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Abstract

Improved automobile sensor and inter-vehicle communication technologies are spurring
the conception and development of novel safety systems, especially of active safety. In
order to focus efforts on systems that will most effectively reduce the number of accidents
and their severity, there is an urgent need for targeted, representative, and quantified
performance prediction. Predictions should reliably characterize intended (positive) safety
performance as well as unintended (negative) side effects, either for the vehicle in question
or the surrounding traffic. The aim of this thesis is the development of a methodology that
can provide the required quantified predictions.

The specific example studied in this thesis is preventive pedestrian protection. To this
end, the current accident situation with respect to pedestrians in Germany and the US is
elucidated along with basic models of traffic and traffic safety. Starting from the accident
occurrence, different existing measures for pedestrian protection are described together
with current regulations.

Methods for achieving the aim of representative safety assessment in traffic are the
focus of a literature search. The state of the art of scientific and technical knowledge on
evaluation methods regarding the pre-crash phase is compiled and analyzed with respect to
the objective of reliable, representative performance prediction. Different methodological
aspects, possible safety effects, and data sources are discussed. Several existing approaches
for assessment are evaluated together with methods for acquiring knowledge on processes
and traffic sub-systems necessary for the prediction of safety effects.

A process chain for the quantitative evaluation of the pre-crash phase, especially of active
safety, using the example of preventive pedestrian protection is defined. Typical vehicle-to-
pedestrian accident scenarios are described, and a functional demonstrator of a preventive
pedestrian protection system is introduced. A stochastic simulation as part of the process
chain is described together with metrics for the quantification of safety performance.

As input for the simulative evaluation of a critical traffic situation with pedestrians and
also for the development of a preventive protection system, key findings of a subject study
in a driving simulator are analyzed. Driver behavior towards pedestrians in uncritical
situations and acceptance of false system actions is investigated. Whether a realistic and
highly critical pedestrian situation can be reliably reproduced in a driving simulator to-
gether with the driver behavior in this situation constitutes another key research question.

Within the process chain described here, a stochastic simulation is utilized to generate
a large and representative sample of sequences resulting in accidents or non-accidents. In
order to predict safety effects, probabilistic models are needed to infer injury outcome
probabilities from kinematic and physical characteristics of each collision. An inference
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methodology utilizing logistic regression on real empirical data is presented; required pre-
liminary steps needed to avoid typical pitfalls, such as data preparation, imputation, and
validation, are explained in detail. A sequence of cumulative injury probability mod-
els should have the property that increasing injury severity is associated with decreasing
probability. This thesis incorporates this constraint directly by a new modeling approach
using conditional probabilities. Validated and plausible multivariate models are derived
and discussed. Several hypotheses are tested for the first time using both German and US
in-depth accident data.

Borrowing a concept from medical statistics, a useful characteristic that can be obtained
from traffic-based simulations, the “number needed to treat” (NNT), is introduced as a
ratio (absolute or marginal) of interventions to benefits. In order to enable comparative
assessment of strategies (e.g., warning or direct automatic intervention) involving different
intensities of system intervention, a single parameter (“effective interventions”) is defined.

The stochastic simulation technique is used together with the probabilistic models to
give an example of the application of the process chain as a whole. Four different variants
of a functional demonstrator of a pedestrian protection system are evaluated regarding
their efficacy according to appropriate metrics including absolute and marginal NNT. The
validity of the simulation is assessed, and the results are interpreted in terms of their
practical significance.

A discussion of the various results presented and a summary and assessment of methods
for evaluating active safety are given in the conclusions. Further needs for targeted research
in order to advance the methodology are identified.
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1 Introduction

1.1 Safety in road traffic

Vehicle-based road traffic as well as road safety affect people in every country. Analysis
of this issue requires an understanding of the fundamental relationships and effects of road
traffic. To this end, this thesis starts with a short summary on basics regarding traffic
participants, their interaction, and the relation to safety, concentrating on the driver and
pedestrian. As this work focuses on vehicle-based approaches, additional safety measures
such as education or changes to infrastructure are not explicitly considered here.

Safety (and other) characteristics arise for the driver from his interaction with the vehicle
and the environment (including all other participants) [27]. The dynamical nature of these
interactions in traffic can be illustrated by a control theory model [39, 56, 62]. Here, the
human driver represents a complex controller, selecting the route and carrying out actions
at several levels in such a way as to keep target variables (such as car following gaps)
within a desired range, while responding to multiple inputs and feedback from both the
environment and the vehicle.

This basic controller scheme can be extended to include driver assistance, in particular
the elements of active safety systems. Conceptually, “active safety systems” comprise all
measures contributing to avoidance of accidents or mitigation of their severity, prior to the
collision [51, 106]. Of course, they are part of the vehicle, but they differ from “standard”
vehicle controls by actively interacting with the driver, with the standard vehicle controls,
and with the environment [40, 116, 142]. These systems compile information about the
vehicle, the environment, and the driver; assess and interpret this information, using in-
ternal system models, and calculate a target behavior or response. If the current state
deviates from this target, a driver assistance system calculates the appropriate action or
feedback. Possible system responses can include information or warnings to the driver or
other participants as well as automatic interventions in vehicle dynamics. The intensity of
the response of the system depends on the design characteristics of the particular system,
the reliability of algorithms for interpreting and classifying the current driving state and
traffic situation, the inferred criticality of the situation and the degree to which a driver
response “in the loop” could be expected within the time available.

Effective active safety systems usually require a well-coordinated interaction of all ele-
ments of the control loop. The primary driving task can be supported at any level of the
following three-level hierarchy [27]:

• The high-level navigation task is derived from the desire to achieve a particular
objective of a trip and to reach a specific destination; it comprises route planning
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1 Introduction

and estimation of travel time, including possible adaptations of the route to changing
traffic or other boundary conditions.

• At the intermediate level, the driving control task requires monitoring and adjust-
ment of target variables, such as choosing a lane and a desired speed, while taking
into account boundary conditions and external influences such as the dynamics of
the traffic flow. Driving maneuvers are carried out in order to fulfill the navigation
task.

• The lowest level of the model represents the process of stabilization; it includes all
tasks that keep the vehicle “on course” (e.g., steering and braking).

The driving state is normally continually monitored (by the driver and/or a system) in
order to make corrections on any or all of these levels if required. Detailed applications,
variations and refinements of this model can be found in the literature [41, 62, 123, 155].
Classically, active safety systems, e.g., Dynamic Stability Control (DSC), have been de-
signed to provide support at the stabilization level. At this level, the target quantities are
generally well defined in terms of vehicle physics. Preventive pedestrian protection, which
is in the focus of this thesis, addresses primarily the maneuvering level and thus involves
additional complexities in control – particularly those involving the interpretation of driver
behavior and the interaction of system actions with the driver.

Since the driver’s role in the control loop is decisive, it is helpful to consider the charac-
teristics of the driver and his behavior in detail. A classical hierarchical behavior model for
target-oriented actions has been described by Rasmussen [155]. This model distinguishes
three categories of “cognitive demands on humans in work processes”: knowledge-based,
rule-based, and skill-based behavior. If a person is confronted with complex tasks requiring
untrained actions or reactions, the cognitive demands result in “knowledge-based” behav-
ior. In this behavioral mode, possible actions are first mentally reviewed before the strategy
that appears to provide the best solution is implemented. People will generally carry out
“rule-based” behavior in situations that they have repeatedly experienced, drawing on an
inventory of learned rules or behavior patterns. These readily available rules and patterns
allow a faster response to the situation. “Skill-based” behavior arises whenever situational
demands have been trained in a learning process and stimulus-response mechanisms are
characterized by reflexive actions. Responses and performance are fastest at this level due
to the routine and essentially autonomous execution of processes and actions.

By taking the driving task requirements and the behavioral level into account, one can
compare the time required by the driver with the time available to him for particular
situations and maneuvers. This comparison facilitates an estimation of the driver’s needs
and the potential benefits of an assistance system [158]. Coping with (highly) critical
pedestrian situations could involve knowledge-based behavior, due to the rare occurrence
of these interactions. Another kind of possible reaction could be an unconscious reflex,
thus being fast but probably inadequate. As a consequence, finding and carrying out the
optimal reaction for handling the situation will usually require more time than is available.
Hence, failures will occur more frequently in comparison to other situations with a similar
time budget but that can be addressed at a lower (e.g., skill-based) behavioral level.
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1.1 Safety in road traffic
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Figure 1.1: Generic genesis of a pedestrian accident following [55, 57, 77, 122].

Accident Post crashNormal driving Warning Collision unavoidable
Pre crash

InterventionPrior
driving Passive safetyActive safety Pre crash

Crash preparation
driving

Integral safety

Figure 1.2: Phases of an accident (following [36]).

Following Reichart [158] a generic fault tree can be used in order to illustrate the logical
relationships and causal structure of events leading up to an accident (see Fig. 1.1). The
analysis begins at the stage where the participants (i.e., the driver and/or pedestrian)
make particular mistakes and get involved in a traffic conflict. A traffic conflict may be
characterized by considering approaching object trajectories which, extrapolated in time,
would exhibit an increased probability for collision unless one of the participants changes
his current state of motion [87]. The influences of human performance shaping factors and
resulting mistakes leading to a conflict can be found in the literature [86, 88, 191, 197]. If the
conflict cannot be resolved (even by intervention of a preventive system), an accident will
occur. An accident in road traffic is defined as an event that occurs suddenly, is connected
to the typical dangers in road traffic, and results in personal injury or significant property
damage [198].

Projecting the fault tree model onto a time line results in the phases of an accident (see
Fig. 1.2). From “normal” driving up to a traffic conflict, a system may provide warnings or
may intervene in vehicle dynamics directly. As the situation becomes increasingly critical,
a “point of no return” may be reached, where a collision is physically inevitable. By defi-
nition, active safety is designed to be effective before physical contact. From the moment
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Table 1.1: The Haddon Matrix (following [152]).

Pre crash Crash Post crash
Crash prevention Injury prevention Life sustaining

Human

Information
Attitudes Use of restraints First-aid skill
Impairment Impairment Access to medics
Police enforcement

Roadworthiness Occupant restraints Ease of access
Vehicles and Lighting Other safety devices Fire risk
equipment Braking Crash protective Automatic crash

design notification

Environment

Road design
and road layout Crash protective Rescue resources

Pedestrian infrastructure roadside objects Congestion
Speed management

of physical contact on, the event is considered as an accident. During the crash phase,
passive safety design is essential for reducing accident consequences [124]. The post-crash
phase is characterized by rescue of the injured. The three phases of an accident combined
with the model of driver, vehicle, and environment together with possible countermeasures
are summarized in the well-known Haddon-Matrix [89, 152] (Table 1.1).

The concept of Integral Safety is a holistic approach to vehicle safety including active
and passive safety as well as the direct interaction of both. The primary objective is to
provide a high level of safety during all phases of an accident as a result of an effective
combination and interaction of measures of both active and passive safety [25, 36, 55, 122].

1.2 Accident statistics

The magnitude of the “social illness” traffic safety is best displayed when looking at the
global dimension. It is estimated that more than about one million people die each year in
road traffic (about 1.24 million in 2010) and that between 20 and 50 million people suffer
injuries [193]. (The range of injury estimates reflects differences in reporting systems
and schemes between countries.) The total number of accidents is difficult to estimate
[193]. Road traffic injury ranks number eight on the list of leading causes for death and
is expected to reach number five in 2030, so that its importance is increasing [193]. Aside
from personal and social implications, traffic accidents and injuries also have a considerable
economic impact. Global losses are estimated to be US $ 518 billion and can amount to
between 1 % and 3 % of the gross national product per year [192].

The phases of an accident can also be analyzed by frequency of occurrence in road
traffic. Fig. 1.3 displays the corresponding proportions as a pyramid, in which the vertical
axis represents the severity of the event and the volume of each segment stands for its
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Accidents

Mistakes

Traffic conflicts

Injuries

Fatalities

Accidents including:

Normal driving
Property damage

A id t i l di G USAccidents including Germany US

Fatalities 0.1% 0.6%

Injuries 11.9% 27.9%

Property damage 88.0% 71.5%

Figure 1.3: Levels of interaction in road traffic including quantification of accidents for Ger-
many and the US in 2010 [144, 184].

frequency in road traffic. It is assumed (Hydén 1997 quoted by [87]), that there are close
causal connections between conflicts and accidents in traffic, but the actual transition
probability is hard to quantify [87]. The only representative quantification available refers
to accidents. The percentages in Fig. 1.3 quantify the “volume” of the segments for the
year 2010 in Germany and the US. Accidents are the “tip of the pyramid”. Most of the
accidents involve property damage only; in a small proportion, there are injured persons,
and a very few lead to fatal injuries.

In order to highlight some key safety issues, it is useful to explain the trends in Germany
and the US. Accidents in traffic are statistically rare events [37, 159]. The accident inci-
dence based on km driven as a measure of exposure was on average once every 292 000 km
(Germany) and accordingly 881 000 km (US) in 2010. Pedestrian accidents occur even
less frequently: in Germany, about once every 23 000 000 km and in the US once every
68 000 000 km. (Note that these ratios are intended only to illustrate the rarity of the event
of an accident and are not appropriate for characterizing the overall level of traffic safety in
either of the countries mentioned. Depending on the research in question, different ratios
are published by the agencies as indicators for traffic safety of a country (see Table 1.2).)

Although the above statistics suggest that the probability per km driven to have an
accident in Germany is about 3.0 times higher than in the US, more facts are generally
required for an overview of traffic safety in a particular country. The numbers in Table 1.2
describe different conditional probabilities related to injuries and their severity. The first
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Table 1.2: Accident ratios for Germany and the US in 2010. Originally missing corresponding
ratios have been computed [144, 184].

Injured persons Fatalities

Exposure Germany US Germany US

1000 accidents 154 413 1.51 6.07
1000 accidents with injured 1300 1452 12.65 28.92
109 km traveled 532 469 5.17 6.89
100 000 population 458 724 4.46 10.63

two rows give information on the level of passive safety as well as the average intensity of
the accidents (the contribution of those effects cannot be clearly separated based on overall
accident statistics). Statistically speaking, this is the conditional probability of a person’s
being injured or killed, once they have an accident. On average, 154 people are injured per
1000 accidents in Germany and 413 in the US (fatalities: 1.51 versus 6.07). Considering
only accidents with injuries (i.e., taking out all property damage only cases), the difference
between the two countries is reduced. The statistical risk to life while participating in
road traffic is expressed in row number three: It gives the probability of being injured or
killed per one billion km driven. The risk of injury is higher in Germany (532 versus 469
injured persons in the US) whereas the fatality rate is lower (5.17 versus 6.89). The last
row is commonly used, but is somewhat harder to interpret, as there is no straightforward
causal connection between the size of the population or the number of licensed drivers and
the probability to suffer harm in a road traffic accident. Many more factors, such as km
driven, motorization, belt use, size and grade of industrialization, or geopolitical situation,
influence these probabilities in general.

The economic impact in 2009 accounted for e 30.5 billion in Germany [188] and for
US $ 230.6 billion in the US [143]. Nevertheless, the official statistics for both Germany
and the US show an improvement in traffic safety for the last 20 years. Figures 1.4 and 1.5
present the development in both countries including absolute values for the most recent
year. Several facts become obvious from the indicators given. In both countries, the km
driven increased about 45 % and 40 %, respectively. The number of accidents remained
nearly constant in Germany and seems to have declined in the US. The number of in-
jured persons decreased by about 30 % in both countries. In Germany there has been
a steady decline leading to 70 % fewer fatalities in 2010 than in 1990. Fatalities (as an
absolute number) have declined by about 25 % in the US, but the reduction has been quite
pronounced only in the last few years. The fatality rate (fatalities per km driven) has
decreased steadily in both countries.

Interpreting these statistics regarding the effect of active and passive safety, the follow-
ing observations can be made: The decreasing accident rate (fairly constant number of
accidents for increasing km driven) strongly suggests that measures for avoiding accidents
have been successful, including both infrastructure measures and active safety in vehicles.
On the other hand, the ratio of fatalities to accidents is a strong indicator for passive safety
(including emergency services), since it reflects the conditional probability of being fatally
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injured given being involved in an accident. Improvements in passive safety are evident in
the ratio for Germany; for the US, improvements in vehicle-based passive safety may have
been masked by additional factors such as speed limit increases, a tendency for unbuckled
motorists, etc.

Figures 1.4 and 1.5 also present the corresponding trends for pedestrians. In both Ger-
many and the US, accidents with pedestrians as well as the number of injured pedestrians
have decreased more rapidly than total accidents or injuries as a whole. However, the
rate of improvement regarding pedestrian fatalities seems to have slowed down in the last
decade. (Note that the curves for total pedestrian accidents and injured pedestrians are
virtually parallel, since normally a pedestrian accident involves mostly one injured person,
the pedestrian.) The numbers for fatalities differ in Germany and the US; both show a
significant reduction, about 75 % and 35 % respectively.

Although there have been advances in traffic safety in Germany and in the US,
there is still a need for action regarding traffic safety in general and the protection
of pedestrians especially. The issue is drawing increasing attention in the legislative,
scientific and industrial community, as well as in consumer protection groups. In
terms of absolute numbers (given in Figures 1.4 and 1.5) only 1.3 % (Germany) and
accordingly 1.3 % (US) of all accidents did involve pedestrians in 2010. However,
considering injury severity, 8.0 % of all injured persons in Germany were pedestrians
(respectively 3.1 % in the US). The vulnerability of pedestrians can be most clearly seen
by considering fatalities: 13.1 % of all fatalities are pedestrians in Germany and 13.0 %
in the US. Defining the protection of humans as the highest priority in traffic safety and
considering recent trends in accident statistics, protecting pedestrians thus emerges as
top priority considering their disproportionately high fraction among injuries and fatalities.

1.3 Pedestrian protection

For the development and enhancement of measures of active safety, a top-down or goal-
directed approach offers advantages compared to a technology-driven, bottom-up devel-
opment of functions. At the top level (Fig. 1.6), the goal is safety as a characteristic of
a vehicle. A basic scheme distinguishes the following levels: vehicle characteristics (e.g.,
safety, comfort, design), functions, systems, and components, providing a structure link-
ing characteristics to realizations. A function is defined as a solution-neutral requirement
for the realization of a characteristic. A system and its components represent the actual
technical realization of the function in question.

Fig. 1.6 illustrates the structure of active safety as a characteristic. One function of
active safety is “avoidance of collisions”. One of the systems able to fulfill this function
might be preventive pedestrian protection with its specific components. It is vital for a
successful and effective fulfillment of a characteristic (i.e., having a high efficacy in active
safety) to structure the problem and derive solutions from the top down instead of just
starting with a particular technical solution. In this way, the search for a technical solution
optimizing the required characteristic can be begun at the functional level. This procedure
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1.3 Pedestrian protection

Vehicle Safety

2. Level

…Active Safety

Collision Avoidance …Function

Characteristic1. Level

3. Level Preventive Pedestrian
Protection …System

4. Level Sensor …Component

Figure 1.6: Top-down structuring of active safety with an example for preventive pedestrian
protection.

facilitates a systematic search for system and component solutions and a comparative
evaluation of possible technical alternatives.

The evaluation of active safety as a characteristic is not carried out at the level of
components or systems, but focuses on the characteristic itself or the function. The two
lowest levels are evaluated during system development. With this scheme in mind, a short
summary of existing technology and the corresponding laws, regulations, and consumer
protection initiatives focusing on pedestrians is given in the following.

The minimum requirements for vehicle-based pedestrian protection necessary for vehicle
type approval (“homologation”) are defined by laws, e.g., the Regulation (EC) No 78/2009
of the European Parliament and of the Council [67] or the Global technical regulation
No. 9 on Pedestrian Safety by the United Nations [195]. Additional requirements are
defined by consumer protection agencies like the European New Car Assessment Program
(Euro NCAP) [65].

At present, pedestrian protection requirements mainly involve optimization and imple-
mentation of passive safety measures at vehicle front ends, where most pedestrian impacts
occur. The most prominent improvements have involved changes in the shape of the front
end and the elimination of sharp or rigid mounted parts, e.g., bull bars [14], in order to
minimize obvious sources of injury. Another important passive measure is the provision of
adequate space for deformation, mainly in the hood and bumper areas, with the intention
of allowing the absorption of increased proportions of kinetic energy [18, 49].
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1 Introduction

Design changes in response to the requirements of passive pedestrian protection can in-
teract with other design objectives. In order to further improve safety performance and
eliminate or reduce potential conflicts between safety and design objectives [97], research
and development have intensified work on novel, advanced approaches to passive protec-
tion. Typical representatives of such systems are the pop-up hood and the pedestrian
airbag. Both of these are in fact “active” devices. However, they are still considered as
passive safety features because of their functionality, i.e., to provide more “soft” deforma-
tion space before impact on hard components. The pop-up hood deploys a few moments
before the impact of the pedestrian on the hood. It allows for additional absorption of
energy, which is especially important for the head as the most critical body part deter-
mining vehicle-pedestrian accident severity. [78, 107]. Whereas this component is already
installed in new cars [9], the pedestrian airbag is just making the transition from R&D to
implementation. The basic idea is that an airbag on the outside of the vehicle provides
the deformation space in front of classically rigid components, such as the A-pillar or the
lower end of the windshield [35].

All passive safety measures implemented in the vehicle are only capable of addressing
the so-called “primary collision” (i.e., contact with the vehicle). For example, only about
6 % of pedestrians impact with the head on the hood, which limits the efficacy of measures
implemented there [204]. Secondary collisions, i.e., contacts with the road surface or other
objects, are not addressed by those measures. In contrast active safety measures address
the entire sequence of events and as a consequence have a much higher injury avoidance
potential [59, 122]. Preventive systems are at the moment in the state of development or
already in the market [156, 161, 199, 204].

The first consideration of active safety in regulations is included in (EC) No 78/2009
[67], Chapter III Article 11. All “vehicles equipped with collision avoidance systems may
not have to fulfill the test requirements laid down in Sections 2 and 3 of Annex I in order
to be granted an EC type-approval or a national type-approval for a type of a vehicle
with regard to pedestrian protection, or to be sold, registered or to enter into service”.
It is required that “[a]ny measures proposed shall ensure levels of protection which are at
least equivalent, in terms of actual effectiveness, to those provided by Sections 2 and 3 of
Annex I”. Article 11 provides a legal basis for future fulfillment of the regulation by both
active and passive safety devices, based on the effectiveness required.

The approval process for braking assistance can be regarded as a prerequisite for active
safety systems. The requirements formulated by the Directive 2003/102/EG, Phase 2, of
the European Parliament and of the Council [66] could nearly not be fulfilled by means
of passive safety. As a consequence, an evaluation regarding the effectiveness of different
measures of pedestrian protection has been carried out [94, 131]. The commitment of the
European Automobile Manufacturers’ Association (ACEA) to implement brake assist, an
active safety system, in every new car, led to a reduction of the requirements as stated in
Phase 2 [3, 4]. Following those proceedings, a new approach was made by the European
Union [5], which led to (EC) No 78/2009. This development can be interpreted as a first
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1.4 Objective and methodological approach

step towards consideration and assessment of safety as a characteristic following the idea
of integral safety (see Fig. 1.6) instead of a regulation of passive or active safety (or more
precisely: specific components).

1.4 Objective and methodological approach

In view of the accident statistics mentioned above, the social and economic implications,
and the impact on the individuals concerned, vehicle-based protection of vulnerable road
users, especially pedestrians, represents perhaps the single most important challenge in
vehicle safety. Recognizing the importance of this problem, the regulatory perspective has
intensified demands and incentives for further improvement in pedestrian safety. However,
considering the variety of conceivable solutions, each with its corresponding research, de-
velopment, and testing cycles as well as technical requirements, it is crucial to identify at
an early stage those approaches and technologies that are both technologically feasible and
maximally effective. Technology-independent effectiveness evaluation is a key challenge for
regulatory agencies, too.

Testing procedures and evaluation schemes for passive safety are defined and standard-
ized in the regulations cited above and have reached a rather advanced stage of develop-
ment. However, objective, reliable, representative and reproducible methods for evaluating
the effectiveness of active safety systems, especially preventive pedestrian systems, have
yet to be developed.

The objective of this thesis is the advancement of knowledge in order to enable the
development of a method for evaluating active safety systems. The example used is vehicle-
based preventive pedestrian protection.

Chapter 1 gives the context of this thesis by describing the participants and interactions
in road traffic and the genesis of an accident. Accident statistics, safety development
process, regulations, and current technical solutions highlight the objective of this thesis.

The current state of scientific and technical knowledge regarding evaluation of active
safety is summarized in Chapter 2, and the need for an evaluation method is described.
To this end, different means of evaluation methods using controlled experiments, natural-
istic driving data, as well as approaches based on accident data are discussed. Testing
procedures and evaluation metrics in current use and under investigation are introduced.

A new approach to evaluation of active safety is then developed in Chapter 3. The
process, including information needed, is described, and the prerequisites are defined.
In detail, accident scenarios, configuration of a functional demonstrator of a preventive
pedestrian protection system, and the simulative technique required are described. An
introduction of a metric for the quantification of the change in safety rounds up the method.

Chapter 4 gives methodological research on driver behavior in response to a preventive
protection system. The acceptance of false system actions in particular is investigated using
driver interviews and ratings. A special objective of this experiment was to test whether
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1 Introduction

a highly critical situation, which should lead to an accident under baseline conditions,
can be reproducibly investigated using realistic parameters for the scenario by means of a
dynamic driving simulator.

The development of injury probability models using empirical accident data is given
in Chapter 5. The statistical methods used and the models obtained are discussed in
detail. In order to use several models for different outcome levels at once, plausibility
criteria are defined. To ensure this plausibility, a method using conditional probability
identity is developed and discussed. This method as well as the possible challenge while
implementing models for different outcome categories at once is not yet documented and
solved in the literature. For both cases, assessment of one or several outcome categories,
the methodology as well as the fully developed models are given for the Injury Severity
Score (ISS) and fatalities as outcome categories.

Chapter 6 illustrates the results of the described evaluation method using different con-
figurations of a preventive pedestrian protection system. The current results, the validity
of the methodology used as well as need for further research are described. The results
of parameter variations for a preventive pedestrian protection system are given using a
functional demonstrator. The findings are interpreted with respect to the methodology.
Metrics and processes necessary for system optimization and evaluation are introduced
and discussed.

A discussion of the approaches and results and a conclusion form the last part of this
thesis.

12



2 State of scientific and technical
knowledge on pre-crash evaluation

2.1 Methodological aspects of evaluation

The recent development and market introduction of various active safety functions
within the context of integral safety have generated a demand for evaluation methods
(see Chapter 1). The key research question for the evaluation of integral safety, using the
paradigm of Fig. 1.6, is:

How well does a given function perform regarding safety during the pre-crash phase at
the characteristic or functional level?

As this question is often asked in this manner, two vital aspects are not explicitly named
or are missing. The reference situation (i.e., the baseline of comparison) for the question
as well as the validity of the expected answer (which directly depends on the method used)
must be included in the question. No generally accepted definition of “safety benefit”, as
stated in the question, exists (neither for its meaning nor for the metrics). Examples of
possible interpretations are:

• Performance of a given component in a specific test or a variety of tests.

• Performance of a measure regarding a particular accident constellation.

• Performance of a measure regarding specific injuries.

Considering the introduction and discussion about new measures of integral and active
safety as a background, the safety performance generally refers to the benefit in the field.
The “field” is a commonly used term for the traffic system as a whole (in markets and
countries where the measure will be available). As a consequence, all possible safety effects
(both positive and negative) within the traffic system as a whole have to be evaluated. The
answer to the question should include a trade-off between both kinds of effects rather than
the magnitude of positive effects alone.

However, for practical reasons, evaluations are often limited to accidents as reference
groups (instead of traffic in general). Possible negative effects, such as aspects of con-
trollability are excluded from analysis and only possible positive effects are assessed. The
problem with many measures and studies cited below is that the questions as well as lim-
itations are not stated precisely enough.

In order to answer (parts of) the question stated above, a variety of methods and pro-
cedures have been developed and discussed in recent years. This chapter summarizes the

13
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most important ones together with their advantages and challenges (as far as they are
generally known).

Two aspects are of special importance in this context:

1. The validity of the method with respect to the research questions it is intended to
answer.

2. How the method deals with uncertainty.

Although the first point seems to be obvious when setting up or choosing a method, it is of
vital importance when drawing conclusions. In the discussion that follows, “validity” refers
to comparison of the results, e.g., a method or process model, with observed empirical data;
therefore validation does not directly confirm that every detail is correct. “Verification”
refers to the confirmation of the correctness of each individual detail, e.g., in a laboratory
setting. Generally speaking, it is only possible to verify some parts of a method in detail,
for example, models of reaction sequences, which have been studied quite thoroughly in
the literature [84]. Other processes such as pedestrians’ reaction in acute situations are
understandably difficult to verify in a laboratory setting. However, in order to improve
the confidence in, e.g., modeling details, one performs validation of a large spectrum of
statistics which can be measured; as the number of validated relationships increases, the
sensitivity of the validation procedure to possible modifications of the detailed microscopic
models increases.

The second point is more subtle: Every evaluation method either uses data sources,
contains modeling to some extent, relies on assumptions, or draws conclusions using some
kind of extrapolation. Each of them is subject to various kinds of uncertainty (e.g., within
the assumed parameter values). This inevitably brings uncertainty into the answer (or
results). The degree of uncertainty is thereby dependent on the least accurate part of
the method. In other words, it is nearly never helpful to test one aspect with the highest
degree of validity while others with the same sensitivity for the analysis have a lower degree.
Measures of quality (such as error intervals) should be given with the final results, or at
least the validity of them should be assessed together with the results.

In order to categorize different methods with respect to the subject of evaluation, the
model of driver, vehicle, and environment (see Section 1.1) can be used. The vehicle is
further analyzed using the structure of active safety as given in Fig. 1.6. In practical terms
this means that the smallest entity for evaluation within the vehicle is a component. The
next level is a system (or some part of a system, here referred to as subsystem). Especially
when testing different vehicles, as it is the case, for example, with consumer protection
agencies, the levels “function” and “characteristic” are of importance.

As many active safety systems do have a human-machine interface, the driver can also
be in the focus of evaluation. The surroundings of the vehicle constitute important in-
fluences during development and testing. Evaluation methods refer to multiple possible
combinations of different parts of this model (e.g., testing the driver and the vehicle or a
single component).
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2.2 System responses available for evaluation

The driver with his vehicle and its immediate surroundings form one entity in traffic,
but this entity is not isolated. Evaluations often analyze the driver / vehicle entity (or
parts of it) as if it were isolated. If the interaction with other participants in traffic is
essential to answer the research question given, more than one of those entities must be
taken into account.

Once the effects of a measure on (parts of) the system “traffic” (i.e., involving more than
one entity), are under investigation, two main approaches can be distinguished:

• Accident-based evaluation. The effect of a measure in one or many accidents is
investigated. The effect on the whole accident occurrence in a particular area, e.g.,
a country, can be assessed.

• Traffic-based evaluation. In this case, the effects on traffic are evaluated, either in
a specific subset or, for example, one country. Depending on the sample size and
method used, this procedure includes the evaluation of accidents, as they form a
subset of traffic.

The main difference, as explained above, is that a representative evaluation on the sum of
both positive and negative safety effects is only possible using traffic-based testing. This
point will be discussed in its special meaning with every method further below in this
chapter.

2.2 System responses available for evaluation

The evaluation of measures, which are active during the pre-crash phase, includes all
possible system responses. As those systems are subject to a variety of uncertainties (e.g.,
due to limitations of the sensors, variability in the situation when making predictions, etc.)
they will not work ideally [86]. That means they will produce unintended side effects;
together with the intended effects they can be visualized using a classification matrix [115]
as given in Table 2.1.

Table 2.1: Categorization of possible system responses.

System response

Yes No

Objective danger
Yes True positive False negative
No False positive True negative

There are two categories of intended as well as unintended responses with respect to the
objective danger of the specific situation. The intended actions are the following:

• True-positive action (TP): The system acts accordingly to its specification1 in a
dangerous situation.

1The specification of the system includes the definition of “dangerous” as well as the activation thresholds.
“Objectively dangerous” refers to the criteria set within the specification. No generally accepted or
universally applicable definition of “dangerous” exists.
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• True-negative action (TN): The system does not act in a non-dangerous situation
according to its specifications.

The intended actions are explained straightforward regarding the objective of the system.
If necessary, it should do what it is specified to do (i.e., true positive) and otherwise should
not act (i.e., true negative). The unintended actions are grouped into:

• False-positive action (FP): The system acts like in a hazardous situation while in a
non-dangerous situation.

• False-negative action (FN): The system does not act in an objectively dangerous
situation.

The unintended system actions have different consequences: A false-negative action means,
the situation is dangerous and the system should act, but does not. This results in a loss of
safety benefit in that situation regarding the specification of the system. A false-positive
action is not related to a dangerous situation but can provoke a new critical situation,
either if the driver reacts incorrectly to the system action or if the surrounding traffic
is endangered (e.g., by massive automatic interventions or incorrect driver actions). In
this context, false warnings can be regarded as less dangerous, as they need an incorrect
driver reaction to be effective for the surrounding traffic; whereas automatic interventions
regarding the vehicle controls have to be considered as potentially more critical [112].

The quality of a measure with respect to traffic safety can thus be evaluated using this
abstract scheme. The sensitivity (also called right-positive rate (RPR)), defined in Eq. 2.1,
gives the conditional probability that a positive (i.e., objectively dangerous) situation is
treated by the system accordingly [115].

p (positive reactions | positive situations) = RPR =
TP

TP + FN
(2.1)

The specificity, defined in Eq. 2.2 (also called right-negative rate (RNR)), describes the
conditional probability that a negative situation is treated correctly by the system.

p (negative reactions | negative situations) = RNR =
TN

TN + FP
(2.2)

The complementary quantity to specificity is the false-positive rate (FPR)):

p (positive reactions | negative situations) = FPR = 1− TN

TN + FP
=

FP

TN + FP
(2.3)

The complementary quantity to sensitivity is the false-negative rate (FNR)):

p (negative reactions | positive situations) = FNR = 1− TP

TP + FN
=

FN

TP + FN
(2.4)

Other important rates give information on all correctly (i.e., definition of accuracy) or
incorrectly treated situations:

p (correct reactions) =
TP + TN

TP + TN + FP + FN
(2.5)

p (incorrect reactions) =
FP + FN

TP + TN + FP + FN
(2.6)
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When evaluating the overall safety impact of a measure, the medical term “number
needed to treat” (NNT) [47, 169] can be adapted:

NNT =
TP + FP

TP
(2.7)

The NNT describes the number of necessary system actions per correct action. Combined
with the consequences of false positives, a trade off regarding the overall safety effects can
be made. Obviously, NNT is always > 1, but should be as small as possible.

Two concurring ways of optimization are generally predominant during the development
of active safety functions and are known as “warning dilemma”. The first aims for the
highest safety benefit. That requires early system actions as well as high sensitivity. As
described, this leads inevitably to an increased number of false system reactions (resulting
in lower acceptance as well as possibly new critical situations), as evident in the false-
positive rate [161, 204]. The second aim is a low NNT. Optimization which brings down
unintended system reactions usually also affects intended system reaction negatively, e.g.,
more conservative activation thresholds minimize false activations but also lead to later
and/or fewer activations. The optimization must thus aim for an optimal trade off with
respect to safety benefit, acceptance of the measure, and negative consequences due to
false system actions while defining the operating point of the system.

If the consequences of false-positive warnings as well as of false-positive interventions of a
specific deceleration could be quantified (e.g., by subject experiments), a factor comparing
warnings and interventions could be constructed. For illustration of the methodology,
the coefficient “effective intervention” is defined as sum of interventions and warnings,
combined by a factor resembling the severity of the “consequences” of each measure. The
NNT using effective interventions gives the overall functional “costs” of a system including
a combination of warning and automatic intervention. It can be calculated for every desired
outcome category (e.g., effective intervention per avoided accident).

The overall functional costs of a specific system configuration as characterized by NNT
is one important parameter for optimization. Usually, these costs are intended to remain
within a given range. The change in overall costs depending on the optimization parameter
is often non-linear. For example, an increase in the time-to-collision, as one defining pa-
rameter for intervention by the system, usually leads to an accelerated increase in overall
costs, as more and more false-positive interventions will occur per true-positive interven-
tion.

The well-known concept of marginal benefit describes the maximum amount someone
is willing to invest for an additional unit of benefit. The marginal functional costs can be
interpreted as the derivation or slope of the overall NNT curve. In the case of preventive
pedestrian protection, marginal costs refers to the additional cost for another increment of
the optimization parameter. In combination with the overall functional costs, a stakeholder
or group of them (e.g., manufacturer, driver, society) could set a limit for the overall costs
as well as for the marginal costs. The overall functional costs thus narrow down the
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potential range of the optimization parameter. The optimum within this range could be a
minimum NNT (as described above) or an incremental search for the best operating point
using marginal functional costs. The parameter is incrementally increased within the range
until the marginal costs (i.e., the costs for each additional increment) reach their limit.

An optimized development therefore takes these metrics as criteria for optimization and
considers both expected safety benefit as well as possible negative consequences. In order
to test false-positive rates or calculate NNT, adequate testing methods with respect to
real traffic and its variability are needed [68, 196].

2.3 Retrospective and prospective evaluation

Methods for evaluating vehicle-based safety measures can be categorized into prospec-
tive and retrospective [16, 22, 43, 92, 175]. The main difference is the time of the evalua-
tion regarding the development process and/or life cycle of the measure in question [22].
Prospective analysis can be used from very early stages of development on (without the
necessity of having a fully developed measure), and retrospective analysis can be used once
a measure has been developed (and usually has already been in the market for a given span
of time) [175].

Retrospective analysis mainly uses real accident data and evaluates existing measures
with respect to a safety statistic. A common procedure is to define two groups in the
accident data, one with the measure in question and the other without. The two groups
are then compared searching for changes in characteristic values of the statistic [92, 175].

There seems to be a consensus in the literature concerning the “power” of this approach
as being both very important [92] and impressive [68]. Analysis of existing real-world
accident data is even sometimes regarded as “[a]n ideal method to assess the safety impact
of advanced safety technologies” [196]. The most prominent example for retrospective
evaluation is the Electronic Stability Program (ESP) [68, 125]. A summary on available
studies is included in [125]. Besides the obviously striking approach of using accident data
retrospectively for evaluation, past studies also indicate the challenges coming with this
method. It took years before the effectiveness numbers regarding ESP turned out to be
stable, while other (common) systems like Antilock Braking System (ABS) are still being
discussed regarding their actual effectiveness [125].

The retrospective approach in general has a number of constraints:

• The measure must be frequent enough in the market to have a sufficient market
penetration and thus produce visible effects in accident data [37, 68, 70, 92, 125].
This often takes years as market penetration is dependent on the take rate of a
measure (if optional) [16, 125, 175, 196]. The positive exception was again ESP;
rapid and broad market introduction lifted this measure quickly above the statistical
noise in accident data [68].
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• The presence of the measure in a vehicle must be identifiable in accident data [125] in
order to group the accidents. The information as to whether an active safety system
was active during an accident is rarely available in nearly all accident data sets (this
applies only to measures which can be deactivated by the driver). (The limitations
of accident data bases in general are discussed further below.)

• Statistical similarity of case and control group must be assured [125].

• Long term behavioral effects may change results over time [125] (see also previous
points).

• The retrospective statistical analysis of accident data tests mainly for correlations.
The observed effects need therefore not be causally related. A causal relationship
has still to be proven, e.g., by controlled experiments [125].

• The baseline or reference group may be biased by avoided accidents, as they are not
included in accident statistics [22, 37, 43, 92, 125]. Although the opinion exists that
only accident mitigation can be evaluated by a retrospective approach [22], newer
research indicates that the avoidance potential of measures of active safety may be
accounted for by statistical means like odds ratios and thus making this constraint
less severe [207].

• Probable interaction effects with other measures can mask the investigated effect:
To this end, possible confounders have to be known and controlled (e.g., belt-use
rates, presence of other systems with similar functions and/or effects) [125, 207].
The control of confounders is only possible, if those are available in the data sets
used. Interaction effects and confounders are even harder to control for, if the data
cover a large span in time and the internal influences on traffic and/or accidents may
change in that period [22].

The importance of controlling confounders and interaction effects shall be pointed out
by an example. Using the retrospective approach, one study evaluated the effects of xenon
headlamps on accidents in Germany [168] on basis of the federal accident statistics. As a
result, introducing xenon in 100 % of passenger vehicles would lead to a decrease in 6 % of
all accidents and 18 % of all fatalities. The study claims that all possible confounders were
taken into account and do not bias the results [168]. The possible confounders cited, such as
exposure time of vehicles, driver behavior etc., are not part of the federal data, thus cannot
have been accounted for in the study. The results found may not be attributed to xenon
headlamps as stated but could be causally connected, for example, to differences in driver
behavior (as xenon was introduced in upper class vehicles first, they could have a different
driver population). The vehicle groups could be very inhomogeneous if differentiated by
xenon, as the comparability of drivers and vehicles cannot be assured in the groups used.
All other safety features of vehicles introduced during the ten years of data considered
(coded in the federal statistics or not!) were not explicitly taken into account. This example
should highlight the importance as well as the difficulties considering the challenges while
performing retrospective analysis as described above.

The necessity to evaluate safety measures before market introduction regarding their
safety benefits is the driving force behind prospective analysis and evaluation [22, 174].
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In this case, only one group is selected from the data instead of two. This group is then
evaluated on a theoretical basis with and without the measure in question [92].

The advantages of prospective analysis in general are the following:

• Applicable from early on during development of a measure [68, 92].

• Using one group only eliminates several problems stated above for retrospective anal-
ysis (e.g., comparability of the two groups) [92].

• Possibility to compare different variations of a measure during development [174].

The limitations of prospective analysis are not that easy to generalize, dependent to a large
extent on the method used. These methods have a wider variation than the retrospective
ones. Different examples are given in the following sections together with their specific
advantages and challenges. The main challenge for any method is its validity with respect
to the question it tries to answer.

2.4 Data sources for evaluation

As both retrospective and prospective evaluation methods are based in many cases on
accident data, a short summary concerning possibilities and limitations of accident data as
well as other data sources is given in the following. These general findings have effects on
the validity of each method discussed below and are not dependent on the specific method
used.

There is a variety of different accident data bases available for evaluation. Two main
criteria for categorizing accidents data bases are representativity and level of detail [22,
174]. The representativity is directly but not entirely linked to the number of cases available
in the data set. Another factor is the representativity of the sampling scheme used. As a
consequence, two categories of accident data are in-depth and national (or international)
data collections.

National statistics are regarded as being most representative for their specific country.
For example, the German Federal Statistics, provided by the Federal Statistical Office
(Statistisches Bundesamt), collects all police reported traffic accidents connected to driving
traffic. That means that police reported accidents involving only pedestrians are excluded
from this statistics. As the police are mainly contacted in case of personal injury or
high property damage, accidents with slight injuries or minor property damage may be
underreported [174, 184]. The federal statistics have high case numbers, but also a low
depth in the data, as all information is taken from police reports. Access to disaggregated
data is limited [125, 174]. Especially information regarding the genesis of an accident,
the course of events during an accident, the vehicle damage in detail, and the injury
mechanisms are not included [174].

Also on national level, the German Insurance Association (Gesamtverband der
Deutschen Versicherungswirtschaft e.V., GDV) runs its own accident data base. It con-
tains detailed documentation of a sample of all accidents followed by insurance claims. The
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main sampling criteria are personal injury and a property damage greater than e 15 000
[127, 128]. Around 700 cases are added each year [128]. Access to the database is limited
to the members of GDV [43]. Although the representativity for accidents with insurance
claims within these criteria is given [127], a further extrapolation of the findings is difficult
due to the biases induced by the sampling scheme [43].

