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Abstract

The present thesis studies multiphase models for complex fluids - in particular for concentrated
suspensions. The subject is introduced by the derivation of a new thin-film model for the
simulation of a drying front on a substrate. The proposed model has two main weaknesses: The
mechanism of particle transport is not derived from the rheology of the fluid, but is hypothesized.
And the model is not able to capture the behavior of the fluid in dry as well as in fluid regions,
which are both present in a drying front.

This motivates the proposal of a new Eulerian-Eulerian multiphase model, that models the mass
and momentum conservation of the liquid and solids separately. It is applied to plane Poiseuille
flow, which allows the derivation of an exact analytic solution and shows a novel viscoplastic
behavior of the multiphase model. Then, we derive a particle transport mechanism for viscoplastic
fluids through the usage of asymptotic techniques. The stability of the multiphase model is
analyzed using the method of normal modes, which allows us to find a previously unknown
necessary criterion for well-posedness of the model. Additionally, we identify transient growing
modes.

Then, the study of stability is redone using a new derivation of the multiphase model based
on energetic principles. This allows for the systematic derivation of consistent free-boundary
conditions and a generalization of the necessary criterion for well-posedness of the model to
general flows.

Since the multiphase model is reducible to viscoplastic thin-film models, an alternative derivation
for a known model is given that is based on a variational inequality framework. The existence of
solutions for a particular model is proven using monotonicity methods.

Finally, the multiphase model is systematically analyzed for contained simpler models. In
particular, a thin-film model with additional transport mechanism for the particles is derived
from multiphase models. This shows how constitutive laws for the rheology of the multiphase
model influence the transport mechanisms in thin-film models. Additionally, an assumption is
given under which the multiphase model allows the derivation of a viscoplastic thin-film model.

In conclusion the following new scientific findings are part of the present thesis:

e A new multiphase model with viscoplastic properties is proposed
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The derivation of a new drift-flux equation for viscoplastic media is given

Analysis of instabilities of the multiphase model and identification of a new necessary
condition for well-posedness

Proposal of energetic derivations of multiphase models, that allows for the identification of
consistent free-boundary conditions

Alternative derivation of a viscoplastic thin-film model through formulation as a variational
inequality and proof of existence of solution for a regularized model is given

Systematic reduction of the multiphase model to thin-film models and presentation of newly
found connections between constitutive laws in multiphase and thin-film models



Zusammenfassung

Die vorliegende Arbeit beschéaftigt sich mit Multiphasenmodellen fiir komplexe Fliissigkeiten,
insbesondere mit Modellen fiir konzentrierte Suspensionen. Die Motivation ist gegeben durch die
Herleitung eines neuen Diinnfilmmodells fiir eine Trocknungsfront auf einem Substrat. Das neue
Modell hat den Nachteil, dass der genaue Transportmechanismus von Partikeln in der Suspension
gemutmafit wird und sich nicht aus der Rheologie der untersuchten Fliissigkeit herleiten lasst.
Des Weiteren sind bei Trocknungsproblemen immer fliissige und trockene Gebiete vorhanden, so
dass ein viskoplastisches Modell zu bevorzugen ist, dass beide Zustande simulieren kann.

Zur Losung dieser Probleme wird ein neuartiges Euler-Euler-Multiphasenmodell vorgeschlagen,
das die Massen- und Impulserhaltung der Fliissigkeit und der Partikel getrennt voneinander
betrachtet. Dieses Modell beschreibt ein viskoplastisches Verhalten, was anhand der Herleitung
einer exakten Losung fiir die flache Poiseuille-Stromung gezeigt wird. Wir leiten anschliefend
mittels asymptotischer Methoden eine Gleichung fiir den Transport von Partikel in einer visko-
plastischen Rheologie her. Danach wird die Stabilitdt des Multiphasenmodells in gescherten
Stromungen untersucht. Wir finden eine vorher unbekannte notwendige Stabilitatsbedingung fiir
Multiphasenmodelle und identifizieren Moden mit transientem Wachstum bei den betrachteten
Stromungen.

Die Stabilitat wird anschlieend noch einmal fiir allgemeine Stromungen untersucht, indem das
Modell aus energetischen Prinzipien neu hergeleitet wird. Dies erlaubt zusétzlich die Herleitung
einer mit der Massenerhaltung konsistenten freien Randbedingung.

Da es eine direkte Verbindung zwischen einem viskoplastischen Diinnfilmmodell und unserem
Multiphasenmodell gibt, geben wir eine alternative Herleitung des Dunnfilmmodells mittels
Diinnfilmn&herung einer variationellen Ungleichung an. Es schlief3t sich ein Existenzbeweis fiir
eine regularisierte Losung des Diinnfilmmodells mit Monotoniemethoden an.

Zum Schluss wird das Multiphasemodell auf enthaltene Grenzmodelle mittels asymptotischen
Methoden untersucht. Dabei wird unter anderem ein Modell fiir flache Suspensionen aus dem
Multiphasenmodell hergeleitet, dass den Transportmechanismus direkt an die Rheologie der un-
tersuchten Fliissigkeit koppelt und eine neuartige Verbindung zwischen Multiphasenmodellierung
und Dinnfilmmodellierung erlaubt. Auflerdem wird eine Bedingung angegeben, die es erlaubt,
viskoplastische Diinnfilmmodelle aus dem Multiphasenmodell herzuleiten.

iii



iv

Zusammenfassend sind insbesondere die folgenden neuen wissenschaftlichen Erkenntnisse Teil
dieser Arbeit:

e Modellierung eines Multiphasenmodells mit viskoplastischer Rheologie
e Herleitung eines Transportmechanismus fiir Partikel in einem viskoplastischen Medium

e Stabilitdtsuntersuchung des neuen Multiphasenmodells und Identifizierung einer vorher
unbekannten notwendigen Stabilitdtsbedingung

e Neuartige energetische Herleitung von Multiphasenmodellen und Bestimmung von konsis-
tenten freien Randbedingungen

e Alternative Herleitung eines bekannten viskoplastischen Diinnfilmmodells mittels varia-
tioneller Ungleichung und Untersuchung auf Existenz von Losungen eines regularisierten
Modells

e Systematische Herleitung von einfacheren Modellen aus dem Multiphasenmodell, insbeson-
dere von Diinnfilmmodellen mit angeschlossenen Transportmechanismus von Partikeln, was
eine neuartige Verbindung zwischen Diinnfilmmodellen und Multiphasenmodellen aufzeigt
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Chapter 1

Introduction

The fundamental question leading to this thesis came to light in the University of Potsdam at
April the 11th, 2012. A discussion between colleagues from the experimental physics department
and our group came to the insight that during the production of organic solar cells a special
phenomenon can be observed: A so-called ”drying front” moves across the polymeric substrate
while being heated as part of the production process, but the experimentalists did not understand
the origin of this front and its consequences for the structuring of the solar cells. The modeling of
this ”toy problem” was given as a first assignment to us. The polymeric substrate can be modeled
as a suspension and we soon realized that concentrated suspensions are not well understood. This
thesis is meant to broaden the knowledge about macroscopic models for this class of suspensions
and multiphase flows in general.

Organic photovoltaics

Since the motivation for this thesis is a better understanding of the structuring steps of organic
photovoltaics (OPV), we first sketch the working principle and production steps of an organic
solar cell, then we proceed with the idea of thermal annealing and the occurrence of a horizontal
drying front and its possible implication for the final morphology of the cell. We will see that the
concept of concentrated suspensions is important for this industrial application. This section is
just intended as a motivational introduction into the subject and by no means a complete review
of the material. For surveys of OPV see e.g. [54, 90] and the references cited therein.

Traditionally, solar cells consist of two semiconductor metalloid materials - a negatively charged
n-type and a positively charged p-type material. At the boundary between these materials an
electronic potential forms. If light is emitted on the solar cell, an electron and a positively charged
hole forms and diffuses through the material. If they encounter the potential, only one of the two
is able to pass. Thus, this process separates charges, which can then be collected at opposite sides
of the device [94]. Nowadays, most solar cells consist of crystalline or amorphous silicon (c/a-Si),
copper indium gallium selenide (CIGS) or Cadmium telluride (CdTe), but materials evolve fast
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and new semiconductors are coming into the market, cf. [106]. However, all these materials have
the disadvantage, that their production is highly energy demanding and after their lifetime the
materials become special waste.

A possible alternative to semiconductor materials are organic solar cells, which do not possess
these particular disadvantages, but currently lack efficiency and suffer under a limited lifetime
[90]. Organic materials with conjugated atom bonds can be excited using UV light into emitting a
closely bonded positive and negative charge - so-called excitons [54]. Nevertheless, these excitons
can recombine very fast, losing their ability to produce a free charge, unless they encounter an
interface of an electron rich (donor) and an electron poor (acceptor) material, where the bond
breaks up and creates a free negative charged electron and positive charged hole. Hence, OPV
are usually a blend of at least two materials. A common mixture is poly(3-hexylthiophene-2,5-
diyl): [6,6]-phenyl-C61-butyric acid methyl ester (PSHT:PCBM), where PCBM is the donor and
P3HT is the acceptor material [90]. On the one side the mixture must be thoroughly mixed since
the average diffusion length before recombination of an exciton is just between 5 to 10 nm. On the
other side, free electrons have a higher possibility of recombining with positive charges when the
intermixing of both layers is too strong, as they have a higher chance of encountering a positive
charge near an interface on their way to the surface of the OPV, where the electric circuit is
attached. This race between length scales requires a tightly controlled structuring process.

Unfortunately, the production of an organic solar cell is by no means as simple as just mixing the
two polymers. It is a procedure consisting of several steps. Figure 1.1 shows the most important

Mixing Spin coating Heating Drying front Finished compound

H:>qohz>§?z>®:>.
4 1 1 1

B Polymer 1 M Polymer 2 MSolvent1 = Solvent 2

Figure 1.1: The first step in the production is to mix the donor and acceptor materials together
with one or more solvents and possibly surfactants in order to get a liquid solution. Next, this
solution is put into a spin-coating device in order to produce a flat film. Depending on the used
solvents the solution is still wet after spin coating, so it is thermally annealed by putting it
on a heater, which evaporates most of the remaining solvents and crystallizes a portion of the
molecules. The final step is the back and front contacting as well as sealing of the dried, thin solar
cell. The bar charts at the bottom of the figure represent the amount of polymer and solvents
contained in the corresponding production step.



production steps for the structuring of the substrate.

The process of thermal annealing refers to an application of heat to an unfinished OPV as part
of the production. Experiments showed the thermal annealing step changes the morphology
of the OPV depending on the time, temperatures and amount as well as the kind of solvents
used [8, 71, 108]. In case one uses solvents with high evaporation temperatures, the annealing
evaporates the solvents creating a horizontal drying front, which could potentially reorder the
molecules. If the annealing continues after evaporation stops, the material starts to form larger
uniform domains due to spinodal decomposition, which can result in crystallization [35, 90].

As the liquid solutions used in the production consist of polymers and solvents, they are part of
the larger class of complex fluids and in particular concentrated suspensions. Therefore, we study
the behavior of this class of fluids for simple flow cases in order to create new insights into this
highly complicated production process.

The process of drying

{ = Evaporation
—> = Liquid flow direction

--- = Boundary Line
= Particle

== Air

= = Liquid

(1 (1-2)(2)(2-3)  (3) (3-4) (4)

Figure 1.2: Shown is a horizontal drying front due to evaporation of liquid and its regions. Region
(1) contains a dilute suspension with properties similar to a simple fluid. Over time evaporation
concentrates the particles until jamming takes place as seen in region (2). Further evaporation
creates a randomly ordered structure of particles in region (3). The evaporation over (3) sucks
water from the liquid regions due to capillary forces and creates a superficial liquid flow into the
densely packed regions. If capillary forces balance the pressure gradient by the superficial liquid
flow, evaporation decreases the level of liquid between the particles as in region (3-4) until most
of the liquid is evaporated and only a solid remains, see region (4). Depending on the material
and thickness of the final film, cracks of the solid can appear in region (4).

We just described the significance of the process of drying for organic photovoltaics. Under
the process of drying we understand the evaporation of fluid from a suspension, such that only
a solid remains. Drying is not a simple transformation from a fluid to a solid, but undergoes
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several regions in the process [28, 78, 110]. Figure 1.2 shows there are pure liquid, pure solid and
intermediate regions with a complex dynamic between each other.

Li et al. [78] studied a horizontal drying front in more detail. They identified the main regions as
described in Figure 1.2. These regions are an apparent fluid region, a jammed region, a densely
packed region containing fluids and a dry solid. They found that the number of particles at a point
in space is conserved throughout the drying process, which is in contrast to the coffee-stain-effect
of a droplet by Deegan et al. [28], where particles are suck into a small region at the edge of
the drop. In contrast to the coffee-stain-effect, they further concluded that the particles are not
moving with the directed flow of liquid. As they have used mono-dispersed colloids of one kind in
their experiments, they could not study a possible vertical structuring. Another known effect is
that of a stick-slip motion of the drying front as described by Goehring et al. [48]. They found
that the drying process shows three distinct fronts. A leading and a trailing solidification front as
well as a cracking front [48]. The stick-slip motion describes an advancement of the leading front,
while the trailing front sticks to its position, followed by a sudden movement of the trailing front
until it sticks again [48].

The appearance of solid, liquid and intermediate regions in experiments motivated us to study
viscoplastic models, which are able to represent solid and liquid behavior, in order to describe the
process of drying. However, we first define standard models for suspensions, which do not possess
viscoplastic stresses as it allows us to show shortcomings of the traditional models.

1.1 Simple fluids and suspensions

Fluids are omnipresent in our world. Living cells are not possible without water and humans are
in need of a constant air supply in order to synthesize adenosine triphosphate - the cell’s main
energy resource. Our daily electric energy consumption would not be possible without fluids like
oil, methane or hydrogen.

Although fluids are omnipresent, it is rather hard to define them exactly. A common definition
of a simple fluid is twofold: Firstly, it must be a continuum; and secondly, it cannot withstand
tangential forces [10, 114]. Nevertheless, some materials are also classified as fluids, although
they do not fully comply with this definition of a simple fluid, but rather behave sometimes like
solids and sometimes like simple fluids. An example for this behavior are viscoplastic fluids, that
contain a solid/fluid transition. This transition happens at the yield stress, which marks the
stress at which the fluid first starts to deform continuously [6]. We define as fluid the set of all
simple fluids together with viscoplastic fluids.

What is a complex fluid and a suspension?

This and the following chapters contain formulas, which adhere to a uniform notation. Symbols
and notations are introduced at the location of their first appearance and reused in the later parts
of this thesis. A scalar quantity is denoted by a lower case letter, a vector quantity by a bold
lower case letter and a tensorial quantity by a bold uppercase letter or a bold greek letter, e.g.

a€R, b:R" - R,
ceR", d:R" - R™,
E € R™™, @R — R™™,
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We denote the unit tensor by I and define the norm for symmetric tensors as

1
A= 1/-A: A
2

We use the shorthand notation 9, f = % for the partial derivative by a and define the nabla-
operator V applied to functions f : R™ — R or g : R® — R"™, respectively, as

Vf = grad(f), V- g =div(g),

where grad(-) and div(-) denote the usual gradient and divergence operators. In two-dimensional
Cartesian coordinates, i.e. n = 2, the nabla-operator can be represented as the vector

v= ()

In order to understand a complex fluid, we first have to define the terms stress, pressure and
shear rate. Stress describes the amount of force acting on a surface of a volume element of fluid
[10]. Its origin is in the short range interacting forces between fluid particles. Generally, the
stress o is split up into a volume changing part, the so-called pressure 7, which has non-zero
trace and a deforming part, the so-called deviatoric stress tensor T [10]

and the usual vector operations hold.

oc=T1+m. (1.1.1)
For most fluids the pressure is uniform in every direction, also called isotropic, so that
w =pl. (1.1.2)

However, some fluids - like suspensions - might have a preferred direction, which is called
anisotropic and has a pressure of the form

1 0 0
a=p|0 X O],
0 0 A3

where A2, A3 > 0, see e.g. [88]. We do not model anisotropic effects in this thesis, but we sometimes
refer to models that include such effects. The shear rate describes the spatial change of the fluid
velocity. For simple fluids we define it as

2
A =Vu + (Vu)! - g(V-u)I. (1.1.3)
This is equal to the so-called strain rate in case of incompressible fluids, for a definition see (1.1.8)

and [10]. A fluid with a proportional relationship between the deviatoric stress and the shear
rate, i.e.

T = 1y, (1.1.4)
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is called a Newtonian fluid, where the positive constant of proportion p is called dynamic viscosity
and has physical dimension of kgm™'s™!. Alternatively, some applications use a proportionality
factor that is divided by the density of the fluid, which is called kinematic viscosity and has
dimensions m?s~!. If the dimension of the proportionality factor are not central to the given
arguments, we refer to either of them as wviscosity.

A complex fluid is a fluid that is not a Newtonian fluid. Thus, a complex fluid has a non-
proportional relationship between their deviatoric stress and shear rate, and is sometimes also
referred to as non-Newtonian fluid or non-linear fluid [72].

Newtonian fluids are most often mono-molecular with small molecular weight. Water is a good'
example of a Newtonian fluid. On the other side, fluids consisting of long polymers or different
substances are often complex fluids. A simple example of a stress-relation in a complex fluid is

T =y,

with positive @ # 1. For « €]0, 1] and « > 1 they are respectively classified as shear-thinning and
shear-thickening fluids. Other classes of complex fluids are so-called viscoelastic fluids, whose
stress-shear-rate dependence contains a time dependence. In this work we study complex fluids of
viscoplastic type with a yield-stress 79 > 0. The simplest stress-shear-rate relation of a viscoplastic
fluid is

T =y for |T| > 7o
¥=0 for |7| < 70,

which is also referred to as Bingham fluid. Figure 1.3 visualizes the different classes of fluids by
the shape of their shear stress as function depending on shear rate.

A special class of complex fluids are dispersions. Dispersions are generally of two or more
components that do mix, but not chemically react. Depending on the state of matter of the
components they are classified as emulsions (liquid-liquid), aerosol (gas-liquid), suspensions
(particles-liquid) or granulate (particles-gas). Suspensions are further classified depending on the
size of the dispersed particles. Dispersions consisting of large particles (greater 1 pm), that settle
in time under gravity are just named suspensions. A mixture with small particles (between 1 nm
and 1um) are called colloids as they are neutral buoyance, hence do not settle in experimental
time. Even smaller particles (smaller 1 nm) are called Brownian suspensions, as Brownian motion
becomes dominant.

Packing and jamming

In this thesis we are mainly interested in non-Brownian suspensions. As they are a mix of at
least two phases - one liquid and one solid phase - their rheology depends on the number of solids
relative to the amount of liquid in the mix. Therefore, we need a quantity that measures this
ratio.

Imaging a suspension consisting of n identical particles suspended in a liquid with a total volume
V. The amount of particles in the suspensions has an upper limit not only due to the volume of

1Water might also exhibit a non-linear behavior, but is considered to be Newtonian for most reasonable uses.
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3 T
——Newtonian fluid /

——Bingham fluid

ol shear thickening fluid
——shear thinning fluid
—yvield stress

A

Figure 1.3: Shown is the relation of shear stress as a function of shear rate. A simple linear curve
going through the origin describes a Newtonian fluid. Bingham fluids show also a linear shear
stress - shear rate curve, but do not start at the graph’s origin. The distance between the origin
and the start of the Bingham curve is the yield stress. Many non-Newtonian fluids show nonlinear
curves, which are either steepening or flatten with increasing shear rate and correspond to shear
thickening or shear thinning fluids, respectively.

a single particle, V}, relative to the total volume, i.e.
nV, <V, (1.1.5)

but also due to geometric constraints of the shape and ordering of particles. In order to describe
the volume concentration of particles it is handy to define the so-called volume fraction, ¢, as

",

0=

(1.1.6)

We have ¢ € [0, ¢erit] with a maximum packing value of ¢eir = 1 due to condition (1.1.5). For
certain geometric shapes the maximum packing value is smaller. For example spherical particles
allow values of ¢¢iy =~ 0.63 in case of random packing and ¢y =~ 0.74 in case of close packing of
the particles [113].

Jamming describes a state of a suspension, at which the viscosity divergence due to particle
concentration reaching maximum packing and particles start to touch each other [80]. However,
a fluid is still able to flow past them and particles can still be packed even denser due to particle
deformation or repacking into different order. Jamming can occur for volume fractions as low
as ¢ =~ 0.3 up until closed packing. The relevance of jamming is, that suspensions start to show
properties of solids rather than liquids once they reach this state.



8 CHAPTER 1. INTRODUCTION

Single-phase models for fluids

In fluid mechanics, it is common to define the material derivative % as
D 0
Dt ot

where £ is some arbitrary quantity depending on time and space. Its physical interpretation is
a quantity changing in time and in the same moment being transported with the velocity w in
Eulerian frame [10].

A fluid’s mass, momentum and entropy conservation is described by the Navier-Stokes equations

1 Dp

- -V- 1.1.

Dt V- u, (1.1.7a)
Du

P i = V.o+pf,
DS 1

T— =%+ -V T 1.1.
Di + pV (kVT), (1.1.7b)

where p is the density, u the velocity,7 the stress, f external forces, S the entropy, k the thermal
conductivity, T' the temperature and ® the rate of dissipation of mechanical energy [10]. For
most practical considerations of slow moving fluids one assumes

Dp
— =0, 1.1.8
Dt ( )
which holds approximately true for most fluids in the case of slow motion, with small temperature
variations and small pressures.” Then, the mass conservation (1.1.7a) becomes the incompress-
wbility condition V - u = 0. It owes its name to the fact that after integration over any compact
volume (2 with a piecewise smooth boundary and using the divergence theorem, it yields

j{ u-nds =0, (1.1.9)
o0

where n denotes the unit normal pointing outwards of the surface. Equation (1.1.9) in turn implies
that the volume of fluid flowing in and out of €2 has to cancel each other out. An even stronger
assumption, we use throughout this thesis, is to consider the density to be constant, which directly
implies (1.1.8). Further, using equation (1.1.8) the entropy conservation (1.1.7b) decouples from
the other two equations. Thus, we receive the so-called incompressible Navier-Stokes equations
[10]

Vou=0, (1.1.10a)
DU _ G ypf (1.1.10D)
P e = of. 1.

2The terms ”slow” and ”small” are to be understood in dependence of the fluid under consideration. For most
practical applications water fulfills this incompressibility property although velocities and pressures can become
huge, whereas gases hardly ever fulfill this relation in real world applications.
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An incompressible Newtonian fluid with a Cauchy stress o of the form (1.1.1), (1.1.2), (1.1.4)
yields
V-u=0, (1.1.11a)
ou
p E‘F’U,-VU =pAu—-Vp+pf, (1.1.11b)

which is the most often encountered form of these equations.

The formulation of a PDE model is incomplete without stating appropriate boundary conditions.
Common choices for the incompressible Navier-Stokes equations (1.1.10b) are the so-called no-slip
condition

u=20
at solid boundaries and the stress condition
o-n=ogkn + Vgoy

at free-boundaries [10], where o is the surface tension, k the surface curvature and Vg the
surface gradient defined as

Vsf=IT—-non)Vf.

If the free-boundary is allowed to move, an additional boundary condition is needed, cf. Section
1.2

1.2 Modeling particle transport

The process of drying is a phenomenon dominated by the transport of particles and liquid. As
seen from the experiments presented before, particles are transported through convection and
conserved in the process. For a mix of n € N components the total density is defined as weighted
average of the individual component’s densities py, i.e.

p= Z kP
k=1

where ¢y, is the k-th component volume fraction. The dynamic of the total density is described
by (1.1.7a) and the k-th component fulfills the mass conservation [32]

O¢(Prpr) + V- (urpdrpr) = Sk, (1.2.1)

where Sy, is a possible sink or source term, e.g. due to chemical reactions between the components.
Now suppose we have just two components, liquid (f) and particles (s), that do not react and
have constant densities py and ps, then equations (1.2.1) can be rewritten as

8t¢f + V- (Uf(bf) =0, (1.2.2&)
Dy +V - (tsths) = 0. (1.2.2D)
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Since the volume fractions fulfill ¢, + ¢ = 1 it is sufficient to just consider (1.2.2b) and we define

¢ = os.

This shifts the problem of describing the particle transport into finding a suitable expression for
the particle velocity us. The conceptual problem with the modeling of u is to find expressions
that are consistent with the constitutive laws used in the total momentum equation (1.1.10b) for
the stress and force terms. There is an immense number of expressions in use for ug, for surveys
see e.g. [61, 82]. Most expressions are derived by conservation principles, where diffusive and
convective relations are left open in the form of free parameters, which are taken from experiments
and are specific to certain flow situations. We continue by stating some common expressions for
Us.

Drift flux model

Direct modeling of the particle velocity is rather cumbersome and it is typical to make a so-called
drift-flux ansatz, i.e. splitting the particle velocity u, into the volumetric velocity

n
v="> dru
k=1
and a drift term [60, 82], i.e.

Us =V + Uq.

Then, an expression for the drift velocity wg is formulated. As the volumetric velocity v is
divergence free, see sum of (1.2.2), the transport equation (1.2.2b) becomes

O + vV = =V - (uq9),

which shows the particles are undergoing convective transport with v but drift by ug - owing to
the name of the model, cf. [82]. It is not necessary to define a drift velocity for the liquid, i.e.

Uf =v+ Ugq,
since we can always use the relation

qbud + (1 — ¢)ufd =0.

For the case of neutral buoyance particles of a concentrated suspension Leighton et al. [76]
proposed a model for the drift velocity, which has been later applied to Couette and Poiseuille
flows by Phillips et al. [103]. They propose

ug = a’K.V - (¢V(7|¢)) +a’K,V - <7|¢>2;w> , (1.2.3)

where K. and K, are constants and a is the particle radius. The exact numbers for K. and K,
are still unknown, but it is assumed commonly that Ilgc = 0.66 [95]. Expression (1.2.3) has been

first derived by experimental method and scaling arguments by Leighton and Acrivos [76], but is
later claimed to be contained in multiphase formulations, see [95].
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Other flux models

Alternative approaches for the computation of the particle velocity do exist, see e.g. [82]. A
popular alternative is the algebraic-slip model, often abbreviated as ASM [61, 102] and the
diffusive model [82]. The basic idea of the diffusive model is to compute the momentum and mass
conservation equations for the mass-weighted mixture velocity of n phases, i.e.

w — > et POk
" ZZ=1 Prdk

and derive a term for the diffusive velocity up, i.e.
Ug = Uy +UD.
This yields an equation of the form
0o+ V- (dum) = =V - (¢up).

As up can itself depend on V¢, this might be called a diffusion equation. In order to get an
expression for up it is rewritten into a term containing the slip-velocity ug, that is defined as
the difference between fluid and particle velocity [61]

Us = Us + Ug.

Then, the slip velocity is computed using force balances yielding algebraic relations, see for
example [102]. This approach is referred to as algebraic-slip model. The ASM can be used for
flow problems, where the particles are relatively fast reaching a stationary velocity compared to
the time scale characterizing the general flow [82], i.e. the forces acting on the particles must
be in equilibrium [102]. However, this method is not currently suited for high concentrations of
particles or for non-Newtonian fluids near turbulence [82]. For equal and constant densities, we
have u,, = v and the diffusive and drift-flux model coincide.

Darcy’s law

As mentioned before, some solid materials allow fluid to pass through them under an applied
pressure gradient. This class of solids is often referred to as porous media [10]. In the case of
porous media the expression for the particle velocity is often trivially uws = 0. However, the
liquid’s momentum conservation has to be solved in a complicated domain, now. Avoiding this
difficulty, a common relation between the applied pressure and the flow through the porous media
under gravity is expressed by Darcy’s law as [10, 52]

ok
w=— (Vp+prgVy). (1.2.4)

where
U= Qruy (1.2.5)

is the seepage velocity and k is the permeability depending on size and shape of the particles
often given by the Kozeny-Carman relation [52] as

k_K?; (1.2.6)
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where K is a constant. This relation has been derived by experiment and averaging methods,
cf. [131]. Well-known modifications of Darcy’s law are due to Forchheimer [40] for the inertial
regime and due to Brinkman [18] for better accounting of viscosity effects.

Stress relations for particle transport

Experimental results dictate that the viscosity of a suspension should depend on the amount of
particles it contains. Thus, the stress strain relation (1.1.4) is not adequate for complex fluids.
For most parts, this thesis deals with suspensions. Therefore, we list the two most common forms
of the stress-strain relations for suspensions.

A common stress-strain relation for dilute suspensions of ¢ < 0.02 [10] has been proposed by
Einstein (cf. [37] and its correction [38]) as

Tu(lJrgqb)‘y.

Higher order corrections are also known [113]. For the opposite case of highly concentrated
suspensions a common choice is due to Krieger and Dougherty [72, 113]

é — i Perit
_— <1 _ ) 4 (1.2.7)
¢crit

where ¢t 18 the maximum packing coefficient and p; is the intrinsic viscosity. In the case of
spheres it is set as p; = 5/2, and we retrieve Einstein’s limit for dilute suspensions as a first order
Taylor approximation of (1.2.7).

These two choices by Einstein and Krieger-Dougherty are not exhaustive, see [72, 113] for further
proposals, which might also include normal stress differences, elasticity, shear-thinning and
shear-thickening effects.

Mass conservation at a free boundary

Whenever there is a moving free-boundary in our model, there is need for a boundary condition
guaranteeing mass-conservation. Therefore, we define the evaporative mass flux of a quantity &
over the interface as [96, 97]

Je = (pf(ug —u;) + wg) ‘n, (1.2.8)

where u¢ is the velocity of phase £, w, are non-advective fluxes and wu; the interface velocity,
respectively. This equation is commonly referred to as kinematic boundary condition.

For two-dimensional thin-film models (cf. Section 1.3), using the free boundary h(t, x), the normal
interface velocity can be written as

Oih

1+ (0,h)2

u; -nN =
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Then, the total mass conservation can be expressed using equation (1.2.8) and setting w = 0 and
& =1 (as well as dropping the subscripts for total quantities) as

{_(u ). (~0:h,1) o
p T T4 (00?2 1+ (0.h)?

at y = h(t,x).

In case of asymptotic methods or linearizations, we use the Landau order symbols O and o, which
are defined as [30]

f=0(g) fore >0+ & 3FEC>0:|f(e) <klgle)|for0<e<C

and

In order to denote comparable orders in asymptotic expressions, we define
f~g = [f=0(g) and g=0(f).

Note that for thin-film models, we have

VIt (0:0)2 =1+ 0(e),

with € > 0 very small, so typically the thin-film kinematic boundary condition is approximated
by the equation

ﬁth—l—u&ph—v:—% at y = h(t, z).

In case of no-slip boundary conditions at y = 0, usage of the incompressibility condition (1.1.10a)

gives

J(t,x)
P

h(t,x)
Och(t, z) + 6,;/ u(t,z,y)dy = — (1.2.9)
0

Counsidering £ = ¢, we can express the mass conservation of individual phases. Using equation
(1.2.8) and choosing the phase velocity equal to the total velocity ue = u; the non-advective
fluxes as diffusive flux wy = —pDV¢ and neglecting evaporation Jy = 0, we get

0= (¢(u ~ ) — DV¢) ‘n
and for thin-film models
@Oth = —0,h(ugp — DOy@) + vp — DOy at y = h(t, x), (1.2.10)

where D > 0 is some diffusion coefficient and D0d, ¢ is often of higher order in €, so that this term
is neglected, see e.g. [111].
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1.3 Thin-film models

In order to understand a fluid in an arbitrary geometry we have to consider the full set of
Navier-Stokes equations (1.1.10). Unfortunately, there is no analytic solution to the Navier-Stokes
equations known and a numerical computation - if possible - is harder to analyze. However, we
can reduce the full set of equations to simpler formulations for special geometries. One particular
case is the thin-film approzimation’, which is applicable to fluids with asymmetric shape, where
the size in one direction is much smaller than in the others directions. A typical example is the
sessile drop, whose height Y is much smaller than its length X, see Figure 1.4. The literature for
thin-film approximations is extensive, see e.g. [4, 24, 97] and the references therein.

1.

T

X

Figure 1.4: Geometry of a sessile drop allowing for a thin-film approximation, since the typical
height scale Y is much smaller than the typical length scale X, so that the ratio X/Y is an
asymptotically small number. The final equations of a thin-film model are formulated in terms of
the free-boundary h(t,z).

Derivation

The thin-film approximation is derived by first nondimensionalizing the Navier-Stokes equation
and then using an asymptotic expansion ansatz in terms of a small parameter €. We continue by
showing the derivation for the two-dimensional Cartesian case. For a Newtonian incompressible
fluid the two-dimensional Navier-Stokes equations in Cartesian coordinates are, cf. (1.1.11),

Ozu + Oyv = 0,
p(Ovu 4+ udpu + vOyu) = —0zp + U(Ogatt + Oyyu) + pfi,
p(04v 4+ v + v0yv) = —0yp + P(Ozzv + Oyyv) + pfa,

where we assume f1, fo to be constants. Boundary conditions are the no-slip conditions at the
substrate

u=v=0 aty=0, (1.3.1a)

30ther common names are lubrication approximation and long-wave approximation.
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and stress-conditions at the free-boundary h(t, z), i.e.

n-(—pI+7)- n=mny aty=h(zt),
t-(—pI+71) n=ty aty=h(z,t),

15

(1.3.1b)
(1.3.1¢c)

where 7y and tg are the applied normal and shear stresses, respectively. Since we allow the
free-boundary to move, we also demand the kinematic boundary condition (1.2.9) to hold at

y = h(z,t). We make the nondimensionalization ansatz

r =Xz, y=Y7, t =Ti, €=

uw="Ua, v=V0d, p = Pp, h=Yh.

Dropping the hats and rearranging, the continuum equation yields
U
ey 0sutOyv=0.

The incompressibility condition (1.3.2) suggests a choice of

V=eU

(1.3.2)

for the velocity scales. For the time and pressure scales we have multiple options to choose from
depending on what the dominant driving force in our model is. For negligible inertial terms a

common choice is [24, 97]

X UXp
T== P= .
U’ Y2

Applying these scales to the momentum equations and rearranging, it gives

eRe(Opu + ud,u + voyu) = —0,p + 20t + Oyyu + F1,
s?’Re(ﬁtv + u0,v + vOyv) = —0yp + 20,0 + ezﬁyy’u + Fy,

where we have introduced the non-dimensional forces

Y2 Y?
R="r, P =l

,LLU f23

and the Reynolds number
_ pUY

Re ,
1

which represents the ratio of inertial and viscous forces. Making an expansion ansatz of the form

u = ug + ure + uge® + O(e®)
v = vy + vie + voe? + O(?)
p=po+ pie + p2c” + O(e°)
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and looking for leading order terms in ¢ yields

0= —0;p+ Oyyu+ Fi, (1.3.3)
0=- yp+ F27

where we have retained the force terms as they might contain leading order contributions depending
on the considered forces. Doing the same procedure for (1.3.1), the leading order boundary
conditions are

u=v=0 at y =0,
—p:Ho aty:h,
Oyu=1Ty aty=h,

with the scalings to = e PTy and 7y = PIly. Integration of (1.3.4) yields
p(t,z,y) = Foy + p1(t, x), (1.3.5)
and using this equation in (1.3.3) gives
0 = —0zp1 + Oyyu + F1.
Integrating from y to h and using the tangential stress condition yields
0= (=0up1 + F1)(h —y) + To — Oyu,

and integration from 0 to y using the no-slip conditions

2

w= ( — Oup1 + F1> (hy _ %) + Ty (1.3.6)
Substitution of (1.3.6) in the kinematic equation (1.2.9) and usage of (1.3.5) as well as the normal
stress condition (1.3.1b) yields
h? h?
Oph + 0, ([8 (Ilo + F2h) + F ] 5+ To— ) =—J, (1.3.7)

where J = eUpj is the scaling for the evaporation. In order to have a complete model the
correct number of boundary conditions must be specified for h, which depend on the concrete
flow situation.

Remarks

Since we assumed ¢ = Y/X to be small, equation (1.3.7) is only valid for small angles, because
O0,h must stay of order one. This might create problems for solutions, where a shock-like profile
emerges. Alternative derivations have been proposed in order to circumvent this problem, see
e.g. [119).

The small parameter ¢ is usually chosen as quotient of two length scales [97]. Alternative
approaches are based on choosing a non-dimensional number encoding a driving force as the small
parameter, which again is scaling as a quotient of two length scales, e.g. the Capillary number [3].
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A standard choice for surface tension driven fluids is, cf. [97],
J:FleQZT():O and H():ag;a:h,

which gives the equation

hS
Ouh + 0, (Draah ) = 0.
This equation gives a nonintegrable singularity at a contact line [55, 97]. There are at least two
solutions to this problem. The first is to change the no-slip boundary conditions into allowing
tangential slip [97]. Yet, for the case of non-zero evaporation, J > 0, this is still insufficient, see
e.g. [81], thus another solution is to use a disjoining pressure that creates a precursor film, see
[4, 81, 97]. The motivation for such a disjoining pressure are intermolecular forces between a
substrate and the fluid that prefer a small layer of fluid on top of the surface. A common form
for the disjoining pressure is

with ¥ > 0 the Hamaker constant, see e.g. [4].

It is possible to generalize our derivation to z-dependent viscosities of the form i = pn(z). Then,
the final equation becomes

1 h? h?
8th+ax E([ax(HO+F2h)+F1]§ +TO?) =—J.

This shows the movement of a thin fluid becomes slower for increasing viscosity and stops in
case the viscosity goes towards infinity. Note, for concentrated suspensions without variation of
concentration in the y-direction the Krieger-Dougherty relation (1.2.7) implies that for ¢ — @it
the movement of a fluid stops.

1.4 Model for a horizontal drying front of a suspension

So far we have derived the general form of a thin-film model in Section 1.3. In order to simulate
a horizontal drying front on a heated plate, we combine models for a horizontal drying front by
Routh and Russel [111] with the model of for a drying drop of a suspension on a heated surface
by Ajaev [3]. We show that the model is indeed capable to predict the form of a horizontal drying
front, however, it is not capable to reconstruct the experimental results of Li et al. [78] or Goering
et al. [48]. In particular, the model does not correctly predict velocities and timings of the drying
front, nor is it capable to predict morphologic changes or stick-slip motion.

Using the framework of Section 1.3, we are left with choosing specific forces and stresses for the
horizontal drying front on a heated surface. Following Ajaev [3], we choose to scale the horizontal
velocity with surface tension constant oy and a Capillarity number C' as

go Y3

U:;C, C:ﬁ,
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and gravitational forces as

fi=0 = Fy =0, (1.4.1)
f2 = —g = F2 = 7B,

where B = pgX?/0g is the nondimensional Bond number.

For the derivation of the tangential stress and evaporative flux we just state the necessary
equations and the final terms. We are using the one-sided model of evaporation [4, 92]. The
surface tension is described by Eo6tvos rule

oc=o09—y(T"—T3)
and the temperature T by the convective heat equation
3tT* +u- VT* = DTAT*7

where v is a constant, Dr a heat diffusion coeflicient and 7§ the saturation temperature. The
used scales are the modified Marangoni number and non-dimensional temperature
. T Ty
M =~Ts/o0, T=—v
SX2
If we choose the diffusion constant as Dy = U Y, then we get the leading order nondimensional

equations

o
— =1-&2MT,
00

0y, T =0, (1.4.3)

where we kept the leading nonconstant orders in ¢ for use in the shear stress. The boundary
conditions for the temperature are [3]

T =Cy for y =0,
J=-0,T for y = h, (1.4.4)

where condition (1.4.4) comes from the one-sided model of evaporation and assumes the velocity
scale
B DTTSS

U=

with £ a constant describing the latent heat of evaporation. The normal stress contains contribu-
tions of the surface tension and a disjoining pressure. It is

cA
Ty = Ko + W = Iy = Opah + %, (1.4.5)

where we used the Hamaker constant ¢ = A/(0¢oX?C) and the surface curvature definition [97]

Ozzh

/<;V~n<1—i_(amh)2)3/2
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Defining the tangential stress and integrating the temperature equation (1.4.3) yields

The evaporation is defined by a nondimensional non-equilibrium condition of Ajaev and Homsy
[3, 5] as

KJ=-6Iy+T at y = h,
so the evaporative flux becomes

Gy — 8(Dyuh + bh3)
- K+h

J (1.4.7)

The nondimensional parameter K describes kinetic effects at the interface and § models effects of

pressure change on the interface temperature, see [3]. Using (1.4.1), (1.4.2), (1.4.5), (1.4.6) and
(1.4.7) in (1.3.7) the final equation reads

3
8th+8w<f;8w(8mh+wh_3 — hB)) (1.4.8)
h? [Co — 8(Bpuh +ph=3)]h §(Ogzh +1bh™3) — Cy
+M8$[281< K+h )]_ K+h

What is left is finding equations for the particle dynamic and provide reasonable boundary
conditions. The discussion in Section 1.2 showed most of the necessary equations. Suppose
particles are transported by convection and diffusion, then the bulk particle conservation can be
described as

Otp+u-Vo=V-(DVo),

where D > 0 is some diffusion constant. Introducing thin-film scales and again dropping the hats,
it becomes
eD D
01 + u0, ¢ + Uay¢ = ﬁaxxﬁb + ﬁayyd)

This shows that depending on the size of D, we have up to three different scalings in our problem
- one for the convection terms, one for the horizontal and one for the vertical diffusion terms. We
proceed as in Routh and Russel [111] by assuming D ~ UYe” with 3 between zero and one. This
scaling implies vertical diffusion is acting instantly, hence the volume fraction is independent on
y to leading order. Further, the horizontal diffusion is negligible. Integration from 0 to &, using
incompressibility and the particle conservation at the boundary (1.2.10) yields

Ore + 9, (uc) = 0,
with ¢ = h¢ being the volume of particles and the vertical averaged velocity defined as

h2
?.

