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Abstract

The concept of microgrids is foreseen as a promising solution to tackle challenges arising
due to the increasing integration of renewable energy sources (RESs) into electric power
systems. Due to the high share of RESs, various challenging problems arise in controlling
a microgrid. In the present work, some vital control problems such as network frequency
regulation, power sharing, load voltage restoration and, voltage stability in an islanded
microgrid are investigated. The contributions of this thesis are twofold, i.e., (a) distributed
secondary frequency control and (b) distributed voltage control.

In the former case, the main contributions are as follows: (i) Steady-state performance
of various distributed secondary frequency controllers are compared in the presence
of clock drifts, which is a non-negligible parameter uncertainty observed in microgrids.
(ii) Necessary and sufficient conditions for accurate active power sharing and network
frequency regulation are derived. (iii) A novel secondary frequency controller, termed
as generalized distributed averaging integral (GDAI) control, is proposed to address the
aforementioned control objectives in the presence of clock drifts. (iv) A tuning criterion is
derived, which guarantees asymptotic convergence of the closed-loop system trajectories
with the GDAI control to a desired synchronized motion.

The section on distributed voltage control considers microgrids with parallel-connected
inverters connected to a joint load at the point of common coupling (PCC). This is a com-
monly encountered microgrid application. In such a network, achieving steady-state
proportional reactive power sharing and PCC/load voltage regulation are two impor-
tant control objectives, especially in the case with highly inductive power lines. The
contributions falling under this section are as follows: (i) The existence and uniqueness
properties of a positive voltage solution to the algebraic equations corresponding to the
aforementioned control objectives are established. (ii) A distributed voltage control law
that yields the desired unique voltage solution is proposed. (iii) A stability criterion which
renders local asymptotic stability of the closed-loop equilibrium point is derived. Finally,
via simulation, the performance of the control approaches presented in this thesis are
validated for modeling errors and disturbances.
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Zusammenfassung

Das Konzept von Microgrids könnte entscheidend zur Bewältigung von Herausforderun-
gen durch die zunehmende Integration erneuerbarer Energiequellen in elektrische En-
ergiesysteme beitragen. Die fluktuierende und dezentrale Einspeisung erneuerbarer
Energien führt zu vielen anspruchsvollen und neuen Aufgaben für die Regelung von
Microgrids. In der vorliegenden Arbeit werden daher einige wichtige Regelungsprobleme
wie Netzfrequenzregelung, Leistungsaufteilung, Lastspannungswiederherstellung und
Spannungsstabilität in einem Inselnetz untersucht. Die wissenschaftlichen Beiträge
dieser Arbeit sind (a) verteilte Sekundärregelung der Frequenz und (b) verteilte Span-
nungsregelung.

Im ersten Fall sind die Hauptbeiträge: (i) Die stationäre Performance verschiedener
Sekundärregler wird unter Einfluss von Taktversatz (clock drifts) verglichen, welche eine
nicht vernachlässigbare Parameterunsicherheit in Microgrids darstellen. (ii) Es werden
notwendige und hinreichende Bedingungen für eine genaue Aufteilung der Wirkleistung
und für die Netzfrequenzwiederherstellung hergeleitet. (iii) Ein neuartiger Frequen-
zsekundärregler mit der Bezeichnung GDAI-Regelung (Generalized Distributed Averag-
ing Integral) wird vorgeschlagen, welcher oben genannte Regelziele bei Vorhandensein
von Taktversatz (clock drifts) einhält. (iv) Es wird ein Auslegungskriterium hergeleitet,
das asymptotische Konvergenz der geschlossenen Regelkreistrajektorien mit dem GDAI-
Regler zu einer gewünschten synchronisierten Bewegung garantiert.

Der Abschnitt verteilte Spannungsregelung betrachtet Microgrids mit parallel ange-
schlossenen Wechselrichtern, die am Point of Common Coupling (PCC) mit einer gemein-
samen Last verbunden sind. Dies stellt eine typische Microgrid-Anwendung dar. In
einem solchen Netzwerk stellen stationäre proportionale Blindleistungsaufteilung und
PCC-/Lastspannungsregulierung zwei wichtige Regelziele dar, insbesondere bei hochin-
duktiven Stromleitungen. Hier sind die wissenschaftlichen Beiträge wie folgt gegliedert:
(i) Es werden Existenz- und Eindeutigkeitseigenschaften einer positiven Spannungslö-
sung für die algebraischen Gleichungen gemäß der oben genannten Regelziele aufgestellt.
(ii) Es wird ein verteiltes Spannungsregelgesetz, das die gewünschte eindeutige Span-
nungslösung erzielt, vorgeschlagen. (iii) Es wird ein Stabilitätskriterium, welches lokale
asymptotische Stabilität des Gleichgewichtspunkts im geschlossenen Regelkreis betra-
chtet, hergeleitet. Schließlich wird durch Simulation die Performance der in dieser Arbeit
vorgestellten Regelansätze hinsichtlich Modellierungsfehlern und Störungen validiert.
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Chapter 1

Introduction

1.1 Motivation
The electric power systems are considered as the backbone of any modern in-
dustrialized society [1–3]. A power system can be broadly classified into power
generators, transmission system, distribution system, and load centres [1, 4]. In
conventional power networks, a significant share of power generated is through
synchronous generators, which often use fossil-fuel-based energy sources [4, 5],
substantially contributing to greenhouse gas emissions. Motivated by this, to
reduce greenhouse gas emissions and fossil fuel consumption in the area of power
systems, the worldwide usage of renewable energies has increased remarkably in
the recent years [6,7]. Nonetheless, the increasing integration of renewable energy
sources (RESs) results in various technological as well as structural changes in the
existing power grid [8–11].

In comparison to conventional generators, RESs are small-sized, i.e., the power
generated is relatively lower. Hence, most RESs are interfaced to MV (medium
voltage) or LV (low voltage) levels [8, 10, 11]. Also, while replacing a conventional
generator that typically delivers a high amount of power [12], a large number of
RESs need to be installed for balancing power demand and supply. Thus, power
generation is moving from a relatively small number of large scale power stations
to a huge number of small-scale distributed generators (DGs). This is a major
structural change in the existing power grid structure [6, 9].

An immediate consequence of this structural change is that power generation
and consumption have become geographically closer to each other, with RESs
as the primary source of power generation. Alternatively stated, such a set up
can be understood as a distribution system which–in contrast to conventional
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CHAPTER 1. INTRODUCTION

power systems– has localized power generation and consumption involved in
it. Besides, the presence of a large number of DGs poses some crucial control
challenges. For instance, in conventional power systems, the number of power
generators is relatively small, and hence a centralized control solution would
work satisfactorily [1]. However, in a power grid with a large number of DGs, a
centralized control solution turns out to be inefficient [13], mainly because that
a central unit has to communicate to all the numerous DGs connected in the
network. Such a one-to-all communication system would increase the overall
communication burden, and at the same time, would pose the risk of single-
point-failures [13].

On top of the above-mentioned structural changes, a crucial technological chal-
lenge is as follows. RESs connected in the grid mostly produce DC (direct current)
or variable frequency AC (alternating current) power output. Hence, they are in-
terfaced to the grid using power electronic inverters. The physical characteristics
of inverters largely differ from that to synchronous generators, see, e.g. [3, 14–16].
As a consequence, control strategies used in conventional power systems need to
be redesigned and/or readjusted for power networks having a large number of
inverter-interfaced RESs [14, 15, 17].

One promising solution to address these issues is by using the concept of mi-
crogrids [8, 10, 17–19]. A microgrid is a locally controllable electrical network
with generators, storage units, and loads. The concept of microgrids is foreseen
as a critical element in future electric power systems [10, 20]. In a general set-
ting, microgrids may interact with each other [21], but - by matching generation
and consumption within the microgrid as far as possible - transmitted power
is reduced, and transmission losses are decreased. Microgrids can usually be
operated in two modes, namely grid-connected mode where it is connected to the
utility grid and islanded or stand-alone mode where it works as an isolated power
network [10, 18, 19]. In comparison to grid-connected mode, in islanded mode,
control actions have to be undertaken by the units connected within the network,
making it challenging [22–27]. Thus, this thesis focusses on the topic of control of
islanded microgrids.

1.2 Contributions
The present work is dedicated to addressing the following control problems in an
islanded microgrid:

1. Accurate network frequency restoration,

2



2. Active power sharing,

3. Load voltage regulation,

4. Reactive power sharing and

5. Voltage stability.

A brief overview of the relevance of the considered control objectives is given in
the sequel.

Similar to any isolated power network, maintaining a stable operating point is of
tremendous importance in an islanded microgrid [22–24,28–31]. At the same time,
restoring the network frequency to the nominal value and maintaining voltage
amplitudes at all the buses within a specific limit is also very important [27,32,33].
In some microgrid applications, like a battery energy storage system (ESS) or a
distributed uninterruptible power supply (UPS) system, it is often the case that
the DGs are connected in parallel and are feeding a common load connected
at the PCC [34, 35]. In such applications, restoring the voltage amplitude at the
PCC/load bus is of great relevance [34, 35]. Finally, in any microgrid network,
sharing the total system loads among the generation units in a fair manner is a
crucial control objective [22, 23, 26, 27, 35].

The aforementioned contributions of this work can be divided into two main
sections. At first, the problem of distributed frequency control [13, 25, 32, 36, 37]
in a microgrid with arbitrary topology (also termed as a meshed microgrid) is
investigated. Later, voltage stability and reactive power sharing [24, 27] in a
microgrid with parallel-connected DGs connected to a common load [34, 35,
38] are addressed. Unless confusion arises, such a network is called a parallel
microgrid in the rest of this thesis.

Next, the main contributions falling under these two sections are briefly de-
scribed.

1.2.1 Distributed secondary frequency control
Inspired by conventional power systems, a hierarchical control architecture is
advocated for microgrids, which has primary, secondary, and tertiary control
layers [39, 40]. The chapter entitled distributed secondary frequency control in
this thesis focusses on exploring the robustness and performance of distributed
secondary frequency controllers in the presence of a non-negligible parameter
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CHAPTER 1. INTRODUCTION

uncertainty, known as clock drifts, commonly observed in inverter-based micro-
grids.

Microgrids are distributed systems where distributed computing is involved. It
is a well-known fact that distributed computing applications suffer from clock
drifts [41, 42]. In the presence of clock drifts, the steady-state performance of
primary [16,43] and secondary frequency control [44–48] employed in a microgrid
are adversely affected. The contributions of this thesis regarding these issues can
be summarized as follows.

1. A general distributed integral frequency control structure is proposed to
compare the steady-state performance of various distributed secondary
frequency controllers in the presence of clock drifts. This approach assumes
that in the primary control layer, the standard frequency droop control [38]
is implemented.

2. Based on the proposed general controller structure, necessary and sufficient
conditions for steady-state accurate frequency restoration and active power
sharing in the presence of clock drifts are derived. Later, a novel secondary
frequency controller, termed as generalized distributed averaging integral
(GDAI) controller is presented to achieve the above-mentioned control
objectives in the presence of clock drifts.

3. A tuning criterion in the form of a set of linear matrix inequalities (LMIs)
is derived that, if feasible, guarantees asymptotic stability [49, 50] of the
closed-loop equilibrium point. The tuning criterion is derived using the
standard decoupling assumption utilized in power networks with inductive
lines1, see e.g., [1, 22, 24, 27, 32].

4. The results are validated extensively, via simulation, and are compared
with other distributed secondary frequency controllers proposed in the
literature, e.g. [13, 32, 51, 52].

1.2.2 Distributed voltage control
This section outlines the contributions of this thesis to the topic of voltage control
in parallel microgrids. Two important control objectives in a parallel microgrid
with dominantly inductive power lines are (i) reactive power sharing and (ii)
load/PCC voltage restoration, see, e.g. [34, 35, 38]. In this regard, the following
results are summarized in this thesis.

1Also referred to as lossless lines [1].
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1. At first, the existence and uniqueness properties of a stationary solution to
the set of algebraic equations corresponding to steady-state proportional
reactive power sharing and PCC voltage restoration are established.

2. A distributed voltage controller which drives the closed-loop system trajec-
tories asymptotically [49, 50] to the desired unique stationary solution is
proposed.

3. Via a numerical case study, the performance of the proposed distributed
voltage controller towards further modeling errors and load disturbances
is evaluated. Operational compatibility of the proposed control approach
with the standard frequency droop control [38] is also investigated.

1.2.3 Structure of the thesis
The present thesis is arranged as six chapters with a common conclusion. The
main contents of each chapter are described concisely in the following.

Chapter 2: Preliminaries

In this chapter, some standard results from control theory, algebraic graph theory,
and power systems are reviewed. After introducing the mathematical notation
used in this thesis, some control theory basics, like Lyapunov stability [49, 50], are
recalled. Then, a background on algebraic graph theory [53–55] and consensus
protocols [56] are discussed. Finally, some power systems basics [1, 3, 4] required
in the present work are presented.

Chapter 3: Problem statement

In this chapter, the microgrid concept and the formal definition of a micro-
grid [8, 10, 18] are introduced. Furthermore, the main technical challenges in
a microgrid are discussed. Later, the hierarchical control structure used in an
islanded microgrid [39] is described. Finally, definitions regarding power shar-
ing [26, 27], frequency and voltage restoration [13, 32, 36, 51, 57] are formalized.

Chapter 4: Microgrid model and primary control

The mathematical model of the microgrid studied in this thesis is introduced
in this chapter. More precisely, the inverter, the load and the network models
required to present the results summarized in this thesis are introduced. Fur-
thermore, the standard droop control [38] used at the primary control layer is
described in detail. Later, the model of a droop-controlled inverter in the pres-
ence of clock drifts is derived [43, 58] Finally, the steady-state performance of
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CHAPTER 1. INTRODUCTION

frequency droop control in the presence of clock drifts and voltage droop control
in lossless microgrids are discussed in detail.

Chapter 5: Distributed secondary frequency control

This chapter focusses on the performance of secondary frequency control in
microgrids with explicit consideration of clock drifts. More precisely, achieving
control objectives of steady-state

1. accurate network frequency restoration and

2. active power sharing,

with various distributed secondary frequency controllers in the presence of clock
drifts are studied.

A general distributed control representation is proposed, which can be param-
eterized into the control approaches presented in [13, 32, 37, 51]. Based on this
general controller representation, necessary and sufficient conditions for achiev-
ing secondary frequency control objectives in the presence of clock drifts are
derived. The control approaches advocated in [13, 32, 37, 51] were found to be not
satisfying the derived necessary and sufficient conditions. Yet in this section, a
novel secondary frequency controller, termed as GDAI control is proposed, which
fulfils the above-mentioned control objectives in the presence of clock drifts.

In the second part of this chapter, a tuning criterion that guarantees asymptotic
stability of the closed-loop (with the GDAI control) equilibrium point is presented.
For deriving this result, concepts from the classical Lyapunov function-based
stability analysis employed in power networks were used, see, e.g. [25, 59].

Chapter 6: Distributed voltage control

In this chapter, the problem of voltage control in a parallel microgrid is investi-
gated. More precisely, three important control objectives of

1. reactive power sharing,

2. PCC voltage restoration and

3. voltage stability,
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in a parallel microgrid with inductive lines are addressed.

In the first part of this chapter, the existence and uniqueness properties of a
stationary voltage solution to the steady-state algebraic equations of reactive
power sharing and PCC voltage restoration are established. Then, inspired by [27,
30], a distributed voltage controller is proposed, which at equilibrium yields the
desired stationary solution mentioned above. A stability criterion that guarantees
local asymptotic stability of the closed-loop equilibrium point is also derived in
this chapter.

Chapter 7: Case study

In the first section of this chapter, the performance of the GDAI controller is
validated and is compared with other distributed control approaches [13, 32, 51]
in the presence of clock drifts. To evaluate the robustness of the GDAI control
towards typical modeling uncertainties, a small line resistance is considered in
the simulated microgrid.

In the second part of this chapter, the performance of the distributed voltage con-
troller designed for a parallel microgrid is validated. Furthermore, the operational
compatibility of the same with the frequency droop control [38] is tested.

1.3 Related works

1.3.1 Introduction
In conventional power systems, synchronous generators that operate as grid
forming units are responsible for maintaining a desired stable operating point [3].
However, in inverter-based microgrids, inverter-interfaced sources or, more pre-
cisely, grid-forming inverters replace synchronous generators [14, 15]. A grid
forming inverter is a voltage source inverter controlled using voltage and fre-
quency references provided by the designer [14–16].

Motivated by the control strategies used in conventional power systems, a hier-
archical control approach has been advocated for microgrids [13, 39, 60]. One
typically distinguishes primary and secondary control layers (as in conventional
power systems), while the top control level, which is mostly referred to as op-
erational management or tertiary control, is mainly concerned with generation
scheduling, see, e.g. [21, 61]. Primary control layer consists of a decentralized pro-
portional control, called droop control. The decentralized aspect of droop control
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facilitates that each inverter2 requires only local information for its operation,
and does not need any communication with other inverters. In microgrids with
inductive power lines, droop control can be divided into two, frequency droop
control and voltage droop control. In frequency droop control, the frequency
of an inverter depends linearly on the active power injection. Frequency droop
control achieves frequency stability and active power sharing [22, 62]. In the case
of voltage droop control, voltage amplitude at each inverter is in proportion to its
reactive power injection [38].

In the rest of this section, some relevant works on the topics focussed on in this
thesis are reviewed.

1.3.2 Distributed secondary control
In islanded microgrids, frequency stability and proportional active power sharing
are typically provided by the primary frequency droop control [22, 26, 38, 62, 63].
Despite many advantages, a major drawback of the frequency droop control is
that the steady-state frequency usually deviates from the nominal value (50 or
60 Hz). The first part of this thesis is devoted to secondary frequency control,
which is responsible for correcting the steady-state frequency error caused by
the primary control layer [39]. In this regard, some related works on secondary
frequency control are outlined in the sequel.

As most of the electrical devices are designed to operate at the nominal frequency
of 50 or 60 Hz, restoring the network frequency to the desired nominal value is
very important [1]. Conventionally, a central integral control [63] is advocated for
this task, where a central unit communicates with all the generation units. Yet,
considering the complexity and the number of generation units connected in
a microgrid, centralized approaches significantly increase the communication
burden and are also vulnerable to single-point-failures [13]. As a consequence,
distributed secondary control architectures are being increasingly proposed for
this task [13,25,32,36,37,51,64]. Most distributed controllers only need a sparsely
connected communication network for their operation. The sparsity of the com-
munication network stems from the fact that each unit in the network has to
communicate only with its neighbors [56], thus avoiding undesired all-to-all and
one-to-all communication requirements. Typically, a distributed secondary fre-
quency controller is implemented by means of consensus-based algorithms, see
e.g., [13, 25, 32, 36, 37, 51, 64].

2Unless confusion arises, a grid-forming inverter is denoted simply as an inverter in the rest
of this work.
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There are various important aspects to be considered while designing a dis-
tributed control law for a networked system like a microgrid, e.g. communication
delay [36, 65, 66] and denial-of-service (DoS) [67, 68]. Also, finding an optimal
communication topology for the satisfactory operation of a distributed controller
is also of great practical relevance [64–66, 69]. Irrespective of such aspects, the
main advantage of using a distributed control approach in a microgrid is that
it obviates the requirement for a central communication unit, thus improving
system reliability and robustness towards single-point-failures [13]. Hence, sec-
ondary frequency control discussed in this thesis considers distributed control
solutions and investigates their performance towards a non-negligible parameter
uncertainty usually observed in microgrids, that is explained concisely in the
following.

1.3.2.1 Performance in the presence of clock drifts

An inverter-based microgrid involves distributed computation, carried out at the
digital-controller of each grid-forming inverter. It is a well-known fact that the
clocks used to generate time signals of these digital-controllers are not synchro-
nized [41, 42]. This results in clock drifts between the inverters. In microgrids,
clock drifts create frequency mismatches and disturb steady-state active power
sharing [43, 58]. In the context of distributed secondary frequency control, ap-
proaches presented in the literature often neglect the effect of clock drifts, see,
e.g. [13, 32, 36, 51, 64]. However, recently it has been highlighted that clock drifts
have an adverse effect on the performance of secondary frequency control [44–48].
For example, in [70], the detrimental effect of clock drifts on distributed averaging
integral (DAI) control presented in [32, 51] has been investigated. It has been
shown that the DAI controller is unable to properly achieve usual secondary
frequency control objectives in the presence of clock drifts. In [48], a compar-
ative study comprising droop-only, droop-free and various consensus-based
distributed control approaches in the presence of clock drifts has been presented.
The authors conclude that all the approaches studied in [48] exhibit problems in
achieving secondary frequency control objectives in the presence of clock drifts.