In-depth accident investigations include more details but contain by far fewer cases
[125, 174]. One example is the German In-Depth Accident Study (GIDAS). As a combined
industry and government effort, about 2000 cases are collected and documented with a high
level of detail each year [2] (see also Subsection 5.2.1 for a general description of GIDAS).
The main sampling criteria are accidents with at least one injured person in road traffic.
The sampling area is confined to two German cities and the surrounding areas; the sampling
itself follows a shift schedule [2].

As a consequence, some restrictions apply when discussing the validity of findings based
on in-depth accident data. The restrictions given in the following refer to GIDAS as an
example, but can be transferred to other studies with respect to their internal structure
and sampling criteria:

• Only accidents with personal damage [92, 174]; thus severe accidents are over-
reported.

• No accidents with property damage only or non-collisions (i.e., critical situations)
[174].

• No information about participants in traffic who were not directly involved in the
accident [174].

Other biases may be induced by low case numbers as well as other sampling criteria [125].

The results based on accident data are only valid for the area of the data set [125].
Nevertheless, generalization of the findings, for example, to national level, is facilitated
using weighting procedures. Based on parameters available in the national statistics, a
weighting scheme tries to correct biases in the GIDAS data and thus make them more rep-
resentative for Germany. The most commonly used scheme relies on type of the accident,
accident severity, and location of the accident (urban or non-urban). A description of the
procedure can be found in [92]. In order to gain representativity, this weighting or very
similar approaches are widely used [2, 43, 125, 161].

Officially, weighting ensures that GIDAS is mainly representative for the areas its data
is collected in as well as for most aspects of passive safety, if free from regional influences
[2]. However, the benefits of weighting as well as the validity of the results are still subject
to discussion. On the one hand, this procedure is believed to ensure representativity [150].
On the other, studies show that weighting does not solve these problems and is not able
to correct all biases in the data set. Even sophisticated methods still leave distortions in
the data [85, 96]. As the representativity for the country of the in-depth study itself has
to be questioned, an extrapolation on other countries seems even less valid; in this case,
the use of accident data directly collected in that country is recommended [174].
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Another example for an in-depth accident data base is the Pedestrian Crash Data Study
(PCDS) from the US [194] (which is also described in Subsection 5.2.1) or accident inves-
tigations carried out by vehicle manufacturers. The latter ones have a very high level of
detail but suffer even more from biases due to low case numbers, model selection criteria
or geographic effects [125].

For more information and the description of different accident data bases, also on an
international level, the following literature provides a good starting point in form of sum-
maries [43, 92, 94, 170].

Comprehensive and detailed knowledge of all factors relevant in accident genesis are
a prerequisite for an evaluation of safety during the pre-crash phase [159]. A variety
of factors is available in accident data bases (see above), but many factors – especially
relevant during the genesis of an accident – are not part of accident data bases [90, 159].
As a consequence, detailed conclusions about the pre-crash phase and the genesis of an
accident, especially with respect to critical combinations of mistakes and the course of
events following the phases of an accident, are only possible in a very limited way [159].
Thus, the understanding of the mechanisms and processes involved is also bound to these
limitations [90]. As many parameters, especially concerning the persons involved (e.g., the
driver), are not available in accident statistics (and cannot be gathered by methods applied
in accident data collection) [117], a distinction of different accident causes is very difficult
[87].

The reliability and validity of the accident data proves to be a difficult issue as the data
collection is always a sample and not a census in the sense of an absolute “true” number
[87, 90] (see also abstract description of different accident bases and sampling schemes
above). Furthermore, even the data available most of the time include inconsistencies and
uncertainties due often to the process of reconstruction and the assumptions necessary
therein [87].

Although accident statistics are able to give valuable information about accidents as
well as influencing factors (at least to some extent), the findings must still be interpreted
with care, as their true meaning is only revealed when related to exposure [159]. Many
studies using accident data do not consider risk exposure or discuss the correct measure
for exposure with respect to the research question [117].

Accidents are statistically rare events [37, 159] and represent only partly the complexities
of traffic. As discussed in Section 2.1, they cannot be regarded as being sufficient for every
possible evaluation of safety in traffic [90], especially of the pre-crash phase. The events
leading up to a possible accident are by far more frequent than the accident itself [171] (see
also Section 1.2). From the whole course of events from “normal” driving, mistakes, failed
corrections, contributing factors, and finally a collision [69], only the last part is recorded
in accident statistics. Consequently, no data on avoided accidents or very slight accidents
are in the data bases [37]. The evaluation of safety benefits using accident data as the only
data source is thus regarded as incomplete [37]. The evaluation of overall safety effects
with respect to false activations etc., as explained in Section 2.2, is also not possible solely
on the basis of accident data.
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Directly linked with the “systematically missing” information in accident data bases is
the importance of the human behavior for the accident genesis and thus for the evaluation
of measures of the pre-crash phase. In most cases, human behavior is by far more important
than driving performance of the vehicle [37]. The driver has a highly variable behavior and
is the decisive element during the pre-crash phase (as well as during “normal” driving) [74].
Measures that interact with the driver – by direct means of a human machine interface
(HMI) or indirectly via their interventions in vehicle controls – require a driver model for
their theoretical (i.e., not subject-based) evaluation [43]. In case an HMI is present, it has
to be evaluated, too [127]. Due to the importance of the driver [209] an over-simplification
of the driver model leads to invalid results. The complexities of human cognitive modeling
are avoided in some studies using a “perfect” driver (often with fixed (re)actions, not
distributed stochastic behavior) which constitutes a severe assumption [127, 128].

In this context, not only the driver in view of his actions and decisions is of interest,
but also regarding his acceptance of different measures [209] (see Section 4.3 for more on
acceptance and its connection to safety). During the use of a system of active or integral
safety, changes in behavior due to adaption or compensation effects can occur and must be
accounted for when evaluating safety benefits [159]. To draw a conclusion, a “full forecast
of their [i.e., active safety systems; author’s note] potential is only possible with respect
to the complete relation of driver-vehicle-system-environment” [68] (see also [83]). These
and various other aspects of evaluation of active safety systems have also been subject of
discussion in European Union funded projects; an overview is, for example, given in [173].

The limitations and boundary conditions connected with accident-based testing lead di-
rectly to the approach of traffic-based testing, based on the control loop of driver, vehicle,
and environment with its processes on the way to an accident [57] (see also Section 2.1).
The main advantage of traffic-based testing over accident-based testing is that exposure
can be taken into account [42]. The usage behavior of the driver regarding active or integral
safety systems can also only be reliably tested in real traffic [138]. Different methods consid-
ering the variability of traffic and its consequent testing are discussed below. Traffic-based
testing does not necessarily mean driving on public roads but also can involve simulation
[196]. In addition, traffic-based testing is capable of evaluating all four possible categories
of system responses (see Table 2.1), where accident-based testing is mainly restricted to
evaluating true positives and false negatives. As false positives as well as true negatives
are of high importance while finding the optimal operating point for a system, traffic-based
testing is the method of choice and is able to close that gap.

2.5 Methods of prospective evaluation

This section discusses a variety of rather “theoretical” methods of prospective evaluation:
fault tree, traffic conflict technique, operational field and effectiveness in the field, and
scenario technique. Section 2.6 focuses on case-by-case prospective methods.

The basic idea of analyzing the traffic system with respect to the genesis of mistakes,
conflicts, and accidents is structured in the fault tree method [158], see Fig. 1.1 (p. 3).
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This scheme follows a process-oriented approach as displayed in Fig. 1.2 (p. 3). The basic
concept of Reichart was thus extended beyond the basic elements of driver, vehicle, and
environment to include, for example, driver assistance systems [57, 146]. One advantage
of a fault tree is that once a critical set of probabilities is known, the calculation of the
other probabilities is straight forward using the Boolean connections in the tree.

In this context, the top event in a fault tree can be an accident or a conflict [158]. The
probabilities for accidents can come from classic accident analysis [57], the corresponding
ones for conflicts or mistakes (being at the other end of the tree structure) are not generally
known and hard to extract [57, 87]. An example of such calculations as well as further
information, for example, on validity of the method, can be found in [158]. The method
seems to be able to generate sound results, especially on the connections between conflicts
and accidents, although many assumptions are basically needed during evaluation [171].

As conflicts can be top events in fault tree analysis or generally constitute rather high
level events, the probabilities and nature of conflicts is regarded an important issue within
the literature. One way to assess conflicts in traffic is the so-called traffic conflict technique
[87]. A traffic conflict may be characterized by considering approaching object trajectories
which, extrapolated in time, would exhibit an increased probability for collision unless
one of the participants changes his current state of motion [87]. This definition could be
extended on non-observable situations and single vehicle conflicts.

The objectives of this standardized observational technique are risk assessment as well
as effectiveness evaluation of traffic facilities, not estimations regarding the quantity of
accidents [87]. Thereby, conflicts have a probability to become accidents, which does not
mean that accidents can be predicted with the method [87]. The transition probabilities
between conflicts and accidents, as needed, for example, in the above-mentioned fault tree
analyses, can be assessed [57]. Compared to accident analysis, investigating conflicts has
the following advantages [87]:

• Conflicts occur with higher frequency and thus provide more statistical power.

• Conflict data can be collected with more completeness and better controlled reliabil-
ity.

• They allow for a more “objective” collection, as legal liability is not considered.

• Conflicts have still sufficient frequency even for low accident frequency at that point.

• Regional boundaries as well as other requirements of data collection can be well
defined and documented.

• Conflicts can be collected as a controlled sample.

• Many additional factors can be collected.

The studies done show that conflicts have a good correlation to accidents and thus can
be considered as “dangerous” [87]. Therefore, the results (respectively the probabilities)
can be included, for example, in fault tree analyses. However, the traffic conflict technique
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itself requires a high effort in data collection and analysis [158]. Further combined research
on mistakes, conflicts, and accidents is strongly recommended in the literature [158].

Which specific factors can possibly be investigated using traffic conflict technique, de-
pends on the technology used (in general, a large variety of factors are well observable in
traffic). A static traffic observation from a fixed location may adequately record all macro-
scopic traffic effects as well as environmental parameters, but has its limitation regarding
the precise measurement of dynamical properties of individual participants as well as their
specific configurations (i.e., presence of specific safety measures, such as ESP). The tech-
nique of traffic observation from the view of one specific participant will be discussed in
connection with Naturalistic Driving Studies (NDS) and Field Operational Tests (FOT)
further below (see Section 2.7).

Another possible evaluation uses the operational field and the effectiveness in this field
of a measure as a metric. Two commonly used definitions exist:

• The operational field (OF1) is defined as the number of accidents, where the measure
can potentially show an effect:

OF1 =
potentially affected accidents

all accidents
(2.8)

The effectiveness (EF1) within this operational field is then defined as the quotient
of real effectiveness to the number of accidents [43]:

EF1 =
affected accidents

all accidents
(2.9)

• Another definition is given by the following equations [92], where OF2 = OF1.

OF2 =
potentially affected accidents

all accidents
(2.10)

The effectiveness is given as:

EF2 =
avoided accidents

potentially affected accidents
(2.11)

Considering all accidents (e.g., in one country or area) as baseline, the overall effec-
tiveness [92] is given by the product of 2.10 and 2.11:

effectivenessoverall = OF2 · EF2 =
avoided accidents

all accidents
(2.12)

The advantage of the first definition of effectiveness (Eq. 2.9) is that it includes all possible
effects of a measure, also negative ones. The second definition (Eq. 2.12) refers to positive
(intended) effects only. The effectiveness in general is assumed to be smaller than the
operational field, as no system works perfectly in the sense of an ideal system [92].

The advantages of this method are that it allows a fast application with limited effort.
The operational field can be estimated quite exactly (e.g., using accident data) whereas
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the effectiveness estimation is a challenge and is often facilitated by assumptions, resulting
in low validity [43]. Although this method has become a common practice in the last years,
the procedure itself was used decades before.

One example is a summary report on the research that led to the introduction of the
center high mounted stoplamp from 1985 [53]. The overall effectiveness in the sense of
Eq. 2.12 for the center high mounted stoplamp was determined by operational field and
effectiveness. The operational field was defined as the number of all rear end accidents.
The effectiveness was estimated from different studies (most of them FOTs) and has to
be regarded as much more valid than, for example, an expert opinion. The average effec-
tiveness was found to be 50 %. In addition, an overall monetary benefit was calculated,
first on the basis of avoided accidents, secondly using a cost-based (monetary) approach
for both avoided and mitigated accidents. As a result it was possible to give a cost benefit
ratio for the measure, which was found to be 0.1 [53].

In line with the previous approach is the scenario technique. It describes the possible
benefit of a measure regarding accidents of relevance [43]. An exact effectiveness is not de-
termined, but the true effect is approximated using two scenarios as upper and respectively
lower boundary. The scenarios are defined using an optimistic and pessimistic approach
with respect to the benefit [43, 92]. The analysis is commonly conducted using accident
data and assumptions on the effect of a measure.

The methods mentioned above can rely on assumptions to a particular extent. One very
common form of making assumptions are expert opinions. Although the general value
of expert opinions should not be a matter of doubt in this work, the validity regarding
the effectiveness of complex systems in complex (and highly variable) traffic or accident
situations has to be doubted. Depending on the extent and severity of the assumptions
used, the validity of a study has to be questioned. For example, if the whole effectiveness
of a measure is based on expert opinion alone and is not backed by any empirical evidence,
then this constitutes a severe assumption. In order to demonstrate a method [92], this can
be regarded as uncritical, but in real evaluations this should be avoided, at least regarding
sensitive parts or models of the evaluation process.

2.6 Methods of prospective case-by-case analysis

The accident-based methods described in the previous sections use aggregated data.
That means that coded values of many accidents are used to define, for example, an oper-
ational field for a measure without considering each single case in detail. These procedures
have the disadvantage that subtle effects (e.g., interactions between a system and a driver
or the perceptibility of an object by a given sensor over time) can be considered only in very
general means on a meta level. The potential of a future measure can thus be evaluated at
a very early stage of development. However, optimization and evaluation of minor system
changes are not possible on that level but require more detailed analysis with respect to
the time-bound interactions in each single case.
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Although single-case analysis is not new and has been conducted for decades in different
ways, modern calculation capabilities together with corresponding detailed data sources
allow a very detailed analysis which is not limited to a few cases any more [43]. As a
result, a large number of cases can be analyzed automatically with reasonable resources
[43, 92]. This kind of analysis solves the problems of time consuming and complicated
hardware testing in many different situations and thus is reproducible without danger,
quantifiable, and controllable [34]. Ideally, a flexible and universal tool would fulfill those
characteristics instead of an inhomogeneous world of incompatible tools [16]. All relevant
parameters should be adjustable and the boundary conditions variable in order to enable
sound testing and evaluation of the safety effects [16].

Considering simulation as a method, the validity of the findings is a key aspect. The
simulation itself must be validated regarding the research question it is used for [29]. In
addition, a validation and, of course verification, if possible, of the findings against field
data (e.g., accident data) can also be recommended [16].

The following part of this section briefly introduces different methods that can be cat-
egorized as prospective case-by-case analysis. Case-by-case evaluation is explained using
the injury shift method as example. Different methods including case-by-case simulation
are described:

• Simulation by Busch

• PreEffect-iFGS

• rateEffect

• VUFO Simulation

• PreScan

• Bosch simulation

• ACAT simulation

The first one focuses on the evaluation of passive safety measures and is called the injury
shift method . The basic idea is that a passive safety measure has a positive effect on the
severity of injuries sustained at a specific component. The assumption is that below 40 kph,
optimized components result in a reduction of one level on the abbreviated injury scale
(AIS) [23] (for a detailed description of AIS see Section 5.1, p. 81). As a consequence,
this may lead to a reduced overall injury severity. The benefit of a given measure is thus
evaluated on the level of single injuries and corresponding components in each single case
[92, 137]. The method has been used in a couple of studies [92, 94, 134, 136, 137, 160].

The injury shift method has been used, for example, for the evaluation of secondary
safety measures for pedestrians at passenger cars. The maximum impact speed considered
is 40 kph. The results of Euro NCAP crash tests are transferred to the vehicle in question,
and the impacting body parts are mapped to the test grid. The metric includes assumptions
leading to an optimistic and a pessimistic approach. In the optimistic case, if the zone was
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tested green, the injury severity is shifted down to AIS 1 (pessimistic: by two AIS levels).
If the zone was tested yellow, the injury is shifted by two AIS levels (pessimistic: one AIS
level). A red zone does not lead to a shift in either approach. No injury is shifted below
AIS 1, meaning the method does not predict avoided injuries [136].

The injury shift method is computationally efficient: The assumptions used lead to an
algorithm, which is simple and fast to calculate and can be applied to a table of injuries
and corresponding vehicle components. Each case is thus evaluated, and the overall injury
severity of every person is recalculated. As a result, the safety benefit for every person can
be evaluated in comparison to the original severity distribution.

However, several severe assumptions underlie this estimation method: As detailed Euro
NCAP test results are not available for the majority of (rather old) vehicles in databases
such as GIDAS, each vehicle is considered as zero points (i.e., being totally red). In
reality, also older vehicles do have a good protection potential in some zones and the
overall safety benefit of a measure is thus overestimated by the underlying assumption
[174]. The second challenge is that a color in the Euro NCAP test stands for a bandwidth
of actual dummy readings. That means a color distribution is a rough estimate of the real
stiffness (protection potential) of a vehicle. The three-color categories used for the injury
shift method can be regarded as rather crude approximation to a stiffness distribution.
In addition, all AIS levels are treated in the same way without considering that AIS is a
non-metric scale. It is unclear whether a given measure has the same effect on an AIS 2
as on an AIS 5 injury [134, 174]. Considering pedestrians, only the impact on the vehicle
is evaluated, not the secondary impact.

The next level in automated single-case analysis is the actual simulation of the dynamics
over time for each accident. The focus is on the pre-crash phase of an accident. In 2005,
Busch described a simulation of single accidents, each with and without the measure of
active safety in question [43]. The main procedures are: selection of relevant accidents,
simulation with / without system, translation into injury severity, and calculation of the
effectiveness. The input data for the simulation are the values coded in the GIDAS data
base. As the sequence of the accident is described there via characteristic parameters
but not as time series, the simulation provides a kind of automated reconstruction of
the pre-crash phase and a subsequent simulation of it. By comparing the results for each
accident and summarizing them, the effectiveness is calculated. The first stage is a physical
assessment (i.e., impact speeds, impact locations, etc.). These data can be translated
into physiological data using, for example, the injury shift method for passive safety and
injury probability models for active safety (for the later see also Chapter 5). The results
gained from the simulated accidents are then weighted to the national statistics to gain
representativity for Germany [43].

The advantages of this approach are a degree of representativity as well as the opportu-
nity to model a system in detail and take system modifications into account by simulating
each single case. A drawback of the method is its reliance on the information available in
the data base used. As many relevant pre-crash parameters are not coded (and especially
not coded as time series) in in-depth data bases (such as lane markings, positions of the
vehicles in the lanes) and thus are not available for the simulations, only a limited subset
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of functions can be evaluated (e.g., automatic braking, but not lane departure warning).
The method does not include behavioral driver modeling, i.e., models of driver perception,
response, performance under extreme condition, etc. These are required for an evaluation
of a system with an information or warning component. Thus, this method is limited to
evaluation of automatically intervening systems [174].

The next evolution of the method presented by Busch is called PreEffect-iFGS. It is
a prospective method for evaluating the field effectiveness of integral pedestrian protec-
tion systems [174]. The main procedures of Busch, i.e., selection of relevant accidents,
simulation with / without system, translation into injury severity, and calculation of the
effectiveness, stayed the same with some additions. The improvement is an incorporation
of test results for active and passive safety systems derived from hardware testing [160].
The initial version also includes an automated backwards simulation of each accident based
on the values available in GIDAS. The results are then transferred into the commercial
software PC-Crash and are then simulated forward with and without the measure in ques-
tion.

The simulation can be run in two modes: open-loop and closed-loop. The open-loop
variant calculates key parameters for automatic interventions with different parameters per
accident. These key parameters are then filtered using the specific system configuration
in question. The advantage is that a variety of system configurations can be compared
without running the simulation again. The disadvantage is that the results do not include
a feedback loop of the measure on the situation itself, for example, the reaction of a driver
to a warning. The closed-loop simulation includes the feedback on the situation and thus
is able to evaluate all kinds of effects, e.g., the driver’s reaction to a warning. The higher
level of detail and the inclusion of a probabilistic driver model increase the computational
effort [174].

One main disadvantage for the simulation methods described above is the inherent limi-
tation regarding depth of information of the data used. In order to make more information
during the pre-crash phase available and thus enable other functions to be evaluated, a
project has been launched within the GIDAS consortium. The so-called pre-crash matrix
is a digital and machine readable description of the pre-crash phase [63, 176]. The informa-
tion falls into the categories static and dynamic. The static part contains information on
the street layout, the lane markings, and accident relevant objects (e.g., parked vehicles).
The dynamic part contains the trajectories of the participants as a time series, going back
about 3 s before the first collision. The information ends at the point of the first collision
[63]. This data base provides a uniform basis for simulation of a subset of the GIDAS
accidents, thus making the backwards simulation of accidents as used in the method above
obsolete. In addition to the pre-crash matrix, values from the GIDAS data base, such as
vehicle characteristics, weather conditions, etc., can be used.

The next version of PreEffect-iFGS, called rateEffect, is able to import the pre-crash
matrix and use these data [58, 119, 200–202]. Whereas rateEffect as well as a comparable
approach from Spain [24] use PC-Crash as software package, other solutions are available,
too. PC-Crash is able to calculate the crash phase and thus rateEffect provides key pa-
rameters of the crash (if still one occurs) as additional input for an evaluation metric.
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The Verkehrsunfallforschung an der TU Dresden GmbH, which is one of the data col-
lecting partners in GIDAS, developed a pre-crash simulation using a commercial driving
dynamics simulation as core together with proprietary Matlab® and Simulink® functions
[63]. The latest version changed the driving dynamics simulation from CarSim™ to
CarMaker™ [93]. The idea is again to simulate single accidents automatically and to com-
pare a system effect to a baseline without system. Also in this simulation, no predefined
field of operation or estimated effectiveness is needed [63].

The Netherlands Organization for Applied Scientific Research TNO has developed an-
other simulative approach called PreScan®. It includes the complete road situation, vehicle
sensors, system controls, and vehicle dynamics [133]. Based on Matlab®, Simulink®, and
Stateflow®, PreScan® claims not only to simulate the pre-crash phase, but also to calcu-
late the crash consequences via a link to MADYMO® [34].

The Robert Bosch GmbH developed a Matlab®-based simulation working with GIDAS
accidents [209]. One essential part (especially for systems with a human machine inter-
action, such as warnings) is the modeling of the driver in terms of cognitive processes.
The cognitive modeling of the driver is also capable of revealing findings about system
acceptance and thus effectiveness (see also Chapter 4).

All methods described above can be categorized as automated case-by-case simulations
based on accidents. There are two more aspects which are of importance for a sound
system evaluation during the pre-crash phase. Many processes involved are deterministic,
e.g., the participants dynamics, the technical functions implemented, as well as many
physical boundary conditions. However, some of the key processes do have a stochastic
nature; for example, the driver action and reaction as well as some characteristics, e.g., of
the sensors modeled. Due to the sensitivity of the results to those processes, stochastic
elements are an important feature of any representative evaluation (see also Section 3.4).

For example, the driver reaction is important for the genesis of an accident as well as
the interaction with a safety system and the possible impact of a safety system. As a
consequence, stochastic driver modeling is also included in some approaches [129, 175].
Stochastic elements are not limited to processes within an accident but are of importance
also in uncritical traffic situations. As mentioned before (see Section 2.2), an overall
estimation of possible safety effects should include the evaluation of positive effects within
accident scenarios as well as undesired potentially hazardous side effects in normal traffic.
The only data source used in the approaches discussed above, i.e., accident data, does not
provide normal or critical situations which would not have resulted in an accident. There
are several ways to incorporate this traffic-based evaluation into a simulation.

As classical data collections are limited to accidents, one way to get data on non-collision
events is a stochastic variation of accident reconstruction data in a way that the single event
does not necessarily result in an accident anymore. These non-collisions are then used in
the simulation in order to assess the balance between desired and undesired effects of a
measure in traffic [175]. As a consequence, validating the non-collisions regarding the
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distribution of key parameters and their representativity for overall traffic is vital. The
basic data concerning exposure are not as well known as accident related data.

Another simulative method is introduced in the following in order to highlight the use of
other data than accident data. Within the Advanced Crash Avoidance Technologies Pro-
gram2 (ACAT), initiated by the National Highway Traffic Safety Administration (NHTSA),
a standardized Safety Impact Methodology (SIM) has been developed [82, 95, 196]. The
main objective was to develop a tool that evaluates the effectiveness of crash avoidance
technologies in a US context. Combined with that is the development of objective tests
capable of verifying the safety impact of a real system [196].

The basic idea again is to conduct time domain-based simulations of the driver-vehicle
environment with and without an ACAT system. The available data include crash cases
from accident data bases, such as the National Automotive Sampling System (NASS)
Crashworthiness Data System (CDS) or the Pedestrian Crash Data Study (PCDS) (for
a detailed description see Subsection 5.2.1, p. 83). The difference to the approaches
discussed above is that normal driving situations from Naturalistic Driving Studies
(NDS), for example, provided by Virginia Tech Transportation Institute (VTTI) as well
as synthesized crashes are also used for evaluation; the technique thus allows for an
assessment of non-critical situations [196]. Again, the driver reaction can be varied, e.g.,
using Monte-Carlo techniques, and the simulated physical outcomes are translated into
physiological parameters. The results can be transferred to national US level [17, 196].
The ACAT framework is thus an example for an accident as well as traffic-based approach.

2.7 Methods for modeling different parts of driver,
vehicle, and environment

This section introduces typical methods for investigating the control loop of driver, vehi-
cle, and environment or different parts of the latter (see also Section 1.1, p. 1). Although
the methods are not able to assess overall effectiveness of a measure of active safety, they
provide valuable findings that can be incorporated into modeling as needed for the sim-
ulative approaches discussed above. This section is not meant as a complete compilation
but aims at giving an overview about the different levels of testing in the traffic system as
well as typical examples of current methods. Included in this overview are:

• Hardware and component-based testing

• Vehicle Related Pedestrian Safety Index (VERPS)

• Vehicle Hardware In The Loop (VEHIL)

• Test track

• Test track target: Experimental Vehicle for Unexpected Target Approach (EVITA)

2Extensive information in form of publications and project reports is available on the NHTSA homepage.
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• Subject experiment: Driving simulator

• Vehicle in the Loop (ViL)

• Real traffic

• Naturalistic Driving Study (NDS)

• Field Operational Test (FOT)

The smallest unit under testing in the context of active or integral safety is a component.
This method is usually applied for measures of passive safety, such as deformation spaces,
active bonnets or airbags. This “classical” testing can be based on hardware (like the Euro
NCAP tests for pedestrian safety [64, 65]) or virtual testing using, for example, multi-body
or finite element simulation. These methods are not discussed here in detail (examples can
found in [13, 34, 76]) but are relevant for active safety, since the concept of integral safety
(see Section 1.1) includes a comparison of the effectiveness of active and passive safety.
Some of the methods discussed below also incorporate component-based testing.

One example of a component-based testing method is the Vehicle Related Pedestrian
Safety Index (VERPS) [79, 114]. This index utilizes a linear scale for both active and
passive safety measures. The pedestrian head impact in frontal passenger vehicle collisions
is assessed using the Head Injury Criterion (HIC) as metric. The method delivers specific
results for a given vehicle and pedestrian combination. The evaluation process includes
accident data analysis for relevant scenarios, kinematic analysis (via multi-body simula-
tion), hardware component testing, and a procedure to obtain the VERPS index [79, 114].
The VERPS index takes only the probability for AIS3+ head injuries due to impact on
the vehicle into account, since this probability can be derived from the HIC measurement.

As an addition to the VERPS method, the (here slightly generalized) V ERPS+k index
considers the effect of active safety, as different impact speeds lead to different kinematics
and impact locations as well as changed HIC values.

VERPS+k = Pimpact(v) ·
m∑
i=1

n∑
j=1

Ri,WAD(v) ·Rj,front ·

(
1− e

−
(

HICij(v)+500

1990

)4.5)
(2.13)

• Pimpact(v) gives the dependency of the impact probability for the pedestrian’s head
on impact speed v.

• Ri,WAD(v) and Rj,front are relevance factors with respect to the impact probabilities
derived via analysis of accident data: Ri,WAD(v) refers to the relevance in longitudinal
direction, depending on impact speed, and wrap around distance (WAD). Rj,front

gives the corresponding relevance in lateral direction.

• HICij(v) characterizes the pedestrian’s head loading, depending on impact speed
and the area on the vehicle front, as specified by i and j.

The secondary impact is not assessed, but is assumed to improve with decreasing impact
speeds [79, 114]. The actual performance of an active safety system together with the
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Figure 2.1: VEHIL test facility: (a) vehicle under investigation on (b) dynamometer together
with (c) moving bases [1].

driver (if a driver-relevant component is included) is estimated by weighting the different
V ERPS+k indices for different speeds according to the performance of the active safety
system (including avoided accidents and the probability of avoided head impact on the
vehicle). Averaging over all drivers in the population in question and all relevant accident
situations, the resulting VERPS+ index is able to quantify the effect of an active safety
system [79, 114] once the primary effect of the active safety system (i.e., the reduction of
vehicle speed) has been assessed properly. An example for the use of the VERPS index as
well as an addition for leg injuries can be found in [91].

An advantages of the VERPS method is that both active and passive safety can be
assessed on a common linear scale. A drawback is that only pedestrian head injuries in
primary frontal passenger vehicle collisions are evaluated, while secondary impacts are not
taken included [79, 114].

Clearly focused on active safety functions is the Vehicle Hardware In The Loop (VEHIL)
facility of TNO in Helmond, Netherlands [29, 81, 130]. The basic idea is to connect a traffic
flow simulation with a chassis dynamometer for testing active safety systems as hardware
including the whole vehicle. The surrounding traffic is represented by moving platforms as
in Fig. 2.1, which can be fitted with shapes and materials suitable for the specific sensors
used. As the vehicle under investigation is on a dynamometer, the moving bases just
have to perform the relative movements to the (not moving) vehicle. VEHIL is intended
for testing, for example, Adaptive Cruise Control (ACC), collision warning systems or
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functions based on car-to-car communication [81]. The advantages of VEHIL are the
possibility for safe, reproducible testing with real objects. In addition, the actual state
of all participants is known and can be analyzed [29]. The limitations are, for example,
a minimum time-to-collision about 0.5-0.2 s and a maximum relative speed about 50 kph
[29].

A test track is a “classic” environment for testing and evaluation of different functions
[30]. A experiment on a test track can reproduce very different aspects of various traffic
systems, such as different kinds of road classes, road surfaces or traffic situations. As
test tracks are not open to normal traffic, full experimental control [138] together with a
quite realistic environment [38] including real vehicles and their dynamics is available [30].
Another advantage is that test tracks are available on many locations around the world
which makes testing geographically flexible [38].

The challenges come with the construction of specific traffic situations on a test track.
Some situations are hard to build (such as complex ones with many participants) or are
dangerous (especially for safety related functions) [29]. This leads to two consequences:
First that it requires a high effort on a test track to build a subjectively critical situation
which is objectively safe; and second that scenarios have to be kept quite simple and
perhaps must be within a limited speed range [38]. As test tracks lack normal traffic
situations, testing can be less diverse and realistic than in road traffic [138].

Although test tracks provide a valuable environment for development and testing, “a
test track test alone will not be sufficient” [68]. Concerning the possibilities on a test track
it can be concluded that “it is not realistic that [...] overall functionality and performance
[can] be evaluated on basis of a limited number of tests” [68]. For overall effectiveness of
a measure of active safety, track testing alone does not seem to be sufficient [196]; thus
statistical methods or field tests seem to be more promising [68].

Due to the importance of hardware testing on test tracks during development, a com-
mon practice for the evaluation in safety-critical situations is introduced here. In order to
achieve a subjectively realistic but objectively uncritical situation for active safety func-
tions, so-called targets are used on test tracks instead of real traffic participants. Whereas
most targets are designed for sensor or system testing, some are also suitable for behav-
ioral studies. Many targets represent vehicles, or what a sensor or driver can perceive
of a vehicle. For radar this means that a triple reflector made of the right material can
be sufficient, whereas for a mono-camera, a picture of a vehicle is sufficient. Important
features are the possibility of self-propulsion, the ability to be crashed (without damage
to target and vehicle) and the sensor characteristics of the target. Descriptions of a large
variety of different targets are found in the literature [29, 71, 104, 105, 110, 204]. Not
only vehicles, but also, for example, pedestrian dummies (targets) fitting specific sensor
requirements are available [163, 196, 204].

Representative for the variety of targets used in research and development, a more
advanced target capable of performing system as well as subject experiments (including
behavioral as well as acceptance studies) is introduced in the following. The Experimental
Vehicle for Unexpected Target Approach (EVITA) has been constructed for testing critical
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der Proband auf das Manöver rechtzeitig reagiert oder nicht, wird der Anhänger aktiv 
aus dem Kollisionsbereich gezogen. Bild 4-1 zeigt das Gespann.  

 

Bild 4-1: EVITA bestehend aus Zugfahrzeug und Anhänger (Dummy Target) 

4.2.1 Aufbau 
Im Heck des Zugfahrzeugs befindet sich eine Seilwinde mit einer reibkraftschlüssigen 
Windenbremse und einem Elektromotor. Der Anhänger ist mit dem Zugfahrzeug nur 
über das Seil der Winde verbunden. Das andere Ende des Seils ist an der Achsschenkel-
lenkung der Vorderachse des Anhängers befestigt. Die Scheibenbremsen des Anhängers 
werden hydraulisch via Handbremshebel von einem stromgeregeltem Elektromotor 
betätigt. Im hinteren Bereich des Anhängers befindet sich das originale Heck der Mer-
cedes A-Klasse. In diesem ist ein aus der Anwendung im Adaptive Cruise Control 
(ACC) bekannter Radarsensor befestigt. Im Zugfahrzeug und im Anhänger befinden 
sich Rechner, die durch Funkmodems miteinander verbunden sind. Bild 4-2 gibt eine 
Übersicht über die im Zugfahrzeug eingesetzten Komponenten und deren Zusammen-
hang. 

 

Figure 2.2: EVITA: lead vehicle and trailer [103].

rear-end situations and aims for a high degree of reality [104]. Fig. 2.2 shows the trailer
with an original vehicle rear-end connected to a lead vehicle via a cable and a winch in the
lead vehicle. The trailer is comparably light-weight and can be braked independently of
the lead vehicle, thus suddenly reducing the gap to the following vehicle with the system
and/or subject on board. The trailer looks realistic for the subject (including full brake
lights, etc.) as well as for many common sensors. If the time-to-collision (TTC) reaches
a defined value (measured by a backward radar sensor in the trailer), the winch closes,
and the trailer is accelerated away from the following vehicle [105]. This allows safe and
reproducible testing under quite realistic circumstances [104]. EVITA is limited to rear-
end situations and is not impact resistant, allowing a minimum TTC of about 0.8 s and a
maximum relative speed of 50 kph. Its velocity is limited to about 80 kph [105].

The importance of subject experiments (or behavioral studies) is founded on the fact that
for active safety, driver behavior is more important than the driving characteristics of the
vehicle [37]. However, human behavior is subject to a large variability [42], which can be
modeled, e.g., on the basis of experiments [44]. The findings from many experiments can
then be used to develop behavioral models [44] which, for example, are used in simulations
as described in the preceding section. The EVITA target for use on a test track is one
possibility for assessing driver behavior in particular situations.

A common practice for the evaluation of active safety is use of driving simulators. A
driving simulator provides an environment for subject experiments with the aim of assessing
usability and ergonomics, for example, of advanced driver assistance systems (ADAS),
investigating driver behavior with (and without) a system in different situations, and
generating findings on acceptance [30]. Driving simulators can have a variety of setups
and functions. They range from simple static mock-ups (which basically include a display
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and human-machine interface) to dynamic simulators, which can simulate limited motion
with respect to six axes, allow a full range of view, and provide the look and feel of a real
vehicle for the subject [29, 30, 138].

The main advantages of driving simulators are high reproducibility of experiments [30,
38, 70] together with very good experimental control [38]. The possibility of collecting
detailed data (including, for example, the surrounding artificial traffic) provides the basis
for comprehensive analysis [70].

Experiments in the driving simulator can be conducted during a very early stage of
product development [70]. The safe testing of critical situations without endangering
the subject allows the investigation of functions which are in early development phases
and which thus are not sufficiently safe, e.g., for test track experiments with subjects
[30, 38, 70]. One important limitation is that only simulated environmental sensors can
be used in driving simulators [70]. As the environment and the surrounding traffic are
virtual, these data are used as input for the system algorithms. Experiments regarding
the sensor performance itself can thus not be conducted in a driving simulator. This can
be an advantage, if no highly developed sensors are available or if any uncertainty due to
the (imperfect) sensing equipment should not distort the results of the experiment.

However, several important points have to be considered if driving simulator experi-
ments are conducted or the results interpreted. Depending on the technological level of
the simulator, an experiment can be very complex and can end up at high costs [38].
Many simulators, especially the more advanced ones including dynamics simulation, are
immovable and thus result in geographic inflexibility of the experiment, which can also
influence the structure of the subject sample [38]. Even highly advanced dynamic simu-
lators have limited abilities concerning realistic driving dynamics [30]. On the contrary,
motion simulation comes at the possible price of motion sickness [30, 38], which results
in loss of data for a fraction of the sample affected. As the environment, and so to say
the “world”, the subject is in are virtual, specific motivational aspects relevant for driver
behavior can be distorted; consequently behavior can differ from that of real traffic [70].
The sometimes “clinical” look and feel of situations can also lead to a lack of perception
regarding criticality and can produce other behavioral artifacts [38]. Therefore, the valid-
ity of the simulation should be proven for every research question [29]. Driving simulator
experiments are always restricted to a limited number of situations [70]. As a consequence,
overall effects of a measure cannot be assessed in driving simulators [129], and experiments
can hardly be regarded as representative, for example, in the sense of overall effectiveness
in a traffic system [86].

The limitations imposed on subject studies by test track as well as driving simulators
have inspired a new approach. The idea of Vehicle in the Loop (ViL) is a combination of the
advantages of track testing with driving simulators while avoiding some of their limitations
[29, 31, 32, 105]. The basis is a real vehicle in combination with a virtual environment
(see Fig. 2.3). The vehicle drives on a test track, but critical objects in the environment
(e.g., other traffic participants) are virtual. The information for the vehicle system under
investigation thus comes from the virtual environment, but triggers real system responses
within the real vehicle. The subject wears an optical head-mounted display. Virtual
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Grundlagen der Fahrerassistenzsystementwicklung

Mithilfe von Sensormodellen ist es möglich, 
dass Fahrerassistenzfunktionen auf den virtuellen 
Fremdverkehr reagieren und somit die Funkti-
on realistisch aber ungefährlich für Mensch und 
Maschine erprobt werden kann. Besondere Vorteile 
ergeben sich bei der Entwicklung von Assistenzsy-
stemen wie etwa einer Notbremsfunktion, da auch 
fehlende Auslösungen des Systems aufgrund eines 
virtuell vorausfahrenden Fahrzeugs sicher und 
reproduzierbar untersucht werden können.

8.3.1 Verkehrssimulation und Visualisierung

In Bild 8-6 wird der Systemaufbau des Vehicle in 
the Loop-Prüfaufbaus gezeigt [6].

Die Verkehrssimulation ist so konzipiert, dass 
mithilfe unterschiedlicher Trigger reproduzierbare 
Spurwechsel-, Brems- und Beschleunigungsmanö-
ver des simulierten Fremdverkehrs hervorgerufen 
werden können. Die Auslösetrigger für diese Manö-
ver können entweder relativ zu anderen Verkehrs-
teilnehmern (somit auch zum eigenen Versuchs-
fahrzeug) oder durch Überfahren einer absoluten 
Ortsposition ausgelöst werden. Der Fremdverkehr 
kann sich auch autonom fortbewegen, wobei hier 

die Längs- und Querdynamik eines Normalfahrers 
nachempfunden wird.

8.3.2 Positionierung des Versuchsträgers in 
der Verkehrssimulation

Zur Darstellung des richtigen Streckenausschnitts in 
der Verkehrssimulation muss die Position des Ver-
suchsfahrzeugs auf der Prüfstrecke genau bestimmt 
werden. Dies erfolgt mithilfe einer Inertialsensor-
plattform mit DGPS-Anbindung. Falls die Anzahl 
der sichtbaren Satelliten oder das Funksignal zum 
Versuchsfahrzeug für die DGPS-Korrekturdaten 
abreißt, wird die Position des Versuchsfahrzeugs 
durch die Inertialsensorplattform weitergeführt. Alle 
Signale zur Fahrzeugposition und den Fahrzustän-
den werden auf einen eigenen CAN-Bus geschrieben 
und stehen somit der Simulation zur Verfügung.

8.3.3 Einbindung des Fahrers mithilfe von 
Augmented Reality

Der Fahrer kann nicht gleichzeitig das gesamte 
Fahrzeugumfeld, so wie es in der Simulation vor-

Bild 8-7: Head Mounted Display und Headtracker im Vehicle in the Loop
Figure 2.3: Vehicle in the Loop: Vehicle, head-mounted display, and head-tracking [30].

objects are projected in an appropriate way into the real spatial environment according
to the contact analogue paradigm. In the augmented mode, some virtual objects are
projected into the real environment. In the virtual mode, everything the subject sees is
virtual [29, 105].

The striking advantage of ViL is the real vehicle including obviously realistic movement
and vehicle responses. The experiments are nevertheless safe, even in subjectively critical
situations. The reproducibility is high. The method has its strongest advantages in safety
critical situations when realistic driving dynamics are of importance [29]. Reported draw-
backs are dimension and weight of the head mounted display, which can result in changed
driver behavior and headache, whereas motion sickness has not been observed [29]. As in
every method, validity is of high importance. Several aspects of driver behavior have been
investigated and compared to responses in “normal” vehicles on a test track. For example,
the following distance to lead vehicles, several reaction times, and general driving patterns
were found to be similar. Acceleration in curves and recognition of the lane of distant
vehicles were found to be not exactly comparable [29].

Another possibility for the testing of both driver as well as system behavior are studies
in real traffic. Obviously, the whole surrounding is realistic and thus provides a maximum
of validity in this respect [38]. Testing is geographically very flexible and allows an inves-
tigation of “normal” driving behavior under various circumstances. It is also possible to
test false-positive system reactions, triggered by a variety of (random) influences [38]. This
can be done with a deactivated system (i.e., open-loop), which means the system works in
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the background and its output is recorded, but no interaction with the driver or vehicle is
allowed [68]. This kind of testing can only be carried out rather late during development
[68], as functions and components must have approval for testing in traffic. Depending
on the function in question, additional safety measures must be included to ensure safe
testing [38]. One main deficit of testing in real traffic is that specific conditions or scenarios
can hardly be triggered and cannot be reproduced easily [29, 38]. A systematic variation
of conditions, such as in driving simulators, requires a high effort [38]. The true-positive
reaction of safety systems cannot be tested at all, as testing must always be safe for every
participant involved [29].

