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Abstract

Approaches based on Petri nets are important for the development and redesign of
distributed and concurrent systems. This thesis introduces the formal approach of
algebraic higher-order nets as a novel modeling technique, which comprises the ad-
vantages of the well-researched net classes of coloured Petri nets and algebraic high-
level nets. Moreover, algebraic higher-order nets can be seen as a formal approach
for higher-order object nets, which are well-established for workflow modeling, but
which so far have been mainly described informally. While the dynamic behavior
of systems is graphically modeled by Petri nets, the concept of higher-order partial
algebras turned out to be well-suited for algebraic higher-order nets. The combin-
ation of these techniques is achieved by the inscription of net elements with terms
over the given data structure.

It is the aim of this thesis to develop a clear, mathematically well-founded,
and practically valid formalism, which supports the flexibility and adaptability of
models in an extensive way. In this context the extension by higher-order features
is an important aspect, since we gain the possibility to abstract from functional
behavior in the static structure of models. Hence, the functional behavior can be
given at run time by suitable operations and altered dynamically by the exchange
of these operations. The chosen concept of higher-order algebras highly increases
the expressiveness of operations, so that even Petri nets become parameters and
results of operations.

After a comprising introduction into higher-order algebras, the modeling tech-
nique of algebraic higher-order nets becomes formally defined and investigated ex-
tensively. As the main results of the theoretical part we have achieved horizontal
structuring techniques and folding and unfolding constructions to support the com-
position of model segments on the one hand, and a compact description of abstract
models on the other hand. In the practical part we present appropriate algebraic
higher-order nets for the modeling of specific application domains, especially Petri
nets and rules as tokens. Here we use rule-based transformations in the sense of
graph transformation systems to attain a solid definition of rules and their applic-
ations.

The significance of our approach is demonstrated by several large examples and
two case studies in the area of medical information systems and logistics processes.
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Zusammenfassung

Petri-Netz-basierte Ansätze spielen eine wichtige Rolle bei der Entwicklung und
Neugestaltung von verteilten und nebenläufigen Systemen. Die vorliegende Arbeit
stellt den formalen Ansatz der Algebraischen Higher-Order Netze als eine neue Mo-
dellierungstechnik vor, welche die Vorteile der gut untersuchten Netzklassen der
Coloured Petri-Netze und Algebraischen High-Level Netze in sich vereint. Darüber
hinaus sind Algebraische Higher-Order Netze als formaler Ansatz für Higher-Order
Object Netze zu sehen, die sich in der Geschäftsprozessmodellierung bewährt haben,
bisher aber überwiegend informell beschrieben wurden. Während das dynamische
Verhalten der Systeme graphisch durch Petri-Netze modelliert wird, hat sich zur Be-
schreibung der Datenstrukturen das Konzept der Higher-Order Partiellen Algebren
als besonders geeignet für Algebraische Higher-Order Netze erwiesen. Die Kombi-
nation dieser beiden Techniken wird durch die Beschriftung der Netzelemente mit
Termen zur Datenstruktur erreicht.

Ziel ist es, einen klaren, mathematisch fundierten und praktisch einsetzbaren
Formalismus zu entwickeln, der die Flexibilität und Anpassungsfähigkeit der Mo-
delle in einem ausgedehnten Maße unterstützt. In diesem Zusammenhang ist die
Erweiterung um Higher-Order Aspekte von wesentlicher Bedeutung. Dadurch er-
gibt sich die Möglichkeit, in der statischen Struktur der Modelle vom funktionalen
Verhalten zu abstrahieren, welches erst zur Laufzeit durch die Angabe geeigneter
Operationen konkretisiert wird und durch den Austausch dieser Operationen dy-
namisch verändert werden kann. Durch den gewählten Ansatz der Higher-Order
Algebren erhöht sich die Ausdrucksmächtigkeit der Operationen enorm, so dass
selbst Petri-Netze als Argumente und Resultate von Operationen verwendet wer-
den können.

Nach einer umfassenden Einführung in das Konzept der Higher-Order Alge-
bren, wird die Modellierungstechnik der Algebraischen Higher-Order Netze formal
eingeführt und ausführlich untersucht. Als wesentliche Beiträge ergeben sich im
theoretischen Teil horizontale Strukturierungstechniken und Konstruktionen zur
(Ent-)Faltung von Netzen, um einerseits die Komposition von Modellsegmenten
zu unterstützen und andererseits eine kompakte Beschreibung abstrakter Modelle
zu erzielen. Im praktischen Teil werden geeignete Algebraische Higher-Order Net-
ze für die Modellierung in speziellen Anwendungsgebieten vorgestellt. Hier sind im
wesentlichen Petri-Netze und Regeln als Token zu nennen, wobei wir regelbasierte
Transformation im Sinne von Graphtransformationssystemen verwenden, um eine
mathematisch fundierte Beschreibung von Regeln und deren Anwendung zu erzie-
len.

Die Ausdrucksmächtigkeit von Algebraischen Higher-Order Netzen wird sowohl
in einer Vielzahl von Beispielen als auch in zwei umfangreichen Fallstudien aus den
Bereichen der medizinischen Informationssysteme und der Logistik demonstriert.
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Chapter 1

Introduction

In the context of concurrent and distributed systems Petri nets, first introduced
by C.A. Petri in [Pet62], are a well-known and widely used formalism and have
been employed in practical applications in many different areas (see e.g. [Rei85,
RT86, MOM89, MM90, Win87, Bau90]). Their graphical representation and formal
semantics excellently support the modeling, simulation, and formal analysis of such
systems. High-level net classes are obtained by combining Petri nets with an appro-
priate data type part. Despite the large variety of different high-level net classes,
this thesis is based on three of them in particular.

Most prominent are coloured Petri nets [Jen92, Jen95, Jen97], a combination
of Petri nets and a high-level programming language, which is an extension of the
functional programming language Standard ML [MTHM97]. Coloured Petri nets
offer formal verification methods and an excellent tool support, which has been
used in numerous case studies within a large variety of different application areas.

Apart from this there are algebraic high-level nets [PER95, Pad96, EHP+02],
which give rise to a formal and well-defined description due to their integration of
classical algebraic specifications into Petri nets. Horizontal and vertical structuring
techniques, formulated in the framework of category theory, are available for algeb-
raic high-level nets, which provide the advantages of formal foundation, a proper
degree of consistency, and compatibility results. Horizontal structuring techniques
are given by the well-known union and fusion motivated by the constructions in
[Jen81] for coloured Petri nets, while vertical structuring techniques are formalized
in a rigorous way by rule-based transformations in the sense of high-level replace-
ment systems [EHKP91]. Moreover, rules can be extended to property preserving
rules, so that specific properties are preserved during the transformation [PU03].

With respect to the requirements of high-level net classes we are guided by the
concept of higher-order object nets [LWH95, Han97], which are especially developed
for workflow modeling and workflow system design. Higher-order object nets are
based on higher-order nets [LH94], allowing functions, software components, and
certain subnets as internal resources, and are enhanced by various constructions for
practical issues. Thus, the research on higher-order object nets is focusing more on
the methodology and infrastructure support.

In this thesis we investigate a new high-level net class called algebraic higher-
order nets, which comprises all advantageous aspects of the above mentioned three of
them. Although we do not want to claim that the net class of algebraic higher-order
nets is the solution to all problems, we definitely achieve more flexibility concerning
the support of some run-time aspects like operation late-binding mechanisms.

This thesis has been developed in close relation to the joint DFG research project
“Petri Net Technology” between H. Weber (Coordinator), H. Ehrig (both from the
Technical University Berlin), and W. Reisig (Humboldt-University of Berlin).

1



1.1. REQUIREMENTS 2

1.1 Requirements

In the following we discuss some requirements which should be provided by a net
class to support structure flexibility and system adaptability in an extensive way.

Composition of Models The fact that Petri nets model concurrent and dis-
tributed systems is reflected in the distribution and integration of model segments
to control the complexity of large models and the development of model segments
by several teams at the same time. Thus, net classes require compositional tech-
niques which support consistency integration and compatibility with other struc-
turing techniques. Compositional techniques, allowing the formal construction of
larger models from model segments with shared subparts called union, could be a
good solution.

Transformation of Models During the process of development local refinement
or local abstraction of subnets often becomes necessary. Moreover, the redesign or
optimization of existing models refers to an addition or changing of model details.
Very desirable are net classes, allowing on the one hand an easy and formal trans-
formation of models, and ensuring on the other hand consistency and compatibility
with other structuring techniques. Preservation of system properties during model
transformation is an important aspect to avoid lengthy investigations. Rule-based
transformation in the sense of high-level replacement systems and the concept of
property preserving rules could help to solve the stated problem, since these ap-
proaches already have been worked out for different net classes and have been
successfully applied to various case studies.

Adaptive Models The fixed part of a Petri net is given by the net structure,
while the variable part is expressed by tokens. The fixed part can only be statically
changed by using model transformations, while changes in the variable part result
in an exchange of tokens. To support a rapidly changing environment and the reuse
of existing models the variable part should be as large as possible. In this way a lot
of work wrt. the model development can be saved and an immediate adaption of
the model is realizable. The adaptability of models can be tackled in two different
directions. On the one hand modeling techniques should separate the information of
the baseline process from the information which depends on the current execution.
In terms of Petri nets we seek a separation of the net structure from the data type
part, so that the models can be on a high-level of abstraction. One aspect are
operations which are carried out in the process and are normally fixed in the net
structure. It is desirable to have an operation late-binding mechanism. Depending
on a specific application the current execution of the process and the reaction to
feedback should be given at run-time by adding and exchanging suitable operations
as tokens. On the other hand there should be some constructions to develop abstract
and flexible models, so that the level of abstraction will increase by using these
constructions and a proper degree of prescription will be reached.

Dynamic Reconfiguration Model transformations on their own are often not
enough to handle dynamic model reconfigurations, because the process has to be
constantly modified according to previous events and a fixed specification of a “one-
size-for-all” process is almost impossible. Furthermore, a running process may be
influenced by some abnormal situations causing deviations from the pre-defined
model. But the rearrangement of processes should neither interfere the overall net
structure nor interrupt the running system. Dynamic reconfiguration is referred
to as ad-hoc modification of models at run time. To cope effectively with the



1.2. MOTIVATION AND MAIN RESULTS 3

dynamics of modifying models the applications of the so-called token game and
transformations should be independent from each other. Moreover, these activities
should be interleaved to allow changes of the net structure while the system is still
running and a highly reusability of existing models should be supported.

Compact Description of Models In general, classical Petri nets lead to very
large models, because the variable part is restricted to black tokens. A considerable
step forward are high-level nets due to the integration of a data type part into
Petri nets. To obtain a more compact description folding constructions, which
transfer specific parts of the process specification into the data type part and identify
distinguished elements, are in demand.

Dynamic Tokens From the Petri net perspective real-world objects appear in
the form of tokens. During the last decade tokens have been considered as more and
more complex data elements. In contrast to ordinary black tokens and (passive)
data elements, dynamic tokens are nowadays considered to have their own individual
behavior like Petri nets, as tokens themselves. Dynamic tokens behave like ordinary
tokens, i.e. they may move through the system. But in contrast to them they may
also change their state, while being moved through the system. Thus, the data
type part of high-level net classes has to be powerful enough to consider dynamical
tokens in the system.

Rule Tokens As mentioned above rule-based transformation of structures is an
important aspect. Depending on the application domain these structures appear
as tokens in the system. Thus, rules and transformations should be covered by the
data type part of high-level net classes to get rules as tokens and transformation as
appropriate operations. This would lead to abstract models, which are flexible in
the sense that different transformations are not attached to the net structure in a
fixed way, but could be expressed by a set of rule tokens. In this way changes of
specific transformations result in an exchange of rule tokens.

Integration of Software Components Since software components are subject
to frequent updating and expansion, local modifications or substitutions of software
components should be easily integrated into the existing model. Moreover, some
software components like commercial software tools may be license-restricted and
can only be shared in a limited way. To solve these problems software components
should be encapsulated into data elements, which represent executable functions
or programs and can be used as tokens in the corresponding model. Flexibility
in the sense of local modification or substitution of software components could be
expressed in this way by exchanging the relevant tokens. In the case of license-
restricted software components the number of tokens could represent the number
of licenses and the access authorization of different tasks to software components
could be reflected in the net structure.

1.2 Motivation and Main Results

In this thesis we investigate the new high-level net class of algebraic higher-order
nets, which satisfies most, but not yet all requirements presented in the previous
section. Those which are not satisfied yet will be discussed as future work in Chapter
10.

We suggest that the data type part in high-level nets should be extended to
include function spaces, product types, and partiality, so that some inherent prob-
lems of high-level nets like operation late-binding mechanisms can be solved. As a
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result, functions and more complex objects, which are composed by functions like
Petri nets themselves, are introduced into the models as tokens. Moreover, they can
be manipulated by higher-order functions because they are not bound to transitions
once and for all. Thus we obtain a more compact description of models but also a
flexible and adaptable system structure to cope with evolutionary and exceptional
changes.

The new contribution of this thesis is the concept of algebraic higher-order
nets. Algebraic higher-order nets are an extension of algebraic high-level nets
[PER95, Pad96, EHP+02], because the data type part is defined by the concepts of
higher-order algebras instead of classical algebras. Thus we follow this approach by
giving a set theoretic definition of domains and operations. Classical algebras are a
powerful tool to specify the most common data structures used in programming lan-
guages and their semantics. But the expressive power of the equational logic used to
axiomatize the data structures is not always strong enough to specify the intended
data structure by a finite set of equations, for instance for Petri nets and rules as
tokens. In order to obtain also an algebraic specification of these data structures
we need algebraic higher-order specifications and have to move from equational to
conditional equational logic. However, the formalism of algebraic high-level nets is
adequate in application domains, where the context is known from the very begin-
ning, so that the system can be modeled by a Petri net with a fixed net structure.
In other application domains like business process modeling it is also desirable to
support a rapidly changing environment, but, using the formalism of algebraic high-
level nets, changes of the environment can only be modeled by changing the fixed net
structure. By contrast, algebraic higher-order nets gain more flexible models due
to the higher-order features introduced by the data type part. Therefore, models
do not necessarily have to be completely specified during the design process, since
the intended behavior can be still given at run time. Additionally, we are able to
reach an even higher level of abstraction through the application of constructions,
which transfer specific parts of the fixed net structure into the variable part of the
model.

Algebraic higher-order nets can be seen as a formal approach of higher-order nets
[LH94, Han97], where the data type part is defined within an algebraic framework to
introduce higher-order concepts into Petri nets. Higher-order nets provide a formal-
ism as a basis for the workflow language of higher-order object nets [LWH95, Han97],
which excellently supports the design of adaptive and configurable workflow systems
and incorporates mechanisms for run time communication between workflow models
and their surrounding environment. But up to now there is only a basic formalism
available for higher-order nets and it is desirable to have a fully worked out theory
in order to fill the gap between the theoretical approach of higher-order nets and
the practical approach of higher-order object nets.

In some respect algebraic higher-order nets are orthogonal to coloured Petri nets
[Jen92, Jen95, Jen97], because we prefer an intensional approach of higher-order
algebras. In an intensional setting we have the advantage of function equivalence
testing within some models and we can distinguish between different functions which
exhibit the same behavior. By contrast, extensional equality of functions means
that two functions are equal if they always produce the same results for the same
arguments. Standard ML [MTHM97], the data type part of coloured Petri nets,
cannot implement equality on function types. This means that it would be difficult
to consider functions as first-class citizens and thus tokens in coloured Petri nets.
Apart from this, the direct use of a programming language for the data type part can
be seen as a methodological drawback, because it is essential for the development
process, that we capture the distinction between an abstract description of what the
system must do and how it will be realized and implemented. In our approach of
algebraic higher-order nets the data type part given within an algebraic framework
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is more abstract than the corresponding programs. This effort of abstraction is not
only beneficial for the reuse, evolution, and maintenance of data structures, but also
for validation and verification aspects. Moreover, formal specification environments
offer the possibility of a code generator.

In this thesis we formally investigate the notions and results of higher-order al-
gebras. Although some of them had already been published in [Wol05], we have
revised and extended them to achieve several results for our purpose. Based on
this data type we define the basic formalisms of algebraic higher-order net schemes
and algebraic higher-order nets, where an algebraic higher-order net is an algebraic
higher-order net scheme together with a suitable model. We generalize these ap-
proaches at a categorical level which especially involves the treatment of mappings
between algebraic higher-order net schemes resp. algebraic higher-order nets. Those
mapping are called morphisms, which are essential for the formulation of structur-
ing techniques. We define the formal semantics for algebraic higher-order nets not
only by the firing step semantics, but also by a generalization of the well-known
notion of process semantics from low-level to higher-order nets.

The main results of this thesis on the field of algebraic higher-order nets include
the following. Some preliminary work has been already published in [Hof00, HM02,
Hof03, HMPP04, HEM05].

• Structuring techniques, called union and fusion, supporting composition of
algebraic higher-order net schemes and identification of subnets within an
algebraic higher-order net scheme.

• Preservation of the firing behavior by algebraic higher-order net morphisms.

• Folding and unfolding constructions wrt. constant symbols, supporting the
flexibility and adaptability of models and preserving the firing behavior.

• Folding and unfolding constructions wrt. product types, leading to more com-
pact descriptions of models and preserving the firing behavior.

Besides these theoretical aspects, this thesis gives a detailed motivation for al-
gebraic higher-order nets from a practical point of view. For this reason we feature
the following valuable classes of algebraic higher-order nets, each of them for specific
application areas.

• Algebraic higher-order nets with nets and interaction relations as tokens for
applications in the area of workflow systems, agent-oriented approaches, and
flexible manufacturing systems.

• Algebraic higher-order nets with nets and rules as tokens for applications
in all areas where dynamic changes of the token net structure have to be
considered while the system is still running, notably flexible workflows and
medical information systems.

• Algebraic higher-order nets with graph rules and rules for the manipulation
of graph rules as tokens for applications in the area of mobile policies.

In addition to several large examples this thesis includes two case studies in
the area of medical information systems and logistics processes to demonstrate the
structural flexibility and system adaptability within the practical use of algebraic
higher-order nets. To cope with aspects of higher-order specifications we discuss
some extensions of algebraic higher-order nets, which are an important step towards
the implementation of our concepts.
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1.3 Structure of the Thesis

The thesis is structured as follows. Since algebraic higher-order nets are an exten-
sion of algebraic high-level nets, we review the main concepts of classical algeb-
ras and algebraic high-level nets in Chapter 2. Section 2.1 includes the notions of
place/transitions nets and place/transition systems as well as the results of rule-
based transformations for place/transition systems, which is used not only in the
example in Section 2.4 to illustrate algebraic high-level nets with place/transition
systems and rules as tokens, but also in the subsequent sections concerning different
classes of algebraic higher-order nets for specific application domains.

Chapter 3 supplies the description of the basic formalism of algebraic higher-
order net schemes and algebraic higher-order nets. First we formally investigate
the notions and results of higher-order algebras in Section 3.1. Moreover, we point
out special features introduced by higher-order algebras and some design decisions
which are useful for our approach of algebraic higher-order nets. Then we give the
necessary notions of algebraic higher-order net schemes and algebraic higher-order
nets and define their operational behavior in Section 3.2. To illustrate the use of
algebraic higher-order nets Section 3.3 contains a simple example. Without going
into detail the overall motivation for certain folding constructions and structuring
techniques is mentioned as well.

Chapter 4 presents algebraic higher-order net schemes and algebraic higher-
order nets in a categorical setting. An essential result of this chapter is that ho-
rizontal structuring techniques for algebraic higher-order net schemes are given by
the notions of union and fusion, motivated by the constructions of [Jen81], but
here achieved in a categorical way by the (finite) cocompleteness of the category of
algebraic higher-order net schemes. The second main result shows that algebraic
higher-order nets related by mappings exhibit the same firing behavior. In Section
4.3 we propose a notion of higher-order processes. This idea is based on the no-
tions in [EHP+02] for algebraic high-level nets, where the well-known concept of
low-level process became generalized to high-level processes. The theory presented
in this chapter is a good starting point for further research in the field of algebraic
higher-order nets, especially to achieve further structuring techniques and to obtain
compatibility results (see Chapter 10).

The main goal of Chapter 5 is the introduction of folding and unfolding con-
structions, which are new in the area of high-level nets and arise due to the higher-
order features of algebraic higher-order net schemes. The first main result of this
chapter shows that folding and unfolding constructions wrt. constant symbols pre-
serve the operational behavior but the folding construction realizes a more abstract
level and supports mechanisms of operation late-binding. Note that in the con-
text of higher-order algebras operations can be represented as constants of an ap-
propriate function type. The concept of unfolding wrt. constant symbols has a
counterpart in the context of high-level nets, where the flattening construction is
used to define the semantics of a high-level net by a classical Petri net (see e.g.
[Jen92, Hum89, Gen86, Pad96]). Vice versa the concept of folding is related to the
step from low to high-level nets. Because product types are available in higher-order
algebras, we can give a folding construction wrt. product types. The second main
result of this chapter shows, that both nets are equivalent wrt. their operational
behavior, but the folding construction allows a more compact representation. Ana-
logously, we give an unfolding construction wrt. product types, which preserves the
firing behavior. Last but not least we prove in this chapter that both folding and
unfolding constructions are inherently inverse.

In Chapter 6 we distinguish between three different classes of algebraic higher-
order nets, each of them for specific application areas. The main idea is to present
a specific higher-order signature together with a corresponding higher-order algebra
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in order to achieve sorts and operations suitable for particular application areas.
To describe the main idea and to demonstrate the practical use of these valuable
net classes we present several large examples. In detail we distinguish between
the following net classes. First we capture the idea of elementary object systems
[Val98, Val01] and present algebraic higher-order nets with nets and interaction
relations as tokens. Through elementary object systems the paradigm “nets as
tokens” became introduced in order to allow nets as tokens, called object nets,
within a net, called a system net. The object nets can move through a system net
and, this is the interesting aspect, they can interact with both, the system net and
with other object nets. As we show exemplarily, elementary object systems can be
translated into semantically equivalent algebraic higher-order net and interaction
systems, while the formal definition of this translation is an aspect of future work.
Next we introduce algebraic higher-order nets with nets and rules as tokens. This
concept is based on the idea of algebraic high-level nets with nets and rules as tokens
presented in [HEM05] (see also Section 2.4). Here we exploit the approach of rule-
based transformations to change the token net structure by the application of rule
tokens. This concept is especially used in the case study of a medical information
system in Chapter 8. Finally we present algebraic higher-order nets for applications
in the area of mobile policies, which already have been published in [HMPP04].
Here, the tokens are on the one hand graph rules to represent policies and on the
other hand rules for the manipulation of mobile policies because policies have to be
changed when they migrate from site to site to adapt to external requirements of
specific domains.

To obtain algebraic higher-order specifications we introduce the concept of con-
ditional equational logic in Section 7.1. As shown in [Wol05] this formalism provides
initial/free semantics, which is essential for the existence of term generated models.
Moreover, we discuss the approach of HasCasl [SM02] in Section 7.2. HasCasl
has been introduced as a higher-order extension of the first-order algebraic specific-
ation language Casl (Common Algebraic Specification Language) [Mos04]. It is
geared to the specification of functional programs, in particular in Haskell. Because
tools for HasCasl have already been implemented, this is a first step towards an
implementation of our approach of algebraic higher-order nets. To illustrate the
concept of HasCasl we present several HasCasl-specifications including a de-
tailed specification of place/transitions-systems and a parametrized specification of
rule-based transformations, which can be instantiated by several categories.

An outline of the case study in the area of medical information systems demon-
strates the use of algebraic higher-order nets with nets and rules as tokens in Chapter
8. Applications of both, horizontal structuring techniques and folding constructions,
are presented within the case study in the area of logistics processes in Chapter 9.

Our future work is manyfold and is summarized in Chapter 10. We discuss
vertical structuring techniques and compatibility of these structuring techniques
with the horizontal structuring techniques in Section 10.1. Moreover, the relation
of algebraic higher-order nets to other net classes, especially algebraic high-level
nets, is still an open question (see Section 10.2). In Section 10.3 we outline the
main concept of dynamic reconfigurations based on the combination of folding and
unfolding construction wrt. constant symbols and rule-based transformations. In
order to evaluate and improve the applicability of our concept of algebraic higher-
order nets we discuss several aspects supported by tools in Section 10.4.

Finally, Chapter 11 contains a summary of the achieved results and a conclusion.
This chapter is followed by appendices containing notions frequently used in this
thesis and the basic notions of category theory, free commutative monoids, and
elementary object nets.

In the following we would like to give some advice when reading this thesis. If
the reader is already familiar with place/transition systems and algebraic high-level
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nets, Chapter 2 may be skipped. We assume that after reading the description of
the basic formalism and the introductory example of algebraic higher-order nets in
Chapter 3, the reader is well-prepared to follow the different net classes of algebraic
higher-order nets for specific application domains in Chapter 6 and the case studies
in Chapter 8 and Chapter 9. For those readers particularly interested in the the-
oretical aspects, respectively structuring techniques and (un-)folding construction,
we can recommend Chapter 4, Chapter 5, and Chapter 10.

1.4 Related Work

The work related to this thesis can be divided into two different areas. On the one
hand there are several approaches to capture higher-order features in an algebraic
approach. A detailed discussion and comparison of classical and higher-order algeb-
raic approaches will be given in Section 3.1. On the other hand, besides the high-level
net classes of coloured Petri nets [Jen92, Jen95, Jen97], algebraic high-level nets
[PER95, Pad96, EHP+02], and higher-order (object) nets [LH94, LWH95, Han97]
mentioned above, there are several net classes closely related to algebraic higher-
order nets.

The integration of algebraic specifications methods into Petri nets has been
investigated for instance in [Vau86, Hum89, Rei91, Lil95]. The combination of
predicate-transition nets [GL81] and many-sorted partial algebras is presented in
[Krä89, Sch89], where the extension of the first order framework by function and
product types is briefly discussed. But the authors feel that further research and a
deeper analysis of these concepts are necessary.

The idea of executable routines (called jobs) attached to transitions has been
first introduced by Function nets [God83]. The jobs are executed whenever their
transitions fire. Function nets and their variants, such as Funsoft nets [Gru91,
DG91, DG94], have been used for instance in information system modeling and for
the simulation of database machine architectures. By these approaches functions
themselves, however, could not be manipulated as resources, because they are bound
to their transitions once and for all.

Elementary object systems [Val98, Val01] provides a two-level modeling tech-
nique, in which Petri nets themselves are considered as token objects and commu-
nicate by synchronizing transitions. In [Kum01, Kum02] this approach is extended
to reference nets, which allow the dynamic creation of an arbitrary number of net
instances during the execution of models. Reference nets are labeled by Java ex-
pressions and provide the concept of synchronous channels to support an n-level
modeling technique. Independently, [BBPP04] presents the concept of Petri hyper-
nets, where net tokens migrate within the tree-like hierarchy, i.e. the level on which
a net token appears can be changed. While in all these approaches the token net
structure cannot be changed during transition firing, controlled transformations of
token nets is discussed in the context of linear logic Petri nets [Far99, Far00] and
feature structure nets [Wie01]. The transformations are carried out by transition
guards, which are fixed in the net structure. Hence, in these approaches a transition
can only perform a specific transformation.

Although in this thesis we do not need features of object-oriented modeling
like inheritance, encapsulation, and dynamic binding, this would be an interesting
aspect to extend our approach by integration of these features. [ADCR01] is a good
overview of different kinds of high-level net classes, which integrate object-oriented
modeling and Petri nets.



Chapter 2

Review of Algebraic
High-Level Nets

In this chapter we review some main concepts frequently used in this thesis. This
allows a detailed comparison of the existing notions with our new concept of algeb-
raic higher-order nets. First we review the main concepts of place/transitions nets
and place/transition systems in Section 2.1. Then we introduce the basic theory for
rule-based transformations of place/transition systems. This theory is inspired by
graph transformation systems [Ehr79, Roz97], which have already been generalized
to net transformations systems in [EHKP91, EP04], including high-level and low-
level nets. The theory in these papers is based on pushouts in the corresponding
categories according to the double-pushout approach of graph transformations in
[Ehr79]. In Section 2.2 we recall the necessary notions of classical algebraic spe-
cifications [EM85]. They are well established as formal specifications of abstract
data types and software systems. Moreover, they are a suitable data type part for
high-level nets. The combination of Petri nets and classical algebraic specifications
leads to the concept of algebraic high-level nets [PER95, Pad96], which gives rise to
a formal and well-defined description of concurrent and distributed systems. The
notions of algebraic high-level nets are reviewed in Section 2.3, where we use the
terminology of [EHP+02]. In Section 2.4 we show how algebraic high-level nets
can be used to model the requirements of the “House of Philosophers”, which is
a small system inspired by the case study “the Hurried Philosophers” [SB01]. In
order to model nets and rules as tokens we present a specific signature together
with a corresponding algebra with specific sorts for place/transition systems and
rules. Moreover, there are operations corresponding to the firing of transitions and
applying a rule to a place/transition system, respectively. Since algebraic high-level
nets are based on classical algebraic specifications we are able to give a set theoretic
definition of domains and operations. Most of the notions and results have been
already published in [HEM05].

2.1 Place/Transition Systems

In this section we review the notion of place/transition nets and place/transition
systems, which is a place/transition net with an initial marking. As net formalism
we use the idea of an algebraic formulation of Petri nets and following the nota-
tion of “Petri nets are Monoids” in [MM90]. Moreover, we employ the category of
place/transitions systems to introduce the basic theory for rule-based transforma-
tions as presented in [HEM05]. In order to improve the intuition of our concepts
for the reader we give in this section an explicit approach of rule-based transforma-

9
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tions for place/transition systems, which extends the theory of place/transition net
transformations taking into account also initial markings, and avoids categorical
terminology like pushouts.

Definition 2.1.1 (Place/Transition Nets)
A place/transition (P/T) net N = (P, T, pre, post) consist of

• a set of places P and a set of transitions T and

• pre- and post conditions pre, post : T −→ P⊕ assigning to each transition
t ∈ T an element of the free commutative monoid P⊕ over the set P of places
with binary operation ⊕.

Remark 2.1.2 (Free Commutative Monoid)
An element M of the free commutative monoid P⊕ can be represented as the linear
sum M =

∑n
i=1 ki · pi with coefficients ki ∈ N. We say that

∑n
i=1 ki · pi is in

normal form if all ki 6= 0 and pi are pairwise distinct. The notion of commutative
monoids corresponds to multisets, i.e. M ∈ P⊕ can also be considered as function
M : P −→ N with finite support and represented by a formal sum

∑
p∈P M(p) · p.

For M1,M2 ∈ P⊕ M1 ≤ M2 if and only if for all coefficients M1(p) ≤ M2(p).
Addition/subtraction of elements is defined as componentwise addition/subtraction
of coefficients, where subtraction M1 	M2 is only defined if M1 ≥ M2. Finally,
p ∈ M1 if and only if M1(p) > 0. The formal definitions of free commutative
monoids and their operations are listed in Appendix B.

Definition 2.1.3 (Firing Behavior of P/T-nets)
Given a P/T-net N = (P, T, pre, post), then

1. a marking of N is given by M ∈ P⊕,

2. a transition t ∈ T is M -enabled for a marking M ∈ P⊕, denoted by M [t〉, if
we have pre(t) ≤M and

3. if t ∈ T is M -enabled the follower marking M ′ is given by

M ′ = M 	 pre(t)⊕ post(t)

and denoted by M [t〉M ′.

Definition 2.1.4 (Place/Transition Net Morphisms)
Given P/T-nets N1 = (P1, T1, pre1, post1) and N2 = (P2, T2, pre2, post2), a P/T-net
morphism f : N1 −→ N2 is given by f = (fP , fT ) with functions

fP : P1 −→ P2 and fT : T1 −→ T2

satisfying that f is compatible with pre- and post domain, i.e. the following diagram
commutes componentwise:

T1

pre1 //
post1

//

fT

��
=

P⊕
1

f⊕P
��

T2

pre2 //
post2

// P⊕
2

where f⊕P : P⊕
1 −→ P⊕

2 is the unique homomorphic extension of fP : P1 −→ P2 (see
Appendix B).
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Figure 2.1: P/T-system

Definition 2.1.5 (Category PTNet)
The category defined by P/T-nets as objects and P/T-net morphisms as morphisms
is denoted by PTNet where the composition of P/T-net morphisms is defined
componentwise for places and transitions.

For details about this category see e.g. [MM90].

Definition 2.1.6 (Place/Transition Systems)
A place/transition (P/T) system PN = (P, T, pre, post,M0) consists of

• a P/T-net (P, T, pre, post) and

• an initial marking M0 ∈ P⊕.

An example of a P/T-system can be found in Fig. 2.1.

Definition 2.1.7 (Place/Transition System Morphisms)
Given P/T-systems PNi = (Pi, Ti, prei, posti,M

0
i ) for i ∈ {1, 2}, a P/T-system

morphism f : N1 −→ N2 is given by a P/T-net morphism f = (fP , fT ) with
functions fP : P1 −→ P2 and fT : T1 −→ T2 additionally satisfying that the initial
marking of N1 at place p is smaller or equal to that of N2 at fP (p):

f⊕P (M0
1|p) ≤M0

2|fP (p) for all p ∈ P1.

The restriction M0
1|p is defined by M0

1|p = M0
1 (p) ·p where M0

1 is considered as func-
tion. Moreover, a P/T-system morphism f is called strict if f⊕P (M0

1|p) = M0
2|fP (p)

and fP , fT are injective.

Definition 2.1.8 (Category PTSys)
The category defined by P/T-systems as objects and P/T-system morphisms as
morphisms is denoted by PTSys where the composition of P/T-system morphisms
is defined componentwise for places and transitions.

The next step in order to define transformations of P/T-systems is to define the
gluing of P/T-systems in analogy to concatenation in the string case.

Definition 2.1.9 (Gluing of P/T-Systems)
Given P/T-systems PNi = (Pi, Ti, prei, posti,M

0
i ) for i ∈ {0, 1, 2} with strict in-

clusion inc : PN0 −→ PN1 and P/T-system morphism f : PN0 −→ PN2. Then
the gluing PN3 of PN1 and PN2 via (PN0, f), written PN3 = PN1 +(PN0,f) PN2,
is defined by the following diagram (1), called ”gluing diagram”, with

1. ∀p ∈ P1 = P0 ] (P1 \ P0) : f ′P (p) = if p ∈ P0 then fP (p) else p
∀t ∈ T1 = T0 ] (T1 \ T0) : f ′T (t) = if t ∈ T0 then fT (t) else t
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2. PN3 = (P3, T3, pre3, post3,M
0
3 ) with

- P3 = P2 ] (P1 \ P0), T3 = T2 ] (T1 \ T0),
- pre3(t) = if t ∈ T2 then pre2(t)

else f ′⊕P (pre1(t)),
- post3(t) = if t ∈ T2 then post2(t)

else f ′⊕P (post1(t)) and
- M0

3 = M0
2 ⊕ (M0

1 	M0
0 ).

PN0

f

��

inc //

(1)

PN1

f ′

��
PN2

inc′
// PN3

Remark 2.1.10 (Disjoint Union)
The disjoint union in the definition of P3 and T3 takes care of the problem that there
may be places or transitions in PN2, which are - by chance - identical to elements
in P1 \ P0 or T1 \ T0, but only elements in PN0 and f(PN0) should be identified.
In this case the elements of P1 \ P0 and T1 \ T0 should be renamed before applying
the construction above.

Fact 2.1.11 (Gluing of P/T-Systems)
The gluing PN3 = PN1 +(PN0,f) PN2 is a well-defined P/T-system such that
f ′ : PN1 −→ PN3 is a P/T-system morphism, inc′ : PN2 −→ PN3 is a strict
inclusion and the gluing diagram (1) commutes, i.e. f ′ ◦ inc = inc′ ◦ f .

Proof:

1. PN3 is a well-defined P/T-system, because pre3, post3 : T3 −→ P⊕
3 are well-

defined functions. Now f ′ = (f ′P , f ′T ) : PN1 −→ PN3 is a P/T-system morph-
ism because we have pre3 ◦ f ′T = f ′⊕P ◦ pre1 (and similar for post) by case
distinction:

Case 1 For t ∈ T0 we have pre3(f ′T (t)) = pre3(fT (t)) = pre2(fT (t)) =
f⊕P (pre0(t)) = f ′⊕P (pre0(t)) = f ′⊕P (pre1(t)).

Case 2 For t ∈ T1 \ T0 we have pre3(f ′T (t)) = pre3(t) = f ′⊕P (pre1(t)).

We have marking compatibility of f ′ by:

Case 1 For p ∈ P0 we have
f ′⊕P (M0

1|p) = f⊕P (M0
0|p) ≤M0

2|fP (p) ≤M0
3|fP (p) = M0

3|f ′P (p).

Case 2 For p ∈ P1 \ P0 we have
f ′⊕P (M0

1|p) = f ′⊕P ((M0
1 	M0

0 )|p) = (M0
1 	M0

0 )|p ≤M0
3|f ′P (p).

2. inc′ : PN2 −→ PN3 is a P/T-system inclusion by construction. The marking
M0

3 is well-defined because M0
0 ≤ M0

1 and M0
0|p = M0

1|p for p ∈ P0 by strict
inclusion inc : PN0 −→ PN1. Moreover inc′ is strict, because we have M0

1 	
M0

0 ∈ (P1 \ P0)⊕ which implies for p ∈ P2 M0
2|p = M0

3|p.

3. f ′ ◦ inc = inc′ ◦ f by construction.

�

Remark 2.1.12 (Gluing Diagram)
The gluing diagram (1) is a pushout diagram in the category PTSys. This implies
that the transformation of P/T-systems defined below is in the spirit of the double-
pushout approach for graph transformations and high-level replacement systems
(see [Ehr79, EHKP91]).
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Two examples of gluing and gluing diagrams are given in Fig. 2.8 (see Section
2.4), where G = L2 +I2 C and H = R2 +I2 C in the left hand and the right hand
gluing diagram respectively. Our next goal is to define rules, application of rules
and transformations of P/T-systems.

Definition 2.1.13 (Rule of P/T-Systems)
A rule r = (L i1←− I

i2−→ R) of P/T-systems consists of P/T-systems L, I, and R,
called left-hand side, interface, and right-hand side of r respectively, and two strict
P/T-system morphisms I

i1−→ L and I
i2−→ R which are inclusions.

Remark 2.1.14 (Application of Rules)
The application of a rule r to a P/T-system G is given by a P/T-system morph-
ism L

m−→ G, called match. Now a direct transformation G
r=⇒ H via r can

be constructed in two steps. In a first step we construct the context C given by
(G−m(L))∪m◦ i1(I) and P/T-system morphisms I

c−→ C and C
c1−→ G, where c1

is a strict inclusion. This means we remove the match m(L) from G and preserve
the interface m ◦ i1(I). In order to ensure that C becomes a subsystem of G we
have to require a “gluing condition” (see Def. 2.1.15). This makes sure that C is a
P/T-system and we have m ◦ i1 = c1 ◦ c in the “context diagram” (1). In a second
step we construct H as gluing of C and R along I, this means we obtain the gluing
diagram (2) from I

c−→ C and I
i2−→ R.

L

m

��
(1)

I
i1oo i2 //

c

��
(2)

R

n

��
G Cc1
oo

c2
// H

Now we define the gluing condition and the context construction.

Definition 2.1.15 (Gluing Condition)
Given a strict inclusion morphism i1 : I −→ L and a P/T-system morphism m :
L −→ G the gluing points GP , dangling points DP and the identification points
IP of L are defined by

GP = PI ∪ TI

DP = {p ∈ PL|∃t ∈ (TG \mT (TL)) : mP (p) ∈ preG(t)⊕ postG(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′ ∧mP (p) = mP (p′)}

∪ {t ∈ TL|∃t′ ∈ TL : t 6= t′ ∧mT (t) = mT (t′)}

where p ∈ PL =
∑n

i=1 ki · pi means p = pi and ki 6= 0 for some i. Then the gluing
condition is satisfied if all dangling and identifications points are gluing points, i.e.
DP ∪ IP ⊆ GP .

Fact 2.1.16 (Context P/T-System)
Given a strict inclusion i1 : I −→ L and a P/T-system morphism m : L −→ G,
then the following context P/T-system C is well-defined and leads to the fol-
lowing commutative diagram (1), called “context diagram”, if the gluing condi-
tion DP ∪ IP ⊆ GP is satisfied. C = (PC , TC , preC , postC ,M0

C) is defined by

PC = (PG \mP (PL)) ∪mP (PI),
TC = (TG \mT (TL)) ∪mT (TI),
preC = preG|C , postC = preG|C , and
M0

C = M0
G|C .

I

c

��

i1 //

(1)

L

m

��
C c1

// G



2.1. PLACE/TRANSITION SYSTEMS 14

The morphisms in (1) are defined by c : I −→ C to be the restriction of m : L −→ G
to I and c1 : C −→ G to be a strict inclusion.

Proof: The P/T-system C and preC , postC : TC −→ P⊕
C with preC = preG|C and

postC = preG|C are well-defined if DP ∪ IP ⊆ GP . For t ∈ TC we have to show
preC(t) ∈ P⊕

C (and similar for postC(t)).

Case 1 For t ∈ TG \mT (TL) we have preC(t) = preG(t) =
∑n

i=1 ki · pi. Assume
pi 6∈ PC for some i ≤ n. Then pi ∈ mP (PL) \ mP (PI) with pi ∈ preG(t).
Hence there is p′i ∈ PL \ PI with mP (p′i) = pi. This implies p′i ∈ DP and
p′i 6∈ GP and contradicts the gluing condition DP ∪ IP ⊆ GP .

Case 2 For t ∈ mT (TI) we have t′ ∈ TI with t = mT (t′). This implies

preC(t) = preG(t) = preG(mT (t′)) = m⊕
P (preL(t′))

= m⊕
P (preI(t′)) ∈ m⊕

P (P⊕
I ) = (mP (PI))⊕ ⊆ P⊕

C .

Moreover c : I −→ C satisfies the marking condition in Def. 2.1.7, because this is
true for m : L −→ G and c is restriction of m. Finally c1 : C −→ G is a strict
inclusion by construction. This leads to the commutative diagram (1) in PTSys.

�

Remark 2.1.17 (Pushout Diagram)
Note that we have not used the “identification condition” ID ⊆ GP , which is part
of the gluing condition. But this is needed to show that the context diagram (1) is
- up to isomorphism - also a gluing diagram and hence a pushout diagram in the
category PTSys. This means that C is constructed in such a way that G becomes
the gluing of L and C via I, i.e. G ∼= L +I C.

An example of a context diagram is the left diagram in Fig. 2.8 (see Section
2.4), where C is the context P/T-system for i2 : I2 −→ L2 and g : L2 −→ G.

Now a direct transformation is given by the combination of a context diagram
and a gluing diagram.

Definition 2.1.18 (Applicability of Rules and Transformation)
A rule r = (L i1←− I

i2−→ R) is called applicable at match L′
m−→ G if L =

L′ and the gluing condition is satisfied for i1 and m. In this case we obtain a
context P/T-system C with context diagram (1) and a gluing diagram (2) with
H = C +I R leading to a direct transformation G

r=⇒ H
consisting of the following diagrams (1) and (2). A (rule-
based) transformation G

∗=⇒ H is a sequence of direct
transformations G = G0

r1=⇒ G1
r2=⇒ . . .

rn=⇒ Gn = H
with G = H for n = 0.

L

m

��
(1)

I
i1oo i2 //

c

��
(2)

R

n

��
G Cc1
oo

c2
// H

An example for a direct transformation is given in Fig. 2.8 (see Section 2.4).

Remark 2.1.19 (Double-Pushout Approach)
As pointed out in Remark 2.1.12 and Remark 2.1.17 already the context diagram (1)
and the gluing diagram (2) are pushout diagrams in the category PTSys. Hence
a direct transformation G

r=⇒ H is given by the two pushouts (1) and (2), also
called double pushout (DPO). In the DPO-approach of graph transformations (see
[Ehr79]), high-level replacement systems [EHKP91] and Petri net transformations
[EP04] a direct transformation is defined by a DPO-diagram. For P/T-systems our
definition is equivalent up to isomorphism to the existence of a DPO in the category
PTSys.
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2.2 Classical Algebras

In this section we review definitions and results of algebraic specifications based on
the notation of [EM85]. Conceptually, such specifications consist of sorts, operation
symbols, and axioms, where the axioms are equations. The semantics of algebraic
specifications are defined by a class of classical algebras with total functions. We
present a slightly different version to [EM85] in this section. These differences
concerns the variables, which are normally locally bound to the axioms. Here we
choose a global approach of variables, which is more suitable for the data type part
of algebraic high-level nets.

Definition 2.2.1 (Signature)
A classical signature Σ = (S, OP, scr, tar) is given by a set S of sort symbols and
a set OP of operation symbols, a source function scr : OP −→ S∗, and a target
function tar : OP −→ S. Here, S∗ is the set of finite (including empty) sequences
of elements of S.

We write op : s1 . . . sn → s for op ∈ OP with src(op) = s1 . . . sn ∈ S∗, n ≥ 0,
and tar(op) = s ∈ S. The notion c :→ s is used to indicate that src(c) = λ (the
empty string) and denotes a constant symbol.

Definition 2.2.2 (Signature with Variables)
Let Σ = (S, OP, scr, tar) be a signature, X a set, called set of variables, with
X ∩ OP = ∅ and var : X −→ S a function, called sorts of variables. Then Σ =
(S, OP, scr, tar,X, var) is a signature with variables. We write x : s for x ∈ X and
var(x) = s. To simplify the notation we also denote a signature with variables by
the following three components (S, OP,X).

Definition 2.2.3 (Signature Morphism)
Given signatures Σ1 = (S1, OP1, X1) and Σ2 = (S2, OP2, X2), a signature morphism
fΣ : Σ1 −→ Σ2 is a tuple of functions

fΣ = (fS : S1 −→ S2, fOP : OP1 −→ OP2, fX : X1 −→ X2)

such that the following diagram commutes componentwise:

S∗1

f∗S
��

=

OP1
src1oo tar1 //

fOP

��
=

S1

fS

��
=

X1
var1oo

fX

��
S∗2 OP2src2
oo

tar2

// S2 X1var2
oo

where f∗S : S∗1 −→ S∗2 denotes the extension of fS : S1 −→ S?
2 to sequences recurs-

ively defined by

f∗S(λ) = λ and
f∗S(s1 . . . sn) = fS(s1) . . . fS(sn) for s1 . . . sn ∈ S∗1 , n ≥ 1.

Definition 2.2.4 (Set of Terms)
Let Σ = (S, OP,X) be a signature. The set of terms of sort s ∈ S is the least set
TΣ,s(X) inductively constructed by the following rules:

1. x : s ∈ X ⇒ x ∈ TΣ,s(X)

2. (c :→ s) ∈ OP ⇒ c ∈ TΣ,s(X)

3. (op : s1 . . . sn → s) ∈ OP, term1 ∈ TΣ,s1(X), . . . , termn ∈ TΣ,sn(X)

⇒ op(term1, . . . , termn) ∈ TΣ,s(X).

The set of Σ-terms TΣ(X) is defined by TΣ(X) =
⋃

s∈S TΣ,s(X).



2.2. CLASSICAL ALGEBRAS 16

Definition 2.2.5 (Translation of Terms)
Let fΣ : Σ1 −→ Σ2 be a signature morphism with fΣ = (fS , fOP , fX). The transla-
tion of Σ1-terms by fΣ to Σ2-terms is obtained by replacing the corresponding vari-
ables and operation symbols, i.e. f ]

Σ : TΣ1(X1) −→ TΣ2(X2) is recursively defined
by

1. f ]
Σ(x) = fX(x) for all x : s ∈ X1

2. f ]
Σ(c) = fOP (c) for all (c :→ s) ∈ OP1

3. f ]
Σ(op(term1, . . . , termn)) = fOP (op)(f ]

Σ(term1), . . . , f
]
Σ(termn))

for all (op : s1 . . . sn → s) ∈ OP1,
term1 ∈ TΣ1,s1(X1), . . . , termn ∈ TΣ1,sn(X1).

Remark 2.2.6 (Translation as Free Construction)
The translation of terms can be achieved as a free construction over X1 in Sets, if
fX : X1 −→ X2 is injective, i.e. f−1

X ◦ fX = idX1 .

Definition 2.2.7 (Algebras)
A (classical) Σ-algebra A = (A(S), A(OP )) of a signature Σ = (S, OP,X) is given
by a S-sorted set A(S) = (As)s∈S , the carrier of A, and by an OP -sorted set
A(OP ) = (opA)op∈OP of operations, i.e. for every op : s1 . . . sn → s ∈ OP there is
a (total) function opA : As1 × . . .×Asn

−→ As.

Definition 2.2.8 (Term Evaluation)
Let Σ = (S, OP,X) be a signature. A variable valuation of X in a Σ-algebra A is
a (total) function v : X −→ A with v(x) ∈ As for x : s ∈ X. The term evaluation
of TΣ(X) in A wrt. v is a (total) function v] : TΣ(X) −→ A recursively defined by

1. v](x) = v(x) for all x : s ∈ X

2. v](c) = cA for all (c :→ s) ∈ OP

3. v](op(term1, . . . , termn)) = opA(v](term1), . . . , v](termn))

for all (op : s1 . . . sn → s) ∈ OP, term1 ∈ TΣ,s1(X), . . . , termn ∈ TΣ,sn
(X).