In [44], steady-state and transient performance of various decentralized sec-
ondary frequency controllers in the presence of clock drifts has been compared.
In a similar spirit, in [45], a decentralized secondary control approach has been
studied and robustness of this approach towards clock drifts under high load
conditions are evaluated experimentally. Although decentralized secondary con-
trollers avoid the requirement of communication, they have the disadvantage
that they exhibit inefficient allocation of generation resources and suffer from
poor robustness to measurement bias [57]. In contrast to that, a droop-free con-
troller that requires neighboring node communication has been studied in [46]
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considering the effect of clock drifts. However, the comparative study presented
in [48] shows that the aforementioned droop-free approach under-performs in
terms of active power sharing in the presence of clock drifts.

In [47], a consensus-based distributed frequency controller has been studied,
where the authors confirm experimentally, that clock drifts induce power sharing
errors and frequency deviations. However, the approach investigated in [47] re-
quires that each inverter has to communicate with all other inverters connected in
the microgrid. In practice, such an all-to-all communication is undesirable. In a
slightly different setting, a consensus-based power control law has been designed
in [71] on top of a primary angle droop3 control layer. The approach presented
in [71] is able to achieve frequency consensus and active power sharing at steady-
state. Recently, a modified frequency droop control scheme to address power
sharing issues in the presence of clock drifts has been presented in [73]. Nonethe-
less, the approaches proposed in [71, 73] have not yet considered the mandatory
secondary frequency control objective of network frequency restoration.

A possible remedy to alleviate the impact of clock drifts is to use a global time
synchronization strategy, e.g., [63], where a central unit communicates a global
time signal to all the generation units. Again, such a central set up increases
communication burden and is prone to single-point-failures. Another interesting
option is to use clock synchronization protocols applied in sensor networks, see
e.g. [74, 75]. Yet, when it comes to microgrids, for implementing these clock
synchronization protocols, an additional clock synchronization control has to
be designed and should–probably–be activated before primary and secondary
controls are enabled. Adding such an additional control layer would increase the
overall complexity of the hierarchical control architecture employed in microgrids
[63].

1.3.3 Distributed voltage control
In contrast to primary frequency droop control, the use of primary voltage droop
control [38] is often not the most preferred solution in microgrids with inductive
lines, see e.g. [24, 27, 30, 32]. This can be explained as follows.

In microgrids with inductive lines, voltage droop control [38] yields a propor-
tional relation between the voltage amplitude and the reactive power flow at each
inverter. Thereby, even a small mismatch in voltage set points together with the
low resistance to inductive reactance (R/X) ratio of the power lines, resulting in

3In an angle droop controller, the voltage phase angle of a grid forming inverter is calculated
in proportion to the power injected [72].
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undesired circulating reactive currents [24]. A detailed investigation regarding
poor reactive power sharing in lossless microgrids operated with voltage droop
control can be found in [32]. Thus in the sequel, some relevant works from the lit-
erature to address accurate proportional reactive power sharing, and additionally,
load voltage regulation in a lossless microgrid with parallel-connected inverters
is reviewed.

1.3.3.1 Distributed voltage control in parallel microgrids

For improving system redundancy and reliability needed by a critical load, a com-
mon practice in some microgrid applications is to connect inverter-interfaced
RESs and storage units in parallel to the point of common coupling (PCC) where
the load is connected. Such a network is commonly termed as a parallel micro-
grid, see e.g. [34, 35, 38, 76, 77]. Some practical examples of parallel microgrids
are battery power plants (also known as energy storage systems (ESSs)) and dis-
tributed uninterruptible power supply (UPS) systems [38, 76, 77]. Similar to an
islanded microgrid, the issue of power balance and network stability is of tremen-
dous importance in a parallel microgrid.

As mentioned earlier, maintaining all the bus voltage amplitudes within a cer-
tain limit is an important control objective in any power network. In a parallel
microgrid, the most critical voltage amplitude is at the PCC since there is no
generation unit present at that node. Hence, to restore the voltage at the PCC to
the nominal value, DGs connected in the microgrid should be controlled accord-
ingly [34, 35, 38]. On the other hand, in a parallel microgrid with inductive power
lines, it is also of high relevance to share the reactive power demand of the load
proportionally between the DGs [34, 35, 76–81].

The problem of power sharing in parallel microgrids has been investigated in
[38, 77–80, 82] using proportional droop control. In [81], a proportional-integral
(PI)-based distributed controller has been proposed to address power sharing.
In [34, 35], together with power sharing, the objective of PCC voltage regulation
also has been addressed using a PI controller. The aforementioned approaches
assume that there exists a unique stable operating point. Stability analysis with
two droop-controlled inverters connected in parallel has been presented in [83],
where the authors linearize the power flow equations at a particular operating
point. In contrast to that, a decentralized quadratic voltage droop controller has
been proposed in [24] to ensure voltage stability in lossless microgrids. However,
accurate proportional reactive power sharing cannot be guaranteed without
risking voltage stability [27, 30].
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Chapter 2

Preliminaries

This chapter describes the notations and preliminaries used in this thesis. At first,
the employed mathematical terminology is presented. Later, preliminaries about
control theory, algebraic graph theory, and power systems needed in this thesis
are outlined.

2.1 Notation
Throughout this thesis, the identity matrix of size n ×n is denoted by In , the
vector of all-ones as 1n ∈Rn and the vector of all-zeros as 0n ∈Rn . The matrix of
all ones (also called the all-ones-matrix [84]) is denoted by 1n×n ∈ Rn×n unless
specifically denoted as 1n1>

n . A matrix of all zeros is denoted by 0n×m ∈ Rn×m .
An n ×n diagonal matrix with entries a j , j = 1, . . . ,n is denoted by diag(a j ). The
maximum eigenvalue of a square symmetric matrix F is denoted by λmax(F ) and
the trace of F as trace(F ). The elements below the diagonal of F are denoted by ∗.
If F is positive (negative) definite, then it is denoted by F > 0 (F < 0). Similarly, if
F is positive (negative) semidefinite, F ≥ 0 (F ≤ 0). Moreover, A > B means that
A−B > 0.

Let x = col(xi ) represent a column vector with entries xi . Then, [x] denotes a
diagonal matrix with diagonal entries xi . Moreover, X = blockdiag(Xi ) denotes a
block-diagonal matrix with matrix entries Xi ∈Rni×ni . For a function f (x) : Rn →
R, ∇x f denotes the gradient of f (x) with respect to x ∈Rn . Finally, ‖ ·‖2 denotes
the Euclidean norm and |U | represents the cardinality of a set U .
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2.2 Control theory basics
In this section some standard control theory concepts are surveyed. After recalling
the definition of a dynamical system, the notion of stability is introduced. Later,
the classical Lyapunov stability results are recalled. These control theory basics
are based on [49, 50]. Hence, for the proofs of the theorems presented in this
section, the reader is referred to [49, 50].

The class of systems relevant in the context of this thesis are dynamical systems
in the form of an ordinary differential equation (ODE) given by [49, 50]

ẋ = f (x(t )), (2.2.1)

where x(t) : [t0,∞) →Rn , f : Rn →Rn is a locally Lipschitz function and t0 ∈R is
the initial time.

2.2.1 Lyapunov stability
Lyapunov stability is a standard tool in control theory to study stability of the equi-
librium point of systems of the form (2.2.1). This is formalized in the definition
below.

Definition 2.2.1. [49, Definition 3.1] Consider the system (2.2.1). Let f be a locally
Lipschitz continuous function defined over the domain D ∈Rn , which contains the
origin, and f (0n) = 0n . The equilibrium point x = 0n of the system (2.2.1) is

1. stable if for each ε> 0, there is δ= δ(ε) > 0 such that

‖x(0)‖ < δ⇒‖x(t )‖ < ε,∀t ≥ 0,

2. unstable, if not stable,

3. asymptotically stable, if it is stable and δ can be chosen such that

‖x(0)‖ < δ⇒ lim
t→∞x(t ) = 0.

The notion of Lyapunov’s stability is formalized in the theorem below.

Theorem 2.2.2. [49, Theorem 3.3] Consider the system (2.2.1). Let f be a locally
Lipschitz continuous function defined over the domain D ∈Rn , which contains the
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origin, and f (0n) = 0n . Let V (x) be a continuously differentiable function defined
over D such that

V (0n) = 0 and V (x) > 0 ∀x ∈ D \ {0n}, (2.2.2)

V̇ (x) ≤ 0 ∀x ∈ D, (2.2.3)

then x = 0n is a stable equilibrium point of the system (2.2.1). Moreover, if

V̇ (x) < 0 ∀x ∈ D \ {0n}, (2.2.4)

then x = 0n is asymptotically stable. Furthermore, if D = Rn , (2.2.2) and (2.2.4)
hold for all x 6= 0n , and

‖x‖→∞⇒V (x) →∞, (2.2.5)

then x = 0n is globally asymptotically stable.

2.3 Graph theory and consensus protocols
Graph theory concepts [53–55] are used to describe the communication network
required to implement the distributed control strategies presented in this thesis.
At first, some preliminary results from algebraic graph theory are recalled in Sec-
tion 2.3.1. Later in Section 2.3.2, some basic concepts about consensus protocols
are introduced.

2.3.1 Algebraic graph theory
A weighted undirected graph of order n > 1 is a triple G = (N ,E ,W ) with set of ver-
tices N = {1, . . . ,n}. The set of edges is denoted by E ⊆ [N ]2, E = {e1, . . . ,es} where
s = |E | and [N ]2 represents the set of all two-element subsets of N . Furthermore,
W : E →R>0 is a weight function. By assigning a random orientation to the edges,
the incidence matrix B ∈Rn×s can be defined element-wise as h j l = 1 if node j
is the source of the l-th edge el , h j l =−1 if node j is the sink of the l-th edge el

and h j l = 0 otherwise. Let W = diag(wl ) ∈Rs×s be the edge-weight matrix where
wl > 0 is the weight of the l -th edge, l ∈ {1, . . . , s}. The entries of the adjacency ma-
trix A ∈ Rn×n of G are ai j = a j i = wl > 0 if {i , j } ∈ E and ai j = a j i = 0 otherwise.
The set of neighboring nodes of node i is given by Ni = { j ∈N |ai j 6= 0}. Then,
the diagonal degree matrix D ∈Rn×n is given by D = diag

(∑
j∈Ni

ai j
)
. In addition,

the Laplacian matrix L ∈ Rn×n of the undirected weighted graph G is given by
L =BWB> =D−A .
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A path is an ordered sequence of nodes such that any pair of consecutive nodes
in the sequence is connected by an edge. The graph G is called connected if there
exists a path between every pair of distinct nodes. The matrix L has a simple
zero eigenvalue if and only if G is connected. A corresponding right eigenvector
is 1n , i.e., L 1n = 0n , yielding L ≥ 0.

2.3.2 Consensus protocols
The use of consensus protocols to address control objectives in multi-agent net-
worked systems have become increasingly popular in the past few decades, see,
e.g. [56, 85–88]. The term consensus means that a group of agents in a networked
system reach an agreement on a common value by negotiating with their neigh-
bors [56]. The interaction rule to achieve this agreement is typically called as
consensus protocol or consensus algorithm [56]. A remarkable advantage of con-
sensus protocols is that, in general, they are distributed in nature. Therefore to
reach an agreement among agents, neither an all-to-all communication network
nor a central communication setup are required.

Consider an undirected connected weighted graph G = (N ,E ,W ) where N ,E
and W are defined in Section 2.3.1. A simple consensus protocol which guarantees
convergence to a common value can be represented as [56]

ẋi =
∑

i∈Ni

ai j (x j −xi ), i ∈N , j ∈Ni , (2.3.1)

where xi is the information state of the i -th agent, ai j is the (i , j )-th entry of the
adjacency matrix A of graph G and Ni is the set of neighboring nodes connected
to agent i . The consensus protocol (2.3.1) for the whole network can be written
as

ẋ =−L x, (2.3.2)

where x = col(xi ) ∈ Rn is the information state vector and L is the Laplacian
matrix of the graph G . The dynamics (2.3.2) at steady-state can be expressed as

0n =L xs , (2.3.3)

where the super script s denotes the steady-state value. Under the assumption
that G is connected, 0 is a simple eigenvalue of L with a corresponding right
eigenvector 1n . Therefore,

L xs = 0n ⇔ xs =α1n , α ∈R. (2.3.4)

Let x(0) ∈Rn be the initial condition of of x(t ). Then [56]

α= 1

|N |
∑

i∈N

xi (0).
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Hence, the systems of the form (2.3.2) are also known as continuous time dis-
tributed averaging systems [56, 87].

2.4 Power system basics
Following the standard practice in AC power systems, power is typically generated,
transmitted, and distributed in the form of three-phase signals [4, 12, 89]. There-
fore, the present work focuses on three-phase AC power networks. It is assumed
that the three-phase signals considered in this thesis are symmetric [4, 89, 90], see
also [23, Section 2.4].

In light of these assumptions, the following sections summarize some power
systems preliminaries required throughout the present work. At first, the network
model is introduced, and expressions for active and reactive power flows are
presented later. Finally, a commonly used network reduction technique used in
power networks with constant impedance loads is recalled.

2.4.1 Network model
Power lines in AC networks are typically modeled as the so-called π-model [1, 4, 5,
89], which consists of a series RL (resistance with inductance) element connected
in parallel with R and C (resistance and capacitance) shunt-elements. For power
networks with short power lines, e.g. microgrids, the shunt-elements can often
be neglected [1, 4, 89]. Thus, a power line can be represented as a combination of
resistance and inductance connected in series.

As this thesis is devoted to addressing control issues in microgrids with domi-
nantly inductive lines (i.e., lossless lines), the line resistance is neglected. Let
Xi j ∈ R>0 be the inductive reactance of a power line connecting two buses, say
i ∈N and j ∈N . Then,

Xi j =ωLi j ∈R>0,

where ω ∈R>0 denotes a frequency and Li j ∈R>0 is the inductance of the power
line connecting bus i and bus j . The susceptance Bi j ∈ R<0 of the power line
connecting bus i and bus j is then given by

Bi j =
−1

Xi j
∈R<0. (2.4.1)

The dynamics of the power lines are assumed to be negligible [1, 3]. Thereby, it
is essential to note that a power line connecting bus i and bus j is denoted by
(2.4.1) in the rest of this thesis.
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2.4.2 Power flow
Consider a two-bus system, as shown in Figure 2.1. Let V1 : R≥0 → R>0 and
V2 : R≥0 → R>0 be the voltage amplitudes at node 1 and node 2, respectively.
Furthermore, let δ1 : R≥0 →T and δ2 : R≥0 →T, respectively, be the phase angles
at node 1 and 2. Then, the active and reactive power flows at node 1 are given
respectively, by [5, Chapter 3] [1, Chapter 6]

P1(V1,V2,δ1,δ2) = |B12|V1(t )V2(t )sin(δ1(t )−δ2(t )),

Q1(V1,V2,δ1,δ2) = |B12|V 2
1 (t )−|B12|V1(t )V2(t )cos(δ1(t )−δ2(t )).

(2.4.2)

V1, δ1 V2, δ2

B12

Figure 2.1. Schematic representation of a purely inductive power line connecting
two buses.

Similar to a two-bus system, now let there be n > 2 nodes connected arbitrarily.
The set of network nodes is denoted by N = {1, ...,n}. Furthermore, the electrical
network is assumed to be connected and the set of neighboring nodes of the
i -th node is denoted by Ni = {k ∈N |Bi k 6= 0} where Bi k ∈R<0 is the susceptance
of the power line connecting node i and node k. The phase angle and voltage
magnitude at each bus i ∈N are denoted by δi : R≥0 →T, respectively Vi : R≥0 →
R>0. Let Pi : Tn ×Rn

>0 →R and Qi : Tn ×Rn
>0 →R represent the active and reactive

power power injections at node i , respectively.

Then, the active and reactive power flows at node i are given respectively, by [1, 5]

Pi (δ1, . . . ,δn ,V1, . . . ,Vn) =
∑

k∈Ni
|Bi k |Vi (t )Vk (t )sin(δi (t )−δk (t )), (2.4.3)

Qi (δ1, . . . ,δn ,V1, . . . ,Vn) =
∑

k∈Ni
|Bi k |V 2

i (t )−|Bi k |Vi (t )Vk (t )cos(δi −δk ).

(2.4.4)

2.4.3 Kron reduction
In general, a power network contains different kinds of buses where not only
generators but also various types of loads are connected. Hence, writing down
the system equations for such a network yields a set of differential algebraic
equations (DAEs). If the loads connected in the network are constant impedance
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loads, then using a commonly employed network reduction technique, termed
as Kron reduction, such a system of DAEs can be represented as pure ordinary
differential equations (ODEs) [1, 91]. In a Kron-reduced network, all the buses
have a generator and a shunt admittance connected to them [1, 91].

For a Kron-reduced power network with inductive lines, active and reactive power
flows at node i are given respectively by [1]

Pi (δ1, . . . ,δn ,V1, . . . ,Vn) =Gi i V 2
i (t )+

∑
k∈Ni

|Bi k |Vi (t )Vk (t )sin(δi (t )−δk (t )),

Qi (δ1, . . . ,δn ,V1, . . . ,Vn) = |Bi i |V 2
i (t )−

∑
k∈Ni

|Bi k |Vi (t )Vk (t )cos(δi (t )−δk (t )),

(2.4.5)

where Gi i ∈ R>0 is the shunt conductance and Bi i = B̄i i +
∑n

k=1,k 6=i Bi k , where

B̄i i ∈R<0 is the shunt susceptance. In the sequel, the dependence of voltages and
phase angles on time will not be displayed unless confusion arises.

2.5 Summary
In this chapter, the mathematical notation and preliminaries required for present-
ing the results in this thesis have been outlined. At first, the notation employed
throughout this thesis has been introduced. Later some control theory basics and
graph theory results have been recalled. Finally, some important power system
basics, which are used extensively in this thesis, have been introduced.
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Chapter 3

Problem statement

3.1 Introduction
As discussed in Chapter 1, the increasing integration of RESs into the modern
power grid brings in various operational challenges. A possible remedy to tackle
these challenges is to consider the whole grid as a set of locally controllable
smaller networks, called microgrids [8, 17]. In this chapter, the concept of mi-
crogrid is introduced, and some exciting features are highlighted. Subsequently,
control challenges in operating an islanded microgrid are recalled and, the hierar-
chical control architecture [63] advocated to address these challenges is discussed.
Afterward, the common operating modes of inverters connected in a microgrid
are described. Finally, based on the discussion thus far, control problems ad-
dressed in this thesis are precisely formulated.

3.2 Microgrids
To facilitate RES-integration, the concept of microgrids has been studied with
increasing interest, both by the research community and by the industry [17–19,
23, 92, 93]. The concept of a microgrid is defined as below.

Definition 3.2.1. [10, 17, 18, 23] An AC electrical network can be called an AC
microgrid if the following conditions are satisfied.

1. It works as a connected subset of a low or medium voltage distribution system
of an AC power network.

2. It has a single point of connection to the main power grid, which is called the
point of common coupling (PCC).
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3. It is a network consisting of generation units, loads and energy storage ele-
ments.

4. It can autonomously supply most of its loads using its own generation and
storage units at least for some time.

5. It can work either connected to the main grid or disconnected from it. The
former is called grid-tied or grid-connected mode, and the latter is called
islanded or autonomous or stand-alone mode.

6. In grid-connected mode, it behaves as a single controllable generator or load
with respect to the main grid.

7. In islanded mode, frequency, voltage, and power are actively controlled
within the microgrid.

Another concise definition of a microgrid that incorporates the points mentioned
in Definition 3.2.1 is given below.

Definition 3.2.2. [94] A microgrid is defined as a group of distributed generators,
including RESs, ESSs, and loads, that operate together locally as a single control-
lable entity. Microgrids exist in various sizes and configurations; they can be large
and complex networks with various generation resources and storage units serving
multiple loads, or small and simple systems supplying a single customer.

As per Definition 3.2.1 and Definition 3.2.2, the main components of a micro-
grid are RESs, loads and storage units. Predominantly, photovoltaic (PV) units,
wind turbines, fuel cells, and conventional synchronous generators constitute
the set of power generation units. Similar to conventional power systems, loads
connected in a microgrid can be classified into residential, industrial, and com-
mercial loads [10, 95]. Furthermore, the storage units play an important role in
balancing the intermittent nature of power demand and supply [95, 96], thus
actively contributing to network control tasks. Usually, storage units are batteries,
flywheels or supercapacitors. A picture of an inverter-based microgrid is given in
Figure 3.1.

In essence, the concept of microgrids facilitates various advantages to modern
power systems. Some are listed below [10, 23, 38, 63].

1. The power quality can be significantly improved since the frequency and
voltage are controlled locally.
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Figure 3.1. Pictorial representation of an inverter-based microgrid with various
types of distributed generators, storage units and loads.