There are several techniques for the analysis of driving behavior in its natural environ-
ment, i.e., real traffic [138]. They are summarized under the term Naturalistic Driving
Study (NDS). An NDS is “[...] the observation of drivers in naturalistic settings (during
their regular, everyday driving) in an unobtrusive way. The essential driver behavior is
what is of interest in these studies, usually in relation to crashes” [138]. If a system is in-
cluded in the observation, it is called Field Operational Test (FOT). An FOT can include
quasi experimental methods and is focused on behavior in combination with a system in
the field [138]. Examples for NDS are the 100-Car Naturalistic Driving Study [54] and The
Second Strategic Highway Research Program (SHRP2) [15]. Some examples for FOTs are
euroFOT [26] or the Integrated Vehicle-Based Safety Systems: Light-Vehicle Field Oper-
ational Test (IVBSS) [167].

The consideration applying to testing in real traffic with regard to subjects also apply
to NDS and FOT. The advantages of these observational methods in real traffic are that
they provide the only way of discovering unexpected behavioral patterns, especially in
combination with a safety system [138]. Over an extended observational interval, they
provide a very reliable source of information on driver behavior [138] and also generate
knowledge on traffic and environment. One crucial point is that these studies allow
for an estimation of exposure in various forms, which is not feasible in the methods
described above [42]. The downsides are that experimental control is extremely limited,
that different methods have been applied in nearly all studies conducted so far, and that
these studies require extremely high efforts and costs [138]. Although these methods
are the only ones presented in this section which are capable of capturing “real-world
effectiveness”, the information derived is in the context of this thesis rather used to derive
models.

2.8 Summary and conclusion

This chapter has summarized the state of scientific and technical knowledge concerning
the evaluation of the pre-crash phase. With respect to the fundamentals of traffic as given in
Chapter 1, basic methodological aspects of evaluation have been discussed. The difference
between accident- and traffic-based testing and the subsequent meaning of possible findings
are discussed. Validity of findings is an overall issue that is of high importance regardless
of the method used.
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The evaluation of safety functions, especially of active and integral safety, is not limited
to true-positive system responses. The second section has elaborated on all possible system
responses, classified in true positive (or negative) and false positive (or negative). The
importance of these terms for system development regarding the operating point as well
as system optimization and the implications for evaluation are discussed.

The review of existing methods of evaluation includes a general description of retrospec-
tive and prospective testing and data sources available. For new systems of active safety a
prospective approach seems nearly always to be most promising. However, the data sources
available have deficits regarding the amount of data as well as depth of information and
quality. Different methods of evaluation have been introduced; especially their advantages
and challenges with respect to validity have been discussed.

Given the objective of prospective evaluation regarding the overall effectiveness of a
measure of active safety representative for a traffic system, the methods discussed above
– ranging from analysis of accident data bases to sophisticated case-by-case simulations –
do not seem to be adequate. Mass simulations covering all relevant varieties (e.g., due to
human behavior) as well as uncertainties in different situations offer an approach to meet
this objective.

As mass simulation seems to be the method of choice for representative evaluation of the
effectiveness of systems of active and integral safety, substantial modeling and input data
are necessary. The last section has introduced different methods used to gain knowledge
needed for implementation in such a simulation. Starting with methods focused on single
components or subsystems, examples of different techniques and expected results have
been given. The next level is the testing of whole systems, for example, on test tracks
or in subject studies. Research on driver behavior is also a vital part, often conducted in
driving simulators, on test tracks, or in real traffic. Exposure and long term studies can be
conducted as FOT or NDS in real traffic and provide valuable input for modeling different
parts of the driver, vehicle and environment system in a simulation or enable validation or
even verification of different parts of a process model, especially for critical situations.
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3 Approach to integrated safety
evaluation: preventive pedestrian
protection

3.1 Process chain for quantitative evaluation of the
pre-crash phase

The concept for the process chain for the evaluation of measures taken before a col-
lision responds to the challenges in evaluating real-world safety benefits using methods
as described in Chapter 2. The objectives and requirements of the process chain can be
summarized as follows:

• The method should predict real-world safety benefits of measures applied in the
pre-crash phase.

• The method should produce a quantitative and representative evaluation of real-
world effectiveness.

• The method should be objective, reliable, valid, reasonable, economic, free of feed-
back, safe, and privacy protecting [203].

• Possible, yet undesired aspects of a measure (such as false-positive actions) should
also be part of the evaluation in order to predict the overall effect on safety as well
as other impacts such as acceptance or efficiency.

The effectiveness of new measures should be quantitatively evaluated during the design
and development phases, i.e., before market introduction, so approaches using retrospec-
tive analysis (e.g., based on accident data) are not applicable. The method must therefore
not only be valid in the sense that it is able to capture the desired effect, but also be valid
in its structure, assumptions, and internal procedures in order to produce a realistic and
meaningful result. Therefore, real-world effectiveness requires statistical representativity.
Classical methods such as subject studies in driving simulators lack this representativity
considering a combination of different possible variations (e.g., subject sample, environ-
mental conditions, etc.). The method of choice to fulfill these requirements is a simulation
technique.

A stochastic simulation can fulfill the requirements of representativity, economy, safety,
and privacy. Reliability and validity of the procedure have to be evaluated. The method
itself has evidently no feedback on the subject under investigation. As no subjects are
involved in the simulation, questions of ethics and reasonableness do not impose limitations.

41



3 Approach to integrated safety evaluation: preventive pedestrian protection

Models Simulation EvaluationD t Models Simulation EvaluationData

Figure 3.1: Process chain for the evaluation of the pre-crash phase: overview.

Stochastic simulation can also support evaluation of “undesired” system actions and their
side effects. For an overall evaluation of safety effects, undesired system actions (i.e.,
false positives or false negatives) can reduce the safety benefit by not addressing relevant
situations or in the worst case possibly provoking new hazardous situations induced by the
system actions.

The general outline of the whole process is illustrated in Fig. 3.1. The basis for evaluation
are data sources of various kinds as input for detailed modeling. Basically, a stochastic
simulation generates virtual traffic including the vehicle with and without the measure in
question as well as other participants, the relevant environmental and boundary conditions.
The results are evaluated regarding positive and negative safety effects of the measure.

Fig. 3.2 gives some details on the different steps of the process chain for the example of
preventive pedestrian protection. Concerning data used, knowledge regarding the driver
and pedestrian behavior (if not extractable from accident data) are taken from literature.
The vehicle and preventive pedestrian protection related aspects are also based on literature
as well as corporate knowledge. The intention is to construct evidence-based models using
well-established statistical information to the greatest extent possible. The experiments
and methods described in Chapters 2 and 4 are intended to provide information necessary
for developing the different models. In case specific parameters are unknown or for some
reason cannot be investigated, sensitivity analyses are utilized to quantify the resulting
uncertainties.

The modeling step contains data preparation and aggregation, as well as development
and assessment of models. The first part of this step is the construction of reference
scenarios (see Section 3.2). Another is an operationally defined model of the preventive
system and its effects on the other participants in the traffic situation (see Section 3.3).
The implementation of the driver, the pedestrian, and the vehicle into an appropriate traffic
model including boundary conditions is briefly described in Section 3.4 together with the
simulation itself.

The simulation provides the software environment in order to process the input data and
correctly manage the interaction of the included models (see Section 3.4). For example,
each single scenario could be simulated with and without the measure in question or the
whole virtual scenario, including a high number of individual situations, could be simulated
one time with and one time without the measure. All relevant characteristics are recorded
for the evaluation step. The main advantage of this procedure is the possibility of a realistic
consideration of all relevant distributions (e.g., driver reaction times, vehicle responses,
sensor reliability, etc.). This characteristic gives the simulation the attribute stochastic.

42



3.1 Process chain for quantitative evaluation of the pre-crash phase

Data sources:Data sources:
• Accident data
• Naturalistic Driving Data (NDS)
• Field Operational Test data (FOT)
• Traffic data
• Experiment data (test track, driving simulator, observation, literature, …)
• Vehicle characteristics
• System characteristics

Models (exposure, processes):
• Reference scenarios
• Driver model
• Vehicle model
• Participant model (e.g., pedestrian)
• Traffic model
• System model
• Interaction effects
• Environment model

Simulation:
• Traffic / critical situations / accidents
• With / without measure
• Consideration of realistic distribution of relevant parameters

Evaluation:
• Crash metric 

(both for accidents and non-accidents)

Figure 3.2: Process chain for the evaluation of the pre-crash phase: details.
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The last step in the process chain is evaluation. The metric used consists of several steps
assessing accident situations as well as non-accident situations on both a microscopic and
a macroscopic level (see Section 3.5).

An important issue concerning the whole process chain is validation. An effective vali-
dation strategy usually begins at the level of a sub-process model. For example particular
behavioral aspects of participants include perception of the pedestrian by the driver or the
distinct driver reaction stages. Composite processes, such as time for the driver to respond
to a complex stimulus, can be simulated by combining these sub-process models and can
be independently validated. On the global level, composite processes are again combined
to produce outcomes of interest and also secondary data, which are subject to validation
as well, e.g., rate of accidents, influence of a change in an environmental condition. As
explained in Section 2 (p. 13), verification may be possible for some subprocesses and pro-
cesses, but hardly for all. The data used for validation and verification can come from
accident statistics, secondary data sources such as other comparable studies, literature or
experiments.

3.2 Reference scenarios for pedestrian accidents

Accidents in general are unique events. Considering the near infinite variability of an
accident in all its parameters, hardly any accident will happen twice the same way. Never-
theless, specific critical situations, which lead to accidents, as well as the accidents them-
selves, do show specific patterns and thus allow for a grouping. As a measure of traffic
safety is aimed at addressing a particular group of situations and not one single accident,
it is necessary to identify the criteria relevant for grouping and to characterize the distri-
butions of key influencing parameters.

The individual accidents are grouped into so-called “reference scenarios”. Reference
scenarios are defined as “a limited number of scientifically derived traffic situations that
represent a major part of the real traffic system” [61]. Basis for the construction of reference
scenarios are in this case in-depth accident data. A detailed description of the data sources,
the development of the methodology as well as the results can be found in [60, 61, 97]. The
grouping uses parameters that have a high influence on the genesis of the critical situation
and describe the pre-crash phase in a meaningful way. In the case of pedestrian accidents
the key criteria are:

• The movement of the vehicle (e.g., moving straight or turning).

• The movement of the pedestrian (e.g., along the street or crossing).

• The site of the accident (i.e., urban, non-urban).

These criteria are used to derive general scenarios and sort them by frequency. The analysis
using German accident data (namely GIDAS [2]) produced the following results (Table 3.1)
for passenger vehicle-to-pedestrian accidents [97]. The results show that a vehicle going
straight with a crossing pedestrian in an urban setting is by far the most frequent scenario
(with about 3/4 of all accidents). Taking the two turning vehicle scenarios (4, 5) together,
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Table 3.1: Top six reference scenarios for pedestrian accidents, sorted by frequency [97].

No. Scenario Frequency

1
Vehicle going straight, pedestrian crossing from the right,
urban

43.5 %

2 Vehicle going straight, pedestrian crossing from the left, urban 28.2 %
3 Vehicle backing up, pedestrian crossing, urban and non-urban 10.0 %
4 Vehicle turning left, pedestrian crossing, urban 7.9 %
5 Vehicle turning right, pedestrian crossing, urban 2.7 %
6 Vehicle going straight, pedestrian moving straight, urban 2.4 %

they become more important than the backing up scenario (3). Scenarios with a pedestrian
moving along the street are not very common, representing less than 2.5 % of all accidents.

The second dimension to determine the importance of reference scenarios besides fre-
quency of occurrence is the severity of the accidents [60, 61], i.e., injury severity and
property damage. Thus, in view of the personal dimension of suffering and tragedy result-
ing from severe injury, more severe accidents should be weighted more heavily. One way
to attribute increasing weight to increasing injury severity is the HARM method [72, 80].
Each level of injury severity is expressed in monetary costs for society (including medical
treatment, rehabilitation costs, reduction in productivity, etc.). As a consequence, more
severe injuries are attributed with a higher factor [60, 61].

Comparing the importance of pedestrian reference scenarios using frequency and severity
it becomes obvious that the overall picture given in Table 3.1 does not change much.
The crossing scenarios (including 1 and 2) stay nearly unaltered, the turning scenarios
become less important, and scenario 6 (pedestrian walking along the street) becomes more
important. Data concerning the severity rating of backing up cases are not included in
[60, 61]. The ranking of the scenarios does not change in this case due to the weighting by
injury severity.

The results for the US show a comparable situation. The crossing scenarios with a
straight moving vehicle are most important (by frequency and by severity), the turning
scenarios are second by frequency and third by severity. The situation could be different
in countries with left-hand driving. Backing up cases are less important or not included
in the US data sets at all, which could be an effect of the sampling criteria applied during
data collection rather than a representation of the accident situation [60, 61]. The same
set of reference scenarios can therefore be used for Germany and the US regarding the
criteria mentioned above.

The scenarios give important information about the critical situation and the constella-
tion of the participants before the accident. In order to design measures of active safety,
more detailed information about the scenarios is needed. Possible parameters of interest
include, e.g., the time of day, initial speed of the vehicle, and collision speed of the vehicle.
It is important to analyze every additional parameter not for all accidents, but per scenario
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individually. Regarding the time of day, it is daylight in 60 % to 80 % of the accidents,
depending on the scenario. The initial speed as well as the collision speed are subject to
more variation depending on the scenario. Detailed distributions of parameters as well as
further information can be found in [60, 61, 97].

The reference scenarios define the boundary conditions for system development. The
ranking of the scenarios provide a weighting criterion for evaluation of effectiveness within
these scenarios. The overall safety effect of a measure can be calculated depending on the
scenario and the specific condition a system is able to operate under (e.g., due to sensors
used).

3.3 Functional demonstrator of a preventive pedestrian
protection system

A functional demonstrator of a preventive pedestrian system is studied within this thesis.
The functions of the vehicle-based system are best explained using the phases of an accident
as given in Fig. 1.2 (p. 3). The preventive system is described by an operational model.
An operational model describes the relevant functional behavior of system components
independently of the precise engineering implementation. The general escalation strategy
before a crash is the following:

• Information (included in the phase of normal driving).

• Warning (if a conflict or critical situation occurs).

• Automatic intervention (if an accident is highly probable and thus practically un-
avoidable).

A set of specific parameters can be found, for example, in Section 4.2 (p. 58).

The algorithm of the system has the following basic components:

• Detection of the situation.

• Interpretation and evaluation of the situation.

• Decision and action.

If a pedestrian is detected by the system, the physically possible trajectories of the vehicle
and the pedestrian are calculated during interpretation and evaluation of the situation.
The possible future trajectories for the vehicle (depending on current speed, maximum
steering angle, friction, and acceleration capabilities) define a spatial region wherein the
vehicle can reach every point within a given time span (different methods of calculation
are explained in [120]).

The pedestrian’s future movement is also predicted using a model. The model was devel-
oped in the “Aktive mobile Unfallvermeidung und Unfallfolgenminderung durch koopera-
tive Erfassungs- und Trackingtechnologie” project (AMULETT) and focuses on physiolog-
ical capabilities of the pedestrian regarding possible change in direction and acceleration
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3.3 Functional demonstrator of a preventive pedestrian protection system

depending on current speed [11, 140, 157, 172, 208]. For any given future point in time, the
model estimates probabilities for the predicted position of the pedestrian. The algorithm
of the system combines both probabilities for the future positions of pedestrian and vehicle
and calculates a collision probability [120].

If a specific collision probability is exceeded, the system decides to act and gives the
appropriate feedback. The decision of the system is rule-based. Bases are the prediction of
the movements of the two participants and the predicted collision probability. The system
can have three different categories of states:

1. Recognizable by the driver: pre-warning, warning or automatic braking.

2. Not recognizable by the driver: Reconfiguration of the brake assist.

3. No system action.

The rules for activation define states in category 1. States in the categories 2 and 3 are
defined in combination with rules for non-activation. The following cases are possible for
category 1:

• A pedestrian is detected within the zone directly in front of the vehicle (in relation
to the vehicle trajectory): The corresponding action is initiated immediately, based
on the current TTC.

• A pedestrian is detected outside the zone directly in front of the vehicle (in relation
to the vehicle trajectory): The predicted collision probability is used for the decision.

The escalation strategy reflects the different levels of danger of the situations and allows
for different activation thresholds in each case.

In order to have an effective system, which does not produce a high rate of undesired sys-
tem actions, rules for non-activation must be included. Possible reasons for a deactivation
of the system are:

• The driver performs an evasive maneuver (steering, braking, accelerating or any com-
bination): The driver seems to respond to the situation and the warning functions
of the system are suppressed (state 1). State 2 stays active in case the driver needs
assistance in his emergency braking maneuver. The evasive maneuver is classified
with limits regarding steering wheel velocity, steering angle, position of the accelera-
tor pedal or acceleration of activation of the accelerator pedal. Braking by the driver
does not automatically mean the driver is reacting to the emergency situation. If
the braking is not sufficient to avoid the accident, the system supports the driver in
braking by increasing the deceleration appropriately.

• The system only operates within a defined speed range.

• The system does suppress any actions for a given period of time after a preceding
system action in order not to confuse the driver by multiple actions within a defined
time span.
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The design and implementation of a preventive system proves to be a challenge for the
evaluation of safety benefits due to its internal complexity. The understanding of the basic
functions and states of the system is thus necessary and must be included in the model,
as they have a large influence on the overall effects.

3.4 Simulation of vehicle-pedestrian interaction

The challenge of an objective, reliable, and representative evaluation of the pre-crash
phase is facilitated by stochastic simulation [121, 126, 145, 165, 178]. Stochastic simulation
methods (often referred to as Monte-Carlo techniques) are well-established, for example, in
physics, engineering, biology, or chemical engineering. The simulation used in this thesis
was developed at BMW Group as part of a development project and is partly described
in [99, 100, 112]. The different steps of the process chain including modeling, simulation,
and the data used are described in this section. To this end, the most important aspects
are highlighted together with their literature related to the simulation. This description
does not purport to be a full documentation of the simulation.

An important consideration for the process chain is that traffic accidents are statistically
rare events and that each accident is a unique event (see Chapter 1). Detailed accident
data are available in various databases and are very helpful in determining the potential of
safety measures. However, critical traffic situations or near-accidents are not included in
any representative databases. Field Operational Tests, like euroFOT [26], or Naturalistic
Driving Studies, like the 100-Car Naturalistic Driving Study [54], collect data of such
events, but often lack representativity for the traffic system as a whole. A possible solution
can be provided, for example, by methods such as fault-tree analysis (see [87, 159]) and
stochastic simulation. The simulation described in the following is a stochastic simulation,
as many of the subprocesses involved include distributed parameters, which are hard to
account for, e.g., in a fault-tree analysis.

The principle of the simulation is to decompose a complex problem, i.e., pedestrian-
vehicle accidents, into processes and subprocesses, which can be understood and well mod-
eled. The qualitative and quantitative modeling of the subprocesses is essential for the
quality of the whole simulation. The microscopic models must be defined and connected
with probability distributions for each possible state. The failures within the processes can
be defined and analyzed. For example, one participant could fail to observe the other and
consequently provoke a conflict. In order to evaluate a change in safety due to a measure
of preventive pedestrian protection, the entire sequence of events leading to a possible
pedestrian accident must be taken into consideration and thus be modeled. This has sev-
eral advantages: A large variety of influences (e.g., impairment, changed environmental
conditions) and system actions (e.g., information or automatic emergency braking) can be
investigated regarding their impact on key processes (e.g., the response time of the driver,
defined as time between first sight of the pedestrian and first activation of the brake pedal).
The stochastic approach also allows for representative sampling, as all relevant parameters
are considered with their distributions, and the sample size itself is basically just limited
by calculation time. At the end of the simulation, the resulting key parameters, either of
an accident or a non-accident (such as impact speed or speed reduction due to a system
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Figure 3.3: Stochastic simulation: Principle and main elements.

action), can be evaluated using a metric (see Section 3.5). The general structure as well
as exemplary single models are described below.

Fig. 3.3 gives the principle and the main elements of the stochastic simulation. The first
step is the generation of the scenario, including the street and traffic. The next part is
the generation of the pedestrian with his attributes. The driver and the vehicle with their
attributes are generated in parallel. The vehicle includes the model for the measure of
active safety under investigation. The simulation is time-based and evaluates each model
and their interactions for each time step. In the end, either a collision happens or the
pedestrian safely crosses the street.

All relevant processes are modeled and linked with realistic probability distributions.
Each parameter is drawn randomly with respect to its probability distribution and possible
dependencies on other factors in the simulation. The implemented scenario is an urban
crossing scenario, as this is the most important one (see Section 3.2). The pedestrian
crosses the street (straight road) from the right to the left from the view of the driver in
the middle of a block. From the pedestrian’s point of view, the traffic comes from the left.
Scenario parameters include, for example, the geometry of the sidewalk, speed limit of the
street or visibility restrictions. The traffic on the road itself is implemented as an exposure
model depending on time of day and day of the week. The traffic state includes traffic
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3 Approach to integrated safety evaluation: preventive pedestrian protection

volume, mean and standard deviation of speed, and also the gaps between the vehicles.

The pedestrian is described by age, gender, height, weight and alcohol level. The dis-
tribution of these attributes can itself depend on context variables, like time of day. The
basic tasks to be fulfilled by the pedestrian in order to cross the street are displayed in
Fig. 3.4. The pedestrian observes the traffic stream and decides when to cross. In this
process, subprocesses for the perception of the distance and speed of the oncoming traffic
as well as an estimation of the time required for crossing are included (these processes each
are subject to human errors). Important is a model of gap acceptance, which compares
the estimated crossing time with the estimated gap with respect to a model of impatience.
The movement of the pedestrian, once he decided to cross the street, is determined by
walking speed and crossing angle (again, each variable is distributed). If the pedestrian
has made mistakes in his initial decision to cross the street (or severely underestimates
the time needed to cross the street or overestimates TTC of the approaching vehicle), it is
possible that he perceives a conflict. In that case, he estimates the acuteness of the situa-
tion and has an emergency response if he feels threatened. This can result in a change of
speed and/or direction of movement.

Once the pedestrian has decided to cross the street and started into a specific gap of
the traffic stream, a driver is modeled in the vehicle at the end of the gap. It can be
that the gap is so large that no interaction at all will occur. In all other cases, the driver
observes the situation (all cognitive processes are basically comparable for the pedestrian
and the driver regarding their structure). The main steps in the driver model are given
in Fig. 3.5. The perception process takes the central field of view into account and the
probability for locating objects within the field of view. This is modeled as a change
in angular size on the retina, which is a function of size of the object, distance, and
relative speed. The reaction processes are modeled following the orient-observe-decide-act
(OODA) paradigm as described in the literature [40, 84, 180]. Along the OODA process,
the driver perceives the pedestrian and classifies the situation with respect to speed and
position of the pedestrian (e.g., comfortable, emergency stopping, etc.). Braking is the only
possible reaction of the driver implemented in the simulation considered here (emergency
evasive maneuvers could be a different type of reaction). The efficacy of the braking itself is
dependent on the time of braking, the intensity, the possible activation of a brake assistance
system (which itself can be dependent on braking intensity), and the underlying physics
of the combination of vehicle and road surface.

The vehicles in the simulation move on a straight street and have dimensions typical for
mid-size vehicles. The braking capabilities are typical for up-to-date vehicles and typical
road surfaces. The implemented preventive pedestrian protection system is thus modeled
as part of the vehicle. Once the pedestrian is visible for the system, the probability
per unit time that the pedestrian is detected by the system is modeled as a constant.
The algorithm of the system includes a prediction of the vehicle’s movement and the
pedestrian’s movement as well as the calculation of a collision probability as basis for a
system action. The system itself has various stochastic components, e.g., inaccuracies
regarding position and speed of the pedestrian. Depending on the TTC calculated by
the system, various actions as described in Section 3.3 can be triggered. The driver, if
confronted with a warning, again performs the OODA loop, with respect to the specific
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Figure 3.4: Pedestrian tasks while crossing the street in the simulation (simplified).
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distributions appropriate for the warning signal issued. These probability distributions
depend on the current characteristics of the driver, the situation itself, and the design of
the warning signal.

The simulation is terminated for each crossing once a collision has occurred or the
pedestrian has safely crossed the street. In a particular scenario and modeling scheme,
about one million crossings include about 2200 collisions (without the preventive system
activated). The reason for a rather high fraction of accidents is that the pedestrian of
course can choose a gap in order to cross the street, but does not have a choice whether to
cross at a safer location, e.g., crossing at an intersection. In addition to that, a model for
impatience changes the pedestrian’s gap acceptance with increasing waiting time. Thus,
the scenario modeled has an increased inherent accident risk compared to safer crossing
strategies.

Validity and plausibility of the simulation results are important aspects in the whole
process. The plausibility of the various individual models was validated by considering
the overall effects in comparison to accident data within the subsample of accidents
(see Section 6.1, p. 135).
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3.5 Evaluation of safety benefits

3.5 Evaluation of safety benefits

Evaluation of the safety benefits or – speaking more generally – the change in safety
due to a specific measure is carried out after the simulation itself. Two parts make up the
process of evaluation: methodology and metric. The metric in this case is closely linked
to the method used for the simulation itself. Before giving examples of the dependencies
between metric and methodology, a general explanation of the metric is given, which can
be applied regardless of the simulation method.
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Figure 3.6: Different views and levels of an evaluation metric for active safety.

Fig. 3.6 gives different views and levels of an evaluation metric for active safety as well
as exemplary indicators. First of all, there are two views: microscopic and macroscopic.
The microscopic one focuses on a single event. This event can be an accident or also a
non-accident (e.g., an avoided accident or a traffic situation in general). For every event
there are three levels of evaluation:

• The first level is the physical level. An accident can be evaluated by comparing, e.g.,
the impact speed or the kinetic energy at the moment of collision. For a non-accident
event, e.g., minimum distances or minimum TTC can used as safety indicators.

• The second level is the physiological level. It only exists in accidents and uses in-
jury severity as metric. Several scales for injury severity are commonly used (see
Section 5.1). The item of interest can be a single body part, a body region or the
overall injury severity of the person.
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• The third level is the economic level. An accident can be evaluated in economic terms.
An important distinction differentiates between medical costs (per single injury or
per person) and societal costs, including medical treatment and rehabilitation costs,
as well as the long-term reduction in productivity associated with the accident (see
also HARM methodology, Section 3.2, p. 45).

The second view is macroscopic. In case more than one event is evaluated, an aggregation
of the single events is possible in order to assess the overall effects. If the sample under
investigation happens to contain accident and non-accident events, an accident rate or
prevention rate can be calculated as ratio of frequency of accidents (or one minus accidents)
with a measure by frequency of accidents without the measure. Summary statistics can
also be computed in non-accident events by statistically evaluating the indicators defined
on the physical level. In comparison to a baseline without measure the change due to a
specific safety measure can be evaluated at the desired level of detail. Within the accident
group, rates for specific injury severities as well as a fatality rate can be estimated.

The level of choice depends on the research question and the special interests of the
researching institution. The physical level may be adequate and sufficient for, e.g., the
comparison of different automatic emergency braking systems during the design and de-
velopment phase. The physiological level is adequate if the protection potential of measures
regarding injuries is under investigation. Questions related to insurance issues or subsidies
could be more oriented toward an overall economic evaluation.

As mentioned above, the appropriate metric depends on the research question as well
as on the methodology used in the experiment. Considering, for example, a hardware test
with dummies, the metric has to be based on the readings of the dummy. Commonly used
physical measurements such as the Head Injury Criterion (HIC) can then be translated
into an injury probability, which is a well-known procedure [6]. A comparable approach
is feasible using simulation. In a finite-element simulation or a kinematic simulation of
collisions, a human model, e.g., the Total Human Model for Safety (THUMS), can be used
[205].

The two different ways of measurement, i.e., dummy and virtual human model, provide
physical data and utilize injury probability models to derive information about injury
severities. Another approach is based on the change in injury level, using in-depth accident
data and information about the injuries. The so-called Injury Shift Method evaluates the
change in single injuries due to a particular measure [134]. Given a statistically significant
amount of injury data in the data set, this method allows for a fast calculation of benefits,
but compared to other methods mentioned relies on rather crude assumptions as elaborated
above (see p. 27).

State of the art for evaluation on the physiological level are injury probability models
(in case detailed collision simulations are not available or feasible). In many cases, e.g.,
if used in combination with a stochastic simulation, those models provide a translation of
physical measurements at the moment of impact into physiological quantities. Considering
pedestrians, models currently available are based on the person level (overall injury sever-
ity) and are mainly univariate using impact speed of the vehicle as explanatory variable
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[94, 160, 162] (see Chapter 5 for a detailed description and new multivariate approaches).

The third level, the economic evaluation, considers injuries as central part of the evalu-
ation. Monetary costs can be attributed either on the level of single injuries [206], on the
level of body regions [80], or overall for the whole person [28]. Some references [28, 187]
give other factors related to injuries (e.g., medical, market productivity, legal costs) and
non-injuries (e.g., travel delay, property damage).

There are several metrics at different levels for the evaluation of active safety. Depending
on the research question and the method used, the quality of the assessment can vary. For
example, injuries coded in an in-depth data base have a different reliability than injury
probabilities given by probabilistic models or economic costs, which use injury information
as basis. Stating the protection of the human as key objective, a metric based on injury
severity seems to be appropriate.

3.6 Conclusion

This chapter discusses a process chain as solution to the challenge of predictive evaluation
of active safety. Chapter 2 gave an overview of the current state of scientific and technical
knowledge. The objectives as formulated at the beginning of this chapter prove to be
hard to fulfill by currently available approaches. The approach presented here includes
the modeling of a given situation in a traffic-based simulation using various data sources.
The method of choice to achieve an objective and representative evaluation is a stochastic
simulation connected with an appropriate metric.

The process chain starts with a reference scenario for the situation in question. For
example, in the case of pedestrian protection, the most important scenario is a pedes-
trian crossing from the right in an urban setting (for Germany and the US). A functional
demonstrator of a preventive pedestrian protection system is defined to test the process
chain with a measure of active safety. The system detects the pedestrian, warns the driver,
preconditions the brake assist, and as a last resort brakes automatically.

The traffic-based stochastic simulation of the crossing event used here has been devel-
oped in an internal project at BMW Group and was summarized here with respect to its
structure and functions. The basic idea is a stochastic modeling of all processes from the
pedestrian’s decision to cross a road in the given scenario to the (avoided) accident. Each
process is linked with appropriate probability distributions (mainly from literature). The
pedestrian and the driver of the vehicle are implemented with respect to their individual
attributes (e.g., age). The simulation results in uncritical crossings and in this specific sce-
nario in about 0.2 % collisions. Overall effects in the accident events have been compared
to data available in accident data bases to make a step towards validation of the model.
The simulation described includes the whole process chain.

Besides having given an analysis of the state of the art in evaluating active safety and
describing a possible solution to the problem, this thesis contributes to the investigation
of driver behavior using an experiment in the dynamic driving simulator (see Chapter 4).
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The focus is also on the evaluation of the consequences of a vehicle-pedestrian collision:
therefore a methodology for construction of injury probability models is developed (see
Chapter 5). In the end, the results of the whole process chain are described and illus-
trated using a functional demonstrator of a preventive pedestrian protection system (see
Chapter 6).
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4 Methodological findings on research
on driver behavior

4.1 Objective

The driver and his behavior are of high relevance for the genesis of an accident (see
Section 1.1, p. 1) as well as for the evaluation of changes in traffic safety by means of
simulation (see Chapter 3). The change in driver behavior (e.g., particular reaction times)
due to an active safety system can be derived by comparing use versus non-use of a system
and serves as input for simulations as described in the previous chapter. To this end, driver
behavior in response to a preventive pedestrian protection system (short: system) and his
acceptance of specific system actions (especially false-positive responses) are investigated.
The contents of this chapter are also partly included in [98, 154].

Due to the nature of preventive systems, which rely on information from environmental
sensors, and the uncertainty of the situation itself (e.g., prediction of the pedestrian’s
movement before impact), a preventive protection system will produce false positives. The
acceptance of false system actions by the driver is indirectly related to safety: If a system
has a high rate of false positives (and therefore a very low acceptance by the driver), and
if a possibility for deactivation of the system is available, the driver will possibly switch
the system off and thus reduce the actual safety benefit to zero.

A key issue in the context of false-positive system actions concerns which parameters
strongly influence the acceptance of the driver. These parameters can be considered espe-
cially during the design phases and assessed as far as possible in a simulation regarding
frequency of occurrence. The “negative” aspect of false system actions as well as a low
acceptance of those could be – at least partly – compensated for by the benefit of the sys-
tem and the high acceptance of pedestrian protection itself. However, the correct action of
such a system will hardly be experienced by any driver, as the probability of a pedestrian
accident is extremely low (see Section 1.2). The relationship between level of hazard of
the situation, as perceived by the driver, and plausibility of the system action is also an
important issue.

A subject study has been conducted in a driving simulator in order to investigate these
key questions. The study focuses on acceptance of a preventive pedestrian protection
system by the driver. A key methodological question is whether a highly critical accident
situation including the subsequent accident can reliably and repeatably be conducted in a
driving simulator. The key methodological question, whether a near-accident situation can
reliably be reproduced in a driving simulator, is combined with a study on the potential
safety benefit of a prototypical preventive pedestrian protection system.
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The study was conducted in April and May 2010 using the dynamic driving simulator
at BMW Group’s Research and Innovation Center in Munich. Details regarding test
design, subject sample, findings as well as further implications are discussed in this chapter.

4.2 Test design and subject sample

Overall design

The study was designed as a “naive” subject study using the dynamic driving simulator
of the BMW Group in Munich. The subjects were neither informed about the specific
research questions, i.e., the presence of a preventive pedestrian protection system, of the
study nor the general setting. The official invitation announced a study on urban driving.

The preventive pedestrian protection system implemented in the experiment has the
following key characteristics [154]:

• Optical pre-warning of the driver. Earliest at TTC = 2.0 s.

• Acoustical and optical warning. Earliest at TTC = 1.5 s.

• Automatic braking of the vehicle at 4m/s2. Earliest at TTC = 0.9 s.

The brake assist is reconfigured after the onset of a warning. In case of a driver-initiated
braking after a warning, the desired deceleration is automatically set to 10.0m/s2 in order
to achieve the maximum possible deceleration (the actual deceleration is dependent on
the friction coefficient and the tire-surface combination). It is important to note in this
context that a deceleration can only be realized with a time delay following the activation
of the brake pedal or a request by the system. It can be assumed that a deceleration of,
e.g., 10.0m/s2 needs about 0.3 s before the actual level of deceleration is reached [154].

An automatic action of the system only takes place if the driver has not reacted by
evasive steering or braking before the corresponding TTC threshold. If the driver is already
braking, but below the specified deceleration, the deceleration is increased by the system
to the specified value. If the driver is already braking harder than the system would,
driver-initiated braking will not be altered by the system.

The attention of the subjects should not be directed towards pedestrians during the
test. To this end, all relevant situations were embedded into an interesting urban setting
with frequent occurrence of pedestrians and considerable variety in the scene itself. The
drivers had experienced substantial driving time without any hazardous (and especially
noticeable) situations in order to bring them into a “normal” driving mode and to have a
realistic chance to confront them “unprepared” with a traffic conflict. Thus, the presence
of a pedestrian did not automatically imply any hazard or relevant situation. In this con-
text, many non-critical (so-called “normal”) situations were embedded in the test setting.
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Driving data as well as subjective ratings and comments were collected during the experi-
ment.

The experiment lasted about 110 min. and was structured into the following segments
(the situations are described in detail below):

• Welcome; collection of demographical data.

• “Acclimatization” to the driving simulator (≈12 min.):

– Start on a rural road, then transition to urban environment.

– Two normal situations: Parking bay. Pedestrian crossing.

• Experimental section (≈20 min.):

– Urban environment.

– Four normal situations: Parking bay (2x). Pedestrian crossing (2x).

– Two highly critical crossing situations with and without system. The sequence
of those two situations is varied between subjects.

• Interview.

• Subjects are instructed regarding research questions and the specific functions of the
system under investigation.

• Acceptance section (≈22 min.):

– Different false system actions are presented to the driver.

– The sequence is not varied between the subjects.

• Interview.

• “Clearance test”: Artificial situation for investigation of the normal passing clearance
for a pedestrian (≈5 min.).

The subject sample was reduced to 20 persons for the acceptance section and the clearance
section. The subject sample itself is introduced after a discussion of the specific situations.

Test design specifics: normal situation

The normal situations cannot be identified by the subjects as experimental situations
as they are implemented as common uncritical interactions with pedestrians without any
system actions involved. The data collected are used to gain knowledge about the normal
interaction and draw conclusions on the perception of discomfort or hazard while interact-
ing with pedestrians.

In the first normal situation, the driver has to pass a pedestrian walking beside the street
along a parking bay (Fig. 4.1). The lateral position of the pedestrian is different in each
of the three occurrences of the situation in the experiment:
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P-1. Walking on the road marking.

P-2. Walking left of the road marking (0.2 m left compared to P-1.).

P-3. Walking right of the road marking (0.5 m right compared to P-1.).

The second normal situation is a common crossing scenario where a pedestrian crosses the
street from the right (see Fig. 4.2). A key parameter characterizing the mitigation of a
potential conflict is the time-to-collision (TTC), which is defined here as the distance to
the projected collision point divided by the current vehicle speed. The TTC when the
pedestrian enters the street in this situation is varied during the experiment:

C-1. Low TTC: approx. 5.4 s.

C-2. Medium TTC: approx. 6.6 s.

C-3. High TTC: approx. 7.8 s.

The TTC values here represent the average for specific situations over all subjects. There
is a small variation between the subjects due to a technical characteristic of the driving
simulator: Pedestrians have a given (unalterable) motion characteristic where the starting
point, the final speed, and the trajectory can be defined. That means that once the
pedestrian is in motion, his speed cannot be adjusted depending on the current motion
parameters of the vehicle. As a result, the actual TTC where the pedestrian steps on
the street varies due to small deviations in vehicle speed between the subjects while
approaching the pedestrian.

Test design specifics: clearance test

20 randomly chosen subjects participated in the clearance test. The task was to pass
10 pedestrians each. This task resembles an artificial (i.e., unrealistic) situation, where
the pedestrians walk on an empty highway segment towards the vehicle (see Fig. 4.3).
Each pedestrian has a different lateral clearance to the road marking. The drivers are
instructed to drive at 50 kph and pass the pedestrian to the left at a clearance that is still
acceptable for them and to ignore all road markings.

Test design specifics: acceptance

The acceptance of false system actions was investigated in the second part of the ex-
periment. All subjects were informed about the experiment and the system and were
confronted with several situations that could trigger undesired system responses. Seven
situations selected by an internal expert panel were presented to the subjects. The subjects
had to give ratings

• regarding hazard of the undesired system action for the traffic situation as a whole
and

• their individual acceptance of the false system action.

60



4.2 Test design and subject sample

Figure 4.1: Normal situation “passing” with variations P-1 to P-3 (from top to bottom).
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Figure 4.2: Normal situation “crossing”. Figure 4.3: Clearance test on the highway.

The system response in those situations was triggered in order to obtain a reliable pre-
sentation for every subject. In order to get a more realistic feeling in some situations, the
TTC of the optical pre-warning was set earlier than described above. After each situation,
the subjects had to stop the vehicle and had to go through an interview. The situations
are described in detail in the following:

Situation 1 (Fig. 4.4): False system response due to a pedestrian on a traffic island : The
driver approaches an urban environment at approx. 60 kph. The system reacts because of
a pedestrian standing at the edge of a traffic island. The pedestrian is directly in front of
the vehicle at the moment of the warning.

Situation 2 (Fig. 4.4): False system response while negotiating an evasive maneuver due
to a pedestrian on the left side of the street: The driver has to make an evasive maneuver
because of a parked car in his lane. The system reacts because of a pedestrian standing at
the edge of the left sidewalk.

Situation 3 (Fig. 4.4): False system response due to a pedestrian on the left side of the
street while negotiating a right curve: The driver follows the street in a curve to the right.
The system reacts because of a pedestrian walking on the left sidewalk.

Situation 4 (Fig. 4.5): False system response due to a pedestrian on the opposite side
of an intersection while negotiating a right curve: The driver follows the street in a right
curve while crossing an intersection.

Situation 5 (Fig. 4.5): False system response due to a pedestrian on the opposite side
of a T-intersection: The driver approaches a T-intersection and the pedestrian is standing
on the opposite sidewalk directly in front of the vehicle.

Situation 6 (Fig. 4.5): False system response due to a pedestrian walking at the side of
the street in a parking bay : The driver passes the pedestrian and the system reacts.
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4.2 Test design and subject sample

Figure 4.4: Acceptance situations: Traffic island (1); Evasive maneuver (2); Curve (3), (from
top to bottom).
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The situations described above represent undesired actions of the system. The next
situation does not present an undesired system action. In this situation, the driver makes
a right turn at an intersection while a pedestrian is running across the street from behind
(Fig. 4.6). The system does not show any reaction; this is a situation with a false-negative
response. The question here is whether the subjects expect the system to handle this
situation or not.

Test design specifics: highly critical situation

The last situation included in the experiment was a highly critical situation. The subject
drives for a long time through the city and has to fulfill a secondary task several times
without anything happening. At the end of the first half of the experiment, the driver is
confronted with a highly critical situation, which represents the most common real-world
accident scenario (see [61] or Section 3.2, p. 44). A pedestrian is crossing the street from
the right (Fig. 4.7). The presence of other pedestrians could have an influence on the
situation, but is not recorded in accident data. At that time, the driver is working on the
secondary task (see description below). The situation has to be managed twice by each
driver (with and without system). The sequence of the highly critical situation was varied
between the subjects (regarding the system), i.e., 20 persons had the first highly critical
situation with the system, the other 20 without. The actual number of measurements per
situation can vary as not every person went through the whole experiment.

Test design specifics: secondary task

The secondary task is a visual loading task, which does not force the driver to take
his hands off the steering wheel. The loading task has been successfully used in previous
internal studies. It is not interruptible and produces a constant visual distraction. The
loading is constant and it is hardly possible to develop individual strategies for solving
the task. The driver is confronted with single letters displayed in the central information
display of the vehicle. Each letter is displayed for a very short time, which makes constant
monitoring by the driver necessary. As soon as a number appears instead of a letter, the
driver has to press a button on the steering wheel within 1 s. The beginning of the task is
introduced by an acoustical signal. The task appears several times within the experiment
and lasts about 1 min. each time. The task is used to produce visual distraction and
“prepare” the subject in a better way for the critical situation.

Subject sample characteristics

The subject sample consisted of 40 persons, aged 22 to 60 years (average 37.3 years,
SD 10.9 years). 13 persons were female, 27 male. All subjects were BMW Group employees
not working or acquainted with driver assistance or systems of active safety.
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4.2 Test design and subject sample

Figure 4.5: Acceptance situations: Intersection curve (4); T-intersection (5); Parking bay (6),
(from top to bottom).

65
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Figure 4.6: Acceptance situation: pedestrian running at intersection.

Figure 4.7: Highly critical situation: pedestrian crossing from the right.
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4.3 Acceptance of the system in specific situations

The acceptance of a preventive system is an important criterion during development.
As long as the future driver of a vehicle has the choice to decide whether to have or not
to have a system, his acceptance will influence his decision to use or deactivate the system
(if possible) or buying it again. As a consequence, acceptance does influence the safety
benefit of a system, especially, if the system can be deactivated (in this case due to low
acceptance). This section explains the findings on acceptance from the driving simulator
study.

Acceptance is not only limited to undesired system actions, e.g., false positives or false
negatives, but also includes desired actions (e.g., correct positives). Two different ap-
proaches are used to gather information about the drivers’ acceptance:

• The first is whether to determine the level of discomfort or perceived hazard while
interacting with pedestrians without any system. This level can be used as a thresh-
old, separating a system action which is desired or understood as correct and helpful
by the driver from one which is regarded as unnecessary or annoying. Key character-
istics are the TTC at the beginning of an (uncritical) evasive maneuver, the TTC at
the beginning of an (uncritical) braking maneuver, and the lateral passing clearance.