U

h
% / udy = —M&z(Jh)g + 0z (Opeh + Yh ™2 — hB)
0
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The initial profiles are described by

B0, z) = he +0.52% for x € [0,2]
T Y he 4+ 1 for x > 2,

e(0,2) = berithe +0.22%  for z € [0, 2]
7 Gerithe + 0.4 for x > 2,

3
where h. = (% is the thickness of the precursor film. For z — oo the film is altered only by

evaporation. Therefore, the flat region stays flat and we are able to state the boundary conditions
Opc = Oph = Oppeh =0 for x — oo.
On the side of the drying front, i.e. z = ¢, we expect the film height to be constant, that is
Oth =0 for x = xy.

As we are using a central scheme, we also have to give a boundary condition for ¢ at * = x for
numerical reasons, though it should not be needed from a mathematical point of view, since it is
a hyperbolic equation with an outflow at x = x, see [126] for a discussion of numeric boundary
conditions for hyperbolic equations. We demand

¢ = hoerig for z = xy.

The film height equation (1.4.8) is of fourth order and we have a free-boundary problem in xz, so
we expect to have two more boundary conditions. The boundary conditions can be derived using
a particle balance at the drying front as described in [111], which we repeat here for completeness
sake. The profile at the boundary is being thought of as a shock in the velocity and volume
fraction. Suppose the drying front is at position z; and particles are packed at the negative side
and still flowing at the positive side, i.e.

- +
u, = 0, ub =1,
zp(t)
h(l - ¢crit)U; = / J(l’) d:L', u}' = ﬂ7
z£(0)
¢7 = ¢crit; ¢+ = (ZS

The drying front of the particles is expected to be a regular compressive shock and, therefore,
should fulfill the Rankine-Hugoniot condition (see e.g. [74])

_ [pup] _ qﬁ*u;
atxf N [[(b]] B ¢crit - ¢+ ’

(1.4.9)

where

fn—an with a® = lim a(x % en)

[[aﬂ -a e—0-+
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denotes the jump across an interface. Equation (1.4.9) is a condition for the movement of the
free boundary. Doing the same for the fluid gives

[(1—)uy] (1= derie)u; — (1 — ¢ )uf
-6l — (I—¢e)—(1—0T)

and equating with (1.4.9) yields that fluid flux at the fluid side must balance the evaporation on
the solid side, i.e.

Oy =

z(t)
hu = / J(x)dz. (1.4.10)
z(0)

Since u is just a function of h, this is another boundary condition for i at x = xy and represents
together with (1.4.9) the two missing conditions.

Results

We have simulated a horizontal drying front using the model proposed in Section 1.3 using a finite
difference scheme of second order with variable time step and ghost-point method. See Section
A2 for more details on the finite difference method. Figure 1.5 shows an exemplary result. At
the beginning evaporation reduces the amount of liquid in the film, which in turn increases the
volume fraction of the particles. If the volume fraction of the particles reaches maximum packing
at a position z;(0) a drying front emerges and moves through the domain. The velocity O,z
of the drying front is diverging, since the bulk evaporation continues to decrease the volume
fraction everywhere the denominator in (1.4.9) goes towards zero. This is the reason the final
profile is flat everywhere, since this effect is always dominating the dynamics for later times. At
the position of the drying front x; a shock in the volume fraction and height profile is visible.
The shock in the height profile might violate the thin-film assumption d,h = O(1), as has been
discussed in Section 1.3 above.

Here, we derived a general equation for thin-film models, followed by a model capable of simulating
a horizontal drying front. The question is how much new information can be derived from the
model about the problem. Unfortunately, the answer is not much as the most interesting
phenomena have to be explicitly put into the model, rather than coming out of it.

The first weakness of the model is that we use the single-phase Navier-Stokes equation as starting
point for our derivation. The transport of the particles is described by (1.2.2) and for the model
of the particle velocity the most simple ansatz is used, that is the same-velocity ansatz ug = 0,
which is a rough simplification at least in the case of highly concentrated suspensions. Further,
we explicitly model the behavior of the drying front using conditions (1.4.9) and (1.4.10), which
is based on simple mass balances, but does not take into account rheologic properties of the liquid
or particles.

The model simulates the evolution of the film height during a drying front process and we are in
theory able to retrieve stresses and velocities arising in the process. Nevertheless, these velocities
and stresses are highly depending on the exact velocity of the drying front, which we explicitly
build into the model. In general it is possible to use a more complex model at this point, see
for example [111] for finite capillary pressure model, but the major weakness stays that every
behavior of the drying front must be explicitly modeled, rather than being derived from the
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Figure 1.5: Height (left) and volume fraction (right) profiles for the horizontal drying front
simulated using the thin-film model of Section 1.3 with parameters ¢¢i; = 0.63, B=1, M =1,
K =0.2,Ty=0,5=10"2 and ¢ = 107°. Shown are the times ¢ € {0,0.1,0.2,0.3,0.3406} with
straight, starred, dotted, dashed and crossed line, respectively. The drying front is seen as an
advancing shock in the volume fraction with velocity 0;x¢. The final film profile is everywhere
flat, but at the contact line at x = 0.

fluid and particle rheology. It is straightforward to extend the model to more than one particle
phase, yet the model just gives volume fractions morphologies along the horizontal axis. Skinning,
spinodal decomposition and similar effects demand a vertical change of the morphology.

A way around would be to state the thin-film model two-dimensionally, similar to what Craster
and Matar [24] did. Then, one would need to derive a drift-flux for the particles, which again
needs to be postulated rather than derived from first-principle. And although such a model has
big advantages already, it is still unable to model stresses in the solid area of the domain as the
fluid and particle velocities are not entirely independent. Yet, independent velocities of particles
and fluid is a necessity for particles to get stuck and at the same time fluid to pass through them
due to osmotic pressure as seen in experiments [48, 78].

The mentioned limitations of the given model motivate us to look for a more general class
of models, that might be able to fix some or all of the weaknesses mentioned. One possible
generalization is to separately model the behavior of the particles and liquid, in the hope that
this yields some more insight into the behavior of concentrated suspensions. This approach has
been pursued in the following chapters.

1.5 Overview

Chapter | motivates the need for progress in the theory of concentrated suspensions. We present
organic solar cells as an industrial application for these fluids and then proceed with a short
introduction into the basic equations of fluid mechanics for complex fluids. We propose some
transport terms for particles, before finally showing a simple model for the simulation of a
horizontal drying front. However, this model does not fully describe the behavior of concentrated
suspensions, which leads us to consider multiphase models in this thesis.
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Chapter 2 gives a general overview of multiphase models, their inherent well-posedness problem,
and systematically derives a new two-phase model through ensemble averaging along the lines of
Drew et al. [33] while incorporating recent non-Brownian constitutive laws by Boyer et al. [15]
for the shear and normal viscosities for concentrated suspensions. The new model describes the
flow of concentrated suspensions and can be applied to a number of different flow cases.

Chapter 3 shows particular applications to the plane Couette and plane Poiseuille flow. Plane
Couette flow yields a solution similar to the Newtonian single-phase problem, but the multiphase
Poiseuille flow exhibits a solution similar to single-phase Bingham flows. The study of plane
Poiseuille flow using the two-phase model shows also the existence of unyielded or jammed regions.
The width of such a region depends on the value of the applied pressure for given volume fraction
of the solid phase. We also demonstrate the dependence of the profile for the volume fraction
¢s on the so-called “viscous number”, which can induce a qualitative change in the approach
towards maximum volume fraction. The momentum coupling between phases is typically very
large because of small particle sizes, and for these values wi = uy — u,, i.e. the difference between
the solid and liquid phase velocity, develops a boundary layer at the channel walls and at the
interface between unyielded and yielded regions.

Then, we derive a new drift-flux model using matched asymptotic expansions in Section 3.3, that
allows for the emergence of jammed regions. Our asymptotic analysis shows that in order for
the drift-flux model to correctly capture shear-induced particle migration the boundary layer
structure of the solution has to be resolved and matched to the “outer” problem of the drift-flux
model. Our numerical solutions of the drift-flux model reveal how the jammed region emerges
first at the center and then expands until the stationary state is reached. Further, the analysis
suggests that the boundary layer acts as a source for the particle migration towards the unyielded
region.

The stability properties of multiphase models for concentrated suspensions for plane Couette and
plane Poiseuille flow are studied in Chapter 4. Our linear stability analysis shows two instabilities
exhibited by the proposed model in case of plane Couette flow: a collision pressure driven
ill-posedness and a convection induced instability. The convection driven instability is analyzed
using a Kelvin-mode ansatz. The resulting time dependent ordinary differential equations showed
a transient instability. We note that this might prohibit an experiment from showing the Couette
or Poiseuille flow base state, because of the onset of turbulence or the occurrence of shocks for
highly concentrated suspensions. In case of the Poiseuille flow, we also retrieve the multiphase
instabilities and compare the multiphase model to the stability of the Bingham flow.

An analytic ansatz shows the ill-posedness stems from a competition between the solid phase
viscosity and the collision pressure and poses a necessary stability condition on the size of the
solid phase viscosity compared to the collision pressure. This has been reaffirmed by comparison
between numerical and analytical results. It turns out the criterion depends on the base state,
which shows the sufficient criterion, which is derived in Chapter 5, can be lowered for particular
flows.

Chaper 5 uses a gradient-flow structure for the derivation of a purely dissipative Eulerian-Eulerian
multiphase model. We first summarize the different approaches known from the literature for a
gradient-flow system and show the connection between variational derivations, minimizations and
variational inequality ansatzes. Next, we derive the condition of equal normal phasic velocities
on a free-boundary, which should guarantee mass conservation. A derivation of the multiphase
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model follows yielding the well-known momentum and mass conservation equations as well as a
free-boundary stress condition. We then show how to include a collision pressure term similar to
the one proposed in Chapter 2. Finally, this collision pressure yields a new stability condition
similar to the one derived in Chapter 4 for the ratio between viscosity and collision pressure.
Nevertheless, the energetic condition is more general, since it does not depend on the specific
flow under consideration and implies an upper bound for the ratio that is necessary for the
well-posedness of the system.

The similarities between our multiphase model and Bingham models lead us to reconsider a
single-phase Bingham model in a thin-film approximation due to Balmforth et al. [9] in Chapter 6.
We show an alternative derivation of the thin-film viscoplastic model using a variational inequality
formulation. Its advantage is that it does not depend on implicit assumptions on the total stress
and does not need the specification of boundary conditions at the yield-surface. We proceed with
an introduction in monotonicity methods for the existence and uniqueness of operator equations.
Furthermore, we show existence for a regularized version of the resulting viscoplastic thin-film
equation.

In Chapter 7 we show a formal asymptotic approach to reduce the Eulerian-Eulerian model to
simpler models. Specifically, we derive models for dilute or concentrated suspensions and with
strong or weak coupling between phases. This allows comparing well-known single-phase models
to the multiphase model, since the constitutive laws in the single-phase class models demand
specific constitutive laws in the multiphase class and vice versa. Examples are Darcy’s law with
its dependence on the momentum coupling term definition, the Stokes settling velocity that also
connects to the momentum coupling term and the drift-flux models, that depend on the collision
pressure, the body forces as well as to the momentum coupling term.

We then proceed to show a formal approach on how to derive thin-film models from the multiphase
model. This approach yields the same leading order momentum and mass conservation equations
that are well-known from the thin-film community, but additionally gives a transport equation
that needs to be hypothesized in the thin-film literature, but can be derived using our approach.
The additional transport equation contains body force terms, the collision pressure and the
momentum coupling term, which led us to review those terms and compare the resulting equation
to a well-known model from the literature. Then, the connection between the Bingham models of
Chapter 6 and our multiphase model is formally shown by assuming a constant collision pressure
throughout the fluid domain, which yields a Bingham stress term that can also be reduced to a
thin-film model as proposed by Balmforth et al. [9].

Finally, Chapter 8 discusses possible future work and open questions for the modeling of concen-
trated suspensions.



Chapter 2

Multiphase model

The previous chapter shows simulations based on single-phase Navier-Stokes equations for complex
fluids. Section 1.5 shows a derivation of a thin-film model for a drying front. However, we are only
able to derive an equation for the free-boundary profile, but miss a derivation of the convection-
diffusion equation of the particles based on the rheology of the fluid. Hence, we are forced to
postulate the existence of the convection-diffusion equation and have to guess the correct transport
mechanism by physical intuition. Further, the boundary conditions next to the solid are also
derived using a simple mass conservation argument, that does not take the rheology of the fluid
into account.

A different approach is to assume the Navier-Stokes equations apply to each phase separately.
This is the ansatz for so-called multiphase models. The difficulty in this approach is to keep track
of the locations and interfaces of the phases and find suitable constitutive laws for each phase
that are momentum, mass and energy preserving.

There are many ways to derive a multiphase model. As more general models are usually harder
to analyze or require more complex numerical implementation, one should consider the simplest
one for the considered problem. Typical questions in order to select an appropriate multiphase
model are:

e Are we interested in the shape of interfaces between the phases?
e Is it important to track the energy and momentum for each phase or only for the total flow?
e What quantities do we measure in experiments?
e Are the phases immiscible, partially miscible or fully miscible?
Consider two examples - a rising gas bubble in a liquid and finely dispersed particles in a liquid.

For the flow case of the rising gas bubble, it is most interesting to track the gas-liquid interface,
but since the liquid and gas is well separated, it is enough to consider total momentum and energy
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Figure 2.1: Shown are the three main classes of multiphase models. The arrows symbolize the
technique by which a multiphase model class can be transformed from one into another. Note,
the transformations demand certain scaling assumptions to hold, so generally it is not possible to
make more than two transformations without implicitly assuming unphysical large scales, which
prevents us to go around that circle multiple times.

balances and immiscible phases. On the other side, the interface of the dispersed particles are
not easy to resolve, but it is often interesting to track mass, momentum and energy of the two
phases - liquid and solids - separately, since e.g. only the liquids are able to evaporate if enough
energy is available on a free surface.

The rest of this chapter gives an overview of typical classes of multiphase models. As we are
interested in fully miscible flows, we derive the appropriate model via an average process. This
average process yields new terms that must be modeled by constitutive laws given in the literature
or by experiment. Our particular choice is based on the work of Boyer et al. [15] for the simulation
of concentrated suspensions.

2.1 Classes of multiphase models

The term multiphase model is ambiguous as it refers to at least three different classes of models:
the interface resolving models, the Eulerian-Eulerian models and the diffuse interface models.
By means of asymptotic methods a particular class of multiphase methods can be transformed
into one of the two other classes. In fact it is quite common to derive an Eulerian-Eulerian
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model starting from an interface resolving model via an average process, cf. [32], or derive a
diffuse interface model as a leading order approximation of an Eulerian-Eulerian model, cf. [16].
Figure 2.1 depicts the relations between the three model classes and their respective derivation
techniques. Knowledge of all three classes is needed to understand the derivation of the proposed
Eulerian-Eulerian model in this thesis. Therefore, a short overview of incompressible models for
all three classes is given in this section.

Interface resolving models

The class of interface resolving models describes immiscible fluids and their interaction on
interfaces between them. An often used alternate name is sharp interface models in order to
distinguish them from diffusive interface models. For an exhaustive introduction into this class
and their numerical solution see the review by Worner [133] or the book by Tryggvason et al. [130].
Their most characteristic property is the fact that there can only be one phase at a certain
position and time, which creates the need to track the interfaces between phases.

Consider a fixed domain Q C R™ and suppose we have two phases j € {1,2} located in their
respective domains ;(t) with Q(¢) UQs(t) = Q. Let us call 'y the interface between phase 1
and phase 2 with normal pointing from phase 1 to 2, and then the phase properties are stated
like in an incompressible single-phase formulation (1.1.10) inside £2;(¢) as

u
PE*TJFVP—Pf,
V-u=0,

where

o T1 iIl Ql(t) o fl iIl Ql(t)
T {72 in Qu(t), = {f2 in Qu(t),

represent forces and stresses of the respective phases. On the interface between the two domains
boundary conditions must be given for the momentum and the mass conservation, i.e. [31]

[pu ® (u — w;) — 7] = gokn + Vgoyp, [p(uw —w;)] = my,

where oy is the surface tension, x the surface curvature, Vg the surface derivative, m; describes
changes in the phases [31, 130]. The problem is to advance the domains in time. This is normally
done by defining an appropriate interface velocity u; that conserves mass and momentum.

It is worth adding, that most thin-film models are of the interface resolving type, where the
second phase (mostly air) is taken only passively into account, but the interface is tracked via
the evolution of the free-boundary h, cf. Chapter 1. This is also called the one-sided approach
for thin-film models [4, 92]. The dependence of thin-film models on the second phase is more
pronounced, when the properties of the second phase are solved for, too - like in the so-called 1.5
and two-sided models [92].

Microscopic models possess the advantage, that the properties of the bulk can be easily measured
from experiment or are already known for many materials. The forces acting on the interface
between two pure phases are also better understood as surface tension and chemical reactions are
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often known for specific materials. In this sense the interface resolving models are more physical
sound compared to other multiphase models.

On the downside, mixtures might have complicated interface structures that are too costly to track
and might also change their topology, e.g. droplet coalescence or breakup. Related problems occur
in fully miscible fluids that do not allow for a precise definition of an interface, thus rendering
this approach inappropriate for these fluids.

Eulerian-Eulerian models

The Eulerian-Eulerian models - also known as two-fluid flow [77, 133, 134], two-phase flow [65, 120]
or dispersed multicomponent flow [32] - are used when an explicit interface tracking is not possible
or too time-consuming. For a more detailed survey see for example the reviews [31, 120] or the
books [32, 60, 70, 132]. These models allow for every phase to have its own velocity and track
the fraction of each phase j at each position via an indicator function ¢;.

Suppose we have two phases j € {1,2}, then the momentum and mass conservation of an
incompressible multiphase flow is described by

¢1+ g2 =1, (2.1.1a)

p;Ou(dju;) + p;V - (dju; @ uy) — V- (¢57;) + V(jp;) = ¢jp; £ +dj,  (2.1.1b)

Oidj + V- (dju;) = my, (2.1.1c)

where di = D(¢;)(u2 — u1) = —dz models momentum coupling or drag effects and m; models

chemical reactions between phases. The stresses 7; might contain viscous and turbulent terms and
the forces f; might contain lift forces, drag forces, bulk forces and interface forces. Finding the
correct terms for these models is still a matter of debate. For some proposals see [32, 46, 60, 70, 95].
Since system (2.1.1) contains the six unknowns ¢1, ¢, w1, us, p1 and ps, but poses just five
equations, one needs an additional sixth equation in order to eliminate at least one of the pressures
pj, which is discussed in more detail in Section 2.2. These models are incompressible in the sense
that their volumetric velocity v = > y ¢ju; together with the sum of the indicator transport
equations (2.1.1c) yield V-v = 0.

The main advantage of Eulerian-Eulerian models is they allow the simulation of highly miscible
fluids. Interfaces are handled implicitly by force terms arising due to gradients of ¢;. The
downside of this model is they are computational highly demanding due to the high number of
unknowns. Another problem is that their mathematical analysis is still in a very early stage.
The analytic main problem is that they contain two sets of Navier-Stokes equations, which are
nonlinearly coupled and, additionally, they contain a potentially sever instability - called the
loss-of-hyperbolicity problem, cf. [77] and Section 2.2.

It is not uncommon to substitute one of the single-phase momentum equations with the total
momentum equation, see e.g. [95]. A rigorous derivation for the Eulerian-Eulerian models can be
done based on an averaging process of interface resolving models for details see Section 2.2 and
[32] or based on an averaging process of microscopic models, see e.g. [95].

Diffuse interface models

In the case of diffuse interface models the requirement of interface resolving models that every
location should only contain one phase is weakened and instead the stress and forces of the different
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phases are blended by an indicator field ¢. This field is often associated with a concentration or
volume fraction of the phases and normally one defines ¢ = 0 or ¢ = 1 whenever we have a pure
phase 1 or 2, respectively. Additionally, ¢ = 0.5 defines the interface between two phases [133].
For a detailed survey of this class see for example [7, 133].

The equations for the incompressible diffuse interface models typical take the form

Du
PE*V'T+VP*Pf7
V-u=0,
D
F(f — V- (D(u,p,d, Vo, Ag,...)) =0, (2.1.2)

where D contains drift-flux effects of the phases and might contain very high derivatives in ¢. For
example popular choices for (2.1.2) are drift flux models of second order as described in Section
1.2 or a modified Cahn-Hilliard equation, which is of fourth order [7, 125]. The stress and force
terms are chosen as mean of the individual phasic properties and additional stresses and forces,
Tk and fg, that might arise due to derivatives in ¢, which represent interfaces between phases
and are often named Korteweg terms [7], e.g.

(1—¢)T1+¢T2+TK(V¢,A¢,...),
(1=¢)f1+ofs+ Fr(Vo,Ag,...).

-
f

The stress sometimes also uses the harmonic instead of the arithmetic mean, see e.g. [133].

There are different use cases of a diffuse interface model. On the one hand they are used as a
regularization for interface resolving models to efficiently track the interfaces, cf. [133]. In this case
only a small portion of the domain has values of ¢ € ]0,1[. On the other hand, diffuse interface
models are used for problems, where no apparent interface might exist like in a mixing device,
channel flow of suspensions or when two fluids are partly or fully miscible [95, 111]. Another
common usage scenario are fluids with a natural decomposition force, e.g. due to a chemical
potential between phases [7].

The problem with diffuse interface models is to find physical sound expressions for D, 7, and
f x- Many proposals can be found in the literature and one of the earliest diffuse interface models
is the H-model due to Hohenberg and Halperin [53]. Derivations of such a model can be done
based on energetic arguments [125] or from an Eulerian-Eulerian model by considering leading
order terms, cf. [16]. As seen in the introduction of this thesis the form of the transport equation
for ¢ is sometimes simply conjectured without a formal derivation, see for example Section 1.2
for a discussion of flux terms in use.

Some models - an example being the H-model - contain a small parameter € proportional to an
average interface thickness. Asymptotic techniques allow one to look for an effective model in the
limit € — 0, so that one retrieves an interface resolving model with effective interface boundary
conditions in the sharp interface limit, see e.g. [7]. On the other side, an Eulerian-Eulerian model
can be transformed into a diffusive flux model by looking for the leading order approximation in
case of large drag-terms, cf. [16] and Chapter 7.
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Remark

A warning concerning the classification of multiphase models in the scientific literature is necessary
at this point. Sometimes it is impossible to tell whether a publication uses a diffusive flux, an
Eulerian-Eulerian or an interface resolving model. For example consider the suspension balance
model [95], which is first derived as an Eulerian-Eulerian model based on an average process of a
interface resolving model. Then, in case of computations, it is reduced into a diffusive flux model
by transforming one of the momentum equations into a drift-flux expression [21]. So speaking of
a certain model does not necessarily tell, which class of multiphase models one is talking about -
even in the context of a single publication!

2.2 Derivation of an Eulerian-Eulerian model

An Eulerian-Eulerian model is derived by starting from an abstract interface resolving model
using an average process. We do not derive constitutive laws from the interface resolving model,
but rather propose them separately. The following discussion is a more detailed version of a short
presentation by the author [2].

In order to understand why we need an average process for the Eulerian-Eulerian model suppose we
have a deterministic interface resolving model of a two-phase flow. Thus, the domain of existence
for phase one is ;(¢) and for phase two is 2(t). The velocity fields for the phases are only defined
in ©Q; and €, respectively. For highly dispersed phases this renders any computation extremely
complicated, since one has to solve for the domains of existence of both phases. Therefore, it
would be computationally advantageous to look for everywhere defined velocity fields instead.
For flows with highly dispersed phases, a solution is to instead of looking at fields at an exact
location, to consider a field consisting of the averaged values of the nearby positions. Since both
phases are present near each point in time and space, such a field would be defined everywhere.
This is the motivation for a time and volume average ansatz as proposed for example by Ishii [60]
and Whitaker [132].

A different motivation is given for the ensemble average by Drew and Passman [32]. They interpret
every flow as a nondeterministic interface resolving model due to experimental errors. Thus,
looking at the same flow multiple times under similar experimental setups, the phases can have
different spatial and temporal distributions due to random fluctuations. Thus, instead of having
domains 24 (t) and Q2 (t) we now have realizations of domains Q4 (¢;4) and Q4 (¢; 7) with ¢ describing
the experimental setup. The set of all i constitute an ensemble. Thus, instead of looking for
a spatial and temporal average, one can consider the expected value over all realizations of an
ensemble. This is the ansatz used for the ensemble or statistical averages, cf. [31, 32].

Both ansatzes - the deterministic of temporal and volume averages and the nondeterministic of
ensemble and statistical averages - yield similar models, but differ in their assumptions on the
average operators. For example the volume average demands the characteristic length scale of the
experimental domain to be much larger than the length scale of the average used, which in turn
must be much larger than the usual scale of the microscopic phase domains, cf. [132]. Whereas
for the ensemble average, the assumption is to have measurable ensembles such that the expected
value is defined [32].

In the following derivation, we do not use a specific average operator, but assume it to fulfill
certain axioms instead that we use to derive the final equations. The volume [70, 132], temporal
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[60] and ensemble averages [32] proposed do fulfill these axioms. For the connection between
those averages, see the book by Drew and Passman [32].

Averaging axioms

We follow the mathematical framework by Drew and Passman [31, 32] in this section. Let f
and g be arbitrary measurable functions, ¢ a constant and (-) an average operator obeying the
so-called Reynolds’ rules

(f+g)={f)+{9),

the Leibniz’ rule
Oc(f) = (Ocf),

and the Gauf}’ rule

The functions should be weakly differentiable up to the required order. Admissible operators are
for example the volume average [132], [70], time averages [60], the ensemble average [32] or a
mixture of these [33].

We further need a component indicator function

1 @hek
X’“(m’t)_{o it (1) ¢ K,

with K the set of states of the k-th-phase. In our model we use the average operator in a weighted
form. Generally, there are two weighted averages in use, the intrinsic or phasic average

(Xrg)
(X&)

and the mass-weighted or Favré average (in its three common forms)

g

(xR (Xep)

G=29 _ (Xepg) _ (Xkpg)
D

The weighted averages adhere to the Reynolds’ rules, but not to the Leibniz’ and Gauss’ rule. If
we have multiple indicator functions, then an index states the indicator function we used in the
average, e.g. g, indicates the usage of X in the average. We define a fluctuation field (cf. [32]) as

9 =9-7 9°=9-37
and due to the Reynolds rules ¢’ = ¢° = 0 holds. This splitting together with the Reynolds rules
yields the identity

fo=Ffa+r19g
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and similar for the Favré average
fg=rfg+foyg°. (2.2.2)

At an interface position &* the phasic velocity wy is defined as

ug(x*,t) = m%ii*lgeK u(z, t),

where K denotes the set of points occupied by phase k, and similarly for the other quantities.

Note the derivatives are defined in the sense of distributions in this work. This implies (fVX})
can yield additional surface integrals, whereas in classical theories the Leibniz’ and Gauss’ rule
are written explicitly with surface integrals, cf. [32] and [132]. Denote by  the domain of interest
and by Sy the interface of phase k in space with outwards pointing normal n. Then, following
Drew [31, 32], the so-called Dirac delta property

Q Sk

of a quantity f holds for every test function ¢ that is sufficiently smooth and has compact support.
Thus, the delta-property shows how interface effects enter the equations via the average process.
One of the main problems of Eulerian-Eulerian models is to find suitable constitutive laws for
these interfacial terms in form of bulk terms.

The characteristic function fulfills the so-called topological equation (cf. [32])
0: X +u; - VX, =0 (2.2.4)

with u; the interface velocity.

Averaging process

We consider two inert phases and denote with & € {s, f} the solid phase by s and the liquid phase
by f. Inside each phase the incompressible' balance equations for mass and momentum

Op+ V- (pu) =0, (2.2.5a)
O(pu)+ V- -(puu)—V-o—pf=0 (2.2.5Db)

are satisfied together with the two jump conditions (see e.g. [60])
Zpk(uk —u;) -ny =0, (2.2.6)
k

Zpkuk(uk —Uj) N — O - Ny = TpskNg, (2.2.7)
k

at the interfaces of the phases with n; denoting the unit normal pointing out of phase k, os, a
surface tension coeflicient and k the curvature of the interface that is positive towards —mng; w; is

IFor a discussion of the seemingly ” compressible” mass conservation used here, see the remark at the end of
the derivation.
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the interface velocity. The quantities p, u, o and f denote density, velocity, stress tensor and
body force density in each phase, respectively.

Multiplication of (2.2.5) with X}, followed by usage of the average operator and its linearity
together with Gauss’ and Leibniz’ rules yield

+ (p(u —wi) - VXy),
O(Xppu) +V - (Xppu @) — V- (Xy) = (X f) (2.2.9)

H((0: Xk + u; - VXi)pu) + ([(u — w;) - VXi|pu) — (VX - o).

Above we assume that the interface velocity w; has been smoothly extended for all x. Since
the indicator function satisfies the topological equation (2.2.4) the first and the second term in
equations (2.2.8) and (2.2.9) drop out, respectively, and we can write the system as

0y(Xpp) +V - (Xppu) =T,
O Xppu) + V- (Xppu@u) — V- (Xpo) = (Xppf) + My,

where

Ty = (p(u —u;) - VX)), (2.2.10)
M, =(VXy-[p(u—u;) @u— o)), (2.2.11)

denotes the average interfacial mass source and the average interfacial momentum source for the
k-th phase, respectively.

Using the Dirac delta property (2.2.3) and (2.2.10), (2.2.11) in the jump conditions for mass
(2.2.6) and momentum (2.2.7), these conditions become

D Ty =0,
k

> My = (07.5VX1). (2.2.12)
k

We further introduce the following averaged quantities

b = (Xk),
for the volume fraction, and
7, = (Xip) G, = (Xppu)
T PuP,
5= — (Xyo) oRe — _ (Xkpuj @ up)
o F o '
~ X
f. = <¢’;Zf>, Sl = (VX o),
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for the average density, velocity, stress, Reynolds stress, body forces, interfacial stress, interfacial
velocity of the kth phase, respectively.

Then, after we split the interfacial momentum source as
M, = S + Ty, (2.2.13)
and the momentum flux into an average flux and a Reynolds stress

(Xppu @ u) = ¢pptx ® Uy, — PrLoR”,

mass and momentum equations
Oi(prpy) + V- (rprug) = Ty,
O0u(SxPytix) + V - (kD1 Tk @ Tk) — V- (¢1T%) = V - (650 f°) + D0k fr, + St + ki

As we are interested in the laminar flow regime we neglect the Reynolds stress a,’fe and further
assume no phase change occurs at the interface between particles and liquid, T'y, = 0.

We introduce the stress tensor as the sum of pressure and deviatoric stress in the form
oc=—-pl+T1,
so that for the averaged quantities &5 and

(Xkp)
[T

Py,

we have correspondingly
or = Pl + Tk

The interfacial pressure of phase k and the interfacial force density is defined as

5= VEiPr) (V- Xipr)
FTOVX T Ver

M =S¢ — (VXypr) = (VX - (px — Pir)I — 7)),

, (2.2.14)

respectively, where the second equality in (2.2.14) follows from an application of Gauss’ rule
(2.2.1). We have (from (2.2.13))
My, = M{ + piV i

so that we obtain for the mass and momentum balance equations

Ou(rpy) + V- (¢rppux) =0,
O(Prprur) + V- (opprur @ Uy)
~V - (o5Tk) + V(iDi) = ME+ pirVor,

where we have also assumed that no external body forces are applied, i.e. } =0.
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We neglect surface tension forces between the solid and the liquid phase [31]. Setting oss = 0 the
interfacial pressure difference becomes

> pinVer = (0rVX,) =0, (2.2.15)
k
and we obtain together with the interfacial momentum jump condition (2.2.12) the relation
d d
MS = _Mf .

Since we only have two phases, we know ¢, + ¢ = 1, which directly leads to V¢, = —V¢;. Thus,
equation (2.2.15) yields

Pis = DPif-
For the case of identical liquid interfacial and bulk pressure
Dif =Dy,
and constant densities p;, within each phase, the balance equations reduce to
Oops +V - (¢sus) =0, (2.2.16a)
Ahds+ V- (dus) =0, (2.2.16b)
Ps0t(Dsts) + V- (dspsts @ s) (2.2.16¢)
—V - (¢sTs) + V(6sBs) = M2+ 5,V s,
PpOu(pstip) +V - (¢spyliy @ Uy) (2.2.16d)
—V - (¢s7f) + V(dsPs) = —ME+ 5, Vs,
¢s+ oy =1. (2.2.16¢)

Remark

Note, we currently use (2.2.5a), which is a form of mass conservation usually employed only for
compressible fluids. Since (1.1.8) holds for incompressible fluids, (2.2.5a) is equivalent to

Vou=0. (2.2.17)

We use the ”compressible” form (2.2.5a), because some steps of the derivation seem more natural
to the reader and variables like the interfacial mass source I';, can be defined in their usual form.
The derivation also works for the usual incompressible condition (2.2.17) without problems. Yet,
the usage of the topological equation (2.2.4) always introduces a time derivative in the phasic
mass conservation equations (2.2.16a) and (2.2.16b). The well-known incompressibility condition
is regained by considering the sum of equations (2.2.16a) and (2.2.16Db), i.e.

V- (¢sus +¢fuf) = 07

and usage of the volume averaged velocity
v = dsus + druy,
which yields the common incompressibility condition
V.v=0.

Therefore, it is to be expected that an incompressible Eulerian-Eulerian model shows effects due
to incompressibility, but can also show effects only known from compressible single-phase models.
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Closure problem and ill-posedness

System (2.2.16) consists of five equations, but contains six unknowns, i.e. us, uys, @5, ¢s,ps and
ps. This suggests that we miss one equation. The exact cause for the missing equation is being
argued, but is connected to total energy preservation and models for the microscopic and interface
quantities [41, 77, 120]. To illustrate this consider the kth phase’ total energy Fj, defined as [77]

E, = ek+ui/2+K;€,

where ey, is the internal energy of phase k and K}, is a so-called pseudo-turbulent kinetic energy.
The pseudo-turbulent kinetic energy is directly connected to microscopic quantities like interface
velocities u;, interface pressures p; and velocity fluctuations «°, which are commonly not contained
in a multiphase model formulation. The sum of total energies

(z)spsEs + d)fprf

must fulfill a conservation equation, which creates a new condition involving the constitutive
laws of the model. This energy condition eliminates the additional degree of freedom [77].
As explained in the Eulerian-Eulerian model derivation, in contrast to single-phase models,
incompressible multiphase models do not decouple from the energy equation as the pressures are
intrinsically coupled to the microscopic quantities. Different forms of the total energy have been
proposed [60, 120], but it is commonly understood that it should contain microscopic quantities.
Unfortunately, there are no constitutive laws universally accepted for the microscopic quantities.
It would also add additional degrees of freedom to the already large system, thus a common
approach is to define a new pressure p. - herein forth called collision pressure - as the difference
between solid and liquid pressure, i.e.

De = ¢s(ps - pf)» (2218)

and propose a constitutive law for this term, cf. [31]. The introduction of an additional condition
for the pressures allows the elimination of one variable and the system becomes closed.

The simplest approach is to set p. = 0, which corresponds to setting ps = py. This ansatz is
called ”one-pressure” or ”equal-pressure” model [77, 120], but an analysis of the one-dimensional
system shows it to be allegedly ill-posed, see e.g. the discussion in [31, 41]. The reason is, that a
study of the one-dimensional first-order system’s characteristics shows they contain complex parts,
meaning the system is not hyperbolic in time, which contradicts the causality principle. Linear
stability analysis showed, that additional second order terms do not fix this ”loss of hyperbolicity”
problem, as first order terms always become dominant in the long-wave limit [105]. Thus, a simple
introduction of a small viscous term does not solve this problem. However, linear stability analysis
of finite difference methods showed that in case of coarse grids the instability is suppressed and it
only reoccurs for grid sizes that resolve microscopic sizes [121]. Thus, numerical approximations
can be used in combination with coarse mesh sizes without occurrence of an instability [121].

A different line of thinking is to argue that the discussion about the ”loss-of-hyperbolicity” is
misleading, since the derivation of the problem needs two basic assumptions: First, the system is
locally behaving as its linearized version and, secondly, its solutions are sufficient smooth [134].
The arguments against linearization of a nonlinear problem are well-known, since a linear stability
analysis of a non-linear problem might show a system to be unconditional stable although it is
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not, cf. Couette flow [117], and it might show a problem is linearly unstable although its nonlinear
equation might be stable, cf. the Kuramoto-Sivashinsky equation [134]. The second argument
against smooth solutions needs some more elaboration. It is a well-known phenomenon that
nonlinear conservation laws of the form

atu + axf(u) =0

create shocks. For physical plausibility we assume the shock solutions to adhere to the Rankine-
Hugoniot and Lax entropy conditions

_ f(w) — flua)

Uqy — Ug ’ f/(uu) >8> fl(“’d))

where u,, and ug are the upwind and downwind solution at the shock, respectively [74]. Then,
the shocks decay the total variation fQ u?dx for convex f and for long times [73, 74] and after
some time the energy is expected to dissipate, i.e.

— [ wldz <0 for t > 1.
The behavior of nonlinear systems of conservation laws can be more complex and Keyfitz et
al. identified so-called singular shocks [65, 67, 68] in a reduced model of the incompressible
Eulerian-Eulerian model. These singular shocks do not diminish the total variation of the solution,
but Keyfitz [66] still argues for these special type of shocks:

Shocks cause decay of energy even in the absence of an explicit dissipative mechanism
such as viscosity.

and

...the variation of the solution grows without bound, as in some hyperbolic systems.
However, there would be no catastrophic Hadamard instability for ¢ positive.

This mechanism cannot be captured by linear stability analysis and might be a way to still
consider the equal-pressure model. Further, it has been shown for a different reduced model, that
viscous solutions fulfill certain amplitude bounds and in the weak limit one might expect a highly
oscillatory weak-solution [65, 134].

In case one likes to fix the loss-of-hyperbolicity problem the one-dimensional linear stability
analysis shows a force of the form

F = c(us —us)*Vo, (2.2.19)

renders all characteristics real and fixes the ill-posedness, where ¢ is a positive constant depending
on the additional forces in the model [2, 41, 77]. Unfortunately, this term does generally not fulfill
the energy condition discussed above, thus is considered unphysical [77]. Besides the addition
of (2.2.19) other attempts have been proposed to fix the loss-of-hyperbolicity problem, namely
two-pressure models, introduction of added-mass forces and Reynolds stress terms, see e.g. [41, 77].
None of the proposed solutions is universally accepted, and it is still considered an open problem.
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In what follows, we propose a one-pressure model, where we state an explicit term for p., which
is of second order, thus the system might contain the instability. If necessary we can add a force
of the form (2.2.19), then in the case of the plane Couette and plane Poiseuille flow this term
does not change our results, since it does not appear at the considered asymptotic orders.

2.3 Constitutive laws

To complete model (2.2.16), we need to specify the stress terms 7, and 75, the momentum
coupling term M ‘j and the collision pressure p.. For a list of common choices for liquid and
particle stresses see Chapter 1.

Coupling term choices in the literature

The exact form of M f is still a matter of debate and several proposals can be found in the
literature. See for example [31, 58, 88] and Drew [31] for an exhaustive list of possible terms.

The momentum coupling term M¢ models the momentum transfer from one phase to the other.
Common causes of such a momentum transfer are viscous drag, wake, boundary-layer formation,
lift effects and virtual mass effects [31]. It is usually given as product of the difference velocity
w = uy — Uy and a function of ¢, possible including their derivatives in space and time. Table
2.1 shows some common forms found in the literature.

Model proposed by Constitutive law for the momentum coupling
d_ prds”
Ahnert et al. [2] M¢ = ?(qusfw
Morris et al. and Nott et al. [88, 95] | M? = 4‘2§f (izw

Inkson [31, 58] M?! =5 ¢:0p|w| [2L (1 +Re”%®")] w, with
Re = 2p.|w|-%
1s

Drew [31] M= Arw+ A (Opus+usVuy—(0(us)+urVug))+

Azwy, + Agwyy + Asw - Vw + Agw - VwT

Table 2.1: Shown are different choices for the momentum coupling term M ;l from the literature. It
is commonly agreed upon that it should be a scalar, containing a ¢ dependence and is multiplied
by the difference velocity w, but constants and the exact terms are still unknown.

Collision pressure choices in the literature

As previously defined in Section 2.2 we denote by p. the collision pressure function, which might
depend on the solid volume fraction ¢4 and a velocity w. The definitions of p. vary vastly in the
scientific community, which is a strong hint, that the final form of this term is still unknown.
There are three main classes of p. functions. The first class consists of collision pressures that
depend on only on ¢g, see e.g. [16, 31, 118]. It is often introduced solely for well-posedness
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or stems from chemical potentials. The second class has a ¢; and u dependence, where the
velocity is commonly used in the form of the shear rate [88]. Examples are the suspension balance
model [95] and the model by Inkson et al. [58]. Finally, the third class contains non-local terms
in ¢ and wu [88], which can occur in the form of either integral terms or supplemental elliptic
partial differential equations. For models using this kind of relations see for example [88] and the
two-pressure model, cf. [77].

Authors Constitutive law for the collision pressure p,
Sjogreen et al. [118] Pe(ps) = ¢s2
1 0 0
Morris and Boulay [88] P (¢s,v) = piynn(ds) |0 X2 0 | |7,
0 0 s

M (ds) = Kn (@;jiqbs)

0 0
>\2 O |A/5|7
0 As

Inkson et al. [58] Po(¢s,us) = pynn(ds)

P 2
nn(¢s) = Kn <¢crits_¢s)

Nott and Brady [95] Pe(ds,v) = prp(ds)|¥l,
— 1/2 (bcrlt
p(d)s) - d)s / ¢crlt ¢s>

OO =

Nott and Brady [97] pe(ds,v) = pyp(ds) T2,

2 y
p(¢s) = ¢sl/2 (¢,Ci:rf¢s) -1
T solves an elliptic PDE of ¢, and v

Drew [31] (62) 0 for ¢s < Perit
WO c\Ps) =
p divergent  for ¢g > Gerit

Ahnert et al. [2, 15] and De(Ps,ws) = ppnn(ds) s,
2
similar to Lecampion et al. [75] | n,(¢s) = K, (

s
Perit — Ps
Table 2.2: Shown are some common constitutive laws for the collision pressure. The proposed

forms differ in their dependence on the velocity, usage of scalar or tensorial form and local vs.
non-local terms in use.