2. Losses are reduced due to localized power generation and consumption.

3. Similar to an islanded power system, an islanded microgrid also can provide
reliable power supply during emergencies 1.

4. Clustering a huge power network into microgrids is essentially breaking
down a bigger problem into smaller tasks, thereby reducing the complexity
of the overall control problem.

3.2.1 Challenges in microgrids
As briefly mentioned in Chapter 1, in contrast to conventional power systems,
a microgrid contains a large number of inverter-interfaced RESs. The physical
characteristics of inverters differ from that of conventional generators [3, 16, 17].
Moreover, RESs are intermittent, heterogeneous, and small-sized (i.e., the power
capacity is low). Hence, for stable and reliable operation of a low-inertia power
network [26, 97, 98] like a microgrid, intelligent control techniques have to be
employed [24, 26, 27, 32, 43].

According to Definition 3.2.1 and Definition 3.2.2, a microgrid can operate in
islanded or grid-connected mode. In grid-connected mode, the utility grid can
support the microgrid for control actions and power demand. However, in is-
landed mode, control capabilities have to be provided by the units connected

1In contrast to islanded power systems, islanded microgrids are composed mainly of RESs
and ESSs.
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within the microgrid [23]. Another crucial challenge in islanded power networks
is that the system stability is negatively affected in the presence of a noticeable
change in generation or load [99]. Therefore, this thesis focuses on control of
islanded inverter-based microgrids.

3.2.2 Major control tasks in microgrids
As outlined briefly in Chapter 1, some important control tasks in an islanded
microgrid are listed below.

1. Frequency stability [22, 62],

2. Voltage stability [24, 27, 100],

3. Network frequency restoration [13, 32, 36, 37, 51],

4. Voltage regulation at load bus [34, 35],

5. Desired power sharing [22, 23, 27, 62],

6. Optimal dispatch of resources [26, 61].

3.2.3 Hierarchical control architecture
Inspired by the conventional power systems, a hierarchical control structure
[39, 40, 60, 63] is advocated to tackle control problems in an islanded microgrid.
This control structure has three layers, namely

1. Primary control [22, 38, 62]: A decentralized proportional (droop) control;
maintain frequency stability; achieve desired power sharing at steady-state.

2. Secondary control [13, 32, 37]: Usually a distributed integral control; correct
steady-state deviations in network frequency.

3. Tertiary control or energy management [26, 61, 101]: Optimal dispatch of
generation, storage and loads.
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3.2.4 Class of microgrids studied in this work
Microgrids studied in this thesis are assumed to have purely inverter-based units
(both RESs and storage units) as the power sources and dominantly inductive
power lines (commonly known as lossless power lines.). Focusing on inverter-
based microgrids can be justified due to the presence of a large number of dis-
tributed inverter-interfaced RESs present in a microgrid [8, 10], see also [24, 27].

The assumption of lossless power lines is explained below. Power lines in micro-
grids are relatively short because of closer electrical proximity between generators
and loads. Furthermore, due to the lower power capacity of inverter-interfaced
units, they are interfaced with each other through MV or LV networks. The line
impedances of these networks are not purely inductive but have a non-negligible
resistive part. Nevertheless, due to the presence of an output inductor and/or
the possible presence of an output transformer, inverter output impedance is
typically inductive [24, 27, 76]. Thus, the inductive parts dominate the resistive
parts resulting in low resistance to inductive reactance (R/X) ratio.

In light of the above discussion, the class of microgrids considered in this thesis is
solely inverter-based lossless islanded microgrids. Unless stated otherwise, such
networks are simply referred to as microgrids from here on.

3.2.5 Inverter-interfaced units in a microgrid
The physical characteristics of inverters used in interfacing RESs to the AC grid
widely differ from that of conventional generators [3, 102]. In conventional power
grids, the task of network stabilization primarily depends on the rotational inertia
and the synchronizing dynamics of synchronous machines [3]. However, in an
inverter-based microgrid, inverters connected in the network are responsible for
maintaining a stable operating point [15, 17]. In the sequel, a brief introduction
to inverter models and the two operating modes in which an inverter can be
operated are presented.

The output of RESs are mostly DC or variable frequency AC signals [103, 104].
Hence to integrate RESs into an AC network that operates at a frequency of 50 or
60 Hz, inverters are employed. The main components of an inverter are power
semiconductor devices [102, 105]. The quality of the output AC signal, e.g., in
terms of harmonic rejection, of an inverter-interfaced RES can be improved with
the help of an output low pass filter with RLC elements2.

2For further details about hardware design and inner control loops of an inverter, the reader
is referred to [102, 105].
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3.2.5.1 Common operating modes of an inverter

In general, there are two main operation modes for an inverter connected in a
microgrid [14–16, 106, 107]:

1. Grid-forming mode3: In this mode, an inverter works with pre-defined
voltage and frequency values, usually provided by the designer [15]. A grid-
forming inverter can emulate a conventional generator’s behavior, thus
enabling voltage and frequency control in a microgrid [38].

2. Grid-feeding mode4 : The inverter works as a power source, i.e., it supplies
a pre-specified amount of active and reactive power. A higher-level control
layer generally specifies the power injection set points of a grid-feeding
inverter, see e.g. [61].

A grid-forming inverter can be represented as an ideal voltage source, and hence
has a low-output impedance [14]. Therefore, it needs an extremely precise syn-
chronization mechanism to operate it in parallel with other grid-forming invert-
ers [14, 108]. Later in this thesis, the problem of synchronizing grid-forming
inverters in the presence of clock drifts [43, 58] is investigated in detail. In indus-
trial applications, grid-forming inverters are fed by constant DC voltage sources
like batteries or flywheels [14].

Inverters operating in grid-feeding mode are usually controllable current sources
and thus have a high parallel output impedance. As a consequence, they are
suitable to operate in parallel with other grid-feeding inverters [14]. In practice,
almost all inverter-interfaced RESs, such as PV or wind plants, are operated in
grid-feeding mode [14, 107]. However, in the absence of grid-forming inverters,
grid-feeding inverters cannot operate in an islanded microgrid. This is because
grid-forming inverters are responsible for setting voltage levels and frequency in
a microgrid [14]. A thorough investigation in the direction of inverter modeling in
microgrids can be found in [23, Section 4.2].

From the above discussion, it is clear that grid-forming inverters are essential
components in islanded inverter-based microgrids. In other words, similar to
a conventional power network with synchronous generators, grid-forming ca-
pabilities in an inverter-based islanded microgrid are provided by grid-forming
inverters [15, 19].

3Also referred as voltage source inverter (VSI) control [15].
4This mode is also called as PQ control or grid-following mode [15, 19].

26



3.3 Control objectives
This section formulates the control problems focused on in this thesis, starting
with the required definitions.

The following definitions are required throughout this thesis.

Definition 3.3.1 (Accurate proportional active power sharing [22, 26, 27]). Let
Xi ∈R>0 denote a constant weighting factor, P s

i the steady-state active power flow

and P d
i the desired active power set point at the i -th inverter, i ∈ N . Then, two

inverters, say inverter i and j , j ∈ N , j 6= i , are said to share their active power
flows accurately in proportion to Xi and X j if

Xi (P s
i −P d

i ) =X j (P s
j −P d

j ). (3.3.1)

Definition 3.3.2 (Accurate proportional reactive power sharing [22, 26, 27]). Let
ai ∈R>0 denote a constant weighting factor, Q s

i the steady-state reactive power flow

and Qd
i the desired reactive power set point at the i -th inverter, i ∈N . Then, two

inverters, say inverter i and j , j ∈N , j 6= i , are said to share their reactive power
flows accurately in proportion to ai and a j if

ai (Q s
i −Qd

i ) = a j (Q s
j −Qd

j ). (3.3.2)

The parameters Xi and ai are usually specified by the designer. A common
choice would be to select Xi = ai = 1/SN

i where SN
i is the nominal power rating

(apparent power) of the i -th unit. Hence, achieving (3.3.1) and (3.3.2) ensure that
the loads connected in the microgrid are shared among the generation units fairly,
i.e., in proportion to their power ratings.

Definition 3.3.3 (Accurate network frequency restoration [13, 32, 37]). Let ω∗ ∈
R>0 be the steady-state network frequency and ωd ∈ R>0 be the desired nominal
frequency in a microgrid. Then, accurate frequency restoration means that

ω∗ =ωd . (3.3.3)

Definition 3.3.4 (PCC voltage restoration [34, 35]). Let VPCC : R≥0 → R>0 be the
voltage amplitude at the PCC and V d

PCC ∈ R>0 be the desired nominal voltage
amplitude required at the PCC. Then, the objective of PCC voltage restoration is
satisfied if

VPCC(t ) →V d
PCC as t →∞. (3.3.4)
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3.3.1 Distributed secondary frequency control
This section explains in detail the motivation to focus on the two control ob-
jectives given by Definition 3.3.1 and Definition 3.3.3 in the presence of clock
drifts.

3.3.1.1 The effect of clock drifts

Clock drifts are a non-negligible parameter uncertainty observed in inverter-
based microgrids [43, 58]. Apart from sensor uncertainties, the presence of clock
drifts are the main reason why grid-forming inverters fed with a fixed electrical
frequency cannot operate in parallel [14, 43, 58, 108]. In [43, Section III], this prob-
lem is analytically investigated. The experimental output shown in [43, Figure
4] verifies that when two grid-forming inverters operate in parallel with a fixed
electrical frequency, active power injections of the inverters diverge in the pres-
ence of clock drifts. Such an undesired active power divergence can eventually
damage the inverters. A possible solution to this issue is to provide a common
clock synchronization signal to all the grid-forming inverters [63]. Recall that a
microgrid can have a large number of grid-forming inverters connected in it. Thus
providing a clock signal to all these inverters would make the communication
setup cumbersome.

3.3.1.2 Primary control layer: decentralized proportional control

In lossless microgrids, the standard frequency droop control yields a proportional
relation between the active power flow and the frequency [38, Equation 13]. It
has been shown in [43, 58] that the frequency droop control is robust towards
clock drifts. The authors of [43, 58] confirm, both analytically and experimentally,
that the frequency droop control alleviates the risk of operating grid-forming
inverters in parallel in the presence of clock drifts. The property of robust stability
is mainly due to the port Hamiltonian structure [50, 109] of the dynamical system
corresponding to a droop-controlled microgrid [22]. Due to this robustness
property, there is no need for providing a global clock synchronization signal to
any of the inverters operating in a microgrid [43], thereby preserving one of the
most important properties of frequency droop control, which is its decentralized
nature. In light of the above discussion, the standard frequency droop control [38]
is employed at the primary control layer throughout this thesis.

Despite the advantages mentioned above, in the presence of clock drifts, fre-
quency droop control generate steady-state errors in active power injections,
thereby disturbing the proportional active power sharing provided by the same
[43, 58]. Furthermore, frequency droop control results in steady-state deviation in
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the network frequency from the desired nominal value whenever there is a power
imbalance in the network [63]. Thus, the next section focuses on addressing the
problem of accurate proportional active power sharing and network frequency
restoration in the presence of clock drifts.

3.3.1.3 Secondary control layer: distributed integral control

The proportional nature of the primary frequency droop control is the main
reason for steady-state frequency deviation [63]. This steady-state frequency
error is corrected using a secondary controller, which typically is a simple central
integral controller [15, 39], where a central computing unit provides a control
signal to all the grid-forming inverters connected in the microgrid. Another idea
would be to design completely decentralized secondary frequency controllers,
where at each grid-forming inverter the local frequency error5 is numerically
integrated and is provided to all the grid-forming inverters to regulate the network
frequency.

However, a decentralized integral secondary control usually results in poor active
power sharing and fails to achieve fast frequency regulation [26, Lemma 4.1].
Like primary droop control, decentralized secondary frequency control is also
implemented at the grid-forming inverters connected in the network. Each grid-
forming inverter corrects the local frequency error, which–due to the primary
droop control–alters the local power injection. Such a change in local power
injection, together with the aspect of maintaining overall power balance in the
network, results in an enormous and unpredictable burden on the grid-forming
inverters [26].

Based on the discussion thus far, distributed consensus-based integral control
approaches are increasingly advocated to address secondary frequency control
in microgrids, see e.g. [32, 37, 40, 51]. Compared to centralized control solutions,
distributed control approaches improve system reliability and reduce the com-
munication effort [40]. Besides, compared to decentralized secondary control,
distributed secondary controllers achieve frequency regulation and active power
sharing in a collective and fair manner, i.e., without putting any generator under
undesired high load stress, see e.g., [26, 51, 110]. Nevertheless, since distributed
control approaches require a communication network for their operation, there
are various challenging aspects to be considered while designing such controllers,
e.g., communication delays [36], denial-of-service [67, 68], optimal communica-
tion topology [64–66, 69].

5Local frequency error denotes the difference between the measured local frequency and the
nominal desired frequency value of 50 or 60 Hz.
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In addition to the above-mentioned issues, as mentioned in Section 1.3.2.1, the
phenomenon of clock drifts is often neglected while designing distributed sec-
ondary controllers, see e.g. [13, 32, 36, 51, 64]. However, clock drift has an adverse
on the performance of secondary frequency control [44–48]. Therefore, the chap-
ter on distributed secondary frequency control presented in this thesis evaluates
the robustness and performance of distributed frequency controllers in the pres-
ence of clock drifts. More precisely, the focus is to design distributed secondary
frequency controllers in the presence of clock-drifts such that asymptotic stabil-
ity [49, 50] of the closed-loop equilibrium point is guaranteed and, at the same
time, the following two steady-state objectives are realized:

1. Network frequency restoration as per Definition 3.3.3 and

2. Accurate active power sharing according to Definition 3.3.1.

PCC

4321

PV Storage Wind Load

Figure 3.2. Schematic representation of a parallel microgrid with four generator
buses and a load bus (PCC).

3.3.2 Distributed voltage control
Similar to primary frequency droop control, a primary voltage droop control is
often used in microgrids [38]. But, when it comes to lossless microgrids, the
use of voltage droop control is not preferred widely [27, 32, 111]. This is mainly
because voltage droop control results in poor reactive power sharing in such
networks. Further details about the under-performance of voltage droop control
are mentioned briefly in Section 1.3.3 and is explained in detail later in this thesis.

As a result, distributed consensus-based voltage controllers to address the prob-
lem of accurate reactive power sharing and voltage stability in lossless microgrids
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are increasingly used [27, 30]. Inspired by the works in [27, 30], this section fo-
cuses on a slightly different application of microgrids, where the generation units
are connected in parallel [38]. With voltage stability and reactive power sharing,
another important control objective in such a network is to restore the voltage
amplitude at the common load bus (PCC) to the nominal value [34, 35].

As described in Section 1.3.3, a small electrical network where inverter-interfaced
RESs and storage units are connected in parallel to a common load at the PCC
is a typically encountered microgrid application [34, 35, 38, 77–83, 111], see Fig-
ure 3.2. Recall that such networks are termed as parallel microgrids. The task
of controlling the network frequency and the voltage amplitudes in an inverter-
based microgrid is the responsibility of grid-forming inverters, see Section 3.2.5.1.
Hence, all the generator buses shown in Figure 3.2 are assumed to have at least
one storage unit interfaced via a grid-forming inverter connected to them.

The second part of this thesis is devoted to addressing some practically important
control objectives in a parallel microgrid by actively controlling the grid-forming
inverters. More precisely, the idea is to design a distributed voltage controller
for a lossless islanded parallel microgrid, which at steady-state yields a unique
positive voltage solution having the following desired properties:

1. PCC voltage restoration as per Definition 3.3.4,

2. Accurate reactive power sharing according to Definition 3.3.2 and

3. Asymptotic stability in accordance to Definition 2.2.1.

3.4 Summary
In this chapter, the concept of microgrid has been introduced and the control
problems addressed in this work have been formalized. After presenting the defi-
nition of a microgrid, some interesting features of the same have been outlined.
Later, some major control challenges in a microgrid and the commonly employed
hierarchical control architecture have been described. The common operating
modes of inverters connected in a microgrid have also been discussed. Finally,
the control problems focused on in this thesis have been precisely formulated.
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Chapter 4

Microgrid model and primary
control

4.1 Introduction
In this chapter, the microgrid models are presented and the standard primary
control laws are discussed. Recall that in this thesis, the section on distributed
secondary frequency control focuses on meshed microgrids, and the section on
distributed voltage control looks into the control aspects in parallel microgrids.

Nevertheless, both cases are dedicated to microgrids with inverter-based genera-
tion units, where grid-forming inverters are the main components responsible
for controlling the network. Thus, the considered meshed and parallel microgrids
differ only in terms of network and load models. Hence in this chapter, network
and load models corresponding to meshed and, respectively parallel microgrids
are discussed. Later, the model of a grid-forming inverter is presented. Finally,
the primary droop control is described.

4.2 Network and load model: meshed
microgrid

The loads connected in the meshed microgrid model is assumed to be constant
impedance loads 1. Thus by using the Kron-reduction technique mentioned in

1 To the best of the author’s knowledge, there is no standard model to represent all types of
loads. For instance, constant power loads and dynamic loads [1, 5, 100]. Furthermore, the author
of this thesis is aware that not all kinds of loads can be represented as constant impedance loads.
Hence, considering different kinds of load models while designing controllers for microgrids is
left out for future research, see e.g. [25, 110].
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Section 2.4.3, every bus in the network can be represented as a generator bus
with a shunt admittance connected to it. Furthermore, the power lines of the
network are assumed to be lossless, i.e., inductive power lines. See Section 3.2.4
for a discussion justifying this assumption. In the case of a lossless Kron-reduced
microgrid, active and reactive power flows at the i -th node i ∈N , has been given
in (2.4.5).

4.3 Network and load model: parallel microgrid
In this section, network and load models used to model a lossless parallel micro-
grid are presented.

4.3.1 Network model
As explained in Section 3.3.2, it is assumed that each generator bus in the consid-
ered parallel microgrid has one storage unit interfaced via a grid-forming inverter
connected to it; see also Figure 3.2. Therefore, in the context of parallel microgrids,
the term DG or the word inverter represents a grid-forming inverter. Thus, the
considered parallel microgrid has n > 1 DGs, which are all connected in parallel
to the PCC, see Figure 4.1. The set of DGs connected to the PCC is denoted by
N = {1,2, . . . ,n}. Since the parallel microgrid is also assumed to have inductive
lines, a power line connecting the i -th generator bus and the load bus (PCC) is
represented by a susceptance Bi ∈R<0.

Let δi : R≥0 → T and Vi : R≥0 → R>0 represent the phase angle and the voltage
magnitude at the i -th DGs, respectively. Furthermore, δPCC : R≥0 →T and VPCC :
R≥0 →R>0, respectively, denote the phase angle and the voltage magnitude at the
PCC. Then, based on (2.4.3), (2.4.4), the active and reactive power flows at the
i -th DG are given respectively by

Pi (δi ,δPCC,Vi ,VPCC) = |Bi |Vi VPCC sin(δi −δPCC),

Qi (δi ,δPCC,Vi ,VPCC) = |Bi |V 2
i −|Bi |Vi VPCC cos(δi −δPCC).

(4.3.1)

4.3.2 Load model
The load connected at the PCC is assumed to be a constant current load2, repre-
sented by IL ∈R<0, see Figure 4.1. This thesis follows the generator convention [89],
i.e., the injected active and reactive powers are counted positively, while the ab-
sorbed active and reactive powers are counted negatively. The load connected

2A study of a parallel microgrid with other types of loads, see e.g. [1, 5, 100], is planned as part
of future research.
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Figure 4.1. A detailed representation of a lossless parallel microgrid with n genera-
tors connected in parallel to the PCC. A constant current load IL is connected at
the PCC.

at the PCC in the parallel microgrid is assumed to be inductive. In the genera-
tor convention, IL < 0 represents an inductive load. In practice, most electrical
loads have inductive behavior [1, Chapter 7]. Thus the assumption that IL < 0 is
realistic.

By Kirchoff’s current law, the current balance at the PCC is given by

IL =
n∑

i=1
IPCCi, (4.3.2)

where IPCCi : R≥0 → R is the current flow from the PCC to the i -th DG, which is
given by [23, Section 4.4] [5]

IPCCi = |Bi |(VPCC −Vi ). (4.3.3)

By combining (4.3.3) and (4.3.2), it yields that

IL =
n∑

i=1
|Bi |(VPCC −Vi ) =VPCC1>

n B1n −1>
n BV , (4.3.4)

where
B = diag(|Bi |) ∈Rn×n , (4.3.5)

and V = col(Vi ) ∈Rn
>0. Note that the PCC voltage VPCC implicitly depends on the

bus voltages Vi . By using the current balance (4.3.4), this relation can be made
explicit, i.e.,

VPCC(V ) = IL +1>
n BV

1>
n B1n

. (4.3.6)
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4.4 Inverter model
The standard model of a grid-forming inverter connected at the i -th node is given
by [15, 23]3

δ̇i = uδ
i ,

Vi = uV
i ,

(4.4.1)

where uδ
i : R≥0 → R and uV

i : R≥0 → R are frequency and voltage control inputs
respectively. The inverter model (4.4.1) is used throughout this thesis.