• The second approach focuses on typical situations involving different false-positive
system actions as well as a false-negative system action (i.e., missed alarm). These
are the acceptance situations mentioned in the previous section. Key characteristics
are subjective ratings on acceptance of the false alarm and perceived hazard of the
situation.

The results include lateral and longitudinal behavior. The lateral component is evaluated
using the normal situation “passing” and the clearance test. The drivers were instructed
to drive 50 kph and pass the pedestrian. The lateral passing clearance is defined as the
distance between the side of the vehicle and the near side of the pedestrian (assumptions:
vehicle width is 1.79 m and pedestrian width is 0.60 m). Fig. 4.8 shows that the pedestrian
is passed in an average lateral clearance between 1.43 m and 1.60 m (SD 0.23 m to 0.35 m).
The smallest variation, referring to the standard deviation, is seen in the situation “walking
right of the road marking” and the largest in the situation “walking left of the road
marking”; nearly as large as in the clearance test. The last effect can be attributed to
the synthetic nature of the clearance test. The differences in the mean are non-significant,
using t-tests (situations: 1 versus 2: t = 1.26; 2 versus 3: t = 0.94; 1 versus 3: t = −0.03).
For an introduction on t-tests see Subsection 5.2.5, p. 87.

The drivers also made an evasive maneuver to achieve the lateral clearance as well as
changed their longitudinal behavior. The pedestrian was visible from far away, so the situ-
ation was regarded as uncritical and the drivers had as much time to react and adapt to the
situation as they liked. Fig. 4.9 gives the TTC at the beginning of a steering reaction. The
persons started to steer on the average at a TTC between 2.7 s and 3.0 s. In condition P-2

67



4 Methodological findings on research on driver behavior
D

is
ta

n
ce

 [
m

]

2.50

2.00

1.50

1.00

0.50

0.00

Clearance testWalking right of the 
road marking (P-3)

Walking on the road 
marking (P-1)

Walking left of the 
road marking (P-2)

Seite 1

Figure 4.8: Lateral clearance between vehicle and pedestrian in the normal situations “passing”
and the clearance test. The circles in the boxplots indicate near outliers.

(i.e., the lowest lateral clearance of the pedestrian to the street) the drivers reacted 0.3 s
earlier (SD 0.42 s to 0.62 s). The differences in the mean are non-significant, using t-tests
(situations: 1 versus 2: t = −1.87; 2 versus 3: t = −0.56; 1 versus 3: t = −1.48).

The longitudinal reaction in the “passing” situations depended highly on the position
of the pedestrian. A braking reaction is observed in

• 1 of 29 situations for condition P-3 (i.e., largest initial clearance);

• 7 of 35 situations for condition P-1 (i.e., middle initial clearance);

• 19 of 34 situations for condition P-2 (i.e., smallest initial clearance).

In order to have sufficient data for interpretation only condition P-2 was used for analysis
of longitudinal driver reactions. The drivers started braking on the average at a TTC of
4.10 s (SD = 0.61 s).

The longitudinal behavior was further investigated using normal situation “crossing”.
The brake response in this situations is also dependent on the initial TTC of the situation
itself.

• At the lowest TTC (approx. 5.4 s; condition C-1), 35 of 35 persons braked.

• At the medium TTC (approx. 6.6 s; condition C-2), 18 of 38 persons braked.

• At the largest TTC (approx. 7.8 s; condition C-3), 12 of 35 persons braked.
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Figure 4.9: TTC to the pedestrian at the beginning of the steering action in the normal
situations “passing”.

The initial reaction, i.e., taking the foot away from the accelerator pedal, was hard to
evaluate, as many persons in this simulator experiment did not constantly apply the ac-
celerator pedal. As a consequence, the results could be distorted by simulator artifacts
and are therefore not discussed. The start of braking is a valid indicator for this situation
and is shown in Fig. 4.10. The average TTC is 4.07 s (SD = 0.90 s) for condition C-1 and
3.82 s (SD = 1.65 s) for condition C-2. Due a low number of measurements (i.e., braking
reactions), the results presented exclude condition C-3.

The results shown above allow for an interpretation concerning acceptance of possible
system actions. The findings are consistent and show a stable lateral passing clearance
around 1.5 m independent of the initial conditions or the test setting. The steering reaction
is consistent and shows a reaction around 3 s TTC. Start of braking as longitudinal reaction
was observed around 4 s TTC. As the situations were uncritical and the drivers had as
much time to react as they liked (the pedestrians were visible long before the TTC values
mentioned above), it can be concluded that these values indicate a comfort zone which
the drivers like to maintain. It does not mean that they feel uncomfortable immediately
below those values or that the situation is regarded as hazardous immediately below those
values.

It can be concluded from the findings in the normal situations that a system configuration
as described above will be accepted quite well. The system reaction (i.e., acoustical warning
at a TTC of 1.5 s or automatic braking at a TTC of 0.9 s) is at a TTC where nearly all
drivers would have reacted (using the results presented above) if they had the chance to
perceive the pedestrian. This is also confirmed by the results of the interview regarding
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Figure 4.10: TTC to the pedestrian at the beginning of the braking reaction in the normal
situations “crossing”.

the highly critical situation (see next section). It can also be concluded that at higher
TTC levels than discussed using Fig. 4.10, nearly no drivers feel a necessity to react to the
situation.

The next part focuses on the investigation of the acceptance situations mentioned above.
The research question is the subjective perception of hazard and acceptance of false system
actions in these situations. The subjects were suddenly confronted with the situations.
Out of the 20 subjects, 10 got false warnings and an automatic braking (in case the TTC
values became small enough) and the other 10 got only a warning without an automatic
braking as system response. The system response was triggered in the situations to get
a reliable presentation for as many subjects as possible. This part of the experiment
has the characteristic of a presentation and is meant to produce qualitative insights into
acceptance of false system actions, not to produce an amount of data that is statistically
usable. A system ready to go into mass production would handle most of these situations
by, e.g., predicting the trajectory of the vehicle, predicting the pedestrian’s movement or
calculating a collision probability.

The first rating uses a 100 % scale to investigate the perceived hazard of the situation
(where 100 means maximum hazard and 0 minimum hazard). The subjects were instructed
to rate the hazard for the whole surrounding traffic, not for the pedestrian alone. The rat-
ing regarding hazard of the situation is displayed in terms of the median in Fig. 4.11, and
the corresponding ranks are given in Table 4.1 for both conditions (i.e., warning only and
full system response). Whereas the absolute value in this scale cannot be interpreted, the
relative differences do have a meaning. The situations “curve”, “traffic island”, and “inter-
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Figure 4.11: Rating “hazard of the situation”. Medians.

Table 4.1: Rating “hazard of the situation”. Ranks.

Traffic Evasive
Curve

Intersection
T-intersection

Parking
island maneuver curve bay

with automatic
2a 4 2 1 5 3

braking
warning only 1 3 6 4 5 2

a“Traffic island” shares the same rank with “Curve”.

section curve” were rated as most hazardous (followed closely by “parking bay”, “evasive
maneuver”, and “T-intersection”). The subjects explained this by the unpredictability of
the system reaction (“curve” and “intersection curve”) and by the current speed of the
vehicle (“traffic island”). Comparing both conditions, the rating differs most for “curve”
and “intersection curve”. A possible explanation is that automatic braking irritates the
subjects more while negotiating a curve than a straight road. It can be seen in every
situation that automatic braking is regarded as more hazardous than only a warning (ex-
ception: “T-intersection”).

The second rating focuses on acceptance of the undesired system response. It also uses
a 100 % scale, where 100 stands for lowest acceptance and 0 for highest acceptance. As
explained before, only relative differences do have a meaning. Fig. 4.12 gives the medians
and Table 4.2 the ranks for the situations and both conditions. The lowest acceptance
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Figure 4.12: Rating “acceptance of false system action”. Medians.

Table 4.2: Rating “acceptance of false system action”. Ranks.

Traffic Evasive
Curve

Intersection
T-intersection

Parking
island maneuver curve bay

with automatic
4 2 1 3 5 6

braking
warning only 5 3 1 4 2 6

can be observed in the situations “curve”, “evasive maneuver”, and “T-intersection”. The
subjects provided two explanations for this:

• The pedestrian does not move and thus a real hazard, i.e., the need for a system
action, cannot be seen.

• The pedestrian is on the far side of the street, and the resulting hazard for the
pedestrian is also seen as low.

There are large differences between the conditions full system and warning only, especially
in the situations “traffic island” and “parking bay”. Braking in front of the traffic island
surprises and confuses the subjects. Automatic braking while passing the pedestrian next
to the parking bay is also highly unacceptable compared to warning only, as the pedestrian
has nearly been passed by the time the braking sets in.

The last acceptance situation (i.e., running pedestrian at intersection) has to be in-
terpreted separately, as it does not present a false system action but a miss (i.e., false
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negative). The research question was whether the subjects expected the system to act in
this situation or not. 12 out of 20 subjects did not expect the system to act in this situ-
ation. The rest mentioned that adequate sensors would be able to detect the pedestrian,
and thus a system response would be possible. The rating revealed that the hazard of the
situation is regarded as low, and acceptance of the lack of an action is quite high. This
can be explained by a relatively low vehicle speed while turning and a high attentiveness
to the surrounding traffic by the driver.

The acceptance part of the experiment can be summarized as follows. The normal
situations produced stable and consistent results giving the lateral clearance while passing
a pedestrian, the TTC values while approaching a pedestrian or conducting an evasive
maneuver. The results give a strong indication about the upper boundary for system
actions regarding acceptance. If a system acts at higher TTC thresholds or a greater
lateral clearance, the drivers will most likely have a low acceptance, because they would
not see a need to react.

The presentation of false system action gives information about influencing factors for
the perceived hazard of a traffic situation and the acceptance if a false system action occurs.
For the perceived hazard, these factors seem to be predictability of the false system action
and vehicle speed. For the acceptance of false system actions, the movement and position
of the pedestrian relative to the vehicle are important. Acceptance also decreases with
increasing vehicle speed.

As the questions investigated can have an influence on the safety benefit of the system,
the intervention strategy of the system need to be designed accordingly.

4.4 Driver behavior in highly critical situations

The first part of the experiment included a highly critical situation. The research ques-
tion is whether a near-accident situation can be reliably reproduced in the driving simulator
using a test design as described. In case the situation works for most of the subjects, a
change in driving behavior due to the preventive pedestrian protection system (as described
above can be quantified. A between-subjects design is used for the experiment. Half of the
subjects experience the situation with the preventive system first, the other half without
the system. The next time the situation is repeated with changed experimental conditions.
It is important to note that the results from the second situation could be distorted by the
fact that the subjects are not unprepared anymore. After the first highly critical situation,
their behavior could change. As a consequence, the results are given for the first situation.

As the experimental conditions were varied between subjects, the first step is a com-
parison of the initial conditions while entering the situation. The subjects were instructed
to drive 50 kph. The actual initial speed (independent of the experimental situation) was
51.92 kph (SD 4.10 kph) without system versus 52.39 kph (SD 4.80 kph) with system. The
differences in the mean are non-significant using the T statistic (t = −0.41); the initial
vehicle speeds are thus comparable. The TTC when the pedestrian reaches the curb was
on the average 1.90 s (SD 0.26 s) (only first situation). As discussed in the previous sec-
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Figure 4.13: Distribution of driver reactions in the first situation.

tion, the pedestrian cannot be controlled dependent on the movement of the car. As a
consequence, the TTC at the curb shows some variation between the subjects.

The following reactions in this situation are possible in general:

• The driver perceives the pedestrian and reacts before the system does. In this case,
the system is deactivated.

• The driver gets the optical pre-warning and reacts.

• The driver gets the pre-warning and the acoustical warning and reacts.

• The last possible reaction of the system, an automatic braking, was not observed in
the experiment.

Key findings include the time of driver reaction with respect to the system action, the
TTC at the activation of the brake pedal, the time between the acoustical warning and the
activation of the brake pedal, and the maximum deceleration. In addition the perception
of the different warning signals by the drivers was investigated.

Fig. 4.13 shows the distribution of driver reactions in the first situation. 8 of 19 drivers
braked after the two warnings. How critical the situation became during the test is indi-
cated by the number of actual collisions. Considering the first situation only,

• 2 of 19 drivers had a collision using the system and

• 2 of 18 drivers had a collision not using the system.
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Figure 4.14: TTC to the pedestrian at activation of brake pedal by the drivers.

These numbers indicate that there is no difference in the result due to the experimental
conditions. The impact speed cannot be evaluated due to low number of collisions. The
distance to the pedestrians in all avoided collisions is comparable for both conditions (non-
significant difference in the mean, t = −0.20). As these results seem surprising given the
design of the experiment and functions of the system, possible reasons are explained and
discussed in the following.

The situation was constructed based on the relevance of real-world accidents (see
Sections 3.2 and 4.2). The subjects were visually distracted by a secondary loading task,
which was calibrated using expert knowledge from previous experiments. The whole tim-
ing of the situation was optimized in a pre-test with several experts and dummy subjects.

Fig. 4.13 shows that 11 of 19 subjects reacted before the acoustical warning. Fig. 4.14
gives the TTC to the pedestrian at the activation of the brake pedal. Regarding the first oc-
currence of the situation, the driver reacted on average a bit earlier with the system (1.55 s
versus 1.44 s), but this difference in the mean is non-significant (t = −0.88). Fig. 4.15
gives the duration in time from the onset of the acoustical warning (at an earliest TTC of
1.50 s) and the activation of the brake pedal. As the maximum is 0.075 s, it is obvious that
the driver reaction is no reaction to the acoustical warning. It must be concluded that the
driver observed the pedestrian earlier during the test and decided to brake. Whether the
reaction was triggered by the optical warning cannot be assessed with certainty. Although
theoretically possible (as the optical warning is given at an earliest TTC of 2.0 s and so
takes place 0.5 s before the acoustical one) it seems unlikely that this explains the moment
of reaction of the driver, since only 5 subjects reported that they had observed the optical
warning.
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Figure 4.15: Time between acoustical warning and activation of the brake pedal by the drivers.

Considering the reaction of the drivers itself, the following can be stated. All drivers
applied the brakes in reaction to the imminent danger. Some drivers also made minor
changes in their lateral position. The brake reaction itself is of interest, as the system
includes a brake assist, which gives the driver an acceleration of -10.0m/s2 in case a warning
was issued and the brake pedal was activated. Fig. 4.16 shows the maximum deceleration
for the first situation for both experimental conditions. Regardless of the condition, nearly
all drivers were able to realize a deceleration beyond 9m/s2; without system the mean was
10.39m/s2 (SD 0.60m/s2) and with system 10.07m/s2 (SD 0.63m/s2).

Accident statistics reveal that drivers do not realize the maximum possible deceleration
even in accidents (3.85m/s2, SD 3.33m/s2). The accident statistics thus indicate that a
brake assist, as implemented in this system, has a great potential (Fig. 4.17).

A second effect is connected to this phenomenon. The duration from beginning of brake
pedal activation to the maximum deceleration is also non-significantly different considering
the means (t = −2.01), see Fig. 4.18. The experiment does not reveal the expected
effect of the preventive system regarding maximum deceleration and time for building
up the maximum deceleration. A difference between driving simulator and real vehicle
explains these effects. Drivers tend to avoid the hard braking maneuvers in reality even in
accident situations, as they try to avoid high decelerations. Due to technical limitations,
the driving simulator scales the decelerations experienced by the subjects (and all other
accelerations as well) to a lower level, whereas the kinematic deceleration, as implemented
in the vehicle dynamics model of the simulator, is realistic. As a consequence, drivers
tend to realize far higher decelerations in the simulator than they would in reality. Due to
these circumstances, the results regarding deceleration obtained in this experiment cannot
be used directly for the evaluation of the effects of the preventive pedestrian protection
system or as input for a driver model as needed in simulations.
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Figure 4.16: Maximum deceleration in the first situation, stratified by experimental conditions.
Circles indicate near outliers and stars far outliers.
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Figure 4.17: Mean deceleration in pedestrian accidents [10].
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Figure 4.18: Time from beginning of brake pedal activation to maximum deceleration.

The basic idea behind this situation was to present a realistic pedestrian accident scenario
(crossing from the right, no visibility obstruction, urban setting, daylight, ...) in the
driving simulator. The drivers went through a long period of driving without any special
event, were not informed about the research questions, and were visually distracted by
a secondary task during the highly critical situation. The objective for this situation
was to test whether an accident situation can be reproduced in a stable way in such an
experimental environment. The difference to other studies is that not a critical situation
but an accident situation should be created. As the results show, it was not possible to
bring the subjects reliably and repeatably into the critical accident situation (TTC at
braking should have been at least below 1.0 s TTC) as only a few accidents did happen
under baseline conditions.

Several possible explanations and ideas for further studies have been developed. The
subjects probably found a strategy to work on the secondary task and react properly to
the traffic situations. A possible design change would be to further increase the level of
distraction. The experimental situation itself, i.e., taking part in an experiment in the
driving simulator, could additionally have influenced the subjects as well as the perception
of the environment and the traffic situation in the simulator. Another technical possibility
would be a visibility obstruction of the pedestrian. This deviates from the realistic scenario
as described in Section 3.2, but could help bring the subject into the accident situation
and thus be an experimental necessity.

4.5 Conclusion

The experiment in the dynamic driving simulator as described above gives insight into
driver behavior regarding pedestrians, the issue of acceptance of a preventive pedestrian
protection system, especially during the presentation of false system actions, and the
methodological challenges when investigating realistic accident scenarios in a driving simu-
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lator. As the age characteristics of the sample used here range from 22 to 60, an interesting
extension of this study might especially consider a population of older drivers, due to their
possibly changed perceptual and reaction characteristics.

Everyday normal situations were used to assess the levels of discomfort or hazard while
passing a pedestrian walking in the same direction as the vehicle moves or approaching
a crossing pedestrian. The drivers could perceive the pedestrians from a great distance,
passed them at an average lateral clearance of 1.5 m and started to brake on average at a
TTC of 4 s. The implication of these findings is that a system issuing warnings within these
boundaries (laterally and longitudinally) has a high chance of acceptance, if the driver did
not react himself in advance. The consequence of low acceptance could be a deactivation
of the system (if possible) or reluctance to purchase the system in a future vehicle (if
optional equipment). In both cases the safety benefit would be negatively affected by low
acceptance.

The acceptance ratings revealed that the subjects regarded situations as especially un-
acceptable where an endangerment of the pedestrian was not obvious to them. The reasons
given by the subjects were that the pedestrian is not moving or is far away from the current
position of the vehicle or its present trajectory. Situations were regarded as hazardous for
the surrounding traffic when false system actions were unpredictable for the drivers, the
situations included higher vehicle speeds or the situations involved complex maneuvers. If
the drivers’ attention was already high in a situation, a false system action was regarded
as less hazardous.

An important finding is that the investigation of highly critical situations in the driv-
ing simulator proves to be challenging. The drivers reacted about 0.1 s earlier (difference
is non-significant) at an average TTC of 1.44 s with the preventive pedestrian protection
system installed than without. All drivers observed the pedestrian and reacted before or
nearly at the time of the acoustical warning. The braking reaction in terms of timing,
maximum deceleration, or duration between initiation of the braking and the maximum
deceleration could not be evaluated regarding system effectiveness, as the driving simu-
lator does not allow for an interpretation of these measurements. The missing realistic
kinesthetic feedback due to the technically necessary scaling of the real accelerations is
responsible for the magnitude of the braking reactions, not the experimental conditions.
The drivers brake much harder than in real accidents and also tend to push the brake pedal
very fast, which is also suspected by experts not to be the case in real critical situations.

Overall, the highly critical situation hardly led to any accidents in the baseline condition,
which gives an indication about the challenges of bringing the subjects into the situation
in a driving simulator. These results shows that the realistic and reliable construction of
an accident situation (in contrast to critical situations as used in many other experiments)
is challenging even if a tested secondary task and an optimized test design are used.
Possible solutions are a stronger distraction of the subjects or a visibility obstruction
of the pedestrian. Clearly, more research regarding the methodology of subject testing in
accident situations is needed.
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The technological limitations of the driving simulator as a method in general as well as
of the specific one used here become evident when evaluating brake reactions. On the one
hand, the time series of braking itself cannot be evaluated. On the other hand, the driving
simulator is the method of choice to do subject testing in accident or critical situations.

Since this experiment had the driver in the focus, it is obvious that the behavior of
the pedestrian is also an important field of research, although not part of this thesis. His
actions do influence the situation itself as well as the system actions (e.g., prediction of
collision probability).

A combination of findings obtained in different kinds of experiments – for example,
using processes and techniques as described in Section 3.1 – is necessary to get a com-
plete picture of the effects of a preventive system involving the vehicle as well as the driver.
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5 Probabilistic modeling of pedestrian
injury severity

5.1 Objective and research questions

This chapter presents the methodology necessary for the construction of evidence-based
probability models for pedestrian injury severity in frontal vehicle crashes using empirical,
in-depth accident data. The primary aim is thus to apply statistical methodology in or-
der to estimate models predicting injury severity and mortality of pedestrians involved in
vehicle crashes, based on the conditions of impact. The results are intended to improve
and quantify the predictability of pedestrian injury severity during design and develop-
ment phases of preventive pedestrian protection systems as well as to provide a basis for
comparison with safety benefits due to measures of passive safety. The data sets used are
the German In-Depth Accident Study (GIDAS) [10] and Pedestrian Crash Data Study
(PCDS) [194] for the US.

It is well established that collision speed is the most important predictor for injury
severity [45, 94, 160, 162, 190]. However, for constructing probability models for advanced
applications, several additional research questions arise:

1. Which injury scale available in the data sets would be most suited for deriving prob-
abilistic models?

2. Do multivariate models provide a better prediction than univariate models based
solely on impact speed?

3. Does a splitting into subgroups defined by pedestrian age provide a better prediction
than models comprising all ages?

The first of these issues refers to the choice of a metric to describe the injury scale.
In the data sets considered here, pedestrian injuries were originally coded according to
the Abbreviated Injury Scale (AIS), revision 90 [12, 181, 182] (for cases 2008 and newer
GIDAS also includes AIS coding following the 2005 revision [7, 8, 149]). Table 5.1 gives
the AIS levels as well as the lethality rate associated with each level. The maximum AIS
value (MAIS) of a person is separately coded and serves as an indicator for overall injury
severity.

Another established injury coding scale is known as the Injury Severity Score (ISS)
[20, 21, 181, 182]. The ISS is defined as the sum of the squares of the highest AIS scores
in each of the three most severely injured body regions (out of six regions in total). It
ranges from 0 to 75; 75 is the maximum and is defined if at least one body region has
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Table 5.1: AIS codes and description [194] with corresponding lethality rate [124].

AIS Severity description Lethality rate [%]

0 not injured 0.00
1 minor injury 0.00
2 moderate injury 0.07
3 serious injury 2.91
4 severe injury 6.88
5 critical injury 32.32
6 maximum (untreatable) injury 100.00

an AIS of 6. There are strong indications in the medical literature that ISS gives a more
precise estimate of the overall injury severity than MAIS [147, 185].

The second research question refers to the number of variables included in the models.
As stated above, impact speed is the most important predictor for injury severity and mor-
tality. However, it is known, for example, that fatality risk can be predicted more precisely
using pedestrian age in addition to impact speed [162]. Thus, considering the spectrum of
variables coded in the databases, it is important to identify potential explanatory variables
beyond impact speed that could improve the predictive accuracy of the models. Possible
explanatory variables include vehicle kinematics (e.g., collision speed), vehicle characteris-
tics (e.g., height of the front bumper), and pedestrian physiology (e.g., age).

The third research question takes the biomechanical differences due to pedestrian age
into account. It is well known that the biomechanical response with respect to injury
severity is dependent on age [101, 102, 153]. To this end, this study will also investigate
whether a splitting of the population into subgroups depending on pedestrian age improves
the quality of injury modeling.

In addition, two constraints concerning injury probability models are implemented. The
first one is a simple definition: the injury or fatality probability for an impact speed
vc = 0 kph is defined as zero. The second one is more subtle. In the case of several
cumulative outcome categories (e.g., ISS9+, ISS16+, and ISS25+), the probability for a
larger outcome category, e.g., ISS16+, must be at least as large as the probability for
another smaller set, e.g., ISS25+ (pISS16+ ≥ pISS25+), which itself is a subset of the first
one (ISS25+ ⊆ ISS16+). If that constraint has not been taken into account explic-
itly in model development, then it needs to be tested to guarantee plausibility. To this
end, a conditional probability simulation is introduced which generates synthetic vehicle-
to-pedestrian accidents with all input parameters necessary for the models in question.
These two constraints are investigated, tested, and their implications are discussed to-
gether with remarks for correct implementation of the models. A new methodology of
constructing probability models for several cumulative outcome categories (e.g., ISS0-8,
ISS9-15, ISS16-24, and ISS25+) by means of conditional probabilities is developed and
tested for the constraints.
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5.2 Data and statistical methods

5.2.1 Study data characteristics

The focus is on two data sets in the following analysis: the German In-Depth Accident
Study (GIDAS) and the Pedestrian Crash Data Study (PCDS) from the US.

The German In-Depth Accident Study contains a sample of accidents collected from 1999
by the Hannover Medical School (MHH) and the Technical University of Dresden (TUD).
The project is coordinated by the Federal Highway Research Institute (BASt) and the Re-
search Association of Automotive Technology (Forschungsvereinigung Automobiltechnik,
FAT). The companies represented by the FAT for this project are: Ford-Werke GmbH,
Volkswagen AG, Daimler AG, BMW AG, General Motors, Dr. Ing. h.c. F. Porsche AG,
Autoliv Inc., TRW Automotive, and Johnson Controls Inc. The data are collected in two
geographical areas including the cities of Hannover and Dresden in Germany. The sam-
pling includes only cases with personal injury. The accident investigation follows a shift
plan. Collected cases are compared and weighted to the federal statistics every year. The
collected cases are considered representative for the sampling area and can be regarded as
nationally representative, if regional influences can be neglected for the specific research
question (which is the case for most aspects of passive safety). This procedure leads to the
collection of about 2000 cases annually, including acquisition of information regarding the
site of an accident, inspection of the vehicle, detailed medical information and extensive
reconstruction [2].

Ten years of data from GIDAS have been used for the present analysis (07/1999 to
06/2009; Version Dec. 2009) resulting in 16827 fully reconstructed cases. The following
selection and exclusion criteria have been applied to the data set for this study:

• Accidents with pedestrians involved: n = 2270.

• Primary collisions with passenger vehicles at vehicle front (including roof): n = 1073.

• Collisions with pedestrians of age four and older, since the actual position of infants
at the moment of impact is not coded: n = 998.

• Impact speed of the vehicle available, as it is by far the most important predictor
[94, 160, 162]: n = 915.

The basic data set contains 915 cases available for analysis.

The US Pedestrian Crash Data Study (PCDS) contains a sample of pedestrian accidents
between 1994 and 1998, generated by the Transportation Data Center at the University
of Michigan’s Transportation Research Institute (UMTRI) for the National Center for
Statistics and Analysis (NCSA) of the National Highway Traffic Safety Administration
(NHTSA). A total of 552 cases were collected in the following cities: Chicago, Illinois;
Buffalo, New York; Fort Lauderdale, Florida; Dallas, Texas; Seattle, Washington, and San
Antonio, Texas. Most of the cases are not included in the National Automotive Sampling
System (NASS), Crashworthiness Data System (CDS) or the NASS General Estimates
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System (GES). The main selection and exclusion criteria for PCDS applied during data
collection may be summarized as follows:

• Pedestrian accidents only (no cyclists, etc).

• Impact between one vehicle and one pedestrian.

• Cars and light trucks only.

• Vehicles of model year 1990 or later.

• Initial contact of the vehicle with the pedestrian was in front of the A-pillar.

• Vehicle part striking pedestrian was (undamaged) original equipment.

Due to the sampling scheme and selection criteria, the PCDS data set might not consti-
tute a representative sample of pedestrian accidents for the US as a whole regarding all
characteristics. However, the PCDS does seem to be quite representative with regard to
the frequency distribution of accident scenarios [60, 61]. In any case, it is quite useful for
the intended purpose of identifying risk factors and estimating predictive risk models in
the accident classes considered [108, 111, 194].

Data were filtered for frontal vehicle impacts with a pedestrian of age four and older,
resulting in 450 collisions. In the following analysis, only cases with impact speed available
were considered (see above), resulting in 369 collisions.

5.2.2 Coding of target variables

In both databases, pedestrian injuries in each accident were originally reported and
scored according to AIS for each separate injury. Based on these AIS scores, MAIS
and ISS, which are both ordinal measures of severity, were then calculated and coded.
Meaningful levels for MAIS as binary target variables suited for logistic regression are
MAIS2+ (MAIS ≥ 2, at least moderate injury), MAIS3+ (MAIS ≥ 3, at least serious in-
jury), MAIS4+ (MAIS ≥ 4, at least severe injury), MAIS5+ (MAIS ≥ 5, at least critical
injury).

Following Hakkert [90] in the target variable definition, ISS is coded as binary target
variables ISS9+ (ISS ≥ 9, at least moderate severity), ISS16+ (ISS ≥ 16, at least serious
injury), ISS25+ (ISS ≥ 25, at least very serious injury). The consistency of the data
regarding MAIS and ISS was checked by computing the ratio of squared MAIS to ISS,
which must be within 0.33 (i.e., three body regions have an injury whose severity equals
the MAIS of that person) and 1.0 (i.e., only one injury per person). In addition to the
medical literature mentioned above, the use of the ISS is supported by the fact that 90.8 %
of the pedestrians in frontal impacts in PCDS have at least two injuries (mean = 8.7;
standard deviation = 8.6).

Fatalities were coded and investigated independently, as they are distributed over a
range of ISS or MAIS values [162]. Cases with missing injury or mortality data were
excluded from analyses involving target variables.
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5.2.3 Coding of explanatory variables

Potential explanatory variables considered in this analysis fall into the following general
categories:

• Vehicle kinematics, including impact speed (pre-crash).

• Vehicle characteristics (static).

• Driver maneuvers and attention.

• Pedestrian physiology.

• Pedestrian movement (pre-crash).

In both GIDAS and PCDS, additional variables were computed from existing ones: squared
impact speed of the vehicle (to account for possible non-linearities between impact speed
and injury severity), kinetic energy of the vehicle, and body mass index (BMI) of the
pedestrian. Ratios between anthropometric values and vehicle dimensions were also con-
structed. Since only basic vehicle profile characteristics were coded in GIDAS, additional
data sources were used to reconstruct some of these characteristics for the purpose of anal-
ysis (see Subsection 5.2.4). The notation “GIDAS” and “PCDS” used for labeling the
variables refers to the original data set.

Tables A.1 and A.2 (see pp. 188 and 190) summarize the continuous variables used in
analysis. In order to facilitate a comparative interpretation of odds ratios from different
factors, normalizing transformations were applied to the remaining factors: Continuous
variables, with the exception of impact speed in PCDS, were transformed by subtracting
the mean and dividing by the standard deviation (SD) computed from the full sample (i.e.,
including cases with missing impact speed or with pedestrian age < 4). Impact speed in
PCDS was scaled by the mean, i.e., divided by the mean. The most important variables
were tested to ensure that this procedure did not result in a significant change in the mean
of those variables compared with the reduced data set.

Following standard procedures of data preparation for logistic regression [109], non-
ordinal categorical variables were recoded considering each category as a separate binary.
For example, for “attempted avoidance maneuvers of the car” in PCDS, the combinations
of steering, braking, and accelerating were coded separately as new binary variables.
Ordinal (non-continuous) variables were recoded as a cumulative binary sequence.
Variables were defined to distinguish between different groups of automobiles and light
trucks (see Tables A.3, p. 192, and A.4, p. 195, for a complete list of variables).

5.2.4 Treatment of missing data

Each case must have a complete set of valid data to be suitable for logistic regression.
In case of missing data, the simplest procedure, known as list-wise deletion, is to exclude
all cases for which even a single explanatory variable is missing. For example, of the 915
cases in the GIDAS data set, the percentages of missing values were
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• 21.7 % for pedestrian body height,

• 21.6 % for pedestrian body weight, and

• 9.8 % for vehicle crash weight.

List-wise deletion would have the effect that the three variables mentioned above result in
a loss of 30.3 % of all cases.

In this thesis, imputation of missing values was carried out and additional data were
utilized for the analysis (using secondary data resources as far as available) for both data
sets. Imputation narrows the resulting distributions of explanatory variables and initially
leads to an underestimate of the variance in logistic regression. Nonetheless, imputation is
generally thought to be preferable to the simpler procedure of list-wise deletion, both by
avoiding a loss of statistical power and by minimizing biases.

Moreover, the variance underestimation process can be appraised by several methods:
One method for quantifying a possible variance underestimate due to imputation is to gen-
erate additional “virtual missing data” equal to the original fraction of missing data (i.e.,
doubling the percentage) and then evaluate the resulting additional variance of regression
coefficients resulting from this additional missing data; this procedure will be utilized be-
low (see Subsection 5.3.2).

For the statistical questions of interest here, it was useful to carry out two preliminary
steps of data preparation: imputation and augmentation.

The variables describing pedestrian body height and weight as well as the crash weight
of the vehicle (i.e., weight at time of first impact) were missing for a considerable number
of cases. Pedestrian body height and weight were imputed using anthropometric data from
the Statistisches Bundesamt (Federal Statistical Office) for ages 18 and older [183]. For
children and adolescents (ages four to 17), data from a survey on health were used [186].
To this end, body height and weight were imputed using the mean for each group defined
by given sex and age. As a result of imputing those two variables, 99.7 % of the 915 cases
were available for analysis without crash weight.

The crash weight of the vehicle was imputed by taking the unladen weight of the vehicle
(as given by the registration papers) and adding the mean of the difference of the crash
weight and the unladen weight derived from all cases where both variables are coded. As
a result, 94.3 % of the 915 cases are available for analysis including crash weight. In total,
861 cases (94.1 %) are available in GIDAS after imputing all three variables mentioned
above.

In the augmentation step, secondary data sources describing the vehicle profile were
fused with the GIDAS data set, as the coded information is very sparse, as not many
variables describing vehicle profile characteristics are included in GIDAS. Those character-
istics are supposed to influence injury severity and thus should be included as explanatory
variables in the analysis. Fusion was performed by referencing the coded vehicle make
and model (37.0 % of the cases do not have this information coded) and associating this
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coded information with profile characteristic data. Missing information for vehicle make
and model was added by single-file analysis (using pictures of the vehicle and the detailed
accident file). During this process, many other variables were checked for consistency and
were added if missing or corrected if miscoded in the data set to ensure a maximum of
data quality for analysis. Except for one case, every vehicle model was added to the data.

The geometric quantities of 219 vehicles had previously been generated within another
GIDAS related project; the report published included detailed instructions for measure-
ment [135]. Data for 20 additional vehicles were generated using 3D-models available
at BMW Group. In addition to the values described in the report, characteristic angles
(e.g. around the bonnet leading edge or at the windshield) as well as wrapping distances
were calculated from the given data points. An overview of all measurements is given
in Figures A.1 to A.3, p. 184. In total, 821 cases are available with all geometric values
coded.

Important geometric quantities for the PCDS data set are given Figures A.4, p. 186, and
A.5, p. 187. Corresponding measurements for the pedestrian are illustrated in Fig. A.6,
p. 187, both for GIDAS and PCDS.

In the PCDS data set, only pedestrian body height and weight have a substantial number
of missing cases (9.5 % and 10.0 % respectively). The body height of shoulder, hip, and
knee also have about 13 % missing values each. The missing percentage due to list-wise
deletion is 14.4 %. Body height and weight were imputed using anthropometric data from
the National Health and Nutrition Examination Survey (NHANES) [148] standardized by
sex and age; in order to take account for the study years 1994 to 1998, the average of
the NHANES III (1988-1994) and NHANES (1999-2002) studies was used for imputation.
The shoulder, hip, and knee height were imputed by calculating the ratio to body height
for each sex and age group separately and multiplying that ratio by the known or imputed
body height; the ratios had very narrow distributions within these groups. The full 369
cases were available for analysis after imputation.

Impact speed was not imputed in either data set as it is the most important predictor
for injury causation as mentioned above.

5.2.5 Statistical models and methods

The statistical procedures used in this thesis are summarized in this subsection together
with hints for further literature. PASW Statistics 18 and Microsoft Office Excel were
used for computations. T-tests and Mann-Whitney tests were performed to assess internal
relationships between binary and continuous explanatory variables, particularly vehicle
impact speed. Pearson and Spearman correlations were used to assess possible correlations
among continuous variables.

The t-test is a parametric method for comparing two mean values, e.g., for the difference
in means between two groups or one mean value with an expected value [46, 166]. T-tests
require a random sample, normally distributed and metric raw data, and homogeneous
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variances [33, 46, 166].

The Mann-Whitney test is a non-parametric rank test, which compares two independent
samples [33, 166]. The Mann-Whitney test is used here, if some prerequisites for the t-test,
e.g., the homogeneity of variances, are not given.

Possible correlations between continuous variables and vehicle impact speed were tested
using Pearson and Spearman correlations. The Pearson correlation can find a correlation
between variables independent of their scaling [33, 166]. Prerequisite are two continuous
variables [166]. Spearman correlation uses the Bravais-Pearson correlation coefficient ap-
plied to ranks [50, 166]. As a consequence, it is also applicable to ordinal data [50].

A binary logistic regression model estimates the effect of one or several factors on the
probability of a defined binary outcome [115]. The estimate can be interpreted as a group
membership or the risk associated with the explanatory factors contained in the model
[115, 189]. The explanatory factors can be continuous, discrete or dichotomous [189].

In the binary logistic regression approach, the estimated probability pi for a pedestrian
injury to reach or exceed the severity level in question is obtained from a given model via
the formula

pi =
exp (β0 + β1x1,i + . . .+ βkxk,i)

1 + exp (β0 + β1x1,i + . . .+ βkxk,i)
(5.1)

where x1,i . . . xk,i are explanatory factors for the collision such as impact speed, vehicle
dimensions, etc., and β1 . . . βk are model coefficients which are estimated in the regression
process by the well-known maximum likelihood method [115, 189]. The likelihood of a
model is proportional to the probability of observing the data, given the values of the
model parameters. Maximum likelihood is a search for the parameters that maximize this
probability.

A common description of the logistic formula, Eq. 5.1, uses the logit transformation:

logit (pi) = ln

(
pi

1− pi

)
= β0 + β1x1,i + . . .+ βkxk,i (5.2)

The probability estimate obtained from a model of the form of Eq. 5.1 may also be thought
of as a “risk score”. This probability provides an estimate of the proportion of occurrence
and non-occurrence [151]. The odds is the probability of occurrence relative to probability
of non-occurrence [151]. The odds are defined as [151]:

odds =
pi

1− pi
. (5.3)

Following directly, probability and odds are connected via the following formula [151]:

pi =
odds

1 + odds
(5.4)

Probability, odds, and logit are different ways for expressing the same information [141].
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Table 5.2: Generic 2x2 contingency table [115].

Outcome

Test 1 0

1 a b
0 c d

In a 2x2 contingency table (Table 5.2), the definition of an odds ratio is equivalent to

OR =
ad

bc
. (5.5)

If only one factor, say x1, is entered into binary regression, the regression is referred
to as “univariate” and the quantity exp (β1) then known as the “crude” or “unadjusted”
odds ratio for the factor x1. The quantity exp (βj) resulting from multivariate regression
is known as the “adjusted odds ratio” of the explanatory factor with the label j for the
outcome in question [115]. Further information on logistic regression can be found in the
literature, e.g., [19, 109, 115, 141, 189]. A practical example of the calculation of pi is given
later on using actual results (see p. 112).

Univariate and multivariate binary logistic regression is used to determine unadjusted
and adjusted odds ratios (respectively) and to construct risk scores for binary endpoints
MAIS2+, MAIS3+, MAIS4+, MAIS5+, ISS9+, ISS16+, ISS25+, and for fatalities. Each
collision is considered as a statistical unit. A minimum of 25 cases per group (e.g., minimum
25 cases with ISS9+ and minimum 25 cases with an ISS < 9) is taken as the requirement
for multivariate logistic regression in this analysis.

Variables with suspected impact on injury severity were first tested for univariate im-
pact; multivariate logistic regression models were constructed for the subgroups mentioned
above and evaluated for the binary injury endpoints of interest. Model selection in the
multivariate models was performed by standard forward elimination using the likelihood
ratio statistic. Factors that fail to be significant in a particular multivariate model are re-
garded as associated with a β coefficient of zero or equivalently with an odds ratio of one.
Failure to reach significance in this context does not necessarily mean that a factor is truly
irrelevant, but simply that it is not possible to reject the null hypothesis at the assumed
level of significance. The 95 % confidence intervals of odds ratios give an indication about
the validity of the findings. In the case of an odds ratio, a significant p-value (p ≤ 0.05) is
equivalent to the statement that the 95 % confidence region does not include the value one.
Further explanations on the practical interpretation of odds ratios are given in Section 5.3.

One basic problem is to select one of a number of given models of different dimensions
[177]. The maximum likelihood would lead to the selection of the model with the highest
dimensionality [177]. The Akaike and Bayes information criteria allow an assessment of
model fit that includes parsimony adjustment [189].

89



5 Probabilistic modeling of pedestrian injury severity

Following [73], AIC and BIC are defined as:

AIC = −2 · LL+ 2 · (k + 1) (5.6)

BIC = −2 · LL+ ln (n) · (k + 1) (5.7)

In Equations 5.6 and 5.7, LL is the log-likelihood, k the number of model parameters,
and n the number of cases. Lower values of both AIC and BIC indicate improved model
fit [189]. However, they both lack a normalized scale, so “low values” have to be seen
in relation to models in comparison [189]. These relative differences in AIC and BIC are
useful in ranking models with respect to predictive quality despite different numbers of
model parameters. Further indications on relative differences in BIC and their meaning
for variable selection is included in [151]. The BIC is clearly related to AIC, but it has a
stronger emphasis on parsimony or over-fitting penalty.

The area under the curve (AUC) of the receiver operating characteristics (ROC) will also
be evaluated as indicator for both in-sample and expected out-of-sample model quality.
ROC comes from the context of electronic signal detection and is a plot of sensitivity versus
specificity for a variety of cut-off points. A cut-off point defines the decision boundary,
e.g., of a risk score, between the binary classification “one” (injury or fatality predicted
to occur) versus “zero” (injury or fatality predicted not to occur). The optimization
criterion is AUC: the larger AUC, the better the discriminatory performance of the model,
independently of the cut-off point. Theoretically, if the AUC of a statistical model is 1.0,
it is a perfect predictor; if the ROC AUC equals 0.5, the factors have no meaning at all
(i.e., the result is random) [115]. Applied to logistic regression, the ROC AUC measures
overall quality [115, 189]. Kleinbaum [115] suggests grading guidelines for AUC values in
0.1 steps: failed (0.5 to 0.6), poor (0.6 to 0.7), fair (0.7 to 0.8), good (0.8 to 0.9), and
excellent discrimination (0.9 to 1.0).

Cross-validation was used to evaluate the expected out-of-sample predictive accuracy as
well as the statistical question of robustness of the models or stability of the regression
estimate [33]. It is also the preferable procedure if no additional data for validation are
available. This procedure represents an important step toward an estimation of a realistic
out-of-sample predictive power. The underlying question addresses the general validity and
reliability of statements based on models derived from limited data sets. In the specific
case of 10-fold cross-validation used here [118], the logistic regression model is repeatedly
evaluated using nine-tenths of the data for training and one-tenth for assessment. The
correlation between the predicted and real sample is a measure of stability [33]; large
discrepancies indicate over-fitting and lack of generalizability [189].