Definition 2.2.9 (Homomorphisms)
Let Σ = (S, OP,X) be a signature. For two Σ-algebras A1 and A2 a homomorphism
is given by a (total) S-sorted function

fA : A1 −→ A2 = (fA,s : A1,s −→ A2,s)s∈S

satisfying the following two conditions:

1. for each constant symbol c :→ s ∈ OP we have fA,s(cA) = cB and

2. for each operation symbol op : s1 . . . sn → s ∈ OP and all ai ∈ Asi
for

i ∈ {1, . . . , n} we have fA,s(opA(a1, . . . , an)) = opB(fA,s1(a1), . . . , fA,sn(an)).

A homomorphism fA : A1 −→ A2 is called isomorphism, if for s ∈ S all functions
fA,s : A1,s −→ As,2 are bijective.

Definition 2.2.10 (Category Alg(Σ))
The category Alg(Σ) consists of Σ-algebras as objects and homomorphisms as
morphisms. The identity is the identity homomorphism and composition is associ-
ative.
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Definition 2.2.11 (Equations and Validity)
Given a signature Σ = (S, OP,X). Let s ∈ S and terml, termr ∈ TΣ,s(X). Then

1. (terml = termr) is called an equation of sort s wrt. Σ.

2. An equation (terml = termr) is called valid in a Σ-algebra A if for all variable
valuations v : X −→ A we have

v](terml) = v](termr).

Let fΣ = (fS , fOP , fX) : Σ −→ Σ′ be a signature morphism. Then any equa-
tion (terml, termr) of sort s wrt. Σ can be uniquely translated into an equation
(f ]

Σ(terml) = f ]
Σ(termr)) of sort fS(s) wrt. Σ′.

Definition 2.2.12 (Algebraic Specification)
An algebraic specification SP = (Σ, E) consists of a signature Σ = (S, OP,X) and
a set E of equations over the signature Σ. Let A be a Σ-algebra. Then A is a
SP -algebra if all equations e ∈ E are valid in A.

Definition 2.2.13 (Category Alg(SP ))
The category Alg(SP ) consists of SP -algebras as objects and homomorphisms as
morphisms.

Definition 2.2.14 (Algebraic Specification Morphism)
Given two algebraic specifications SPi = (Σi, Ei) for i ∈ {1, 2}. A signature morph-
ism fΣ : Σ1 −→ Σ2 is called specification morphism, written fSP : SP1 −→ SP2,
if for each equation e ∈ E1 the translated equation f ]

Σ(e) is provable from E2 with
the equation calculus in [EM85].

Definition 2.2.15 (Category SP)
The category SP consists of algebraic specifications as objects and algebraic spe-
cification morphisms as morphisms.

Definition 2.2.16 (Forgetful Functor VfSP
)

Given a specification morphism fSP : SP1 −→ SP2 with corresponding signature
morphism fΣ = (fS , fOP , fX) : Σ1 −→ Σ2, the forgetful functor

VfSP
: Alg(SP2) −→ Alg(SP1)

is defined for all SP2-algebras A2 by VfSP
(A2) = A1 ∈ Alg(SP1) with

A1,s = A2,f(s) for all s ∈ S1

opA1 = fOP (op)A2 for all op ∈ OP1

and for all SP2-homomorphism f2,A : A2 −→ B2 by VfSP
(f2,A) = f1,A : A1 −→ B1

with
f1,A,s = f2,A,fS(s) for all s ∈ S1.

Definition 2.2.17 (Free Functor FfSP
)

Given a specification morphism fSP : SP1 −→ SP2, then the forgetful functor
VfSP

: Alg(SP2) −→ Alg(SP1) has a left adjoint functor

FfSP
: Alg(SP1) −→ Alg(SP2),

i.e. there is an adjunction FfSP
` VfSP

.

For further details of Def. 2.2.16 and Def. 2.2.17 we refer to [EM85].
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2.3 Algebraic High-Level Nets

In this section we review the concept of algebraic high-level nets in the notation with
typed places as presented in [EHP+02]. Algebraic high-level nets are an integration
of classical Petri nets (see Section 2.1) and algebraic specifications (see Section 2.2).
Technically, the algebraic specification is used to define net inscriptions by terms
over the specification. Furthermore firing conditions defined by algebraic equations
guarantee that certain constraints are respected. The marking of algebraic high-
level nets consists not only of black tokens, but also of data tokens which are
elements from a given algebra. In contrast to black tokens of low level Petri nets
data tokens can be modified during the firing of transitions. We employ algebraic
high-level net morphisms, i.e. structure compatible mappings between nets, leading
to the category of algebraic high-level nets. Here, we use the general notion of
morphisms, which act on the specification part as well as on the algebra part of the
net.

Definition 2.3.1 (Algebraic High-Level Net)
An algebraic high-level (AHL) net N = (SP, P, T, pre, post, cond, type, A) consists
of

• an algebraic specification SP = ((S, OP, Y ), E) (see Def. 2.2.12) and addi-
tional variables X such that Σ = (S, OP,X) is a signature with variables (see
Def. 2.2.2),

• a set of places P and a set of transitions T ,

• pre- and post domain functions pre, post : T −→ (TΣ(X)⊗ P )⊕,

• firing condition function cond : T −→ Pfin(Eqns(Σ)),

• a type function type : P −→ S, and

• a SP -algebra A,

where (TΣ(X)⊗ P ) = {(term, p)|term ∈ TΣ(X)type(p), p ∈ P} and Eqns(Σ) are all
equations over the signature Σ (see Def. 2.2.11).

Definition 2.3.2 (Firing Behavior of AHL-Nets)
Given an AHL-net N = (SP, P, T, pre, post, cond, type, A), then

• a marking of N is given by M ∈ CP⊕ where

CP = (A⊗ P ) = {(a, p)|a ∈ Atype(p), p ∈ P};

• the set of variables V ar(t) ⊆ X of a transition t ∈ T are the variables of
the net inscriptions in pre(t), post(t), and cond(t). Let v : V ar(t) −→ A be
a variable valuation with term evaluation v] : TΣ(V ar(t)) −→ A, then (t, v)
is a consistent transition valuation iff cond(t) is validated in A under v (see
Def. 2.2.11). The set CT of consistent transition valuations is defined by

CT = {(t, v)|t ∈ T, v : V ar(t) −→ A, (t, v) consistent transition valuation};

• a transition t ∈ T is enabled in M under v iff (t, v) ∈ CT and preA(t, v) ≤M ,
where preA : CT −→ CP⊕ is defined by preA(t, v) = v̂(pre(t)) ∈ (A ⊗ P )⊕

and v̂ : (TΣ(V ar(t)) ⊗ P )⊕ −→ (A ⊗ P )⊕ is the obvious extension of v] to
terms and places (similar postA : CT −→ CP⊕);
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1    2    32    3    4

p3 : Nat

leq(x, y) = tt

compute add

p2 : Nat

geq(x, y) = tt

compute sub

p1 : Nat

x y

x y

sub(x, y)add(x, y)

Figure 2.2: Algebraic high-level net “Computation”

• if t ∈ T is enabled in M under v the follower marking M ′ is computed by

M ′ = M 	 preA(t, v)⊕ postA(t, v)

and denoted by M [(t, v)〉M ′.

Example 2.3.3 (“Computation” as Algebraic High-Level Net)
Fig. 2.2 shows a very simple algebraic high-level net. The idea of the net is to
compute alternatively the addition or the subtraction of natural numbers. The net
is inscribed with terms over the classical signature Nat of natural numbers and
truth values given below. In fact, it is sufficient to consider as specific specification
a signature, i.e. a specification with empty set of equations, because we define an
explicit Nat-algebra instead of using the initial model. The set of operations of
the signature Nat consists exactly of those operations which are denoted in the net
inscription of the algebraic high-level net in Fig. 2.2.

Nat =
sorts: Bool, Nat
opns: tt, ff :→ Bool

leq, geq : Nat Nat→ Bool
add, sub : Nat Nat→ Nat

We consider the Nat-algebra A with the carrier ANat consisting of natural
numbers and an error element, i.e. ANat = N ∪ {undef}, and the carrier ABool

consisting of truth values, i.e. ABool = {true, false}. Moreover, we have the con-
stants ttA = true, ffA = false and the well-known functions leqA, geqA, addA,
and subA, respectively, where subA(n1, n2) = undef if n1 ≤ n2 and add(n1, n2) =
subA(n1, n2) = undef if n1 = undef or n2 = undef. Finally, the application of the
error element within the functions leqA and geqA results in the truth value false.

In Figure 2.2 the type of places p1 and p2 is given by the sort Nat. The initial
marking of place p1 consists of 2, 3, 4 ∈ N and the initial marking of place p2 consists
of 1, 2, 3 ∈ N, i.e. M =

∑4
i=2(i, p1)⊕

∑3
j=1(j, p2).

To demonstrate the firing behavior of the transition compute sub (and similar
for compute add) we first have to give a variable valuation v to the variables x and
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y defined by v(x) = 3 and v(y) = 2. Because the firing condition geq(x, y) = tt
is validated in A under v, the follower marking is computed as follows: the data
element 3 on place p1 and the data element 2 on place p2 remain to be unchanged
as indicated by the double arrow, while the result subA(3, 2) = 1 is added to the
place p3.

Definition 2.3.4 (Algebraic High-Level Net Morphisms)
Given AHL-nets Ni = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) for i ∈ {1, 2}, an
AHL-net morphism f : N1 −→ N2 is given by f = (fSP, fP , fT , fA) with

• a specification morphism fSP : SP1 −→ SP2 (see Def. 2.2.14) with signature
morphism fΣ = (fS , fOP , fX) : Σ1 −→ Σ2 and extension f ]

Σ to terms and
equations such that the restrictions f ]

Σ|V ar(t) : V ar(t) −→ V ar(fT (t)) of fΣ

to variables of transitions t ∈ T1 are bijective,

• a function fP : P1 −→ P2,

• a function fT : T1 −→ T2, and

• fA : A1 −→ A2 is induced by an isomorphism fa : A1 −→ VfΣ(A2) in
Alg(SP1) where VfΣ is a forgetful functor (see Def. 2.2.16)

such that the following diagrams commute componentwise:

Pfin(Eqns(Σ1))

Pfin(f]
Σ)

��
=

T1
cond1oo

pre1 //
post1

//

fT

��
=

(TΣ1(X1)⊗ P1)⊕

(f]
Σ⊗fP )⊕

��
Pfin(Eqns(Σ2)) T2

cond2

oo
pre2 //
post2

// (TΣ2(X2)⊗ P2)⊕

P1

=

type1 //

fP

��

S1

fS

��
P2 type2

// S2

where (f ]
Σ ⊗ fP ) denotes the corresponding function of type consisting arc inscrip-

tions defined for all (term, p) ∈ (TΣ1(X1)⊗ P1) by

(f ]
Σ ⊗ fP )(term, p) = (f ]

Σ(term), fP (p))

and (f ]
Σ⊗ fP )⊕ is the unique homomorphic extension of (f ]

Σ⊗ fP ). Pfin(f ]
Σ) is the

extension of fΣ to powersets, i.e. for {e1, . . . , en} ∈ Pfin(Eqns(Σ1)), n ≥ 0, we have

Pfin(f ]
Σ)(∅) = ∅ and

Pfin(f ]
Σ)({e1, . . . , en}) = {f ]

Σ(e1), . . . , f
]
Σ(en)} for n ≥ 1.

Remark 2.3.5 (Restriction of Variables of Transitions)
The restriction f ]

Σ|V ar(t) : V ar(t) −→ V ar(fT (t)) of fΣ to variables of transitions
t ∈ T1 have to be bijective for the preservation of the firing behavior by AHL-net
morphisms.

Definition 2.3.6 (Category AHLNet)
The category AHLNet consists of AHL-nets as objects and of AHL-net morphisms
as morphisms, where the composition is defined componentwise.
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2.4 Example: House of Philosophers as AHL-Net

In order to illustrate the concepts described above we will present a small system
inspired by the case study “the Hurried Philosophers” of C. Sibertin-Blanc proposed
in [SB01] which is a refinement of the well-known classical “Dining Philosophers”.
According to the requirements of the hurried philosophers in [SB01] the philosophers
have the capability to introduce a new guest at the table, which - in the case of low
level Petri nets - certainly changes the net structure of the token net representing the
philosophers at the table. The intention is to consider the change of the net structure
as rule-based transformation of Petri nets in the sense of graph transformation
systems [Ehr79, Roz97]. In order to integrate the token game of Petri nets with
rule-based transformations, we propose in this section the new paradigm “nets and
rules as tokens”. Of course, this concept has interesting applications in all areas
where dynamic changes of the net structure have to be considered while the system
is still running.

2.4.1 Requirements

In our case study “House of Philosophers” presented below we essentially consider
the following requirements:

1. There are three different locations in the house where the philosophers can
stay: the library, the entrance-hall and the restaurant;

2. In the restaurant there are different tables where one or more philosophers
can be placed to have dinner;

3. Each philosopher can eat at a table only when he has both forks, i.e. the philo-
sophers at each table follow the rules of the classical “Dining Philosophers”;

4. The philosophers in the entrance-hall have the following additional capabilit-
ies:

(a) They are able to invite another philosopher in the entrance-hall to enter
the restaurant and to take place at one of the tables;

(b) They are able to ask a philosopher at one of the tables with at least two
philosophers to leave the table and to enter the entrance-hall.

2.4.2 Data Type Part

In order to allow P/T-systems and rules as tokens of an AHL-net we provide a
specific specification System-SIG and System-SIG-algebra A based on the defin-
itions and constructions presented in Section 2.1. In fact, for our example it is
sufficient to consider a specific signature instead of a specification, i.e. the set of
equations is empty. Given vocabularies T0 and P0, the signature System-SIG is
given by

System-SIG =
sorts: Transitions, P laces, Bool, System,Mor, Rules
opns: tt, ff :→ Bool

enabled : System× Transitions→ Bool
fire : System× Transitions→ System
applicable : Rules×Mor → Bool
transform : Rules×Mor → System
coproduct : System× System→ System
isomorphic : System× System→ Bool
cod : Mor → System
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and the System-SIG-algebra A for P/T-systems and rules is given by

• ATransitions = T0, APlaces = P0, ABool = {true, false},

• ASystem the set of all P/T-systems over T0 and P0, i.e.
ASystem = {PN |PN = (P, T, pre, post,M) P/T-system, P ⊆ P0, T ⊆ T0}

∪ {undef},

• AMor the set of all P/T-system morphisms for ASystem, i.e.
AMor = {f |f : PN −→ PN ′ P/T-system morphism

with PN,PN ′ ∈ ASystem},

• ARules the set of all rules of P/T-systems, i.e.
ARules = {r|r = (L i1←− I

i2−→ R) rule of P/T-systems with
strict inclusions i1, i2},

• ttA = true, ff A = false,

• enabledA : ASystem×T0 −→ {true, false} for PN = (P, T, pre, post,M) with

enabledA(PN, t) =

{
true if t ∈ T, pre(t) ≤M

false else

• fireA : ASystem × T0 −→ ASystem for PN = (P, T, pre, post,M) with

fireA(PN, t) =


(P, T, pre, post,M 	 pre(t)⊕ post(t))

if enabledA(PN, t) = tt

undef else

• applicableA : ARules ×AMor −→ {true, false} with

applicableA(r, m) =

{
true if r is applicable at match m

false else

• transformA : ARules ×AMor −→ ASystem with

transformA(r, m) =

{
H if applicableA(r, m)
undef else

where for L
m−→ G and applicableA(r, m) = true we have a direct transform-

ation G
r=⇒ H,

• coproductA : ASystem × ASystem −→ ASystem the disjoint union (i.e. the two
P/T-systems are combined without interaction) with

coproductA(PN1, PN2) =


undef if PN1 = undef ∨ PN2 = undef
((P1 ] P2), (T1 ] T2), pre3, post3,M1 ⊕M2)

else

where pre3, post3 : (T1 ] T2)→ (P1 ] P2)⊕ are defined by

pre3(t) = if t ∈ T1 then pre1(t) else pre2(t),

post3(t) = if t ∈ T1 then post1(t) else post2(t).
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• isomorphicA : ASystem ×ASystem −→ {true, false} with

isomorphicA(PN1, PN2) =

{
true if PN1

∼= PN2

false else

where PN1
∼= PN2 means that there is a strict P/T-morphism f = (fP , fT )

with f : PN1 −→ PN2 such that fP , fT are bijective functions,

• codA : AMor −→ ASystem with codA (f : PN1 −→ PN2) = PN2.

2.4.3 System Level

In Fig. 2.3 we present the system level of our version of the case study. The system
level is given by an AHL-net, which is explained in Section 2.3. The marking of
the AHL-net shows the distribution of the philosophers at different places in the
house; the firing behavior of the AHL-net describes the mobility of the philosophers.
There are three different locations in the house where the philosophers can stay:
the library, the entrance-hall, and the restaurant. Each location is represented by
its own place in the AHL-net in Fig. 2.3. Initially there are two philosophers in the
library, one philosopher in the entrance-hall, and four additional philosophers are
at table 1 resp. table 2 (see Fig. 2.6 and 2.7) in the restaurant.

Philosophers may move around, which means they might leave and enter the
library and they might leave and enter the tables in the restaurant. The mobility
aspect of the philosophers is modeled by transitions termed enter and leave library
as well as enter and leave restaurant in our AHL-net in Fig. 2.3. While the philo-
sophers are moving around, the static structure of the philosophers is changed by
rule-based transformations. For instance a philosopher enters the restaurant and
arrives at a table. Then the structure and the seating arrangement of the philosoph-
ers have to be changed. For this reason, we have tokens of type Rules, rule1, . . .,
rule4, which are used as resources. Because the philosophers have their own internal
behavior, there are two transitions, start/stop reading and start/stop activities, to
realize the change of the behavior.

2.4.4 Token Level

The token level consists of two different types of tokens: P/T-systems and rules.
They are represented as tokens in the places typed System and Rules of the AHL-
net in Fig. 2.3. The tokens on system places are modeled by P/T-systems, i.e. Petri
nets with an initial marking. In Fig. 2.4 the net phi1 of philosopher 1 is depicted,
which - in the state thinking - is used as a token on the place Library in Fig. 2.3. To
start reading, we use the transition start/stop reading of the AHL-net in Fig. 2.3.
First the variable n is assigned to the net phi1 of the philosopher 1 and the variable
t to a transition t0 ∈ T0 where T0 is a given vocabulary of transitions. The condition
enabled(n,t)=tt means that under this assignment t0 is an enabled transition in the
net phi1. The evaluation of the term fire(n, t) computes the follower marking of
the net (i.e. token reading1) and we obtain the new net phi ′1 of the philosopher 1
depicted in Fig. 2.4.

2.4.5 Mobility of philosophers by application of rules

We assume that the philosopher 1 wants to leave the library, i.e. the transition leave
library in the AHL-net in Fig. 2.3 must fire. For this purpose we have to give an
assignment for the variables n, r and m in the net inscriptions of the transition.
They are assigned to the net phi1 (see Fig. 2.4), the rule rule1 (see Fig. 2.5), and
a match morphism m1 : L′ −→ G between P/T-systems. The first condition cod
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isomorphic (n2, n3) = tt

table2

table1

rule2

start/stop

reading

t :Transitions
enabled(n, t) = tt

rule1

enter library

m :Mor

cod m = n

applicable(r, m) = tt

phi1

phi3

transform(r, m)

n

fire(n, t)

phi2

Entrance-Hall : System

fire(n, t)

cod m = n1 coproduct n2

applicable(r, m) = tt

enter restaurant

m :Mor

n

r

r

t :Transitions
enabled(n, t) = tt

start/stop

activities

r
rule3

n1 n1transform(r, m) n4

r
rule4

Rule4 : Rules

Rule3 : Rules

Rule1 : Rules

Rule2 : Rules
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n

leave library

applicable(r, m) = tt

cod m = n

m :Mor

n2 ⊕ n3
n2 ⊕ n3

n

transform(r, m)

n3
n3

m :Mor

leave restaurant

cod m = n1

applicable(r, m) = tt

transform(r, m) =
n2 coproduct n4

Figure 2.3: Algebraic high-level net of “House of Philosophers”

reading1thinking1 reading1thinking1

Figure 2.4: Token nets phi1 and phi ′1 of philosopher 1

thinking

L1

thinking reading

R1I1

thinking

Figure 2.5: Token rule rule1
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fork5

thinking4

eating4

eating5

thinking5

left
fork4

left

Figure 2.6: Token net table1 of philosopher 4 and 5 at table 1

m=n requires G = phi1 and the second condition applicable(r,m)=tt makes sure
that rule rule1 is applicable to phi1, especially L′ = L1, s.t. the evaluation of the
term transform(r,m) leads to the new net phi ′′1 isomorphic to R1 of rule1 in Fig. 2.5.
As result of this firing step phi1 is removed from place Library and phi ′′1 is added
on place Entrance-Hall.

In a further step the philosopher 1 is invited by the philosopher 3 to enter the
restaurant in order to take place as a new guest at the table 1. The philosopher
3 accompanies philosopher 1 but returns to the entrance-hall. The token net phi3
of philosopher 3 is isomorphic to R1 of rule1 in Fig. 2.5 where thinking in R1 is
replaced by thinking3. Currently the philosophers 4 and 5 are at the table 1 (see
Fig. 2.6). Both philosophers may start eating, but apparently compete for their
shared forks, where left fork4=right fork5 and left fork5=right fork4. Analogously
table 2 has the same net structure as table 1 but different philosophers are sitting
at table 2 (see Fig. 2.7). To introduce the philosopher 1 at the table 1 the seating
arrangement at table 1 has to be changed. In our case the new guest takes place
between philosopher 4 and 5. Formally, we apply rule rule2 = (L2

i1←− I2
i2−→ R2),

which is depicted in the upper row of Fig. 2.8 and used as token on place Rule2.
We have to give an assignment v for the variables of the transition enter restaurant,
i.e. variables n1, n2, n3, r, and m. The assignment v is defined by v(n1) = table1,
v(n2) = phi′′1 , v(n3) = phi3, v(r) = rule2, and v(m) = g (see match morphism
g : L2 −→ G in Fig. 2.8). Then we compute the disjoint union of the P/T-system
phi ′′1 and the P/T-system table1 as denoted by the net inscription n1 coproduct n2

in the firing condition of the transition enter restaurant. The result is the disjoint
union of both nets shown as P/T-system G in Fig. 2.8.

In our case the match g maps thinkingj and eatingj in L2 to thinking4 and
eating4 in G of Fig. 2.8. The condition cod m = n1 coproduct n2 makes sure that
the codomain of g is equal to G. The second condition applicable(r,m)=tt checks
if rule2 is applicable with match g to G (see “gluing condition” (Def. 2.1.15) and
“applicability” (Def. 2.1.18) in Section 2.1). In the direct transformation shown in
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fork7

thinking6

eating6

eating7

thinking7

left
fork6

left

Figure 2.7: Token net table2 of philosopher 6 and 7 at table 2

Fig. 2.8 we delete in a first step g(L2 \ I2) from G leading to P/T-system C. Note
that a positive check of the ”gluing condition” makes sure that C is a well-defined
P/T-system (see Fact 2.1.16 in Section 2.1). In a second step we glue together the
P/T-systems C and R2 along I2 leading to P/T-system H in Fig. 2.8. H shows
the new version of table 1 given by the net table ′1 of table 1, where philosophers 1,
4 and 5 are sitting at the table, all of them in state thinking. The effect of firing
the transition enter restaurant in Fig. 2.3 with assignments of variables as discussed
above is the removal of P/T-systems phi ′′1 from place Entrance Hall and table1 from
place Restaurant and adding P/T-System table ′1 to the place Restaurant.

Philosophers in the entrance-hall have the capability to ask one of the philosoph-
ers in the restaurant to leave; this is realized in our system by the transition leave
restaurant in Fig. 2.3. We use the rule rule3 defined as inverse of rule2 in Fig. 2.8,
i.e. rule3 = (R2

i2←− I2
i1−→ L2), which is present as a token on place Rule3. This

rule is applied with inverse direct transformation to the one depicted in Fig. 2.8.
Finally, the rule rule4 is the inverse of rule rule1 (see Fig. 2.5) enabling the philo-
sopher to enter the library by firing of the transition enter library in Fig. 2.3. We
have to guarantee that after the application of rule3 the philosopher who is leaving
the restaurant goes into the entrance-hall. In our case one philosopher is asked
by philosopher 3 in the entrance-hall to leave the table. Formally this is denoted
by the firing condition isomorphic(n2, n3) = tt which ensures that the net of the
philosophers denoted by n2 is isomorphic to the net phi3 of philosopher 3 denoted
by n3.

The execution of philosopher activities at different tables, i.e. the firing of the
transition start/stop activities in Fig. 2.3, is analogously defined as the firing of the
transition start/stop reading described above.

2.4.6 Validation of Requirements

Our case study “House of Philosophers” satisfies the requirements presented in the
beginning of this section.
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Figure 2.8: Direct Transformation

1. The three different locations in the house are represented by places Library,
Entrance-Hall, and Restaurant in Fig. 2.3;

2. In the initial state we have the two tables table1 with philosophers 4 and 5
and table2 with philosophers 6 and 7 on place Restaurant. In a later state also
philosopher 1 is sitting at table 1 as shown by net H of Fig. 2.8;

3. If there are n ≥ 2 philosophers sitting at each table, the table with n philo-
sophers is presented by the classical “Dining Philosophers” net;

4. The capability of a philosopher in the entrance-hall to invite another philo-
sopher to enter (leave) the restaurant is given by firing of the transition enter
restaurant (leave restaurant) in Fig. 2.3. The applicability of the rule rule3

ensures that a philosopher only leaves a table with at least two philosophers.



Chapter 3

Algebraic Higher-Order Nets

In this chapter we formally introduce our new concept of algebraic higher-order
nets as an extension of algebraic high-level nets, presented in the previous chapter,
by higher-order features and partiality. The most prominent new aspect is that
the data type part of algebraic higher-order nets is given by higher-order algebras
instead of classical algebras. This results in a great impact on the structure of
algebraic higher-order nets. On the theoretical level the higher-order type structure
of higher-order algebras is transferred to algebraic higher-order nets. Thus, we are
able to distinguish between different higher-order types of places like function types
and product types. Because in our concept functions are first-class citizens, we get
a natural way of using functions as tokens and the powerful and elegant concept of
higher-order functions can be used in the net inscriptions. Moreover, we achieve the
notion of atomic formulas to define firing conditions of algebraic higher-order nets.
From a practical point of view our models are on a high-level of abstraction and
support structural flexibility and system adaptability in an extensive way. In our
approach the order of functions is allowed to be arbitrarily high. So the basic idea
is to reflect a group of functions as tokens, which may be dynamically combined at
run-time. This mechanism is called operation late-binding in our context. A token
is then recursively defined as a function and a function can shrink to a token.

In Section 3.1 we formally investigate higher-order algebras. Some of the notions
and results have already been published in [Wol05] but are revised and extended
for our approach. The main results achieved in this thesis for higher-order algebras
concern the finite cocompleteness of the category of higher-order signatures and the
functorial construction of higher-order terms for each higher-order signature. These
results are essential to ensure the finite cocompleteness of the category of algebraic
higher-order net schemes in the subsequent chapter. Based on these definitions
we give the necessary notions of algebraic higher-order net schemes and algebraic
higher-order nets and formulate the operational behavior of algebraic higher-order
nets in Section 3.2. In order to illustrate the practical use of algebraic higher-
order nets in Section 3.3, we present a higher-order version of the simple example
“Computation” (see Section 2.3). Within this example we also give a rough idea of
the main results which will be obtained in the subsequent chapters.

3.1 Higher-Order Partial Algebras

In this section we present an approach of higher-order partial algebras developed in
[Wol05]. This approach was intended to provide an algebraic semantics of functional
languages but turned out to be well suited for algebraic higher-order nets. Higher-
order algebras are staying close to the set-theoretic semantics of classical algebras

28
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as presented in Section 2.2. In fact, there is an embedding of classical signatures
into higher-order signature which will be discussed later in Section 10.2. In the
following we discuss the main items of higher-order algebras in more detail, which
differ from classical algebras and are essential for algebraic higher-order nets.

Partiality There is a practical need for a systematic treatment of partial oper-
ations to handle errors and exceptions, and an account for non-terminating oper-
ations [Fef92]. Partial operations are useful to represent functions which are not
yet specified during the design process and may not yield a result on some possible
input, as for instance predecessor for positive natural numbers, head and tail for
lists, or pop and top for stacks. Another relevant example arises due to the machine
limits, i.e. data types are limited, such that the constructors of infinite data type
systems like push for stacks are not defined on the extreme values and hence become
partial. In a total setting these operations require an error management mechan-
ism, i.e. partial functions are simulated by means of total functions on sorts which
are equipped with one or more error elements. But having added (at least) one
new element, the application of operations to it has to be specified as well and the
size of specifications dramatically increases. A further practical drawback is that
the insertion of error elements is a typical example of non-persistent parameterized
specification, thus there is no passing compatibility nor actual parameter protection
(see [EM85]). Moreover, partial recursive functions with non recursive domain are
needed for example to specify the interpreter of a programming language, but it
is undecidable whether the interpreter yields an output or not and therefore there
is obviously no possibility to detect the errors by its application. While in a total
setting there does not exist a specification, the specification of partial recursive
functions with non recursive domain is possible within the error algebra approach
[GTW78]; in semicomputable models, however, it leads to infinite amounts of error
values. Another problem arises when the implementation has another version of
explicit error handling. Because it becomes difficult to relate the intended model
of the specification to the real implementation, the effort for explicit error handling
on the level of specifications turns out to be quite useless. Therefore, we introduce
a more powerful framework based on the (possibly) partial interpretation of opera-
tion symbols to easily describe not only partiality arising from the situations given
above, but also semidecidable predicates by specifying the positive kernel of the
data types.

Function Types Due to higher-order functions, which take functions as para-
meters and/or yield functions as results, we have the possibility to summarize the
behavior of a number of functions in an elegant and abstract way, for instance
map and filter for lists. But we have to decide about standard, extensional, and
intensional function spaces. In standard models each function type is interpreted
as the full function space but due to the well known Gödel incompleteness the-
orem, there cannot be a recursively axiomatized sound and complete calculus for
the standard model semantics. Requiring possibly non-standard, but still exten-
sional function spaces means that function types are interpreted by a subset of the
full function space, but destroys the existence of initial models. For the total case,
there is a way out by restricting oneself to reachable models [MTW87]. But for the
partial case, even simple higher-order signatures do not longer have initial models
[AC92]. Thus we prefer the notion of intensional function space, i.e. function types
are interpreted by arbitrary sets with an application operation of appropriate type.
Intensional algebras behave nicely with regard to completeness and existence of free
algebras [Poi86]. The advantage is that we can distinguish between different ways
of computing a function. For instance, quicksort and bubblesort for list are equal
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from an extensional point of view, but from a practical point of view they may be
considered as different as they are implemented by quite different algorithms and it
is a well-known fact that quicksort is the efficient one of sorting algorithms for lists.

Product Types In classical algebras only single sorts are allowed as codomains of
functions. Thus functions into an n-ary product have to be encoded into a collection
of n functions into single sorts. To make our theory more applicable for the user
we introduce product types with projection symbols of appropriate types to allow
nested products as codomains of functions.

Predicates In the classical case there are two main directions to introduce pre-
dicates into signatures. In the first possibility a signature is enriched by a boolean
sort and some operations into the boolean sort. But treating predicates as oper-
ations have the drawback that the truth as well as the untruth of each relation
has to be stated, and in particular semicomputable relations cannot be condition-
ally axiomatized because their falseness cannot be recursively axiomatized. In the
second possibility a signature is enriched by a set of typed predicate names, and
algebras are modified to include relations on their carriers to interpret predicate
names. In the higher-order case with product types and partiality predicates are
fully determined by partial functions into a singleton set, i.e. the domain of defin-
ition reflects the trueness of the predicate. As we will discuss in Section 7.1, this
formalism provides initial/free semantics.

We first introduce a classical specification of higher-order typing structures in-
stead of a direct definition of higher-order types. So we achieve the result that
higher-order types are freely generated by a set of basic types. The advantage is
that we can use the notions and results introduced in Section 2.2.

Definition 3.1.1 (Higher-Order Typing Structures)
Let a (classical) specification HOTS = (Σ, E) be given with

HOTS =
sorts: s
opns: unit :→ s

→: s s→ s
? : s s→ s

var: type, type1, type2, type3 : s
eqns: (type1 ? type2) ? type3 = type1 ? (type2 ? type3)

type ? unit = type
unit ? type = type

A higher-order typing structure is a HOTS-algebra (A, unitA,→A, ?A). If no
confusion arises, we omit the index A. Given two higher-order typing structures
(Ai, unit,→, ?) for i ∈ {1, 2}. Then a higher-order typing structure morphism

fA : (A1, unit,→, ?) −→ (A2, unit,→, ?)

is a homomorphism of (classical) algebras, i.e. for type1, type2 ∈ A1 we have

fA,s(unit) = unit,
fA,s(type1 → type2) = fA,s(type1)→ fA,s(type2), and
fA,s(type1 ? type2) = fA,s(type1) ? fA,s(type2).

Definition 3.1.2 (Category Alg(HOTS))
The category Alg(HOTS) consists of higher-order typing structures (A, unit,→, ?)
as objects and higher-order typing structure morphisms as morphisms.
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Definition 3.1.3 (Forgetful and Free Functors)
The forgetful functor VfHOTS

: Alg(HOTS) −→ Sets is defined for all higher-order
typing structures by

VfHOTS
(A, unit,→, ?) = A

and for all higher-order typing structure morphism

fA : (A1, unit,→, ?) −→ (A2, unit,→, ?)

by
VfHOTS

(fA) = fA : A1 −→ A2.

Moreover, the forgetful functor VfHOTS
: Alg(HOTS) −→ Sets has a left adjoint

functor FfHOTS
: Sets −→ Alg(HOTS), i.e. there is an adjunction FfHOTS

` VfHOTS
.

We get an initial model of higher-order typing structures, i.e. the quotient term
algebra. To obtain a special representation we define the set of higher-order types.
Here the subset of single higher-order types is important because these types have
to be interpreted in the corresponding higher-order partial algebra.

Definition 3.1.4 (Higher-Order Types)
For a set S of basic types we define the set S→ of higher-order types over S and
the set BSF→ of single higher-order types inductively by the following rules:

⇒ unit ∈ S→

⇒ S ⊆ BFS→

type1, type2 ∈ S→ ⇒ (type1 → type2) ∈ BFS→

type1, . . . , typen ∈ BFS→, n ≥ 2 ⇒ (type1 ? . . . ? typen) ∈ S→

⇒ BFS→ ⊆ S→

where unit is called empty type, (type1 → type2) are called function types and
(type1 ? . . . ? typen) are called product types.

Due to Def. 3.1.1 we avoid nested product types. But to simplify our notations,
especially in the folding and unfolding constructions in Chapter 5, we introduce the
following notation.

Remark 3.1.5 (Nested Product Types)
Let (type1,1 ? . . . ? type1,m1), . . . , (typen,1 ? . . . ? type1,mn

) ∈ S→, n,m1, . . . ,mn ∈ N.
Then we use the notation

(type1,1 ? . . . ? type1,m1 ? . . . ? typen,1 ? . . . ? type1,mn
).

Remark 3.1.6 (Predicates)
Let Pred(type) abbreviate the function type type→ unit.

Due to the adjoint situation described above we get a Kleisli category, which
can be seen as the freely generated higher-order types over a set of basic types. The
advantage is that the composition of morphisms are defined by substitution, which
will be used in Fact 3.1.13. Note that the category of free commutative monoids as
used in Chapter 2 can be also seen as a Kleisli category, where we even have two
different kinds of representations, i.e. formal sums and multisets.
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Definition 3.1.7 (Category HOTS)
The category HOTS is the category of freely generated HOTS-algebras over a set
of basic types, i.e. the Kleisli category for the adjunction FfHOT S

` VfHOT S
which

takes a set of basic types S to the set of higher-order types S→. Any function
f : S1 −→ S→2 can be extended to a unique function f→ : S→1 −→ S→2 with
f→(s1) = f(s1) for s1 ∈ S1. Moreover, we have

(f→2 ◦ f1)→ = f→2 ◦ f→1 and

id→S = idS→ .

Definition 3.1.8 (Higher-Order Signature)
A higher-order signature Σ = (S, OP, scr, tar) is given by a set S of basic types
and a set OP of operation symbols, a source function src : OP −→ S→ and a
target function tar : OP −→ S→. We write op : type1 ⇀ type2 for op ∈ OP with
src(op) = type1 and tar(op) = type2. OP is required to contain an application
symbol

applytype1,type2 : (type1 → type2) ? type1 ⇀ type2

for each function type type1 → type2 ∈ S→. Further we assume projection symbols

pr
(type1?...?typen)
i : (type1 ? . . . ? typen) ⇀ typei

with pr
(type1?...?typen)
i 6∈ OP for all (type1 ? . . . ? typen) ∈ S→, 1 ≤ i ≤ n, and denote

by OP→ the set consisting of projection symbols and operation symbols.

OP→ = OP ∪ {pr
(type1?...?typen)
i |(type1 ? . . . ? typen) ∈ S→, 1 ≤ i ≤ n}.

Remark 3.1.9 (Constant and Predicate Symbols)
The notation c : type ∈ OP is used to indicate that src(c) = unit and denotes a
constant symbol and all constant symbols p : Pred(type) are called predicates. An
operation symbol p′ : type ⇀ unit ∈ OP is called predicate symbol. Note that
p : Pred(type) is an abbreviation of p : unit ⇀ (type → unit) and is different from
the predicate symbol p′ : type ⇀ unit.

In algebraic higher-order nets we need a set of variables, which are used in the
net inscriptions. So we extend the notion of higher-order signatures by a set of
variables. Usually variables are locally bound to some terms. But for our purpose
it is more suitable to use a global set of variables.

Definition 3.1.10 (Higher-Order Signature with Variables)
Let Σ = (S, OP, scr, tar) be a higher-order signature, X a set, called set of variables,
with X ∩ OP = ∅ and var : X −→ S→ a function, called sorts of variables. Then
Σ = (S, OP, scr, tar,X, var) is a higher-order signature with variables. We write
x : type for x ∈ X and var(x) = type. To simplify the notation, we also denote a
higher-order signature with variables by the following three components (S, OP,X).

Definition 3.1.11 (Higher-Order Signature Morphism)
Given higher-order signatures Σi = (Si, OPi, Xi) for i = {1, 2}, a higher-order
signature morphism fΣ : Σ1 −→ Σ2 is a tuple of functions

fΣ = (fS : S1 −→ S2, fOP : OP1 −→ OP2, fX : X1 −→ X2)

such that the following diagram commutes componentwise:
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OP1

src1 //
tar1

//

fOP

��
=

S→1

f→S
��

=

X1
var1oo

fX

��
OP2

src2 //
tar2

// S→2 X1var2
oo

where f→S : S→1 −→ S→2 is the unique extension of fs : S1 −→ S→2 (see Fact 3.1.7)
and fs is induced by fS , i.e. fs(type) = fS(type) for all basic types type ∈ S1.

Fact 3.1.12 (Category HOSig)
The category HOSig consists of higher-order signatures with variables as objects
and higher-order signature morphisms as morphisms.

Proof: We show that the composition defined componentwise is associative and
the identity law is satisfied.

Composition: Given higher-order signatures Σi = (Si, PPi, Xi) for i ∈ {1, 2, 3}
and a pair of higher-order signature morphisms

fΣ,1 = (fS,1, fOP,1, fX,1) : Σ1 −→ Σ2 and

fΣ,2 = (fS,2, fOP,2, fX,2) : Σ2 −→ Σ3.

The composition of fΣ,1 and fΣ,2 defined componentwise by

fΣ,2 ◦ fΣ,1 = (fS,2 ◦ fS,1, fOP,2 ◦ fOP,1, fX,2 ◦ fX,1) : Σ1 −→ Σ3

is a higher-order signature morphism because functions of basic types, oper-
ations resp. variables are closed under composition and

• the source- and target functions are composable:

f→S,2 ◦ f→S,1 ◦ src1 = f→S,2 ◦ src2 ◦ fOP,1

= src3 ◦ fOP,2 ◦ fOP,1

(analogously for the target function)

• the sorts of variables are composable:

f→S,2 ◦ f→S,1 ◦ var1 = f→S,2 ◦ var2 ◦ fX,1

= var3 ◦ fX,2 ◦ fX,1.

Associativity: Let fΣ,i = (fS,i, fOP,i, fX,i), i = 1, 2, 3, be three higher-order sig-
nature morphisms. Then the composition is associative because it is defined
componentwise, i.e. we have

(fΣ,3 ◦ fΣ,2) ◦ fΣ,1 = fΣ,3 ◦ (fΣ,2 ◦ fΣ,1).

Identity: The identity is the identity higher-order signature morphisms. Because
the composition is defined componentwise, the identity law is satisfied, i.e. we
have for fΣ = (fS , fOP , fX) : Σ→ Σ′

fΣ ◦ idΣ = fΣ and idΣ′ ◦ fΣ = fΣ.

�

Next we show that the category HOSig is finitely cocomplete, i.e. it has all
finite colimits like initial objects, coequalizer, and pushouts. This result will be
used to show the finite cocompleteness of the category of algebraic higher-order net
schemes in Section 4.1.
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Fact 3.1.13 (HOSig is finitely cocomplete)
The category HOSig is finitely cocomplete.

Proof: We have to show that HOSig has an initial object and all pushouts.

Initial Object The initial object Σ∅ is given by

Σ∅ = (S∅, OP∅, scr∅, tar∅, X∅, var∅)

with

• S∅ = OP∅ = X∅ = ∅ and

• scr∅ = tar∅ = var∅ the empty function.

Given a higher-order signature Σ = (S, OP,X), then the unique higher-order
signature morphisms fΣ,∅ : Σ∅ −→ Σ with fΣ,∅ = (fS,∅, fOP,∅, fX,∅) is given
by

• fS,∅ = fOP,∅ = fX,∅ the empty function, where the compatibility of the
source function, the target function and the sorts of variables holds due
to the emptiness of OP∅ and X∅.

Pushouts Given higher-order signature Σi = (Si, OPi, Xi) for i ∈ {1, 2, 3} and a
pair of higher-order signature morphisms fΣ = (fS , fOP , fX) : Σ1 −→ Σ2 and
gΣ = (gS , gOP , gX) : Σ1 −→ Σ3, then the pushout consisting of the pushout
object Σ4 = (S4, OP4, X4) and the pair of higher-order signature morphisms
f ′Σ = (f ′S , f ′OP , f ′X) : Σ2 −→ Σ4 and g′Σ = (g′S , g′OP , g′X) : Σ3 −→ Σ4 is
constructed by the following pushouts in Sets.

S1
fS //

gS

��
=

S2

f ′S
��

OP1
fOP //

gOP

��
=

OP2

f ′OP

��

X1
fX //

gX

��
=

X2

f ′X
��

S3
g′S

// S4 OP3
g′OP

// OP4 X3
g′X

// X4

Moreover, we have due to Fact 3.1.7 the following pushout of higher-order
types in Sets.

S→1
f→S //

g→S
��

=

S→2

f→′
S

��
S→3

g→′
S

// S→4

Because fΣ and gΣ are higher-order signature morphisms, we have

f→′
S ◦ src2 ◦ fOP = g→′

S ◦ src3 ◦ gOP .

Due to the pushout property of OP4 there exists one and only one morphism
src4 : OP4 −→ S→4 such that

f→′
S ◦ src2 = src4 ◦ f ′OP and g→′

S ◦ src3 = src4 ◦ g′OP .

Analogously, the pushout property of OP4 yields tar4 : OP4 −→ S→4 .
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OP1

src1 //
tar1

//

gOP

��

fOP
""E

EEEEEEE S→1
f→S

!!C
CC

CC
CC

C
g→S

��

OP2

src2 //
tar2

//

f ′OP

��

S→2

f→′
S

��

OP3

src3 //
tar3

//

g′OP ""E
EEEEEEE S→3

g→′
S

!!C
CC

CC
CC

C

OP4

src4 //
tar4

// S→4

In addition, because fΣ and gΣ are higher-order signature morphisms, we have

f→′
S ◦ var2 ◦ fX = g→′

S ◦ var3 ◦ gX .

Due to the pushout property of X4 there exists one and only one morphism
var4 : X4 −→ S→4 such that f→′

S ◦var2 = var4◦f ′X and g→′
S ◦var3 = var4◦g′X .

X1
var1 //

gX

��

fX
  B

BB
BB

BB
B S→1

f→S

!!C
CC

CC
CC

C
g→S

��

X2
var2 //

f ′X

��

S→2

f→′
S

��

X3
var3 //

g′X   B
BB

BB
BB

B S→3
g→′

S

!!C
CC

CC
CC

C

X4
var4 // S→4

f ′Σ = (f ′S , f ′OP , f ′X) and g′Σ = (g′S , g′OP , g′X) are well-defined, i.e. they satisfy
the compatibility of source- and target functions resp. sorts of variables due
to the induced morphisms src4, tar4, and var4. The commutativity follows
directly from the componentwise construction of the higher-order signature
morphisms and the commutativity of the diagrams above, i.e.

(g′S ◦ gS , g′OP ◦ gOP , g′X ◦ gX) = (f ′S ◦ fS , f ′OP ◦ fOP , f ′X ◦ fX)

=⇒ g′Σ ◦ gΣ = f ′Σ ◦ fΣ.

Next we check the pushout property. Given another higher-order signature
Σ = (S, OP,X) and a pair of higher-order signature morphisms

hΣ = (hS , hOP , hX) : Σ2 −→ Σ and

h′Σ = (h′S , h′OP , h′X) : Σ3 −→ Σ

such that hΣ ◦ fΣ = h′Σ ◦ gΣ.
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Σ1

=

fΣ //

gΣ

��

Σ2

f ′Σ

��
hΣ

��

Σ3

g′Σ //

h′Σ --

Σ4

kΣ

&&
Σ

Then the induced morphism kΣ = (kS , kOP , kX) : Σ4 −→ Σ is obtained by the
induced morphisms kS , kOP , and kX of each component S4, OP4 resp. X4. k
is well-defined, i.e. it satisfies the compatibility of source- and target functions
resp. types of variables due to the induced morphisms kS , kOP and kX , i.e.
the following diagrams commute

OP4

src4 //
tar4

//

kOP

��
=

S→4

kS→

��
=

X4
var4oo

kX

��
OP

src //
tar
// S→ Xvar

oo

where k→S is the unique function induced by kS (see Fact 3.1.7).

Finally, uniqueness of k follows immediately due to the uniqueness of each
component kS , kOP and kX .

�

In the following we define the set of terms, which are generated by a higher-order
signature.

Definition 3.1.14 (Set of Higher-Order Terms)
Let Σ = (S, OP,X) be a higher-order signature. Then (TΣ,type(X))type∈S→ is the
least S→-sorted set inductively constructed by the following rules:

1. ⇒ 〈〉 ∈ TΣ,unit(X)

2. x : type ∈ X ⇒ x ∈ TΣ,type(X)

3. op : type1 ⇀ type2 ∈ OP, term ∈ TΣ,type1(X)

⇒ op(term) ∈ TΣ,type2(X)

4. term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen
(X), typei ∈ BFS→

⇒ 〈term1, . . . , termn〉 ∈ TΣ,(type1?...?typen)(X)

5. pr
(type1?...?typen)
i ∈ (OP→ \OP ), term ∈ TΣ,(type1?...?typen)(X)

⇒ pr
(type1?...?typen)
i (term) ∈ TΣ,typei

(X).

The set of Σ-terms TΣ(X) is defined by TΣ(X) =
⋃

type∈S→ TΣ,type(X).

Instead of using an S→-sorted set of terms we prefer the notion of a set of terms
because in the context of algebraic higher-order nets these terms are used in the net
inscriptions. For this reason, we use the notion of the free commutative monoids
which are generated over a set of terms (and a set of places).
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To form tuples of terms the type of the involved terms have to be of single
type because we avoid nested product types (see Def. 3.1.1). But to simplify our
notations, especially in the folding and unfolding constructions in Chapter 5, we
introduce the following notation.

Remark 3.1.15 (Nested Product Terms)
Let n, m1, . . . ,mn ∈ N and

〈term1,1, . . . , term1,m1〉 ∈ TΣ,(type1,1?...?type1,m1 )(X)
...

〈termn,1, . . . , termn,mn
〉 ∈ TΣ,(typen,1?...?typen,mn )(X).

Then we use the notation

〈term1,1, . . . , term1,m1 , . . . , termn,1, . . . , termn,mn
〉

for a term of type (type1,1 ? . . . ? type1,m1 ? . . . ? typen,1 ? . . . ? typen,mn
).

Remark 3.1.16 (Applications and Atomic Formulas)
Let c : type ∈ OP be a constant symbol. Then we denote the term c(〈〉) as in
classical algebras by c ∈ TΣ,type(X). Moreover, let op : (type1 → type2) ∈ OP be
a constant symbol and term ∈ TΣ,type1 . Then we use (op.term) as an abbreviation
of applytype1,type2(op, term), or more precisely of applytype1,type2(op(〈〉), term).

The set TΣ,unit(X) is the set of atomic formulas. Especially let p′ : type ⇀ unit
be a predicate symbol and p : (type→ unit) ∈ OP be a predicate (see Rem. 3.1.9),
then for all term ∈ TΣ,type we have p′(term), (p.term) ∈ TΣ,unit(X).

In the subsequent sections we introduce variables and operation symbols, which
occur in the net inscription of algebraic higher-order nets. For this reason we
introduce the notion of the set variables and the set of operation symbols occurring
in terms.