Among the proposed models there are different velocities in use. For derivations based on the
suspension balance model the collision pressure depends on the volumetric velocity v [95], whereas
models with separate momentum equations for the phases usually have a dependence on one of
the phase velocities us or u, see e.g. [2, 41]. If anisotropic rheologies are to be modeled, then p. is
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given as a tensor quantity P. and instead of the gradient of the collision pressure the divergence
of the tensor is used, see e.g. [88]. This is a direct generalization of the scalar collision pressure,
since a term of the form P, = p.(¢s,u)I can model any scalar behavior. Table 2.2 shows some
common forms found in the literature.

Choices for our model

Initially, we specify the momentum coupling M g. We choose a formulation that reduces to

Darcy’s law (1.2.4) in the appropriate asymptotic regime, see Section 7.1, so that
2
1233 ¢s
M =21 (g~
S Kp¢f ( f 3)’

where K, is the so-called permeability coefficient [10].

The liquid is assumed to have a Newtonian rheology, so that
T 2 *
Tf:,LLf(V’U,f+(VUf) —gv-qu)Jru V"Ll,fI7

where the first part describes Newtonian rheology for compressible liquids (1.1.3) - (1.1.4) and
the second part describes the bulk effects with p* > 0 the bulk viscosity [10, 122]. We need to
use the compressible definition here, because the liquid velocity is not divergence-free, cf. Section
2.2. The total bulk viscosity can become dominant for concentrated suspensions [122], but for
convenience we choose p* = % tf in the current chapter, such that the liquid stress simplifies to

TF= KLYy
with the liquid shear rate definition

Y¢ = Vus+ (Vuf)T.

Since our original motivation for the model comes from drying front modeling, we like to describe
dilute up to concentrated suspensions by our solid stress definition. We already showed popular
choices for the viscosity of suspensions in Section 1.2. Recently, Jop et al. [63] proposed constitutive
laws for granular flows, which is based on the idea, that they behave similar to viscoplastic
fluids. They use a non-dimensional number - the so-called inertial number I - in order to collapse
experimental results of different media onto a single curve [63]. Inspired by this work, Boyer
et al. [15] proposed constitutive laws for suspensions that are supposed to be valid for dilute
up to concentrated flows using the non-dimensional viscous number I,,. Their model contains
five parameters: The maximum packing coefficient ¢, the minimum and maximum friction
coeflicients p1 and po, the viscosity py and a non-dimensional parameter Iy describing the slope
of the friction. All of which have to be chosen depending on the rheology of the suspension, but
can be estimated using shear-flow experiments [15]. In their work they measured the values

berie = 0.585, 1 = 0.32, p2 = 0.7, Iy = 0.005, (y = 3.1Pas,

for a Triton X-100/water/zinc chloride mixture [15]. Further, the constitutive laws have been
asserted with numerical simulations by Trulsson [129]. Hence, we use the shear stress definition
[15]

TS = /‘l‘f{rIS’757
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with the solid shear rate definition
Ys = Vus + (v""S)Tv

and the solid viscosity functions

_ § ¢Crit ¢s
775((;58) =1 2 ¢Crit - ¢s N MC(QSS) (djcrit - ¢s)2’ (231)
fie(s) = p1 + pz (2.3.2)

1 + IO¢S2(¢crit - ¢s)72 .

Note, Boyer et al. [15] measured the total stress of a suspension, but we have to specify the phasic
solid stress. Therefore, we adapted their constitutive law in order to yield the same total stress,
ie.

T = ¢STS + ¢fo7

for our suspension. In contrast, a usage of these constitutive laws for the total momentum in
combination with the volumetric velocity would result in unphysical behavior: Imaging a liquid
flow through a porous medium. This setup would require the total viscosity to diverge since
¢s & Gerit, SO the volumetric velocity vanishes. But since the liquid still flows through the medium,
an opposite solid flow would be induced, which has not been observed in experiments.

The collision pressure term p. has been originally proposed as a convenient tool to state a closure
condition for the multiphase model. However, a physical interpretation of the term can be given
in terms of collisions between rigid particles [31]. Boyer et al. measured a normal stress of the
particles due to shear, which we use for our collision pressure definition. The condition for the
collision pressure (2.2.18) is

Pec = 77n(¢s)|’75|,
with the normal viscosity function
2 )2
! (¢ ) (¢Crit - ¢s ( )

The previous choices for p, and 75 are just valid for 4, > 0, since in the case %, = 0 the particle
stress losses its meaning, cf. [75]. Thus, we demand for 4, = 0 the relations

bs = Perit
and
(65T s| < pape.
2.4 Non-dimensionalization
We introduce characteristic scales via
x = L2, y=Ly, z2=1Lz,
t = £t’, uy, = Uuy, D = Ml);ﬁ

U
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for k € {s, f}. After non-dimensionalization, we drop the primes and also the bars and hats
indicating averaging, and obtain the system

Ops+ V- (dpus) =0, (2.4.1a)
s + V- (dsus) =0, (2.4.1b)
Re[@t(fbfuf) +V- (¢fo X Uf)] (2.4.1C)
2
—V - (¢s7s) + ¢5Vps = —Da q;:f(uf —uy),
R 0u0ut) + V- (6110, @) (2.4.1d)

2
=V - (¢sTs) + ¢sVpy + Vp. = Da qf;f(w — Us).

Three dimensionless numbers appear here, namely the Reynolds number Re = ULpys /5, the
Darcy number Da = LQ/KP and the density ratio r = py/ps. We focus on the case, where liquid
and solid phases are density matched, i.e. r = 1.

The non-dimensional versions of the constitutive equations for the rheology are now as follows:
For the liquid phase, we have

For the solid phase, either || > 0, then

Ts = Ns(Ds)Yss (2.4.2a)
DPec = ’r]n(¢8)|7s|7 (242b)
with (2.3.1)-(2.3.3); or 4, = 0, and then we require
¢s = ¢crit
and
‘¢STS‘ S H1Pc-

The continuity conditions across yield surfaces carry over from the dimensional equations and
also the parameters, u1, s and Iy and ¢et, which were non-dimensional to begin with.

Remark

Let us note that in the near-critical, or jamming limit, when ¢s — ¢, and for fixed contact
pressure p. = ¢s(ps —py), it follows from (2.4.2b), (2.3.3) that 4, tends to zero as O((¢erit — Ps)?)-
Thus, the solid phase velocity us becomes uniform, so that in a conveniently chosen reference
frame, it is at rest. Notice, however, that |¢s7s| — p1p. remains O(1) due to (2.4.2a), (2.3.1),
(2.3.2). The equations for the liquid phase become

V-uy =0,

S

2
Re[us +V - (uy @uy)] = —Vps + V-7, —Da(;S 5 (uy —us).
/
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If, in addition, Da — oo, the term V -4, and the inertia terms drop out from the second equation
and we recover as a limiting case Darcy’s law for a porous medium. This line of through leads
to the study of highly dilute or concentrated flow cases in Chapter 7. There we also look for a
thin-film approximation of the proposed model and find connections to single-phase Bingham
flow.






Chapter 3

Simple laminar flows

In contrast to the single-phase case exact solutions of multiphase models are rarer. Here, we apply
the new multiphase model from Chapter 2 to simple laminar flows. In particular we derive simple
solutions for the plane Couette and plane Poiseuille flow. The solution for the plain Poiseuille flow
has a solid and a liquid region, which shows the model contains a viscoplastic behavior trough
the appearance of a yield-stress. This has not been reported for Eulerian-Eulerian models before.
The derived solution is studied using phase space methods and approximated using the method
of matched asymptotic expansions. In the final part of this chapter, we consider the evolution
towards the plane Poiseuille flow solution by also considering a time dependence. This allows
us the derivation of a novel drift-flux model for viscoplastic fluids via the method of matched
asymptotic expansions.

3.1 Plane Couette flow

We consider a flow situation between a stationary bottom plate and the top plate that is moved
at a fixed velocity, which by choice of scales can be set to one. Thus,

ugs =0, ur =0, aty=20 (3.1.1)

1 1
us—<0>, uf—<0>, at y = 1.

We seek stationary solutions with constant ¢s > 0 and pressure and velocity components
ug = (ug,vx) that only depend on y for both phases.

and

From equations (2.4.1a), (2.4.1b) and the boundary conditions, we obtain
vs =0, vy =0,

45
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12

u,=u;=0
v

-1/2

Figure 3.1: Sketch of the flow situation in a channel.

and therefore
. 0 Oyug . 0 Oyuy
Ys = <8yus 0 ) ’ = <8yuf 0o )

The second component of equations (2.4.1¢) yield a constant fluid pressure, i.e. p; = const. The
same for the second component of (2.4.1d) yields a constant collision pressure, thus

De = ¢s(ps _pf> = nn<¢s)|ayus| = const. (312)

The total stress T = ¢s7T, + ¢5T ¢ is constant as can be seen by summing equations (2.4.1c) and
(2.4.1d). Using all this information for the first components of (2.4.1¢) and (2.4.1d) gives

2

—0y(¢s0yuy) = —Da%(uf — Us),
f

2

_ay(¢sns(¢s)8yus) = Da%(uf - Us)- (3.1.3&)

Since we have assumed that ¢ is constant, and because of (3.1.2), we can conclude that the left
hand side of (3.1.3a) is zero. Thus, together with the boundary conditions (3.1.1), we obtain that

us(y) = ug(y) =y.
Note, this solution and derivation is similar to the single-phase case of the plane Couette flow,
see e.g. [115].
3.2 Plane Poiseuille flow

It is instructive to investigate the properties of the model (2.4.1) for one of the classical flow
situations, namely, plane Poiseuille or channel flow. We think it is the simplest flow geometry to
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exhibit the emergence of a jammed region, because it is known from single-phase models that
the total stress is a linear function of y and being zero at the center of the channel. Thus, any
positive yield stress must become dominant near the center of the channel.

We suppose the dimensions of the channel are 0 < x < L and —% <y< % and prescribe for the
inlet conditions at x = 0

(1,2 . 1_ .2
Ps = Psjin, Uf = <uf’m (6 Yy >> . U = (usvm (6 Y ))

and for the outlet condition at x = L
n- (_psI + ¢s778(vu5)T) =0, n- (_pr + ¢f778(vu5)T) =0.

In addition, the inertial effects are negligible since it is a parallel shear flow and we obtain for the
bulk equations

Oy + V- (dpus) =0,
at(bs + V. (¢sus) - 07

2
—V - (pyTs) + 05 Vpy = _Daﬁ;(uf — uy),

2
=V (6ema) + 6.5y + Vo = Da(ug — w),
f
d)f + d)s = ]-7
where
Tf= Pva
|¢s‘rs| < p1Pe, ¢s = Perit, if ‘79| =0,
Ts = 1s(Ps) Vs Pe =1 (®s)|Ysl, if || #0. (3.2.2a)
At the channel walls, we assume the no-slip conditions
u; =0, uy = 0.

For the two-phase model at hand, it turns out to be advantageous to formulate the problem in
terms of the flow variables

V= Qrus + dsus, wW=uf — Us.

In these variables, noting that v + ¢sw = uys, v — ¢yw = u, and using ¢y = 1 — ¢, the problem
can be written as

V-v=0, (3.2.3a)
0ips +V - ((;53’1) - (Z)s(l - ¢S)w) =0, (3-2~3b)
2
=V (1= 5)7y) + (1 = ¢:)Vpy = —Da%w, (3.2.3¢)
2
-V - (¢s775'75) + ¢SVPf + v(nn|75‘) = Dal(és(b w, (323d)

and with no-slip conditions at the walls y = :I:%

v =0, w=0. (3.2.3e)
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Phase space analysis of the stationary problem

For the system (3.2.3a)-(3.2.3¢) we now derive conditions for the existence of stationary two-
dimensional solutions, where all quantities, except for the pressure, depend only on y. In addition,
to simplify notation, we set ¢s = ¢ from now on.

¢ = 9(y), v =1(y), w = w(y),
Tr=TrY), Ts = Ts(y), py = ps(z,y).

.3b) yields (if v1, vg

w
[N}

The combination of no-slip boundary conditions (3.2.3¢) with (3.2.3a), (3.
and wy, wy denote the components of the vectors v and w, respectively)

vy =0, wy =0,
and therefore
’7 _ 0 8y(’01 — (1 — (b)wl)
s 8y(v1 — (1 — ¢)w1) O ’
and
L 0 a’q (vl + d)wl)
r 6y(111 + (bwl) 0 ’

The second component from (3.2.3¢) requires p; to be independent of y. For the total stress
T = ¢sTy + ¢sTs we get from (3.2.3¢), (3.2.3d)

Ozpf — OyT12 =0, (3.2.5)
Oype = Oy (1n|¥;]) = 0.

This means that in equation (3.2.5), one term only depends on z and the other only on y, so
both have to be constant, therefore the solution is

py(x) = p1z + po,

where pg is a constant of integration, which by a choice of origin, we can assume, without loss of
generality, to be zero, and

m12(y) = p1y. (3.2.6a)

This shows that the total stress for the plane Poiseuille case in the multiphase model is a linear
function just like in the single-phase case, cf. [115]. From now on, we only look at the case of
solutions with velocities and volume fractions that are symmetric with respect to y = 0 and
that have at most one unyielded region for —yp < y < yp, i.e. with at most one yg, where
0 < yp < 1/2. Due to the symmetry assumption, the constant contribution to 712 has been set to
zero in (3.2.6a) and it is sufficient to consider only non-negative y. The same reasoning as above
further shows

Pe = const. if |%,| > 0.
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Thus, the contact pressure, p., is a constant here, which is free and thus acts as an additional
parameter.

Overall we get the system: For y € [yp;1/2], ¢, Ts12, Tr12, v1 and wq satisfy

2
0,((1~ 6)7712) = (1~ )pr + Da =~ Su, (3.2.7a)
¢sTs12 = p1y — (1 — @) Tf12, (3.2.7b)
%w:Tﬂ2—ii%7 (3.2.7¢)
Pe = 1n(9)|0y(v1 — (1 = )w1 ). (3.2.7d)

In the unyielded region y € [0;yg[, equations (3.2.7a)-(3.2.7b) stay the same, but the two
remaining ones are replaced by

Oy(v1 — (1 — P)wy) = Oyus =0 and ® = Gerit- (3.2.7¢)

The boundary conditions are the no-slip
vy =0, w; =0, at y =1/2, (3.2.71)
and symmetry conditions
Oyv1 =0, Oywi =0, at y =0. (3.2.7g)

In case the unyielded region fills out the whole channel, i.e. yg = 1/2, the no-slip boundary
conditions together with (3.2.7¢) gives us = 0. Then (3.2.7a) becomes the Brinkman equation,
cf. [18] and Section 1.2. For the yield surface at y = yp we demand the continuity conditions

[Ts12)= =0, [Tr12)T =0, [v1]F =0,

[wi]t =0, [¢]f =0, (3.2.7h)

where we denote [g]T = lim,~,, g — lim, ~,, g. We remark that these conditions are not all
independent, as, for example, the second condition in (3.2.7g) can be obtained from the first via
(3.2.7¢), and the continuity of one of the stresses in (3.2.7h) implies the other via (3.2.7b).
Notice that (3.2.7d) applies in the region [yg;1/2] where 4, > 0, so that, if p. = 0, this implies
¢ = 0, i.e. no solid phase, which seems ambiguous. We therefore assume p. > 0. Then, we can
remove p. from the equations by rescaling

Ts12 = PcTs12, Tf12 = PcTs12, P1 = PcP1,

Uy :pcafv Ug = Pclls.

The fact that p. can be scaled out of the problem in this way implies that the width of the unyielded
region i.e. yp does not depend on p., as was reported in [59]. We note that in conventional
Herschel-Bulkley models, which are also able to capture yield stress and shear-thinning, the
unyielded region would change with p..
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Phase space analysis

Using phase-space methods, we ask if for system (3.2.7) solutions exist and under which conditions,
but first we reduce the system into a second order, non-autonomous system of ordinary differential
equations for w = w; and ¢.

We first note that in the fluid region y € [yp;1/2] combining the definition of the solid stress
(3.2.2a) and (3.2.7d) yields

PTs12 = PNsOyus = %sign(ﬁyus) = _iﬁs sign(y), (3.2.8)
where we have made the assumption that sign(d,us) = sign(7) = —sign(y) holds. This assumption

is fundamental and based on the experimental observation, that channel velocity curves are
roughly square profiles (cf. [50, 115]) and is further asserted by (3.2.6a), which states that the
total stress is just a linear function. Since Da is large, we expect us =~ v and this behavior should
also be true for the solid velocity.

Then, using (3.2.7b) in (3.2.7a) and (3.2.8) yields

2

9y N(¢) = —¢p1 + Dalgi 5

which is used as an equation for the solid volume fraction. We get an equation for w by combining
(3.2.7b) and (3.2.7¢) to give

w, (3.2.9a)

_py+ N 1

Oyw + . 3.2.9b
The function N, which is also referred to as friction coefficient [15, 75], is given by
éns(9)
N(o) = .
In the unyielded region y € [0;yp[ we already know
¢ = ¢crit

and since Jyus = 0, we have 7712 = Jyuy = 9yw, which together with (3.2.7a) is

2

Since dyus = 0, we could choose us = 0 by considering an appropriate reference frame in the
unyielded region. Then, equation (3.2.9¢) is exactly Brinkman’s equation for a porous medium,
cf. [18] and Section 1.2.

At the channel wall and center, we have the boundary conditions

w=0 aty=1/2, (3.2.9d)
Oyw =0 at y =0, (3.2.9¢)
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and at the yield surface,
¢ = beriv, (W] =0, [w]F =0 aty=ysz. (3.2.9f)

The problem for w in the unyielded region, (3.2.9¢) and (3.2.9¢), can now be solved explicitly.
For Da > 0, we have

p1,

w = o cosh (Da1/2¢crit > _ (1 - ¢crit)2

1- (bcrit Y Da ¢2

crit
where o is a constant of integration. We can use this in the last two conditions in (3.2.9f) to get

(]- - ¢crit)2pl) Da1/2¢crit tanh Dal/2q§cm
Da ¢2 1- (bcrit 1- ¢crit

crit

ayw—(w+ y3>,aty—y3

and from this a new formulation of the free boundary condition

O = Perits (3.2.10a)

1-— cri 2
plyB +N’1 _ ( ¢2 t) p17 at y = yB (3210b)

Dal/2¢;, tanh (%%}?) Da¢?;,

w=W(yp) =

We have thus reduced the problem to a free boundary value problem for second order system
of ODEs (3.2.9a), (3.2.9b) with a condition (3.2.9d) at the fixed boundary and two at the free
boundary (3.2.10a), (3.2.10b).

For the solution of the boundary value problem (3.2.9), we proceed as follows. Rewriting (3.2.9a)
for w, i.e.

(OyN +¢p1) (1 - ¢)
Da ¢? ’

and using it in (3.2.9b) and the boundary conditions yields an equation solely in ¢, i.e.

9, ((6yN+¢p1)(1¢)> Pyt N " 1

Da ¢2 1—6¢

with boundary conditions

1
O:ByN+¢sp1 aty:i’
¢ = ¢crit aty =ys,
(OyN +p1) (1 — ¢erit) P1ys + i at y =yp
D 2 - 3 . B .
a(bcrlt Da%qscrit tanh (myE)

We transform the free-boundary problem (3.2.11) into fixed-domain problem via

y_ yB 2 27
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where ¢ € [0, 1], which introduces the free-boundary coordinate as an explicit parameter in the
system, and then we add the trivial differential equation for the constant yp to get the boundary
value problem

L, (550N +6m) (1-9) _p(p =3¢+ +N 1
yp— 3% ° Da ¢ 1—¢ 2

Ocyp =0,

with boundary conditions

1
0&N+(m2)mh at ¢ =0,
(yb = ¢crit at C = 1,
2yp — %) Da?eu; + 2 1
et = — (WB = 3) Da*dai(prys +1m) | : (yB )p1

1- cri 3 i a 5
5( Perit) tanh <Dla_2¢¢::ty3>

at ( = 1.

We have thus reduced our original system into a nonlinear boundary value problem, which can be
solved using standard methods like Matlab’s bupdc solver [85].

After solving for ¢, we can determine the remaining variables by first using

Pe = _Un(¢)ayusa

up = (ayN +D¢j;2)(1 - 9) + ug,

for the fluid region y > yp with no-slip boundary conditions and

¢ = ¢crita
Oyus =0,
p1y
dyup = —2Y
v 1- ¢crit

in the plug-flow region with boundary conditions
[us]T =[us]t =0 aty=vygp.

Note, in contrast to the plane Couette flow, the base state for the multiphase Poiseuille flow is
not similar to its corresponding single-phase solution, cf. [115]. Nevertheless, it has similarities
with the solution of the Poiseuille flow of a single-phase Bingham fluid, cf. Section 4.2.

The minimum pressure condition

We now derive a condition for the minimum pressure gradient that guaranties the existence of
nontrivial solutions of the stationary problem.
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Figure 3.2: The dependence of the yield surface position yp on the pressure gradient magnitude
p1, for parameters (3.2.14), us = 1. The solid curve shows the results for Da = 1; the dotted one
for Da = 10; the dashed curve for Da = 1000; the dotted-dashed curve for Da = 5000 and the
gray curve for Da = co. For small |p;| we have a monotone dependence between Da and yp -
the bigger Da, the smaller yg. For large |p;| (see inset) the behavior is more sophisticated, since
we have a turning point Dagyy, depending on the parameters of the system. For Da < Dagypy it
shows the same behavior as for small |p;|, but for Da > Dagym the value of yp becomes larger
for bigger Da.

Let ywan be the position of the wall, i.e. in our case ywan = 1/2, then the minimum magnitude

for the pressure gradient pmi, can be explicitly computed from (3.2.10b) and w(ywan) = 0 as
Dunin = (bcritDa H1
min — .
nv Da i S~
ywall]:)a ¢crit + tanh (ywad) ?CTNJ) Da (1 - ¢Crit)2
crit —

From this expression one can also see, that there must be always an unyielded region as yywan — 0
implies ppin — 0.

The dependence of the width of the unyielded zone on the pressure gradient is summarized in
Figure 3.2. In all cases, there is a minimum magnitude for the pressure gradient, i.e. puyin, below
which the unyielded region fills the entire channel. On the other hand, as p; decreases, the width
of the unyielded region decreases as well. In fact, yg tends to zero as p; — —oo, but always
remains strictly positive for finite pressure gradients. For larger Da the unyielded region is getting
smaller and in the limit Da — oo it becomes the curve

yp = — 2L, (3.2.13)

P1
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0 05 1 0 05 1
¢ ¢

Figure 3.3: The trajectories for system (3.2.12), onto the ¢¢-(-plane with g3 = ps (continuous
line) and pg = 2 (dotted line) as well as Da =1 (left) and Da = 1000 (right).

Problem (3.2.9a), (3.2.9b) with boundary conditions (3.2.7f) and (3.2.10b) contains the parameters
Da, ¢erit, P1, M1, 2, lo. The critical volume fraction ¢t is typically chosen between 0.63 - 0.68
(volume fraction at maximum random packing). The channel pressure gradient value p; <0 is a
control parameter. Darcy’s number Da is often given as the squared ratio of particle diameter,
i.e. Da~ (L/a)?, and can reach large values, see e.g. [88, 95]. The three parameters pi1, po and
Iy are material parameters. In our study we fix

¢crit = 0.63, H1 = 1, [0 = 0.005, (3.2.14)

and vary p; and Da for p; = po. Notice that in this case, the term that depends on Iy drops
out. After that, we let us = 1.5 and again vary p; and Da. Compare with the discussion of the
parameters in Section 2.3 and note the different choices for p; and po, which has been done to
circumvent an ill-posedness in the model as described in Chapter 4.

Case 1 = s

Keeping in mind that we always keep the parameters in (3.2.14) fixed, we first consider ps = p1
and let Da = 1 and p; = —5, shown in Figure 3.3. If the magnitude of the pressure gradient
is lowered below ppin, the yield surface position yp is at the wall, implying there is no yielded
region and the unyielded region extends through the entire cross section of the channel. If, on
the other hand, Da is raised to a large value, e.g. Da = 1000 with our first choice for the pressure
gradient, the yield surface position becomes smaller, thus the unyielded region is thinner, as
might have been expected for larger interphase stress due to drag. The effect in the ¢ — (—plane
is a seemingly steeper ascent of the curve.

Case i1 # iz

Next, we consider po = 1.5 # puq and Da = 1, p; = —5. The profile of ¢ is very similar to the
11 = pe case, but it additionally contains an inflection point just before the volume fraction
reaches the critical value ¢¢;;. This is a consequence of the second term in p. dominating the
first term, i.e. p1 for ¢ close to the maximum packing fraction, provided ps > pg and Iy > 0.
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Summarizing, unless the absolute pressure gradient becomes smaller than pp,i,, the results suggest
that there always exists a unique solution to the boundary value problem (3.2.9).

Full solutions

06
0.015
0,04
s ¥ 0.01
02 0.005
45 0 05 -05 0 s 45 0 05
y y y
-4
—, 20)(10
06 oy
03 =y
9504 10
0.2 w
02 o
0|
85 0 05 -85 0 05 05 0 05

y y y

Figure 3.4: (left) The solid volume fraction ¢,, (middle) the velocities us, us, u and (right) the
velocity difference w obtained by using the ODE problem (3.2.9). The parameters are given by
(3.2.14), p2 = 1, and p; = —10. Top figures show results for Da = 1000 and bottom figures for
Da = 10000.

Figure 3.4 shows solutions for volume fraction, velocities and velocity difference across the whole
channel. The solid volume fraction is usually increasing towards the channel center, where it has
a non-vanishing region at maximum packing and falls back to its original value due to symmetry.
The velocities are increasing towards the center, with a flattened profile around the unyielded
region. We note that the fluid velocity has a dip around the center, thus reaches its maximum
point not at the middle of the channel, but near the yield surface. The velocity difference w
always has the form of an upside down w with a flattened region in the center.

We observe that for growing Da the solution of the stationary problem develops boundary layers,
in particular the velocity w shows a pronounced sharp drop near the boundary y = 1/2. In the
following section we make use of this property to derive an asymptotic solution of the stationary
problem in the limit Da = 1/e — oco. We expand on this analysis to derive a new drift-flux model
from the time-dependent two-phase flow model for concentrated suspensions and use it to study
the formation of unyielded or jammed regions in the flow.
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Asymptotic analysis of the stationary state

For the typical physical situation Da can become quite large and as we observed in the previous
paragraph, at the same time the value of w becomes very small. This suggest an asymptotic
approximation of the problem using the ansatz

Da = —, w = eW.
€

We drop from now on the tilde and obtain from (3.2.9a)-(3.2.9b)

1—¢ 1—¢
TN

Substitution into equation for ¢ in (3.2.9b) yield the second order equation for ¢

N'()3, 6. (3.2.152)

1- ¢ 1- (rb p1y + N(¢) (¢crit - ¢)2
10) —_— N'(¢)0, = .
20, (m ™52 + 150N 0)0,0) = L) e
The boundary conditions at the yield interface y = yp are
¢ = berit,
2 ri 2
6y¢) _ —6_1/2 4 Gerit P1yB + + Zpy,

51— Qerit tanh( ¢Zit E—l/QyB) 5

1—derit

and at the channel wall y = %, we have 0 = p1% + %N’(qﬁ)ayqx since w = 0. Hence, we have
the boundary condition

1
at y = —.

ay¢ = —D1 N,qud)) B

Clearly, this is a singular perturbed problem with a boundary layer at y = 1/2 and y = yp. In
fact, if we assume that ¢ and yp have asymptotic expansions

o(y) = do(y) +261(y) + O(e),  yB =ypo+cyp +O(?),

where we used to Landau O-notation. Then, to leading order, we have

_py+ N(¢o) n (Gexit — P0)?
1—¢o o )

If we use this solution for ¢ in (3.2.15a), then the boundary conditions for w are not satisfied.

0

(3.2.16)

Boundary layer problem at y = 1/2

For the boundary layer variables z = (% —1)e~ /2 and ®(2) = ¢(y) the governing equation is

1-® 1-9
+

o % P + N((b) - 81/2 z + (¢crit - (I))Z
P P2 N

1-¢ P2 ’

az<—eﬂ2p1 _NKQXL¢>
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with boundary condition at z =0

(1—®) N'(®) 9. =e'/2 p; (1 — D).

Assume the asymptotic expansion of the inner variables can be written as
B(z) = Bo(2) + /21 (2) + O(e),
so that the solution satisfies to leading order the problem

501+ N(®o)  (derie — Po)?
1— & P32
6z<I>0 =0 at z = 0+

1-9
- ( g V'(®0) aﬂm) =
0

since (1 — ®q) N'(®g) # 0. As z — oo the solution approaches a constant, say ®o — g o0, which

satisfies )
301+ N(Pooo) | (Perit — Po,00)?
1- CI)O,OO (I)(2),oo

Hence, since for y — (1/2)~ in the leading order outer problem, then
2
ipi+ N (d0(3)) n (Gerit — ¢0(3))
1—¢o(3) #%(3)
Therefore, matching yields ®¢ o = ¢0(1/2).

It is straightforward to solve the next order problem to obtain

oy AN(60(1/2) —pioo (DAL ey As
®4(2) A§/2N/(¢o (1/2)) p( \/E ) * A7 (3.2.20)

=0.

0= (3.2.19)

where
A, - 95 (1/2) N $3(1/2)  3p1+N(do(1/2))
(1—¢0(1/2))>  N'(¢o(1/2)) (1—¢0(1/2))?
B 2 Gerit Perit — ¢o (1/2)
N'(¢0(1/2)) ¢ (1/2) 1—¢o(1/2) ~
P R 1V,

" N'(9o (1/2)) (1 — o (1/2))%’
thus, using (3.2.19)

ﬁ—j — ) lN'(% (1/2)) +

(Gerit — 60 (1/2)) (62 (1/2) — 2o + beritro (1/2))
o3 (1/2) '

Taking the y-derivative of (3.2.16) we get

rit — QSO !
8y¢0 = —DP1 |:N/(¢0) + (;50;73 (¢(2) - 2¢crit + ¢0¢crit) . (32-22)
0
Therefore, the linear term in the expansion of the outer solution ¢y and in the inner solution @,
see (3.2.20), match as required.
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Boundary layer problem at y = yp

Similarly, we let the boundary layer variables be

§="m el& =0,

To leading order the problem now reads

1 - + N crit — 2
O ( Yo N’(@o)agwo) _ P1YBo (v0) i (¢erit — ©0)

©3 1—¢o ©3 ’

with boundary condition at & = 0T
900(0) = ¢crit

and 2
) 0) = -2 crit
ESOO( ) 51— ¢crit

Note, if we assume that in the leading order outer equation, ¢ also satisfies ¢ = ¢crit at y = yp,
then we must have that p1 ypy + 1 = 0, since N(¢erit) = p1. Hence, the second boundary
condition is also zero. This suggests w9 = ¢erit- Matching this to the leading order outer problem

p1YBo + N(do(yBo) | (derit — P0(yB))?
1 — ¢o(yp) ¢5(yn)

Hence, ¢o(yp) = derit- Solving the next order problem

(p1yBo + 1) = 0.

=0.

2 2.
o — _ = crit
332! (Wl £ P f) (1= dom)?
with boundary conditions

2
P1(0) =0, Depr(0) =5

gives )
p1(§) = 51915

This needs to be matched with the linear term in the Taylor expansion of the leading order outer
solution ¢g, which can be obtained by taking the limit ¢ — ¢erit in (3.2.22). That limit gives
Oydo(ys) = —p1/N'(¢perit) = —p1/(—5/2), that is, the coefficients are equal, hence the terms
match.

Higher order approximations, that include the perturbation of the boundary only come in at O(g)
and are therefore not considered here.

3.3 Drift-flux model for plane Poiseuille flow

It is known from the work of Nott and Brady [95] that the Eulerian-Eulerian model contains the
drift-flux model in case of planar Poiseuille flow. Nevertheless, while drift-flux models have been
proposed to study the evolution of two-phase flows of suspensions [76, 103] and are also used as
transport equations for a suspended phase and combined with hydrodynamic equations [23, 93]
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an asymptotically systematic derivation from the underlying two-phase model is still open. Here,
we use matched asymptotic expansions along the lines of the analysis of the stationary problem,
for the derivation of a new drift-flux model for the cross-section of the channel. Our analysis
shows that the inclusion of the boundary layers leads to a drift-flux model that naturally accounts
for the shear-induced flux of the suspended phase away from the boundaries. Moreover, the
constitutive law for concentrated suspensions leads to the appearance of unyielded and yielded
regions, which needs to be captured by the new drift-flux model.

Asymptotic model

To capture the evolution towards a Bingham-type flow it is instructive to investigate the problem
for the cross-section. We assume therefore that all the variables depend only on y and t, except
for the liquid pressure variable, which depends solely on .

As in our previous section, the drift-flux regime is established for large Da and small velocity
differences w, and in addition on a long time scale. Hence, we let

1 t*
Da=—-, w; =cw], wy=cw;, ¢=—.
3 €

Wy ”

Then, the governing equations are, after we drop the “x

019 — 0y(¢ (1 — d) wa) = 0,

0,101~ 0) 001+ <1~ 6)3,Gun)] + (1~ upr = 1w
~0,[2500 = 6) By owa)] + (1~ 6)ypy =~

=0y londyen — eomd, (1~ Shwn)] + 60py = 1,

0, 12269,((1 = 6)u)] + 6.9,y + Oype = 1,

1/2

Pe =1 (9) [(Qyv1 — €9y (1 = d)w1))* + 2[0, (1 — P)w2)*] 7,
and no-slip conditions at y = +1/2

v =0, w =0, wy=0.
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To leading order we obtain for the outer problem

O — 9y(o(1 — P)ws) = 0,

2

~Oy[(1 = 9)9yn] + (1 = 9)ups = —g—gwn, (3.3.2a)
(1 —0)0ypys = —1¢_2¢w2, (3.3.2b)
—0y[¢ns0yv1] + ¢Oups + Oupe = 1?2 U (3.3.2¢)
POypy + ype = 1?2 ey (3.3.2d)

Pe = 1 [0y,

and no-slip conditions at y = +1/2
1}1207 w1:O, UJQZO.

We note that for ease of notation we have dropped the indices in the variables that denote the
leading order solutions. Adding (3.3.2b) and (3.3.2d) yields 9y(ps +p.) = 0, hence p; +p. = f(z).
Adding (3.3.2a) and (3.3.2¢) yields

=0y ([¢ns + (1 = ¢)] 9yv1) + 0u(ps + pc) = 0.

Since the left hand side is only dependent on y as well as ¢ and the right hand side only on z,
they must be constants. Thus, defining 0, (ps + p.) = p1, so that after integration

[¢ns + (1 = @)] Oyv1 = pry + . (3.3.3)
Adding (1 — ¢)dyp. on both sides of (3.3.2b) yields
__ ¢
aypc - (1 — ¢)2w2.
We have (1 o2 (1 gy
1-— 1— )
w2 =50 (n|Oyv1]) = 5 () -

In addition note that from (3.3.3) we obtain

8@1:7p1y
Y ¢775+1_¢7

where due to symmetry we have set a = 0. Since p; < 0 the negative of this expression is always

positive and we set
pry

Cgns+1—¢

(1—¢)28[ Ny }
®? Ylgns+1—o]"

"’y:

so that

Wz = —p1
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Hence, we obtain for the drift-flux model

(1—9)3 y
0p = —p10, 9, — 3.
e [ ¢ (N(ﬁb)*nn(i))] 334

We note at this point that the drift-flux model we have just derived (3.3.4) is a nonlinear diffusion
equation which admits constant solutions, say ¢g. Linearizing about these base states by making
the ansatz ¢(t,y) = ¢o + d ¢1(t,y) + O(6?) we obtain to O(J)

M'(¢o) K'(¢0)
K(¢o) K2(¢o)

where M(¢) = (1 — ¢)3/¢ and K(¢) = N(¢) + (1 — ¢)/nu(¢). Clearly, if K'(¢o) < 0 then any
perturbation of the constant bases states is damped out and the flow remains constant. But
we note that constant solutions do not satisfy the boundary conditions unless the constant is
zero. Hence, we expect the nonlinear structure to come from the interplay between the drift-flux
equation and the no-flux condition.

Opp1 = —p1 Oy [ $1 — M (o) 0Oy (y¢1)] ;

We now supplement this equation with boundary conditions. At the wall, y = 1/2, it seems
plausible to use no-flux conditions, and indeed, matching to a boundary layer there gives wy = 0,
see Section 3.4. We seek solutions that are symmetric with respect to the middle axis of the
channel, thus we also impose we = 0 at y = 0.

We expect that the flux of the solid phase leads to an increase of ¢ at the center of the channel.
At some time, in fact, the solid volume fraction reaches ¢y there and jamming occurs. After
that, flow of both phases only occur for y > yp, while for y < yp, the solid phase is jammed,
where yp is a time dependent free boundary. In this region, the volume fractions are constant so
that the mass conservation equations give we = wa(t). Assuming symmetry at y = 0 it then fixes
ws to be zero to all orders in € for 0 < y < yg. At y = yp, we therefore impose ¢ = ¢y and
wy = 0, resulting in two boundary conditions as required at a free boundary.

Remark We remark that in the stationary case we let 9;¢ = 0 in (3.3.4), and integrate once.
Using the condition that we = 0 at the channel walls, the integration constant must be zero.
Since (1 — ¢)3/¢ is never zero, we can divide and integrate once more to obtain

Y _
N(¢)+ ,,1;(2)

The free constant c¢ is just the collision pressure p., which is a free-parameter in the stationary
case. With ¢ = —1/p; we obtain the stationary outer equation (3.2.16).

Numerical solution of the drift-flux model

In order to understand the time evolution of the solid volume fraction in a channel, we numerical

solve (3.3.4) with no-flux boundary conditions

1
_¢,>0 atye{yBa}

2
()

ol —Y
y<N(¢)+n1n
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using a central finite difference scheme of second order with a fully implicit Euler-Euler-2-step
method. For more details on the scheme see Section A.2. The free-boundary condition

¢ = Gerit

at y =ysp

is used to update the position of the yield surface yg.

o_ooocn _t = 0
0.6k \ t =0.0001
- T t=0.002
: % t= 0.01
'-.. Q -——t= 003
: 5 t= 500
0.4} * o o stationary
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(S L fl-‘-’L-‘-‘o ..............
u°°°o° ........................................
O e e
OMOM
0.2f °W°°°°°°Ooooo
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Figure 3.5: Time evolution of solid volume fraction using the outer drift-flux approximation

(3.3.4).

Q

The time evolution is shown in Figure 3.5 for the parameters from (3.2.14) with pu; = pe and
p1 = —10, starting from an initial uniform profile of ¢(0,y) = %(bcrit. The profile first changes near
the channel center and wall. Next, the volume fraction increases near the center until maximum
packing is reached, which spawns an unyielded region. Then, this unyielded region grows until
the yield surface yp reaches the value from (3.2.13), where the evolution stops as the stationary
solution is reached.

The stationary profile obtained by the drift-flux model has the same parameters uy, po, Iy, Gerit,
Da, but not p;. Then, the pressure p; must be chosen, so that the volume of solids V; in a cross
section of the channel is matching, i.e.

1/2

é(t,y)dy
—1/2

Vi(t) =

must be the same for the stationary and the drift-flux solution. A simple way achieving this is to
measure the yield surface position yp and use equation (3.2.13) for the pressure of the stationary
solution.
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3.4 Boundary layer analysis for the drift-flux model

For the boundary layer analysis at the wall we introduce variable

1_
.o 2517/3 O(t,2) = ¢s(t,y) = o(t,y).

Then, we obtain

20,0 + 0,(® (1 — D) wy) =0

=0, [(1 = @) 0,v1 +e(1 — @) 9. (Pwr)] + (1 — )Iupy = —51(1124)“’1
e!/20, [2(1 - @) 0.(Pwn)] + (1 — ©)d.ps = 51/2%“’2
=0 [Pns0-v1 — ePns0-((1 — P)wr)] + ePopy = 5%“)1
/20, 20 9.((1 — ®)ws)] — ®0.ps — Oope = /2 7 (I:Qq)wz
and 1/2

pe = o | 2001 — 0-((1 — Byun))? + 200-(1 ~ D))
and no-slip conditions at z =0
v =0, w; =0, wy=0.
The leading order system is

8Z((I) (1 — (b) ’U)Q) =0
—8Z [(1 — (I)) Bzvl] =0

(1-@)0.p; =0
=0, [Pns0,v1] =0
—0,p. =0

and 12
Pe =M [(azvl)2]

and no-slip conditions at z =0

’1}1:07 'lUl:O, ’LUQZO.

We see immediately that wy = 0, which provides, via matching, the boundary condition for the
drift-flux model at y = 1/2 as claimed in the text.






Chapter 4

Stability

4.1 Introduction

A mathematical model is called well-posed in the sense of Hadamard if it suffices the following
three conditions [32]:

1. The solution exists
2. The solution is unique

3. The solution depends continuously on the initial and boundary conditions

The existence and uniqueness of solutions even of the single-phase incompressible Navier-Stokes
equations is still an open problem and part of the Millennium problems of the Clay Mathematical
Institute. Nevertheless, it is possible to find solutions for special flows, e.g. parallel shear flows
like the plane Couette and plane Poiseuille flow [115] and ask for the stability, i.e. condition three,
of these particular solutions.

The stability of the Navier-Stokes equation can be studied by the well-known normal mode ansatz,
which consists of linearization around a known base state and solution of the resulting linear
system using a Fourier ansatz. This yields an initial boundary value problem, whose spectrum is
directly related to the stability of the solution. For parallel shear flows, this ansatz yields the
so-called Orr-Sommerfeld equation, see for example Drazin and Reid [30]. Using this equation,
Orszag [98] showed that the plane Poiseuille flow of Newtonian fluids have a critical Reynolds
number of Re &~ 5772.22 beyond which point the flow becomes linearly unstable. Nevertheless,
this analysis does not reveal all the unstable behavior seen in experiments as some nonlinear
instabilities do seem to be initiated by linear transient growth of certain modes, which is possible
since the eigenfunctions of the Orr-Sommerfeld boundary value problem are not orthogonal as
discussed in Trefethen et al. [128]. Some of these modes have time to grow large enough to serve
as finite amplitude perturbation and eventually lead to a nonlinear, possibly three-dimensional,

65
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instability. While the literature on these fundamental hydrodynamic instabilities as well as their
route to turbulence is quite extensive, much less is known if non-Newtonian fluids or multiphase
liquids are considered [14, 44, 45].