ROC AUC was found to be an appropriate statistic to quantify the amount of optimism
in the models. The optimism, defined here as the difference of the statistic for the full-data
model and for the mean of the 10 cross-validation models, estimates the loss of accuracy,
if the models are used to predict data not included in the data set used during training. A
small value of optimism is an indicator for better performance in the field. A large value
of optimism is usually an indicator for over-fitting.
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False-classification rate with a risk-adjusted cut-off was also considered as a statistic for
the cross-validation. The cut-off value corresponds to the fraction of cases in the outcome
category. If the predicted risk is greater than the cut-off value, the case is classified as 1
(else 0). The false-classification rate seems to be less suited as a statistic for this study as
it is highly sensitive to the low number of cases in each test group and therefore produces
high variance.

Issues concerning confounding factors and multicollinearity, which commonly occur in
observational data sets, will be addressed as they arise. Multicollinearity in the present
context refers to the fact that within a multivariate model, β regression coefficients of
correlated explanatory factors are interdependent. Thus, the apparent predictive impact
of one factor can depend on whether or not a distinct but correlated factor is included in
the analysis or attains significance. The implications and interpretation are included in
Section 5.3.

5.2.6 Verifying plausibility of injury probability models

Definition and testing of constraints

Injury probability models can be used in two different ways:

1. Prediction of one specific level of injury (e.g., ISS16+).

2. Prediction of a variety of different cumulative injury levels (e.g., ISS0-8, ISS9-15, ...).

In the first case, the models given are ready to use and provide the highest possible ex-
planatory value with respect to the training data. In the second case, the models have to
fulfill additional plausibility criteria in order to deliver reasonable results.

Two constraints seem meaningful and reasonable:

1. If the collision speed equals zero (vc = 0 kph), the injury probability is defined as
zero (p = 0).

2. Given the sets A, B, C, and D with the relationship D ⊆ C ⊆ B ⊆ A (see Fig. 5.1),
the probabilities for the different sets must follow:

pA ≤ pB ≤ pC ≤ pD. (5.8)

As an example, this means for injury categories based on ISS: ISS25+ is a subset of
ISS16+ which is a subset of ISS9+ (ISS25+ ⊆ ISS16+ ⊆ ISS9+). The probabil-
ities for each ISS group must satisfy the following relationship pISS25+ ≤ pISS16+ ≤
pISS9+.

Constraint 1 can be seen as reasonable addition to the probability models [174]. This can
result in a point of discontinuity at vc = 0 kph for some models.

Constraint 2 has to be regarded as mandatory. First of all, each set of models has to be
tested, if the relationship 5.8 is fulfilled for all possible parameter combinations of signifi-
cant explanatory factors. If the constraint 5.8 has not been taken into account explicitly
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D
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Figure 5.1: Visualization of sets; abstract and with ISS values.

in model development, then it needs to be tested. To this end, a conditional probability
simulation can be used which generates synthetic vehicle-to-pedestrian accidents with all
input parameters necessary for the models in question. The objective of the simulation is
to generate the conditional probabilities for injury levels for all combinations of explana-
tory parameters, even rarely occurring parameter combinations.

The conditional probability simulation generates a virtual sample of 100 000 frontal
vehicle-to-pedestrian accidents. The required parameters are drawn randomly from realis-
tic distributions using Monte-Carlo techniques. Pedestrian attributes are taken from the of-
ficial statistics, and vehicle attributes from the data set, both described in Subsection 5.2.4.
The vehicle impact speed is drawn from a uniform distribution containing speeds up to
80 kph. (Please note that this conditional probability simulation is completely distinct
from the simulation described in Section 3.4.)

A possible violation of constraint 2 has several causes. The binary logistic models can
deliver extreme values when one or more factors entered have extreme values. In other
words, the prediction on the boundaries of the models can lead to implausible results with
respect to constraint 2. The reason for this is not the multiplicity of factors within the
models (compared to univariate models), but the “proximity” of outcome variables.

This phenomenon is always present in combination with probability models described.
The reason it did not yet appear in the literature is that the published models either focus
on one outcome variable only [160, 162] or the outcome variables are rather far apart
(e.g., MAIS2+ and MAIS5+ in [94]).

Approaches for correct implementation

In case only one outcome variable (e.g., ISS16+) is of interest, constraint 2 is inapplica-
ble. However, if more injury severity levels should be assessed at once, the constraint must
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be fulfilled. To this end, several approaches are considered here. One simple approach
in the case of a single explanatory variable is to omit the regression constant β0. This
automatically fulfills constraint 2, but leads to an unreasonable conclusion: The constant
has, for example, the effect that even at very low speeds the injury probability does not
equal zero. With respect to the data, this is a meaningful and reasonable result, as there
are several reported accidents with very low impact speeds, but considerable levels of in-
jury severity. Since this simple approach raises problematic questions, another approach
is introduced in the following.

A new set of models using the conditional probability identity is constructed:

p(A ∩B) = p(A|B) · p(B) (5.9)

Fig. 5.1 visualizes the different sets in both abstract form and as example for ISS. Trans-
lated to ISS, this would mean, for example, that the (unknown) probability pISS16+ =
p(ISS16+|X) (X stands for the different factors in logistic regression) is calculated:

p(ISS16+|X) = p(ISS16+|ISS9+, X) · p(ISS9+|X) (5.10)

For example, the multivariate model delivering p(ISS9+|X) is known from Eq. 5.17, p. 109,
(for GIDAS data), whereas p(ISS16+|ISS9+, X) has to be developed. The way of con-
structing p(ISS16+|ISS9+, X) is identical to the way Eq. 5.18, p. 109, was constructed,
with the difference that all operations are performed on the ISS9+ subset of the data.

In general, different approaches based on conditional probabilities are possible, depend-
ing on the research question and the quantity of outcome variables (i.e., different sets).
Fig. 5.2 gives all possible ways for constructing injury probability models using conditional
probabilities (the more outcome variables, the more opportunities for construction), in this
example for ISS as outcome variable.

Option a uses the p(ISS9+|X) model (for example, given by Equations 5.17, p. 109, and
5.28, p. 119, below). The other probabilities are calculated as (the index gives reference
to the option):

pa(ISS16+|X) = p(ISS16+|ISS9+, X) · p(ISS9+|X) (5.11)

pa(ISS25+|X) = p(ISS25+|ISS16+, X) · pa(ISS16+|X) (5.12)

Option b uses the p(ISS25 + |X) model (for example, given by Equations 5.19, p. 109,
and 5.30, p. 119, below). The other probabilities are calculated as:

pb(ISS16+|X) = p(ISS16+|ISS24−, X) · p(ISS24-|X) + p(ISS25 + |X)

= p(ISS16+|ISS24−, X) · (1− p(ISS25+|X)) + p(ISS25 + |X) (5.13)

pb(ISS9+|X) = p(ISS9+|ISS15−, X) · p(ISS15-|X) + pb(ISS16 + |X)

= p(ISS9+|ISS15−, X) · (1− pb(ISS16+|X)) + pb(ISS16 + |X) (5.14)
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Figure 5.2: Different approaches to construct plausible injury probability models based on
conditional probability identity.

Option c uses the p(ISS16 + |X) model (for example, given by Equations 5.18, p. 109,
and 5.29, p. 119, below). The other probabilities are calculated as:

pc(ISS9+|X) = p(ISS9+|ISS15−, X) · p(ISS15-|X) + p(ISS16 + |X)

= p(ISS9+|ISS15−, X) · (1− p(ISS16+|X)) + p(ISS16 + |X) (5.15)

pc(ISS25+|X) = p(ISS25+|ISS16+, X) · p(ISS16+|X) (5.16)

Which option to choose depends on the research question of the current evaluation and
the corresponding models used. Most intuitive are Options a and b.

5.3 Prediction of injury and fatality probability

5.3.1 Univariate models and analysis of potential confounders

Univariate logistic regression was performed with respect to the explanatory variables,
in part as a first step to determine which variables to enter into multivariate analysis and
secondly to explore which variables are predictors of the dependent variables. As quite
many factors become significant (p-value ≤ 0.05) in univariate analysis, only models for
ISS and for fatalities are presented and discussed here. The odds ratios in the tables
presented below refer to an additional risk associated with a significant odds ratio > 1 (or
decrease associated with an odds ratio < 1).

The univariate models from the GIDAS data set are summarized in Tables 5.3 to 5.5
for the three ISS groups and in Table 5.6 for fatalities (pp. 98 to 101). As expected, the
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strongest single predictive factor for all ISS levels in question as well as for fatalities is
impact speed (either as a scaled variable, squared or expressed as kinetic energy). The
odds ratios associated with vehicle collision speed (vc,GIDAS) are between 3.107 and 4.548
and refer to a hypothetical increase in collision speed equal to the scaling factor (17.0 kph).
The odds ratios associated with 1/2 as large (8.5 kph) increase in speed would be estimated
as the square root of these respective odds ratios in each case. The overriding importance
of impact speed is also evident from the AIC and BIC.

Vehicle characteristics are also significant in univariate analysis. Increasing height of the
rear hood opening (HREv,GIDAS) is associated with decreasing risk for ISS9+ (unadjusted
odds ratio 0.790). The general shape of the vehicle, as classified by type3,veh,GIDAS is also
significant. If the vehicle is classified as a van, the odds ratio > 1 indicates an increase
in risk (2.247 for ISS16+ and 2.808 for fatalities). This corresponds with the literature
on the increase in injury or fatality risk to pedestrians associated with van-like vehicles
compared to passenger cars [48, 101, 113, 132, 139, 164, 179] as well as with the findings
mentioned below (as higher hoods are typical for van-like vehicles) (see also Section 6.2).
Correspondingly, a higher bumper top (UBRLv,GIDAS) is also associated with an increase
in risk (1.344 for ISS16+), whereas a longer front end lowers the risk (HREl,GIDAS: unad-
justed odds ratio 0.759 for ISS25+ and 0.807 for ISS16+; WUEl,GIDAS: 0.789 for ISS25+).

Age of the pedestrian (yped) is associated with a higher risk (unadjusted odds ratios
between 1.863 to 2.489) [101, 102, 153]. BMI is also associated with an increase in risk
(unadjusted odds ratios between 1.467 to 1.835).

Interpretation of the effects evoked by the explanatory variables on injury or mortality
involves hypotheses about injury causation as well as the expected trend. Since impact
speed is a dominant determinant for injury and fatality, any explanatory variable that
is associated with impact speed could act as a surrogate for impact speed and thus as a
confounder, i.e., be significant without having a causal relationship or mask the original
effect size due to the association with impact speed. Potential associations were tested
using Pearson and Spearman correlations for continuous variables and t-tests and Mann-
Whitney-Tests for non-continuous (binary) variables. P-values refer to the hypotheses of a
correlation (for continuous variables) or to differences between the two groups (for binary
variables).

The first example for a potential correlation of two variables is body height (hped,GIDAS),
which is associated with an apparently increased risk, e.g., an unadjusted odds ratio 1.474
for ISS9+ or 2.342 for fatalities. Following the findings on van-like vehicles as discussed
above, higher vehicles impose increased risk, which leads to the hypothesis that increased
height of the pedestrian should be beneficial and thus should lead to a decrease in risk. One
possible explanation for this apparent contradiction is a significant (p < 0.001) correlation
with impact speed (Spearman coefficient 0.219), a strong risk factor. In order to test this
explanation, the magnitude of the influence of impact speed contained in body height was
quantified by a linear regression. Linear regression analysis would imply that this correla-
tion contributes to the effect described above, but would not explain it entirely. However,
body height seems to be quite strongly associated with crashes involving high speeds: The
correlation below 50 kph still exists (p < 0.001), but is a bit weaker (Spearman coefficient
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0.158). The remaining effect size not explained by a correlation with impact speed could
also have been attributable to selection effects and correlations with other factors in the
data set or characteristics which have not been observed and coded. Summarizing, the
unadjusted odds ratios (> 1) for ratios between body height and vehicle characteristics
are all counterintuitive; due to the correlations involved, multivariate analysis is essential
for proper interpretation of these causal factors. The explanatory value of those factors is
again discussed for multivariate models in Subsection 5.3.2.

Another example of a potential confounder is acceleration of the vehicle (aveh), as given
in Tables 5.4 and 5.6 with unadjusted odds ratios of 0.754 and 0.674. There could be a
causal connection between acceleration and injury causation, as the vehicle pitches and the
impact kinematics change. Since the acceleration before impact is coded as mean value
determined during reconstruction, the actual value at the moment of impact is unknown (as
well as the actual size of the pitch). In addition, aveh is weakly but significantly correlated
(p = 0.004) with impact speed (Spearman coefficient -0.102).

The speed of the pedestrian is coded in two variables vped,GIDAS and hazardped,GIDAS.
The original information for pedestrian speed was recoded into those variables following
these hypotheses: First, it could make a difference for the genesis of an accident (and the
perception and interpretation of the situation by the driver) if the pedestrian is moving
slow or fast. Second, a standing pedestrian or fast moving pedestrian might be harder
to detect for the driver. In the first case, because he is not moving or, in the second
case, because he is approaching the situation fast and thus leaving the driver less time
to react. This behavior is therefore coded as more hazardous. These hypotheses seem
to make sense, as both variables are correlated with impact speed. Pedestrians with a
low speed (vped,GIDAS) have a significantly lower average impact speed than the faster
ones in the data set (28.4 kph versus 30.4 kph, Mann-Whitney, p = 0.008, z = −2.663).
Pedestrians standing or running are defined as imposing more hazard to the situation and
are associated with a higher average collision speed (30.6 kph versus 28.3 kph, p = 0.015,
Mann-Whitney, z = −2.432).

Nevertheless, both variables are associated with an unexpected unadjusted odds ratio
(between 0.318 and 0.714) in Tables 5.3, 5.5, and 5.6, as the groups with significantly faster
impact speed are associated with a decrease in risk. The reason for that is a dependency
on other factors that influence injury causation. There are significant (p < 0.001) differ-
ences regarding, e.g., pedestrian age or BMI between the groups for both variables. The
mean pedestrian age is about 17 years higher for the low hazard group (hazardped,GIDAS)
and about 19 years higher for the low speed group (vped,GIDAS). The mean BMI is about
2.5 points higher in those groups. It is important to keep in mind that the assignment
of categories, such as running or walking in GIDAS, involves self-reported and subjec-
tive perceptions as well as a posteriori estimations. These assignments could have large
correlations to important causal factors, such as speed or age. Moreover, in view of the
non-monotonic relationship between pedestrian speed and age, the correlation analysis
may not capture all possible mechanisms for confounding.

Another interesting finding in the data set is the connection between impact speed and
sex (Gped). Although not significant in the univariate results, men are subject to a greater
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risk in the data set than women (31.9 kph versus 27.0 kph, p < 0.001, Mann-Whitney,
z = −4.177).
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Table 5.3: Univariate results for ISS9+, age group 4+ (GIDAS).

Variable Symbol N
n ISS Scaling

p-value
unadjusted

95 % CI AIC BIC
0-8 9+ factor odds ratio

Vehicle kinematics
Impact speed vc,GIDAS 877 682 195 17.0 < 0.001 3.622 2.889 4.541 754 764
Impact speed (squared) v2c,GIDAS 877 682 195 1473.5 < 0.001 4.419 3.342 5.843 765 774

Kinetic energy Ekin 828 640 188 1008.5 < 0.001 4.297 3.204 5.763 746 755

Vehicle characteristics
Hood rear end - vertical HREv,GIDAS 787 617 170 6.9 0.050 0.790 0.624 1.000 821 830

Pedestrian physiology
Body height hped,GIDAS 874 679 195 20.3 < 0.001 1.474 1.211 1.795 915 925
Age yped 877 682 195 25.8 < 0.001 1.863 1.583 2.192 875 884
Body mass index BMI 874 679 195 5.2 < 0.001 1.467 1.234 1.745 913 922
Height to upper bumper ref. l. - vert. r1,GIDAS 785 615 170 0.4 0.002 1.365 1.124 1.658 814 823
Height to bonnet leading edge - vert. r2,GIDAS 785 615 170 0.3 < 0.001 1.496 1.223 1.829 808 817
Height to hood rear end - vert. r4,GIDAS 785 615 170 0.2 < 0.001 1.670 1.345 2.072 800 809
Height to windshield up. edge - vert. r6,GIDAS 785 615 170 0.2 < 0.001 1.603 1.293 1.986 803 813
Height to bonnet lead. edge (wrap) r3,GIDAS 785 615 170 0.3 < 0.001 1.492 1.221 1.822 808 817
Height to hood rear end (wrap) r5,GIDAS 785 615 170 0.2 < 0.001 1.454 1.214 1.741 807 816
Height to windshield up. edge (wrap) r7,GIDAS 785 615 170 0.1 < 0.001 1.591 1.297 1.951 802 812

Pedestrian movement
Walking: hazard hazardped,GIDAS 877 682 195 - 0.041 0.714 0.517 0.986 929 939
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Table 5.4: Univariate results for ISS16+, age group 4+ (GIDAS).

Variable Symbol N
n ISS Scaling

p-value
unadjusted

95 % CI AIC BIC
0-15 16+ factor odds ratio

Vehicle kinematics
Impact speed vc,GIDAS 877 792 85 17.0 < 0.001 4.548 3.363 6.150 410 420
Impact speed (squared) v2c,GIDAS 877 792 85 1473.5 < 0.001 4.405 3.243 5.985 420 429

Kinetic energy Ekin 828 745 83 1008.5 < 0.001 4.334 3.162 5.940 415 425
Mean braking deceleration aveh 763 689 74 33.3 0.021 0.754 0.593 0.959 485 494

Vehicle characteristics
Body type: van-shaped type3,veh,GIDAS 877 792 85 - 0.048 2.247 1.007 5.016 559 568
Upper bumper ref. l. - vert. UBRLv,GIDAS 787 720 67 4.0 0.015 1.344 1.060 1.705 457 466
Hood rear end - longitudinal HREl,GIDAS 796 727 69 20.8 0.045 0.807 0.654 0.995 470 479

Pedestrian physiology
Body height hped,GIDAS 874 789 85 20.3 < 0.001 1.838 1.338 2.527 544 554
Age yped 877 792 85 25.8 < 0.001 1.942 1.550 2.432 527 537
Body mass index BMI 874 789 85 5.2 < 0.001 1.711 1.359 2.154 541 550
Height to up. bumper ref. l. - vert. r1,GIDAS 785 718 67 0.4 0.023 1.404 1.048 1.881 456 466
Height to bonnet lead. edge - vert. r2,GIDAS 785 718 67 0.3 0.001 1.720 1.256 2.356 449 458
Height to hood rear end - vert. r4,GIDAS 785 718 67 0.2 < 0.001 2.041 1.430 2.913 443 452
Height to winds. up. edge - vert. r6,GIDAS 785 718 67 0.2 < 0.001 1.884 1.327 2.676 447 456
Height to bonnet lead. edge (wrap) r3,GIDAS 785 718 67 0.3 0.002 1.632 1.201 2.218 451 460
Height to hood rear end (wrap) r5,GIDAS 785 718 67 0.2 < 0.001 1.712 1.348 2.175 443 452
Height to winds. up. edge (wrap) r7,GIDAS 785 718 67 0.1 < 0.001 2.019 1.466 2.782 441 450
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Table 5.5: Univariate results for ISS25+, age group 4+ (GIDAS).

Variable Symbol N
n ISS Scaling

p-value
unadjusted

95 % CI AIC BIC
0-24 25+ factor odds ratio

Vehicle kinematics
Impact speed vc,GIDAS 877 826 51 17.0 < 0.001 3.107 2.335 4.134 316 326
Impact speed (squared) v2c,GIDAS 877 826 51 1473.5 < 0.001 2.439 1.880 3.164 331 340

Kinetic energy Ekin 828 779 49 1008.5 < 0.001 2.437 1.843 3.223 318 327

Vehicle characteristics
Hood rear end - longitudinal HREl,GIDAS 796 752 44 20.8 0.024 0.759 0.598 0.964 340 349
Windshield up. edge - long. WUEl,GIDAS 796 752 44 25.0 0.022 0.789 0.645 0.966 340 349

Pedestrian physiology
Body height hped,GIDAS 874 823 51 20.3 0.005 1.780 1.194 2.654 383 393
Age yped 877 826 51 25.8 < 0.001 2.116 1.585 2.825 365 375
Body mass index BMI 874 823 51 5.2 0.001 1.618 1.224 2.139 382 391
Height to bonnet lead. edge - vert. r2,GIDAS 785 743 42 0.3 0.026 1.535 1.053 2.238 326 336
Height to hood rear end - vert. r4,GIDAS 785 743 42 0.2 0.006 1.805 1.184 2.753 323 332
Height to winds. up. edge - vert. r6,GIDAS 785 743 42 0.2 0.014 1.691 1.113 2.568 325 334
Height to bonnet lead. edge (wrap) r3,GIDAS 785 743 42 0.3 0.050 1.444 1.000 2.086 328 337
Height to hood rear end (wrap) r5,GIDAS 785 743 42 0.2 0.001 1.620 1.234 2.127 321 330
Height to winds. up. edge (wrap) r7,GIDAS 785 743 42 0.1 0.001 1.927 1.307 2.841 319 329

Pedestrian movement
Walking: speed vped,GIDAS 877 826 51 - 0.005 0.417 0.225 0.773 385 394
Walking: hazard hazardped,GIDAS 877 826 51 - 0.011 0.450 0.243 0.835 386 396
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Table 5.6: Univariate results for fatalities, age group 4+ (GIDAS).

Variable Symbol N
n not n Scaling

p-value
unadjusted

95 % CI AIC BIC
fatal fatal factor odds ratio

Vehicle kinematics
Impact speed vc,GIDAS 915 866 49 17.0 < 0.001 3.995 2.939 5.429 271 280
Impact speed (squared) v2c,GIDAS 915 866 49 1473.5 < 0.001 3.024 2.320 3.941 281 291

Kinetic energy Ekin 863 817 46 1008.5 < 0.001 3.111 2.326 4.161 264 274
Mean braking deceleration aveh 797 752 45 33.3 0.012 0.674 0.496 0.918 344 353

Vehicle characteristics
Body type: van-shaped type3,veh,GIDAS 915 866 49 - 0.026 2.808 1.130 6.975 382 392

Pedestrian physiology
Body height hped,GIDAS 912 863 49 20.3 < 0.001 2.342 1.482 3.699 368 378
Age yped 915 866 49 25.8 < 0.001 2.489 1.827 3.390 348 358
Body mass index BMI 912 863 49 5.2 < 0.001 1.835 1.392 2.419 368 378
Height to up. bum. ref. l. - vert. r1,GIDAS 819 775 44 0.4 0.025 1.508 1.052 2.162 341 351
Height to bonnet lead. e. - vert. r2,GIDAS 819 775 44 0.3 0.041 1.456 1.016 2.086 342 352
Height to hood rear end - vert. r4,GIDAS 819 775 44 0.2 0.010 1.684 1.131 2.508 339 349
Height to winds. up. edge - vert. r6,GIDAS 819 775 44 0.2 0.015 1.644 1.102 2.452 340 349
Height to bonnet lead. e. (wrap) r3,GIDAS 819 775 44 0.3 0.049 1.427 1.001 2.034 343 352
Height to hood rear end (wrap) r5,GIDAS 819 775 44 0.2 0.001 1.557 1.204 2.013 337 347
Height to winds. up. edge (wrap) r7,GIDAS 819 775 44 0.1 0.001 1.941 1.335 2.820 333 343

Pedestrian movement
Walking: speed vped,GIDAS 915 866 49 - 0.001 0.318 0.164 0.619 373 383
Walking: hazard hazardped,GIDAS 915 866 49 - 0.042 0.529 0.287 0.976 382 391
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The univariate results from the PCDS data set are summarized in Tables 5.7 to 5.9 for
ISS and in Table 5.10 for fatalities. The overriding importance of impact speed (vc,PCDS)
is also obvious in the PCDS data set. The unadjusted odds ratios associated with vehicle
collision speed are between 8.098 and 17.225 and refer to a hypothetical increase in collision
speed equal to the scaling factor (28.9 kph).

A large number of factors become significant in univariate analysis. All variables describ-
ing vehicle characteristics (except angle of front bumper α1,PCDS) are associated with a
higher risk (odds ratios between 1.261 and 1.600). Growing dimensions in height, wrapping
distances, or the lead of the bumper are risk factors (α1,PCDS shows the reverse trend). A
ratio of hip height to the transition point (r3,PCDS) is also significant for ISS25+ as well
as for fatalities, an increase (i.e., a taller person or a lower vehicle) imposes reduced risk
(odds ratio 0.778 and 0.702 respectively).

Several variables describing the pedestrian are significant: Increasing age, weight, and
BMI are associated with higher risk.

As mentioned above for the GIDAS data set, some variables in PCDS are also correlated
with impact speed and are potential confounders. In this context, sex (Gped) is significantly
correlated with impact speed (33.0 kph for men versus 25.5 kph for women, Mann-Whitney,
p < 0.001, z = −3.561). The corresponding unadjusted odds ratio of 0.535 for ISS25+ and
0.503 for fatalities indicate decreased risk for female pedestrians.

A similar effect can explain the unadjusted odds ratio between 2.054 and 2.359 for
evasive steering (δdriver) of the vehicle (38.9 kph for evasive steering compared to 27.3 kph
for others, Mann-Whitney, p < 0.001, z = −4.534), if one supposes that evasive steering
is more likely in critical situations with higher speeds, i.e., where the driver senses that
the time-to-collision is inadequate for effective mitigation by braking alone. Of the 369
accidents considered, 167 drivers attempted to brake; 53 performed an evasive maneuver
(of whom 47 also braked). A similar correlation, of course, can be found for steering to
the left (δdriver,l).

Regarding prior vehicle movements, collisions following “complex” (cdriver) prior maneu-
vers (e.g. turning, merging, lane changing, etc.) are associated with favorable unadjusted
odds ratios (0.217 to 0.340). Again, this odds ratio can be adequately explained by the
significantly (Mann-Whitney, p < 0.001, z = −9.812) lower mean impact speed in this
category (17.6 kph compared to 35.0 kph).

Regarding the direction of the pedestrian in relation to the road, crossing pedestrians
(ωped,3) are hit significantly (Mann-Whitney, p = 0.002, z = −3.095) slower in average
than pedestrians moving in other directions (28.0 kph compared to 39.9 kph), which leads
to favorable unadjusted odds ratios (0.397 to 0.458). The same significant effect shows
up for pedestrians walking along the street (ωped,2) indicated by unadjusted odds ratios
between 2.769 and 3.348: 45.9 kph for pedestrians walking along versus 28.2 kph for others,
Mann-Whitney, p = 0.001, z = −3.190.
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Although not significant in univariate regression, slow-moving (vped,PCDS) pedestrians
have a significantly lower mean impact speed than fast moving ones (26.3 kph versus
32.0 kph, Mann-Whitney, p < 0.001, z = −4.261); pedestrian walking speed was not signif-
icantly associated with braking of the vehicle, evasive steering or speed limit. Hazardous
walking behavior (hazardped,PCDS), i.e., fast or not moving (contrary to slow moving) is as-
sociated with an increased risk due to higher mean impact speed (32.3 kph versus 25.6 kph,
Mann-Whitney, p < 0.001, z = −4.919).

The above example highlights a fundamental difficulty with the correct interpretation
of statistical results from observational (i.e., non-randomized) data sets. Since selection
effects and dependencies between explanatory variables are common phenomena, a sound
interpretation should include careful analysis of possible confounders and requires knowl-
edge or hypotheses about cause-effect relations in advance based on different methods or
sources of knowledge.

The univariate results presented above show that variables from each of the five cate-
gories defined in Subsection 5.2.3, describing the characteristics of the collision, the pedes-
trian, and the vehicle as well as the maneuvers of the vehicle and the pedestrian can be
significant predictors for different ISS levels or fatalities for both data sets used. Impact
speed is by far the most important predictor.

It is important to assess internal relationships between explanatory variables and im-
pact speed, as these can distort the interpretation of the results, especially if no hypotheses
about the causal connection of the variable and injury or fatality risk exist. The findings
show that some variables are correlated with impact speed and those findings are inter-
preted. In addition, conclusions about the behavior of the driver or the hazard induced
by specific maneuvers are possible by testing these variables against impact speed. This
method allows for the discovery of aspects that are not coded explicitly in the data sets
and thus enhance the knowledge about the genesis of the accidents as well as their course
of events.
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Table 5.7: Univariate results for ISS9+, age group 4+ (PCDS).

Variable Symbol N
n ISS Scaling

p-value
unadjusted

95 % CI AIC BIC
0-8 9+ factor odds ratio

Vehicle kinematics
Impact speed vc,PCDS 369 213 156 28.9 < 0.001 17.225 9.435 31.447 340 347
Impact speed (squared) v2c,PCDS 369 213 156 (28.9)2 < 0.001 3.928 2.825 5.464 344 352

Kinetic energy Ekin 369 213 156 113.1 < 0.001 37.840 15.479 92.506 341 349

Vehicle characteristics
Front bumper lead x1,PCDS 368 212 156 3.0 0.001 1.428 1.148 1.776 495 502
Rear hood dist. from ground (wrap) w2,PCDS 369 213 156 22.2 0.021 1.291 1.040 1.604 501 509
Winds. base dist. from ground (wrap) w3,PCDS 369 213 156 28.9 0.029 1.274 1.025 1.584 502 510
Winds. top dist. from ground (wrap) w4,PCDS 369 213 156 21.1 0.020 1.309 1.043 1.643 501 509

Driver maneuvers and attention
Avoidance: Steering left δdriver,l 369 213 156 − 0.044 2.134 1.020 4.464 503 510
Avoidance: Steering δdriver 369 213 156 − 0.005 2.359 1.301 4.278 498 506
Pre-event movement car: complexity cdriver 369 213 156 − < 0.001 0.340 0.212 0.543 485 493

Pedestrian physiology
Age yped 369 213 156 22.2 0.002 1.421 1.143 1.765 496 504
Body weight mped,PCDS 369 213 156 22.6 0.033 1.269 1.019 1.581 502 510
Body mass index BMI 369 213 156 5.7 0.027 1.269 1.028 1.566 502 509

Pedestrian movement
Direction ped.: towards lane / crossing ωped,3 369 213 156 − 0.044 0.458 0.214 0.981 503 510
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Table 5.8: Univariate results for ISS16+, age group 4+ (PCDS).

Variable Symbol N
n ISS Scaling

p-value
unadjusted

95 % CI AIC BIC
0-15 16+ factor odds ratio

Vehicle kinematics
Impact speed vc,PCDS 369 248 121 28.9 < 0.001 15.342 8.587 27.411 308 315
Impact speed (squared) v2c,PCDS 369 248 121 (28.9)2 < 0.001 3.049 2.342 3.970 317 325

Kinetic energy Ekin 369 248 121 113.1 < 0.001 14.977 7.805 28.739 323 331

Vehicle characteristics
Front bumper lead x1,PCDS 368 247 121 3.0 0.008 1.361 1.085 1.706 463 470
Rear hood dist. from ground (wrap) w2,PCDS 369 248 121 22.2 0.042 1.265 1.008 1.588 467 475
Winds. base dist. from ground (wrap) w3,PCDS 369 248 121 22.6 0.045 1.261 1.005 1.582 467 475
Winds. top dist. from ground (wrap) w4,PCDS 369 248 121 21.1 0.016 1.342 1.056 1.706 465 473

Driver maneuvers and attention
Avoidance: Steering left δdriver,l 369 248 121 − 0.013 2.539 1.221 5.278 465 473
Avoidance: Steering δdriver 369 248 121 − 0.007 2.240 1.242 4.040 464 472
Pre-event movement car: complexity cdriver 369 248 121 − < 0.001 0.241 0.139 0.419 441 449

Pedestrian physiology
Age yped 369 248 121 22.2 0.001 1.457 1.163 1.826 460 468
Body weight mped,PCDS 369 248 121 22.6 0.019 1.318 1.047 1.660 465 473
Body mass index BMI 369 248 121 5.7 0.034 1.261 1.018 1.563 466 474
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Table 5.9: Univariate results for ISS25+, age group 4+ (PCDS).

Variable Symbol N
n ISS Scaling

p-value
unadjusted

95 % CI AIC BIC
0-24 25+ factor odds ratio

Vehicle kinematics
Impact speed vc,PCDS 369 277 92 28.9 < 0.001 16.988 9.212 31.328 255 263
Impact speed (squared) v2c,PCDS 369 277 92 (28.9)2 < 0.001 3.039 2.356 3.921 255 263

Kinetic energy Ekin 369 277 92 113.1 < 0.001 14.859 7.982 27.661 260 268

Vehicle characteristics
Front bumper lead x1,PCDS 368 276 92 3.0 < 0.001 1.600 1.235 2.074 404 412
Transition point height at contact h4,PCDS 369 277 92 15.6 0.034 1.278 1.018 1.603 414 422
Angle of front bumper α1,PCDS 368 276 92 15.4 0.035 0.787 0.629 0.983 413 421

Driver maneuvers and attention
Avoidance: Steering left δdriver,l 369 277 92 − 0.035 2.235 1.056 4.726 414 422
Avoidance: Steering δdriver 369 277 92 − 0.022 2.054 1.111 3.797 413 421
Pre-event movement car: complexity cdriver 369 277 92 − < 0.001 0.315 0.174 0.568 401 409

Pedestrian physiology
Sex Gped 369 277 92 − 0.011 0.535 0.330 0.867 412 420
Age yped 369 277 92 22.2 < 0.001 1.612 1.263 2.056 403 411
Hip height to transition point height r3,PCDS 369 277 92 0.2 0.046 0.778 0.608 0.995 414 422

Pedestrian movement
Direction ped.: with / against traffic ωped,2 369 277 92 − 0.056 2.769 0.976 7.860 415 423
Direction ped.: towards lane / crossing ωped,3 369 277 92 − 0.018 0.397 0.185 0.854 413 421
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Table 5.10: Univariate results for fatalities, age group 4+ (PCDS).

Variable Symbol N
n not n Scaling

p-value
unadjusted

95 % CI AIC BIC
fatal fatal factor odds ratio

Vehicle kinematics
Impact speed vc,PCDS 369 318 51 28.9 < 0.001 8.098 4.789 13.693 207 215
Impact speed (squared) v2c,PCDS 369 318 51 (28.9)2 < 0.001 1.865 1.578 2.204 215 223

Kinetic energy Ekin 369 318 51 113.1 < 0.001 3.725 2.528 5.491 228 236

Vehicle characteristics
Front bumper lead x1,PCDS 368 317 51 3.0 0.010 1.498 1.102 2.036 293 301
Transition point height at contact h4,PCDS 369 318 51 15.6 0.013 1.419 1.077 1.869 294 302
Rear hood dist. from ground (wrap) w2,PCDS 369 318 51 22.2 0.013 1.483 1.085 2.026 294 302
Winds. base dist. from ground (wrap) w3,PCDS 369 318 51 22.6 0.010 1.488 1.100 2.012 294 302

Driver maneuvers and attention
Avoidance: Steering left δdriver,l 369 318 51 − 0.018 2.748 1.192 6.339 295 303
Pre-event movement car: complexity cdriver 369 318 51 − 0.001 0.217 0.090 0.524 285 293

Pedestrian physiology
Sex Gped 369 318 51 − 0.030 0.506 0.273 0.936 296 303
Age yped 369 318 51 22.2 < 0.001 1.741 1.290 2.349 287 295
Body weight mped,PCDS 369 318 51 22.6 0.002 1.634 1.202 2.220 290 298
Body mass index BMI 369 318 51 5.7 0.001 1.553 1.192 2.022 290 298
Hip height to transition point height r3,PCDS 369 318 51 0.2 0.027 0.702 0.513 0.960 295 303

Pedestrian movement
Direction ped.: with / against traffic ωped,2 369 318 51 − 0.034 3.348 1.095 10.233 297 304
Direction ped.: towards lane / crossing ωped,3 369 318 51 − 0.039 0.399 0.167 0.954 297 304
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5 Probabilistic modeling of pedestrian injury severity

5.3.2 Multivariate analysis: MAIS or ISS as injury scale

The first research question regarding the development of injury probability models is
which injury scale available in the datasets should be used for the models (Section 5.1).
The MAIS and ISS are coded in GIDAS and PCDS. Fatalities are investigated separately,
as they are distributed over a wide range of MAIS or ISS values.

For the intended application of this work, it is important to verify the hypothesis that
the explanatory variables could have an independent causal influence on injury severity
for biomechanical or physical reasons. The variables associated with prior and evasive
maneuvers of the vehicle as well as the pedestrian were omitted on the hypothesis that
they have no direct causal relation, but are associated with injury due to selection effects
(as described and analyzed in the preceding section). In each case, the best fitting logistic
regression model (according to the AIC) is presented.

Multivariate models based on GIDAS

Table 5.11 gives the numbers of cases available for the following analysis in the GIDAS
data set. The corresponding multivariate results are given in Table 5.12 for ISS, Table 5.13
for MAIS, and Table 5.14 for fatalities. The resulting models contain between two and
six predictors. As in univariate analysis (Subsection 5.3.1), the strongest single predictive
factor is impact speed (as a linear quantity or squared value, as for MAIS4+). Pedestrian
age is included in every model and is positively associated with increased risk (adjusted
odds ratios between 2.033 and 3.445). Pedestrian weight is included in the model for
ISS16+ and is also associated with increased risk. The other variables included refer to
vehicle static characteristics or ratios of body height to vehicle quantities.

Three variables describing the geometry of the vehicle are significant in multivariate
analysis. The vertical measurement from the ground to the lower bumper reference line
(LBRLv,GIDAS) is associated with a decrease in risk. The longitudinal measurements
(BLEl,GIDAS and UBRLl,GIDAS) have the reverse effect. Both of them give indication
about the shape of the vehicle front. With increased values, the probability of injury
increases. The odds ratios connected with ratios of body height to vehicle geometry demand
more sophisticated interpretation. As the variables in the ISS16+ and MAIS2+ models are
associated with a decrease in risk due to an increase of the variable (i.e., higher body relative
to the vehicle), the ones for the MAIS4+ and MAIS5+ model show the reverse trend. As
discussed in the previous section, this effect can be attributed to a positive correlation
between body height and impact speed, which influences the statistics presented here and
does not allow for an interpretation of body height as an independent causal factor.

In order to quantify the variance underestimate due to imputation, multiple instances of
the data set were generated as described above (Subsection 5.2.4), including an additional
fraction of “virtual missing data” equal to the original fraction of missing data. To illustrate
the method, the regression coefficients in the model for ISS16+ were recomputed for the
two variables describing body weight and height of the pedestrian. Regarding body weight,
five instances with a total of 43.2 % imputed values each have been computed, compared
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Table 5.11: Frequencies of target variables (GIDAS).

Injury level Cases

0-1 435
2+ 450

0-2 731

MAIS
3+ 154

0-3 822
4+ 63

0-4 856
5+ 29

0-8 682
9+ 195

ISS
0-15 792
16+ 85

0-24 826
25+ 51

Fatalities
not fatal 866
fatal 46

to 21.6 % in the original GIDAS data set. The root-mean-square RMS deviation of the
regression coefficient for mped,GIDAS was 6.94 %. For body height, five instances with a total
of 43.4 % imputed values each have been computed, compared to 21.7 % in the original data.
The RMS deviation of the regression coefficient for r1,GIDAS was 1.74 %. These deviations
are much smaller than the confidence intervals resulting from logistic regression.

Using Eq. 5.1, the resulting models can be written as follows:

pISS9+,GIDAS =
1

1 + exp (1.650− 1.296 · vc,GIDAS − 0.781 · yped)
(5.17)

pISS16+,GIDAS = (1 + exp (3.631− 0.885 · yped − 0.792 ·mped,GIDAS − 1.629 · vc,GIDAS+

+0.435 · LBRLv,GIDAS − 0.35 ·BLEl,GIDAS + 0.699 · r1,GIDAS))−1 (5.18)

pISS25+,GIDAS =
1

1 + exp (3.822− 1.157 · vc,GIDAS − 1.009 · yped)
(5.19)

pFatalities,GIDAS =
1

1 + exp (4.391− 1.373 · vc,GIDAS − 1.237 · yped)
(5.20)

An example of the practical use of the models is given using Eq. 5.17. Note that
the parameters have been transformed (see Subsection 5.2.3) using mean and standard
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Table 5.12: Multivariate logistic regression models for ISS9+, ISS16+, and ISS25+, age group
4+ (GIDAS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

ISS9+ (AIC: 595; BIC: 609)

Age yped 25.8 < 0.001 2.185 1.771 2.694
Impact speed vc,GIDAS 17.0 < 0.001 3.656 2.833 4.716
Constant exp(β0) 0.192

ISS16+ (AIC: 283; BIC: 317)

Body weight mped,GIDAS 21.3 0.002 2.209 1.351 3.612
Age yped 25.8 < 0.001 2.423 1.679 3.497
Impact speed vc,GIDAS 17.0 < 0.001 5.097 3.506 7.410
Lower bumper

LBRLv,GIDAS 9.2 0.022 0.647 0.446 0.939
reference line - vert.
Bonnet lead. e. - l. BLEl,GIDAS 3.0 0.033 1.419 1.030 1.955
Height to up. bum.

r1,GIDAS 0.4 0.010 0.497 0.293 0.844
reference line - vert.
Constant exp(β0) 0.026

ISS25+ (AIC: 234; BIC: 248)

Age yped 25.8 < 0.001 2.744 1.837 4.099
Impact speed vc,GIDAS 17.0 < 0.001 3.180 2.332 4.337
Constant exp(β0) 0.022
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Table 5.13: Multivariate logistic regression models for MAIS2+, MAIS3+, MAIS4+, and
MAIS5+, age group 4+ (GIDAS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

MAIS2+ (AIC: 864; BIC: 888)

Age yped 25.8 < 0.001 2.125 1.750 2.581
Impact speed vc,GIDAS 17.0 < 0.001 3.144 2.494 3.964
Lower bumper

LBRLv,GIDAS 9.2 0.019 0.819 0.694 0.967
reference line - vert.
Height to winds.

r7,GIDAS 0.1 0.013 0.782 0.644 0.950
up. edge (wrap)
Constant exp(β0) 1.197

MAIS3+ (AIC: 534; BIC: 553)

Age yped 25.8 < 0.001 2.118 1.691 2.653
Impact speed vc,GIDAS 17.0 < 0.001 2.975 2.333 3.793
Constant exp(β0) 0.128

MAIS4+ (AIC: 259; BIC: 283 )

Age yped 25.8 < 0.001 2.643 1.787 3.909
Impact speed v2c,GIDAS 1473.5 < 0.001 3.258 2.334 4.547
Bonnet lead. e. - l. BLEl,GIDAS 3.0 0.006 1.645 1.155 2.344
Height to hood

r5,GIDAS 0.2 0.001 1.850 1.307 2.619
rear end (wrap)
Constant exp(β0) 0.025

MAIS5+ (AIC: 172; BIC: 192 )

Age yped 25.8 0.005 2.033 1.246 3.319
Impact speed vc,GIDAS 17.0 < 0.001 2.789 1.982 3.925
Height to hood

r5,GIDAS 0.2 0.013 1.534 1.093 2.153
rear end (wrap)
Constant exp(β0) 0.013

Table 5.14: Multivariate logistic regression models for fatalities, age group 4+ (GIDAS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

Fatalities (AIC: 203; BIC: 218)

Age yped 25.8 < 0.001 3.445 2.163 5.488
Impact speed vc,GIDAS 17.0 < 0.001 3.946 2.829 5.503
Constant exp(β0) 0.012
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Table 5.15: Predictive accuracy of the models given by equations 5.17 to 5.20 (GIDAS). The
number of included parameters is given by k.