Definition 3.1.17 (Variables and Operation Symbols of Terms)
Let a higher-order signature Σ = (S, OP,X) and term ∈ TΣ(X) be given. Then
the set V ar(term) of variables occurring in term and the set Op(term) of operation
symbols occurring in term are recursively defined by

1. V ar(〈〉) = Op(〈〉) = ∅ for 〈〉 ∈ TΣ,unit(X)

2. V ar(x) = {x} and Op(x) = ∅ for all x : type ∈ X

3. V ar(op(term)) = V ar(term) and Op(op(term)) = {op} ∪Op(term)

for all (op : type1 ⇀ type2) ∈ OP, term ∈ TΣ,type1(X)

4. V ar(〈term1, . . . , termn〉) = V ar(term1) ∪ . . . ∪ V ar(termn) and

Op(〈term1, . . . , termn〉) = Op(term1) ∪ . . . ∪Op(termn)

for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen
(X)

5. V ar(pr
(type1?...?typen)
i (term)) = V ar(term) and

Op(pr
(type1?...?typen)
i (term)) = Op(term)

for all pr
(type1?...?typen)
i ∈ (OP→ \OP ), term ∈ TΣ,(type1?...?typen)(X).

Because algebraic higher-order nets are related by mappings, we need a notion
of translation of terms to relate the net inscriptions of the source net to the net
inscriptions of the target net. Note that in the translation we consider the sets of
terms wrt. two different higher-order signatures.
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Definition 3.1.18 (Translation of Terms)
Let fΣ : Σ1 −→ Σ2 be a higher-order signature morphism with f = (fS , fOP , fX).
The translation of Σ1-terms by fΣ to Σ2-terms is obtained by replacing the corres-
ponding variables and operation symbols, i.e. f ]

Σ : TΣ1(X1) −→ TΣ2(X2) is recurs-
ively defined by

1. f ]
Σ(〈〉) = 〈〉 for 〈〉 ∈ TΣ1,unit(X)

2. f ]
Σ(x) = fX(x) for all x : type ∈ X1

3. f ]
Σ(op(term)) = fOP (op)(f ]

Σ(term))

for all (op : type1 ⇀ type2) ∈ OP1, term ∈ TΣ1,type1(X1)

4. f ]
Σ(〈term1, . . . , termn〉) = 〈f ]

Σ(term1), . . . , f
]
Σ(termn)〉

for all term1 ∈ TΣ1,type1(X1), . . . , termn ∈ TΣ1,typen
(X1)

5. f ]
Σ(pr

(type1?...?typen)
i (term)) = pr

(f→S (type1?...?typen))
i (f ]

Σ(term))

for all pr
(type1?...?typen)
i ∈ (OP→

1 \OP1), term ∈ TΣ1,(type1?...?typen)(X1).

The set of terms wrt. a higher-order signature leads to a functorial construction.
This result will be used to show the finitely cocompleteness of the category of
algebraic higher-order net schemes in Section 4.1.

Fact 3.1.19 (Functor TΣ : HOSig→ Sets)
The functor TΣ : HOSig → Sets is defined for all higher-order signatures Σ =
(S, OP,X) by the corresponding set of terms TΣ(X) and for all fΣ : Σ1 −→ Σ2 by
the translation of terms.

Proof: We have to show that TΣ preserves compositions and identities.

Composition: For all fΣ,1 ∈ MorHOSig (Σ1,Σ2) and fΣ,2 ∈ MorHOSig (Σ2,Σ3)
we have

TΣ(fΣ,2 ◦ fΣ,1) = (fΣ,2 ◦ fΣ,1)]

= (f ]
Σ,2 ◦ f ]

Σ,1)

= TΣ(fΣ,2) ◦ TΣ(fΣ,1)

where (fΣ,2 ◦ fΣ,1)] = f ]
Σ,2 ◦ f ]

Σ,1 can be shown by structural induction over
the term structure TΣ(X).

Induction Base:

1. (f ]
Σ,2 ◦ f ]

Σ,1)(〈〉) = 〈〉 = (fΣ,2 ◦ fΣ,1)](〈〉)
for 〈〉 ∈ TΣ1,unit(X1)

2. (f ]
Σ,2 ◦ f ]

Σ,1)(x) = fX,2(fX,1(x)) = (fΣ,2 ◦ fΣ,1)](x)

for all x ∈ X1

Induction Step: Let (fΣ,2 ◦ fΣ,1)](termi) = (f ]
Σ,2 ◦ f ]

Σ,1)(termi) for some
termi ∈ TΣ(X), i = 1, . . . , n.

3. (f ]
Σ,2 ◦ f ]

Σ,1)(op(term))

= fOP,2(fOP,1(op))((f ]
Σ,2 ◦ f ]

Σ,1)(term))

= fOP,2(fOP,1(op)((fΣ,2 ◦ fΣ,1)](term))

= (fΣ,2 ◦ fΣ,1)](op(term))

for all op : type1 ⇀ type2 ∈ OP and all term ∈ TΣ,type1(X))
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4. (f ]
Σ,2 ◦ f ]

Σ,1)(〈term1, . . . , termn〉)

= 〈(f ]
Σ,2 ◦ f ]

Σ,1)(term1), . . . , (f
]
Σ,2 ◦ f ]

Σ,1)(termn)〉
= 〈(fΣ,2 ◦ fΣ,1)](term1), . . . , (fΣ,2 ◦ fΣ,1)](termn)〉
= (fΣ,2 ◦ fΣ,1)](〈term1, . . . , termn〉)
for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen

(X)

5. (f ]
Σ,2 ◦ f ]

Σ,1)(pr
(type1?...?typen)
i (term))

= pr
((f→S,2◦f

→
S,1)(type1)?...?typen))

i ((f ]
Σ,2 ◦ f ]

Σ,1)(term))

= pr
((f→S,2◦f

→
S,1)(type1?...?typen))

i ((fΣ,2 ◦ fΣ,1)](term))

= (fΣ,2 ◦ fΣ,1)](pr
(type1?...?typen)
i (term))

for all pr
(type1?...?typen)
i ∈ (OP→ \OP ),

term ∈ TΣ1,(type1?...?typen)

Identity: For all idΣ ∈MorHOSig (Σ,Σ) we have

TΣ(idΣ) = id]
Σ = idTΣ(X).

�

In the following we introduce higher-order partial algebras, which provide a set
theoretic definition of domains and operations. Operation symbols named by the
higher-order signature are interpreted by partial functions. As mentioned above we
prefer an intensional setting, i.e. higher-order types and especially function types
are interpreted by arbitrary sets.

Definition 3.1.20 (Higher-Order Partial Algebras)
Let Σ = (S, OP,X) be a higher-order signature. A higher-order (partial) Σ-algebra
A = (A(BFS→), A(OP )) is given by a BFS→-sorted set of carriers of A:

A(BFS→) = (Atype)type∈BFS→

and by an OP -sorted set of partial operations of A, i.e. there is a partial function
opA : Atype1 −→◦ Atype2 for every op : type1 ⇀ type2 ∈ OP :

A(OP ) = (opA)op∈OP .

The carriers A(BFS→) of A can be extended inductively to an S→-sorted set
A(S→) = (Atype)type∈S→ as follows:

Aunit := {()} and
A(type1?...?typen) := Atype1 × . . .×Atypen

.

Moreover, the set of partial operations A(OP ) of A can be extended to an OP→-
sorted set A(OP→) = (opA)op∈OP→ by

pr
(type1?...?typen)
i,A : A(type1?...?typen) −→ Atypei

with

pr
(type1?...?typen)
i,A (a1, . . . , an) = ai

for all pr
(type1?...?typen)
i ∈ (OP→ \OP ) and (a1, . . . , an) ∈ A(type1?...?typen).
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Definition 3.1.21 (Higher-Order Term Evaluation)
Let Σ = (S, OP,X) be a higher-order signature. A variable valuation of X in
a higher-order partial Σ-algebra A is a (total) function v : X −→ A(S→) with
v(x) ∈ Atype for x : type ∈ X. The term evaluation of TΣ(X) in A(S→) wrt. v is a
partial function v] : TΣ(X) −→◦ A recursively defined by

1. v](〈〉) S= () for 〈〉 ∈ TΣ,unit(X)

2. v](x) S= v(x) for all x ∈ X

3. v](op(term)) S= opA(v](term))

for all op : type1 ⇀ type2 ∈ OP and term ∈ TΣ,type1(X)

4. v](〈term1, . . . , termn〉)
S= (v](term1), . . . , v](termn))

for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen
(X)

5. v](pr
(type1?...?typen)
i (term)) S= pr

(type1?...?typen)
i,A (v](term))

for all pr
(type1?...?typen)
i ∈ (OP→ \OP ) and term ∈ TΣ1,(type1?...?typen)

were the equality symbol exp S= exp′ is used to state strong equality, i.e. that either
both sides denote the same value or both sides do not denote any value.

Remark 3.1.22 (Application Symbol)
We use the notation (op.term)A as an abbreviation of applytype1,type2

A (op, term).
Moreover, let c : type ∈ OP be a constant symbol. Then cA = a ∈ Atype is an
abbreviation of cA : Aunit −→ Atype with cA(()) = a.

Definition 3.1.23 (Higher-Order Homomorphisms)
Let Σ = (S, OP,X) be a higher-order signature. For two higher-order partial Σ-
algebras A1 and A2 a higher-order homomorphism is given by a total BFS→-sorted
function

fA : A1 −→ A2 = (fA,type : A1,type −→ A2,type)type∈BFS→

satisfying the following two conditions for all op : type1 ⇀ type2 ∈ OP :

(D) fA,type1(dom(opA1)) ⊆ dom(opA2)

(H) fA,type2(opA1(a)) = opA2(fA,type1(a)) for all a ∈ dom(opA1) ⊆ A1,type1

Every BFS→-sorted function can be extended to a S→-sorted function

fA : A1 −→ A2 = (fA,type : A1,type −→ A2,type)type∈S→

by
fA,unit := id{()} and
fA,(type1?...?typen)(a1, . . . , an) := (fA,type1(a1), . . . , fA,typen(an))

for all (a1, . . . , an) ∈ A1,(type1?...?typen) 6= ∅. In case A1,typei
= ∅ for some 1 ≤ i ≤ n

fA,(type1?...?typen) is considered to be the inclusion of the empty set A1,(type1?...?typen)

= ∅ into A2,(type1?...?typen).

Fact 3.1.24 (Evaluation Theorem)
For any variable valuation v : X −→ A1(S→) and any higher-order homomorphism
fA : A1 −→ A2 we have that fA ◦ v] is a restriction of (fA ◦ v)], i.e.
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(1) dom(v]) = dom(fA ◦ v]) ⊆ dom((fA ◦ v)]) and

(2) (fA ◦ v])(term) = (fA ◦ v)](term) for all term ∈ dom(fA ◦ v]).

Proof: Let v] : TΣ −→◦ A be a term evaluation. Then we have

dom(v]) = dom(fA ◦ v])

because fA is a total S→-sorted function. Moreover, we have by induction over the
term structure TΣ(X):

Induction Base:

1. fA ◦ v](〈〉) = fA(()) = (fA ◦ v)](〈〉)
for 〈〉 ∈ TΣ,unit(X) and 〈〉 ∈ dom(fA ◦ v])

2. fA ◦ v](x) = fA ◦ v(x) = (fA ◦ v)](x)

for all x ∈ X and x ∈ dom(fA ◦ v])

Induction Step: Given fA ◦ v](termi) = (fA ◦ v)](termi) for i ∈ {1, . . . , n} and
termi ∈ TΣ(X) and termi ∈ dom(fA ◦ v]).

3. fA ◦ v](op(term)) = fA(opA1(v
](term))

= opA2(fA ◦ v](term))

= opA2((fA ◦ v)](term))

= (fA ◦ v)](op(term))

for all op : type1 ⇀ type2 ∈ OP and term ∈ TΣ,type1(X))

and op(term) ∈ dom(fA ◦ v])

4. fA ◦ v](〈term1, . . . , termn〉) = fA(v](term1), . . . , v](termn))

= (fA ◦ v](term1), . . . , fA ◦ v](termn))

= ((fA ◦ v)](term1), . . . , (fA ◦ v)](termn))

= (fA ◦ v)](〈term1, . . . , termn〉)
for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen(X)

and term1 ∈ dom(fA ◦ v]), . . . , termn ∈ dom(fA ◦ v])

5. fA ◦ v](pr
(type1?...?typen)
i (term)) = pr

(type1?...?typen)
i,A2

(fA ◦ v](term))

= pr
(type1?...?typen)
i,A2

((fA ◦ v)](term))

= (fA ◦ v)](pr
(type1?...?typen)
i (term))

for all term ∈ TΣ1,(type1?...?typen)(X) with term ∈ dom(fA ◦ v]).

Thus dom(fA ◦ v]) ⊆ dom(fA ◦ v)] and fA ◦ v](term) = (fA ◦ v)](term) for all
term ∈ dom(fA ◦ v]). �

Fact 3.1.25 (Category HOAlg(Σ))
The category HOAlg(Σ) consists of partial higher-order Σ-algebras as objects and
higher-order homomorphisms as morphisms.

Proof: We show that the composition defined componentwise is associative and
the identity law is satisfied.
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Composition: Given higher-order partial Σ-algebras Ai for i ∈ {1, 2, 3} and a pair
of higher-order homomorphisms

fA,1 =: A1 −→ A2 and fA,2 : A2 −→ A3.

The composition of fA,1 and fA,2 defined componentwise by

fA,2 ◦ fA,1 : A1 −→ A3 with

fA,2 ◦ fA,1 = (fA,2,type ◦ fA,1,type : A1,type −→ A2,type)type∈S→
.

is a higher-order homomorphism because functions are closed under compos-
ition and the conditions (D) and (H) in Def. 3.1.23 are satisfied.

fA,2,type1(fA,1,type1(dom(opA1))) ⊆ fA,2,type1(dom(opA2))

⊆ dom(opA3)

fA,2,type2(fA,1,type2(opA1(a))) = fA,2,type2(opA2(fA,1,type1(a)))

= opA3(fA,2,type1(fA,1,type1(a)))

for all op : type1 ⇀ type2 ∈ OP and for all a ∈ dom(opA1) ⊆ A1,type1 .

Associativity: Let fA,i for i ∈ {1, 2, 3} be three higher-order homomorphisms.
Then the composition is associative due to the associativity of the S→-sorted
functions, i.e. we have

(fA,3 ◦ fA,2) ◦ fA,1 = fA,3 ◦ (fA,2 ◦ fA,1).

Identity: The identity is given by the identity higher-order homomorphisms and
satisfies obviously the identity law, i.e. we have for fA : A→ A′

fA ◦ idA = fA and idA′ ◦ fA = fA.

�

3.2 Definition of Algebraic Higher-Order Nets

Based on the data type part provided in the previous section we introduce in this
section algebraic higher-order nets schemes and algebraic higher-order nets, where
the latter are algebraic higher-order net schemes with a suitable higher-order al-
gebra. Algebraic higher-order nets are staying close to algebraic high-level nets
as presented in Section 2.3. The relation between algebraic high-level nets and
algebraic higher-order nets will be discussed later in Section 10.2.

In the following we present the main items, which are essential for algebraic
higher-order nets, in more detail. Summarizing, net inscriptions are defined by
terms over a higher-order signatures, while firing conditions are given by atomic
formulas to guarantee, that certain constraints are respected. The marking of al-
gebraic higher-order nets consists not only of simple data tokens but also of higher-
order data tokens, which are elements from a given higher-order partial algebra.
Note that the typing of places includes function and product types and the order
of these types is allowed to be arbitrarily high.
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Partiality Because we have introduced the more powerful framework based on
the (possibly) partial interpretation of operation symbols, the concept of partiality
also occurs in our approach of algebraic higher-order nets. In detail, the evaluation
of the net inscriptions may not yield a result. Thus, we only consider those vari-
able valuations for which the evaluation of the net inscriptions is defined. From a
practical point of view the advantage is that in our approach there is no need for
an explicit error handling on the level of algebraic higher-order nets and a lot of
firing conditions can be avoided. More precisely there is a shift from the model
level to the data type level caused by the observation that both - firing conditions
and partial operations - navigate the behavior of our models. Thus instead of using
firing conditions in most cases we are able to specify suitable partial operations for
the same purpose.

Function Types The concept of higher-order functions can be used to define
the net inscriptions in algebraic higher-order nets. Because we prefer the notion of
intensional function space, in our approach functions occur as tokens in a natural
way and we can distinguish between different function tokens, which realize the
same behavior. Due to function types the mechanism of operation late-binding
mentioned above is introduced into our concept.

Product Types Our data type part introduces product types. This makes not
only higher-order algebras more applicable for the user but also algebraic higher-
order nets because we allow the assignment of products types to places. Moreover,
we obtain a more compact description of models as we will see in Section 5.2.

Predicates In higher-order partial algebras predicates are fully determined by
partial functions into a singleton set. Thus, we obtain the notion of atomic formu-
las, which is used in algebraic higher-order nets for the definition of firing conditions.
Because we are able to define arbitrary predicates, the complexity of firing condi-
tions can be arbitrarily high.

Next we define algebraic higher-order net schemes, where in contrast to algebraic
high-level nets the data type part is given by higher-order signatures. For most ap-
plications it is sufficient to consider a specific signature and define a corresponding
algebra. Moreover, it is more likely to get some results for algebraic higher-order
nets with higher-order signatures instead of higher-order specifications. Neverthe-
less, possible extensions to algebraic higher-order specifications will be discussed in
Chapter 7.

Definition 3.2.1 (Algebraic Higher-Order Net Schemes)
An algebraic higher-order (AHO) net scheme

N = (Σ, P, T, pre, post, cond, type)

consists of

• a higher-order signature with variables Σ = (S, OP,X) (see Def. 3.1.10),

• a set P of places and a set T of transitions,

• pre- and post domain functions

pre, post : T −→ (TΣ(X)⊗ P )⊕

assigning to each transition t ∈ T the pre- and post domains pre(t) and post(t)
(see Rem. 3.2.2), respectively,
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• a firing condition function

cond : T −→ TΣ,unit(X)

assigning to each transition t ∈ T an atomic formula cond(t) (see Rem. 3.1.16),

• and a type function
type : P −→ S→

assigning to each place p ∈ P a higher-order type type(p) (see Def. 3.1.4).

Remark 3.2.2 (Pre- and Post-Domain Function)
Denoting by TΣ(X) the set of terms over the signature Σ (see Def. 3.1.14) and by
M⊕ the free commutative monoid over a set M (see Appendix B), the set of all
type consistent arc inscriptions (TΣ(X)⊗ P ) is defined by

(TΣ(X)⊗ P ) = {(term, p)|term ∈ TΣ,type(p)(X), p ∈ P}.

Thus, pre(t) (and similar post(t)) is of the form

pre(t) =
n∑

i=1

(termi, pi) for n ∈ N.

This means pi is in the pre domain of t with arc-inscription termi for i ∈ {1, . . . , n}.
Note that

∑n
i=1(termi, pi) might not be in normal form, but can be transformed

into normal form (see Appendix B). So, we distinguish the following four cases for
all t ∈ T and p ∈ P , where the notion pre(t)|p is the restriction of the pre domain
of the transition t to the place p. For further details we refer to Appendix B.

• pre(t)|p = λ, i.e. there is no arc from p to t (empty case),

• pre(t)|p = term, i.e. there is one and only one arc-inscription term for the arc
from p to t (unary case),

• pre(t)|p =
∑m

j=1 termj ,m ≥ 2, and term1 6= . . . 6= termm, i.e. there is an
arc-inscription term1 ⊕ . . .⊕ termm for the arc from p to t (multi-case I),

• pre(t)|p = m · term,m ∈ N,m ≥ 2, i.e. there is an arc-inscription m · term
with coefficient m for the arc from p to t (multi case II),

and analogously for the post domain. Note that multi-case I and multi-case II might
be mixed, e.g. pre(t)|p = term1 ⊕ (3 · term2) for term1 6= term2.

Definition 3.2.3 (Pre- and Post Sets)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme and t ∈ T with
pre(t) =

∑n
i=1(termi, pi). Then the pre set of t is defined by

•t = {p1, . . . , pn}

and analogously for the post set of t denoted by t•. The pre set for some p ∈ P is
defined by

•p = {t|t ∈ T, pre(t)|p 6= λ}
and analogously for the post set of p denoted by p•.

In the subsequent chapters we frequently require a specific net structure, called
contextual place. Exactly one transition is adjacent to a contextual place, where the
inscriptions for arcs between this transition and the contextual place are given by the
same variable. Thus tokens on contextual places are recovered in each firing step.
In this way the definition is in some sense similar to that of contextual nets with
read only arcs defined in [MR95] for the case of classical Petri nets. Additionally
we assume that a contextual place is not shared with other transitions.
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Definition 3.2.4 (Contextual Place)
Given an AHO-net scheme N = (Σ, P, T, pre, post, cond, type) with Σ = (S, OP,X)
and a transition t ∈ T . Then a place p ∈ P is a contextual place of t if there exists
a variable x ∈ X such that

pre(t)|p = post(t)|p = x

and for all t′ ∈ T \ {t} we have

p 6∈ •t′ ∧ p 6∈ t′•

Grounding on the notions in Def. 3.1.17, we define the set of variables and the
set of operation symbols, which occur in the net inscription of algebraic higher-order
nets. This will be used on the one hand to define the operational behavior in the
following definitions and on the other hand for some constructions, which will be
presented in Chapter 5.

Definition 3.2.5 (Variables of Transitions)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme. We define the set
V ar(t) of variables of a transition t ∈ T as the set of all variables occurring in the
pre- and post domain resp. firing condition of t, i.e.

V ar(t) = V ar(pre(t)) ∪ V ar(post(t)) ∪ V ar(cond(t))

where for pre(t) =
∑n

i=1(termi, pi) we define V ar(pre(t)) =
⋃

i∈{1,...,n} V ar(termi)
and analogously V ar(post(t)).

Definition 3.2.6 (Operation Symbols of Transitions)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme. We define the set
Op(t) of operation symbols of a transition t ∈ T as the set of all operation symbols
occurring in the pre- and post domain resp. firing condition of t, i.e.

Op(t) = Op(pre(t)) ∪Op(post(t)) ∪Op(cond(t))

where for pre(t) =
∑n

i=1(termi, pi) we define Op(pre(t)) =
⋃

i∈{1,...,n} Op(termi)
and analogously Op(post(t)).

In the following we define for each higher-order signature Σ the class of algebraic
higher-order nets wrt. Σ, where an algebraic higher-order net is an algebraic higher-
order net scheme together with a higher-order partial Σ-algebra.

Definition 3.2.7 (Algebraic Higher-Order Nets)
Let Σ be a higher-order signature. An algebraic higher-order (AHO) net (N,A)
wrt. Σ consists of

• an AHO-net scheme N = (Σ, P, T, pre, post, cond, type) and

• a higher-order partial Σ-algebra A (see Def. 3.1.20).

The marking of an AHO-net is denoted by tuples consisting of a data element and
the place it resides on. Moreover, we give a definition of parameterized markings,
where the marking of some places is fixed.

Definition 3.2.8 (Marking of an Algebraic Higher-Order Net)
Given an AHO-net (N,A) with the set of places P . Then a marking of (N,A) is
given by

M ∈ CP⊕
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where
CP = (A⊗ P ) = {(a, p)|a ∈ Atype(p), p ∈ P}.

Let PF ⊆ P and M(PF ) ∈ CP⊕ be an arbitrary but fixed marking of the set of
places PF . Then the restriction of CP⊕ wrt. the marking M(PF ) is defined by

CP⊕
M(P F )

= {M ∈ CP⊕|M|P F = M(PF )}.

We write MP F to indicate that MP F ∈ CP⊕
M(P F )

. Note that MP F is not equal to
M(PF ) or M|P F .

Next we define the set of consistent transition valuations, i.e. under which con-
ditions a transition t can fire. In detail, the evaluation of the net inscriptions in the
environment of the transition t has to be defined.

Definition 3.2.9 (Consistent Transition Valuation)
Given an AHO-net (N,A) with a set of transitions T . Let t ∈ T a transition with
variables V ar(t) and v : V ar(t) −→ A a variable valuation with term evaluation
v] : TΣ(V ar(t)) −→◦ A (see Def. 3.1.21). Then (t, v) is a consistent transition
valuation iff

cond(t) ∈ dom(v]) and
∀(term, p) ∈ pre(t)⊕ post(t) : term ∈ dom(v]).

The set CT of consistent transition valuations is defined by

CT = {(t, v)|t ∈ T, v : V ar(t) −→ A, (t, v) consistent transition valuation}.

Definition 3.2.10 (Enabledness of Transitions)
Given an AHO-net (N,A) with a set of transitions T . Let t ∈ T a transition with
variables V ar(t) and v : V ar(t) −→ A a variable valuation such that (t, v) ∈ CT .
The transition t is enabled in a marking M ∈ CP⊕ under v, denoted by M [(t, v)〉,
iff

preA(t, v) ≤M

where preA : CT −→ CP⊕ is defined by preA(t, v) = v̂(pre(t)) and

v̂ : (TΣ(V ar(t))⊗ P )⊕ −→ (A⊗ P )⊕

is the unique extension of v] : TΣ(V ar(t)) −→ A to terms and places, that is
v̂ = v] × idP .

The behavior is given by the firing of transitions, i.e. tokens are moved over the
set of places.

Definition 3.2.11 (Follower Marking)
Given an AHO-net (N,A) with a set of transitions T . Let t ∈ T a transition,
(t, v) ∈ CT a consistent transition valuation and M ∈ CP⊕ a marking such that t
be enabled in M under v. Then the follower marking M ′ ∈ CP⊕ of M after firing
of t is defined by

M ′ = M 	 preA(t, v)⊕ postA(t, v)

where postA : CT −→ CP⊕ is defined by postA(t, v) = v̂(post(t)). We say that M ′

is directly reachable from M by the firing step (t, v) denoted by M [(t, v)〉M ′. The
set [M〉 of reachable markings of M ∈ CP⊕ is the least set of markings such that

• M ∈ [M〉 and

• M1 ∈ [M〉 ∧M1[(t, v)〉M2 =⇒ M2 ∈ [M〉.
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A finite firing sequence

M1[(t1, v1)〉M2[(t2, v2)〉M3 . . . [(tn, vn)〉Mn+1

consist of a finite number n ∈ N of firing steps including the empty sequence
M1[∗〉M1 for n = 0. The length of the occurrence sequence is given by the number
of steps n. The marking M1 is called start marking and the marking Mn+1 is called
end marking.

3.3 Example: Computation as AHO-Net

The algebraic high-level net “Computation” (see Fig. 2.2 in Section 2.3) can be
represented in a more compact way by an algebraic higher-order net. To allow places
resp. tokens of function and product types we have to replace the classical signature
Nat by an appropriate higher-order signature and the classical Nat-algebra A by a
higher-order algebra. The signature Nat is turned into the higher-order signature
HO-Nat by introducing the same sort Nat as a basic type of HO-Nat. In addition
to this basic type the higher-order signature HO-Nat has product and function
types like Nat ? Nat, Nat→ Nat and Pred(Nat ? Nat), where Pred(Nat ? Nat) is
an abbreviation of (Nat ? Nat→ unit) (see Rem. 3.1.9).

The operations of the classical signature Nat are turned into constants of ap-
propriate higher-order types, i.e. leq and geq are predicates of type Pred(Nat?Nat)
and add and sub are constant symobls of type (Nat ? Nat→ Nat).

HO-Nat =
sorts: Nat
opns: leq, geq : Pred(Nat ? Nat)

add, sub : (Nat ? Nat→ Nat)

Note that the predicates leq and geq of type Pred(Nat?Nat) are in fact operation
symbols of type unit ⇀ (Nat ? Nat → unit) and the constant symbols add and
sub of type (Nat ? Nat → Nat) are in fact operation symbols of type unit ⇀
(Nat ? Nat → Nat). Moreover, the higher-order signature HO-Nat contains an
application symbol applytype1,type2 : (type1 → type2) ? type1 ⇀ type2 for each
function type (type1 → type2) ∈ S→, for instance applyNat?Nat,Nat : (Nat ? Nat→
Nat)?(Nat?Nat) ⇀ Nat for the function type (Nat?Nat→ Nat) ∈ S→. Because
we have defined leq and geq as predicates there is no need for a boolean type and
boolean constants especially not in this example.

In the higher-order HO-Nat-algebra HO-A the carrier HO-ANat consists of
natural numbers. Here we do not need an explicit error element undef because
the interpretation of operation symbols in a higher-order partial algebra is given by
partial functions. We define the higher-order HO-Nat-algebra HO-A by

• HO-ANat = N,

• HO-APred(Nat?Nat) = {<,>} with leqHO-A = <, geqHO-A = >, and

applyNat?Nat,unit
HO-A : {<,>} × (HO-ANat ×HO-ANat) −→◦ HO-Aunit

for n1, n2 ∈ N with

(< .(n1, n2))A =

{
() if n1 < n2

undef else
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and

(> .(n1, n2))A =

{
() if n1 > n2

undef else

• HO-ANat?Nat→Nat = {+,−} with addHO-A = +, subHO-A = −, and

applyNat?Nat,Nat
HO-A : {+,−} × (HO-ANat ×HO-ANat) −→◦ HO-ANat

for n1, n2 ∈ N with
(+.(n1, n2))A = n1 + n2

and

(−.(n1, n2))A =

{
n1 − n2 if n1 > n2

undef else

Note that the carrier of HO-A is inductively extended by HO-Aunit := {()}
and HO-Atype1?...?typen

:= HO-Atype1 × . . . × HO-Atypen
. Moreover, for each type

type ∈ S→, which is not interpreted above, we have HO-Atype = ∅ and for each
application symbol applytype1,type2 : (type1 → type2) ? type1 ⇀ type2, which is not
defined above, we have (f.x)A = undef for f ∈ HO-Atype1→type2 and x ∈ HO-Atype1 .
Otherwise this results in an empty function.

The AHL-net ”Computation” in Fig. 2.2 is turned into the AHO-net “Compu-
tation I” in Fig. 3.1, where the terms denoted in the net inscription of the AHL-
net “Computation” are replaced by higher-order terms, e.g. the net inscription
add(x, y) is given by the higher-order term (add.〈x, y〉), which is an abbreviation
of applyNat?Nat,Nat(add(〈〉), 〈x, y〉). Moreover, the firing conditions of the AHL-net
“Computation” in Fig. 2.2 are translated into atomic formulas. For instance the
firing condition leq(x, y) = tt is given by the atomic formula (leq.〈x, y〉). Thus the
AHO-net “Computation I” is defined by (N,HO-A) with

N = ((HO-Nat, X), P, T, pre, post, cond, type)

where X is a suitable set of typed variable and

• P = {p1, p2, p3} is the set of places and T = {compute add, compute sub} is
the set of transitions,

• pre, post : T −→ (THO-Nat(X)⊗ P )⊕ are the pre- and post domain functions
with

pre(t) = (x, p1)⊕ (y, p2)

and

post(t) =

{
(x, p1)⊕ (y, p2)⊕ ((add.〈x, y〉), p3) if t = compute add
(x, p1)⊕ (y, p2)⊕ ((sub.〈x, y〉), p3) if t = compute sub

• cond : T −→ THO-Nat,unit(X) is the firing condition function with

cont(t) =

{
(leq.〈x, y〉) if t = compute add
(geq.〈x, y〉) if t = compute sub

• and type : P −→ S→ is the type function with type(p) = Nat.
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1    2    32    3    4

(geq.〈x, y〉)

p2 : Nat

compute sub

p1 : Nat

x y

x y

(sub.〈x, y〉)

compute add

(leq.〈x, y〉)

(add.〈x, y〉)

p3 : Nat

Figure 3.1: Algebraic higher-order net “Computation I”

As before the initial marking is given by M =
∑4

i=2(i, p1) ⊕
∑3

j=1(j, p2). To
demonstrate that the firing behavior of the AHL-net “Computation” and the AHO-
net “Computation I” are equivalent we define a variable valuation

v : V ar(compute sub) −→ A with v(x) = 3 and v(y) = 2

for the variables of the transition compute sub (and similar for compute add). Next
we check that (compute sub, v) is a consistent transition valuation, i.e. the net in-
scriptions of the transition compute sub are defined in HO-A under v.

• For cond(t) = (geq.〈x, y〉) we have

v](geq.〈x, y〉) = (> .(3, 2))A = () ∈ HO-Aunit.

• For pre(t) = (x, p1)⊕ (y, p2) we have

v(x) = 3 ∈ HO-ANat and v(y) = 2 ∈ HO-ANat.

• For post(t) = ((sub.〈x, y〉), p3) we have

v](sub.〈x, y〉) = (−.(3, 2))A = 1 ∈ HO-ANat.

Moreover, the transition compute sub is enabled in M under v because

preA(t, v) = v̂((x, p1)⊕ (y, p2)) = (3, p1)⊕ (2, p2) ≤M.

Then the follower marking is computed as follows: the data element 3 on place p1

and the data element 2 on place p2 remain unchanged as indicated by the double
arrow, while the result v](sub.〈x, y〉) = 1 is added to the place p3.

Because in the higher-order signature HO-Nat there are product types like Nat?
Nat available we get a more compact description of the AHO-net “Computation I”
in Fig. 3.1 by applying a folding construction wrt. product types. This results in the
AHO-net “Computation II” in Fig. 3.2. More precisely the folding construction wrt.
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(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

(4,1) (4,2) (4,3)

p3 : Nat

compute sub

〈x, y〉

(sub.〈x, y〉)

compute add

(geq.〈x, y〉)

〈x, y〉

pF : Nat ? Nat

(add.〈x, y〉)

(leq.〈x, y〉)

Figure 3.2: Algebraic higher-order net “Computation II”

product types is applied to the subset of places PF = {p1, p2} ⊆ P . The set PF is
called a set of uniform places because it is a finite set of at least two places having
the same transitions in their pre- and post domains with unary arc inscriptions.
Then the AHO-net “Computation I” in Fig. 3.1 is folded in the following way: the
set of uniform places PF is replaced by the new place pF with type Nat ? Nat; the
arc inscription in the environment of the new place pF are obtained by folding the
arc inscriptions x and y into the tuple 〈x, y〉.

Note that the marking is regular, i.e. there is a subset A1 = {2, 3, 4} ⊆ HO-ANat

and a subset A2 = {1, 2, 3} ⊆ HO-ANat so that M|p1 =
∑

a1∈A1
a1 and M|p2 =∑

a2∈A2
a2. Thus we get the new marking of the place pF (see Fig. 3.2) by using

the well-known Cartesian product, i.e. M|pF =
∑

(a1,a2)∈A1×A2
(a1, a2).

A main result of the folding construction is that both AHO-net “Computation
I” and AHO-net “Computation II” are equivalent wrt. their firing behavior. There
is a dual notion of an unfolding construction wrt. product types, i.e. the AHO-net
“Computation II” can be unfolded into the AHO-net “Computation I”.

Due to the notation of operation symbols like add and sub as constant symbols
we are able to apply a folding construction wrt. constant symbols to the AHO-net
“Computation II” in Fig. 3.2. Because operation symbols are first-class citizens
like +,− ∈ HO-A(Nat?Nat→Nat), they can be considered as tokens in an AHO-net.
Moreover, we have variables of function type to build up terms like (fadd.〈x, y〉),
where fadd is a variable of type (Nat ? Nat → Nat) and we can define a variable
valuation v with v(fadd) = +.

The folding construction wrt. the constant symbol add and the transition com-
pute add results in the AHO-net “Computation III” in Fig. 3.3. In detail we add a
new place padd in the environment of the transition compute add, which is contex-
tual in the sense that this place is not in the environment of other transitions
and the arc inscriptions are given by the variable fadd. The type of the new
place padd is given by the function type according to the constant symbol add,
i.e. type(padd) = (Nat ? Nat → Nat). Moreover, the net inscription in the post
domain of the transition compute add is folded into the term (fadd.〈x, y〉), i.e. the
constant symbol add is replaced by the variable fadd. If we use the constant + as
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(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

(4,1) (4,2) (4,3)

p3 : Nat

compute sub

〈x, y〉

(sub.〈x, y〉)

compute add

(leq.〈x, y〉) (geq.〈x, y〉)

〈x, y〉

pF : Nat ? Nat

fadd

fadd

padd : Nat ? Nat → Nat

(fadd.〈x, y〉)

+

Figure 3.3: Algebraic higher-order net “Computation III”

initial marking for the new place padd, the AHO-net “Computation III” and the
AHO-net “Computation II” are equivalent wrt. their firing behavior.

In a further step we apply the folding construction wrt. the constant symbol leq
and the transition compute add. Thus a new contextual place pleq is introduced
with type Pred(Nat ? Nat) and the firing condition of the transition compute add
is folded into the term (gleq.〈x, y〉). Afterwards we apply the folding construction
wrt. product types and the set of uniform places PF ′

= {padd, pleq} and obtain the
AHO-net “Computation IV” in Fig. 3.4.

Analogously to the folding constructions described above we can proceed the
folding constructions wrt. the transition compute sub resulting in the AHO-net
“Computation V” in Fig. 3.5. Note that all AHO-nets presented in this section up
to now are still equivalent wrt. their firing behavior.

Finally, we use a horizontal structuring, called fusion, to obtain a more compact
description of the AHO-net “Computation V” in Fig. 3.5. Intuitively spoken, a
fusion of an AHO-net N wrt. two copies of a subnet N ′ in N means that in the
resulting AHO-net these copies are fused. The environment of the transitions com-
pute add and compute sub are more or less identical in the AHO-net “Computation
V” in Fig. 3.5. Thus in the AHO-net “Computation V” are two copies of a subnet
consisting of a transition with a contextual place, the place pF and the place p3 in
its environment. Then we fuse the two transitions compute add and compute sub
into one transition compute and the two contextual places pF ′

and pF ′′
into one

contextual place p, which results in the AHO-net “Computation VI” depicted in
Fig. 3.6.

Note that in contrast to the folding construction given above the fusion is defined
for AHO-net schemes. Thus we do not automatically obtain the initial marking as
indicated in Fig. 3.6. Nevertheless, using this initial marking we can show that the
AHO-net “Computation V” and the AHO-net “Computation VI” are equivalent
wrt. their firing behavior.

Summarizing, AHO-nets give rise to a more compact and abstract representation
of models due to the presence of function types and product types. The advantage of
AHO-nets is the reusability of a fixed net structure. To include further computations
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(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

(4,1) (4,2) (4,3)

(geq.〈x, y〉)

compute sub

〈x, y〉

(sub.〈x, y〉)

〈x, y〉

pF : Nat ? Nat

〈fadd, gleq〉

〈fadd, gleq〉

(fadd.〈x, y〉)

(+, <)

pF ′ : (Nat ? Nat → Nat)
? Pred(Nat ? Nat)

p3 : Nat

compute add

(gleq.〈x, y〉)

Figure 3.4: Algebraic higher-order net “Computation IV”

(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

(4,1) (4,2) (4,3)

(ggeq.〈x, y〉)

compute sub

〈x, y〉

(fsub.〈x, y〉)

〈x, y〉

pF : Nat ? Nat

〈fadd, gleq〉

(−, >)

pF ′′ : (Nat ? Nat → Nat)

〈fadd, gleq〉

〈fsub, ggeq〉

〈fsub, ggeq〉

(fadd.〈x, y〉)

(+, <)

pF ′ : (Nat ? Nat → Nat)
? Pred(Nat ? Nat)

p3 : Nat

? Pred(Nat ? Nat)

compute add

(gleq.〈x, y〉)

Figure 3.5: Algebraic higher-order net “Computation V”
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(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

(4,1) (4,2) (4,3)

p3 : Nat

pF : Nat ? Nat

(−, >)

(+, <)

p : (Nat ? Nat → Nat)

? Pred(Nat ? Nat) 〈x, y〉

compute〈f, g〉

〈f, g〉

(f.〈x, y〉)

(g.〈x, y〉)

Figure 3.6: Algebraic higher-order net “Computation VI”

into the AHO-net “Computation VI” we change the variable part of the AHO-net,
i.e. we change the marking of place p but keep the same net structure. By contrast,
in the AHL-net “Computation” in Fig. 2.2 the net structure have to be extended
by one transition for each further computation. Thus AHO-nets lead to flexible
and adaptable models and changes of the environment are reflected by changing
the corresponding marking.

For a detailed definition of the folding and unfolding constructions we refer to
Chapter 5, while the horizontal structuring technique fusion will be explained in
the subsequent chapter. More examples can be found in our case study “Logistics”
in Chapter 9.



Chapter 4

Structuring of Algebraic
Higher-Order Nets

In this chapter we explore the formalisms of algebraic higher-order net schemes
and algebraic higher-order nets on a categorical level. In general, category theory
presents an abstract framework to model mathematical structures due to their uni-
versal properties so that they can be investigated independent from the internal
structures. The basic categorical notions and results used in this chapter are sum-
marized in Appendix A. In Section 3.1 we have also applied the framework of cat-
egory theory to the concepts of higher-order algebras, where we mainly deal with
the terms of categories, (adjoint) functors and colimits. By this we have achieved
several important results with the most diverse influences on the theory in this
chapter. To obtain the category of algebraic higher-order net schemes resp. al-
gebraic higher-order nets we define structure preserving mappings, i.e. we give a
suitable notion of net morphisms for these net classes.

In Section 4.1 we state our first main results of this chapter, which concerns
horizontal structuring techniques of algebraic higher-order net schemes called union
and fusion. In order to obtain these structuring techniques the existence of spe-
cific colimits like pushouts and coequalizers is essential. Union refers to the formal
composition of model segments, while fusion is the identification of distinguished
elements within a model. From a practical point of view the former technique
supports the natural distribution and concurrency of model segments, while the
latter leads to a more compact description of models. The main result presented
in Section 4.2 shows the compatibility of the operational behavior with AHO-net
morphisms, which is most important for the concept of a higher-order process se-
mantics in Section 4.3. The higher-order process semantics is based on the notions
of high-level net processes presented in [EHP+02]. The essential idea is to generalize
the concept of occurrence nets from low-level to the higher-order case. Following
this line of research higher-order processes have similar properties like low-level pro-
cesses, but capture a set of different computations corresponding to different input
parameters.

4.1 Horizontal Structuring of AHO-Net Schemes

Morphisms of AHO-net schemes are obtained by the combination of higher-order
signature morphisms, mappings between the sets of places, and mappings between
the sets of transitions. To achieve further results, these morphisms preserve the
structure, i.e. the particular components of algebraic higher-order net schemes. In
detail, higher-order signature morphisms are extended to translations of higher-

54
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order terms, which have to preserve not only the net inscriptions in the pre- and
post domains, but also the atomic formulas representing the firing conditions. Fur-
thermore, the higher-order types assigned to the places have to be respected.

Definition 4.1.1 (Algebraic Higher-Order Net Scheme Morphisms)
Let two AHO-net schemes Ni = (Σi, Pi, Ti, prei, posti, condi, typei) be given with
higher-order signatures Σi = (Si, OPi, Xi) for i ∈ {1, 2}. Then a AHO-net scheme
morphism fN : N1 −→ N2 is given by

fN = (fΣ, fP , fT )

with

• a higher-order signature morphism fΣ : Σ1 −→ Σ2 (see Def. 3.1.11) with
fΣ = (fS : S1 −→ S2, fOP : OP1 → OP2, fX : X1 → X2),

• a function fP : P1 −→ P2, and

• a function ft : T1 −→ T2

such that the following diagrams commute componentwise:

TΣ1,unit(X1)

f]
Σ
��

=

T1
cond1oo

pre1 //
post1

//

fT

��
=

(TΣ1(X1)⊗ P1)⊕

(f]
Σ⊗fP )⊕

��
TΣ2,unit(X2) T2

cond2

oo
pre2 //
post2

// (TΣ2(X2)⊗ P2)⊕

P1

=

type1 //

fP

��

S→1

f→S
��

P2 type2

// S→2

where f→S : S→1 −→ S→2 is the unique extension of fs : S1 −→ S→2 (see Fact 3.1.7)
and fs is induced by fS : S1 −→ S2, i.e. fs(type) = fS(type) for all basic types
type ∈ S1. Moreover, f ]

Σ : TΣ1(X1) −→ TΣ2(X2) is the translation of Σ1-terms by
fΣ to Σ2-terms (see Def. 3.1.18) and (f ]

Σ ⊗ fP ) denotes the corresponding function
of type consisting arc inscriptions defined for all (term, p) ∈ (TΣ1(X1)⊗ P1) by

(f ]
Σ ⊗ fP )(term, p) = (f ]

Σ(term), fP (p))

and (f ]
Σ ⊗ fP )⊕ is the unique homomorphic extension of (f ]

Σ ⊗ fP ) (see Def. B.1.2
in the Appendix).

AHO-net schemes together with AHO-net scheme morphisms yield the category
AHOS.

Fact 4.1.2 (Category AHOS)
The category AHOS consists of AHO-net schemes as objects and AHO-net scheme
morphisms as morphisms.

Proof: We show that the composition defined componentwise is associative and
the identity law is satisfied.
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Composition: Given AHO-net schemes Ni = (Σi, Pi, Ti, prei, posti, condi, typei)
with Σi = (Si, OPi, Xi) for i ∈ {1, 2, 3} and a pair of AHO-net scheme morph-
isms

fN,1 = (fΣ,1, fP,1, fT,1) : N1 −→ N2 and

fN,2 = (fΣ,2, fP,2, fT,2) : N2 −→ N3.

The composition of fN,1 and fN,2 defined componentwise by

fN,2 ◦ fN,1 = (fΣ,2 ◦ fΣ,1, fP,2 ◦ fP,1, fT,2 ◦ fT,1) : N1 −→ N3

is an AHO-net scheme morphism, because signature morphisms are closed
under composition (see Fact 3.1.12) and functions of places resp. transitions
are closed under composition and

• the pre- and post domain functions are composable:

(f ]
Σ2
⊗ fP2)

⊕ ◦ (f ]
Σ1
⊗ fP1)

⊕ ◦ pre1 = (f ]
Σ2
⊗ fP2)

⊕ ◦ pre2 ◦ fT1

= pre3 ◦ fT2 ◦ fT1

(analogously for the post domain)

• the firing condition functions are composable:

f ]
Σ2
◦ f ]

Σ1
◦ cond1 = f ]

Σ2
◦ cond2 ◦ fT1

= cond3 ◦ fT2 ◦ fT1

• and the type functions are composable:

f ]
Σ2
◦ f ]

Σ1
◦ type1 = f ]

Σ2
◦ type2 ◦ fP1

= type3 ◦ fP2 ◦ fP1 .

Associativity Let fN,i = (fΣ,i, fP,i, fT,i) for i ∈ {1, 2, 3} be three AHO-net scheme
morphisms. Then the composition is associative because it is defined compon-
entwise, i.e. we have

(fN,3 ◦ fN,2) ◦ fN,1 = fN,3 ◦ (fN,2 ◦ fN,1).

Identity The identity is given by the identity AHO-net scheme morphism. Because
the composition is defined componentwise, the identity law is satisfied, i.e. we
have for fN = (fΣ, fP , fT ) : N −→ N ′

fN ◦ idN = fN and idN ′ ◦ fN = fN .

�

We will now introduce two specific notions for horizontal structuring techniques,
called union and fusion. The former allows the construction of larger models from
model segments with shared subparts. Formally, the union is defined by the concept
of pushouts. The application of the latter folds distinguished model segments into
one model segment and is formally defined by the concept of coequalizers. The
universal properties of these constructions imply that we obtain models, which are
unique up to renaming. We mainly use the facts, that the category of higher-order
signatures is (finitely) cocomplete (see Fact 3.1.13) and the category of sets is also
(finitely) cocomplete. In the category of sets, for instance, pushouts are constructed
by the disjoint union of two sets, but identifying the shared subsets.
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Theorem 4.1.3 (Union of AHO-nets)
The union of two AHO-net schemes N1 and N2 via some interface AHO-net scheme
I with a pair of AHO-net scheme morphisms iN,1 : I −→ N1 and iN,2 : I −→ N2 is
given by the pushout consisting of the pushout object N and the pair of morphisms
fN : N1 −→ N and gN : N2 −→ N .

Proof: We have to show that AHOS has all pushouts. Given AHO-net schemes

Ni = (Σi, Pi, Ti, prei, posti, condi, typei) with Σi = (Si, OPi, Xi)

for i ∈ {1, 2, 3} and a pair of AHO-net scheme morphisms

fN,1 = (fΣ,1, fP,1, fT,1) : N1 −→ N2 with

fΣ,1 = (fS,1 : S1 −→ S2, fOP,1 : OP1 −→ OP2, fX,1 : X1 −→ X2)

and

gN,1 = (gΣ,1, gP,1, gT,1) : N1 −→ N3 with

gΣ,1 = (gS,1 : S1 −→ S3, gOP,1 : OP1 −→ OP3, gX,1 : X1 −→ X3).

Then the pushout consisting of the pushout object

N4 = (Σ4, P4, T4, pre4, post4, cond4, type4) with Σ4 = (S4, OP4, X4)

and the pair of AHO-net scheme morphisms

fN,2 = (fΣ,2, fP,2, fT,2) : N2 −→ N4 with

fΣ,2 = (fS,2 : S2 −→ S4, fOP,2 : OP2 −→ OP4, fX,2 : X2 −→ X4)

and

gN,2 = (gΣ,2, gP,2, gT,2) : N3 −→ N4 with

gΣ,2 = (gS,2 : S3 −→ S4, gOP,2 : OP3 −→ OP4, gX,2 : X3 −→ X4)

is constructed by the following pushouts of higher-order signatures in HOSig (see
Fact 3.1.13) and by the following pushouts of sets of places resp. transitions in Sets.

