased, masked 71.8 61.1 66.1 78.1 70.8 74.3
LSTM 59.3 47.5 52.7 65.9 56.2 60.6
LSTM, masked 63.4 51.7 57.0 68.7 59.7 63.9
LSTM, masked w/ POS/NER 65.4 56.8 60.8 71.2 66.0 68.5
LSTM + ELMo 61.5 61.3 61.4 68.1 72.2 70.1
LSTM + ELMo, masked 63.9 64.9 64.4 69.3 75.0 72.1
LSTM + ELMo, masked w/ POS/NER 61.7 67.8 64.6 66.1 77.3 71.2
LSTM + BERT uncased 64.7 60.2 62.4 71.6 71.0 71.3
LSTM + BERT uncased, masked 65.3 64.8 65.1 70.4 74.3 72.3
LSTM + BERT cased 66.2 59.8 62.8 73.5 70.8 72.1
LSTM + BERT cased, masked 68.9 61.9 65.2 75.0 71.8 73.4
Bi-LSTM 53.3 57.4 55.3 58.6 67.2 62.6
Bi-LSTM, masked 62.5 63.4 62.9 67.7 73.1 70.3
Bi-LSTM + ELMo 65.0 58.7 61.7 72.6 69.8 71.1
Bi-LSTM + ELMo, masked 63.3 64.8 64.1 68.9 75.2 71.9
Bi-LSTM + ELMo w/ POS/NER 64.8 57.9 61.2 72.1 68.6 70.3
Bi-LSTM + ELMo, masked w/ POS/NER 63.0 65.9 64.4 67.5 75.2 71.2
Bi-LSTM + BERT uncased 65.3 59.9 62.5 71.8 70.2 71.0
Bi-LSTM + BERT uncased, masked 64.9 66.0 65.4 69.6 75.3 72.4
Bi-LSTM + BERT cased 65.2 61.2 63.1 72.1 72.1 72.1
Bi-LSTM + BERT cased, masked 68.3 64.0 66.1 74.1 73.9 74.0
GCN 65.6 50.5 57.1 72.4 59.3 65.2
GCN, masked 68.2 58.0 62.7 74.3 67.4 70.7
GCN, masked w/ POS/NER 68.6 60.2 64.2 74.2 69.3 71.7
GCN + ELMo 66.5 57.6 61.7 73.4 67.7 70.4
GCN + ELMo, masked 68.5 61.3 64.7 74.5 71.0 72.7
GCN + ELMo, masked w/ POS/NER 67.9 64.8 66.3 73.3 74.4 73.9
GCN + BERT uncased 66.3 58.8 62.4 73.1 69.1 71.0
GCN + BERT uncased, masked 68.7 64.0 66.3 74.8 74.1 74.5
GCN + BERT cased 66.5 56.4 61.0 74.4 67.1 70.5
GCN + BERT cased, masked 67.2 64.6 65.9 72.9 74.7 73.8
S-Att. 56.9 58.3 57.6 62.2 67.8 64.9
S-Att., masked 65.0 66.8 65.9 69.3 75.8 72.4
S-Att. + ELMo 64.4 65.0 64.7 71.5 76.8 74.1
S-Att. + ELMo, masked 64.0 69.4 66.6 68.9 79.6 73.8
S-Att. + BERT uncased 60.6 67.6 63.9 66.3 78.7 72.0
S-Att. + BERT uncased, masked 64.0 69.7 66.7 68.9 80.0 74.0
S-Att. + BERT cased 63.5 64.1 63.8 70.4 75.7 73.0
S-Att. + BERT cased, masked 69.2 64.7 66.9 75.1 74.8 75.0

Average 65.6 59.5 62.1 71.8 69.2 70.1

Table A.1 Test set F1 score on TACRED and the revised version for all 49 models used for data selection.
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