4.5 Primary droop control
In this section, the standard practice of computing uδ

i and uV
i in (4.4.1) are re-

called.

The control inputs uδ
i and uV

i in (4.4.1) are typically designed as the conventional
primary droop control [38, 63], given by

uδ
i =ωd −kPi (P m

i −P d
i ), (4.5.1)

uV
i =V d

i −kQi (Qm
i −Qd

i ), (4.5.2)

where ωd ∈R>0 is the desired nominal frequency, V d
i ∈R>0 is the desired voltage

amplitude, kPi ∈R>0, respectively kQi ∈R>0 are the frequency, respectively volt-
age droop coefficients and P d

i ∈ R and Qd
i ∈ R are the desired power set points.

Furthermore, P m
i : R≥0 →R and Qm

i : R≥0 →R are the active and reactive powers
measured through a low pass filter with time constant τi ∈R>0. The dynamics of
the low pass filter is given by [83, 92]

τi Ṗ m
i =−P m

i +Pi ,

τi Q̇m
i =−Qm

i +Qi ,
(4.5.3)

where Pi and Qi are given by (2.4.5) for a meshed microgrid and by (4.3.1) in case
of a parallel microgrid.

Recalling (2.4.5) and (4.3.1), combining (4.4.1), (4.5.1), (4.5.2) and (4.5.3) gives the
closed-loop system corresponding to a primary droop-controlled inverter as

δ̇i =ωd −kPi (P m
i −P d

i ),

τi Ṗ m
i =−P m

i +Pi ,

Vi =V d
i −kQi (Qm

i −Qd
i ),

τi Q̇m
i =−Qm

i +Qi .

(4.5.4)

3An underlying assumption to the model (4.4.1) is that whenever an inverter connects to a
RES, it is equipped with a storage unit.
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A tuning criterion guaranteeing asymptotic stability of the equilibrium point of
(4.5.4) has been presented in [22]. However, it is important to note that in contrast
to the frequency droop control (4.5.1), the voltage droop control (4.5.2) has to
be tuned in a heuristic fashion [22, 24, 27, 112]. Moreover, it has been shown
in the literature, see e.g. [32], that the decentralized nature of (4.5.2) results in
poor reactive power sharing. Consequently, the rest of this thesis assume that
the phase angles of the grid-forming inverters are controlled using the frequency
droop control (4.5.1).

For presenting the contributions coming under the section distributed secondary
frequency control, in the sequel, the model of a primary droop-controlled inverter
(4.5.4) in the presence of clock drifts is presented. In addition, the steady-state
performance regarding

• frequency droop control (under explicit consideration of clock drifts) and

• voltage droop control

are also discussed later in this chapter.

4.5.1 Primary droop control with inaccurate clock
In practice, (4.5.4) is implemented on a digital processor employing numerical
integration. In such a setup, the phase angle δi is obtained after numerically
integrating δ̇i . The time signal generated by the local clock of each grid-forming
inverter is used to determine the sampling interval used in the numerical integra-
tion employed to calculate δi .

It is a well-known fact that the clocks used to generate these local time signals are
not synchronized [41, 42], hence resulting in clock inaccuracies or simply clock
drifts amongst the inverters. An immediate effect of clock drifts is that the sam-
pling interval of the numerical integration differs between inverters. The impact
of the difference in sampling intervals on the dynamics (4.5.4) is investigated
next.

In the following, an equivalent model of (4.5.4) considering clock inaccuracies is
presented. The local time signal ti ∈R of the i -th inverter expressed in terms of
the global time signal t ∈R is given by [43, 58, 113–115]

ti =
(

1

1+µi

)
t +ζi , (4.5.5)
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CHAPTER 4. MICROGRID MODEL AND PRIMARY CONTROL

where µi ∈R is the relative drift of the clock at the i -th inverter and ζi ∈R is the
local clock offset. From (4.5.5),

d(·)
d ti

= (1+µi )
d(·)
d t

. (4.5.6)

Suppose that the numerical integration in (4.5.4) is expressed in terms of the local
time signal ti . Inserting (4.5.6) in (4.5.4) gives

(1+µi )
dδi

d t
=ωd −kPi (P m

i −P d
i ),

(1+µi )τi
dP m

i

d t
=−P m

i +Pi ,

Vi =V d
i −kQi (Qm

i −Qd
i ),

(1+µi )τi
dQm

i

d t
=−Qm

i +Qi ,

(4.5.7)

where now, the time derivatives are expressed with respect to the global time
t . Without loss of generality, the offset value ζi can be included in the initial
conditions of the system (4.5.7).

Following [43, 58], to investigate the effect of clock drifts, it is convenient to
introduce the internal frequency ω̄i : R≥0 → R of the inverter at the i -th node
which is related to the actual electrical frequency ωi = δ̇i by

ω̄i = (1+µi )δ̇i = (1+µi )ωi , ∀i ∈N . (4.5.8)

In the literature, the effect of clock drifts is often neglected, i.e., µi = 0 and assume
that ω̄i =ωi , see e.g., [13,32,36,51,64]. However, it has been shown in [43,58] that
clock drifts disturb synchronization and power sharing in microgrids, depending
upon the clock drift value µi at each inverter. This problem is explained in the
sequel.

4.5.1.1 Steady-state performance

In practice, µi 6= µ j where i , j ∈N , j 6= i , i.e., the clock drifts values of different
inverters are different. Furthermore, clock drift values observed in commercial
inverters can vary from 10−6 [42, 43] to 10−3 [71, Table I] depending on the quality
of the micro-controller used. Considering this fact, the system (4.5.7) at steady-
state yields

(1+µi )ωs
i = ω̄s

i =ωd −kPi (P s
i −P d

i ),

V s
i =V d

i −kQi (Q s
i −Qd

i ),
(4.5.9)
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where the superscript s denotes the steady-state value and ω̄i is given by (4.5.8).
Note that

ωs
i =ωs

j =ω∗,

where ωs
i ∈R>0 and ωs

j ∈R>0 are the electrical frequencies at inverters i ∈N and
j ∈ N at steady-state respectively and ω∗ ∈ R>0 is the synchronized electrical
frequency. Thus, the steady-state equations (4.5.9) become

ω̄s
i = (1+µi )ωs

i = (1+µi )ω∗ =ωd −kPi (P s
i −P d

i ),

V s
i =V d

i −kQi (Q s
i −Qd

i ).
(4.5.10)

It is a common practice to select the frequency droop gain as kPi = 1/SN
i where

SN
i ∈R>0 is the power rating of the i -th inverter, see [62, Theorem 7], [22, Lemma

6.2]. Hence, (4.5.10) can be expressed as

ωd − (1+µi )ω∗ =
P s

i −P d
i

SN
i

,

V s
i =V d

i −kQi (Q s
i −Qd

i ).

(4.5.11)

Recall that µi 6=µ j , j ∈N , j 6= i . Thus from (4.5.11),

P s
i −P d

i

SN
i

6=
P s

j −P d
j

SN
j

,

which as per Definition 3.3.1, disturbs steady-state active power sharing.

Next, looking at the steady-state equation corresponding to voltage droop control
in (4.5.11), i.e.,

V d
i −V s

i = kQi (Q s
i −Qd

i ), (4.5.12)

where it can be seen that the effect of clock drifts is negligible. Again, to under-
stand the aspect of reactive power sharing, let the voltage droop gain in (4.5.12)
be selected as kQi = 1/SN

i , which gives

V d
i −V s

i =
Q s

i −Qd
i

SN
i

. (4.5.13)

In contrast to the concept of synchronized electrical frequency, typically the
voltage amplitudes at steady-state are different for different buses. Hence, V s

i 6=
V s

j , j ∈N , j 6= i . Thus, it yields from (4.5.13) that

Q s
i −Qd

i

SN
i

6=
Q s

j −Qd
j

SN
j

,

which denotes poor reactive power sharing according to Definition 3.3.2, see
also [22, Remark 6.6], [32, Section III].
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4.6 Summary
In this chapter, the microgrid model and the commonly used primary droop
control law [38] have been introduced. At first, network and load models of
meshed and parallel microgrids considered in this thesis have been presented.
Furthermore, since this thesis focuses upon inverter-based microgrids, the model
of a grid-forming inverter has been presented.

After introducing the concept of clock drifts, the model of a droop-controlled
inverter in the presence of clock drifts has been derived. Additionally, the steady-
state performance of frequency droop control with explicit consideration of clock
drifts has been investigated. The effect of clock drifts on voltage droop control was
found to be negligible. Nevertheless, voltage droop control renders poor steady-
state reactive power sharing. The above observation has also been explained in
this chapter.
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Chapter 5

Distributed secondary frequency
control

5.1 Introduction
In the previous chapter, the model of an inverter-based meshed microgrid has
been presented. Later, based on [43, 58], the model of a droop-controlled inverter
under explicit consideration of clock drifts has been derived. As shown in Chap-
ter 4, clock drift disturb steady-state active power sharing provided by frequency
droop control. In this context, the contributions of this chapter can be organized
as sections:

1. Steady-state performance of distributed secondary frequency control The
idea behind this section is to compare the steady-state performance of
distributed secondary frequency controllers, e.g. [13, 32, 36, 51, 64] in the
presence of clock drifts. The performance is compared in terms of steady-
state network frequency restoration (Definition 3.3.3) and active power
sharing (Definition 3.3.1). For this purpose, the model of a frequency
droop-controlled microgrid in the presence of clock drifts is recalled from
Chapter 4. Then, a general distributed frequency control representation is
proposed, which can be parametrized into the control approaches pre-
sented in [13,32,36,51,64], and many more. Based on the proposed general
distributed controller representation, necessary and sufficient conditions
for accurate steady-state network frequency restoration (Definition 3.3.3)
and active power sharing (Definition 3.3.1) are derived. The approaches
presented in [13, 32, 36, 51, 64] were found to be not satisfying these condi-
tions. Thus, a particular parameterization of the above-mentioned general
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CHAPTER 5. DISTRIBUTED SECONDARY FREQUENCY CONTROL

distributed controller representation is proposed, which satisfies the con-
ditions required for achieving the control objectives focused on in this
chapter. This controller parametrization is termed as the GDAI (generalized
distributed averaging integral) control.

2. Stability analysis and tuning criterion In this section, a tuning criterion
that guarantees local asymptotic stability of the closed-loop equilibrium
point in the presence of uncertain clock drift values is derived. The pre-
sented tuning criterion can be cast as a set of LMIs which can be easily
solved to find the stabilizing parameters of the GDAI controller.

The results presented in this chapter are based on the author’s publications
[116–118].

5.2 Primary frequency (droop) control: Effect
of clock drifts

As mentioned in Chapter 3, the proportional nature of primary frequency droop
control results in steady-state network frequency deviation from the nominal
value. In the presence of clock drifts, proportional active power sharing provided
by the frequency droop control is also disturbed, see Section 4.5.1. However, the
effect of clock drifts on voltage control is negligible. Hence, this chapter focuses
on designing distributed secondary frequency controllers such that the network
frequency is restored to a desired nominal value and active power sharing is main-
tained at steady-state in the presence of clock drifts. The task of voltage control
is neglected in this chapter and is addressed in the next chapter for a different
microgrid application. For mathematical simplicity, the voltage amplitudes are
assumed to be constant, see e.g. [36, 62]. For an analysis considering varying
voltage amplitudes, the reader is referred to [22, 30].

Based on (4.5.7), the model of a primary-frequency droop-controlled unit in the
presence of clock drifts is given as

(1+µi )δ̇i = ω̄i =ωd −kPi (P m
i −P d

i ),

(1+µi )τi Ṗ m
i =−P m

i +Pi ,
(5.2.1)

where Pi is given by (2.4.5) which–under the standing assumption that voltage
amplitudes are constant–can be expressed as

Pi (δ) =Gi i V 2
i + P̂i , (5.2.2)

42



where δ := col(δ1, . . . ,δn) ∈Tn and

P̂i (δ) =
∑

k∈Ni
|Bi k |Vi Vk sin(δi −δk ). (5.2.3)

Furthermore, it is convenient to rewrite the dynamics (5.2.1) as follows. Differen-
tiating the first equation in (5.2.1) with respect to time yields

(1+µi )δ̈i = ˙̄ωi =−kPi Ṗ m
i =−kPi

1

(1+µi )τi

(−P m
i + P̂i (δ)+Gi i V 2

i

)
, (5.2.4)

where to write the latter equality, the second equation in (5.2.1) has been used.
Next, from the first equation in (5.2.1), the measured power P m

i can be expressed
as

P m
i = 1

kPi

(
−ω̄i +ωd

)
+P d

i . (5.2.5)

Substituting (5.2.5) in (5.2.4) and multiplying the result with 1/kPi yields

(1+µi )Mi ˙̄ωi =−Di (ω̄i −ωd )−
(
P̂i (δ)+Gi i V 2

i −P d
i

)
, (5.2.6)

where Mi = τi /kPi ∈R>0 is the virtual inertia coefficient and Di = 1/kPi ∈R>0 is
the damping coefficient.

Combining (5.2.6) with (4.5.8) yields

(1+µi )δ̇i = ω̄i ,

(1+µi )Mi ˙̄ωi =−Di (ω̄i −ωd )−
(
P̂i (δ)+Gi i V 2

i −P d
i

)
,

(5.2.7)

which is an equivalent representation of (5.2.1). See also [119].

To derive a compact model representation of the microgrid, it is convenient to
introduce the matrices

M = diag(Mi ) ∈Rn×n , D = diag(Di ) ∈Rn×n , µ= diag(µi ) ∈Rn×n , (5.2.8)

and the vectors

ω= col(ωi ) ∈Rn , ω̄= col(ω̄i ) ∈Rn , P net = col(P d
i −Gi i V 2

i ) ∈Rn . (5.2.9)

Inspired by [36, 110], a potential function U : Rn →R is defined in the following:

U (δ) =−
∑

{i ,k}∈[N ]2 |Bi k |Vi Vk cos(δi −δk ). (5.2.10)
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Let P̂ (δ) = col(P̂i (δ)) ∈ Rn where P̂i is defined in (5.2.3). With U (δ) given by
(5.2.10), note that

∇δU (δ) = P̂ (δ).

Then, the dynamics (5.2.7) for the whole microgrid can be expressed as

(In +µ)δ̇= ω̄,

(In +µ)M ˙̄ω=−D(ω̄−1nω
d )− (∇δU (δ)−P net) ,

(5.2.11)

where the matrices and the vectors used in (5.2.11) are defined in (5.2.8) and
(5.2.9), respectively.

Observe that due to the skew symmetry of the power flows,

1>
n P̂ (δ) = 1>

n∇δU (δ) = 0. (5.2.12)

Next, for better clarity of the results presented in this chapter, the notion of active
power sharing given in Definition 3.3.1 is expressed for the whole network as

X
(∇δU (δs)−P net)=α1n , (5.2.13)

where α ∈R, X = diag(Xi ) ∈Rn×n is a weighting matrix with Xi ∈R>0, ∇δU (δs) =
∇δU (δ)|δ=δs = col(P̂i (δs)) where P̂i is given by (5.2.3) and P net is defined in (5.2.9).

For the purpose of attaining steady-state active power sharing using frequency
droop control, it has been shown in [62, Theorem 7], [22, Lemma 6.2] that the
entries of the damping matrix D in (5.2.11) shall be chosen according to

X D = κIn , (5.2.14)

where κ ∈ R>0. Recall that D is the inverse droop coefficient matrix. Therefore,
if Xi is chosen as Xi = 1/SN

i , then the condition (5.2.14) can be understood as
an inversely proportional choice of droop coefficients1 in correspondence to the
power ratings2.

5.3 Secondary frequency control: Effect of
clock drifts

Like any power network, a microgrid is also designed to work very close to the
nominal frequency value of 50 or 60 Hz [1, 3]. However, the proportional nature

1The condition (5.2.14) for two inverters has been briefly recalled in Section 4.5.1.
2Recall that SN

i is the power rating of the i -th unit.

44



of primary droop control results in steady-state frequency deviation. Therefore,
following the standard practice [26, 36, 51], a secondary control input u = col(ui ) :
R≥0 →Rn is introduced to the model (5.2.11) with the aim of correcting the steady-
state frequency deviation. Thus, (5.2.11) becomes

(In +µ)δ̇= ω̄,

(In +µ)M ˙̄ω=−D(ω̄−1nω
d )− (∇δU (δ)−P net)+u.

(5.3.1)

Along any synchronized motion (i.e., a motion with constant electrical frequencies
ωs = ω∗1n for ω∗ ∈ R>0, constant phase angle differences δs

i −δs
k and constant

secondary control input us) of the system (5.3.1), it yields

1>
n M(In +µ) ˙̄ω= 0 =−1>

n D(ω̄s −1nω
d )

−1>
n

(∇δU (δs)−P net)+1>
n us .

(5.3.2)

Note that in the presence of clock drifts, internal frequencies of inverters are not
uniform, i.e., from (4.5.8), ωs =ω∗1n implies that

ω̄s = (In +µ)ωs =ω∗(In +µ)1n . (5.3.3)

Moreover with (5.2.12) and by inserting (5.3.3) into (5.3.2), the scalar ω∗ can be
obtained from (5.3.2) as

ω∗ =ωd 1>
n D1n

1>
n D(In +µ)1n

+ 1>
n (P net +us)

1>
n D(In +µ)1n

. (5.3.4)

From (5.3.4), it is obvious that ω∗ =ωd if and only if us satisfies

1>
n (P net +us) =ωd1>

n Dµ1n . (5.3.5)

In the case of ideal clocks, i.e., if µ= 0n×n , from (5.3.4), it is clear that ω∗ =ωd if
and only if 1>

n (P net +us) = 0. Similar results assuming ideal inverter clocks have
been presented in [36, 51]. However from (5.3.4), in the presence of clock drifts
(i.e., µi 6= 0), satisfying 1>

n (P net +us) = 0 does not guarantee ω∗ =ωd .

5.3.1 General distributed control representation
In this section, a control law for the input is designed. The following general
distributed control representation is proposed:

u = p,

(In +µ)ṗ =−(B+βX DL )(ω̄−1nω
d )−DX L X p, (5.3.6)
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where p : R≥0 → Rn is a new variable. Furthermore, B ∈ Rn×n and D ∈ Rn×n are
diagonal controller matrices, β ∈ R is a controller parameter, L ∈ Rn×n is the
Laplacian matrix of a connected and undirected graph representing the commu-
nication network. Finally, X is the design parameter defined in (5.2.13). The
matrix B is commonly called the pinning gain matrix, see e.g. [13].

It is customary to use the internal frequency ω̄ of the inverters to implement a
distributed control law like (5.3.6), since it obviates the requirement for extra
frequency measurement. This is mainly because new measurement devices can
potentially increase the complexity and can bring in further measurement errors
into the system, see e.g. [13, 32,36,51,110]. Therefore, it is essential to note that in
the control law (5.3.6), the internal frequency ω̄ is used. However, in the works
mentioned above, the effect of clock drifts is not considered, and thus, the authors
assume that the internal frequency and the electrical frequency are the same, i.e.,
ω̄=ω. Yet, when explicitly considering clock drifts, from (4.5.8), it is important to
note that ω̄= (In +µ)ω.

The control law (5.3.6) represents a generalized version of various distributed
secondary frequency controllers and can be parametrized into

1. the DAI control presented/studied in [32, 36, 51, 110] if the control parame-
ters in (5.3.6) are chosen such that

B > 0,β= 0,D > 0 and (5.3.7)

2. the pinning control law proposed in [13] if the control parameters in (5.3.6)
are chosen such that

B ≥ 0,B≯ 0,β= 0,D > 0. (5.3.8)

Applying the parametrization (5.3.7) in the general controller representation
(5.3.6), results in the DAI controller [32, 36, 51, 110] given by

u = p,

(In +µ)ṗ =−B(ω̄−1nω
d )−DX L X p

B > 0.

(5.3.9)

Similarly, applying the parametrization (5.3.8) (5.3.6) gives the pinning controller
[13]

u = p,

(In +µ)ṗ =−B(ω̄−1nω
d )−DX L X p

B ≥ 0,B≯ 0.

(5.3.10)
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The correspondence of (5.3.10) with the control law presented in [13] is detailed
in the following remark.