Σ1

fΣ,1 //

gΣ,1

��
=

Σ2

fΣ,2

��

P1

fP,1 //

gP,1

��
=

P2

fP,2

��

T1

fT,1 //

gT,1

��
=

T2

fT,2

��
Σ3 gΣ,2

// Σ4 P3 gP,2
// P4 T3 gT,2

// T4

Moreover, we have due to Fact 3.1.7 the following pushout of higher-order types in
Sets.

S→1
f→1,S //

g→1,S

��
=

S→2

f→2,S

��
S→3 g→2,S

// S→4

and due to Fact 3.1.19 the following commutative squares of higher-order terms in
Sets.
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TΣ1(X1)

=

f]
Σ,1 //

g]
Σ,1

��

TΣ2(X2)

f]
Σ,2

��
TΣ3(X3)

g]
Σ,2

// TΣ4(X4)

TΣ1,unit(X1)

=

f]
Σ,1 //

g]
Σ,1

��

TΣ2,unit(X2)

f]
Σ,2

��
TΣ3,unit(X3)

g]
Σ,2

// TΣ4,unit(X4)

Thus we have the following commutative square in CMon (see Def. B.1.4 in the
Appendix).

(TΣ1(X1)⊗ P1)⊕

=

(f]
Σ,1⊗fP,1)

⊕

//

(g]
Σ,1⊗gP,1)

⊕

��

(TΣ2(X2)⊗ P2)⊕

(f]
Σ,2⊗fP,2)

⊕

��
(TΣ3(X3)⊗ P3)⊕

(g]
Σ,2⊗gP,2)

⊕
// (TΣ4(X4)⊗ P4)⊕

Because fN,1 and gN,1 are AHO-net scheme morphisms we have

(f ]
Σ,2 ⊗ fP,2)⊕ ◦ pre2 ◦ fT,1 = (g]

Σ,2 ⊗ gP,2)⊕ ◦ pre3 ◦ gT,1.

Due to the pushout property of T4 there exists one and only one morphism

pre4 : T4 −→ (TΣ4(X4)⊗ P4)⊕,

such that
(f ]

Σ,2 ⊗ fP,2)⊕ ◦ pre2 = pre4 ◦ fT,2 and

(g]
Σ,2 ⊗ gP,2)⊕ ◦ pre3 = pre4 ◦ gT,2.

Analogously the pushout property of T4 yields post4 : T4 −→ (TΣ4(X4)⊗ P4)⊕.

T1

pre1 //
post1

//

gT,1

��

fT,1

&&MMMMMMMMMMMMM (TΣ1(X1)⊗ P1)⊕
(f]

Σ,1⊗fP,1)
⊕

))SSSSSSSSSSSSSS
(g]

Σ,1⊗gP,1)
⊕

��

T2

pre2 //
post2

//

fT,2

��

(TΣ2(X2)⊗ P2)⊕

(f]
Σ,2⊗fP,2)

⊕

��

T3

pre3 //
post3

//

gT,2

&&MMMMMMMMMMMMM (TΣ3(X3)⊗ P3)⊕
(g]

Σ,2⊗gP,2)
⊕

))SSSSSSSSSSSSSS

T4

pre4 //
post4

// (TΣ4(X4)⊗ P4)⊕
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T1
cond1 //

gT,1

��

fT,1

&&MMMMMMMMMMMMM TΣ1,unit(X1)
f]
Σ,1

''PPPPPPPPPPPP
g]
Σ,1

��

T2
cond2 //

fT,2

��

TΣ2,unit(X2)

f]
Σ,2

��

T3
cond3 //

gT,2

&&MMMMMMMMMMMMM TΣ3,unit(X3)
g]
Σ,2

''PPPPPPPPPPPP

T4
cond4 // TΣ4,unit(X4)

Because fN,1 and gN,1 are AHO-net scheme morphisms we have

f ]
Σ,2 ◦ cond2 ◦ fT,1 = g]

Σ,2 ◦ cond3 ◦ gT,1.

Thus, due to the pushout property of T4, there exists one and only one morphism
cond4 : T4 −→ TΣ4,unit(X4) such that

f ]
Σ,2 ◦ cond2 = cond4 ◦ fT,2 and

g]
Σ,2 ◦ cond3 = cond4 ◦ gT,2.

Finally, because fN,1 and gN,1 are AHO-net scheme morphisms we have

f→S,2 ◦ type2 ◦ fP,1 = g→S,2 ◦ type3 ◦ gP,1.

Due to the pushout property of P4, there exists one and only one morphism type4 :
P4 −→ S→4 such that f→S,2 ◦ type2 = type4 ◦ fP,2 and g→S,2 ◦ type3 = type4 ◦ gP,2.

P1
type1 //

gP,1

��

fP,1

&&MMMMMMMMMMMMM S→1
f→S,1

''NNNNNNNNNNNNN
g→S,1

��

P2
type2 //

fP,2

��

S→2

f→S,2

��

P3
type3 //

gP,2

&&MMMMMMMMMMMMM S→3
g→S,2

''NNNNNNNNNNNNN

P4
type4 // S→4

fN,2 = (fΣ,2, fP,2, fT,2) and gN,2 = (gΣ,2, gP,2, gT,2) are well-defined, i.e. they satisfy
the compatibility of pre- and post domain functions, firing condition function and
type function due to the induced morphisms pre4, post4, cond4 and type4. The
commutativity follows directly from the componentwise construction of the AHO-
net scheme morphisms and the commutativity of the diagrams above, i.e.

(gΣ,2 ◦ gΣ,1, gP,2 ◦ gP,1, gT,2 ◦ gT,1) = (fΣ,2 ◦ fΣ,1, fP,2 ◦ fP,1, fT,2 ◦ fT,2)

implies
gN,2 ◦ gN,1 = fN,2 ◦ fN,1.

N1

=

fN,1 //

gN,1

��

N2

fN,2

��
N3 gN,2

// N4
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Next we check the pushout property. Given another AHO-net scheme

N = (Σ, P, T, pre, post, cond, type)

and a pair of AHO-net scheme morphisms

hN,1 = (hΣ,1, hP,1, hT,1) : N2 −→ N and

hN,2 = (hΣ,2, hP,2, hT,2) : N3 −→ N,

such that hN,1 ◦ fN,1 = hN,2 ◦ gN,1.

N1

=

fN,1 //

gN,1

��

N2

fN,2

��

hN,1

��

N3

gN,2 //

hN,2 --

N4

kN

''
N

Then the induced morphism kN = (kΣ, kP , kT ) : N4 −→ N is obtained by the
induced morphisms kΣ, kP and kT of the components Σ4, P4 and T4.

Σ1

gΣ,1

��

fΣ,1 // Σ2

fΣ,2

��

hΣ,1

��

Σ3

gΣ,2 //

hΣ,2 --

Σ4

kΣ

&&
Σ

P1

gP,1

��

fP,1 // P2

fP,2

��

hP,1

��

T1

gT,1

��

fT,1 // T2

fT,2

��

hT,1

��

P3

gP,2 //

hP,2 --

P4

kP

&&

T3

gT,2 //

hT,2 --

T4

kT

&&
P T

Due to the construction of the pushout object T4 in Sets we have for all t4 ∈ T4 :

∃t2 ∈ T2 : t4 = fT,2(t2) or ∃t3 ∈ T3 : t4 = gT,2(t3).
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Let t4 ∈ T4 and t2 ∈ T2, such t4 = fT,2(t2).

pre ◦ kT (t4) = pre ◦ kT ◦ fT,2(t2)

= pre ◦ hT,1(t2)

= (h]
Σ,1 ⊗ hP,1)⊕ ◦ pre2(t2)

= (k]
Σ ⊗ kP )⊕ ◦ (f ]

Σ,2 ⊗ fP,2)⊕ ◦ pre2(t2)

= (k]
Σ ⊗ kP )⊕ ◦ pre4 ◦ fT,2(t2)

= (k]
Σ ⊗ kP )⊕ ◦ pre4(t4)

and analogously for all t4 ∈ T4 and t3 ∈ T3 such that t4 = fT,3(t3). Analogously we
can show

post ◦ kT = (k]
Σ ⊗ kP )⊕ ◦ post4,

cond ◦ kT = k]
Σ ◦ cond4, and

type ◦ kP = k→S ◦ type4

where kS→ : S→4 −→ S→ is induced by kS : S4 −→ S, k]
Σ : TΣ4(X4) −→ TΣ(X)

is the translation of Σ4-terms by kΣ to Σ-terms and (k]
Σ ⊗ kP )⊕ is the unique

homomorphic extension of (k]
Σ ⊗ kP ). Thus, k is well-defined, i.e. they satisfy the

compatibility of pre- and post domain functions, firing condition function and type
function, i.e. the following diagrams commute.

TΣ4,unit(X4)

k]
Σ
��

=

T4
cond4oo

pre4 //
post4

//

kT

��
=

(TΣ4(X4)⊗ P4)⊕

(k]
Σ⊗kP )⊕

��
TΣ,unit(X) T

cond
oo

pre //
post

// (TΣ(X)⊗ P )⊕

P4

=

type4 //

kP

��

S→4

kS→

��
P

type
// S→

Finally, uniqueness of k is obtained by the uniqueness of kΣ, kP , and kT . �

For the horizontal structuring technique fusion we investigate the (finite) colimits
in the category of algebraic higher-order net schemes, i.e. we have to show, that the
category AHOS permits an initial object, while the existence of all pushouts is
proven above. Note that due to the finite cocompleteness the category AHOS has
not only an initial object and all pushouts but also coequalizers (see Def. A.1.5 in
the Appendix).

Theorem 4.1.4 (Fusion)
The fusion of two AHO-net scheme morphisms fN , gN : F −→ N between two
AHO-net schemes F and N is an AHO-net scheme N ′ together with an AHO-net
scheme morphism hN : N −→ N ′ defined by the coequalizer hN : N −→ N ′ of fN

and gN .

Proof: We have to show that AHOS has an initial object. Then we obtain due
to Thm. 4.1.3 that AHOS is finitely cocomplete and also has all coequilizers. The
initial object N∅ is given by

N∅ = (Σ∅, P∅, T∅, pre∅, post∅, cond∅, type∅)

with
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• P∅ = T∅ = ∅,

• Σ∅ the initial object in HOSig (see Fact 3.1.13), and

• pre∅ = post∅ = cond∅ = type∅ the empty function.

Given an AHO-net N = (Σ, P, T, pre, post, cond, type), then the unique AHO-net
scheme morphism fN,∅ = (fΣ,∅, fP,∅, fT,∅) : N∅ −→ N is given by

• fP,∅ = fT,∅ the empty function and

• fΣ,∅ is given by the initiality of Σ∅ (see Fact 3.1.13),

where the compatibility of the pre- and post domain functions, the firing condition
functions resp. the type functions holds due to the emptiness of T∅ and P∅. �

4.2 Structure Preserving Morphisms of AHO-Nets

Because AHO-nets are AHO-net schemes with a suitable model, morphisms of AHO-
nets are a combination of AHO-net scheme morphisms and higher-order homo-
morphisms. Note that AHO-nets are defined with respect to a specific higher-order
signature. So, here we use a restricted version of AHO-net scheme morphisms where
the higher-order signature remains to be unchanged. Thus, the net inscriptions in
the environment of transitions, which are related by the AHO-net morphism, are
still the same. This will be important to achieve the preservation of the operational
behavior by AHO-net morphisms.

Definition 4.2.1 (Algebraic Higher-Order Net Morphisms)
Given two AHO-nets (Ni, Ai) wrt. the higher-order signature Σ = (S, OP,X) with
Ni = (Σ, Pi, Ti, prei, posti, condi, typei) for i ∈ {1, 2}. Then an AHO-net morphism
f(N,A) : (N1, A1) −→ (N2, A2) is given by

f(N,A) = (fN , fA)

with

• fN = (idΣ, fP , fT ) : N1 −→ N2 is an AHO-net scheme morphism (see
Def. 4.1.1) with the identity higher-order signature morphism idΣ (see Fact
3.1.12),

• fA : A1 −→ A2 is a higher-order homomorphism of Σ-algebras (see Def. 3.1.23).

Now, we define for each higher-order signature Σ the category AHON(Σ) of
AHO-nets and AHO-net morphisms, where the data type part of AHO-nets consists
of the higher-order signature Σ together with a higher-order Σ-algebra.

Fact 4.2.2 (Category AHON(Σ))
The category AHON(Σ) consists of AHO-nets wrt. the higher-order signature Σ
as objects and AHO-net morphisms as morphisms.

Proof: We show that the composition defined componentwise is associative and
the identity law is satisfied.

Composition: Given AHO-nets (Ni, Ai) for i ∈ {1, 2, 3}) wrt. the higher-order
signature Σ and a pair of AHO-net morphisms

f(N,A),1 : (N1, A1) −→ (N2, A2) and f(N,A),2 : (N2, A2) −→ (N3, A3),
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the composition of f(N,A),1 and f(N,A),2 defined componentwise by

f(N,A),2 ◦ f(N,A),1 = (fN,2 ◦ fN,1, fA,2 ◦ fA,1) : (N1, A1) −→ (N3, A3)

is an AHO-net morphism because AHO-net scheme morphisms are closed un-
der composition (see Fact 4.1.2) and higher-order homomorphisms are closed
under composition (see Fact 3.1.25).

Associativity: Let f(N,A),i = (fNi
, fAi

) for i ∈ {1, 2, 3} be three AHO-net morph-
isms. Then the composition is associative because it is defined componentwise,
i.e. we have

(f(N,A),3 ◦ f(N,A),2) ◦ f(N,A),1 = f(N,A),3 ◦ (f(N,A),2 ◦ f(N,A),1).

Identity: The identity is given by the identity AHO-net morphisms. Because the
composition is defined componentwise, the identity law is satisfied, i.e. we
have for f(N,A) = (fN , fA) : (N,A) −→ (N ′, A′)

f(N,A) ◦ id(N,A) = f(N,A) and idN ′ ◦ fN = fN .

�

In the following we show that AHO-net morphisms preserve the firing behavior.
In more detail, if there is a transition and a variable valuation in the source net, so
that the net inscriptions in the environment of the transitions are defined, then there
is a consistent transition assignment in the target net, which consists of the image
of the transition, and the composition of the variable valuation and the higher-order
homomorphism given by the AHO-net morphism. Moreover, not only the marking
in the source net is mapped to a marking in the target net, but also the follower
marking computed by the firing of the transition in the source net is mapped to
the follower marking computed by the firing of image of the transition. Here we
frequently use on the one hand the fact that both the transition and the image of
the transition have the same net inscriptions in their environment. On the other
hand we make use of the definedness condition of higher-order homomorphisms to
ensure that the evaluation of the net inscriptions is defined in the target net as well.

Theorem 4.2.3 (AHO-Net Morphisms Preserve Firing Behavior)
Let (Ni, Ai) for i ∈ {1, 2} wrt. the higher-order signature Σ be two AHO-nets with

Ni = (Σ, Pi, Ti, prei, posti, condi, typei)

and let

f(N,A) = (fN , fA) : (N1, A1) −→ (N2, A2) with fN = (idΣ, fP , fT )

be an AHO-net morphism. Moreover, let M ∈ (A1⊗P1)⊕ be a marking of (N1, A1)
and (t, v) ∈ CT1 a consistent transition valuation such that t is enabled in M ∈ CP⊕

1

under v and let M ′ ∈ CP⊕
1 be the follower marking of M after firing of t. Then we

have

1. a consistent transition valuation (fT (t), fA ◦ v) ∈ CT2,

2. fT (t) is enabled in the marking (fA ⊗ fP )⊕(M) ∈ CP⊕
2 under (fA ◦ v), and

3. the firing of the transition fT (t) results in the follower marking

(fA ⊗ fP )⊕(M ′) ∈ CP⊕
2
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that is

M [(t, v)〉M ′ =⇒ (fA ⊗ fP )⊕(M)[(fT (t), fA ◦ v)〉(fA ⊗ fP )⊕(M ′),

where (fA ⊗ fP ) denotes the corresponding function of type consisting markings
defined for all (a, p) ∈ (A1⊗P1) by (fA⊗fP )(a, p) = (fA(a), fP (p)) and (fA⊗fP )⊕

is the unique homomorphic extension of (fA⊗fP ) (see Def. B.1.2 in the Appendix).

Proof: First note that due to the definition of AHO-net morphisms a transition
t ∈ T1 and its image fT (t) ∈ T2 have the same net inscriptions in their environment,
i.e. we have for all t ∈ T1:

cond2 ◦ fT (t) = id]
Σ ◦ cond1(t) = cond1(t), (4.1)

pre2(fT (t)) = (id]
Σ ⊗ fP )⊕(pre1(t)), (4.2)

and analogously for the post domain. Thus, we have for all t ∈ T1:

(term, p1) ∈ pre1(t) =⇒ (term, fP (p1)) ∈ pre2(fT (t)), (4.3)

•(fT (t)) = fP (•t), (4.4)

and analogously for the post domain.

1. It remains to show that (fT (t), fA ◦ v) is a consistent transition valuation, i.e.
for all t ∈ T we have

cond2(fT (t)) ∈ dom((fA ◦ v)])

and

∀(term, p2) ∈ pre2(fT (t))⊕ post2(fT (t)) : term ∈ dom((fA ◦ v)]).

Because (t, v) ∈ CT1 we have

cond1(t) ∈ dom(v])
=⇒ cond1(t) ∈ dom(fA ◦ v]) (Fact 3.1.24)
=⇒ cond1(t) ∈ dom((fA ◦ v)]) (Fact 3.1.24)
=⇒ cond2(fT (t)) ∈ dom((fA ◦ v)]) (by (4.1))

and

∀(term, p1) ∈ pre1(t)⊕ post1(t) : term ∈ dom(v])
=⇒ ∀(term, p1) ∈ pre1(t)⊕ post1(t) : term ∈ dom(fA ◦ v])

(Fact 3.1.24)
=⇒ ∀(term, p1) ∈ pre1(t)⊕ post1(t) : term ∈ dom((fA ◦ v)])

(Fact 3.1.24)
=⇒ ∀(term, fP (p1)) ∈ pre2(fT (t))⊕ post2(fT (t)) : term ∈ dom((fA ◦ v)])

(by (4.3))
=⇒ ∀(term, p2) ∈ pre2(fT (t))⊕ post2(fT (t)) : term ∈ dom((fA ◦ v)])

(by (4.4)).

It follows that (fT (t), fA ◦ v) is a consistent transition valuation.
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2. Because t is enabled in M ∈ (A1 ⊗ P1)⊕ under v we have

v̂(pre1(t)) ≤M

=⇒ (fA ⊗ fP )⊕(v̂(pre1(t))) ≤ (fA ⊗ fP )⊕(M)

=⇒ ̂(fA ◦ v)(pre2(fT (t)) ≤ (fA ⊗ fP )⊕(M) (see Proof of 3.).

It follows that fT (t) is enabled in (fA ⊗ fP )⊕(M) under (fA ◦ v).

3. Formally we have to show:

M ′ = M 	 v̂(pre1(t))⊕ v̂(post1(t))

=⇒ (fA ⊗ fP )⊕(M ′) = (fA ⊗ fP )⊕(M)	 ̂(fA ◦ v)(pre2(fT (t)))

⊕ ̂(fA ◦ v)(post2(fT (t))).

Because (fA ⊗ fP )⊕ is a monoid homomorphism we get

(fA ⊗ fP )⊕(M ′)
= (fA ⊗ fP )⊕(M 	 v̂(pre1(t))⊕ v̂(post1(t)))
= (fA ⊗ fP )⊕(M)	 (fA ⊗ fP )⊕(v̂(pre1(t)))⊕ (fA ⊗ fP )⊕(v̂(post1(t))).

So we have to show that the following equations hold:

(fA ⊗ fP )⊕(v̂(pre1(t))) = ̂(fA ◦ v)(pre2(fT (t))) and
(fA ⊗ fP )⊕(v̂(post1(t))) = ̂(fA ◦ v)(post2(fT (t))).

Let pre1(t) =
∑n

i=1(termi, pi), then

(fA ⊗ fP )⊕(v̂(pre1(t)))

= (fA ⊗ fP )⊕(v̂(
∑n

i=1(termi, pi)))

= (fA ⊗ fP )⊕(
∑n

i=1(v
](termi), pi))

=
∑n

i=1((fA ◦ v])(termi), fP (pi))

=
∑n

i=1((fA ◦ v)](termi), fP (pi)) (Fact 3.1.24)

= ̂(fA ◦ v)(
∑n

i=1(termi, fP (pi)))

= ̂(fA ◦ v)((id]
Σ ⊗ fP )⊕(

∑n
i=1(termi, pi)))

= ̂(fA ◦ v)((id]
Σ ⊗ fP )⊕(pre1(t)))

= ̂(fA ◦ v)(pre2(fT (t))) (by (4.2))

and analogously for the post domain. It follows that the firing of the transition
fT (t) results in the follower marking (fA ⊗ fP )⊕(M ′).

�

4.3 Process Semantics

In this section we introduce the notion of higher-order processes based on a suitable
notion of higher-order occurrence nets. The main idea is to use the same properties
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like unitary, conflict freeness and acyclicity as in the low-level case, but drop the
idea that an occurrence net captures essentially one concurrent computation. In
the low-level case the markings of the input places are given by indistinguishable
black tokens, while in the higher-order case they are rather complex data elements.
Thus, the input parameters can be given by different data elements leading to dif-
ferent concurrent computations. Because AHO-nets are closely related to algebraic
high-level nets, the following definitions adopt the notions obtained for high-level
processes in [EHP+02]. The main differences between these notions are on the one
hand that the data type part of a higher-order occurrence net is given by a higher-
order signature and corresponding higher-order partial algebra instead of a classical
algebraic specification and corresponding classical algebra, and on the other hand
that the firing conditions are defined by atomic formulas instead of a finite set of
equations.

Definition 4.3.1 (Algebraic Higher-Order Occurrence Net)
A (deterministic) algebraic higher-order occurrence net (K, A) wrt. the higher-order
signature Σ is an AHO-net with

K = (Σ, P, T, pre, post, cond, type)

such that for all t ∈ T with pre(t) =
∑n

i=1(termi, pi) we have

1. (Unarity): for all t ∈ T and for all p ∈ •t the arc from p to t has a unary
arc-inscription term rather than a proper sum of terms (see Remark 3.2.2),
i.e. we have pre(t)|p = term and p1, . . . , pn are pairwise distinct (analogously
for all t ∈ T and p ∈ t•).

2. (No Forward Conflicts): •t ∩ •t′ = ∅ for all t, t′ ∈ T, t 6= t′

3. (No Backward Conflicts): t • ∩t′• = ∅ for all t, t′ ∈ T, t 6= t′

4. (Partial Order): the causal relation <⊆ (P × T ) ∪ (T × P ) defined by the
transitive closure of

{(p, t) ∈ P × T | p ∈ •t} ∪ {(t, p) ∈ T × P | p ∈ t•}

is a finitary strict partial order, i.e. the partial order is irreflexive and for each
element in the partial order the set of its predecessors is finite.

An algebraic higher-order process of an AHO-net is an AHO-net morphism such
that the source net is an AHO-occurrence net and the data type part is preserved.

Definition 4.3.2 (Algebraic Higher-Order Process)
A (deterministic) algebraic higher-order process of an AHO-net (N,A) wrt. the
higher-order signature Σ is an AHO-net morphism

p = (pN , idA) : (K, A) −→ (N,A) with pN = (idΣ, fP , fT ),

where (K, A) is a (deterministic) AHO-occurrence net wrt. the higher-order sig-
nature Σ with the same higher-order partial algebra A, i.e. the data type part is
preserved by p.

In this thesis we only define deterministic AHO-occurrence nets leading to de-
terministic AHO-processes. The nondeterministic case can be obtained by dropping
the second condition “No forward conflicts” because conflicts are allowed in non-
deterministic processes. If we drop the first condition “Unarity”, we achieve the
notion of AHO-multi-occurrence nets leading to AHO-multi-processes. Further in-
vestigations of these different notions of higher-order processes will be a part of
future work.



Chapter 5

Folding and Unfolding
Techniques

In this chapter we provide folding and unfolding constructions, which are new in
the area of Petri nets. In connection with our striving goals we present folding
constructions wrt. constant symbols in Section 5.1. The main idea is to replace
some parts of the net inscriptions by formal parameters, more precisely specific
constants are substituted by appropriate variables. A special case of this folding
construction occurs in form of constant symbols of function types. Note that in our
higher-order setting operation symbols can also be formulated as constant symbols
together with application symbols of appropriate types. In this way, the folding
construction realizes a high-level of abstraction, because the operations are not
fixed in the net structure, but can be given at run time by suitable tokens. From a
practical point of view these folding constructions support the demanded flexibility
and adaptability of models by operation late-binding mechanisms. Furthermore,
changes in the environment result in an exchange of tokens instead of a modific-
ation of the net structure. We show that we can give a folding construction wrt.
constant symbols, so that the firing behavior is preserved. Moreover, we give an
unfolding construction wrt. constant symbols preserving the operational behavior.
The unfolding construction has got a counterpart in the context of high-level nets,
where the flattening construction is used to define the semantics of a high-level net
by a classical Petri net (see e.g. [Jen92, Hum89, Gen86, Pad96]). Vice versa the
concept of folding construction is related to the step from low to high-level nets.
An important aspect is that the folding and unfolding constructions are inverse to
each other, so that we can switch between the levels of abstractions.

In Section 5.2 we exploit the fact that in our approach of AHO-nets product
types are available. We can give a folding construction wrt. product types leading
to more compact description of models, if the given net includes a specific net
structure, called set of uniform places. Then the set of uniform places is merged
into one place of suitable product type and the particular net inscriptions are formed
by tuples. The main results show that the folding construction wrt. product types
preserves the operational behavior and that we can give an inverse construction,
called unfolding wrt. product types, so that the firing behavior is preserved. Both
folding constructions wrt. constant symbols and folding constructions wrt. product
types are extensively used in the case study “Logistics” in Chapter 9.

67
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5.1 Folding and Unfolding wrt. Constant Symbols

In this section we give the main results of the folding and unfolding constructions
wrt. constant symbols. Examples can be found in Section 3.3, where we apply a
number of folding constructions to the AHO-net “Computation II” (see Fig. 3.2)
to obtain the more abstract representation of the process given by the AHO-net
“Computation IV” in Fig. 3.4. The folding and unfolding constructions wrt. con-
stant symbols are first presented by the transformation of terms and then by the
folding and unfolding of the net part. Note that we do not transform the data type
part, i.e. we assume that there are suitable constant symbols with corresponding
variables given in the higher-order signature. The advantage is that the compos-
ition of folding and unfolding constructions leads to equivalent data type parts.
Otherwise we have to add several variables (one for each application of the folding
construction) and several constant symbols (one for each application of the unfold-
ing construction). But we are not able to remove some of these constant symbols
and variables because they might be used in the environment of other transitions
than the (un-)folded one.

We define a fold-operator to transform terms of a higher-order signature Σ by
replacing a specific constant symbol by a corresponding variable. For instance
the term (add.〈x, y〉) of the signature HO-NAT in Section 3.3 is transformed into
the term (fadd.〈x, y〉), where the variable fadd is assigned to the function type
(Nat ? Nat→ Nat).

Definition 5.1.1 (Folding of Terms)
Let Σ = (S, OP,X) be a higher-order signature, c : type ∈ OP a constant symbol
and fc : type ∈ X a variable, the fold-operator foldc : TΣ(X) −→ TΣ(X) is
recursively defined by

1. foldc(〈〉) = 〈〉 for 〈〉 ∈ TΣ,unit(X)

2. foldc(x) = x for all x : type ∈ X

3a. foldc(op) = fc for op : type ∈ OP and op = c

3b. foldc(op(term)) = op(foldop(term))

for all op : type1 ⇀ type2 ∈ OP, op 6= c, and term ∈ TΣ,type1(X)

4. foldop(〈term1, . . . , termn〉) = 〈foldop(term1), . . . , foldop(termn)〉
for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen

(X)

5. foldc(pr
(type1?...?typen)
i (term)) = pr

(type1?...?typen)
i (foldc(term))

for all pr
(type1?...?typen)
i ∈ OP→ \OP and term ∈ TΣ,(type1?...?typen)(X).

Analogously, we define an unfold-operator to transform terms of a higher-order
signatures by replacing a specific variable by a corresponding constant symbol. In
terms of our example in Section 3.3 the application of the unfold-operator transforms
the term (fadd.〈x, y〉) into the term (add.〈x, y〉).

Definition 5.1.2 (Unfolding of Terms)
Let Σ = (S, OP,X) be a higher-order signature, c : type ∈ OP a constant symbol
and fc : type ∈ X a variable, the unfold-operator unfoldfc

: TΣ(X) −→ TΣ(X) is
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recursively defined by

1. unfoldfc
(〈〉) = 〈〉 for 〈〉 ∈ TΣ,unit(X)

2a. unfoldfc
(x) = c for x ∈ X and x = fc

2b. unfoldfc
(x) = x for all x ∈ X and x 6= fc

3. unfoldfc
(op(term)) = op(unfoldfc

(term))

for all op : type1 ⇀ type2 ∈ OP, and term ∈ TΣ,type1(X)

4. unfoldfc(〈term1, . . . , termn〉) = 〈unfoldfc(term1), . . . , unfoldfc(termn)〉
for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen

(X)

5. unfoldfc
(pr

(type1?...?typen)
i (term)) = pr

(type1?...?typen)
i (unfoldfc

(term))

for all pr
(type1?...?typen)
i ∈ OP→ \OP and term ∈ TΣ,(type1?...?typen)(X).

In the following we show that the composition of the fold-operator and the
unfold-operator defined above leads to the same term, which is essential for the
result that the folding and unfolding constructions are inverse. Note that we have
to restrict the input parameter of the composition.

Lemma 5.1.3 (Folding- and Unfolding-Operators are inverse)
Given a higher-order signature Σ = (S, OP,X), a constant symbol c : type ∈ OP ,
and a variable fc : type ∈ X, then we have

unfoldfc
(foldc(term)) = term

if fc 6∈ V ar(term) and

foldc(unfoldfc
(term)) = term

if c 6∈ Op(term).

Proof: First we show that unfoldfc
(foldc(term)) = term. By induction over the

term structure of TΣ(X) we have:

Induction Base:

1. unfoldfc
(foldc(〈〉)) = unfoldfc

(〈〉) = 〈〉 for 〈〉 ∈ TΣ,unit(X)

2 unfoldfc(foldc(x)) = unfoldfc(x) = x for all x : type ∈ X and x 6= fc.

Induction Step: Let unfoldfc
(foldc(termi)) = termi for some terms

termi ∈ TΣ(X) for i ∈ {1, . . . , n}.

3a. unfoldfc
(foldc(op)) = unfoldfc

(foldc(c)) = unfoldfc
(fc) = c = op

for op : type ∈ OP and op = c

3b.
unfoldfc

(foldc(op(term))) = unfoldfc
(op(foldc(term)))

= op(unfoldfc
(foldc(term))

= op(term)

for all op : type1 ⇀ type2 ∈ OP, op 6= c, and all term ∈ TΣ,type1(X)
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4.
unfoldfc

(foldc(〈term1, . . . , termn〉)
= unfoldfc(〈foldc(term1), . . . , foldc(termn)〉)
= 〈unfoldfc

(foldc(term1)), . . . , unfoldfc
(foldc(termn))〉

= 〈term1, . . . , termn〉

for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen(X)

5.
unfoldfc(foldc(pr

(type1?...?typen)
i (term)))

= unfoldfc(pr
(type1?...?typen)
i (foldc(term)))

= pr
(type1?...?typen)
i (unfoldfc(foldc(term)))

= pr
(type1?...?typen)
i (term)

for all pr
(type1?...?typen)
i ∈ OP→ \OP and term ∈ TΣ,(type1?...?typen)(X).

The proof of foldc(unfoldfc(term)) = term is more or less analog. �

Next we give the folding construction of an AHO-net scheme wrt. constant
symbols. The folding construction is applied to a specific transition t, so that
the constant symbol c occurs in its environment, but we have to ensure that the
corresponding variable fc does not occur in its net inscriptions. Otherwise the firing
of this transition may result in a counter-intuitive behavior after the application of
the folding construction. The data type part and the set of transitions remain
to be unchanged. The set of places is given for the folded AHO-net by adding a
contextual place (see Def. 3.2.4) with an appropriate type. Furthermore, we apply
the fold-operator to the net inscriptions of the transition t. The set of places in
the environment of the transition t is given by adding the new contextual place
with arc inscriptions given by the variable fc. A general description of the folding
construction wrt. constant symbols is depicted in Fig. 5.1.

Fact 5.1.4 (Folding of AHO-net schemes wrt. constant symbols)
Given an AHO-net scheme N = (Σ, P, T, pre, post, cond, type) with Σ = (S, OP,X),
c : type ∈ OP and fc : type ∈ X. Let tc ∈ T with fc 6∈ V ar(tc) and c ∈ Op(tc),
the folding of N wrt. the constant symbol c with corresponding variable fc and the
transition tc is an AHO-net scheme

F (N) = (F (Σ), F (P ), F (T ), F (pre), F (post), F (cond), F (type))

defined by

• F (Σ) = Σ,

• F (P ) = P ] {pc}, where pc is a new place corresponding to the transition tc

and the constant symbol c,

• F (T ) = T ,

• F (pre) : T −→ (TΣ(X)⊗ F (P ))⊕ with

F (pre)(t) =


∑n

i=1(foldc(termi), pi)⊕ (fc, p
c)

if t = tc and pre(tc) =
∑n

i=1(termi, pi)

pre(t) else
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=⇒

term2

term1

cond(tc)

tc

p1 : type1

p2 : type2

tc

p1 : type1

p2 : type2

fc

fc

pc : typefoldc(term1)

foldc(term2)

foldc(cond(tc))

Figure 5.1: Schemata of folding construction wrt. constant symbols

and F (post) : T −→ (TΣ(X)⊗ F (P ))⊕ with

F (post)(t) =


∑m

j=1(foldc(termj), pj)⊕ (fc, p
c)

if t = tc and post(tc) =
∑m

j=1(termj , pj)

post(t) else

• F (cond) : T −→ TΣ,unit(X) with

F (cond)(t) =

{
foldc(cond(t)) if t = tc

cond(t) else

• F (type) : F (P ) −→ S→ with

F (type)(p) =

{
type if p = pc and c : type

type(p) else

Proof (Sketch): We have to show that F (N) is an AHO-net scheme as defined
in Def. 3.2.1. For all t ∈ T and t 6= tc the environment is preserved by the folding
construction. The definition of the fold-operator (see Def. 5.1.1) guarantees that
the net inscriptions and the firing condition of the folded transition tc consists of
terms of the higher-order signature. Moreover, we have (fc, p

c) ∈ (TΣ(X)⊗F (P ))⊕

because the type assigned to the generated contextual place pc corresponds to the
type of the constant symbol c and thus to the type of the variable fc. �

In our example in Section 3.3 we apply the folding construction wrt. the con-
stant symbol add with corresponding variable fadd and the transition compute add
to the AHO-net “Computation II” (see Fig. 3.2). The resulting AHO-net “Compu-
tation III” is depicted in Fig. 3.3. Let the AHO-net “Computation II” be defined
by (NII ,HO-A) with NII = ((HO-Nat, X), PII , TII , preII , postII , condII , typeII).
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unfoldfc (cond(tfc ))

p1 : type1

p2 : type2

fc

fc

pfc : typeterm1

term2

p1 : type1

p2 : type2

cond(tfc )

tfc tfc

unfoldfc (term1)

=⇒

unfoldfc (term2)

Figure 5.2: Schemata of unfolding construction wrt. constant symbols

Then the set of transitions and the higher-order signature remains unchanged in
the AHO-net “Computation III”. The set of places F (PII) of the AHO-net “Com-
putation III” is given by F (PII) = PII ] {padd}. While the environment of the
transition compute sub is not effected by the folding construction, the pre- and post
domain and the firing condition of the transition compute add is defined by the
following:

F (preII)(compute add) = (foldadd(〈x, y〉), pF )⊕ (fadd, p
add)

= (〈x, y〉, pF )⊕ (fadd, p
add),

F (postII)(compute add) = (foldadd(add.〈x, y〉), p3)⊕ (fadd, p
add)

= ((fadd.〈x, y〉), p3)⊕ (fadd, p
add), and

F (condII)(compute add) = foldadd(leq.〈x, y〉)
= (leq.〈x, y〉).

Finally, the types assigned to the places pF and p3 are still the same. Furthermore,
we have type(padd) = (Nat ? Nat→ Nat), because add : Nat ? Nat→ Nat.

Next we define the unfolding construction of an AHO-net scheme wrt. constant
symbols. The unfolding construction is applied to a specific transition t, so that
there is a contextual place in the environment of this transition with unary arc
inscriptions given by a variable fc. Moreover, we have to make sure that the constant
symbol c, which corresponds to the variable fc, does not occur in its net inscriptions
because otherwise the firing behavior of the AHO-net and the unfolded AHO-net
are not equivalent. The data type part and the set of transitions remain unchanged.
The set of places of the folded AHO-net is given by deleting the contextual place.
Furthermore, we apply the unfold-operator to the net inscriptions of the transition t.
A general description of the folding construction wrt. constant symbols is depicted
in Fig. 5.2.
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Fact 5.1.5 (Unfolding of AHO-net schemes wrt. constant symbols)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme with Σ = (S, OP,X),
c : type ∈ OP and fc : type ∈ X. Let tfc ∈ T such that c 6∈ Op(tfc). Moreover, let
pfc ∈ P a contextual place (see Def. 3.2.4) such that

pre(tfc)|pfc = post(tfc)|pfc = fc.

The unfolding of N wrt. the constant symbol c with corresponding variable fc, the
transition tfc and the contextual place pfc is an AHO-net scheme

U(N) = (U(Σ), U(P ), U(T ), U(pre), U(post), U(cond), U(type))

defined by

• U(Σ) = Σ,

• U(P ) = P \ {pfc},

• U(T ) = T ,

• U(pre) : T −→ (TΣ(X)⊗ U(P ))⊕ with

U(pre)(t) =


∑n

i=1(unfoldfc
(termi), pi) if t = tfc and

pre(tfc) =
∑n

i=1(termi, pi)⊕ (fc, p
fc)

pre(t) else

and U(post) : T −→ (TΣ(X)⊗ U(P ))⊕ with

U(post)(t) =


∑m

j=1(unfoldfc
(termj), pj) if t = tfc and

post(tfc) =
∑m

j=1(termj , pj)⊕ (fc, p
fc)

post(t) else

• U(cond) : T −→ TΣ,unit(X) with

U(cond)(t) =

{
unfoldfc(cond(t)) if t = tfc

cond(t) else

• U(type) : U(P ) −→ S→ with U(type)(p) = type(p).

Proof (Sketch): We have to show that U(N) is an AHO-net scheme as defined
in Def. 3.2.1. For all t ∈ T and t 6= tfc we have that the environment remains
unchanged. The definition of the unfold-operator (see Def. 5.1.2) guarantees that
the net inscriptions and the firing condition of the unfolded transition tc consist of
terms of the higher-order signature. Finally, for all p ∈ U(P ) the assigned type is
still the same as in N . �

In our example in Section 3.3 the place padd in AHO-net “Computation III” (see
Fig. 3.3) is a contextual place because the connection between this place and the
transition compute add is given by a double arrow labeled with the variable fadd.
The application of the unfolding construction wrt. the constant symbol add with
corresponding variable fadd and the transition compute add with contextual place
padd leads to the AHO-net “Computation II” depicted in Fig. 3.2.

Next we show that the composition of the folding and unfolding construction
wrt. constant symbols leads to equivalent nets. This result is not only essential from
a practical point of view as described above but it is also used to achieve that the
unfolding construction preserves the firing behavior.
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Theorem 5.1.6 (Folding and Unfolding Constructions are Inverse)
Let N = (Σ, P, T, pre, cond, type) be an AHO-net scheme with Σ = (S, OP,X),
c : type ∈ OP , and fc : type ∈ X.

1. Then the composition of the folding and unfolding constructions wrt. constant
symbols leads to equivalent nets, i.e.

U(F (N)) ∼= N

if the folding and unfolding constructions are wrt. the same constant symbol c
with corresponding variable fc, the same transition is used by the folding and
unfolding constructions, i.e. tfc = tc and the place generated by the folding
construction is used by the unfolding construction, i.e. pfc = pc.

2. Then the composition of the unfolding and folding constructions wrt. constant
symbols leads to equivalent nets, i.e.

F (U(N)) ∼= N

if the unfolding and folding constructions are wrt. the same constant symbol
c with corresponding variable fc, the same transition is used by the unfolding
and folding constructions, i.e. tc = tfc and the place used by the unfolding
construction is generated by the folding construction, i.e. pc = pfc .

Proof

1. In the AHO-net scheme U(F (N)) resp. the AHO-net scheme N the signature
is given by Σ and the set of transitions is given by T . Furthermore we have

U(F (P )) = U(P ] {pc})
= (P ] {pc}) \ {pfc}
= P.

We distinguish for t ∈ T the following two cases. For t 6= tc the environment
is preserved by the folding and unfolding constructions, i.e. we have

U(F (pre))(t) = pre(t),

U(F (post))(t) = post(t), and

U(F (cond))(t) = cond(t).

Let t = tc and pre(tc) =
∑n

i=1(termi, pi). Then we have

U(F (pre))(tc)

= U(
∑n

i=1(foldc(termi), pi)⊕ (fc, p
c))

=
∑n

i=1(unfoldfc
(foldc(termi)), pi)

=
∑n

i=1(termi, pi) (Fact 5.1.3)

= pre(tc)

and analogously for the post domain. Furthermore, we have

U(F (cond))(tc)

= U(foldc(cond(tc)))

= unfoldfc
(foldc(cond(tc)))

= cond(tc) (Fact 5.1.3).

Finally, for all p ∈ P we have U(F (type))(p) = type(p) due to the defini-
tion of F (type)(p) = type(p) and U(type)(p) = type(p). Thus, we conclude
U(F (N)) ∼= N .
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2. The proof of F (U(N)) ∼= N is more or less analog.

�

For our main theorem we need some preliminaries concerning the folding of
terms and corresponding variable valuations. First we state, that the interpretation
of terms is preserved by the fold-operator. Afterwards, we show, that the variable
valuations in an AHO-net and the variable valuations in the folded AHO-net are in
a correspondence, such that the definedness of terms is preserved.

Lemma 5.1.7 (Folding Preserves Term Evaluation)
Let Σ = (S, OP,X) be a higher-order signature, c : type ∈ OP a constant symbol
and fc : type ∈ X a variable. Furthermore, let A be a higher-order Σ-algebra such
that cA ∈ Atype and v : TΣ(X) −→ A a variable valuation such that v(fc) = cA.
Then we have for all term ∈ TΣ(X)

v](foldc(term)) = v](term).

Proof: By induction over the term structure of TΣ(X) we have:

Induction Base:

1. v](foldc(〈〉)) = v](〈〉) for 〈〉 ∈ TΣ,unit(X)

2. v](foldc(x)) = v](x) for all x : type ∈ X

Induction Step: Let v](foldc(termi)) = v](termi) for some terms
termi ∈ TΣ(X), i = 1, . . . , n.

3a. v](foldc(op)) = v](foldc(c)) = v](fc) = cA = v](c) = v](op)

for op : type ∈ OP and op = c

3b.
v](foldc(op(term))) = v](op(foldc(term)))

= opA(v](foldc(term)))

= opA(v](term))

= v](op(term))

for all op : type1 ⇀ type2 ∈ OP, op 6= c and all term ∈ TΣ,type1(X)

4.
v](foldc(〈term1, . . . , termn〉))

= v](〈foldc(term1), . . . , foldc(termn)〉)
= 〈v](foldc(term1)), . . . , v](foldc(termn))〉
= 〈v](term1), . . . , v](termn)〉
= v](〈term1, . . . , termn〉)

for all term1 ∈ TΣ,type1(X), . . . , termn ∈ TΣ,typen
(X)

5.
v](foldc(pr

(type1?...?typen)
i (term)))

= v](pr
(type1?...?typen)
i (foldc(term)))

= pr
(type1?...?typen)
i,A (v](foldc(term)))

= pr
(type1?...?typen)
i,A (v](term))

= v](pr
(type1?...?typen)
i (term))

for all pr
(type1?...?typen)
i ∈ OP→ \OP and term ∈ TΣ,(type1?...?typen)(X). �
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Lemma 5.1.8 (Folding and Variable Valuation)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme with Σ = (S, OP,X),
c : type ∈ OP , fc : type ∈ X and tc ∈ T . Let (N,A) be an AHO-net wrt. Σ such that
cA ∈ Atype. Moreover, let F (N) be the folding of N wrt. the constant symbol c with
corresponding variable fc and the transition tc. Then for each variable valuation
v1 : V ar(N,A)(tc) −→ A, there is a variable valuation v2 : V ar(F (N),A)(tc) −→ A
defined by

v2(x) =

{
cA if x = fc

v1(x) else

and for each variable valuation v2 : V ar(F (N),A)(tc) −→ A there is a variable valu-
ation v1 : V ar(N,A)(tc) −→ A defined by

v1 = v2|V ar(N,A)(tc).

Moreover, we have for all term ∈ TΣ(X) with fc 6∈ V ar(term)

term ∈ dom(v]
1)⇐⇒ term ∈ dom(v]

2).

Proof: Due to the assumption in Fact 5.1.5 we have fc 6∈ V ar(N,A)(tc). Let
v1 : V ar(N,A)(tc) −→ A be a variable valuation. Then v2 given by the extension
of v1 to the variable fc is well-defined because v1 is well-defined, V ar(F (N),A)(tc) =
V ar(N,A)(tc) ∪ {fc}, and for fc : type ∈ X we have v2(fc) = cA ∈ Atype.

Given term ∈ dom(v]
1) and fc 6∈ V ar(term), then due to the definition of v2 we

have v]
2(term) = v]

1(term) and, thus, term ∈ dom(v]
2).

Let v2 : V ar(F (N),A)(tc) −→ A be a variable valuation. Then v1 given by the
restriction of v2 to the variables V ar(N,A)(tc) is well-defined because v2 is well-
defined and V ar(N,A)(tc) = V ar(F (N),A)(tc) \ {fc}.

Given term ∈ dom(v]
2) and fc 6∈ V ar(term), then due to the definition of v1 we

have v]
1(term) = v]

2(term) and, thus, term ∈ dom(v]
1). �

Our second theorem is divided into two main results. We provide that not only
the folding construction wrt. constant symbols but also the unfolding construction
wrt. constant symbols preserves the operational behavior. Within this theorem the
AHO-nets are in some sense parametrized by a fixed marking of the contextual
places, which are used in these constructions. But to simplify our notation, we give
these parameters only implicitly. In detail we show that the (un-)folded AHO-net
has exactly the same sets of markings, consistent transitions valuations, enabled
transitions, firing steps, and reachable markings as the AHO-net, and thus the two
nets are equivalent wrt. their firing behavior.

Theorem 5.1.9 (Folding and Unfolding wrt. Constant Symbols)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme with Σ = (S, OP,X),
c : type ∈ OP , and fc : type ∈ X. Let A a higher-order partial Σ-algebra such that
cA ∈ Atype.

1. Let F (N) be the folding of N wrt. the constant symbol c with corresponding
variable fc and the transition tc ∈ T . Let pc be the contextual place generated
by the folding construction. Then the AHO-net (N,A) and the AHO-net
(F (N), A) are equivalent wrt. their firing behavior, if M(F (N),A)|pc = (cA, pc).
More precisely,

(a) the markings are in a bijective correspondence:

M(N,A) ∈ CP⊕
(N,A) ⇐⇒M(F (N),A) ∈ CP⊕

(F (N),A)



5.1. FOLDING AND UNFOLDING WRT. CONSTANT SYMBOLS 77

(b) the sets of consistent transition valuations are in a bijective correspond-
ence:

(t, v1) ∈ CT(N,A) ⇐⇒ (t, v2) ∈ CT(F (N),A)

(c) the sets of enabled transition are equivalent:

M(N,A)[(t, v1)〉 ⇐⇒M(F (N),A)[(t, v2)〉
(d) the sets of firing steps are equivalent:

M(N,A)[(t, v1)〉M ′
(N,A) ⇐⇒M(F (N),A)[(t, v2)〉M ′

(F (N),A)

(e) and the sets of reachable markings are equivalent:

M ′
(N,A) ∈ [M(N,A)〉 ⇐⇒M ′

(F (N),A) ∈ [M(F (N),A)〉.

2. Let U(N) be the unfolding of N wrt. the constant symbol c with corresponding
variable fc, the transition tfc ∈ T and the contextual place pfc ∈ P . Then the
AHO-net (N,A) and the AHO-net (U(N), A) are equivalent wrt. their firing
behavior, if M(N,A)|pfc = (cA, pfc). More precisely,

(a) the sets of markings are in a bijective correspondence:

M(N,A) ∈ CP⊕
(N,A) ⇐⇒M(U(N),A) ∈ CP⊕

(U(N),A)

(b) the sets of consistent transition valuations are in a bijective correspond-
ence:

(t, v1) ∈ CT(N,A) ⇐⇒ (t, v2) ∈ CT(U(N),A)

(c) the sets of enabled transition are equivalent:

M(N,A)[(t, v1)〉 ⇐⇒M(U(N),A)[(t, v2)〉
(d) the sets of firing steps are equivalent:

M(N,A)[(t, v1)〉M ′
(N,A) ⇐⇒M(U(N),A)[(t, v2)〉M ′

(U(N),A)

(e) and the set of reachable markings are equivalent:

M ′
(N,A) ∈ [M(N,A)〉 ⇐⇒M ′

(U(N),A) ∈ [M(U(N),A)〉.