Chapter 2 presents a two-phase model for concentrated suspensions and it has been shown in
Section 3.2 that plane Poiseuille flow gives rise to unyielded regions and a Bingham-like rheology.
This emerging flow structure is due to shear-induced migration, a phenomenon first discovered by
Leighton and Acrivos [76]. Hence, of particular interest are the stability properties of Bingham
fluids. One of the first to study the effect of the yield stress on the stability properties was
Frigaard et al. [43]. Their analysis was based on the corresponding boundary value problem for
the Orr-Sommerfeld equation for a Bingham fluid which has first been derived there. Further
discussions by Frigaard et al. [42] and more recently by Metivier et al. [86] and Georgievskii [45]
showed that the stability properties for plane Poiseuille flow depends critically on the choice of
boundary conditions at the yield surface for the associated eigenvalue problem. Using symmetric
boundary conditions for the velocity at the yield surface the well-known critical Reynolds number
Re = 5772.22 is approached as B — 0, while for non-symmetric boundary conditions all modes are
stable also as B — 0 as noted by Métivier et al. [86]. This shows that the Orr-Sommerfeld-Bingham
equation is not a canonical generalization of the standard Orr-Sommerfeld equation.

Guided by these investigations, we revisit the formulation of the boundary value problem for
the Orr-Sommerfeld-Bingham equations, and then generalize the derivation to the eigenvalue
problem for the two-phase flow of plane Couette and Poiseuille flow. In particular we show that
for the two-phase Poiseuille flow model for concentrated suspensions the conditions at the yield
surface of the corresponding eigenvalue problem are non-symmetric.

The stability analysis of the resulting boundary value problem carried out in this chapter thus
constitutes a next step in complexity for the investigation of the dynamical behavior of two-phase
flow models with yield-stress. The analysis will moreover serve to assess the necessary conditions
to address the problem of well-posedness of the two-phase flow model.

The problem of well-posedness is in fact an inherent property of even the simplest multiphase
model equations for suspension flow and many other applications, since its first derivations
from an averaging method pioneered by Drew and Passmann [33] and Ishii [60]. The associated
loss-of-hyperbolicity problem has already been discussed in Section 2.2. Nevertheless, such
models have found widespread applications and using various forms of regularizations their study
started the development of a number of numerical schemes described for example in Stewart and
Wendroff [120].

In our investigations we will focus, after the formulation of the two-phase flow model and the
derivation of the eigenvalue problem in Section 4.3, on the stability analysis of the plane Couette
flow problem in Section 4.4. This problem is instructive since we can simplify the resulting
eigenvalue problem considerably and derive criteria for an ill-posedness in the system that is
related to the competition between the solid phase viscosity and the collision pressure. The study
of these special cases is also used for the design of a reliable numerical scheme for the general
eigenvalue problem.

In addition to the ill-posedness we also find a convection induced instability via a Kelvin-mode
ansatz and show that in general, the growth of the unstable mode is transient. As the particle
volume fraction approaches maximum packing the growth rates of the unstable modes increase,
so that it can become strong enough to possibly trigger finite-amplitude, nonlinear instabilities.
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For the two-dimensional Poiseuille flow, considered in Section 4.5, simplifications of the resulting
eigenvalue problem, that allow analytical work are not possible. Here, our numerical parameter
studies show the ill-posedness as well as the transient growth property occur again, however, for
different parameter values. The main difference to the Couette flow is that for Poiseuille flow,
there are volume fractions for which unyielded region emerge. The stability of the corresponding
yielding surface is the final topic of our investigations.

For the derivation of the associated boundary value problem we found it helpful to first revisit
the formulation of the eigenvalue problem for the Orr-Sommerfeld-Bingham equation.

4.2 Bingham-Orr-Sommerfeld system

One of the signatures of our two-phase flow model is that it contains a yield-stress similar to the
classical (single-phase) Bingham fluid. Moreover, the stability properties for the Poiseuille flow of
a Bingham fluid is a well-studied and intensely analyzed problem, see the review by Frigaard et
al.[42] and the discussion in [43, 86, 100]. In addition, the derivation of the yield-surface boundary
conditions of the two-phase model is guided by the derivation for the classical Bingham model.

It is therefore instructive to revisit the problem of plane Poiseuille flow for a Bingham fluid, in
particular to specify and motivate the yield-surface conditions for the stability problem in the
two-phase flow case.

Let us consider the governing equation for the Bingham flow, which are the Navier-Stokes
equations with a yield-stress constitutive law [43], i.e.

V-u=0, (4.2.1a)
p(Ou+ (u-V)u) =V .17 — Vp, (4.2.1b)
with
70 \ .
T = (Mo + |’Y|) A for || > 79, (4.2.1c)
=0 for || < 79, (4.2.1d)

where p, po and 79 denote the density, viscosity and yield-stress, respectively. The boundary
conditions for Poiseuille flow are the no-slip boundary conditions

u=0 atye {—L,L}. (4.2.2)

In case there is a plug-flow, we additionally need conditions at the yield-surface. We demand the
continuity of the velocity and the normal shear rate

[ul =[¥-n]=0  at|r]=r1o. (4.2.3)

These equations can be non-dimensionalized by scaling the length by 2L, the velocity by Uy, the
time by 2L/Uy and stress by pUZ, using the Reynolds number Re = pUyL/p and the Bingham
number B = 79L/(1oUp).
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Remark
The yield-surface boundary conditions (4.2.3) are not identical with the paper by Frigaard et
al. [43]. They use

[u] =0

[v] =0

/(T—pI)-nds:/ piudw
Qs Qs dt

as yield-surface conditions, where the last condition describes the total linear momentum of the
unyielded domain 5. These conditions represent a superset of conditions (4.2.3) and are not all
used in their derivation. It is unclear whether their system is overdetermined. A later work by

Metivier et al. [86] just demands
[u] =0 and [#] =0

at the yield-surface and derives the same equations, but it is still a superset of (4.2.3). We note
that our conditions (4.2.3) are also independently proposed by Thual et al. [127] and in the book
by Huilgol [56].

An analytic justification can also be given based on proofs for the existence of solutions of the
equivalent variational inequality formulation. They show the stationary velocity solutions to be
u € (H'(Q))", which implies continuity in the one-dimensional case, see e.g. [34]. Equivalent
dual formulations additionally show 7 € H(div; ), which implies the normal continuity of the
shear-rates, but not of the tangential components, see e.g. [20].

Base state

In order to derive the base state for the plane Poiseuille flow, we make the ansatz

u = (Us(y), Va(y)), p= Pz,

and split our domain into a plug-flow and a liquid region, i.e. 2 = Q, U Q.

The continuum equation (4.2.1a) immediately gives Vg(y) = 0 using the no-slip boundary
conditions. This yields

. 0 o,Up\ . 1 B 0 o,UB\ .

! (ayUB 0 ) T T T Re ( To,usl) om0 )

and thus |7| = |712]. The equation of motion (4.2.1b) yields P = 0,72 and after integration
T2 = Py + Cq, (4.2.4)

which tells us the stress is a linear function of y in £2¢. In order to derive the linear total stress we
implicitly assumed the momentum equation to be valid everywhere without specifying a specific
stress form in the unyielded region. This approach is justifiable by the equivalent variational
inequality formulation, cf. [34].
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The linear behavior of 712 in 1 allows for exactly one plug-flow. This can be seen by considering
a region with two plug-flows and a fluid region in between. There are two cases. Either the stress
712 in the fluid region goes from —7y to 7y and is by its definition no fluid region or it starts
and finishes at the same value, which due to the linearity can only be true for |7| = 7y again
connecting the two plug-flow regions with a solid region. On the other side, there must be at
least one plug-flow region, as we know from Newtonian flows with no-slip boundary conditions,
the stress crosses the zero at the channel center. Thus, as we have exactly one plug-flow region,
we will call its upper and lower boundaries h~, h™ € (—1/2,1/2), respectively.

Integration of equation (4.2.41) together with |¥| = 0 in £, and boundary conditions (4.2.2) give
the system

5(y) =ReP el +C’2iy+C3i,
Up(+1/2) =0,
al@(ﬂ:,
Up(h™) =U(h"),
with
A I

and solution

Un(y) = { sReP (vl —yp)® ~ (vp = 1/27%)  for bl 2 v

—1ReP(yp — 1/2)? for |y| < yB.
Choosing
po 1 2
= -0 oplys —1/2
Uo oL 2 (yp —1/2)
gives

Unty) = {1~ T foru <yl <172
1 for |y| < ym

as our base state.

Figure 4.1 shows the base state for the single-phase Bingham model as computed from the relation
above.

Linear stability problem

We linearize around the basic flow, i.e. u = Ug + du.

Let us define
1 B
U::1+,),
") Re( A
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—8.5 O 0.5

y

Figure 4.1: The base state for the single-phase Bingham model with parameters chosen as
Re = 5772.22 and B = 1. It has a shape similar to the quadratic velocity profile of Newtonian
Poiseuille flow, but is flat around the center, i.e. y = 0, due to the occurring plug-flow, there.

then

In 2
WU(UB) +0(6%)

=n(Up) — 5%%3‘ (@)7i;(Us)

=n(Ug) + ' + O(5%).

n(Up + 6u) = n(Up) + 6;5(a)

B

Re P O

Further, we have

7 = n(Up + 6u)%;;(Up + o)
= 1(Us)41;(Us) + 8(n'4i;(Us) + n(Us)i; (@) + O(6)
= Tij(UB) + (5Tilj + 0(52),

and

()75 (Up)

(Us + 6@) = 7(Us) + 5%7”’ 0

Thus the yield criterion is also perturbed and we need to make the ansatz H = £y, + dh for the
position of the yield-surface.

Linearizing the equations of motions via u = U + du, p = Px + dp and subtracting the base
state as well as using the continuum equation, yields

V@ =0,
Ai  2Bd,.a
Re " Rej(Up)’
Ab | B20,,0 +2B8y178< 1 )
Re = Rey(Ug) Re 9y \¥(Us)/

Orit + UpOyii + 90, Up = — 0y +

040 + Up0y® = —0,p +
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Inserting the ansatz

into the linearized equations

iU + ay{] = Oa
24 9,0  2Ba?d
—tact + Upioa + 90,Up = —iap — % + 11/{/: B Re|8a(jf K
yUp
Q% | B0  2BOd | 2B 0 [ 1
i 4 Unicd — —0.5 — 0 vy vy vy .
iaed + Upiad 7"Re T Re ' Reld,Us| | Re 0y (|8yUB|)

Eliminating all @ through ¢ via the continuum equation results in

55 i 9Bains
cy0 — Updyi + 60, U = —iap — 200 | Oy 0y

Re aRe  Re|d,Up|’
0% 9,0 2Bdy,0  2BI,0 0 < 1 )

—iaed + Upiad = —0yp — —
iacd + Upiad "~ Te T Re Re|0,Us]| Re 0y \10,Us|

Finally, eliminating p via rewriting the first equation and inserting into the second gives the
so-called Orr-Sommerfeld-Bingham equation

2 ? o [ 0,0
iaRe[(Up — ¢)(dyyd — ) — 90y, Up] = ( - a2) 0 —40*B— ( Y ) :

Remark

Note, we have eliminated the pressure and one of the velocity components by algebraic substitution
of the linearized equations with normal mode ansatz. An equivalent approach is to define a
so-called stream function 1, such that

u = ay’l)b and V= — x/l/)7

which is a valid ansatz for any divergence-free vector field. This approach is done by Frigaard et
al. [43]. However, we used the direct approach since the stream-function ansatz is cumbersome in
the multiphase model and demands the v/w-formulation (7.1.4). We have not further pursued
this, but it might be done in a future work and could lead to new insights into the correct set of
boundary conditions for the multiphase model.

Boundary conditions
The no-slip boundary condition at the wall yields
9(+1/2) =0, 0,0(£1/2) =0,

with usage of the continuum equation.
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Linearization of the normal shear-rate condition at the yield-surface (4.2.3) gives

0%i2(Us, £y»)

9y + 6%i2(@, £yp) + O(5°)

0= ’.YiQ(UB + (5’&7y3 -+ 5h) = ;)/iQ(UB, :EyB) + 5h

0%i2(Us, £ys)

= +6h
dy

+ 5’}/12(11, ﬂ:yB) + 0(52),

and to leading order this yields

L OYi2(Ug, £
Yio (W, £yp) = ?hw,
Yy
because 4,2 (Ug, £yp) = 0.

Hence, we have

OyU(z, £yp,t) = 0y0(x, £yp,t) =0,
ha’hz(UB,iyb) +2h

dy (1/2—yp)*

This yields for the linearized system with normal mode ansatz

Oyu(x, £yp,t) + 0.0(x, £yp,t) = F

Fia2h

= 0,0=0, Oyy0 + 020 = —— .

In the plug-flow bulk region (z,y) € Q5, we have

0= 7('7;) y)
= V(UB(xay) + 6’&(1’7y)) + V(UB(mvy) + E’a’(m’y))Ta

and to order O(¢)

dru(z,y) =0,
a?ji}('ra y) = 07
Oyt(z,y) + 0,0(x,y) = 0.

Using the normal mode ansatz, it becomes (due to & = 0 for all  and y in Q)

u(z,y) =0,
ayﬁ(% y) = 07
o(z,y) = 0.

Now using the continuity of w at the yield-surface, we get
[[u(x, YB + EB)]] = [[U(.’IJ, yB) + EhayUB (l’, yB) + E’EL({E, yB)]]
= Ug(z,ys)" — U™ (z,yp) + ch(0,Us ™" (z,yp)
- ayUB_(mayB)) + 5(ﬂ+($7y3) - ’ll_(l',yB)).
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Using Up" (yp) = Us ™ (yB), We get

5%(8yUB+(gc, yg) —OyUp ™ (x,yB)) + e(a" (z,yg) —u (z,yg)) = 0.

We have (0,Us " (z,yp) — 0,Us " (z,yB)) = 0, so
ﬁ+(‘ra yB) = ’EL_(LI}, yB)7
and since @~ = @ (y)e’*@=¢) = ( due to @ (y) = 0, we have

@ (z,yp) = 0.

Overall we have the boundary conditions

0=0,0=0 aty=1/2,

0=0y0=0 at y = yp,
P —ia2h ¢

V= ——-—— a = .

Results

73

In conclusion, one derives, as done by Frigaard et al. [43], the non-dimensionalized base state

1 for 0 < |y| < yp
Us = PETAS
1—<y yB) for yp < |y| <1/2,

1/2—ys

where yp = —B/(ReP) and the Orr-Sommerfeld-Bingham equation

iaRe ((Up — ¢) (9yyd — a®0) — 00y, Up) =

Dyyyy® — 2020y, 0 + a*d — 4a’B0, (

with boundary conditions

0=0,0=0 at y = +1/2,
’IA):ay’lA}:O aty:ina
—2iah
N 2~
8yy?)*0é U:iw aty:in

(4.2.13a)

(4.2.13b)
(4.2.13¢)

(4.2.13d)

The boundary value problem (4.2.13) has been implemented using a finite difference method
with a central scheme, see Section A.3 for details on the scheme. As the problem contains a
singularity at the yield-surface y = yp, we also implemented a shooting method with Riccati
transformation as proposed in [43], see Section A.4. Both methods gave accurate results, but
the finite difference method creates a generalized eigenvalue problem, that can be solved with
the help of standard solvers, giving the whole discrete spectrum at once. Whereas the shooting
method avoids spurious eigenmodes, it is much harder to find all the relevant eigenmodes.
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We note first that for the range of values of B, Re and « discussed in the literature, no unstable
mode was found, in agreement with Métivier et al. [86]. However, inspired by the analysis of
the Orr-Sommerfeld system [98], the symmetric boundary condition dy9s = Oyyy0s = 0 has also
been studied by Frigaard et al. [43]. Using these symmetric boundary conditions the well-known
critical Reynolds number Re = 5772.22 is approached as B — 0, while for the boundary conditions
(1.2.13¢) all modes are stable also as B — 0, as noted by Métivier et al. [86] which shows
that the Orr-Sommerfeld-Bingham equation is not a canonical generalization of the standard
Orr-Sommerfeld equation.

Figure 4.2 shows the results for the classical Bingham model. As can be seen from the spectrum,
no eigenvalue has a positive real part, thus the model is linearly stable.

0
O -
X T
R(®) @01
-0.04 -
0.26 0.38 0.5 0.26 0.38 0.5
Y Y
-0.58 T T -0.1
-0.62 1 0.2¢
I<(7) * R(('mu.\')
X X X X X X x X -0'3_
0.67F x x x X x x x 7 x i
0.4}
-0.72 '
-15 -10 -5 0
R(c) «
Figure 4.2: Shown is the real and imaginary part of the most unstable mode for B = 10,

Re = 5772.22 and « = 1 as well as the part of the spectrum with the most unstable modes. (top
and bottom, left side) The dispersion relation of the most unstable mode (bottom, right side).

4.3 Governing equations for two-phase flow

Formulation of the model

We consider the two-phase flow model of a suspension consisting of solid particles fully dispersed
in a liquid medium, that has been derived in Chapter 2.
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In order to state the model, we define some quantities first. Let ¢; denote the volume fraction of
phase j, u; = (uj,v;) the velocity, p; the pressure, T; the shear-stress and +; = Vu;+(Vu;)T the
shear rate, where j € {s, f} and the indices s and f denote the solid or liquid phase, respectively.
The dimensional model contains the liquid viscosity uf, the densities p; and the permeability
K, for details see Chapter 2. Using the scales Uy for velocity, L for length as well as (Uppuy)/L
for the pressure and the stresses, the governing equations of the two-phase model are (cf. with

(2.4.1))

¢s + o5 =1, (4.3.1a)
Odr+ V- (pruyp) =0, (4.3.1b)
at(bs +V. ((bsus) = 0; (4310)

2
Re[0,(ruyp) + V- (¢rur @ ug)] — V- (¢57s) + ¢y Vpy = Daq;sf(uf — ), (4.3.1d)

R J2
76[8t(¢sus) + V- (¢sus @ug)] = V- (¢s7s) + Vpe + ¢sVpy = Da %(uf —u,), (4.3.1e)
f
where the Reynolds number, Darcy’s number and the relative density are defined as
UL L?
Re=—Pf  pa=2_ =P
Iy K Ps

The non-dimensionalized constitutive laws are a Newtonian stress for the liquid, i.e.

=9 (4.3.2a)
For the solid phase, either |¥,| > 0, then we require
To = 0s(0s) s> (4.3.2b)
Pe = 1n(9s)|Vsl, (4.3.2¢)
with
ns(¢s) =1+ g% - uc(¢s)mm¢_s¢g)2, (4.3.2d)
He($s) = + 1+IO¢:;2((;:£1_ RS (4.3.2¢)
M (@s) = (¢>2 (4.3.2f)
Gerit — Gs
or 4, = 0, and then we let
Ps = Perit
and leave T4 undefined, but impose the inequality
65T s| < pape. (4.3.2¢)

The parameters p1, p2, Iy are experimentally determined material parameters of the friction law
for dense suspensions and ¢, is the maximum packing fraction, see [2, 15] and Chapter 2 for
details.
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Stability problem

For the cases of plane Couette flow and plane Poiseuille flow, stationary solutions of system
(4.3.1) are derived in [2] and Chapter 3. The variables defining these base states depend on y
only except for the pressure Py for which 0, P; is a constant and the base states of the shear rate
tensors, which are

(0 o 08U (0 U
Fﬂ—(aij 0)’ Tf—(ayUf 0 ) T.=\o,u, 0 )

because V; = 0 for parallel shear flow. We denote the base state variables by upper-case letters
and the perturbation variables by lower-case letters with a tilde. Linearizing about the base
states by using the ansatz

¢; = ®; + 69, uj = Uj + 0y, vj =V; +00;,  (4.3.3a)
'7j:I‘j+6':/ja pr = Py + 0py, pe = Pe + 0pc, (4.3.3b)
Tj = Tj -+ (5’7']‘,

where j € {f, s} denote solid and liquid phase and § denotes the small perturbation parameter,
we obtain to order § the linearized system

b+ s =0, (4.3.4a)

Didp + 0p(Dpity + sUs) + 0y (Pr0s + Vi) = 0, (4.3.4b)
Oy + Ou(Diis + GsUs) + 0y (PsTs + G5 Vi) = 0, (4.3.4c)
Re[0,(¢;Uy + ®piiy) + 0, (20, Uity + pUs?) + 0y (@ ;Us)] — 0p(®yip1n)  (4.3.4d)

20,0,
Py

—0y(® 57112+ 05Ty ,) + ®pOuby + Gp0: Py = —Da[ Uy = Us)—

2 2

D o7
a0y = V) + iy = )|,
Re [04(Pf0f) + 02(PUy0y)] — 0u(®yTr1o + 65T 5) (4.3.4e)
. _ o2
*ay(q)foQQ) + (I)fﬁypf = Da[q)f(vf — US)} ,

Re ~ - N ~ - -
7[6t(¢sUs + Di1,) + 0p (20,Usiis + d5Us>) + 0y (P UsDs)] — Op (BsTs11) (4.3.4f)

20,
Dy

_8y((1)s7-512 + <Z~55T512) + aa:ﬁc + (I)saxﬁf + staxpf = Da|: (Uf - US)_

(I)sz It (1)32 ~ ~
el — Vi) + iy = )|,

R _ ~ _ ~

76[815(@5”5) + 8x((I)sUsUs)} - 81((ps7-812 + ¢5T512) (434g)

N _ _ .2
_ay(q)sTSQQ) + 6ypc + q)saypf = Da |:(I)f(vf - US):l P
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which is amenable to normal mode analysis and thus we make the ansatz for the perturbation
{D5,5, 85,5} = {05 (1), 45(y), 0 (), Dy (y)} €27 F. (4.3.5)

Note with this choice of ansatz functions an unstable mode fulfills that the real part R(c) > 0.
Plugging the ansatz into system (4.3.4) yields

—chs +ia(@giy — dUs) +0,(2505 — dVy) =0, (4.3.6a)
Chs + (Dl + GUy) + By (Psds + Vi) = 0, (4.3.6b)
Rele(—¢Us + ®fiiy) +ia(2® ;Usity — ¢poUs?) + 0, (® Us0y)] (4.3.6¢)

20,0,
Py
(1)32 n (1)52 ~ ~

+(I>7fg¢s(Uf —Us) + ——(iy — Us)]»

—ia(®y7r11) — Oy (Ppip1a — bsTy,) +iadsps — sy Py = —Da[ (U —Uy)

Dy
Re[c(®fop) + ia(®Usip)] — ia(®siror — dsTryy) (4.3.6d)
) ) o2
—8y(<I>fo22) —+ @faypf = —Da |:(I>f(’l)f — Us):| R
? [c(qSSUS + Byiy) + (20, Uiy + dsUs2) + ay(cbsUS@S)] (4.3.6¢)
. ~ ~ n PN . ~ n 2®s¢gs
—ZO[((I)STSH) - ay(q)s'rle + ¢5T512) +ap. + ZOéCI)st + ¢sazpf = Da Tf(Uf - Us)

o2 . P2
+7SSU_US +7S’&_’&s )
(I)f2¢(f ) (I)f(f )]

% o(Dy05) + z’a(@SUS@S)} — i@ sFaa1 + b5 Tho) (4.3.6f)

. ) ) o2
_ay(q)s'rsZQ) + aypc + (I)saypf = Da |:(I)f(vf - US):| )

with

A QZ'OZ’LALJ' ay&] + iaﬁj

= Noyh, +iad;  20,0;

Tr =1

Ts = 77;((1)8)(?581_‘8 + 15 (Ps)7s,

~ ’ n ayUS ~ N

Pe = M (Ps)ds|Ts| + nn(Q)S)W(ayus + iads).
yUs

Discretization of system (4.3.6) yields a generalized eigenvalue problem of the form
cEy = Ay,

with E,A matrices and 1 a vector of our variables. The matrix E is singular, thus we have
infinite eigenvalues c¢ as part of the solution, which create spurious eigenvalues depending on the
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numerical scheme in use. The singularity of E stems from the incompressibility condition, which
is eliminated by substitution of the liquid velocity

i = — (—z‘aésUf 40, (B iy + i Pyity + GsUy) + 8y(<1>51§s)) , (4.3.8)
f
and the pressure by
o -l . o o A
Pr=aa, (Re[c(_¢sUf +@pig) +ia(20,Updy — 6sUs?) + 0,(2;Usig)]  (4.3.9)

—ia(@prp11) — Oy (Byir1a — ¢ Tf,,) — Gs0u Py
20,6,
f

We note that similar approaches are known from the derivation of the Orr-Sommerfeld equation,
where usually the stream function is introduced, which can then be used to eliminate the differential
algebraic character from the single-phase equations, cf. [43, 83]. The remaining equations are

Chs + ia(Dyiig + GUs) + 9, (Psi5) = 0, (4.3.10a)
Re[c(®oy) +io(®pUpoy)] — ic(Ppror — ¢sTf )

2

(1)32 n q)s ~ ~
(Uf — US) + (I)ifz(bs(Uf — US) + 7(Uf —us)})

Da|
+ Da o,

) A o2
—0y(PTr22) + POypy = —Daq)—f(vf — Dg),

? {c(ngSUs + B, + i(20,Usiis + 0sUS>) + ay(CDSUSﬁS)} (4.3.10b)
20,4,
Dy
(1)52 n (I>52 ~ ~
+P¢5(Uf — US) + 7(uf - us):| ,
f

— i (PsTs11) — Oy (PsTo12 + (ZASSTSU) +iap. + taprds + 8fogZ>S = Da{ (U —Us)

Dy
Re . ) N . N -
— [c(@svs) +ia(PsUsts) | — ia(PsTs21 + dsTsa1) (4.3.10¢)

r
~ A A~ (I)s2 ~ ~
—0y(PsTs22) + Oype + 0ypsPs = Daq)—f(vf — D).
For the case when the solid phase reaches maximum packing fraction ¢s = ¢it, the solid
momentum equations (4.3.10b) and (4.3.10¢) lose their validity and condition 4, = 0 tells us
that the solid is confined to rigid motions. Hence, in this case we drop the two solid momentum
equations and set

¢s =0, Dy = Perit, s =0, g = 0.

This in turn also eliminates (4.3.10a) and the equation for the unyielded region becomes

o7
Re[c@fﬁf + ia@fo@f] - iaq)f%fgl - By(CDf%fgg) + <I>f8yﬁf = —Daq)i’l)f. (4.3.11)
f

This solid region equation will only be needed in the Poiseuille flow computation, as the Couette
flow does not contain an unyielded region.
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4.4 Plane Couette flow

Consider a planar flow of a fluid confined between two walls at y = 0 and y = L, where we usually
choose L = 1. The boundary conditions at the lower wall are

us=ur =0 at y =0, (4.4.1a)

and for the upper wall are

Us = Up = (g) at y = L. (4.4.1b)

As shown in Section 3.1, the plane Couette flow allows for the derivation of an explicit solution
with base states

Us(y):Uf(y):ya ‘/S:Vf:07 Pf:Ch (1’82027

where C € R and Cy €]0, ¢oit| are free parameters.
Using the no-slip boundary conditions (4.4.1) in our ansatz (4.3.3) and (4.3.5) yields

Us =0 =05 =0 at y =0 and L. (4.4.2a)
The incompressibility condition (4.3.8) together with 0, = 0y = 0 yields

®:0,0f + P04, =0 at y =0 and L. (4.4.2b)

Numerical solution of the spectrum

We use a finite-difference method for the numerical solution of the system above and use a central
scheme of second order for all variables. The pure convection equation of the volume fraction
(4.3.10a) showed an odd-even decoupling, which has been solved using a staggered grid approach.

The system (4.3.10) with boundary conditions (4.4.2), yielding a generalized eigenvalue problem
for ¢, can then be solved using standard solvers. Details of the numerical approximation are given
in Section A.3. We tested our scheme for the Newtonian Couette flow leading to the corresponding
well-studied Orr-Sommerfeld equation [98] as well as for the non-Newtonian case leading to the
Orr-Sommerfeld-Bingham equation [43], see also Section 4.2.

2}

Compared to these classical problems the study of the spectrum for our system (4.3.10), (1.4.2)
is more complicated as it depends on many additional parameters, which are Da, Iy, pu1, e, C1,
Cs, ¢crit and a. However, guided by physically relevant values for the parameters, our numerical
parameter studies revealed two characteristic classes of instabilities.

Figure 4.3 shows two spectra for two exemplary choices of parameters, where the parameter
values differ in the values of p1. One observes that nearly all eigenvalues have negative real parts
and, consequently, are stable. On the other hand, we could identify multiple unstable modes in
the system, which fall into two classes.

Figures 4.4 and 4.5 show exemplary modes from the two classes. The unstable mode shown in
Figure 4.4 is observable for u; < 1/2 and its modes are symmetric, highly oscillatory and show
zero values in ¢,. Most interestingly, as we will show in the following section, the eigenvalues of
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Figure 4.3: Shown are the two-phase plane Couette flow spectra with parameters chosen as
Re =1, Da = 100, Iy = 0.005, p2 = p1, Gerit = 0.63, P5 = 0.99Pcrit, where pq = 0.32 (left) and
u1 =1 (right). Both spectra contain unstable eigenvalues near the origin.
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Figure 4.4: Shown is an unstable mode of first class for ;7 = 0.32 with the rest of the parameters as
in Figure 4.3. The mode is symmetric, highly oscillatory and possess only a negligible dependence
on ¢s.
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Figure 4.5: Shown is an unstable mode of second class for p; = 1 with the rest of the parameters
as in Figure 4.3. The mode is non-symmetric and shows amplifications in all quantities.

these modes can grow with a without bounds, which hints at an ill-posedness in the model. The
unstable mode shown in Figure 4.5 occurs as Cs approaches ¢cpit. Its modes have a non-symmetric
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shape and the eigenvalues have positive real parts, which suggests an instability of the base state.
These two cases are analyzed in detail in the following sections.

Collision pressure induced ill-posedness

The numerical computations above show that the system loses its well-posedness as soon as

1

p1 < 5"

In this case our numerical studies show that the positive real part R(c) of the eigenvalues grow

to infinity as ®; — @it and increasing «. As can be seen in Figure 4.4 from the corresponding

eigenvector, the ill-posedness occurs even for (;ASS = 0. Further, our numerical results showed that

the quadratic velocity terms ® ;Ustiy, ® U0, ®,Usls and O,Ug0s in (4.3.9) and (4.3.10) have
a negligible influence on the mode.

These properties can be used to reduce the system (4.3.4) further, so that we can study and
understand the origin of the ill-posedness analytically. Hence, in (4.3.4) we set ¢s = 0 and
neglected the quadratic velocity terms yielding

61-((1)5125 + (I)fﬂf) + 8y(<1>565 + (I)ff}f) =0,

i . . _ o2 ]

Reat((l)f’LLf) — 31(@f7'f11) — ay(q)folQ) + <I>f61pf + Da [(Pf(uf — ’LLS) =0,

o2 ]

Reat(cbfﬁf) — 8w(d>f%f12) — ay(fl)f%fgg) +®;0,ps + Da [q)f(f}f — )| =0,

Re - ~ ~ ~ ~ (I)s2 ~ ~ :
Tat((bsus) - a:xv(‘bsTsll) - 87;((1)57—812) + 8a:pc + (bsawpf —Da |:(I)(uf - us) = 0;
f |

9 _

Re - . - _ _ D7 -
73t(<1>svs) — 02(DsTs12) — Oy (PsTs22) + OyPe + ©s0ypy — Da [(I)f(vf —05)| = 0.

Eliminating the pressure and one of the velocities through the incompressibility conditions, this
set of equation allows the standard Fourier ansatz

{7:65, 657 f}f} = {’&57 @sv @f}eiam+i6y+ct7

yielding the 3 x 3 matrix system of the form
(A—-clu =0,
which is equivalent to
det(A —cI)=0 for u # 0, (4.4.4)

where an instability fulfills R(c) > 0. Equation (4.4.1) is a polynomial of third order in ¢ that
can be solved using computer algebra [84].

We first study the simpler case a = 3, choose Da = 0,Re = 1, us = p1, 7 = 1 and drop the
5/2-term in the viscosity. Then, we are able to compute closed form solutions for the eigenvalues
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and get the following amplification factors

cL = —2a2,

(Gerit — q)s)2 + 1P,

(ferit — @)% 7
2 (1 - 2/“)(1)8(1 — (I)S) - 2(¢crit - (bs)Q
(Gerit — Ps)? '

The amplification factors ¢; and cy are always negative, i.e. are stable and correspond to the
liquid and particle viscosity damping, respectively. The third amplification cg is always negative
for gy > 1/2, but will always become positive for p; < 1/2 and grows without bound when
®, — ¢orit- Hence, the ill-posedness is rooted in a competition between the collision pressure
term and the particle viscosity and grows like

Ccy = —2a2

c3 = 2

2a2
(d)crit - (1)5)2 .

This eigenvalue grows without bound for increasing o and ®; — ¢ris. Thus, it is necessary to set
t1 > 1/2 in order for the problem to be well-posed.

C3

Next, we consider the case with a # 3, then the amplification factors are

o
1 — Re )
o — 042 +62
2 — Ns Re )
1- cI)s n - (I)s s 2 2 - (1)32 2 2
e — 21t J(afn ns(a” + 7)) (@ +57) (4.4.6a)
O Re(—Ps + Pgr + 1)
It is now easy to see, that a necessary condition for well-posedness is
afn, — ®ns(a® + %) <0 for all @y,
which can be rewritten as
1 2 9 9 1
~5h (a—B)"+ (a4 B%) (0 — §<I>5ns < 0 for all ®,. (4.4.7)

This asserts our notion, that the worst case scenario is obtained for o = § and gives the necessary
criterion, that the particle viscosity must be at least half in size of the collision pressure for all
possible choices of parameters. In case of the equivalence 7, = %@3773 the mode is stable, since
the —®4(a? + %) term has a stabilizing influence, which originates from the liquid viscosity.
Note, Chapter 5 also yields this stability criterion, but with for general flows and a greater ratio.

Figure 4.6 shows the singular behavior of the ill-posedness’ dispersion relation. Comparison
between the analytic expression (4.4.6a) and numerical result for different Da values show good
agreement although the numerical results do not use simplifications, e.g. boundary conditions are
non-periodic and nonlinear terms are not eliminated in the computations.
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For the case Da > 0, the eigenmodes of the ill-posedness are

1
2(®, — 1)2Re

+ V(@ B (@, = (1 = n,r)? = @, fi — 2(a? + B2)(@, — 1)2(rns — U f2),

@ ﬁ (/1 = (@2 + B)(@, = 12(1 + n,7)

— V(@2 + B2)2(®, — D1 = ner)? — &, f1 — 2(a? + 2)(D, — 1)2(rn, — 1)f2),

Ca = 27,(1 B (I)S)(aﬁnn - (I)sns(a2 + ﬁ2)) - (1)52(a2 + ﬁz) oy Da(I)S
3 ®,Re(1 — @, + D7) (®, — 1)2Re(1 — &, + D7)’

(£1 - (@2 + B)(@, = 121+ nar)

C1 =

where

f1 =Dady(Ps(r — 1) — 1),
fo=Dad® (Ps(r+1) — 7).

Notice, since physical relevant values for the density ratio are between zero and one, f; is always
negative, thus it does not destabilize the model. Positive Darcy’s numbers create terms that
have a slight stabilizing effect. Nevertheless, the effect is only of order O(Da) and is not able
to compete with the singular terms in 7, and ;. Thus, they do not change the result in an
asymptotic sense for &5 — @pqx unless Da is chosen, more or less artificially, as a singular function
as the maximum packing fraction is approached. In fact, in recent numerical work on related
model equations the authors did just that, see for example [58]. Figure 4.6 shows that for different
Da values the dispersion curve of the instability does hardly change.

Finally, we note that the quadratic velocity terms did not show a significant effect on the behavior
described above, and we expect them to enter as an order one perturbation, which can be neglected
as ®; — Perit-

Convection induced instability

As puy > 1/2 the modes of the collision pressure induced ill-posedness become stable, however,
other unstable modes become apparent. An example of such a mode is shown in Figure 4.5. In
contrast to the ill-posedness they have only small positive real parts that do not grow with «
and their modes are non-symmetric and show significant amplifications in QASS. Additionally, if we
force q@s = 0 then they vanish, which is contrary to the ill-posedness behavior. Nevertheless, our
parameter studies showed that the instability arises also for vanishing inertial terms. So we set
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@, '
0
: 200

Figure 4.6: Shown is the dispersion relation of the collision pressure induced ill-posedness for the
plane Couette flow with parameters as in Figure 4.4. The analytic curve is computed by equation
(4.4.6a). Comparison of the numerical and the analytical result shows good matching although
the numerical simulation uses non-periodic boundary conditions. The curves for different values
of Da are nearly identical, showing the minor influence of the momentum coupling term on the
ill-posedness.

Re = 0 and the linearized system gives
at@gs + Usaacg)s + (I)saacﬂs + q)sayf}s = 07
8x(q>faf) + 8y((I)fﬁf) + 8w(q)sas) + 6y(¢’s178) =0,
—00(@5Fr11) — 0y (s Fr10 + G5 Ts 1)+ P Oupy =
20,6,
Dy

2

(U —U)—@—Sz& U —U)+(I)—S(ﬁ —a)]
1R T s T s g S )

=]

B . B N o2
—0u(PfTr12 + OpTr ) — Oy(PpTra2) + ©rOypr = _Da[@f(”f - US)] ’

_ax(‘bs%sll) - 3@,(‘1)37:312 + (JgsTsw)"’aa:ch + (bsaxﬁf =

20,6 il
Da |:M9(Uf — Us) —
Py

2

52 7 q)s ~ ~
®,° or(Uy = Us) + (ITf(Uf - Us)]»

.- . - " o2
_8x((1)s7-sl2 + ¢3T312) - 81;((1)37-322) + aypc + (I)saypf = Da |:q)f(vf - 'Us):| .

A direct use of the Fourier ansatz is not helpful for this system, as the convective term U8, s
would introduce derivatives in the wave-number . However, the base state U; = Uy = y makes
it suitable for a Kelvin-mode ansatz [123], which consists of two steps - firstly, using the method
of characteristics and, secondly, using a Fourier transformation. The method of characteristics
eliminates the convective part, but introduces time dependencies in previously stationary parts of
the equation. Eventually, the spatial coordinates of the system are transformed into Fourier modes,
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yielding an ordinary differential equation in time, that can be studied in order to understand the
stability properties of the original system.

Therefore, we first use the transformation
§=xz—yt and y=y,
followed by a Fourier ansatz in space only, that is
[Ber s By 7} = {Balt), a(8), o (0), 55 (£) 65, (4.4.10)
which gives the system

0 = 8is + D ((iff — ticr)bs + iovily),

. -1 N . . R -
Uf = iad; (ia®sts + (18 — tia) (P iy + Ds0s)),
_ R P.2
pr=-—(202® iy — (i — tia) (@4 ((iB — tia)iy + iady) — ¢s) + Da——(1i; — 1)),
1ady ol

—ia(®y((if — tia)iy + iady)—ds) — 28 (if — tia)*0y

e’
+ @ (if — tia)py + Daq)—(vf — ) =0,
f

—ia®ns2iais — (i — tia)(Psns((i8 — tia)is + iads) + @Sngqgs + qgsns) + iap.
7

+ia®,p; — Da— 0y — 4s) =0,

Dy

—ia(Pns((i — tia) s + ia@s)—HI)SngngSS + ¢A>s775) — 20,1, (i — tia)*d,
2

P
——(0f — 05) + (iff — tia)p. = 0.
Dy

A A\ (65 _ (—0is
Az1 Agp u/) 0 ’

Thus, using the negative Schur complement S = —(A;; — A12A§21A21) of Ass we get the ordinary
differential equation

+®,(if — tia)py — Da

This is of the form

0i0s(1) = S(8)s(0), (4.4.12)

with solution to (4.4.12)
$a(t) = B (0) - el STNT, (4.4.13)
so we expect a perturbation to grow for times ¢ with R(S(¢)) > 0 and to shrink for R(S(¢)) < 0.

Using a computer algebra [84], S can be given explicitly as

B fi ["771(775 + 77;(1)3)(052 - f??)Q =+ nsq)sz[za.f?)(ns + "7;(1)5) - U%fﬂ} - 27]5‘1)52f204f3

2, 2| f1 (@unofo = maacfs) = f20.7]

)
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where we denote f; = ®, — 1, fo = o® + f7 and f3 = 8 — ta and also set Da = 0. From a
theoretical point of view, the Kelvin-mode ansatz first transforms a non-Hermitian differential
operator into a Hermitian operator, which allows for a spectral analysis. By the spectral theorem
a Hermitian operator has only real eigenvalues, the eigenfunctions are orthogonal and form a
complete set. Hence, the Schur complement S is always real and combinations of modes o and 3
only occur in even orders. Contrary to the analytic approach, the numerical eigenvalues computed
by the full problem possess nonzero imaginary parts.

As one is interested in the growth of an initial perturbation ¢, (0), it is conventional to discuss
the growth factor defined as [116, 117]

s (t)

5(0)

Figure 4.7 shows the typical behavior of the growth factor for a range of parameter choices.

G(t) = sup

_ ‘efot S(T)dT‘ .
5 (0)#0

With the help of computer algebra [84], the long time limit of S with the constitutive laws (4.3.2)
and p; = po can be computed as

_ 2 2
hm S — (1 (I)s)q>8(7¢cr1t 2(1)3 )’
t—o00 dl . d2

where

dl = 2(1)5(/,[,1 + (I)S) — 9(I>s¢crit + 7¢crit2a
dy = 2411 (B3 — 1) By — (D3 — Perit) (—Tieriv + 284 + 5eria D).

This expression is negative as long as 0 < ®; < Periy and zero for g € {0, Perit }, which shows
the growth factor G always becomes zero for ¢ — co. The expression for g # po is much harder
to interpret, but contains the same behavior. Thus, for all other parameters fixed and t — oo the
value of S becomes always negative for our constitutive laws (4.3.2).