Full-data model Cross-validation

Model
ROC
AUC

95 % CI k
ROC
AUC

SD SE Optimism

ISS9+ 0.831 0.798 0.864 2 0.827 0.046 0.015 0.004
ISS16+ 0.921 0.891 0.950 6 0.879 0.070 0.023 0.041
ISS25+ 0.883 0.841 0.925 2 0.861 0.065 0.022 0.022

MAIS2+ 0.764 0.732 0.797 4 0.749 0.041 0.014 0.015
MAIS3+ 0.818 0.777 0.860 3 0.811 0.080 0.027 0.008
MAIS4+ 0.904 0.869 0.938 4 0.873 0.030 0.010 0.031
MAIS5+ 0.888 0.841 0.935 3 0.759 0.171 0.057 0.129

Fatalities 0.925 0.891 0.959 2 0.915 0.054 0.018 0.010

deviation. For example, a vehicle impact speed of 35 kph and a pedestrian age of 20 years
are used. Together with mean and standard deviation from Table A.1, p. 188, Eq. 5.17
delivers the following probability:

pISS9+,GIDAS,expl. =
1

1 + exp (− ln(0.192)− ln(3.656) · vc,GIDAS − ln(2.185) · yped)
=

=
1

1 + exp (1.650− 1.296 · vc,GIDAS − 0.781 · yped)
=

=
1

1 + exp
(
1.650− 1.296 ·

(
35−29.35
17.04

)
− 0.781 ·

(
20−35.91
25.83

)) =

= 0.155

The predictive performance of the models is quantified using receiver operator charac-
teristic (ROC) analysis. The in-sample predictive accuracy is given by the area under
the curve (AUC) of the ROC. Compared with the results of the 10-fold cross-validation,
the expected out-of-sample accuracy can be estimated. Table 5.15 gives the corresponding
results. The predictive quality, in-sample and out-of-sample, is remarkably high (ROC
AUC 0.749 to 0.915). The optimism, quantifying the difference between in-sample and
out-of-sample predictive accuracy, is relatively small for all models (except for MAIS5+).
The model for fatalities has the highest expected out-of-sample accuracy with 0.915.

The question whether MAIS or ISS should be used as target variable for injury or
mortality probability models can be addressed for the GIDAS data set using the expected
out-of-sample performance of the models. The ISS-based models have a mean ROC AUC
between 0.827 and 0.879, whereas the MAIS-based ones have 0.749 to 0.873. The models
are not directly comparable, as they predict probabilities of different injury scales. The
ISS-based models tend to have a higher accuracy, as was suspected from the advantages
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of ISS over MAIS as stated in the medical literature (see Section 5.1).

The relatively high standard deviation (SD) as well as standard error of the mean
(SE) obtained in cross-validation seem to decrease with higher case numbers and become
smaller than the optimism.

Comparison to existing models

There are a few models in the literature which are based on GIDAS and predict the
probability for a particular injury level or for fatalities. The coefficients of the models are
not directly comparable, as each model uses a different data set and probably a different
scaling for the explanatory factors. The first two models for MAIS2+ and MAIS5+ are
based on impact speed. They are not included explicitly in the publication, but only given
as diagram [94].

Another model derived from the GIDAS data for MAIS2+ is given in [160]:

pMAIS2+ =
1

1 + exp (2.54− 0.06 · vc,GIDAS − 0.02 · yped)
(5.21)

This model includes impact speed and pedestrian age. Geometric quantities are not in-
cluded (as given in Table 5.13). The ROC AUC of model 5.21 with respect to the data
used for this thesis is 0.758. This ROC AUC is comparable to the corresponding value
given in Table 5.15.

Regarding fatalities, the following model also includes impact speed and age as indepen-
dent predictors (as the one presented in Table 5.14). It is again based on GIDAS and valid
for pedestrians at age 15 and older [162]:

pfatal =
1

1 + exp (9.1− 0.095 · vc,GIDAS − 0.040 · yped)
(5.22)

The ROC AUC of 0.898 for pedestrians 15 and older is identical with the ROC AUC for
the model presented in Table 5.14 within the same age group.

Fitzharris and Fildes constructed another model for mortality prediction [75], which is
unpublished but included in [45]. No further information, e.g., on data used, sampling
procedures or boundary conditions, is available. The model uses vehicle impact speed and
pedestrian age ([75] following [45]):

pfatal =
1

1 + exp (6.302424− 0.080358 · vc − 0.03166 · yped)
(5.23)

The ROC AUC is 0.923 with respect to the data used for this thesis, which is comparable
to the ROC AUC of 0.925 given in Table 5.15 for the corresponding model.

Figure 5.3 gives the mortality estimates of the three models (Eq. 5.20, 5.22, and 5.23)
as function of vehicle impact speed. The model constructed in this thesis as well as the
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Figure 5.3: Mortality estimates for different pedestrian ages depending on vehicle impact
speed, as given by Eq. 5.20, 5.22, and 5.23.

model by Rosen give rather similar estimates. The model by Fitzharris tends to higher
probabilities for given values of impact speed and pedestrian age. As both models are
constructed using the GIDAS data set and include the same parameters, this is a plausible
and expected finding. As discussed above, hardly any information besides the formula
itself [45] is published for the Fitzharris model, consequently, no further interpretation of
the different model estimates is possible.

The review of models available in the literature shows that ISS as outcome variable has
been considered [75], but no model parameters have been published so far [45]. Explicit
models for MAIS other than MAIS2+ have not been published. Regarding fatalities, a
comparable model was derived in a previous study [162] and is confirmed by the results
of this study.

Multivariate models based on PCDS

For the PCDS data set Table 5.16 gives the numbers of cases available. The correspond-
ing multivariate logistic regression models are given in Table 5.17 for ISS, Table 5.18 for
MAIS, and Table 5.19 for fatalities. The resulting models contain between two and four
predictors. Impact speed is the most important predictor and is included in every model.
Note that impact speed is scaled differently than in the GIDAS data set, as it is scaled by
the mean only.

Pedestrian age is also included in every model except MAIS5+ and is associated with
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Table 5.16: Frequencies of target variables (PCDS).

Injury level Cases

0-1 157
2+ 211

0-2 226

MAIS
3+ 142

0-3 288
4+ 80

0-4 316
5+ 52

0-8 213
9+ 156

ISS
0-15 248
16+ 121

0-24 277
25+ 92

Fatalities
not fatal 318
fatal 51

an increased risk (odds ratio 1.669 to 2.163). BMI is included in the model for fatalities
and is associated with increased risk (odds ratio 1.742).

Different variables describing the geometry of the vehicle as well as the pedestrian stature
are significant in multivariate analysis and included in every model (except MAIS2+).
Increasing hip height (hh,ped,PCDS) is associated with decreased risk (see Table 5.19). Ratios
of body height to vehicle geometry are included in all ISS as well as in the MAIS4+ model
and are also associated with decreased risk. The vehicle characteristics significant in the
MAIS3+ and MAIS5+ models support these findings: Increased height of the vehicle front
is associated with higher risk. The well-known risk imposed by light trucks or vans which
typically have those geometric quantities are in line with these findings (see above).

It is important to interpret the results with respect to multicollinearity (correlations
between factors within the PCDS data set): In the ISS25+ model, the ratio of hip height
to the front-top transition point (r3,PCDS) is associated with a small (0.298 < 1) adjusted
odds ratio, whereas shoulder height to the distance from the ground to the front hood
opening (r6,PCDS) is associated with a large (1.639 > 1) adjusted odds ratio. These two
factors are correlated (Spearman coefficient 0.817, p < 0.001). Considering the log-odds
ratios, which are -1.209 and 0.494 respectively, the effects thus almost cancel each other
out, with a negative odds ratio of about 0.489 associated with body height. There is also
a correlation between hip and shoulder height and each of the vehicle characteristics and
body height as well as between the two vehicle profile characteristics. That means that an
increase in the persons height relative to the height of the vehicle front is still beneficial.
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Table 5.17: Multivariate logistic regression models for ISS9+, ISS16+, and ISS25+, age group
4+ (PCDS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

ISS9+ (AIC: 318; BIC: 334 )

Impact speed vc,PCDS 28.9 < 0.001 26.197 12.942 53.028
Age yped 22.2 < 0.001 1.958 1.455 2.636
Hip height to

r4,PCDS 0.3 0.016 0.703 0.529 0.936
forward hood height
Constant exp(β0) 0.030

ISS16+ (AIC: 286; BIC: 302)

Impact speed vc,PCDS 28.9 < 0.001 21.256 10.975 41.169
Age yped 22.2 < 0.001 1.866 1.376 2.530
Hip height to

r3,PCDS 0.2 0.004 0.618 0.446 0.855
transition point h.
Constant exp(β0) 0.017

ISS25+ (AIC: 221; BIC: 241)

Impact speed vc,PCDS 28.9 < 0.001 29.250 13.644 62.705
Age yped 22.2 < 0.001 2.114 1.490 2.998
Hip height to

r3,PCDS 0.2 < 0.001 0.298 0.161 0.551
transition point h.
Shoulder height to

r6,PCDS 0.4 0.040 1.639 1.023 2.627
front hood h. (wrap)
Constant exp(β0) 0.005
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Table 5.18: Multivariate logistic regression models for MAIS2+, MAIS3+, MAIS4+, and
MAIS5+, age group 4+ (PCDS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

MAIS2+ (AIC: 377; BIC: 389)

Impact speed vc,PCDS 28.9 < 0.001 12.605 6.840 23.229
Age yped 22.2 < 0.001 1.715 1.312 2.243
Constant exp(β0) 0.149

MAIS3+ (AIC: 327; BIC: 343)

Impact speed vc,PCDS 28.9 < 0.001 17.135 9.216 31.858
Forward hood height

h3,PCDS 17.0 0.031 1.329 1.026 1.721
at centerline
Age yped 22.2 < 0.001 1.669 1.256 2.220
Constant exp(β0) 0.035

MAIS4+ (AIC: 229; BIC: 245 )

Impact speed vc,PCDS 28.9 < 0.001 17.180 8.993 32.820
Age yped 22.2 < 0.001 1.809 1.297 2.521
Hip height to

r3,PCDS 0.2 0.001 0.483 0.319 0.729
transition point h.
Constant exp(β0) 0.008

MAIS5+ (AIC: 196; BIC: 207)

Impact speed vc,PCDS 28.9 < 0.001 10.531 5.809 19.093
Transition point

h4,PCDS 15.6 0.001 1.897 1.301 2.767
height at contact
Constant exp(β0) 0.007

Table 5.19: Multivariate logistic regression models for fatalities, age group 4+ (PCDS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

Fatalities (AIC: 182; BIC: 202)

Body mass index BMI 5.7 0.002 1.742 1.225 2.479
Impact speed vc,PCDS 28.9 < 0.001 11.558 6.125 21.810
Age yped 22.2 < 0.001 2.163 1.439 3.250
Pedestrian hip height hh,ped,PCDS 11.1 0.002 0.461 0.281 0.758
Constant exp(β0) 0.004
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The variance underestimate due to imputation was quantified using BMI as variable
including body weight (mped,PCDS) in the fatality model for the PCDS data set. Ten in-
stances with a total of 20.0 % imputed values each for BMI have been computed, compared
to 10.0 % in the original data. The RMS deviation of the regression coefficient was 4.80 %.
As for the GIDAS data before, this deviation is much smaller than the confidence intervals
resulting from logistic regression.

Using Eq. 5.1 the resulting models can be written as follows:

pISS9+,PCDS = (1 + exp (3.505 + 0.352 · r4,PCDS − 0.672 · yped − 3.266 · vc,PCDS))−1

(5.24)

pISS16+,PCDS = (1 + exp (4.048 + 0.482 · r3,PCDS−
−0.624 · yped − 3.057 · vc,PCDS))−1 (5.25)

pISS25+,PCDS = (1 + exp (5.273 + 1.209 · r3,PCDS − 0.748 · yped−
−3.376 · vc,PCDS − 0.494 · r6,PCDS))−1 (5.26)

pFatalities,PCDS = (1 + exp (5.47− 0.771 · yped + 0.774 · hh,ped,PCDS−
−2.447 · vc,PCDS − 0.555 ·BMI))−1 (5.27)

The findings from the PCDS data are comparable to the GIDAS data set. Impact speed
and pedestrian age are very important predictors in the multivariate models. Pedestrian
and vehicle characteristics are significant as additional explanatory variables. As discussed
in Subsection 5.3.1, an increased ratio of body height to vehicle front is beneficial. This
effect is clearly present in the PCDS data and is masked for GIDAS due to a correlation
between body height and impact speed.

The predictive performance of the models is quantified using ROC analysis. Table 5.20
summarizes the corresponding results. The predictive quality, in-sample and out-of-sample,
is remarkably high (ROC AUC 0.802 to 0.900). The optimism is relatively small for all
models.

Using the expected out-of-sample performance as measure, the ISS-based models tend
to have higher mean AUC ROC (0.871 to 0.900) than the MAIS-based models (0.802
to 0.877). As in GIDAS, this is a clear indication that ISS has to be favored, consider-
ing the construction of injury probability models based on empirical in-depth accident data.
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Table 5.20: Predictive accuracy of the models given by equations 5.24 to 5.27 (PCDS).

Full-data model Cross-validation

Model
ROC
AUC

95 % CI k
ROC
AUC

SD SE Optimism

ISS9+ 0.880 0.846 0.914 3 0.871 0.060 0.020 0.009
ISS16+ 0.890 0.858 0.923 3 0.880 0.078 0.026 0.011
ISS25+ 0.901 0.868 0.935 4 0.900 0.052 0.017 0.002

MAIS2+ 0.817 0.775 0.859 2 0.802 0.063 0.021 0.015
MAIS3+ 0.870 0.834 0.905 3 0.850 0.048 0.016 0.020
MAIS4+ 0.903 0.868 0.939 2 0.875 0.113 0.038 0.028
MAIS5+ 0.898 0.856 0.940 2 0.877 0.069 0.023 0.021

Fatalities 0.913 0.876 0.950 4 0.898 0.058 0.019 0.014

5.3.3 Multivariate versus univariate analysis

The second research question refers to the expected advantage of multivariate compared
to univariate modeling. To this end, univariate models for ISS and fatalities have been con-
structed using impact speed as single explanatory variable. The models for GIDAS are sum-
marized in Table 5.21. The corresponding results for PCDS are summarized in Table 5.22
(note that impact speed was scaled differently for the PCDS data, see Subsection 5.2.3).

The corresponding formulas using Eq. 5.1 are the following:

pISS9+,speed,GIDAS =
1

1 + exp (1.484− 1.287 · vc,GIDAS)
(5.28)

pISS16+,speed,GIDAS =
1

1 + exp (2.883− 1.515 · vc,GIDAS)
(5.29)

pISS25+,speed,GIDAS =
1

1 + exp (3.288− 1.134 · vc,GIDAS)
(5.30)

pfatal,speed,GIDAS =
1

1 + exp (3.758− 1.385 · vc,GIDAS)
(5.31)

pISS9+,speed,PCDS =
1

1 + exp (3.111− 2.846 · vc,PCDS)
(5.32)

pISS16+,speed,PCDS =
1

1 + exp (3.674− 2.731 · vc,PCDS)
(5.33)

pISS25+,speed,PCDS =
1

1 + exp (4.465− 2.833 · vc,PCDS)
(5.34)

pfatal,speed,PCDS =
1

1 + exp (4.625− 2.092 · vc,PCDS)
(5.35)
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Table 5.21: Univariate results for ISS9+, ISS16+, ISS25+, and fatalities using impact speed
as single predictor, age group 4+ (GIDAS).

Variable Symbol
Scaling

p-value
unadjusted

95 % CI
factor odds ratio

ISS9+ (speed only) (AIC: 754; BIC: 764)

Impact speed vc,GIDAS 17.0 < 0.001 3.622 2.889 4.541
Constant exp(β0) 0.227

ISS16+ (speed only) (AIC: 410; BIC: 420)

Impact speed vc,GIDAS 17.0 < 0.001 4.548 3.363 6.150
Constant exp(β0) 0.056

ISS25+ (speed only) (AIC: 316; BIC: 326)

Impact speed vc,GIDAS 17.0 < 0.001 3.107 2.335 4.134
Constant exp(β0) 0.037

Fatalities (speed only) (AIC: 271; BIC: 280)

Impact speed vc,GIDAS 17.0 < 0.001 3.995 2.939 5.429
Constant exp(β0) 0.023

Table 5.22: Univariate results for ISS9+, ISS16+, ISS25+, and fatalities using impact speed
as single predictor, age group 4+ (PCDS).

Variable Symbol
Scaling

p-value
unadjusted

95 % CI
factor odds ratio

ISS9+ (speed only) (AIC: 340; BIC: 347)

Impact speed vc,PCDS 28.9 < 0.001 17.225 9.435 31.447
Constant exp(β0) 0.045

ISS16+ (speed only) (AIC: 308; BIC: 315)

Impact speed vc,PCDS 28.9 < 0.001 15.342 8.587 27.411
Constant exp(β0) 0.025

ISS25+ (speed only) (AIC: 255; BIC: 263)

Impact speed vc,PCDS 28.9 < 0.001 16.988 9.212 31.328
Constant exp(β0) 0.012

Fatalities (speed only) (AIC: 207; BIC: 215)

Impact speed vc,PCDS 28.9 < 0.001 8.098 4.789 13.693
Constant exp(β0) 0.010
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Table 5.23: Predictive accuracy of the models containing only impact speed and comparison
to multivariate results (GIDAS).

Full-data model Cross-validation

Model ROC
95 % CI

ROC
SD SE Optimism

p t
AUC AUC value value

ISS9+ 0.787 0.751 0.823 0.786 0.035 0.012 0.001 0.004 3.397
ISS16+ 0.849 0.808 0.890 0.849 0.059 0.020 0.000 0.070 1.619
ISS25+ 0.827 0.773 0.881 0.827 0.065 0.022 0.000 0.125 1.228
Fatalities 0.864 0.806 0.923 0.866 0.105 0.035 −0.002 0.020 2.395

Table 5.24: Predictive accuracy of the models containing only impact speed and comparison
to multivariate results (PCDS).

Full-data model Cross-validation

Model ROC
95 % CI

ROC
SD SE Optimism

p t
AUC AUC value value

ISS9+ 0.855 0.816 0.894 0.853 0.049 0.016 0.002 0.084 1.496
ISS16+ 0.870 0.832 0.909 0.871 0.084 0.028 −0.001 0.251 0.700
ISS25+ 0.881 0.838 0.924 0.881 0.054 0.018 0.001 0.079 1.542
Fatalities 0.876 0.826 0.926 0.874 0.079 0.026 0.002 0.114 1.291

Tables 5.23 and 5.24 give the ROC AUC for the univariate models for GIDAS and PCDS.
The in-sample and out-of-sample predictive accuracy of the models is high. Regarding the
latter one, the models derived from PCDS tend to be more accurate. The optimism is very
small (≤ 0.002). One-sided t-tests were used to evaluate the differences between cross-
validated multivariate models (as given in Tables 5.15 and 5.20) and the corresponding
univariate models.

The p-values in the last column refer to the hypothesis of improved ROC AUC in the
cross-validated multivariate models. The hypothesis cannot be accepted for every model
due to non-significant (p < 0.05) differences in the mean. In the GIDAS data set, the
hypothesis can be accepted for ISS9+ (p = 0.004) and fatalities (p = 0.020). Regarding
the non-significant models, there is a clear trend towards the multivariate models. As the
standard deviation as well as the standard error of the mean are much greater than the
optimism, it can be suspected that more data would be beneficial for proving a significant
effect in every model. On the basis of a clear trend and the small (or significant) p-values, it
is assumed that multivariate modeling indeed is beneficial compared to univariate modeling
using impact speed of the vehicle alone.

There is one model in the literature which predicts mortality based on impact speed
only [162]:

pfatal =
1

1 + exp (6.9− 0.090 · vc)
(5.36)
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Figure 5.4: Mortality estimates depending on vehicle impact speed, as given by Eq. 5.31,
5.35, and 5.36.

Again, the coefficients of the models are not directly comparable, as each model uses a
different scaling for impact speed. Note, that the Rosen model used kph, whereas impact
speed for the GIDAS model was scaled using standard deviation and mean and for PCDS
using only the mean, see Subsection 5.2.3.

Figure 5.4 gives the mortality probability of the three models (Eq. 5.31, 5.35, and 5.36)
as function of vehicle impact speed. The model constructed in this thesis based on GIDAS
as well as the model by Rosen give rather similar estimates. As both models are constructed
using the GIDAS data set and include the same parameters, this is a plausible and expected
finding. The minor differences between the models could be attributable to, for example,
differences in methodological aspects, such as imputation carried out here. The PCDS-
based model shows higher probabilities for given values of impact speed. This could be
attributed to the PCDS data sample, which represents an older situation from the 1990s
(see Subsection 5.2.1). In addition to that, differences in the safety features of the US
vehicle population of that time, e.g., proportion of light trucks or structural characteristics,
could explain higher injuries at comparable levels of impact speed.

5.3.4 Investigation of special subgroups

The construction of injury probability models can include the whole data set, as pre-
sented above, or can be performed using subgroups of the data set. In view of biomechanical
differences [101, 102, 153], a splitting of the population into subgroups depending on age
(e.g., 4-17, 18-64, 65+) could help detect possible injury risk factors specific to particular
age groups and improve the model quality.
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Table 5.25: Cases available in the GIDAS data set by outcome category and age group.

Age group

Injury level 4-17 18-64 65+

ISS9+ 36 (272) 84 (314) 75 (96)
ISS16+ 11 (297) ∗ 39 (359) 35 (136)
ISS25+ 4 (304) ∗ 24 (374) ∗ 23 (148) ∗

Fatalities 2 (317) ∗ 22 (394) ∗ 25 (155)

Table 5.26: Cases available in the PCDS data set by outcome category and age group.

Age group

Injury level 4-17 18-64 65+

ISS9+ 28 (55) 100 (133) 28 (25)
ISS16+ 19 (64) ∗ 78 (155) 24 (29) ∗
ISS25+ 14 (69) ∗ 58 (175) 20 (33) ∗

Fatalities 6 (77) ∗ 29 (204) 16 (37) ∗

Considering the limited number of cases available, a splitting into subgroups reduces
the statistical power and leads to the exclusion of some groups from analysis. Tables 5.25
and 5.26 give the frequencies of cases available for GIDAS and PCDS. Groups with an
asterisk (∗) are considered insufficient for multivariate analysis (see Subsection 5.2.5) as
they have less than 25 cases in at least one category. The low numbers available, especially
in categories containing more severe cases, highlight the problem of limited case numbers
in these data sets.

Table 5.27 gives the models for the GIDAS data set per age group. As the case numbers
are very low in some groups (especially for ISS16+, fatalities and the adolescent group
with ISS9+). Statistical effects such as multicollinearity and selection effects strongly
influence the results and make a sound interpretation of the explanatory factors difficult.
One manifestation can be that the relative ordering of predictor importance is no longer
reliable.

The selection of subgroups can produce correlations between factors which are not cor-
related in the whole data set. The effect is obvious in the model for fatalities (age 65+).
Pedestrian age as well as weight are of overriding importance compared to impact speed
(included in kinetic energy). The correlations between the variables do not allow for an
interpretation of effects concerning cause-effect relations. Kinetic energy in this model is
significantly correlated with age and weight. Both explanatory variables are also correlated
with linear impact speed (which is not included in the multivariate model) and thus are
suspected to be confounders within this special subgroup.
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As a result, the further splitting of the whole data set seems to reduce power and
produce selection effects, which distort the results and make a sound interpretation nearly
impossible. The statistical problems become also evident in very large confidence intervals.
The method elaborated in the preceding sections can therefore not be recommended for
small empirical data sets.

Table 5.27: Multivariate logistic regression models by age groups (GIDAS).

Variable Symbol
Scaling

p-value
adj.

95 % CI
factor OR

ISS9+ (age 4-17) (AIC: 154; BIC: 162)

Impact speed (sq.) v2c,GIDAS 1473.5 < 0.001 4.094 2.256 7.430
Constant exp(β0) 0.110

ISS9+ (age 18-64) (AIC: 277; BIC: 285)

Impact speed vc,GIDAS 17.0 < 0.001 3.663 2.556 5.251
Constant exp(β0) 0.191

ISS9+ (age 65+) (AIC: 164; BIC: 174)

Pontoon-shaped type2,veh,GIDAS - 0.033 4.399 1.125 17.195
Impact speed vc,GIDAS 17.0 < 0.001 4.026 2.364 6.856
Constant exp(β0) 0.015 0.201

ISS16+ (age 18-64) (AIC: 146; BIC: 178)

Age yped 25.8 0.003 4.455 1.661 11.947
Impact speed (sq.) v2c,GIDAS 1473.5 < 0.001 4.345 2.618 7.212
Lower bumper

LBRLl,GIDAS 2.9 0.024 1.827 1.083 3.081
ref. line - long.
Upper bumper

UBRLv,GIDAS 4.0 < 0.001 2.886 1.630 5.112
ref. line - vert.
Bonnet lead. e. - l. BLEl,GIDAS 3.0 0.003 3.644 1.539 8.630
Height to hood

r4,GIDAS 0.2 0.001 8.022 2.365 27.211
rear end - vert.
Angle up. bum. ref.

α1,GIDAS 7.0 0.034 2.510 1.073 5.875
l. to bonnet lead. e.
Constant exp(β0) 0.008
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Table 5.27: (Continued)

Variable Symbol
Scaling

p-value
adj.

95 % CI
factor OR

ISS16+ (age 65+) (AIC: 111; BIC: 123)

Impact speed (sq.) v2c,GIDAS 1473.5 < 0.001 3.921 2.027 7.586
Lower bumper

LBRLv,GIDAS 9.2 0.024 0.433 0.209 0.896
reference line - vert.
Bonnet lead. e. - l. BLEl,GIDAS 3.0 0.003 2.667 1.395 5.099
Constant exp(β0) 0.121

Fatalities (age 65+) (AIC: 83; BIC: 99)

Body weight mped,GIDAS 21.3 0.004 8.061 1.959 33.175
Age yped 25.8 0.007 32.719 2.596 412.406
Kinetic energy Ekin 1008.5 < 0.001 3.564 1.801 7.052
Bonnet lead. e. - l. BLEl,GIDAS 3.0 0.008 2.868 1.313 6.262
Constant exp(β0) 0.000

The corresponding results for PCDS are given in Table 5.28. As many of the groups
presented have low case numbers, similar effects as presented above for the GIDAS data
become evident for the PCDS data set. The large confidence intervals are an indication for
the instability of the models. A further interpretation of the results does not seem feasible
and is therefore not given.

Although the splitting of the population with respect to pedestrian age is grounded on
biomechanical considerations, a splitting of the population in order to investigate special
subgroups does not seem to make sense using the data sets available: The case numbers
are too low to construct about half of the models in question. Case numbers are critically
low (as explained above) for most of the other models shown. The instability of the
models combined with selection effects does not allow a clear interpretation of the results
and a comparison with the multivariate results for the whole data set regarding predictive
accuracy (as presented in Subsection 5.3.2). Nevertheless, pedestrian age is included in
the multivariate analysis of Subsection 5.3.2 and shows up as significant explanatory
variable in every ISS and fatality model in both GIDAS and PCDS. Thus, the effects of
pedestrian age are considered and quantified in the models there.
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Table 5.28: Multivariate logistic regression models by age groups (PCDS).

Variable Symbol
Scaling

p-value
adj.

95 % CI
factor OR

ISS9+ (age 4-17) (AIC: 72; BIC: 77)

Impact speed vc,PCDS 28.9 < 0.001 44.573 7.604 261.281
Constant exp(β0) 0.009

ISS9+ (age 18-64) (AIC: 205; BIC: 218)

Impact speed vc,PCDS 28.9 < 0.001 22.002 9.514 50.879
Forward hood height

h3,PCDS 17.0 0.019 1.426 1.061 1.917
at centerline
Age yped 22.2 0.007 2.356 1.257 4.416
Constant exp(β0) 0.035

ISS9+ (age 65+) (AIC: 49; BIC: 53)

Impact speed vc,PCDS 28.9 < 0.001 29.566 4.483 194.989
Constant exp(β0) 0.072

ISS16+ (age 18-64) (AIC: 160; BIC: 171)

Impact speed vc,PCDS 28.9 < 0.001 38.631 14.584 102.329
Hip height to

r3,PCDS 0.2 0.001 0.445 0.279 0.710
transition point height
Constant exp(β0) 0.011

ISS25+ (age 18-64)(AIC: 114; BIC: 131)

Vehicle curb weight mveh,PCDS 1415.1 < 0.001 3.151 1.680 5.909
Impact speed vc,PCDS 28.9 < 0.001 88.215 22.692 342.934
Forward hood height

h3,PCDS 17.0 0.031 1.864 1.058 3.286
at centerline
Angle of front bumper α1,PCDS 15.4 < 0.001 0.292 0.158 0.539
Constant exp(β0) 0.001

Fatalities (age 18-64) (AIC: 160; BIC: 171)

Impact speed vc,PCDS 28.9 < 0.001 37.118 4.953 278.154
Age yped 22.2 0.043 36.807 1.120 1209.161
Constant exp(β0) 0.000
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5.4 Plausibility check and indications for implementation

5.4.1 Probability models for ISS and fatalities

In order to check the plausibility of the GIDAS-based models for ISS (univariate and
multivariate) as given by Equations 5.17 to 5.19, p. 109, and Equations 5.28 to 5.30, p. 119,
the conditional probability simulation described in Subsection 5.2.6 is used. The necessary
parameters required by the models are vc, yped, mped, LBRLv, BLEv, and r1.

Using the conditional probability simulation for the GIDAS-based ISS models, it becomes
obvious that constraint 2 (see Eq. 5.8, p. 91) can actually be violated. Considering the
models, this means that

• pISS16+,GIDAS ≤ pISS9+,GIDAS is violated about in 2.0 % of the cases,

• pISS25+,GIDAS ≤ pISS9+,GIDAS is violated in 0.0 % of the cases,

• pISS25+,GIDAS ≤ pISS16+,GIDAS is violated about in 31.1 % of the cases,

• pISS16+,speed,GIDAS ≤ pISS9+,speed,GIDAS is violated in 0.0 % of the cases,

• pISS25+,speed,GIDAS ≤ pISS9+,speed,GIDAS is violated in 0.0 % of the cases, and

• pISS25+,speed,GIDAS ≤ pISS16+,speed,GIDAS is violated about in 14.4 % of the cases.

As, for example, ISS9+ and ISS25+ are rather far apart, a violation of constraint 2 does
not arise within the parameter ranges considered, neither multi- nor univariate. ISS16+
and ISS25+ are much closer which leads to the described violation.

This section includes the results for the models constructed with the approach of
conditional probabilities as explained above. In order to demonstrate the method,
Options a and c (see p. 93) are computed each for the univariate and multivariate GIDAS
models. Option c leaves the original ISS16+ model with its wealth of explanatory factors
(especially vehicle characteristics). Option a gives insight regarding a generic approach.
Option b is not given, as it does not bring any new insights into the application of the
methodology.

Table 5.29 gives the numbers available for analysis in the GIDAS data set. Due to the
selection necessary for constructing the new models, the numbers are smaller than the
those in Table 5.11, p. 109.

The corresponding results for Option a are given in Table 5.30 for the univariate case
and in Table 5.31 for the multivariate one.
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Table 5.29: Frequencies of target variables (GIDAS).

Injury level Cases

9-15 110
16+ 85

ISS
16-24 34
25+ 51

0-8 682
9-15 110

Table 5.30: Univariate results for ISS16+|9+, and ISS25+|16+, using impact speed as single
predictor, age group 4+ (GIDAS), Option a.

Variable Symbol
Scaling

p-value
unadjusted

95 % CI
factor odds ratio

ISS16+|9+ (speed only) (AIC: 237; BIC: 244)

Impact speed vc,GIDAS 17.0 < 0.001 2.448 1.708 3.507
Constant exp(β0) 0.391

ISS25+|16+ (speed only)

Constant exp(β0) 0.067

Using Eq. 5.1 the resulting models can be written as:

pISS16+|9+,speed,GIDAS =
1

1 + exp (0.939− 0.895 · vc,GIDAS)
(5.37)

pISS25+|16+,speed,GIDAS =
1

1 + exp (−0.405)
(5.38)

pISS16+|9+,GIDAS = (1 + exp (0.637− 0.997 · vc,GIDAS − 0.983 ·BMI−

−0.667 · LBRLv,GIDAS1.435 ·W1,GIDAS))−1 (5.39)

pISS25+|16+,GIDAS =
1

1 + exp (−0.495)
(5.40)

The models described above are used to compute composite speed models
pISS16+,speed,GIDAS,a using Equations 5.11 together with 5.28 and pISS25+,speed,GIDAS,a using
5.12 together with pISS16+,speed,GIDAS,a. The multivariate models follow the same scheme
(of course using Eq. 5.17 instead of Eq. 5.28). The composite models are tested using
the conditional probability simulation described. It is easily verified that constraint 2 is
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Table 5.31: Multivariate results for ISS16+|9+, and ISS25+|16+, age group 4+ (GIDAS),
Option a.

Variable Symbol
Scaling

p-value
adj.

95 % CI
factor OR

ISS16+|9+ (AIC: 176; BIC: 186)

Impact speed vc,GIDAS 17.0 < 0.001 2.710 1.778 4.130
Body mass index BMI 5.2 < 0.001 2.673 1.582 4.517
Lower bumper

LBRLv,GIDAS 9.2 0.005 0.529 0.339 0.826
reference line - vert.
Bonnet lead. edge (wrap) W1,GIDAS 6.6 0.023 1.949 1.098 3.457
Constant exp(β0) 0.238

ISS25+|16+

Constant exp(β0) 0.051

fulfilled 100.0 %.

The predictive performance of the models is again quantified using ROC AUC. The
underlying question is, whether the proposed new method of constructing the model results
in a loss of predictive accuracy. To this end, the new models of Tables 5.30 and 5.31 are
compared with the ones of Section 5.3 once within their subset of data and then as complete
models on the whole data set.

Table 5.32 gives the corresponding results for the univariate models for Option a. The
predictive accuracy within the subset of the data is identical for the models constructed
on the subset compared to the ones constructed on the full data set. For ISS16+|9+,
the ROC AUC is identical. For ISS25+|16+ both models do not have any predictive
power. The reason for this can be low case numbers as well as a close proximity of the
outcome categories themselves. A good indication for this is also the ISS25+|16+ model
itself. Within the ISS16+ subset, even impact speed does not have sufficient explanatory
power for ISS25+, so the model consists only of a constant. The constant indicates the
probability for an ISS16+ injury being an ISS25+ injury being 62.1 % (Eq. 5.40), as no
remaining explanatory factors can be identified. Comparing the composite model and the
original model on the full data set results in the same predictive power for the models
using only impact speed as predictor.

Table 5.33 gives the corresponding results for the multivariate models for Option a. The
multivariate models do show minor differences regarding predictive power. The models
constructed on a subset of the data have less predictive power (again, for ISS25+, both
models do not have any predictive power within the ISS16+ subset). The ISS16+ composite
model has a marginally lower ROC AUC compared to the full data model. For ISS25+, it
is vice versa.
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Table 5.32: Predictive accuracy of the models using impact speed as single predictor for
Option a (GIDAS). The number of included parameters is given by k. An asterisk (*) in-
dicates that k is the sum of different parameters included in the models used. The difference
refers to both ROC AUC values.

Model Data set
ROC
AUC

95 % CI k Difference

ISS16+|9+ (speed only) ISS9+ 0.718 0.646 0.790 1
0.000

ISS16+ (speed only) ISS9+ 0.718 0.646 0.790 1

ISS16+a (speed only) full data set 0.849 0.808 0.890 1*
0.000

ISS16+ (speed only) full data set 0.849 0.808 0.890 1

ISS25+|16+ (speed only) ISS16+ 0.500 0.374 0.626 0
0.022

ISS25+ (speed only) ISS16+ 0.478 0.354 0.603 1

ISS25+a (speed only) full data set 0.827 0.773 0.881 1*
0.000

ISS25+ (speed only) full data set 0.827 0.773 0.881 1

The multivariate results for Option c are given in the following. As explained above,
the results for Option b are not explicitly given. The ISS16+ model (Eq. 5.18) includes
six explanatory factors and therefore is kept in Option c. Table 5.34 includes the corre-
sponding models (note that the ISS25+|16+ model is the same as given in Table 5.31).

Using Eq. 5.1 the resulting model can be written as:

pISS9+|15−,GIDAS =
1

1 + exp (1.887− 0.597 · yped − 1.006 · vc,GIDAS)
(5.41)

The model is used to compute the composite models pISS9+,GIDAS,c, using Eq. 5.15 to-
gether with 5.18. The composite model pISS25+,GIDAS,c is computed using 5.16 together
with 5.19 and 5.40. The composite models are tested again using the conditional proba-
bility simulation described. Constraint 2 is fulfilled 100.0 %.

Table 5.35 gives the results for explanatory power by ROC AUC (the values for
ISS25+|16+ are identical to the ones in Table 5.33). As for Option a, also Option c leads
to insignificant differences in the ROC AUC. Both options thus produce models with high
in-sample predictive accuracy and without any implausibilities, independent of the actual
values of parameters inserted.
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Table 5.33: Predictive accuracy of the multivariate models for Option a (GIDAS). The number
of included parameters is given by k. An asterisk (*) indicates that k is the sum of different
parameters included in the models used. The difference refers to both ROC AUC values.

Model Data set
ROC
AUC

95 % CI k Difference

ISS16+|9+ ISS9+ 0.801 0.734 0.869 4
-0.017

ISS16+ ISS9+ 0.819 0.756 0.882 6

ISS16+a full data set 0.912 0.881 0.943 5*
-0.009

ISS16+ full data set 0.921 0.891 0.950 6

ISS25+|16+ ISS16+ 0.500 0.374 0.626 0
-0.079

ISS25+ ISS16+ 0.579 0.456 0.702 2

ISS25+a full data set 0.896 0.854 0.938 5*
0.008

ISS25+ full data set 0.888 0.843 0.932 2

Table 5.34: Multivariate results for ISS9+|15-, age group 4+ (GIDAS).

Variable Symbol
Scaling

p-value
adjusted

95 % CI
factor odds ratio

ISS9+|15- (AIC: 496; BIC: 510)

Age yped 25.8 < 0.001 1.816 1.444 2.284
Impact speed vc,GIDAS 17.0 < 0.001 2.735 2.060 3.631
Constant exp(β0) 0.152

5.4.2 Implications and conclusion on plausibility

In order to ensure plausibility of injury probability models, two important constraints
are defined (Subsection 5.2.6): First, the probability is defined as zero if vc = 0 kph.
Second, the probabilities for an outcome variable which itself is a subset of another outcome
variable (e.g., ISS25+ and ISS16+; ISS25+ ⊆ ISS16+) must not be greater than the
corresponding probability for the other outcome variable (e.g., pISS25+ ≤ pISS16+).

A conditional probability simulation using all relevant parameters was used to test con-
straint 2 (high case numbers and Monte-Carlo techniques ensured a testing of a very large
combination of parameters). The models of Section 5.3 were found to violate that con-
straint. The solution chosen uses conditional probability identity and therefore requires the
construction of new models. Different approaches concerning starting points are presented
and two options are explicitly discussed as examples. The method delivers models with
comparably high predictive power compared to the models in Section 5.3. The drawback
of the method is a reduction in case numbers for the construction of the new models. How-
ever, in the examples displayed, this does not lead to a reduced ROC AUC for the models,
but becomes evident in newly constructed ISS25+|16+ models, which do only consist of a

131



5 Probabilistic modeling of pedestrian injury severity

Table 5.35: Predictive accuracy of the multivariate models for Option c (GIDAS). The number
of included parameters is given by k. An asterisk (*) indicates that k is the sum of different
parameters included in the models used. The difference refers to both ROC AUC values.

Model Data set
ROC
AUC

95 % CI k Difference

ISS9+|15- ISS15- 0.761 0.712 0.809 2
0.000

ISS9+ ISS15- 0.760 0.712 0.808 2

ISS9+c full data set 0.824 0.788 0.860 6*
-0.001

ISS9+ full data set 0.825 0.789 0.861 2

ISS25+|16+ ISS16+ 0.500 0.374 0.626 0
-0.079

ISS25+ ISS16+ 0.579 0.456 0.702 2

ISS25+c full data set 0.906 0.865 0.946 6*
0.018

ISS25+ full data set 0.888 0.843 0.932 2

constant and do not include any further variables.

In general there are several implications for the practical use of injury probability models
and consequently of the method as presented. The correct implementation of the models
and the meaning of constraint 2 depend on the research question of the study:

• Constraint 2 is meaningless, if only one outcome category is to be assessed (e.g.,
fatalities).

• Constraint 2 has to be considered, if more than one outcome category is to be assessed
(e.g., ISS0-8, ISS9-14, and ISS16+). In case of more than two outcome categories, a
model has to be selected as starting point for the development of the other models
with respect to constraint 2. This can in principle be any of the models in question,
which subsequently stays unchanged.

In the example above, Option c was favored as starting model (ISS16+) due to the high
explanatory value concerning number and kind of factors instead of the more generic
Options a and b. Besides, other decision criteria for selecting the starting model could
be ROC AUC values or explanatory factors included (or not) in the newly constructed
models.

5.5 Conclusion

Methodology for the construction of different self-consistent probability models for in-
jury level as well as fatalities has been developed and applied to pedestrians in frontal
vehicle crashes in this chapter. In-depth accident data from Germany (GIDAS) and the
US (PCDS) were used. The number of cases available in each data set is low; GIDAS
provides roughly three times the number of cases than PCDS. Whereas PCDS is a project
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which was finished in the 1990s, GIDAS has been collecting and reconstructing cases for
about the last ten years and it is an ongoing project.

The different procedures regarding data preparation and analysis leading to the proba-
bility models are described in detail. In order to assure a maximum of possible statistical
power and integrity of the results, the data were checked for consistency and missing data
were imputed. The interpretation of effect sizes is simplified by standardization of the
continuous variables used. Non-continuous variables were recoded into binaries to be com-
patible with logistic regression. Predictive quality of the models was assessed using ROC
analysis. As there are no external data available for validation of the models, 10-fold cross-
validation was used to evaluate the expected out-of-sample predictive quality and check
for possible over-fitting due to multivariate modeling.

The difficulties while working with empirical (observational) data are evident for the
data used. Issues of potential confounding factors, multicollinearity, and selection effects
are addressed. This approach is clearly limited by low case numbers.

Three hypotheses were investigated while constructing the models. The first is based
on medical literature and refers to the advantage of ISS as overall injury metric over
MAIS. As expected, there is a clear trend that ISS-based models are more accurate than
MAIS-based models. The second hypothesis investigated the difference between univariate
modeling (based on vehicle impact speed) and multivariate modeling. As a result, the
multivariate models show a clear trend to be more accurate (for some of them the advantage
is significant). The third hypothesis is again based on medical literature and refers to
individual modeling for specific age groups (for the pedestrian). The last hypothesis cannot
be tested, as the number of cases is too low for this kind of statistical analysis and thus
produces distorting effects as well as a severe loss in statistical power. More data would
be needed to answer that research question. Again, the importance of data preparation in
terms of imputation becomes obvious.

Previous findings documented in the literature are confirmed by the results. Impact
speed is by far the most important predictor for injury severity and mortality (in both
data sets). Pedestrian age is also included in every model. Vehicle characteristics (i.e.,
geometric quantities of the front end) as well as pedestrian physiology (e.g., BMI) are also
significant in multivariate analysis.