Proof: The proof is a consequence of the definition of the folding and unfold-
ing constructions and the definition of the firing behavior of AHO-nets.

1. (N,A) and (F(N),A) are equivalent wrt. their firing behavior.
In the following we assume that for a marking M(F (N),A) of the AHO-net
(F (N), A) we have M(F (N),A)|pc = (cA, pc). M(F (N),A)|pc ∈ CP⊕

(F (N),A), be-
cause F (P ) = P ]{pc}, cA ∈ Atype, F (type)(pc) = type and pc ∈ F (P ). Note
that due to the definition of the folding construction we have for t ∈ T and
t 6= tc:

F (pre)(t) = pre(t), F (post)(t) = post(t) and F (cond)(t) = cond(t). (5.1)

For t ∈ T and t = tc we have:

F (cond)(tc) = foldc(cond)(tc). (5.2)

Let pre(tc) =
∑n

i=1(termi, pi) and post(tc) =
∑m

j=1(termj , pj), then we have:

F (pre)(tc) =
n∑

i=1

(foldc(termi), pi)⊕ (fc, p
c) (5.3)

and

F (post)(tc) =
m∑

j=1

(foldc(termj), pj)⊕ (fc, p
c). (5.4)
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(a) ⇒ Let M(N,A) ∈ CP⊕
(N,A) be a marking of the AHO-net (N,A). Then

the marking of the AHO-net (F (N), A) is defined by

M(F (N),A) = M(N,A) ⊕ (cA, pc).

M(F (N),A) is well-defined because F (P ) = P ] {pc}.
⇐ Let M(F (N),A) ∈ CP⊕

(F (N),A) be a marking of the AHO-net (F (N), A).
Then the marking of the AHO-net (N,A) is defined by

M(N,A) = M(F (N),A)|F (P )\{pc}.

M(N,A) is well-defined because P = F (P ) \ {pc}.

(b) It remains to show for all t ∈ T :

cond(t) ∈ dom(v]
1) and

∀(term, p) ∈ pre(t)⊕ post(t) : term ∈ dom(v]
1)

⇐⇒ F (cond)(t) ∈ dom(v]
2) and

∀(term′, p′) ∈ F (pre)(t)⊕ F (post)(t) : term′ ∈ dom(v]
2).

We distinguish for t ∈ T the following two cases.

Case 1: For t 6= tc it follows immediately due to (5.1) that

(t, v) ∈ CT(N,A) ⇐⇒ (t, v) ∈ CT(F (N),A).

Case 2: Let t = tc and v1 : V ar(N,A)(tc) −→ A be a variable valuation.
Due to the folding construction V ar(N,A)(tc) and V ar(F (N),A)(tc)
differ at least in one variable. So we can define a variable valuation
v2 : V ar(F (N),A)(tc) −→ A as an extension of v1 according to the
marking of the contextual place pC . Vice versa we assume a vari-
able valuation v2 : V ar(F (N),A)(tc) −→ A. Then v1 is given by the
restriction of v2 to the variables V ar(N,A)(tc) (see Lemma 5.1.8).

cond(tc) ∈ dom(v]
1)

⇐⇒ cond(tc) ∈ dom(v]
2) (Lemma 5.1.8)

⇐⇒ foldc(cond(tc)) ∈ dom(v]
2) (Lemma 5.1.7)

⇐⇒ F (cond)(tc) ∈ dom(v]
2) (by (5.2)).

We have for all (term, p) ∈ pre(tc)⊕post(tc) with (term, p) 6= (fc, p
c)

the following.

∀(term, p) ∈ pre(tc)⊕ post(tc) : term ∈ dom(v]
1)

⇐⇒ ∀(term, p) ∈ pre(tc)⊕ post(tc) : term ∈ dom(v]
2)

(Lemma 5.1.8)

⇐⇒ ∀(term, p) ∈ pre(tc)⊕ post(tc) : foldc(term) ∈ dom(v]
2)

(Lemma 5.1.7)
⇐⇒ ∀(foldc(term), p) ∈ F (pre)(tc)⊕ F (post)(tc) :

foldc(term) ∈ dom(v]
2) (by (5.3) and (5.4)).

Moreover, fc ∈ dom(v]
2) due to the definition of v2 in Lemma 5.1.8

and we have:

(fc, p
c) ∈ F (pre)(tc)⊕ F (post)(tc) : fc ∈ dom(v]

2).
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Thus

∀(term, p) ∈ pre(tc)⊕ post(tc) : term ∈ dom(v]
1)

⇐⇒ ∀(term′, p′) ∈ F (pre)(tc)⊕ F (post)(tc) : term′ ∈ dom(v]
2).

(c) It remains to show for all t ∈ T :

v̂1(pre(t)) ≤M(N,A) ⇐⇒ v̂2(F (pre)(t)) ≤M(F (N),A).

We distinguish for t ∈ T the following two cases:
Case 1: For t 6= tc we have pc 6∈ •t. Thus, it follows by (5.1) and Proofs

of (a) and (b):

v̂(pre(t)) ≤M(N,A)

⇐⇒ v̂(F (pre)(t)) ≤M(N,A) ⊕ (cA, pc)

⇐⇒ v̂(F (pre)(t)) ≤M(F (N),A).

Case 2: Let t = tc and pre(tc) =
∑n

i=1(termi, pi).

v̂1(pre(tc)) ≤M(N,A)

⇐⇒
∑n

i=1(v
]
1(termi), pi) ≤M(N,A)

⇐⇒
∑n

i=1(v
]
2(termi), pi)) ≤M(N,A)

(Lemma 5.1.8)

⇐⇒
∑n

i=1(v
]
2(termi), pi))⊕ (cA, pc) ≤M(N,A) ⊕ (cA, pc)

⇐⇒
∑n

i=1(v
]
2(termi), pi))⊕ (v]

2(fc), pc)) ≤M(N,A) ⊕ (cA, pc)

(Lemma 5.1.8)

⇐⇒
∑n

i=1(v
]
2(foldc(termi)), pi))⊕ (v]

2(fc), pc))

≤M(N,A) ⊕ (cA, pc)

(Lemma 5.1.7)

⇐⇒ v̂2(
∑n

i=1(foldc(termi), pi)⊕ (fc, p
c)) ≤M(N,A) ⊕ (cA, pc)

⇐⇒ v̂2(F (pre)(tc)) ≤M(N,A) ⊕ (cA, pc) (by (5.3))

⇐⇒ v̂2(F (pre)(tc)) ≤M(F (N),A) (Proof of (a)).

(d) Given M(N,A)[(t, v1)〉 and M(F (N),A)[(t, v2)〉 such that

M(N,A)[(t, v1)〉 ⇐⇒M(F (N),A)[(t, v2)〉,

due to the definition of follower markings M ′
(N,A) we have:

M ′
(N,A) = M(N,A) 	 v̂1(pre(t))⊕ v̂1(post(t))

⇐⇒ M ′
(N,A) ⊕ (cA, pc) = M(N,A) ⊕ (cA, pc)

	 v̂1(pre(t))⊕ v̂1(post(t))

⇐⇒ M ′
(F (N),A) = M(F (N),A) 	 v̂1(pre(t))⊕ v̂1(post(t)).

where the last equivalence follows due to Proof of (a). Moreover we have
for the follower marking M ′

(F (N),A):

M ′
(F (N),A) = M(F (N),A) 	 v̂2(F (pre)(t))⊕ v̂2(F (post)(t)).

It remains to show that for all t ∈ T :

v̂1(post(t))	 v̂1(pre(t)) = v̂2(F (post)(t))	 v̂2(F (pre)(t)).

We distinguish for t ∈ T the following two cases.
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Case 1: For t 6= tc the equation follows by (5.1) and v1 = v2.
Case 2: Let t = tc with

pre(tc) =
n∑

i=1

(termi, pi) and post(tc) =
m∑

j=1

(termj , pj).

v̂1(post(tc))	 v̂1(pre(tc))

=
∑m

j=1(v
]
1(termj), pj)	

∑n
i=1(v

]
1(termi), pi)

=
∑m

j=1(v
]
2(termj), pj)	

∑n
i=1(v

]
2(termi), pi)

(Lemma 5.1.8)

=
∑m

j=1(v
]
2(foldc(termj)), pj)	

∑n
i=1(v

]
2(foldc(termi)), pi)

(Lemma 5.1.7)

=
∑m

j=1(v
]
2(foldc(termj)), pj))⊕ (v]

2(fc), pc)

	
∑n

i=1(v
]
2(foldc(termi)), pi)	 (v]

2(fc), pc)

(Lemma 5.1.8)

= v̂2(
∑m

j=1(foldc(termj), pj)⊕ (fc, p
c))

	v̂2(
∑n

i=1(foldc(termi), pi)⊕ (fc, p
c))

= v̂2(F (post)(tc))	 v̂2(F (pre)(tc)) (by (5.3) and (5.4)).

(e) We show by induction over the length of occurrence sequences that the set
of reachable markings are equivalent. For n = 0 it follows immediately
due to the Proof of (a) that

M(N,A) ∈ [M(N,A)〉 ⇐⇒M(F (N),A) ∈ [M(F (N),A)〉.

For n = 1 there are firing steps

M(N,A)[(t, v1)〉M ′
(N,A) and M(F (N),A)[(t, v2)〉M ′

(F (N),A)

due to Proof of (d). Hence,

M ′
(N,A) ∈ [M(N,A)〉 ⇐⇒M ′

(F (N),A) ∈ [M(F (N),A)〉.

For occurrence sequences of the length n+1 it follows due to the induction
base and the induction hypothesis that for the end markings we have:

M(N,A),n+2 ∈ [M(N,A)〉 ⇐⇒M(F (N),A),n+2 ∈ [M(F (N),A)〉.

2. (N,A) and (U(N),A) are equivalent wrt. their firing behavior.
Let U(N) be the unfolding of N wrt. the constant symbol c with corresponding
variable fc, the transition tfc ∈ T and the contextual place pfc ∈ P . Moreover,
let F be a folding construction, such that F (U(N)) ∼= N (see Thm. 5.1.6).
We define U(N) = N ′. Then we have due to 1.(a)

(M(N ′,A) ∈ CP⊕
(N ′,A) ⇐⇒M(F (N ′),A) ∈ CP⊕

(F (N ′),A))

=⇒ (M(U(N),A) ∈ CP⊕
(U(N),A) ⇐⇒M(F (U(N)),A) ∈ CP⊕

(F (U(N)),A))

=⇒ (M(U(N),A) ∈ CP⊕
(U(N),A) ⇐⇒M(N,A) ∈ CP⊕

(N,A))

and analogously for 2.(b) - (e).

�
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5.2 Folding and Unfolding wrt. Product Types

In this section we introduce the concept of the folding and unfolding construction
wrt. product types. The folding of AHO-net schemes wrt. product types is defined
for a distinguished set PF of at least two places, called uniform places, so that all
places p ∈ PF have the same environment, i.e. the same set of transitions in the pre-
and post domains and an unary arc inscription for arcs between a place p ∈ PF and
transitions in the pre- and post domain of p. In terms of our example in Section 3.3
the set {p1, p2} of the AHO-net “Computation I” (see Fig. 3.1) is a set of uniform
places because the pre- and post domain of p1 resp. p2 is given by the transitions
compute add and compute sub and there are unary arc inscription x resp. y.

Definition 5.2.1 (Set of Uniform Places)
Given an AHO-net scheme N = (Σ, P, T, pre, post, cond, type). Then a set PF with
PF ⊆ P and PF = {p1, . . . , pn}, n ≥ 2, where p1, . . . , pn pairwise distinct, is a set
of uniform places if there is a subset TF ⊆ T , called the pre- and post domain of
PF , such that for all p ∈ PF :

•p = p• = TF

and for all t ∈ TF there exists a term ∈ TΣ(X) such that

pre(t)|p = post(t)|p = term.

For type(pi) = typei, and i ∈ {1, . . . , n} we also denote PF by the corresponding
list 〈p1 : type1, . . . , pn : typen〉.

Remark 5.2.2 (Pre- and Post Domain of Set of Uniform places)
For t ∈ TF and PF = 〈p1 : type1, . . . , pn : typen〉 the restriction of the pre- and
post domains to PF is given by

pre(t)|P F = post(t)|P F =
n∑

i=1

(termi, pi) in normal form.

Next we define the folding construction of an AHO-net scheme wrt. product
types. The folding construction is applied to a specific set of uniform places. The
data type part, the set of transitions, and the firing conditions are remain un-
changed. The set of places of the folded AHO-net is given by deleting the set of
uniform places but adding a new place with an appropriate product type. Fur-
thermore, the arc inscriptions of the transitions in the environment of the set of
uniform places are obtained by using the tuple formation. A general description of
the folding construction wrt. product types is depicted in Fig. 5.3.

Fact 5.2.3 (Folding of AHO-net schemes w.r.t. Product Types)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme and let PF ⊆ P be
a set of uniform places with corresponding list 〈p1 : type1, . . . , pn : typen〉, n ≥ 2,
and TF ⊆ T the pre- and post domain of PF . Then the folding of N wrt. products
types and PF is an AHO-net scheme

F (N) = (F (Σ), F (P ), F (T ), F (pre), F (post), F (cond), F (type))

defined by

• F (Σ) = Σ,

• F (P ) = (P \ PF ) ] {pF } where pF is the place corresponding to the folding
of the set of uniform places PF ,



5.2. FOLDING AND UNFOLDING WRT. PRODUCT TYPES 82

〈term1, . . . , termn〉

=⇒

p1 : type1

pn : typen

pF : (type1 ? . . . ? typen)

p : type

p′ : type′

term′

t

term

p : type

p′ : type′

term′

t

term

cond(t) cond(t)

termn

term1

term1

termn

.

.

.
〈term1, . . . , termn〉

Figure 5.3: Schemata of folding construction wrt. product types

• F (T ) = T ,

• F (pre) : T −→ (TΣ(X)⊗ F (P ))⊕ with

F (pre)(t) =


pre(t)	 pre(t)|P F ⊕ (〈term1, . . . , termn〉, pF )

if t ∈ TF and pre(t)|P F =
∑n

i=1(termi, pi)

pre(t) else

and F (post) : T −→ (TΣ(X)⊗ F (P ))⊕ with

F (post)(t) =


post(t)	 post(t)|P F ⊕ (〈term1, . . . , termn〉, pF )

if t ∈ TF and post(t)|P F =
∑n

i=1(termi, pi)

post(t) else

• F (cond) = cond, and

• F (type) : F (P ) −→ S→ with

F (type)(p) =


type1 ? . . . ? typen for p = pF and

PF = 〈p1 : type1, . . . , pn : typen〉

type(p) else

Proof (Sketch): We have to show that F (N) is an AHO-net scheme as defined
in Def. 3.2.1. In the following we restrict our proof sketch to the set of transitions
t ∈ TF and the place pF generated by the folding construction. pF ∈ F (P ) and
term1, . . . , termn ∈ TΣ(X) implies (〈term1, . . . , termn〉, pF ) ∈ (TΣ(X) ⊗ F (P ))⊕

(see Remark 3.1.15). Thus, we have F (pre)(t) ∈ (TΣ(X) ⊗ F (P ))⊕; analogously
for the post domain. Moreover, F (type)(pF ) ∈ S→ because type1, . . . , typen ∈ S→

implies type1 ? . . . ? typen ∈ S→ (see Remark 3.1.5). �

An example of the folding construction wrt. product types can be found in
Section 3.3, where we apply the folding construction wrt. the set of uniform places
PF = {p1, p2} to the AHO-net “Computation I” in Fig. 3.1. Note that type(p1) =
type(p2) = Nat. In more detail, we replace the set of uniform places PF by the
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new place pF with assigned product type Nat ? Nat. Moreover, we get the arc
inscription 〈x, y〉 corresponding to the unary arc inscriptions x resp. y. As a result
we obtain the AHO-net “Computation II” in Fig. 3.2.

Next we define the notion of uniform places, which is used in the unfolding
construction. A place pU ∈ P is called a uniform place, if there are the same
transitions with unary arc inscriptions in its environment. An example of an uniform
place is given by the place pF in the AHO-net “Computation II” (see Fig. 3.2).

Definition 5.2.4 (Uniform Place)
Given an AHO-net scheme N = (Σ, P, T, pre, post, cond, type), then a place pU ∈ P
with assigned product type (type1 ? . . . ? typen) ∈ S→, n ≥ 2, is a uniform place iff
there is a set T pU ⊆ T , called the pre- and post domain of pU such that

pU• = •pU = T pU

and for all t ∈ T pU

there exists a term 〈term1, . . . , termn〉 ∈ TΣ(X), such that

pre(t)|pU = post(t)|pU = 〈term1, . . . , termn〉.

Remark 5.2.5 (Pre- and Post Domain of Uniform Places)
Here we allow that type(pU ) is a nested product type (see Remark 3.1.5) and
〈term1, . . . , termn〉 is a nested product term (see Remark 3.1.15).

In the following we define the unfolding construction of an AHO-net scheme
and a specific uniform place with assigned product type. This construction has no
effect on the data type part, the set of transitions, and the firing conditions, while
the set of places of the unfolded AHO-net is given by deleting the uniform place
and adding a specific set of places. The number of added places corresponds to
the number of subtypes, from which the product type is constructed. Analogously
the type assigned to these places corresponds in some sense to the product type
of the uniform place. Furthermore, the arc inscriptions of the transitions in the
environment of the uniform place are unfolded, i.e. the particular arc inscriptions
are obtained by splitting the tuple into several subterms. If we exchange the left-
hand side and the right-hand side of Fig. 5.3, the resulting graphical description
illustrates the unfolding construction wrt. product types.

Fact 5.2.6 (Unfolding of AHO-net schemes w.r.t. Product Types)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme and let pU ∈ P be a
uniform place with type(pU ) = (type1 ? . . . ? typen), n ≥ 2. Then the unfolding of
N wrt. products types is an AHO-net scheme

U(N) = (U(Σ), U(P ), U(T ), U(pre), U(post), U(cond), U(type))

defined by

• U(Σ) = Σ,

• U(P ) = (P \ {pU}) ] PU where PU is the set of places corresponding to the
unfolding of the uniform place pU with PU = {p1, . . . , pn}, n ≥ 2, p1, . . . , pn

pairwise distinct and corresponding list 〈p1 : type1, . . . , pn : typen〉,

• U(T ) = T ,

• U(pre) : T −→ (TΣ(X)⊗ U(P ))⊕ with

U(pre)(t) =


pre(t)	 pre(t)|pU ⊕

∑n
i=1(termi, pi),

if t ∈ •pU with pre(t)|pU = 〈term1, . . . , termn〉
and PU = 〈p1 : type1, . . . , pn : typen〉

pre(t) else
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and U(post) : T −→ (TΣ(X)⊗ U(P ))⊕ with

U(post)(t) =


post(t)	 post(t)|pU ⊕

∑n
i=1(termi, pi),

if t ∈ •pU with post(t)|pU = 〈term1, . . . , termn〉
and PU = 〈p1 : type1, . . . , pn : typen〉

post(t) else

• U(cond) = cond, and

• U(type) : U(P ) −→ S→ with

U(type)(p) =


typei if p = pi ∈ PU , i ∈ {1, . . . , n},

and PU = 〈p1 : type1, . . . , pn : typen〉

type(p) else

Proof (Sketch): We have to show that U(N) is an AHO-net scheme as defined
in Def. 3.2.1. In the following we restrict our proof sketch to the set of transition
t ∈ •pU and the set of places PU ⊆ U(P ) with corresponding list 〈p1 : type1, . . . , pn :
typen〉 generated by the unfolding construction. We have U(pre)(t) ∈ (TΣ(X) ⊗
U(P ))⊕ because pre(t)|pU = 〈term1, . . . , termn〉 implies (term1, p1), . . . , (termn, pn)
∈ (TΣ(X) ⊗ U(P ))⊕ (see Remark 5.2.5); analogously for the post domain. For all
pi ∈ PU we have U(type)(pi) ∈ S→ because type1 ? . . . ? typen ∈ S→ implies
type1, . . . , typen ∈ S→ (see Remark 5.2.5). �

Next we show that the composition of the folding and unfolding construction
wrt. product types leads to equivalent nets.

Theorem 5.2.7 (Folding and Unfolding Constructions are Inverse)
Let N be a AHO-net scheme.

1. Then the composition of the folding and unfolding construction wrt. product
types leads to equivalent nets, i.e.

U(F (N)) ∼= N

if the uniform place generated by the folding construction is used by the
unfolding construction, i.e. pF = pU and the set of uniform places used by the
folding construction is generated by the unfolding construction, i.e. PF = PU .

2. Then the composition of the unfolding and folding construction wrt. product
types leads to equivalent nets, i.e.

F (U(N)) ∼= N

if the uniform place used by the unfolding construction is generated by the
folding construction, i.e. pU = pF , and the set of uniform places generated by
the unfolding construction is used by the folding construction, i.e. PU = PF .

Proof:

1. Let N = (Σ, P, T, pre, cond, type) be an AHO-net scheme. Let the folding
construction wrt. the set of uniform places PF ⊆ P with corresponding list
〈p1 : type1, . . . , pn : typen〉, n ≥ 2, and the unfolding construction wrt. the
uniform place pU with type(pU ) = type1 ? . . . ? typen.
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Then in both the AHO-net scheme U(F (N)) and the AHO-net scheme N the
signature is given by Σ, the set of transitions is given by T and the firing
condition function is given by cond. Furthermore we have

U(F (P )) = U((P \ PF ) ] {pF })
= (((P \ PF ) ] {pF }) \ {pU}) ] PU

= P.

We distinguish for t ∈ T the following cases. For t 6= TF the pre-and post
domains are preserved by the folding and unfolding construction, i.e. we have

U(F (pre))(t) = pre(t) and

U(F (post))(t) = post(t).

Let t ∈ TF and pre(t)|P F =
∑n

i=1(termi, pi). Then we have

U(F (pre))(t)

= U(pre(t)	 pre(t)|P F ⊕ (〈term1, . . . , termn〉, pF ))

= pre(t)	 pre(t)|P F ⊕ (〈term1, . . . , termn〉, pF )

	pre(t)|pU ⊕
∑n

i=1(termi, pi)

= pre(t)

because pre(t)|pU = (〈term1, . . . , termn〉, pU ). Finally, for all p ∈ P we have
type(p) = U(F (type))(p) due to the definition of F (type)(p) = type(p) and
U(type)(p) = type(p). Thus, we conclude U(F (N)) ∼= N .

2. The proof F (U(N)) ∼= N is more or less analog.

�

To show the equivalence concerning the firing behavior, we need the notion of
regular and cartesian markings. In our construction defined above we use the well-
known operation of Cartesian products. Our next goal is to apply this operation to
markings of AHO-nets. For this reason markings have to be of a special structure,
so that they are not empty and rather sets than a multisets.

Definition 5.2.8 (Regular Marking)
Let (N,A) be a AHO-net with N = (Σ, P, T, pre, post, cond, type) and M ∈ CP⊕

be a marking of (N,A). Then for p ∈ P the marking M|p is regular if there is a
finite and non empty subset A1 ⊆ Atype(p) such that M|p =

∑
a∈A1

a, i.e. M|p is of
the form a1 ⊕ . . . ⊕ an, n ≥ 1, and a1, . . . , an are pairwise distinct. Let PF ⊆ P .
Then M|P F is regular if for all p ∈ PF M|p is regular.

Definition 5.2.9 (Cartesian Marking)
Let (N,A) be a AHO-net with N = (Σ, P, T, pre, post, cond, type) and M ∈ CP⊕

be a marking of (N,A). Then for p ∈ P with type(p) = (type1 ? . . . ? typen), n ≥ 2,
the marking M|p is cartesian if there is a finite and non empty subset

A1 × . . .×An ⊆ Atype1 × . . .×Atypen

such that
M|p =

∑
(a1,...,an)∈(A1×...×An)

(a1, . . . , an).

Note that a cartesian marking is regular.
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The marking in the AHO-net “Computation I” in Fig. 3.1 is regular, while the
marking of the place pF in the AHO-net “Computation II” in Fig. 3.2 is cartesian.

Lemma 5.2.10 (Corresponding Cartesian Marking)
Let (N,A) be a AHO-net with N = (Σ, P, T, pre, post, cond, type). Let F (N) be
the folding of N wrt. product types and the set of uniform places PF ⊆ P with
PF = {p1, . . . , pn}. Let M(N,A)(PF ) be an arbitrary but fixed marking of the
set of uniform places such that M(N,A)|P F is regular, i.e. for all pi ∈ PF and
i ∈ {1, . . . , n} there is a finite and non empty subsets Ai ⊆ Atype(pi) such that
M(N,A)|pi

=
∑

a∈Ai
a is regular. Moreover, let pF be the place generated by the

folding construction. Then M(F (N),A)(pF ) defined by

M(F (N),A)(pF ) =
∑

(a1,...,an)∈A1×...×An

(a1, . . . , an)

is the cartensian marking corresponding to M(N,A)(PF ). Moreover, M(N,A)(PF ) is
the regular marking corresponding to M(F (N),A)(pF ).

Proof: Obviously the marking M(F (N),A)(pF ) is cartesian as defined in Def 5.2.9.
M(F (N),A)(pF ) ∈ CP(F (N),A) because F (type)(pF ) = type(p1) ? . . . ? type(pn) due
to the definition of the folding construction and

A1 × . . .×An ⊆ Atype(p1) × . . .×Atype(pn)

because M(N,A)(PF ) is regular. Vice versa let M(F (N),A)(pF ) be a cartesian mark-
ing, then we have Ai ⊆ Atype(pi) for i ∈ {1, . . . , n}. Thus M(N,A)(PF ) is regular.

�

In the following we show that the marking of a set of uniform places is not
affected by the firing behavior because the pre- and post domain of these places
are equal. Analogously, we show that the marking of a uniform place remains
unchanged. We show this result especially for the uniform place generated by the
folding construction. Here and in the following we use the indexes (N,A) and
(F (N), A) to distinguish between the elements corresponding to these AHO-nets.

Lemma 5.2.11 (Firing Steps wrt. Folding)
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme, PF ⊆ P a set of
uniform places with PF = {p1, . . . , pn} and F (N) the folding of N wrt. product
types and the set of uniform places PF . Furthermore, let (N,A) be an AHO-net and
M(N,A)(PF ) be an arbitrary but fixed marking of the uniform places PF such that
M(N,A)|P F is regular and let pF is the place generated by the folding construction
and M(F (N),A)(pF ) the cartesian marking corresponding to M(N,A)(PF ).

Given M(N,A,P F ) ∈ CP⊕
(N,A,M(P F ))

and (t, v) ∈ CT(N,A) such that there is a
firing step M(N,A,P F )[(t, v)〉M ′

(N,A), then we have

M ′
(N,A) ∈ CP⊕

(N,A,M(P F ))
.

Given M(F (N),A,pF ) ∈ CP⊕
(F (N),A,M(pF ))

and (t, v) ∈ CT(F (N),A) such that there is
a firing step M(F (N),A,P F )[(t, v)〉M ′

(F (N),A), then we have

M ′
(F (N),A) ∈ CP⊕

(F (N),A,M(P F ))
.

Proof: First we have show that M ′
(N,A)|P F = M(PF ) = M(N,A,P F )|P F . Due to the

definition of follower markings we have

M ′
(N,A) = M(N,A,P F ) 	 v̂(pre(t))⊕ v̂(post(t)).

We distinguish for t ∈ T the following two cases:
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Case 1: For t 6∈ TF , i.e. the set of uniform places is not in the environment of t we
have

pre(t)|P F = post(t)|P F = λ.

Thus, M(N,A,P F )|P F = M ′
(N,A)|P F .

Case 2: For t ∈ TF , i.e. t is in the pre- and post domain of PF we have

pre(t)|P F = post(t)|P F .

Thus, M(N,A,P F )|P F = M ′
(N,A)|P F .

The proof of M ′
(F (N),A) ∈ CP⊕

(F (N),A,M(P F ))
is more or less analog because we have

for all t 6∈ TF

F (pre)(t) = pre(t) and F (post)(t) = post(t)

and for all t ∈ TF

F (pre)(t)|pF = F (post)(t)|pF .

�

The second theorem in this section is divided into two main results. On the
one hand the folding construction wrt. product types leads to equivalent AHO-nets
concerning their firing behavior, and on the other hand the unfolding construction
wrt. product types preserves the operational behavior. In detail, we show that
for an arbitrary but fixed regular marking of the set of uniform places and for
a corresponding cartesian marking of the uniform place the (un-)folded AHO-net
has exactly the same sets of markings, consistent transitions valuations, enabled
transitions, firing steps, and reachable markings as the AHO-net.

Theorem 5.2.12 (Folding and Unfolding w.r.t. Product Types)
Let N be an AHO-net scheme with N = (Σ, P, T, pre, post, cond, type) and A a
higher-order partial Σ-algebra.

1. Let F (N) be the folding of N wrt. product types and the set of uniform places
PF ⊆ P . Let (N,A) be an AHO-net and M(N,A)(PF ) an arbitrary but fixed
regular marking of the set of uniform places. Moreover, let pF be the place
generated by the folding construction and M(F (N),A)(pF ) be the cartesian
marking corresponding to M(N,A)(PF ). Then the AHO-net (N,A) and the
AHO-net (F (N), A) are equivalent wrt. their firing behavior. More precisely,

(a) the markings are in a bijective correspondence:

M(N,A,P F ) ∈ CP⊕
(N,A,M(P F ))

⇐⇒M(F (N),A,pF ) ∈ CP⊕
(F (N),A,M(pF ))

,

(b) the sets of consistent transition valuations are in a bijective correspond-
ence:

(t, v) ∈ CT(N,A) ⇐⇒ (t, v) ∈ CT(F (N),A),

(c) the set of enabled transition are equivalent:

M(N,A,P F )[(t, v)〉 ⇐⇒M(F (N),A,pF )[(t, v)〉,
(d) the sets of firing steps are equivalent:

M(N,A,P F )[(t, v)〉M ′
(N,A) ⇐⇒M(F (N),A,pF )[(t, v)〉M ′

(F (N),A),

(e) CP⊕
(N,A,M(P F ))

and CP⊕
(F (N),A,M(pF ))

are closed under reachability and
the set of reachable markings are equivalent:

M ′
(N,A,P F ) ∈ [M(N,A,P F )〉 ⇐⇒M ′

(F (N),A,pF ) ∈ [M(F (N),A,pF )〉.
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2. Let U(N) be the unfolding of N wrt. product types and the uniform place
pU ∈ P . Let (N,A) be an AHO-net and let M(N,A)(pU ) an arbitrary but
fixed cartesian marking of the uniform place. Let PU be the set of places
generated by the unfolding construction and M(U(N),A)(PU ) be the regular
marking corresponding to M(U(N),A)(pU ). Then the AHO-net (N,A) and the
AHO-net (U(N), A) are equivalent wrt. their firing behavior. More precisely,

(a) the markings are in a bijective correspondence:

M(N,A,pU ) ∈ CP⊕
(N,A,M(pU ))

⇐⇒M(U(N),A,P U ) ∈ CP⊕
(U(N),A,M(P U ))

,

(b) the sets of consistent transition valuations are in a bijective correspond-
ence:

(t, v) ∈ CT(N,A) ⇐⇒ (t, v) ∈ CT(U(N),A),

(c) the set of enabled transition are equivalent:

M(N,A,pU )[(t, v)〉 ⇐⇒M(U(N),A,P U )[(t, v)〉,
(d) the sets of firing steps are equivalent:

M(N,A,pU )[(t, v)〉M ′
(N,A) ⇐⇒M(U(N),A,P U )[(t, v)〉M ′

(U(N),A),

(e) CP⊕
(N,A,M(pU ))

and CP⊕
(U(N),A,M(P U ))

are closed under reachability and
the set of reachable markings are equivalent:

M ′
(N,A,pU ) ∈ [M(N,A,pU )〉 ⇐⇒M ′

(U(N),A,P U ) ∈ [M(U(N),A,P U )〉.

Proof: The proof is a consequence of the definition of the folding and unfolding
constructions and the definition of the firing behavior of AHO-nets.

1. (N,A) and (F(N),A) are equivalent wrt. their firing behavior.
Let PF ⊆ P a set of uniform places with corresponding list

PF = 〈p1 : type1, . . . , pn : typen〉, n ≥ 2

and pre- and post domain TF ⊆ T . Let pF the place generate by the folding
construction. Then we have due to the definition of the folding construction

(P \ PF ) = (F (P ) \ {pF }) (5.5)

and for all t ∈ T :
F (cond)(t) = cond(t). (5.6)

Moreover, we have for all t ∈ TF :

pre|P F (t) = post|P F (t), (5.7)

F (pre)(t)|(F (P )\{pF }) = pre(t)|(P\P F ), (5.8)

F (post)(t)|(F (P )\{pF }) = post(t)|(P\P F ), and (5.9)

F (pre)(t)|pF = F (post)(t)|pF = 〈term1, . . . , termn〉, (5.10)

if pre(t)|P F =
∑n

i=1(termi, pi). For all t 6∈ TF we have

F (pre)(t) = pre(t), F (post)(t) = post(t) and (5.11)

pre(t)|P F = post(t)|P F = λ. (5.12)
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(a) First we define

M(N,A,P F )|(P\P F ) = M(F (N),A,pF )|(F (P )\{pF }). (5.13)

These markings are well-defined by (5.5). Hence

M(N,A,P F ) ∈ CP⊕
(N,A,M(P F ))

⇐⇒M(F (N),A,pF ) ∈ CP⊕
(F (N),A,pF )

,

because by Lemma 5.2.10 M(F (N),A)(pF ) is the cartesian marking correspond-
ing to M(N,A)(PF ) .

(b) It remains to show for all t ∈ T :

cond(t) ∈ dom(v]) and

∀(term, p) ∈ pre(t)⊕ post(t) : term ∈ dom(v])

⇐⇒ F (cond)(t) ∈ dom(v]) and

∀(term′, p′) ∈ F (pre)(t)⊕ F (post)(t) : term′ ∈ dom(v]).

We have by (5.6) that

cond(t) ∈ dom(v])⇐⇒ F (cond)(t) ∈ dom(v]).

Next we distinguish for t ∈ T the following two cases:

Case 1: For t 6∈ TF it follows by (5.11) that

∀(term, p) ∈ pre(t)⊕ post(t) : term ∈ dom(v])

⇐⇒ ∀(term′, p′) ∈ F (pre)(t)⊕ F (post)(t) : term′ ∈ dom(v]).

Case 2: For t ∈ TF we have by (5.8) and (5.9)

∀(term, p) ∈ pre(t)|(P\P F ) ⊕ post(t)|(P\P F ) : term ∈ dom(v])

⇐⇒ ∀(term, p) ∈ F (pre(t))|(F (P )\{pF }) ⊕ F (post(t))|(F (P )\{pF }) :

term ∈ dom(v])

and by (5.10)

∀(term, p) ∈ pre(t)|P F ⊕ post(t)|P F : term ∈ dom(v])

⇐⇒ ∀(term1, p1) ∈ pre(t)|p1 ⊕ pre(t)|p1 , . . . ,

∀(termn, pn) ∈ pre(t)|pn
⊕ pre(t)|pn

:

term1 ∈ dom(v]), . . . , termn ∈ dom(v])

⇐⇒ ∀(term1, p1) ∈ pre(t)|p1 ⊕ pre(t)|p1 , . . . ,

∀(termn, pn) ∈ pre(t)|pn
⊕ pre(t)|pn

:

〈term1, . . . , termn〉 ∈ dom(v])

⇐⇒ ∀(〈term1, . . . , termn〉, pF ) ∈ F (pre)(t)|pF ⊕ F (post)(t)|pF :

〈term1, . . . , termn〉 ∈ dom(v])

⇐⇒ ∀(term′, pF ) ∈ F (pre)(t)|pF ⊕ F (post)(t)|pF : term′ ∈ dom(v]).

Hence

∀(term, p) ∈ pre(t)⊕ post(t) : term ∈ dom(v])

⇐⇒ ∀(term′, p′) ∈ F (pre)(t)⊕ F (post)(t) : term′ ∈ dom(v]).
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(c) It remains to show for all t ∈ T :

v̂(pre(t)) ≤M(N,A,P F ) ⇐⇒ v̂(F (pre)(t)) ≤M(F (N),A,pF ).

We distinguish for t ∈ T the following two cases:

Case 1: For t 6∈ TF we have

v̂(pre(t)) ≤M(N,A,P F )

⇐⇒ v̂(pre(t)) ≤M(N,A,P F )|(P\P F ) ⊕M(N,A,P F )|P F

⇐⇒ v̂(pre(t)) ≤M(N,A,P F )|(P\P F ) (by (5.12))

⇐⇒ v̂(F (pre)(t)) ≤M(F (N),A,pF )|F (P )\{pF }

(by (5.11) and (5.13))

⇐⇒ v̂(F (pre)(t)) ≤M(F (N),A,pF )|F (P )\{pF } ⊕M(F (N),A,pF )|pF

⇐⇒ v̂(F (pre)(t)) ≤M(F (N),A,pF ).

Case 2: For t ∈ TF we have by (5.8) and (5.13)

v̂(pre(t)|(P\P F )) ≤M(N,A,P F )|(P\P F )

⇐⇒ v̂(F (pre)(t)|(F (P )\{pF })) ≤M(F (N),A,pF )|(F (P )\{pF }).

By Lemma 5.2.10 M(F (N),A(pF ) is the cartesian marking corresponding
to M(N,A(PF ) and by (5.10) it follows that

v̂(pre(t)|P F ) ≤M(N,A,P F )|P F

⇐⇒ v̂(F (pre)(t)|pF ) ≤M(F (N),A,pF )|pF .

Therefore

v̂(pre(t)) ≤M(N,A,P F ) ⇐⇒ v̂(F (pre)(t)) ≤M(F (N),A,pF ).

(d) Given M(N,A,P F )[(t, v)〉 and M(F (N),A,pF )[(t, v)〉, such that

M(N,A,P F )[(t, v)〉 ⇐⇒M(F (N),A,pF )[(t, v)〉,

due to the definition of the follower markings M ′
(N,A) and M ′

(F (N),A), we have
to show that

M ′
(N,A) = M(N,A,P F ) 	 v̂(pre(t))⊕ v̂(post(t))

⇐⇒ M ′
(F (N),A) = M(F (N),A,pF ) 	 v̂(F (pre)(t))⊕ v̂(F (post)(t)).

By Lemma 5.2.11 we have

M ′
(N,A) ∈ CP⊕

(N,A,M(P F ))
and M ′

(F (N),A) ∈ CP⊕
(F (N),A,M(P F ))

.

We distinguish for t ∈ T the following two cases:

Case 1: For t 6∈ TF the equivalence follows immediately by (5.11), (5.12) and
Proof of 1. (a).

Case 2: For t ∈ TF we have by (5.8), (5.9), and (5.13)

M ′
(N,A)|(P\P F ) = M(N,A,P F )|(P\P F )

	v̂(pre(t)|(P\P F ))⊕ v̂(post(t)|(P\P F ))

⇐⇒ M ′
(F (N),A)|(F (P )\{pF }) = M(F (N),A,pF )|(F (P )\{pF })

	v̂(F (pre)(t)|(F (P )\{pF }))⊕ v̂(F (post)(t)|(F (P )\{pF })).
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M(F (N),A)(pF ) is the cartesian marking corresponding to M(N,A)(PF )
and by (5.10) we have

M ′
(N,A)|P F = M(N,A,P F )|P F

	v̂(pre(t)|P F )⊕ v̂(post(t)|P F )

⇐⇒ M ′
(F (N),A)|pF = M(F (N),A,pF )|pF

	v̂(F (pre)(t)|pF )⊕ v̂(F (post)(t)|pF ).

Therefore

M ′
(N,A) = M(N,A(N,A,P F )) 	 v̂(pre(t))⊕ v̂(post(t))

⇐⇒ M ′
(F (N),A) = M(F (N),A,pF ) 	 v̂(F (pre)(t))⊕ v̂(F (post)(t)).

(e) By induction over the length of occurrence sequences that CP⊕
(N,A,M(P F ))

and
CP⊕

(F (N),A,M(pF ))
are closed under reachability and the set of reachable mark-

ings are equivalent. For n = 0 it follows immediately due to the Proof of (a)
that

M(N,A,P F ) ∈ [M(N,A,P F )〉 ⇐⇒M(F (N),A,pF ) ∈ [M(F (N),A,pF )〉.

For n = 1 there are firing steps

M(N,A,P F )[(t, v1)〉M ′
(N,A) and M(F (N),A,pF )[(t, v2)〉M ′

(F (N),A)

due to Proof of (d). By Lemma 5.2.11 we have

M ′
(N,A) ∈ CP⊕

(N,A,M(P F ))
and M ′

(F (N),A) ∈ CP⊕
(F (N),A,M(P F ))

.

Hence,

M ′
(N,A) ∈ [M(N,A,P F )〉 ⇐⇒M ′

(F (N),A) ∈ [M(F (N),A,pF )〉.

For occurrence sequences of the length n + 1 it follows due to the induction
base and the induction hypothesis that for the end markings we have:

M ′
(N,A),n+2 ∈ CP⊕

(N,A,M(P F ))
and M ′

(F (N),A),n+2 ∈ CP⊕
(F (N),A,M(P F ))

and

M(N,A),n+2 ∈ [M(N,A,P F )〉 ⇐⇒M(F (N),A),n+2 ∈ [M(F (N),A,pF )〉.

2. (N,A) and (U(N),A) are equivalent wrt. their firing behavior.
Let N = (Σ, P, T, pre, post, cond, type) be an AHO-net scheme and U(N) be the
unfolding wrt. product types of N . Moreover, let F be a folding construction such
that F (U(N)) ∼= N (see Thm. 5.2.7). We define U(N) = N ′. Then we have due to
Proof of 1.(a)

(M(N ′,A,P F ) ∈ CP⊕
(N ′,A,M(P F ))

⇐⇒M(F (N ′),A,pF ) ∈ CP⊕
(F (N ′),A,M(pF ))

)

=⇒ (M(U(N),A,P F ) ∈ CP⊕
(U(N),A,M(P F ))

⇐⇒M(F (U(N)),A,pF ) ∈ CP⊕
(F (U(N)),A,M(pF ))

)

=⇒ (M(U(N),A,P U ) ∈ CP⊕
(U(N),A,M(P U ))

⇐⇒M(N,A,pU ) ∈ CP⊕
(N,A,M(pU ))

)

because PF = PU and pF = pU . Analogously for 2.(b) - (e). �



Chapter 6

AHO-Nets for Specific
Applications Domains

In this chapter we motivate the notions and results of this thesis from a practical
point of view. The general idea is to introduce Petri nets and rules as tokens lead-
ing to three particular algebraic higher-order net classes, each of them for specific
application domains. While in the previous chapters algebraic higher-order nets are
considered with an arbitrary but fixed higher-order signature and corresponding
higher-order algebra, in this chapter we provide a specific data type part for each
particular net class. The goal of this chapter is manyfold. By means of several large
examples we improve not only the comprehensibility of our new concept, but show
also exemplarily some relations to existing net classes, particularly to elementary
object nets [Val98, Val01] and algebraic high-level nets [PER95, Pad96, EHP+02].
Furthermore, we provide several basis formalisms like reconfigurable nets for further
research and deeper analysis of important aspects.

In Section 6.1 we investigate algebraic higher-order net and interaction relation
systems, which are motivated by the concepts of elementary object nets [Val98,
Val01]. Afterwards, in Section 6.2, algebraic higher-order net and rule systems
are presented in the spirit of the example of algebraic high-level nets from Section
3.3. Finally, in Section 6.3 we introduce the approach of algebraic higher-order rule
systems, especially designed for application domains of mobile policies.

6.1 AHO-Net and Interaction Relation Systems

Here we review the concept of elementary object systems. Then we capture this
concept in our approach and define a specific class of AHO-nets, called algebraic
higher-order net and interaction systems. Moreover, we show exemplarily, that
elementary object systems can be translated into semantically equivalent algebraic
higher-order net and interaction systems.

High-level net models following the paradigm “nets as tokens” have been already
a subject in the literature with several interesting applications. The paradigm “nets
as tokens” has been introduced by Valk to allow nets as tokens, called object nets,
within a net, called system net (see [Val98, Val01]). This paradigm has been very
useful to model applications in the area of workflow, agent-oriented approaches,
or flexible manufacturing systems. In elementary object systems, object nets can
move through a system net and interact with both the system net and with other
object nets. This may change the marking not only of the system net but also of
object nets. The approach of elementary object systems has its origins in [JV87,
Val87, Val91], where especially for the area of workflows so-called task systems are
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introduced. Task systems are more complex than ordinary workflows because the
system net reflects the organizational structure of the system and there may be
different workflows (object nets) for the same system.

Elementary object systems allow a simple notion of nets as tokens. Most prin-
ciples of elementary net theory are respected and extended. Elementary object
systems are composed of a system net and one or more object nets, where both the
system net and the object nets are considered as elementary net systems. More-
over, there is a special component of indistinguishable tokens. Usually such tokens
are used for synchronization and modeling of resources. Thus places in elementary
object systems can be marked either by a set of object systems or by a number of
tokens.

In elementary object systems there is not only communication between the sys-
tem net and object nets, but also communication between different object nets.
This is formalized by a so-called interaction relation, which consists of a system-
object interaction relation and an object-object interaction relation. In detail, the
system-object interaction relation is defined by a relation of system net transitions
and object net transitions which have to be fired in parallel, while the object-object
interaction relation is a relation of object net transitions and guards the parallel
firing of transitions in different object nets.

Elementary object systems do not reflect fork/join-control structures correctly
(see [Val98] for a simple example). A fork-control structure can be understood as
a creation or duplication of object nets, while a join-control structure reflects some
kind of merging or destroying of object nets. But this would lead to inconsistencies
in the definition of the dynamical behavior of elementary object systems. Thus
elementary object systems have to be structural state machines, i.e. each transition
of the system net has exactly one input place and exactly one output place and
each object net occurs exactly once in an elementary object system. In this way the
creation and destroying of object nets is forbidden in elementary object systems.

For a detailed definition of elementary object systems we refer to Appendix C,
while in the following we focus on the firing behavior of elementary object systems
to improve the comprehensibility of elementary object systems.

There are mainly four different kinds of occurrence rules, which are exemplar-
ily depicted in Fig. 6.1 -Fig. 6.4. For the special component of indistinguishable
tokens elementary object systems behave like ordinary P/T-systems. The object
net (ONi,mi) of Fig. 6.1 should be seen as tokens in place p of the system net SN .
Here and in the following we use zoom lines to illustrate the general distinction
between the system net and the object nets. The zoom lines enlarge the object
net (ONi,mi) which is represented by a token in the place p. The term (i) is an
element of the arc inscription, i.e. the object (ONi,mi) can be moved along the arc.
Arc inscriptions can contain more values than (i) as denoted by . . . + (i) + . . .. But
be aware that thess arc inscriptions are interpreted in a such way that the object
nets, which correspond to the values, have the possibility to move but not all of
them have to move simultaneously. Since the transition t of the system net SN has
no label, the object net (ONi,mi) is moved to p′ by the occurrence of transition
t. Because it does not change the marking of the object net, such an occurrence is
called system-autonomous.

In a dual sense transition e1 of (ONi,mi) can also occur without interacting
with the system or other object nets (see Fig. 6.2). Therefore such an occurrence
is called object-autonomous.

An example of a system-object interaction occurrence rule is depicted in Fig. 6.3.
Both nets (ONi,mi) and SN have reached a marking where e1 and t are activated.
Since they have the same label (<i1> in this case) they must occur simultaneously,
i.e. the pair (t, e1) is in the corresponding system-object interaction relation. Thus,
the object net (ONi,mi) is removed from place p and the object net (ONi,m

′
i) is
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Figure 6.1: System-autonomous occurrence rule

pp

p1 p2

e1

e2

p1 p2

e1

e2

e1

(ONi, mi) (ONi, m′
i)

Figure 6.2: Object-autonomous occurrence rule

added to the place p′, where m′
i is the follower marking of the object net (ONi,mi).

Finally, Fig. 6.4 shows an object-object interaction occurrence rule. Here object
nets (ONi,mi) and (ONj ,mj) have both reached a marking where ei1 and ej1 are
activated. As indicated by the same label ([r] in this case), the pair (ei1, ej1) is in
the corresponding object-object interaction relation. Thus, these transitions must
occur simultaneously, i.e. the follower markings m′

i and m′
j are computed. But in

contrast to the system-object interaction occurrence rule the object nets still remain
on the place p.

Example 6.1.1 (Hurried Philosophers as Elementary Object System)
Especially the concept of elementary object systems [Val01] has been used to model
the case study of the hurried philosophers proposed in [SB01].

Consider the system net SN in Fig. 6.5, which consists of two places for the
dining room and the library and two transitions to leave and enter the dining room.
Initially there are five philosophers phi1, . . . , phi5 in the library. The object nets of
the philosophers are shown in Fig. 6.6, in full detail for the token net of philosopher
phi1 and in part for his/her right neighbor phi2. The fork exchange is modeled
by the transitions request left neighbor, request right neighbor, grant left, and grant
right. The partners of the fork exchange are fixed, especially we have phi1 as the
right neighbour of phi5.



6.1. AHO-NET AND INTERACTION RELATION SYSTEMS 95

t

p

t

p

p’ p’

...+(i)+...

...+(i)+... ...+(i)+...