Remark 5.3.1. The primary frequency droop control [13, Equation 47] for the
whole microgrid expressed in the notation followed in this thesis is given by

ω=−D−1 (∇U (δ)−P net)+usec, (5.3.11)

where usec : R≥0 →Rn is the secondary control input. Note that (5.3.11) is equiva-
lent to (5.3.1) if

• µ= 0n×n (yielding ω̄=ω, see (4.5.8)),

• τi = 0 ⇒ M = diag(τi /kPi ) = 0n×n ,

• ωd = 0 and

• usec = D−1u.

Furthermore, the secondary frequency control law proposed in [13, Equations
52,53] for the whole network can be expressed as

u = p,

ṗ =−CF

[
(B+L )(ω−1nω

d )+L D−1 (∇U (δ)−P net)] ,

where CF > 0 and B ≥ 0 are diagonal controller matrices and L ∈ Rn×n is the
Laplacian matrix of the communication graph. Inserting D−1

(∇U (δ)−P net
)

from
(5.3.11) in the above control law yields

ṗ =−CF B(ω−1nω
d )−CF L usec,

=−CF B(ω−1nω
d )−CF L D−1p,

=−CF B(ω−1nω
d )− 1

κ
CF L X p,

where usec = D−1u = D−1p and D−1 = 1
κ
X , see (5.2.14). Considering non-zero

clock drift values as well as for CF = κDX > 0 and CF B = B ≥ 0, the control law
described above is the same as (5.3.10).

In the remainder of this thesis, DAI and pinning control represent (5.3.9) and
(5.3.10), respectively.

For the subsequent analysis, it is convenient to introduce the notion below.
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Definition 5.3.2 (Synchronized motion). The closed-loop system (5.3.1), (5.3.6)
admits a synchronized motion if it has a solution for all t ≥ 0 of the form

δs(t ) = δs
0 +ωs t , ωs =ω∗1n , p s ∈Rn ,

where ω∗ ∈R>0 is the synchronized electrical frequency and δs
0 ∈Rn such that

|δs
0,i −δs

0,k | <
π

2
∀i ∈N , ∀k ∈Ni .

With constant phase angle differences δs
i (t)−δs

j (t) for all t ≥ 0, i , j ∈ N in the
system (5.3.1), (5.3.6) imply that the frequencies of all the units have converged to
a common value, i.e., δ̇s

i = δ̇s
i =ω∗, ω∗ ∈R>0, thus the terminology synchronized

motion, see e.g., [110, Lemma 4.2] for further details about synchronized motions
in power system models similar to (5.3.1), (5.3.6).

Next, the standard assumption of power flow feasibility is recalled.

Assumption 5.3.3. The closed-loop system (5.3.1), (5.3.6) possesses a synchronized
motion. �

In practice, clock drift values observed in commercial inverters can vary from
10−6 [42, 43] to 10−3 [71, Table I] depending on the quality of the micro-controller
used. Therefore as outlined in [43, 58], for secondary frequency control, it is
reasonable to assume that the clock drifts are bounded. This is formalized in the
assumption below.

Assumption 5.3.4. ‖µ‖2 ≤ ε, 0 ≤ ε< 1.

5.4 Problem statement
In light of the discussion thus far, this chapter focuses on the following problem.

Problem 5.4.1 (Secondary control objectives). Consider the closed-loop system
(5.3.1), (5.3.6) with Assumption 5.3.4 and Assumption 5.3.3. Design the parameters
B, β, D and the edge-weights of L in (5.3.1), (5.3.6) such that the following control
objectives are satisfied:

1. Accurate frequency restoration as per Definition 3.3.3.

2. Accurate active power sharing according to Definition 3.3.1.

3. Asymptotic convergence of the solutions of (5.3.1), (5.3.6) to the synchronized
motion given in Definition 5.3.2.
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5.5 Steady-state performance
In this section, the first two points in Problem 5.4.1 are addressed. At first, a neces-
sary and sufficient condition for accomplishing the first objective in Problem 5.4.1
is presented.

Lemma 5.5.1 (Accurate frequency restoration). Consider the closed-loop system
(5.3.1), (5.3.6) with Assumption 5.3.3. Let D > 0. Suppose that the diagonal matrix
B has at least one positive entry. Then, the synchronized electrical frequency ω∗ of
the system (5.3.1), (5.3.6) is given by

ω∗ = 1>
n D−1X −1B1n

1>
n D−1X −1B(In +µ)1n

ωd . (5.5.1)

Furthermore, accurate network frequency restoration, i.e., (3.3.3), is achieved if
and only if

1>
n D−1X −1Bµ1n = 0. (5.5.2)

Proof. Along any synchronized motion, the electrical frequencies at all nodes of
(5.3.1), (5.3.6) have to be identical, i.e.,

δ̇s =ωs = 1nω
∗, (5.5.3)

which yields (5.3.3). Furthermore, at steady-state, ṗ s = 0n . Hence, (5.3.6) be-
comes

−(In +µ)ṗ s = 0n = (B+βX DL )(ω̄s −1nω
d )+DX L X p s . (5.5.4)

Multiplying (5.5.4) from the left with 1>
n D−1X −1 and recalling the fact that 1>

n L =
0>

n , yields
0 = 1>

n D−1X −1B(ω̄s −1nω
d ).

Using (5.3.3) in the above equation leads to

0 = 1>
n D−1X −1B

(
(In +µ)1nω

∗−1nω
d
)

. (5.5.5)

Under the standing assumption that at least one entry of the diagonal matrix B is
positive, ω∗ can be solved from (5.5.5) resulting in (5.5.1).

Note that from (5.5.1), ω∗ =ωd if and only if

1>
n D−1X −1B(In +µ)1n = 1>

n D−1X −1B1n ,

which is equivalent to (5.5.2), completing the proof.
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In the following lemma, a necessary and sufficient condition for fulfilling the
second objective in Problem 5.4.1 is derived.

Lemma 5.5.2 (Active power sharing). Consider the closed-loop system (5.3.1),
(5.3.6) with Assumption 5.3.3. Let D > 0. Suppose that the diagonal matrix B has at
least one positive entry and D is chosen as per (5.2.14). Then, active power sharing
according to Definition 3.3.1 along the synchronized motion is achieved if and only
if B, β, D and L are chosen such that[

D−1X −1B+ (β+κ)L
]
F1nω

d = 0n , (5.5.6)

where

F = 1>
n D−1X −1B1n

1>
n D−1X −1B(In +µ)1n

(In +µ)− In . (5.5.7)

Proof. Along a synchronized motion, the primary control dynamics (5.3.1) with
us = p s (see (5.3.6)) becomes

0n =−D(ω̄s −1nω
d )− (∇δU (δs)−P net)+p s , (5.5.8)

which can be rearranged as

p s = D(ω̄s −1nω
d )+ (∇δU (δs)−P net) . (5.5.9)

Next, consider (5.3.6) at steady-state given by

0n = (B+βX DL )(ω̄s −1nω
d )+DX L X p s . (5.5.10)

Inserting p s obtained from (5.5.9) in (5.5.10) results in

0n = (
B+βX DL

)
(ω̄s −1nω

d )+DX L X D(ω̄s −1nω
d )

+DX L X
(∇δU (δs)−P net) .

Under the standing assumption that (5.2.14) is satisfied, the above equation
becomes

0n = (
B+βX DL +κDX L

)
(ω̄s −1nω

d )+DX L X
(∇δU (δs)−P net) ,

which, when left-multiplied with D−1X −1 > 0, yields

0n = (
D−1X −1B+βL +κL

)
(ω̄s −1nω

d )+L X
(∇δU (δs)−P net) . (5.5.11)

Recall that L is the Laplacian matrix of a connected undirected graph. Hence,

L X
(∇δU (δs)−P net)= 0n
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if and only if (5.2.13) is satisfied, i.e., active power sharing. From (5.5.11),

L X
(∇δU (δs)−P net)= 0n

if and only if (
D−1X −1B+ (β+κ)L

)
(ω̄s −1nω

d ) = 0n . (5.5.12)

Finally, with (5.3.3) and ω∗ given by (5.5.1), the condition (5.5.12) holds if and
only if (5.5.6) is satisfied. This completes the proof.

5.5.1 DAI and pinning control
In this section, the steady-state behavior of the DAI control and the pinning
control are evaluated based on Lemma 5.5.1 and Lemma 5.5.2.

1. DAI control: Consider Lemma 5.5.1 and the DAI-parametrization (5.3.7).
With (5.3.7), the condition (5.5.2) is not satisfied. Hence, the objective of
network frequency restoration is not satisfied, i.e., ω∗ 6=ωd . Next, consider
Lemma 5.5.2. It can be directly verified that (5.3.7) does not satisfy (5.5.6)
and thus steady-state active power sharing is also not achieved.

2. Pinning control: Consider Lemma 5.5.1. It can be seen that the pinning-
parametrization (5.3.8) satisfies (5.5.2) if the structure of the pinning gain
matrix B ≥ 0 is chosen such that Bµ= 0n×n , resulting in ω∗ =ωd . However,
(5.3.8) does not satisfy the conditions of Lemma 5.5.2. Thus in the pres-
ence of clock drifts, active power sharing is not achieved using the pinning
control.

5.6 GDAI control
In light of the discussion thus far, a parametrization of (5.3.6) which satisfy both
Lemma 5.5.1 and Lemma 5.5.2 is yet to be presented. Since the coefficients µi

are unknown and different for different units, Lemma 5.5.2 reveals that unlike
in the case of ideal clocks [13, 32, 36, 64], when taking clock drifts explicitly into
account, it is hard to determine B, β and D directly from the conditions presented
in Lemmata 5.5.1 and 5.5.2. Therefore, instead below, a sufficient condition for
the control parameters B, β and D satisfying Lemmata 5.5.1 and 5.5.2 is presented.

Lemma 5.6.1 (Accurate frequency restoration and active power sharing). Con-
sider the closed-loop system (5.3.1), (5.3.6) with Assumption 5.3.3. Let D > 0. Sup-
pose that the diagonal matrix B has at least one positive entry and D is chosen as
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per (5.2.14). Then, the first two objectives in Problem 5.4.1 along a synchronized
motion are achieved if the control parameters B and β are chosen such that

Bµ= 0n×n and β=−κ. (5.6.1)

Proof. Consider Lemma 5.5.1. For Bµ = 0n×n , (5.5.2) holds. Thus, accurate
network frequency restoration is assured, i.e., ω∗ =ωd .

Next, consider Lemma 5.5.2. With Bµ= 0n×n , (5.5.6) becomes[
(β+κ)L

]
µ1nω

d = 0n ,

which holds when β=−κ. Hence, Lemma 5.5.2 is satisfied, yielding proportional
active power sharing, completing the proof.

Applying the parameters (5.6.1) to the general distributed controller representa-
tion (5.3.6) yields

u = p,

(In +µ)ṗ = (−B+κX DL )(ω̄−1nω
d )−DX L X p,

Bµ= 0n×n , B ≥ 0.

(5.6.2)

The condition Bµ= 0n×n can be interpreted as follows. Define the clock of one of
the inverters in the network as master clock, say the k-th inverter, k ≥ 1. Then,
µk = 0 and the drifts µi , i 6= k, of all other clocks in the microgrid are expressed
with respect to the master clock of the k-th inverter. Furthermore, the diagonal
pinning gain matrix B ≥ 0 will have a non-zero positive entry only at the (k,k)-th
position, resulting in Bµ= 0n×n .

The control law (5.6.2) is termed as generalized distributed averaging integral
(GDAI) control in the remainder of this thesis.

5.7 Robust GDAI control design
The GDAI controller (5.6.2) has been identified as a solution to address the first
two objectives mentioned in Problem 5.4.1. In this section, the third point in
Problem 5.4.1 is addressed. More precisely, a sufficient tuning criterion with
which the solutions of the system (5.3.1), (5.6.2) asymptotically converge to the
synchronized motion given in Definition 5.3.2 is presented. Here, the terminology
robust denotes that the presented tuning criterion considers that the clock drift
matrix µ has uncertain entries.
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5.7.1 Closed-loop system
Combining (5.3.1) and (5.6.2) yields the closed-loop system

(In +µ)δ̇= ω̄,

(In +µ)M ˙̄ω=−D(ω̄−1nω
d )− (∇δU (δ)−P net)+p,

(In +µ)ṗ = (−B+κX DL )(ω̄−1nω
d )−DX L X p.

(5.7.1)

5.7.1.1 Coordinate reduction and error states

As the power flow ∇δU (δ) = col(P̂i (δ)) only depends on angle differences (see
(5.2.3)), following [22] and choosing an arbitrary node, say node n, all angles can
be expressed relative to that node, i.e.,

θ =R>δ, θ : R≥0 →Tn−1, R =
[

In−1

−1>
n−1

]
∈Rn×(n−1).

Note that the matrix R has the property

1>
n R = 0>

n−1.

With Assumption 5.3.3 for the system (5.7.1), the following error states are defined.

ω̃ := ω̄− ω̄s = ω̄− (In +µ)1nω
d ,

θ̃ := θ−θs , p̃ := p −p s , x := col
(
θ̃, ω̃, p̃

)
,

where θs = R>δs with δs and p s given in Definition 5.3.2. Furthermore, (5.3.3)
and (3.3.3) were used to express ω̄s .

Thus, the resulting error dynamics of the system (5.7.1) is given by

˙̃θ =R>(In +µ)−1ω̃,

(In +µ)M ˙̃ω=−Dω̃−R
[∇θ̃U (δ(θ̃+θs))−∇θ̃U (δ(θs))

]+ p̃,

(In +µ) ˙̃p = (−B+κX DL )ω̃−DX L X p̃,

(5.7.2)

where

∇θ̃U (δ(θ̃+θs)) = ∂U (δ(θ̃+θs))

∂θ̃
,

∇θ̃U (δ(θs)) = ∂U (δ(θ+θs))

∂θ̃

∣∣
θ̃=0n−1

.

Note that x∗ = 03n−1 is an equilibrium point of (5.7.2). Furthermore, asymptotic
stability of x∗ = 03n−1 implies asymptotic convergence of the solutions of the sys-
tem (5.7.1) to the synchronized motion given in Definition 5.3.2 up to a uniform
shift of all angles [22].
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5.7.2 Stability criterion
For presenting the main result of this section, it is convenient to define the follow-
ing. Since µ is a diagonal matrix, with Assumption 5.3.4,

‖µ(In +µ)−1‖2 ≤ g1(ε), g1(ε) = ε
1−ε

> 0,

‖(µ2 +2µ)(In +µ)−2‖2 ≤ g2(ε), g2(ε) = ε2+2ε
(1−ε)2 > 0.

(5.7.3)

Some matrices useful for presenting the stability result are defined in the following.

T :=
[

T11
1
2

(−ςIn −σD1n1>
n D−1X −1 + B̃−κL X

)
∗ T22

]
,

T̂2 :=
[
σM1n1>

n B̃X −1 σD−1X −11n1>
n D

0n×n −σD−1X −11n1>
n

]
,

Hµ :=
[
ςg2(ε)M 0n×n

0n×n g1(ε)D−1

]
,

(5.7.4)

where g1(ε) and g2(ε) are defined in (5.7.3). Furthermore, σ ∈R>0, B̃ = D−1B ≥ 0
and

T11 = ςD − σ

2

(
M1n1>

n B̃X −1 +X −1B̃1n1>
n M

)
,

T22 =X L X + σ

2

(
D−1X −11n1>

n +1n1>
n X −1D−1) .

The stability result is as follows.

Proposition 5.7.1. Consider the system (5.7.2) with Assumption 5.3.3. Recall g1(ε)
and g2(ε) defined in (5.7.3). Suppose that there exist ς ∈R>0 and σ ∈R>0, such that

Hnom :=
[
ςM −σM1n1>

n D−1X −1

∗ D−1

]
> Hµ, (5.7.5)

and

T >
(
εζ+ςg1(ε)

√
λmax(D2)+1

)
I2n ,

0 ≥
[−ζI2n T̂2

∗ −ζI2n

]
,

(5.7.6)

where ζ ∈ R>0 and the matrices Hµ, T and T̂2 are defined in (5.7.4). Then, lo-
cal asymptotic stability of x∗ = 03n−1 is guaranteed for all unknown clock drifts
satisfying Assumption 5.3.4.
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Proof. Consider the Lyapunov function candidate

V = ς

2
ω̃>Mω̃+ςU (δ(θ̃+θs))−ς∇θ̃U (δ(θs))>θ̃

+ 1

2
p̃>D−1(In +µ)p̃

−σp̃>(In +µ)D−1X −11n1>
n M(In +µ)ω̃,

(5.7.7)

where ς> 0 and σ> 0 are design parameters. The Lyapunov function V contains
kinetic and potential energy terms ω̃>Mω̃, respectively U (δ) [59], a quadratic
term in secondary control input p̃ and a cross term between ω̃ and p̃ which
facilitates that V is decreasing along the trajectories of (5.7.2).

First, it is shown that V is indeed positive definite under the premises of Proposi-
tion 5.7.1. For this purpose, observe that ∇xV

∣∣
x=x∗ = 03n−1 which confirms that

x∗ is a critical point of V . Moreover, the Hessian of V at x∗ is given by

∇2
xV |x=x∗=

ς∇2
θ̃
U (δ(θ̃+θs))|θ̃=0n−1

0(n−1)×n 0(n−1)×n

∗ ςM −σ(In +µ)M1n1>
n D−1X −1(In +µ)

∗ ∗ D−1(In +µ)

.

(5.7.8)
From [22, Lemma 5.8],

∇2
θ̃
U (δ(θ̃+θs))|θ̃=0n−1

> 0.

Therefore, the Hessian ∇2
xV |x=x∗ is positive definite if and only if[

ςM −σ(In +µ)M1n1>
n D−1X −1(In +µ)

∗ D−1(In +µ)

]
> 0. (5.7.9)

By performing a congruence transformation using the positive definite matrix
S = blkdiag

(
(In +µ)−1, (In +µ)−1

)
and by invoking Sylvester’s law of inertia [84],

it is clear that the matrix on the left hand side of (5.7.9) is positive definite if and
only if the following matrix inequality is satisfied[

ς(In +µ)−2M −σM1n1>
n D−1X −1

∗ (In +µ)−1D−1

]
> 0. (5.7.10)

Inequality (5.7.10) can be equivalently written as

Hnom −
[
ς(µ2 +2µ)(In +µ)−2M 0n×n

0n×n µ(In +µ)−1D−1

]
> 0,
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where Hnom is defined in (5.7.5). Furthermore, since µ, M and D are all diagonal
matrices, [

ς(µ2 +2µ)(In +µ)−2M 0n×n

0n×n µ(In +µ)−1D−1

]
≤ Hµ,

where Hµ is defined in (5.7.4). Consequently, under the premises of Propo-
sition 5.7.1, ∇2

xV |x=x∗ > 0, confirming positive definiteness of V . Note that
∇xV

∣∣
x=x∗ = 03n−1 and ∇2

xV |x=x∗ > 0 implies that x∗ is a strict local minimum
of V [50].

Next, calculating the time derivative of V along the solutions of (5.7.2) gives

V̇ =−ςω̃>(In +µ)−1Dω̃+ςω̃>(In +µ)−1p̃

+ p̃> (−D−1B+κX L
)
ω̃− p̃>X L X p̃

+σp̃>(In +µ)D−1X −11n1>
n Dω̃

−σp̃>(In +µ)D−1X −11n1>
n p̃

+σω̃>(In +µ)M1n1>
n X −1D−1Bω̃

=−η>
[

T̃11 T̃12

T̃21 T̃22

]
η,

(5.7.11)

where
η := col(ω̃, p̃), (5.7.12)

and

T̃11 = ς(In +µ)−1D −σ(In +µ)M1n1>
n X −1D−1B,

T̃22 =X L X +σ(In +µ)D−1X −11n1>
n ,

T̃12 =−ς(In +µ)−1,

T̃21 =−σ(In +µ)D−1X −11n1>
n D +D−1B−κX L .

Note that the scalar V̇ can be equivalently expressed as

V̇ =−η>
[

T̃11 T̃12

T̃21 T̃22

]
η=−1

2
η>

[
T̃11 + T̃>

11 T̃12 + T̃>
21

∗ T̃22 + T̃>
22

]
η,

:=−η>
[

T11 T12

∗ T22

]
η :=−η>Tη,

(5.7.13)
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where

T11 =
1

2

(
T̃11 + T̃>

11

)
= ς(In +µ)−1D

− σ
2

(
(In +µ)M1n1>

n D−1BX −1 +D−1BX −11n1>
n M(In +µ)

)
,

T22 =
1

2

(
T̃22 + T̃>

22

)
=X L X + σ

2

(
(In +µ)D−1X −11n1>

n +1n1>
n D−1X −1(In +µ)

)
,

T12 =
1

2

(
T̃12 + T̃>

21

)
= 1

2

(−ς(In +µ)−1 −σD1n1>
n (In +µ)D−1X −1 +D−1B−κL X

)
.