As explained above, self-consistent models for several outcome categories require special
care in order to satisfy the constraints imposed by the laws of probability. Failure to take
these constraints into account could lead to contradictory results, particularly in multiple
regression models when extreme values of explanatory variables are considered. To solve
this problem, a method using conditional probability identities was developed and applied;
this method seems to be novel in the context of risk analysis for vehicle safety. The results
are models that deliver self-consistent results for every possible combination of explanatory
variables as well as number of outcome categories.

Considering the high priority of pedestrian protection among European agencies and in
the international safety community, as well as the resources devoted to theoretical and
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political discussion of the subject, it seems surprising (to say the least) that empirical
data resources are so scarce. Thus, larger and more recent data sets with representative
sampling from multiple countries are highly important for better characterization of fac-
tors influencing pedestrian risks and ultimately for optimization of active and integrated
pedestrian protection systems. Injury severity is a metric which is capable of comparing
both passive and active safety approaches on the same scale. The methodology explained
and the resulting models derived in this section provide the basis for an objective and
quantitative evaluation of preventive pedestrian protection measures.
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pedestrian protection

6.1 Design of virtual simulation experiments: system
versus reference

The proposed evaluation process for systems of integral safety, as described in Chapter 3,
is based on virtual experiments comparing a system to a reference, which makes use of
a variety of different data sources, modeling techniques as well as meaningful metrics.
Although the details of the simulation itself are not part of this thesis (see Section 3.4),
its results are described, discussed, and used to illustrate the practical application of the
injury probability models developed in Chapter 5 and to highlight the overall methodology
and process of integral safety evaluation.

The virtual experiments are designed to distinguish typical system effects corresponding
to a few percent reduction of accidents. Thus, the number of accident events required for
this level of precision is typically about 1600 or more. This number would correspond to
a standard deviation of ±40 or 2.5 %, so that 5 % effectiveness changes could typically be
seen. Higher precision is attainable with more events.

In the scenario of hazardous pedestrian crossing situations, about 0.2 % of the crossings
(SD 0.004 %) result in a collision in the baseline. Hence, about one million crossings are
usually simulated to resolve 5 % effects.

The version of the simulation used has the following distribution of key parameters.
Baseline are 18 million crossings with corresponding accidents. Fig. 6.1 gives the distri-
bution of impact speed of the vehicles in a collision as well as the cumulative distribution
of the corresponding fraction of accidents in GIDAS [2]. The GIDAS sample used for this
comparison is described in Section 5.2.1 (p. 83). The speed distribution is plausible for
the urban setting of the traffic situation. The maximum speed in the simulation is limited
to 80 kph. The accidents in GIDAS have a trend towards lower speeds.

Pedestrian age and body height are further examples of important parameters
(Figures 6.2 and 6.3). The pedestrians in the GIDAS sample are younger and include
also ages above 80 (80 is the maximum age for pedestrians in the simulation). Due to the
correlation of age and body height, smaller body heights are also more strongly represented
in GIDAS than in the simulation.

Fig. 6.4 gives the resulting injury probabilities for the models described in Section 5.2.6
(p. 91). Results include models depending only on impact speed of the vehicle (using
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Figure 6.1: Vehicle impact speeds in the baseline accidents and corresponding values from
GIDAS.
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Figure 6.2: Pedestrian age in the baseline accidents and corresponding values from GIDAS.
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Figure 6.3: Pedestrian body height in the baseline accidents and corresponding values from
GIDAS.

Equations 5.28, 5.37, 5.38), multivariate models using Option a (Equations 5.17, 5.39,
5.40), Option c (Equations 5.41, 5.18, 5.40), and the corresponding values from GIDAS.
It is evident that each set of models lead to a different distribution of injury probabilities.

The exposure model in the simulation is based on US data. As the results in this section
are intended as explanation of the methodology, the differences between the accident
fraction of the simulation and the distributions derived from the corresponding accidents
in GIDAS probably reflect differences in exposure relations between Germany and the US
and do not affect the methodical considerations that follow. For a relative comparison
between different system configurations (or vehicle configurations), this does not have any
effect. Again, as also a functional demonstrator is used, the absolute values of the results
given here are not intended for direct use, but for a better understanding of the evaluation
process and the underlying methodology.

6.2 Virtually changed vehicle geometry

The potential of the methodology introduced here can be illustrated by a virtual ex-
periment: It is well-known from the literature (compare Subsection 5.3.1) that van-like
vehicles impose a higher risk of severe injury or fatality to pedestrians than passenger
vehicles. Important reasons are a different geometry of the front-end, probable changes in
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Figure 6.4: Injury outcomes using different types of injury probability models from Section
5.2.6 and corresponding values from GIDAS.

stiffness, and a higher front-end compared to passenger cars. In the virtual experiment,
all vehicles in the simulation are given “off-road” capabilities, meaning the vertical di-
mensions have been virtually enlarged for the whole sample. The lower bumper reference
line (see Fig. A.1, p. 184) was used as reference, as increased off-road capabilities or the
concept of sport utility vehicles are comparable to a virtual change of the chassis with
respect to height. As a consequence, all vertical quantities have been virtually raised by
10 cm, roughly corresponding to one standard deviation of the height of the lower bumper
reference line (see Table A.1, p. 188).

Although the whole vehicle fleet was virtually changed, these changes do not influence
the processes involved in the situations themselves and thus the accident sample created.
The characteristics obtained by the simulation regarding accidents and their genesis are
similar to those of the baseline described above.

As explained in Subsection 5.2.6, only a model with geometric quantities among the
explanatory factors is able to capture the effects of a changed vehicle geometry.

Table 6.1 gives the results for Option c, i.e., the set of models constructed with the
ISS16+ model as starting point. The probability of ISS16+ injuries is about 1.8 % higher
in the virtually raised fleet, which is a relative increase of about 28 % compared to the
original sample and about 1.3 % higher for ISS9+ injuries (corresponds to a relative increase
of 7 %).
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Table 6.1: Injury probabilities for the original sample and the virtually raised fleet.

ISSc

0-8 9-15 16-24 25+ 9+ 16+

Baseline sample 80.5 % 13.3 % 3.1 % 3.1 % 19.5 % 6.3 %
Virtually raised sample 79.2 % 12.8 % 4.0 % 4.0% 20.8 % 8.0 %

Table 6.2: Injury frequency, odds ratio, and 95 % confidence interval (CI) for the baseline
sample and the virtually raised fleet in the simulation.

ISSc odds ratio 95 % CI
0-8 9+

Baseline sample 31810 7727
1.083 1.046 1.121

Virtually raised sample 31536 8297

0-15 16+

Baseline sample 37062 2475
1.304 1.235 1.377

Virtually raised sample 36641 3192

This increased risk associated with higher vehicle front-ends is in line with the findings
in the literature comparing LTVs and passenger cars (see Subsection 5.3.1) and the direct
influence of higher vehicle front-ends as given by the univariate results of Subsection 5.3.1
(independent of the data source used). The injury risk associated with different heights
of vehicle front-ends is quantified by odds ratios. Table 6.2 gives the frequency and cor-
responding odds ratios for the baseline and the baseline with virtual increase in height.
The virtual increase in height results in a moderate increase in risk for ISS9+ injuries
corresponding to an odds ratio of 1.083, whereas the odds ratio of 1.304 for ISS16+ in-
juries indicates a substantially increased risk for severe injuries. (Due to a large number
of accidents available in the simulation, the confidence intervals are rather small.)

In order to compare the simulative results to findings derived from other data sets,
comparable odds ratios are constructed using the US PCDS data. The height of the
lower end of the front bumper is differently defined in PCDS and GIDAS (h1,PCDS and
(LBRLv,GIDAS, see Figures A.1 and A.4, pp. 184 and 186). Thus, the absolute values are
not directly comparable. PCDS data include the distinction between LTV and passenger
car, GIDAS does not. PCDS data were filtered for frontal impact only, see Subsection 5.2.1,
in order to get more comparability to the simulative results. All light truck vehicles, van-
like vehicles, and utility vehicles were grouped together as LTVs to increase statistical
power (i.e., to obtain as many case numbers as possible). Table 6.3 gives the mean values
for cars and LTVs. The difference of the mean bumper bottom height is about 6.4 cm and
about 9.8 cm for the bumper top height, which are both highly significant using t-tests
(t = 16.53, p < 0.001 and t = 9.58, p < 0.001, respectively).
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Table 6.3: Bumper bottom and top height for passenger cars and LTVs in PCDS.

vehicle type n mean SD

h1,PCDS [cm]
Cars 150 61.29 6.95
LTVs 300 51.48 3.00

h2,PCDS [cm]
Cars 150 42.98 7.57
LTVs 300 36.54 4.62

Table 6.4: Injury frequency, odds ratio, and 95 % confidence interval (CI) for PCDS data
(Henary et al. [101] and own computations).

ISS odds ratio 95 % CI

Henary et al. [101] 0-16 17+

Cars 281 96
1.306 0.879 1.940

LTVs 121 54

ISSc

PCDS (own computations) 0-8 9+

Cars 171 129
1.014 0.682 1.506

LTVs 85 65

ISSc

PCDS (own computations) 0-15 16+

Cars 202 98
1.159 0.768 1.750

LTVs 96 54

Table 6.4 gives the frequency and odds ratio for comparable injury outcomes. Henary
et al. [101] used PCDS data to compute odds ratios regarding injuries and fatalities for
LTVs versus passenger cars. Computations based on the data from Henary also indicate an
increase in risk for ISS17+ injuries (odds ratio 1.306) for LTVs. A similar trend is indicated
by an odds ratio of 1.014 for ISS9+ and 1.159 for ISS16+ injuries when computed directly
from PCDS. The PCDS data for own computations were filtered for frontal impact only,
which has not been the case in the Henary study.

The confidence intervals for the PCDS data are thus by far larger than the simulative
ones, which can be attributed to low case numbers compared to the simulation. The results
obtained from simulation are in trend with the results from the literature, such as Henary
et al. and with calculations presented here. When more observations become available
in accident data in the future, a direct confirmation of the results obtained here is expected.
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6.3 Efficacy of preventive pedestrian protection

This section illustrates the results of the process chain for quantitative evaluation of the
pre-crash phase as described in Section 3.1. A preventive pedestrian protection system is
used as example (see Section 3.3) together with a simulation as described in Section 3.4. In
order to explain the methodology behind the process chain, four virtual parameter studies
of a preventive pedestrian protection system are performed and analyzed (Table 6.5) using
a functional demonstrator:

Table 6.5: Definition of four virtual parameter variation studies of a preventive pedestrian
protection system.

Study System Parameter Further parameter
title interventions variations specifications

1 “Warning” Driver warning
TTC threshold earliest
warning: 1.0 s to 3.8 s

2
“Warning
and brake
assist”

Driver warning
TTC threshold earliest
warning: 0.8 s to 3.8 s

Reconfigured
brake assist

Maximum possible
automatic decelera-
tion of brake assist:
10.0m/s2

3
“Automatic
braking”

Automatic
braking by the
system

TTC threshold earli-
est automatic braking:
0.4 s to 1.2 s
Maximum possible
automatic deceleration
of automatic braking:
4.0m/s2 to 11.0m/s2

4

“Warning,
brake assist,
automatic
braking”

Driver warning
TTC threshold earliest
warning: 0.6 s to 3.8 s

Reconfigured
brake assist

Maximum possible
automatic decelera-
tion of brake assist:
10.0m/s2

Automatic
braking by the
system

TTC threshold earli-
est automatic braking:
0.9 s; Maximum pos-
sible automatic decel-
eration of automatic
braking: 4.5m/s2

The system constitutes a system with an optical sensor. The system is assumed to have
the same performance independent of any environmental conditions in this example (like
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lighting or weather). The activation parameters (TTC thresholds as well as deceleration
capabilities) have been subject of variation whereas vehicle characteristics, system sensor
parameters, and, for example, prediction logic of the system have been kept constant (as
well as all pedestrian and driver attributes, such as age). The variation is used to show
the influence of single system components on the subsequent results of the process chain.

As explained above, the relative difference between variations as well as the absolute
efficacy in comparison to the baseline are of interest. Consequently, the virtual experiments
include two modes of simulation:

The first one creates a baseline, i.e., does not include any preventive system, but creates
traffic situations including accidents. Moreover, this simulation not only delivers the base-
line, but is also essential for an evaluation of false-positive system actions. To this end,
the system is included in an open-loop simulation. This means that the system actions
are virtual within the simulation, i.e., actually not carried out. For example, if all require-
ments for a warning are fulfilled, a virtual warning is recorded, but none is actually given
to the driver. The number of warnings in the open-loop simulation, prior to non-accident
outcomes is a measure of false-positive system actions.

The second mode is a closed-loop simulation, where all system actions are fully integrated
into the driver-vehicle control loop. A simulated warning, for example, is actually given
to the driver, or an automatic braking results in a simulated deceleration of the vehicle.
This mode allows a quantification of the effects of a particular system configuration on the
frequency of accidents and on the resulting injury severities (using the injury probability
models of Chapter 5).

The evaluation of false-positive system actions is not possible in a closed-loop simulation,
as each system action changes the course of events and influences whether a situation
would have resulted in an accident without the system action or not. In the closed-loop
simulation, a non-accident situation with system action could thus be either a false positive
or an avoided accident.

6.4 Efficacy of system “Warning”

Fig. 6.5 and 6.6 give the results for system “Warning” with different thresholds for the
earliest possible warning. The baseline consists of the 18 million situations as explained
in Section 6.1. As the difference in the warning TTC was 0.2 s, each TTC threshold was
simulated 100 million times in order to reduce fluctuations in the Monte-Carlo results to a
magnitude well below the effect size. All ISS levels in this Section have been computed using
Option c (starting from ISS16+) for the injury probability models (see Subsection 5.4.1).
One would expect as hypothesis that the efficacy for low TTC thresholds converges to zero,
as the driver needs a particular time to react, decide on an action, and act in response to
a warning.

It can be observed that TTC thresholds between 1.0 s and 2.6 s lead to a stronger reduc-
tion of accidents and injury levels as larger TTC thresholds. The simulation study confirms
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Figure 6.5: Distribution of pedestrian injury severity and avoided accidents due to system
“Warning”.
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Figure 6.7: Reduction of accidents and injury severities (left axis) as well as warnings (all and
false-positive; right axis) given to the driver for system “Warning”.

the hypothesis stated above. Warnings towards a TTC threshold of 1.0 s or smaller evi-
dently have only marginal effects.

For the optimization of a system of active or integral safety, not only the positive effects,
as given in Fig. 6.5, are important, but also the overall quality of the system and its com-
ponents including false positives has to be considered. The number needed to treat (NNT)
regarding specific outcome metrics is an appropriate metric as discussed in Section 2.2
(p. 15).

Fig. 6.7 gives the reduction of accidents and injuries relative to the baseline (as ISS25+
is a constant factor relative to ISS16+ in Option c, the relative reduction is identical to
ISS16+ and not given in the following graphics). In addition, the number of warnings
as well as false-positive warnings issued for each TTC threshold is included. The trends
for accidents and injuries have been described above. The number of warnings increases
steadily with rising TTC thresholds, with increasing gradient. The earlier a warning is
given before a possible accident, the more uncertainty remains in the situation with the
pedestrian itself, as more time for avoidance actions by both participants is available. As
a result, an increasing number of warnings is given in situations which would not have
resulted in accidents and thus are regarded as false-positive warnings.

The number needed to treat (NNT) describes the efficacy of a warning regarding acci-
dent avoidance or the avoidance of different injury severities (see Section 2.2). The direct
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Figure 6.8: Number needed to treat for avoidance of accidents for system “Warning”.

relation between warnings and avoided accidents (Fig. 6.8) or injured persons (Fig. 6.9)
is quantified by NNT together with the relation of all warnings to true-positive warnings.
Regarding accident avoidance, about 17 warnings must be given in the best case to avoid
one accident (this is around 2.2 s TTC).

In relation to avoided accidents, the number of warnings shows a stronger increase
with increasing TTC thresholds. For decreasing TTC thresholds, the number of avoided
accidents decreases more rapidly in relation to the number of warnings. Thus, the NNT
shows a U-like shape depending on the TTC of the earliest possible warning. (As there are
no avoided accidents for a TTC of 1.0 s, NNT cannot be computed there.) The NNTs for
ISS9+ and 16+ injured persons show a similar U-like shape, but the absolute number of
NNT is by far greater than that of avoided accidents. If one assumes that avoiding higher
levels of injuries justifies higher efforts, also higher absolute values of NNT are acceptable.
The fewer warnings required per true-positive warning, the more effective the system is
with respect to functional costs. This ratio increases with accelerated pace with increasing
TTC thresholds.

Finding an optimal system configuration regarding the TTC threshold for a warning can
thus follow several lines. The first one sets a goal for accident or injury avoidance and
thus uses the reduction given in Figures 6.5 or 6.7. For example, if the desired objective is
an accident avoidance of 20 %, a TTC of about 2.4 s would be appropriate. Consequently,
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Figure 6.9: Number needed to treat for different injury levels for system “Warning”.

using Fig. 6.8, this would result in an NNT for avoided accidents of 18 and 64 per ISS9+
injury (162 per ISS16+ injury). For every true-positive warning, four false-positive warn-
ings would be given.

Considering these numbers, the developer can decide whether the system quality is suf-
ficient or not. The NNT is especially important if one considers the possible consequences
of false-positive system actions. More false activations can lead to lower acceptance or
in the worst case to the creation of new critical situations in traffic (see Section 2.2). If
the consequences of a false-positive warning are assessed using appropriate experiments,
a functional “cost function” can be constructed, giving the number of new accidents cre-
ated by false-positive warnings and inappropriate subsequent reactions of the driver. (An
appropriate quantification and the definition of such a function would suggest itself for
further research.)

Another approach can directly use NNT in order to find the optimal operating point
for the system. In this case, a warning between 1.5 s and 2.2 s could be optimal, as all
kinds of NNTs for accidents, ISS9+, and ISS16+ have their minimum in that interval.
Additionally taking the desired absolute effect of the system into account and considering
the consequences of false-positive activations, an operating point can be defined. For
example, if the NNTs for accidents and both injury outcomes should be around their
minimum and it is desired to avoid about 15 % of accidents, a TTC of 1.9 s could be
chosen.
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6.4 Efficacy of system “Warning”
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Figure 6.10: Absolute and marginal number needed to treat for avoidance of accidents and
different injury levels for system “Warning”. The marginal NNT refers to one incremental
increase in TTC.

Fig. 6.10 gives the absolute and marginal functional costs depending on the TTC thresh-
old (see Section 2.2). The discussion of the U-like shape of overall NNT already showed
that an increase at low TTC threshold is beneficial. This is also reflected in the slope
of the overall NNT curve as given by the marginal NNT. For example, a change in TTC
from 1.0 s to 1.2 s for ISS9+ has negative marginal costs (meaning about 150 warning less
per avoided ISS9+). A decision to choose a TTC threshold of 1.2 s instead of 1.0 s is thus
both beneficial in terms of overall functional costs (about 100 warnings per avoided ISS9+
instead of about 250) and marginal costs. With increasing TTC thresholds, the marginal
costs become positive. Each additionally avoided outcome thus is associated with a defined
additional effort. If the goals for ISS16+ are maximum overall costs of 400 and maximum
marginal costs of 50, the highest TTC acceptable would be 3.2 s (overall costs are about
300 and 3.0 s to 3.2 s results in about 50 additional warnings per avoided ISS16+).
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6 Integrated evaluation of preventive pedestrian protection

6.5 Efficacy of system “Warning and brake assist”

Fig. 6.11 and 6.12 give the results for system “Warning and brake assist”. The baseline
is identical to the system discussed above. Each TTC threshold was simulated in one
million crossing situations. As the effect size is greater than for “Warning”, one million
situations per TTC threshold are sufficient. However, the natural fluctuations of the
Monte-Carlo simulation can be observed in the curves for avoided accidents or injuries (see
also Fig. 6.13), as those are in theory strictly monotonically increasing.
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Figure 6.11: Distribution of pedestrian injury severity and avoided accidents due to system
“Warning and brake assist”.

With regard to Fig. 6.13, the following observations can be made: The higher the TTC
threshold, the more accidents and injuries can be avoided. As for “Warning”, the decrease is
stronger for smaller TTC thresholds than greater ones. The number of warnings and false-
positive warnings increases again with an accelerating trend. Reasons and interpretation
regarding the warning are similar to system “Warning”, as the additional brake assist does
not influence activation criteria for the warning itself.

Fig. 6.14 and 6.15 give the direct relation between avoided accidents, respectively in-
jured persons, and NNT. The observations are largely comparable to the ones for system
“Warning”:

• NNT rises with increasing TTC

• NNT is lowest for avoided accidents, higher for ISS9+, and again higher for ISS16+
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Figure 6.12: Enlargement of high injury outcome categories of Fig. 6.11.
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Figure 6.14: Number needed to treat for avoidance of accidents for system “Warning and
brake assist”.

• The ratio of warnings per true-positive warnings also shows an increase with increas-
ing TTC

The typical U-shape of NNT can also be observed in Fig. 6.14 and 6.15 (due to an accident
avoidance of about 10 % at a TTC threshold of 0.8 s, the left half of the “U” is not that
apparent).

At a TTC of 0.8 s, there are already about 10 % avoided accidents, whereas for system
“Warning” (see Fig. 6.8), even at a TTC of 1.0 s, there are no avoided accidents. This
exemplarily illustrates the additional efficacy created by the reconfigured brake assist.
Obviously, the warning has the same effect on the driver regarding catching his attention
and triggering subsequent behavioral processes. However, some drivers do see the
pedestrian well before the warning is issued and are already within their mental process
of evaluating, deciding, and initiating an action. In that case, if the warning is issued
before the driver hits the braking pedal, the driver does get the 10.0m/s2 braking support
which is in most cases more deceleration than the “natural” braking without brake assist
would have been. As a result, the reason for the effect of the warning at 0.8 s TTC is less
the effect of the warning itself, but the brake support by the reconfigured brake assist for
already reacting drivers. At even lower thresholds of TTC, the left half of the “U” of
the NNT curve would also be visible, as accident and injury avoidance converge to zero.
Again, the same consideration regarding functional costs can be made for this example,
but are not explicitly discussed here.
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Figure 6.15: Number needed to treat for different injury levels for system “Warning and brake
assist”.

6.6 Efficacy of system “Automatic braking”

Fig. 6.16, 6.17, and 6.18 show the efficacy of system “Automatic braking” regarding
avoidance of accidents and injuries (the percentages of the baseline are included, e.g., in
Fig. 6.11). The efficacy of automatic braking increases with higher TTC thresholds and
higher braking decelerations, respectively. (Note, that the surfaces are in theory smooth
but show the similar fluctuations, i.e., variance, of the Monte-Carlo simulation with one
million situations as described above.)

There are three different approaches to interpreting the surface: First, holding deceler-
ation constant, an increase in TTC threshold leads to increasing avoidance. One possible
reason is that the earlier the braking TTC, the more time the pedestrian has for escaping
the vehicle path and thus resulting in accident avoidance. Another is that the vehicle has
more time to brake. However, the accident avoidance is non-linear (saturation): increases
in TTC thresholds do not always imply earlier triggering, since additional conditions such
as pedestrian trajectory (with respect to probability of collision) need to be satisfied.

Second, examining lines of constant TTC threshold indicates that maximum braking
deceleration has a quite linear effect on accident or injury avoidance.

Third, the contour lines of the surface represent contours of equal efficacy. The gradient
to the contours gives indications on the relationship between TTC and deceleration. The
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Figure 6.18: Distribution of accidents with ISS16+ injured pedestrians for system “Automatic
braking”.

gradient at high decelerations is in direction of TTC thresholds; at lower decelerations,
the gradient is in direction of both TTC thresholds and decelerations. The relationship is
thus not a linear one. At high deceleration, changes in TTC threshold dominate. At lower
decelerations, changes in TTC threshold and changes in deceleration are both important.
Following a line of equal efficacy, increased TTC thresholds do not lead to linearly decreased
levels of deceleration but accelerated decrease of deceleration thresholds (which can be
observed in the change of the direction of the gradient to the contour line).

Fig. 6.19 gives the frequency of interventions and Fig. 6.20 the number needed to treat
for avoidance of accidents for system “Automatic braking”. The number of interventions
is obviously independent of the maximum braking deceleration and increases linearly with
increasing TTC. The NNT for avoided accidents is basically comparable to the options
discussed before. Due to a low number of avoidable accidents, the NNT in Fig. 6.20 rises
above the maximum of the scale for combinations of low TTC values and low decelerations.
The typical U-shape is not prominent, but can still be observed for a variation of TTC
values (e.g., at a deceleration of 4.0m/s2).
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Figure 6.21: Number needed to treat for avoided ISS9+ injuries for system “Automatic
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Figure 6.22: Number needed to treat for avoided ISS16+ injuries for system “Automatic
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Fig. 6.21 and 6.22 give the NNT for avoided injuries for system “Automatic braking”.
Again, the absolute levels of NNT are higher for ISS9+ than for accidents, and higher for
ISS16+ than for 9+. The U-shape is not that clearly visible. An optimization, respectively
the definition of an operating point for a system configuration, works as described above
(see Section 6.4). Especially the optimization using both absolute NNT and the slope of
the NNT is discussed on the example in Section 6.4.

6.7 Efficacy of system “Warning, brake assist, automatic
braking”

For system “Warning, brake assist, automatic braking” the TTC of the earliest warning
was subject to variation, whereas the configuration of the brake assist and the automatic
braking was not changed. Again, the fluctuations of the Monte-Carlo simulation with one
million situations is visible, as discussed above.
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Figure 6.23: Distribution of pedestrian injury severity and avoided accidents due to system
“Warning, brake assist, automatic braking”.

Fig. 6.23 and 6.24 give the accident and injury avoidance for system “Warning, brake
assist, automatic braking”. As all three options discussed above are combined here, two
main effect are obvious: A very high level of avoidance can be achieved and there is a large
increase of avoidance at fairly low thresholds of TTC. The reasons for this are several:
The brake support is always effective, once a warning was issued and the driver has not
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Figure 6.24: Enlargement of high injury outcome categories of Fig. 6.23.

already braked. At very low TTC thresholds, where the warning is not very effective,
the automatic braking is responsible for the main effect. At higher TTC thresholds, the
combined effect of the warning itself (together with the brake assist) and the automatic
braking (in case the reaction of the driver was too slow for a significant effect), leads to a
high avoidance both in accidents and in injuries. Considering the shape of the curves, the
trends are comparable to the system variation as discussed above.

Fig. 6.25 gives the relative reduction of accidents and injuries depending on warning
TTC together with the absolute number of warnings, false-positive warnings, and interven-
tion. The reduction of accidents and injuries follow a sharp increase at low warning TTCs
(between 0.6 s and 1.2 s warning TTC). Above 1.5 s warning TTC the reduction becomes
steady and then marginal. The warnings show a similar increasing trend with increasing
warning TTC.

The number of interventions is quite steady around 1623 interventions with a standard
deviation of 233, showing an increase at low warning TTCs and a maximum of 2015
interventions at a warning TTC threshold of 1.5 s. With increasing warning TTC, the
rate of decrease of the number of interventions decreases. At high warning TTCs, the
number of situations which have become critical enough to fulfill the activation criteria for
an intervention is quite constant. It resembles a rather constant percentage of situations,
which cannot be handled appropriately by the driver (with or without a warning). At
low warning TTCs, driver reactions may be too late or insufficient in more cases than at
high TTC thresholds, so the criteria for activation for automatic braking are fulfilled more
frequently.
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Figure 6.25: Reduction of accidents and injury severities (left axis) as well as warnings given to
the driver and interventions (right axis) for system “Warning, brake assist, automatic braking”.
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Figure 6.26: Number needed to treat for avoidance of accidents for system “Warning, brake
assist, automatic braking”.
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6.8 Comparison of warning and intervention
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Figure 6.27: Number needed to treat for different injury levels for system “Warning, brake
assist, automatic braking”.

The number needed to treat for accident and injury avoidance are given in
Fig. 6.26 and 6.27. As system “Warning, brake assist, automatic braking” includes both
warning and intervention, both NNTs have to be considered together. It can be observed
that the NNT for warnings shows the typical U-like shape for all outcome categories. The
NNT for interventions on the contrary has an L-like shape. Towards low warning TTCs,
the system is not able to avoid many accidents or injuries. Thus, the NNT becomes very
large. On the other end (at high TTCs), both the number of interventions as well as the
number of accidents or injuries stay rather constant.

Although the U-like shape of the warning NNTs allow for an easy determination
of the optimum range with respect to the parameter in variation (i.e., warning TTC
in this example), the L-like shape of the intervention NNT requires a more subtle
interpretation in order to find an optimum. The question is how both NNTs have to be
interpreted in combination to find the optimal strategy and the operating point for the
whole system. It is evident that a quantity including both of these characteristics is needed.

6.8 Comparison of warning and intervention

The different shapes of the NNT curves for warnings and interventions complicate the
search for an operating point. One possible solution is the definition of a common scale
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for both warnings and interventions. Warnings and interventions produce similar effects
in the end (i.e., accident or injury avoidance), but induce totally different processes in
traffic. A warning in this case is directed towards the driver and triggers the following
process: The driver searches for the reason of the warning. Once he finds out (i.e., the
critical pedestrian situation), he evaluates the situation, decides, and eventually initiates
an action (in this case braking). In the case of automatic braking, the vehicle acts without
the driver and initiates a predefined braking maneuver.

For a true-positive system action, both variants are different only in their efficacy. How-
ever, the consequences of a false-positive action are considered different regarding their
severity: A warning may eventually lead to a braking by the driver, but the intensity and
duration of the braking is up to the driver. The driver’s evaluation and decision loop
additionally helps to avoid braking maneuvers as consequence of false-positive warnings.
A false-positive automatic braking lacks this second evaluation of the situation.

Depending on the deceleration and the duration of the braking (by both the driver
and the vehicle itself), undesired side effects in the upstream traffic stream could be the
consequence. If a braking maneuver includes high decelerations and cannot really be
anticipated by the following traffic, rear-end collisions could be the result.

It is well known that false-positive automatic braking maneuvers become more critical
for upstream traffic with increasing deceleration and duration (i.e., absolute velocity de-
crease and time). For example, whereas a braking with 4.0m/s2 is commonly regarded
as uncritical, braking with very high deceleration (e.g., 10.0m/s2) is considered far more
critical by many experts regarding controllability. The driver could be shocked by a false-
positive intervention involving a high deceleration and may not react properly. Warnings
instead are believed to induce fewer unnecessary braking maneuvers, as the driver is still
in control and has the chance to evaluate the situation before initiating a maneuver.

Using system “Warning, brake assist, automatic braking” as example, the NNT using
effective interventions (see Section 2.2, p. 15) is given in Fig. 6.28. The factor comparing
the consequences of warnings and interventions is arbitrarily set to 10 for this example,
meaning an intervention with 4.5m/s2 has the same effect in traffic as 10 warnings given
to the driver. The NNT with effective interventions is thus a weighted combination of
the NNTs for warnings and interventions. It provides a single criterion and thus allows
a systematic optimization procedure even in the presence of multiple control parameters
(e.g., TTC thresholds, braking deceleration). For avoided accidents, an optimum for NNT
can be found in this case around a warning TTC of 2.0 s. The optima for ISS9+ and
ISS16+ are not that easily visible, but can be expected in the same region, as all three
kinds of NNT for warnings show similar trends in Fig. 6.26 and 6.27 (the corresponding
trends for interventions are also similar). Of course, the concept of marginal NNT can be
applied as well.

Again, the actual factor between warnings and interventions depends on the specific
design of the warning as well as the parameters of the automatic braking. Both have to be
evaluated in dedicated studies in order to determine the factor necessary for a meaningful
combination into effective interventions. This is one objective of ongoing research in the
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Figure 6.28: Reduction of accidents and injury severities (left axis) as well as effective inter-
ventions (right axis) given to the driver for system “Warning, brake assist, automatic braking”.

field of controllability.

6.9 Conclusion

The practical use of the processes and methods for evaluating active and integral safety
described in the chapters above have been illustrated and discussed in this chapter. Pre-
ventive pedestrian protection was prospectively evaluated using a stochastic simulation
of potentially critical traffic situations. The efficacy was compared for different system
variations including variation of key system parameters. The application of the injury
probability models developed in Chapter 5 as well as the interpretation of the results were
explained regarding the definition of an operating point.

The reference or baseline for virtual experiments evaluating different configurations of
a preventive pedestrian protection system is a simulation sequence without any system.
The simulation generates a high number of traffic situations in which a pedestrian is going
to cross a street. The scenario considered here results in a low percentage (about 0.2 %)
of accidents compared to all situations simulated. As the accident fraction is a result of
many subprocesses modeled (which themselves have their particular means of validation)
the validation of this fraction of situations gives an indication on the plausibility of the
whole modeling. The characteristics of the accidents can be made plausible or can be
validated using existing accident data bases. A corresponding comparison of the accident
fraction using GIDAS data was given in the first section of this chapter.
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6 Integrated evaluation of preventive pedestrian protection

Since one strength of the injury probability models developed in Chapter 5 are the
explanatory factors included (e.g., pedestrian and vehicle attributes besides crash charac-
teristics), a virtual experiment was conducted to show the plausibility of the simulated
results and investigate the effects of hypothetical geometric changes in the vehicle fleet.
The vehicle fleet was virtually raised by 10.0 cm and thus given the geometric characteristic
of light truck vehicles. This leads to an increased risk for different injury levels for the
pedestrian, which is in line with previous findings from literature.

The next section evaluates a variety of different preventive pedestrian protection systems
using a functional demonstrator. Three possible system components have been investi-
gated: warning, warning in combination with a reconfigured brake assist, and automatic
braking. Variations of different key system parameters, e.g., earliest TTC of activation
or desired braking deceleration, have been evaluated. The efficacy is illustrated by the
change in avoided accidents as well as changes in the injury distribution as given by ISS.
The functional “costs” of each system variant are quantified by the absolute number of
system actions as well as the number needed to treat, i.e., the ratio of system actions to
avoided accidents or injuries. Different ways for system development and optimization
have been introduced: Starting point can be either a desired efficacy (both in avoided
accidents or injuries of a specific level) or the absolute and/or marginal NNT acceptable.
Both approaches will allow the determination of an optimized system strategy.

Finally, a system option combining all three components was evaluated. The overall
efficacy is achieved by warnings, the reconfigured brake assist, as well as the automatic
braking. The different nature of warnings and automatic braking with respect to the up-
coming traffic is described and a solution for system optimization is introduced. As the
NNT for warnings follows a characteristic U-like shape (which makes the determination
of a minimum possible), the NNT for interventions produces a L-like shape. With the
introduction of the theoretical quantity of effective interventions, a factor for the direct
comparison of warnings and interventions is created. Warnings and interventions are com-
bined in a weighted sum. The weight represents the risk in traffic associated with each
class of system action. The actual quantification for a specific warning and intervention
concept has to be determined by targeted research (emphasizing controllability). The ef-
fective interventions can again be computed into an NNT, and the optimal operating point
with respect to the system parameters in variation can be found.

The concept of marginal functional costs creates the basis for an incremental search
for the optimal system configuration. Once the range of acceptable overall functional
costs (given by NNT and, if necessary, by effective interventions) is found, the additional
functional costs per increment of the optimization parameter is quantified by the marginals.
This allows for a more targeted and specific development of measures with respect to the
effort accepted by the stakeholders in charge and the desired outcome.

A process for the evaluation of active and integral safety has been explained from the
concept of a process chain, the description of a simulative method, the development of
traffic scenarios, the construction of injury probability models, and the explanation of the
whole methodology using the example of preventive pedestrian protection.
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7 Conclusion and outlook

The history of vehicle safety is to a large extent the history of passive vehicle safety.
Accident research, the laboratory testing of passive safety by means of crash tests, and
subsequent development and improvement of technical measures for mitigation of injuries
once an accident has occurred, have dominated vehicle safety for decades. Advances in
technology, especially in electronics and computing, have led to the genesis and extensive
implementation of driver assistance functions in vehicles, both for safety and comfort. For
safety assessment, this means a change of paradigm. The aim of mitigating the conse-
quences of an accident (i.e., passive safety) is increasingly being combined with the aim of
avoiding the accident entirely (i.e., active safety).

Trends in accident statistics over the last decades reveal (Chapter 1) impressive improve-
ments in vehicle safety due to a combination of the three E’s of traffic safety: engineering
(both vehicle- and infrastructure-based), education, and enforcement. Overall changes
due to active or passive safety are easily assessed using accident statistics: Fatalities and
injury frequencies per accident in vehicles give an indication of improvements in passive
safety; effects due to active safety are evident using the ratio of accidents to exposure,
e.g., distance driven. Improvements within active safety because of a specific system are
more difficult to evaluate using accident data: avoided accidents do not directly enter the
statistics any more and mitigating effects are sometimes hard to distinguish, i.e., masked
within the data, e.g., due to simultaneous improvements in passive safety or other relevant
aspects in the traffic system.

The testing and evaluation of vehicle-based safety has been a standardized process for
passive safety during the last decades. For active safety, testing procedures and evaluation
methods have become standard only in the field of autonomous stabilization of the vehicle.
More recent functions, such as rear-end collision warnings, are still subject to a variety
of evaluation schemes. Standardization in terms of methods, tools, and procedures has
started only recently and will take probably years for final harmonization.

This thesis has focused on the development of a methodology for representative and re-
liable evaluation of active safety. The practical example studied was preventive pedestrian
protection. Active safety systems act within a complex, dynamic traffic environment; thus,
a feasible and reliable process for evaluation including a stochastic simulation of traffic was
defined. The aim was to predict the contribution of an active safety system to reduction
of mortality and injuries as well as possible negative consequences induced by unintended
system actions, such as false-positive activations.

The introduction included basic models essential for an understanding of traffic and
accident genesis. A summary of accident statistics of Germany and the US with respect
to pedestrians and the overall situation and recent trends were given; accidents have to

163



7 Conclusion and outlook

be regarded as statistically rare events and a kind of “anomaly” in traffic. The insights
on pedestrian accidents, derived from the accident statistics, were then entered into a top-
down model for deriving functions and systems capable of addressing the problem, i.e.,
fulfilling the vehicle characteristic “vehicle safety” with respect to pedestrians. A short
summary of recent regulations and technical approaches (all passive safety) defined the
state of the art in vehicle-based pedestrian protection.

A review of the current state of scientific and technical knowledge on evaluation of
the pre-crash phase set the starting point for this thesis (Chapter 2). Safety evaluation
can be conducted at different levels (e.g., component-, system-, vehicle-based or with
focus on the overall benefits in traffic). The method of choice depends on the level of
evaluation and the underlying research question. Functions of active safety rely on sensors
which perceive information from their environment and are thus subject to uncertainty.
Besides possible technical limitations, the prediction of future movements of all involved
participants contributes to this inherent uncertainty. As a consequence, systems subject to
uncertainties will not work perfectly in the sense of reliability. False-positive activations,
e.g., due to misinterpretation of information or technical limitations, will occur; with
consequences on acceptance and controllability of the system. With an increasing number
of false-positive activations, acceptance by the driver will decrease. In case of severe
interventions in traffic, such as high velocity reductions and sharp decelerations, false-
positive activations become a matter of controllability for the driver and the surrounding
traffic and can ultimately have a negative impact on safety.

Not only the specific function or system of active safety, but also vehicle characteristics
(such as driving dynamics), traffic itself, and especially human behavior, are important
elements in both accident genesis as well as avoidance. As a consequence, an evaluation
method must include all relevant elements with their specific distributions. A particular
challenge to assessment is the huge combination of possible situations and the ability
to produce meaningful and representative results with respect to the traffic situation in
question. Furthermore, the evaluation method must be capable of predicting future effects
(prospective approach) and thus not only assess developments of the past (retrospective
approach). Since detailed knowledge on all these elements is necessary during evaluation,
the spectrum of common methods, procedures, and tools was introduced and discussed.
Some of them, e.g., FOTs, do not only provide valuable input for modeling but also enable
validation of various aspects, especially regarding critical traffic situations.

The ideal quantification of safety changes due to active safety would provide direct esti-
mation of mortality and injury reduction from accident statistics and direct measurement
of false positive counts in the field. However, estimation of ADAS safety benefits from
accident statistics requires long observation periods and is confounded by multiple parallel
influences on these statistics; false-positive rates need to be measured not just once, but
for each algorithmic threshold setting. Hence, a methodology is required that can predict
mortality and injury reduction as well as false positives.

An evaluation that addresses the overall safety benefit of a measure in a given traffic
system (e.g., a country) must thus consider both positive and negative effects. Existing
schemes and methods for evaluating safety functions were reviewed regarding their ability
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to assess overall safety benefits. Nearly all methods available (many of them involving
simulation techniques) focus on the safety effects in a sample of existing accidents. There,
essentially the positive effects can be assessed, as the majority of negative consequences
mainly take place in traffic situations that would not have led to an accident.

As a possible positive safety effect is evident mainly within accidents (instead of non-
accident situations), common approaches rely on reconstructed accident data and simulate
the effect of an active safety system. However, there are several well-known limitations:
False-positive system actions (and consequently an important component of overall func-
tional “costs”) cannot be adequately assessed, as no representative sample of situations
in which the system would be triggered (including non-accident situations) can be gen-
erated. Also assessment based on accidents can be sensitive to details of the accident
reconstruction, which are indeed subject to uncertainties. However, a particular instance
of a reconstructed accident may not be entirely representative, particularly regarding the
effectiveness of a proposed assistance system.

The new approach and statistical analyses presented in this thesis (Chapter 3) provide
a path for the evaluation of active safety with respect to its safety impact on a traffic
system. The rising need to answer the question of overall safety effect in traffic could
thus be met in a representative and statistically stable way. The many ways in which
uncertainty enters an approach and leads to variability in the results, can be addressed by
the process presented and quantified by confidence intervals. Requirements for the method
and an assessment process including data sources, modeling, simulation, and evaluation
were defined. The starting point for the development and testing of a function was an
understanding of the safety problem. To this end, reference scenarios for pedestrians
(derived from accident statistics) were used. The most important pedestrian scenario
for Germany and the US is the “mid-block dash” (i.e., vehicle going straight, pedestrian
crossing). A functional demonstrator of a system of active safety was defined to address
this situation. The system strategy can involve warnings to the driver, enhanced brake
assist, and an automatic braking maneuver.

The traffic situation leading to the described pedestrian accident scenario (i.e., a pedes-
trian trying to cross a straight road) was modeled in a traffic simulation including all
relevant parameters with their realistic distribution in terms of exposure. The vast ma-
jority of situations in the simulation did not result in an accident. The characteristics
of simulated accidents as a “random” result were tested using knowledge from in-depth
accident studies such as GIDAS. The simulation used showed adequate validity.

The impact of avoidance and mitigation of pedestrian collisions can be evaluated from
individual (i.e., physical or physiological), societal, or economic points of view. Different
effectiveness measures with their advantages and challenges were discussed. The key as-
pect for assessment for all of these points of view is a metric that quantifies reduction of
injuries and their severity. In principal, crash simulations could be used to predict injury
distributions. However, detailed crash simulations (as common in passive safety) require
high computational resources and are currently only an option for a small selection of
cases. Hence, due to the high number of simulation runs necessary for statistical signifi-
cance of the results, a less computationally intensive method was required for estimating
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the probability distributions of physiological outcomes from physical quantities. To this
end, this problem was solved using detailed probabilistic models as presented above.