...+(i)+...

e2

e1

p2p1

< i1 >

< i2 >

< i2 >

< i1 >

(t,e1)

< i1 >

< i1 >

e2

e1

p1 p2 (ONi, mi)

(ONi, m′
i)

Figure 6.3: System-object interaction occurrence rule
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Figure 6.4: Object-object interaction occurrence rule
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Figure 6.5: “Hurried philosophers” as elementary object system
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Figure 6.6: Object nets of philosopher phi1 and his/her neighbor

Philosophers can move into the dining room due to the firing of the transitions
<enter>. Assume philosopher phi1 wants to enter the dining room. The label
indicates that there is a communication between the system net SN and the object
net phi1, i.e. the corresponding transition fires simultaneously and philosopher phi1
arrives at the dining room with his/her left fork in the hand.

To start the fork exchange philosopher phi1, being hungry, can borrow the miss-
ing right fork from his neighbor phi2 (if he is also in the dining room) by interaction
of the transitions labeled with [r2(2)], i.e. there is an object-object communication
between phi1 and phi2 to give up his/her left fork. All neighboring philosophers
can exchange the shared fork in the same way provided that they are in the dining
room.

Many different settings of the distributed philosophers can be realized, e.g. the
philosophers can only communicate by sending messages or a fork shuttle could move
around and distribute forks to arbitrary participants. But the expressive power of
elementary object systems is restricted in the sense, that the updating of the seating
arrangement during run time, i.e. the seating arrangement might be permanently
modified, can not be modeled because the partners of the fork exchange are fixed
once and for all in the corresponding interaction relation.

By contrast to elementary object systems, in our approach of AHO-nets we use
different formal frameworks for the system level and the object level. In detail the
object level is specified in the data type part, while the system level is modeled by
AHO-nets. Thus in order to capture the concept of elementary object systems, we
first define a suitable signature NI-SIG and a corresponding NI-SIG-algebra in our
approach.

Definition 6.1.2 (NI-SIG Signature)
The signature NI-SIG for elementary net systems with interaction relations as
tokens is given by
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NR-SIG =
sorts: Token, Transitions, P laces,ENSystem, IntRel
opns: tt, ff : Pred(unit)

fire : ((ENSystem ? IntRel ? Transitions)
→ (ENSystem ? IntRel))

isInSysObj : Pred(ENSystem ? IntRel ? Transitions)
isInObj : Pred(ENSystem ? IntRel ? Transitions)
isInObjObj : Pred(ENSystem ? IntRel ? ENSystem ? IntRel

?Transitions ? Transitions)
and for each function type (type1 → type2) ∈ S→ we have an application symbol
applytype1,type2 : (type1 → type2) ? type1 ⇀ type2.

For a detailed notion of elementary net (EN) systems we refer to Appendix C.1.

Definition 6.1.3 (NI-SIG Algebra)
Given vocabularies E0 and B0, the carrier of the NI-SIG-algebra A for EN-systems
with interaction relation as tokens is given by

• AToken = {•},

• ATransitions = E0, APlaces = B0,

• APred(unit) = {true, false},

• AENSystem the set of all EN-systems over E0 and B0, i.e.

AENSystem = {EN |EN = (B,E, pre, post,m) EN-system,

B ⊆ B0, E ⊆ E0},

• AIntRel = {(ESO, EO, EOO)|(ESO ∪ EO) ⊆ E0, E
SO ∩ EO = ∅,

EOO ⊆ (E0 × E0) \ idE0 , E
OO symmetric,

(e, e′) ∈ EOO ⇒ e, e′ 6∈ (ESO ∪ EO)},

• A(ENS?IR?TR)→(ENS?IR) = {fire},

• APred(ENS?IR?TR) = {isInSysObj, isInObj}, and

• APred(ENS?IR?ENS?IR?TR?TR) = {isInObjObj}

where here and in the following TR is an abbreviation for Transitions, ENS for
ENSystems, and IR for IntRel.
For all type ∈ BFS→ different from the types above we have

Atype = ∅.

The carrier is extended to the set of higher-order types S→ by

Aunit := {()} and
Atype1?...?typen := Atype1 × . . .×Atypen .

The partial operations of the NI-SIG-algebra A are defined by

• ttA = true, ff A = false, and

applyunit,unit
A : {true, false} ×Aunit −→◦ Aunit

with

(x.())A =

{
() if x = true

undef if x = false
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• fireA = fire and

apply
(ENS?IR?TR),(ENS?IR)
A : {fire}×(AENS×AIR×E0) −→◦ (AENS×AIR)

for EN = (B,E, pre, post,m) ∈ AENS , Rel ∈ AIR, and e ∈ E0 with

(fire.(EN,Rel, e))A =


((B,E, pre, post, (m \ pre(e)) ∪ post(e)), Rel)

if e ∈ E, pre(e) ⊆ m and post(e) ⊆ (B \m)
undef else

• isInSysObjA = isInSysObj, isInObjA = isInObj, and

apply
(ENS?IR?TR),unit
A :

{isInSysObj, isInObj} × (AENS ×AIR × E0) −→◦ Aunit

for EN = (B,E, pre, post,m) ∈ AESystem, Rel = (ESO, EO, EOO) ∈ AIntRel,
and e ∈ E0 with

(isInSysObj.(EN,Rel, e))A =

{
() if e ∈ E, e ∈ ESO

undef else

and

(isInObj.(EN,Rel, e))A =

{
() if e ∈ E, e ∈ EO

undef else

• isInObjObjA = isInObjObj and

apply
(ENS?IR?ENS?IR?TR?TR),unit
A :

{isInObjObj} × (AENS ×AIR ×AENS ×AIR × E0 × E0) −→◦ Aunit

for ENi = (Bi, Ei, prei, posti,mi) ∈ AENS , Reli = (ESO
i , EO

i , EOO
i ) ∈ AIR,

ei ∈ E0 for i ∈ {1, 2} with

(isInOBjObj.(EN1, Rel1, EN2, Rel2, e1, e2))A

=

{
() if e1 ∈ E1, e2 ∈ E2, (e1, e2) ∈ EOO

1 , (e1, e2) ∈ EOO
2

undef else

Because there is no equivalent notion in the operational behavior of AHO-nets
for the object-autonomous behavior and object-object communication as given in
elementary object nets, in the following definition of algebraic higher-order net and
interaction systems we have to introduce for each place one transition to simulate
the object-autonomous behavior and one transition to simulate the object-object
communication. Moreover, the object nets are equipped by the same interaction
relation.

Definition 6.1.4 (AHO-Net and Interaction Systems)
Given the signature NI-SIG and the NI-SIG-algebra A as above, an algebraic
higher-order net and interaction system AHONIS = ((N,A), INIT ) consists of an
AHO-net (N,A) (see Def. 3.2.7) with Σ = (NI-SIG, X) where X are variables over
NI-SIG and an initial marking INIT so that

• for X we have

– XToken = {x},
– XTransitions = {e, e1, e2},
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– XENSystem = {sys, sys1, sys2}, and

– XIntRel = {rel, rel1, rel2},

• all places p ∈ P are either

– EN-system and interaction relation places
p ∈ PENSys = {p ∈ P |type(p) = (ENSystem ? IntRel)} or

– token places p ∈ PTok = {p ∈ P |type(p) = Token},

• all transitions t ∈ T are either

– system-autonomous transitions t ∈ TS with

pre(t) = ((sys, rel), p1)⊕ ((n · x), p′1),

post(t) = ((sys, rel), p2)⊕ ((m · x), p′2), and

cond(t) = tt

where p1, p2 ∈ PENSys, p′1, p
′
2 ∈ PTok and m,n ∈ N,

– object-autonomous transitions t ∈ TO with

pre(t) = ((sys, rel), p),

pre(t) = ((fire.(sys, rel, e)), p), and

cond(t) = (isInObj.(sys, rel, e))

where p ∈ PENSys,

– system-object interaction transitions t ∈ TSO with

pre(t) = ((sys, rel), p1)⊕ ((n · x), p′1),

post(t) = ((fire.(sys, rel, e)), p2)⊕ ((m · x), p′2), and

cond(t) = (isInSysObj.(sys, rel, e))

where p1, p2 ∈ PENSys, p′1, p
′
2 ∈ PTok, and m,n ∈ N, or

– object-object interaction transitions t ∈ TOO with

pre(t) = ((sys1, rel1), p)⊕ ((sys2, rel2), p),

post(t) = ((fire.(sys1, rel1, e1)), p)⊕ ((fire.(sys2, rel2, e2)), p), and

cond(t) = (isInObjObj.(sys1, rel1, sys2, rel2, e1, e2))

where p ∈ PENSys,

and there is a bijective correspondence

PENSys
∼= TO ∼= TOO,

• and INIT ∈ (A ⊗ P )⊕ with INIT|PENSys
=

∑n
i=1((ONi, Rel), pi) in normal

form such that for ONi = (Bi, Ei, prei, posti,mi) for i ∈ {1, . . . , n} and Rel =
(ESO, EO, EOO) we have

ESO ⊆ E, EO ⊆ E, and EOO ⊆ E×E \ idE.

where E :=
⋃

i∈{1...,n} Ei.

In the following we give for each occurrence rule of elementary object nets depic-
ted in Fig. 6.1 - Fig. 6.4 an equivalent occurrence rule of AHONI-systems in Fig. 6.7
- Fig. 6.10. For the special component of indistinguishable tokens AHONI-systems
behave like ordinary P/T-systems.



6.1. AHO-NET AND INTERACTION RELATION SYSTEMS 100

t t

e2

e1

p1 p2

(t,v)

e2

e1

p1 p2

p: ENSystem ? IntRel

p’: ENSystem ? IntRel

p: ENSystem ? IntRel

p’: ENSystem ? IntRel

〈sys, rel〉 〈sys, rel〉

〈sys, rel〉 〈sys, rel〉

((ONi, mi), Rel)

((ONi, mi), Rel)

tt tt

Rel

Rel

Figure 6.7: Occurrence rule for system-autonomous transitions

To fire the system-autonomous transition t in Fig. 6.7, we have to give a variable
valuation v : V ar(t) −→ A, i.e. v(sys, rel) = ((ONi,mi), Rel). Then the object net
((ONi,mi), Rel) is moved to p′ by the occurrence of transition t.

The object-autonomous transition (see Fig. 6.8) and the system-object interac-
tion transition (see Fig. 6.9) have the same net inscriptions in their pre and post
domain but they differ on the one hand in their firing conditions and on the other
hand in the places in their pre and post domain. While the object-autonomous
transition has to have the same place in its pre and post domain, the places of
the system-object interaction transition may be different. However, to fire these
transitions we have to give a variable valuation as above, but we have to give
also a valuation for the variable e so that v(e) is a transition of the object net
((ONi,mi), Rel), which is enabled in the marking mi, for instance v(e) = e1. Oth-
erwise the evaluation of the term (fire.〈sys, rel, e〉) is undefined and the AHONI-
systems is not enabled. Finally, we have to check the definedness of firing conditions.
Let Rel = (ESO, EO, EOO). In case of the object-autonomous transition v(e) has
to be an element of the relation EO. In case of the system-object interaction trans-
ition v(e) has to be an element of the relation ESO. Then the follower marking of
the object net (ONi,mi) is computed due to the evaluation of the net inscription
v̂((fire.〈sys, rel, e〉)) = (fire.((ONi,mi), Rel, e1))A = ((ONi,m

′
i), Rel).

Finally, Fig. 6.10 shows an occurrence rule for an object-object interaction trans-
ition where both (ONi,mi) and (ONj ,mj) have reached a marking where ei1 and
ej1 are activated. Thus we give a variable valuation v(sys1, rel) = ((ONi,mi), Rel),
v(sys2, rel) = ((ONj ,mj), Rel), v(e1) = ei1, and v(e2) = ej1. Moreover, for
Rel = (ESO, EO, EOO) (e1i, ej1) has to be an element of the corresponding object-
object interaction relation EOO as indicated by the firing condition. Thus the
transitions ei1 and ej1 of the object nets and the object-object interaction trans-
ition t occur simultaneously, i.e. the follower markings m′

i and m′
j are computed

and the object nets still remain on the place p.

Example 6.1.5 (“Hurried Philosophers” as AHONI-systems)
In the following we use AHONI-systems to model the case study of the “Hurried
Philosophers” [SB01]. The system level depicted in Fig. 6.11 consists of two places,
dining room and library, but in contrast to the elementary object net in Fig. 6.5
there are in addition transitions to model on the one hand the object-object commu-
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Figure 6.11: “Hurried Philosophers” as AHONI-system

nication and on the other hand the object autonomous behavior. Initially there are
five philosophers (phi1, Rel), . . . , (phi5, Rel) in the library, where each philosopher
is equipped with the same interaction relation Rel. The object net of the philo-
sopher phi1 is shown in Fig. 6.12. The interaction relation Rel = (ESO, EO, EOO)
is defined as follows.

ESO = {enteri, leavei|i ∈ {1, . . . , 5}},
EO = {ti1, ti2, ti3|i ∈ {1, . . . , 5}}, and

EOO = {(request right neighbourk, grant leftk+1),

(grant leftk+1, request right neighbourk),

(request left neighbourk+1, grant rightk),

(grant rightk, request left neighbourk+1, )

|i ∈ {1, . . . , 5}, k = (i + 1) mod 5}

Philosophers move into the dining room by the firing of the transition enter.
Assuming philosopher phi1 wants to enter the dining room, we define a variable
valuation v : V ar(enter) −→ A with v(sys, rel) = (phi1, Rel) and v(e) = enter1.
Because the transition enter1 is activated in the object net of philosopher 1 and
enter1 is an element of the system-object interaction relation ESO, the transition
enter of the system net and the transition enter1 of the object net are firing simul-
taneously and philosopher phi1 arrives at the dining room with his/her left fork in
the hand.

To start the fork exchange philosopher phi1 can borrow the missing right fork
from his neighbor phi2, being in the dining room, by interaction of the transitions
request right neighbour1 in the object net phi1 and grant left2 in the object net phi2,
i.e. the transition object-object communication in the system net fires and phi2 gives
up his/her left fork.

Remark 6.1.6 (Elementary object systems and AHONI-systems)
The translation of elementary object systems into AHONI-systems shown exem-
plary in Ex. 6.1.5 can be defined in a formal way but is beyond the scope of this
thesis. Such a translation leads to equivalent systems wrt. their firing behavior if
the net inscriptions in the elementary system are not restricted to specific object
nets. Otherwise we have to extend our concept of AHONI-systems by some simple
methods to guard the object nets, which should be moved along some transitions.
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Figure 6.12: Token net of philosopher phi1

6.2 AHO-Net and Rule Systems

In this section we propose the new paradigm “nets and rules as tokens”, where in
addition to nets as tokens also rules as tokens are considered. The rules can be
used to change the structure of the token nets. This leads to the new concept of
algebraic higher-order net and rule (AHONR)-systems, which allows the integra-
tion of the token game with rule-based transformations of P/T-systems. The new
concept is based on AHO-nets with rule-based transformations. Here, we use the
notion of token net instead of object net in order to avoid confusion with features of
object-oriented modeling. Instead our intention is to consider the change of the net
structure as rule-based transformations of Petri nets in the sense of graph trans-
formation systems [Ehr79, Roz97]. Moreover, the interaction of the token game and
transformation of nets - as considered in this thesis - has not been investigated up to
now. This concept has interesting applications in all areas where dynamic changes
of the net structure have to be considered while the system is still running. This ap-
plies especially to flexible workflow systems (see [vdA02]) and medical information
systems (see [Hof00] and Chapter 8).

The new concept based on AHL-nets has already been published in [HEM05]
and has been introduced with the case study “House of Philosophers”, a dynamic
extension of the well-known dining philosophers (see also Section 2.4). By contrast,
in this section the new concept is based on AHO-nets. Since AHO-nets are groun-
ded on higher-order algebras (see Section 3.1), we are able to give a set theoretic
definition of domains and operations. In order to model nets and rules as tokens
we present a specific higher-order signature together with a corresponding higher-
order algebra with specific types for P/T-systems and rules. Moreover, there are
operations corresponding to the firing of a transition and applying a rule to a P/T-
system respectively. To obtain an algebraic specification as well we need algebraic
higher-order specifications as presented in Chapter 7.

In order to allow P/T-systems and rules as tokens of an AHO-net we provide the
higher-order signature, called NR-SIG, together with a suitable NR-SIG-algebra
A, where NR refers to nets and rules.
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Definition 6.2.1 (NR-SIG Signature)
The signature NR-SIG is given by
NR-SIG =
sorts: Transitions, P laces, System, Mor,Rules
opns: tt, ff : Pred(unit)

fire : (System ? Transitions→ System)
transform : (Rules ? Mor → System)
cod : (Mor → System)
eq : Pred(System ? System)
& : Pred(Pred(unit) ? Pred(unit))

and for each function type (type1 → type2) ∈ S→ we have an application symbol
applytype1,type2 : (type1 → type2) ? type1 ⇀ type2.

Definition 6.2.2 (NR-SIG Algebra)
Given vocabularies T0 and P0, the carrier of the NR-SIG-algebra A for P/T-systems
and rules as tokens is given by

• ATransitions = T0, APlaces = P0,

• APred(unit) = {true, false},

• ASystem the set of all P/T-systems over T0 and P0, i.e.

ASystem = {PN |PN = (P, T, pre, post,M) P/T-system, P ⊆ P0, T ⊆ T0},

• AMor the set of all P/T-system morphisms for ASystem, i.e.

AMor = {f |f : PN −→ PN ′ P/T-morphism with PN,PN ′ ∈ ASystem},

• ARules the set of all rules of P/T-systems, i.e.

ARules = {r|r = (L i1←− I
i2−→ R) rule of P/T-systems with

strict inclusions i1, i2},

• A(System?Transitions→System) = {fire},

• A(Rules?Mor→System) = {transform},

• A(Mor→System) = {cod},

• APred(System?System) = {E=}, and

• APred(Pred(unit)?Pred(unit)) = {∧}

For all type ∈ BFS→ different from the types above we have

Atype = ∅.

The carrier is extended to the set of types of S→ by

Aunit := {()} and
Atype1?...?typen

:= Atype1 × . . .×Atypen
.

The partial operations of NR-SIG-algebra A are defined by

• ttA = true, ff A = false, and

apply
Pred(unit),unit
A : {true, false} ×Aunit −→◦ Aunit

with

(x.())A =

{
() if x = true

undef if x = false
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• fireA = fire and

apply
(System?Transitions),System
A : {fire} × (ASystem × T0) −→◦ ASystem

for PN = (P, T, pre, post,M) ∈ ASystem and t ∈ T0 with

(fire.(PN, t))A

=

{
(P, T, pre, post,M 	 pre(t)⊕ post(t)) if t ∈ T, pre(t) ≤M

undef else

• transformA(()) = transform and

apply
(Rules?Mor),System
A : {transform} × (ARules ×AMor) −→◦ ASystem

for r ∈ ARules and m ∈ AMor with

(transform.(r, m))A =

{
H if r is applicable at match m

undef else

where for L
m−→ G and r is applicable at match m we have a direct trans-

formation G
r=⇒ H,

• codA = cod and

applyMor,System
A : {cod} ×AMor −→◦ ASystem

for m = (f : PN1 −→ PN2) ∈ AMor with

(cod.m)A = PN2,

• eqA(()) = E= and

apply
(System?System),unit
A : {E=} × (ASystem ×ASystem) −→◦ Aunit

for PN1, PN2 ∈ ASystem with

(E= .(PN1, PN2))A =

{
() if PN1 = PN2

undef else

where the equality symbol exp E= exp′ is used to state existential equality, i.e.
both sides denote the same value,

• &A = ∧ and

apply
(Pred(unit)?Pred(unit)),unit
A : {∧} × (APred(unit) ×A(Pred(unit)) −→◦ Aunit

with
(∧.((), ()))A = true

where ∧ is the well-known conjunction symbol.

Definition 6.2.3 (Algebraic Higher-Order Net and Rule Systems)
Given the signature NR-SIG and the NR-SIG-algebra A as above, an algebraic
higher-order net and rule system AHONRS = ((N,A), INIT ) consists of an AHO-
net (N,A) (see Def. 3.2.7) with Σ = (NR-SIG, X) where X are variables over
NR-SIG, and an initial marking INIT such that

1. all places p ∈ P are either
- system places i.e. p ∈ PSys = {p ∈ P |type(p) = System} or
- rule places i.e. p ∈ PRules = {p ∈ P |type(p) = Rules},
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Figure 6.13: Basic higher-order net and rule system

2. all rule places p ∈ PRules are contextual, i.e. for all transitions t ∈ T connected
with p there exists a variable r ∈ X such that pre(t)|p = post(t)|p = r, i.e.
in the net structure of (N,A) the connection between p and t is given by a
double arrow labeled with the variable r.

Remark 6.2.4 (Static Rules)
Our notion of higher-order net and rule systems has static rules. This means that
our rule tokens do not move and remain unchanged in the rule places (see Section 6.3
for extensions). According to our paradigm “nets and rules as tokens” we only allow
system and rule places but no places which are typed by other types of NR-SIG.

Remark 6.2.5 (Basic Higher-Order Net and Rule System)
An interesting special case of AHONR-systems are basic AHONR-systems as presen-
ted in Fig. 6.13 with system place p1 and rule place p2, where the empty initial
marking can be replaced by suitable P/T-systems resp. rules on these places. In
general, a higher-order net and rule system with only one system place and one rule
place is called basic higher-order net and rule system. Let us assume that the initial
marking is given by a P/T-system PN on place p1 and a set RULES of token rules
on place p2. Then (PN,RULES) can be considered as reconfigurable P/T-system
in the following sense: on the one hand we can apply the token game and on the
other hand rule-based transformations of the net structure of PN . Moreover these
activities can be interleaved. This allows to model changes of the net structure
while the system is running. This is most important for changes on the fly of large
systems, where it is important to keep the system running, while changes of the
structure of the system have to be applied. It would be especially important to
analyze under which conditions the token game activities are independent of the
transformations. This problem is closely related to local Church-Rosser properties
for graph resp. net transformations, which are valid in the case of parallel independ-
ence of transformations (see [Ehr79, EP04]).

Example 6.2.6 (House of Philosophers)
According to the requirements of the hurried philosophers in [SB01] the philosophers
have the capability to introduce a new guest at the table, which - in the case of low
level Petri nets - certainly changes the net structure of the token net representing
the philosophers at the table.

In Section 2.4 we have given a solution of the case study “Hurried Philosophers”
which is inspired by the case study of the hurried philosophers in [SB01]. As expec-
ted the system level of the “Hurried Philosophers” can also be modeled by using
the concept of AHONR-systems. Especially for this example we have to extend the
signature NR-SIG and the NR-SIG-algebra by two further constant symbols, i.e.
the signature Phil-SIG is given by

Phil-SIG=NR-SIG +
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opns: coproduct : (System× System→ System)
isomorphic : Pred(System× System)

where here and in other examples + stands for the disjoint union of sorts and op-
eration symbols of two higher-order signatures. The Phil-SIG-algebra A′ extends
the carrier of the NR-SIG-algebra A given above by

• A′
System×System→System = {coproduct} and

• A′
Pred(System×System) = APred(System×System) ∪ {isomorphic}.

The partial operations of the Phil-SIG-algebra A′ are the partial operations of the
NR-SIG-algebra A defined above and

• coproductA′ = coproduct and

apply
(System?System),System
A′ : {coproduct}×(ASystem×ASystem) −→◦ ASystem

for PN1, PN2 ∈ ASystem with

(coproduct.(PN1, PN2))A′
= ((P1 ] P2), (T1 ] T2), pre3, post3,M1 ⊕M2)

i.e. the disjoint union (the two P/T-systems are combined without interaction)
and

• isomorphicA = isomorphic and

apply
(System?System),unit
A′ : {E=, isomorphic} × (ASystem ×ASystem) −→◦ Aunit

for PN1, PN2 ∈ ASystem with

(E= .(PN1, PN2))A′
= (E= .(PN1, PN2))A

and

(isomorphic.(PN1, PN2))A′
=

{
() if PN1

∼= PN2

undef else

where PN1
∼= PN2 means that there is a strict P/T-morphism f = (fP , fT )

with f : PN1 −→ PN2 s.t. fP , fT are bijective functions.

The system level of the “Hurried Philosophers” as an AHONR-system is depicted
in Fig. 6.14, while the token level is given as in Section 2.4. Without going into
detail, the algebraic high-level net in Fig. 2.3 and the AHONR-system in Fig. 6.14
are equivalent wrt. their operational behavior. This aspect will be discussed in
Section 10.2.

In the solution of the case study using elementary object systems [Val01] each
philosopher has his own place and the exchange of forks between the philosophers
is realized by an interaction relation (see Section 6.1). By contrast in our case each
table is modeled by its own P/T-system, which describes the states and the seating
arrangement of present philosophers. In addition we use rule-based transformations
to change the structure of P/T-systems, especially the states and the seating ar-
rangement. In the sense of object-oriented modeling it could be considered splitting
up the table with philosophers into a net table with only the table properties and
nets for each philosopher at the table. In fact our approach allows to model such
self-contained components but this would lead to a much more complex model.
The advantage of our approach compared with elementary object systems is a more
flexible modeling technique. While the AHO-net in Fig. 6.14 is fixed we can add
further philosophers and philosophers at tables by adding further tokens of type
System to our model. Analogously we can add further token rules to realize other
kinds of transformations.
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Figure 6.14: Algebraic higher-order net and rule system of “House of Philosophers”
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The idea of controlled modification of token nets is discussed in the context of
linear logic Petri nets [Far99] and feature structure nets [Wie01]. The difference to
our approach is that in those approaches, the modification is not carried out by rule
tokens but by transition guards. We are not restricted to define a specific token
rule for each transition; instead we are able to give a (multi-)set of token rules as
resources bound to each transition, which realize the local replacement of subnets.

In AHONR-systems the coupling of a set of rules as tokens to certain transitions
is fixed due to the given net topology. In the subsequent section we will consider
also the migration of rules as tokens. This means the mechanism of mobility and
modification presented in our example could be transferred to rules as tokens in
order to achieve even more expressive models. The mobility aspect of rules as tokens
can be easily introduced by further transitions connecting places of the type Rules.
However, the modification of rules as tokens (see [PP01]) requires an extension of
the corresponding NR-SIG signature and NR-SIG-algebra.

An interesting aspect for future work is to study transformations of P/T-systems
which preserve properties like safety or liveness. Especially in the area of workflow
modeling the notion of soundness (which comprises liveness) is of importance (see
e.g. [vdA98]). Here we can use the approach of property preserving rules (see [PU03]
for an overview). To integrate these kinds of rules into AHONR-systems the set
of rules ARules of the NR-Sig-algebra A would have to be restricted to property
preserving rules.

6.3 AHO-Rule Systems

In Section 6.2 we have introduced the paradigm “nets and rules as tokens”, where
in addition to nets as tokens also rules as tokens are considered to change the
net structure. In this section we consider rules as tokens leading to the concept of
algebraic higher-order rule systems for mobile policies. The rules are used on the one
hand for the specification of policy rules and on the other hand for the modification
of policy rules, i.e. for the definition of new rules by reusing existing rules. So the
higher-order rule system models distribution and modification of policy rules in a
systematic and structured way. We give signature and corresponding algebra of
rules and (local) transformations in the sense of the double-pushout approach and
illustrate our concept by a small system inspired by the case study of a tax refund
process [BFA99].

A policy is a set of rules which controls the behavior of complex systems. In
[KPP02] a policy framework based on graph transformation is presented, which
provides an intuitive visual formalism for the manipulation of policy-based systems.
The policy framework is defined by a type graph and sets of policy rules, positive
and negative constraints.

Mobile policies [CFJF02, DFJM00] are policies that can move along with the
application or data that they refer to. Mobile policies can either supplement or
override local policies, and can be used either to regulate access to the local resources
(to protect the host) or to constraint use or access to the mobile code (to protect
the guest). In a distributed environment applications migrate from site to site and
the relative policy can migrate with the application it refers to, thus allowing each
site to avoid locally storing policies for all possible applications. A framework in
which mobile policies are attached to the relative application also facilitates the
development of new applications and places the responsibility for the application-
specific policy on the application designer.

Mobile policies may also need to be modified in prearranged ways to adapt to
external requirements of specific domains. For example, certain local laws may
require or forbid certain behavior of all applications executing locally (restrictions
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on the use of encryption or on the length of the key in a cryptosystems, additional
requirements to protect privacy) and therefore the constraints imposed by the policy
may need to be adapted in moving from site to site.

We investigate how the distribution, the migration, and the modification of
mobile policies can be modeled by using algebraic higher order rule (AHOR) sys-
tems which are based on AHO-nets. Due to the higher-order features, graphs and
rules are allowed to be dynamic objects in AHOR-systems and the behavior of
an AHOR-system simulates the modification needed to achieve the flexibility of
adapting objects.

For our purpose, the AHOR-system gives an overview of the different locations
where the mobile policies could reside. Furthermore, the coupling of a set of rules,
which are used to modify policy rules with certain locations, which have the au-
thority to modify the policy rules, is given by the net topology. The behavior of an
AHOR-system simulates the application of a rule to a policy rule and describes the
modification of the policy rule in order to achieve a more appropriate one. In this
section policy rules are used for the specification of access control [San98]. Apart
from this, the concept has interesting applications in all areas where individual rules
are modified while the system is running.

Rules and transformations are formalized on a rigorous mathematical foundation
in the context of high-level replacement systems [EHKP91], a categorical general-
ization of the concept of graph transformation systems to other kinds of structures
based on the double-pushout approach. A high-level replacement system is defined
by an arbitrary category and a distinguished class of morphisms used to form rules,
i.e. rules in the double-pushout approach are given as a span of two morphisms,
and its application is achieved by two pushouts. Think of these rules as replace-
ment systems, where the left-hand side of the rule is replaced by the right-hand
side. Moreover, we reuse policy rules, i.e. we modify policy rules in the sense of
inheritance [PP01].

Technically, we give a signature and corresponding algebra of rule-based modi-
fications and specific operations for the modification of mobile policies. Here we use
the approach given in [PP01] to obtain suitable operations for the modification of
rules. We use this signature and algebra as the data type part of AHOR-systems
to denote the application of rules in the net inscriptions. Then the behavior of
the AHOR-system simulates the modification of rules to obtain a new and more
appropriate policy rule.

The advantage of our approach is twofold. On the one hand the AHOR-system
manages the distribution of rules in a systematic and structured way. Large sets of
rules are divided into smaller ones, which are locally bound to some transitions. On
the other hand AHOR-systems are flexible in respect of the replacement of rules.
Formally we exchange rules by exchanging the corresponding tokens to realize other
kinds of transformations, while the system net is fixed.

To define new rules by reusing existing rules we use the approach given in [PP01],
where different concepts are presented for the modification of one rule by another
one. In this section we describe the more general form of inheritance in more detail.
Inheritance is meant in the sense that existing rules are reused by extending them
to provide the desired behavior, i.e. the new rule coincides with the left hand side
of the old rule, but has a different right hand side.

Definition 6.3.1 (Inheritance)

Let a rule p1 = (L1
l1←− K1

r1−→ R1) be given. Then the modification of the
right-hand side R1 via a rule q = (L l←− K

r−→ R) is illustrated in the following
diagram,
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where

• R2 is the object resulting from the direct transformation via q of R1,

• K2 is the common part of C1 and K1, and

• L2 is just the unchanged left-hand side of p1.

Then the new rule p2 is given by p2 = (L2
l2←− K2

r2−→ R2) with l2 = l1 ◦ g4 and
r2 = c2 ◦ g5.

Example 6.3.2 (Inheritance)
An example of the modification of one rule by another rule using the concept of
inheritance is depicted in Fig. 6.23. Thus, we have a specific operation inheritanceA :
ARules ×ARules ×AMor → ARules, so that inheritanceA(p2, p14, g1) = p11, where p2

is the policy rule of company C1 (see Fig. 6.18), p14 is a rule for the modification of
p2 (see Fig. 6.21), g1 is a suitable occurrence morphism, and p11 is the policy rule
of company C2 (see Fig. 6.23).

The category of (labeled) directed graphs with the distinguished class of in-
jective, colour preserving graph morphisms has been checked to be a high-level re-
placement category (see [EHKP91]) with the capacity to guarantee Church-Rosser
and Parallelism Theorems for high-level replacement. For a detailed definition of
(labeled) graphs, graph morphisms, graph rules and direct transformation we refer
to [Roz97]. An example of a direct transformation can be found in Fig. 6.23 where
the rule p14 (see Fig. 6.21) is applied to the object R2.

In order to allow P/T-systems and rules as tokens of an AHO-net we provide a
specific higher-order signature, called Mobile Policies, together with a suitable
Mobile Policies-algebra A.

Definition 6.3.3 (Mobile Policies-Signature)
The signature Mobile Policies is given by
Mobile Policies =
sorts: Labels, Edges, Nodes,Graph, Mor,Rules, SetRules
opns: tt, ff : Pred(unit)

inherit : (Rules ? Rules ? Mor → Graph)
right : (Rules→ Graph)
cod : (Mor → Graph)
{ } : (Rules→ SetRules)
∈: Pred(Rules ? SetRules)
∪, \ : (SetRules ? SetRules→ SetRules)
eqGraph : Pred(Graph ? Graph)
& : Pred(Pred(unit) ? Pred(unit))

and for each function type (type1 → type2) ∈ S→ we have an application symbol
applytype1,type2 : (type1 → type2) ? type1 ⇀ type2.
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Definition 6.3.4 (Mobile Policies-Algebra)
Given vocabularies L0, E0, and V0, the carrier of the Mobile Policies-algebra A
for graphs rules as tokens is given by

• ALabel = L0, AEdges = E0, and ANodes = V0,

• APred(unit) = {true, false},

• AGraph the set of all (labeled) graphs over L0, E0, and V0, i.e.

AGraph = {G|G = (V,E, source, target, nlabel, elabel) (labeled) graph,

V ⊆ V0, E ⊆ E0},

• AMor the set of all graph morphisms for AGraph, i.e.

AMor = {f |f : G→ G′ graph morphism with G, G′ ∈ AGraph},

• ARules the set of all graph rules, i.e.

ARules = {p|p = (L l←− K
r−→ R) graph rule with inclusions l, r},

• ASetRules the finite power set of the set of graph rules, i.e.

ASetRules = {R|R ∈ Pfin(ARules)},

• A(Rules?Rules?Mor→Graph) = {inherit},
A(Rules→Graph) = {right}, and

A(Mor→Graph) = {cod},

• A(Rules→SetRules) = {{ }},
APred(Rules?SetRules) = {∈}, and

A(SetRules?SetRules→SetRules) = {∪, \},

• APred(Graph?Graph) = {E=} and

APred(Pred(unit)?Pred(unit)) = {∧}.

For all type ∈ BFS→ different from the types above we have

Atype = ∅.

The carrier is extended to the set of types of S→ by

Aunit := {()} and
Atype1?...?typen

:= Atype1 × . . .×Atypen
.

The partial operations of Mobile Policies-algebra A are defined by

• ttA = true, ff A = false, and

apply
Pred(unit),unit
A : {true, false} ×Aunit −→◦ Aunit

with

(x.())A =

{
() if x = true

undef if x = false

• inheritA = inherit and

apply
(Rules?Rules?Mor),Rules
A : {inherit}×(ARules×ARules×AMor) −→◦ ARules
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for p1, q ∈ ARules with p1 = (L1
l1←− K1

r1−→ R1) and q = (L l←− K
r−→ R),

and g ∈ AMor with

(inherit.(p1, q, g))A =

{
p2 if q is applicable at match g

undef else

where for L
g−→ R1 and q is applicable at match g we get a new rule p2 given

by p2 = (L2
l2←− K2

r2−→ R2) (see Def. 6.3.1),

• rightA = right and

applyRules,Graph
A : {right} ×ARules −→◦ AGraph

for r ∈ ARules and p = (L l←− K
r−→ R) with

(right.r)A = R

• codA = cod and

applyMor,Graph
A : {cod} ×AMor −→◦ AGraph

for m = (f : G1 −→ G2) ∈ AMor with

(cod.m)A = G2,

• { }A = { }, ∈A= ∈, ∪A = ∪, and \A = \ with the usual set-theoretic
interpretations,

• eqGraph,A = E= and

apply
(Graph?Graph),unit
A : {E=} × (AGraph ×AGraph) −→◦ Aunit

for G1, G2 ∈ AGraph with

(E=, (G1, G2))A =

{
() if G1 = G2

undef else

where the equality symbol exp E= exp′ is used to state existential equality, i.e.
both sides denote the same value,

• &A = ∧ and

apply
(Pred(unit)?Pred(unit)),unit
A : {∧} × (APred(unit) ×A(Pred(unit)) −→◦ Aunit

with
(∧.((), ()))A = true

where ∧ is the well-known conjunction symbol.

Definition 6.3.5 (Algebraic Higher-Order Rule Systems)
Given the signature Mobile Policies and the Mobile Policies-algebra A as
above, an algebraic higher-order rule system AHORS = ((N,A), INIT ) consists of
an AHO-net (N,A) (see Def. 3.2.7) with Σ = (Mobile Policies, X) where X are
variables over P/T-System, and initial marking INIT of (A,N) such that

1. all places p ∈ P are either
- rule places i.e. p ∈ PRules = {p ∈ P |type(p) = Rules} or
- policy places i.e. p ∈ PPolicies = {p ∈ P |type(p) = SetRules},
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2. all rule places p ∈ PRules are contextual, i.e. for all transitions t ∈ T connected
with p there exists a variable q ∈ X such that pre(t)|p = post(t)|p = q, i.e.
in the net structure of (N,A) the connection between p and t is given by a
double arrow labeled with the variable q.

Example 6.3.6 (Tax Refund Process)
In order to illustrate the concepts described above we present a small system inspired
by the case study of a tax refund process given in [BFA99]. The main idea of our
example is to model mobile policies which move around between different companies.
The policy rules are not fixed once and for all because each company expects specific
policy rules. Our example is restricted in the sense that we do not take into account
all aspects of the policy framework presented in [KPP02]. In this example we specify
policy rules, which are building the accepted system states, and assume that the
policy rules are built over a given type graph. Furthermore, we do not focus on the
application of policy rules to the actual state of an object.

The example deals with a tax refund process which is a simplified version of the
workflow introduced in [BFA99]. The workflow representing the tax refund process
in company C1 consists of four tasks to be executed sequentially:

• Task T1: A clerk prepares a check for a tax refund.

• Task T2: A manager can approve or disapprove the check. This task must be
performed by two managers.

• Task T3: The decisions of the managers are collected and the final decision
is made by a manager. Her/his decision is a consequence of the outcome of
task T2, i.e. (s)he does not decide about the tax refund.

• Task T4: A clerk issues if both managers approved or voids if one manager
disapproved the check on the result of task T3.

By contrast, the tax refund process in the company C2 is altered in task T2 and
task T4, while Task T1 and Task T3 are left unchanged:

• Task T2: A manager can approve or disapprove the check. This task must be
performed by one manager.

• Task T4: A clerk issues if the manager approved or voids if the manager
disapproved the check on the result of task T3.

In Fig. 6.15 each task is related to a role which can execute the task, e.g. the
role Clerk can execute task T1 and task T4.

Our first goal is a representation of the system level as an AHOR-system so
that the system shows on the one hand the distribution of policy rules and on the
other hand the coupling of rules to certain transitions. Thus, the firing behavior of
the AHOR-system describes the migration and local transformation of policy rules.
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Figure 6.16: Algebraic higher-order rule system “Tax Refund Process”

In Fig. 6.16 we sketch a solution for the example of the tax refund process. The
initial marking and the net inscriptions of the AHOR-system in Fig. 6.16 are built
over the signature Mobile Policies and the corresponding algebra A. There are
four different locations where policy rules can stay: the company C1, the company
C2, and during the migration processes between C1 and C2, or C2 and C1. Each
location becomes represented by its own place in the AHOR-system in Fig. 6.16.
The initial marking consists of the policy rules PolRulesC1 of company C1 and
specific rules for the modification of policy rules.

Policy rules may move around, which means they might leave and enter the
company C1 and they might leave and enter the company C2. The mobility aspect
of the policy rules is modeled by transitions termed in an obvious way in our system
net in Fig. 6.16. While policy rules are moving around they have to be changed in a
certain way using the concept of inheritance. For this reason there are other kinds
of rules, p13 − p15 and p−1

13 − p−1
15 , to guarantee the correct modification of policy

rules. Here these rules are used as resources bound to corresponding transitions.
Thus the object level consists of two different kinds of objects: policy rules and

rules for the modification of policy rules. In the following we will explain the set
of policy rules PolRulesC1 of company C1 in more detail. Although they are based
on the rules given in [KPP02], we use the double-pushout approach in this section
instead of the single-pushout approach and we have to take care of the so called
gluing condition. For simplicity reasons we avoid negative application conditions,
i.e. we cannot distinguish between the users which are involved in the tax refund
process.

The set of policy rules of company C1 is given by PolRulesC1 = {p1, . . . , p9}.
The rule p1 (see Fig. 6.17) creates a new check by a user associated to the role
Clerk. A user is represented by a node of type U. The two loops of the check node
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indicate that the recommendation for a tax refund has to be performed by two
managers. The rules p2 and p3 realize the process of task T2 (see Fig. 6.18), i.e. a
manager approves or disapproves the check. In detail, a loop from the check node
is deleted and an edge between the user node and the check node labeled with the
recommendation is created. Thus, these rules are only applicable if there is a loop
attached to the check node. The rules p4, p5 and p6 realize the process of task T3
(see Fig. 6.19), i.e. the collection of the decisions. The two edges which model the
recommendations of the two managers are deleted and a loop of the check node is
created labeled by issue if both managers approve and by void if one of the managers
disapproves. In all three cases the manager does not decide directly because the
decision is based on the previous recommendations. The rules p7 and p8 realize the
process of task T4 (see Fig. 6.20), i.e. a clerk issues or voids the check. The end
of the workflow for this check is indicated by changing the color of the check node
and deleting the corresponding loop. Finally, the tax refund process is finished by
using rule p9 (see Fig. 6.20) to delete the check node and all connected nodes t1-t4
and adjacent edges.

The set of policy rules described above may move around between the two
companies. Because each company expects specific policy rules, some rules have to
be modified during the migration. In detail the following policy rules of company
C1 have to be modified to respect the requirements of company C2:

• preparation of the check (see rule p1 in Fig. 6.17)

• approval of the check (see rule p2 in Fig. 6.18)

• disapproval of the check (see rule p3 in Fig. 6.18)

To integrate the modification of policy rules into our model, we need an operation
to achieve new rules by reusing existing ones. Here we use the approach of local
transformation as presented in [PP01] to get a new rule which coincides with the
left hand side of the “old” one but which has a different right hand side and (in
general) a different interface part.

The modification of the rule p1 (see Fig. 6.17) is attained via the rule p13 (see
Fig. 6.21). Here we use the transition transformation of the AHO-net in Fig. 6.16.
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Figure 6.19: Rules p4, p5 and p6 for task T3 in company C1
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Figure 6.21: Rules p13, p14 and p15 for the modification of policy rules
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Figure 6.22: Rule p10 for task T1 in company C2

First, the net inscriptions in the environment of the transition are evaluated, i.e.
the variable PolRules is assigned to the set of policy rules PolRulesC1, the variable
p to the rule p1, the variable q to the rule p13, and the variable g to an occurrence
morphism g1 : L −→ G. The firing condition cod g = cod r requires L = L13

and G = R1. The transition transformation is enabled under this assignment,
i.e. the evaluation of the net inscriptions is defined. Then the evaluation of the
term inherit(p, q, g) computes the modification of rule p1 via the rule p13 using the
concept of inheritance. We obtain the new policy rule p10 of company C2 depicted
in Fig. 6.22. The rule p10 adds one loop to the check node because one manager
has to approve or disapprove the check.

For the modification of the rule p2, resulting in the new rule p11 (see Fig. 6.23),
we use a different variable assignment, i.e. the variable p is assigned to the rule
p2, the variable q to the rule p14, and the variable g to an occurrence morphism
g1 : L −→ G so that L = L14 and G = R2. Then R11 is the object resulting
from the direct transformation via p14 of R2, K11 is the common part of C1 and
K2, and L11 is just the unchanged left hand side of p2 (see Fig. 6.23). The new
rule p11 = (L11 ← K11 → R11) adds two edges with the same label approve to the
check node because the clerk issues if one manager has approved. Analogously, the
modification of the rule p3 (see Fig. 6.18) via the rule p15 (see Fig. 6.21) results in
the policy rule p12 of company C2 (see Fig. 6.24). Finally, the set of policy rules
of company C2 consists of the rules p4 - p12 (see Figs. 6.19, 6.20, 6.22, 6.23 and
6.24), where the three rules concerning the preparation of a check and the approval
or disapproval of a check are modified.

Summarizing, we have presented a powerful technique to model mobile policies
using AHOR-systems in order to achieve highly expressive models. We have re-
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viewed the concept of graph rules and the concept of local transformations and
have transferred these concepts into a Mobile Policies-signature and a Mobile
Policies-algebra. Afterwards we have explained the structure and behavior of
AHOR-systems. We have illustrated the use of AHOR-systems for mobile policies
through the example of the tax refund process. Our system describes the migration
of policy rules from one company C1 to another company C2. Moreover, policy rules
become modified during the migration process by specific rules, so that the applica-
tion of these rules results in new rules matching the requirements of the companies.
Thus, local transformations become effectively included into the system enabling
the system to transform rules in a formal way.

The main advantage of using AHOR-systems is their flexibility in respect of
introducing new rules to the system. While the system level is fixed, we can add
further policy rules and rules for the modification of policy rules by adding further
tokens of type Rules to our model. Note that the structure of these rules can be
different from the structure of the rules presented in Example 6.3.6.

An interesting aspect of future work is to integrate not only the specification
of policy rules into our system but also all other aspects of the policy framework
presented in [KPP02], i.e. the type graph, the set of positive and negative graphical
constraints and the application of policy rules to build the actual system state.

In Section 6.2 we have presented algebraic higher-order net and rule systems,
where the application of rules to P/T-nets is modeled by corresponding operations.
Thus, the system presented in this example can be extended by these concepts, i.e.
the set of rules can be extended to a graph grammar.

In this section we have used the concept of inheritance to modify policy rules.
But there are other concepts, e.g. the concept of specialization, where properties
are added to policy rules or the concept of analogy, where a policy rule becomes
reused in a different context. The approach given in [PP01] is a good starting point
to obtain a suitable specification for this.



Chapter 7

Specifications and
Implementation Aspects

In the previous chapter we have presented an explicit and set theoretical version of
different kinds of higher-order algebras which defines different classes of AHO-nets
for specific application domains. But it is also interesting to present higher-order
specifications of these higher-order algebras. Unfortunately first-order algebraic
specifications in the sense of [EM85] or Casl (Common Algebraic Specification
Language) [Mos04] are not suitable for this purpose. So we actually need higher-
order features which can be provided for instance by higher-order specifications
presented in [Wol05], an extension of higher-order signatures defined in Section 3.1
by conditional existence equations, or by HasCasl [SM02, Mos05], a higher-order
extension of Casl.

In this thesis we have introduced AHO-nets where for various reasons the data
type part is given by higher-order signatures instead of higher-order specifications.
The main reason is a theoretical one. Using higher-order specifications makes the
theory more complicated because we have to take axioms into account. Here we are
forced to decide which kind of higher-order specification morphisms are suitable for
our purpose. For instance the axioms should be preserved in the sense of translated
axioms being a subset of the axioms in the codomain specification, or the translated
axioms should be derivable from the axioms in the codomain specification, i.e. ax-
ioms are transformed into theorems. Although the theory presented in this thesis
would not have been affected by axioms - it is a well-known fact that the cocom-
pleteness of the category of signatures implies the cocompleteness of the category of
specifications [GB84]) - it is more likely for further research to get some results for
AHO-nets with higher-order signatures, especially for rule-based transformations
(see Section 10.1). A more general reason for using higher-order signatures instead
of higher-order specifications in our basic notion of AHO-nets is that the construc-
tion of the initial model is obviously much more complicated in the partial and
higher-order case than in the total and classical case. We are convinced that the
explicit and set theoretical version of different kinds of higher-order partial algebras
as presented in this thesis conveys our concepts in a much better way. Nevertheless,
extending our approach by conditional existence equations enables us to use the
term generated model instead of an explicit definition of an algebra. Moreover, it
is a first step towards an implementation of our approach, because especially for
HasCasl tools are available. Exemplarily some specifications are given in the next
sections.

121
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7.1 Higher-Order Specifications

Based on the well-developed theory of first-order partial algebras with conditional
existence equations [Rei87, Wol91, CGRW95], the approach of higher-order partial
algebras (see Section 3.1) is extended by conditional existence equations in [Wol05],
enabling a direct link to approaches for implementing functional languages. This
approach ensures the necessary semantical properties, i.e. the existence of higher-
order partial algebras, freely generated by a set of variables and a set of existence
equations, and the existence of free functor semantics. In the following we review
the concepts of conditional existence equations and initial semantics for higher-
order partial algebras as introduced in [Wol05]. Note that the definition of higher-
order terms in Section 3.1 can be extended to higher-order (total) term algebras.
But being total, the term algebra has not the nice property of being initial in
the category of higher-order partial algebras. For the construction of this algebra
we have to transform the syntactical tuples into semantical tuples by composition
and decomposition functions, because the codomain of operations in higher-order
signatures can consist of product types and the set of terms of type unit can consist
of more than one term. Thus, we need a normalization of terms, such that there
is a total and surjective evaluation from the set of terms into the corresponding
higher-order term algebra, e.g. all terms of type unit have to be evaluated to the
term 〈〉.