Yet, this convergence is not uniform in « and 3, because using the transformation 5 = Ci«a with
C; € R, the Schur complement becomes

Filna(ns +05®) (1 = f3)* + 0@ fo(2f3(ns + 0 ®s) — m fo)] — 20595° fo fs
2775f2(f1(q)s775f2 - 77nf3) - f2¢s2)
where fg =1+ f?? and fg = (4 —t, which is independent of 8 and «. Thus, only the mode ratio

(1 is of significance for the damping of a perturbation, which might be a way to transform the
transient into infinite growth.

S:

Remark

It is well-known that nonlinearities transport perturbations from one mode to another, see
e.g. [104]. This process is generally referred to as energy cascade [104] and is also known to
occur in multiphase models [14]. Thus, a perturbation being transported to bigger ratios, such
that f~3 stays constant over time, can grow infinitely large in magnitude. In order for fg to stay
constant the ratio C7 must grow linear in time, which requires a change of frequency of the
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perturbation. This means an observable instability might shift its Fourier modes from low to high
frequencies over time, which is a mechanism able to produce shocks as is known from the inviscid
Burgers equation [91]. Alternatively to a creation of a shock, the highest frequencies might be
damped by another nonlinear effect, which in turn might result in a turbulent behavior, that
transports perturbations into smaller structures, which are being damped when they approach a
critical length scale [104]. This would correspond to the well-known Kolmogorov’s hypothesis for
single-phase media [104].

T T T
---®_=1/10¢__, Da=1000
“sc

s
o ®_=1/2¢_, Da=1000
S SC I
__&_=4/5¢_, Da=1000
S SC
_____ &_=9/10¢_, Da = 1000
S sc
——®_=9/10¢_,Da=100 [
S sc
——®_=9/10¢_,Da=0

Figure 4.7: Growth factor for a typical parameter choice of @« = 5,8 = 8, ¢perit = 0.63, 1 =
w2 = 1,Re = 0 and different solid volume fractions and Darcy’s numbers. The transient growth
behavior can obtain huge values, depending on how close @, is to the maximum packing value.
For the stated constitutive laws of 7,, and 7, and for long times ¢ the growth is always damped,
i.e. G — 0 for t — oco. Nonzero Darcy’s numbers have a stabilizing effect, but do not eliminate
the instability completely.

In order to understand the stability behavior of the full system, we have to understand the
connection between the growth factor S(¢) and the unstable modes seen in the finite-difference
approximation of the full system, consider in their appropriate spaces.

S depends on the Fourier modes «, 5 and on time ¢, whereas the finite-difference numerical
approximation depends on the Fourier modes «, ¢ and the spatial variable y. Considering the
frozen system at ¢ = 0, we would have a constant growth ¢ = S(0). This in turn together with
equation (4.4.13) implies our growth is of the form

és = és (O)QCta
but this and equation (4.4.10) implies

s = s (0)et iRy, (4.4.14)

Now, the ansatz for the numeric normal mode analysis is

Qgs _ Qgs (y)ect+iaac )
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Suppose ¢, (y) is a periodic function, then rewriting qgg(y) as a Fourier series on a domain [0, L]
yields

QBS: Z Zb:(k)cct+iam+iy27rk/L’ (4415)

k=—o00

where q?);(k) represents the k-th Fourier coefficient. Comparison of (4.4.14) and (4.4.15) shows,
that our numerics computes the frequencies

27k
/8* T7

with & € Z and L the domain size. In order for a direct comparison to work, we therefore need to
change the boundary conditions (4.4.2) to periodic boundary conditions and have to consider
small domain sizes L. For large L the non-periodic base state Us = y has a dominant influence on
the solution, which makes a direct comparison of the non-periodic numeric and periodic analytic
results impossible. If the non-periodicity becomes dominant we do not see single frequencies, but
rather a sum of several modes next to the boundaries. which always occur in pairs - one on each
wall - see Figure 4.5. In this case the real part of the maximum amplification is always smaller
than S(0), hinting at a damping effect of the boundary.

If we set the collision pressure to zero and use Newtonian viscosity, i.e. 9, = n), = 7., = 0 and
1s = 1, then we still get S > 0 for some time. Hence, this instability is not driven by a collision
pressure or a viscosity driven effect, but rather caused by the convection of the flow.

Analytic results for nonzero Darcy’s number could not be computed. Nevertheless, numeric tests
with positive Darcy’s number showed the momentum coupling term has a stabilizing effect, but
is not capable to completely eliminate this instability. Even for very large Darcy’s numbers,
i.e. Da > 1000, a transient growth is observable, cf. Figure 4.7.

Remark

A possible physical explanation of the instability is a resistance to high volume fractions in the
model. For fluid region with near maximum packing a small perturbation is enough to disperse the
densely packed particles. However, this instability is of a highly nonlinear nature for @3 ~ ¢.it,
as a small change in ®4 induces a large change in viscosity and particle pressure.

4.5 Plane Poiseuille flow

Two-dimensional Poiseuille flow is another seemingly simple example for a fluid flow. However,
in contrast to Couette flow, it contains four major complications. Firstly, the base state is not
given in closed form anymore, so a stability analysis is much harder. Secondly, it does contain
a plug-flow region, where the linearized set of equations change. Thirdly, the conditions at the
yield surface are non-trivial and need to be derived explicitly. Lastly, as discussed in Section 2.2,
the well-known loss-of-hyperbolicity problem [65, 77] that is connected to an ill-posedness, enters
as soon as the velocities of the solid and liquid phases are different, which is the case for plane
Poiseuille, but not for plane Couette flow.
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Section 4.2 shows the single-phase Bingham problem to be unconditionally linearly stable to
perturbations of the plane Poiseuille flow. This is in contrast to the Newtonian case, where a
critical Reynolds number of Re &~ 5772.22 exists, that creates unstable behavior. The different
stability stems from different boundary conditions near the channel center. Whereas Newtonian
flow uses a symmetric boundary condition at the channel enter, that allows for the growth
of the perturbations there, Bingham flows, on the other side, possess a yield-surface near the
channel center. The yield-surface boundary condition absorbs perturbations, thus rendering the
single-phase Bingham flow stable in this case. This shows the importance of a yield-surface for
the stability of the plane Poiseuille flow, which we like to understand in the two-phase case.

Two-phase flow model
Base state

The plane Poiseuille flow ansatz is to consider a stationary problem with no-slip boundary
conditions

us=u;=0 at y = +1/2,
where all quantities, except for the pressure dependent only on y, i.e.

d)f = ¢f(y)a ¢S = ¢S(y)7 Ur = uf(y)v Us = us(y)7 pr = pf(xvy)a

and demand the solution to have exactly one plug-flow for 0 < |y| < yp. At the yield-surface,
we demand continuity of the phasic velocities and the phasic normal shear rates similar to the
Bingham flow case, i.e.

[ud = [us] = [, -l = [y -n] =0 aty=+yp. (4.5.1)

Note, we did not assume continuity of the tangential shear rates or solid volume fraction, since
this would overdetermine the system. The conditions (4.5.1) imply these continuities for parallel
shear flows. This shows that our assumption [®;] = 0 in the derivation of the base states in
Section 3.2 and the drift-flux derivation of Section 3.3 is indeed valid and consistent with the
boundary conditions, here.

The base state for the two-phase model has been derived in Section 3.2 and it yields a linear
liquid pressure Py(z) = pix and a constant collision pressure with free parameters p; < 0 and
pe > 0. We denote by Yp the base state solution of the yield-surface yp.

In order to solve for the solid volume fraction and velocities, we use the transformation

1 1
= Y — — —
Yy <B 2>C+27

define the shorthand notation for the so-called friction coefficient, cf. [15, 75],

D1 (D)

N(®,) = (@)
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and get the boundary value problem

1
L, (G0N ) =00\ (e e 1
Y — l C Da @32 1 —_ @5 nn7
8CYB = Ov

for the volume fraction base state ®; and Yp with boundary conditions

1
0=8<N+<YB—2>@SP1 at ( =0,
o, = ¢crit at C =1
2(Ys — 1) Da2dei(mY 2 1

D, = 5((1 f ; 2)) azo c(p; B+ 1) + . <YB 7 2) n at ¢ = 1.

crit tanh (DlaZ(z)dZ::tic YB)

These results can be used in
Pec = _nn(q)s)ayUsv
OyN + &, 1-®,

Da®,2

for the fluid region y > Yp with no-slip boundary condition and

(bs = (bcritv
8,U, =0,
p1y
o,U; = Y
vl 1- ¢crit

in the plug-flow region with boundary conditions
[Us] =[Us] =0 at y =Yg,

which yields the solution for the base states of the Poiseuille flow. Figure 4.8 shows an exemplary
base state with a plug-flow region at the center of the channel.

Boundary conditions for the stability problem

The linearized reduced two-phase system solves for the unknowns <ZA)S, ¥, 0s and Dy, where the
last denotes the linearized y-component of liquid velocity for both - in the plug-flow and the
liquid region. The corresponding equations have maximum orders of 0, 2, 2, and 4 4+ 4. Adding
the free-boundary conditions at yp, we get a minimum number of 13 conditions.

The boundary condition for the plane Poiseuille flow are the no-slip boundary condition at the
wall

uf=u;, =0 at y =1/2, (4.5.3)
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Figure 4.8: Shown is the multiphase base state with parameters chosen as p; = —10, Da = 1000,
Iy = 0.005, puy = 1,pp = 1.5, ¢erit = 0.63 and p, = 1.

symmetry around the center of the channel
Oyus =0 at y =0, (4.5.4)
and continuity of the velocities and shear rates at the yield-surface
[ufl = [us] =75 -] =17, -n] =0  aty=ys. (4.5.5)
Just as in the plane Couette flow case, cf. (4.4.2), the no-slip conditions (4.5.3) yield
Op =g =0, =0 and C:0y0f + Ps0y0s =0 at y =1/2.
The symmetry condition (4.5.4) at the channel center yields
0y0y =0 aty=0.
Differentiation of equation (4.3.6a) by y, the symmetry condition dyt; = 0 implies
Oyyty =0 aty=0.

For the conditions at the yield-surface y = yp we note that for any quantity s with base state S
and Fourier-transformed perturbation 3, linearizing a condition

[s]=0
at the yield surface leads to the expression
[0,STh = —[3],
where y, = Y; + 8h. Therefore, the continuity condition (4.5.5) gives

[a;] = [0,UJh,  [o5]=[8,Vilh, [ =10,Tslh, [l = [0, 4R
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and using the knowledge of the base states (e.g. continuity of 9,Uy), we obtain
[[aj]] =0, [[f}jﬂ =0,
at the yield surface y = yp for j € {f, s}.

This implies the boundary conditions
s =0, s = 0, [of] =0,

at the yield-surface y = yg. We have, due to the continuum hypothesis (4.5.5) of the normal
shear rates the representation

(- [0 [e]-- )]s

Due to 4, = 0 in €, we have
Oyos =0, 9,07 =0 aty=ys
as well as the free-boundary conditions
[0yts] = _[[ayyUS]]il at ¥y = yp.
Using 05 = s = 0y0s = 0 the solid transport equations yields
$s=0 aty=yp.
In summary, we have derived the required 13 conditions, i.e. the wall boundary conditions
U = Us = Vs = 0, and Q:0,0f + POy =0, aty=1/2,
the symmetry conditions
Oy0p = Oyyty =0 aty =0,
the yield-surface conditions

s = 05 =0,

[[@f]] =0,
Oyts = [0y0¢] =0,
Qgs =0,
at the plug-flow region boundary y = yp and the free-boundary condition
[0yas] = *HayyUSHﬁv at y = yp.

For the numerical investigations of the above model we combine our experience with the solution
of the stability problem for the Couette flow problem as well as for the classic Bingham problem,
and expand our finite-difference code to also deal with the singularity at the yield-surface in the
two-phase Poiseuille flow. The employed scheme details are described in Section A.3. We note
first, that the two-phase Poiseuille flow also shows a collision pressure induced ill-posedness as
well as a convection induced instability.
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Figure 4.9: A collision pressure induced growth of a mode in the Poiseuille flow case with
parameter values Da = 100,Re = 1, ¢3¢ = 0.63,p. = 1,p1 = —10,a = 1000, 47 = pg = 0.1.
Shown are the real value (solid line) and the absolute value (dashed line) of the mode. Notice the
lack of ¢4 contributions, which shows a behavior similar to the Couette flow case. The spike next
to the plug-flow region shows that the instability originates in the region of the highest particle
concentration, as suggested by the analytic criterion (4.4.7).

Collision pressure induced ill-posedness

The collision pressure induced ill-posedness from Section 4.4 can be seen in numerical solutions
starting at a ratio of ¢sns/n, smaller 1/4. This is in contrast to the Couette flow, where the
ill-posedness is already seen for a ratio of 1/2 in the simulations. This can be explained by looking
at the analytic criterion (4.4.7), which shows that the ill-posedness occurs more likely in regions,
where ¢ is close to maximum packing fraction. An unstable mode originates at the boundary of
the plug-flow region, where the volume fraction is highest, but it is damped at the outer region,
where the volume fraction is far from the maximum packing fraction. Figure 4.9 shows such a
mode. Note the spike next to the plug-flow region, which shows that the growth is strongest
there.

This suggest that the sufficient ratio between the viscosity of the solid phase and the collision
pressure to suppress this ill-posedness depends on the base state. The employed normal mode
approach yields stability criteria for the particular flow under consideration. A general stability
criterion can only be derived by different techniques. The derivation of Chapter 5 shows this
instability is linked with energy conservation and yields a ratio of greater 1 in order to guarantee
stability, which is independent of a particular base state. In conclusion, a ratio greater 1 suppresses
this instability for all flow cases, but for specific flows a smaller ratio can be sufficient.

Convection induced instability

Unless p; is set too small, such that the collision pressure induced ill-posedness can be observed,
unstable modes have real parts, which are of order one and have a similar signature as the
convection induced unstable modes from Section 4.4. Figure 4.10 shows an exemplary unstable
mode of that kind. Just as in the Couette flow case they appear in pairs and are strongest for
the region between wall and plug-flow, where the velocities still change considerably, but ¢ is
already near the maximum packing fraction. This is to be expected, since a high volume fraction
and strong shearing are driving this instability.

We further note that large Reynolds and small Darcy numbers increase the convection induced
instabilities, but seem not to introduce new instable modes for the Poiseuille flow case.
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Figure 4.10: A convection induced growth mode or Poiseuille with parameter values as in Figure
1.9, except for p1 = pe = 1, = 10. Shown are the real value (solid line) and the absolute value
(dashed line) of the mode. In contrast to the collision pressure induced instability, b5 exhibits the
highest amplifications extending from the channel wall to the yield surface. To observe the small
amplifications of the velocity modes we show only the region between [-0.1,0.1].
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Figure 4.11: Shown is the dispersion relation of the collision pressure induced ill-posedness for
the Poiseuille flow with parameters as in Figure 4.9. The analytic curve is computed by equation
(4.4.6a) with ®4 = 0.62, which has been only derived for the plane Couette flow. Since numeric
and analytic results match well, we believe this instability has the same origin as explained in the
plane Couette flow case.



4.5. PLANE POISEUILLE FLOW 95

Comparison of single and multiphase stability

The single-phase Bingham flow and the multiphase model showed different stability behavior. As
discussed in Section 4.2, the Bingham flow is unconditional linearly stable when used with the
correct boundary conditions. For the multiphase model of Section 4.5 we found two instabilities:
the collision pressure induced ill-posedness and the convection induced instability.

Nevertheless, the Bingham flow depends on only two parameters, i.e. the Reynolds number Re
and the Bingham number B. The Reynolds number arises in both models, but the Bingham
number is just contained in the single-phase model. As the Bingham number B has a direct
influence on the size of the plug-region and the stress it plays a similar role as the solid viscosity
1s and maximum packing parameter ¢t in the multiphase mode. Yet, it seems to miss the
ability to model the competition relative to the collision pressure 7,.

Both multiphase model instabilities originate in mechanisms not contained in the single-phase
model - the ill-posedness originates in the competition of the solid stress and solid pressure and
the convection driven instability stems from the transport of particles due to convection. The
Reynolds number does not play a significant role in either of the instabilities, which is similar to
the single-phase model.






Chapter 5

Energy formulation

A derivation of the multiphase model using an average process has been shown in Chapter 2. The
averaging process shows a connection between the interface resolving models and the Eulerian-
Eulerian models. Thus, simulation results of an Eulerian-Eulerian model, can be physically
interpreted and matched with experimental results. However, it does not guarantee a stable
formulation nor are the necessary boundary conditions always apparent.

A different modeling ansatz is to formulate the problem based on energetic principles - specifically
the second law of thermodynamics. There are two well-known energetic principles in the literature.
Firstly, for dissipative systems one can use the gradient flow structure [101]; secondly, for inertia
dominated systems one can use a Hamiltonian description [89]. Combinations of both are also
possible, a popular example is the GENERIC framework [99].

The rest of this chapter is concerned with dissipative systems, i.e. gradient flow structures, as
suspensions are generally highly viscous and typical velocities are small in our cases. This implies
very small Reynolds numbers and dissipative effects are dominant.

5.1 Overview of dissipative formulations

Notation

First, let us introduce some notation that is needed in the course of this chapter. We refer to the
space of all linear maps from a space X to Y as L(X,Y).

The Fréchet derivative F'(x) € L(X,Y) of an operator F' : X — Y is defined as
F(x+h) — F(z) = F'(z)[h] + o(||h]]) for h — 0,

whenever this relation holds for at least one z € X for all h from a neighborhood of zero [136]. If
a functional depends on multiple variables, we define the partial Fréchet derivative by

F(ry,.o,zi,2 +hxiga, .o 2n) — Fon, .0, 2,) = F’(:c)[h] +o(||R]))

97
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for h — 0 and denote it by D; F(z1,22,...,Zn).
The Gateaux derivative G'(z) € L(X,Y) of an operator G : X — Y is defined as

G(z +tk) — G(z) = tG'(x)[k] + o(t) for t — 0,

for all k£ with ||k|| = 1 and all real numbers ¢ in some neighborhood of zero [136].

The dual space X™* of a vector space X is defined as the set of all continuous linear functionals
f+ X — R together with the norm

IfIl:= sup |f(z)]

llzll<1
For y € X* and =z € X, we define the pairing
(v, 7)x~ x = y(z),

and in case the spaces are clear, we drop the index. For more details on the dual pairing see
Section 6.4 and [136]. Occasionally, we refer to the subdifferential Dy f at € X of a functional
f: X — R that is defined as, cf. [109, 135, 138],

Dyf(z):={ce X*: fy) - f(x) = (c,y —x) Vye X}

We denote the tangent space of X at x € X by T, X, for a definition see e.g. [136].

Short introduction to gradient flow structures

A gradient flow is a triple (H,D, E), where H is the state space, E : H — R an energetic
functional and D is a dissipation mechanism that is any one of the four operators

De{G K, U, 0"}
The operators differ in their respective domain and codomain, i.e.

(h)
(h)

Th,H — T} H,
TyH — T, H,
T.H — R,
T H — R.

G
K
T(h, -
T*(h, -

):
):
Thus, for a given energetic functional E, and depending on the dissipation mechanism in use, a
gradient system has one of the respective forms

dh = —K(h)E'(h), (5.1.1a)
G(h)oh = —FE'(h), (5.1.1b)
DyW(h,0;h) = —E'(h), (5.1.1c)

Oyh = DyU*(h, —E'(h)),

where E’ is the Frechet derivative of E and D, the Fréchet derivative with respect to the second
variable. The operators G and K are believed to be non-negative and symmetric [87] and are
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called the metric tensor and Onsager operator, respectively. Formulation (5.1.1a) and (5.1.1b)
are equivalent, if G and K are invertible and we have G = K~!. The connection between ¥ and
G is given by the definition

U(h, Oih) = %(@h,G(h)&th)
and its dual to K through
U*(h, h) = % (E,K(h)ﬁ) :
where h is from the dual space H* of H. Further, ¥ is the Legendre transformation of ¥* and

vice versa, i.e.

U*(h, h) = sup[h - Oph — U(h, 8;h)] and W(h,d;h) = sup|dyh - h — U*(h, h)].
dih i

The operators ¥ and U* are called dissipation potential and dual dissipation potential, respectively.
As the names imply and the computation

%E(h(t)) = E'(h)0h = —(8sh, G(h)dsh) = —2W(h, ,h)

shows, U is half the dissipation of energy in time. Formulation (5.1.1¢) can also be formulated as
an optimization problem

inf {(h,u) + E' ()0}, (5.1.2)

w,d;

where we use a defined relation between the velocities v and 9;h

Oih = Ppu, (5.1.3)
with Pj, an operator mapping velocities to the tangents of the state space and (see [101])

U(h,u) = gfl}fl(\ll(h, Oth), 0sh = Pru).
A typical example is P,u = —V - (uh), such that (5.1.3) becomes the standard transport equation
Oth + V - (uh) = 0.

Using the operator P, equation (5.1.2) can be reformulated as

inf{W(h,u) + E'(h) Pyu}. (5.1.4)

Another tool we use is the inclusion of constraints in the minimization of equation (5.1.4). Suppose
c:R? — R and we like to enforce an algebraic constrain of the form c(a,b) = 0, then we define a
functional

Cla,b, ) = /Q(T) Ma)e(a(@), b(x)) de,

where A : R™ — R and solve instead of the minimization (5.1.4) the saddle point problem

supinf ¥(h,u) + (E'(h), P,u) + C(h,u, \),
A u

which is the method of Lagrange multipliers for a constraint optimization problem, see e.g. [135].
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From minimization to variational inequalities

It is well-known that for a real function the following is true:

Theorem 5.1. Suppose f is convez, differentiable, and x € Q2 C R™ satisfies
(Vf(x),y—2)>0 VyeQ

then we have

(@) = min /()

Proof. See [69]. O

Additionally, the converse also holds true.

Theorem 5.2. Suppose f is differentiable and there exists an x € 0 C R™ such that

f(x) = min f(y).

ye

Then x is a solution of the variational inequality
(Vi(x),y—x)>0 VyeQ.
Proof. See [69]. O

The advantage of the inequality formulation is, that it naturally includes extrema at the domain’s
boundary. Interestingly, these principles for inequalities can be generalized to infinite dimensional
spaces, where f becomes an operator on a Banach space, cf. [69, 112, 135] and Theorem 6.5.

Therefore, for differentiable ¥ the optimization problem (5.1.4) can be solved by differentiation
as follows

DyVU(h,u)(v—u)+ E'(h)Py(v—u) >0 Yo eT,H.
and for the case that the extrema are not at a boundary of the domain, we have

Dy (h,uw)v+ E'(h)P,v =0 Vv e T,H. (5.1.5)

However, often the dissipation potential ¥ consists of differentiable part .J; and a non-differentiable
part Jo, such that

U =.J + Jo,

then it is not possible to define the differential of ¥. Yet, for convex J;, we can use the
subdifferential Dy.J2, so that the optimization problem (5.1.4) becomes an inclusion, cf. [109, 135],

DaJy(h,w) + Do Jo(h,u) > —E'(h)P,.
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or equivalent by testing with v — u and using the definition of the subdifferential, it yields the
variational inequality

Do Ji(h,u)[v — u] + Ja(h,v) — Jo(h,u) + E'(h)Pyjlv—u] >0  YveT,H. (5.1.6)

This yields for a given state h € H a velocity u € T, H, which can then be used via the process
definition (5.1.3) to update the states. We come back to formulation (5.1.6) in case of single
phase Bingham formulations, see Chapter 6. For multiphase models we stick with formulation
(5.1.5) as our potentials are always assumed differentiable.

5.2 The normal velocity condition

Suppose we simulate a multiphase model in a domain with a free-boundary. Immediately, the
question for correct boundary conditions on the free-boundary arises. The conditions must
conserve momentum and mass of each phase. To solve this problem, we first derive a mass
conserving condition, which is later used in the energetic framework and yields a suitable condition
for momentum conservation.

In order to make the derivation of the mass conservation condition, we need the so-called general
Reynolds transport theorem

4 fdx = &jdw—i—j{ fup -nds, (5.2.1)
dt Jaw Q(t) 89(t)

where f is a time dependent scalar function defined on a domain (¢) with piecewise smooth
boundary 99Q(¢) and wp is the velocity of the fluid at the control surface with respect to the
coordinate reference frame [61].

Theorem 5.3. Consider a domain §)(t) with piece-wise smooth boundary O (t). Let us assume
convective transport of the solid and liquid volume fraction in domain Q(t) as

at(bs +V- (¢sus) = 0,
Aoy + V- (druy) =0.

Then, mass conservation demands
U N =UB N ="1Us N on 09(t),

where up is the interface velocity.

Proof. A physically meaningful multiphase model should conserve mass unless chemical reaction
take place between the phases. Consider the mass of liquid at time ¢ in an arbitrary volume (¢)
with smooth boundary 9€(t). Conservation of liquid mass implies

d
= ¢ 7 dzdt = 0.
dt Jou 7



102 CHAPTER 5. ENERGY FORMULATION

Using, the Reynolds transport theorem (5.2.1) and the divergence theorem, it yields

O:i ¢fda:dt=/ %dﬂcdﬂr% up -ngydxdt
dt Jaw a@) Ot o9(1)

=/ —V-((/)fuf)dwdt—i—j{ ¢rup-ndrdl
Q(t) a0(t)

= % ¢5(—us +up) ndxdt (5.2.2)
89(t)

Since this should hold for arbitrary volumes and ¢; > 0, equation (5.2.2) demands
(uf —up) - n=0 on 08(¢). (5.2.3)
The same computation for the solid phase yields

d

dt Jos) 20(t)

such that
(us —up) - n=0 on 00(t) (5.2.4)

holds. As this must be true for all control volume, the combination of (5.2.3) and (5.2.4) gives

U N=UB N ="1Us T on 08)(t).

Hence, in order to have volume preservation one needs to demand
n-(us—uys) =0,

which is an additional boundary condition, that needs to be enforced by our formulation. This
boundary condition has been independently shown to hold in [22] using a different derivation.

5.3 Deriving a multiphase model using a gradient flow structure

Suppose we have a drop with a liquid-air interface T'; () being on a substrate with solid-liquid
boundary I's(¢). In order to have mass conservation, we demand the condition (us —uys) -n =0
on the boundary strongly, that is we have the tangential space

U={(us,ur,0ids,0:05) : (usg—uy) - n=0onTly, u;=ur=0o0nTs}

with 0Q =T'; UT'y. The u,, us are velocities of the particles and liquid phase and 0;¢s, Orpp¢ are
the partial time derivative of the respective phasic volume fractions. Further, we have the space
for the Lagrangians

L= {(p&pfvpv)}
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al'y

Figure 5.1: Domain for the energy derivation of the multiphase model.

with ps,ps the solid and liquid pressure, respectively. As we like the volume fraction to be
transported using our velocities, we demand the process

_ _ -V (us(bs)
O = Pou = (—v _ (uf¢f)> (5.3.1)

to hold.

In order to proceed we have to choose from one of the introduced gradient structures. We model
the system in the form of equation (5.1.5). First, let us introduce the vectors

w, ¢s (u B '1/)5 B pf B qs
uz(’ll,f)’ ¢:(¢f)7 ’U_<’U,f)7 ¢_(1/Jf>7 P=|DPs | q=|qf

Do Qv

Then, the dissipation potential is chosen as
1
()= / Sutts(Vatg + Va7 : (Vs + V) + by (Vaug + Vs T) : (Vay + Vg T)
Q

+ Bosdr(us — uf)2 dz.

The derivative of the dissipation is

D2\II(¢7U)['U] = /Q(t) -V (¢s2us(vus + VUST)) - Vs + ﬁqss(bf(us - Uf)vs dz

+/ —V'(¢f2uf(Vuf+VUfT))-vf—ﬁ(bsqﬁf(us—u]c)vfdw
Q(t)

+ / n- (¢s2ﬂs(vus + VUST)) -vyds
T (t)

+ / n - (¢r2ur(Vuyp + Vus")) vy ds
T1(t)

= <D2\Il(¢7 u)7v>
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Let us define 75 = 2u5(Vus + VusT) and 75 = 2us(Vuy + VuyT). Now, we have to mind the
fact, that we cannot independently vary the test functions v, and vy on the boundary anymore,
so we rewrite the boundary integrals into normal (dependent) and tangential (independent)
components. For easy of notation we concentrate on the two-dimensional case, where any vector
a can be decomposed into normal and tangential components as

a=(a-n)n+(a-t)t.
In higher dimensions, we have to use a tensorial ansatz of the form
a=(Mnen)ja+(I-n®n)a

instead. Thus, we write

/ nYsTs - Vs + n¢f7-f CH ds = / nesTs - ((vs n)n + (vs t)t)
I1(t) T1(t)
+n¢srye- (vy-n)n+ (vy-t)t)ds
= / n((;ss'rs + ¢fo)nvn
Fl(t)
+ g Tdvg +nopTrtvs ds,
with v, =vs-n=vy-n, vy = vy -t and vy = v, - £, which can be independently varied.

The constraints are

C(¢7u76t¢ap) = /Q( )pv(atgbs + af¢f) +ps(at¢s + V- (¢9u9)) +pf(af¢f + V- (¢fuf)) dma
t

with derivative

Dy 34C(¢p,u, 0,0, p)[v, 01, q] = /Q( )%(@% + 0tdf) + Do (0)s + Opthy) + PsOpths + DpOsths
t

+0:(016s + V- ($stts)) + 47 (0105 + V - ($5us))
- vps : (QSS/US) — VPf . (¢s'vf) dx

+/ vn(ps¢s +pf¢€)ds
T1(¢)

- <D234C<¢7 u, at¢7 p)? (U7 at¢7 q)>

We consider an energy functional F that includes gravitational, surface and collision forces and is
defined as

E(¢) :/ g(ycosa — zsina)(psds +pf¢f)dm+/ ods+ $? de. (5.3.2)
Q(t) () Q(t)

In order to compute a suitable energy functional derivative, we use

dE(¢)
dt

= E'(¢)0¢ = E'(¢) P>u (5.3.3)
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and then using our process definition (5.3.1) to yield the right hand side of (5.1.5).

The so-called first variation of area formula is, cf. [57, 79],

d

— 1ds = 7(d — 1)/ KUB - (1) ds + / VB " Nyr(t) dl, (534)
dt I'(t) r(t) oT(t)

where vp is the boundary velocity of the surface I'(t) C R?~! with boundary 9T'(t) C R%~2, & is
the mean curvature such that the unit hypersphere has k = 1 and np is a normal on D.

Thus, the time derivative of E, i.e. (5.3.3) of (5.3.2), can be computed via the Reynolds transport
=4

)

theorem (5.2.1) and the first variation of area (5.3.4) as

dE(e)
dt

= / g(ycosa — xsina)(psOrps + prOigy) dx
Q)
_|_/ (n-up)[g(ycosa — xsina)(psps +Pf¢f)] ds
Ty (t)
,(d,1)/ cmuB-nder/ oup -ndl
1 (t) or(t)
+/ $s0r s de’/ (n - up)g; ds
Q(t) Iy (t)
B /Q( ) —g(ycosa —zsina)(psV - (usps) + psV - (upoy)) de
t
+/ (n-up)g(ycosa —xsina)(psps + proy)| ds
(1)
—(d—l)/ (muB-nds—k/ oup - ndl
Iy (t) o (1)
+ / —¢,V - (¢sus) de + / (n ’ uB)¢z ds
Q(t) T4 ()
= V(g(ycosa —wsina)ps) - (usds) + V(g(ycosa — xsina)py) - (updy) de
Q)

[ ne (s - wlglycosa — asina)po.
Fl(t)

+n-(up —uys)g(ycosa—xsina)prds|ds

f(dfl)/ cmuB~nds+/ ocup-ndl

Fl(t) Fl(t)

—|—/ (Vos) - (psus) dx —l—/ n-(ug — us)qﬁi ds
Q(t) L1 (1)

= (E'(9), P.u),

where d is the dimension of €2 and & is the curvature of the interface. Theorem 5.3 shows an
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acceptable choice for the boundary velocity is n-up =n-u, = n-uy, so we get

(E' (), Pov) = /Q V(g(ycosa —zsina)ps) - (¢svs) + V(g(y cosa —zsina)py) - (¢yvy) da

—(d-1) / okv, ds + / ov, dl + / (Vos) - (¢svs) de.
Th () aTy (1) Q1)

Variational formulation
We like to find a solution of the saddle-point problem

sup inf (¢, u) + (E'($), P.u) + C(¢,u, 014, p).
peL (u,0: )€U

We assume the potentials and functions to be smooth enough. Therefore, this is equivalent to
find (u, 0, p) € U x L, so that

<D2\II(¢7’U’)5 'U> + <El(¢)7sz> + <D234C(¢7ua 6t¢7p)7 (’Ua at"pa q)> = Oa (535)
for all (v,d1,q) € U x L.

Resulting system

Identification of the strong form via variation of the test functions in (5.3.5) yields the partial
differential equations

—V (05205 (Vs + V")) + Bsdp(us — uyp) = dsVps + 65V s (5.3.62)
= —V(g(ycosa — zsina)ps)ds,
—V - (¢52u5(Vuy + Vup")) — Bosds(us—uyg) — ¢ Vpy (5.3.6b)
= —V(g(ycosa —xsina)ps)oy,
Orps + 0ppy = 0, (5.3.6¢)
Qs + V- (usds) =0, (5.3.6d)
Ordy +V - (upgy) =0, (5.3.6e)
Po+ps =0, (5.3.6f)
Py +pr =0, (5.3.6¢)
in (¢) and on the free-boundary I'y (¢) the boundary conditions
n(psTs + qi)frf)n + (¢sps + ¢fpf) = (d—1)ok, (5.3.6h)
negs7st =0, (5.3.61)
nesrt =0, (5.3.6j)
n-(us—uys) =0, (5.3.6k)

at the triple points 9T';(¢), we have
o =0, (5.3.61)
and on the substrate boundary T's(¢) the no-slip condition

us =uy = 0. (5.3.6m)



5.4. DERIVATION OF p. TERM IN ENERGY FORMULATION 107

Removal of excess pressures

System (5.3.6) can be further reduced by usage of equations (5.3.6f) and (5.3.6¢g) to remove the
solid pressure ps; and the mass conservation pressure p, yielding the final system

—V - (¢520s(Vus + Vu, ")) + Bosdp(us —up) — ¢sVps + ¢V (5.3.72)
= —V(g(ycosa — zsina)ps)ps,

—V - (pp2py (Vs + VugT)) = Bosdr(us—ug) — 65 Vpy (5.3.7b)
= —V(g(ycosa —zsina)ps)dy,

Ovds + Oy =0, (5.3.7¢)

Opds + V- (¢sus) =0, (5.3.7d)

Ods +V - (druy) =0, (5.3.7¢)

in Q(t) together with the boundary conditions from (5.3.6).

5.4 Derivation of p. term in energy formulation

The energy functional definition (5.3.2) contains the term

¢ dz, (5.4.1)
a()

which is referred to as granular stress term, modulus of elasticity or collision pressure in the
literature [49, 118] and yields the final term

sV

in the solid momentum equation (5.3.7a). Without such a term uniqueness of solutions is lost,
which is easiest seen for flow cases like the shear-flow, where the two phases decouple and one has
an additional grade of freedom left in the distribution of the volume fraction, cf. [32]. The collision
pressure is also directly connected to the well-posedness of the system as has been discussed in
Section 2.2.

This choice of the collision pressure is not unique and (5.4.1) is only the simplest choice. In
Section 2.3 we propose the collision pressure term
Vpe =V (1n|¥s|) (5.4.2)
in the solid momentum equation, where the solid shear rate and its norm is defined as
A, = Vu, + Vu,”, (5.4.3a)
ol = /200002)2 + (Bytss + 0r02)2 + 2(8y0,)2. (5.4.3b)

As the collision pressure definition (5.4.2) is motivated by physical experiments, it would be nice
to find an energetic generator term for this kind of collision pressure.

We have three locations, where we can add a term - the energy functional E, the Lagrangian C'
and the dissipation potential ¥. We do not discuss combinations of those, as we hope to identify
a single energetic cause.
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As the energy must not depend on the velocity it is immediately clear that it cannot model a term
of the form (5.4.2). A velocity can only enter through the change of the process definition P,,
which by (5.3.3) contributes only a linear term, hence is unable to create this nonlinear velocity
structure. Another way is to model this term through an additional condition that is enforced in
the Lagrangian C'. It is unclear what this additional condition should be, therefore we decide to
model the collision pressure using the dissipation potential ¥ instead. Nevertheless, note that the
two-pressure models demand an additional condition in order to introduce a second pressure in
the model [77], which would naturally lead to a modification of our Lagrangian C, here.

The previous discussion shows that we expect the collision pressure to be part of the dissipation
potential. In essence this leads us to the question for the existence of a potential that generates a
term of the form Vn,|¥,| in the solid momentum equation. To answer this question, we state
some facts from functional analysis.

Let X be a Banach space. We call an operator A : X — X™ a potential operator, iff there exists a
Gateaux differentiable functional f : X — R, such that A = f" [135].

An operator A : X — X* is called hemicontinuous, iff the map A : R — R defined as

A(t) = (Au + tv), w)x+ x

is continuous for all u,v,w € X, cf. [109].

A functional F4 : X — R is called pseudopotential of A, iff [135]

Fa(u) = /0 (A(€w), w)x- x de.

Proposition 5.4. Suppose A: X — X* is a hemicontinuous operator on the Banach space X .
A is a potential operator if and only if

FA(u)—FA(v)z/O (Alv+&(u—v)),u —v)x~ x d§ Vu,v € X

holds. Then, the pseudopotential F4 is a potential, and an arbitrary potential for A differs from
F4 only by a constant.

Proof. This proposition is part of Proposition 41.5 in Zeidler’s third volume [135]. O

Proposition 5.4 is just an integral formula for the determination of the potential. In essence, we
like to know, whether the operator Ay, : X — X* defined as

(Ay, (), 0s) xox = _/ ORI vade Vs, € X, (5.4.4)
Qt

is a potential operator. Unfortunately, the correct space X is not known for our problem. However,
we assume X to be a Banach space of the velocities such that all terms exist, are measurable

and the operator A4, is hemicontinuous. For example a valid choice for stationary problems is
X = (H ()"
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Theorem 5.5. Let us assume there are us,vs € X, such that
V- us =0, |vs| >0, V-vs #0.

Further assume n,(¢s) > 0. Then, Ay, is not a potential operator.

Proof. First, let us derive the pseudopotential of Ay, by usage of Fubini’s theorem, i.e.

Fa, (u,) = / /Q(t Tn(B5) \/2 €0t1s)? + (EDyus + E0,,)? + 2(E0,05)2)V - u, da de

/ / nn (bs ‘§|\/2 0, us a yUs + 0y ’Us) + 2(8yv3)2)v -ug d d€

-/ / €l A€ () )V - de
1 .
= _5 (nn(¢s>|7s‘>v'u8 de.
Q(t)
However, a formal computation shows

(P, (w0 = =5 [ m(@)3,l(7 - 00) + (o) T

7]

(V-u,)de
and choosing us such that V- us = 0, but |¥,| > 0 yields
/ 1 :
(FA¢S(U’S)7US) = _5 (nn(¢5)|75|)vvs de.
Q)

Comparison with (5.4.4) shows that both forms differ by a factor of one half. Thus, this can
only be identical if both sides are zero, which they are clearly not for the valid choices V - v # 0
and 7, > 0. Therefore, by Proposition 5.4 the operator Ag, defined by (5.4.4) is not a potential
operator. O]

Theorem 5.5 tells us, we should rather look for a potential, so that

(o, u)[v] = (Ag, (us),vs)x x + (19, (Us), Vs)x* X,

with ry, some rest. Unfortunately, this would imply every potential ® can be chosen, because we
can always choose

ro, = Dod(, )] + / (melAa )V - v, dz.
Q)

However, we would like to regain r4_ = 0 for the particular cases of the plane Couette and plane
Poiseuille flow, because this would show that our original formulation adheres to the second law
of thermodynamics and an energetic principle in those cases.
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A particular choice for the potential

The pseudopotential Fia, suggests considering a potential term of the form

B(gp,u) = - / (604 |(V - ) daz, (5.4.5)

with the first variation

Dy®(b, w)[v] = - / (@) Al (7 ) + 10 (60) L5 (V - 0, e
Q Y

ol
| 4s
_ /Q <V<nn(¢s>|~/sl) +V (@) 35 (7 “5))> e
B ]ﬁm(@)wsm b n(ds) 22

7]

(V-uy) - vgsds

Thus, we have a term of the form (5.4.2) and the additional term

r= 9 (100 5V ).

which becomes zero for V- us; = 0. Thus, this is a good choice, since we showed the plane Couette
and plane Poiseuille flow demand a phase-wise incompressibility in Chapter 3.

Positivity of the dissipation including a p. term

In Section 5.1 we defined G to be a positive and symmetric operator, which implies that W is
positive. Yet, the dissipation potential (5.4.5) might become negative, so we have to show that

1 1
U(p,u) = / SGsltsYE + SO + Bosdr (s — up)® — o (00)|F, (V- us)dz (5.4.6)
o) 2 2

is always non-negative. Let us define the so-called friction coefficient, cf. [15, 75],

_ Pshis

Hfr T

Theorem 5.6. Let 3, us, ps and 1, be non-negative functions and ¢, ¢y € [0,1]. Then, the
dissipation (5.4.6) is non-negative for pr. > 1.

Proof. Without limit of generality consider the case uy = 8 = 0, since these terms are always
positive. Otherwise, an even smaller value of i, is sufficient. Thus, we need to find a py,. > 0,
so that

Bfr . :
S = (V) 2 0
holds. Definition (5.4.3) shows this can be rearranged as

‘7s| (/Jfr|’75| -V 'uS) > 0.
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The worst case is for dyus + 0,vs = 0, so we need to check

,ufr\/2(aacus)2 + Q(ay'l}s)Q - 835’1145 — 6yUS Z 0,

with its worst case being

0\ 2051)? + 2(0,0)? — [Oyss| — 0] > 0.