As a simulation of the effects of preventive pedestrian protection in a given traffic
situation required considerable model input, a driving simulator study was conducted
(Chapter 4). Driver behavior with respect to acceptance of such a system, especially dur-
ing false-positive actions, was assessed. False-positive system actions were less acceptable
for the driver if the pedestrian was not perceived as endangered. If a false-positive system
action was unpredictable for the driver (e.g., no pedestrian could be seen), the vehicle had
relatively higher speed, or the driver was carrying out a complex maneuver, the system
action was rated potentially hazardous for surrounding traffic. High attention of the driver
thus decreased the perceived level of hazard in such a situation.

Another aspect of the driving simulator study was the investigation of uncritical interac-
tions with pedestrians. Normally, pedestrians were passed by at an average lateral distance
of 1.5 m, and the subjects started braking at an average TTC of 4 s. These findings give
valuable input for the design of a system. If the system acts well within these limits,
acceptance can be assumed to be high if the driver has not reacted himself in advance.
The crucial point with system acceptance and safety benefit is that reduced acceptance
will trigger deactivation of the system (if possible) and thus reduce the safety benefit to
zero. If the system is optional equipment, a driver with very low acceptance is likely not
to include it in his next vehicle, resulting also in zero safety benefit.

An additional finding of the study was that a realistic investigation of highly critical situ-
ations proves to be challenging in a driving simulator, since most drivers do not experience
an accident, even without the system (baseline). Despite optimized experimental design
and additional distraction by a tested secondary task, the drivers were able to perceive the
hazards quite early. Possible reasons as well as solutions were discussed together with the
advantages and limitations of driving simulator studies in this context.

A main focus of the thesis was the construction of injury probability models for the
pedestrian in frontal vehicle crashes (Chapter 5). The literature review conducted re-
sulted only in few models and revealed many open research questions. To address these,
the aim of this part was the construction of probability models with respect to the out-
come category (ISS versus MAIS), the number of explanatory factors to be included in
the models (multivariate versus univariate), and the modeling of specific age groups (one
model for all ages versus different models for different age groups). A new approach of
constructing probability models for several cumulative outcome categories by means of
conditional probabilities was developed.

Probability models for pedestrians regarding different injury levels as well as fatalities
in frontal vehicle crashes were estimated using both German (GIDAS) and US (PCDS)
in-depth accident data. Data preparation steps including consistency checks, data scaling,
and especially detailed procedures for imputation of missing data were key requirements
for utilizing these data sets. A procedure for quantifying the variance associated with im-
putation was developed and implemented. Recoding and transformation were introduced
in order to support comparability of odds ratios associated with different distinct factors,
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as obtained by logistic regression. Consequently, the effect sizes were comparable between
different quantities, as all continuous variables had been standardized.

The resulting models and their validity were analyzed: In-sample predictive accuracy
was assessed via the area under the curve (AUC) of the receiver operator characteristic
(ROC). The expected out-of-sample predictive accuracy was quantified by 10-fold cross-
validation, with the aim of ensuring high validity and at the same time avoiding over-fitting.
Challenges when using observational data, such as multicollinearity, confounding factors
in analysis, and selection effects were addressed and accounted for.

With regard to the research hypotheses, the following results were observed. There was
a clear trend that the Injury Severity Score (ISS) has advantages over the Maximum of the
Abbreviated Injury Scale (MAIS) as target variable. Multivariate models seemed to be
more accurate than univariate ones, although the differences were not significant for every
model regarding ROC AUC, which is presumably due to low case numbers. The statistical
power of the sample available here for investigating the use of age specific injury models
was analyzed and was found to be too low. A possible future approach toward obtaining
detailed insights regarding injury severity and distribution with relation to particular age
groups could be detailed crash experiments, either virtual or real. These kind of detailed
investigations could be very important for future system designs.

The general findings of the models, the contained factors, and their effect size were in
line with previous results in the literature: for example, impact speed of the vehicle was
by far the most important predictor for both injury severity and mortality, in both data
sets and all models. Pedestrian age was also a key predictor. Confirming a long-standing
hypothesis in the literature, the different models obtained here quantified the effects of
vehicle profile characteristics and pedestrian attributes (such as BMI).

Two constraints were incorporated into the models: First, zero vehicle speed results in
zero injury probability. Secondly, the probability for a more severe (i.e., higher) cumulative
target category must not be greater than for a less severe cumulative category. While the
first constraint is a definition, the second can be violated if not taken into account while
modeling different injury levels. Using a conditional probability simulation generating a
very high number of different combinations of all explanatory factors contained in the
models, the second constraint was tested; some models, especially with “close” outcome
categories, violated the constraints.

This second constraint was inherent within a new approach for constructing probability
models for several cumulative outcome categories, e.g., ISS0-8, ISS9-15, and ISS16+, by
means of conditional probabilities. These new models generically fulfill the second con-
straint. This new method also allows for different ways of constructing the models. The
level of modeling detail is of course limited by the overall power of the sample. However,
it allows the assessment of multiple cumulative outcome levels at once regardless of the
number of levels or explanatory factors included in the models.

The accuracy as well as the power of the models depend on the number of cases available;
resulting practical limitations to research were highlighted using the GIDAS data base as
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an example. Especially for the construction of injury probability models, data sources
should be up to date and should include far more cases. In addition, the accuracy of
the models depend on the quality of the data used; continuous improvements in coding
and reconstruction are thus strongly encouraged. Imputation procedures, as included, for
example, in US accident data bases, could minimize loss of data due to list-wise deletion
in a standardized way.

Stochastic simulation was used together with the probabilistic models to give an example
of the application of the assessment process as a whole (Chapter 6). The virtual sample of
accidents in the baseline was validated with GIDAS data of corresponding accidents. The
multivariate logistic regression model used also contained geometric vehicle characteristics.
The baseline simulation with a virtually raised vehicle fleet resulted in changes in the
injury severity distribution comparable to well-known findings in the literature, especially
regarding light truck vehicles: Higher vehicle front-ends increase the risk of severe injury.

Four different variants of a preventive pedestrian protection system were evaluated re-
garding their efficacy compared to the baseline using a functional demonstrator. The
system used is regarded as a virtual prototype, but nevertheless resembles a realistic sys-
tem in every aspect and element, e.g., sensor, algorithm, actuator. Each of the basic system
settings (i.e., “Warning”, “Warning and brake assist”, “Automatic braking”, and “Warn-
ing, brake assist, automatic braking”) was subject to variation of at least one optimization
parameter. The findings were interpreted with respect to the following metrics: avoided
accidents, mitigated accidents (by several injury severity levels) and number needed to
treat (resembling the functional “costs” in system actions per desired outcome category).
The new concept of effective interventions, as introduced here, combines the functional
“costs” of both warnings and automatic system interventions using a hypothetical weight-
ing factor into one key parameter. This “cost function” allowed the direct comparison
of systems including only warning or automatic interventions or both. The optimization
process regarding an ideal operating point was illustrated. In addition to the absolute pri-
ority of relative reduction in avoided accidents or avoided injuries, the objective function
for optimization can include absolute functional system “costs” (including total number
needed to treat) as well as a target for marginal cost/benefit. However, optimization of a
system using the methodology presented is not limited to variations of algorithmic thresh-
olds, but can also include key characteristics of sensors, algorithm, or other relevant vehicle
functions.

The most striking improvement provided by the developed methodology is the inclusion
of the traffic system as a whole (including accidents) into the evaluation. This approach
has incorporated identification of target scenarios; calibration and validation of stochastic
behavior (both of technical and human aspects) and injury probability models; stochas-
tic (Monte-Carlo) simulation of target scenarios in varied traffic contexts with/without
active safety; quantification of simulative results by appropriate metrics; and integration
of supporting and corroborating field and laboratory analyses. This generic assessment
process has been demonstrated using the example of preventive pedestrian protection but
can be applied to various problems of active safety. For example, the conditional proba-
bility approach for ISS level classification is also applicable to other accident victims, such
as cyclists or vehicle occupants. Analogous issues of uncertainty regarding sensors and
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human action also arise in the context of cyclist protection or other constellations, such as
vehicle-vehicle interactions, and could also utilize stochastic simulation.

The modeling of technical components (e.g., sensors) with their stochastic elements and
intrinsic physical uncertainties, as well as whole systems within a vehicle will continue to be
a challenge for the future. One important aspect will be the construction of test benches,
where actual hardware can be assessed in a representative way and the results can be
used to parametrize the corresponding models. Further research is thus encouraged in
order to assess driver behavior under various circumstances, including population-specific
behavior characteristics representative for the population of a country. In this context,
combined further research on mistakes, conflicts, and accidents in traffic is also strongly
encouraged. A special emphasis on the controllability of specific situations by the driver
and surrounding traffic regarding false-positive system actions and their consequences will
be focus of further research. As the method developed here is applied to future systems,
there will be a growing need for targeted investigations of all aspects of the driver-vehicle-
environment control loop, including the behavior of drivers and other road users under
specific conditions.

Stakeholders in traffic safety require a balanced and comprehensive assessment including
positive as well as possible negative effects. The methodology used for optimization
is applicable by all stakeholders in development, deployment, and usage of assistance
systems, e.g., society, legislators, consumer protection advocates, manufacturers, and
customers. Depending on the stakeholder’s point of view, utility and generalized costs
(negative utility) associated with advanced driver assistance systems can arise from
several sources: Decreased acceptance by either driver or society is an example of a
generalized cost (negative utility). System development costs include, e.g., definition of
operating parameters, design of an optimized combination of active and passive safety
measures, etc. Utility arises from reduction of direct monetary costs from, e.g., insurance
and health-care, or from reduced indirect monetary costs, e.g., losses of productivity and
quality of life. The optimal design of an advanced driver assistance system in principal
requires consideration of all these contributions to utility and costs. The concept of
assessment introduced here supports objective economic decisions including costs and
benefits and thus provides a basis for solving the complex problem of determining the
operating point for an advanced driver assistance system.
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Symbols and Abbreviations

Symbols

α1,GIDAS Angle of upper bumper reference line to bonnet leading edge

α1,GIDAS = arctan

(
BLEv,GIDAS − UBRLv,GIDAS

BLEl,GIDAS − UBRLl,GIDAS

)
α1,PCDS Angle of front bumper
α2,GIDAS Angle of hood

α2,GIDAS = arctan

(
HREv,GIDAS −BLEv,GIDAS

HREl,GIDAS −BLEl,GIDAS

)
α3,GIDAS Angle of windshield

α3,GIDAS = arctan

(
WUEv,GIDAS −WLEv,GIDAS

WUEl,GIDAS −WLEl,GIDAS

)
α4,GIDAS Angle of bonnet leading edge

α4,GIDAS = 90◦+α1,GIDAS+arctan

(
HREv,GIDAS −BLEv,GIDAS

HREl,GIDAS −BLEl,GIDAS

)
adriver Avoidance: Accelerating
aveh Mean braking deceleration before collision
attdriver Driver’s attention
BLEl,GIDAS Bonnet leading edge - longitudinal
BLEv,GIDAS Bonnet leading edge - vertical
BMI Body mass index
bdriver,1 Avoidance: Braking
bdriver,2 Avoidance: Braking with lockup
bdriver,3 Avoidance: Releasing brakes
β Coefficient in logistic regression
χped,1 Impact point (ped.): fallen
χped,2 Impact point (ped.): front
χped,3 Impact point (ped.): back
χped,4 Impact point (ped.): side
cdriver Pre-event movement car: complexity
δdriver,l Avoidance: Steering left
δdriver,r Avoidance: Steering right
δdriver Avoidance: Steering
hazardped,GIDAS Walking: hazard
hazardped,PCDS Walking: hazard
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Symbols and Abbreviations

Ekin Kinetic energy (vehicle)
EF1 Effectiveness 1 [43]
EF2 Effectiveness 2 [92]
Gped Sex
HFBv,GIDAS Height of front bumper
HLGIDAS Hood length

HLGIDAS = HREl,GIDAS −BLEl,GIDAS

HLPCDS Hood length
HREl,GIDAS Hood rear end - longitudinal
HREv,GIDAS Hood rear end - vertical
h1,PCDS Front bumper bottom height
h2,PCDS Front bumper top height
h3,PCDS Forward hood height at centerline
h4,PCDS Transition point height at contact
hh,ped,PCDS Pedestrian hip height
hk,ped,PCDS Pedestrian knee height
hped,GIDAS Pedestrian body height
hped,PCDS Pedestrian body height
hs,ped,PCDS Pedestrian shoulder height
k Number of model parameters in logistic regression
LBRLl,GIDAS Lower bumper reference line - longitudinal
LBRLv,GIDAS Lower bumper reference line - vertical
LL Log-Likelihood
mped,GIDAS Pedestrian body weight
mped,PCDS Pedestrian body weight
mveh,GIDAS Vehicle crash weight
mveh,PCDS Vehicle curb weight
n Number of cases
ωped,1 Direction ped.: away from lane
ωped,2 Direction ped.: with / against traffic
ωped,3 Direction ped.: towards lane / crossing
OF1 Operational Field 1 [43]
OF2 Operational Field 2 [92]
OR Odds Ratio
Pped Pregnancy
p Probability
r1,GIDAS Pedestrian body height to upper bumper reference line - vertical

r1,GIDAS =
hped,GIDAS

UBRLv,GIDAS

r2,GIDAS Pedestrian body height to bonnet leading edge - vertical

r2,GIDAS =
hped,GIDAS

BLEv,GIDAS
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Symbols and Abbreviations

r3,GIDAS Pedestrian body height to bonnet leading edge (wrap)

r3,GIDAS =
hped,GIDAS

W1,GIDAS

r4,GIDAS Pedestrian body height to hood rear end - vertical

r4,GIDAS =
hped,GIDAS

HREv,GIDAS

r5,GIDAS Pedestrian body height to hood rear end (wrap)

r5,GIDAS =
hped,GIDAS

W2,GIDAS

r6,GIDAS Pedestrian body height to windshield upper egde - vertical

r6,GIDAS =
hped,GIDAS

WUEv,GIDAS

r7,GIDAS Pedestrian body height to windshield upper edge (wrap)

r7,GIDAS =
hped,GIDAS

W3,GIDAS

r1,PCDS Pedestrian knee height to bumper bottom height

r1,PCDS =
hk,ped,PCDS

h1,PCDS

r2,PCDS Pedestrian knee height to bumper top height

r2,PCDS =
hk,ped,PCDS

h2,PCDS

r3,PCDS Pedestrian hip height to transition point height

r3,PCDS =
hh,ped,PCDS

h4,PCDS

r4,PCDS Pedestrian hip height to forward hood height

r4,PCDS =
hh,ped,PCDS

h3,PCDS

r5,PCDS Pedestrian hip height to forward hood height (wrap)

r5,PCDS =
hh,ped,PCDS

w1,PCDS

r6,PCDS Pedestrian shoulder height to forward hood height (wrap)

r6,PCDS =
hs,ped,PCDS

w1,PCDS
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Symbols and Abbreviations

r7,PCDS Pedestrian shoulder height to rear hood height (wrap)

r7,PCDS =
hs,ped,PCDS

w2,PCDS

r8,PCDS Pedestrian body height to transition point height

r8,PCDS =
hped,PCDS

h4,PCDS

r9,PCDS Pedestrian body height to hood length

r9,PCDS =
hped,PCDS

HLPCDS

r10,PCDS Pedestrian body height to forward hood height (wrap)

r10,PCDS =
hped,PCDS

w1,PCDS

r11,PCDS Pedestrian body height to rear hood height (wrap)

r11,PCDS =
hped,PCDS

w2,PCDS

r12,PCDS Pedestrian body height to windshield base (wrap)

r12,PCDS =
hped,PCDS

w3,PCDS

r13,PCDS Pedestrian body height to windshield top (wrap)

r13,PCDS =
hped,PCDS

w4,PCDS

type1,veh,GIDAS Vehicle body type: wedge-shaped
type2,veh,GIDAS Vehicle body type: pontoon-shaped
type3,veh,GIDAS Vehicle body type: van-shaped
typeveh,PCDS Body type of the vehicle
UBRLl,GIDAS Upper bumper reference line - longitudinal
UBRLv,GIDAS Upper bumper reference line - vertical
vc,GIDAS Vehicle impact speed
vc,PCDS Vehicle impact speed
vped,GIDAS Walking: speed
vped,PCDS Walking: speed
WLEl,GIDAS Windshield lower edge - longitudinal
WLEv,GIDAS Windshield lower edge - vertical
WUEl,GIDAS Windshield upper edge - longitudinal
WUEv,GIDAS Windshield upper edge - vertical
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Symbols and Abbreviations

W1,GIDAS Bonnet leading edge (wrapping distance)

W1,GIDAS = UBRLv,GIDAS + ((BLEl,GIDAS − UBRLl,GIDAS)2 +

+ (BLEv,GIDAS − UBRLv,GIDAS)2)
1/2

W2,GIDAS Hood rear end (wrapping distance)

W2,GIDAS = W1,GIDAS + ((HREl,GIDAS −BLEl,GIDAS)2 +

+ (HREv,GIDAS −BLEv,GIDAS)2)
1/2

W3,GIDAS Windshield upper edge (wrapping distance)

W3,GIDAS = W2,GIDAS + ((WUEl,GIDAS −HREl,GIDAS)2 +

+ (WUEv,GIDAS −HREv,GIDAS)2)
1/2

w1,PCDS Forward hood height at centerline (wrap)
w2,PCDS Rear hood distance from ground at centerline (wrap)
w3,PCDS Windshield base distance from ground at centerline (wrap)
w4,PCDS Windshield top distance from ground at centerline (wrap)
x1,PCDS Front bumper lead
x Explanatory factor in logistic regression
yped Pedestrian age
yveh Year of first registration

A

ABS Antilock Braking System
ACAT Advanced Crash Avoidance Technologies
ACC Adaptive Cruise Control
ACEA European Automobile Manufacturers’ Association
ADAS Advanced Driver Assistance System
AIC Akaike Information Criterion
AIS Abbreviated Injury Scale
AUC Area Under the Curve of the Receiver Operating Characteristic

B

BASt Bundesanstalt für Straßenwesen (Federal Highway Research Insti-
tute)

BIC Bayes Information Criterion
BMI Body Mass Index
Boxplot A Boxplot is a graphical representation of a distribution. The box

is defined by the 25th and 75th percentile.
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Symbols and Abbreviations

Median
Whisker
(max. 1.5 IQR)

N O tli F O tli25th 75th

Interquartile
range (IQR)

Near Outlier 
(max. 3.0 IQR)

Far Outlier 
(> 3.0 IQR)

C

CDS Crashworthiness Data System
CI Confidence Interval

D

DSC Dynamic Stability Control

E

EC European Council
ESP Electronic Stability Program
Euro NCAP European New Car Assessment Program
EVITA Experimental Vehicle for Unexpected Target Approach

F

FAT Forschungsvereinigung Automobiltechnik (Research Association of
Automotive Technology)

FN False Negative
FNR False-Negative Rate
FOT Field Operational Test
FP False Positive
FPR False-Positive Rate

G

GDV Gesamtverband der Deutschen Versicherungswirtschaft e.V. (Ger-
man Insurance Association)

GES General Estimates System
GIDAS German In-Depth Accident Study
GWU George Washington University

H

HIC Head Injury Criterion. HIC is calculated using the instantaneous
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Symbols and Abbreviations

head acceleration a.

HIC = max


 1

t2 − t1

t2∫
t1

a(t)dt

2.5

(t2 − t1)


HIC is an indicator for skull fracture as consequence of linear accel-
eration. No brain injury or rotational accelerations are considered.
[52]

HMI Human Machine Interface

I

ISS Injury Severity Score
IVBSS Integrated Vehicle-Based Safety Systems: Light-Vehicle Field Op-

erational Test

L

LCI Lower Confidence Interval

M

MAIS Maximum Abbreviated Injury Scale
MHH Medizinische Hochschule Hannover (Hannover Medical School)

N

NASS National Automotive Sampling System
NCAC National Crash Analysis Center
NCSA National Center for Statistics and Analysis
NDS Naturalistic Driving Studies
NHANES National Health and Nutrition Examination Survey
NHTSA National Highway Traffic Safety Administration
NNT Number Needed to Treat

P

PCDS Pedestrian Crash Data Study

R

RMS Root-Mean-Square
RNR Right-Negative Rate
ROC Receiver Operating Characteristic
RPR Right-Positive Rate

S

SD Standard Deviation
SE Standard Error of the Mean
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Symbols and Abbreviations

SHRP2 The Second Strategic Highway Research Program
SIM Safety Impact Methodology

T

THUMS Total Human Model for Safety
TN True Negative
TNO Netherlands Organization for Applied Scientific Research
TP True Positive
TUD Technische Universität Dresden (Technical University of Dresden)

U

UCI Upper Confidence Interval
UMTRI University of Michigan’s Transportation Research Institute

V

VEHIL Vehicle Hardware In The Loop
VERPS Vehicle Related Pedestrian Safety Index
ViL Vehicle in the Loop
VTTI Virginia Tech Transportation Institute

W

WAD Wrap Around Distance
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25°

20°

y

x

Figure A.1: Definition of characteristic points at the vehicle front end used in connection to
the GIDAS data set.
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HL
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w
LBRL
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Figure A.2: Vehicle profile characteristics used for analysis (GIDAS): wrapping distances.

184



α3 GIDAS

α2,GIDAS

α1,GIDAS

α3,GIDAS

α4,GIDAS

Figure A.3: Vehicle profile characteristics used for analysis (GIDAS): definition of characteristic
angles.
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h

h2,PCDS
h4,PCDS

h3,PCDS

h1,PCDS

point of impact

Figure A.4: Vehicle profile characteristics used for analysis (PCDS): characteristic vertical
measurements.
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x1,PCDS

w1,PCDS

Figure A.5: Vehicle profile characteristics used for analysis (PCDS): characteristic angles.

h h

hs,ped,PCDS

hped,GIDAS hped,PCDS

h
hk,ped,PCDS

hh,ped,PCDS

Figure A.6: Pedestrian vertical measurements in GIDAS and PCDS.
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Table A.1: Continuous variables used (GIDAS). Case numbers (N), mean, and standard deviation (SD) are given for the full data set.

Variable name Symbol Unit N Mean SD

Vehicle kinematics

Impact speed vc,GIDAS kph 930 29.35 17.04
Impact speed (squared) v2c,GIDAS (kph)2 930 1151.60 1473.47

Kinetic energy Ekin kJ 877 738.45 1008.52
Mean braking deceleration before collision aveh m/s2 822 38.47 33.31

Vehicle characteristics

Crash weight mveh,GIDAS kg 933 1264.15 273.18
Year of first registration yveh a 937 1995.69 5.10
Lower bumper reference line - longitudinal LBRLl,GIDAS cm 906 3.84 2.85
Lower bumper reference line - vertical LBRLv,GIDAS cm 896 29.99 9.16
Upper bumper reference line - longitudinal UBRLl,GIDAS cm 906 0.41 0.61
Upper bumper reference line - vertical UBRLv,GIDAS cm 896 51.93 4.05
Height of front bumper HFBv,GIDAS cm 906 51.44 5.33
Bonnet leading edge - longitudinal BLEl,GIDAS cm 906 12.40 3.02
Bonnet leading edge - vertical BLEv,GIDAS cm 896 73.95 6.53
Bonnet leading edge (wrapping distance) W1,GIDAS cm 896 77.21 6.62
Hood rear end - longitudinal HREl,GIDAS cm 906 101.54 20.81
Hood rear end - vertical HREv,GIDAS cm 896 95.46 6.88
Hood rear end (wrapping distance) W2,GIDAS cm 896 170.15 16.09
Hood length HLGIDAS cm 896 92.94 16.53
Windshield upper edge - longitudinal WUEl,GIDAS cm 906 173.98 24.99
Windshield upper edge - vertical WUEv,GIDAS cm 896 134.94 9.65
Windshield upper edge (wrapping distance) W3,GIDAS cm 896 253.54 13.53
Angle of upper bumper ref. line to bonnet leading edge α1,GIDAS ° 906 61.25 7.04
Angle of hood α2,GIDAS ° 896 14.35 6.24
Angle of windshield α3,GIDAS ° 896 31.15 3.45
Angle of bonnet leading edge α4,GIDAS ° 896 137.35 8.33
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Table A.1: (Continued)

Variable name Symbol Unit N Mean SD

Pedestrian physiology

Age yped a 1011 35.91 25.83
Body weight mped,GIDAS kg 1004 60.99 21.35
Body height hped,GIDAS cm 1006 160.27 20.26
Body mass index BMI kg/m2 1004 22.87 5.21
Height to upper bumper reference line - vertical r1,GIDAS - 889 3.10 0.44
Height to bonnet leading edge - vertical r2,GIDAS - 889 2.18 0.32
Height to hood rear end - vertical r4,GIDAS - 889 1.69 0.24
Height to windshield upper egde - vertical r6,GIDAS - 889 1.19 0.17
Height to bonnet leading edge (wrap) r3,GIDAS - 889 2.09 0.30
Height to hood rear end (wrap) r5,GIDAS - 889 0.95 0.16
Height to windshield upper edge (wrap) r7,GIDAS - 889 0.63 0.09
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Table A.2: Continuous variables used (PCDS). Case numbers (N), mean, and standard deviation (SD) are given for the full data set.

Variable name Symbol Unit N Mean SD

Vehicle kinematics

Impact speed vc,PCDS kph 376 28.95 20.80
Impact speed (squared) v2c,PCDS (kph)2 376 - -

Kinetic energy Ekin kJ 376 69.99 113.14

Vehicle characteristics

Vehicle curb weight mveh,PCDS kg 450 1415.10 340.59
Front bumper bottom height h1,PCDS cm 450 38.68 6.52
Front bumper top height h2,PCDS cm 450 54.75 6.59
Front bumper lead x1,PCDS cm 449 9.31 2.96
Angle of front bumper α1,PCDS ° 449 61.89 15.38
Forward hood height at centerline h3,PCDS cm 450 76.11 17.02
Forward hood height at centerline (wrap) w1,PCDS cm 450 80.33 14.39
Hood length HLPCDS cm 450 102.7 19.5
Transition point height at contact h4,PCDS cm 450 85.90 15.56
Rear hood distance from ground at centerline (wrap) w2,PCDS cm 450 184.79 22.22
Windshield base distance from ground at centerline (wrap) w3,PCDS cm 450 194.49 22.58
Windshield top distance from ground at centerline (wrap) w4,PCDS cm 450 271.82 21.08
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Table A.2: (Continued)

Variable name Symbol Unit N Mean SD

Pedestrian physiology

Age yped a 449 35.92 22.22
Body weight mped,PCDS kg 450 66.60 22.63
Body height hped,PCDS cm 450 162.79 19.48
Body mass index BMI kg/m2 450 24.39 5.71
Knee height hk,ped,PCDS cm 449 46.74 5.94
Hip height hh,ped,PCDS cm 449 88.21 11.08
Shoulder height hs,ped,PCDS cm 449 134.24 16.42
Knee height to bumper bottom height r1,PCDS - 449 1.25 0.32
Knee height to bumper top height r2,PCDS - 449 0.86 0.14
Hip height to transition point height r3,PCDS - 449 1.06 0.23
Hip height to forward hood height r4,PCDS - 449 1.21 0.27
Hip height to forward hood height (wrap) r5,PCDS - 449 1.13 0.24
Shoulder height to front hood height (wrap) r6,PCDS - 449 1.72 0.37
Shoulder height to rear hood height (wrap) r7,PCDS - 449 0.74 0.13
Height to transition point height r8,PCDS - 450 1.95 0.42
Height to hood length r9,PCDS - 450 1.67 0.54
Height to forward hood height (wrap) r10,PCDS - 450 2.09 0.44
Height to rear hood height (wrap) r11,PCDS - 450 0.89 0.16
Height to windshield base (wrap) r12,PCDS - 450 0.85 0.15
Height to windshield top (wrap) r13,PCDS - 450 0.60 0.09
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Table A.3: Recoding of non-continuous variables (GIDAS).

Vehicle characteristics

Original variable N
Original

New variable Symbol N
New

coding coding

passenger car, not further specified (n. f. s.) 22 0 Wedge-shaped (1, 2) 77 1
wedge-shape 1 37 1 Not wedge-shaped (others) 838 0
wedge-shape 2 40 2 Wedge-shaped type1,veh,GIDAS 915
pontoon shape 3 155 3
pontoon shape 4 547 4 Pontoon-shaped (3, 4, 5) 713 1
pontoon shape 5 11 5 Not pontoon-shaped (others) 202 0
box shape, n. f. s. 1 6 Pontoon-shaped type2,veh,GIDAS 915
box shape A 4 7
other 5 8 Van (6, 7, 10, 11) 47 1
unknown 20 9 No van (others) 868 0
box shape B 5 10 Van type3,veh,GIDAS 915
box shape C 37 11
two-wheeler 0 12
side of passenger car, brushed 8 13
side of passenger car, hit 18 14
side of truck, brushed 1 15
side of truck, hit 0 16
passenger car rear end, n. f. s. 0 17
passenger car hatchback 0 18
passenger car fastback 3 19
passenger car notchback 1 20
truck rear end 0 21
between towing vehicle and trailer 0 22
Design of opponent 915
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Table A.3: (Continued)

Pedestrian movement

Original variable N
Original

New variable Symbol N
New

coding coding

yes, no further details 11 1 low speed (1, 2, 3, 4) 466 0
none 32 2 high speed (others) 449 1
walked, no further details 267 3 Walking: speed vped,GIDAS 915
walked slowly 156 4
walked briskly 230 5 low hazard (others) 485 0
ran 168 6 high hazard (2, 5, 6) 430 1
other 6 8 Walking: hazard hazardped,GIDAS 915
unknown 45 9
Pedestrian collision speed 915

Original variable N
Original

New variable Symbol N
New

coding coding

fallen, recumbent 6 0 not fallen (others) 909 0
1 o’clock 18 1 fallen (0) 6 1
2 o’clock 30 2 Impact point (ped.): fallen χped,1 915
3 o’clock 296 3
4 o’clock 20 4 not front (others) 802 0
5 o’clock 8 5 front (1, 11, 12) 113 1
6 o’clock 16 6 Impact point (ped.): front χped,2 915
7 o’clock 5 7
8 o’clock 14 8 not back (others) 886 0
9 o’clock 346 9 back (5, 6, 7) 29 1
10 o’clock 33 10 Impact point (ped.): back χped,3 915
11 o’clock 26 11
12 o’clock 69 12 not side (others) 176 0
unknown 28 99 side (2, 3, 4, 8, 9, 10) 739 1
Pedestrian impact point 915 Impact point (ped.): side χped,4 915
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Table A.3: (Continued)

Pedestrian physiology

Original variable N
Original

New variable Symbol N
New

coding coding

male 452 3 female (4, 5) 457 0
female 455 4 male (3) 452 1
pregnant 2 5 Sex Gped 909
unknown 6 9
Sex 915
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Table A.4: Recoding of non-continuous variables (PCDS). (Several descriptions of the original variables have been shortened compared to the codebook [194].)

Vehicle characteristics (static)

Original variable N
Original

New variable Symbol N
New

coding coding

Convertible 5 1 passenger vehicle (1-6) 241 1
2-door sedan, hardtop, coupe 50 2 no passenger vehicle (others) 128 0
3-door/2-door hatchback 32 3 Body type of the vehicle typeveh,PCDS 369
4-door sedan, hardtop 141 4
5-door/4-door hatchback 8 5
Station wagon 5 6
Compact utility 20 14
Large utility 2 15
Utility station wagon 4 16
Minivan 40 20
Large van 14 21
Step van or walk-in van 1 22
Compact pickup 17 30
Large pickup 30 31
Unknown body type 0 99
Body type 369
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Table A.4: (Continued)

Driver maneuvers and attention

Original variable N
Original

New variable Symbol N
New

coding coding

No avoidance actions 143 1 braking (2 - 4, 8, 9, 99) 150 1
Braking (no lockup) 101 2 not braking (others) 249 0
Braking (lockup) 64 3 Avoidance: Braking bdriver,1 369
Braking (lockup unknown) 2 4
Releasing brakes 0 5 braking with lockup (3, 4) 64 1
Steering left 4 6 not braking with lockup (others) 305 0
Steering right 2 7 Avoidance: Braking with lockup bdriver,2 369
Braking and steering left 28 8
Braking and steering right 19 9 releasing brakes (5) 0 1
Accelerating 1 10 not releasing brakes (others) 369 0
Accelerating and steering left 0 11 Avoidance: Releasing brakes bdriver,3 369
Accelerating and steering right 0 12
Other action 0 98 accelerating (10 - 12) 1 1
Unknown 5 99 not accelerating (others) 368 0
Attempted avoidance

369
Avoidance: Accelerating adriver 369

maneuver of the car
steering left (6, 8, 11) 32 1
not steering left (others) 337 0
Avoidance: Steering left δdriver,l 369

steering right (7, 9, 12) 21 1
not steering right (others) 348 0
Avoidance: Steering right δdriver,r 369

steering (6 - 9, 11, 12) 53 1
not steering (others) 316 0
Avoidance: Steering δdriver 369
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Table A.4: (Continued)

Original variable N
Original

New variable Symbol N
New

coding coding

No driver present 0 0 low complexity (0 - 4) 242 0
Going straight 229 1 high complexity (others) 127 1
Slowing or stopping in traffic lane 8 2 Pre-event movement car:

cdriver 369
Starting in traffic lane 3 3 complexity
Stopped in traffic lane 2 4
Passing or overtaking another vehicle 7 5
Disabled or parked in travel lane 0 6
Leaving a parking position 0 7
Entering a parking position 0 8
Turning right 32 9
Turning left 74 10
Making U-turn 1 11
Backing up

0 12
(other than for parking position)
Negotiating a curve 3 13
Changing lanes 5 14
Merging 1 15
Successful avoidance maneuver

2 16
to a previous critical event
Other 1 97
Unknown 1 99
Pre-event movement of the car 369
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Table A.4: (Continued)

Original variable N
Original

New variable Symbol N
New

coding coding

Full attention to driving 304 1 driver not distracted (1) 304 0
Distracted by other occupant 6 2 driver distracted (others) 65 1
Distracted by moving object in vehicle 1 3 Driver’s attention attdriver 369
Distracted by outside person,

21 4
object or event
Talking on cellular phone/CB radio 2 5
Sleeping or dozing while driving 3 6
Other 21 8
Unknown 11 9
Driver attention 369

Pedestrian physiology (incl. ratios)

Original variable N
Original

New variable Symbol N
New

coding coding

Male 186 1 male (1) 186 1
Female - not reported pregnant 180 2 female (2 - 6) 183 2
Female - pregnant - 1st trimester 2 3 Sex Gped 369
Female - pregnant - 2nd trimester 1 4
Female - pregnant - 3rd trimester 0 5 not pregnant 366 0
Female - pregnant - term unknown 0 6 1st trimester (3) 2 1
Unknown 0 9 2nd trimester (4) 1 2
Sex 369 Pregnancy Pped 369
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Table A.4: (Continued)

Pedestrian movement

Original variable N
Original

New variable Symbol N
New

coding coding

Stopped 10 0 walking away from lane (6) 2 1
Crossing road - straight 272 1 not walking away from lane (others) 367 0
Crossing road - diagonally 58 2 Direction ped.: away from lane ωped,1 369
Moving in road - with traffic 10 3
Moving in road - against traffic 2 4 with; against traffic (3, 4, 7, 9) 15 1
Off road - approaching road 0 5 not with; against traffic (others) 354 0
Off road - going away from road 2 6 Direction ped.:

ωped,2 369
Off road - moving parallel 3 7 with; against traffic
Off road - crossing driveway 9 8
Off road - moving along driveway 0 9 towards lane; crossing (1, 2, 5, 8) 339 1
Other 1 98 not towards lane; crossing (others) 30 0
Unknown 2 99 Direction ped.:

ωped,3 369
Action of the pedestrian 369 towards lane; crossing

Original variable N
Original

New variable Symbol N
New

coding coding

Not moving 12 0 low speed (2, 3) 197 0
Walking slowly 178 1 high speed (others) 172 1
Walking rapidly 36 2 Walking: speed (2, 3) vped,PCDS 369
Running or jogging 136 3
Hopping 0 4 low hazard (others) 182 0
Skipping 0 5 high hazard (0, 2, 3, 7) 187 1
Jumping 0 6 Walking: hazard hazardped,PCDS 369
Falling/stumbling or rising 3 7
Other 1 8
Unknown 3 9
Motion of the pedestrian 369
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[91] Hamacher, M., Eckstein, L., Kühn, M., and Hummel, T. Assessment of
active and passive technical measures for pedestrian protection at the vehicle front.

207



Bibliography

In 22st International Technical Conference on the Enhanced Safety of Vehicles (ESV
2011) (2011), no. 11-0057.

[92] Hannawald, L. Multivariate Bewertung zukünftiger Fahrzeugsicherheit. Disserta-
tion, Technische Universität Dresden, 2008.

[93] Hannawald, L., Erbsmehl, C., and Liers, H. Benefit assessment of forward-
looking safety systems. In 22st International Technical Conference on the Enhanced
Safety of Vehicles (ESV 2011) (2011), no. 11-0212.

[94] Hannawald, L., and Kauer, F. Equal Effectiveness Study On Pedestrian Pro-
tection. Technische Universität Dresden, Dresden, 2004.

[95] Harding, J. The Advanced Crash Avoidance Program (ACAT). In Proceedings of
the 16th ITS World Congress (2009).

[96] Hautzinger, H., Pfeifer, M., and Schmidt, J. Hochrechnung von Daten aus
Erhebungen am Unfallort. BASt-Bericht F 59, Institut für angewandte Verkehrs-
und Tourismusforschung e.V., 2006.

[97] Helmer, T., Ebner, A., and Huber, W. Präventiver Fußgängerschutz - Anfor-
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terstützung eines präventiven Sicherheitssystems - Herausforderungen bei der em-
pirischen Bewertung. In AAET 20011 - Automatisierungssysteme, Assistenzsysteme
und eingebettete Systeme für Transportmittel. Gesamtzentrum für Verkehr Braun-
schweig e.V., 2011.

[99] Helmer, T., Kühbeck, T., Gruber, C., and Kates, R. Development of
an integrated test bed and virtual laboratory for safety performance prediction in
active safety systems (F2012-F05-005). In FISITA 2012 World Automotive Congress
- Proceedings and Abstracts (2012). ISBN 978-7-5640-6987-2.

[100] Helmer, T., Neubauer, M., Rauscher, S., Gruber, C., Kompass, K., and
Kates, R. 11th International Symposium and Exhibition on Sophisticated Car Oc-
cupant Safety Systems. Fraunhofer-Institut für Chemische Technologie ICT, 2012,
ch. Requirements and methods to ensure a representative analysis of active safety
systems, pp. 6.1–6.18. ISSN 0722-4087.

[101] Henary, B. Y., Crandall, J., Bhalla, K., Mock, C. N., and Roudsari,
B. S. Child and adult pedestrian impact: The influence of vehicle type on injury
severity. 47th Annual Conference of the Association for the Advancement of Auto-
motive Medicine (2003).

[102] Henary, B. Y., Ivarsson, B. J., and Crandall, J. R. The Influence of Age
on the Morbidity and Mortality of Pedestrian Victims. Traffic Injury Prevention 7
(2006), 182–190.

208



Bibliography
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präventiven Sicherheitssystems - Herausforderungen bei der empirischen Bewertung. In
AAET 20011 - Automatisierungssysteme, Assistenzsysteme und eingebettete Systeme für
Transportmittel. Gesamtzentrum für Verkehr Braunschweig e.V., 2011.

Helmer, T., Kühbeck, T., Gruber, C., and Kates, R. Development of an inte-
grated test bed and virtual laboratory for safety performance prediction in active safety
systems (F2012-F05-005). In FISITA 2012 World Automotive Congress - Proceedings and
Abstracts (2012). ISBN 978-7-5640-6987-2.

Helmer, T., Neubauer, M., Rauscher, S., Gruber, C., Kompass, K., and
Kates, R. 11th International Symposium and Exhibition on Sophisticated Car Occupant
Safety Systems. Fraunhofer-Institut für Chemische Technologie ICT, 2012, ch. Require-
ments and methods to ensure a representative analysis of active safety systems, pp. 6.1–
6.18. ISSN 0722-4087.

Helmer, T., Samaha, R. R., Scullion, P., Ebner, A., and Kates, R. Injury
risk to specific body regions of pedestrians in frontal car crashes modeled by empirical,
in-depth accident data. In Proceedings of the 54th Stapp Car Crash Conference (2010).

219



Publications

Helmer, T., Samaha, R. R., Scullion, P., Ebner, A., and Kates, R. Kinematical,
physiological, and vehicle-related influences on pedestrian injury severity in frontal car
crashes: multivariate analysis and cross-validation. In Proceedings of the International
Research Council On Biomechanics Of Injury (IRCOBI) (2010), pp. 181–198.

Helmer, T., Scullion, P., Samaha, R. R., Ebner, A., and Kates, R. Predict-
ing the injury severity of pedestrians in frontal car crashes based on empirical, in-depth
accident data. In Proceedings of the 17th ITS World Congress (2010).

Helmer, T., Scullion, P., Samaha, R. R., Ebner, A., and Kates, R. Predicting
the Injury Severity of Pedestrians in Frontal Vehicle Crashes based on Empirical, In-depth
Accident Data. International Journal of Intelligent Transportation Systems Research 9, 3
(2011), 139–151.

Kates, R., Jung, O., Helmer, T., Ebner, A., Gruber, C., and Kompass, K.
Stochastic simulation of critical traffic situations for the evaluation of preventive pedestrian
protection systems. In Erprobung und Simulation in der Fahrzeugentwicklung (2010).

Kompass, K., Huber, W., and Helmer, T. Safety and comfort systems: Introduction
and overview. In Handbook of Intelligent Vehicles, A. Eskandarian, Ed. Springer, 2012.

220


	Introduction
	Safety in road traffic
	Accident statistics
	Pedestrian protection
	Objective and methodological approach

	State of scientific and technical knowledge on pre-crash evaluation
	Methodological aspects of evaluation
	System responses available for evaluation
	Retrospective and prospective evaluation
	Data sources for evaluation
	Methods of prospective evaluation
	Methods of prospective case-by-case analysis
	Methods for modeling different parts of driver, vehicle, and environment
	Summary and conclusion

	Approach to integrated safety evaluation: preventive pedestrian protection
	Process chain for quantitative evaluation of the pre-crash phase
	Reference scenarios for pedestrian accidents
	Functional demonstrator of a preventive pedestrian protection system
	Simulation of vehicle-pedestrian interaction
	Evaluation of safety benefits
	Conclusion

	Methodological findings on research on driver behavior
	Objective
	Test design and subject sample
	Acceptance of the system in specific situations
	Driver behavior in highly critical situations
	Conclusion

	Probabilistic modeling of pedestrian injury severity
	Objective and research questions
	Data and statistical methods
	Study data characteristics
	Coding of target variables
	Coding of explanatory variables
	Treatment of missing data
	Statistical models and methods
	Verifying plausibility of injury probability models

	Prediction of injury and fatality probability
	Univariate models and analysis of potential confounders
	Multivariate analysis: MAIS or ISS as injury scale
	Multivariate versus univariate analysis
	Investigation of special subgroups

	Plausibility check and indications for implementation
	Probability models for ISS and fatalities
	Implications and conclusion on plausibility

	Conclusion

	Integrated evaluation of preventive pedestrian protection
	Design of virtual simulation experiments: system versus reference
	Virtually changed vehicle geometry
	Efficacy of preventive pedestrian protection
	Efficacy of system ``Warning''
	Efficacy of system ``Warning and brake assist''
	Efficacy of system ``Automatic braking''
	Efficacy of system ``Warning, brake assist, automatic braking''
	Comparison of warning and intervention
	Conclusion

	Conclusion and outlook
	Symbols and Abbreviations
	Appendix
	Bibliography
	Publications