An existence equation on a set of variables is an expression term1
E= term2

to be read term1 and term2 are defined and equal. Equations term
E= term are

abbreviated as def term and called definedness judgments. A conditional existence
equation is a sentence of the form (X : G ⇒ term1

E= term2), where G is a set of
existence equations on X, and term1

E= term2 is an existence equation on X, to
be read term1

E= term2 holds on the domain of G. The satisfaction of a sentence
in a higher-order partial algebra is determined as usual, by holding of its atomic
formulae wrt. variable valuation of (defined) values to all the variables that occur
in them. Note that the value of a term wrt. a valuation may be undefined due to
the partiality of the term evaluation function (see Section 3.1).

Let us look at the example of natural numbers presented in Section 3.3. To give
a specification we extend the (main part) of the higher-order signature HO-Nat
by the usual constructors zero and succ for natural numbers. The specification
HO-Nat-SP would be as follows.

HO-Nat-SP =
sorts: Nat
opns: zero : Nat

succ : (Nat→ Nat)
geq : Pred(Nat ? Nat)
sub : (Nat ? Nat→ Nat)

vars: x, y : Nat
axioms: def zero

def succ
def geq
def sub
def (succ.x)
(geq.〈x, zero〉) = 〈〉
def (geq.〈x, y〉)⇒ (geq.〈(succ.x), (succ.y)〉) = (geq.〈x, y〉)
(sub.〈x, zero〉) = x
def (geq.〈x, y〉)⇒ (sub.〈(succ.x), (succ.y)〉) = (sub.〈x, y〉)
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Recall that for instance succ : (Nat → Nat) is an abbreviation for succ :
unit ⇀ (Nat→ Nat) and succ is rather a (partial) constant symbol of function type
(Nat→ Nat) than an operation symbol between the basic type of natural numbers.
Furthermore we omit application symbols and the application of constant symbols to
terms of type unit (e.g. def succ is an abbreviation for applyNat→Nat,unit(succ, 〈〉) =
applyNat→Nat,unit(succ, 〈〉)). The first four axioms guarantee that the constant
symbols are total constants, i.e. they have to be defined in a corresponding model,
while the fifth axiom ensures that the “successor” function becomes total as well.
The last four axioms specify the expected behavior of the functions “greater or
equal” and “subtraction” for natural numbers.

For the construction of the initial algebra wrt. the specification HO-NAT-SP
we first restrict the set of terms to a subset consisting exactly of those terms, which
are defined in each higher-order partial HO-NAT-SP-algebra. In a second step
we construct the congruence relation which is induced by the term evaluation into
the higher-order partial HO-NAT-SP-algebras. In detail, we use the intersection
of these term evaluations. Finally, we apply the normalization function described
above to guarantee that we really get a HO-NAT-SP-algebra. The initial algebra is
then given by the quotient term algebra wrt. the restricted set of normalized terms
and the congruence relation of normalized kernels. For a precise definition we refer
to [Wol05]. Let T (HO-Nat-SP) denote the initial algebra of the specification HO-
Nat-SP given above. Then we have for instance T (HO-Nat-SP)unit = {[〈〉]} and
T (HO-Nat-SP)(Pred(nat→nat)) = {[geq]}.

Summarizing, we expect that our concept of AHO-nets could be extended so that
the data type part takes higher-order specifications into account. But as mentioned
in the introduction of this chapter, suitable specification morphisms have to be well-
chosen and we feel that deeper analysis is necessary before these ideas can be put
into practice.

7.2 Basic Concepts of HasCasl

The specification language Casl (Common Algebraic Specification Language) (see
e.g. [Mos04]) has been designed by CoFI, the Common Framework Initiative for
algebraic specification and development. It is an expressive language for specifying
requirements and design for conventional software. From Casl simpler languages
are obtained by restrictions, e.g. the basic specifications in Casl allow declaration
of sorts, operations (both total and partial), predicates and the use of formulae
of first-order logic for stating axioms. More advanced features include subsorting,
structures and architectural specification.

HasCasl has been introduced in [SM02] as a higher-order extension of Casl.
HasCasl combines the simplicity of algebraic specifications and higher-order fea-
tures towards a specification of functional programs, in particular in Haskell. In
fact, HasCasl has an executable subset that corresponds quite closely to a large
subset of Haskell. Features of HasCasl include higher-order types, type construct-
ors, and parametric polymorphism. HasCasl is based on the partial λ-calculus
so that various extensions to the logic can be formulated within the language it-
self, like general recursion. The semantics of a HasCasl-specification is given by
a translation into a partial λ-theory. More precisely, the semantics of HasCasl
is defined by a set-theoretic notion of intensional algebras. Thus, on the level of
semantics HasCasl is very close to the approach of higher-order partial algebras
presented in Section 3.1. The main difference is that in HasCasl λ-terms are
taken into account. A detailed definition of HasCasl and its semantics is beyond
the scope of this thesis and we refer to [Mos05]. In the following we focus on the
language constructs and present several HasCasl-specifications, which can be used
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for our concept of algebraic higher-order net and rule systems (see Section 6.2) and
for our concept of higher-order rule systems (see Section 6.3). In detail we present
HasCasl-specifications of P/T-systems, graphs, and rule-based transformations.
The HasCasl-specifications involved have been checked with the Heterogeneous
Tool Set [Het]. In this thesis we can only show a part of the involved specifications.
All the specifications, especially for sets, partial maps, and multisets, can be found
in [Lib].

In general, in HasCasl-specifications basic types are introduced by means of
the keyword type. There are built-in type constructors ? for product types,
− >? and − > for partial resp. total function types, pred for predicate types

and a unit type Unit. A type can be formed by using the basic types and these
type constructors. An operation is a constant of appropriate type. Higher-order
terms are either variables, applications, tuples, or (multi-argument) λ-abstractions.
Higher-order terms are used in axioms appearing in the form of conditional existence
equation described in the previous section. Axioms may be universally quantified
over type variables at the outermost level.

Fig. 7.1 and Fig. 7.2 are introducing a specification of P/T-nets and P/T-
systems. These specifications more or less follow the definition given in Section 2.1.
They rely on vocabularies for places and transitions. These vocabularies are given
by types in the first place and later on (when forming the category) by sorts since
a category needs to have definite sorts of objects and morphisms (type constructors
are not involved). Actually the only freedom in the models is in the interpretation
of these sorts. Typical choices will be the set of integers or strings. Once this choice
has been made, the remaining parts of the models are determined uniquely up to
isomorphism and hence a canonical model for the specification can be selected. The
type of P/T-nets is then constructed by a set of places and two mappings for the pre-
and post domain. The set of transitions is not explicitly specified. It is implicitly
given by the domains of the pre- and post domain. These two mappings are rather
partial than total function because of the given vocabulary for transitions. For this
reason we need further axioms to ensure that the domains are identical. Otherwise,
there may be a transition, where the pre domain is defined but the post domain is
undefined and vice versa. Moreover, we have to make sure that the places in the
codomain occur in the net. To achieve a specification of the category of P/T-nets,
we give a specification of P/T-net morphisms. A P/T-net morphisms is combined
by two P/T-nets and two (partial) functions for places resp. transitions. Here the
ternary predicate hp :: places n1 −→ places n2 indicates for hp : P− >?P and
p : Set P that hp, when restricted to places n1, actually yields results in places n2
and analogously for ht :: transitions n1 −→ transitions n2. Furthermore, P/T-net
morphisms have to be compatible with pre- and post domains.

For the specification of P/T-systems we have to take markings into account.
Markings are just multisets of places and a system is a net with an initial marking
(such that the marking is actually only using the places of the net). The firing
operation [< > is only defined if the pre domain of the transition to be fired is
contained in the current marking, and in this case, it just subtracts the pre domain
and adds the post domain to the current marking.

Analogously we give a specification of graphs and graph homomorphisms (see
Fig. 7.3).

We specify rule-based transformations via the double-pushout approach within
the HasCasl-specification Transformation[Category] (see Fig. 7.4), where
the parameter Category can be instantiate by arbitrary categories with a dis-
tinguished class of morphisms for which the construction of pushout complements
can be uniquely obtained (examples can be found in [EHKP91, EP91, PER95]).
Within the specification Category we have introduced an operation to obtain se-
lected pushouts instead of pushouts up to isomorphisms for technical reasons. The
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spec PetriNet = Map and RichMultiSet
then

sorts P ,T
type Net = {(p, pre, post) :

Set P × (T →?MultiSet P)× (T →?MultiSet P)
• dom pre = dom post
∧ (∀p1 : MultiSet P • p1 isIn range pre ⇒ MultiSetToSet p1 ⊆ p)
∧ (∀p1 : MultiSet P • p1 isIn range pre ⇒ MultiSetToSet p1 ⊆ p)}

ops places : Net → Set P ;
transitions : Net → Set T ;
preMap, postMap : Net → (T →?MultiSet P)

forall n : Net ; p : Set P ; pre, post : T →?MultiSet P
• let n = (p, pre, post) in places n = p
• let n = (p, pre, post) in transitions n = dom pre
• let n = (p, pre, post) in preMap n = pre
• let n = (p, pre, post) in postMap n = post

spec PetriNetCategory = PetriNet and MapMultiSet
then

sorts P ,T
type HomNet = {(n1 , hp, ht ,n2 ) :

Net × (P →?P)× (T →?T )×Net
• hp::places n1 −→ places n2
∧ ht::transitions n1 −→ transitions n2
∧ ∀t : T • t isIn transitions n1 ⇒

(freeMap hp(preMap n1 t) = preMap n2 (ht t)
∧ freeMap hp(postMap n1 t) = postMap n2 (ht t))}

ops dom : HomNet → Net ;
cod : HomNet → Net ;
placesMap : HomNet → (P →?P);
transitionsMap : HomNet → (T →?T );
id : Net →?HomNet ;
o : HomNet ×HomNet →?HomNet

pred injective : HomNet
forall n,n1 ,n2 : Net ; hp : P →?P ; ht : T →?T ; h, h1 , h2 : HomNet

• let h = (n1 , hp, ht ,n2 ) in dom h = n1
• let h = (n1 , hp, ht ,n2 ) in cod h = n2
• let h = (n1 , hp, ht ,n2 ) in placesMap h = hp
• let h = (n1 , hp, ht ,n2 ) in transitionsMap h = ht
• id n = (n,∀p : P • p when p isIn places n else undefined ,

∀t : T • t when t isIn transitions n else undefined ,n)
as HomNet

• def (h2 o h1 )⇔ cod h1 = dom h2
• def (h2 o h1 )⇒ h2 o h1 =
(dom h1 , placesMap h2 o placesMap h1 ,
transitionsMap h2 o transitionsMap h1 , cod h2 ) as HomNet

• injective h ⇔ injective(placesMap h)
∧ injective(transitionsMap h)

sort M = {h : HomNet • injective h}

Figure 7.1: Specification of P/T-nets in HasCasl



7.2. BASIC CONCEPTS OF HASCASL 126

spec PetriSystem = MapMultiSet and PetriNet

then
type Marking := MultiSet P
type System = {(n,m) : Net ×Marking

• let n = (p, pre1 , post1 )in
∀x : P • x isIn m ⇒ x isIn p}

ops marking : System → Marking ;
net : System → Net ;
| < > : System × T → System

forall sys, sys1 , sys2 : System; n : Net ; m : Marking ; t : T ;
• let sys = (n,m) in net sys = n
• let sys = (n,m) in marking sys = m
• def sys| < t > ⇔ t isIn dom(preMap(net(sys)))

∧ preMap(net(sys)) t ≤ marking(sys)
• def sys| < t >⇒ sys| < t > = (net(sys), (marking(sys))

−preMap(net(sys)) t) + postMap(net(sys)) t)

spec PetriSystemCategory =
PetriSystem and PetriNetCategory hide M

then
type HomSys = {(sys1 , hp, ht , sys2 ) :

System × (P →?P)× (T →?T )× System
• ((net(sys1 ), hp, ht ,net(sys2 )) in HomNet)
∧ ∀p : P • freq(p,marking(sys1 )) ≤ freq(hp p,marking(sys2 ))}

ops dom : HomSys → System;
cod : HomSys → System;
placesMap : HomSys → (P →?P);
transitionsMap : HomSys → (T →?T );
id : System →?HomSys;
o : HomSys ×HomSys →?HomSys

pred injective : HomSys;
strict : HomSys

forall sys, sys1 , sys2 : System; hp : P →?P ; ht : T →?T ;
h, h1 , h2 : HomSys

• let h = (sys1 , hp, ht , sys2 ) in dom h = sys1
• let h = (sys1 , hp, ht , sys2 ) in cod h = sys2
• let h = (sys1 , hp, ht , sys2 ) in placesMap h = hp
• let h = (sys1 , hp, ht , sys2 ) in transitionsMap h = ht
• id sys = (sys,∀p : P • p when p isIn places n else undefined ,

∀t : T • t when t isIn transitions n else undefined ,
sys) as HomSys

• def (h2 o h1 )⇔ cod h1 = dom h2
• def (h2 o h1 )⇒ h2 o h1 =

(dom h1 , placesMap h2 o placesMap h1 ,
transitionsMap h2 o transitionsMap h1 , cod h2 ) as HomSys

• injective h ⇔ injective(placesMap h)
∧ injective(transitionsMap h)

• let h = (sys1 , hp, ht , sys2 ) in
strict h ⇔ injective h
∧ ∀p : P • freq(p,marking(sys1 )) = freq(hp p,marking(sys2 ))

sort M = {h : HomSys • strict h}

Figure 7.2: Specification of P/T-systems in HasCasl
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spec DirectedGraph = Map

then
sorts N ,E
type Graph = {(n, source, target) :

Set N × (E →?N )× (E →?N )
• dom source = dom target
(∀n1 : Set N • n1 isIn range source ⇒ n1 isIn n)
∧ (∀n1 : Set N • n1 isIn range target ⇒ n1 isIn n)}

ops nodes : Graph → Set N ;
edges : Graph → Set E ;
sourceMap, targetMap : Graph → (E →?N )

forall g : Graph N E ; n : Set N ; source, target : E →?N
• let g = (n, source, target) in nodes g = n
• let g = (n, source, target) in edges g = dom source
• let g = (n, source, target) in sourceMap g = source
• let g = (n, source, target) in targetMap g = target

spec GraphCategory = DirectedGraph and Map
then

sorts N ,E
type HomGraph = {(g1 , hn, he, g2 ) :

Graph × (N →?N )× (E →?E )×Graph
• hn::nodes g1 −→ nodes g2 ∧ he::edges g1 −→ edges g2
∧ ∀e : E • e isIn edges g1 ⇒

(hn(sourceMap g1 e) = sourceMap g2 (he e)
∧ hn(targetMap g1 e) = targetMap g2 (he e))}

ops dom : HomGraph → Graph;
cod : HomGraph → Graph;
nodeMap : HomGraph → (N →?N );
edgeMap : HomGraph → (E →?E );
id : Graph → HomGraph;
o : HomGraph ×HomGraph →?HomGraph

pred injective : HomGraph
forall g , g1 , g2 : Graph; hn : N →?N ; he : E →?E ;

h, h1 , h2 : HomGraph
• let h = (g1 , hn, he, g2 ) in dom h = g1
• let h = (g1 , hn, he, g2 ) in cod h = g2
• let h = (g1 , hn, he, g2 ) in nodeMap h = hn
• let h = (g1 , hn, he, g2 ) in edgeMap h = he
• id g = (g ,∀n : N • n when n isIn nodes g else undefined ,

∀e : E • e when e isIn edges g else undefined , g)
as HomGraph
• def (h2 o h1 )⇔ cod h1 = dom h2
• def (h2 o h1 )⇒ h2 o h1 =

(dom h1 ,nodeMap h2 o nodeMap h1 ,
edgeMap h2 o edgeMap h1 , cod h2 ) as HomGraph

• injective h ⇔ injective(nodeMap h) ∧ injective(edgeMap h)
sort M = {h : HomGraph • injective h}

Figure 7.3: Specification of graphs in HasCasl
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notation M < Mor in Fig. 7.4 introduces M as a subsort (roughly corresponding to
a subset) of sort Mor. Based on the predicate POComplement, which states that
there is a construction of pushout complements, we specify the operation transform
for rule-based transformations. Note that transform is a partial function and def
transform(p,g1) states that a rule p is applicable with occurrence morphism g1. The
first axiom in Fig. 7.4 specifies the domain of definition for transform, while the
second axiom specifies its effect when defined. Due to the first axiom the pushout
construction has to be uniquely determined. For our purpose, it is sufficient to note
that for the following examples of categories it has been checked that there is a
unique construction of pushout complements.

• (PTNets,Minjective) where PTNets is the category of P/T-nets and the
class Minjective of injective Petri net morphisms (see [EHKP91]),

• (PTSys,Mstrict) where PTSys is the category of P/T- systems, i.e. P/T-
nets together with an initial marking where the classMstrict consists of strict
inclusions so that the marking is preserved (see Section 2.1), and

• (Graph,Minjective) where Graph is the category of coloured graphs and
the class Minjective of injective, colour preserving graph morphisms (see
[EHKP91]).

Thus, we can give the following instantiations of the HasCasl-specification
Category and obtain the notions of rules and an operation for rule-based trans-
formations for each category mentioned above, especially for P/T-systems according
to the definitions in Section 2.1.

• Transformation[PetriNetCategory]
for P/T-nets and P/T-net rules using the specification in Fig. 7.1

• Transformation[PetriSystemCategory]
for P/T-systems and P/T-system rules using the specification in Fig. 7.2

• Transformation[GraphCategory]
for directed graphs and graph rules using the specification in Fig. 7.3

Based on the specification of Transformation[HLRCategory] we specify
the concept of inheritance to define new rules by reusing existing rules (see Section
6.3) within the HasCasl-specification LocalTransformation[HLRCategory]
(see Fig. 7.2).

In [HM02, HMPP04] we have presented the formalism of AHO-nets, where in
contrast to the definitions of AHO-nets in Chapter 3 the specifications in HasCasl
as described above are used. As mentioned in the introduction of this chapter
there are several reasons to use higher-order signatures here instead of higher-order
specifications for our concept. But the combination of HasCasl-specifications and
Petri nets is a promising topic of further research because HasCasl is a formal
approach for functional programming languages and tools for HasCasl already
have been implemented.
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spec HLRCategory = Pushout[Category]

then
sort M < Mor

reveal sorts Ob,Mor ,M ,ops id , dom, cod , o

spec Transformation[HLRCategory] = Pushout[Category]
then

type Rules = {(l , r) : M ×M • dom l = dom r}

ops transform : Rules ×Mor →?Ob;

pred POComplement : Mor ×Mor ×Ob

forall o : Ob; f , h, g1 : Mor ; p : Rules

• POComplement(f , h, o)⇔
∃g , k : Mor • (h, k) = f pushout g ∧ dom k = o

• let (l , r) = p in
def transform(p, g1 )⇔
∃g2 , g3 , c1 , c2 : Mor • POComplement(l , g1 , dom c1 )
∧ (∀o1 , o2 : Ob •

POComplement(l , g1 , o1 )
∧POComplement(l , g1 , o2 )⇒ o1 = o2 )
∧ (g1 , c1 ) = l pushout g2
∧ (g3 , c2 ) = r pushout g2

• let (l , r) = p in
def transform(p, g1 )⇒
∃g2 , g3 , c1 , c2 : Mor •

∧ (g1 , c1 ) = l pushout g2 ∧ (g3 , c2 ) = r pushout g2
∧ transform(p, g1 ) = cod g3

view CategoryofPetriNets : HLRCategory to PetriNetCategory =
Ob 7→ Net ,Mor 7→ HomNet , o , dom, cod , id ,M

view CategoryofPetriSystems : HLRCategory to
PetriSystemCategory =

Ob 7→ System,Mor 7→ HomSys, o , dom, cod , id ,M

view CategoryofGraphs : HLRCategory to GraphCategory =
Ob 7→ Graph,Mor 7→ HomGraph, o , dom, cod , id ,M

Figure 7.4: Specification of rule-based transformations in HasCasl
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spec LocalTransformation[HLRCategory] =

Transformation[HLRCategory]

then
ops inherit : Rules × Rules ×Mor →?Rules;

forall p1 , p : Rules; g1 : Mor

• let (l1 , r1 ) = p1 ∧ (l , r) = p in
def inherit(p1 , p, g1 )⇔ cod g1 = cod r1
∧ def transform(p, g1 )
∧ def r1 pullback c1

• let (l1 , r1 ) = p1 ∧ (l , r) = p in
def inherit(p1 , p, g1 )⇒
∃g4 , g5 , c1 , c2 : Mor • transform(p, g1 ) = (c1 , c2 )
∧ r1 pullback c1 = (g4 , g5 )
∧ inherit(p1 , p, g1 ) = (l1 o g4 , c2 o g5 )

Figure 7.5: Specification of inheritance in HasCasl



Chapter 8

Case Study Medical
Information System

In this chapter we demonstrate the practical relevance of our new concept of al-
gebraic higher-order net and rule systems introduced in Section 6.2 by a large case
study in the area of medical information systems. This case study is inspired by the
case study proposal on hospital therapeutic processes in [Han97]. Although this
proposal is leaving some room for interpretation, it pinpoints a baseline process
concerning the receiving and curing of patients. In this thesis we present the main
part of the case study [Kie04]. A first sketch has been published in [HM02].

8.1 Introduction

The case study “Medical Information System” deals with some business processes
in a hospital, in particular patient therapeutic treatments. The hospital consists
of two specialized departments. In detail, there is one department for orthopedic
diseases and one intensive care unit. The hospital also has a reception office, which
organizes the admission and the discharge to and from the hospital, and a laboratory
department, which is responsible for various tests and specific technical treatments.
Each department is rather independently organized, i.e. they have their own staff,
equipments, and internal activities. The idea is to model the following situation.
First, patients are received at the reception office. In the normal case, the patient
has been sent to the hospital by a doctor’s order, while in the emergency case the
patient has to be immediately treated before the formal admission in the hospital
could start. However, during the registration patient documents are created by
taking the patient record and starting the initial patient care plans. After a dia-
gnosis is made, it will be decided which department is responsible for the patient
and whether the patient should receive in-patient or out-patient treatments. After-
wards, specialists prescribe medication and certain specific and general treatments
like x-ray examinations or measuring blood pressure, which are recorded in the cor-
responding patient care plan. Care plans have to be constantly modified according
to the treatment effects, for instance effectiveness of medications, and have to be
carried out, if demanded.

Summarizing, the idea of the case study “Medical Information System” is to
model the coordination of patient care plans within the hospital, in detail the ini-
tialization, extension, transformation, and execution of patient care plans. Hence,
our model is realized using the concept of algebraic higher-order net and rule sys-
tems. The organizational structure of the hospital is reflected in the system level
given by an AHO-net, while patient care plans are modeled by dynamic tokens given

131
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by P/T-systems. Because patient care plans are not fixed once and for all, we use
rules as a specific kind of resources for the transformation of patient care plans.

8.2 Data Type Part

Let us point out that the data type part of the case study “Medical Information
System” given in the master thesis [Kie04] is defined by the HasCasl-specification
Hospital, which is an extension of the HasCasl-specifications of P/T-systems
and rules as presented in Section 7.2 especially for this case study. In this thesis
we sketch the main part of the HasCasl-specification Hospital and informally
explain the intuition of the data type part in the subsequent sections.

The HasCasl-specification Hospital provides additional types waiting, ambu-
lant and intensiv for specific therapeutic treatments, which have to be carried out
in the laboratory department, the in-patient resp. out-patient departments. The
patient record called ID consists of the first and last name together with the date
of birth. Moreover, there are some constants, reception1 . . ., reception4, for initial
patient care plans. The P/T-systems, which correspond to these constants, are de-
picted in Fig. 8.2 - Fig. 8.5. To support the flexibility of the model, we introduce a
further operation ident, which takes a rule and a morphism as parameters but leaves
the patient care plans unchanged. As we will see, this operation is useful to achieve
a more compact model. Patient care plans are rather workflow systems than arbit-
rary P/T-systems, i.e. they are equipped with a “start” place and a “stop” place
and are in some sense strongly connected. For this reason we have to ensure that
patient care plans can be carried out, which is called liveness in terms of Petri nets.
Liveness of systems means that no deadlock and even livelock of a system can occur,
i.e. there always exists a firing sequence which enables any chosen transition from
any reachable marking. Thus, there is a specific predicate isLive to check whether a
P/T-system is still live after the application of a rule. For the same reason there is
an operation switchableTrans to compute the set of transitions, which are enabled
in a P/T-system. Finally, the operation objCoproduct computes the disjoint union
of two P/T-systems.

8.3 System Level

In Fig. 8.6 we present the system level of our case study “Medical Information Sys-
tem”. The system level is given by an algebraic higher-order net and rule (AHONR)
system explained in Section 6.2. Here we omit the detailed net inscriptions to give
a rough idea about the whole model. The system level consists of three different
parts. There is on the one hand the reception office and on the other hand the
department A for orthopedic diseases and the department B, which is the intensive
care unit. The department A is divided into two parts for in-patient and out-patient
treatments.

A marking of the AHONR-system represents the distribution of patients at dif-
ferent places in the hospital and the firing behavior of the AHONR-system describes
the admission, the curing and discharge of patients. There are different locations in
the hospital where patients can stay: reception, ward A and ward B. Each location
is represented by several places in the AHONR-system in Fig. 8.6. Initially several
patients are waiting at the reception office on place patient.

Patients may move around, which means they might leave and enter the recep-
tion office and they might leave and enter the department A resp. the department
B. The mobility aspect of patients is modeled by several transitions in the AHONR-
system in Fig. 8.6 like admit in department A. While patients are moving around,
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spec Hospital = PetriSystemCategory

and Transformation[PetriNetCategory]
and List[Char]

then
type waiting := Set T

ambulant := Set T
intensiv := Set T

type string := List [Char ]
type ID = {(name,firstname, birthdate) : string × string × nat
ops reception1 : System;

reception2 : System;
reception3 : System;
reception4 : System;
indent : Rules ×Mor → System;
switchableTrans : System → Set T ;
objCoproduct : System × System → System;

pred isLive : System;

...

Figure 8.1: Specification Hospital in HasCasl
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Figure 8.6: System level (without net inscriptions)

the static structure of their patient care plans are changed by rule-based trans-
formations. For this reason we have rule tokens, which are used as resources and
deposited on several places in the AHONR-system in Fig. 8.6 like rules for extend-
ing care plans. Because patient care plans are modeled by P/T-systems, they have
their own internal behavior. To realize different markings of P/T-systems there are
several transitions in our system like carrying out stationaryA singular care plan.

In the following we focus on the reception office and the in-patient treatments
in the department A. Department B is in some sense similar, i.e. it has more or
less the same net structure as department A but different treatments can be carried
out.

In Fig. 8.7 the system level of the reception office is depicted in more detail.
The reception office organizes the admission to the hospital and the discharge from
the hospital. In the normal case patient documents are created by using the patient
ID consisting of the first and last name and the date of birth. Moreover initial
patient care plans are started. The initial patient care plan consists of the care
plan reception 2 for daily treatments (see Fig. 8.3) and the care plan reception 1
for singular treatments (see Fig. 8.2).

In the emergency case patients have to be immediately treated before the formal
admission, i.e. the initial care plan consists of the patient care plan reception 3 in
Fig. 8.4. To start the emergency treatments we use the transition carrying out
emergency treatment of the AHONR-system in Fig. 8.7. We have to give a variable
valuation, where the variable n1 is assigned to the P/T-system reception 2 and the
variable t to the transition first diagnosis. The evaluation of the term n1| < t >
in the post domain of the transition carrying out emergency treatment computes
the follower marking of the P/T-system reception 3, i.e. token emergency to start.
Now the transition emergency ending in the P/T-system reception 3 in Fig. 8.4 is
activated. In a second step we compute the follower marking, i.e. token no emer-
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Figure 8.7: Reception office

gency, in the same way as described above but using a different variable valuation,
where we assign the transition emergency ending to the variable t. Afterwards the
patient has been received in the hospital. Here we use the transition reception after
emergency of the AHONR-system in Fig. 8.7 to start the initial patient care plan
consisting of the singular care plan reception 4 in Fig. 8.5 and the daily care plan
reception 2 in Fig. 8.3.

It has to be decided which department is responsible for the patient. For this
reason a diagnosis is made by using the transition initial check of the AHONR-
system in Fig. 8.7. In any case the transition diagnosis in the singular care plan
of a patient is enabled. We compute the follower marking as described above but
assign the transition diagnosis to the variable t. Afterwards the initial singular care
plan is in the state treatments to start (see Fig. 8.2 and Fig. 8.5). To admit patients
to the departments A or B we use one of the transitions admit in department A and
admit in department B of the AHONR-system in Fig. 8.7.

Note that under certain conditions patients can be remitted from these depart-
ment. In the case of department A, the firing conditions of the transition remit from
department A of the AHONR-system in Fig. 8.7 ensures, that the curing process
does not stopped. In the case of department B the remission of a patient is more
complicated because department B is the intensive care unit and specific treatments
can only be carried out in this department. The firing conditions of the transition
remit from department B of the AHONR-system in Fig. 8.7 ensures that daily
treatments are carried out and transitions, which are enabled in corresponding care
plans, are not specific for the intensive care unit. The last condition is notated by
the net inscription switchableTrans(n1) intersection intensiv = emptySet, where the
evaluation of the term switchableTrans(n1) computes the set of transitions, which
are enabled in singular patient care plans, and the evaluation of the term intensiv
corresponds to the set of specific treatments for the intensive care unit.

If the curing process gets stopped but the daily treatments have to be still
carried out, the remission of patients is obtained by the transitions check out from
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Figure 8.8: In-patient treatments of department A

Herrmann, Klaus,13071952


Figure 8.9: Patient ID

department A resp. check out from department B of the AHONR-system in Fig. 8.7.
In Fig. 8.8 the system level of the in-patient treatments of department A is

depicted. The AHONR-system of department A consists of two different kinds of
transitions. There are some transitions to carry out patient care plans, while other
transitions reflect the transformation of patient care plans. Before we are able to
explain the AHONR-system of department A in more detail, we have to speak about
rules and treatments specific for our system.

8.4 Token Level

The token level consists of four different types of tokens: patient ID’s, P/T-systems
representing patient care plans, P/T-nets representing specific care plans and rules
for the transformation of patient care plans.

Patient ID’s are used to assign care plans to particular patients. An example
is given in Fig. 8.9. For simplicity reasons a patient ID consists of the first and
last name and the date of birth. But we can think about more complex identi-
fication features, like patient’s addresses and information about medical insurance
companies responsible for the invoice.

For each department we distinguish several care plans, which are specific for
them. Each care plan is given by its own P/T-system with an empty initial marking.
In our case study these P/T-systems consist of two places and one transition. The
places indicate that a patient is before resp. after a treatment, while the transition
is labeled by a specific treatment. These transitions can be seen as black boxes for a
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Figure 8.10: Daily and singular care plans of department A

number of separate treatments, which might be carried out in sequential and/or in
parallel. The daily and singular care plans for in-patient treatments of department
A are depicted in Fig. 8.10. These care plans are considered as tokens being in
the place singular careplan A stationary resp. the place daily careplan A stationary
of the AHONR-system in Fig. 8.8. Out-patient treatments of department A and
specific treatments of department B can be found in [Kie04].

For the transformation of patient care plans we introduce different kinds of rules.
These rules do not depend on specific care plans. They are general in the sense that
they are classified according to their effects. On the one hand there are rules for the
extension of patient care plans and on the other hand there are rules, which remove
some treatments. Moreover, patient care plans can be extended by sequential and
parallel treatments.

The sequential extension of patient care plans is realized by the rule shown on
the left hand side of Fig. 8.11. The application of this rule introduces the treatment
t before the treatment t1. Because there can be more than one place p1 in the
pre domain of the treatment t1 (and analogously in the post domain), we use the
concept of rule schemes, where the number of places in the pre- resp. post domain
is denoted by parameters. The rule scheme for the sequential extension is shown
on the right hand side of Fig. 8.11, where the parameters are given by the variables
n resp. m. For the sequential extension of the initial daily care plan reception 2
we need a particular rule (see Fig. 8.12), because we consider injective matches to
avoid ambiguities. For instance we have to preserve the sequential net structure
in singular care plans. The rules and rule scheme for the parallel extension are
depicted in Fig. 8.13 and Fig. 8.14. These rules are represented as tokens in the
place rules for extending care plan of the AHONR-system in Fig. 8.8.

Analogously, sequential and parallel treatment can be removed from patient care
plans (see Fig. 8.15 - Fig. 8.20). These rules are represented as tokens in the place
rules for excluding care plan of the AHONR-system in Fig. 8.8.

8.5 Process

To illustrate the semantics of our system in more detail, one of many possible
algebraic higher-order occurrence nets (see Section 4.3) is depicted in Fig. 8.21.
For simplicity reasons we omit firing conditions and typing of places. For a more
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Figure 8.11: Rule and rule-scheme for sequential extensions
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Figure 8.12: Rule for sequential extension in initial daily care plan
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Figure 8.13: Rule and rule-scheme for parallel extension of care plans

                                                    

      

L
 K
 R


l
 r


t1


p2


p3


p


t


p’


daily


start


day to


end


t2


p2


p3


p


t


p’


daily


start


t2


t1


p2


p3


p


t


p’


daily


start


day to


end


t2


Figure 8.14: Rule for parallel extension in initial daily care plan
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Figure 8.15: Rule and rule-scheme for sequential removal
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Figure 8.16: Rule for sequential removal in initial daily care plan
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Figure 8.17: Rule and rule-scheme I for parallel removal
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Figure 8.18: Rule and rule-scheme II for parallel removal
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Figure 8.19: Rule and rule-scheme III for parallel removal
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complex occurrence net we refer to [Kie04]. To obtain an algebraic higher-order
process we have to define an algebraic higher-order net morphism, which maps
the algebraic higher-order occurrence net in Fig. 8.21 into the AHONR-system in
Fig. 8.8. For instance the places patient on ward A, . . ., patient on ward A”” in
Fig. 8.21 are mapped to the place patient on ward in Fig. 8.8.

In the following we explain one firing sequence of the algebraic higher-order oc-
currence net in more detail. We assume that the token in Fig. 8.22 is on the place
patient on ward A in Fig. 8.21. Moreover, let the rule in Fig. 8.11 for sequential
extensions be on the place rules for extending careplan and the care plan Netz 2 in
Fig. 8.10 for measuring the blood pressure on the place daily careplanA stationary.
We have to give an assignment v for the variables of the transition extending sta-
tionaryA daily care plan, i.e. we assign the token in Fig. 8.22 to (id, n1, n2), the rule
in Fig. 8.11 to the variable r′, and the care plan Netz 2 in Fig. 8.10 to the variable
n′. Then we compute the disjoint union of the daily care plan at the bottom of
Fig. 8.22 and the care plan Netz 2 denoted by the net inscription n1 objCoproduct
n′ in the firing condition of the transition extending stationaryA daily care plan in
Fig. 8.8. The result is the disjoint union of both systems.

In a next step we assign a suitable match morphism g : L→ G to the variable h
so that the domain of g is the left hand side of the rule in Fig. 8.11 and the codomain
of g is the disjoint union computed above. In detail we map the transition t in the
left hand side of the rule in Fig. 8.11 to the transition measuring blood pressure
of Netz 2 and the transition t1 to the transition day to end of the daily patient
care plan in Fig. 8.22. We are able to apply the rule at the match g denoted
by the net inscription transform(r, h), which results in the daily patient care plan
depicted at the bottom in Fig. 8.23. The firing conditions of the transition extending
stationaryA daily care plan in Fig. 8.8 are satisfied because the match g is injective,
the marking of daily care plan is still the same after the transformation, and the
daily care plan after the transformation is obviously live.

Afterwards we extend the daily care plan at the bottom in Fig. 8.23 in the same
way as above, but we use the rules for the parallel extension (see Fig. 8.13) and the
care plan Netz 1 for measuring the temperature (see Fig. 8.10). This results in the
daily care plan at the bottom of Fig. 8.24.

The daily patient care plan at the bottom in Fig. 8.24 is carried out by firing
the transition carrying out stationaryA daily careplan in Fig. 8.21. First the net
inscription (id, n1, n2) is assigned to the token in Fig. 8.24 and the variable t to
the transition giving heparin injection of the daily care plan. The evaluation of the
term n2| < t > computes the follower marking of the daily care plan, i.e. token
pat after5 (see Fig. 8.25).

Finally, we want to remove the treatment measuring blood pressure from the
daily care plan. Here we use the rule in Fig. 8.15. We assign the token in Fig. 8.25
to (id, n1, n2) and the rule in Fig. 8.15 to the variable r. But we also have to give
suitable operations to the variables f1 and f2. Because we want to transform the
daily care plan but not the singular care plan, we assign the operation transform
to the variable f2 and the operation ident to the variable f1, which exactly realizes
the intended behavior. Moreover, we have to give a suitable match morphism h2,
i.e. the transition t in the left hand side of the rule in Fig. 8.15 is mapped to
the transition measuring blood pressure of the daily care plan. The firing of the
transition excluding off stationaryA careplan in Fig. 8.21 results in the patient care
plan depicted in Fig. 8.26.
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Figure 8.22: Marking of patient on ward A
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Figure 8.23: Marking of patient on ward A’
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Figure 8.24: Marking of patient on ward A”
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Figure 8.25: Marking of patient on ward A”’
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Figure 8.26: Marking of patient on ward A””’
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Figure 8.27: Combination of patient record and patient care plan

8.6 Further Aspects

In our case study ”Medical Information System” there is a set of rules as resources
for the transformation of patient care plans. Thus, transformations become effect-
ively included into the system. The advantage of our approach is a more flexible
modeling technique because we can add further token rules to realize other kinds
of transformations, while the AHONR-system in Fig. 8.6 is fixed.

In our case study a patient care plan consists of a singular patient care plan and
a daily patient care plan. An interest aspect is the extension of patient care plans
by a more complex patient record, which includes for instance a prescription sheet
and a temperature chart. Here we can use the results obtained by the case study
”Distributed Information Management System (HDMS)” [Erm96]. This case study
concentrates on the concept and development of electronic patient records, which
arise during the stay of a patient at the hospital. The patient records are formalized
by classical algebraic specifications (see Section 2.2). Thus, we can adapt these
specifications to combine patient records and our approach of patient care plans.
An example of such a combination is given in Fig. 8.27.



Chapter 9

Case Study Logistics

In this chapter we demonstrate the notions and results of this thesis in form of a
case study in the area of logistics processes. The case study “Logistics” is based
on data structures defined in [Sch94] by entity/relationship-diagrams and processes
modeled by event driven process chains. The business process logistics consists of
the planning and scheduling functions concerned with the distribution of products
to customers. A reduced version of the case study “Logistics” has been published
in [Hof03]. Here we present the main part of [Bog04] concerning algebraic higher-
order nets. For the entire description we refer to the master thesis [Bog04], where
the development process of the logistics process is formally investigated by net
class transformations to change the underlying modeling formalism and net model
transformations to refine a specific model. Thus, on the one hand models are
enhanced by additional aspects like a suitable data structure, and on the other hand
descriptions of models are refined by adding some details, like further exceptions.

First we present a low-level version of our case study to discuss the aims of the
logistics process, especially the included activities. Next we enrich our model by a
suitable data type part, which is not given explicitly in this thesis but can be found
in [Bog04]. We just mention some important types and operations. Subsequently
we demonstrate that we achieve not only a more compact description of the model
but also a more flexible and abstract model using the concepts of horizontal struc-
turing techniques (see Chapter 4) and folding constructions (see Chapter 5) within
the case study “Logistics”. In more detail we apply several times the folding con-
struction wrt. constant symbols, the folding construction wrt. product types and
the horizontal structuring technique fusion. Finally, we use the horizontal struc-
turing technique union to obtain the overall system. As a conclusion we discuss
interesting aspects of future work concerning rule-based transformations and their
compatibility with net class transformations and horizontal structuring techniques.

9.1 Introduction

In view of departments the business process can be divided into the following five
different parts, each of them with specific documents and activities.

• “Offer Preparation”,

• “Order Acceptance”,

• “Order Processing”,

• “Shipping”, and

• “Accounts Receivable”.

145
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In Fig. 9.1 the logistics process is modeled by a P/T-net, where the dashed
lines indicate the subprocesses carried out in each department. In the following we
describe the activities in each department in more detail. The tender preparation
starts with a request of the customer. Not only customers, which are already known
to the company, but also new customers should have the ability to send a request. In
both cases an offer is prepared and send to the customer. If the customer accepts
the offer, an order is generated using the information from the offer. Then the
availability of ordered articles is checked by comparing the list of articles, which are
available at the moment, and the list of ordered articles. The order may be split
into two parts: the current order including all articles, which are available at the
moment, and a new order including all remaining articles to be carried out as soon
as they are available. The articles available are removed from the stock and provided
for loading up on trucks. Furthermore the corresponding delivery note is generated
to inform the customer about articles to be received and the articles are send to the
customer. In a next step the invoice is generated and compared with the receipted
delivery note. Finally, invoices are captured and cleared with incoming payments.
Once a week outstanding payments are checked and the account department reminds
the customers concerned.

9.2 Logistics Process as AHO-Net Scheme

To achieve a higher-order version of our case study “Logistics” there is a data type
part for documents and activities included in the logistics process. It results in a
very complex description of the data structure “Customer”, which is depicted in
Fig. 9.2 by the uses-hierarchy of the involved data structures. Besides the basic
data types for articles, transport resources, actual dates and customer records, the
data structures specific for each department are built up to reflect the information
flow of the logistics process. For instance the data structure “Customer Offer” uses
the information given in “Customer Request”.

Our case study “Logistics” consists of five algebraic higher-order net schemes
corresponding to the departments described above. They are depicted in the left
upper corners of Fig. 9.3 - Fig. 9.7. In the following we describe the AHO-net
scheme for the preparation of an offer in Fig. 9.3 in more detail. The AHO-net
scheme consists of six places for customer records and requests of customers as well
as for their offers. Moreover, there are three transitions to receive a request of a
customer and to prepare an offer. A request consists of the name and the address of
the customer as well as of a list of articles. The request of a new customer is enriched
by an identification number and the customer record is stored in the customer data
base. If the customer is known to the company, the customer record is compared
with its entry in the customer data base. Afterwards a request is generated using the
operation mk request, which combines the identification number, the actual date,
the list of requested articles and additional information. Then an offer is generated
by the operation mk offer, which mainly adds the identification number and the
actual prices of the requested articles.

Because the involved operations are formalized by constants of appropriate
higher-order type, we apply the folding construction wrt. constant symbols given
in Section 5.1. For instance, there is the constant symbol mk offer of function type
customer request × date → customer offer in the environment of the transition
make offer. We assume that there is a suitable variable f available in our data
type part, which corresponds to this constant symbol. Due to the application of the
folding construction we replace the constant symbol make offer by the variable f
in the post domain of the transition make offer. Moreover, we add a new place P2,
where the assigned function type is given by customer request × date → customer
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Figure 9.2: Uses-hierarchy of the data type part “Customer”

offer and arc inscriptions given by the variable f . In the same way we proceed
with the net inscription in the environment of the transitions new customer request
and customer request resulting in the AHO-net scheme in the right upper corner
in Fig. 9.3, where the net inscriptions besides the predicates eq and and consist of
variables only. We achieve a high-level of abstraction because the operations are
not fixed in the net structure but can be given at run time by suitable operations,
i.e. tokens on the corresponding places. Moreover, we are able to introduce differ-
ent kinds of computation, for instance to capture an exception handling by adding
further operations.

In a next step we apply the folding construction wrt. product types to reach
a more compact description. For instance, the set of places consisting of P1, P1’,
P1”, and P1”’ is uniform, i.e. they have the same transition new customer request
in their pre- and post domain and the arc inscriptions in the environment of these
places are labeled by corresponding variables. Thus these places are replaced by the
new place P1, where the assigned product type combines the types of these places.
The arc inscriptions are obtained by forming the tuple (f, g, h, k). The resulting
AHO-net scheme is depicted in the lower row in Fig. 9.3. Note that due to the
results in Chapter 5 folding constructions preserve the firing behavior. Hence with
respect to an appropriate initial marking the AHO-nets in Fig. 9.3 are semantically
equivalent.

In Fig. 9.4 the AHO-net scheme of the department “Order Acceptance” is depic-
ted, while Fig. 9.5 shows the activities of the department concerning the processing
of orders. In both cases we apply the folding construction wrt. constant symbols
resp. product types several times.

The shipping department is modeled by the AHO-net schemes in Fig. 9.6. Here
the transitions receipt okay, receipt rebate and receipt refuse realize three different
possibilities for the reception of goods, i.e. the delivery was accepted or all or parts
of it were rejected by the customer. The interesting point is that in the AHO-net
scheme in the right-lower corner in Fig. 9.6 all these transitions have not only the
same places in their environment but are also inscribed by the same net inscriptions.
Thus we use the horizontal structuring technique fusion (see Chapter 4) to merge
these transitions into one transition receipt. For this reason we need suitable AHO-
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net scheme morphisms so that the domain of these morphisms consists of an AHO-
net scheme with two places tour list and receipted bill and one transition t. The
net inscription of this transition is identical to the net inscription of the transitions
receipt okay, receipt rebate and receipt refuse. We define two AHO-net scheme
morphisms fN and gN so that the transition t is mapped by the latter to the
transition receipt okay and by the former to the transition receipt rebate. Then
the transitions receipt okay and receipt rebate are fused into one transition t′. In
the same way we proceed with the transitions t′ and receipt refuse and obtain the
transition receipt.

Finally, the AHO-net schemes modeling the department “Accounts Receivable”
are given in Fig. 9.7. An invoice can be handled in different ways depending on
the corresponding reception of goods. Besides the normal registration, the invoice
may be canceled or partly changed according to the actual delivery. The transitions
modeling these different activities (see the AHO-net schemes in the upper-left corner
in Fig. 9.7) are fused into one transition (see the AHO-net schemes in the lower-right
corner in Fig. 9.7). Now, exceptions of the normal process can be introduced into
our system in an elegant way because they do not effect the overall net structure.
If there are further possibilities for the reception of goods, this results in a different
handling of invoices. In this case, we add some suitable operations as tokens on the
corresponding places, while the net structure remains unchanged.

To obtain the overall system of the business process logistics depicted in Fig. 9.8
we first observe that there are places with the same name which are present in
different AHO-nets schemes, for instance customer offer in Fig. 9.3 and Fig. 9.4.
The AHO-net schemes resulting from the application of folding constructions resp.
fusions are sequentially composed by merging these places. Formally we employ the
horizontal structuring technique union described in Chapter 4, where the interface
is given by the overlapping places.

9.3 Further Aspects

We have presented a higher-order version of the case study “Logistics”, which allows
the flexible modeling of the business processes by adding additional operations as
tokens. In [Bog04] the case study is first modeled by P/T-nets, which follows the
base-line process defined by event driven process chains in [Sch94]. Afterwards the
P/T-net is refined by adding further details like transport resources. The resulting
P/T-net is depicted in Fig. 9.1. In order to introduce a suitable data structure the
model is transformed into an algebraic high-level net. In a first step a trivial data
type part is added by using the concept of net class transformations [Urb03]. Then
the algebraic high-level net is refined by a more complex specification for the descrip-
tion of the documents and the activities involved in the logistics process. Of course
it is often more adequate to apply rules to the low-level version of the case study
and to specific components. Here, the results achieved in [Urb03] guarantee not
only the compatibility of net class transformations and net model transformations,
but also the compatibility of net model transformations and horizontal structuring
techniques.

To make a link from the higher-order version of the logistics process presented in
this chapter to the low-level and high-level versions it is desirable to have on the one
hand suitable net class transformations between the class of algebraic high-level nets
and the class of algebraic higher-order nets, and on the other hand the concept of
net model transformation for algebraic higher-order nets, so that the compatibility
results can be obtained. This will be discussed in more detail in Chapter 10.
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Figure 9.7: AHO-net schemes of department “Receivable”
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Chapter 10

Future Work

In this chapter we discuss several interesting problems left for future investigations.
Even though we have presented a formal approach for algebraic higher-order nets
and have achieved several important results in Chapter 4 and Chapter 5, further
investigation and research is necessary to obtain a general theory for algebraic
higher-order nets and to facilitate practical applications. The formal approach
presented here provides the basis for further theoretical research in three different
directions:

• the concept of rule-based transformations and property preserving rules (see
Section 10.1) ensuring consistency and compatibility with the horizontal struc-
turing techniques presented in Section 4.1,

• different kinds of net class transformations (see Section 10.2) to establish a
link between algebraic higher-order nets and other net classes and to obtain
and transfer results achieved for distinguished net classes, and

• the application of folding and unfolding constructions wrt. constant symbols
presented (see Section 5.1) and the application of rule-based transformations,
so that these activities can be interleaved, leading to the concept of dynamic
reconfigurations of processes (see Section 10.3).

Finally, tool support (see Section 10.4) is a main precondition for the practical
use of algebraic higher-order nets because not only the data type part but also the
net structure might be quite complex, so that users need support not only to specify
and simulate, but also to check the correct behavior of their models.

10.1 Rule-Based Transformation

The strong relationship between the area of Petri nets and graph transformation
systems has been researched in a number of papers. Looking at Petri nets from
the perspective of graph grammars, it is quite natural to regard them as grammars
acting on discrete graphs. In this way transitions can be represented by graph rules
and the application of such a rule simulates the token game (see e.g. [CEL+93,
Cor95, KR94]).

The concept of high-level replacement systems [EHKP91] was the starting point
to obtain new results for the area of Petri nets. High-level replacement systems
provide an abstract framework for rule-based transformations to different domains
as for instance place/transition nets [EGP99], algebraic specification [EGP99] and
algebraic high-level nets [PER95]. Rules and transformations are given as gener-
alization of these concepts for graph grammars. Especially, the instantiation of

156
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high-level replacement systems to Petri nets leads to the concept of net transform-
ation systems [PER95, Urb03]. The basic idea behind net transformation systems
is the stepwise development of systems in the framework of Petri nets based on the
double-pushout approach. These transformations are called rule-based transforma-
tions, because a high-level replacement system is defined by an arbitrary category
and a distinguished class of morphisms used to form rules, i.e. rules in the double-
pushout approach are given as a span of two morphisms. Think of these rules as
replacement systems, where the left-hand side of the rule is replaced by the right-
hand side.