[ Ozus
@-= Oyvs )’

nrrV2llallz = [lall = 0.
Basic linear algebra tells us this is fulfilled for p¢, > 1. O

Defining

this is equivalent to

The stability analysis in Chapter 4 yielded the criterion p; > 1/2 for the plane Couette flow and
about uq > 1/4 for the plane Poiseuille flow. The constitutive laws of Chapter 4 give

Hfr = H1.

This implies a necessary friction coefficient of pys,. > 1/2 and pg, > 1/4 for plane Poiseuille and
plane Couette flow, respectively. The non-negativity criterion of Theorem 5.6 is independent of
a particular flow. Hence, the criterion pys,. > 1 is a generalization of the stability analysis from
Chapter 4 to general flows and a value of py, > 1 - equivalently p1 > 1 for the constitutive laws
of Chapter 4 - is a necessary criterion for the stability in general flow situations. Nevertheless,
particular flow situations - like the plane Poiseuille flow - might be stable for friction coefficients
smaller one as shown in Chapter 4.






Chapter 6

Viscoplastic thin-film equation

As the multiphase model consists of two Navier-Stokes equations that are coupled in a highly
nonlinear fashion twofold - directly through the momentum coupling term and indirectly through
the volume fraction - we do not try to analyze the full system for existence and uniqueness of
solutions.

A possible different approach is to look for simpler models that show similar behavior and analyze
them instead. Section 7.2 shows that the assumption of a constant collision pressure

De = Nn(Ps)|y4| = const.

leads to a reduction of the multiphase model into a thin-film model with yield-stress property,
which has been first proposed by Balmforth et al. [9]. Therefore, we gain some insight into our
multiphase model with yield-stress property by analyzing this much simpler model. A particular
difficulty in the analysis of these simpler models is that their equations are of the form

Oih + 0y (F(h,...,0"R)) = 0

with n € {2,4} and F is nonlinear in the highest order term 92'h. This renders existence proofs
that depend heavily on compact embeddings or maximum principles futile, cf. [13, 39, 62]. Thus,
we used a theorem based on the monotonicity of the differential operator due to Roubicek [109].
A short introduction into the background of monotonicity methods is also provided.

Our plan is the following: First, we give an alternative derivation of the Balmforth equation using
a variational inequality ansatz, then we prove existence of solutions for a regularized second order
equation. The occurring equation is quasilinear and, due to the yield-stress property, contains
non-differential terms. This directly hints to problems hidden in the multiphase model with
viscoplastic properties, which we expect to contain similar difficulties.

113
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6.1 Governing equations

Usually, thin-film equations are derived starting from the partial differential Navier-Stokes equa-
tions with appropriate free-boundary conditions and reducing them using asymptotic techniques.
This approach is viable whenever the partial differential equations are well-posed. Yet, it is
known that for viscoplastic fluids with Bingham stress a non-uniqueness of the stress in unyielded
domains exists [34, 47] and it is not clear whether the Navier-Stokes equation make any sense for
these fluids [34]. Since we are interested in thin-film equations we neglect the inertial terms and
concentrate on the appropriate Stokes equations, here. Nevertheless, we like to point out that
inclusion of inertial terms in the variational inequality formulation is not a problem, see e.g. [34]
for a possible approach.

For completeness sake, we first give the Stokes equations with appropriate boundary conditions
and, afterwards, state a variational inequality that for smooth enough regions reduces to the same
equations, but is also directly applicable in the unyielded regions, where the Stokes equations
lose their well-posedness.

Assume a domain Q(t) = {(z,y) € [0,L] x R : 0 < y < h(t,x)}, where h describes the free-
boundary I'(t) = {(z,y) € [0,L] xR : y = h(t,z)} with periodicity L > 0. The periodicity
condition can also be substituted by a finite domain, where h(t,0) = h(¢, L) = 0. We use the
shear-rate tensor

D(a) :=Va+ (Va)’.

The Stokes equations with Bingham stress are defined as

V-ou=0 in Q(t), (6.1.1a)
V-r—Vp=0 in Q(t), (6.1.1b)
with shear-rate norm
1
|D(u)| = iD(u) : D(u), (6.1.1¢)
the stress relation
b
T = +,u> D(u) for |T]| > b, (6.1.1d)
(|D(U)|
|D(u)| =0 for |T] < b, (6.1.1e)

and no-slip and stress boundary conditions

u=0 at y =0, (6.1.1f)
(r—pl) n=o0k-n at y = h(t, x). (6.1.1g)
as well as the kinematic condition
Oth + w10, h = ug forz € [0, L], t >0,

and initial condition

h(0,z) = ho(z) for x € [0, L].
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Pseudo-plugs and inconsistencies

A straight-forward thin-film approximation of the Bingham equations (6.1.1) lead to the leading
order system (7.2.8), which is solved by equation (6.3.7). The solution consists of two regions,
ie.0 <y <Y;andY, <y < h, which are called plastic region and pseudo-plug region, respectively.
On the one side the plastic region shows a vertically sheared flow profile with the horizontal
velocity w fulfilling d,u # 0, whereas the pseudo-plug region moves seemingly stiff with d,u = 0.
On the other side in the horizontal direction both regions show a horizontal yielding d,u # 0.
The problem with this behavior can be found in the leading order approximation of the stress,
which exceeds the yield-stress in the plastic region, but equals the yield-stress in the pseudo-plug.
Since condition (6.1.1¢) assumed vanishing shearing whenever the yield-stress is not exceeded this
contradicts the horizontal yielding and renders the thin-film approximation seemingly inconsistent.

Balmforth and Craster [9] propose a solution to this problem by using two distinct expansions
for the velocity in the plastic and pseudo-plug region followed by a matching procedure. Later,
they show the stress is actually exceeding the yield-stress in the pseudo-plug region at next order.
Thus, the original thin-film solution is consistent if derived using the correct asymptotic ansatz.

Nevertheless, their solution still suffers from at least two inconsistencies. Firstly, they propose
a Bingham model using the standard equations (6.1.1) without stating any conditions at the
yield-surface |7| = b. Yet, they implicitly assume the stress and the velocity to be continuous
at the yield-surface in order to derive their equations. Secondly, they assume the momentum
equation to hold everywhere, without specifying the stress in possible plug-regions. This approach
is common, but as Dean et al. [27] note, in case of a pure plug-flow the equation (6.1.1b) make
no sense. Both inconsistencies can be solved by reformulating (6.1.1) as a variational inequality,
cf. [27, 34, 47]. This is the approach we pursue.

Equivalent variational inequality

Let us define the sets

V={v(t,z,y) :v(t,z,0) =0, (z,y) € A1)},
Q= {Q(t7xvy) : (1‘,y) € Q(t)}a

where we assume the functions to be ”smooth enough” for the derivation. We use the shorthand
notation

(a,b):/ a-bdex, (A, B) = A : Bdzx, (a,b)mz/ a-bds
Q(t) Q(t) r'(t)

in the derivation and n denotes an outward pointing normal.

Using a combination of ideas by Duvaut et al. [34] and Acary-Robert [1], the variational inequality
of the form (5.1.6) describing the behavior of system (6.1.1) is

5(D(w), D(v —w) = (p, V- (v~ w))
F((0) — j(u)) > (oK. (v —u) -m)s + (fro—u) Vo EV.

(qvvu)zo quQa
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with

jw=2 [ |pu) de.
Q(t)
f=gpV(xsina —ycosa),
the kinematic equation
Oth + u10,h = us for x € [0,L], t > 0,
and the initial condition

h(0,z) = ho(x) for x € [0, L].
It is beneficial to use Gauss’ theorem for the pressure terms, i.e.

(D), D(v = u)) + (Vp,v — ) (6.1.2)

+b(j(v) = j(uw)) = ok +p, (v —u) n)a + (fLv—u) YveV,
(¢, V-u)=0 Vg € Q.

6.2 Derivation of thin-film inequality

Nondimensionalization
Let us introduce the scales
h = Hh, z=L7, p= Pp, q = Pg,
uy = Utq, v = Uvq, ug = Vg, vy = Vg,
and assume the height-length ratio is a very small number, i.e.

%:5:0(1).

Using these scales in the variational inequality (6.1.2) and dropping the tildes, it gives

U2
ﬁQ;L(@mul, Opv1 — Ozu1)
w(U 14 U U v v
+3 (Hﬁym + faxu27 anm - ﬁaylh + fﬁzw - faﬂ@

2

1% PU
+ oz 200y uz, Oyvz — Oyuz) + = (0ap 01 — w1) + — (Oyps vz — u2)

T
05 (5(0) ~ () > Ulor + Pp. (o1 — wn)ma)e + Vo + Pp. (02— u)na)s

+ gpU(sina,v1 — u1) — gpV(cos o, va — ua),
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as well as
PU

PV
T(%awul) + f(% dyuz) = 0,

with

-~ 1/2
jlu) =2 / (252(8mu1)2 + (Byur + 20,u2)? + 252(8yu2)2> dz.
Q(t)

As we like to balance the continuum equation, we demand U = ¢V, thus we get (after using the
normal and surface integral scalings, i.e. ny ~ €9,h and ny = 1.)

v? 21(0, 19) 0 v 19) 20, 10) 19) 20, 29

T2 p(0zpu1, 0pv1 — Opun) + ﬁﬂ( U1 — €70z Uz, OyV1 — OyUy + €70,V2 — € 1 U2)

U? PU PU
+ﬁ2p(8yu2, 8y02 — 3yuQ) + T(amp, v — Ul) + T(ayp, Vo — u2)

U - .
+bﬁ (j('v) — ](u)) > eU(ok + Pp, (v1 — u1)0zh)y + eU{ok + Pp,va — uz)s

+ gpU(sin o, v1 — uy) — egpU(cos a, vg — uz)
as well as

(g, 0zu1 + Oyuz) = 0.
After division by ,u%; the momentum equation becomes
1
2(0zu1, Opv1 — Ozur) + 6—2(8yu1 — £20,u9, Oyv1 — Oyur + 20,09 — 528qu)

L PL
(Oxp,v1 —ur) + —

P
+ w /JU (aypyv2 —U,Q)

—|—2(8yU,2, 8y’l}2 — 8yu2)

bL? - ~ HL HL
WU (j(v) = j(u)) = w<0K+PP7 (v1 —u1)0zh) e + —= (0K + Pp,va — uz)s

+ P

gpL?

uU
We choose the non-dimensional pressure, Bingham number and velocity as
U H pgH? sin o
P=pu—, B=b—, U=—"—"—,
=5 U S

so the inequality becomes

+ ((sin a,v] —uy) — e(cos @, v — UQ))

1
2(0zu1, Opv1 — Ozuq) + g(ayul — £20,u9, Oyv1 — Oyur + €20,y — £20,uz)

1 1
+2(0yug, Oyva — Oyus) + 6—2(8:1;;0, vy —up) + 6—2(8yp, Vg — U3)

B - ~ HL U HL U
425 () = () = 22 (o + g (00 = u)uh)s 4 (o 4 v — ),
+

g2 wlU

1 1
;2(57 v —up) — ;2(1702 — ug),
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where we chose S = ¢! tan a, which is of order one for small a.

The integral terms also contain length and height scales, so we non-dimensionalize them as

(a) :HL(a)a <a>r :L<>>£
Thus dropping the tildes again, one gets
1
2(0zu1, Opv1 — Opug) + ?(%ul — £20,uo, Oyv1 — Oyur + 20,09 — 6289,3112)

1 1
+2(0yuz, Oyva — Oyus) + 5—2(8119, v —up) + E—Q(ayp, Vg — Ug)

B - ~ L U L U
+;2 (J(U) - J(U)) > MT](UK =+ oyl (v1 —u1)0zh) e + EW’“‘ HapPv2 — U2) e
1 1
+ 9(5,01 —uy) — ;2(1,1/2 — ug).

Next, using the definition for the curvature and the capillary number, i.e.

o Omh oo
(1 + (B.h)2)372 ia
yields
2(0pur, Opv1 — Opuy) + ?(@,ul — £20,uo, Oyv1 — Oyuq + 20,09 — €20, u0)
+2(0yus, Oyva — Oyus) + é(@xp, vy —up) + E%(ayp, Vg — Ug)
+§2 ((v) = j(w) > Ei?<camh/(1 +2(0:0)%)% + p, (v1 = u1)D,h),
F {00/ (1 + 2@ 4 vz — ).
(80— ) = 5 (Lo~ w).
Balancing

The leading order inequality is
(Oyur, Oyv1 — Oyur) + (Opp,v1 — u1) + (Oyp, v2 — uz) + B (j(ayvl) — j(ayul)) >
(COzah +p, (V1 — u1)0zh)p + (COpzh + p,v2 — u2)y + (S,v1 —u1) — (1,02 — uz)
and the mass conservation becomes to leading order
(Qa axul + ayUQ) = Oa

where we used

j(a) = 2/ la| de.
Q1)
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Writing it in components of v, we get
(Oyu1, Oyvr — Oyur) + (Ogp,v1 — u1) (6.2.1a)
+B (j(@y01) = j(Oyu)) = (COuah + p, (01 = w)Ouh)y + (S, 01— wa),
(Oyp, v2 — uz) > (COgzh + p,v2 — u2)e — (1,02 —u2), (6.2.1b)

for all v = (v1,v2) € V = V; x Vi, where we created the two inequalities by component-wise
testing with either v; = w1 or vo = us.

As the pressure is not restricted, the second inequality is in fact an equality, which can be seen
by testing with positive and negative vo — us. Hence, we choose p to fulfill

p(@, h,t) = =COyzh and Oyp(x,y,t) = —1,
and, therefore,

which is a particular solution of inequality (6.2.1b). Using (6.2.2) in (6.2.1a) yields an inequality
for up, namely

(Oyu1, Oyv1 — Oyur) + (Ogh — COpprh, vi — uy) (6.2.3a)
+B (j(@yen) = (0,m)) = (S0 —w) VYo € WA,

The continuum together with the kinematic equation gives

h(z,t)
Och(z,t) + 0y / uy(x,y,t)dy =0 for x € [0, L],t > 0. (6.2.3b)
0

6.3 Solution of thin-film inequality

Firstly, we derive a particular solution and, secondly, we show the solution to always hold, i.e. it is
a general solution to the inequality system (6.2.3). Firstly, let us rename the velocities as u := uy,
v:=wv; and V := V] for convenience. Then, for given h > 0 the inequality (6.2.3a) only depends
on y, so we have

1
/ %@u(azv — 0u) 4+ h(0ph — COpzah) (v — u) (6.3.1)
0
1
+2B(|0,v| — |0 ul)dz > / hS(v —u)dz Yv eV,
0

for arbitrary z, where we used the transformation y = h - z.

The identification of a strong solution of (6.3.1) is impeded by the appearance of the absolute
values. Therefore, we assume positivity of the involved terms, i.e.

0,u >0 and d0,v >0 for z € [0, 1]. (6.3.2)
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Then, using the no-slip boundary conditions, inequality (6.3.1) becomes
14 1
/ Eﬁzu(azv — 0u) + h(0zh — COpyrh)(v —u) + 2B(0,v — d,u)dz > / hS(v—u)dz &
0 0
b 1
—Eazzu(v —u) + h(0zh — COpyah)(v —u)dz + E[azu(l)(v(l) —u(l))
0
1
—0,u(0)(v(0) — u(0))] +2B(v(1) — u(1l) — v(0) + u(0)) > / hS(v —u)dz
0
1y 1 1
/ —Eazzuw + h(0zh — COpyph)wdz + Eazu(l)w(l) +2Bw(1) > / hSwdz,
0 0

where we used w = v — u. Let us define
W =A{w:|0,w| < min(d,u, d,v)}.

This set has the property, that for every w € W, we have —w € W. For this reduced set of test
functions the inequality is actually an equality, since testing with the positive and negative of a
function show the inequality to hold in both directions. So our problem becomes

1 1
/ —%azzuw + h(0zh — COpyph)wdz + %@u(l)w(l) +2Bw(1) = / hSwdz Yw e W.
0 0

This motivates to look for a function w fulfilling

1
—Eazzu + h(0yh — COyyyh) = S, (6.3.3a)
d.u(1) = —2Bh, (6.3.3b)
u(0) = 0. (6.3.3¢)

Note B, h > 0, therefore, (6.3.3b) is not compatible with assumption (6.3.2). One solution is to
assume an unyielded region for z > Y; € [0, 1], so our new assumptions are

O,u >0 and O,v >0 for z € [0, Ys],
O, u=0and u=v for z € [V, 1].

The same steps as above with the new assumptions yield

1

-0+ h(D:h = COyah) = hS for z € [0, Y],
O,u=0 for z € [Yg, 1],
u=~0 at z =0.

In the liquid region z € [0, Y;] this gives

22

u(z) = (Yz -5 ) h2(S — 8, + COyash),
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so that we have the particular solution

Yoz — 2 ) h2(S — O,h + COppuh) f 0,Y,
u<z>:{< e ; P (6.3.4)

YER2(S — Oph + COpph) for z € [Y;, 1].

Validity of particular solution and identification of yield surface Y

Using our particular solution for the plug-flow (6.3.4) in (6.3.1) yields
Ys 1
/ Eazu(ﬁzv — 0.u) + h(0zh — COpyah — S)(v — u) + 2B(|0,v| — |0.u|)dz
0
1
+/ h(Osh — COyush — S)(v — u) + 2B0sv]dz >0 Vo e V.
Y
Using partial integration, the no-slip boundary condition and 9,u(Ys) = 0, it gives

Y
/ f%azzu(v —u) 4+ h(Oxh — COpyprh — S)(v — w) + 2B(|0,v| — |0,ul)dz
0

1
+/ h(Osh — COpunh — S)(0 — u) + 2B|0so]dz >0 Vo e V.
Y
The first terms vanish due to (6.3.3a), so it becomes

Ys 1
/ 2B(10.0| — |0.ul)dz + / h(Osh — COyunh — §) (v —u) + 2B0sv]dz >0 Vo e V.
0

s

Using solution (6.3.4), we get
Y2
7‘5h2|5 — Oph + Cypph| [-2B + h(1 — Y3)|S — 9ph 4+ COpuuhl] (6.3.5)

1 1
—l—QB/ |0,v|dz + h(Ozh — COpyrh — S)/ vdz >0 Yv e V.
0 Y
We like the first term to vanish in (6.3.5), so we define the yield surface Y as

2B
Y, = 1— 0). 36
s T max ( RS — 8y + COpanh] 0) (6.3.6)

The final inequality is

1 1
QB/ |0,v|dz + h(0zh — COpyah — S)/ vdz >0 Yo eV,
0

Ys

which can be rewritten using (6.3.6) as

1 1
h|0zh — COpyrh — S| ((1 — Ys)/ |0,v|dz — sign(0zh — COyyah — S)/ vdz) >0 Yo e V.
0

Y
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This inequality holds for all v € V' as long as h > 0. To see this, define { = argmax, ¢ 1;(|v[) and
consider the inequalities

1 13
(1—YS)/ 10.v]dz > (1—5/5)/ 10.0] dz
0 0

13
> (1Y) [ 2.0dz sn(u(6))
= (1 —Y;) max(|v])

1
:/ max(|o]) dz
Ys

1
> sign(0,h — COyzuh — S) / vdz.

s

Note, we have not supposed 0,u > 0 anymore, so for negative 0,,,h we also have the opposite
case. Nor did we make any assumptions about v besides some implicit smoothness requirements.
Note also, for Y = 0 the fluid region size becomes zero and we are only left with a single unyielded
region.

Final solutions

Usage of the velocity solution (6.3.4) in the kinematic boundary condition (6.2.3b) yields the
general solution

1
0= 0h+ 0, (3h3(5 — Oph + COppuh) Y2 + (1 — Ys)u(Ys)> , (6.3.7a)

with the initial condition
h(0,z) = ho(x) for x € [0, L], (6.3.7b)

where the yield surface Y € [0,1] is of the form

2B
Y, = max (1 A T C’@xmh|’0> . (6.3.7¢)

We can identify three special cases. Firstly, mind for B — 0 we have Yy — 1 and the equation
becomes the standard thin-film model for Newtonian fluids driven by surface tension and gravity,
as already Balmforth et al. [9] recognized. Secondly, for C' = 0, that is vanishing surface tension,
we get

0= d,h+ 0, (;h?’yf?’ ;Y (S — 6xh)) , (6.3.8)

with

2B
Y, = 11— ————F— .
s max( h|5'—8xh|’0>
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Thirdly, for vanishing gravitational forces, one derives

1 —Y.
O == ath + 81: <h3Y923 écawwmh> 9
3 2
with
2B
Y, = 1-—=" o).
max ( Dzl 0)

6.4 Introduction into the theory of monotone operators

In Section 6.3 we have derived partial differential equations for the viscoplastic thin-film model.
These equations share the common difficulty that they are nonlinear in the highest derivative in
their flux. In order to cope with this difficulty we use the theory of monotone operators.

Tools from functional analysis

A real Banach space V is a complete vector space over the field R equipped with a norm || - ||y. A
real Hilbert space H is a complete vector space over the field R equipped with an inner product

(.’ )H
We define the dual space X* of a vector space X as the set of all continuous linear functionals
f:X — Ron X together with the norm

[fllx- == sup [f(x)].

llzll<1
For f € X* and x € X, we define the pairing
(fa x)X*,X = f(iB)

We drop the index whenever it is clear from the context, what spaces we are referring to.

There is a surprising simple connection between a Hilbert space H and its dual space H*.

Theorem 6.1 (Riesz representation theorem). Let H be a Hilbert space. For every continuous
linear functional f € H* there is exactly one element y € H such that

(f,2)mm = (W, 2)H VeeH
and
£l e = Myl

Proof. For a proof, see e.g. [17]. O

Since the finite dimensional space R™ is a Hilbert space equipped with the inner product of vector
spaces, the Riesz theorem can be used to identify y € R™ with y € R™ and we define

(%x)R"*,R" = (yax)Rn,R” =Yy
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Let (z,) € X be a sequence, x € X, (f,) € X* a sequence in the dual space and f € X*. We
have the following definitions

Ty =@ & nh_)rrgo |z —zn|lx =0, (6.4.1)
fo s f & dim f = fullx- =0, (6.4.2)
Ty =@ = nli_g)lo(f,x—xn)x*,xzo VfeX”, (6.4.3)
fn > f o lim (f, — f,2)x-x =0 VzcX, (6.4.4)

n—oo
and we call (6.4.1) and (6.4.2) strong convergence, (6.4.3) weak convergence and (6.4.1) weak*
convergence.

We call amap f:Y C X — Z between two Banach spaces X and Z continuous at z € Y, iff
xn — ¢ implies f(x,) — f(z).

An operator A : X — X* is called hemicontinuous, iff the map A : R — R defined as

A(t) = (A(u + tv), w)x+ x

is continuous for all u,v,w € X.

We denote the bidual space by X** = (X*)*. In a Banach space we can identify an element
r € X with ™ € X** by

(™, flx==x»=(fz)x~x VfeX,

which creates a map J : X — X** with x — z**. If J is surjective, then X is called reflexive
and one can identify X with its bidual X**, which is denoted by X = X**. Reflexive Banach
spaces have a very important convergence property similar to the well-known Bolzano—Weierstrass
theorem for finite dimensional sequences.

Theorem 6.2 (Eberlein—Smuljan theorem). The Banach space X is reflexive, if and only if every
bounded sequence (x,,) € X has a weakly convergent subsequence.

Proof. See for example [17, 136]. O

We call a Banach space X separable, iff it contains a dense subset Y C X that is countable,

i.e. Y = X, where the bar denotes the closure of Y.

Let X and Y be vector spaces. Then, we call a map A : X — Y an operator. The operator is
usually equipped with the norm

[Az]ly

TEX,x#0 ll]l x '

[Allop =

We call A a linear operator, iff it is a linear map.
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Let us call a map f : X — X* coercive, iff

(f(@),7)x x

— 00 as ||z]| — oo.
]l x

Let us call a map f: X — X’ monotone, iff
(f(a) — f(b),a—=b)x~x >0 VabeX
holds. If f: X — X* is monotone and a # b implies
(f(a) = f(b),a—b)x- x >0,

then we call f strictly monotone.

An operator A : X — X* on a real Banach space X is strongly continuous, iff

Up — U implies Au, — Au.

Let X,Y be real Banach spaces. An operator A : X — Y is compact, iff A is continuous and A
maps bounded set of X into relative compact sets in Y.

Note, if Y = X* and X is reflexive, then strongly continuous and compactness are equivalent.

Consider a domain @ C R™ having a Lipschitz boundary. Then, we denote by LP () the space
defined as

LP(Q) = {u: ||lul r(q) < 00,u: R™ = R, u is Lebesgue measurable },

The employed norm || - | z» () is

[l = [ @) da

and the integral is meant in the Lebesgue sense. Thus, redefining L”(£2) as the quotient space
with respect to the null set

N = {u: |lulzr) = 0}

creates a Banach space.

We define the generalized derivative 0,,u of a function u in the distribution sense as

[ dnut@)pl@ita = [ u@onpleide  veeCEO.
Q Q

where C5°(£2) denotes the space of all infinite differentiable functions with compact support in .
Then, we define the so-called Sobolev spaces W%P(Q) as

WP(Q) = {u € LP(N) : dqu € LP () V| a1 < ¢, € N{},
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and equip these spaces with the norm

||U|\€Vq,p(9) = Z |0t Lr (2)-

lleelli<q

For time dependent partial differential equations, we use functions
u:l — X,

where I C R and X is a Banach space. We denote by LP(I; X) the space of all functions that are
Bochner integrable and fulfill

lull Lo (1;x) < 00,

where the norm is defined as the Bochner integral

lullzerix) = / () 2 dt.

Further, we define a generalized time derivative ‘31—1; in the sense

/f(héf)so(t)dt = */I“(t)so’(t)dt Vo € Coo(D)-

This allows us to define the space of generalized time derivatives lepvp,(l ; X5 X*) as

WP (1 X X*) = {u: u € LP(I; X), % e L¥ (I; X*)},

where 1/p'+1/p = 1. The fact that the derivative % lies in the dual space of the original function

u comes from the fact, that we like to have the relation

%(u(t),v)H = (%(t),v)x’x* Yo e X

for any Gelfand triple X C H = H* C X*, where X is a Banach space that is a embedded
continuously and densely into a Hilbert space H.

We call f:QxR™ — R a Carathéodory function, iff f(-,7): @ — R is measurable for all » € R™
and f(x,-) : R — R is continuous for almost all x € Q.

We call F' a Nemyckii operator defined as
F(u)(x) := f(z,u(x)),

iff f is a Carathéodory function that adheres to the growth condition
|f(@,7)| < la(@)| +b 0[P/,
i=1

where b is a positive constant, a € L4(Q2), 1 < p;,q < 00, i € {1,...,m}.

The following theorem is central for the continuity of operators used in the Browder/Minty
theorem.
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Theorem 6.3. Let f: Q X R™ — R be a Carathéodory function, then the Nemyckii operator
FoJ] L@ — L99Q)
i=1
is measurable, bounded and continuous. Further, for all w € T]}~, LPi(Y) it is bounded by

[E(w)lLa) < C (Iallm(n) +Z|uilliia/f(m) :

i=1
Proof. Proofs can be found in [109, 112, 138]. O

The definition of Nemyckii operators for time dependent problems in Bochner spaces also exists,
cf. [109].

Finite dimensional case

In order to understand monotonicity methods for infinite dimensional spaces, we first look at a
finite dimensional example. Suppose for given f : R™ — R" and b € R™ we like to solve

flu)=>5 (6.4.5)
for u € R™. An interesting question is what are sufficient assumptions on f for the existence of a
solution to (6.4.5). Further, what are additional assumptions on f for uniqueness of the solution.

In the one-dimensional case, i.e. n = 1, sufficient assumptions are that f should be continuous
and coercive. This follows directly from the intermediate value theorem for continuous functions.
However, this generalizes to n > 1.

Theorem 6.4. Assume f is a continuous, coercive function and let n € N. Then, there exists a
solution u € R™ for equation (6.4.5).

Proof. The proof is based on Brouwers’ fixed point theorem, see e.g. [112]. O

If we demand f to be strictly monotone and assume w1 and us to be two solutions of (6.4.5)
with w; # uso, then

0=(b—-0b)- (u1 —uz) = (f(u1) — fluz)) - (u1 —uz) >0,
which is a contradiction. Hence, strict monotonicity implies uniqueness.

Another interesting choice is to demand f to be continuous and monotone only, because this
implies the equivalence of the variational inequality

(flv)=b)- (v—u) >0 VveR"
with equation (6.4.5), see e.g. [112].

Therefore, sufficient assumptions for the existence and uniqueness of solutions to (6.4.5) are that
f should be continuous, strictly monotone and coercive. Note, we did not demand f to be linear.
Thus, these properties hold for nonlinear functions, too! Additionally, these assumptions allow
for direct generalizations of the solution properties of finite dimensional functions to operators on
infinite dimensional spaces.
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Infinite dimensional case
Let X be a Banach space. Suppose we like to solve the operator equation
Fu="b,

where u € X, F' is an operator from X to X* and b € X*. This contains the finite dimensional
case (6.4.5) using the choice X = R™. However, we are now interested in infinite dimensional
cases. A typical example is the Poisson equation with the choices

Q CR"™, b(v) = /Qa(m)v(a:)dcc,
X ={ucW"?(Q):u=0ondQ}, (F(u))(v) = /Qzamiu(:c)aziv(m)dm,

where n is a positive integer, a € W2(Q) and Q is a Lipschitz domain.

We have seen the sufficient assumptions for finite dimensional F' are strict monotonicity, continuity
and coercivity in order to guarantee existence and even uniqueness of solutions. It is a surprising
result, that the same holds for infinite dimensional spaces if we additionally demand the space to
be reflexive and separable.

Theorem 6.5 (Minty, 1962). Let X be a reflexive, real Banach space and let A : X — X* a
hemicontinuous, monotone operator. Then, the following holds:

1. The operator A is mazximal monotone, that is let w € X and b € X*, such that
(b—Av,u—v)x~x >0 Vv e X
then it follows Au = b.

2. Operator A fulfills property (M), i.e.

Up — U,
Au,, — b,

(At un)x+ x = (byu)x+ x
implies Au = b.
3. FEither
Uy — u in X, Au,, — b in X*
or
Up — u in X, Au, — b in X*

implies Au = b.

Proof. See e.g. [112]. O
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Theorem 6.6 (Browder and Minty, 1963). Let X be a separable, reflexive, real Banach space
with base (wy) € X. Further, let A: X — X* be a monotone, hemicontinuous, coercive operator.
Then, there exists a solution u € X of

Au = b, (6.4.6)

for all b € X*. The set of solutions is closed, bounded and convex. Additionally, if A is strictly
monotone, then the solution u € X of (6.4.6) is unique.

Proof. For a complete proof see e.g. [112, 138]. O
The main steps of the proof are:

1. Approximation of the solution through a Galerkin ansatz

k
Ug = § CpWn,
n=1

where ¢,, € R and w,, are base functions of X.

2. The Galerkin ansatz yields a (possible nonlinear) algebraic system of equations for ¢,,. Since
A is coercive and hemi-continuous, we can use Theorem 6.4 in order to show existence of a
solution for the c¢,,, which imply the existence of a sequence uy € X of solutions.

3. The proof of Theorem 6.4 yields the sequence of solutions is a-priori bounded. Using the
Eberlein-Smuljan theorem this implies up — wu.

4. Due to the monotonicity of A we can proof the boundness of (Aug,w,) and (Aug, ux). This
gives weak convergence and implies

(Aug, wy,) = (Au, wy,),
(Aug, ugx) — (b,u).

5. Additionally, monotonicity yields
0 < (Auy, — Av,u, —v) = (Au — Av,u —v) = (b — Av,u —v) Yo e X. (6.4.7)
6. The monotonicity trick (6.4.7) implies
(b—Av,u—v)>0 Yo e X,
which itself implies the solution (6.4.6) via Minty’s trick, i.e. Theorem 6.5.
We call A: X — X* a pseudo-monotone operator for the reflexive Banach space X, iff
Uy — U,

lim sup(Auy,, ty, — u)x+x <0
n— 00
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implies

(Au,u — w) x+ x < liminf(Au,,u, —w)x= x Vwe X.
n— oo

Theorem 6.5 shows the weaker property (M) is also sufficient for the proof and pseudo-monotone
operators fulfill property (M) and generalize the notion of monotone and compact operators.

Theorem 6.7. Let A,B: X — X* operators, where X is a real, reflexive Banach space. Then,
the following statements are true:

1. If A is monotone and hemi-continuous, then A is pseudo-monotone.
2. If A is strongly continuous, then A is pseudo-monotone.
3. If A and B are pseudo-monotone, then so is A+ B.

4. If A is pseudo-monotone, then it fulfills property (M).

Proof. The proof and theorem can be found in [112]. O

This theorem shows that pseudo-monotone operators can also consist of two parts, where one is
monotone and the other one strongly continuous. Many problems in partial differential equations
create operators, where the highest order derivative fulfills a monotonicity property, but lower
order parts do not. On the other side lower order derivatives often fulfill compactness results.
Thus, a generalized theorem by Brezis yields:

Theorem 6.8 (Brezis, 1968). Let A : X — X* be a pseudo-monotone, bounded and coercive
operator, where X is a separable and reflexive Banach space. Then, there exists a solution u € X

of
Au = b,

for allb e X*.

Proof. The proof can be found in any of [109, 112, 138]. O

In order to proof pseudo-monotonicity for elliptic operators, it is often easier to proof the so-called
Leray-Lions theorem, which just demands us to show that the operator is coercive and bounded
as well as monotone and continuous in the highest order terms, cf. Problem 27.6 in [138] and
Theorem 6.1.22 in [29]. This allows a rather general existence theory for elliptic problems of
arbitrary order.
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Time dependence

The discussion for elliptic problems needs to be generalized to problems involving time, before we
can apply the theory to parabolic equations of the form

(31—1; + A(t,u(t)) = f(u) for almost all t € T, u(0) = uo, (6.4.8)

where u € X, A: I x X — X* I :=[0,T] and f: I — X*. We demand X to be a separable,
reflexive Banach space that is embedded continuously and densly into a Hilbert space H, such
that the following Gelfand triple relation

VcCH=H*"CcV*

is fulfilled. The equality sign stems from the Riesz representation theorem.

Application of the Galerkin approximation in the proof of Theorem 6.6 yielded a nonlinear
algebraic system, that could be shown to have a solution using a fixed point argument. Using a
Galerkin method in (6.4.8), however, yields a system of ordinary differential equations of the form

du

— = f(t,ult 6.4.9
= (), (6:4.9)
where u : [Ty — ¢, Ty + ¢] = X and X is some Banach space. The simplest case is X = R. In
order to show the existence of solutions for every approximation, we need a well-known theorem
due to Peano.

Theorem 6.9 (Peano). Let Tp € R, ug € X, and
Qv ={(t,u) eRx X : |t —Tp| < a,||lu—uo|lx < b},

for fixed numbers, 0 < a,b < co. Suppose that f : Q, — X is compact and that || f(t,y)]| < K
for all (t,u) € Qp with firted K > 0. We set ¢ = min(a,b/K). Then, (6.4.9) has a continuously
differentiable solution on [Ty — ¢, Ty + c|.

Proof. See [136]. O

In order to apply Peano’s theorem, we need a-priori bounds of the solution to (6.4.9), which can
be gained by usage of the following lemma.

Lemma 6.1 (Gronwall’s inequality). Let u,g : [To,T] — R be continuous functions, with g
nondecreasing. If they satisfy the inequality

T
u(t) < g0)+C [ uls)ds

To

where C' > 0, then
u(t) < g(t)ec=To)

for all t € [Ty, T).
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Proof. See [136]. O

This yields bounds on the time derivative %‘. Since the operator A is assumed to be bounded

anyway, the sequence of Galerkin solutions ug, k € N is weakly converging, i.e.
up — win LP(I; V).

Converting the weak limit to the strong limit in A goes along the same lines as in Theorem 6.6.

However, we also need to show that it is a strong limit for the generalized time derivative %

dt -
This can be done by usage of the integration by parts formula

/I(%(t), wy) v ve(t) dt = — /I(uk(t)awk)HQO/(t) dt — (uk(0), wi)v+v

where wy, € Vj is base function of the Galerkin ansatz and ¢ € C*(I) with ¢(T) = 0. Then,
showing the right hand side contains two bounded linear functionals, which are, therefore,
continuous, we can take the limit £k — oco. Using the fact, that the convex hull of all wy is dense
in V', we show this limit to actually having the form

- / u(t)g'(t) dt,

I

where we now use ¢ € C§°(I), which eliminates the ¢ = 0 term. Then, the definition of the
generalized time derivative shows that ‘é—’t‘ exists and, therefore, that u € WLPP (I; V;V*). For
detailed proofs see e.g. [109, 137, 138].

The generalization of Theorem 6.6 to linear first order time dependent problems is the following.
Theorem 6.10 (Roubicek, 2005). Let the collection {Vi}ren satisfy
Vk e N: Vi C Vis1 CV and Ugen Vi is dense in V.
Let A: I xV — V* be a Carathédory function that satisfies the growth condition
Fy e LV (I),c: R — R increasing : || A(t,v)|v- < c(|jv]|lm)(v(t) + o))
and the semi-coercivity
3Cy > 0,¢1 € LP (I),co € L")V € V (A(t,v),v) v~ v > Colv]} — e1(t) o]y — ca(t)||v]| 7,

where | - |v is a seminorm on V' such that the Poincaré inequality

[ullv < C(luly +[lullz) — YueV

is fulfilled. Let A(t,-) be pseudo-monotone for almost all t € I and let ugr — ug in H with
Uok € Vi.

Then, up, — u in LP(I; V) (possibly in terms of subsequences) and u is a strong solution to the
Cauchy problem (6.4.8).

Proof. See [109]. O

Thus, defining a particular differential operator A and proving the necessary assumptions of
Theorem 6.10 yields the existence of solutions to a parabolic equation of the form (6.4.8).
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6.5 Existence proof for regularized second order equation

Let ©Q = [0, L] with boundary I' = {0, L}, denote by I = [0,T], @ =1 x Q, ¥ =1 x I'. We study
the existence of solutions for the regularized equation

1 -Y.
0= 0th+ 0, (3|h|3Y523 5 2(S — 9.h) — 5(6mh)3) in (t,z) € Q (6.5.1a)
with T, L, S, > 0,
2B
Yi(h, 0.h) = l-—— 0 6.5.1b
(hout) = (1~ g 0) (0:310)
and Neumann boundary conditions
1o 03-Y, Y
n- §|h| Y °(S — 0ph) — e(0:h)> | =0 on (t,z) € X, (6.5.1c)

with initial condition h(0,z) = ho(z) for z € £, using the existence theory of pseudomonotone
mappings for quasilinear parabolic equations by Roubicek [109]. This equation is similar to
solution (6.3.8) for a gravity driven thin-film with Bingham stress. The regularizations are
necessary since for non-positive h this equation degenerates. This degeneration introduces
problems, because the highest derivative vanishes or changes sign. In the existence proof at hand,
this would translate into missing coercivity or monotonicity of the differential operator, which is
reestablished by the introduction of the regularization.

It is essential for the following proof that equation (6.5.1) is mass conserving. This can be shown
by integrating (6.5.1) over z, using the Gauf}’ theorem and the Neumann boundary conditions
(6.5.1c) in order to yield

d L
T h(t,z) dz = 0.
This shows that the average value of h is a constant, i.e.
1t 1t
ho = —/ h(t,x) dz = —/ h(0,z) dz = const. (6.5.2)
L Jo L Jy
Using property (6.5.2), we transform the solution via
u="h-— hQ, (6.5.3)

where u has zero mean, i.e. ug = 0. Thus, equation (6.5.1) is modified as

Y23 Y,

0 = O+ 0y <;|u + hal? (S — 0pu) — (0, u) > in (t,z) € Q, (6.5.4a)

~ 2B
Ys s Uz = 1- y 5 .5.4b
(u, Ogu) max< |u—|—hQ|\S—8u| 0> (6.5.4b)

0= ( lu+ ho |3Y23 2(S — Oyu) — e(Ogu) ) on (t,z) € X. (6.5.4c)



134 CHAPTER 6. VISCOPLASTIC THIN-FILM EQUATION

Existence theorem

Consider the quasilinear parabolic equation

O — Oza(t,z,u, Vu) =0 for (t,z) € Q, (6.5.5a)
n(z) - a(t,z,u,Vu) =0 for (t,x) € X, (6.5.5b)
u(0, ) = up(x) for x € Q, (6.5.5¢)

where n denotes the unit outward normal to I'.
Let us denote the zero-mean subspace of W%?(Q) by
WP (Q) = {u € WP(Q) : ug = 0},

that is a reflexive, separable Banach space iff W%P(Q) is one. It is equipped with the usual
Sobolev norm

H ’ HW@’P(Q) = H : ||W<1,p(Q).

We call u € WhPr'(I; Wé’p(Q),Wé’p(Q)*) a weak solution of (6.5.5) if it fulfills the weak
formulation

Ou - vdzx + / a(t, z,u,0pu) - Opv(z)de =0 (6.5.6)
Q Q

for all v € Wé’p(Q), for almost all ¢t € I and u(0,z) = up(z).

The condition on the embedding and integrability coefficients are

p* = 3p, p* =3p—2, p=——

#

p* = o0, p7 = o0,

for one-dimensional domains and p > %.

We use a proposition for the existence of second order quasilinear equations due to Roubicek [109],
which is based on the ideas presented in Section 6.4. However, we have to allow an additional
constant in the coercivity assumption. Additionally, we reformulate the semi-coercivity in integral
form, so we can use the Poincaré inequality when we apply it to equation (6.5.4).

Proposition 6.11 (Existence of a weak solution). Let
a:@Q x (RxR") —R",
be a Carathéodory mapping. Let a: @ X R x R™ — R satisfy the Leray-Lions condition

(a(t,z,r,8) —a(t,x,r,§)) (s —8) >0,
(a(t,z,r,s) —a(t,x,r,5)) (s—8§) =0=s=35.

Let the coercivity assumption

L
/ a(t, z,v,0,v)0,v do > co||8zv||’£p(m —c1(8)]|0zv|| e () — c2(t) |vH2Lz(Q) —cs,
0
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hold for all v € WP(Q) with co >0, c¢1 € LP (I), c3 € LY(I) and c3 > 0. Let for some 1 > 0,
¢y < 00 the growth condition

e X (Q): ja(t,@,r, )] < y(t, @) + ealr|® T 4 eg]sr

hold and let ug € L?(QY) with zero-mean. Then, the initial-boundary-value problem (6.5.5) has a
weak solution (6.5.6).