Note that the entries of the matrix T defined in (5.7.13) are uncertain, because the
clock drift matrix µ is uncertain. Hence, to obtain verifiable conditions that ensure
T > 0 and, thus, V̇ (η) being negative definite, observe that T can be decomposed
as

T = T − 1

2

(
Γ1T̂1 + T̂ >

1 Γ1
)− 1

2

(
Γ2T̂2 + T̂ >

2 Γ2
)

, (5.7.14)

where T and T̂2 are defined in (5.7.4) and

Γ1 = blkdiag
(
µ(In +µ)−1,µ(In +µ)−1) ,

Γ2 = blkdiag
(
µ,µ

)
, T̂1 =

[
ςD −ςIn

0n×n 0n×n

]
.

(5.7.15)

For any matrices A ∈Rn×n and B ∈Rn×n , it holds that [84]

AB +B>A> ≤ 2‖A‖2‖B‖2In .

Thus (5.7.14) can be expressed as

T ≥ T − (‖T̂1‖2‖Γ1‖2 +‖T̂2‖2‖Γ2‖2
)

I2n . (5.7.16)

Assumption 5.3.4 together with (5.7.3), implies that

‖Γ1‖2 ≤ g1(ε), ‖Γ2‖2 ≤ ε,

where Γ1 and Γ2 are defined in (5.7.15). Therefore, (5.7.16) becomes

T ≥ T − (
g1(ε)‖T̂1‖2 +ε‖T̂2‖2

)
I2n . (5.7.17)

57



CHAPTER 5. DISTRIBUTED SECONDARY FREQUENCY CONTROL

Furthermore, from (5.7.15), ‖T̂1‖2 can be calculated as

‖T̂1‖2 =
√

λmax(T̂1T̂ >
1 ) = ς

√
λmax(D2)+1.

Turning to T̂2 defined in (5.7.4), see that T̂2 depends on the control parameters B
and D. Therefore, to obtain ‖T̂2‖2 required in (5.7.17), the following technique is
employed.

Let ζ ∈R>0 be an upper bound for ‖T̂2‖2, i.e.,

‖T̂2‖2 =
√

λmax(T̂2T̂ >
2 ) ≤ ζ

⇔ λmax(T̂2T̂ >
2 ) ≤ ζ2,

⇔ T̂2T̂ >
2 ≤ ζ2I2n ,

⇔ 1

ζ
T̂2T̂ >

2 −ζI2n ≤ 0.

By using the Schur complement [84], the last inequality above is equivalent to the
second inequality in (5.7.6). Thus, from (5.7.17), it can be concluded that T > 0 if

T −
(
ςg1(ε)

√
λmax(D2)+1+εζ

)
I2n > 0,

where ζ satisfies the second inequality in (5.7.6). Thus, with the made assump-
tions, T > 0 implies that

V̇ (η) < 0 for η(t ) 6= 02n . (5.7.18)

This shows that x∗ is stable. Recall η(t ) defined in (5.7.12), which means that V̇ (η)
does not depend on θ̃.

Hence, to conclude local asymptotic stability of x∗, one needs to show that the
following implication holds along solutions of the system (5.7.2):

η(t ) ≡ 02n ⇒ x(t ) = x∗. (5.7.19)

From (5.7.12), η(t) = 02n is equivalent to ω̃= 0n and p̃ = 0n . Furthermore, from
(5.7.2), ω̃= 0n implies that θ̃ is constant. Moreover at η(t ) = 02n , from the second
equation in (5.7.2), this yields

0n =−R
[∇θ̃U (δ(θ̃+θs))−∇θ̃U (δ(θs))

]
,

which by multiplying from the left with R> and rearranging terms is equivalent
to

R>R∇θ̃U (δ(θ̃+θs)) =R>R∇θ̃U (δ(θs)). (5.7.20)
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Note that R>R is invertible and recall that ∇2
θ̃
U (δ(θ̃+θs))|θ̃=0n−1

> 0 [22, Lemma

5.8]. Therefore, in a neighborhood of the origin, (5.7.20) only holds for θ̃ = 0n−1,
which shows that the implication (5.7.19) holds. Hence, x∗ is locally asymptoti-
cally stable, completing the proof.

Remark 5.7.2. By fixing the tuning parameter σ, the design conditions (5.7.5) and
(5.7.6) are a set of LMIs in ς, ζ, B̃,D−1 and L that can be solved efficiently by using
standard softwares like Yalmip [120] within MATLAB®. Furthermore, the control
parameters B and D can be easily recovered from B̃ = D−1B and D−1.

5.8 Summary
In this chapter, the steady-state performance of various distributed frequency
controllers in the presence of clock drifts has been compared. Based on the
comparison, some common approaches in the literature, see e.g. [13,32,36,51,64],
were found to be not fulfilling the objectives of steady-state accurate network
frequency restoration and active power sharing in the presence of clock drifts.
In this regard, a control approach termed as GDAI control has been proposed,
which achieves the objectives mentioned above. Later, a sufficient condition
that guarantees local asymptotic stability of the equilibrium point with primary
frequency droop control and secondary GDAI control has been derived.
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Chapter 6

Distributed voltage control

6.1 Introduction
As described in Chapter 4, in contrast to frequency droop control, the usage of
voltage droop control in microgrids with inductive power lines leads to poor reac-
tive power sharing [32]. Moreover, achieving accurate reactive power sharing at
steady-state in the sense Definition 3.3.2 without disturbing voltage stability can
also be very challenging [25, 27]. Recently, works like [25, 27] has investigated the
problem of reactive power sharing and voltage stability in lossless AC microgrids.
In a similar setting, a detailed study on addressing accurate power sharing and
voltage stability in DC microgrids has been presented in [121].

Inspired by [25, 27, 121], on top of reactive power sharing and voltage stability,
regulating the voltage amplitude at a joint load is also considered in this chapter.
The above-mentioned control objectives are quintessential in a microgrid with
parallel-connected inverters, i.e., a parallel microgrid, where the load is connected
at the PCC [24, 34, 35].

In this regard, this chapter focuses on voltage control in lossless parallel AC
microgrids and is organized as follows.

1. At first, the model of a lossless parallel microgrid is recalled from Chapter 4
with required assumptions.

2. Then, existence and uniqueness properties of a stationary positive voltage
solution to the algebraic equations corresponding to steady-state accurate
reactive power sharing and PCC voltage restoration are established.
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3. Later, a distributed voltage control law is proposed, which at equilibrium
yields the desired unique voltage solution mentioned above.

4. Finally, a stability criterion is derived by using Lyapunov theory, which
guarantees asymptotic convergence of the closed-loop system trajectories
to the desired equilibrium point. As it turned out to be the case that the
stability criterion depends on the unknown voltage equilibrium, a sufficient
condition in the form of an LMI is presented. This LMI requires only the
knowledge about an upper bound of the voltage equilibrium.

The results presented in this chapter is partly based on the author’s work [122].

6.2 Model of a parallel microgrid
In this section, the model of a parallel microgrid described in Chapter 4 is briefly
recalled and the assumptions required for the rest of this chapter are formalized.
Starting with the decoupled reactive power flow equation, model of an inverter
employed for voltage control is described.

6.2.1 Decoupled reactive power flow
Consider the power flow equations in a parallel microgrid given by (4.3.1). The
study presented in this chapter makes use of the standard decoupling assumption
[1], which is formalized below1.

Assumption 6.2.1. |δi (t )−δPCC(t )| < ε ∀t ≥ 0, i ∈N , ε ∈R>0, ε¿ 1.

Under Assumption 6.2.1, cos(δi −δPCC) ≈ 1 and thus the reactive power flow Qi

given in (4.3.1) becomes independent of δi −δPCC, i.e.,

Qi (Vi ,VPCC) = |Bi |Vi (Vi −VPCC) . (6.2.1)

1 Recall that the considered parallel microgrid is assumed to have n > 1 inverters connected in
parallel to the PCC, where a common load is present. Furthermore, the set of inverters is denoted
by N = {1, . . . ,n}, see Chapter 4.
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6.2.2 Inverter model for voltage control
Under Assumption 6.2.1, the reactive power injection depends only on the voltage
amplitudes, see (6.2.1). Hence, in the rest of this chapter, angle dynamics in the
inverter model (4.4.1) is neglected, yielding [27]

Vi = uV
i ,

τi Q̇m
i =−Qm

i +Qi ,
(6.2.2)

where Qi is the decoupled reactive power injection given by (6.2.1) and uV
i :

R≥0 →R is the voltage control input. The second equality in (6.2.2) is the power
measurement dynamics corresponding to reactive power, obtained from (4.5.3).

Remark 6.2.2. Note that in the inverter model (6.2.2), the effect of clock drifts is
neglected. This is explained below. Consider the model (6.2.2) with clock drifts, i.e.,

Vi = uV
i ,

τi (1+µi )Q̇m
i =−Qm

i +Qi .
(6.2.3)

Even though the clock drift value µi has an effect on the numerical integration
of the power measurement filter in (6.2.3), the steady-state performance is not
affected. In other words, the injected reactive power and the measured reactive
power at steady-state are equal, i.e., 0 =−Qms

i +Q s
i .

The model (6.2.2) for the whole parallel microgrid can be expressed as

V = uV ,

τQQ̇m =−Qm +QI ,
(6.2.4)

where uV = col(uV
i ) ∈ Rn , Qm = col(Qm

i ) ∈ Rn and τQ = diag(τi ) ∈ Rn×n . Further-
more,

QI (V ,VPCC) = col(Qi (Vi ,VPCC)) = [V ]BV −VPCCBV , (6.2.5)

where Qi is given by (6.2.1), B > 0 is defined in (4.3.5) and [V ] = diag(Vi ) ∈Rn×n .
The expression for VPCC =VPCC(V ) is given by (4.3.6). Finally, recall that the load
connected at the PCC is represented by a constant current load IL ∈ R<0, see
Section 4.3.2.
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6.3 Problem statement
Recall the definition of accurate proportional reactive power sharing, i.e., Def-
inition 3.3.2. Let A = diag(ai ) and Qd

i = Qd
j = 0 where i , j ∈ N . In practice, the

desired reactive power injections are provided by a higher-level control, for ex-
ample, the one proposed in [123]. Thus the assumption of Qd

i =Qd
j = 0 is for the

sake of simplicity and does not affect the results presented in this chapter.

The control problems investigated in this chapter are precisely described below.

Problem 6.3.1. Consider the system (6.2.4), (6.2.5), (4.3.6). Compute a control law
for the control input uV , such that the solutions of the system (6.2.4), (6.2.5), (4.3.6)
converge asymptotically to a unique stationary voltage solution V ∗ ∈Rn

>0 with the
following two properties:

1. Voltage regulation at the PCC, i.e.,

VPCC(V ∗) =V d
PCC and (6.3.1)

2. Reactive power sharing among DGs, i.e.,

AQI (V ∗,VPCC(V ∗)) =α1n , for some α ∈R. (6.3.2)

Note that (6.3.1) is precisely (3.3.4) and (6.3.2) is (3.3.2) written for the whole
network.

In comparison to some related works on voltage control [27,30,32], the considera-
tion of a parallel microgrid topology results in a clear voltage regulation objective,
i.e., 1) in Problem 6.3.1. Besides, as shown in the sequel, this type of voltage
regulation objective does not conflict with that of reactive power sharing.

6.4 Existence of a unique stationary solution
Before proceeding to the controller design, existence and uniqueness properties
of stationary solutions to the network equations (6.2.5), (4.3.6) under the require-
ments of Problem 6.3.1 has to be investigated. More precisely, this is equivalent
to investigating solutions to the set of equations (6.3.1), (6.3.2). Note that (6.3.1),
(6.3.2) is a system of n +1 equations in n unknowns, i.e., V ∗ ∈ Rn

>0, hence is an
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overdetermined system of nonlinear equations. Explicitly solving such an overde-
termined system of nonlinear equations can be difficult. Yet, the following result
shows that for any A > 0 and IL < 0 there is exactly one V ∗ ∈Rn

>0, which satisfies
(6.3.2) and (6.3.1) simultaneously.

Lemma 6.4.1. For any given V d
PCC > 0, A > 0, and IL < 0, there exists a unique

vector V ∗ = col(V ∗
i ) ∈Rn

>0 that satisfies both (6.3.1) and (6.3.2).

Proof. Consider (6.3.1) and (6.3.2). Note that any V ∗ ∈Rn
>0 satisfying (6.3.1) and

(6.3.2) simultaneously has to satisfy

AQI (V ∗,V d
PCC) =α1n , (6.4.1)

which by (6.2.1) can be written as

ai |Bi |(V ∗
i )2 −ai |Bi |V d

PCCV ∗
i −α= 0, i ∈N . (6.4.2)

Furthermore, left-multiplying (6.4.1) with 1>
n A−1[V ∗]−1 yields

1>
n [V ∗]−1QI (V ∗,V d

PCC) =−IL =α1>
n [V ∗]−1 A−11n , (6.4.3)

where (6.2.5) and (4.3.4) were used to obtain the first equality. From (6.4.3) and
the fact that IL < 0, it is easy to see that necessarily α> 0, which means that (6.4.2)
has one negative and one positive solution for V ∗

i . Denoting the latter by V +
i ,

which can be calculated as

V +
i =

ai |Bi |V d
PCC +

√
(ai |Bi |V d

PCC)2 +4ai |Bi |α
2ai |Bi |

:= fi (α). (6.4.4)

Now, bearing in mind (6.4.4), it remains to show that there exists a unique α> 0
that satisfies (6.4.3), which in terms of α can be written as

|IL| =α
∑

i∈N

1

ai fi (α)
:= g (α). (6.4.5)

Note that, if such α exists and is unique, then V ∗ = col(V ∗
i ) = col(V +

i ) is the
unique solution to the algebraic equations (6.3.1)-(6.3.2).

From (6.4.5), it is obvious that

lim
α→0

g (α) = 0, lim
α→+∞g (α) =+∞.
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Hence, by continuity of g , there exists α> 0 that satisfies (6.4.5). To prove unique-
ness, it is enough to show that g is a strictly increasing function. For this purpose,
differentiating g (α) with respect to α gives

g ′(α) =
∑

i∈N

1

ai fi (α)
−α

∑
i∈N

f ′
i (α)

ai f 2
i (α)

=
∑

i∈N

fi (α)−α f ′
i (α)

ai f 2
i (α)

.

Hence, g is strictly increasing if

fi (α)−α f ′
i (α) > 0, (6.4.6)

for each i ∈N . Observe that fi (α) given by (6.4.4) is concave in R≥0, thereby

fi (0) ≤ fi (α)+ f ′(α)(0−α).

Noting that fi (0) =V d
PCC > 0, the latter inequality implies (6.4.6), hence confirming

the uniqueness of α > 0 which satisfies (6.4.5). Therefore, as discussed before,
corresponding to this unique α> 0, there exists a unique V ∗

i = fi (α), see (6.4.4).
This yields that there exists a unique voltage vector V ∗ = col(V ∗

i ) satisfying (6.3.1)-
(6.3.2), completing the proof.

6.5 A distributed voltage control law for
reactive power sharing and PCC voltage
regulation

In this section, a distributed voltage control law to address Problem 6.3.1 is
proposed.

6.5.1 Control law
Consider the parallel microgrid model (6.2.4), (6.2.5), (4.3.6). The control input
uV is computed such that

uV =V d +ν,

ν̇=−K L AQm −
(
VPCC(V )−V d

PCC

)
E1n ,

(6.5.1)

where V d = col(V d
i ) ∈ Rn

>0 is the vector of desired voltage amplitudes at each
inverter and ν : R≥0 → Rn is a new variable. Furthermore, K = diag(ki ) ∈ Rn×n

66



where ki ∈ R>0 is a controller parameter, L ∈ Rn×n is the Laplacian matrix of
a connected undirected graph and E ∈ Rn×n is a diagonal pinning gain matrix
which has positive entries only for the units which have access to the quantity
VPCC −V d

PCC. This implies that VPCC −V d
PCC is not required at all the inverters to

implement (6.5.1), hence significantly relaxing the communication requirements.
Obviously, the matrix E has at least one nonzero element, i.e., E ≥ 0.

Remark 6.5.1. Similar to the inverter model (6.2.2), the effect of clock drifts on
the numerical integration performed in the controller (6.5.1) is neglected. This is
because the steady-state performance of (6.5.1) is not disturbed in the presence of
clock drifts, which is further clarified in Lemma 6.5.3.

6.5.2 Closed-loop system
By combining (6.2.4) and (6.5.1), the following closed-loop dynamics is obtained:

V̇ =−K L AQm −
(
VPCC(V )−V d

PCC

)
E1n ,

τQQ̇m =−Qm +QI (V ,VPCC),
(6.5.2)

where V (0) =V d .

Remark 6.5.2. In practice, the voltage amplitude of a grid-forming inverter is
provided by the operator. This also applies to the initial conditions of the voltages
V (0) =V d in (6.5.2). See also [14, 27].

The following vectors are essential for presenting the main results of this section.

z := col(V ,Qm) ∈R2n ,

z∗ := col(V ∗,QI (V ∗,V d
PCC)) = col(V ∗,αA−11n),

α= −IL

1>
n [V ∗]−1 A−11n

∈R>0,

(6.5.3)

where (6.4.1) and (6.4.3) were used to write the last two equalities. The lemma
below presents an important property about the point z∗.

Lemma 6.5.3. The vector z∗ given by (6.5.3) is the unique equilibrium point of the
closed-loop system (6.5.2).

Proof. In the proof of Lemma 6.4.1, it has been shown that satisfying (6.3.1) and
(6.3.2) yields a unique solution V ∗. In addition, since L is the Laplacian matrix of
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a connected undirected graph, recall that L 1n = 0n . As a consequence, at z = z∗,
the system (6.5.2) is at equilibrium.

Next, to show that z∗ is the only equilibrium point of the system (6.5.2), the
concept of contradiction is used. Suppose that for the system (6.5.2), there exists
another equilibrium solution zs := col(V s ,Qms) ∈R2n , i.e.,

0n =−K L AQms −
(
VPCC(V s)−V d

PCC

)
E1n ,

0n =−Qms +QI (V s ,VPCC(V s)),
(6.5.4)

which readily yields

0n = K L AQI
(
V s ,VPCC(V s)

)+ (
VPCC(V s)−V d

PCC

)
E1n . (6.5.5)

Since K = diag(ki ) > 0, left-multiplying (6.5.5) with 1>
n K −1 yields(

VPCC(V s)−V d
PCC

)
trace(K −1E) = 0. (6.5.6)

Recall that E is a diagonal positive semidefinite matrix. Hence trace(K −1E) > 0,
which implies that (6.5.6) is satisfied if and only if VPCC(V s) = V d

PCC. But this
implies that V s also has to satisfy

L AQI (V s ,VPCC(V s)) = 0n . (6.5.7)

Since L is the Laplacian matrix of an undirected connected graph, (6.5.7) is
equivalent to

QI (V s ,VPCC(V s)) =βA−11n , (6.5.8)

for some β ∈R. From Lemma 6.4.1, it follows that there is only one solution, which
is V ∗, that satisfies VPCC(V s) = V d

PCC and (6.5.8) simultaneously. Consequently,
V s = V ∗ and (6.5.8) becomes QI (V ∗,VPCC(V ∗)) = αA−11n where α is given by
(6.5.3). From the second equation in (6.5.4), this yields Qms =αA−11n . In essence,
zs := col(V s ,Qms) = col(V ∗,αA−11n) = z∗. This completes the proof.

Remark 6.5.4. The distributed voltage controller (DVC) proposed in [27] to address
the problem of reactive power sharing in lossless meshed microgrids is given by
by [27, Equation 12]

V̇ =−K L AQm ,

τQQ̇m =−Qm +Qmeshed
I (V ),

(6.5.9)

where Qmeshed
I (V ) = col(Qi ) ∈ Rn with Qi given by (2.4.5). Note that (6.5.2) is

similar to (6.5.9), but has a noticeable difference. More precisely, (6.5.2) is designed
for a lossless parallel microgrid where the objective of PCC voltage regulation is
also considered.
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6.5.3 Error states
In the sequel, the vector z = col(V ,Qm) is expressed with respect to the unique
equilibrium point z∗ = col(V ∗,αA−11n), i.e.,

Q̃m :=Qm −αA−11n ,

Ṽ :=V −V ∗,

x := col(Ṽ ,Q̃m) ∈R2n .

(6.5.10)

Thus, the closed-loop system (6.5.2) in error states x can be expressed as

˙̃V =−K L AQ̃m − (
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
E1n ,

τQ
˙̃Qm =−Q̃m + (

QI
(
Ṽ +V ∗,VPCC(Ṽ +V ∗)

)−QI
(
V ∗,VPCC(V ∗)

))
.