To apply the theory of high-level replacement systems, several conditions, called
HLR-conditions, have to be checked. The main advantage is that once these con-
ditions are verified for a specific category, several results are obtained, like local
Church Rosser, Parallelism, and Concurrency Theorems. The local Church Rosser
Theorem I states that two alternative transformations are concurrent if they are not
mutually exclusive, called parallel independence, i.e. the matches do not overlap in
items which are deleted by one of these transformations. Symmetrically, the local
Church Rosser Theorem II states that two alternative transformations are concur-
rent, if they can be performed in a different order without changing the result,
called sequential independence, i.e. if the match of the second one does not depend
on elements generated by the first one, and the second one does not delete an item
that has been generated by the first one. The Parallelism Theorem is closely related
to the local Church Rosser Theorems. Here, parallel transformations are not de-
scribed by interleaving but by truly parallel applications and it states necessary and
sufficient conditions for the parallelization of two transformations, called synthesis,
and for the sequentializing of a parallel transformation, called analysis. Finally, the
Concurrency Theorem states under which conditions, called dependency relation, a
new rule can be constructed by using two existing rules and vice versa a rule can
be split into two rules, which have to be sequentially applied.

To avoid the HLR-conditions the notion of adhesive HLR systems has been intro-
duced in [EHPP04]. In this way mainly the so called van Kampen square property
has to be checked instead of the HLR-conditions. Roughly, a van Kampen square
is a pushout square which is stable under pullbacks. Moreover, pushouts along a
class of distinguished morphisms have to be van Kampen squares. It is shown that
most of the results for the theory of high-level replacement systems given above are
valid already for adhesive HLR systems, and only the parallelism theorem requires
an additional condition. But already P/T-nets fail to be an adhesive HLR system
because the construction of free commutative monoids do not preserve pullbacks.
Fortunately, most of the results given above can also be formulated under weaker
assumptions, where the van Kampen square property has to be stable only under
pullbacks, where the morphisms are morphisms of the distinguishable class. This
results in the so called weak adhesive HLR systems.

As rule-based transformations were found to be a very important structuring
technique for (high-level) Petri nets, it would be desirable to have this notion and
the results from above for AHO-nets. As mentioned above this can be realized in
two different ways. On the one hand we have to check the HLR-conditions for AHO-
nets. On the other hand we have to check whether the data type part of AHO-nets
given by higher-order signatures and higher-order algebras is a weak adhesive HLR
system. Then we obtain that AHO-nets are a weak adhesive HLR system in a much
easier way due to the important result that (weak) adhesive HLR systems are closed
under products, functors and comma categories.

To check the properties for both, the data type part and the AHO-nets, can be
avoided using the approach of high-level abstract Petri nets [Pad96], which can be
instantiated to a great variety of high-level net classes including algebraic high-level
nets [PER95, Pad96, EHP+02] and coloured Petri nets [Jen81]. High-level abstract



10.1. RULE-BASED TRANSFORMATION 158

Petri nets give an abstract notion of high-level net classes by introducing not only
for the data type part but also for the net structure part an abstract parameter,
which is given for the data type part by the notion of institutions and for the net
structure part by a suitable net structure functor. Due to the instantiation we also
get the notions of markings, firing behavior, and morphisms for the concrete net
class. The advantage is an economic way to achieve the results of cocompleteness
of the concrete category and preservation of the firing behavior by morphisms,
because these results have been proven on an abstract level and are transferred to
the concrete net class. Note that these results are explicitly proven for AHO-net
scheme in Section 4.1 and AHO-nets in Section 4.2. But within the framework of
high-level abstract Petri nets we also achieve the results of the local Church Rosser
and Parallelism Theorems, described above, and the compatibility of rule-based
transformations with horizontal structuring techniques.

In detail we mainly have to check if higher-order signatures and algebras are
suitable data type parts for the instantiation of high-level abstract Petri nets and
if higher-order signatures form a high-level replacement system. While we expect
that higher-order signatures form a high-level replacement system, the aspect that
higher-order signatures and algebras are of a suitable data type part for the instan-
tiation of high-level abstract Petri nets is more complicated.

The data type part of high-level abstract Petri nets requires a notion of amal-
gamation, i.e. for every pushout of higher-order signatures there has to be a model
of the resulting signature. This model is achieved by the combination of the models
of the value signatures wrt. the model of the interface signature. But in the case
of higher-order algebras this model can not be uniquely determined because of the
mixed function types which are generated by the pushout of higher-order signatures.
More precisely, in the resulting higher-order signature we get further function types,
which are not a part of the value signatures, due to the union of the basic types.
Thus we are free in the interpretation of these function types. A good solution
would be to restrict the requirements of the data type part of high-level abstract
Petri nets in the sense that amalgamations are not required. The disadvantage
of this restriction is that we loose the notion of markings and firing behavior and
thereby the result of preservation of the firing behavior by morphisms. However,
the results of cocompleteness, local Church Rosser and Parallelism Theorems, and
the compatibility of rule-based transformations with horizontal structuring tech-
niques can be achieved because they are formulated for high-level abstract Petri
nets without models.

Another problem arises due to the requirement of an initial object in the category
of higher-order signature in high-level abstract Petri nets. This initial object is
used in the net inscriptions. But in the case of higher-order signatures the initial
model is always empty due to the interpretation of operation symbols as partial
functions. Thus, the requirements in high-level abstract Petri nets are too restrictive
to capture partial algebras and have to be relaxed in the sense that there is a model,
which is used for the net inscriptions, but is not necessary the initial object in the
corresponding category. Although the fact that the object is initial is frequently
used to prove the results given above, these results can, as far as we can see, also
be proven with those more relaxed requirements.

Finally, the definition of AHO-nets includes a type function for places, which is
not present in the framework of high-level abstract Petri nets. This however, would
require an extension of the notion of high-level abstract Petri nets. In detail the
data type part of high-level abstract Petri nets has to contain a suitable notion of
sorts or types and the net structure functor is a slightly different functor because
it has to take the typing function into account. This aspect has been discussed in
[EHP+02]. It is still an open question, the results of which can be obtained for this
extended version of high-level abstract Petri nets.
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Summarizing, we can follow three main directions to obtain the notions and
results of rule-based transformations for AHO-nets, high-level replacement systems,
adhesive HLR-categories and high-level abstract Petri nets. We would prefer to
revise the notion of high-level abstract Petri nets, such that the instantiation leads
to the concepts of AHO-nets presented in Section 3.2. In this way much work will
be done to obtain results for other high-level net classes, which do not fit into the
actual framework of high-level abstract Petri nets.

10.2 Net Class Transformation

To establish a link between AHO-nets and other net classes, the so called net class
transformations are of particular interest [Urb03]. For AHO-nets there are two main
concepts of net class transformations. On the one hand the transformations between
AHO-nets and P/T-nets are an important step towards a formal analysis of AHO-
nets because in this way we can use the results obtained for place/transition nets and
the tools provided for place/transition nets. On the other hand the transformation
of AHL-nets into AHO-nets establishes a strong relationship between these net
classes and makes the higher-order features and folding constructions available for
AHL-nets.

First we discuss a net class transformation which reflects the independence of
the net structure component and the data type component of AHO-nets. The
interpretation of the net structure component as a place/transition net represents
all processes in the AHO-net if we abstract from the data elements, which are
calculated by the firing of transitions. This type of net class transformation makes
the standard theory and analysis methods for place/transition nets applicable to
our AHO-nets. The transformation of an AHO-net into a place/transition net can
be easily achieved by forgetting the data type part, the terms in the net inscriptions,
and the typing of places, and results in a so-called skeleton of AHO-nets. Vice versa
the transformation of a place/transition net into an AHO-net adds a simple data
type part consisting of only one basic type token for black tokens. Moreover, the net
inscriptions in the resulting AHO-net are decorated by variables of basic type token
instead of natural numbers. We expect that these constructions can be turned into
functors which preserve pushouts and initial objects.

The transformation between the net class of AHL-nets and the net class of AHO-
nets is more advanced, because here we have to transform the classical data type
part into a higher-order data type part. Problems arise due to the partiality of
higher-order models, because classical models are in a total setting. Moreover, the
firing conditions are given in AHO-nets by atomic formulas, while we have a set of
equations in AHL-nets. Thus, in the following we first describe the transformation
of an AHL-net scheme, i.e. an AHL-net without a classical algebra, into an AHO-net
scheme, and discuss a possible solution of the problems given above afterwards.

The canonical embedding of classical signatures into higher-order signatures is
based on the observation that Casl can be embedded into HasCasl via so called
institution comorphisms. Given a classical signature, the set of basic types in the
corresponding higher-order signature consists of the same sorts as in the classical
signature, while the operations of the classical signature are turned into constants
of appropriate higher-order type. As mentioned above in AHL-nets, the firing con-
ditions are given by a set of equations, while in AHO-nets the firing conditions are
defined by atomic formulas. Thus, we introduce some predicates to capture the
firing conditions of an AHL-net scheme in the corresponding AHO-net scheme, i.e.
we extend the higher-order signature by one predicate eqs : Pred(s?s) for each basic
type s ∈ S and a predicate & : Pred(Pred(unit)?Pred(unit)) for the combination of
atomic formulas. Furthermore, we need a type of boolean values, i.e. we introduce
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predicates tt and ff of type Pred(unit).
In the following we discuss the transformation of AHL-net schemes into AHO-

net schemes. Given an AHL-net scheme N = (Σ, P, T, pre, post, cond, type) with
a classical signature Σ instead of an specification. The corresponding AHO-net
scheme HO-N consists of the same sets of places P and transitions T . The data
type part of HO-N is given by the corresponding higher-order signature HO-Σ as
described above. While the typing of the places remains unchanged, we have to
transform the terms in the net inscriptions into higher-order terms, i.e. each op-
eration symbol in the net inscriptions is replaced by the corresponding constant
symbol of appropriate type. Finally we have to transform the firing conditions.
Let cond(t) = {e1, . . . , en}, n ≥ 0, for some t ∈ T . Then for n = 0 we have
condN (t) = ∅, which is transformed into condHO-N(t) = tt. For n ≥ 1 each equa-
tion (term1 = term2) ∈ condN (t) with terms term1 and term2 is transformed into
an atomic formula eqs(term′

1, term
′
2), where term′

1 and term′
2 are the higher-order

terms resulting by the replacement of operation symbols by corresponding constant
symbols of appropriate type. If there are more than one equation, the resulting
atomic formulas are composed into one atomic formula by using the predicate &.

We are convinced that the construction described above can be turned into a
functor and we expect that this functor isM-compatible (see [Urb03]) in the sense
that the net class transformation of AHL-net schemes into AHO-net schemes is
compatible with rule-based transformations as described in Section 10.1.

For the level of semantics the extension of a classical algebra to a higher-order
partial algebra can not be uniquely obtained because there are at least two different
ways of extension: the free extension, where function types are in a sense minimal,
and a standard extension, where function types are interpreted by the full function
space. Moreover, the problem of partiality arises, because classical algebras are in
a total setting while we have higher-order partial algebras. One solution might be
to handle partiality by using an error mechanism on the level of classical algebras.
But it is an open question, which translation of classical algebras into higher-order
partial algebra is suitable for our purpose.

Moreover, in the category of AHL-nets we are using generalized morphisms to
modify both parts of the data type part, the specification and the algebra. But
AHO-net morphisms are restricted in the sense that they only modify the higher-
order partial algebra, while the higher-order signature is fixed. To establish a rela-
tion between these net classes we need a kind of generalized morphism for AHO-nets
first, which is part of future work.

10.3 Dynamic Reconfiguration

An interesting aspect for future work is the combination of rule-based transforma-
tions and the folding and unfolding constructions wrt. constant symbols presented
in Section 5.1, leading to the concept of dynamic reconfigurations of processes. In
this section we discuss this kind of dynamic reconfiguration on the basis of a small
example inspired by our case study of the medical information system (see Chapter
8). In Fig. 10.1 an AHO-net is depicted, the subsystem of initializing the patient
record and taking of vital values. The AHO-net is decorated with terms over a
higher-order signature, which is not given here. The idea of the AHO-net is to
model the following situation in a hospital: The patient is located in the ward.
His/her PadID is used to initialize his/her patient record containing e.g. all meas-
ured values. Afterwards a single vital value can be taken e.g. for the diagnosis and
therapy by a doctor if this treatment is demanded in the patient record.

This model is useful in the area of processes, which are fixed once and for all and
where no further changes are required. But we have already mentioned, medical
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Figure 10.1: Algebraic higher-order net “Patient Record”

processes have to be often reorganized, e.g. the initialization of the patient record
has to be modified. In this case the relevant parts of the model have to be replaced
by the modified process. Here we can use the folding construction wrt. constant
symbols to obtain a more flexible model. For a detailed explanation we refer to
Section 5.1. As a result of the folding construction wrt. constant symbols we obtain
the AHO-net which is shown on the left hand side (the non bold face part) of
Fig. 10.2. Because folding constructions preserve the firing behavior, the folded net
models the original medical-process.

The main idea of dynamic reconfiguration is the refinement of the transition
Initializing Patient Records by a sequential process, where the temperature curve
becomes initialized first and the therapy prescription or the medicine prescription
afterwards. Thus, we introduce the new process, corresponding to the refinement of
the transition Initializing Patient Records described above, into our model by using
rule-based transformations, so that we obtain the AHO-net in Fig. 10.2. There
are further transitions to switch into the new process. The transition Changing
Initialization realizes the replacement of the token init Record by the tokens init
TempC, init ThPres and init MedPres.

In Fig. 10.2 the new process is still inactive. But if the transition Changing
Initialization fires, the new process is active and the old one is inactive. Then there
is no follower marking so that the transition Initializing Patient Records and the
transition Changing Initialization are enabled. Thus, these transitions and all arcs
in their environment can be deleted at a certain point of time. If necessary we
can unfold the resulting AHO-net because the firing behavior is preserved by the
unfolding construction.

In the following we discuss the general concept of dynamic reconfiguration where
the AHO-net in Fig. 10.2 is only a specific example. We assume that a formal model
given by an AHO-net N exists. If modifications of subprocesses are required, e.g.
the refinement of a single step into a sequential process, we identify the relevant
subprocess N1, which is a part of the existing model N . Next we fold the subprocess
N1 into a AHO-net using an appropriate folding construction wrt. constant symbols
and get a subprocess F (N1). Because the folding construction preserves the firing
behavior, both, the original model N and the folded model NC = N −N1 +F (N1),
are semantically equivalent. Next we assume that the modified process is given by



10.3. DYNAMIC RECONFIGURATION 162

Taking Vital Value

apply(f,PatRecord)=true

temp
pils
bl_press

f

f

init_Record
f

f

Initializing Patient Records

getpat(PatRecord)=PatID

f

f

Initializing
Temperature Curve

Initializing Therapy
or Medicine Prescription

getpat(Patient)=PatID

Changing Initialization
init_Record

init_TempC

patient at ward

ward documents

Patient

patient record

PatRecord

apply(f, Patient)

apply(f, PatRecord)

getpat(Patient)=PatID

f

f

apply(f, Patient)

Patient

PatRecord

v(PatRecord)

vital value taken

init_ThPres,
init_MedPres

Figure 10.2: Algebraic higher-order net “Patient Record II”

a AHO-net N2, so that the marking of contextual places is empty.
Now the net NC and the subprocess N2 are composed using the structuring

technique union with an interface net containing the relevant places. Furthermore
we add a transition tchange. Its firing behavior realizes the switching into the new
subprocess N2. In terms of Petri nets, on the one hand the pre domain of the trans-
ition tchange is constructed using the contextual places of the process F (N1) and
arcs labeled with constants, corresponding to the marking of the contextual places.
On the other hand the post domain of the transition tchange is constructed using the
contextual places of the modified process N2 and arcs labeled with constants, cor-
responding to the marking of contextual places, which starts the modified process
N2.

In the resulting AHO-net NHO the modified process N2 is inactive. At a certain
point of time the transition tchange is enabled and fires, so that as a result the
modified process N2 is active and the process N1 is inactive. Because the transitions
in the subprocess N1 and the transition tchange are not enabled under the follower
markings, they can be deleted together with their environment by an appropriate
rule. Now the resulting AHO-net N ′

C can be unfolded into an AHO-net U(N ′
C).

Note that a firing step of a transition and both the modification of a transition
and the folding and unfolding construction are in conflict. In this way subprocesses,
which must be modified, are locally transformed, while the global process is not
interrupted. Thus, these activities are interleaved. This problem is closely related
to basic higher-order net and rule systems (see Remark 6.2.5), where a P/T-system
and a set of token rules are considered as reconfigurable P/T-system. Analogously,
it would be especially important to analyze under which conditions the token game
activities are independent of both the folding and unfolding constructions and rule-
based transformations. Here we can base it on the local Church-Rosser properties
obtained for rule-based transformations (see Section 10.1).
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10.4 Tool Support

A concrete implementation of AHO-nets has to be worked out in order to evaluate
and improve their applicability. Major problems, which could be solved by such an
implementation are:

• a clean interface between the net structure component and the data type part
component; especially due to the higher-order signature dynamic tokens with
a rather complex structure are imported into the nets,

• a solid and flexible process structure for the concurrent firing of transitions,
and

• a general but flexible enough architecture of the whole system, which supports
distributed computing, modern interface for user interaction, efficient data
storage, security and safety issues and dynamic configuration.

We would like to make extensive use of available tools for (high-level) nets.
Unfortunately, this is not possible using tools [RWL+03] for coloured Petri nets
[Jen92]. Actually, coloured Petri nets are based on an extension of the functional
language Standard ML [MTHM97]. As Standard ML does not allow functional
equivalence testing, it is not suitable for our purpose where we need a form of
functional equivalence.

However, several aspects of AHO-nets are supported by tools. The algebraic ap-
proach to graph transformations, which can also be used for rule-based transforma-
tions of nets, is supported by the graph transformation environment AGG (see the
homepage of [AGG]). AGG includes an editor for graphs and graph grammars, a
graph transformation engine, and a tool for the analysis of graph transformations.
On top of the graph transformation system AGG is the GenGED environment
(see the homepage of [Gen]), which supports the generic description of visual mod-
eling languages for the generation of graphical editors and the simulation of the
behavior of visual models. Especially rule-based transformations for P/T-systems
can be expressed using GenGED. These transformations can be coupled to other
Petri net tools using the Petri Net Kernel [KW01], a tool infrastructure for editing,
simulating and analyzing Petri nets of different net classes and for integration of
other Petri net tools. Tools for HasCasl have been already implemented [Mos05],
which is an important step towards implementation and tool support for AHO-nets.
The Heterogeneous Tool Set (Hets) (see the homepage of [Het]) provides a parser
and static analysis for Casl and HasCasl-specifications; theorem proving support
in form of a translation to the Isabelle/HOL prover is under development. Also, a
translation tool from a HasCasl subset to Haskell is provided.



Chapter 11

Conclusion

We conclude with a summary of achieved notions and results, while a discussion
of open problems has been given in the previous chapter. In this thesis we have
presented the new high-level net classes of algebraic higher-order net schemes and
algebraic higher-order nets (see Chapter 3) including higher-order features, product
types as well as partiality. We have achieved this by using as data type part higher-
order partial algebras in an intensional setting (see Section 3.1), where function
types are interpreted by arbitrary sets with an application operation of appropriate
type. Thus we are able to give a set theoretic definition of domains and operations
and staying close to classical algebraic specifications (see Section 2.2). We have
covered the basic notions of algebraic higher-order net schemes as well as algebraic
higher-order nets like net structure and operational behavior (see Chapter 3). More-
over we have explored algebraic higher-order net schemes and algebraic higher-order
nets on a categorical level by introducing the notions of algebraic higher-order net
scheme morphisms as well as algebraic higher-order net morphisms (see Chapter 4).
In the case of algebraic higher-order net morphisms we have shown that morphisms
are compatible with the operational behavior (see Thm. 4.2.3).

In particular we have achieved several results, so that the following requirements
of the introduction are fulfilled as stated below.

Composition of Models The horizontal structuring technique called union,
which allows the formal construction of larger models from model segments
with shared subparts, was achieved by the existence of all pushouts in the
category of algebraic higher-order net schemes (see Thm. 4.1.3).

Adaptive Models The adaptability of models was tackled in two different dir-
ections. On the one hand the variable part, which depends on the current
execution, could be as large as required because in our approach of higher-
order algebras functions are first-class citizens and the order of functions is
allowed to be arbitrarily high. In this way functions can be used as tokens to
achieve an operation late-binding mechanism, i.e. depending on a specific ap-
plication the current execution of the process and reaction to feedback can be
given at run-time by adding and exchanging suitable operations as tokens. On
the other hand we have introduced folding constructions wrt. constant sym-
bols to support the development of abstract and flexible models. By applying
these constructions the level of abstraction increases because certain opera-
tions move from the fixed part given by the net structure, into the variable
part expressed by tokens. We have shown, that these constructions preserve
the operational behavior (see Thm. 5.1.9). These folding constructions were
frequently used in our case study “Logistics” (see Chapter 9). Moreover we
have introduced an unfolding constructions wrt. constant symbols, which
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preserves the operational behavior (see Thm. 5.1.9), so that the folding and
unfolding construction wrt. constant symbols are inverse to each other (see
Thm. 5.1.6).

Compact Description of Models To obtain compact descriptions of models we
have achieved two main results. On the one hand we have presented folding
constructions wrt. product types, which under certain conditions transfer spe-
cific parts of the process specification into the data type part and preserve the
firing behavior (see Thm. 5.2.12). These constructions were frequently used
in our case study “Logistics” (see Chapter 9). Moreover we have presented
unfolding constructions wrt. product types, which preserve the operational
behavior (see Thm. 5.2.12), so that the folding and unfolding construction
wrt. product symbols are inverse to each other (see Thm. 5.2.7). On the
other hand the horizontal structuring technique to identify distinguished ele-
ments, called fusion, was achieved due to the cocompleteness of the category
of algebraic higher-order net schemes (see Thm. 4.1.4).

Dynamic Tokens Here we would like to point out once more that in our approach
functions are first-class citizens and the order of functions is allowed to be
arbitrarily high. Thus our approach is powerful enough to consider dynamical
tokens in the system, having their own individual behavior like Petri nets, as
tokens themselves (see Section 6.1, Section 6.2, and Chapter 8).

Rule Tokens In Section 6.2 and our case study of medical information systems in
Chapter 8 we have demonstrated the use of rules as tokens and transformations
as appropriate operations, which are covered by the data type part of higher-
order algebras. This leads to a high level of abstraction, which is flexible in
the sense that different transformations are not attached to the net structure
in a fixed way, but could be expressed by a set of rule tokens. Furthermore,
changes of specific transformations result in an exchange of rule tokens. In
Section 6.3 we went one step further. Here we have used rules as tokens
not only to represent mobile policies, but also for the manipulation of rules
themselves.

Furthermore, we have provided the basis not only for transformations and dy-
namic reconfiguration of models (see Chapter 10) but also for the integration of
software components. Although the concepts of rule-based transformations are in
general available for algebraic higher-order nets, further research is necessary to
obtain the compatibility results for our approach. Another promising topic is the
formalization of dynamic reconfiguration, which is not straightforward. Because the
order of functions is allowed to be arbitrarily high in our approach, it is possible to
make a considerable step forward and reflect specific parts of software components
as functions, so that local modification and/or substitution of these parts could be
expressed by exchanging the relevant tokens.

Summarizing, we have introduced the novel approach of algebraic higher-order
nets in this thesis, where the data type part is extended to include function types,
product types, and partiality, so that some major inherent problems of high-level
nets like operation late-binding mechanisms are solved. Thus, we obtain a high-
level of abstraction in our approach and support structure flexibility and system
adaptability in an extensive way. We have presented several large examples and
two case studies to demonstrate the practical use of algebraic higher-order nets.
We are convinced that this thesis is a good starting point for the future work as
discussed in Chapter 10.
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Appendix A

Basic Notions of Category
Theory

In this appendix, the notions and definition of category theory are explained so far
as used in this thesis. Proofs can be found in [BW90] and [AHS90].

A.1 Categorical Definitions and Constructions

Definition A.1.1 (Category)
A category C = (ObC,MorC, ◦, id) consists of

1. a class of objects ObC,

2. for each pair of objects A,B ∈ ObC a set MorC(A,B) of morphisms,
(a morphism f ∈MorC(A,B) is also denoted by f : A −→ B),

3. for all objects A,B,C ∈ ObC a composition operator

◦ : MorC(B,C)×MorC(A,B) −→MorC(A,C)

4. for each object A ∈ ObC there is a morphism idA ∈MorC(A,A)

such that the following axioms are satisfied:

Associativity For all objects A,B, C, D ∈ ObC and for all morphisms
f ∈MorC(A,B), g ∈MorC(B,C) and h ∈MorC(C,D) we have

(h ◦ g) ◦ f = h ◦ (g ◦ f)

if at least one side is defined.

Identity For all objects A,B ∈ ObC and for all morphisms f ∈ MorC(A,B) we
have

f ◦ idA = f and idB ◦ f = f.

Definition A.1.2 (Isomorphism)
Let C be a category. A morphism f ∈ MorC(A,B) is an isomorphism if there
exists a morphism g ∈MorC(B,A) such that f ◦ g = idB and g ◦ f = idA. In this
case, the objects A and B are said to be isomorphic, written A ∼= B.

Definition A.1.3 (Initial Object)
Let C be a category. An object I ∈ ObC is an initial object in C if for any object
A ∈ ObC there exists a unique morphism f ∈MorC(I,A).
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Definition A.1.4 (Coproducts)
A coproduct of two objects A and B in a category C is an object A + B together
with two injection morphisms inA ∈MorC(A,A + B) and inB ∈MorC(B,A + B)
such that for any object D in C and pair of morphisms f ∈ MorC(A,D) and
g ∈ MorC(B,D), there exists one and only one morphism k ∈ MorC(A + B,D)
such that k ◦ inA = f and k ◦ inB = g.

Definition A.1.5 (Coequalizer)
A coequalizer of a pair of morphisms f ∈ MorC(A,B) and g ∈ MorC(A,B) is a
morphism h ∈ MorC(C,B) such that f ◦ h = g ◦ h and for any object X in C
and morphism i ∈ MorC(X, A) with f ◦ i = g ◦ i, there exists one and only one
morphism k ∈MorC(X, C) such that i = h ◦ k.

Definition A.1.6 (Pushouts)
A pushout of a pair of morphisms f ∈MorC(A,B) and g ∈MorC(A,C) is an object
D in C and a pair of morphisms f ′ ∈MorC(B,D) and g′ ∈MorC(C,D) such that
f ′ ◦ f = g′ ◦ g and for any object X in C and pair of morphisms i ∈MorC(B,X)
and j ∈ MorC(C,X) with i ◦ f = j ◦ g, there exists one and only one morphism
k ∈MorC(D,X) such that i = f ′ ◦ k and j = g′ ◦ k.

Definition A.1.7 (Pullbacks)
A pullback of a pair of morphisms f ∈MorC(B,D) and g ∈MorC(C,D) is a object
A in C and a pair of morphisms f ′ ∈MorC(A,B) and g′ ∈MorC(A,C) such that
f ′ ◦ f = g′ ◦ g and for any object X in C and pair of morphisms i ∈MorC(X, B)
and j ∈ MorC(X, C) with f ◦ i = g ◦ j, there exists one and only one morphism
k ∈MorC(X, D) such that i = k ◦ f ′ and j = k ◦ g′.

Definition A.1.8 (Finite Cocompleteness)
A category C with the following properties

1. C has an initial object,

2. every pair of objects has a coproduct, and

3. every parallel pair of morphisms has an coequalizer

has all finite colimits.

Fact A.1.9 (Finite Cocompleteness)
A category C that has an initial object and all pushouts is finitely cocomplete. �

A.2 Constructions Based on Functors

Definition A.2.1 (Functor)
Let C and D be categories. A functor F : C −→ D is a pair of mappings FOb :
ObC −→ ObD and FMor : MorC −→MorD for which

1. if f ∈MorC(A,B), then FMor(f) ∈MorD(FOb(A), FOb(B)),

2. FMor(g ◦ f) = FMor(g) ◦ FMor(f) whenever f ◦ g is defined, and

3. FMor(idA) = idFOb(A) for each object A ∈ ObC.

If no confusion arises, we will denote both FOb and FMor by F .
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Definition A.2.2 (Free Construction)
Let C and D be categories, V : D −→ C a functor and A ∈ ObC an object. We
call and object F (A) ∈ ObC free construction of A wrt. V if there is a morphism
uA : A −→ V ◦ F (A), called universal morphism, which satisfies the following
property, called universal property. For each object B ∈ D and each morphism
f : A −→ V (B) in C there is a unique morphism g : F (A) −→ B in D such that
V (g) ◦ uA = f . In this case we say that the following diagram commutes:

A
f //

uA

��

V (B)

V ◦ F (A)
V (g:F (A)−→B)

99ttttttttt

Definition A.2.3 (Natural Transformation)
Let Let C and D be categories and F,G : C −→ D be functors. A family

u = (uA : F (A) −→ G(A))A∈ObC

of morphisms in C is called a natural transformation, written u : F −→ G if for
all morphisms h : A −→ B in C the following diagram commutes:

F (A)

=

F (h) //

uA

��

F (B)

uB

��
G(A)

G(h)
// G(B)

Fact A.2.4 (Free Functor)
Given a free construction F (A) over A wrt. V for V : D −→ C and all A ∈ ObC,
then this free construction can be extended to morphisms in C such that for each
h : A −→ B in C F (h) is uniquely defined by commutativity of the following
diagram:

A

=

h //

uA

��

B

uB

��
V ◦ F (A)

V ◦F (h)
// V ◦ F (B)

In this way we obtain a functor F : C −→ D, called free functor wrt. V , and a
natural transformation u : IDC −→ V ◦ F , called universal transformation, where
IDC is the identical functor. The free functor F : C −→ D wrt. V is usually called
left adjoint to V and dually V is in this case right adjoint to F , written F ` V . �

Theorem A.2.5 (Preservation of Colimits)
Let F : C −→ D and V : D −→ C be functors such that F ` V . Then F preserves
colimits. �

Definition A.2.6 (Monad)
A monad on a category C is a triple T = (T, η, µ) consisting of a functor

T : C −→ C

and natural transformations

η : IDC −→ T and µ : T 2 −→ T

such that the following diagrams commute:
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T
ηT //

=
  @

@@
@@

@@
@ T 2

µ

��

T
Tηoo

=
~~~~

~~
~~

~~
T 3

Tµ //

µT

��

T 2

µ

��
T T 2

µ
// T

Fact A.2.7 (Kleisli Category)
Let T = (T, η, µ) be a monad on the category C. Then the Kleisli category K(T) has
the same objects as C. For A,B ∈ ObC we have MorK(T)(A,B) = MorC(A, T (B)).
The identity of an object A is the arrow ηA : A −→ T (A). The composition of
morphisms is as follows. If f : A −→ T (B) and g : B −→ T (C) are arrows in C ,
we let their composite in K(T) be the following composite in C :

A
f−→ T (B)

T (g)−→ T 2(C)
µC−→ T (C).

Moreover, there are functors V : K(T) −→ C and F : C −→ K(T) defined by
V (A) = T (A) and V (f) = µA ◦ T (f), where A is the domain of f , and F (A) = A
and for g : A −→ B, F (g) = T (g) ◦ ηA. Then F is left adjoint to U and T = U ◦ F .

�



Appendix B

Free Commutative Monoids

In this section we will summarize necessary notions about free commutative monoids
because they are frequently used in this thesis.

B.1 Definitions of Free Commutative Monoids

Definition B.1.1 (Category CMon)
A commutative monoid (M, •, ε) consists of

• s set M which is closed wrt. •,

• a neutral element ε,

• an operation • : M ×M −→M such that for all w1, w2, w3 ∈M we have

1. ε • w1 = w1 and w1 • ε = w1,

2. w1 • w2 = w2 • w1, and

3. (w1 • w2) • w3 = w1(•w2 • w3).

A function h : M1 −→M2 is a monoid homomorphism

h : (M1, •1, ε1) −→ (M2, •2, ε2)

if for all w1, w2 ∈M

1. h(ε1) = ε2 and

2. h(w1 •1 w2) = h(w1) •2 h(w2).

The category CMon consists of commutative monoids as objects and monoid ho-
momorphisms as morphisms.

Definition B.1.2 (Free Commutative Monoid)
Let P be a set, then (P⊕, λ,⊕) is called the free commutative monoid generated by
P , s.t. for all u, v, w ∈ P⊕ the following equations hold:

• λ ∈ P⊕

• P ⊆ P⊕

• u, v ∈ P⊕ =⇒ u⊕ w ∈ P⊕

• v ⊕ λ = λ⊕ v = v

177
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• u⊕ (v ⊕ w) = (u⊕ v)⊕ w

• v ⊕ w = w ⊕ v

Elements of the free commutative monoid w ∈ P⊕ for some set P can be represented
as w =

∑n
i=1 ki · pi with coefficient ki ∈ N. For n = 0 we have

∑0
i=1 ki · pi = λ.

In the computer science literature such elements are called finite multisets, i.e.
multisets w : P −→ N for which the set {p|w(p) 6= 0} is finite. A multiset w is
usually represented by the formal sum

∑
p∈P w(p) · p. We denote byM(P ) the set

of all finite multisets over P .
An element w =

∑n
i=1 ki · pi ∈ P⊕ with ki ∈ N, pi ∈ P is in normal form if

ki > 0 for all i = 1, . . . , n and pi 6= pj for i 6= j. Then P⊕ is defined by

P⊕ = {w|w =
n∑

i=1

ki · pi, w in normal form}

and we have P⊕ ∼=M(P ). So we can switch between the two different notation of
formal sums given above.

Let f : P1 −→ P2 be a function. The extension f⊕ : P⊕
1 −→ P⊕

2 is the set-based
monoid homomorphism defined for all w ∈ P⊕ by

f⊕(w) = f⊕(
∑

p1∈P1
w(p1) · p1)

=
∑

p1∈P1
w(p1) · f(p1)

=
∑

p2∈P2
(
∑

p1∈P1
f(p1) = p2

w(p1)) · p2

Definition B.1.3 (Forgetful Functor VCMon)
The forgetful functor VCMon : CMon −→ Sets sends a monoid (M, •, ε) to the
set M and each monoid homomorphism h : (M1, •1, ε1) −→ (M2, •2, ε2) to the
corresponding function h : M1 −→M2.

Definition B.1.4 (Free Functor FCMon)
Let P be a set. Then for each function f : P −→ VCMon(M, •, ε) we get a unique
monoid homomorphism f⊕ : (P⊕, λ,⊕) −→ (M, •, ε) such that f = VCMon(f⊕) ◦ u
with inclusion u : P −→ P⊕. The free construction can be extended to a free
functor FCMon : Sets −→ CMon.

Remark B.1.5 (Normal Form)
We use the notation

∑n
i=1 pi with pi ∈ P as an abbreviation for p1⊕ . . .⊕pn, n ∈ N,

where the elements pi of P are not necessary disjoint, i.e.
∑n

i=1 pi might not be in
normal form. To transform this sum into normal form we first observe that each
element pi itselfs represents a multiset wi : P −→ N for all i ∈ {1, . . . , n} with
wi(pi) = 1 and wi(p) = 0 for all p ∈ P and p 6= pi. Then we have

n∑
i=1

pi =
∑
p∈P

n∑
i = 1

pi = p

wi(pi) · p.

Definition B.1.6 (Induced Function by Free Commutative Monoid)
Free commutative monoids imply the operations ⊕,	,≤,≥,=, 6= and ∈ on linear
sums. These are the obvious addition, subtraction and comparison of coefficients on
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linear sums. Let w1, w2 ∈ P⊕ with w1 =
∑

p∈P w1(p) · p and w2 =
∑

p∈P w2(p) · p,
then

(1) p ∈ w1 if w1(p) ≥ 0

(2) w1 ≤ w2 if ∀p ∈ P : w1(p) ≤ w2(p)

(3) w1 ≥ w2 if ∀p ∈ P : w1(p) ≥ w2(p)

(4) w1 = w2 if ∀p ∈ P : w1(p) = w2(p)

(5) w1 6= w2 if ∃p ∈ P : w1(p) 6= w2(p)

(6) w1 ⊕ w2(p) = (w1(p) + w2(p)) for all p ∈ P

(7) w1 	 w2(p) = (w1(p)− w2(p) for all p ∈ P if w1 ≥ w2

B.2 Restrictions and Cartesian Products

Definition B.2.1 (Restrictions on Free Commutative Monoids)
Given w : P −→ N and let i : P1 −→ P be an inclusion. Then we define

w|P1 = w ◦ i.

Moreover there is a special case given by

P1 = {p} denoted with w|p.

Fact B.2.2 (Restrictions are Compatible with Monoid-Operations)
Let P1 ⊆ P and w,w′ ∈ P⊕. Then we have

(1) (w ⊕ w′)|P1 = w|P1 ⊕ w′
|P1

(2) (w 	 w′)|P1 = w|P1 	 w′
|P1

(3) w ≤ w′ =⇒ w|P1 ≤ w′
|P1

.

Proof: Let w,w′ : P −→ N and let i : P1 −→ P be an inclusion.

Proof of (1): For all p ∈ P1 we have

(w ⊕ w′)|P1(p) = (w ⊕ w′)(i(p))
= (w ◦ i(p)) + (w′ ◦ i(p))
= (w|P1(p)) + (w′

|P1
(p))

= (w|P1 ⊕ w′
|P1

)(p).

Proof of (2): analogously

Proof of (3):
w(p) ≤ w′(p) for all p ∈ P

=⇒ w(p) ≤ w′(p) for all p ∈ P1

⇐⇒ w ◦ i(p) ≤ w′ ◦ i(p) for all p ∈ P1

⇐⇒ w|P1 ≤ w′
|P1

.

�

Definition B.2.3 (Cartesian Products of Free Commutative Monoid)
Free commutative monoids imply the operations of Cartesian products × on linear
sums. Let w ∈ A⊕, w′ ∈ B⊕ then we define for all (a, b) ∈ A×B

w × w′(a, b) = w(a) · w′(b).
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Let w ∈ (A × B)⊕ for some sets A and B. Then for A1 ⊆ A and B1 ⊆ B there is
an inclusion i : (A1 ×B1) −→ (A×B) and we have due to Def. B.2.1

w|(A1×B1) = w ◦ i.

For i : (A × B1) −→ (A × B) we denote w|(A×B1) by w|B1 . If no confusion arises,
we also denote for i : (A× {b}) −→ (A×B) the restriction w|(A×{b}) by

w|b =
∑
a∈A

w(a, b) · a.

Fact B.2.4 (Restrictions are Compatible with Cartesian Products)
Let w ∈ A⊕, w′ ∈ B⊕, A1 ⊆ A, and B1 ⊆ B. Then we have

(w × w′)|(A1×B1) = w|A1 × w′
|B1

Proof: Let i : (A1 × B1) −→ (A× B) be an inclusion. Then there are inclusions
iA : A1 −→ A and iB : B1 −→ B so that we have for all (a, b) ∈ A1 ×B1:

(w × w′)|(A1×B1)(a, b)
= (w × w′)(i(a, b))
= (w × w′)(iA(a), iB(b))
= (w ◦ iA(a)) · (w′ ◦ iB(b))
= (w|A1(a)) · (w′

|B1
(b))

= (w|A1 × w′
|B1

)(a, b).

�



Appendix C

Elementary Object Systems

In the following we review the well-known notion of elementary net systems, i.e.
elementary nets with an initial marking.

C.1 Definitions of Elementary Net Systems

Definition C.1.1 (Elementary Nets)
An elementary net N = (B,E, F ) is defined by a finite set of places (or conditions)
B, a finite set of transitions (or events) E, disjoint from B, and a flow relation
F ⊆ (B × E) ∪ (E ×B).

Definition C.1.2 (Firing Behavior of EN-Systems)
Given an elementary net N = (B,E, F ), then

1. a marking of N is given by m ⊆ B,

2. a transition e ∈ B is C-enabled for a marking m ⊆ B, denoted by m[e〉 or
m

t−→ if we have •e ⊆ m and e• ⊆ B \m and

3. if e ∈ B is m-enabled the follower marking m′ is given by

m′ = (m \ •e) ∪ e•

and denoted by m[e〉m′ or m
t−→ m′.

These notions are usually extended to words w ∈ E+ and written m
e−→ m′.

Definition C.1.3 (Elementary Net Systems)
An elementary net (EN) system N = (B,E, F, m0) is defined by an elementary net
N = (B,E, F ) and an initial marking m0 ⊆ B. Moreover, we have

• the set of firing or occurrence sequences of N defined by

FS(N) := {w ∈ E∗|m0 w−→}

• the set of reachable markings of N , also called reachable set of N , defined by

R(N) := {m ⊆ B|∃w ∈ E∗ : m0 w−→ m}.

Definition C.1.4 ((Structural) State Machine)
Given an elementary net N = (B,E, F ), then it is called a structural state machine
if each transition e ∈ E has exactly one input place (| • e| = 1) and exactly one
output place (|e • | = 1). N is said to be a state machine if it is a structural state
machine and m0 contains exactly one token (|m0| = 1).
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Using the notation of “Petri nets are Monoids” [MM90] the definition above are
equivalent to the following definition.

Definition C.1.5 (Elementary Nets)
An elementary net N = (B,E, pre, post) consists of

• finite set of places (or conditions) B, a finite set of transitions (or events) E,
disjoint from B,

• pre- and post conditions pre, post : E −→ P(B) assigning to each transition
e ∈ E an element of the powerset P(B).

Definition C.1.6 (Firing Behavior of EN-Systems)
Given an elementary net N = (B,E, pre, post), then

1. a marking of N is given by m ⊆ B,

2. a transition e ∈ B is m-enabled for a marking m ∈⊆ B, denoted by m[e〉 if
we have pre(t) ⊆ m and post(t) ⊆ B \m and

3. if e ∈ B is m-enabled the follower marking m′ is given by

m′ = (m \ pre(t)) ∪ post(t)

and denoted by m[e〉m′.

Definition C.1.7 (Elementary Net Systems)
An elementary net (EN) system N = (B,E, pre, post,m0) consists of an elementary
net (B,E, pre, post) and an initial marking m0 ⊆ P(B).

C.2 Definitions of Elementary Object Systems

In the following we review the notions of elementary objects systems as defined in
[Val98, Val01]. Elementary object systems are an extension of unary elementary
object systems in such a way that different object nets move through in a system
net and interact with both, the system net and with other object nets.

Definition C.2.1 (Elementary Object System)
A elementary object system is a tuple EOS = (SN, ÔN,Rho, type, M̂) where

• SN = (P, T,W ) is net (i.e. an EN system without initial marking) called
system net of EOS,

• ÔN = {ON1, . . . , ONn} (n ≥ 1) is a finite set of EN systems called object nets
of EOS, denoted by ONi = (Bi, Ei, Fi,m0i) is an EN system called object
net of EOS and

• Rho = (ρ, σ) is the interaction relation, consisting of a system/object inter-
action relation ρ ⊆ T × E where E :=

⋃
{Ei|1 ≤ i ≤ n} and a symmetric

object/object interaction relation σ ⊆ (E×E) \ idE ,

• type : W −→ 2{1,...,n} ∪ N is the arc type function and

• M̂ is a marking as defined in Def. C.2.2.



C.2. DEFINITIONS OF ELEMENTARY OBJECT SYSTEMS 183

Definition C.2.2 (Marking of Elementary Object Systems)
The set Obj := {(ONi,mi)|1 ≤ i ≤ n,mi ∈ R(ONi)} is the set of objects of the
EOS. An object-marking (O-marking) is a mapping M̂ : P −→ 2Obj ∪N such that
M̂(p) ∩Obj 6= ∅ =⇒ M̂(p) ∩ N = ∅ for all p ∈ P .

Definition C.2.3 (Components of Elementary Object Systems)
Let EOS = (SN, ÔN,Rho, type, M̂) be an elementary object system, but in some
arbitrary marking M̂.

• Rho = (ρ, σ) is said to be separated if iσj =⇒ ρi = ∅ = ρj.

• The i-component (1 ≤ i ≤ n) of EOS is the EN system

SN(i) = (P, T,W (i),M0i(p))

defined by W (i) = {(x, y)|i ∈ type(x, y)} and M0i(p) = 1 iff (ONi,mi) ∈
M̂(p). The 0-component (zero-component) is the P/T-net

SN(0) = (P, T,W (0),M00(p))

with the arc weight function W (0)(x, y) = k if type(x, y) = k ∈ N and
M00(p) = k ∈ N iff k ∈ M̂(p).

• The subnet SN(1 . . . n) = (P, T,W (1 . . . n),M1...n(p)) where W (i . . . n) =⋃
{W (i)|1 ≤ i ≤ n} and M1...n(p) = M̂(p) ∩ Obj is said to be the object-

component.

• EOS is said to be a simple elementary object system if SN(i . . . n) is a struc-
tural state machine, all i-components of SN are state machines and Rho is
separated.

There are some inconsistencies in the definitions of elementary object systems
and their markings. On the one hand, the system net SN of an elementary ob-
ject system EOS is rather a P/T-net than an EN-net because the zero-component
SN(O) is a P/T-net (see Def. C.2.2). On the other hand, there is an ambiguity
concerning the marking of an object (ONi,mi) ∈ Obj of an elementary object sys-
tem EOS (see Def. C.2.2) because there is an initial marking m0i and a reachable
marking mi in the object (ONi = (Bi, Ei, FI ,m0i),mi) (although it is clear due to
the explanations in [Val98, Val01] that the actual marking of an object is meant to
be the reachable marking mi).

It is not explicitly mentioned in the following definition but implicitly assumed
that the object component SN(1 . . . n) of an elementary object system EOS is a
structural state machine. Otherwise dropping this condition would lead to incon-
sistencies in the definition of the dynamical behavior of elementary object systems
(see [Val98, Val01]). Thus the elementary object systems in the following definition
do not reflect fork/join-control structures.

Definition C.2.4 (Firing Behavior of Elementary Object Systems)
Let EOS = (SN, ÔN,Rho, type, M̂) be an elementary object system and M̂ :
P −→ 2Obj ∪ N be an O-marking and t ∈ T, ei ∈ Ei, ej ∈ Ej , i 6= j.

1. Transition t ∈ T is activated in M̂ (denoted M̂ t−→) if tρ = ∅ and the following
holds:

(a) t is activated in the zero-component of SN (i.e. in the P/T-net part)
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(b) By the state machine property there is at most one type i ∈ {1, . . . , n}
such that i ∈ type(p1, t) and i ∈ type(t, p2) for some p1 ∈ •t and p2 ∈ t•.
In this case there must be some object (ONi,mi) ∈ M̂(p1).

If t is activated, then t may occur (M̂ t−→ M̂′) and the follower marking M̂′

is defined as follows: with respect to the zero-components tokens are changed
according to the ordinary P/T-net occurrence rule. In case 1.2. (ONi,mi) is
removed from p1 and added to p2 (only if p1 6= p2).

2. A pair (t, e) ∈ T × Ei with tρe is activated in M̂ (denoted M̂
(t,e)−→) if in

addition to case 1 transition e is also activated for ONi in mi. Instead of
(ONi,mi) the changed object (ONi,mi+1) where mi

e−→mi+1 is added.

3. A pair (ei, ej) ∈ Ei×Ej with eiσej is activated in M̂ (denoted M̂
(ei,ej)−→ ) if for

some place p ∈ P two objects (ONi,mi) ∈ M̂(p) and (ONj ,mj) ∈ M̂(p) are in
the same place p and mi

ei−→mi+1 and mj
ej−→mj+1. In the follower marking

M̂′ the objects (ONi,mi) and (ONj ,mj) in p are replaced by (ONi,mi+1)
and (ONj ,mj+1, resp.

4. A transition e ∈ Ei with eσ = σe = ∅ is activated in M̂ (denoted M̂ e−→) if
for some place p ∈ P we have (ONi,mi) ∈ M̂(p) and mi

ei−→ mi+1. In the
follower marking M̂′ the object (ONi,mi) is replaced by (ONi,mi+1).



Appendix D

Notation

Basics
N natural numbers
Pfin (finite) power sets

Mathematical preliminaries

−→ total function
−→◦ partial function
⊗ Cartesian product respecting sorts/types

Free commutative monoids
P⊕ free commutative monoid over the set P
⊕,	 operations on monoid elements
≤,≥ comparison predicates on monoid elements
w|P restrictions of monoid elements

Algebraic higher-order nets

M [(t, v)〉 transition t is enabled in marking M under
variable valuation v

M [(t, v)〉M ′ firing of transition t from marking M to fol-
lower marking M ′

[M〉 set of reachable markings of M

Categories

Sets sets and functions
CMon commutative monoids and monoid homomorphisms
Sig classical signatures and signature morphisms
Alg(Σ) classical Σ-algebras and homomorphisms
Alg(SP ) classical SP -algebras and homomorphisms
HOSig higher-order signatures and signature morphisms
HOAlg(Σ) higher-order partial Σ-algebras and homomorphisms
PTNet P/T-nets and P/T-net morphisms
PTSys P/T-systems and P/T-system morphisms
AHLNet AHL-nets and AHL-net morphisms
AHOS AHO-net schemes and AHO-net scheme morphisms
AHON AHO-nets and AHO-net morphisms
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