Proof. This is just a special case of Proposition 8.40 in [109] stated with the semi-coercivity
condition as used in the proof of Proposition 8.40, but with an additional positive constant cs.
The semi-coercivity condition is only used in the proof of Lemma 8.8 in [109]. There, we only
need to add the constant c3 to (; and the rest of the proof stays exactly the same, cf. page 222
and 223 in [109]. O

Next, we show existence of solutions for equation (6.5.1) using Proposition 6.11.

Theorem 6.12. There exists a solution u € WH44/3([, Wé"l(ﬂ)7 Wé"l(Q)*) of
1 3523 =Y, 3
Opu - vdz + g\u+hg| YST(&EU—S)—FE(@CU) Oyvdzr =0
Q Q

for allv € Wé’4(Q), for almost all t € I, with initial condition u(0,z) = ug(x) € L*(Q) with
zero-mean and no-flux boundary conditions

1 _,3-Y,
n- <3|u + hﬂ|3YSZT(S — dyu) — 5(81u)3> =0, on T.
Proof. In order to use Proposition 6.11, we choose p = 4 and
1 300V 3 23— W
a(t,:c,r,s):§|7’+hg\ f(Yg)(S*S)+€S ) f(w):w T7

where

2B
K(r’s): {max (1*m,0) for (T+hQ)($*S)7&O

0 otherwise,

Thus, we have to show the properties for a: Q@ x R x R — R.

The function Y is continuous, since the concatenation of continuous functions is continuous.
Thus, we just have to show that

2B

g(rs) = I+ halls — S|
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is continuous for |r + hg||s — S| > 2B. This is true, since for o, = @ € R, 3, = 5 € R, we have

1 1o |1 1,1 1
ol TanllBal| ~ Tl ~ TallBal T TaliBal ~ TanllBn]
1 1 1 1 1 1
== -t — | - —
ol |8 3| T 1Bl [Tal ™ Tl
1 1
= | Bal = IB]] + T [l — e
el = Bl + e lanl = e
< Cal18] = 18al| + Callal — o
— 0,

since the convergent sequences are bounded and |, ||f,] > 1 implies C' > |ay,| > ﬁ, where C' is
a positive constant.

The function a is easily seen to be Carathéodory, since Yy is continuous, so is a. Further, a does
not directly depend on ¢ and z, and for fixed r and s the function «a is a finite constant. Since
our domain is of finite size, every finite constant is measurable.

In order to show the Leray-Lions conditions, we first use the transformation & = s; — 5, so it
becomes

(élr + hol* f(Ye, )1 - §|r + hal*f (Ve ) ) (61 — €2) + (s} — s3) (51 = 52) 2 0,
(31 + hol*f(Te )6 = 5l + bl F(7e)62) (6 — ) + <lst — 81— 52) =0 = 31 = 52
where

- max (1 — 7\7‘—5-2%@\\&\’0) for (r + hq)€ # 0,
0 otherwise.

In fact, due to € > 0, the regularizing term is strictly monotone increasing. So we just have to
show

(1Fe)e = F(Te)e) (&1 - &) 2 0,

which is equivalent to f (}75)5 being (not necessarily strictly) monotone increasing. First, note
Ye € [0,1] and the polynomial f(u) is positive and monotone increasing for u € [0,2]. We consider
two cases, i.e. £ > 0 and £ < 0. For non-negative £ the function )75 is monotone increasing and
for non-positive £ it is monotone decreasing. Therefore, f (375) is also monotone increasing for
& > 0 and monotone decreasing for £ < 0. Then for £&; > & we have the three cases

€,6 >0 f(Ye, )1 — f(Ye,)é2 > f(Ye,) (&1 — &) >0
€. <0: f(Ye)er — f(Ve, )& > fF(Ye, ) (61— &) >0
& 20,6 <0 f(Ve,)é — f(Ye, )& = 0.

Therefore, f (}75)5 is monotone increasing and we have shown the Leray-Lions conditions.
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Next, let us consider the coercivity condition. We denote by C; a positive constant. Then, we
have

1 -
a(t,z,r,s) s = §|r + halPf(Yy)(s — S)s +es™.

Clearly, only (s — S)s can be negative with minimum s = S/2. Therefore, since f(Y) € [0, 1], we
have the estimate

. 52 3
a(t,x,r,s)-s>es" — E\r—&—hgﬂ

> est — Cy|r)® — Cahd,.

Young’s inequality gives
s Cs 9 2 4 3
a(t,x,r,s)-s>es" — 2 0°Cyr® — Cahy),

where d > 0 can be chosen arbitrary. Integration yields
Cs
52
C3
52

Since v is from a space with zero mean, the Poincaré inequality is

L L
/ a(t, z,v,0,v)0,v dz > / |0zv|t — =2 |v|? = 82Cy|v|* — Cohd) dx
0 0

— 0ol — 2 l0l2ay — O°Cullol ey — Cabl:
[vllze) < Cll0zv] L),
which yields

Cs

L
_/0 a(t,z,v,0,v)0pv dz > 5||c’9zv|\‘i4(m - 57||”||%2(Q) - 5205”8#1“%4(9) — Cohi).

Now, choosing ¢ small enough such that
Cs=¢— 5205 >0

gives
L
/ a(t,a:,v, 31’1))8x1} dx 2 CGH(‘?I’U”%‘L(Q) - C7HU||%2(Q) - Cgh%,
0

which shows the coercivity condition to hold with ¢ = Cg, ¢; = 0, c2 = C7 and c3 = Coh},.
Concerning the growth condition, we note
Is' <[s>+1 and |[s|> <|s]>+1

holds, so using Young’s inequality and |f(Y;)| < 1, we can estimate
1
a(t, z,7,8)| < els]® + 3lr+ hol’ls - 5]

1 1
S 5‘8‘3 + 6|T‘+hﬂ|6 + §|S — S|2
<els|> 4+ Ci|r|® + Cols|® + Cs



138 CHAPTER 6. VISCOPLASTIC THIN-FILM EQUATION

that is v = C3, ¢4 = max(e + C2,C4) and 1 = 4.

In conclusion we showed all assumptions for Proposition .11, which yields the existence and
regularity of our solution. O
The existence of a solution u for (6.5.4) directly implies the existence of a solution h for (6.5.1)

via the relation (6.5.3).

Remarks

In Theorem 6.12 we use two regularizations. In order to guarantee non-negativity of a, we use |h/|
instead of h. Further, we introduced a regularization € > 0, which is needed for growth condition
and the coercivity of the operator.

The same regularizations are needed in proofs for the Newtonian case Y; = 1 for degenerate
fourth order equations, cf. [13]. There, one can go to the limit e — 0 as the essential step is to
bound the mobility |h|?> uniformly, which is possible since the regularity of A does not depend on
€. Usually, non-negativity of h is shown using an entropy estimate for the equations, which for
€ — 0 yields a contradiction in case h < 0. However, our mobility depends on the second highest
derivative 0,h, which is directly controlled by estimates based on the e-regularization. Thus, for
€ — 0 we lose control of the derivatives and our estimates are not valid anymore.



Chapter 7

(Further) Reduced models

The full set of non-dimensional equations (2.4.1) models momentum and mass conservation of
two fully miscible fluids. Nevertheless, a simple gedankenexperiment shows that the system can
also model single-phase behavior. Suppose we use the multiphase model and set the solid volume
fraction ¢ to zero. Then, system (2.4.1) becomes

or =1,
¢s =0,
V~uf:0,

Re[Oius +V - (uy Q uy)] = Auy — Vpy,

which are the well-known single-phase incompressible Navier-Stokes equations. This motivates
a systematic study of reduced models contained in the Eulerian-Eulerian multiphase model.
These reduced models turn out to be models well-known from the literature. And it allows us
to understand the connection between modeling choices of multiphase models and single-phase
models. We also derive a drift-flux model similar to Section 3.3 for more general geometries and
flows, which explicitly shows how the constitutive laws enter the drift-flux term. Additionally,
the effect of gravitation is now being considered.

Having such a connection between multiphase and single-phase models, it would allow us to know
which constitutive laws lead to unphysical behavior and how experimental results can lead to new
modeling choices for multiphase models. On the other side, it also enhances the understanding
of single-phase models, since additional mass transport of particles - a process that is naturally
solved for in multiphase models - has often been hypothesized in single-phase models in form of
an additional transport equation, but the terms involved have to be guessed by physical intuition,
cf. Section 1.2. Therefore, finding connections between models, it helps in doing these choices.

139
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7.1 Limit models

Firstly, we give a more general version of the derived system (2.4.1), where we do not specify the
constitutive laws, but rather state the dependence of the laws on the free variables. Secondly,
some reduced models are more familiar when one considers gravitation as a driving force, which
we include in our general system. The derivation of the gravity term is given in Chapter 5 by an
energetic principle for the Stokes equations and gives the body force term

f=—-9V(ycosa — zsina).

Using the same average process as in Section 2.2 for a domain €2, it yields the system

O(pros) + V- (psosuys) =0, (7.1.1a)

O(pydyur) +V - (propus @up) =V - (updp(Vuy + Vug”))+ (7.1.1b)
¢sVp=—M(uy —us) — gprosV(ycosa — rsina),

Ot(psds) + V- (psdsus) =0, (7.1.1c)

Ot (psdstrs) + V - (pstsths @ ) — V - (sds (Vs + V' ))+ (7.1.1d)

OsVD+ Vpe = M(uy —us) — gps®sV(y cosa — xsin o),
where we assume
ps = const., ps = const., g = const., « = const., Ps +op =1,

as well as s, p¢, p. and M are functions of the solid volume fraction ¢, and p. depends
additionally on the solid velocity us. The functions ps and pf represent the constitutive laws for
the solid and fluid viscosity, respectively. The function M is called momentum-coupling term as
a large value in M represents a strong exchange of momentum between the two phases and we
chose M f = Mw, cf. Section 2.3. The function p,. is the collision pressure discussed in Section
2.2 and represents the difference between fluid and solid pressure. It might depend on the solid
velocity, which in turn might create a Bingham like character as we have seen in Chapter 3.
Typical choices for p. are listed in Section 2.3.

We assume no-slip boundary condition
us=ur =0 on 012,

but are mostly interested in the bulk equations in our derivations.

For reductions with a strong coupling between the solid and fluid velocity, such that their difference
is small, it has been shown to be beneficial, cf. Section 3.3, to rewrite system (7.1.1) in the
volumetric mixture velocity v and the difference velocity w defined as

v =Qrus + dsus,
w=ur — Us.

Let us further define the mixture viscosity and density as

p= (bfpf + (bspm
W= Qfpif + Psps.
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Next, we can deduce equations in v and w, i.e.

V-v=0, (7.1.2a)
%+v.v¢f+v.(¢f¢sw):0, (7.1.2b)

G
(v + 0595 (pr — ps)w) + V- (pv @ v + (pf — ps)Prds(v @ W+ w @ v)) (7.1.2¢)

ot
+V - (Bros(psds + pros)w @ w) — V- (u[(Vo + Vo) — (Vo @ w +w @ Voy)

+oros(py — ps)(Vw + Vw?)) + Vp + Vp.(ds,v — prw) = —gpV(ycosa — zsinw),
0
pfpsqbf%—a"f +prps@rds[(1 —2¢p)w-Vw — (Vo - w)w+v - Vw +w - Vo (7.1.2d)

—psdsV - (1pd[Vv + Vol + Vo, @ w +w @ Vo, + (Vw + Vw’)¢,])
+pi0sV - (nsts[Vo + Vol — Vo @w —w @ Vér — (Vw + Vw’)dr])
+(ps = pf)sdsVp — oppyVpe(ds, v — pyw) = —pMw,
where we used
(7.1.2¢) = (7.1.1b) + (7.1.1d),
(7.1.2d) = pu(T.1.10) = §pps(7.1.10).
The no-slip boundary condition becomes

v=w=20 on 0f2.

As can be seen from system (7.1.2) the volumetric mixture velocity is exactly divergence free,
which is the reason we call this an incompressible multiphase system. Further, the difference
velocity w is directly related to the drift flux velocity via

Ug=Us —V = —Psw,

see Section 1.2 and [61]. Models that are traditionally associated with a drift flux, allow an easier
derivation in these new velocities. Since drift flux models are suited for fluids with a strong
momentum coupling between phases, one expects w to be much smaller than v, whereas us and
uy are of similar order. This permits an asymptotic ansatz in the v/w variables, whereas the
same ansatz does not work in the original phasic velocities.

Non-dimensionalization and asymptotic ansatz

As in Section 2.4 we introducing the non-dimensional Reynolds, Darcy, density ratio and Froude
numbers defined as

UL L? s U?
Rezipf, Da = —, R:p—, Fr=—
Lin K Py gL
and using the scales
x =Lz, y=Ly, z =Lz,
L U
t=—t, up = Uy, p=—"p

U



142 CHAPTER 7. (FURTHER) REDUCED MODELS

for the variables and

M = %M’, Pe = Ugnpc', ff = Knlly, fis = Hnfl;
for the functions and we transform (7.1.1) into
Ordsr +V - (dpug) =0, (7.1.3a)
Re[0y(¢rus) +V - (drur @ uy)] = V- (nyo5 (Vg + Vuy ')+ (7.1.3b)
¢rVp=—-DaM(u; —u,) — %(éfV(ycosa — rsina),
Orps + V- (psus) =0, (7.1.3¢)
ReR[0;(dsus) + V - (dsts @ us)] — V- (sts (Vs + Vus'))+ (7.1.3d)

¢sVp+ Vp. =DaM(uy —us) — ?gﬁsV(ycosa — zsina),
T

where we dropped the primes of the non-dimensional variables. The non-dimensional boundary
conditions are the same as the dimensional one. Doing the same procedure for equation (7.1.2)
with the additional scales

w = Uuw', v=Uv, = pinp, p=psp,
yields
V-v=0, (7.1.4a)
%—i—v-V@e—i—V'(%‘%w):O, (7.1.4b)
Re[%(pv +¢5ds(1 —R)w) + V- (pr @ v+ (1 —R)drds(v @ w + w Q@ v)) (7.1.4c)

+V - (¢0s(Ros + ds)w @ w)| — V- (u[(Vv+ Vo) — (Vo @ w +w @ Voy)]

R
+¢rds(pf — ps)(Vw + Vw?)) + Vp 4 Vpe(ds, v — drw) = —F—:pV(y cos o — x sin ),

ReR[¢f¢s%‘: Fds05[(1— 20p)w - Vw — (Vo - w)w +v - Vw +w - Vv}] (7.1.4d)

—R o,V - (1765 [Vo + Vol + Vo, @w +w @ Vo, + (Vw + Vw')g,))
+0;V - (1595 [Vo + Vol — Vo @ w —w @ Véy — (Vw + Vw')gy))
+R—=1)pssVD — 0y Vpe(ds,v — p5w) = —pDa Mw.

Just as in the previous non-dimensionalization, the boundary conditions do not change compared
to the dimensional one.

The two systems (7.1.3) and (7.1.4) contain the non-dimensional parameters Re, Da, r and Fr as
well as the freedom in the unspecified functions ps, s, pe, M. All of these parameters can be large
or small relative to each other, depending purely on the fluid and problem under consideration.
Even more freedom can be gained by considering certain domain and flow properties, e.g. very thin
flows or time dependent changes. Hence, we do not try to give an exhaustive list of all possible
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f/
Z}/go ‘f PQ

Ly ¢s ~ 1
2 U
QI?Q() /@S ¢8 ~E ¢5 7£ qbcm't - 0(1) ¢s = chrit - 0(1)
, e . _ concentrated
Da=¢ dilute suspension weak coupling suspension
(Stokes settling)‘"‘“-.\.‘.‘. (two-pressure system)
. . concentrated
= dilute suspension
Da=1 ilute suspensi Fui mod\el suspension
(Stokes settling)
Da = 5—5 dilute suspension | Drift flux model Dar&‘ys law

(Stokessetting) | | T

Table 7.1: Overview of asymptotic regimes depending on momentum coupling and volume fraction
in the multiphase model, where 3 denotes a positive constant and € an asymptotic small, positive
value.

reductions, but concentrate on the size of the solid volume fraction ¢4, the momentum coupling
term M and the typical domain size ratio L/H. Figure 7.1 shows a graphical representation of
the different regimes, we like to discuss first.

We use asymptotic expansions of the scalar variables ¢, ¢¢, p, the velocities us, us or w,v and
of the functions ju, fi, p. and M in the following sections. For a function f(¢,z) ~ & with 8 € R,
we use the asymptotic series expansion, cf. [36],

kB f(t, ) + o(eNTF), (7.1.5)

] =

f(t»x) =

E
I

0

where fr, = O(1). For the sake of clarity, we assume the functions ps and p. have the same
asymptotic behavior for ¢s — ¢cit- In some cases we look at the boundary layer problem

(bs = (bcrit - 0(]—)7
in which case we use the expansion
N

Gs = Perit — Zsk+1¢sk(t,x) +o (V).

k=0
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General drift flux model

Consider the scales

d)s ~ 1, ¢s 7é (bcrit - 0(]—); Da = 571
and take p¢, us ~ 1. Further, assume negligible inertial and order one gravity contributions,
i.e. Re = O(¢?), Re/Fr ~ 1. Then, using an expansion ansatz in equation (7.1.4) yields to leading
order
wo = 0, (716&)
Vv =0, (7.1.6b)
R
—V - (uo(Vvg + Vi) + Vpo + Vpeo = —F—prV(y cosa — xsina), (7.1.6¢)
Do,
Orpso + VoV = Di =0. (7.1.6d)

These are the single-phase Stokes equations, where the solid volume fraction ¢4 acts as a domain
indicator function. System (7.1.6) misses the ability to simulate an accumulation of solids or
fluids in parts of the domain. For example, consider a constant solid volume fraction ¢, = 1/2
for x € Q(0) with ¢crit > 0.5. Then, the solid volume fraction stays ¢ = 1/2 for all € Q(t). In
order to add the ability to vary the volume fraction in the domain, we consider the next order
approximation, which is

“R 50V - (11r0(1 = ¢50)[Vvo + Vvg]) + (1 — ¢s0) V-(1s0¢s0[Vvo + Voi ]) (7.1.7a)
+R = 1)(1 = ¢s0)Ps0Vpo — (1 = ¢50)VDeo = —poMowy,

R
—V - (uo(Vvr +Vol)) + Vp + Vper = —Fme(y cosa —xsina) (7.1.7b)

+V - (Voso @ wi+wi @ Vso) + V - (1 (Vg + Voi))

+V- (¢SO(1 - QSSO)(:U‘f - ﬂs)(vwl + V’UJ{)),
Vv =0, (7.1.7¢)
8t¢sl + v V¢50 + vg - V¢s1 =V. ((]550(1 — ¢50)wl). (717(1)

In order to compute the next time step, we first solve for vy via an incompressible Stokes
system (7.1.6¢), and then for w; via the algebraic relation (7.1.7a). Next, we get v; via another
incompressible system (7.1.7b) and finally we use the transport equations (7.1.6d) and (7.1.7d)
to update ¢so and ¢1.

Equation (7.1.7d) allows for the transport of solids just like the leading order equation (7.1.6d),
but additionally contains the left hand side term, which produces accumulations of solid or fluid
in the domain. In order to see this, we substitute w; in transport equation (7.1.7d) with equation
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(7.1.7a), which gives

s0(1 — @5
W { = a0V + (s (1 = $s0) (Voo + Vg )

+pr(1 = ¢50)V - (ns¢s0(Voo + Vi)
+ (R —=1)(1 = ¢s0)950 VDo

-(1- ¢50)Vpco]>

at¢sl + vy - V¢50 “+ vp - V¢sl =-V- (

The effect of gravity can be seen by a further substitution of the pressure py from (7.1.6¢), which
yields

s0(1 — s
W [ —R ooV - (1y(1 = ds0) (Vo + va))

+ (1= ¢50)V - (1s¢50(Voo + Vg )
+ (R - 1)¢50(1 - ¢50)V . (M(VUO + va;))
- (1 - ¢sO)Povpco

—(R=1)¢s0(1 - ¢so)%poV(y cosa — zsin a)] )

Orps1 +v1 - Vso+v0- Vg1 =—V - (

For the special case u¢ = ps we have

¢50(1 - (bsO)
My

+ (1 - (bsO)vpcO

+ (R—1)¢ps0(1 — ¢30)%V(ycosa - xsina)} ),

Otps1 +v1 - Vs +v9- Vo1 =V - ( {— (Voo + Vol ) - Veso

which is easily seen to contain second derivatives of the leading order solid volume fraction ¢sg.

The essential step in this derivation is to get a closed form for w, which contains the drift-velocity

Ug = —qbfw

and can be used to close the transport equation for ¢5. See the discussion in Section 1.2 for the
definition of the drift velocity and some typical usage.

The derivation of a drift flux model from the Eulerian-Eulerian model is already known from the
literature, see e.g. [16, 60, 95]. Nevertheless, a formal asymptotic approach is missing. Nott et
al. [95] derive their model for a unidirectional shear-flow without variations in = direction. Ishii
et al. [60] derived the drift-flux model from an average process of the total mass, momentum
and energy conservation, which gives different equations than we have derived above. Boyer [16]
derived a drift-flux model for spinodal decomposition driven fluids by considering a particular
set of parameters and neglected terms with small constants. There, Boyer proposes a different
scaling, such that the inertial terms can be retained in the formulation. In essence the scales

bs ~ 1, bs # Perie — 0(1), Da=¢"1, w~ e, ps — pg~ el
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are considered, with « €]0, 1[, which yields the leading order system
V- Vo = 07
L9 (brswn) =0
Pe fPsWo) = Y,
Dt (povo) + V - (povo @ o) — V - (po(Vvg + Vol ) + Vpo + Vpeo = —gpoV (y cos a — 2 sin ),

Orppo+vo-Voso+

—@roprVpeo = —poMowg.

But this system is not a leading order system in the transport equation, since an additional
order is hidden in the Peclet number definition
1 J—
Po =
Further, Boyer chooses the collision pressure p,. in form of a chemical potential, which yields the
convective Cahn-Hilliard equation as the transport mechanism for ¢y [16].

e”.

Other limits

Besides the drift-flux model, the multiphase model contains a number of other interesting limits
depending on the asymptotic scales of ¢s and Da. Well-known limits like Darcy’s law, Stokes
settling, single-phase Navier-Stokes equations and two-pressure models can be retrieved in this
fashion as the following part shows.

Dilute suspension
Consider the scales
bs ~ €, Da=¢",
where v €] — 1,1[. A v > 0 represents weak and a v < 0 strong coupling effects. As a suspension
becomes more dilute its rheology approaches that of the liquid phase, i.e.
¢ljglo s = Hif, ¢1jr_r>10pc =0.
Thus, for a dilute suspension ¢ ~ &, we assume

Hso = Hf0, Peco ~ Eﬂ,

with 8 > 1 in the following derivation, which is consistent with our choices for the constitutive
laws from Section 2.3. Not assuming these scales, would imply a nontrivial wg term, which in
turn couples with the vy and it becomes much harder to see the basic physics of this regime.

Considering all these scales and substituting the appropriate asymptotic expansions into the
v/w-system (7.1.4), the leading order approximation becomes

woy = 0, 7.1.8a

R
Re[0;vo + V - (vo ® vo)] — V- (s (Vvg + Vvg)) + Vpy = —F—EV(y cosa — xsina), (7.1.8b

)
)
V- Vg = O, (7.1.80)
Ordo +wo - Vo =0, (7.1.8d)
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which shows a dilute suspension is described by the single-phase Navier-Stokes equations.

Suppose the flow takes place in a confined box with no-slip boundary conditions. Then, system
(7.1.8) yields vg = 0. Using the fact that wo = 0 and p.o ~ €7, the next order approximation of
w is

~ReoV - (s [Vvo + Vol ) + V- (ypdo[Voo + Vo ]) + (R — 1)doVpy = —? Mow;. (7.1.9)

Then, using equation (7.1.8b) the pressure becomes
R
Vpo = ——eV(y cosa — wsin ).
Fr
Substitution of this term in equation (7.1.9) together with the fact that vy = 0 yields
R—-1
E’YM()

Now suppose the solid and liquid phases have different densities, i.e. R # 1. This implies a drift
flux that segregates the solid and liquid phase, which is known as Stokes’ settling velocity. Since,
we have the relation

R
wy = ¢0F5V(ycosa—a:sina).

1
wy ~ — 7.1.10
VA ( )
the momentum coupling term is sometimes chosen as the hindered settling term [95]. Mind, that
depending on 7y the settling is either fast or slow - corresponding to v > 0 and v < 0, respectively.

The case v < —1 shifts this argument to higher order approximations with the leading orders all
being zero. The case v > 1 is more complicate, since w is not zero to leading order. Nevertheless,
Darcy’s number is usually a large value, rather than a very small one, since small Darcy’s number
correspond to huge particles, see below. If particles become too big, then scaling assumptions of
the average operator needed for the derivation of the model might be infringed.

Equation (7.1.10) shows the direct connection between the momentum coupling M and settling
of particles. Thus, some relations for M are based on the hindered settling function f, cf. [107],
defined as

f(@s) = (1= s)%,
with common choices of « € {5,5.1}. Recall from (1.1.6) that the volume fraction is defined as

_
=

where n is the number of particles, V' the cell volume and V), is the volume of a single particle.
Then, for spherical particles, we have
no_ s Ps

9 111
VvV V, 4/31a®’ (7.L11)

where a is the radius of the particle and NV is called the number density of particles. A common
form of the momentum coupling term in use is

M = —6mnaN f~(ps), (7.1.12)
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which is - using the appropriate form for f and (7.1.11) - equivalent to the constitutive law
proposed by Morris et al. [88] as shown in Table 2.1. Further, equation (7.1.12) physically justifies

our assumption of asymptotic large Da terms, since alN ~ a% and a is a very small number.

A note on the scaling assumptions contained in M. Let us assume a domain to particle ratio of

with H the characteristic height of the domain and a the radius of the particles. Further, we
know from (7.1.11)

4 4 3 4 3
¢s = §7Ta3N = §7TH352BN = 571'526690,
where we assumed N = % For a dilute suspension, i.e. ¢ = ¢, we get v = —%B—l— 1. Assuming

the particles are much smaller than the domain, e.g. § ~ 1, this corresponds to N ~ ¢~1/2, which
seems plausible as the number of particles is large even in the case of a dilute suspension. On
the other side, if the considered particles are large relative to the domain, then we have very few
particles. This could violate the continuum hypothesis of the macroscopic model or the scaling
assumptions needed for the derivation of multiphase models using an average process.

Weak momentum coupling

Suppose the variables are of the orders

QSS ~ 17 ¢S 7& d)crit - 0(1)7 Da‘ = eﬁa

with 8 > 0 and the other variables are of order one. A small order in the momentum coupling
term can be interpreted as a weak momentum transfer between the liquid and the solid phase.
Thus, we expect the phase velocities to act independent and use formulation (7.1.1) for the
asymptotic ansatz. Using the expansion ansatz (7.1.5) in system (7.1.3) yields to leading order

s+ V- (¢pus) =0,
Re[0i(dsus) +V - (¢rup @ uyp)]l = V- (upop(Vuy + VuyT))+
65V = ~ eV (ycosa — zsina),
Oh¢s + V- (dsus) =0,
ReR[0;(dsus) + V - (pspstts @ us)] = V - (nsds (Vg + Vu, "))+
6:9p+ Vpe = —1 =16,V (ycosa — wsina),
bs+ oy =1

where we dropped the zeros at the indices. Although it looks like the two phases are not exchanging
momentum to leading order anymore, there is still a highly nonlinear coupling in form of the
incompressibility and the volume fraction condition, i.e.

V- (¢sus + (bfuf) =0,
¢s+op=1.
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If we use the relation (compare with Section 2.3)

1

PR
a2

Da ~

where a is the particle radius, then a very small momentum coupling term implies huge particles,
which in turn could lead to a breakdown of the scale assumptions needed for the averaging ansatz
in the derivation of our multiphase model. Thus, this regime might have no physical justification.

Concentrated suspension with weak momentum coupling

Since for ¢s — eyt the functions g, M and p. might all contain singularities of different orders,
it is not practical to list all possible leading order systems, here. We concentrate on the simplest
example, where all the functions are of order one or us contains the highest order singularity.

Suppose the variables are of the orders
(;55 = ¢crit - 0(]-)7 Da = 66,

with 5 > 0 and we choose the other variables and functions all of order one. Then, in the case
Deo, bs ~ 1, we get the system

V-up =0, (7.1.13a

R
Re[dyus + V- (uy @ up)] — ppAuy + Vp = fFfV(y cosa — asina), (7.1.13b

)

)

V-u, =0, (7.1.13¢)

ReR[Ojus + V- (us @ ug)] — psAus + Vp + Zj: = —RI(;TRV(y cos a — xsin a)(7.1.13d)
¢s = Perit, (7.1.13e)

bs + o5 = 1. (7.1.13f)

Note, we have assumed fi50(¢s0), ftf0 (¢s0) ~ 1, here. Essentially, this excludes solid and liquid
viscosities that contain singularities for ¢5 — derit-

Note, system (7.1.13) has no coupling of the two phases anymore. In contrast to Section 7.1 even
the nonlinear coupling through the volume fraction and incompressibility vanishes to leading
order. Through the vanishing of coupling between liquid and solid phase, the problem becomes
overdetermined. As the volume fractions are set to a constant value, the free variables are us, wuy
and p. Yet, those three variables have to fulfill two incompressibility constraints (7.1.13a),(7.1.13¢)
and two momentum equations (7.1.13b),(7.1.13d). In general this system does not have a solution
unless we take the collision pressure as p. = ¢s(ps — p), see definition (2.2.18), so the solid
momentum equation becomes

ReR[Oius + V- (us ® us)] — psAus + Vps = f%V(y cosa — rsin ).

This highlights the problem of explicitly modeling the collision pressure p. by a simple equation
rather than using a second pressure explicitly as done in the two-pressure models, see e.g. [77].



150 CHAPTER 7. (FURTHER) REDUCED MODELS

For the case p. ~ 1 and pg(¢s0) ~ e~ 7, pp ~ 1 with v > 0, we get
V- U = 07

R
Re[Oyur +V - (uf @ uy)] — psAuy + Vp = —F—fV(ycosa —zsina),

V-u, =0,
V- (ps(Vus + V1)) =0,
¢s = Porit,
bs + 05 = 1.
In contrast to (7.1.13) this system is not overdetermined, since the solid momentum and mass

conservation equations constraint us to have purely rotational and translational motion. This
system describes the transport of a pure solid and a liquid, that do not interact to leading order.
Note, just as in Section 7.1 the physical justification for very small momentum coupling terms
Da is controversial as this implies huge particles, which might imply a breakdown of the scaling
assumptions for the used average.

Choosing Darcy’s number to be of order one, Da = 1, yields in essence the same behavior as
described above, but with an additional momentum coupling term to leading order.

Darcy’s law

Assume
- - -8 s Re_ __p
Ps ~ barie,  Pe(ds) e, ps(@s) v e prenh Da=emh =70

where v > § > 0 and C is a positive constants.

Then, using the phasic velocity formulation (7.1.3), it yields to leading order
V-uy =0,
ofVpr = —Mow — ¢;CV(ycosa —zsina), (7.1.14)
V-us =0,

~V - (15095 (Vs + Vu ")) + Vpeo = 0. (7.1.15)

Equation (7.1.15) is fulfilled for 4, = 0. Thus, the solids perform stiff rotation and translations
only. Rewriting (7.1.14) for w gives

w = f]%;CV(ycosa —zsina) — J(\Z—};fo. (7.1.16)
Assume ug; = 0 and take the definition of the momentum coupling term from Chapter 2,
ie. M =m¢s?/py with m a positive constant. Then, rewriting equation (7.1.16) as the seepage
velocity (1.2.5) it becomes
u=— o5 (Vps+ CV(ycosa — zsina)),
m g,

which for appropriate C' and m is the non-dimensionalized Darcy’s law with gravity, compare
with equation (1.2.4) and (1.2.6).
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7.2 Reduction to thin-film models

For the present discussion we confine ourself to the two-dimensional case in Cartesian coordinates.
Let us denote by

T T
v = (Vg,0y)", w = (Wy, Wy)
the Cartesian velocity components and by
T T
V; = (U;zmvyi) s w; = (wm’, wyz)

the components of the velocity expansions. Then, we use the scales

z =L, y=Hy,
L !/ U/’L’ILL /
t= Et ; p= 2 p,
for the variables and
U
M = %M’, pe= I/;"pc’, fif = pnpty, [ts = Hnfly,

for the functions. The reason to scale p. by U;‘I" instead of U‘L‘” is that the standard form of the

collision pressure is

DPec = g(¢9)|7€|?

where g is an arbitrary function of ¢4, often containing a singularity for ¢s — @¢rit- Then,
non-dimensionalization of |¥,| yields % as largest scaling term. In the following we use a small
parameter defined as

E =

~|

and change the definition of Darcy’s number as

H2
Da = ? = 57[3,
where 8 > 0. The velocity must be scaled differently in « and y directions, due to the incom-
pressibility condition. Hence, we use

/

— T —
vy = Uvy, vy = elUu,,

and similar scales for the components of w, v; and w;. In fact we choose the velocity scale as
quotient of gravity and viscous force, i.e.

_ gpy sin a H?

U
puysS

)

where S is a positive constant expressing the influence of gravitation and is specified later on.
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Figure 7.1: Shown is a visualization of the domain under consideration for the thin-film model
discussion. The fluid is in domain © with I';y and 'y being the free-boundary and substrate,
respectively. OT'; is the set of all triple points, where fluid, substrate and air meet.

For the sake of readability, we denote the components of a quantity by an index before a comma
and a derivative by an index after a comma in this section, i.e. we define

ap e = OcQyp.
Dropping the primes, the momentum equations for the difference in velocity w become

£2Re Ropds[0pwz + (1 — 20 8) (WeWy z + WyWe y) — (Of 2Wa + P f yWy )Wy (7.2.1a)
FULWe g + VYW y + WyUg o + WyUyg o]
—R ¢ (2is b5 Va0 + Ps 2We + W whs]) 2

RO (17 Pf[Vary + €20y 0 + €25 w0y + Wots g + Ps(way + 2wy 2)])

+ 058> (25 Ps[Va e — Wadf o — Wawf])

)

)

+ 5 (s ts[Vay + 52"’1/@ - €2¢f:$wy —wedry — Op(Way + 52wy,z)
p
+(R - 1)¢f¢sp,w - ¢f€pc(¢sav - ¢fw = _E_ﬁMww;

Y

and

e3ReRops b [0rwy + (1 — 267 (wewy » + wywy ) — (G5 e + G ywy)wy (7.2.1b)
ValWy g + VyWyy + Waly,z + Wyy,y]

RO (7 Pf[eva,y +70y0 + s yWi + oWy sz + Ps(eWay + 7wy 2)])
—Rse(ppdr20yy + 205 ywy + 2wy 4 s]) y

05 (195 [ev2,y + €20y 0 — £f ywe — EPwydy o — (Ewey + Wy 2) b)) 2
)
)

+¢e(psds2vy,y — 207 ywy — 2wy 4 5]) .y

R-1
+T¢f¢sp,y - ¢fpc(¢81 v —Qrw), = _Elg__leyv
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for the z and y component, respectively. Doing the same for the component-wise momentum
equations of v, it yields

e2Re[0;(pvs + ¢ rds(1 — R)wy) + (pv2 4+ 2(1 — R)d f psvpwz) o (7.2.1¢)
+(pvavy + (1 = R)Pp s (vawy + vywaz)) y
+(r s (R s + ds)w2) o + (D0s(Roy + ds)wawy)
~2(ul2ve,0 — 205 2 Ws]) . — (Hl(Vay + E20y0) — (€21 2wy + Wby y)]).y
—e(205 05 (ks — 1) Ws0) 0 = (9505 (iy — pis) (Wayy + 2wy0))
D0 + EPe(@s, v — Ppw) o = pS,
and
ERefO (v, + 50s(1 — R)wy) + (puvy + (1 — R)yblvatwy +1w50,)) 0 (7.2.1d)
+(pvy +2(1 = R)dsdsv,wy)
+(Brds(Rbf + ds)wawy) o + (rds(R s + ds)wy)
—(ul(eve,y +e%vyz) = (ebs yws + EWydr 2)]) 0 — e(u20y,y — 205 ywy]) 4
~(Dr0s(ps — 1) (w0 + cWay)) o — £(Prds(is — 115)2Wyy)

+ép7y + pe(@s, v — prw) , = —pScota.
The incompressible condition (7.1.2a) becomes
V.ov=0, (7.2.1¢)
and the transport equation (7.1.2b) gives

Orps + vV s — V - (¢prdsw) = 0. (7.2.1f)

We use the boundary conditions derived in Chapter 5, since we have a free-boundary at I'y. Thus,
transformation of boundary conditions (5.3.6) into v/w variables yields

n- (u[w + VT = u[Ve, @w +w @ V]

+orps(py — ps)[Vw + V'wT]> ‘n—p=(d—1)ok,
t

- (¢ Vo + Vol + sV (dsw) + V(gsw)"]) -t =0,
1 (Gsps [V + Vol | — s [V(drw) + V(grw)']) -t =0,
n-w=>0

on the free-boundary I'1, the condition on the triple points 0I'y is ¢ = 0 and the no-slip condition
becomes

v=w=0

on the surface I's. At the free-boundary we additionally assume the kinematic equation (1.2.8),
ie.

J=p(v—u;)- n,
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which together with w - n = 0 becomes the mass conserving condition from Theorem 5.3 in the
case J = 0. In two-dimensional thin-film scales the no-slip and triple-point conditions stay the
same, but the stress-free condition becomes

—pP= Caﬂczh> (7.2.1g)
G r1if0y (Ve + Pswa) = 0, (7.2.1h)
d)sﬂs@y(vz - d)fwac) =0, (7211)
Wy — WyO0zh =0, (721J)
and the kinematic boundary condition gives
J
Oph +udzh —v = ——, (7.2.1k)
p

where we assumed I's can be represented as y = h(t, z) and introduced the capillary number

oe’

C

We are interested in regimes with strong momentum coupling, small height-length ratio for dilute
or intermediate concentrated suspensions.

Drift flux thin-film model

Consider the scales
¢s ~ 1, ¢s # Perit — 0(1), B >0,
and take all the other functions to be of order one. Let us use
tana ~ g, S =c"ltana,

where we assumed small angles, so that S ~ 1. Then, the leading order approximation for system
(7.2.1) becomes

*pfg Moywgo =0,
£

(R~ 1)(1 = Gu0)b200yp0 = — e My,

=0y (10 (Fyvz0 + w200y Ps0)) — Oy (1 — ds0)dso(py — ks)Oywazo) + dzpo = Spo,
9ypo = —po,

V.-v9=0,

01ps0 +voVoso — V- (drodsowo) = 0.
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The case = 2 yields

Wao = 0; (7.2.2&)
=0y (9ypovz0) + Ozpo = Spo, (7.2.2b)
dypo = —po, (7.2.2¢)
Vv =0, (7.2.2d)
1- s 2 s
pso +voVoso — Oy (W’@o(f{ - 1)> =0, (7.2.2¢e)

that is a gravity driven thin-film equation with particle settling and the case 8 > 2 yields

wyo =0,

wyo = 0,
—0y (Oy ftovz0) + Ozpo = Spo,
dypo = —po;

V-vg=0,

O1pso + voVso = 0,

which corresponds to a gravity driven single-phase thin-film. For § < 2, there is an inconsistency
between orders, as we have

—pPo = ayp() =0.
Sometimes the collision pressure contains a very large term, for example in case of a chemical
potential acting, cf. [16]. Then, choosing 5 = 2 and scaling the collision pressure as p. ~ 1/e, it
yields
Wgo = Oa
—0y(Oy 1ov20) + OxPo + Ozpeo = Spo,
OyPo + OyPeco = —po,
V- Vo = O,

_ 2
Outa + 00520~ 0, (L2000, 46, - 1)]) =0,

Alternatively, let 8 €]0,2[, p. ~ 1 and assume

S=1, cota ~ 1,
which gives to leading order
Wro = 0,
—0y(100yvz0) + zpo = po, (7.2.5a)
9ypo = 0, (7.2.5b)
V "V = Oa (7250)
)

atqssO + UOV¢SO - ay ((1 - ¢SO)¢50wy0) = 0. (725d
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We are still missing an expression for w,g, so we take the next order approximation of the second
components of the momentum equations, which give

(R —1)¢r00s00yp1 — (1 — ¢p50)0ypco = —poMowyo,
Oyp1 + Oypeo = —po cot a.

Substitution for p; yields

(1 - ¢SO)

Wyo = —7—7a,
Y el=BM,

[3ypco + (R — 1) cot a} ) (7.2.6)

which can be used in the transport equation to give the drift-flux model

(1 - $50)*és0

9950 +voVoso — Oy ( ST,

{aypco + (R — 1)¢so cot a}) =0.

The coefficient 5, which tells us the strength of momentum coupling, decides whether the drift-
flux is dominant, vanishing or balancing with the convective particle transport. Supplying the
correct boundary conditions, system (7.2.5) is a thin-film approximation system with a transport
equation containing a drift-flux term. Those systems are often encountered in the literature, see
e.g. [93, 111], but the transport equation and its drift-flux form had to be hypothesized in all these
works, see Section 1.2. In contrast to that, we derive this equation and their components from a
basic form of the Eulerian-Eulerian multiphase model. The reduction of multiphase models to
drift-flux models is known for some time, see e.g. [95] and [16], but all this works missed a formal

asymptotic approach. Note, the formal derivation of the drift-flux term (3.3.4) from Chapter 3
has exactly the form (7.2.6) with R =1, § = 1 and appropriately chosen M, and p.o as

st .
My = 1= ;so, Peo = Vsl

Dilute suspension with strong coupling and thin-film scales

Consider the scale

¢S ~ &, ﬂ 6]07 1[7
and assume
pele) ~ et up(e)~ 1, pe(e) ~pp M(e)~1,  cota=eTl, S~
with 0 <~ < 1. Then, we get to leading order the system
—€_BM0U}Z0 = O7
(R - 1)¢808yp0 = 07
=0y (15 0yvz0) + Oxpo = S,
8yp0 = 07
V- Vg = O7
0¢pso +v0 - Voso — V- (dsowp) = 0.