(6.5.11)

Note that with QI given in (6.2.5),

QI
(
Ṽ +V ∗,VPCC(Ṽ +V ∗)

)−QI
(
V ∗,VPCC(V ∗)

)= [Ṽ +V ∗]B(Ṽ +V ∗)

−VPCC(Ṽ +V ∗)B(Ṽ +V ∗)

− [V ∗]BV ∗+VPCC(V ∗)BV ∗,

= [Ṽ +2V ∗]BṼ −VPCC(Ṽ +V ∗)BṼ

− (
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
BV ∗,

= (
[Ṽ +2V ∗]−VPCC(Ṽ +V ∗)In

)
BṼ

− (
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
BV ∗.

(6.5.12)

By using (6.5.12), the closed-loop system (6.5.11) becomes

˙̃V =−K L AQ̃m − (
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
E1n ,

τQ
˙̃Qm =−Q̃m + (

[Ṽ +2V ∗]−VPCC(Ṽ +V ∗)In
)

BṼ

− (
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
B [V ∗]1n ,

(6.5.13)

where
x∗ := 02n (6.5.14)

is the equilibrium point of (6.5.13). Note that x∗ is just a shift of coordinates from
the unique equilibrium point z∗ defined in (6.5.3). Hence, asymptotic stability
of x∗ implies that the trajectories of the closed-loop system (6.5.2) converge
asymptotically to z∗.
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6.5.4 A condition for asymptotic stability
For presenting the stability results, it is convenient to define the following matrix.

Φ(V ∗) :=
Φ11 Φ12 Φ13

∗ Φ22 Φ23

∗ ∗ trace(BE)

 ∈R(2n+1)×(2n+1), (6.5.15)

where

Φ11(V ∗) =σRτ−1
Q

(
2[V ∗]−V d

PCCIn

)
B ,

Φ12(V ∗) = 1

2

(
ξMK L A−ζ

(
2[V ∗]−V d

PCCIn

)
B −σRτ−1

Q

)
,

Φ13(V ∗) = 1

2

(
ξME1n −σRτ−1

Q B [V ∗]1n

)
,

Φ22 = ζIn − σ

2
(RK L A+ AL K R) ,

Φ23(V ∗) = 1

2

(
AL K B1n −σRE1n +ζB [V ∗]1n

)
,

where ξ ∈R>0, σ ∈R>0, ζ ∈R>0, and R ∈Rn×n , M ∈Rn×n are two positive definite
diagonal matrices.

The stability result is as follows.

Proposition 6.5.5. Consider the closed-loop system (6.5.13). Suppose that there
exist ξ ∈R>0, σ ∈R>0, ζ ∈R>0 and positive definite diagonal matrices R ∈Rn×n and
M ∈Rn×n . Then, x∗ is locally asymptotically stable if K , E and L are chosen such
that [

ξM + 1
trace(B) B1n1>

n B −σR

−σR ζτQ

]
> 0,

Φ(V ∗) > 0,

(6.5.16)

where Φ(V ∗) is given by (6.5.15).

Proof. Consider the Lyapunov function candidate

F (x) = ξ

2
Ṽ >MṼ + 1

2

(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)2
trace(B)

+ ζ

2
Q̃m>τQQ̃m −σQ̃m>RṼ ,

(6.5.17)

where ξ ∈ R>0, ζ ∈ R>0 and σ ∈ R>0. Furthermore R ∈ Rn×n and M ∈ Rn×n are
positive definite diagonal matrices. The function (6.5.17) has three quadratic
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terms in Ṽ , VPCC (in error states) and Q̃m respectively. A cross term between Ṽ
and Q̃m is also included in F , since it facilitates that the function F is decreasing
along the solutions of (6.5.13).

Observe that F (x∗) = 0. Moreover with VPCC given by (4.3.6), the gradient of F

with respect to x can be calculated as

∇xF =
[
ξMṼ + (

VPCC(Ṽ +V ∗)−VPCC(V ∗)
)

B1n −σRQ̃m

ζτQQ̃m −σRṼ

]
. (6.5.18)

Evaluating the gradient at x = x∗, it can be seen that ∇xF |x∗ = 02n . Therefore, x∗

is a critical point of F [49, 50].

The Hessian of F at x = x∗ is given by

∇2
xF |x∗ =

[
ξM + 1

trace(B) B1n1>
n B −σR

−σR ζτQ

]
. (6.5.19)

Recall that M > 0, ξ> 0 and τQ > 0. Furthermore since B > 0, the matrix B1n1>
n B

is positive semidefinite. Thus, both block-diagonal matrices of ∇2
xF |x∗ are posi-

tive definite. Therefore, under the standing assumption that the first condition in
(6.5.16) is satisfied, the LHS of (6.5.19) is positive definite, confirming that x∗ is
an isolated minimum of F . Hence, F qualifies as a potential Lyapunov function
to study stability of x∗ [49, 50].

Calculating the time derivative of F along the solutions of (6.5.13) yields

Ḟ =−ξṼ >MK L AQ̃m

−ξṼ >ME1n
(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
− (

VPCC(Ṽ +V ∗)−VPCC(V ∗)
)
1>

n BK L AQ̃m

−1>
n BE1n

(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)2

+σQ̃m>RK L AQ̃m

+σQ̃m>RE1n
(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
−ζQ̃m>Q̃m

+ζQ̃m> (
[Ṽ +2V ∗]−VPCC(Ṽ +V ∗)In

)
BṼ

−ζQ̃m>B [V ∗]1n
(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
+σṼ >Rτ−1

Q Q̃m

−σṼ >Rτ−1
Q

(
[Ṽ +2V ∗]−VPCC(Ṽ +V ∗)In

)
BṼ

+σṼ >Rτ−1
Q B [V ∗]1n

(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
=−η>Φ(Ṽ )η,

(6.5.20)
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where

η :=
 Ṽ

Q̃m(
VPCC(Ṽ +V ∗)−VPCC(V ∗)

)
 ∈R2n+1, (6.5.21)

and

Φ(Ṽ ) :=
Φ11 Φ12 Φ13

∗ Φ22 Φ23

∗ ∗ trace(BE)

 ∈R(2n+1)×(2n+1), (6.5.22)

with

Φ11(Ṽ ) =σRτ−1
Q

(
[Ṽ +2V ∗]−VPCC(Ṽ +V ∗)In

)
B ,

Φ12(Ṽ ) = 1

2

(
ξMK L A−σRτ−1

Q −ζB
(
[Ṽ +2V ∗]−VPCC(Ṽ +V ∗)In

))
,

Φ13(V ∗) = 1

2

(
ξME1n −σRτ−1

Q B [V ∗]1n

)
,

Φ22 = ζIn − σ

2
(RK L A+ AL K R) ,

Φ23(V ∗) = 1

2

(
AL K B1n −σRE1n +ζB [V ∗]1n

)
.

Note that
Φ(Ṽ )|Ṽ =0n

=Φ(V ∗),

where Φ(V ∗) is defined in (6.5.15). Under the premises of Proposition 6.5.5, see
(6.5.16),

Φ(Ṽ )|Ṽ =0n
> 0.

Thus by continuity, there exists a (small) neighborhood around Ṽ = 0n such that
Φ(Ṽ ) > 0, and, thus, Ḟ ≤ 0. Hence, x∗ is a stable equilibrium point.

To establish asymptotic stability of x∗, the following implication has to hold along
the solutions of the system (6.5.13):

η= 02n+1 ⇒ x(t ) = x∗ (6.5.23)

Since Φ(Ṽ ) > 0, and with η defined in (6.5.21), η= 02n+1 directly implies that Ṽ =
0n and Q̃m = 0n . By using the definition of x and x∗ given respectively by (6.5.10)
and (6.5.14), Ṽ = 0n and Q̃m = 0n means that x = 02n = x∗. As a consequence, the
implication (6.5.23) holds, ensuring that x∗ is locally asymptotically stable. This
completes the proof.
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The stability condition Φ(V ∗) > 0 given in (6.5.16) depends on the equilibrium
voltage vector V ∗. As mentioned earlier in Lemma 6.4.1, solving for V ∗ explicitly
from the set of algebraic equations (6.3.1), (6.3.2) is difficult. Hence, unfortunately,
to verify Φ(V ∗) > 0, an expression for V ∗ in terms of the system parameters is
missing. Thus in the sequel, a tuning criterion in the form of an LMI in K and E
is presented, which if feasible, guarantees Φ(V ∗) > 0. This LMI requires only the
knowledge about an upper bound of V ∗, i.e.,

‖[V ∗]‖2 ≤ %, % ∈R>0. (6.5.24)

A possible practical choice for % would be to select it as the maximum admissible
voltage amplitude in the network, see e.g., [124].

The following matrices are required for presenting the next result.

U1(V ∗) := blockdiag([V ∗]−V d
PCCIn ,0n×n ,0),

U2 :=

−2σRτ−1
Q B 2ζB 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0

 ,

J1(V ∗) := blockdiag([V ∗], [V ∗],0),

J2 :=

0n×n 0n×n σRτ−1
Q B1n

0n×n 0n×n −ζB1n

01×n 01×n 0

 ,

(6.5.25)

where U1,U2, J1, J2 ∈R(2n+1)×(2n+1). Furthermore, Ψ ∈R(2n+1)×(2n+1) is defined as

Ψ :=

σV d
PCCRτ−1

Q B 1
2

(
ξMK L A−σRτ−1

Q −ζV d
PCCB

)
1
2ξME1n

∗ ζIn − σ
2 (RK L A+ AL K R) 1

2 (AL K B1n −σRE1n)
∗ ∗ trace(BE)

 .

(6.5.26)

A sufficient condition which guarantees Φ(V ∗) > 0 is as follows.

Corollary 6.5.6. Consider the closed-loop system (6.5.13) and the Lyapunov func-
tion (6.5.17). Suppose that ξ, σ, ζ, M and R are fixed such that the first condition
in (6.5.16) is satisfied. Then, x∗ is locally asymptotically stable if the controller
parameters K and E are chosen such that

Ψ>
(
(%−V d

PCC)‖U2‖2 +%‖J2‖2

)
I2n+1, (6.5.27)

where U2 and J2 are defined in (6.5.25), Ψ in (6.5.26) and % is the upper bound of
V ∗ mentioned in (6.5.24).
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Proof. Consider the system (6.5.13). Choosing the same Lyapunov function
(6.5.17) and following similar steps as in the proof of Proposition 6.5.5, it can
be observed that a sufficient condition for x∗ to be an isolated minimum of
F is given by the first condition in (6.5.16). Therefore, under the premises of
Corollary 6.5.6, local asymptotic stability of x∗ can be ensured if Φ(V ∗) > 0, i.e.,
the second condition in (6.5.16).

Consider Φ(V ∗) given by (6.5.15), which can be equivalently expressed as

Φ(V ∗) =Ψ− 1

2

(
U1(V ∗)U2 +U>

2 U1(V ∗)
)− 1

2

(
J1(V ∗)J2 + J>2 J1(V ∗)

)
, (6.5.28)

where U1,U2, J1, J2 are defined in (6.5.25) and Ψ is defined in (6.5.26). The inten-
sion behind expressing Φ(V ∗) as in (6.5.28) is to derive a sufficient condition that
ensures Φ(V ∗) > 0.

For any two square matrices, say X ∈Rn×n and Y ∈Rn×n , it follows that [84]

1

2

(
X Y +Y >X >)≤ ‖X ‖2‖Y ‖2In .

Thus, a sufficient condition for Φ(V ∗) > 0 is given by

Ψ> (‖U1(V ∗)‖2‖U2‖2 +‖J1(V ∗)‖2‖J2‖2
)

I2n+1. (6.5.29)

Since U1 and J1 defined in (6.5.25) are block diagonal matrices with diagonal
block entries, ‖U1‖2 and ‖J1‖2 can be calculated as

‖U1‖2 =
√

λmax
(
([V ∗]−V d

PCCIn)2
)≤ %−V d

PCC,

‖J1‖2 =
√

λmax
(
[V ∗]2

)≤ %,

where in the inequality above, the fact that [V ∗] is a diagonal matrix upper-
bounded by % (see (6.5.24)) has been used. As a consequence, the RHS of (6.5.29)
can be lower bounded by the RHS of (6.5.27), completing the proof.

Remark 6.5.7. Note that the matrices U2 and J2 defined in (6.5.25) contain only
the system parameters τQ , B and the tuning parameters σ, ζ and R, which stem
from the Lyapunov function (6.5.17). Hence, ‖U2‖2 and ‖J2‖2 required in (6.5.27)
can be computed directly. Thus, (6.5.27) is an LMI in K and E, which can be solved
by using a standard software package like Yalmip [120] within MATLAB®.
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6.6 Summary
The problems of voltage stability, reactive power sharing, and PCC voltage restora-
tion in a lossless parallel microgrid have been addressed in this chapter. Starting
with the proof about the existence of a unique voltage equilibrium, a distributed
voltage controller which drives the closed-loop system solutions asymptotically
to the desired equilibrium has been presented. Alas, the derived stability criterion
depends on the voltage equilibrium. Thus, a sufficient condition that ensures
the feasibility of the stability criterion has been derived. This sufficient condition
requires only the knowledge about an upper bound of the voltage equilibrium
and is in the form of an LMI, which can be solved numerically to obtain stabilizing
controller parameters.
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Chapter 7

Case study

7.1 Introduction
This chapter is dedicated to validate, via simulation, robustness of the approaches
presented in Chapter 5 and Chapter 6 towards typical modeling uncertainties and
some exogenous disturbances observed in microgrids.

At first, the performance and robustness of the GDAI controller proposed in Chap-
ter 5 towards modeling uncertainties are investigated. The controller parameters
are chosen based on the tuning criterion presented in Chapter 5. Furthermore,
the results are compared with other distributed secondary frequency controllers
in the literature; for example, the DAI control [32, 51] and the pinning control [40].

The second part of this chapter focusses on investigating whether the distributed
voltage controller proposed in Chapter 6 is robust towards load disturbances and
modeling errors like small line resistances. The operational compatibility of the
proposed voltage controller with the standard frequency droop control [38] is
also examined.

Throughout this chapter, the terms weighted active power, respectively weighted
reactive power represent the fraction (Pi −P d

i )/SN
i , respectively Qi /SN

i where Pi ,
respectively Qi are the active, respectively reactive power injections. Furthermore,
SN

i ∈R>0 is the nominal power rating and P d
i ∈R is the desired active power set

point at the i -th inverter, i ∈N .
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7.2 Distributed secondary frequency control
In this section, via simulation, steady-state performance of the GDAI-controlled
system (5.3.1), (5.6.2), the DAI-controlled system (5.3.1), (5.3.9) and the pinning-
controlled system (5.3.1), (5.3.10) are compared in the presence of clock drifts.

The microgrid used in the case study is depicted in Figure 7.1, which is simulated
using MATLAB®/Simulink® and PLECS [125]. Power lines are modelled as dy-
namic π-models [1, 4, 89]. Since the microgrids under consideration are assumed
to have short power lines, shunt elements in the π-model are neglected [1, 4, 89].
See also [23, Section 2.4.4]. Small positive line resistance is considered in the
power lines to evaluate robustness towards typical uncertainties. Furthermore,
a constant impedance load of 500 kVA (unity power factor) is connected to all
grid-forming inverters (GFIs). The time constant of the low pass filter used in the
power measurement is 0.2 sec. To measure the synchronized electrical frequency
ω∗ (given by (5.5.1)) of the considered microgrid accurately, a conventional three-
phase synchronous reference frame phase locked loop (SRF-PLL) [126] is con-
nected at the PCC.

The weighting matrix X for the microgrid is selected as (in pu)

X = diag(0.48,0.46,0.52,0.53,0.51,0.53,0.45,0.54), (7.2.1)

and the vector of desired active power set points as (in pu)

P d = col(0.25,0.35,0.45,0.55,0.65,0.75,0.80,0.85). (7.2.2)

The damping matrix D required in (5.3.1) is chosen according to (5.2.14) with
κ = 0.5. Furthermore, the incidence matrix B of the communication graph is
calculated from the topology shown in Figure 7.2. It is worth mentioning that
there might be other choices of B to construct the Laplacian matrix L . See,
e.g. [64, 65] for a comprehensive study on topology identification to implement
similar distributed frequency control laws in power systems. Finding a suitable
communication topology to implement distributed secondary frequency con-
trollers is beyond the scope of this thesis. In this section, the intention is to
calculate the controller parameters D, B and the edge weight matrix W yielding
L =BWB> which satisfy the LMIs (5.7.5) and (5.7.6).

The clock of the GFI connected at node 1 in Figure 7.1 is chosen as the master
clock, i.e., µ1 = 0. The relative clock drift values of the other GFIs considered in
the simulation are

µ= 10−4diag(0,10,20,−10,25,15,−15,5) ∈R8×8. (7.2.3)
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Figure 7.1. Microgrid used to simulate distributed frequency controllers. There
are eight grid-forming inverters (GFIs), all of them having a constant impedance
load connected to them. At the PCC, a phase locked loop (PLL) is connected to
measure the synchronized electrical frequency of the network (i.e., ω∗ given by
(5.5.1)) accurately. GFI1 is chosen as the master clock, see (7.2.3).

1

2 3

45 6 78

Figure 7.2. Topology of the communication network used to simulate distributed
frequency controllers.

Hence, with the considered clock drift factors, ε= 0.003 in Assumption 5.3.4.

The tuning criterion (5.7.5), (5.7.6) presented in Proposition 5.7.1 is verified using
the optimization toolbox Yalmip [120] in MATLAB®/Simulink®. The conditions
(5.7.5), (5.7.6) were solved with σ= 0.12, where the tuning parameter ς and the
controller parameters D, B and W were the free parameters in the LMIs. Feasibility
of (5.7.5), (5.7.6) ensures that the trajectories of the system (5.3.1), (5.6.2) asymp-
totically converge to a desired synchronized motion given in Definition 5.3.2.

The controller parameters satisfying (5.7.5), (5.7.6) were obtained as

D = diag(0.10,0.40,0.07,0.10,0.10,0.31,0.38,0.20),

B = diag(0.16,0,0,0,0,0,0,0),

W = diag(1.23,0.42,0.53,0.59,0.68,0.38,0.52).

(7.2.4)

Next, the microgrid shown in Figure 7.1 is simulated using the parameters (7.2.4).
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7.2.1 GDAI control
The GDAI-controlled system (5.3.1), (5.6.2) is simulated using the control param-
eters (7.2.4). The simulation output is given in Figure 7.3 where until 10 sec, only
the frequency droop control is under operation, i.e., (5.3.1) with u = 08.
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Figure 7.3. Simulation result with droop control (5.3.1) (active from 0 sec) and
GDAI control (5.6.2) (activated at 10 sec). Note that ω∗ converges exactly to 50 Hz
and the weighted active powers reach consensus, see the zoom plots at 90 sec.

The GDAI control (5.6.2) is activated at 10 sec. Recall that (5.6.2) satisfies the
conditions of Lemma 5.5.1. Hence, ω∗ = ωd . See the enlarged frequency plot
at 90 sec in Figure 7.3 where it can be seen that ω∗ = 50Hz =ωd . Furthermore,
since the GDAI control also satisfies the conditions of Lemma 5.6.1, steady-state
active power sharing is guaranteed in the presence of clock drifts. This can be
confirmed by observing the enlarged weighted active power plot in Figure 7.3 at
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90 sec, where, it is clear that the weighted active powers of all the inverters have
converged to a common value. For better clarity, compare the enlarged weighted
active power plots at 5 sec (droop control only: maximum relative deviation of
approximately 42%) and 90 sec (droop and GDAI control: 0% relative deviation)
in Figure 7.3. This confirms that the GDAI controller can correct steady-state
errors in active power sharing.
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Figure 7.4. Simulation result with droop control (5.3.1) (active from 0 sec) and DAI
control (5.3.9) (activated at 10 sec). Note that ω∗ does not converge to 50 Hz and
the the weighted active powers do not reach consensus. See the zoom plots at 90
sec.

For comparing the steady-state behavior of the GDAI control with other dis-
tributed control approaches, the DAI control and the pinning control are also
simulated using the same microgrid shown in Figure 7.1. For this purpose, com-
munication topology shown in Figure 7.2 is used.
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7.2.2 DAI control
In this section the DAI-controlled system (5.3.1), (5.3.9) is simulated. The same
parameters as in (7.2.4) are used, with the only exception that

B = (0.16) · I8.

See also (5.3.9). The corresponding simulation output is given in Figure 7.4,
where until 10 sec, only the frequency droop control (5.3.1) is under operation.
The DAI controller (5.3.9) is activated at 10 sec. In Figure 7.4, it can be seen
that the inverters’ internal frequencies have converged close to the nominal
value of ωd = 50 Hz, but not exactly to 50 Hz in the presence of clock drifts.
The enlarged frequency plot in Figure 7.4 at 90 sec shows that ω∗ ≈ 49.97 6= 50
Hz, hence resulting in a non-negligible steady-state network frequency error of
approximately 30 mHz.