7.2. REDUCTION TO THIN-FILM MODELS 157

This system can be simplified to

—0y(k00yv20) + Oupo = S,
aypo = 07
V- Vo = 0,
Ordps0 + vo - Voo — 0y (dsowyo) = 0.
Note, for Newtonian liquids 11 ro does not depend on ¢,o. Therefore, the first three equations are
a closed system and correspond to the usual thin-film system without particle transport.

In order to understand what is happening to the particle transport, one needs to find an expression
for wyo. At next order the second components of the momentum equations yields

(R — 1)(]5508?/]91 = —E_BMowyo,
8ypl = _6_757

which demands 8 = =, unless a higher order term in the w-momentum equation balances the
gravity term. Thus, in case of equality, we get

R-1
Wyo = 70%05

Summarizing, the leading order system is
=0y (p£00yv20) + Ozpo = 5,

ayp0:0>
\% sV = 0,

and, in case of order one momentum coupling, particles are transported to order € by convection
and gravitation as

2
Or¢so +vo - Voso — 9, (?@2 (R— 1)5) =0.

In case of strong momentum coupling, i.e. 8 > =, the particles are transported as
Ordso +vo - Vso = 0.
Viscoplastic thin-film model
Using the scalings
¢s ~ 1, ¢s # berit — 0(1), B >0,
with S = % tan o and tan a ~ . Further, we choose

N (@)
¢s

Hf = 1, s =1+ DPec = 77n(¢s)|‘75|a B8>1,
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which yields the leading order system

_ay ((1 + 77n(¢s)) 6yva:0) + amp[) = Spo7

dypo = —po,
V-vg=0,

wgo = 0,

wyo = 0,

at(bsO +vo - fo)so =0.

We have seen a Bingham-type rheology in multiphase models in the case of a plane Poiseuille or
plane Couette flow. Their solution gives the condition

(@)1 = B, (7.2.7)

where B is a positive constant, see Sections 3.1 and 3.2. This motivates the hypothesis that
condition (7.2.7) holds for more general flows. Thus, we assume (7.2.7) to hold unconditionally,
which allows us to substitute n,, and creates a Bingham stress in the momentum equation, that
introduces a yield stress behavior. Substitution of the condition together with the fact that

wo = 0 gives the system

-, ([1 " B] ayvzo) + 0upo = Spo, (7.2.80)
|0y vz0]

dypo = —po, (7.2.8b)

Vv =0, (7.2.8¢)

Agso +vo - Vso = 0. (7.2.8d)

For density matched flows, that is R =1 = py = 1, system (7.2.8) is equivalent to the starting
point in Balmforth et al. [9] and, using the appropriate boundary conditions, yields the same final
free-boundary equation for the profile height h. This connection between viscoplastic multiphase
models and Balmforth’s thin-film model led us to further study the viscoplastic thin-film models
in Chapter 6.

Comparison to thin-film models from the literature

The constitutive laws for the multiphase models are still a matter of discussion and no universal
laws are accepted as of now. Once a reduced model has been derived from the multiphase
model, we can identify the connection between constitutive laws used in multiphase models and
constitutive laws used in these reduced models. The advantage is, that reduced models like
the drift-lux model and single-phase models in general are much better mathematically and
physically understood. Further, experimental results are more numerous for them - thus we try
to get new insight into multiphase models by looking for the constitutive laws that would create
well-known and well-tested reduced models.

Sections 7.2 and 7.2 show that for dominant momentum coupling we are able to get the trivial
leading order mass transport equations

(9t¢5 +v- V(bs =0.
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Nevertheless, some regimes allow a nontrivial transport mechanism such as

2
Orps +v - Vs — 0y ((151(281\)4(?8 {aypco + (R — 1)¢ps cot a}) =0,

in case of intermediate concentrated suspensions and

Orps +v - Vs — 0y <¢S2R —1 cot a) =0,
My

in case of dilute suspensions.

In summary, choices for the functions p, and M decide about the form of the transport equation.
For a list of common choices see Section 2.3. Here, we give a short comparison to some well-known
thin-film models with particle transport from the literature.

Thin-film equations have been used in combination with transport equations for particles for
quite some time, for a recent review see e.g. [124]. Usually, those models consist of equation for
the free-boundary and a transport equations for the particles of the form [124]

Oth = =V J,. — Je,
at(¢sh) =-V. (¢5Jc + Jd)7

where J., J. and Jy are convective, evaporative and diffusive fluxes, respectively. In Table 7.2 we
list some examples from a rich literature.

Model proposed by Transport equation

Routh and Russel [111] | Oips + V - (¢sv) = Oy (K (¢s)(psZ(¢ps)) Oys), and
Maki and Kumar [81] | dy¢s + V - (¢av) = & [aZ(D%azqss)} , with
D = Dy(1 — ¢,)0% (—O?éiSf’;S)/

Craster et al. [25] 8t¢s+u8md>s = h*IPeflam(hamgﬁs)+2(hPe(¢Crit—¢s))’1(hax¢s)+

¢C! xth J

Murisic et al. [93] Oy fo ¢dsdy + 0y fo ¢sudy = 0, with the y-profile computed as
0= Koo, (u/g,) + Ko sl oty (1 ) (Smnmee)”

Table 7.2: Transport equations used in thin-film approximations in the literature.

We define the flux J as

(1 - 650)*és0

J =
El_BMO

aypc0(¢507 vmo) + (R - 1)(,2550 cot Oz] .
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Then, the standard collision pressure and coupling term choices [88, 95]

2
Pe = K (‘bcrlt(bs ¢s> |’Y‘7

bs
M =45
b3

= (1 — ¢S)5 ¢5 ? ¢s¢cr1t
- 45 [KN { <¢Cr1t ) +2) May¢s} + (R - 1)¢s cot a‘| .

This is similar to the flux used in Murisic et al. [93], but an even better choice is

yield

2 (¢’
= 45K, 2o 1,
be (bf <¢Cr1t QSS ) |’Y|

¢ . 2

which yields

2 2¢ ¢crit ¢ 2> R — <¢cr1t ¢9)
R O e ) e agncona (s

which is still not quite exact. The first and last term are exact, but the middle term is only exact
if o5 = 05 =1/2 and Perit, = %(ﬁ)s. The quotient of the proportionality constants K, and K, is
believed to be, cf. [95], /

K,
= 0.66.

c

This shows, the model in [93] is consistent with the multiphase model structure for ¢s = 0.5 and
(bcrit = 0.66.



Chapter 8

Discussion and outlook

In this thesis we studied concentrated suspensions using thin-film and multiphase models. A new
multiphase model for viscoplastic fluids has been proposed, analyzed for stability and reduced
to simpler models using asymptotic techniques. Further, we showed novel connections between
multiphase models and thin-film equations, which led us to look deeper into the analytic behavior
of viscoplastic thin-film equations.

Models for multiphase flow and in particular concentrated suspensions will pose new challenges
for the foreseeable future. To emphasize this, we list some open questions that directly result
from the present thesis.

Model consideration

Chapter | shows a new model for the horizontal drying front behavior, which has some shortcomings
for concentrated suspensions. However, Chapter 7 shows how to derive such a thin-film model
directly from the multiphase model, which in theory allows us to derive the hypothesized transport
equation in a more formal way. Thus, it would be interesting to check whether it is possible to
derive the boundary conditions of a drying front using the multiphase model ansatz in the future.
Another interesting extension is to use the new drift-flux term of Chapter 3 in the model.

The particular solutions of Chapter 3 for plane Couette and plane Poiseuille flow should be
compared to experiments. A first step in this direction has been done by Lecampion et al. [75],
who use the constitutive laws of Boyer et al. [15] in order to derive a drift-flux model and compare
it with experimental measurements. Our model seems to generalize their approach, so we expect
similar results.

The new drift-flux model of Section 3.3 has also not been tested in a real-life experiment or
against full simulations of the multiphase model as of now. It would be interesting to relate the
evolution of the jammed region to experimental results on the transition length over which a
steady state develops in space from homogeneous inlet conditions. In the future we plan on doing
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simulations and like to compare them with known experimental results. This could lead to new
proposals of constitutive laws for multiphase or thin-film models.

Stability

In case of parallel shear flows, the stability analysis of Chapter 4 revealed a transient growth of
modes in the multiphase model that could lead to turbulence. This behavior should be further
studied by a direct numerical simulation of the full three-dimensional model or a stability analysis
based on pseudospectra as proposed by Trefethen et al. [128] in the future. Of interest is also the
loss-of-hyperbolicity problem of multiphase models, which is still open to debate as discussed in
Section 2.2. Our linear stability analysis of Chapter 4 could not identify the loss-of-hyperbolicity
problem, however, it remains to be shown if this picture changes for higher resolution, smaller
viscosity terms or perhaps different base states. A well-known solution to this instability is a
two-pressure model, cf. [77], but as far as we know viscoplastic two-pressure models have not yet
been proposed.

Further, it would be interesting to see if the ill-posedness of our two-phase flow model can also be
connected to the existence of a singular shock, such as has been seen in applications detailed in
Carpio et al. [19] or Bell et al. [11], but more recently also in connection with other operators
studied by Zhou et al. [139] and Cook et al. [23]. The idea is that singular shocks and our
instability are both connected to the entropy of the system. Additionally, we show in Chapter 7
that the collision pressure is contained in the thin-film equation and particle transport equation,
which is part of systems known to produce these shocks, cf. [23].

The given multiphase continuity conditions at the yield-surface are based on our experience with
the conditions of single-phase Bingham flow. However, even for Bingham flow the correctness of
these conditions is not entirely clear in more than one dimension, see e.g. the comments in [56].
We think a derivation of the yield-surface boundary conditions based on the v/w-formulation
(7.1.4) could lead to more insight, yet has not been pursued as of now.

Energetic formulation

Since Chapter 5 shows how to derive the free-boundary conditions for the multiphase model,
it would be interesting to simulate a flow with a free-boundary such as a sessile drop on a
substrate using the full model. This asks for a numeric method capable to handle moving meshes,
free-boundary conditions and mass-conservation, preferable of higher order. Most methods like
the standard finite element methods or finite volume methods possess only a subset of the required
features. A possible candidate is the discontinuous Galerkin method, see e.g. [51], that has never
been used for multiphase models with free-boundaries to the best of our knowledge.

The energetic derivation of the multiphase model based on a gradient flow structure is only
applicable to purely dissipative cases like Stokes flow. Addition of inertial terms in the framework
would allow deriving the complete model from Chapter 2 and could also lead to new insights
into the structure of multiphase models. A possible candidate is the GENERIC framework [99].
Another interesting extension includes non-differentiable, but convex potentials as has been done
for single-phase Bingham fluids, see e.g. [27, 34, 47].
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Analysis of thin-film approximations

The analysis of multiphase models of Chapter 6 is just in its infancy. Since multiphase models
naturally degenerate to the Newtonian incompressible Navier-Stokes equations, we expect its
existence theory to be at least as hard as the well-known millennium problem. Possibly, a first
step would be the analysis of numeric schemes for the most simple constant viscosity case of
the multiphase model. Our particular choice of viscoplastic constitutive laws pose complete new
questions for the analysis, since the question of well-posedness might only be answered in the
framework of variational inequalities, as it is the case for the Bingham Navier-Stokes equations
[34].

Reduced equations like Balmforth’s viscoplastic thin-film equation also lack a sophisticated
analysis. This is in particular true for the case of surface tension driven fluids, which yield fourth
order quasilinear equations. Standard proofs for fourth order equations based on strong theories
like in Bernis et al. [13] or Schauder fixpoint estimates like in Jin et al. [62] fail due to missing
a-priori estimates and consequentially non-existent compactness results for the third derivative.
Our analysis of the second order equation showed monotonicity methods are a good starting point,
but degeneration of the thin-film equations for h = 0 and Y; = 0 might pose major problems
for the theory, since it destroys coercitivity of the operator. Therefore, it would be interesting
to show existence of a non-regularized equation of second order in a future work. This would
need a comprehensive study of pseudo-monotonicity of the differential operator including the
degenerated cases. Another topic is the existence theory of the fourth order equation, which
generally contains the same problem as the second order problem.

Finally, the analysis of uniqueness of the non-regularized thin-film equations will lead to questions
of non-negativity like in the Newtonian case, see [13].

Asymptotic regimes

]

Our analysis of Chapter 3 suggests that the boundary layer acts as a source for the particle
migration towards the unyielded region. The quantities w;, we, which denote the difference
between the velocities uy, us and vy, vs, respectively, are by O(e) smaller than the actual flow
variables. The fact that the particle transport acts on a different time scale than the phase-
averaged flow field also indicates how to systematically develop an asymptotic theory leading to a
complete coupled flow model that includes both transport and jamming of particles. Such an
analysis could also rationalize some suspension flow models that are found in the literature.

It would be interesting to use a formal asymptotic approach on the energetic level of Chapter 5,
rather than on the partial differential equation level in order to reduce the multiphase model to
well-known models from the literature. This might allow a direct comparison to hypothesized
energetic approaches, e.g. the framework by Thiele [124].

The asymptotic derivations in Chapter 7 should be extended to different parameters of large
and small value. Parameters we have not yet fully considered are the Reynolds number, the
density ratio or the viscosity terms. The nearly fully packed regime needs further analysis, which
we started already with the derivation of the drift-flux term for viscoplastic fluids in Chapter 3.
Another unexplored topic is the behavior of the boundary conditions in the considered regimes.
Further, a more comprehensive comparison of the known single-phase models with the reduced
multiphase models would enhance the understanding of both classes of models.
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Appendix A

Numerical Methods for Complex Fluid
Simulation

In the course of this thesis, we had to solve boundary value problems and partial differential
equations in form of systems or single equations. Most of the mentioned equations do not possess
known analytic solutions. For some of them, like the incompressible Navier-Stokes equations
(1.1.11), even the existence of solutions for three-dimensional problems is still unknown, let alone
an analytic solution for general flows. Therefore, methods are needed in order to approximate
(possible) solutions to sufficient accuracy. Since we were interested in one-dimensional solutions
of nonlinear systems of equations with non-standard boundary conditions, we decided on using
the finite difference method due to its easy implementation and simple generalizability to systems
of equations. Nevertheless, this method limits us to regular meshes with smooth solutions.

We first introduce the finite difference method and state some known analytic results, which
allow us to verify our methods in Section A.2. We also explain the Euler-Euler-2-steps method
as a variable time step algorithm and explain the usage of Maple [84] for the derivation of the
Jacobian in our solver.

A.1 Finite difference method

Notation and discretized derivatives

The finite difference method (FDM) can be dated back to Euler. For modern and comprehensive
introductions see e.g. [64, 126]. The FDM computes the values of a solution at discrete points of
the domain. Therefore, we first need to partition our domain into n, + 1 discrete points x; and
call it the numeric grid €y, which is sometimes also referred to as numeric mesh in the literature.
Without loss of generality we concentrate on one-dimensional domains = [0, L] and demand
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the ordering
0=x¢ < 21 LT < ... < Ty, -1 < T, =1L,

where we concentrate on the special situation of a regular grid, where the grid size is constant, i.e.

1
Tkl —Tp=h=— Vk e {0,1,...,n, — 1}

€T

Similar definitions are used for the time grid T}, i.e.
0=ty <t <t2<...<tm,1 <tnt :T,

1
tk+1*tk:’r:7 VkG{O,l,,ntfl}
g

For convenience, we define

fio= f(ti,ze) = f(lr, kh)

and we drop the [ in expressions, where the time is chosen arbitrary, but fixed.

As the name finite difference method implies, it is based on the idea that derivatives of smooth
enough functions f at a position x4 € [0, L] can be approximated by combinations of function
values at the grid points xy, e.g. of the form

1 n
f o~ — =V
fa N kE:Oakfk wfr

where a; € R is chosen appropriately.

For smooth enough functions, its theoretical basis and concrete coefficients aj, can be derived by
usage of Taylor’s theorem.

Theorem A.1 (Taylor’s theorem). If the first n € N derivatives of a function f: D — W exist,
then we can represent f in a neighborhood U C D of xg as

-1

k
Fleo+1) = Y 2 i W (o) + Rl + B),

n
k=0

where xo + h € U and the rest R, can be given in Lagrange form as
hn
Rn(xO + h) = gf(n) (6)7
for some £ € |xg, o + h.
Proof. For a proof, see e.g. [136]. O

For smooth enough f being n times continuous differentiable, the rest can be estimated by

Rn(z0 + h) = O(h™).
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In particular, Taylor’s theorem yields for a twice continuous differentiable function f, that

h2
fl@g +h) = fopr = fu + frh + f,;’3 +O0(h?) (A.1.1)
holds. Rewriting this for f; gives
1
fi= 7 (et = fu) + O(h).

This shows that for small A we can define
DI fr = (frs1 — fr)/h

and use D/ as V},. This particular choice is called the forward difference formula. The choice for
V1, is not unique, since considering

flaw =h) = fi ka—legh‘Ff;/c'h;‘FO(hs) (A12)
yields
DY fie = (fi = fu1) /. fio = Dfi+ O(h),
which is the backward difference formula. Further, combination of (A.1.1) with (A.1.2) yields
fr.= ih(flcﬂ — fr—1) + O(R?),

so an alternative definition for Vj, is

Dg fr = (fre1 — fe—1)/(2h),
which is referred to as central difference formula.

Higher order derivatives can be either directly derived by Taylor expansions or by concatenating
first order derivatives, e.g.

1
fil = DD} fi. = DYDI fi. = ﬁ(fk-&-l —2fi + fe—1) + O(h?),
and its discrete definition
1
Vi fr =D fr = ﬁ(fk-f—l —2fr + fr—1), (A.1.3)

which is the central difference formula for the second order derivative.

Since the Taylor approximation can also be performed in time, we can similarly approximate the
time derivative O fi|t—¢, as

DI fl = (fi" = )/, (A.1.4)
DYfi = (fh — fih/m (A.1.5)

If only two consecutive time steps are involved in the computation at any time, we call it a two
level difference scheme.
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Periodic equations

For periodic boundary conditions, we simply demand

fnz = fO

and apply the discretized spatial derivatives at every point xj. For example, consider the
one-dimensional heat equation

Ocf(t, ) = O f(E, ) for (¢t,z) € [0,T] x Q,
f(0,z) = g(x) for z € Q,

with periodic boundary conditions, where g is a given smooth function. Then, using the discretized
approximations of the time and spatial derivatives, (A.1.4) and (A.1.3), respectively, yields

T
W fo= a5 (i = 20+ fic), (A.1.6)

f](c) = Gk,
for every point z € Qp and ¢; € Ty. This is a so-called explicit scheme, because it can be

rearranged for the value of the function at the new time step, i.e. ’l€+1.

In order to solve this equation, we start at time ¢ = 07 and solve for f,ljl for all k. Then, we
advance to the next time step ¢ = 17 and continue until we reach ¢ = ny;7 = T. Since, (A.1.6) is a
linear equation, we can reformulate this in matrix/vector notation, as

fH-l _ (TD;QC + I)fl, (A.1.7)
where

-2 1 0 0 0 1

1 2 1 0 0 0 i

_ . fé

L]0 1 21 0 : Fa

c b= :

Doo=gz| v o | S

0 ... ... 0 1 -2 1 fhoa

1 0 ... ... 0 1 -2

Typically, the finite difference equations contain banded matrices, which allows a sparse represen-
tation for minimal memory usage and the application of fast matrix solvers.

If one uses (A.1.5) instead of (A.1.4) for the time discretization, it yields
_ T
fe= 17" = gk =26+ fica),

f]g = Gk,

which contains multiple spatial positions of the largest time step t = ¢;. Thus, it cannot be
explicitly rewritten for f! anymore and is called an implicit scheme with an implicit Euler method.
The corresponding matrix equation is

=D, + )7 S (A.1.8)

and demands the solution of a matrix equation at every time step.
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Boundary conditions

For Dirichlet boundary conditions
fo=a, Jn. = b,
with a,b € R, the values a and b of fy and f,_, respectively, are directly used, e.g.
D2 f1 = (fi —a)/h.
Similarly, Neumann boundary conditions
Iy =c, f;m =d, (A.1.9)

are enforced by demanding

Dl fo=(f1— fo)/h=rc, DY fn. = (foo1— fn,)/h =d. (A.1.10)

The matrix equations (A.1.7) or (A.1.8) need to be modified accordingly. There are two strategies
common. The first is to eliminate the rows corresponding to the boundary condition positions in
the matrices and create a suitable right hand side.

We employ a different method and introduce additional points for the boundaries, where equations
(A.1.9) or (A.1.10) are explicitly enforced. This is also commonly referred to as ghost-points. The
matrix and vector definition for Dirichlet boundary condition is accordingly changed to

0 ... ... ... ... ...0
£l 1 -2 1 0 =~ 0 0
fl
1 (101 =2 1 0
l . ~C
.f: lj ) Ddc;z:ﬁ )
Nge—1 .
i ... 0 1 =2 1 0
0 1 -2 1
0

o
o o
—_
o
o o

S O
[
o O

and the explicit form (A.1.7) becomes
P =D, + Df b,
whereas the implicit form (A.1.8) becomes
= (D, + )T (If +b).

The ghost-point method increases the size of the system by the number of boundary condition
points, but is often easier to implement and less prone to human errors, since no explicit elimination
process is necessary. Additionally, it allows for a straightforward implementation in combination
with computer algebra, see below.
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Convergence theory of the finite difference methods

Let us consider a differential problem of the form
Au = f, for all (¢,x) € [0,7T] x Q, (A.1.11)

where A : U — V is a differential operator, u € U the solution and f € V a given function.
Depending on the problem at hand, this can also be either an initial value problem or an elliptic
problem. The corresponding discrete problem is

Apup = I, for all (t,l‘) e Ty x Qp, (A112)

where Ay, : Uy, — V}, is a finite difference approximation of A, up € Uy, is the discretized solution
and fr € V}, the discretized form of f. Further, let us define a projection operator rp, : U — Uy
defined as

(rpu)(ty, xr) = u(ty, o).
Let us call a discretization Aj, of an operator A consistent, if
| An(rpu) — Apup|| — 0 as h — 0.

We call Ay, consistent of order p, if

| An(rpu) — Apun| = O(hP) as h — 0.

We call the discrete operator Ay stable, if for some constant M > 0
lu— o] < M||Apu — Apvl| Yu,v € Uy (A.1.13)

holds.

Let us call a numeric approximation convergent, if
|(rpu) — up|| — 0 as h — 0.
And it is convergent of order p, if

|(rhw) — up|| = O(RP) as h — 0.

For consistent linear systems, stability and convergence is equivalent as the following well-known
theorem tells us.

Theorem A.2 (Lax Equivalence Theorem). A consistent, two level difference scheme for a
well-posed linear initial-value problem is convergent if and only if it is stable.

Proof. For a proof see for example [126] and the references therein. O

For consistent nonlinear systems we can still prove that stability implies convergence.
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Theorem A.3. Assume the problem (A.1.11) is well-posed and the discrete problem (A.1.12) has
a unique solution, is consistent and stable with respect to the same norm || - ||. Then, the method
is convergent in the norm || - || with at least the order of consistency.

Proof. Stability together with consistency of order p yields convergence, since

[(rnu) — upll < M| Ap(rau) — Apun| < M O(RP),
and for h — 0 this term goes to zero. O
Thus, a stable scheme with higher order of consistency is preferable, since it converges faster
to the exact solution. Generally, consistency is easy to prove from Taylor’s theorem. On the

other side, stability can be hard to show analytically. However, for a linear problem, A is just a
matrix and stability (A.1.13) is equivalent to having a M > 0, such that

[unll < M[Apual-

If we choose || - || to be the standard 2-norm of vectors, and denote by p(Ap) the spectral radius,
i.e. largest eigenvalue magnitude, of Ay, then

|Anunll > p(Ap)|lunll,
such that

1
lunll < mHAhUhH- (A.1.14)

Thus, a sufficient stability criterion is that p(Ay) > 0, which implies Ay, needs to be a nonsingular
matrix. On the other side, time dependent problems with an implicit scheme have a structure of
the form

Ahuﬁfl = uﬁw
so that (A.1.14) becomes

1 l
P(Ah) ||uh||a

™ <

which is only well posed if there exists a M > 0, so that

1
<1+7M, (A.1.15)
p(An)
which implies the growth of values is bounded by an exponential term in time [126]. Generally,
this is only a necessary criterion, but for the case of a real symmetric matrix A; the equality
holds in (A.1.14) and it becomes a sufficient stability criterion [126].

Thus, even for very difficult schemes this criterion allows us to obtain insight in the convergence of
a finite difference scheme by usage of a numeric eigenvalue decomposition of the resulting matrix
system. Unfortunately, our schemes do not yield symmetric matrices due to the nonlinearities
involved. Therefore, we can only rule out finite difference schemes that violate this criterion, but
currently do not know whether our schemes converge to the solution unless we tested with a
known analytic solution or a different numeric method.



182 APPENDIX A. NUMERICAL METHODS FOR COMPLEX FLUID SIMULATION

Nonlinearities and the Maple mechanism

In order to cope with nonlinearities in our system, we use Newton’s method. Suppose we have a
nonlinear differential equation of the form

Nu = f,

where N is a nonlinear differential operator. Then, we first discretize the equation using a finite
difference method for the differentials and obtain a new equation of the form

Npup = fp.

We construct a fixpoint iteration with sequence uj, such that lim, ,. u} = wup. First, we
linearized around the last known state u} by usage of Taylors theorem as

Nth—I-Jh(S-i-O((SQ) = fn, (A.l.lﬁ)

where § = uj ! — u} and

1
Jh5 = lim *(Nh(uh + 6(;) — Nh(uh))
e—=0¢
is the Jacobian of Nj,. Rewriting (A.1.16) for ¢ gives
Ind = (fn — Nnupp) + O(8%).

Neglecting higher order perturbations, this is a linear equation of the form (A.1.12) with J, a
matrix, and the right hand side a vector of known values. Thus, we can solve for § via

5= J,  (fn — Npull), (A.1.17)
and compute a newly refined solution as
up ™t = + 6.

This algorithm has the disadvantage, that the Jacobian J; needs to be computed, which can get
complicated and error-prone for systems of equations. A workaround is to implement the scheme
into Maple [84], let Maple derive the Jacobian and output Njujy, f; and Jj, as a MATLAB scripts
[85]. Then, the MATLAB solver just needs to call these external scripts and solves equations
of the form (A.1.17). This allows us to use the same code for very different equations and even
systems. Additionally, the code looks exactly like the mathematical definition of a discretized
equation, e.g. (A.1.6) and boundary conditions are defined as in (A.1.9) and (A.1.10) using the
ghost-point method.

Euler-Euler-2-steps method

In case of time dependent problems, we use a variable time step based on the Richardson
extrapolation. Suppose an algorithm u?*! = Q,u™ is of convergence order p. Then

Q,u(0) = u(T) + C7P + O(rP+1) (A.1.18)
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Let us choose s > 0 and define the method

p —
R,u= M (A.1.19)
sP—1

Using the error estimate (A.1.18) in the new method (A.1.19) gives

sP[u TP 7P — [y PP L1
Rou(0) = ST + € + O i]n _[1(T)+C O] _ 1) + 0@+,

Thus, the new solution operator R, converges one order faster. This is called Richardson
extrapolation.

In order to control the error as

||Q7'u - QSTu” < tol

define the relative error
. ”Q'ru - erUH

e =
rel tol

and demand
€rel S 1.

However, we know from (A.1.18) that

€rel = ng(l — sP)

tol
and
L= (=),
which we can substitute for C' and get
T
Topt = 175

rel

For numeric reasons the factor of 7 is often multiplied by a value fhum € [0.8,0.95] and is forbidden
to increase or decrease by too big factors. A common choice is

—1/P))

Topt = T max(fminv min(fmaxa fnum € el

and valid factors are for example

fnum = 087 fmin = 01, fmax = 2.0.

Our solver uses the maximum norm, s = 2 and the implicit Euler method, which is convergent to
order p = 1. This is called an Euler-Euler-2-steps method.
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A.2 Numerical scheme for thin-film and drift-flux models

Simulation of the thin-film model proposed in Section 1.3 and the drift-flux model in Section 3.3
is done using a finite difference method of second order with Euler-Euler-2-steps and ghost-point
methods. The scheme uses neighboring half points for the approximation of the derivatives.
Suppose we have mesh points z; € R with constant width h = z;;1; — z; and suppose we have a
function f(x) with f; := f(z;). Let us further denote the half-points by x; /5 1= (7; + 2i31)/2
and fi11/2 := (fix1 + fi)/2, and then we define the discrete derivatives as

Vifivr2 = (fiv1 = fi)/h,
Vifi= (fixry2 — fic172)/h = (fit1 — fi-1)/(2h),
Vifi = (Vufir1y2 — Vaficiy2)/h = (fis1 — 2fi + fic1) /R,
hf1,+1/2 = (Vinfis1 — Vnfi)/h = (fiva — fir1 — fi+ fio1)/ (207),
= (Vifirr2 = Vificiy2) /b = (1/2fix2 = fixr — fimr +1/2fiz2) /1,
( = (fiz2 — 3fix1 +3fi — fi1)/h%,
=(V (fivz —Afip1 +6fi —Afiiq + fi2)/R",

hfz+1/2 = (Vifir1 — Vifi)/h
nfiviy2 — Vificiy2)/h =

which is reduced to the standard central scheme of second order for entire points. This scheme
is applied to any term behind a derivative, e.g. in (1.4.8) the flux term due to surface tension,
gravity and disjoining pressure is

F =0, (@3 Or(Opzh + Yh™> — hB)). (A.2.2)
The finite difference discretization of flux (A.2.2) is
pi = (—V2hi — hT* + Bhy),
Uip1/2 = _%vhpi+1/2h?+1/27
Ui_1/2 = _%Vhpiflﬁh?fuzv
Fi = (hig1/2Wiy1/2 — hi12ui—1/2)/h.

In all our simulations, we computed the eigenvalues of the solution matrix and found the stability
constant M to adhere

0< M <100

even for time steps 7 < 1075. Hence, the necessary criterion (A.1.15) is fulfilled for our finite
difference methods and we believe to have a stable method.

A.3 Numerical scheme for the stability problem

The numerical scheme of stability problem (4.3.10) is the same as in Section A.2. Additionally, we
use a staggered grid scheme for the multiphase model, where the velocities @4, 05 and 04 are placed
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on entire points and the volume fraction on half points, i.e. ty; := Gs(2;) and (;ASSJ- = giss(xj+1/2).
This approach evades a decoupling of odd and even points in the volume fraction, that has been
observed when using the standard central scheme for the transport equation (4.3.10a) in the
multiphase model.

After discretization of system (4.3.10) and possibly equation (4.3.11), we get two matrices. The
first matrix contains the spatial derivatives and the second matrix the discretization for the time
mode c. This gives a system of the form

Av = cBw,
which has been solved using the generalized eigenvalue solvers of Matlab [85].

The boundary conditions are implemented using the ghost-point method and they are explicitly
eliminated before solving the generalized eigenvalue problems. This circumvents the appearance
of pseudo-eigenvalues stemming from the ghost-points, which can be of any value, even infinity
and do not give new insight into the stability of the system.

As system (4.3.10) is complex and its implementation prone to errors, we looked for a possible

validation method. If we drop the convective term aw(Usq/;S) and set Re = 0, then the Couette flow
of Section 4.4 permits an analytic solution. Using the Fourier ansatz e?k*+#v=imt in system (4.3.4),
we are able to derive an algebraic system. The derived algebraic system and the appropriate
numerical approximation produce exactly the same results, which shows that our numerical
implementation produces trustworthy solutions.

A.4 Riccati method for the Orr-Sommerfeld-Bingham problem

The Orr-Sommerfeld-Bingham problem is solved using the finite difference method from Section
A.3. Since the problem contains singularities at the yield-surface, the stability of the finite
difference method is questionable. We therefore try to validate the FDM using a shooting method.
However, a direct application of the shooting method for problem (4.2.13) is not even stable
for the Newtonian case and a so-called Riccati method is employed, cf. [26]. Additionally, the
singularity contained in problem (4.2.13) is circumvented using a Frobenius series ansatz.

The Riccati method has been first proposed by Davey [26] for the Orr-Sommerfeld problem. It is
essentially a transformation of the unstable linear problem to a stable nonlinear problem. Davey
[26] describes the Riccati methods’ stabilization property as follows:

The basic solutions of a linear differential system are usually exponential in character
and if the real parts of the characteristic values of the operator are widely separated
then, when using an explicit integration scheme, parasitic growth problems occur and
a special method, such as orthonormalization, will be needed to resolve the problem.
The importance of the Riccati method lies in the fact that it transforms the linear
problem into a nonlinear problem whose characteristic values all have negative real
parts thus ensuring that the integration will be stable. The exponential character is
essentially transformed by the nonlinearity to a tanh type behavior.

Further, the well-known results from Frigaard et al. [43] have also been obtained using the Riccati
method. Unfortunately, they do not describe the method in his original publication [43] and
apparently use the wrong boundary conditions.
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Suppose we like to solve a linear boundary value problem of fourth order in x(t) for ¢ € [to, t1]
with a linear affine boundary condition at ¢ = t3. Then, we can employ the Riccati method. Let

us denote by
1= (1)) 0= (i)

the solution vectors, which are split into two parts and suppose our equation is of the form

y'(t) = A@t)y(t) + B(t)z(t) + f(1), (A.4.1a)
Z'(t) = C(t)y(t) + D(t)z(t) + g(t), (A.4.1b)
with boundary conditions
y(to) = I'(to)z(to) + a, h(y(t1), z(t1)) = 0,

where A, B, C, D, and T' are matrix valued functions, f, g, h are vector valued functions and
« is a constant vector.

Then, we insert the ansatz
y(t) = R(t)z(t) + w(?), (A.4.2)
into (A.4.1) and get

Rz+ Rz +w = ARz + Aw + Bz + f,
z=CRz+ Cw+ Dz +g, (A.4.3)

which can be combined to yield
Rz+ RCRz+ RCw+ RDz+ Rg+w = ARz + Aw + Bz + f.

A variational argument than gives the new nonlinear differential equation for the transformation
matrix

R =-RCR-RD+ AR+ B (A.4.4)
and the rest
w = -RCw + Aw + f — Rg.

The boundary conditions become

R=T att:fo,
w=ao at t = 1o,
h(Rz+ w,z) =0 at t = ty.

Then, for given R and w, we can reconstruct the original result by first solving for z using the
ODE (A .4.3), and then, using our ansatz (A.4.2) for y.
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For the Orr-Sommerfeld-Bingham problem (4.2.13), we have to = 1 and ¢; = yp as well as

A (01 o 0 .
— 0 0/’ - iaRe(—(UB _ C)OLQ _ ayyUB) o a4 —Q%EB ,
0 0 0 1
B—(l O)’ D_(iaRe(UB—C)-i-QOéZ-FQO‘;B O)’
f:0, 9:0,
r=o0, a=0,
h(y,Z) =Y,

where we used £ = (y — yp)/(1/2 — yp). Our case yields w = 0 and the boundary condition
Rz =0 at t = t1 can also be expressed as

det R=0 at t =t;.

A direct application of the method might fail, since t = t; = yp yields £ = 0 and system (A.4.4)
runs into a singularity, which might introduce numeric problems. A workaround is to expand the
solution of the fourth order equation into a Frobenius series around the singularity at yp.

Let us derive a Frobenius series around the singularity at t = yg, following the book of Bender
and Orszag [12]. We consider a linear homogeneous ordinary differential equation of fourth order
of the form

4 3 2
%m(t) 4 bg(t)%x(t) +ba(t) Tpel0) + bl(t)%x(t) Fho(M)z(t) =0.  (A4S5)

We call a point ¢, € R an ordinary point of (A.4.5), iff all the functions b;(t) with ¢ € {0, 1,2, 3}
are analytic in a neighborhood of ¢, [12]. We call a point t; € R a regular singular point of
(A.4.5), iff it is not an ordinary point and all the functions

(t —ts)* by (t)

with i € {0,1,2,3} are analytic in a neighborhood of ¢, [12].

From these definitions we see tg = yp is a regular singular point of problem (4.2.13), thus a
theorem due to Fuchs guarantees we can expand the solution around ¢t = yp into at least one
so-called Frobenius series of the form

oo

2(t) =Y an(t —t,)"7, (A.4.6)

n=0
where a;, 8 € R for all i € N [12].

Inserting ansatz (A.4.6) into (4.2.13) yields the equation
pB-DB-2)(B-3) =0,

which fixes the exponent . Since, the solutions are separated by integers, we can derive four
Frobenius series with an increasing number of degrees of freedom, cf. [12]. However, only 3 € {2, 3}
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give particular solutions that are zero at the singularity and fulfill the boundary condition of our
problem.

The case 8 = 3 yields

1
ayp = ZOZQB(J,()7
1

a3 = 155 (a0(iaRe(l = )6 + 120%) + a116a°B),

) : _ 1
as = _SLOQSGOCBRG + EO/LBGO + g—oagBaoRe + %O/SB?’aO,
a1 = 15a05(0° (45 + 3807 + 20"B) = i(60 + 0 (45 + 190°B%)(c — 1))Re — 15a(c — 1)*Re?)
as = o®aoB (—1020iRe + a(4a2(135 +3402B2? + Q4B4)

® 7 604800
— 4ia(135 4 17a*B?)(c — 1)Re — 165(c — 1)?Re?))

0420, '

06 = To05 1900 (19260°B? + 2200°B* + 4a'0B° — 30ia° (160B + 63(c — 1))Re

—1926ia°B?(c — 1)Re — 110ia"B*(c — 1)Re — 6930(c — 1)Re® — 126002 (c — 1)°Re?
+12a*(105 — 47B?(c — 1)*Re?) + 315iaRe(—24 + (c — 1)°Re?))

with ag € R. A second ansatz for § = 2 yields

1
c2 = —(2aco(iRe(1 — ¢) + 2a) + ¢160°B),

24
1
cg = 1—20(01(iaRe(1 —¢) + 1202) 4 ¢20?16B),
2
4= %60(2042(30@(9 +a2B2) + ¢o(9 + 2a2B?))
—a(27¢1B 4 2¢0(9 + a®B?))(c — 1)iRe — 6¢o(c — 1)*Re?)
cs = 372‘00 (2a"B3(2¢o + 3¢1B) + 2a°B(29¢g + 57¢1B) — 180¢1iRe — 13502¢; (¢ — 1)iRe
—2a5¢yB?(c — 1)iRe — a*B(58¢y + 57¢1B) (¢ — 1)iRe — 45ac; (¢ — 1)*Re?
+ a3(135¢; — 16¢oB(c — 1)*Re?))
2
__ @ 81 6122 AT A 1\
% = 1372400 (4a°B*(2¢0 + 3¢1B) 4+ 4a°B*(59¢o + 102¢1B) — 4a'¢gB*(c — 1)iRe

— 54003 (co + 3¢1B) (¢ — 1)iRe — 4a°B?(59¢y + 51¢;B)(c — 1)iRe
—900co(c — 1)Re? — 4502 (8¢ + 11¢1B)(c — 1)*Re? + 204(810¢, B
+ ¢0(180 — 31B%(c — 1)*Re?)) 4 90aiRe(—34¢1B + ¢o(—8 + (¢ — 1)°Re?)))

where we have two free parameters cg,c; € R. In both series we computed the coefficients using
computer algebra [34] and checked the first and second nontrivial coefficients manually.
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Let us denote by

6 6
[ =) an(t—yp)"™*?, fa(t) = enlt —yp)™*?
n=0 n=0
the two truncated Frobenius series solutions and by
fi
Il
fi=1 att=yp +e, forie{1,2}
f?l/
K3

the solution vectors next to the singularity and € is a small positive number. The free parameters
ag, cp and c¢; can be chosen arbitrary, but such that f; and f,; are non-identical. We choose

a():l, 60:1, 6120.
We solve for R from ¢t = 1/2 to yg + €. Then, we numerically reconstruct two solutions
(1) — y,(t) ;
xi(t) = (zl-(t) for i € {1,2}
using the initial values from f; and f,, respectively, and define

n; = x;(yp + ¢€)

as the solution vector of the numerical result next to the singularity.

Method Resolution | Most unstable eigenvalue
FDM N =10 —0.03902008 — 0.30997035¢
FDM N =30 —0.06835490 — 0.32025448;
FDM N =100 —0.06335157 — 0.325744044
FDM N = 300 —0.06297985 — 0.32628388:
FDM N =1000 | —0.06293781 — 0.326346144
Riccati with Frobenius ansatz | n/a —0.06293351 — 0.326352267

Table A.1: Comparison of eigenvalues computed by the finite difference method (FDM) explained
in Section A.3 with the Riccati method from Section A.4 with parameters Re = 5772.22, a = 1
and B = 10. The Riccati method uses an initial guess for the eigenvalue from the FDM and
refines the solution using a gradient descent method. The convergence of the FDM towards the
result of the Riccati method is apparent and shows both methods to be accurate starting from
very small resolutions despite the presence of a regular singularity.

For an admissible eigenmode the solution vectors f;, f,, m1 and ngy are linear dependent, so the
solution criterion becomes

detM = det (fl f2 "y ’I’lg) == 0.
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The degree of freedoms are the solutions y; and y,, since the initial conditions set z; and z,.
Thus, we reconstruct four values, that is the same as one column in matrix M.

In order to solve for an eigenmode or eigenvalue, we need a good initial guess and can refine
the guess using a gradient descent method that minimizes | det M|. The solution of the initial
value problems is done using the odel5s method [85]. Table A.1 shows a comparison of the
results between the finite difference method and the Riccati method. Starting from relative low
resolutions, both methods are accurate. The Riccati method is more accurate, but needs a good
initial guess.

The results also suggest that the FDM is not sensitive to the particular singularity at the yield-
surface. This fact deepens our trust in the FDM method employed for the similar multiphase
stability problem of Chapter 4, because unfortunately a shooting method is extremely difficult to
apply for this particular problem.
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