Considering the aspect of active power sharing, at 10 sec, when the DAI controller
is activated on top of the droop controller, it can be observed that the weighted
active powers diverge a bit. See the weighted active power plot in Figure 7.4 at 5
sec (droop control: maximum relative deviation of approximately 42%) and 90
sec (droop and DAI control: maximum relative deviation of approximately 80%)
respectively. An observation from Figure 7.4 is that the steady-state performance
in terms of active power sharing in the presence of clock drifts is relatively better
with frequency droop control than a combination of droop and DAI controllers.

7.2.3 Pinning control
In this section, the pinning-controlled system (5.3.1), (5.3.10) is simulated. The
controller parameters used are the same as in (7.2.4). The simulation output
is given in Figure 7.5, where until 10 sec, only the frequency droop control is
under operation. The pinning controller is activated at 10 sec. Recall that B ≥ 0,
see (5.3.10). Moreover from (7.2.4) and (7.2.3), observe that B satisfies Bµ =
08×8. Hence, with ω∗ defined in (5.5.1) and with C = 08×8, ω∗ =ωd . This can be
confirmed by observing the enlarged frequency plot at 90 sec in Figure 7.5, where
it is clear that ω∗ =ωd = 50 Hz.

However, concerning active power sharing, the pinning control (5.3.10) is not
able to correct deviations in active power sharing ratios, confirming the results
presented in Section 5.5.1. Nevertheless, in contrast to the DAI controller, the
weighted active powers do not diverge. See the weighted active power plot in
Figure 7.5 at 5 sec (droop control only) and 90 sec (droop and pinning controller),
wherein both the cases, an approximate maximum relative deviation of 42% can
be observed.

82



0 10 20 30 40 50 60 70 80 90 100

49.70
50.00

50.50

t [sec]

fr
eq

u
en

cy
in

H
z

ω∗ GFI 1 GFI 2 GFI 3

GFI 4 GFI 5 GFI 6 GFI 7

GFI 8

0 10 20 30 40 50 60 70 80 90 100

-1

2

5

t [sec]

w
ei
gh

te
d

ac
ti
ve

p
ow

er
in

p
u

88 90 92

49.90

50.00

50.10

88 90 92

0.5

1

1.5

2

3 5 8

0.5

1

1.5

2

Figure 7.5. Simulation result with droop control (5.3.1) (active from 0 sec) and
pinning control (5.3.10) (activated at 10 sec). Note that ω∗ converges exactly to
50 Hz. However, the the weighted active powers do not attain consensus. See the
zoom plots at 90 sec.

7.3 Distributed voltage control
In this section, the performance of the distributed voltage control (6.5.1) and its
operational compatibility with frequency droop control (4.5.1) is illustrated via
simulation. In essence, the system (4.4.1), (6.5.1), (4.5.1) is simulated.

The parallel microgrid used in the case study is shown in Figure 7.6, which was
simulated using MATLAB®/Simulink® and PLECS [125]. The parameters of the
simulated microgrid are given in Table 7.1. The power line connecting each DG
to the PCC is modeled as a dynamic π-model [1, 4, 89]. A small positive resistance
is also considered in the power line, see Table 7.1.
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VPCC

DG4DG3DG2DG1

IL

Figure 7.6. Parallel microgrid used in the simulation.

The frequency droop control (4.5.1) is employed at each inverter to control the
frequencies. For achieving steady-state active power sharing, droop coefficients
are selected as kPi = 1

SN
i

, i = 1,2,3,4 where SN
i is the nominal power rating given in

Table 7.1. Furthermore, the entries of the weighting matrix A = diag(ai ) required
in (6.5.1) are chosen as per ai = 1

SN
i

, for more details see the discussion below

Definition 3.3.2.

The communication topology used in the simulation is shown in Figure 7.7. Since
the PCC voltage is communicated only to DG1, the pinning gain matrix E takes the
form E = diag(e1,0,0,0) where e1 ∈ R>0 is a controller parameter. Furthermore,
the incidence matrix of the communication graph is fixed to

B =


1 0 0
−1 1 0
0 −1 1
0 0 −1

 ,

see Figure 7.7. For simplicity, it is assumed that the edge weights of the commu-
nication graph are equal to one, i.e., the edge weight matrix corresponding to

Table 7.1. Parameters of the simulated parallel MG.

Line parameters
Resistance = 1.2 mΩ/km, Reactance = 9.5 mΩ/km

DG number 1 2 3 4
Power rating SN

i (in pu) 1 0.5 0.33 0.25
Line length (km) to PCC 2 5 7 3
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DG1 DG2 DG3 DG4

PCC

Figure 7.7. Communication topology used to implement the distributed voltage
control (6.5.1).

Figure 7.7 reads W = I3. Thus, the Laplacian matrix L =BWB> used in (6.5.1)
writes as

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

One of the main objectives of this section is to find the controller parameters K
and E in (6.5.1) such that the conditions presented in Proposition 6.5.5 are satis-
fied. However, the conditions presented in Proposition 6.5.5 depend on the equi-
librium voltage vector V ∗, which–unfortunately–is unknown. Nonetheless, Corol-
lary 6.5.6 presents a sufficient condition for the feasibility of Proposition 6.5.5,
provided that an upper bound of V ∗ is known. The conditions presented in
Corollary 6.5.6 are solved using the optimization toolbox Yalmip [120] and the
solver Mosek [127] in MATLAB®/Simulink®. The tuning parameters σ,ζ,ξ, M and
R are selected such that the first condition in (6.5.16) is satisfied. Note that the
scalar % required in (6.5.27) is the upper bound of V ∗, i.e., (6.5.24). For solving
(6.5.27), % is set to %= 1.10 pu. The LMI (6.5.27) is solved with K and E as the free
parameters.

The LMI (6.5.27) was found to be feasible, yielding

K = diag(0.05,0.12,0.17,0.07),

E = diag(e1,0,0,0) with e1 = 0.08.
(7.3.1)

7.3.1 Case 1: Load jumps
In this section, IL connected at the PCC is simulated with load jumps. The corre-
sponding simulation result of the distributed voltage control (4.4.1), (6.5.1) with
the frequency droop control (4.4.1), (4.5.1) is shown in Figure 7.8. Between 0
to 5 sec, DG voltages are set to V d = 1pu, see Remark 6.5.2. As a consequence,
before 5 sec, PCC voltage is deviated from V d

PCC = 1pu. See the enlarged voltage
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plot in Figure 7.8 before 5 sec. Furthermore, before 5 sec, it can be seen from the
weighted reactive power plot in Figure 7.8 that reactive power sharing is poor.

The distributed voltage controller (6.5.1) is activated at 5 sec. After this, the PCC
voltage converges quickly to 1pu, see the enlarged plot in Figure 7.8 at 15 sec.
Hence, (6.3.1), i.e., PCC voltage restoration. Furthermore, the weighted reactive
powers reach consensus, thereby confirming that the inverters share the load IL

in a proportional fashion, i.e., (6.3.2). Observe that the load jump starts at around
45 sec. After the load jump, PCC voltage regulation (see the enlarged plot at 70
sec) and reactive power sharing are re-established.

Furthermore, achieving PCC voltage regulation and reactive power sharing using
(6.5.2) does not disturb the active power sharing provided by the frequency droop
control (4.5.1), see the weighted active power plot in Figure 7.8, thus confirming
the operational compatibility of the distributed voltage controller with frequency
droop control.

7.3.2 Case 2: Continuously fluctuating load demand
In this section, a more realistic load profile provided by an industrial partner is
used to simulate variations in IL . The simulation output is given in Figure 7.9.

Similar to the previous case, frequency droop control (4.5.1) is active from 0
sec and the distributed voltage controller (6.5.1) is activated at 5 sec. From the
enlarged voltage plots (at 15 sec and 70 sec) in Figure 7.9, it can be seen that the
PCC voltage has converged to V d

PCC = 1pu. Furthermore, the weighted reactive
powers reach a consensus soon after 5 sec and are undisturbed throughout the
simulation time of 100 sec. Similar to the case of load jumps, the distributed
voltage controller does not affect active power sharing provided by frequency
droop control. See the weighted active power plot in Figure 7.9.
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Figure 7.8. Load steps: Simulation output with the frequency droop control
(4.4.1), (4.5.1) (active from 0 sec) and the distributed voltage control (4.4.1),
(6.5.1)(activated at 5 sec). The PCC voltage is restored to V d

PCC = 1 pu, see the
enlarged voltage plots at 15 sec and 70 sec. The weighted reactive powers achieve
consensus soon after 5 sec, without disturbing the active power sharing provided
by the frequency droop control.
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Figure 7.9. Continuously fluctuating load demand: Simulation output with the
frequency droop control (4.4.1), (4.5.1) (active from 0 sec) and the distributed
voltage control (4.4.1), (6.5.1) (activated at 5 sec). The PCC voltage is restored to
V d

PCC = 1 pu, see the enlarged voltage plots at 15 sec and 70 sec. The weighted
reactive powers achieve consensus soon after 5 sec, without disturbing the active
power sharing provided by the frequency droop control.
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7.4 Summary
In this chapter, via simulation, robustness and performance of the control ap-
proaches presented in Chapter 5 and Chapter 6 towards modeling errors and
disturbances have been studied.

For the considered case, the tuning criterion presented in Chapter 5 was found
to be feasible, confirming asymptotic convergence of the closed-loop system’s
trajectories with the GDAI control to a desired synchronized motion. Furthermore,
the GDAI control performance has been compared with that of the DAI and the
pinning control, confirming the results from Chapter 5 regarding steady-state
performance of distributed frequency controllers in the presence of clock drifts.

In the second part of this chapter, the distributed voltage controller proposed in
Chapter 6 has been simulated together with the frequency droop control. The
tuning criterion presented in Chapter 6 has been used to select the parameters
of the distributed voltage controller. The proposed controller’s performance has
been tested in the presence of small line resistances and load disturbances. The
simulation results were found to be satisfactory.
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Chapter 8

Discussion and conclusion

8.1 Summary
Microgrids represent a promising solution to integrate RESs efficiently into the
modern power grid. In this thesis, the concept of a microgrid has been introduced
in Chapter 3. Then some of the important challenges in controlling a microgrid
have been recalled in Chapter 3. In this work, some significant control prob-
lems in an inverter-based islanded microgrid have been addressed, namely: (1)
accurate network frequency restoration, (2) active power sharing, (3) load/PCC
voltage regulation, (4) reactive power sharing and (5) voltage stability. Clock drift
is a non-negligible parameter uncertainty observed in microgrids, which has an
adverse effect on the steady-state performance of primary and secondary fre-
quency control. Thus, the first two objectives mentioned above were investigated
in the presence of clock drifts. These results have been summarized in Chapter 5.
The last three control problems mentioned above were studied in the case of a
microgrid with parallel-connected inverters, i.e., a parallel microgrid, which is
a commonly encountered microgrid application. The observations and results
regarding voltage control have been presented in Chapter 6.

In Chapter 4, it has been shown that the steady-state active power sharing pro-
vided by the standard frequency droop control is disturbed in the presence of
clock drifts. Similarly, it has been observed that the secondary frequency control
is also negatively affected by the presence of clock drifts. Inspired by this issue,
in Chapter 5, the steady-state performance of various distributed secondary fre-
quency controllers has been compared based on whether they achieve accurate
network frequency restoration and active power sharing in the presence of clock
drifts. These secondary controllers assume that the standard frequency droop
control is active at the primary control layer.
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For the comparative study, a general distributed secondary control representation
has been proposed. This representation can be cast into some of the typically
used distributed secondary frequency controllers like the DAI control [32, 51],
the pinning control [40], and many more. Based on the proposed general con-
trol representation, necessary and sufficient conditions for accurate frequency
restoration and active power sharing have been derived with explicit considera-
tion of clock drifts. The DAI controller was found to be not satisfying any of the
derived conditions. However, the pinning controller seems to achieve accurate
frequency restoration, but not active power sharing. As a consequence of the
observations thus far, a novel secondary frequency control, termed as the gen-
eralized distributed averaging integral (GDAI) control, has been proposed. The
GDAI control achieves the aforementioned control objectives in the presence
of clock drifts. The second part of Chapter 5 was focused on how to choose the
parameters of the GDAI control such that the closed-loop system trajectories con-
verge asymptotically to a desired synchronized motion. In this regard, a tuning
criterion, in the form of a set of LMIs, has been derived, which renders robust
stability in the presence of unknown-bounded clock drift values.

In Chapter 6, the problem of voltage control in parallel microgrids has been inves-
tigated. More precisely, two practically important control objectives of accurate
reactive power sharing and voltage restoration at a joint load (at the PCC) in case
of a lossless inverter-based parallel microgrid has been investigated in detail. At
first, the existence and uniqueness properties of a positive voltage solution satis-
fying the non-linear algebraic equations corresponding to the above-mentioned
objectives have been established. Later, a distributed voltage controller, which at
steady-state yields this unique voltage solution, has been proposed. In the second
part of Chapter 6, a stability criterion that guarantees asymptotic convergence of
solutions of the proposed distributed controller to the desired unique voltage so-
lution has been derived. As it was found that the stability criterion depends on the
voltage equilibrium, a numerically verifiable condition to choose the parameters
of the proposed controller has also been derived.

To validate the results and to check whether the presented control approaches
work well in the presence of typical modeling uncertainties and disturbances,
results from Chapter 5 and Chapter 6 have been extensively tested via simulation
in Chapter 7. The tuning criteria derived in Chapter 5 and Chapter 6 were found
to be feasible. Furthermore, the GDAI control proposed in Chapter 5 and the
distributed voltage control presented in Chapter 6 were found to be working
satisfactorily in the presence of (small) line resistances and load variations.
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8.2 Discussion
Generally, distributed secondary frequency controllers achieve network frequency
restoration in a fair manner [26]. Steady-state active power sharing is a nice
property of such controllers [51, 110]. However, in the presence of clock drifts, the
commonly employed distributed frequency controllers fail to achieve accurate
network frequency restoration and active power sharing. Thus, a novel control
approach termed as the generalized distributed averaging integral (GDAI) control
has been proposed to address these issues in the presence of clock drifts. The
GDAI control is similar to the pinning control [13, Equation 47] (see also (5.3.10))
and the DAI control [32, Equation 6] (see also (5.3.9)) with the difference that
together with the mandatory secondary control input, internal frequency of an
inverter should also be communicated with its neighbors, see (5.6.2). In practice,
communicating such an extra signal is not an issue, since the topology used in
the GDAI control to communicate internal frequencies is the same as that used
for communicating secondary control inputs. More precisely, the two Laplacian
matrices used in (5.6.2) are the same. Furthermore, the GDAI control only requires
that a few grid-forming inverters (at least one) need an accurate clock, see (5.6.2).
This avoids the requirement of a central unit communicating the global/accurate
time signal to all the grid-forming inverters connected in the network.

The distributed voltage control presented in Chapter 6 also requires a–sparsely–
connected communication network for its operation. Furthermore, in a parallel
microgrid setting, it is often the case that grid-forming inverters require PCC
voltage information for regulating the PCC voltage amplitude to the nominal
value. In this regard, the proposed distributed voltage control (6.5.1) does not
require that the PCC voltage be communicated to all the grid-forming inverters
connected in the parallel microgrid, hence avoiding an undesired one-to-all
communication setup. This is a direct implication of the assumption that the
controller parameter E used in (6.5.1) is a sparse diagonal positive semi-definite
matrix.

In summary, various frequency and voltage control objectives in islanded mi-
crogrids have been investigated in this thesis. The proposed frequency control
solution accomplishes two important control objectives in an inverter-based mi-
crogrid in the presence of clock drifts. The voltage control solution presented in
this thesis addresses three crucial control challenges in a microgrid with parallel-
connected inverters.
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CHAPTER 8. DISCUSSION AND CONCLUSION

8.3 Future research directions
In this section, some possible extensions to this work are outlined.

Similar to any distributed control approach, the GDAI control proposed in Chap-
ter 5 also requires a–sparse–communication network for its operation. As a
consequence, it is also prone to issues like communication delay and denial of
service (DoS). Robustness of the DAI controller towards the above issues has
been recently investigated in [36, 65, 67]. Thus, inspired by [36, 65, 67], a possible
extension would be to explore the same with GDAI control. Another exciting ex-
tension to the results presented in Chapter 5 is to quantify the robustness of GDAI
control towards exogenous disturbances, e.g., by calculating the L2 gain [50]. This
problem has been explored in the case of the DAI control in [65]. In practice, such
undesired external disturbances are widespread, and hence, the aforementioned
study is very relevant. Furthermore, extending the stability analysis presented
in Chapter 5 to variable voltage amplitudes [30] is interesting. Another intrigu-
ing idea is to design the GDAI control for microgrids with constant power loads,
yielding a differential algebraic system. See, e.g. [25, 110], where the case of the
DAI control with constant power loads has been explored.

Regarding Chapter 6, an immediate extension would be investigate existence
and uniqueness properties of voltage solution satisfying reactive power sharing
and PCC voltage regulation with respect to a constant power load, or even a
ZIP1 load model. The next interesting step would be to design a distributed
voltage controller which drives the system equations to the unique solution
asymptotically.

Another idea would be to consider more than one parallel microgrid. Such a
setting is especially relevant when it comes to a big battery power plant, where
many inverter-interfaced batteries are present. More precisely, let there be m > 1
parallel microgrids and each parallel microgrid has n > 1 inverters connected in
parallel to a load bus. The load bus of a parallel microgrid is connected to the
load bus of another parallel microgrid through a power line. In such a setting,
designing voltage controllers such that voltage amplitudes at m number of load
buses are regulated, and at the same time, the reactive power demand of the
system loads is shared fairly between n ×m number of inverters is a vital control
objective.

In a similar spirit to that of a bunch of parallel microgrids, consider an inverter-
based microgrid with arbitrary topology. In such a meshed microgrid, often the

1ZIP stands for constant impedance/current/power, see [5, Chapter 3], [100, Chapter 3].
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load buses and the inverter buses are different, see for example the benchmark
grid presented in [128]. Furthermore, apart from normal loads, it is often the
case that there are critical (high-priority) loads also connected in a microgrid.
Recall that grid-forming inverters are responsible for controlling such a network
to maintain a stable voltage equilibrium, achieve reactive power sharing, and
restore voltage amplitudes at the critical loads to the desired nominal value. The
latter objective is fundamental because the loads are designed to work near their
nominal voltage value, and it is mostly the case that the loads are not controllable,
e.g. ZIP loads. Therefore, designing a distributed voltage controller at each grid-
forming inverter such that reactive power sharing, critical load voltage regulation,
and voltage stability are ensured is interesting–albeit challenging–problem.

It is worthwhile to note that the system equations coupling reactive power and
voltage amplitudes in the case of a lossless meshed AC microgrid2 (see e.g., [24])
is exactly the same as that of a meshed DC microgrid (see e.g., [121]) by replacing
reactive power with active power (or simply power) and line susceptances with
line conductances. Hence, the idea mentioned above for AC microgrids can
be extended to DC microgrids as well. Another interesting, but challenging,
extension would be to combine the results in Chapter 5 and Chapter 6, i.e., a
coupled distributed frequency and voltage control. Finally, exploring the results
in Chapter 5 and Chapter 6 with consideration of power lines with mixed R/X
(resistance/inductive reactance) ratio is also interesting.

In conclusion, there are many intriguing and challenging open problems re-
garding the control of an islanded microgrid. The author hopes that the work
presented in this thesis helps to address at least some of these problems.

2Under the decoupling assumption, see Assumption 6.2.1.
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identification and design of distributed integral ac-
tion in power networks,” in American Control Con-
ference (ACC), 2016, pp. 5921 – 5926.

[65] S. Alghamdi, J. Schiffer, and E. Fridman, “Dis-
tributed secondary frequency control design for mi-
crogrids: Trading off l2-gain performance and com-
munication efforts under time-varying delays,” in
European Control Conference, 2018.

[66] S. Alghamdi, J. Schiffer, and E. Fridman, “Synthesiz-
ing sparse and delay-robust distributed secondary
frequency controllers for microgrids,” IEEE Transac-
tions on Control Systems Technology, 2019.

[67] E. Weitenberg, C. D. Persis, and N. Monshizadeh,
“Exponential convergence under distributed averag-
ing integral frequency control,” Automatica, vol. 98,
pp. 103–113, Dec. 2018.

[68] C. D. Persis and P. Tesi, “Input-to-state stabilizing
control under denial-of-service,” IEEE Transactions
on Automatic Control, vol. 60, no. 11, Nov. 2015.

[69] F. Dörfler, M. R. Jovanović, M. Chertkov, and F. Bullo,
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